Optical wavefront distortion due to supersonic flow fields
Institute of Scientific and Technical Information of China (English)
CHEN ZhiQiang; FU Song
2009-01-01
The optical wavefront distortion caused by a supersonic flow field around a half model of blunt nose cone was studied in a wind tunnel. A Shack-Hartmann wavefront sensor was used to measure the dis-totted optical wavefront. Interesting optical parameters including the peak variation (PV), root of mean square (RMS) and Strehl ratio were obtained under different test conditions during the experiment. During the establishing process of the flow field in the wind tunnel test section, the wavefront shape was unstable. However after the flow field reached the steady flow state, the wavefront shape kept sta-ble, and the relative error of wavefront aberration was found small. The Shack-Hartmann wavefront sensor developed was proved to be credible in measuring quantitatively the optical phase change of light traveling through the flow field around model window.
Supersonic flows over cavities
Institute of Scientific and Technical Information of China (English)
Tianwen FANG; Meng DING; Jin ZHOU
2008-01-01
The characteristics of supersonic cold flows over cavities were investigated experimentally and numer-ically, and the effects of cavities of different sizes on super-sonic flow field were analyzed. The results indicate that the ratio of length to depth L/D within the range of 5-9 has little relevance to integral structures of cavity flow. The bevel angle of the rear wall does not alter the overall structure of the cavity flow within the range of 30°-60°, but it can exert obvious effect on the evolvement of shear layer and vortexes in cavities.
Effect of Nonequilibrium Homogenous COndensation on Flow Fields in a Supersonic Nozzle
Institute of Scientific and Technical Information of China (English)
ToshiakiSetoguchi; ShenYu; 等
1997-01-01
When condensation occurs in a supersonic flow field,the flow is affected by the latent heat released.In the present study,a condensing flow was produced by an expansion of moist air in a supersonic circular nozzle,and,by inserting a wedge-type shock generator placed in the supersonic part of the nozzle,the experimental investigations were carried out to clarify the effect of condensation on the normal shock wave and the boundary layer.As a result,the position of the shock wave relative to the condensation zone was discussed,together with the effect of condensation on pressure fluctuations.Furthermore,a compressible viscous two-phase flow of moist air in a supersonic half nozzle was calculated to investigate the effect of condensation on boundary layer.
Study of density field measurement based on NPLS technique in supersonic flow
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Due to the influence of shock wave and turbulence, supersonic density field exhibits strongly inhomogeneous and unsteady characteristics. Applying traditional density field measurement techniques to supersonic flows yields three problems: low spatiotemporal resolution, limitation of measuring 3D density field, and low signal to noise ratio (SNR). A new method based on Nano-based Planar Laser Scattering (NPLS) technique is proposed in this paper to measure supersonic density field. This method measures planar transient density field in 3D supersonic flow by calibrating the relationship between density and concentration of tracer particles, which would display the density fluctuation due to the influence of shock waves and vortexes. The application of this new method to density field measurement of supersonic optical bow cap is introduced in this paper, and the results reveal shock wave, turbulent boundary layer in the flow with the spatial resolution of 93.2 μm/pixel. By analyzing the results at interval of 5 μs, temporal evolution of density field can be observed.
Study of density field measurement based on NPLS technique in supersonic flow
Institute of Scientific and Technical Information of China (English)
TIAN LiFeng; YI ShiHe; ZHAO YuXin; HE Lin; CHENG ZhongYu
2009-01-01
Due to the influence of shock wave and turbulence,supersonic density field exhibits strongly inho-mogeneous and unsteady characteristics.Applying traditional density field measurement techniques to supersonic flows yields three problems: low spatiotemporal resolution,limitation of measuring 3D density field,and low signal to noise ratio (SNR).A new method based on Nano-based Planar Laser Scattering (NPLS) technique is proposed in this paper to measure supersonic density field.This method measures planar transient density field in 3D supersonic flow by calibrating the relationship between density and concentration of tracer particles,which would display the density fluctuation due to the influence of shock waves and vortexes.The application of this new method to density field measurement of supersonic optical bow cap is introduced in this paper,and the results reveal shock wave,turbulent boundary layer in the flow with the spatial resolution of 93.2 pm/pixel.By analyzing the results at interval of 5 μs,temporal evolution of density field can be observed.
Yan, Li; Huang, Wei; Li, Hao; Zhang, Tian-tian
2016-10-01
Sufficient mixing between the supersonic airstream and the injectant is critical for the design of scramjet engines. The information in the two-dimensional supersonic jet-to-crossflow flow field has been explored numerically and theoretically, and the numerical approach has been validated against the available experimental data in the open literature. The obtained results show that the extreme difference analysis approach can obtain deeper information than the variance analysis method, and the optimal strategy can be generated by the extreme difference analysis approach. The jet-to-crossflow pressure ratio is the most important influencing factor for the supersonic jet-to-crossflow flow field, following is the injection angle, and all the design variables have no remarkable impact on the separation length and the height of Mach disk in the range considered in the current study.
Institute of Scientific and Technical Information of China (English)
Wei HUANG; Li YAN
2013-01-01
The transverse injection flow field has an important impact on the flowpath design of scramjet engines.At present a combination of the transverse injection scheme and any other flame holder has been widely employed in hypersonic propulsion systems to promote the mixing process between the fuel and the supersonic freestream;combustion efficiency has been improved thereby,as well as engine thrust.Research on mixing techniques for the transverse injection flow field is summarized from four aspects,namely the jet-to-crossflow pressure ratio,the geometric configuration of the injection port,the number of injection ports,and the injection angle.In conclusion,urgent investigations of mixing techniques of the transverse injection flow field are proposed,especially data mining in the quantitative analytical results for transverse injection flow field,based on results from multi-objective design optimization theory.
Effect of atomization gas pressure variation on gas flow field in supersonic gas atomization
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
In this paper, a computational fluid flow model was adopted to investigate the effect of varying atomization gas pressure (P0) on the gas flow field in supersonic gas atomization. The influence of P0 on static pressure and velocity magnitude of the central axis of the flow field was also examined. The numerical results indicate that the maximum gas velocity within the gas field increases with increasing P0. The aspiration pressure (ΔP) is found to decrease as P0 increases at a lower atomization gas pressure. However, at a higher atomization gas pressure increasing P0 causes the opposite: the higher atomization gas pressure, the higher aspiration pressure. The alternation of ΔP is caused by the variations of stagnation point pressure and location of Mach disk, while hardly by the location of stagnation point. A radical pressure gradient is formed along the tip of the delivery tube and increases as P0 increases.
Infinitesimal Conical Supersonic Flow
Busemann, Adolf
1947-01-01
The calculation of infinitesimal conical supersonic flow has been applied first to the simplest examples that have also been calculated in another way. Except for the discovery of a miscalculation in an older report, there was found the expected conformity. The new method of calculation is limited more definitely to the conical case.
Supersonic flow imaging via nanoparticles
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Due to influence of compressibility,shock wave,instabilities,and turbulence on supersonic flows, current flow visualization and imaging techniques encounter some problems in high spatiotemporal resolution and high signal-to-noise ratio(SNR)measurements.Therefore,nanoparticle based planar laser scattering method(NPLS)is developed here.The nanoparticles are used as tracer,and pulse planar laser is used as light source in NPLS;by recording images of particles in flow field with CCD, high spatiotemporal resolution supersonic flow imaging is realized.The flow-following ability of nanoparticles in supersonic flows is studied according to multiphase flow theory and calibrating experiment of oblique shock wave.The laser scattering characteristics of nanoparticles are analyzed with light scattering theory.The results of theoretical and experimental studies show that the dynamic behavior and light scattering characteristics of nanoparticles highly enhance the spatiotemporal resolution and SNR of NPLS,with which the flow field involving shock wave,expansion,Mach disk,boundary layer,sliding-line,and mixing layer can be imaged clearly at high spatiotemporal resolution.
Turbulent Shear Layers in Supersonic Flow
Smits, Alexander J
2006-01-01
A good understanding of turbulent compressible flows is essential to the design and operation of high-speed vehicles. Such flows occur, for example, in the external flow over the surfaces of supersonic aircraft, and in the internal flow through the engines. Our ability to predict the aerodynamic lift, drag, propulsion and maneuverability of high-speed vehicles is crucially dependent on our knowledge of turbulent shear layers, and our understanding of their behavior in the presence of shock waves and regions of changing pressure. Turbulent Shear Layers in Supersonic Flow provides a comprehensive introduction to the field, and helps provide a basis for future work in this area. Wherever possible we use the available experimental work, and the results from numerical simulations to illustrate and develop a physical understanding of turbulent compressible flows.
Laosunthara, Ampan; Akatsuka, Hiroshi
2016-09-01
In previous study, we experimentally examined physical properties of supersonic flow of weakly ionized expanding arc-jet plasma through an open magnetic field line (Bmax 0.16T). We found supersonic velocity of helium plasma up to Mach 3 and the space potential drop at the end of the magnets. To understand the plasma in numerical point of view, the flows of ion and neutral are treated by particle-based Direct Simulation Monte Carlo (DSMC) method, electron is treated as a fluid. The previous numerical study, we assumed 2 conditions. Ion and electron temperatures were the same (LTE condition). Ion and electron velocities were the same (current-free condition). We found that ion velocity decreased by collision with residual gas molecules (background pressure). We also found that space potential changing with background pressure. In other words, it was indicated that electric field exists and the current-free assumption is not proper. In this study, we add electron continuity and electron momentum equations to obtain electron velocity and space potential. We find that space potential changing with background pressure slightly. It is indicated that electron is essential to space potential formation than ion.
Supersonic Plasma Flow Control Experiments
2005-12-01
to liquid metals , for example, the conductivities of typical plasma and electrolyte flows are relatively low. Ref. 14 cites the conductivity of...heating is the dominant effect. 15. SUBJECT TERMS Supersonic, plasma , MHD , boundary-layer 16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE...horns in operation on Mach 5 wind tunnel with a plasma discharge. 31 Figure 17 Front view of a 100 mA DC discharge generated with upstream pointing
Chemically reacting supersonic flow calculation using an assumed PDF model
Farshchi, M.
1990-01-01
This work is motivated by the need to develop accurate models for chemically reacting compressible turbulent flow fields that are present in a typical supersonic combustion ramjet (SCRAMJET) engine. In this paper the development of a new assumed probability density function (PDF) reaction model for supersonic turbulent diffusion flames and its implementation into an efficient Navier-Stokes solver are discussed. The application of this model to a supersonic hydrogen-air flame will be considered.
Directory of Open Access Journals (Sweden)
Uzu-Kuei Hsu
2009-01-01
Full Text Available This research adopts a shock tube 16 meters long and with a 9 cm bore to create a supersonic, high-temperature, and high-pressure flowfield to observe the gasification and ignition of HTPB solid fuel under different environments. Also, full-scale 3D numerical simulation is executed to enhance the comprehension of this complex phenomenon. The CFD (Computational Fluid Dynamics code is based on the control volume method and the pre-conditioning method for solving the Navier-Stokes equations to simulate the compressible and incompressible coupling problem. In the tests, a HTPB slab is placed in the windowed-test section. Various test conditions generate different supersonic Mach numbers and environmental temperatures. In addition, the incident angles of the HTPB slab were changed relative to the incoming shock wave. Results show that as the Mach number around the slab section exceeded 1.25, the flowfield temperature achieved 1100 K, which is higher than the HTPB gasification temperature (930 K ~ 1090 K. Then, gasification occurred and a short-period ignition could be observed. In particular, when the slab angle was 7∘, the phenomenon became more visible. This is due to the flow field temperature increase when the slab angle was at 7∘.
Drag Force Anemometer Used in Supersonic Flow
Fralick, Gustave C.
1998-01-01
To measure the drag on a flat cantilever beam exposed transversely to a flow field, the drag force anemometer (beam probe) uses strain gauges attached on opposite sides of the base of the beam. This is in contrast to the hot wire anemometer, which depends for its operation on the variation of the convective heat transfer coefficient with velocity. The beam probe retains the high-frequency response (up to 100 kHz) of the hot wire anemometer, but it is more rugged, uses simpler electronics, is relatively easy to calibrate, is inherently temperature compensated, and can be used in supersonic flow. The output of the probe is proportional to the velocity head of the flow, 1/2 rho u(exp 2) (where rho is the fluid density and u is the fluid velocity). By adding a static pressure tap and a thermocouple to measure total temperature, one can determine the Mach number, static temperature, density, and velocity of the flow.
Gunness, R. C., Jr.; Knight, C. J.; Dsylva, E.
1972-01-01
The unified small disturbance equations are numerically solved using the well-known Lax-Wendroff finite difference technique. The method allows complete determination of the inviscid flow field and surface properties as long as the flow remains supersonic. Shock waves and other discontinuities are accounted for implicity in the numerical method. This technique was programed for general application to the three-dimensional case. The validity of the method is demonstrated by calculations on cones, axisymmetric bodies, lifting bodies, delta wings, and a conical wing/body combination. Part 1 contains the discussion of problem development and results of the study. Part 2 contains flow charts, subroutine descriptions, and a listing of the computer program.
A flamelet model for turbulent diffusion combustion in supersonic flow
Institute of Scientific and Technical Information of China (English)
LEE; ChunHian
2010-01-01
In order to develop a turbulent diffusion combustion model for supersonic flow, the physical argument of the extension of the flamelet model to supersonic flow was presented, and the flow field of a hydrogen/air diffusion combustion generated by axisymmetric supersonic jets was numerically simulated by employing the flamelet model. Using the experimental data, value of the model coefficient of scalar dissipation in the flamelet model was revised specifically for supersonic flow. The computational results of the modified flamelet model were compared with the experimental results, and it was indicated that the precision of the modified flamelet model was satisfying. Based on the numerical results and flamelet theory, the influence mechanisms of turbulence fluctuation on the average state equation and chemical reaction rate were studied for the first time. It was found that the fluctuation correlation of species mass fractions and temperature has little effect on the averaged gas state equation; the temperature fluctuation decreases the product of H2O, but its effect is small; the fluctuation of species mass fractions increases the product of H2O in the region close to oxidizer while decreases the product of H2O in other regions; the fluctuation correlation of species mass fractions and temperature largely decreases the product of H2O.
ARBITRARY INTERACTION OF PLANE SUPERSONIC FLOWS
Directory of Open Access Journals (Sweden)
P. V. Bulat
2015-11-01
Full Text Available Subject of study.We consider the Riemann problem for parameters at collision of two plane flows at a certain angle. The problem is solved in the exact statement. Most cases of interference, both stationary and non-stationary gas-dynamic discontinuities, followed by supersonic flows can be reduced to the problem of random interaction of two supersonic flows. Depending on the ratio of the parameters in the flows, outgoing discontinuities turn out to be shock waves, or rarefactionwaves. In some cases, there is no solution at all. It is important to know how to find the domain of existence for the relevant decisions, as the type of shock-wave structures in these domains is known in advance. The Riemann problem is used in numerical methods such as the method of Godunov. As a rule, approximate solution is used, known as the Osher solution, but for a number of problems with a high precision required, solution of this problem needs to be in the exact statement. Main results.Domains of existence for solutions with different types of shock-wave structure have been considered. Boundaries of existence for solutions with two outgoing shock waves are analytically defined, as well as with the outgoing shock wave and rarefaction wave. We identify the area of Mach numbers and angles at which the flows interact and there is no solution. Specific flows with two outgoing rarefaction waves are not considered. Practical significance. The results supplement interference theory of stationary gas-dynamic discontinuities and can be used to develop new methods of numerical calculation with extraction of discontinuities.
Flow and acoustic features of a supersonic tapered nozzle
Gutmark, E.; Bowman, H. L.; Schadow, K. C.
1992-05-01
The acoustic and flow characteristics of a supersonic tapered jet were measured for free and shrouded flow configurations. Measurements were performed for a full range of pressure ratios including over- and underexpanded and design conditions. The supersonic tapered jet is issued from a converging-diverging nozzle with a 3∶1 rectangular slotted throat and a conical diverging section leading to a circular exit. The jet was compared to circular and rectangular supersonic jets operating at identical conditions. The distinct feature of the jet is the absence of screech tones in the entire range of operation. Its near-field pressure fluctuations have a wide band spectrum in the entire range of measurements, for Mach numbers of 1 to 2.5, for over- and underexpanded conditions. The free jet's spreading rate is nearly constant and similar to the rectangular jet, and in a shroud, the pressure drop it is inducing is linearly proportional to the primary jet Mach number. This behavior persisted in high adverse pressure gradients at overexpanded conditions, and with nozzle divergence angles of up to 35°, no inside flow separation was observed.
Particle Streak Velocimetry of Supersonic Nozzle Flows
Willits, J. D.; Pourpoint, T. L.
2016-01-01
A novel velocimetry technique to probe the exhaust flow of a laboratory scale combustor is being developed. The technique combines the advantages of standard particle velocimetry techniques and the ultra-fast imaging capabilities of a streak camera to probe high speed flows near continuously with improved spatial and velocity resolution. This "Particle Streak Velocimetry" technique tracks laser illuminated seed particles at up to 236 picosecond temporal resolution allowing time-resolved measurement of one-dimensional flows exceeding 2000 m/s as are found in rocket nozzles and many other applications. Developmental tests with cold nitrogen have been performed to validate and troubleshoot the technique with supersonic flows of much lower velocity and without background noise due to combusting flow. Flow velocities on the order of 500 m/s have been probed with titanium dioxide particles and a continuous-wave laser diode. Single frame images containing multiple streaks are analyzed to find the average slope of all incident particles corresponding to the centerline axial flow velocity. Long term objectives for these tests are correlation of specific impulse to theoretical combustion predictions and direct comparisons between candidate green fuels and the industry standard, monomethylhydrazine, each tested under identical conditions.
Numerical simulation of supersonic gap flow.
Jing, Xu; Haiming, Huang; Guo, Huang; Song, Mo
2015-01-01
Various gaps in the surface of the supersonic aircraft have a significant effect on airflows. In order to predict the effects of attack angle, Mach number and width-to-depth ratio of gap on the local aerodynamic heating environment of supersonic flow, two-dimensional compressible Navier-Stokes equations are solved by the finite volume method, where convective flux of space term adopts the Roe format, and discretization of time term is achieved by 5-step Runge-Kutta algorithm. The numerical results reveal that the heat flux ratio is U-shaped distribution on the gap wall and maximum at the windward corner of the gap. The heat flux ratio decreases as the gap depth and Mach number increase, however, it increases as the attack angle increases. In addition, it is important to find that chamfer in the windward corner can effectively reduce gap effect coefficient. The study will be helpful for the design of the thermal protection system in reentry vehicles.
Numerical simulation of supersonic gap flow.
Directory of Open Access Journals (Sweden)
Xu Jing
Full Text Available Various gaps in the surface of the supersonic aircraft have a significant effect on airflows. In order to predict the effects of attack angle, Mach number and width-to-depth ratio of gap on the local aerodynamic heating environment of supersonic flow, two-dimensional compressible Navier-Stokes equations are solved by the finite volume method, where convective flux of space term adopts the Roe format, and discretization of time term is achieved by 5-step Runge-Kutta algorithm. The numerical results reveal that the heat flux ratio is U-shaped distribution on the gap wall and maximum at the windward corner of the gap. The heat flux ratio decreases as the gap depth and Mach number increase, however, it increases as the attack angle increases. In addition, it is important to find that chamfer in the windward corner can effectively reduce gap effect coefficient. The study will be helpful for the design of the thermal protection system in reentry vehicles.
Faizan-Ur-Rab, M.; Zahiri, S. H.; Masood, S. H.; Jahedi, M.; Nagarajah, R.
2017-06-01
This study presents the validation of a developed three-dimensional multicomponent model for cold spray process using two particle image velocimetry (PIV) experiments. The k- ɛ type 3D model developed for spherical titanium particles was validated with the measured titanium particle velocity within a nitrogen and helium supersonic jet. The 3D model predicted lower values of particle velocity than the PIV experimental study that used irregularly shaped titanium particles. The results of the 3D model were consistent with the PIV experiment that used spherical titanium powder. The 3D model simulation of particle velocity within the helium and nitrogen jet was coupled with an estimation of titanium particle temperature. This was achieved with the consideration of the fact that cold spray particle temperature is difficult and expensive to measure due to considerably lower temperature of particles than thermal spray. The model predicted an interesting pattern of particle size distribution with respect to the location of impact with a concentration of finer particles close to the jet center. It is believed that the 3D model outcomes for particle velocity, temperature and location could be a useful tool to optimize system design, deposition process and mechanical properties of the additively manufactured cold spray structures.
Stationary flow conditions in pulsed supersonic beams.
Christen, Wolfgang
2013-10-21
We describe a generally applicable method for the experimental determination of stationary flow conditions in pulsed supersonic beams, utilizing time-resolved electron induced fluorescence measurements of high pressure jet expansions of helium. The detection of ultraviolet photons from electronically excited helium emitted very close to the nozzle exit images the valve opening behavior-with the decided advantage that a photon signal is not affected by beam-skimmer and beam-residual gas interactions; it thus allows to conclusively determine those operation parameters of a pulsed valve that yield complete opening. The studies reveal that a "flat-top" signal, indicating constant density and commonly considered as experimental criterion for continuous flow, is insufficient. Moreover, translational temperature and mean terminal flow velocity turn out to be significantly more sensitive in testing for the equivalent behavior of a continuous nozzle source. Based on the widely distributed Even-Lavie valve we demonstrate that, in principle, it is possible to achieve quasi-continuous flow conditions even with fast-acting valves; however, the two prerequisites are a minimum pulse duration that is much longer than standard practice and previous estimates, and a suitable tagging of the appropriate beam segment.
Supersonic Magnetic Flows in the Quiet Sun
Borrero, J M; Schlichenmaier, R; Schmidt, W; Berkefeld, T; Solanki, S K; Bonet, J A; Iniesta, J C del Toro; Domingo, V; Barthol, P; Gandorfer, A
2012-01-01
In this contribution we describe some recent observations of high-speed magnetized flows in the quiet Sun granulation. These observations were carried out with the Imaging Magnetograph eXperiment (IMaX) onboard the stratospheric balloon {\\sc Sunrise}, and possess an unprecedented spatial resolution and temporal cadence. These flows were identified as highly shifted circular polarization (Stokes $V$) signals. We estimate the LOS velocity responsible for these shifts to be larger than 6 km s$^{-1}$, and therefore we refer to them as {\\it supersonic magnetic flows}. The average lifetime of the detected events is 81.3 s and they occupy an average area of about 23\\,000 km$^2$. Most of the events occur within granular cells and correspond therefore to upflows. However some others occur in intergranular lanes or bear no clear relation to the convective velocity pattern. We analyze a number of representative examples and discuss them in terms of magnetic loops, reconnection events, and convective collapse.
Numerical Simulation of the Supersonic Flows in the Second Throat Ejector —Diffuser Systems
Institute of Scientific and Technical Information of China (English)
HeuydongKim; ToshiakiSetoguchi; 等
1999-01-01
The supersonic ejector-diffuser system with a second throat was simulated using CFD.A fully implicity finite volume scheme was applied to solve the axisymmetric Navier-Stokes equations and a standard k-ε turbulence model was used to close the governing equations,The flow field in the supersonic ejectordiffuser system was investigated by changing the ejector throat area ratio and the secondary mass flow ratio at a fixed operating pressure ratio of 10. A convergent-divergent nozzle with a design Mach number of 2.11 was selected to give the supersonic operation of the ejector -diffuser system.For the constant area mixing tube the secondary mass flow seemed not to singnificantly change the flow field in the ejector-diffuser systems.It was however,found that the flow in the ejector-diffuser systems having the second throat is strongly dependent on the secondary mass flow.
Thermonuclear dynamo inside ultracentrifuge with supersonic plasma flow stabilization
Energy Technology Data Exchange (ETDEWEB)
Winterberg, F. [University of Nevada, Reno, Reno, Nevada (United States)
2016-01-15
Einstein's general theory of relativity implies the existence of virtual negative masses in the rotational reference frame of an ultracentrifuge with the negative mass density of the same order of magnitude as the positive mass density of a neutron star. In an ultracentrifuge, the repulsive gravitational field of this negative mass can simulate the attractive positive mass of a mini-neutron star, and for this reason can radially confine a dense thermonuclear plasma placed inside the centrifuge, very much as the positive mass of a star confines its plasma by its own attractive gravitational field. If the centrifuge is placed in an externally magnetic field to act as the seed field of a magnetohydrodynamic generator, the configuration resembles a magnetar driven by the release of energy through nuclear fusion, accelerating the plasma to supersonic velocities, with the magnetic field produced by the thermomagnetic Nernst effect insulating the hot plasma from the cold wall of the centrifuge. Because of the supersonic flow and the high plasma density the configuration is stable.
Quantitative planar Raman imaging through a spectrograph: visualisation of a supersonic wedge flow
Tolboom, R.A.L.; Dam, N.J.; Meulen, J.J. ter; Bakker, P.G.
2005-01-01
Planar Raman imaging through a spectrograph is demonstrated as a diagnostic tool for quantitative flow visualisation of internal supersonic wedge flow. A dedicated Bayesian deconvolution filter is used to remove the spectral structure that is introduced by the spectrograph. The 2D density field is d
Unsteady transverse injection of kerosene into a supersonic flow
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A shadowgraph and a new fuel injection system were used to study kerosene transversely injected into a supersonic flow. High pressure and velocity of injection can be attained. The pressure time histories were detected in oil-line and the shadowgraphs of the flow field were obtained at different time-delays. The inflow stagnation pressure was varied to change the local flow speed in test section. The results indicate that kerosene jet exhibits deep penetration and four regimes appear clearly during the fuel jet atomization in a high-speed flow. The jet disintegration is caused by surface waves propagating along the jet surface, and the breakup point is located at the wave trough. The surface waves are dominantly generated by aerodynamic force. The jet shock is close to windward surface of the jet. The shock reflects on and transmits in duct boundary layers. In the case of unsteady injection, the shock structure is very complicated and different from that of hydrogen injection. The results of kerosene injected into a quiescent gas and a subsonic flow are also provided for comparison.
NASA F-16XL supersonic laminar flow control program overview
Fischer, Michael C.
1992-01-01
The viewgraphs and discussion of the NASA supersonic laminar flow control program are provided. Successful application of laminar flow control to a High Speed Civil Transport (HSCT) offers significant benefits in reductions of take-off gross weight, mission fuel burn, cruise drag, structural temperatures, engine size, emissions, and sonic boom. The ultimate economic success of the proposed HSCT may depend on the successful adaption of laminar flow control, which offers the single most significant potential improvements in lift drag ratio (L/D) of all the aerodynamic technologies under consideration. The F-16XL Supersonic Laminar Flow Control (SLFC) Experiment was conceived based on the encouraging results of in-house and NASA supported industry studies to determine if laminar flow control is feasible for the HSCT. The primary objective is to achieve extensive laminar flow (50-60 percent chord) on a highly swept supersonic wing. Data obtained from the flight test will be used to validate existing Euler and Navier Stokes aerodynamic codes and transition prediction boundary layer stability codes. These validated codes and developed design methodology will be delivered to industry for their use in designing supersonic laminar flow control wings. Results from this experiment will establish preliminary suction system design criteria enabling industry to better size the suction system and develop improved estimates of system weight, fuel volume loss due to wing ducting, turbocompressor power requirements, etc. so that benefits and penalties can be more accurately assessed.
Numerical Analysis of Supersonic Film Cooling in Supersonic Flow in Hypersonic Inlet with Isolator
Directory of Open Access Journals (Sweden)
Silong Zhang
2014-02-01
Full Text Available Supersonic film cooling is an efficient method to cool the engine with extremely high heat load. In order to study supersonic film cooling in a real advanced engine, a two-dimensional model of the hypersonic inlet in a scramjet engine with supersonic film cooling in the isolator is built and validated through experimental data. The simulation results show that the cooling effect under different coolant injection angles does not show clear differences; a small injection angle can ensure both the cooling effect and good aerodynamic performances (e.g., flow coefficient of the hypersonic inlet. Under selected coolant injection angle and inlet Mach number, the cooling efficiency increases along with the injection Mach number of the coolant flow, only causing a little total pressure loss in the isolator. Along with the increase of the inlet Mach number of the hypersonic inlet, the cooling efficiency does not present a monotonic change because of the complex shock waves. However, the wall temperature shows a monotonic increase when the inlet Mach number increases. The mass flow rate of coolant flow should be increased to cool the engine more efficiently according to the mass flow rate of the main stream when the inlet Mach number increases.
Simulation of underexpanded supersonic jet flows with chemical reactions
Directory of Open Access Journals (Sweden)
Fu Debin
2014-06-01
Full Text Available To achieve a detailed understanding of underexpanded supersonic jet structures influenced by afterburning and other flow conditions, the underexpanded turbulent supersonic jet with and without combustions are investigated by computational fluid dynamics (CFD method. A program based on a total variation diminishing (TVD methodology capable of predicting complex shocks is created to solve the axisymmetric expanded Navier–Stokes equations containing transport equations of species. The finite-rate ratio model is employed to handle species sources in chemical reactions. CFD solutions indicate that the structure of underexpanded jet is typically influenced by the pressure ratio and afterburning. The shock reflection distance and maximum value of Mach number in the first shock cell increase with pressure ratio. Chemical reactions for the rocket exhaust mostly exist in the mixing layer of supersonic jet flows. This tends to reduce the intensity of shocks existing in the jet, responding to the variation of thermal parameters.
Simulation of underexpanded supersonic jet flows with chemical reactions
Institute of Scientific and Technical Information of China (English)
Fu Debin; Yu Yong; Niu Qinglin
2014-01-01
To achieve a detailed understanding of underexpanded supersonic jet structures influenced by afterburning and other flow conditions, the underexpanded turbulent supersonic jet with and without combustions are investigated by computational fluid dynamics (CFD) method. A program based on a total variation diminishing (TVD) methodology capable of predicting complex shocks is created to solve the axisymmetric expanded Navier-Stokes equations containing transport equations of species. The finite-rate ratio model is employed to handle species sources in chemical reactions. CFD solutions indicate that the structure of underexpanded jet is typically influenced by the pressure ratio and afterburning. The shock reflection distance and maximum value of Mach number in the first shock cell increase with pressure ratio. Chemical reactions for the rocket exhaust mostly exist in the mixing layer of supersonic jet flows. This tends to reduce the intensity of shocks existing in the jet, responding to the variation of thermal parameters.
Unsteady transverse injection of kerosene into a supersonic flow
Institute of Scientific and Technical Information of China (English)
徐胜利; R.D.Archer; B.E.Milton; 岳朋涛
2000-01-01
A shadowgraph and a new fuel injection system were used to study kerosene transversely injected into a supersonic flow. High pressure and velocity of injection can be attained. The pressure time histories were detected in oil-line and the shadowgraphs of the flow field were obtained at different time-delays. The inflow stagnation pressure was varied to change the local flow speed in test section. The results indicate that kerosene jet exhibits deep penetration and four regimes appear clearly during the fuel jet atomization in a high-speed flow. The jet disintegration is caused by surface waves propagating along the jet surface, and the breakup point is located at the wave trough. The surface waves are dominantly generated by aerodynamic force. The jet shock is close to windward surface of the jet. The shock reflects on and transmits in duct boundary layers. In the case of unsteady injection, the shock structure is very complicated and different from that of hydrogen injection. The results of kerosene inj
SIMULATION OF THE LASER DISCHARGE IN A SUPERSONIC GAS FLOW
Directory of Open Access Journals (Sweden)
Tropina, A. A.
2013-06-01
Full Text Available A heat model of the laser discharge in a supersonic turbulent gas flow has been developed. A numerical investigation of the error of the method of velocity measurements, which is based on the nitrogen molecules excitation, has been carried out. It is shown that fast gas heating by the discharge causes the velocity profiles deformation.
Mixed exhaust flow supersonic jet engine and method
Energy Technology Data Exchange (ETDEWEB)
Klees, G.W.
1993-06-08
A method of operating a supersonic jet engine installation is described comprising (a) providing an engine having a variable area air inlet means and an outlet to discharge engine exhaust; (b) providing a secondary air passageway means; (c) receiving ambient air in the air inlet means and providing the ambient air as primary air to the engine inlet and secondary air to the secondary air passageway means; (d) providing a mixing section having an inlet portion and an exit portion, utilizing the mixing section in directing the exhaust from the engine to primary convergent/divergent exit passageway segments, where the exhaust is discharged at supersonic velocity as primary flow components, and directing secondary air flow from the secondary air passageway means to secondary exit passageway segments which are interspersed with the primary segments and from which the secondary air is discharged at subsonic velocity as secondary flow components; and (e) providing an exhaust section to receive the primary and secondary flow components in a mixing region and causing the primary and secondary flow components to mix to create a supersonic mixed flow, the exhaust section having a variable area final nozzle through which the mixed flow is discharged.
Supersonic flow past a flat lattice of cylindrical rods
Guvernyuk, S. V.; Maksimov, F. A.
2016-06-01
Two-dimensional supersonic laminar ideal gas flows past a regular flat lattice of identical circular cylinders lying in a plane perpendicular to the free-stream velocity are numerically simulated. The flows are computed by applying a multiblock numerical technique with local boundary-fitted curvilinear grids that have finite regions overlapping the global rectangular grid covering the entire computational domain. Viscous boundary layers are resolved on the local grids by applying the Navier-Stokes equations, while the aerodynamic interference of shock wave structures occurring between the lattice elements is described by the Euler equations. In the overlapping grid regions, the functions are interpolated to the grid interfaces. The regimes of supersonic lattice flow are classified. The parameter ranges in which the steady flow around the lattice is not unique are detected, and the mechanisms of hysteresis phenomena are examined.
Influence of rarefaction on the flow dynamics of a stationary supersonic hot-gas expansion.
Abbate, G; Kleijn, C R; Thijsse, B J; Engeln, R; van de Sanden, M C M; Schram, D C
2008-03-01
The gas dynamics of a stationary hot-gas jet supersonically expanding into a low pressure environment is studied through numerical simulations. A hybrid coupled continuum-molecular approach is used to model the flow field. Due to the low pressure and high thermodynamic gradients, continuum mechanics results are doubtful, while, because of its excessive time expenses, a full molecular method is not feasible. The results of the hybrid coupled continuum-molecular approach proposed have been successfully validated against experimental data by R. Engeln [Plasma Sources Sci. Technol. 10, 595 (2001)] obtained by means of laser induced fluorescence. Two main questions are addressed: the necessity of applying a molecular approach where rarefaction effects are present in order to correctly model the flow and the demonstration of an invasion of the supersonic part of the flow by background particles. A comparison between the hybrid method and full continuum simulations demonstrates the inadequacy of the latter, due to the influence of rarefaction effects on both velocity and temperature fields. An analysis of the particle velocity distribution in the expansion-shock region shows clear departure from thermodynamic equilibrium and confirms the invasion of the supersonic part of the flow by background particles. A study made through particles and collisions tracking in the supersonic region further proves the presence of background particles in this region and explains how they cause thermodynamic nonequilibrium by colliding and interacting with the local particles.
Experimental study of mixing enhancement using pylon in supersonic flow
Vishwakarma, Manmohan; Vaidyanathan, Aravind
2016-01-01
The Supersonic Combustion Ramjet (SCRAMJET) engine has been recognized as one of the most promising air breathing propulsion system for the supersonic/hypersonic flight mission requirements. Mixing and combustion of fuel inside scramjet engine is one of the major challenging tasks. In the current study the main focus has been to increase the penetration and mixing of the secondary jet inside the test chamber at supersonic speeds. In view of this, experiments are conducted to evaluate the effect of pylon on the mixing of secondary jet injection into supersonic mainstream flow at Mach 1.65. Two different pylons are investigated and the results are compared with those obtained by normal injection from a flat plate. The mixing studies are performed by varying the height of the pylon while keeping all other parameters the same. The study mainly focused on analyzing the area of spread and penetration depth achieved by different injection schemes based on the respective parameters. The measurements involved Mie scattering visualization and the flow features are analyzed using Schlieren images. The penetration height and spread area are the two parameters that are used for analyzing and comparing the performance of the pylons. It is observed that the secondary jet injection carried out from behind the big pylon resulted in maximum penetration and spread area of the jet as compared to the small pylon geometry. Moreover it is also evident that for obtaining maximum spreading and penetration of the jet, the same needs to be achieved at the injection location.
Zhang, Dongdong; Tan, Jianguo; Lv, Liang
2015-12-01
The mixing process has been an important issue for the design of supersonic combustion ramjet engine, and the mixing efficiency plays a crucial role in the improvement of the combustion efficiency. In the present study, nanoparticle-based planar laser scattering (NPLS), particle image velocimetry (PIV) and large eddy simulation (LES) are employed to investigate the flow and mixing characteristics of supersonic mixing layer under different forced vibration conditions. The indexes of fractal dimension, mixing layer thickness, momentum thickness and scalar mixing level are applied to describe the mixing process. Results show that different from the development and evolution of supersonic mixing layer without vibration, the flow under forced vibration is more likely to present the characteristics of three-dimensionality. The laminar flow region of mixing layer under forced vibration is greatly shortened and the scales of rolled up Kelvin-Helmholtz vortices become larger, which promote the mixing process remarkably. The fractal dimension distribution reveals that comparing with the flow without vibration, the turbulent fluctuation of supersonic mixing layer under forced vibration is more intense. Besides, the distribution of mixing layer thickness, momentum thickness and scalar mixing level are strongly influenced by forced vibration. Especially, when the forcing frequency is 4000 Hz, the mixing layer thickness and momentum thickness are 0.0391 m and 0.0222 m at the far field of 0.16 m, 83% and 131% higher than that without vibration at the same position, respectively.
Mass flow and its pulsation measurements in supersonic wing wake
Shmakov, A. S.; Shevchenko, A. M.; Yatskikh, A. A.; Yermolaev, Yu. G.
2016-10-01
The results of experimental study of the flow in the wing wake are presented. Experiments were carried out in supersonic wind tunnel T-325 of ITAM SB RAS. Rectangle half-wing with sharp edges with a chord length of 30 mm and semispan of 95 mm was used to generate vortex wake. Experimental data were obtained in the cross section located 6 chord length downstream of the trailing edge at Mach numbers of 2.5 and 4 and at wing angles of attack of 4 and 10 degrees. Constant temperature hot-wire anemometer was used to measure disturbances in supersonic flow. Hot-wire was made of a tungsten wire with a diameter of 10 μm and length of 1.5 mm. Shlieren flow visualization were performed. As a result, the position and size of the vortex core in the wake of a rectangular wing were determined. For the first time experimental data on the mass flow distribution and its pulsations in the supersonic longitudinal vortex were obtained.
Dynamical separation of spherical bodies in supersonic flow
Laurence, Stuart; Parziale, N. J.; Deiterding, Ralf
2012-01-01
An experimental and computational investigation of the unsteady separation behaviour of two spheres in a highly supersonic flow is carried out. The spherical bodies, initially touching, are released with negligible relative velocity, an arrangement representing the idealized binary fragmentation of a meteoritic body in the atmosphere. In experiments performed in a Mach-4 Ludwieg tube, nylon spheres are initially suspended in the test section by weak threads and, following detachment of ...
DIAMOND PORT JET INTERACTION WITH SUPERSONIC FLOW
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
Interaction flow field of the sonic air jet through diamond shaped orifices at different incidence angles (10 degrees, 27.5 degrees, 45 degrees and 90 degrees) and total pressures (0.10 MPa and 0. 46 MPa) with a Mach 5.0 freestream was studied experimentally. A 90 degrees circular injector was examined for comparison. Crosssection Mach number contours were acquired by a Pitot-cone five-hole pressure probe.The results indicate that the low Mach semicircular region close to the wall is the wake region. The boundary layer thinning is in the areas adjacent to the wake. For the detached case, the interaction shock extends further into the freestream, and the shock shape has more curvature, also the low-Mach upwash region is larger. The vortices of the plume and the height of the jet interaction shock increase with increasing incidence angle and jet pressure. 90 degrees diamond and circular injector have stronger plume vorticity, and for the circular injector low-Mach region is smaller than that for the diamond injector. Tapered ramp increases the plume vorticity, and the double ramp reduces the level of vorticity. The three-dimensional interaction shock shape was modeled from the surface shock shape, the center plane shock shape, and crosssectional shock shape. The shock total pressure was estimated with the normal component of the Mach number using normal shock theory. The shock induced total pressure losses decrease with decreasing jet incidence angle and injection pressure,where the largest losses are incurred by the 90 degrees, circular injector.
Study of the flow characteristics of supersonic coaxial jets
Energy Technology Data Exchange (ETDEWEB)
Lee, K.H. [Andong National University, Andong (Korea); Koo, B.S. [Andong National University Graudate School, Andong (Korea)
2001-12-01
Supersonic coaxial jets are investigated numerically by using the axisymmetric, Navier-Stokes equations which are solved using a fully implicit finite volume method. Three different kinds of coaxial nozzles are employed to understand the flow physics involved in the supersonic coaxial jets. Two convergent-divergent supersonic nozzles are designed to have the same Mach number 2.0, and used to compare the coaxial jet flows with those discharging from one constant-area nozzle. The impingement angle of the annular jets are varied. The primary pressure ratio is changed in the range from 2.0 to 10.0 and the assistant jet ratio from 1.0 to 3.0. The results obtained show that the fluctuations of the total pressure and Mach number along the jet axis are much higher in the constant-area nozzle than those in the convergent-divergent nozzles, and the constant-area nozzle lead to higher total pressure losses, compared with the convergent-divergent nozzles. The assistant jets from the annular nozzle affect the coaxial jet flows within the distance less than about ten times the nozzle throat diameter, but beyond it the coaxial jet is conical with self-similar velocity profiles. Increasing both the primary jet pressure ratio and the assistant jet pressure ratio produces a longer coaxial jet core. (author). 14 refs., 9 figs.
Experiments on supersonic turbulent flow development in a square duct
Gessner, F. B.; Ferguson, S. D.; Lo, C. H.
1986-01-01
The nature of supersonic, turbulent, adiabatic-wall flow in a square duct is investigated experimentally over a development length of x/D between 0 and 20 for a uniform flow, Mach 3.9 condition at the duct inlet. Initial discussion centers on the duct configuration itself, which was designed specifically to minimize wave effects and nozzle-induced distortion in the flow. Total pressure contours and local skin friction coefficient distributions are presented which show that the flow develops in a manner similar to that observed for the incompressible case. In particular, undulations exist in total pressure contours within the cross plane and in transverse skin friction coefficient distributions, which are indicative of the presence of a well-defined secondary flow superimposed upon the primary flow. The results are analyzed to show that local law-of-the-wall behavior extends well into the corner region, which implies that wall functions conventionally applied in two-equation type turbulence models, when suitably defined for compressible flow, may also be applied to supersonic streamwise corner flows.
Flow Control for Supersonic Inlet Applications
2014-06-10
1221-1233, May 2013 3. Loth, E., Titchener, N., Babinsky, H., Povinelli , L., “Canonical NSBLI Flows Relevant to External Compression Inlets”, AIAA J...Tennessee, Jan. 9-12, 2012 7. Loth, E.L., Titchener, N., Babinsky, H., Povinelli , L.A., “A Canonical Normal SBLI Flow Relevant to External
Imaging of the Space-time Structure of a Vortex Generator in Supersonic Flow
Institute of Scientific and Technical Information of China (English)
WANG Dengpan; XIA Zhixun; ZHAO Yuxin; WANG Bo; ZHAO Yanhui
2012-01-01
The fine space-time structure of a vortex generator (VG) in supersonic flow is studied with the nanoparticle-based planar laser scattering (NPLS) method in a quiet supersonic wind tunnel.The fine coherent structure at the symmetrical plane of the flow field around the VG is imaged with NPLS.The spatial structure and temporal evolution characteristics of the vortical structure are analyzed,which demonstrate periodic evolution and similar geometry,and the characteristics of rapid movement and slow change.Because the NPLS system yields the flow images at high temporal and spatial resolutions,from these images the position of a large scale structure can be extracted precisely.The position and velocity of the large scale structures can be evaluated with edge detection and correlation algorithms.The shocklet structures induced by vortices are imaged,from which the generation and development of shocklets are discussed in this paper.
An analytical theory of heated duct flows in supersonic combustors
Directory of Open Access Journals (Sweden)
Chenxi Wu
2014-01-01
Full Text Available One-dimensional analytical theory is developed for supersonic duct flow with variation of cross section, wall friction, heat addition, and relations between the inlet and outlet flow parameters are obtained. By introducing a selfsimilar parameter, effects of heat releasing, wall friction, and change in cross section area on the flow can be normalized and a self-similar solution of the flow equations can be found. Based on the result of self-similar solution, the sufficient and necessary condition for the occurrence of thermal choking is derived. A relation of the maximum heat addition leading to thermal choking of the duct flow is derived as functions of area ratio, wall friction, and mass addition, which is an extension of the classic Rayleigh flow theory, where the effects of wall friction and mass addition are not considered. The present work is expected to provide fundamentals for developing an integral analytical theory for ramjets and scramjets.
Flow Patterns and Thermal Drag in Supersonic Duct Flow with Heating
Institute of Scientific and Technical Information of China (English)
Zeng－YuanGuo; Zhi－HongLiu
1994-01-01
The supersonic duct flow with fixed back pressure to stagnation pressure ratio Pb/P0 under heating is investigated analytically.A “Flow Pattern Diagram” Which consists of six pattern zones is developed.By this diagram the actual flow state in supersonic duct flow system can be determined conveniently when Pb/Po and heating intensity are knows.It is impossible for flow with heavy heating to become supersonic,even though the pressure ratio is much smaller than the critical pressure ratio,Based on the analogy between viscous effect and heating effect a thermal drag factor has een defined.which can predict the flow property variation due to heating and the relaive importance of viscous effect and heating effect.
Unsteady Flow in a Supersonic Turbine with Variable Specific Heats
Dorney, Daniel J.; Griffin, Lisa W.; Huber, Frank; Sondak, Douglas L.; Turner, James (Technical Monitor)
2001-01-01
Modern high-work turbines can be compact, transonic, supersonic, counter-rotating, or use a dense drive gas. The vast majority of modern rocket turbine designs fall into these Categories. These turbines usually have large temperature variations across a given stage, and are characterized by large amounts of flow unsteadiness. The flow unsteadiness can have a major impact on the turbine performance and durability. For example, the Space Transportation Main Engine (STME) fuel turbine, a high work, transonic design, was found to have an unsteady inter-row shock which reduced efficiency by 2 points and increased dynamic loading by 24 percent. The Revolutionary Reusable Technology Turbopump (RRTT), which uses full flow oxygen for its drive gas, was found to shed vortices with such energy as to raise serious blade durability concerns. In both cases, the sources of the problems were uncovered (before turbopump testing) with the application of validated, unsteady computational fluid dynamics (CFD) to the designs. In the case of the RRTT and the Alternate Turbopump Development (ATD) turbines, the unsteady CFD codes have been used not just to identify problems, but to guide designs which mitigate problems due to unsteadiness. Using unsteady flow analyses as a part of the design process has led to turbine designs with higher performance (which affects temperature and mass flow rate) and fewer dynamics problems. One of the many assumptions made during the design and analysis of supersonic turbine stages is that the values of the specific heats are constant. In some analyses the value is based on an average of the expected upstream and downstream temperatures. In stages where the temperature can vary by 300 to 500 K, however, the assumption of constant fluid properties may lead to erroneous performance and durability predictions. In this study the suitability of assuming constant specific heats has been investigated by performing three-dimensional unsteady Navier
Institute of Scientific and Technical Information of China (English)
张耀平; 马东平; 丁天伟; 杨洋
2011-01-01
The configuration of the large diameter butterfly valve in the supersonic wind tunnel is introduced.Flow fields of the butterfly valve with different structure discs and different valve opening are analyzed by COSMOSFloWorks.The flow field is improved by adding cover for disc and punching on the cover.The worst service condition is avoided by adding bypass valves to butterfly valves,and so the failure rate is reduced and the life is prolonged.%介绍了超音速风洞大口径蝶阀的配置形式。运用COSMOSFloWorks软件分析了不同结构蝶板及蝶阀不同开度情况下的流场情况。通过在蝶板上增加蒙皮以及在蒙皮上开孔的方式改善了蝶阀的流场,蝶阀配置旁路阀的方式改善了蝶阀的使用工况,从而降低了蝶阀的故障率,延长了蝶阀的使用寿命。
Flow Simulation of Supersonic Inlet with Bypass Annular Duct
Kim, HyoungJin; Kumano, Takayasu; Liou, Meng-Sing; Povinelli, Louis A.; Conners, Timothy R.
2011-01-01
A relaxed isentropic compression supersonic inlet is a new concept that produces smaller cowl drag than a conventional inlet, but incurs lower total pressure recovery and increased flow distortion in the (radially) outer flowpath. A supersonic inlet comprising a bypass annulus to the relaxed isentropic compression inlet dumps out airflow of low quality through the bypass duct. A reliable computational fluid dynamics solution can provide considerable useful information to ascertain quantitatively relative merits of the concept, and further provide a basis for optimizing the design. For a fast and reliable performance evaluation of the inlet performance, an equivalent axisymmetric model whose area changes accounts for geometric and physical (blockage) effects resulting from the original complex three-dimensional configuration is proposed. In addition, full three-dimensional calculations are conducted for studying flow phenomena and verifying the validity of the equivalent model. The inlet-engine coupling is carried out by embedding numerical propulsion system simulation engine data into the flow solver for interactive boundary conditions at the engine fan face and exhaust plane. It was found that the blockage resulting from complex three-dimensional geometries in the bypass duct causes significant degradation of inlet performance by pushing the terminal normal shock upstream.
Chirped Pulse Microwave Spectroscopy in Pulsed Uniform Supersonic Flows
Abeysekera, Chamara; Oldham, James; Prozument, Kirill; Joalland, Baptiste; Park, Barratt; Field, Robert W.; Sims, Ian; Suits, Arthur; Zack, Lindsay
2014-06-01
We present preliminary results describing the development of a new instrument that combines two powerful techniques: Chirped Pulse-Fourier Transform MicroWave (CP-FTMW) spectroscopy and pulsed uniform supersonic flows. It promises a nearly universal detection method that can deliver quantitative isomer, conformer, and vibrational level specific detection, characterization of unstable reaction products and intermediates and perform unique spectroscopic, kinetics and dynamics measurements. We have constructed a new high-power K_a-band, 26-40 GHz, chirped pulse spectrometer with sub-MHz resolution, analogous to the revolutionary CP-FTMW spectroscopic technique developed in the Pate group at University of Virginia. In order to study smaller molecules, the E-band, 60-90 GHz, CP capability was added to our spectrometer. A novel strategy for generating uniform supersonic flow through a Laval nozzle is introduced. High throughput pulsed piezo-valve is used to produce cold (30 K) uniform flow with large volumes of 150 cm^3 and densities of 1014 molecules/cm3 with modest pumping facilities. The uniform flow conditions for a variety of noble gases extend as far as 20 cm from the Laval nozzle and a single compound turbo-molecular pump maintains the operating pressure. Two competing design considerations are critical to the performance of the system: a low temperature flow is needed to maximize the population difference between rotational levels, and high gas number densities are needed to ensure rapid cooling to achieve the uniform flow conditions. At the same time, collision times shorter than the chirp duration will give inaccurate intensities and reduced signal levels due to collisional dephasing of free induction decay. Details of the instrument and future directions and challenges will be discussed.
Constant-temperature hot-wire anemometer practice in supersonic flows. II - The inclined wire
Smits, A. J.; Muck, K. C.
1983-01-01
The performance of a constant-temperature inclined hot-wire in a supersonic flow is critically examined. It is shown that calibration techniques applicable to subsonic flow, such as the cosine cooling law cannot be used when the flow is supersonic. Calibration and measurement procedures appropriate to supersonic flow are suggested, together with the possible limits on their validity. Experimental results for different wires indicate that the sensitivities do not seem to depend on flow direction according to any simple correlation. When the sensitivity exhibits a strong dependence on flow direction, the wire should be discarded to avoid errors due to nonlinear effects.
Computations of the Magnus effect for slender bodies in supersonic flow
Sturek, W. B.; Schiff, L. B.
1980-01-01
A recently reported Parabolized Navier-Stokes code has been employed to compute the supersonic flow field about spinning cone, ogive-cylinder, and boattailed bodies of revolution at moderate incidence. The computations were performed for flow conditions where extensive measurements for wall pressure, boundary layer velocity profiles and Magnus force had been obtained. Comparisons between the computational results and experiment indicate excellent agreement for angles of attack up to six degrees. The comparisons for Magnus effects show that the code accurately predicts the effects of body shape and Mach number for the selected models for Mach numbers in the range of 2-4.
Continuous supersonic plasma wind tunnel
DEFF Research Database (Denmark)
Andersen, S.A.; Jensen, Vagn Orla; Nielsen, P.
1968-01-01
The B field configuration of a Q-device has been modified into a magnetic Laval nozzle. Continuous supersonic plasma flow is observed with M≈3......The B field configuration of a Q-device has been modified into a magnetic Laval nozzle. Continuous supersonic plasma flow is observed with M≈3...
Flight tests of a supersonic natural laminar flow airfoil
Frederick, M. A.; Banks, D. W.; Garzon, G. A.; Matisheck, J. R.
2015-06-01
A flight test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80 inch (203 cm) chord and 40 inch (102 cm) span article mounted on the centerline store location of an F-15B airplane. The test article was designed with a leading edge sweep of effectively 0° to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate that the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, was similar to that of subsonic natural laminar flow wings.
Behavior of Boundary Layer in Supersonic Flow with Applied Lorentz Force
Udagawa, Keisuke; Saito, Shinya; Kawaguchi, Kenji; Tomioka, Sadatake; Yamasaki, Hiroyuki
Experimental study on behavior of boundary layer in supersonic flow with applied Lorentz force was carried out. In the experiment, Mach 1.5 supersonic wind tunnel driven by a shock-tube was used. At the test section, the current from the external DC power supply and the magnetic field of 2.4 Tesla were applied to the boundary layer developing on the bottom wall. Argon seeded with cesium was used as an electrically conducting gas. Effect of the direction of the Lorentz force on static pressure distribution was investigated, and the remarkable increase of static pressure at the test section was observed for the decelerating Lorentz force. It is noted that the acceleration of the flow inside the boundary layer was demonstrated for the first time without accelerating the main flow when the accelerating Lorentz force was applied. At the same time, the acceleration efficiency defined by a ratio of work done by the Lorentz force to energy input into the flow was found 54-61%. These results have suggested the possibility of the boundary layer separation control by applying the accelerating Lorentz force. In the case of the decelerating Lorentz force, the significant reduction of Mach number was observed not only inside the boundary layer but also in the main flow. The reduction of Mach number could be ascribed to the growth of the boundary layer due to gas heating inside the boundary layer. When the direction of the current was changed, the difference of light emission from the discharge inside the boundary layer was observed, and this was due to the difference of the electromotive force induced in the supersonic flow.
Turbulence characteristics in a supersonic cascade wake flow
Energy Technology Data Exchange (ETDEWEB)
Andrew, P.L.; Ng, W.F. (Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States))
1994-10-01
The turbulent character of the supersonic wake of a linear cascade of fan airfoils has been studied using a two-component laser-doppler anemometer. The cascade was tested in the Virginia Polytechnic Institute and State University intermittent wind tunnel facility, where the Mach and Reynolds numbers were 2.36 and 4.8 [times] 10[sup 6], respectively. In addition to mean flow measurements, Reynolds normal and shear stresses were measured as functions of cascade incidence angle and streamwise locations spanning the near-wake and the far-wake. The extremities of profiles of both the mean and turbulent wake properties were found to be strongly influenced by upstream shock-boundary-layer interactions, the strength of which varied with cascade incidence. In contrast, the peak levels of turbulence properties within the shear layer were found to be largely independent of incidence, and could be characterized in terms of the streamwise position only. The velocity defect turbulence level was found to be 23%, and the generally accepted value of the turbulence structural coefficient of 0.30 was found to be valid for this flow. The degree of similarity of the mean flow wake profiles was established, and those profiles demonstrating the most similarity were found to approach a state of equilibrium between the mean and turbulent properties. In general, this wake flow may be described as a classical free shear flow, upon which the influence of upstream shock-boundary-layer interactions has been superimposed.
Studies of the unsteady supersonic base flows around three afterbodies
Institute of Scientific and Technical Information of China (English)
Zhixiang Xiao; Song Fu
2009-01-01
Unsteady supersonic base flows around three afterbodies, cylindrical (Cy), boattailed (BT) and three-step (MS), are investigated in this paper. Reynolds-averaged Navier-Stokes (RANS) and two RANS/LES (large-eddy simulation) hybrid methods, detached eddy simulation (DES) and delayed-DES (DDES), are used to predict the base flow characteristics around the baseline Cy afterbody. All the RANS and hybrid methods are based on the two-equation SST (shear-stress transport) model with compressible corrections (CC). According to the comparison of measurements, both DES and DDES can produce more satisfactory results than RANS. RANS can only present the "stable" flow patterns, while the hybrid methods can demonstrate unsteady flow structures. DDES and DES results are little different from one another although the latter exhibits better agreement with the experiment. DES is taken to investigate the 5 BT and three-step afterbodies. The mean flow data and the instantaneous turbulent coherent structures are compared against available measurements.
Influences of friction drag on spontaneous condensation in water vapor supersonic flows
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
A mathematical model was developed to investigate the water vapor spontaneous condensation under supersonic flow conditions. A numerical simulation was performed for the water vapor condensable supersonic flows through Laval nozzles under different flow friction conditions. The comparison between numerical and experimental results shows that the model is accurate enough to investigate the supersonic spontaneous condensation flow of water vapor inside Laval nozzles. The influences of flow friction drag on supersonic spontaneous condensation flow of water vapor inside Laval nozzles were investigated. It was found that the flow friction has a direct effect on the spontaneous condensation process and therefore it is important for an accurate friction prediction in designing this kind of Laval nozzles.
Influences of friction drag on spontaneous condensation in water vapor supersonic flows
Institute of Scientific and Technical Information of China (English)
JIANG WenMing; LIU ZhongLiang; LIU HengWei; PANG HuiZhong; BAO LingLing
2009-01-01
A mathematical model was developed to investigate the water vapor spontaneous condensation under supersonic flow conditions. A numerical simulation was performed for the water vapor condensable supersonic flows through Laval nozzles under different flow friction conditions. The comparison be-tween numerical and experimental results shows that the model is accurate enough to investigate the supersonic spontaneous condensation flow of water vapor inside Laval nozzles. The influences of flow friction drag on supersonic spontaneous condensation flow of water vapor inside Laval nozzles were investigated, It was found that the flow friction has a direct effect on the spontaneous condensation process and therefore it is important for an accurate friction prediction in designing this kind of Laval nozzles.
Quasi-DC electrical discharge characterization in a supersonic flow
Houpt, Alec; Hedlund, Brock; Leonov, Sergey; Ombrello, Timothy; Carter, Campbell
2017-04-01
A Quasi-DC (Q-DC) electrical discharge generates a highly transient filamentary plasma in high-speed airflow. Major specific properties of this type of discharge are realized due to a strong coupling of the plasma to the moving gas. The plasma, supplied by a DC voltage waveform, demonstrates a pulsed-periodic pattern of dynamics significantly affecting the flow structure. In this study, the dynamics and plasma parameters of the Q-DC discharge are analyzed in the Supersonic Test Rig (SBR-50) at the University of Notre Dame at Mach number M = 2, stagnation pressure P 0 = (0.9-2.6) × 105 Pa, stagnation temperature T 0 = 300 K, unit Reynolds number ReL = 7-25 × 106 m-1, and plasma power W pl = 3-21 kW. The plasma parameters are measured with current-voltage probes and optical emission spectroscopy. An unsteady pattern of interaction is depicted by high-speed image capturing. The result of the plasma-flow interaction is characterized by means of pressure measurements and schlieren visualization. It is considered that the Q-DC discharge may be employed for active control of duct-driven flows, cavity-based flow, and for effective control of shock wave-boundary layer interaction.
Degani, D.
1983-01-01
A numerical study of the conjugated problem of a separated supersonic flow field and a conductive solid wall with an embedded heat source is presented. Implicit finite-difference schemes were used to solve the two-dimensional time-dependent compressible Navier-Stokes equations and the time-dependent heat-conduction equation for the solid in both general coordinate systems. A detailed comparison between the thin-layer and Navier-Stokes models was made for steady and unsteady supersonic flow and showed insignificant differences. Steady-state and transient cases were computed and the results show that a temperature pulse at the solid-fluid interface can be used to detect the flow direction near the wall in the vicinity of separation without significant distortion of the flow field.
Aerodynamic Study on Supersonic Flows in High-Velocity Oxy-Fuel Thermal Spray Process
Institute of Scientific and Technical Information of China (English)
Hiroshi KATANODA; Takeshi MATSUOKA; Seiji KURODA; Jin KAWAKITA; Hirotaka FUKANUMA; Kazuyasu MATSUO
2005-01-01
@@ To clarify the characteristics of gas flow in high velocity oxy-fuel (HVOF) thermal spray gun, aerodynamic research is performed using a special gun. The gun has rectangular cross-sectional area and sidewalls of optical glass to visualize the internal flow. The gun consists of a supersonic nozzle with the design Mach number of 2.0 followed by a straight passage called barrel. Compressed dry air up to 0.78 MPa is used as a process gas instead of combustion gas which is used in a commercial HVOF gun. The high-speed gas flows with shock waves in the gun and jets are visualized by schlieren technique. Complicated internal and external flow-fields containing various types of shock wave as well as expansion wave are visualized.
Lin, Shih-Lung; Lin, Jehnming
2007-02-01
The characteristics of the supersonic flow of the laser heating technique for producing micro-scale metallic particles were investigated in this study. A numerical model was established to predict the flow fields and particle trajectories leaving a spray nozzle with shock wave effects. The compressible flow of the shock waves and the trajectories of particles in diameters of 1-20 μm were simulated and compared with the flow visualization. In the experiment, a pulsed Nd-YAG laser was used as heat source on a carbon steel target within the nozzle, and the carbon steel particles were ejected by high-pressure air. The result shows that the shock wave structures were generated at various entrance pressures, and there is a significant increase in the amount of carbon steel particles and the spraying angles by increasing the entrance air pressure.
Plasma-enhanced mixing and flameholding in supersonic flow
Firsov, Alexander; Savelkin, Konstantin V.; Yarantsev, Dmitry A.; Leonov, Sergey B.
2015-01-01
The results of experimental study of plasma-based mixing, ignition and flameholding in a supersonic model combustor are presented in the paper. The model combustor has a length of 600 mm and cross section of 72 mm width and 60 mm height. The fuel is directly injected into supersonic airflow (Mach number M=2, static pressure Pst=160–250 Torr) through wall orifices. Two series of tests are focused on flameholding and mixing correspondingly. In the first series, the near-surface quasi-DC electrical discharge is generated by flush-mounted electrodes at electrical power deposition of Wpl=3–24 kW. The scope includes parametric study of ignition and flame front dynamics, and comparison of three schemes of plasma generation: the first and the second layouts examine the location of plasma generators upstream and downstream from the fuel injectors. The third pattern follows a novel approach of combined mixing/ignition technique, where the electrical discharge distributes along the fuel jet. The last pattern demonstrates a significant advantage in terms of flameholding limit. In the second series of tests, a long discharge of submicrosecond duration is generated across the flow and along the fuel jet. A gasdynamic instability of thermal cavity developed after a deposition of high-power density in a thin plasma filament promotes the air–fuel mixing. The technique studied in this work has weighty potential for high-speed combustion applications, including cold start/restart of scramjet engines and support of transition regime in dual-mode scramjet and at off-design operation. PMID:26170434
Effect of swirling device on flow behavior in a supersonic separator for natural gas dehydration
DEFF Research Database (Denmark)
Wen, Chuang; Li, Anqi; Walther, Jens Honore;
2016-01-01
The supersonic separator is a revolutionary device to remove the condensable components from gas mixtures. One of the key issues for this novel technology is the complex supersonic swirling flow that is not well understood. A swirling device composed of an ellipsoid and several helical blades is ...... the separation performance. When the swirling flow passes through the annular nozzle, it will damage the expansion characteristics of the annular nozzle. The blade angles and numbers are both optimized by evaluating the swirling and expansion effects for the supersonic separation....
Study of Interaction between Supersonic Flow and Rods Surrounded by Porous Cavity
Institute of Scientific and Technical Information of China (English)
Minoru YAGA; Kenji YAMAMOTO; Piotr DOERFFER; Kenyu OYAKAWA
2006-01-01
In this paper,some preliminary calculations and the experiments were performed to figure out the flow field,in which some rods were normally inserted into the main flow surrounded by a porous cavity.As a result,it is found that the starting shock wave severely interacts with the rods,the bow shock wave,its reflections,and the porous wall,which are numerically well predicted at some conditions.Moreover,inserting the rods makes the pressure on the upper wall in the porous region increase when the main flow in the porous region is completely supersonic.The calculations also suggest that three rods cause the widest suction area.
Experimental study on atomization phenomena of kerosene in supersonic cold flow
Institute of Scientific and Technical Information of China (English)
FEI LiSen; XU ShengLi; WANG ChangJian; LI Qiang; HUANG ShengHong
2008-01-01
Experiments were conducted to study the atomization phenomena of kerosene jet in supersonic flow. The kerosene jet was driven by compressed nitrogen. Meanwhile, the shadowgraph and planar laser-induced fluorescence (PLIF) were used to visualize the flow field in the case of different total pressure and jet pressure. The results imply the followings: The combination of shadowgraph and PLIF is a reasonable method to study the atomization phenomena in supersonic flow. PLIF can detect the distribution of kerosene droplets accurately. Shadowgraph can visualize the wave structure. Higher jet-to-freestream dynamic pressure initiates higher penetration height and the jet column will be easier to breakup and atomize, but it also induces stronger shock waves and aggravate total pressure lost. Three-dimensional, unsteady surface wave plays an important role in making the jet break up and atomize. Higher jet-to-freestream dynamic pressure will accelerate the development of surface wave and enlarge the amplitude of surface wave, while lower jet-to-freestream ratio will inhibit the development of surface wave.
Unsteady flow in a supersonic cascade with strong in-passage shocks
Goldstein, M. E.; Braun, W.; Adamczyk, J. J.
1977-01-01
Linearized theory is used to study the unsteady flow in a supersonic cascade with in-passage shock waves. We use the Wiener-Hopf technique to obtain a closed-form analytical solution for the supersonic region. To obtain a solution for the rotational flow in the subsonic region we must solve an infinite set of linear algebraic equations. The analysis shows that it is possible to correlate quantitatively the oscillatory shock motion with the Kutta condition at the trailing edges of the blades. This feature allows us to account for the effect of shock motion on the stability of the cascade. Unlike the theory for a completely supersonic flow, the present study predicts the occurrence of supersonic bending flutter. It therefore provides a possible explanation for the bending flutter that has recently been detected in aircraft-engine compressors at higher blade loadings.
The flow feature of transverse hydrogen jet in presence of micro air jets in supersonic flow
Barzegar Gerdroodbary, M.; Amini, Younes; Ganji, D. D.; Takam, M. Rahimi
2017-03-01
Scramjet is found to be the efficient method for the space shuttle. In this paper, numerical simulation is performed to investigate the fundamental flow physics of the interaction between an array of fuel jets and multi air jets in a supersonic transverse flow. Hydrogen as a fuel is released with a global equivalence ratio of 0.5 in presence of micro air jets on a flat plate into a Mach 4 crossflow. The fuel and air are injected through streamwise-aligned flush circular portholes. The hydrogen is injected through 4 holes with 7dj space when the air is injected in the interval of the hydrogen jets. The numerical simulation is performed by using the Reynolds-averaged Navier-Stokes equations with Menter's Shear Stress Transport (SST) turbulence model. Both the number of air jets and jet-to-freestream total pressure ratio are varied in a parametric study. The interaction of the fuel and air jet in the supersonic flow present extremely complex feature of fuel and air jet. The results present various flow features depending upon the number and mass flow rate of micro air jets. These flow features were found to have significant effects on the penetration of hydrogen jets. A variation of the number of air jets, along with the jet-to-freestream total pressure ratio, induced a variety of flow structure in the downstream of the fuel jets.
Supersonic Flow Control by Magnetic Field
2005-12-01
of the potential equation on the computational mesh gives the system of algebraic equations for the potential magnitudes in the mesh nodes with...computational cell and making use of the integral formulae of vectorial analysis, one can write out finite-volume notation of plasma equation for a
Tam, C. K. W.; Burton, D. E.
1984-01-01
An investigation is conducted of the phenomenon of sound generation by spatially growing instability waves in high-speed flows. It is pointed out that this process of noise generation is most effective when the flow is supersonic relative to the ambient speed of sound. The inner and outer asymptotic expansions corresponding to an excited instability wave in a two-dimensional mixing layer and its associated acoustic fields are constructed in terms of the inner and outer spatial variables. In matching the solutions, the intermediate matching principle of Van Dyke and Cole is followed. The validity of the theory is tested by applying it to an axisymmetric supersonic jet and comparing the calculated results with experimental measurements. Very favorable agreements are found both in the calculated instability-wave amplitude distribution (the inner solution) and the near pressure field level contours (the outer solution) in each case.
Continuous-Wave Cavity Ring-Down Spectroscopy in a Pulsed Uniform Supersonic Flow
Thawoos, Shameemah; Suas-David, Nicolas; Suits, Arthur
2017-06-01
We introduce a new approach that couples a pulsed uniform supersonic flow with high sensitivity continuous wave cavity ringdown spectroscopy (UF-CRDS) operated in the near infrared (NIR). This combination is related to the CRESU technique developed in France and used for many years to study reaction kinetics at low temperature, and to the microwave based chirped-pulse uniform supersonic flow spectrometer (CPUF) developed in our group which has successfully demonstrated the use of pulsed uniform supersonic flow to probe reaction dynamics at temperatures as low as 22 K. CRDS operated with NIR permits access to the first overtones of C-H and O-H stretching/bending which, in combination with its extraordinary sensitivity opens new experiments complementary to the CPUF technique. The UF-CRDS apparatus (Figure) utilizes the pulsed uniform flow produced by means of a piezo-electric stack valve in combination with a Laval nozzle. At present, two machined aluminum Laval nozzles designed for carrier gases Ar and He generate flows with a temperature of approximately 25 K and pressure around 0.15 mbar. This flow is probed by an external cavity diode laser in the NIR (1280-1380 nm). Laval nozzles designed using a newly developed MATLAB-based program will be used in the future. A detailed illustration of the novel UF-CRDS instrumentation and its performance will be presented along with future directions and applications. I. Sims, J. L. Queffelec, A. Defrance, C. Rebrion-Rowe, D. Travers, P. Bocherel, B. Rowe, I. W. Smith, J. Chem. Phys. 100, 4229-4241, (1994). C. Abeysekera, B. Joalland, N. Ariyasingha, L. N. Zack, I. R. Sims, R. W. Field, A. G. Suits, J. Phys. Chem. Lett. 6, 1599-1604, (2015). N. Suas-David, T. Vanfleteren, T. Foldes, S. Kassi, R. Georges, M. Herman, J. Phys. Chem.A, 119, 10022-10034, (2015). C. Abeysekera, B. Joalland, Y. Shi, A. Kamasah, J. M. Oldham, A. G. Suits, Rev. Sci. Instrum. 85, 116107, (2014).
Field Ionization detection of supersonic helium atom beams
Doak, R. B.
2003-10-01
Field ionization detectors (FID) may offer near-unity detection efficiency and nanoscale spatial resolution. To date, FID detection of molecular beams has been limited to effusive beams of broad Maxwellian velocity distributions. We report FID measurements on monoenergetic helium beams, including intensity measurements and time-of-flight measurements. The FID tips were carefully prepared and characterized in a field ionization microscope prior to use. With the supersonic helium beam we find a much smaller effective detection area ( 50 sq. nm) than was reported in the effusive helium beam experiments ( 200,000 sq. nm). This suggests that the FID ionization yield depends strongly on energy loss by the impinging atom during its initial collision with the FID surface: Our thermal energy, monoenergetic helium beam atoms likely lose little or no energy upon scattering from the clean tungsten FID surface, allowing the scattered atoms to escape the FID polarization field and therby reducing the ionization yield. To improve signal levels, inelastic scattering might be enhanced by use of lower beam velocities (present in the tails of a Maxwellian) or by adsorbing an overlayer on the FID tip (present at cryogenic tip temperatures). These factors likely explain the higher detection yields measured in the effusive beam experiments.
Shock Train and Pseudo-shock Phenomena in Supersonic Internal Flows
Institute of Scientific and Technical Information of China (English)
Kazuyasu Matsuo
2003-01-01
When a normal shock wave interacts with a boundary layer along a wall surface in supersonic internal flows and the shock is strong enough to separate the boundary layer, the shock is bifurcated and a series of shocks called "shock train" is formed. The flow is decelerated from supersonic to subsonic through the whole interaction region that is referred to as "pseudo-shock". In the present paper some characteristics of the shock train and pseudo-shock and some examples of the pseudo-shocks in some flow devices are described.
Observation of Single-Mode, Kelvin-Helmholtz Instability in a Supersonic Flow.
Wan, W C; Malamud, G; Shimony, A; Di Stefano, C A; Trantham, M R; Klein, S R; Shvarts, D; Kuranz, C C; Drake, R P
2015-10-02
We report the first observation, in a supersonic flow, of the evolution of the Kelvin-Helmholtz instability from a single-mode initial condition. To obtain these data, we used a novel experimental system to produce a steady shock wave of unprecedented duration in a laser-driven experiment. The shocked, flowing material creates a shear layer between two plasmas at high energy density. We measured the resulting interface structure using radiography. Hydrodynamic simulations reproduce the large-scale structures very well and the medium-scale structures fairly well, and imply that we observed the expected reduction in growth rate for supersonic shear flow.
The three-dimensional flow organization past a micro-ramp in a supersonic boundary layer
Sun, Z.; Schrijer, F.F.J.; Scarano, F.; Van Oudheusden, B.W.
2012-01-01
The three-dimensional instantaneous flow organization in the near wake of a micro-ramp interacting with a Mach 2.0 supersonic turbulent boundary layer is studied using tomographic particle image velocimetry. The mean flow reveals a wake with approximately circular cross section dominated by a pair o
Shock Waves Oscillations in the Interaction of Supersonic Flows with the Head of the Aircraft
Bulat, Pavel V.; Volkov, Konstantin N.
2016-01-01
In this article we reviewed the shock wave oscillation that occurs when supersonic flows interact with conic, blunt or flat nose of aircraft, taking into account the aerospike attached to it. The main attention was paid to the problem of numerical modeling of such oscillation, flow regime classification, and cases where aerospike attachment can…
Miner, E. W.; Lewis, C. H.
1972-01-01
An implicit finite difference method has been applied to tangential slot injection into supersonic turbulent boundary layer flows. In addition, the effects induced by the interaction between the boundary layer displacement thickness and the external pressure field are considered. In the present method, three different eddy viscosity models have been used to specify the turbulent momentum exchange. One model depends on the species concentration profile and the species conservation equation has been included in the system of governing partial differential equations. Results are compared with experimental data at stream Mach numbers of 2.4 and 6.0 and with results of another finite difference method. Good agreement was generally obtained for the reduction of wall skin friction with slot injection and with experimental Mach number and pitot pressure profiles. Calculations with the effects of pressure interaction included showed these effects to be smaller than effects of changing eddy viscosity models.
Production of high-beta magnetised plasmas by colliding supersonic flows from inverse wire arrays
Hare, Jack; Suttle, Lee; Lebedev, Sergey; Bennett, Matthew; Burdiak, Guy; Clayson, Thomas; Suzuki-Vidal, Francisco; Swadling, George; Patankar, Siddharth; Robinson, Timothy; Stuart, Nicholas; Smith, Roland; Yang, Qingguo; Wu, Jian; Rozmus, Wojciech
2015-11-01
HEDP often exhibit a high plasma β and an electron Hall parameter greater than one. This results in a complex interplay between the transport of heat and magnetic fields, relevant to the Magnetised Liner Inertial Fusion (MagLIF) concept. We can produce such plasmas by colliding two supersonic quasi-planar flows from two adjacent inverse wire arrays made from carbon. The standing shock formed by the collision heats and compresses the plasma. The plasma flows advect magnetic fields which are perpendicular to the flow direction. Depending on the experimental set up, this can result in either flux compression or reconnection in the interaction region. The experiments are conducted on MAGPIE (1.4 MA, 250 ns current pulse). The formed shock is stable over long timescales (~100 ns), and the electron temperature (100 eV) is close to the ion temperature (500 eV), measured by spatially resolved Thomson scattering. Magnetic fields above 5 T is observed using a Faraday rotation diagnostic, and an electron density of around 5x1017 cm-3 is measured by interferometry.
Analysis of supersonic stall bending flutter in axial-flow compressor by actuator disk theory
Adamczyk, J. J.
1978-01-01
An analytical model was developed for predicting the onset of supersonic stall bending flutter in axial-flow compressors. The analysis is based on two-dimensional, compressible, unsteady actuator disk theory. It is applied to a rotor blade row by considering a cascade of airfoils. The effects of shock waves and flow separation are included in the model. Calculations show that the model predicts the onset, in an unshrouded rotor, of a bending flutter mode that exhibits many of the characteristics of supersonic stall bending flutter. The validity of the analysis for predicting this flutter mode is demonstrated.
EOIL power scaling in a 1-5 kW supersonic discharge-flow reactor
Davis, Steven J.; Lee, Seonkyung; Oakes, David B.; Haney, Julie; Magill, John C.; Paulsen, Dwane A.; Cataldi, Paul; Galbally-Kinney, Kristin L.; Vu, Danthu; Polex, Jan; Kessler, William J.; Rawlins, Wilson T.
2008-02-01
Scaling of EOIL systems to higher powers requires extension of electric discharge powers into the kW range and beyond with high efficiency and singlet oxygen yield. We have previously demonstrated a high-power microwave discharge approach capable of generating singlet oxygen yields of ~25% at ~50 torr pressure and 1 kW power. This paper describes the implementation of this method in a supersonic flow reactor designed for systematic investigations of the scaling of gain and lasing with power and flow conditions. The 2450 MHz microwave discharge, 1 to 5 kW, is confined near the flow axis by a swirl flow. The discharge effluent, containing active species including O II(a1Δ g, b1Σ g +), O( 3P), and O 3, passes through a 2-D flow duct equipped with a supersonic nozzle and cavity. I2 is injected upstream of the supersonic nozzle. The apparatus is water-cooled, and is modular to permit a variety of inlet, nozzle, and optical configurations. A comprehensive suite of optical emission and absorption diagnostics is used to monitor the absolute concentrations of O II(a), O II(b), O( 3P), O 3, I II, I(2P 3/2), I(2P 1/2), small-signal gain, and temperature in both the subsonic and supersonic flow streams. We discuss initial measurements of singlet oxygen and I* excitation kinetics at 1 kW power.
Optical studies of shock generated transient supersonic base flows
Liang, P.-Y.; Bershader, D.; Wray, A.
1982-01-01
A shock tube employing interferometric and schlieren techniques is used to study transient base flow phenomena following shock wave passage over two plane bluff bodies: a hemicircular cylinder and a cylinder with the Galileo Jovian probe profile. An attempt is made to understand the physics of transition from transient to steady state flow, and to provide code verification for a study employing the Illiac IV computer. Transient base flow interactions include a series of shock diffraction, regular, and Mach reflections, coupled with boundary layer development, separation, and recompression. Vorticity generation and transport underlie these features. The quantitative verification of the computer code includes comparisons of transient pressure and density fields, near wake geometries, and bow shock standoff distances.
Trajectory Analysis of Fuel Injection into Supersonic Cross Flow Based on Schlieren Method
Institute of Scientific and Technical Information of China (English)
YANG Hui; LI Feng; SUN Baigang
2012-01-01
Trajectory analysis of fuel injection into supersonic cross flow is studied in this paper.A directly-connected wind tunnel is constructed to provide stable supersonic freestream.Based on the test rig,the schlieren system is established to reveal the fuel injection process visually.Subsequently,the method of quantitative schlieren is adopted to obtain data of both fuel/air interface and bow shock with the aid of Photoshop and Origin.Finally,the mechanism based on two influential factors of fuel injection angle and fuel injection driven pressure,is researched by vector analysis.A dimensionless model is deduced and analyzed.The curve fitting result is achieved.The relationship between the data and the two influential factors is established.The results provide not only the quantitative characteristics of the fuel injection in supersonic cross flow but also the valuable reference for the future computational simulation.
Characteristics of pulsed plasma synthetic jet and its control effect on supersonic flow
Institute of Scientific and Technical Information of China (English)
Jin Di; Cui Wei; Li Yinghong; Li Fanyu; Jia Min; Sun Quan; Zhang Bailing
2015-01-01
The plasma synthetic jet is a novel flow control approach which is currently being stud-ied. In this paper its characteristic and control effect on supersonic flow is investigated both exper-imentally and numerically. In the experiment, the formation of plasma synthetic jet and its propagation velocity in quiescent air are recorded and calculated with time resolved schlieren method. The jet velocity is up to 100 m/s and no remarkable difference has been found after chang-ing discharge parameters. When applied in Mach 2 supersonic flow, an obvious shockwave can be observed. In the modeling of electrical heating, the arc domain is not defined as an initial condition with fixed temperature or pressure, but a source term with time-varying input power density, which is expected to better describe the influence of heating process. Velocity variation with different heat-ing efficiencies is presented and discussed and a peak velocity of 850 m/s is achieved in still air with heating power density of 5.0 · 1012 W/m3. For more details on the interaction between plasma syn-thetic jet and supersonic flow, the plasma synthetic jet induced shockwave and the disturbances in the boundary layer are numerically researched. All the results have demonstrated the control authority of plasma synthetic jet onto supersonic flow.
Characteristics of pulsed plasma synthetic jet and its control effect on supersonic flow
Directory of Open Access Journals (Sweden)
Jin Di
2015-02-01
Full Text Available The plasma synthetic jet is a novel flow control approach which is currently being studied. In this paper its characteristic and control effect on supersonic flow is investigated both experimentally and numerically. In the experiment, the formation of plasma synthetic jet and its propagation velocity in quiescent air are recorded and calculated with time resolved schlieren method. The jet velocity is up to 100 m/s and no remarkable difference has been found after changing discharge parameters. When applied in Mach 2 supersonic flow, an obvious shockwave can be observed. In the modeling of electrical heating, the arc domain is not defined as an initial condition with fixed temperature or pressure, but a source term with time-varying input power density, which is expected to better describe the influence of heating process. Velocity variation with different heating efficiencies is presented and discussed and a peak velocity of 850 m/s is achieved in still air with heating power density of 5.0 × 1012 W/m3. For more details on the interaction between plasma synthetic jet and supersonic flow, the plasma synthetic jet induced shockwave and the disturbances in the boundary layer are numerically researched. All the results have demonstrated the control authority of plasma synthetic jet onto supersonic flow.
Directory of Open Access Journals (Sweden)
Yan Yang
Full Text Available A supersonic separator has been introduced to remove water vapour from natural gas. The mechanisms of the upstream and downstream influences are not well understood for various flow conditions from the wellhead and the back pipelines. We used a computational model to investigate the effect of the inlet and outlet flow conditions on the supersonic separation process. We found that the shock wave was sensitive to the inlet or back pressure compared to the inlet temperature. The shock position shifted forward with a higher inlet or back pressure. It indicated that an increasing inlet pressure declined the pressure recovery capacity. Furthermore, the shock wave moved out of the diffuser when the ratio of the back pressure to the inlet one was greater than 0.75, in which the state of the low pressure and temperature was destroyed, resulting in the re-evaporation of the condensed liquids. Natural gas would be the subsonic flows in the whole supersonic separator, if the mass flow rate was less than the design value, and it could not reach the low pressure and temperature for the condensation and separation of the water vapor. These results suggested a guidance mechanism for natural gas supersonic separation in various flow conditions.
Application of Tomo-PIV in a large-scale supersonic jet flow facility
Wernet, Mark P.
2016-09-01
Particle imaging velocimetry (PIV) has been used extensively at NASA GRC over the last 15 years to build a benchmark data set of hot and cold jet flow measurements in an effort to understand acoustic noise sources in high-speed jets. Identifying the noise sources in high-speed jets is critical for ultimately modifying the nozzle hardware design/operation and therefore reducing the jet noise. Tomographic PIV (Tomo-PIV) is an innovative approach for acquiring and extracting velocity information across extended volumes of a flow field, enabling the computation of additional fluid mechanical properties not typically available using traditional PIV techniques. The objective of this work was to develop and implement the Tomo-PIV measurement capability and apply it in a large-scale outdoor test facility, where seeding multiple flow streams and operating in the presence of daylight presents formidable challenges. The newly developed Tomo-PIV measurement capability was applied in both a subsonic M 0.9 flow and an under-expanded M 1.4 heated jet flow field. Measurements were also obtained using traditional two-component (2C) PIV and stereo PIV in the M 0.9 flow field for comparison and validation of the Tomo-PIV results. In the case of the M 1.4 flow, only the 2C PIV was applied to allow a comparison with the Tomo-PIV measurement. The Tomo-PIV fields-of-view covered 180 × 180 × 10 mm, and the reconstruction domains were 3500 × 3500 × 200 voxels. These Tomo-PIV measurements yielded all three components of vorticity across entire planes for the first time in heated supersonic jet flows and provided the first full 3D reconstruction of the Mach disk and oblique shock intersections inside of the barrel shocks. Measuring all three components of vorticity across multiple planes in the flow, potentially reduces the number of measurement configurations (streamwise and cross-stream PIV) required to fully characterize the mixing-enhanced nozzle flows routinely studied in
2013-11-01
269–275. 9. Stahl, B.; Edmunds , H.; Gulhan, A. Experimental Investigation of Hot and Cold Side Jet Interaction With a Supersonic Cross Flow...LICHTENBERG-SCANLAN G MALEJKO T RECCHIA C STOUT W TOLEDO J TRAVAILLE E VAZQUEZ C WILSON 4 PM CAS (PDF) M BURKE R KIEBLER
Global Existence of a Shock for the Supersonic Flow Past a Curved Wedge
Institute of Scientific and Technical Information of China (English)
Hui Cheng YIN
2006-01-01
This note is devoted to the study of the global existence of a shock wave for the supersonic flow past a curved wedge. When the curved wedge is a small perturbation of a straight wedge and the angle of the wedge is less than some critical value, we show that a shock attached at the wedge will exist globally.
CFD modeling of particle behavior in supersonic flows with strong swirls for gas separation
DEFF Research Database (Denmark)
Yang, Yan; Wen, Chuang
2017-01-01
flow from the dry gas outlet. The separation efficiency reached over 80%, when the droplet diameter was more than 1.5 μm. The optimum length of the cyclonic separation section was approximate 16–20 times of the nozzle throat diameter to obtain higher collection efficiency for the supersonic separator...
Molecular dynamics computations of two dimensional supersonic rarefied gas flow past blunt bodies
Greber, Isaac; Wachman, Harold Y.; Woo, Myeung-Jouh
1991-01-01
This paper presents results of molecular dynamics computations of supersonic flow past a circular cylinder and past a flat plate perpendicular to a supersonic stream. The results are for Mach numbers of approximately 5 and 10, for several Knudsen numbers and several ratios of surface to free stream temperatures. A special feature of the computations is the use of relatively small numbers of particles in the molecular dynamics simulation, and an examination of the adequacy of using small numbers of particles to obtain physically useful results.
Molecular dynamics computations of two dimensional supersonic rarefied gas flow past blunt bodies
Greber, Isaac; Wachman, Harold Y.; Woo, Myeung-Jouh
1991-01-01
This paper presents results of molecular dynamics computations of supersonic flow past a circular cylinder and past a flat plate perpendicular to a supersonic stream. The results are for Mach numbers of approximately 5 and 10, for several Knudsen numbers and several ratios of surface to free stream temperatures. A special feature of the computations is the use of relatively small numbers of particles in the molecular dynamics simulation, and an examination of the adequacy of using small numbers of particles to obtain physically useful results.
Adamczyk, J. J.; Goldstein, M. E.; Hartmann, M. J.
1978-01-01
Recently two flutter analyses have been developed at NASA Lewis Research Center to predict the onset of supersonic unstalled flutter of a cascade of two-dimensional airfoils. The first of these analyzes the onset of supersonic flutter at low levels of aerodynamic loading (i.e., backpressure), while the second examines the occurrence of supersonic flutter at moderate levels of aerodynamic loading. Both of these analyses are based on the linearized unsteady inviscid equations of gas dynamics to model the flow field surrounding the cascade. The details of the development of the solution to each of these models have been published. The objective of the present paper is to utilize these analyses in a parametric study to show the effects of cascade geometry, inlet Mach number, and backpressure on the onset of single and multi degree of freedom unstalled supersonic flutter. Several of the results from this study are correlated against experimental qualitative observation to validate the models.
Supersonic flow onto solid wedges, multidimensional shock waves and free boundary problems
Chen, Gui-Qiang
2017-08-01
When an upstream steady uniform supersonic flow impinges onto a symmetric straight-sided wedge, governed by the Euler equations, there are two possible steady oblique shock configurations if the wedge angle is less than the detachment angle -- the steady weak shock with supersonic or subsonic downstream flow (determined by the wedge angle that is less or larger than the sonic angle) and the steady strong shock with subsonic downstream flow, both of which satisfy the entropy condition. The fundamental issue -- whether one or both of the steady weak and strong shocks are physically admissible solutions -- has been vigorously debated over the past eight decades. In this paper, we survey some recent developments on the stability analysis of the steady shock solutions in both the steady and dynamic regimes. For the static stability, we first show how the stability problem can be formulated as an initial-boundary value type problem and then reformulate it into a free boundary problem when the perturbation of both the upstream steady supersonic flow and the wedge boundary are suitably regular and small, and we finally present some recent results on the static stability of the steady supersonic and transonic shocks. For the dynamic stability for potential flow, we first show how the stability problem can be formulated as an initial-boundary value problem and then use the self-similarity of the problem to reduce it into a boundary value problem and further reformulate it into a free boundary problem, and we finally survey some recent developments in solving this free boundary problem for the existence of the Prandtl-Meyer configurations that tend to the steady weak supersonic or transonic oblique shock solutions as time goes to infinity. Some further developments and mathematical challenges in this direction are also discussed.
Zhu, Lin; Qi, Yin-Yin; Liu, Wei-Lai; Xu, Bao-Jian; Ge, Jia-Ru; Xuan, Xiang-Chun; Jen, Tien-Chien
2016-12-01
The incident shock wave generally has a strong effect on the transversal injection field in cold kerosene-fueled supersonic flow, possibly due to its affecting the interaction between incoming flow and fuel through various operation conditions. This study is to address scale effect of various injection diameters on the interaction between incident shock wave and transversal cavity injection in a cold kerosene-fueled scramjet combustor. The injection diameters are separately specified as from 0.5 to 1.5 mm in 0.5 mm increments when other performance parameters, including the injection angle, velocity and pressure drop are all constant. A combined three dimensional Couple Level Set & Volume of Fluids (CLSVOF) approach with an improved K-H & R-T model is used to characterize penetration height, span expansion area, angle of shock wave and sauter mean diameter (SMD) distribution of the kerosene droplets with/without considering evaporation. Our results show that the injection orifice surely has a great scale effect on the transversal injection field in cold kerosene-fueled supersonic flows. Our findings show that the penetration depth, span angle and span expansion area of the transverse cavity jet are increased with the injection diameter, and that the kerosene droplets are more prone to breakup and atomization at the outlet of the combustor for the orifice diameter of 1.5 mm. The calculation predictions are compared against the reported experimental measurements and literatures with good qualitative agreement. The simulation results obtained in this study can provide the evidences for better understanding the underlying mechanism of kerosene atomization in cold supersonic flow and scramjet design improvement.
The calibration and operation of a constant-temperature crossed-wire probe in supersonic flow
Fernando, E. M.; Donovan, J. F.; Smits, A. J.
1987-01-01
The calibration and operation of a constant-temperature crossed-wire probe in supersonic flow is considered. Crossed-wire probes offer considerable advantages over single, inclined wires: the kinematic shear stress can be derived from a single point measurement; the rms quantities can be derived from the same measurement, and the instantaneous quantities can be obtained as a continuous function of time. However, using a crossed-wire probe in supersonic flow is subject to the following practical difficulties: the problem of flow interference, where the shock waves from one wire and its supports interfere with the flow over the other wire; the necessity for high frequency response to resolve the spectral content, and the sensitivity of the results to small changes in the calibration constants. In the present contribution, each of these problems is addressed. Practical solutions are suggested, and some encouraging results are presented.
LES of an inclined jet into a supersonic cross-flow
Ferrante, Antonino; Matheou, Georgios; Dimotakis, Paul E; Stephens, Mike; Adams, Paul; Walters, Richard; Hand, Randall
2008-01-01
This short article describes flow parameters, numerical method, and animations of the fluid dynamics video LES of an Inclined Jet into a Supersonic Cross-Flow (http://hdl.handle.net/1813/11480). Helium is injected through an inclined round jet into a supersonic air flow at Mach 3.6. The video shows 2D contours of Mach number and magnitude of density gradient, and 3D iso-surfaces of Helium mass-fraction and vortical structures. Large eddy simulation with the sub-grid scale (LES-SGS) stretched vortex model of turbulent and scalar transport captures the main flow features: bow shock, Mach disk, shear layers, counter-rotating vortices, and large-scale structures.
Benyo, Theresa L.
2011-01-01
Flow matching has been successfully achieved for an MHD energy bypass system on a supersonic turbojet engine. The Numerical Propulsion System Simulation (NPSS) environment helped perform a thermodynamic cycle analysis to properly match the flows from an inlet employing a MHD energy bypass system (consisting of an MHD generator and MHD accelerator) on a supersonic turbojet engine. Working with various operating conditions (such as the applied magnetic field, MHD generator length and flow conductivity), interfacing studies were conducted between the MHD generator, the turbojet engine, and the MHD accelerator. This paper briefly describes the NPSS environment used in this analysis. This paper further describes the analysis of a supersonic turbojet engine with an MHD generator/accelerator energy bypass system. Results from this study have shown that using MHD energy bypass in the flow path of a supersonic turbojet engine increases the useful Mach number operating range from 0 to 3.0 Mach (not using MHD) to a range of 0 to 7.0 Mach with specific net thrust range of 740 N-s/kg (at ambient Mach = 3.25) to 70 N-s/kg (at ambient Mach = 7). These results were achieved with an applied magnetic field of 2.5 Tesla and conductivity levels in a range from 2 mhos/m (ambient Mach = 7) to 5.5 mhos/m (ambient Mach = 3.5) for an MHD generator length of 3 m.
Impact of chevron spacing and asymmetric distribution on supersonic jet acoustics and flow
Heeb, N.; Gutmark, E.; Kailasanath, K.
2016-05-01
An experimental investigation into the effect of chevron spacing and distribution on supersonic jets was performed. Cross-stream and streamwise particle imaging velocimetry measurements were used to relate flow field modification to sound field changes measured by far-field microphones in the overexpanded, ideally expanded, and underexpanded regimes. Drastic modification of the jet cross-section was achieved by the investigated configurations, with both elliptic and triangular shapes attained downstream. Consequently, screech was nearly eliminated with reductions in the range of 10-25 dB depending on the operating condition. Analysis of the streamwise velocity indicated that both the mean shock spacing and strength were reduced resulting in an increase in the broadband shock associated noise spectral peak frequency and a reduction in the amplitude, respectively. Maximum broadband shock associated noise amplitude reductions were in the 5-7 dB range. Chevron proximity was found to be the primary driver of peak vorticity production, though persistence followed the opposite trend. The integrated streamwise vorticity modulus was found to be correlated with peak large scale turbulent mixing noise reduction, though optimal overall sound pressure level reductions did not necessarily follow due to the shock/fine scale mixing noise sources. Optimal large scale mixing noise reductions were in the 5-6 dB range.
Parameters of the plasma of a dc pulsating discharge in a supersonic air flow
Energy Technology Data Exchange (ETDEWEB)
Shibkov, V. M., E-mail: shibkov@phys.msu.ru; Shibkova, L. V.; Logunov, A. A. [Moscow State University, Faculty of Physics (Russian Federation)
2017-03-15
A dc discharge in a cold (T = 200 K) supersonic air flow at a static pressure of 200–400 Torr was studied experimentally. The excited unsteady pulsating discharge has the form of a thin plasma channel with a diameter of ≤1 mm, stretched downstream the flow. Depending on the discharge current, the pulsation frequency varies from 800 to 1600 Hz and the electron temperature varies from 8000 to 15000 K.
ON THE ASYMPTOTIC BEHAVIOUR OF THE STEADY SUPERSONIC FLOWS AT INFINITY
Institute of Scientific and Technical Information of China (English)
ZHANG YONGQIAN
2005-01-01
This paper studies the asymptotic behaviour of steady supersonic flow past a piecewise smooth corner or bend. Under the hypothese that both vertex angle and the total variation of tangent along the boundary are small, it is shown that the solution can be obtained by a modified Glimm scheme, and that the asymptotic behaviour of the solution is determined by the velocity of incoming flow and the limit of the tangent of the boundary at infinity.
Advanced Supersonic Nozzle Concepts: Experimental Flow Visualization Results Paired With LES
Berry, Matthew; Magstadt, Andrew; Stack, Cory; Gaitonde, Datta; Glauser, Mark; Syracuse University Team; The Ohio State University Team
2015-11-01
Advanced supersonic nozzle concepts are currently under investigation, utilizing multiple bypass streams and airframe integration to bolster performance and efficiency. This work focuses on the parametric study of a supersonic, multi-stream jet with aft deck. The single plane of symmetry, rectangular nozzle, displays very complex and unique flow characteristics. Flow visualization techniques in the form of PIV and schlieren capture flow features at various deck lengths and Mach numbers. LES is compared to the experimental results to both validate the computational model and identify limitations of the simulation. By comparing experimental results to LES, this study will help create a foundation of knowledge for advanced nozzle designs in future aircraft. SBIR Phase II with Spectral Energies, LLC under direction of Barry Kiel.
Hwang, Danny P.
1999-01-01
A new turbulent skin friction reduction technology, called the microblowing technique has been tested in supersonic flow (Mach number of 1.9) on specially designed porous plates with microholes. The skin friction was measured directly by a force balance and the boundary layer development was measured by a total pressure rake at the tailing edge of a test plate. The free stream Reynolds number was 1.0(10 exp 6) per meter. The turbulent skin friction coefficient ratios (C(sub f)/C(sub f0)) of seven porous plates are given in this report. Test results showed that the microblowing technique could reduce the turbulent skin friction in supersonic flow (up to 90 percent below a solid flat plate value, which was even greater than in subsonic flow).
Elliptic Length Scales in Laminar, Two-Dimensional Supersonic Flows
2015-06-01
adiabatic wall flows over compression ramps and flows with shock impingements. The new correlations are derived from existing numerical data and...developed for 2D, laminar adiabatic wall flows over compression ramps and flows with shock impingements. These correlations are derived from existing...characterizing the influence of shocks and compression ramps on flat plate flows is presented. New correlations for laminar compressive interactions on
CFD-Exergy analysis of the flow in a supersonic steam ejector
Boulenouar, M.; Ouadha, A.
2015-01-01
The current study aims to carry out a CFD-exergy based analysis to assess the main areas of loss in a supersonic steam ejector encountered in ejector refrigeration systems. The governing equations for a compressible flow are solved using finite volume approach based on SST k-ω model to handle turbulence effects. Flow rates and the computed mean temperatures and pressures have been used to calculate the exergy losses within the different regions of the ejector as well as its overall exergy efficiency. The primary mass flow rate, the secondary mass flow rate and the entrainment ratio predicted by the model have been compared with the experimental data from the literature.
Expansion Waves at the Outlet of the Supersonic Two-Phase Flow Nozzle
Nakagawa, Masafumi; Miyazaki, Hiroki; Harada, Atsushi; Ibragimov, Zokirjon
Two-phase flow nozzles are used in the total flow system of geothermal power plants and in the ejector of the refrigeration cycle, etc. One of the most important functions of the two-phase flow nozzle is converting two-phase flow thermal energy into kinetic energy. The kinetic energy of the two-phase flow exhausted from a nozzle is available for all applications of this type. In the case of non-best fitting expansion conditions, when the operation conditions of the supersonic nozzle are widely chosen, there exist shock waves or expansion waves at the outlet of the nozzle. Those waves affect largely the energy conversion efficiency of the two-phase flow nozzle. The purpose of the present study is to elucidate character of the expansion waves at the outlet of the supersonic two-phase flow nozzle. High-pressure hot water blowdown experiments have been carried out. The decompression curves of the expansion waves are measured by changing the flowrate in the nozzle and inlet temperature of the hot water. The back pressures of the nozzle are also changed in those experiments. The expansion angles of the two-phase flow flushed out from the nozzle are measured by means of the photograph. The experimental results show that the decompression curves are different from those predicted by the isentropic homogeneous two-phase flow theory. The regions where the expansion waves occur become wide due to the increased outlet speed of the two-phase flow. The qualitative dependency of this expansion character is the same as the isentropic homogeneous flow, but the values obtained from the experiments are quite different. When the back pressure of the nozzle is higher, these regions do not become small in spite of the supersonic two-phase flow. This means that the disturbance in the downstream propagates to the upstream. It is shown by the present experiments that the expansion waves in the supersonic two-phase flow of water have a subsonic feature. The measured expansion angles become
A flow control study of a supersonic mixing layer via NPLS
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The flow control of a supersonic mixing layer was studied in a supersonic mixing layer wind tunnel with convective Mach number (Mc) at 0.5. The passive control of the mixing layer was achieved by perturbation tapes on the trailing edge of the splitter plate. The control effects of 2D and 3D perturbation tapes with different sizes were compared. The mixing layer was visualized via NPLS,and the transient fine structures were identifiable in NPLS images,which were used to analyze the effects of flow control. The results show that the 2D tapes can enhance the 2D characteristic of the mixing layer,delaying mixing layer transition; and the 3D tapes can enhance the 3D characteristic of the mixing layer,advancing mixing layer transition. 3D structures of the mixing layer were visualized,and the H-type Λ vortexes were found with 3D tapes control.
Cavity Ignition in Supersonic Flow by Spark Discharge and Pulse Detonation
2014-08-18
constant volume, through a detonation , or some combination. While a deflagration (flame) through constant volume combustion can provide rapid heat release...significantly disrupted, and the detonation was able to ignite and burn most of the fuel within the cavity. This led to decreased heat release in regime IV...locate/proci of the Combustion InstituteCavity ignition in supersonic flow by spark discharge and pulse detonation Timothy M. Ombrello a,⇑, Campbell D
Nonlinear effects of energy sources and the jet at supersonic flow in the channel
Zamuraev, V. P.; Kalinina, A. P.
2016-10-01
The work is devoted to the mathematical modeling of the influence of transversal jet and the near-wall energy sources on the shock wave structure of supersonic flow in channel with variable cross section. Stable regimes with the region of transonic velocities are obtained. Their stability is confirmed by the width of the corridor of the input power in the area of the regime existence.
Nonlinear vibrations of cylindrical shells with initial imperfections in a supersonic flow
Kurilov, E. A.; Mikhlin, Yu. V.
2007-09-01
The paper studies the dynamics of nonlinear elastic cylindrical shells using the theory of shallow shells. The aerodynamic pressure on the shell in a supersonic flow is found using piston theory. The effect of the flow and initial deflections on the vibrations of the shell is analyzed in the flutter range. The normal modes of both perfect shells in a flow and shells with initial imperfections are studied. In the latter case, the trajectories of normal modes in the configuration space are nearly rectilinear, only one mode determined by the initial imperfections being stable
Fundamental Structure of High-Speed Reacting Flows: Supersonic Combustion and Detonation
2016-04-30
supersonic. Oblique Shock Interface Inert Reactants β θ P1 P2e P3eUCJ P1 UCJ P2i Detonation Figure 3. Idealized flow model of a detonation wave with an...Propagation With No Confinement But With Transvers Flow A consistent cross-flow was established by calibrating the height of the gases in time relative...to the controller commands, and then staggering the triggering of the gases such that each species – hydrogen, helium, and oxygen – independently
A Computer Program to Calculate the Supersonic Flow over a Solid Cone in Air or Water.
1984-06-01
ix air or water. The rain objective is to calculate the ccne semi-vertei angle given prescribed initial ccndi- tions. The program is written in...tc the motion of the metal jet frcm an explczive shaped-charge fired underwater. A tiical result for supersonic flow over a ccne in water is as follcws...the ccne semi-vertex angle is calculated to be 7.23 degrees. Gene rally, pressures invclved in water flow are much larger than for air flow, and the
Institute of Scientific and Technical Information of China (English)
LI Yiwen; LI Yinghong; LU Haoyu; ZHU Tao; ZHANG Bailing; CHEN Feng; ZHAO Xiaohu
2011-01-01
This paper presents a preliminary experimental investigation on magnetohydrodynamic (MHD) power generation using seeded supersonic argon flow as working fluid.Helium and argon are used as driver and driven gas respectively in a shock tunnel.Equilibrium contact surface operating mode is used to obtain high temperature gas,and the conductivity is obtained by adding seed K2CO3 powder into the driven section.Under the conditions of nozzle inlet total pressure being 0.32 MPa,total temperature 6 504 K,magnetic field density about 0.5 T and nozzle outlet velocity 1 959 m/s,induction voltage and short-circuit current of the segmentation MHD power generation channel are measured,and the experimental results agree with theoretical calculations; the average conductivity is about 20 S/m calculated from characteristics of voltage and current.When load factor is 0.5,the maximum power density of the MHD power generation channel reaches 4.797 1 MW/m3,and the maximum enthalpy extraction rate is 0.34%.Finally,the principle and method of indirect testing for gas state parameters are derived and analyzed.
Cpuf: Chirped-Pulse Microwave Spectroscopy in Pulsed Uniform Supersonic Flows
Suits, Arthur; Abeysekera, Chamara; Zack, Lindsay N.; Joalland, Baptiste; Ariyasingha, Nuwandi M.; Park, Barratt; Field, Robert W.; Sims, Ian
2015-06-01
Chirped-pulse Fourier-transform microwave spectroscopy has stimulated a resurgence of interest in rotational spectroscopy owing to the dramatic reduction in spectral acquisition time it enjoys when compared to cavity-based instruments. This suggests that it might be possible to adapt the method to study chemical reaction dynamics and even chemical kinetics using rotational spectroscopy. The great advantage of this would be clear, quantifiable spectroscopic signatures for polyatomic products as well as the possibility to identify and characterize new radical reaction products and transient intermediates. To achieve this, however, several conditions must be met: 1) products must be thermalized at low temperature to maximize the population difference needed to achieve adequate signal levels and to permit product quantification based on the rotational line strength; 2) a large density and volume of reaction products is also needed to achieve adequate signal levels; and 3) for kinetics studies, a uniform density and temperature is needed throughout the course of the reaction. These conditions are all happily met by the uniform supersonic flow produced from a Laval nozzle expansion. In collaboration with the Field group at MIT we have developed a new instrument we term a CPUF (Chirped-pulse/Uniform Flow) spectrometer in which we can study reaction dynamics, photochemistry and kinetics using broadband microwave and millimeter wave spectroscopy as a product probe. We will illustrate the performance of the system with a few examples of photodissociation and reaction dynamics, and also discuss a number of challenges unique to the application of chirped-pulse microwave spectroscopy in the collisional environment of the flow. Future directions and opportunities for application of CPUF will also be explored.
An atomic coilgun: using pulsed magnetic fields to slow a supersonic beam
Energy Technology Data Exchange (ETDEWEB)
Narevicius, E [Center for Nonlinear Dynamics and Department of Physics, Univesity of Texas at Austin, Austin, TX 78712-1081 (United States); Parthey, C G [Center for Nonlinear Dynamics and Department of Physics, Univesity of Texas at Austin, Austin, TX 78712-1081 (United States); Libson, A [Center for Nonlinear Dynamics and Department of Physics, Univesity of Texas at Austin, Austin, TX 78712-1081 (United States); Narevicius, J [Center for Nonlinear Dynamics and Department of Physics, Univesity of Texas at Austin, Austin, TX 78712-1081 (United States); Chavez, I [Center for Nonlinear Dynamics and Department of Physics, Univesity of Texas at Austin, Austin, TX 78712-1081 (United States); Even, U [Sackler School of Chemistry, Tel-Aviv University, Tel-Aviv (Israel); Raizen, M G [Center for Nonlinear Dynamics and Department of Physics, Univesity of Texas at Austin, Austin, TX 78712-1081 (United States)
2007-10-15
We report the experimental demonstration of a novel method to slow atoms and molecules with permanent magnetic moments using pulsed magnetic fields. In our experiments, we observe the slowing of a supersonic beam of metastable neon from 461.0 {+-} 7.7 to 403 {+-} 16 m s{sup -1} in 18 stages, where the slowed peak is clearly separated from the initial distribution. This method has broad applications as it may easily be generalized, using seeding and entrainment into supersonic beams, to all paramagnetic atoms and molecules.
Tenney, Andrew; Coleman, Thomas; Lewalle, Jacques; Glauser, Mark; Gogineni, Sivaram
2016-11-01
Supersonic flow from a three-stream non-axisymmetric jet is visualized using time resolved schlieren photography (up to 400,000 frames per second) while pressure on the aft deck plate of the nozzle is simultaneously sampled using kulites. Time series are constructed using the schlieren photographs and conditioned to reduce the effects of signal drift and clipping where necessary. The effect of this detrending and clipping reconstruction on signal statistics is examined. In addition, signals constructed from near field schlieren will be correlated with one another to visualize the propagation of information in the near field. The goal of utilizing space-time correlations is to assist in identifying and tracking the evolution of individual structures in the near field. The schlieren signals will also be correlated with the deck pressure traces to assist in unraveling the interaction of flow structures.
Wang, Yunpeng; Ozawa, Hiroshi; Nakamura, Yoshiaki
The flow past a capsule-shaped space transportation system (STS) is numerically analyzed using computational fluid dynamics (CFD) for different free stream Mach numbers ranging from 1.2 to 5.0, where a capsule is modeled by a cone, and a rocket by a circular cylinder. The objective of this research is to study Mach number effects on phenomena of the supersonic aerodynamic interference with periodic flow oscillations at supersonic regime. So far we have considered two models: model A (without disk) and model B (with disk). It was found from experimental and computational results that the flow around model A becomes steady, where aerodynamic interaction is not observed, while in model B, flow becomes unsteady with periodic oscillations. This flow oscillation is considered to be a potentially high risk in separation of the capsule and rocket. Therefore, the present study focuses on the unsteady case of model B. Numerical results at M=3.0 compared well with experimental ones, which validates the present CFD. Time-averaged results are employed to see the whole trajectories of shock waves and the variation in amplitude of flow oscillation during one cycle. Moreover, a fence is proposed as a device to suppress the flow oscillation.
Rarefaction Waves at the Outlet of the Supersonic Two-Phase Flow Nozzle
Nakagawa, Masafumi; Miyazaki, Hiroki; Harada, Atsushi
Two-phase flow nozzles are used in the total flow system for geothermal power plants and in the ejector of the refrigerant cycle, etc. One of the most important functions of a two-phase flow nozzle is to convert the thermal energy to the kinetic energy of the two-phase flow. The kinetic energy of the two-phase flow exhausted from a nozzle is available for all applications of this type. There exist the shock waves or rarefaction waves at the outlet of a supersonic nozzle in the case of non-best fitting expansion conditions when the operation conditions of the nozzle are widely chosen. Those waves affect largely on the energy conversion efficiency of the two-phase flow nozzle. The purpose of the present study is to elucidate the character of the rarefaction waves at the outlet of the supersonic two-phase flow nozzle. The high pressure hot water blow down experiment has been carried out. The decompression curves by the rarefaction waves are measured by changing the flow rate of the nozzle and inlet temperature of the hot water. The back pressures of the nozzle are also changed in those experiments. The divergent angles of the two-phase flow flushed out from the nozzle are measured by means of the photograph. The experimental results show that the recompression curves are different from those predicted by the isentropic homogenous two-phase flow. The regions where the rarefaction waves occur become wide due to the increased outlet speed of two-phase flow. The qualitative dependency of this expansion character is the same as the isotropic homogenous flow, but the values obtained from the experiments are quite different. When the back pressure of the nozzle is higher, these regions do not become small in spite of the super sonic two-phase flow. This means that the disturbance of the down-stream propagate to the up-stream. It is shown by the present experiments that the rarefaction waves in the supersonic two-phase flow of water have a subsonic feature. The measured
Improved optical techniques for studying sonic and supersonic injection into Mach 3 flow
Buggele, Alvin E.; Seasholtz, Richard G.
1997-11-01
Filtered Rayleigh Scattering and shadowgraph flow visualization were used to characterize the penetration of helium or moist air injected transversely at several pressures to a Mach 3 flow in the NASA Lewis 3.81 inch by 10 inch continuous flow supersonic wind tunnel. This work is in support of the LOX augmented nuclear thermal rocket program. The present study used an injection-seeded, frequency doubled Nd:YAG pulsed laser to illuminate a transverse section of the injectant plume. Rayleigh scattered light was passed through an iodine absorption cell to suppress stray laser light and was imaged onto a cooled CCD camera. The scattering was based on condensation of water vapor in the injectant flow. Results are presented for various configurations of sonic and supersonic injector designs mounted primarily in the floor of the tunnel. Injectors studied include a single 0.25 inch diameter hole, five 0.112 inch diameter holes on 0.177 inch spacing, and a 7 degree half angle wedge. High speed shadowgraph flow visualization images were obtained with several video camera systems. Roof and floor static pressure data are presented several ways for the three configurations of injection designs with and without helium and/or air injection into Mach 3 flow.
Unsteady flow in a supersonic cascade with subsonic leading-edge locus
Adamczyk, J. J.; Goldstein, M. E.
1978-01-01
Linearized theory is used to predict the unsteady flow in a supersonic cascade with subsonic axial flow velocity. A closed-form analytical solution is obtained by using a double application of the Wiener-Hopf technique. Although numerical and semianalytical solutions of this problem have already appeared in the literature, this paper contains the first completely analytical solution. It has been stated in the literature that the blade source should vanish at the infinite duct resonance condition. The present analysis shows that this does not occur. This apparent discrepancy is explained in the paper.
Constant-temperature hot-wire anemometer practice in supersonic flows. I - The normal wire
Smits, A. J.; Hayakawa, K.; Muck, K. C.
1983-01-01
The performance of a constant-temperature normal hot-wire in a supersonic flow is critically examined. It is shown that this instrument is inherently unsuitable for measuring turbulent temperature correlations because of the highly nonlinear response to temperature fluctuations, particularly at low overheat ratios. The instrument is therefore limited to measurements of mean and fluctuating mass-flow rates. Suitable calibration procedures, as well as the limits on spatial and temporal resolution are discussed, and corrections for mean stagnation temperature changes are suggested.
Ariyasingha, Nuwandi M.; Joalland, Baptiste; Mebel, Alexander M.; Suits, Arthur
2016-06-01
Chirped - Pulse Fourier-transform microwave spectroscopy in uniform supersonic flows (Chirped- Pulse/Uniform Flow: CPUF) has been applied to study the photodissociation of two atmospherically relevant N containing heterocyclic compounds; pyridine and isoxazole. Products were detected using rotational spectroscopy. HC3N, HCN were observed for pyridine and CH3CN, HCO and HCN were observed for isoxazole and we report the first detection of HNC for both of the systems. Key points in potential energy surface were explored and compared with the experimental observations. Branching ratios were calculated for all the possible channels and will be presented.
Energy Technology Data Exchange (ETDEWEB)
Moretti, G.; Bleich, G.
1968-09-01
The three-dimensional flow field around blunted bodies traveling at supersonic speed is computed using a time-dependent technique. The problem is mathematically well posed, the technique is stable and its accuracy increases with the fineness of the mesh. Values at points within the shock layer are computed by a method closely related to the Lax-Wendroff technique. Values at shock points and body points are computed by a four-dimensional method of characteristics.
IRROTATIONAL APPROXIMATION TO STEADY SUPERSONIC FLOW IN TWO SPACE VARIABLES
Institute of Scientific and Technical Information of China (English)
Liu Chong
2008-01-01
On the assumption that the total variation of the initial data is sufficiently small,we can use the stability results of Dafermos to get the L2 estimate of the difference between the solutions to the isentropic steady Euler system and the potential flow equations with the same initial data.
Lapushkina, T. A.; Erofeev, A. V.; Ponyaev, S. A.
2014-07-01
This study is aimed at investigating the possibility of pressure variation near the surface of a body placed in a supersonic flow as a model of an aerofoil or the nose of an aircraft by organizing a surface gas discharge in a magnetic field transverse to the flow. The flow parameters and pressure are mainly affected by the ponderomotive Lorentz force acting on the gas in the direction orthogonal to the direction of the organized discharge current and leading to the removal or compression of the gas at the surface of the body and, hence, a variation of pressure. Experimental data on the visualization of the flow and on the pressure at the surface of the body are considered for various configurations of the current and intensities of the gas discharge and magnetic field; it is demonstrated that such configurations of the current and magnetic field near the surface of the body under investigation can be organized in such a way that the pressure at the front part as well as the upper and lower surfaces of the body under investigation can be increased or decreased, thus changing the aerodynamic drag and the aerofoil lift. Such a magnetohydrodynamic control over aerodynamic parameters of the aircraft can be used during takeoff and landing as well as during steady-state flight and also during the entrance into dense atmospheric layers. This will considerably reduce the thermal load on the surface of the body in the flow.
Supersonic flow of a nonequilibrium gas-discharge plasma around a body
Lapushkina, T. A.; Erofeev, A. V.; Ponyaev, S. A.; Bobashev, S. V.
2009-06-01
The flow of a nonequilibrium gas-discharge plasma around a semicylindrical body is studied. The aim of the study is to see how a change in the degree of nonequilibrium of the incoming plasma changes the separation distance between a shock wave and the body. Experiments are carried out with a supersonic nozzle into which a semicylindrical body is placed. The inlet of the nozzle is connected to a shock tube. In the course of the experiment, electrodes built into the wall of the nozzle initiate a gas discharge in front of the body to produce an additional nonequilibrium ionization in the stationary incoming supersonic flow. The discharge parameters are selected such that the discharge raises the electron temperature and still minimizes heating of the gas. The degree of nonequilibrium of the flow varies with gas-discharge current. Diagnostics of the flow is carried out with a schlieren system based on a semiconductor laser. The system can record flow patterns at definite time instants after discharge initiation.
Analysis of flow structures in supersonic plane mixing layers using the POD method
Institute of Scientific and Technical Information of China (English)
YANG Qin; FU Song
2008-01-01
The proper orthogonal decomposition (POD) method was applied to analyzing the database obtained from the direct numerical simulation (DNS) of supersonic plane mixing layers. The effect of different forms of the inner products in the POD method was investigated. It was observed that the mean flow contributes to a predominant part of the total flow energy, and the energy spectrum of the turbulence fluctuations covers a wide range of POD modes. The patterns of leading (high energy) POD modes reveal that the flow structures exhibit spanwise counter rotating rolls, as well as oblique vortices. These flow patterns are insensitive to the velocity of the observer. As the convective Mach number increases, the energy spectrum be-comes wider, the leading POD modes contain more complicated structures, and the flow becomes more chaotic.
Analysis of flow structures in supersonic plane mixing layers using the POD method
Institute of Scientific and Technical Information of China (English)
2008-01-01
The proper orthogonal decomposition(POD) method was applied to analyzing the database obtained from the direct numerical simulation(DNS) of supersonic plane mixing layers.The effect of different forms of the inner products in the POD method was investigated.It was observed that the mean flow contributes to a predominant part of the total flow energy,and the energy spectrum of the turbulence fluctuations covers a wide range of POD modes.The patterns of leading(high energy) POD modes reveal that the flow structures exhibit spanwise counter rotating rolls,as well as oblique vortices.These flow patterns are insensitive to the velocity of the observer.As the convective Mach number increases,the energy spectrum be-comes wider,the leading POD modes contain more complicated structures,and the flow becomes more chaotic.
Reedy, Todd Mitchell
An experimental investigation evaluating the effects of flow control on the near-wake downstream of a blunt-based axisymmetric body in supersonic flow has been conducted. To better understand and control the physical phenomena that govern these massively separated high-speed flows, this research examined both passive and active flow-control methodologies designed to alter the stability characteristics and structure of the near-wake. The passive control investigation consisted of inserting splitter plates into the recirculation region. The active control technique utilized energy deposition from multiple electric-arc plasma discharges placed around the base. The flow-control authority of both methodologies was evaluated with experimental diagnostics including particle image velocimetry, schlieren photography, surface flow visualization, pressure-sensitive paint, and discrete surface pressure measurements. Using a blowdown-type wind tunnel reconstructed specifically for these studies, baseline axisymmetric experiments without control were conducted for a nominal approach Mach number of 2.5. In addition to traditional base pressure measurements, mean velocity and turbulence quantities were acquired using two-component, planar particle image velocimetry. As a result, substantial insight was gained regarding the time-averaged and instantaneous near-wake flow fields. This dataset will supplement the previous benchmark point-wise laser Doppler velocimetry data of Herrin and Dutton (1994) for comparison with new computational predictive techniques. Next, experiments were conducted to study the effects of passive triangular splitter plates placed in the recirculation region behind a blunt-based axisymmetric body. By dividing the near-wake into 1/2, 1/3, and 1/4 cylindrical regions, the time-averaged base pressure distribution, time-series pressure fluctuations, and presumably the stability characteristics were altered. While the spatial base pressure distribution was
Institute of Scientific and Technical Information of China (English)
Mohammad Ali; S.Ahmed; A.K.M.Sadrul Islam
2003-01-01
A numerical investigation has been performed on supersonic mixing of hydrogen with air in a Scramjet(Supersonic Combustion Ramjet) combustor and its flame holding capability by solving Two-Dimensional full Navier-Stokes equations. The main flow is air entering through a finite width of inlet and gaseous hydrogen is injected perpendicularly from the side wall. An explicit Harten-Yee Non-MUSCL Modified-flux-type TVD scheme has been used to solve the system of equations, and a zero-equation algebraic turbulence model to calculate the eddy viscosity coefficient. In this study the enhancement of mixing and good flame holding capability of a supersonic combustor have been investigated by varying the distance of injector position from left boundary keeping constant the backward-facing step height and other calculation parameters. The results show that the configuration for small distance of injector position has high mixing efficiency but the upstream recirculation can not evolved properly which is an important factor for flame holding capability. On the other hand, the configuration for very long distance has lower mixing efficiency due to lower gradient of hydrogen mass concentration on the top of injector caused by the expansion of side jet in both upstream and downstream of injector. For moderate distance of injector position, large and elongated upstream recirculation can evolve which might be activated as a good flame holder.
Plasma-based Control of Supersonic Nozzle Flow
Gaitonde, Datta V
2009-01-01
The flow structure obtained when Localized Arc Filament Plasma Actuators (LAFPA) are employed to control the flow issuing from a perfectly expanded Mach 1.3 nozzle is elucidated by visualizing coherent structures obtained from Implicit Large-Eddy Simulations. The computations reproduce recent experimental observations at the Ohio State University to influence the acoustic and mixing properties of the jet. Eight actuators were placed on a collar around the periphery of the nozzle exit and selectively excited to generate various modes, including first and second mixed (m = +/- 1 and m = +/- 2) and axisymmetric (m = 0). In this fluid dynamics video http://ecommons.library.cornell.edu/bitstream/1813/13723/2/Alljoinedtotalwithmodetextlong2-Datta%20MPEG-1.m1v, http://ecommons.library.cornell.edu/bitstream/1813/13723/3/Alljoinedtotalwithmodetextlong2-Datta%20MPEG-2.m2v}, unsteady and phase-averaged quantities are displayed to aid understanding of the vortex dynamics associated with the m = +/- 1 and m = 0 modes exci...
Blast shocks in quasi-two-dimensional supersonic granular flows.
Boudet, J F; Cassagne, J; Kellay, H
2009-11-27
In a thin, dilute, and fast flowing granular layer, the impact of a small sphere generates a fast growing hole devoid of matter. The growth of this hole is studied in detail, and its dynamics is found to mimic that of blast shocks in gases. This dynamics can be decomposed into two stages: a fast initial stage (the blast) and a slower growth regime whose growth velocity is given by the speed of sound in the medium used. A simple model using ingredients already invoked for the case of blast shocks in gases but including the inelastic nature of collisions between grains accounts accurately for our results. The system studied here allows for a detailed study of the full dynamics of a blast as it relaxes from a strong to a weak shock and later to an acoustic disturbance.
Shock front width and structure in supersonic granular flows.
Boudet, J F; Amarouchene, Y; Kellay, H
2008-12-19
The full structure of a shock front around a blunt body in a quasi-two-dimensional granular flow is studied. Two features, a large density gradient and a very small thickness of the front, characterize this shock and make it different from shocks in molecular gases. Both of these features can be understood using a modified version of the granular kinetic theory. Our model separates the particles into two subpopulations: fast particles having experienced no collisions and randomly moving particles. This separation is motivated by direct measurements of the particle velocities which show a bimodal distribution. Our results not only shed new light on the use of the granular kinetic theory under extreme conditions (shock formation) but bring new insight into the physics of shocks in general.
Tangential injection to a supersonic flow on a blunted nose
Chuvakhov, P. V.; Egorov, I. V.; Ezhov, I. V.; Ezhov, I. V.; Novikov, I. V.; Vasilevskiy, E. B.
2017-06-01
The flow pattern and the heat §ux to a body surface at a tangential gas injecting have been investigated. The cooling air was injected to a §ow through the tangential axisymmetric slot on the spherically blunted cylinder. The experiments were conducted at M∞ = 6, Re∞,Rw = 0.76 · 106, angle of attack α = 0°-30°, and the slot width hk/Rw = 0-0.021. The mass rate of the injecting gas was G∗ = gj/(πρ∞ u2∞w) = 0- 0.16. It has been shown that maximum of the heat §ux toward the sphere surface can be sufficiently decreased. Numerical investigations have been carried out using the solution of the Navier-Stokes equations for axisymmetric two-dimensional (2D) viscous compressible unsteady §ows at α = 0.
Numerical Simulation of Reactive Flows in Overexpanded Supersonic Nozzle with Film Cooling
Directory of Open Access Journals (Sweden)
Mohamed Sellam
2015-01-01
Full Text Available Reignition phenomena occurring in a supersonic nozzle flow may present a crucial safety issue for rocket propulsion systems. These phenomena concern mainly rocket engines which use H2 gas (GH2 in the film cooling device, particularly when the nozzle operates under over expanded flow conditions at sea level or at low altitudes. Consequently, the induced wall thermal loads can lead to the nozzle geometry alteration, which in turn, leads to the appearance of strong side loads that may be detrimental to the rocket engine structural integrity. It is therefore necessary to understand both aerodynamic and chemical mechanisms that are at the origin of these processes. This paper is a numerical contribution which reports results from CFD analysis carried out for supersonic reactive flows in a planar nozzle cooled with GH2 film. Like the experimental observations, CFD simulations showed their ability to highlight these phenomena for the same nozzle flow conditions. Induced thermal load are also analyzed in terms of cooling efficiency and the results already give an idea on their magnitude. It was also shown that slightly increasing the film injection pressure can avoid the reignition phenomena by moving the separation shock towards the nozzle exit section.
Nonlinear unsteady supersonic flow analysis for slender bodies of revolution: Theory
Directory of Open Access Journals (Sweden)
D. E. Panayotounakos
1997-01-01
Full Text Available We construct analytical solutions for the problem of nonlinear supersonic flow past slender bodies of revolution due to small amplitude oscillations. The method employed is based on the splitting of the time dependent small perturbation equation to a nonlinear time independent partial differential equation (P.D.E. concerning the steady flow, and a linear time dependent one, concerning the unsteady flow. Solutions in the form of three parameters family of surfaces for the first equation are constructed, while solutions including one arbitrary function for the second equation are extracted. As an application the evaluation of the small perturbation velocity resultants for a flow past a right circular cone is obtained making use of convenient boundary and initial conditions in accordance with the physical problem.
High angle of attack aerodynamics subsonic, transonic, and supersonic flows
Rom, Josef
1992-01-01
The aerodynamics of aircraft at high angles of attack is a subject which is being pursued diligently, because the modern agile fighter aircraft and many of the current generation of missiles must perform well at very high incidence, near and beyond stall. However, a comprehensive presentation of the methods and results applicable to the studies of the complex aerodynamics at high angle of attack has not been covered in monographs or textbooks. This book is not the usual textbook in that it goes beyond just presenting the basic theoretical and experimental know-how, since it contains reference material to practical calculation methods and technical and experimental results which can be useful to the practicing aerospace engineers and scientists. It can certainly be used as a text and reference book for graduate courses on subjects related to high angles of attack aerodynamics and for topics related to three-dimensional separation in viscous flow courses. In addition, the book is addressed to the aerodynamicist...
Dense core formation in supersonic turbulent converging flows
Gong, Hao
2011-01-01
We use numerical hydrodynamic simulations to investigate prestellar core formation in the dynamic environment of giant molecular clouds, focusing on planar post-shock layers produced by colliding turbulent flows. A key goal is to test how core evolution and properties depend on the velocity dispersion in the parent cloud; our simulation suite consists of 180 models with inflow Mach numbers Ma=v/c_s=1.1-9. At all Mach numbers, our models show that turbulence and self-gravity collect gas within post-shock regions into filaments at the same time as overdense areas within these filaments condense into cores. This morphology, together with the subsonic velocities we find inside cores, is similar to observations. We extend previous results showing that core collapse develops in an ``outside-in'' manner, with density and velocity approaching the Larson-Penston asymptotic solution. The time for the first core to collapse varies as 1/sqrt(v), consistent with analytic estimates. Core building takes 10 times as long as ...
CFD modelling of condensation process of water vapor in supersonic flows
DEFF Research Database (Denmark)
Wen, Chuang; Walther, Jens Honore; Yan, Yuying;
2016-01-01
-liquid phase change both in space and in time. The spontaneous condensation of water vapor will not appear immediately when the steam reaches the saturation state. Instead, it occurs further downstream the nozzle throat, where the steam is in the state of supersaturation.......The condensation phenomenon of vapor plays an important role in various industries, such as the steam flow in turbines and refrigeration system. A mathematical model is developed to predict the spontaneous condensing phenomenon in the supersonic conditions using the nucleation and droplet growth...
Computing 3-D steady supersonic flow via a new Lagrangian approach
Loh, C. Y.; Liou, M.-S.
1993-01-01
The new Lagrangian method introduced by Loh and Hui (1990) is extended for 3-D steady supersonic flow computation. Details of the conservation form, the implementation of the local Riemann solver, and the Godunov and the high resolution TVD schemes are presented. The new approach is robust yet accurate, capable of handling complicated geometry and reactions between discontinuous waves. It keeps all the advantages claimed in the 2-D method of Loh and Hui, e.g., crisp resolution for a slip surface (contact discontinuity) and automatic grid generation along the stream.
Supersonic acoustic intensity with statistically optimized near-field acoustic holography
DEFF Research Database (Denmark)
Fernandez Grande, Efren; Jacobsen, Finn
2011-01-01
and circulating energy in the near-field of the source. This quantity is of concern because it makes it possible to identify the regions of a source that contribute to the far field radiation, which is often the ultimate concern in noise control. Therefore, this is a very useful analysis tool complementary...... to the information provided by the near-field acoustic holography technique. This study proposes a version of the supersonic acoustic intensity applied to statistically optimized near-field acoustic holography (SONAH). The theory, numerical results and an experimental study are presented. The possibility of using...
Energy Technology Data Exchange (ETDEWEB)
Guymer, T. M., E-mail: Thomas.Guymer@awe.co.uk; Moore, A. S.; Morton, J.; Allan, S.; Bazin, N.; Benstead, J.; Bentley, C.; Comley, A. J.; Garbett, W.; Reed, L.; Stevenson, R. M. [AWE Plc., Aldermaston, Reading RG7 4PR (United Kingdom); Kline, J. L.; Cowan, J.; Flippo, K.; Hamilton, C.; Lanier, N. E.; Mussack, K.; Obrey, K.; Schmidt, D. W.; Taccetti, J. M. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); and others
2015-04-15
A well diagnosed campaign of supersonic, diffusive radiation flow experiments has been fielded on the National Ignition Facility. These experiments have used the accurate measurements of delivered laser energy and foam density to enable an investigation into SESAME's tabulated equation-of-state values and CASSANDRA's predicted opacity values for the low-density C{sub 8}H{sub 7}Cl foam used throughout the campaign. We report that the results from initial simulations under-predicted the arrival time of the radiation wave through the foam by ≈22%. A simulation study was conducted that artificially scaled the equation-of-state and opacity with the intended aim of quantifying the systematic offsets in both CASSANDRA and SESAME. Two separate hypotheses which describe these errors have been tested using the entire ensemble of data, with one being supported by these data.
Off-Body Boundary-Layer Measurement Techniques Development for Supersonic Low-Disturbance Flows
Owens, Lewis R.; Kegerise, Michael A.; Wilkinson, Stephen P.
2011-01-01
Investigations were performed to develop accurate boundary-layer measurement techniques in a Mach 3.5 laminar boundary layer on a 7 half-angle cone at 0 angle of attack. A discussion of the measurement challenges is presented as well as how each was addressed. A computational study was performed to minimize the probe aerodynamic interference effects resulting in improved pitot and hot-wire probe designs. Probe calibration and positioning processes were also developed with the goal of reducing the measurement uncertainties from 10% levels to less than 5% levels. Efforts were made to define the experimental boundary conditions for the cone flow so comparisons could be made with a set of companion computational simulations. The development status of the mean and dynamic boundary-layer flow measurements for a nominally sharp cone in a low-disturbance supersonic flow is presented.
Flutter and thermal buckling control for composite laminated panels in supersonic flow
Li, Feng-Ming; Song, Zhi-Guang
2013-10-01
Aerothermoelastic analysis for composite laminated panels in supersonic flow is carried out. The flutter and thermal buckling control for the panels are also investigated. In the modeling for the equation of motion, the influences of in-plane thermal load on the transverse bending deflection are taken into account, and the unsteady aerodynamic pressure in supersonic flow is evaluated by the linear piston theory. The governing equation of the structural system is developed applying the Hamilton's principle. In order to study the influences of aerodynamic pressure on the vibration mode shape of the panel, both the assumed mode method (AMM) and the finite element method (FEM) are used to derive the equation of motion. The proportional feedback control method and the linear quadratic regulator (LQR) are used to design the controller. The aeroelastic stability of the structural system is analyzed using the frequency-domain method. The effects of ply angle of the laminated panel on the critical flutter aerodynamic pressure and the critical buckling temperature change are researched. The flutter and thermal buckling control effects using the proportional feedback control and the LQR are compared. An effective method which can suppress the flutter and thermal buckling simultaneously is proposed.
Laser driven supersonic flow over a compressible foam surface on the Nike lasera)
Harding, E. C.; Drake, R. P.; Aglitskiy, Y.; Plewa, T.; Velikovich, A. L.; Gillespie, R. S.; Weaver, J. L.; Visco, A.; Grosskopf, M. J.; Ditmar, J. R.
2010-05-01
A laser driven millimeter-scale target was used to generate a supersonic shear layer in an attempt to create a Kelvin-Helmholtz (KH) unstable interface in a high-energy-density (HED) plasma. The KH instability is a fundamental fluid instability that remains unexplored in HED plasmas, which are relevant to the inertial confinement fusion and astrophysical environments. In the experiment presented here the Nike laser [S. P. Obenschain et al., Phys. Plasmas 3, 2098 (1996)] was used to create and drive Al plasma over a rippled foam surface. In response to the supersonic Al flow (Mach=2.6±1.1) shocks should form in the Al flow near the perturbations. The experimental data were used to infer the existence and location of these shocks. In addition, the interface perturbations show growth that has possible contributions from both KH and Richtmyer-Meshkov instabilities. Since compressible shear layers exhibit smaller growth, it is important to use the KH growth rate derived from the compressible dispersion relation.
Energy Technology Data Exchange (ETDEWEB)
Abbett, M. J.; Fort, R.
1968-09-01
The three-dimensional ideal gas flow in the shock layer of a blunted supersonic cone at an angle of attack is calculated using two asymptotic solutions. The first solution calculates the steady state flow in the subsonic nose region by obtaining a time-dependent solution of the hyperbolic equations using numerical techniques. Internal, nonboundary points are calculated using a Lax-Wendroff numerical type technique. Boundary points, shock and body surface, are computed using a time-dependent method of characteristics. When a steady state solution is reached the flow properties on a surface of constant {theta}, (where the Mach number is everywhere > 1) are used for initial data for the afterbody solution. The afterbody solution, using polar coordinates (r, {theta}, {phi}) assumes at r{sub 0} an arbitrary set of initial conditions provided by the nose region solution and computes the downstream flow as a function of {theta}, {phi}, and r until an asymptotic state independent of r develops. The interior mesh points are again calculated using a Lax- Wendroff type technique and the boundary points by a method of characteristics. This report covers the coupling of the time-dependent and radius (r) dependent solutions. Instructions are given for the operation of the resulting Fortran code. The type of input data required is detailed and sample output is provided. Output data is given in two sets of coordinates. One is wind orientated; the other set is given in body orientated coordinates; The analytical transformation from one coordinate system to the other is given.
Development of a background-oriented schlieren technique with telecentric lenses for supersonic flow
Cozzi, F.; Göttlich, E.; Angelucci, L.; Dossena, V.; Guardone, A.
2017-01-01
Background oriented schlieren (BOS) is a quantitative optical technique which exploits light deflection occurring in non-homogeneous transparent media. It allows to indirectly measure the density gradients by analysing the apparent displacement of features of a background pattern when imaged through the investigated flow. Thanks to its simple set-up and to the consolidated data reduction technique based on cross-correlation algorithms the BOS technique has progressively attracted the interest of the researchers. In this work a BOS system using a telecentric lens system has been set up in order to improve measurement accuracy and to avoid 3D effects arising from using conventional entocentric lenses. The design of the telecentric lens system is reported along with an analysis of its performance in term of spatial resolution. Some preliminary tests on a supersonic flows are also reported.
A new Lagrangian method for three-dimensional steady supersonic flows
Loh, Ching-Yuen; Liou, Meng-Sing
1993-01-01
In this report, the new Lagrangian method introduced by Loh and Hui is extended for three-dimensional, steady supersonic flow computation. The derivation of the conservation form and the solution of the local Riemann solver using the Godunov and the high-resolution TVD (total variation diminished) scheme is presented. This new approach is accurate and robust, capable of handling complicated geometry and interactions between discontinuous waves. Test problems show that the extended Lagrangian method retains all the advantages of the two-dimensional method (e.g., crisp resolution of a slip-surface (contact discontinuity) and automatic grid generation). In this report, we also suggest a novel three dimensional Riemann problem in which interesting and intricate flow features are present.
Effect of Mach number on the efficiency of microwave energy deposition in supersonic flow
Lashkov, V. A.; Karpenko, A. G.; Khoronzhuk, R. S.; Mashek, I. Ch.
2016-05-01
The article is devoted to experimental and numerical studies of the efficiency of microwave energy deposition into a supersonic flow around the blunt cylinder at different Mach numbers. Identical conditions for energy deposition have been kept in the experiments, thus allowing to evaluate the pure effect of varying Mach number on the pressure drop. Euler equations are solved numerically to model the corresponding unsteady flow compressed gas. The results of numerical simulations are compared to the data obtained from the physical experiments. It is shown that the momentum, which the body receives during interaction of the gas domain modified by microwave discharge with a shock layer before the body, increases almost linearly with rising of Mach number and the efficiency of energy deposition also rises.
The influence of boundary layers on supersonic inlet flow unstart induced by mass injection
Do, Hyungrok; Im, Seong-Kyun; Mungal, M. Godfrey; Cappelli, Mark A.
2011-09-01
A transverse jet is injected into a supersonic model inlet flow to induce unstart. Planar laser Rayleigh scattering from condensed CO2 particles is used to visualize flow dynamics during the unstart process, while in some cases, wall pressure traces are simultaneously recorded. Studies conducted over a range of inlet configurations reveal that the presence of turbulent wall boundary layers strongly affect the unstart dynamics. It is found that relatively thick turbulent boundary layers in asymmetric wall boundary layer conditions prompt the formation of unstart shocks; in symmetric boundary conditions lead to the propagation of pseudo-shocks; and in both cases facilitate fast inlet unstart, when compared with thin, laminar boundary layers. Incident shockwaves and associated reflections are found to affect the speed of pressure disturbances. These disturbances, which induce boundary layer separation, are found to precede the formation of unstart shocks. The results confirm the importance of and need to better understand shock-boundary layer interactions in inlet unstart dynamics.
Effect of Nonequilibrium Condensation of Moist Air on Transonic Flow Fields
Institute of Scientific and Technical Information of China (English)
KatsumiShimamoto
2000-01-01
When condensation occurs in a supersonic flow field,the flow in affected by the latent heat released.In the present study,a condensing flow was produced by an expansion of moist air in nozzle with circular bump odels and shock waves occurred in the supersonic parts of the flow fields.The expereimental investigations were carried out to show the effects of initial conditions in the reservoir and nozzle geometries on the shock wave characteristics and the turbulences in the flow fields.Furthermore,in order to clarify the effect of condensation on the flow fields with shock waves,navier-Stokes equations were solved numerically using a 3rd-order MUSCL type TVD finite-difference scheme with a second order fractional step for time integraton,As a result,the effect of condensation on the aspect of flow field has been clarified.
Directory of Open Access Journals (Sweden)
S.B.H Shah
2012-01-01
Full Text Available A numerical study is performed for a sonic jet issuing from a blunted cone to provide possible directional control in supersonic crossflow by solving the unsteady Reynolds-averaged Navier-Stokes (RANS equations with the twoequation k −ω turbulence model. Results are presented in the form of static aerodynamic coefficients, computed at a free stream Mach number 4.0, with varying pressure ratios, incidence angle and keeping zero yaw and roll angles. The morphology and flow structure for the jet exhausting in crossflow at various pressure ratios is described in detail. The Flight control of the projectile can be accomplished by taking advantage of a complex shock-boundary layer interaction produced by jet interacting with the oncoming crossflow by altering pressure distribution in vicinity of the jet, a net increase in the net force can be utilized for maneuvering of vehicle and possible flight control. Computed static aerodynamic coefficients and pressure distribution using CFD analyses is with an accuracy of ± 5% in the supersonic range.
Numerical Investigation of Vortex Generator Flow Control for External-Compression Supersonic Inlets
Baydar, Ezgihan
Vortex generators (VGs) within external-compression supersonic inlets for Mach 1.6 were investigated to determine their ability to increase total pressure recovery and reduce total pressure distortion. Ramp and vane-type VGs were studied. The geometric factors of interest included height, length, spacing, angle-of-incidence, and positions upstream and downstream of the inlet terminal shock. The flow through the inlet was simulated numerically through the solution of the steady-state, Reynolds-averaged Navier-Stokes equations on multi-block, structured grids using the Wind-US flow solver. The inlet performance was characterized by the inlet total pressure recovery and the radial and circumferential total pressure distortion indices at the engine face. Previous research of downstream VGs in the low-boom supersonic inlet demonstrated improvement in radial distortion up to 24% while my work on external-compression supersonic inlets improved radial distortion up to 86%, which is significant. The design of experiments and statistical analysis methods were applied to quantify the effect of the geometric factors of VGs and search for optimal VG arrays. From the analysis, VG angle-of-incidence and VG height were the most influential factors in increasing total pressure recovery and reducing distortion. The study on the two-dimensional external-compression inlet determined which passive flow control devices, such as counter-rotating vanes or ramps, reduce high distortion levels and improve the health of the boundary layer, relative to the baseline. Downstream vanes demonstrate up to 21% improvement in boundary layer health and 86% improvement in radial distortion. Upstream vanes demonstrated up to 3% improvement in boundary layer health and 9% improvement in radial distortion. Ramps showed no improvement in boundary layer health and radial distortion. Micro-VGs were preferred for their reduced viscous drag and improvement in total pressure recovery at the AIP. Although
Energy Technology Data Exchange (ETDEWEB)
Sanna, G.; Tomassetti, G. [L`Aquila Univ. (Italy). Dipt. di Fisica
1998-02-01
The discontinuities in the flow fields (both tangential and shocks) are considered and the equations for the quantities conserved across them are written. The post-shock flow variables are expressed by the Mach number of the incident supersonic flow and its deflection angle operated by rigid wall. Normal and oblique shocks are considered and graphs and polar diagrams are introduced. Then the reflections of a shock wave operated by a rigid wall and by the boundary between a jet and a stagnating gas are analyzed. Finally, the interactions between two distinct shock waves are considered. [Italiano] Vengono considerate le discontinuita` (tangenziali e shocks) nei campi di flusso e sono scritte le equazioni per le quantita` che si conservano attraverso di esse. Le variabili del flusso oltre lo shock sono espresse in funzione del numero di Mach del flusso supersonico incidente e dell`angolo di deflessione di questo operato da una parete rigida. I casi di shock normale, obliquo e distaccato sono considerati e sono introdotti grafici vari e rappresentazioni polari. Sono quindi considerate le riflessioni di un fronte di shock da una parete rigida e dalla frontiera tra un gas in moto ed uno stagnante. Sono infine considerate le diverse interazioni tra due shock distinti.
Modernized scheme of thermal ignition and flame stabilization at flow supersonic speeds in channel
Goldfeld, M. A.; Nalivaychenko, D. G.; Starov, A. V.; Timofeev, K. Yu.
2016-10-01
For providing fuel ignition at the high supersonic flow velocity original device was developed. Main element of this device in the form of wall slotted channel has to provide the high flow temperature in the area of mixture. Numerical simulation has been performed based on solving the full averaged Navier-Stokes equations, supplemented k-ɛ turbulence model. The experiments were carried out in the hotshot wind tunnel IT-302M at the mode of the attached pipe. The flow parameters at the model entrance were following: M = 2 - 5.8, p0 = 12 - 390bar, T0 = 1170 - 2930K at equivalence ratio of hydrogen from 0.6 to 1.1. Self-ignition of the hydrogen in the slotted channel has occurred at total flow temperature of 2250K at the combustor entrance. The combustion process is extended to the entire channel of the combustor. When the facility worked with decreasing parameters of the flow, combustion continued until drop of the static temperature of about 230K at the entrance of the combustor.
Simulation of Supersonic Flow in an Ejector Diffuser Using the JPVM
Directory of Open Access Journals (Sweden)
Carlos Couder-Castañeda
2009-01-01
creating and holding a vacuum system. The goal of this job is to develop an object oriented parallel numerical code to investigate the unsteady behavior of the supersonic flow in the ejector diffuser to have an efficient computational tool that allows modeling different diffuser designs. The first step is the construction of a proper transformation of the solution space to generate a computational regular space to apply an explicit scheme. The second step, consists in developing the numerical code with an-object-oriented parallel methodology. Finally, the results obtained about the flux are satisfactory compared with the physical sensors, and the parallel paradigm used not only reduces the computational time but also shows a better maintainability, reusability, and extensibility accuracy of the code.
Pdf prediction of supersonic hydrogen flames
Eifler, P.; Kollmann, W.
1993-01-01
A hybrid method for the prediction of supersonic turbulent flows with combustion is developed consisting of a second order closure for the velocity field and a multi-scalar pdf method for the local thermodynamic state. It is shown that for non-premixed flames and chemical equilibrium mixture fraction, the logarithm of the (dimensionless) density, internal energy per unit mass and the divergence of the velocity have several advantages over other sets of scalars. The closure model is applied to a supersonic non-premixed flame burning hydrogen with air supplied by a supersonic coflow and the results are compared with a limited set of experimental data.
Vadyak, J.; Hoffman, J. D.; Bishop, A. R.
1978-01-01
The calculation procedure is based on the method of characteristics for steady three-dimensional flow. The bow shock wave and the internal shock wave system were computed using a discrete shock wave fitting procedure. The general structure of the computer program is discussed, and a brief description of each subroutine is given. All program input parameters are defined, and a brief discussion on interpretation of the output is provided. A number of sample cases, complete with data deck listings, are presented.
Supersonic flow about cone eith ijection of gas through its surface described by power law
Antonov, A. M.; Zakrevskiy, V. A.
1986-01-01
The influence of intensive mass transfer on the supersonic flow of gas about a cone of finite length is investigated. The mathematical model describing the interaction of the primary flow and the transverse flow formed by injection is the boundary problem for a system of equations presented with boundary conditions on the cone and on the contact discontinuity. It is found that the contact surface is nonrectilinear when the injected gas is described by a power law and that the thickness of the layer coming in contact with the cone increases as the intensity of the injection becomes higher. The distribution of the pressure coefficient along a finite cone is calculated as a function of the parameter(s) associated with the injection flow rate, and the Mach number of the oncoming stream. It is found that the pressure coefficient drops off along the generatrix of a cone for all velocities of injection and oncoming stream when the injection is distributed. As the injection intensity increases, the pressure coefficient on the surface increases.
Three-dimensional supersonic flow around double compression ramp with finite span
Lee, H. S.; Lee, J. H.; Park, G.; Park, S. H.; Byun, Y. H.
2017-01-01
Three-dimensional flows of Mach number 3 around a double-compression ramp with finite span have been investigated numerically. Shadowgraph visualisation images obtained in a supersonic wind tunnel are used for comparison. A three-dimensional Reynolds-averaged Navier-Stokes solver was used to obtain steady numerical solutions. Two-dimensional numerical results are also compared. Four different cases were studied: two different second ramp angles of 30° and 45° in configurations with and without sidewalls, respectively. Results showed that there is a leakage of mass and momentum fluxes heading outwards in the spanwise direction for three-dimensional cases without sidewalls. The leakage changed the flow characteristics of the shock-induced boundary layer and resulted in the discrepancy between the experimental data and two-dimensional numerical results. It is found that suppressing the flow leakage by attaching the sidewalls enhances the two-dimensionality of the experimental data for the double-compression ramp flow.
Sarimurat, Mehmet Nasir
suction at a given location that is required to hold the shock at a given area ratio as the back pressure is varied. The formulation is based on classical inviscid- and compressible-flow theories for normal shock waves and flow transpiration in converging/diverging flow passages. The theory shows that, for the case where there is a shock wave inside a diverging section with supersonic inlet, as the back pressure is increased, the shock can be held stationary if either flow suction is applied behind the shock or flow blowing is applied in front of the shock. For the case of blowing, the amount of flow blowing required to fix the shock location decreases with both increasing total pressure and total temperature of the blown flow. Applications of this quasi-1D theory are demonstrated for 2D supersonic nozzles and supersonic sections of NASA Rotor-37 and NASA UEET R2 rotors taken at the span station 10% from tip. Excellent agreement between the theory and CFD is observed. For the NASA Rotor-37 and NASA UEET R2 rotor cascade sections studied, if suction behind the shock is applied to fix the shock location inside the passage as the back pressure is increased 3-4% from the design point back pressure, the amount of required flow removal is on the order of 3.5% of the main flow. For the same case if flow blowing is applied in front of the shock, the amount of the flow that is needed to be blown to fix the shock location is a function of the stagnation conditions of the blown flow. When the total pressure of the blown flow is taken to be 1.5 times that of the local flow and the total temperature to be 1.3 times that of the local flow the amount of the flow needed to be blown is on the order of 1% of the main flow.
AN EXPERIMENTAL EVALUATION OF TRANSIENT FLOWS IN A SUPERSONIC GUN TUNNEL
Directory of Open Access Journals (Sweden)
Al Al-Falahi Amir
2012-12-01
Full Text Available An experimental study has been performed to investigate transient flows in a supersonic gun tunnel. The experimental work was performed using a short duration high speed flow test facility at the Universiti Tenaga Nasional (UNITEN. A physical description of the facility along with the principles of operation is provided. The pressure history of the flow process was captured using a fast response pressure transducer at three stations located at the end of the facility. Experimental measurements of shock strength, peak pressure and shock wave speed change of Air-Air as a driver/driven gas are then presented and compared with a further set of experimental measurements using the gas combination of Helium-Air. The shock wave speed was measured experimentally with a two pressure transducers technique. The results showed that the existence of the piston has a very significant influence on both the moving shock wave and peak pressure value achieved. The results provide a very good estimate for the above-mentioned parameters obtained after diaphragm rupture, and also provide a better understanding of the parameters that affect the performance of the facility.
Musial, Norman T.; Ward, James J.
1959-01-01
An investigation of the thrust characteristics and internal pressure distributions of two convergent-divergent 15 deg. half-angle exhaust nozzles having area ratios of 6 and 9 was made in the NASA Lewis 10- by 10-foot supersonic wind tunnel. The tests were conducted at free-stream Mach numbers of 0, 2.0, 2.5, 3.0, and 3.5 over a range of nozzle pressure ratios from 3 to 105. Attempts were made to induce separation of the overexpanded nozzle flow using secondary airflow and a wedge. Nozzle flow expansion under all free-stream conditions followed one-dimensional theory until separation from the nozzle wall occurred. In quiescent air the nozzle flow expanded to a pressure approximately one-half the base pressure before separation. When the nozzles were tested with supersonic external flow at the same effective pressure ratios, the nozzle flow separated with negligible expansion below the base pressure. The effect of a supersonic stream on internal nozzle flow separation characteristics was well defined only at a free-stream Mach number of 2.0. Thrust data at supersonic free-stream conditions indicate that only a small percentage of the ideal nozzle thrust will be available at nozzle pressure ratios below design. However, the overexpanded primary nozzle thrust loss was decreased by injecting large quantities of secondary air near the nozzle exit. In most cases no net gain in thrust resulted from secondary-air injection when the nozzle thrust was compared with the ideal thrust of both the primary and secondary airflows.
Institute of Scientific and Technical Information of China (English)
袁生学
1999-01-01
Some basic concepts and features of supersonic combustion are explained from the view point of macroscopic aerodynamics. Two kinds of interpretations of supersonic combustion are proposed. The difference between supersonic combustion and subsonic combustion is discussed, and the mechanism of supersonic combustion propagation and the limitation of heat addition in supersonic flow are pointed out. The results of the calculation of deflagration in supersonic flow show that the entropy increment and the total pressure loss of the combustion products may decrease with the increase of combustion velocity. It is also demonstrated that the oblique detonation wave angle may not be controlled by the wedge angle under weak underdriven solution conditions and be determined only by combustion velocity. Therefore, the weak underdriven solution may become self-sustaining oblique detonation waves with a constant wave angle.
Wilsonian flows and background fields
Litim, Daniel F; Litim, Daniel F.; Pawlowski, Jan M.
2002-01-01
We study exact renormalisation group flows for background field dependent regularisations. It is shown that proper-time flows are approximations to exact background field flows for a specific class of regulators. We clarify the role of the implicit scale dependence introduced by the background field. Its impact on the flow is evaluated numerically for scalar theories at criticality for different approximations and regularisations. Implications for gauge theories are discussed.
Energy Technology Data Exchange (ETDEWEB)
Huerst, C.; Schulz, A.; Wittig, S. [Univ. Karlsruhe (Germany). Lehrstuhl und Inst. fuer Thermische Stroemungsmaschinen
1995-04-01
The present study compares measured and computed heat transfer coefficients for high-speed boundary layer nozzle flows under engine Reynolds number conditions (U{sub {infinity}} = 230 {divided_by} 880 m/s, Re* = 0.37 {divided_by} 1.07 {times} 10{sup 6}). Experimental data have been obtained by heat transfer measurements in a two-dimensional, nonsymmetric, convergent-divergent nozzle. The nozzle wall is convectively cooled using water passages. The coolant heat transfer data and nozzle surface temperatures are used as boundary conditions for a three-dimensional finite-element code, which is employed to calculate the temperature distribution inside the nozzle wall. Heat transfer coefficients along the hot gas nozzle wall are derived from the temperature gradients normal to the surface. The results are compared with numerical heat transfer predictions using the low-Reynolds-number {kappa}-{epsilon} turbulence model by Lam and Bremhorst. Influence of compressibility in the transport equations for the turbulence properties is taken into account by using the local averaged density. The results confirm that this simplification leads to good results for transonic and low supersonic flows.
Effect of Off-Body Laser Discharge on Drag Reduction of Hemisphere Cylinder in Supersonic Flow
Kianvashrad, Nadia; Knight, Doyle; Wilkinson, Stephen P.; Chou, Amanda; Horne, Robert A.; Herring, Gregory C.; Beeler, George B.; Jangda, Moazzam
2017-01-01
The interaction of an off-body laser discharge with a hemisphere cylinder in supersonic flow is investigated. The objectives are 1) experimental determination of the drag reduction and energetic efficiency of the laser discharge, and 2) assessment of the capability for accurate simulation of the interaction. The combined computational and experimental study comprises two phases. In the first phase, laser discharge in quiescent air was examined. The temporal behavior of the shock wave formed by the laser discharge was compared between experiment and simulation and good agreement is observed. In the second phase, the interaction of the laser discharge with a hemisphere cylinder was investigated numerically. Details of the pressure drag reduction and the physics of the interaction of the heated region with the bow shock are included. The drag reduction due to this interaction persisted for about five characteristic times where one characteristic time represents the time for the flow to move a distance equal to the hemisphere radius. The energetic efficiency of laser discharge for the case with 50 mJ energy absorbed by the gas is calculated as 3.22.
Quantified infrared imaging of ignition and combustion in a supersonic flow
Ombrello, Timothy; Blunck, David L.; Resor, Michael
2016-09-01
The utility of quantified infrared radiation imaging was evaluated through interrogating ignition and burning processes within a cavity-based flameholder in supersonic flows. Two ignition techniques, spark discharge and pulse detonation, along with quasi-steady cavity burning were used to assess the sensitivities of measurements of radiation intensities in the infrared. The shedding of ignition kernels from the spark discharge was imaged, showing that sufficient signal-to-noise ratios can be achieved even with weak radiation emission levels. The ignition events using a pulse detonator were captured with time-resolved measurements of the plume evolution, including the barrel shock, Mach disk, and shock diamonds. Radiation emissions from subsequent firings of the pulse detonator increased, indicating that heat loss to the tube walls occurred in the early pulses. Imaging of the quasi-steady burning within the cavity demonstrated that the highest burning flux (visible broadband chemiluminescence) and radiation from hydrocarbons (3.4 µm) do not coincide with each other for the fueling strategy used. Numerical simulations provided insight into the species distributions that caused the infrared emissions. Overall, infrared radiation measurements have been shown to be feasible through combustor windows in the harsh combustion environments that were interrogated, and offer a new avenue for rapid and quantitative measurements of reactive flow.
Impact of surface proximity on flow and acoustics of a rectangular supersonic jet
Gutmark, Ephraim; Baier, Florian; Mora, Pablo; Kailsanath, Kailas; Viswanath, Kamal; Johnson, Ryan
2016-11-01
Advances in jet technology have pushed towards faster aircraft, leading to more streamlined designs and configurations, pushing engines closer to the aircraft frame. This creates additional noise sources stemming from interactions between the jet flow and surfaces on the aircraft body, and interaction between the jet and the ground during takeoff and landing. The paper studies the impact of the presence of a flat plate on the flow structures and acoustics in an M =1.5 (NPR =3.67) supersonic jet exhausting from a rectangular C-D nozzle. Comparisons are drawn between baseline cases without a plate and varying nozzle-plate distance at NPRs from 2.5 to 4.5, and temperature ratios of up to 3.0. At the shielded side and sideline of the plate noise is mitigated only when the plate is at the nozzle lip (h =0). Low frequency mixing noise is increased in the downstream direction only for h =0. Screech tones that exist only for low NTR are fully suppressed by the plate at h =0. However, for h>0 the reflection enhances screech at both reflected side and sideline. Low frequency mixing noise is enhanced by the plate at the reflected side at all plate distances, while broad band shock associated noise is reduced only at the sideline for h =0. Increased temperature mitigates the screech tones across all test conditions. The results are compared to a circular nozzle of equivalent diameter with an adjacent plate.
Barnett, Mark
This investigation is concerned with calculating strong viscous-inviscid interactions in two-dimensional laminar supersonic flows with and without separation. The equations solved are the so-called parabolized Navier-Stokes equations. The streamwise pressure gradient term is written as a combination of a forward and a backward difference to provide a path for upstream propogation of information. Global iteration is employed to repeatedly update the solution from an initial guess until convergence is achieved. Interacting boundary layer theory is discussed in order to provide some essential background information for the development of the present calculation technique. The numerical scheme used is an alternating direction explicit (ADE) procedure which is adapted from the Saul'yev method. This technique is chosen as an alternative to the more difficult to program multigrid strategy used by other investigators and the slower converging Gauss-Seidel method. Separated flows are computed using the ADE method. Only small or moderate separation bubbles are considered. This restriction permits simple approximations to the convective terms in reversed flow regions without introducing severe error since the reversed flow velocities are small. Results are presented for a number of geometries including compression ramps and humps on flat plates with separation. The present results are compared with those obtained by other investigators using the full Navier-Stokes equations and interacting boundary layer theory. Comparisons were found to be qualitatively good. The quantitative comparisons varied, however mesh refinement studies indicated that the parabolized Navier-Stokes solutions tended towards second-order accurate full Navier-Stokes solutions as well as interacting boundary layer solutions for which mesh refinement studies were also executed.
Supersonic Mass Flux Measurements via Tunable Diode Laser Absorption and Non-Uniform Flow Modeling
Chang, Leyen S.; Strand, Christopher L.; Jeffries, Jay B.; Hanson, Ronald K.; Diskin, Glenn S.; Gaffney, Richard L.; Capriotti, Diego P.
2011-01-01
Measurements of mass flux are obtained in a vitiated supersonic ground test facility using a sensor based on line-of-sight (LOS) diode laser absorption of water vapor. Mass flux is determined from the product of measured velocity and density. The relative Doppler shift of an absorption transition for beams directed upstream and downstream in the flow is used to measure velocity. Temperature is determined from the ratio of absorption signals of two transitions (lambda(sub 1)=1349 nm and lambda(sub 2)=1341.5 nm) and is coupled with a facility pressure measurement to obtain density. The sensor exploits wavelength-modulation spectroscopy with second-harmonic detection (WMS-2f) for large signal-to-noise ratios and normalization with the 1f signal for rejection of non-absorption related transmission fluctuations. The sensor line-of-sight is translated both vertically and horizontally across the test section for spatially-resolved measurements. Time-resolved measurements of mass flux are used to assess the stability of flow conditions produced by the facility. Measurements of mass flux are within 1.5% of the value obtained using a facility predictive code. The distortion of the WMS lineshape caused by boundary layers along the laser line-of-sight is examined and the subsequent effect on the measured velocity is discussed. A method for correcting measured velocities for flow non-uniformities is introduced and application of this correction brings measured velocities within 4 m/s of the predicted value in a 1630 m/s flow.
2016-11-09
AFRL-AFOSR-VA-TR-2016-0357 (DURIP 10) HIGH-SPEED INTENSIFIED IMAGING SYSTEM FOR STUDIES OF MIXING AND COMBUSTION IN SUPERSONIC FLOWS AND HYDROCARBON...COVERED (From - To) 03 Sep 2010 to 29 Sep 2011 4. TITLE AND SUBTITLE (DURIP 10) HIGH-SPEED INTENSIFIED IMAGING SYSTEM FOR STUDIES OF MIXING AND COMBUSTION ...91125 HIGH SPEED INTENSIFIED IMAGING SYSTEM FOR MIXING AND COMBUSTION IN SUPERSONIC FLOWS AND HYDROCARBON- FLAME STRUCTURE MEASUREMENTS AT
Directory of Open Access Journals (Sweden)
Chih Chiang Hong
2017-03-01
Full Text Available A model is presented for functionally-graded material (FGM, thick, circular cylindrical shells under an unsteady supersonic flow, following first-order shear deformation theory (FSDT with varied shear correction coefficients. Some interesting vibration results of the dynamics are calculated by using the generalized differential quadrature (GDQ method. The varied shear correction coefficients are usually functions of FGM total thickness, power law index, and environment temperature. Two parametric effects of the environmental temperature and FGM power law index on the thermal stress and center deflection are also presented. The novelty of the paper is that the maximum flutter value of the center deflection amplitude can be predicted and occurs at a high frequency of applied heat flux for a supersonic air flow.
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Heat transfer in a supersonic steady flow of a dilute dusty-gas past a sphere is considered at large and moderate Reynolds numbers. For the regime of inertial particle deposition on the frontal surface of the body, a parametric study of maximum increase in the particle-induced heat flux at the stagnation point is performed over a wide range of the Reynolds number, the particle inertia parameter, the ratio of the phase specific heats, and the body surface temperature.
Hemidi, Amel; Henry, François; Leclaire, Sébastien; Seynhaeve, Jean-Marie; Bartosiewicz, Yann
2009-01-01
Abstract This paper presents an original CFD analysis of the operation of a supersonic ejector. This study is based on CFD and experimental results obtained in the first part paper [1]. Results clearly demonstrates that a good predictions of the entrainment rate, even over a wide range of operating conditions, do not necessarily mean a good prediction of the local flow features. This issue is shown through the results obtained for two turbulence models, and also raises the problem ...
Supersonic shear flows in laser driven high-energy-density plasmas created by the Nike laser
Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Grosskopf, M. J.; Ditmar, J. R.; Aglitskiy, Y.; Weaver, J. L.; Velikovich, A. L.; Plewa, T.
2008-11-01
In high-energy-density (HED) plasmas the Kelvin-Helmholtz (KH) instability plays an important role in the evolution of Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) unstable interfaces, as well as material interfaces that experience the passage one or multiple oblique shocks. Despite the potentially important role of the KH instability few experiments have been carried out to explore its behavior in the high-energy-density regime. We report on the evolution of a supersonic shear flow that is generated by the release of a high velocity (>100 km/s) aluminum plasma onto a CRF foam (ρ = 0.1 g/cc) surface. In order to seed the Kelvin-Helmholtz (KH) instability various two-dimensional sinusoidal perturbations (λ = 100, 200, and 300 μm with peak-to-valley amplitudes of 10, 20, and 30 μm respectively) have been machined into the foam surface. This experiment was performed using the Nike laser at the Naval Research Laboratory.
Hypersonic Engine Leading Edge Experiments in a High Heat Flux, Supersonic Flow Environment
Gladden, Herbert J.; Melis, Matthew E.
1994-01-01
A major concern in advancing the state-of-the-art technologies for hypersonic vehicles is the development of an aeropropulsion system capable of withstanding the sustained high thermal loads expected during hypersonic flight. Three aerothermal load related concerns are the boundary layer transition from laminar to turbulent flow, articulating panel seals in high temperature environments, and strut (or cowl) leading edges with shock-on-shock interactions. A multidisciplinary approach is required to address these technical concerns. A hydrogen/oxygen rocket engine heat source has been developed at the NASA Lewis Research Center as one element in a series of facilities at national laboratories designed to experimentally evaluate the heat transfer and structural response of the strut (or cowl) leading edge. A recent experimental program conducted in this facility is discussed and related to cooling technology capability. The specific objective of the experiment discussed is to evaluate the erosion and oxidation characteristics of a coating on a cowl leading edge (or strut leading edge) in a supersonic, high heat flux environment. Heat transfer analyses of a similar leading edge concept cooled with gaseous hydrogen is included to demonstrate the complexity of the problem resulting from plastic deformation of the structures. Macro-photographic data from a coated leading edge model show progressive degradation over several thermal cycles at aerothermal conditions representative of high Mach number flight.
Aerodynamic analysis of the aerospaceplane HyPlane in supersonic rarefied flow
Zuppardi, Gennaro; Savino, Raffaele; Russo, Gennaro; Spano'Cuomo, Luca; Petrosino, Eliano
2016-06-01
HyPlane is the Italian aerospaceplane proposal targeting, at the same time, both the space tourism and point-to-point intercontinental hypersonic flights. Unlike other aerospaceplane projects, relying on boosters or mother airplanes that bring the vehicle to high altitude, HyPlane will take off and land horizontally from common runways. According to the current project, HyPlane will fly sub-orbital trajectories under high-supersonic/low-hypersonic continuum flow regimes. It can go beyond the von Karman line at 100 km altitude for a short time, then starting the descending leg of the trajectory. Its aerodynamic behavior up to 70 km have already been studied and the results published in previous works. In the present paper some aspects of the aerodynamic behavior of HyPlane have been analyzed at 80, 90 and 100 km. Computer tests, calculating the aerodynamic parameters, have been carried out by a Direct Simulation Monte Carlo code. The effects of the Knudsen, Mach and Reynolds numbers have been evaluated in clean configuration. The effects of the aerodynamic surfaces on the rolling, pitching and yawing moments, and therefore on the capability to control attitude, have been analyzed at 100 km altitude. The aerodynamic behavior has been compared also with that of another aerospaceplane at 100 km both in clean and flapped configuration.
Roberts, II, William Byron; Lawlor, Shawn P.; Breidenthal, Robert E.
2016-04-12
A supersonic compressor including a rotor to deliver a gas at supersonic conditions to a diffuser. The diffuser includes a plurality of aerodynamic ducts that have converging and diverging portions, for deceleration of gas to subsonic conditions and then for expansion of subsonic gas, to change kinetic energy of the gas to static pressure. The aerodynamic ducts include vortex generating structures for controlling boundary layer, and structures for changing the effective contraction ratio to enable starting even when the aerodynamic ducts are designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of in excess of two to one, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.
Zeroth-order flutter prediction for cantilevered plates in supersonic flow
CSIR Research Space (South Africa)
Meijer, M-C
2015-08-01
Full Text Available An aeroelastic prediction framework in MATLAB with modularity in the quasi-steady aerodynamic methodology is developed. Local piston theory (LPT) is integrated with quasi-steady methods including shock-expansion theory and the Supersonic Hypersonic...
Integrated flow field (IFF) structure
Pien, Shyhing M. (Inventor); Warshay, Marvin (Inventor)
2012-01-01
The present disclosure relates in part to a flow field structure comprising a hydrophilic part and a hydrophobic part communicably attached to each other via a connecting interface. The present disclosure further relates to electrochemical cells comprising the aforementioned flow fields.
Sabri, Farhad
Shells of revolution, particularly cylindrical and conical shells, are one of the basic structural elements in the aerospace structures. With the advent of high speed aircrafts, these shells can show dynamic instabilities when they are exposed to a supersonic flow. Therefore, aeroelastic analysis of these elements is one of the primary design criteria which aeronautical engineers are dealing with. This analysis can be done with the help of finite element method (FEM) coupled with the computational fluid dynamic (CFD) or by experimental methods but it is time consuming and very expensive. The purpose of this dissertation is to develop such a numerical tool to do aeroelastic analysis in a fast and precise way. Meanwhile during the design stage, where the different configurations, loading and boundary conditions may need to be analyzed, this numerical method can be used very easily with the high order of reliability. In this study structural modeling is a combination of linear Sanders thin shell theory and classical finite element method. Based on this hybrid finite element method, the shell displacements are found from the exact solutions of shell theory rather than approximating by polynomial function done in traditional finite element method. This leads to a precise and fast convergence. Supersonic aerodynamic modeling is done based on the piston theory and modified piston theory with the shell curvature term. The stress stiffening due to lateral pressure and axial compression are also taken into accounts. Fluid-structure interaction in the presence of inside quiescent fluid is modeled based on the potential theory. In this method, fluid is considered as a velocity potential variable at each node of the shell element where its motion is expressed in terms of nodal elastic displacements at the fluid-structure interface. This proposed hybrid finite element has capabilities to do following analysis: (i) Buckling and vibration of an empty or partially fluid filled
Institute of Scientific and Technical Information of China (English)
Masanori Tanaka; Shigeru Matsuo; Toshiaki Setoguchi; Kenji Kaneko; Heuy-Dong Kim; Shen Yu
2003-01-01
When non-equilibrium condensation occurs in a supersonic flow field, the flow is affected by the latent heat released.In the present study, in order to control the transonic flow field with shock wave, a condensing flow was produced by an expansion of moist air on a circular bump model and shock waves were occurred in the supersonic parts of the fields. Furthermore, the additional passive technique of shock / boundary layer interaction using the porous wall with a cavity underneath was adopted in this flow field. The effects of these methods on the shock wave characteristics were investigated numerically and experimentally. The result obtained showed that the total pressure loss in the flow fields might be effectively reduced by the suitable combination between non-equilibrium condensation and the position of porous wall.
Mixing in Supersonic Turbulence
Pan, Liubin
2010-01-01
In many astrophysical environments, mixing of heavy elements occurs in the presence of a supersonic turbulent velocity field. Here we carry out the first systematic numerical study of such passive scalar mixing in isothermal supersonic turbulence. Our simulations show that the ratio of the scalar mixing timescale, $\\tau_{\\rm c}$, to the flow dynamical time, $\\tau_{\\rm dyn}$ (defined as the flow driving scale divided by the rms velocity), increases with the Mach number, $M$, for $M \\lsim3$, and becomes essentially constant for $M \\gsim3.$ This trend suggests that compressible modes are less efficient in enhancing mixing than solenoidal modes. However, since the majority of kinetic energy is contained in solenoidal modes at all Mach numbers, the overall change in $\\tau_{\\rm c}/\\tau_{\\rm dyn}$ is less than 20\\% over the range $1 \\lsim M \\lsim 6$. At all Mach numbers, if pollutants are injected at around the flow driving scale, $\\tau_{\\rm c}$ is close to $\\tau_{\\rm dyn}.$ This suggests that scalar mixing is drive...
Laser transit anemometer measurements of a JANNAF nozzle base velocity flow field
Hunter, William W., Jr.; Russ, C. E., Jr.; Clemmons, J. I., Jr.
1990-01-01
Velocity flow fields of a nozzle jet exhausting into a supersonic flow were surveyed. The measurements were obtained with a laser transit anemometer (LTA) system in the time domain with a correlation instrument. The LTA data is transformed into the velocity domain to remove the error that occurs when the data is analyzed in the time domain. The final data is shown in velocity vector plots for positions upstream, downstream, and in the exhaust plane of the jet nozzle.
Jeništa, J.; Takana, H.; Nishiyama, H.; Bartlová, M.; Aubrecht, V.; Křenek, P.; Hrabovský, M.; Kavka, T.; Sember, V.; Mašláni, A.
2011-11-01
This paper presents a numerical investigation of characteristics and processes in the worldwide unique type of thermal plasma generator with combined stabilization of arc by argon flow and water vortex, the so-called hybrid-stabilized arc. The arc has been used for spraying of ceramic or metallic particles and for pyrolysis of biomass. The net emission coefficients as well as the partial characteristics methods for radiation losses from the argon-water arc are employed. Calculations for 300-600 A with 22.5-40 standard litres per minute (slm) of argon reveal transition from a transonic plasma flow for 400 A to a supersonic one for 600 A with a maximum Mach number of 1.6 near the exit nozzle of the plasma torch. A comparison with available experimental data near the exit nozzle shows very good agreement for the radial temperature profiles. Radial velocity profiles calculated 2 mm downstream of the nozzle exit show good agreement with the profiles determined from the combination of calculation and experiment (the so-called integrated approach). A recent evaluation of the Mach number from the experimental data for 500 and 600 A confirmed the existence of the supersonic flow regime.
Institute of Scientific and Technical Information of China (English)
LI Liang; SUN Xiuling; LI Guojun; FENG Zhenping
2006-01-01
The self-excited flow oscillation due to supercritical heat addition during the condensation process in wet steam turbine is an important issue. With an Eulerian/Eulerian model, the self-excited oscillation of wet steam flow in a supersonic turbine cascade is investigated. A proper inlet supercooling results in the transition from steady flow to self-excited oscillating flow in the cascade of steam turbine.The frequency dependency on the inlet supercooling is not monotonic. The flow oscillation leads to non-synchronous periodical variation of the inlet and outlet mass flow rate. The aerodynamic force on the blade varies periodically due to the self-excited flow oscillation. With the frequency lies between 18.1-80.64 Hz, the oscillating flow is apt to act with the periodical variation of the inlet supercooling due to stator rotor interaction in a syntonic pattern, and results in larger aerodynamic force on the blade. The loss in the oscillating flow increases 20.64 ％ compared with that in the steady flow.
Supersonic Injection of Aerated Liquid Jet
Choudhari, Abhijit; Sallam, Khaled
2016-11-01
A computational study of the exit flow of an aerated two-dimensional jet from an under-expanded supersonic nozzle is presented. The liquid sheet is operating within the annular flow regime and the study is motivated by the application of supersonic nozzles in air-breathing propulsion systems, e.g. scramjet engines, ramjet engines and afterburners. The simulation was conducted using VOF model and SST k- ω turbulence model. The test conditions included: jet exit of 1 mm and mass flow rate of 1.8 kg/s. The results show that air reaches transonic condition at the injector exit due to the Fanno flow effects in the injector passage. The aerated liquid jet is alternately expanded by Prandtl-Meyer expansion fan and compressed by oblique shock waves due to the difference between the back (chamber) pressure and the flow pressure. The process then repeats itself and shock (Mach) diamonds are formed at downstream of injector exit similar to those typical of exhaust plumes of propulsion system. The present results, however, indicate that the flow field of supersonic aerated liquid jet is different from supersonic gas jets due to the effects of water evaporation from the liquid sheet. The contours of the Mach number, static pressure of both cases are compared to the theory of gas dynamics.
Berglund, M.; Fedina, E.; Fureby, C.; Sabel'nikov, V.; Tegnér, J.
2009-01-01
In this study, Large Eddy Simulation (LES) is used to analyze supersonic flow, mix ing and combustion in a supersonic combustor equipped with a two-stage fuel injector strut. An explicit LES model, using a mixed subgrid model and two different tur bulence- chemistry interaction models is used in an unstructured finite volume framework. The LES model and its components, has been carefully validated in a large number of studies. The LES predictions are compared to experimental data such as the center line wall pressure distribution and OH-PLIF distributions in two cross- sections of the combustor, showing good qualitative and quantitative agreement. The LES results are furthermore used to elucidate the complex flow, mixing and combustion physics, imposed by the multi-injector, two-stage injector strut. The importance of the chemical kinetics, although weaker than anticipated, is noticeable and must be taken into account, as is the effects of the turbulence- chemistry interaction model. It is here demonstrated that a 7-step reaction scheme is sufficient to capture mixing, self-ignition and transition into turbulent combustion responsible for most of the thrust generation in a scramjet .
Institute of Scientific and Technical Information of China (English)
FANG Juan; HONG Yanji; LI Qian
2012-01-01
The interaction of laser-induced plasma and bow shock over a blunt body is inves- tigated numerically in an M∞ =6.5 supersonic flow. A ray-tracing method is used for simulating the process of laser focusing. The gas located at the focused zone is ionized and broken down and transformed into plasma. In a supersonic flow the plasma moves downstream and begins to interact with the bow shock when it approaches the surface of the blunt body. The parameters of flowfield and blunt body surface are changed due to the interaction. By analyzing phenomena occurring in the complex unsteady flowfield during the interaction in detail, we can better under- stand the change of pressure on the blunt body surface and the mechanism of drag reduction by laser energy deposition. The results show that the bow shock is changed into an oblique shock due to the interaction of the laser-induced low-density zone with the bow shock, so the wave drag of the blunt body is reduced.
Supersonic Flutter of Laminated Curved Panels
Directory of Open Access Journals (Sweden)
M. Ganapathi
1995-04-01
Full Text Available Supersonic flutter analysis of laminated composite curved panels is investigated using doubly-curved, quadrilateral, shear flexible, shell element based on field-consistency approach. The formulation includes transverse shear deformation, in-plane and rotary inertias. The aerodynamic force is evaluated using two-dimensional static aerodynamic approximation for high supersonic flow. Initially, the model developed here is verified for the flutter analysis of flat plates. Numerical results are presented for isotropic, orthotropic and laminated anisotropic curved panels. A detailed parametric study is carried out to observe the effects of aspect and thickness ratios, number of layers, lamination scheme, and boundary conditions on flutter boundary.
Tenney, Andrew; Coleman, Thomas; Berry, Matthew; Magstadt, Andy; Gogineni, Sivaram; Kiel, Barry
2015-11-01
Shock cells and large scale structures present in a three-stream non-axisymmetric jet are studied both qualitatively and quantitatively. Large Eddy Simulation is utilized first to gain an understanding of the underlying physics of the flow and direct the focus of the physical experiment. The flow in the experiment is visualized using long exposure Schlieren photography, with time resolved Schlieren photography also a possibility. Velocity derivative diagnostics are calculated from the grey-scale Schlieren images are analyzed using continuous wavelet transforms. Pressure signals are also captured in the near-field of the jet to correlate with the velocity derivative diagnostics and assist in unraveling this complex flow. We acknowledge the support of AFRL through an SBIR grant.
Wedge Shock and Nozzle Exhaust Plume Interaction in a Supersonic Jet Flow
Castner, Raymond; Zaman, Khairul; Fagan, Amy; Heath, Christopher
2014-01-01
Fundamental research for sonic boom reduction is needed to quantify the interaction of shock waves generated from the aircraft wing or tail surfaces with the nozzle exhaust plume. Aft body shock waves that interact with the exhaust plume contribute to the near-field pressure signature of a vehicle. The plume and shock interaction was studied using computational fluid dynamics and compared with experimental data from a coaxial convergent-divergent nozzle flow in an open jet facility. A simple diamond-shaped wedge was used to generate the shock in the outer flow to study its impact on the inner jet flow. Results show that the compression from the wedge deflects the nozzle plume and shocks form on the opposite plume boundary. The sonic boom pressure signature of the nozzle exhaust plume was modified by the presence of the wedge. Both the experimental results and computational predictions show changes in plume deflection.
Characterization of the three-dimensional supersonic flow for the MHD generator
Institute of Scientific and Technical Information of China (English)
LU HaoYu; LEE ChunHian; DONG HaiTao
2009-01-01
A numerical procedure based on a five-wave MHD model associated with non-ideal, low magnetic Reynolds number MHD flows was developed in the present study for analyzing the flow fields in the MHD generator of a MHD bypass scramjet. The numerical procedure is composed of an entropy condi-tioned scheme for solving the non-homogeneous Navier-Stokes equations, in conjunction with an SOR method for solving the elliptic equation governing the electrical potential. It was found that a separation would take place near the downstream edge of the second electrode, where the local adverse pressure gradient is large, and the core of the flow field is characterized as a 2-D flow due to the Hartmann ef-fects along the direction of the magnetic field. The electric current lines would be increasingly distorted as the magnetic interactive parameter increases, and even induce an eddy current. Induced eddy cur-rent was also found in the different cross-sections along the axial direction, all of these would definitely deteriorate the performance of the MHD generator. The cross-sectional M-shape velocity profile found along the axial direction between the insulating walls is responsible for the formation of the vortex flow at the corner of the insulator cross-section, which, in turn, induces the corner eddy current at the cor-ner. A numerical parametric study was also performed, and the computed performance parameters for the MHD generator suggest that, in order to enhance the performance of MHD generator, the magnetic interaction parameter should be elevated.
Characterization of the three-dimensional supersonic flow for the MHD generator
Institute of Scientific and Technical Information of China (English)
LEE; ChunHian
2009-01-01
A numerical procedure based on a five-wave MHD model associated with non-ideal,low magnetic Reynolds number MHD flows was developed in the present study for analyzing the flow fields in the MHD generator of a MHD bypass scramjet. The numerical procedure is composed of an entropy conditioned scheme for solving the non-homogeneous Navier-Stokes equations,in conjunction with an SOR method for solving the elliptic equation governing the electrical potential. It was found that a separation would take place near the downstream edge of the second electrode,where the local adverse pressure gradient is large,and the core of the flow field is characterized as a 2-D flow due to the Hartmann effects along the direction of the magnetic field. The electric current lines would be increasingly distorted as the magnetic interactive parameter increases,and even induce an eddy current. Induced eddy current was also found in the different cross-sections along the axial direction,all of these would definitely deteriorate the performance of the MHD generator. The cross-sectional M-shape velocity profile found along the axial direction between the insulating walls is responsible for the formation of the vortex flow at the corner of the insulator cross-section,which,in turn,induces the corner eddy current at the corner. A numerical parametric study was also performed,and the computed performance parameters for the MHD generator suggest that,in order to enhance the performance of MHD generator,the magnetic interaction parameter should be elevated.
Flow characteristic of in-flight particles in supersonic plasma spraying process
Wei, Pei; Wei, Zhengying; Zhao, Guangxi; Du, Jun; Bai, Y.
2016-09-01
In this paper, a computational model based on supersonic plasma spraying (SAPS) is developed to describe the plasma jet coupled with the injection of carrier gas and particles for SAPS. Based on a high-efficiency supersonic spraying gun, the 3D computational model of spraying gun was built to study the features of plasma jet and its interactions with the sprayed particles. Further the velocity and temperature of in-flight particles were measured by Spray Watch 2i, the shape of in-flight particles was observed by scanning electron microscope. Numerical results were compared with the experimental measurements and a good agreement has been achieved. The flight process of particles in plasma jet consists of three stages: accelerated stage, constant speed stage and decelerated stage. Numerical and experimental indicates that the H2 volume fraction in mixture gas of Ar + H2 should keep in the range of 23-26 %, and the distance of 100 mm is the optimal spraying distance in Supersonic atmosphere plasma spraying. Particles were melted and broken into small child particles by plasma jet and the diameters of most child particles were less than 30 μm. In general, increasing the particles impacting velocity and surface temperature can decrease the coating porosity.
Ariyasingha, Nuwandi M.; Broderick, Bernadette M.; Thompson, James O. F.; Suits, Arthur
2016-06-01
Chirped-Pulse Fourier-transform microwave spectroscopy in uniform supersonic flows (CPUF) has been applied to study the reaction of Cl atoms with propyne. The approach utilizes broad-band microwave spectroscopy to extract structural information with MHz resolution and near universal detection, in conjunction with a Laval flow system, which offers thermalized conditions at low temperatures and high number densities. Our previous studies have exploited this approach to obtain multichannel product branching fractions in a number of polyatomic systems, with isomer and often vibrational level specificity. This report highlights an additional capability of the CPUF technique: here, the state-specific reactant depletion is directly monitored on a microsecond timescale. In doing so, a clear dependence on the rotational quantum number K in the rate of the reaction between Cl atoms and propyne is revealed. Future prospects for the technique will be discussed.
Zmijanovic, V.; Lago, V.; Leger, L.; Depussay, E.; Sellam, M.; Chpoun, A.
2013-03-01
The transverse gas injection into the main supersonic flow of an axisymmetric convergent-divergent (C-D) propulsive nozzle is investigated for the fluidic thrust vectoring (FTV) possibilities as the segment part of the CNES "Perseus" project. Truncated ideal contour and conical C-D nozzles with different position and angle of the secondary circular injection port are selected as test models in the current numerical and experimental study. Analytical approach revealed parameters which affect the FTV efficiency, these criterions are further numerically explored and results data of the conical nozzle test cases are compared and coupled with the ones from experiments. It is found that upstream inclined injection has positive effect on vectoring capabilities and that with moderate secondary to primary mass-flow ratios, ranging around 5%, pertinent vector side force is possible to be achieved.
Energy Technology Data Exchange (ETDEWEB)
Nakagawa, Masafumi [Department of Mechanical and Structural System Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi City, Aichi 441-8580 (Japan); Berana, Menandro Serrano [Department of Mechanical and Structural System Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi City, Aichi 441-8580 (Japan); Department of Mechanical Engineering, University of the Philippines, Diliman, Quezon City 1101 (Philippines); Kishine, Akinori [Machine Tool Division, Murata Machinery, Ltd., 2 Nakajima, Hashizume, Inuyama City, Aichi 484-8502 (Japan)
2009-09-15
CO{sub 2} is environmentally friendly, safe and more suitable to ejector refrigeration cycle than to vapor compression cycle. Supersonic two-phase flow of CO{sub 2} in the diverging sections of rectangular converging-diverging nozzles was investigated. The divergence angles with significant variation of decompression were 0.076 , 0.153 , 0.306 and 0.612 . This paper presents experimental decompression phenomena which can be used in designing nozzles and an assessment of Isentropic Homogeneous Equilibrium (IHE). Inlet conditions around 6-9 MPa, 20-37 C were used to resemble ejector nozzles of coolers and heat pumps. For inlet temperature around 37 C, throat decompression boiling from the saturated liquid line, supersonic decompression and IHE solution were obtained for the two large divergence angles. For divergence angles larger than 0.306 , decompression curves for inlet temperature above 35 C approached IHE curves. For divergence angles smaller than 0.306 or for nozzles with inlet temperature below 35 C, IHE had no solution. (author)
Luxa, Martin; Příhoda, Jaromír; Šimurda, David; Straka, Petr; Synáč, Jaroslav
2016-04-01
The contribution deals with the experimental and numerical investigation of compressible flow through the tip-section turbine blade cascade with the blade 54″ long. Experimental investigations by means of optical (interferometry and schlieren method) and pneumatic measurements provide more information about the behaviour and nature of basic phenomena occurring in the profile cascade flow field. The numerical simulation was carried out by means of the EARSM turbulence model according to Hellsten [5] completed by the bypass transition model with the algebraic equation for the intermittency coefficient proposed by Straka and Příhoda [6] and implemented into the in-house numerical code. The investigation was focused particularly on the effect of shock waves on the shear layer development including the laminar/turbulent transition. Interactions of shock waves with shear layers on both sides of the blade result usually in the transition in attached and/ or separated flow and so to the considerable impact to the flow structure and energy losses in the blade cascade.
The flow over a 'high' aspect ratio gothic wing at supersonic speeds
Narayan, K. Y.
1975-01-01
Results are presented of an experimental investigation on a nonconical wing which supports an attached shock wave over a region of the leading edge near the vertex and a detached shock elsewhere. The shock detachment point is determined from planform schlieren photographs of the flow field and discrepancies are shown to exist between this and the one calculated by applying the oblique shock equations normal to the leading edge. On a physical basis, it is argued that the shock detachment has to obey the two-dimensional law normal to the leading edges. From this, and from other measurements on conical wings, it is thought that the planform schlieren technique may not be particularly satisfactory for detecting shock detachment. Surface pressure distributions are presented and are explained in terms of the flow over related delta wings which are identified as a vertex delta wing and a local delta wing.
Abeysekera, Chamara; Oldham, James M.; Suits, Arthur G.; Park, G. Barratt; Field, Robert W.
2012-06-01
A new experimental scheme is presented that combines two powerful emerging technologies: chirped-pulse Fourier-transform mm-Wave spectroscopy and pulsed uniform supersonic flows. It promises a nearly universal detection method that can deliver quantitative isomer, conformer, and vibrational level specific detection, characterization of unstable reaction products and intermediates, and perform unique spectroscopic, kinetics, and dynamics measurements. Chirped-pulse Fourier-transform microwave (CP-FTMW) spectroscopy, pioneered by Pate and coworkers, allows rapid acquisition of broadband microwave spectrum through advancements in waveform generation and oscilloscope technology. This revolutionary approach has successfully been adapted to higher frequencies by the Field group at MIT. Our new apparatus will exploit amplified chirped pulses in the range of 26-40 GHz, in combination with a pulsed uniform supersonic flow from a Laval nozzle. This nozzle source, pioneered by Rowe, Sims, and Smith for low temperature kinetics studies, produces thermalized reactants at high densities and low temperatures perfectly suitable for reaction dynamics experiments studied using the CP-mmW approach. This combination of techniques shall enhance the thousand-fold improvement in data acquisition rate achieved in the CP method by a further 2-3 orders of magnitude. A pulsed flow alleviates the challenges of continuous uniform flow, e.g. large gas loads and reactant consumption rates. In contrast to other pulsed Laval systems currently in use, we will use a fast piezo valve and small chambers to achieve the desired pressures while minimizing the gas load, so that a 10 Hz repetition rate can be achieved with one turbomolecular pump. The proposed technique will be suitable for many diverse fields, including fundamental studies in spectroscopy and reaction dynamics, reaction kinetics, combustion, atmospheric chemistry, and astrochemistry. We expect a significant advancement in the ability to
Numerical Solutions for Supersonic Flow of an Ideal Gas Around Blunt Two-Dimensional Bodies
Fuller, Franklyn B.
1961-01-01
The method described is an inverse one; the shock shape is chosen and the solution proceeds downstream to a body. Bodies blunter than circular cylinders are readily accessible, and any adiabatic index can be chosen. The lower limit to the free-stream Mach number available in any case is determined by the extent of the subsonic field, which in turn depends upon the body shape. Some discussion of the stability of the numerical processes is given. A set of solutions for flows about circular cylinders at several Mach numbers and several values of the adiabatic index is included.
Schlieren study of a sonic jet injected into a supersonic cross flow using high-current pulsed LEDs
Giskes, Ella; Segerink, Frans B; Venner, Cornelis H
2016-01-01
In the research of supersonic flows, flow visualization continues to be an important tool, and even today it is difficult to create high quality images. In this study we present a low-cost and easy-to use Schlieren setup. The setup makes use of LEDs, pulsed with high currents to increase the optical output to sufficient levels, exploiting the advantages of LED light over conventional light sources. As a test-case we study the interaction of a Mach 1.7 cross flow and a transverse underexpanded jet, which is commonly studied considering the mixing and combustion in scramjet engines. Using 130 nanosecond LED light pulses, we captured the flow structures sharply and in great detail. We observed a large-gradient wave, which was seen in numerical studies but hitherto not reported in experiments. Furthermore, we demonstrate that time-correlated images can be obtained with this Schlieren setup, so that also flow unsteadiness can be studied, such as the movement of shock waves and vortices.
Energy Technology Data Exchange (ETDEWEB)
Fedoseeva, Yu. V., E-mail: fedoseeva@niic.nsc.ru [Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Pozdnyakov, G.A. [Khristianovich Institute of Theoretical and Applied Mechanics, SB RAS, Novosibirsk 630090 (Russian Federation); Okotrub, A.V.; Kanygin, M.A. [Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Nastaushev, Yu. V. [Rzhanov Institute of Semiconductor Physics SB RAS, Novosibirsk 630090 (Russian Federation); Vilkov, O.Y. [St. Petersburg State University, St. Petersburg 198504 (Russian Federation); Bulusheva, L.G. [Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation)
2016-11-01
Highlights: • A deposition of supersonic methane plasma flow on silicon substrate produces amorphous oxygenated hydrocarbon (CO{sub x}H{sub y}) film. • The thickness, composition, and wettability of the film depend on the substrate temperature. • A rise of the substrate temperature from 500 to 700 °C promotes the sp{sup 3}-hybridization carbon formation. - Abstract: Since amorphous oxygenated hydrocarbon (CO{sub x}H{sub y}) films are promising engineering materials a study of the structure and composition of the films depending on the conditions of synthesis is important for controlling of their physicochemical properties. Here, we used the methods of scanning and transmission electron microscopy, X-ray photoelectron, near-edge X-ray absorption fine structure, Fourier transform infrared and Raman spectroscopy to reveal changes in the chemical connectivity of CO{sub x}H{sub y} films grown on silicon substrates heated to 300, 500, and 700 °C using a supersonic flow of methane plasma. It was found that the CO{sub x}H{sub y} films, deposited at 300 and 500 °C, were mainly composed of the sp{sup 2}-hybridized carbon areas with various oxygen species. A rise of the substrate temperature caused an increase of the portion of tetrahedral carbon atoms as well as carboxyl and hydroxyl groups. With growth of the substrate temperature, the film thickness reduced monotonically from 400 to 180 nm, while the film adhesion improved substantially. The films, deposited at lower temperatures, showed high hydrophilicity due to porosity and presence of oxygenated groups both at the surface and in the bulk.
Benyo, Theresa L.
2010-01-01
Preliminary flow matching has been demonstrated for a MHD energy bypass system on a supersonic turbojet engine. The Numerical Propulsion System Simulation (NPSS) environment was used to perform a thermodynamic cycle analysis to properly match the flows from an inlet to a MHD generator and from the exit of a supersonic turbojet to a MHD accelerator. Working with various operating conditions such as the enthalpy extraction ratio and isentropic efficiency of the MHD generator and MHD accelerator, interfacing studies were conducted between the pre-ionizers, the MHD generator, the turbojet engine, and the MHD accelerator. This paper briefly describes the NPSS environment used in this analysis and describes the NPSS analysis of a supersonic turbojet engine with a MHD generator/accelerator energy bypass system. Results from this study have shown that using MHD energy bypass in the flow path of a supersonic turbojet engine increases the useful Mach number operating range from 0 to 3.0 Mach (not using MHD) to an explored and desired range of 0 to 7.0 Mach.
Energy Technology Data Exchange (ETDEWEB)
Nakano, S.; Ikegawa, M. (Hitachi Ltd., Tokyo (Japan))
1990-07-25
Flow field in which two supersonic turbulent flows with different species gases mix, was analyzed with a two-equation turbulence model and the mixing characteristics of 2 supersonic parallel flows were investigated by making the inlet flow condition of high speed gas constant and by ststematically changing the inlet flow condition of low speed gas. When mixing is carried out so that high speed gas is taken in the low speed gas, high spreading rate of the mixing layer is obtained and this tendency is emphasized markedly as the ratio such as velocity, density and pressure between low and high speed gases become small. The spreading of low mass ratio layer of low speed gas and that of low mass ratio layer of high speed gas are assymmetric and the spreading of the former is suppressed at the coindition where the latter expands. The tendency of developing rate of mixing layer to the correlating parameter in this calculation agreed well with results of visualized experiment. 14 refs., 10 figs., 3 tabs.
Maio, Umberto; Ciardi, Benedetta
2010-01-01
Tseliakhovich & Hirata recently discovered that higher-order corrections to the cosmological linear-perturbation theory lead to supersonic coherent baryonic flows just after recombination (i.e.\\ $z \\approx 1020$), with rms velocities of $\\sim$30 km/s relative to the underlying dark-matter distribution, on comoving scales of $\\la 3$ Mpc\\,$h^{-1}$. To study the impact of these coherent flows we performed high-resolution N-body plus SPH simulations in boxes of 5.0 and 0.7 Mpc\\,$h^{-1}$, for bulk-flow velocities of 0 (as reference), 30 and 60 km/s. The simulations follow the evolution of cosmic structures by taking into account detailed, primordial, non-equilibrium gas chemistry (i.e.\\ H, He, H$_2$, HD, HeH, etc.), cooling, star formation, and feedback effects from stellar evolution. We find that these bulk flows suppress star formation in low-mass haloes (i.e.\\ $M_{\\rm vir} \\la 10^8$M$_{\\odot}$ until $z\\sim 13$), lower the abundance of the first objects by $\\sim 1%-20%$, and, as consequence, delay cosmic sta...
Entropy Minimization Design Approach of Supersonic Internal Passages
Directory of Open Access Journals (Sweden)
Jorge Sousa
2015-08-01
Full Text Available Fluid machinery operating in the supersonic regime unveil avenues towards more compact technology. However, internal supersonic flows are associated with high aerodynamic and thermal penalties, which usually prevent their practical implementation. Indeed, both shock losses and the limited operational range represent particular challenges to aerodynamic designers that should be taken into account at the initial phase of the design process. This paper presents a design methodology for supersonic passages based on direct evaluations of the velocity field using the method of characteristics and computation of entropy generation across shock waves. This meshless function evaluation tool is then coupled to an optimization scheme, based on evolutionary algorithms that minimize the entropy generation across the supersonic passage. Finally, we assessed the results with 3D Reynolds Averaged Navier Stokes calculations.
Institute of Scientific and Technical Information of China (English)
魏文韫; 朱家骅; 夏素兰; 戴光清; 高旭东
2002-01-01
Modelling and simulations are conducted on velocity slip and interfacial momentum transfer for super-sonic two-phase (gas-droplet) flow in the transient section inside and outside a Laval jet(L J). The initial velocity slipbetween gas and droplets causes an interfacial momentum transfer flux as high as (2.0-5.0) × 104 Pa. The relaxationtime corresponding to this transient process is in the range of 0.015-0.090 ms for the two-phase flow formed insidethe LJ and less than 0.5 ms outside the LJ. It demonstrates the unique performance of this system for application tofast chemical reactions using electrically active media with a lifetime in the order of 1 ms. Through the simulationsof the transient processes with initial Mach number Mg from 2.783 to 4.194 at different axial positions inside theLJ. it is found that Mg has the strongest effect on the process. The momentum flux increases as the Mach numberdecreases. Due to compression by the shock wave at the end of the L J, the flow pattern becomes two dimensionaland viscous outside the LJ. Laser Doppler velocimeter (LDV) measurements of droplet velocities outside the LJ arein reasonably good agreement with the results of the simulation.
Huang, Wei; Jiang, Yan-ping; Yan, Li; Liu, Jun
2016-04-01
The thermal protection on the surface of hypersonic vehicles attracts an increasing attention worldwide, especially when the vehicle enters the atmosphere at high speed. In the current study, the Reynolds-averaged Navier-Stokes (RANS) equations coupled with the Menter's shear stress transport (SST) model have been employed to investigate the heat flux reduction mechanism induced by the variations of the cavity configuration, the jet pressure ratio and the injectant molecular weight in the combinational opposing jet and cavity concept. The length of the cavity is set to be 6 mm, 8 mm and 10 mm in order to make sure that the cavity configuration is the "open" cavity, and the jet pressure ratio is set to be 0.4, 0.6 and 0.8 in order to make sure that the flow field is steady. The injectant is set to be nitrogen and helium. The obtained results show that the aft angle of the cavity only has a slight impact on the heat flux reduction, and the heat flux peak decreases with the decrease of the length of the cavity. The design of the thermal protection system for the hypersonic blunt body is a multi-objective design exploration problem, and the heat flux distribution depends on the jet pressure ratio, the aft wall of the cavity and the injectant molecular weight. The heat flux peak decreases with the increase of the jet pressure ratio when the aft angle of the cavity is large enough, and this value is 45°.
Computational Study of the Supersonic Ejector Flows with a V-shape Nozzle%V形喷嘴的超声速引射器的数值模拟
Institute of Scientific and Technical Information of China (English)
孔凡实; 崔宝玲; 金英子; 金羲东
2013-01-01
To improve the performance of supersonic ejector,this paper redesigns a new V-shape nozzle based on the experimental result of the original convergent nozzle; makes it introduce more vortexes,thus improving the drainage flow by changing the number of lobes of V-shape nozzle,and obtains a geometric model of V-shape nozzle with a good performance; simulates the complex flow in supersonic ejector with FLUENT software and conducts contrastive analysis on the performance of various nozzles in numerical calculation.The result of numerical calculation shows that V-shape nozzle has certain influence on the distribution of flow field and impact wave at the supersonic nozzle and can effectively improve the performance of eiector and make the ejector reach a higher compression ratio and pressure recovery.%为了提高超音速引射器的性能,基于原有收敛形喷嘴的实验结果,重新设计了新型的V形喷嘴.通过改变V形喷嘴的波瓣数,使其引入更多涡流来提高引流流量,得到性能较好的V形喷嘴几何模型.采用FLUENT软件模拟超声速引射器中的复杂流动,对比分析了数值计算的各种喷嘴的性能.数值模拟结果显示:V形喷嘴对超音速喷嘴处的流场分布以及激波分布有一定的影响,可以有效提高引射器的性能,使引射器达到更大的压缩比和压力恢复.
Continuous supersonic plasma wind tunnel
DEFF Research Database (Denmark)
Andersen, S.A.; Jensen, Vagn Orla; Nielsen, P.
1969-01-01
The normal magnetic field configuration of a Q device has been modified to obtain a 'magnetic Laval nozzle'. Continuous supersonic plasma 'winds' are obtained with Mach numbers ~3. The magnetic nozzle appears well suited for the study of the interaction of supersonic plasma 'winds' with either...
Institute of Scientific and Technical Information of China (English)
Guang-sheng WEI; Rong ZHU; Ting CHENG; Fei ZHAO
2016-01-01
As a novel supersonic j et technology,preheating shrouded supersonic j et was developed to deliver oxygen into molten bath efficiently and affordably.However,there has been limited research on the jet behavior and im-pingement characteristics of preheating shrouded supersonic j ets.Computational fluid dynamics (CFD)models were established to investigate the effects of main and shrouding gas temperatures on the characteristics of flow field and impingement of shrouded supersonic j et.The preheating shrouded supersonic j et behavior was simulated and meas-ured by numerical simulation and j et measurement experiment respectively.The influence of preheating shrouded su-personic j et on gas j et penetration and fluid flow in liquid bath was calculated by the CFD model which was validated against water model experiments.The results show that the uptrend of the potential core length of shrouded super-sonic j et would be accelerated with increasing the main and shrouding gas temperatures.Also,preheating supersonic j ets demonstrated significant advantages in penetrating and stirring the liquid bath.
Unraveling ultrafiltration of polysaccharides with flow field flow fractionation
Ven, van de Wilbert; Pünt, Ineke; Kemperman, Antoine; Wessling, Matthias
2009-01-01
We used flow field flow fractionation (flow-FFF) coupled with multi-angle-light scattering (MALS) to study the conformation of alginate molecules in ultrapure water and in a 10 mM salt solution. In particular, we investigated the behavior of alginates under filtration conditions. The flow-FFF result
Skin Friction and Pressure Measurements in Supersonic Inlets Project
National Aeronautics and Space Administration — Supersonic propulsion systems include internal ducts, and therefore, the flow often includes shock waves, shear layers, vortices, and separated flows. Passive flow...
Johnson, F. T.; Samant, S. S.; Bieterman, M. B.; Melvin, R. G.; Young, D. P.; Bussoletti, J. E.; Hilmes, C. L.
1992-01-01
The TranAir computer program calculates transonic flow about arbitrary configurations at subsonic, transonic, and supersonic freestream Mach numbers. TranAir solves the nonlinear full potential equations subject to a variety of boundary conditions modeling wakes, inlets, exhausts, porous walls, and impermeable surfaces. Regions with different total temperature and pressure can be represented. The user's manual describes how to run the TranAir program and its graphical support programs.
Coumar, Sandra; Lago, Viviana
2017-06-01
This paper presents an experimental investigation, carried out at the Icare Laboratory by the FAST team, focusing on plasma flow control in supersonic and rarefied regime. The study analyzes how the Mach number as well as the ambient pressure modify the repercussions of the plasma actuator on the shock wave. It follows previous experiments performed in the MARHy (ex-SR3) wind tunnel with a Mach 2 flow interacting with a sharp flat plate, where modifications induced by a plasma actuator were observed. The flat plate was equipped with a plasma actuator composed of two aluminum electrodes. The upstream one was biased with a negative DC potential and thus, created a glow discharge type plasma. Experimental measurements showed that the boundary layer thickness and the shock wave angle increased when the discharge was ignited. The current work was performed with two nozzles generating Mach 4 flows but at two different static pressures: 8 and 71 Pa. These nozzles were chosen to study independently the impact of the Mach number and the impact of the pressure on the flow behavior. In the range of the discharge current considered in this experimental work, it was observed that the shock wave angle increased with the discharge current of +15% for the Mach 2 flow but the increase rate doubled to +28% for the Mach 4 flow at the same static pressure, showing that the discharge effect is even more significant when boosting the flow speed. When studying the effect of the discharge on the Mach 4 flow at higher static pressure, it was observed that the topology of the plasma changed drastically and the increase in the shock wave angle with the discharge current of +21 %.
Flow Field Calculations for Afterburner
Institute of Scientific and Technical Information of China (English)
ZhaoJianxing; LiuQuanzhong; 等
1995-01-01
In this paper a calculation procedure for simulating the coimbustion flow in the afterburner with the heat shield,flame stabilizer and the contracting nozzle is described and evaluated by comparison with experimental data.The modified two-equation κ-ε model is employed to consider the turbulence effects,and the κ-ε-g turbulent combustion model is used to determine the reaction rate.To take into accunt the influence of heat radiation on gas temperature distribution,heat flux model is applied to predictions of heat flux distributions,The solution domain spanned the entire region between centerline and afterburner wall ,with the heat shield represented as a blockage to the mesh.The enthalpy equation and wall boundary of the heat shield require special handling for two passages in the afterburner,In order to make the computer program suitable to engineering applications,a subregional scheme is developed for calculating flow fields of complex geometries.The computational grids employed are 100×100 and 333×100(non-uniformly distributed).The numerical results are compared with experimental data,Agreement between predictions and measurements shows that the numerical method and the computational program used in the study are fairly reasonable and appopriate for primary design of the afterburner.
High Enthalpy Effects on Two Boundary Layer Disturbances in Supersonic and Hypersonic Flow
2012-05-01
178 C.1 Modified Millikan and White relaxation times...131 6.30 This plot shows the LST stability diagram for the case of cold carbon dioxide injection at a rate of 6 g/s. The sharp drop in amplified...boundary layer. Whitehead[77] used surface oil flow to visualize CHAPTER 2. BACKGROUND 21 the flow features around isolated roughness elements in
Fedoseeva, Yu. V.; Pozdnyakov, G. A.; Okotrub, A. V.; Kanygin, M. A.; Nastaushev, Yu. V.; Vilkov, O. Y.; Bulusheva, L. G.
2016-11-01
Since amorphous oxygenated hydrocarbon (COxHy) films are promising engineering materials a study of the structure and composition of the films depending on the conditions of synthesis is important for controlling of their physicochemical properties. Here, we used the methods of scanning and transmission electron microscopy, X-ray photoelectron, near-edge X-ray absorption fine structure, Fourier transform infrared and Raman spectroscopy to reveal changes in the chemical connectivity of COxHy films grown on silicon substrates heated to 300, 500, and 700 °C using a supersonic flow of methane plasma. It was found that the COxHy films, deposited at 300 and 500 °C, were mainly composed of the sp2-hybridized carbon areas with various oxygen species. A rise of the substrate temperature caused an increase of the portion of tetrahedral carbon atoms as well as carboxyl and hydroxyl groups. With growth of the substrate temperature, the film thickness reduced monotonically from 400 to 180 nm, while the film adhesion improved substantially. The films, deposited at lower temperatures, showed high hydrophilicity due to porosity and presence of oxygenated groups both at the surface and in the bulk.
Numerical Simulations of Flow in a 3-D Supersonic Intake at High Mach Numbers
Directory of Open Access Journals (Sweden)
R. Sivakumar
2006-10-01
Full Text Available Numerical simulations of the compressible, 3-D non reacting flow in the engine inlet sectionof a concept hypersonic air-breathing vehicle are presented. These simulations have been carriedout using FLUENT. For all the results reported, the mesh has been refined to achieve areaaveragedwall y+ about 105. Mass flow rate through the intake and stagnation pressure recoveryare used to compare the performance at various angles of attack. The calculations are able topredict the mode of air-intake operation (critical and subcritical for different angles of attack.Flow distortion at the intake for various angles of attack is also calculated and discussed. Thenumerical results are validated by simulating the flow through a 2-D mixed compression hypersonicintake model and comparing with the experimental data.
在超音速压缩角下的湍流模型数值比较%Comparison of Turbulent Models for Supersonic Compression Corner Flow
Institute of Scientific and Technical Information of China (English)
胡李鹏; 苏莫明; 孙正中; 李小平
2009-01-01
在超音速飞机进气道的湍流数值仿真中,选择合适的湍流模型可以比较准确的捕捉激波位置和流场分布,对飞机发动机的设计和控制都是很重要的.但是对湍流模型的选择,文献中并无记载.针对上述情况选择了进气道的简化结构.分别运用标准的高雷诺数k-epsilon模型,重整化群RNG模型,Realizable k-epsilon模型及ASM模型等进行了数值仿真和比较.基于SIMPLE算法,采用相同的分析壁面函数处理法,并且对流项都采用MINMOD格式.从比较发现:RNG模型比标准的k-epsilon模型和Realizable k-epsilon模型精度高,比ASM模型精度稍低,但是比ASM模型省时间,最后作者认为RNG模型在算例中是最经济实用的湍流模型.%A decent turbulence model in the numerical simulation of supersonic inlet can precisely capture the shock wave and predict the flow field, which is very important to the design and control of aircraft engine. However, no reference deals with the selection of turbulence model under this condition, so a comparison of turbulent models is performed on the supersonic compression corner which is a similar and simple configuration of inlet channel. The four turbulent models are standard k -epsilon model, RNG model , Realizable model and ASM model. They depend on the same SIMPLE algorithm ,analytical wall function and MINMOD scheme of convection. The paper concludes that the RNG turbulent model is more precise than the standard k -epsilon model and the Realizable k -epsilon model, and needs less time than ASM model . In the end , the it is concluded that the RNG model is the most economic and practical one.
NASA Ames Laminar Flow Supersonic Wind Tunnel (LFSWT) Tests of a 10 deg Cone at Mach 1.6
Wolf, Stephen W. D.; Laub, James A.
1997-01-01
This work is part of the ongoing qualification of the NASA Ames Laminar Flow Supersonic Wind Tunnel (LFSWT) as a low-disturbance (quiet) facility suitable for transition research. A 10 deg cone was tested over a range of unit Reynolds numbers (Re = 2.8 to 3.8 million per foot (9.2 to 12.5 million per meter)) and angles of incidence (O deg to 10 deg) at Mach 1.6. The location of boundary layer transition along the cone was measured primarily from surface temperature distributions, with oil flow interferometry and Schlieren flow visualization providing confirmation measurements. With the LFSWT in its normal quiet operating mode, no transition was detected on the cone in the test core, over the Reynolds number range tested at zero incidence and yaw. Increasing the pressure disturbance levels in the LFSWT test section by a factor of five caused transition onset on the cone within the test core, at zero incidence and yaw. When operating the LFSWT in its normal quiet mode, transition could only be detected in the test core when high angles of incidence (greater than 5 deg) for cones were set. Transition due to elevated pressure disturbances (Tollmien-Schlichting) and surface trips produced a skin temperature rise of order 4 F (2.2 C). Transition due to cross flows on the leeward side of the cone at incidence produced a smaller initial temperature rise of only order 2.5 F (1.4 C), which indicates a slower transition process. We can conclude that these cone tests add further proof that the LFSWT test core is normally low-disturbance (pressure fluctuations greater than 0.1%), as found by associated direct flow quality measurements discussed in this report. Furthermore, in a quiet test environment, the skin temperature rise is sensitive to the type of dominant instability causing transition. The testing of a cone in the LFSWT provides an excellent experiment for the development of advanced transition detection techniques.
Vector Fields and Flows on Differentiable Stacks
DEFF Research Database (Denmark)
A. Hepworth, Richard
2009-01-01
This paper introduces the notions of vector field and flow on a general differentiable stack. Our main theorem states that the flow of a vector field on a compact proper differentiable stack exists and is unique up to a uniquely determined 2-cell. This extends the usual result on the existence...... of vector fields....
Turbulence measurements in axisymmetric supersonic boundary layer flow in adverse pressure gradients
Gootzait, E.; Childs, M. E.
1977-01-01
Mean flow and turbulence measurements are presented for adiabatic compressible turbulent boundary layer flow in adverse pressure gradients. The gradients were induced on the wall of an axially symmetric wind tunnel by contoured centerbodies mounted on the wind tunnel centerline. The boundary layer turbulence downstream of a boundary layer bleed section in a zero pressure gradient was also examined. The measurements were obtained using a constant temperature hot-wire anemometer. The adverse pressure gradients were found to significantly alter the turbulence properties of the boundary layer. With flow through the bleed holes there was a measureable decrease in the rms longitudinal velocity fluctuations near the wall and the turbulent shear stress in the boundary layer was reduced.
Stability of a cantilevered skew inhomogeneous plate in supersonic gas flow
Isaulova, T. N.; Lavit, I. M.
2011-07-01
This paper considers the vibrations of a skew inhomogeneous plate in gas flow. The plate is clamped in a certain section of one of its sides. Interaction of the flow with the plate is described using piston theory. The problem solution is based on the Hamilton's variational principle and finite element method. The calculation results are compared with known data of theoretical studies and experiments. For the inhomogeneous plate, similarity parameters were established for the problem, which, in practically important cases, appears to be self-similar for one of the similarity parameters. This allows one to reduce the solution of this problem to the solution of an algebraic eigenvalue problem.
Turbulence models and Reynolds analogy for two-dimensional supersonic compression ramp flow
Wang, Chi R.; Bidek, Maleina C.
1994-01-01
Results of the application of turbulence models and the Reynolds analogy to the Navier-Stokes computations of Mach 2.9 two-dimensional compression ramp flows are presented. The Baldwin-Lomax eddy viscosity model and the kappa-epsilon turbulence transport equations for the turbulent momentum flux modeling in the Navier-Stokes equations are studied. The Reynolds analogy for the turbulent heat flux modeling in the energy equation was also studied. The Navier-Stokes equations and the energy equation were numerically solved for the flow properties. The Reynolds shear stress, the skin friction factor, and the surface heat transfer rate were calculated and compared with their measurements. It was concluded that with a hybrid kappa-epsilon turbulence model for turbulence modeling, the present computations predicted the skin friction factors of the 8 deg and 16 deg compression ramp flows and with the turbulent Prandtl number Pr(sub t) = 0.93 and the ratio of the turbulent thermal and momentum transport coefficients mu(sub q)/mu(sub t) = 2/Prt, the present computations also predicted the surface heat transfer rates beneath the boundary layer flow of the 16 compression ramp.
Experimental Study of Shock-train/Combustion Coupling and Flame Dynamics in a Heated Supersonic Flow
Fotia, Matthew Leonard
Isolator/combustor interactions are measured in a direct-connect dual-mode ramjet-scramjet experiment. An operating point approach is used to create a mapping of the coupling effects between the isolator geometry, inlet flow conditions and fuel injector behavior. The resulting isolator/injector coupling map provides a description of the response of the isolator to particular injector performance, and the effective blockage it induces on the isolator flow. Existing models and correlations predicting the pressure rise across a pseudo-shock, and its resultant length, were evaluated through comparison with measurements made in a heated-flow isolator duct that is coupled to a hydrogen-air combustor. The observation of a normal-to-oblique shock-train transition mechanism has lead to the development of a revised shock-train operating regime description that takes into account the impact of Mach number and maximum pressure recovery on the shock configurations present in the isolator. The behavior of a ram-scram transition was examined along with pressure measurements and high-speed laser interferometry. The work quantifies the sudden change in the wall static pressure profile and flame position that occurs as the downstream boundary condition abruptly changes when the flow becomes unchoked. Transition was studied in three ways; as a quasi-steady phenomenon, or as caused by rapid variations in either fuel flow-rate or test-section wall temperature. A regime diagram was measured that plots the ram-scram transition boundary. Under certain conditions some periodic low-frequency oscillations of the flame position occur and they are shown to be correlated with oscillations of the upstream pre-combustion pseudo-shock. A self-sustaining shear-layer instability, associated with the flameholding cavity, is identified as the mechanism perpetuating this behavior. The relevant time scales associated with the ram-scram transition and the flame-shock interactions are discussed.
Study of the shock structure of supersonic, dual, coaxial, jets
Energy Technology Data Exchange (ETDEWEB)
Lee, K. H.; Lee, J. H.; Kim, H. D. [Andong National Univ., Andong (Korea, Republic of)
2001-07-01
The shock structure of supersonic, dual, coaxial jet is experimentally investigated. Eight different kinds of coaxial, dual nozzles are employed to observe the major features of the near field shock structure of the supersonic, coaxial, dual jets. Four convergent-divergent supersonic nozzles having the Mach number of 2.0 and 3.0, and are used to compare the coaxial jet flows discharging from two sonic nozzles. The primary pressure ratio is changed in the range between 4.0 and 10.0 and the assistant jet pressure ratio from 1.0 to 4.0. The results obtained show that the impinging angle, nozzle geometry and pressure ratio significantly affect the near field shock structure, Mach disk location and Mach disk diameter. The annular shock system is found depending the assistant and primary jet pressure ratios.
Mach number study of supersonic turbulence: The properties of the density field
Konstandin, Lukas; Girichidis, Philipp; Peters, Thomas; Shetty, Rahul; Klessen, Ralf S
2015-01-01
We model driven, compressible, isothermal, turbulence with Mach numbers ranging from the subsonic ($\\mathcal{M} \\approx 0.65$) to the highly supersonic regime ($\\mathcal{M}\\approx 16 $). The forcing scheme consists both solenoidal (transverse) and compressive (longitudinal) modes in equal parts. We find a relation $\\sigma_{s}^2 = \\mathrm{b}\\log{(1+\\mathrm{b}^2\\mathcal{M}^2)}$ between the Mach number and the standard deviation of the logarithmic density with $\\mathrm{b} = 0.457 \\pm 0.007$. The density spectra follow $\\mathcal{D}(k,\\,\\mathcal{M}) \\propto k^{\\zeta(\\mathcal{M})}$ with scaling exponents depending on the Mach number. We find $\\zeta(\\mathcal{M}) = \\alpha \\mathcal{M}^{\\beta}$ with a coefficient $\\alpha$ that varies slightly with resolution, whereas $\\beta$ changes systematically. We extrapolate to the limit of infinite resolution and find $\\alpha = -1.91 \\pm 0.01,\\, \\beta =-0.30\\pm 0.03$. The dependence of the scaling exponent on the Mach number implies a fractal dimension $D=2+0.96 \\mathcal{M}^{-0.3...
Knowledge-based flow field zoning
Andrews, Alison E.
1988-01-01
Automation flow field zoning in two dimensions is an important step towards easing the three-dimensional grid generation bottleneck in computational fluid dynamics. A knowledge based approach works well, but certain aspects of flow field zoning make the use of such an approach challenging. A knowledge based flow field zoner, called EZGrid, was implemented and tested on representative two-dimensional aerodynamic configurations. Results are shown which illustrate the way in which EZGrid incorporates the effects of physics, shape description, position, and user bias in a flow field zoning.
Energy Technology Data Exchange (ETDEWEB)
Hieke, Andreas, E-mail: andreas.hieke@stanford.edu [Department of Structural Biology, School of Medicine, Stanford University, 299 Campus Drive West, Fairchild Building, 148, Stanford, California 94305-5126 (United States)
2014-01-21
Unimolecular decay of sample ions imposes a limit on the usable laser fluence in matrix-assisted laser desorption/ionization (MALDI) ion sources. Traditionally, some modest degree of collisional sample ion cooling has been achieved by connecting MALDI ion sources directly to gas-filled radio frequency (RF) multipoles. It was also discovered in the early 1990s that gas-filled RF multipoles exhibit increased ion transmission efficiency due to collisional ion focusing effects. This unexpected experimental finding was later supported by elementary Monte Carlo simulations. Both experiments and simulations assumed a resting background gas with typical pressures of the order of 1 Pa. However, considerable additional improvements can be achieved if laser desorbed sample ions are introduced immediately after desorption, still within the ion source, in an axisymmetric rarefied supersonic gas jet with peak pressure of the order of 100 Pa and flow velocities >300 m/s, and under weak electric fields. We describe here the design principle and report performance data of an ion source coined “MALDI-2,” which incorporates elements of both rarefied aerodynamics and particle optics. Such a design allows superb suppression of metastable fragmentation due to rapid collisional cooling in <10 μs and nearly perfect injection efficiency into the attached RF ion guide, as numerous experiments have confirmed.
Numerical Simulation on Supersonic Flow in High-Velocity Oxy-Fuel Thermal Spray Gun
Institute of Scientific and Technical Information of China (English)
Hiroshi KATANODA; Hideki YAMAMOTO; Kazuyasu MATSUO
2006-01-01
This paper analyzes the behaviour of coating particles as well as the gas flow both inside and outside of the High-Velocity Oxy-Fuel (HVOF) thermal spray gun by using a quasi-one-dimensional analysis and a numerical simulation. The HVOF gun in the present analysis is an axially symmetric convergent-divergent nozzle with the design Mach number of 2.0. From the present analysis, the distributions of velocity and temperature of the coating particles flying inside and outside of the HVOF gun are predicted. The velocity and temperature of the coating particles at the exit of the gun calculated by the present method agree well with the previous experimental results. Therefore, the present method of calculation is considered to be useful for predicting the HVOF gas and particle flows.
MONOTONIC DERIVATIVE CORRECTION FOR CALCULATION OF SUPERSONIC FLOWS WITH SHOCK WAVES
Directory of Open Access Journals (Sweden)
P. V. Bulat
2015-07-01
Full Text Available Subject of Research. Numerical solution methods of gas dynamics problems based on exact and approximate solution of Riemann problem are considered. We have developed an approach to the solution of Euler equations describing flows of inviscid compressible gas based on finite volume method and finite difference schemes of various order of accuracy. Godunov scheme, Kolgan scheme, Roe scheme, Harten scheme and Chakravarthy-Osher scheme are used in calculations (order of accuracy of finite difference schemes varies from 1st to 3rd. Comparison of accuracy and efficiency of various finite difference schemes is demonstrated on the calculation example of inviscid compressible gas flow in Laval nozzle in the case of continuous acceleration of flow in the nozzle and in the case of nozzle shock wave presence. Conclusions about accuracy of various finite difference schemes and time required for calculations are made. Main Results. Comparative analysis of difference schemes for Euler equations integration has been carried out. These schemes are based on accurate and approximate solution for the problem of an arbitrary discontinuity breakdown. Calculation results show that monotonic derivative correction provides numerical solution uniformity in the breakdown neighbourhood. From the one hand, it prevents formation of new points of extremum, providing the monotonicity property, but from the other hand, causes smoothing of existing minimums and maximums and accuracy loss. Practical Relevance. Developed numerical calculation method gives the possibility to perform high accuracy calculations of flows with strong non-stationary shock and detonation waves. At the same time, there are no non-physical solution oscillations on the shock wave front.
Freedrop Testing and CFD Simulation of Ice Models from a Cavity into Supersonic Flow
2012-09-01
flow in the test section. 9. Vacuum-side valve . Pilot actuated butterfly -type valve isolates vacuum condi- tions required to attain sub-atmospheric...dryers - DonaldsonrRegenerative Air Dryersrremove moisture from the compressed air prior to tunnel entry. 3. Pressure-side valve - El-O-Maticrpilot...actuator controls the high pressure sup- ply via a ball-type valve . 4. Regulating valve - Pressure controlled Leslierdiaphragm-type valve provides the
Calculation of three-dimensional supersonic flow of a gas past a cube
Barausov, D. I.; Drobyshevskii, E. M.
1991-09-01
Flow of a nonviscous gas near the front face of a cube is investigated numerically using a second-order MacCormack scheme. Calculations are performed on a 40 x 32 x 32 grid using Godunov's finite difference scheme. The drag coefficient of a cube moving in air at Mach 20 is estimated at 1.7-1.8. The results of the study are relevant to the development of electrodynamic rail-gun launchers.
Effects of fuel injection on mixing and upstream interactions in supersonic flow
Tu, Qiuya
Scramjet engine performance has been studied experimentally and computationally almost under steady-state conditions. Transients of the airflow and fueling in the scramjet's isolator or combustor create important fluid-dynamic/ combustion interactions. Spark schlieren photography was employed to study the effects of pressure rise in the combustion chamber on the isolator flow at three conditions with isolator entrance Mach number of 1.6, 1.9 and 2.5, covering the range of dual-mode combustion and transition to full scramjet operation. Heat release through combustion in the model scramjet was simulated by incrementally blocking the flow exit until upstream-interaction was induced and a shock train formed in the isolator. Theoretical predictions of the pressure rise in the isolator under separated flow conditions were calculated, which agreed well with the experimental data. The prediction is sensitive to the accurate modeling of the isolator inlet conditions and the correct selection of wall friction coefficient. Gaseous helium and argon have been transversely injected into a Mach 1.6 airflow simulating a light and a heavy fuel injection behind a thin triangular pylon placed upstream, in the isolator, which has a negligible impact on pressure losses. Planar laser-induced fluorescence (PLIF) was used to observe the penetration and mixing in the test section at three cross-sections including the recirculation region and beyond. Results were compared to the no-pylon cases, which showed the presence of the pylon resulted in improving both penetration and spreading of the jet. Simulation for shock wave/ boundary-layer interaction was conducted in Fluent for case of M=1.9 at 60% blockage by using k-ε RNG model with two different near wall treatments. In both cases, the shock ran out of isolator before the computation converged, this is different from experimental results. Proper actual wall friction force may have a very important effect on the computation, which needs
A simple counter-flow cooling system for a supersonic free-jet beam source assembly.
Barr, M; Fahy, A; Martens, J; Dastoor, P C
2016-05-01
A simple design for an inexpensive, cooled, free-jet beam source is described. The source assembly features an integrated cooling system as supplied by a counter-flow of chilled nitrogen, and is composed primarily of off-the-shelf tube fittings. The design facilitates rapid implementation and eases subsequent alignment with respect to any downstream beamline aperture. The source assembly outlined cools the full length of the stagnation volume, offering temperature control down to 100 K and long-term temperature stability better than ±1 K.
A simple counter-flow cooling system for a supersonic free-jet beam source assembly
Energy Technology Data Exchange (ETDEWEB)
Barr, M.; Fahy, A.; Martens, J.; Dastoor, P. C., E-mail: Paul.Dastoor@newcastle.edu.au [Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308 (Australia)
2016-05-15
A simple design for an inexpensive, cooled, free-jet beam source is described. The source assembly features an integrated cooling system as supplied by a counter-flow of chilled nitrogen, and is composed primarily of off-the-shelf tube fittings. The design facilitates rapid implementation and eases subsequent alignment with respect to any downstream beamline aperture. The source assembly outlined cools the full length of the stagnation volume, offering temperature control down to 100 K and long-term temperature stability better than ±1 K.
Institute of Scientific and Technical Information of China (English)
Tsuyoshi Yasunobu; Ken Matsuoka; Hideo Kashimura; Shigeru Matsuo; Toshiaki Setoguchi
2006-01-01
When the high-pressure gas is exhausted to the vacuum chamber from the supersonic nozzle, the overexpanded supersonic jet is formed at specific condition. In two-dimensional supersonic jet, furthermore, it is known that the hysteresis phenomena for the reflection type of shock wave in the flow field is occurred under the quasi-steady flow and for instance, the transitional pressure ratio between the regular reflection (RR) and Mach reflection (MR) is affected by this phenomenon. Many papers have described the hysteresis phenomena for underexpanded supersonic jet, but this phenomenon under the overexpanded axisymmetric jet has not been detailed in the past papers. The purpose of this study is to clear the hysteresis phenomena for the reflection type of shock wave at the overexpanded axisymmetric jet using the TVD method and to discuss the characteristic of hysteresis phenomena.
Self—Induced Oscillation of Supersonic Jet During Impingement on Cylindrical Body
Institute of Scientific and Technical Information of China (English)
HideoKashimura; ShenYu; 等
1998-01-01
The phenomena of the interaction between a supersonic jet and an obstacle are related to the problems of the aeronautical and other industrial engineerings.When a supersonic jet impinges on an obstacle,the self induced oscillation occurs under several conditions.The flow charactersitics caused by the impingement of underexpanded supersonic jet on an obstacle have been investigated.However,it seems that the mechanism of self induced oscillation and the factor which dominates if have not been detailed in the published papers,The characteristics of the self induced oscillation of the supersonic jet during the impingement on a cylindrical body are investigated using the visualization of flow fields and the numerical calculations in this study.
Flow Field Clustering via Algebraic Multigrid
Griebel, M.; Preusser, T.; Rumpf, M.; Schweitzer, M.A.; Telea, A.
2004-01-01
We present a novel multiscale approach for flow visualization. We define a local alignment tensor that encodes a measure for alignment to the direction of a given flow field. This tensor induces an anisotropic differential operator on the flow domain, which is discretized with a standard finite elem
Experimental investigation on drag and heat flux reduction in supersonic/hypersonic flows: A survey
Wang, Zhen-guo; Sun, Xi-wan; Huang, Wei; Li, Shi-bin; Yan, Li
2016-12-01
The drag and heat reduction problem of hypersonic vehicles has always attracted the attention worldwide, and the experimental test approach is the basis of theoretical analysis and numerical simulation. In the current study, research progress of experimental investigations on drag and heat reduction are summarized by several kinds of mechanism, namely the forward-facing cavity, the opposing jet, the aerospike, the energy deposition and their combinational configurations, and the combinational configurations include the combinational opposing jet and forward-facing cavity concept and the combinational opposing jet and aerospike concept. The geometric models and flow conditions are emphasized, especially for the basic principle for the drag and heat flux reduction of each device. The measurement results of aerodynamic and aerothermodynamic are compared and analyzed as well, which can be a reference for assessing the accuracy of numerical results.
Analysis of impact of general-purpose graphics processor units in supersonic flow modeling
Emelyanov, V. N.; Karpenko, A. G.; Kozelkov, A. S.; Teterina, I. V.; Volkov, K. N.; Yalozo, A. V.
2017-06-01
Computational methods are widely used in prediction of complex flowfields associated with off-normal situations in aerospace engineering. Modern graphics processing units (GPU) provide architectures and new programming models that enable to harness their large processing power and to design computational fluid dynamics (CFD) simulations at both high performance and low cost. Possibilities of the use of GPUs for the simulation of external and internal flows on unstructured meshes are discussed. The finite volume method is applied to solve three-dimensional unsteady compressible Euler and Navier-Stokes equations on unstructured meshes with high resolution numerical schemes. CUDA technology is used for programming implementation of parallel computational algorithms. Solutions of some benchmark test cases on GPUs are reported, and the results computed are compared with experimental and computational data. Approaches to optimization of the CFD code related to the use of different types of memory are considered. Speedup of solution on GPUs with respect to the solution on central processor unit (CPU) is compared. Performance measurements show that numerical schemes developed achieve 20-50 speedup on GPU hardware compared to CPU reference implementation. The results obtained provide promising perspective for designing a GPU-based software framework for applications in CFD.
Federrath, Christoph; Schober, Jennifer; Banerjee, Robi; Klessen, Ralf S; Schleicher, Dominik R G; 10.1103/PhysRevLett.107.114504
2011-01-01
We study the growth rate and saturation level of the turbulent dynamo in magnetohydrodynamical simulations of turbulence, driven with solenoidal (divergence-free) or compressive (curl-free) forcing. For models with Mach numbers ranging from 0.02 to 20, we find significantly different magnetic field geometries, amplification rates, and saturation levels, decreasing strongly at the transition from subsonic to supersonic flows, due to the development of shocks. Both extreme types of turbulent forcing drive the dynamo, but solenoidal forcing is more efficient, because it produces more vorticity.
Bremner, P. G.; Blelloch, P. A.; Hutchings, A.; Shah, P.; Streett, C. L.; Larsen, C. E.
2011-01-01
This paper describes the measurement and analysis of surface fluctuating pressure level (FPL) data and vibration data from a plume impingement aero-acoustic and vibration (PIAAV) test to validate NASA s physics-based modeling methods for prediction of panel vibration in the near field of a hot supersonic rocket plume. For this test - reported more fully in a companion paper by Osterholt & Knox at 26th Aerospace Testing Seminar, 2011 - the flexible panel was located 2.4 nozzle diameters from the plume centerline and 4.3 nozzle diameters downstream from the nozzle exit. The FPL loading is analyzed in terms of its auto spectrum, its cross spectrum, its spatial correlation parameters and its statistical properties. The panel vibration data is used to estimate the in-situ damping under plume FPL loading conditions and to validate both finite element analysis (FEA) and statistical energy analysis (SEA) methods for prediction of panel response. An assessment is also made of the effects of non-linearity in the panel elasticity.
DEFF Research Database (Denmark)
Ingvorsen, Kristian Mark; Buchmann, Nicolas A.; Soria, Julio
2012-01-01
for magnified digital in-line holography is created, using an ultra-high-speed camera capable of frame rates of up to 1.0MHz. To test the new technique an axisymmetric supersonic underexpanded particle-laden jet is investigated. The results show that the new technique allows for the acquisition of time resolved...
Far-field Noise and Near-field Flow Validation of Tandem Cylinder Flow Simulations
今村, 太郎; Imamura, Taro; 平井, 亨; Hirai, Toru; 榎本, 俊治; Enomoto, Shunji; 山本, 一臣; Yamamoto, Kazuomi
2012-01-01
In this paper, flow around tandem cylinder is solved using UPACS-LES code developed in JAXA. Several key issues for unsteady flow simulation are investigated by changing the parameters, such as turbulence modeling and grid density. The flow field is compared with the experiment for both far- and near- field. Current results indicate that the calculation of the boundary layer and the shear layer around the cylinders plays important role especially to the near field flow structure while it is l...
Chiles, Harry R.
1988-01-01
An airborne temperature-compensated hot-film anemometer system has been designed, fabricated, and used to obtain in-flight airfoil boundary-layer flow transition data by the NASA Ames-Dryden Flight Research Facility. Salient features of the anemometer include near constant sensitivity over the full flight envelope, installation without coaxial wiring, low-noise outputs, and self-contained signal conditioning with dynamic and steady-state outputs. The small size, low-power dissipation, and modular design make the anemometer suitable for use in modern high-performance research aircraft. Design of the temperature-compensated hot-film anemometer and its use for flow transition detection on a laminar flow flight research project are described. Also presented are data gathered in flight which is representative of the temperature-compensated hot-film anemometer operation at subsonic, transonic, and supersonic flight conditions.
DECORRELATION TIMES OF PHOTOSPHERIC FIELDS AND FLOWS
Energy Technology Data Exchange (ETDEWEB)
Welsch, B. T. [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States); Kusano, K.; Yamamoto, T. T. [Solar Terrestrial Environment Laboratory, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Muglach, K. [Code 674, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)
2012-03-10
We use autocorrelation to investigate evolution in flow fields inferred by applying Fourier local correlation tracking (FLCT) to a sequence of high-resolution (0.''3), high-cadence ({approx_equal} 2 minute) line-of-sight magnetograms of NOAA active region (AR) 10930 recorded by the narrowband filter imager of the Solar Optical Telescope aboard the Hinode satellite over 2006 December 12 and 13. To baseline the timescales of flow evolution, we also autocorrelated the magnetograms, at several spatial binnings, to characterize the lifetimes of active region magnetic structures versus spatial scale. Autocorrelation of flow maps can be used to optimize tracking parameters, to understand tracking algorithms' susceptibility to noise, and to estimate flow lifetimes. Tracking parameters varied include: time interval {Delta}t between magnetogram pairs tracked, spatial binning applied to the magnetograms, and windowing parameter {sigma} used in FLCT. Flow structures vary over a range of spatial and temporal scales (including unresolved scales), so tracked flows represent a local average of the flow over a particular range of space and time. We define flow lifetime to be the flow decorrelation time, {tau}. For {Delta}t > {tau}, tracking results represent the average velocity over one or more flow lifetimes. We analyze lifetimes of flow components, divergences, and curls as functions of magnetic field strength and spatial scale. We find a significant trend of increasing lifetimes of flow components, divergences, and curls with field strength, consistent with Lorentz forces partially governing flows in the active photosphere, as well as strong trends of increasing flow lifetime and decreasing magnitudes with increases in both spatial scale and {Delta}t.
Decorrelation Times of Photospheric Fields and Flows
Welsch, B. T.; Kusano, K.; Yamamoto, T. T.; Muglach, K.
2012-01-01
We use autocorrelation to investigate evolution in flow fields inferred by applying Fourier Local Correlation Tracking (FLCT) to a sequence of high-resolution (0.3 "), high-cadence (approx = 2 min) line-of-sight magnetograms of NOAA active region (AR) 10930 recorded by the Narrowband Filter Imager (NFI) of the Solar Optical Telescope (SOT) aboard the Hinode satellite over 12 - 13 December 2006. To baseline the timescales of flow evolution, we also autocorrelated the magnetograms, at several spatial binnings, to characterize the lifetimes of active region magnetic structures versus spatial scale. Autocorrelation of flow maps can be used to optimize tracking parameters, to understand tracking algorithms f susceptibility to noise, and to estimate flow lifetimes. Tracking parameters varied include: time interval Delta t between magnetogram pairs tracked, spatial binning applied to the magnetograms, and windowing parameter sigma used in FLCT. Flow structures vary over a range of spatial and temporal scales (including unresolved scales), so tracked flows represent a local average of the flow over a particular range of space and time. We define flow lifetime to be the flow decorrelation time, tau . For Delta t > tau, tracking results represent the average velocity over one or more flow lifetimes. We analyze lifetimes of flow components, divergences, and curls as functions of magnetic field strength and spatial scale. We find a significant trend of increasing lifetimes of flow components, divergences, and curls with field strength, consistent with Lorentz forces partially governing flows in the active photosphere, as well as strong trends of increasing flow lifetime and decreasing magnitudes with increases in both spatial scale and Delta t.
Supersonic unstalled flutter. [aerodynamic loading of thin airfoils induced by cascade motion
Adamczyk, J. J.; Goldstein, M. E.; Hartmann, M. J.
1978-01-01
Flutter analyses were developed to predict the onset of supersonic unstalled flutter of a cascade of two-dimensional airfoils. The first of these analyzes the onset of supersonic flutter at low levels of aerodynamic loading (i.e., backpressure), while the second examines the occurrence of supersonic flutter at moderate levels of aerodynamic loading. Both of these analyses are based on the linearized unsteady inviscid equations of gas dynamics to model the flow field surrounding the cascade. These analyses are utilized in a parametric study to show the effects of cascade geometry, inlet Mach number, and backpressure on the onset of single and multi degree of freedom unstalled supersonic flutter. Several of the results are correlated against experimental qualitative observation to validate the models.
Vector Fields and Flows on Differentiable Stacks
DEFF Research Database (Denmark)
A. Hepworth, Richard
2009-01-01
This paper introduces the notions of vector field and flow on a general differentiable stack. Our main theorem states that the flow of a vector field on a compact proper differentiable stack exists and is unique up to a uniquely determined 2-cell. This extends the usual result on the existence...... and uniqueness of flows on a manifold as well as the author's existing results for orbifolds. It sets the scene for a discussion of Morse Theory on a general proper stack and also paves the way for the categorification of other key aspects of differential geometry such as the tangent bundle and the Lie algebra...
Supersonic induction plasma jet modeling
Energy Technology Data Exchange (ETDEWEB)
Selezneva, S.E. E-mail: svetlana2@hermes.usherbS_Selezneva2@hermes.usherb; Boulos, M.I
2001-06-01
Numerical simulations have been applied to study the argon plasma flow downstream of the induction plasma torch. It is shown that by means of the convergent-divergent nozzle adjustment and chamber pressure reduction, a supersonic plasma jet can be obtained. We investigate the supersonic and a more traditional subsonic plasma jets impinging onto a normal substrate. Comparing to the subsonic jet, the supersonic one is narrower and much faster. Near-substrate velocity and temperature boundary layers are thinner, so the heat flux near the stagnation point is higher in the supersonic jet. The supersonic plasma jet is characterized by the electron overpopulation and the domination of the recombination over the dissociation, resulting into the heating of the electron gas. Because of these processes, the supersonic induction plasma permits to separate spatially different functions (dissociation and ionization, transport and deposition) and to optimize each of them. The considered configuration can be advantageous in some industrial applications, such as plasma-assisted chemical vapor deposition of diamond and polymer-like films and in plasma spraying of nanoscaled powders.
Front propagation in a chaotic flow field
Mehrvarzi, C. O.; Paul, M. R.
2014-07-01
We investigate numerically the dynamics of a propagating front in the presence of a spatiotemporally chaotic flow field. The flow field is the three-dimensional time-dependent state of spiral defect chaos generated by Rayleigh-Bénard convection in a spatially extended domain. Using large-scale parallel numerical simulations, we simultaneously solve the Boussinesq equations and a reaction-advection-diffusion equation with a Fischer-Kolmogorov-Petrovskii-Piskunov reaction for the transport of the scalar species in a large-aspect-ratio cylindrical domain for experimentally accessible conditions. We explore the front dynamics and geometry in the low-Damköhler-number regime, where the effect of the flow field is significant. Our results show that the chaotic flow field enhances the front propagation when compared with a purely cellular flow field. We quantify this enhancement by computing the spreading rate of the reaction products for a range of parameters. We use our results to quantify the complexity of the three-dimensional front geometry for a range of chaotic flow conditions.
Improved modeling techniques for turbomachinery flow fields
Energy Technology Data Exchange (ETDEWEB)
Lakshminarayana, B.; Fagan, J.R. Jr.
1995-12-31
This program has the objective of developing an improved methodology for modeling turbomachinery flow fields, including the prediction of losses and efficiency. Specifically, the program addresses the treatment of the mixing stress tensor terms attributed to deterministic flow field mechanisms required in steady-state Computational Fluid Dynamic (CFD) models for turbomachinery flow fields. These mixing stress tensors arise due to spatial and temporal fluctuations (in an absolute frame of reference) caused by rotor-stator interaction due to various blade rows and by blade-to-blade variation of flow properties. This will be accomplished in a cooperative program by Penn State University and the Allison Engine Company. These tasks include the acquisition of previously unavailable experimental data in a high-speed turbomachinery environment, the use of advanced techniques to analyze the data, and the development of a methodology to treat the deterministic component of the mixing stress tenor.
Flow-synchronous field motion refrigeration
Energy Technology Data Exchange (ETDEWEB)
Hassen, Charles N.
2017-08-22
An improved method to manage the flow of heat in an active regenerator in a magnetocaloric or an electrocaloric heat-pump refrigeration system, in which heat exchange fluid moves synchronously with the motion of a magnetic or electric field. Only a portion of the length of the active regenerator bed is introduced to or removed from the field at one time, and the heat exchange fluid flows from the cold side toward the hot side while the magnetic or electric field moves along the active regenerator bed.
Near Field Screech Noise Computation for an Underexpanded Supersonic Jet by the CE/SE Method
Loh, Ching Y.; Hultgren, Lennart S.; Jorgenson, Philip C. E.
2001-01-01
The space-time conservation element and solution element (CE/SE) method is employed to numerically study the near-field axisymmetric screech-tone noise of a typical underexpanded circular jet issuing from a sonic nozzle. For the computed cases, corresponding to fully expanded Mach numbers of 1.10, 1.15 and 1.19, the self-sustained feedback loop is automatically established. The computed shock-cell structure, acoustic wave length, screech tone frequencies, and sound pressure levels are in good agreement with experimental results.
Flow Fields at Tooting Crater, Mars
Mouginis-Mark, P. J.; Garbeil, H.
2007-12-01
HiRISE images of the impact crater Tooting (~29 km dia., located at 23.4°N, 207.5°E) on Mars have revealed a remarkable series of lobate flows on the southern rim, wall and floor of the crater. The origin of these flows has not yet been determined, but their spatial distribution and morphology could indicate that they are flows of impact melt, mudflows, or lava flows. Tooting crater shows numerous signs of being very young (very few superposed impact craters, very high depth/diameter ratio, high thermal inertia ejecta, and a well preserved set of secondary craters), and so allows detailed analysis of these unusual flows, which appear to be almost pristine. We have developed a 2-meter digital elevation model of Tooting using stereo HiRISE images to characterize the flows, which in general are relief close to the crater rim crest. Five discrete segments of this flow exist, including a 1.3 km segment with a discrete 15 m wide central channel and three lobate distal margins. (3) A set of 7 lobes ~700 m long on the inner S wall. These lobes have very well defined central channels ~25 m wide and levees 30 m thick and 300 m wide. These flows no doubt formed in an unusual environment, probably including extensive amounts of impact melt, volatiles released from the substrate, and highly unstable slopes on the crater rim. Tooting crater therefore displays a novel planetary flow field; the correct identification of the origin of these flows holds significance for understanding the role of volatiles in the impact cratering process, the potential of thermal anomalies existing within the crater cavity for extended period of time, and the emplacement of the ejecta. We are therefore developing numerical models, based on the rheology of lava flows, in order to help to resolve the origin of this flow field.
From supersonic shear wave imaging to full-field optical coherence shear wave elastography
Nahas, Amir; Tanter, Mickaël; Nguyen, Thu-Mai; Chassot, Jean-Marie; Fink, Mathias; Claude Boccara, A.
2013-12-01
Elasticity maps of tissue have proved to be particularly useful in providing complementary contrast to ultrasonic imaging, e.g., for cancer diagnosis at the millimeter scale. Optical coherence tomography (OCT) offers an endogenous contrast based on singly backscattered optical waves. Adding complementary contrast to OCT images by recording elasticity maps could also be valuable in improving OCT-based diagnosis at the microscopic scale. Static elastography has been successfully coupled with full-field OCT (FF-OCT) in order to realize both micrometer-scale sectioning and elasticity maps. Nevertheless, static elastography presents a number of drawbacks, mainly when stiffness quantification is required. Here, we describe the combination of two methods: transient elastography, based on speed measurements of shear waves induced by ultrasonic radiation forces, and FF-OCT, an en face OCT approach using an incoherent light source. The use of an ultrafast ultrasonic scanner and an ultrafast camera working at 10,000 to 30,000 images/s made it possible to follow shear wave propagation with both modalities. As expected, FF-OCT is found to be much more sensitive than ultrafast ultrasound to tiny shear vibrations (a few nanometers and micrometers, respectively). Stiffness assessed in gel phantoms and an ex vivo rat brain by FF-OCT is found to be in good agreement with ultrasound shear wave elastography.
Pinkel, I Irving; Serafini, John S; Gregg, John L
1952-01-01
The modifications in the pressure distributions and the aerodynamic coefficients associated with additions of heat to the two-dimensional supersonic in viscid flow field adjacetnt to the lower surface of of a 5-percent-thickness symmetrical circular-arc wing are presented in this report. The pressure distributions are obtained by the use of graphical method which gives the two-dimensional supersonic inviscid flow field obtained with moderate heat addition. The variation is given of the lift-drag ratio and of the aerodynamic coefficients of lift, drag, and moment with free stream Mach number, angle of attack, and parameters defining extent and amount of heat addition. The six graphical solutions used in this study included Mach numbers of 3.0 and 5.0 and angles of attack of 0 degrees and 2 degrees.
Analysis of liposomes using asymmetrical flow field-flow fractionation
DEFF Research Database (Denmark)
Kuntsche, Judith; Decker, Christiane; Fahr, Alfred
2012-01-01
Liposomes composed of dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylglycerol were analyzed by asymmetrical flow field-flow fractionation coupled with multi-angle laser light scattering. In addition to evaluation of fractionation conditions (flow conditions, sample mass, carrier liquid......), radiolabeled drug-loaded liposomes were used to determine the liposome recovery and a potential loss of incorporated drug during fractionation. Neither sample concentration nor the cross-flow gradient distinctly affected the size results but at very low sample concentration (injected mass 5 μg) the fraction...... of larger vesicles was underestimated. Imbalance in the osmolality between the inner and outer aqueous phase resulted in liposome swelling after dilution in hypoosmotic carrier liquids. In contrast, liposome shrinking under hyperosmotic conditions was barely visible. The liposomes themselves eluted...
Madirbaev, V Z; Korobejshchikov, N G; Sharafutdinov, R G
2001-01-01
The processes of energy exchange in the supersonic flows of the argon mixtures with methane and silane, activated by the electron beam, are studied. It is shown, that at the initial stage of condensation in the flux there takes place selective excitation of the argon atoms energy levels. The boundary parameters, whereby the effect of the anomalous radiation excitation is observed, are determined
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The spatial evolution of a T-S wave and its subharmonic wave, introduced at the inlet in a 2-D supersonic mixing layer, was investigated by using DNS. The relationship between the amplitude of the disturbance wave and the strength of the shocklet caused by the disturbance was investigated. We analyzed the shape of the disturbance velocity profile on both sides of the shocklet, and found that the existence of shocklet affected appreciably the disturbance velocity. The effects on the high speed side and low speed side of the mixing layer were found to be different.
Improved modeling techniques for turbomachinery flow fields
Energy Technology Data Exchange (ETDEWEB)
Lakshminarayana, B. [Pennsylvania State Univ., University Park, PA (United States); Fagan, J.R. Jr. [Allison Engine Company, Indianapolis, IN (United States)
1995-10-01
This program has the objective of developing an improved methodology for modeling turbomachinery flow fields, including the prediction of losses and efficiency. Specifically, the program addresses the treatment of the mixing stress tensor terms attributed to deterministic flow field mechanisms required in steady-state Computational Fluid Dynamic (CFD) models for turbo-machinery flow fields. These mixing stress tensors arise due to spatial and temporal fluctuations (in an absolute frame of reference) caused by rotor-stator interaction due to various blade rows and by blade-to-blade variation of flow properties. These tasks include the acquisition of previously unavailable experimental data in a high-speed turbomachinery environment, the use of advanced techniques to analyze the data, and the development of a methodology to treat the deterministic component of the mixing stress tensor. Penn State will lead the effort to make direct measurements of the momentum and thermal mixing stress tensors in high-speed multistage compressor flow field in the turbomachinery laboratory at Penn State. They will also process the data by both conventional and conditional spectrum analysis to derive momentum and thermal mixing stress tensors due to blade-to-blade periodic and aperiodic components, revolution periodic and aperiodic components arising from various blade rows and non-deterministic (which includes random components) correlations. The modeling results from this program will be publicly available and generally applicable to steady-state Navier-Stokes solvers used for turbomachinery component (compressor or turbine) flow field predictions. These models will lead to improved methodology, including loss and efficiency prediction, for the design of high-efficiency turbomachinery and drastically reduce the time required for the design and development cycle of turbomachinery.
Experiments on free and impinging supersonic microjets
Energy Technology Data Exchange (ETDEWEB)
Phalnikar, K.A.; Kumar, R.; Alvi, F.S. [Florida A and M University and Florida State University, Department of Mechanical Engineering, Tallahassee, FL (United States)
2008-05-15
The fluid dynamics of microflows has recently commanded considerable attention because of their potential applications. Until now, with a few exceptions, most of the studies have been limited to low speed flows. This experimental study examines supersonic microjets of 100-1,000 {mu}m in size with exit velocities in the range of 300-500 m/s. Such microjets are presently being used to actively control larger supersonic impinging jets, which occur in STOVL (short takeoff and vertical landing) aircraft, cavity flows, and flow separation. Flow properties of free as well as impinging supersonic microjets have been experimentally investigated over a range of geometric and flow parameters. The flowfield is visualized using a micro-schlieren system with a high magnification. These schlieren images clearly show the characteristic shock cell structure typically observed in larger supersonic jets. Quantitative measurements of the jet decay and spreading rates as well as shock cell spacing are obtained using micro-pitot probe surveys. In general, the mean flow features of free microjets are similar to larger supersonic jets operating at higher Reynolds numbers. However, some differences are also observed, most likely due to pronounced viscous effects associated with jets at these small scales. Limited studies of impinging microjets were also conducted. They reveal that, similar to the behavior of free microjets, the flow structure of impinging microjets strongly resembles that of larger supersonic impinging jets. (orig.)
Experiments on free and impinging supersonic microjets
Phalnikar, K. A.; Kumar, R.; Alvi, F. S.
2008-05-01
The fluid dynamics of microflows has recently commanded considerable attention because of their potential applications. Until now, with a few exceptions, most of the studies have been limited to low speed flows. This experimental study examines supersonic microjets of 100-1,000 μm in size with exit velocities in the range of 300-500 m/s. Such microjets are presently being used to actively control larger supersonic impinging jets, which occur in STOVL (short takeoff and vertical landing) aircraft, cavity flows, and flow separation. Flow properties of free as well as impinging supersonic microjets have been experimentally investigated over a range of geometric and flow parameters. The flowfield is visualized using a micro-schlieren system with a high magnification. These schlieren images clearly show the characteristic shock cell structure typically observed in larger supersonic jets. Quantitative measurements of the jet decay and spreading rates as well as shock cell spacing are obtained using micro-pitot probe surveys. In general, the mean flow features of free microjets are similar to larger supersonic jets operating at higher Reynolds numbers. However, some differences are also observed, most likely due to pronounced viscous effects associated with jets at these small scales. Limited studies of impinging microjets were also conducted. They reveal that, similar to the behavior of free microjets, the flow structure of impinging microjets strongly resembles that of larger supersonic impinging jets.
Walker, D. A.; Ng, W. F.; Walker, M. D.
1988-01-01
The performance of two constant-temperature normal hot-wire techniques in a supersonic flow is examined. The first technique uses a single-wire and rapid scanning of multiple overheat ratios. Time averages of the signals at all overheats are used to separate the mean and rms mass flux, stagnation temperature and their cross-correlation. The second technique uses a dual-wire probe with each wire operating at different overheat ratios, giving instantaneous mass flux and stagnation temperature. Preliminary results indicate that the separation distance (0.18 mm) between the two hot wires in the dual-wire probe does not introduce significant error. However, the rms mass flux inferred from the dual-wire technique is a factor of two higher than that from the single-wire technique.
Flow field mapping in data rack model
Directory of Open Access Journals (Sweden)
Matěcha J.
2013-04-01
Full Text Available The main objective of this study was to map the flow field inside the data rack model, fitted with three 1U server models. The server model is based on the common four-processor 1U server. The main dimensions of the data rack model geometry are taken fully from the real geometry. Only the model was simplified with respect to the greatest possibility in the experimental measurements. The flow field mapping was carried out both experimentally and numerically. PIV (Particle Image Velocimetry method was used for the experimental flow field mapping, when the flow field has been mapped for defined regions within the 2D/3D data rack model. Ansys CFX and OpenFOAM software were used for the numerical solution. Boundary conditions for numerical model were based on data obtained from experimental measurement of velocity profile at the output of the server mockup. This velocity profile was used as the input boundary condition in the calculation. In order to achieve greater consistency of the numerical model with experimental data, the numerical model was modified with regard to the results of experimental measurements. Results from the experimental and numerical measurements were compared and the areas of disparateness were identified. In further steps the obtained proven numerical model will be utilized for the real geometry of data racks and data.
Ratkiewicz, Romana E.; Scherer, Klaus; Fahr, Hans J.; Cuzzi, Jeffrey N. (Technical Monitor)
1994-01-01
The solar system is in relative motion with respect to the ambient interstellar medium. The supersonic solar wind is expected to pass through the termination shock, thus the solar wind plasma eventually has to enter into an asymptotic outflow geometry appropriately adopted to this counterflow situation. Many attempts have been done to simulate the interaction between the solar wind and the LISM numerically. In this paper we generalize a Parker type analytical solution of the counterflow. The idea is to introduce a special kind of compressibility of the solar wind flow. With the assumption that only a transversal component of the density gradient normal to the flow lines exists we are able to calculate a full set of hydrodynamical quantities describing the circumsolar flow field of a Sun moving through the LISM. The equations governing the velocity and density fields lead to analytical solutions which can be taken as good approximations to the more general case of compressible plasma flows.
三组分混合物超音速凝结机理%Condensation mechanism of the ternary mixture in supersonic flows
Institute of Scientific and Technical Information of China (English)
蒋文明; 刘中良; 刘杨
2012-01-01
The supersonic condensation process of a ternary mixture, including methane, water vapor and nonane, in a nozzle was studied in order to understand the condensation mechanism, nucleation and droplet growth rules of water vapor and heavy hydrocarbons from natural gas mixture. Firstly, based on the existing mathematic model of the two-component mixture supersonic condensation and combined with the latest research results at home and abroad, a physical model for the condensation process of the ternary mixture in supersonic flows was built. Secondly, a mathematic model of the ternary mixture supersonic condensation was built and applied in analog computation according to simulation results of the two-component mixture supersonic condensation. The result showed that in the ternary mixture, water vapor begins to condensate spontaneously prior to nonane vapor (x = 4. 0 mm), forming droplets to serve as allochthonous nuclei for nonane vapor condensation and lowering the free energy barrier of nonane vapor. Consequently, nonane vapor begins to condensate at a lower subcooling (38. 3 K) and supersaturation (37. 4). In other words, the occurrence of water vapor in a sense accelerates the condensation process of nonane vapor.%为了解天然气混合物中水蒸气、重烃在喷管内的凝结机理,明确其液滴成核与液滴生长的基本规律,研究了甲烷-水蒸气-壬烷三组分混合物在喷管内的超音速凝结过程.首先在已有双组分混合物超音速凝结数学模型的基础上,结合国外最新研究成果,建立了三组分混合物在喷管内的超音速凝结过程物理模型；然后根据双组分混合物的超音速凝结模拟结果,建立了三组分混合物在喷管内的超音速凝结过程数学模型并进行了模拟计算.结果表明,在甲烷-水蒸气-壬烷混合物中,水蒸气较早出现自发凝结现象(x=4.0 mm),并且形成的水滴充当了壬烷蒸气发生凝结的外界核心,降低了壬烷蒸气发生凝结
Energy Technology Data Exchange (ETDEWEB)
Rocha, Jussie Soares da, E-mail: jussie.soares@ifpi.edu.br [Instituto Federal de Educacao, Ciencia e Tecnologia do Piaui (IFPI), Valenca, PI (Brazil); Maciel, Edisson Savio de G., E-mail: edissonsavio@yahoo.com.br [Instituto Tecnologico de Aeronautica (ITA), Sao Paulo, SP (Brazil); Lira, Carlos A.B. de O., E-mail: cabol@ufpe.edu.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)
2015-07-01
Very High Temperature Gas Cooled Reactors - VHTGRs are studied by several research groups for the development of advanced reactors that can meet the world's growing energy demand. The analysis of the flow of helium coolant around the various geometries at the core of these reactors through computational fluid dynamics techniques is an essential tool in the development of conceptual designs of nuclear power plants that provide added safety. This analysis suggests a close analogy with aeronautical cases widely studied using computational numerical techniques to solve systems of governing equations for the flow involved. The present work consists in solving the Navier-Stokes equations in a conservative form, in two-dimensional space employing a finite difference formulation for spatial discretization using the Euler method for explicit marching in time. The physical problem of supersonic laminar flow of helium gas along a ramp configuration is considered. For this, the Jameson and Mavriplis algorithm and the artificial dissipations models linear and nonlinear of Pulliam was implemented. A spatially variable time step is employed aiming to accelerate the convergence to the steady state solution. The main purpose of this work is to study the cited dissipation models and describe their characteristics in relation to the overall quality of the solution, aiming preliminary results for the development of computational tools of dynamic analysis of helium flow for the VHTGR core. (author)
Harvey, W. D.
1975-01-01
Results are presented of a coordinated experimental and theoretical study of a sound shield concept which aims to provide a means of noise reduction in the test section of supersonic wind tunnels at high Reynolds numbers. The model used consists of a planar array of circular rods aligned with the flow, with adjustable gaps between them for boundary layer removal by suction, i.e., laminar flow control. One of the basic requirements of the present sound shield concept is to achieve sonic cross flow through the gaps in order to prevent lee-side flow disturbances from penetrating back into the shielded region. Tests were conducted at Mach 6 over a local unit Reynolds number range from about 1.2 x 10 to the 6th power to 13.5 x 10 to the 6th power per foot. Measurements of heat transfer, static pressure, and sound levels were made to establish the transition characteristics of the boundary layer on the rod array and the sound shielding effectiveness.
Zhu, Wenbo; Ground, Cody; Maddalena, Luca; Viti, Valerio
2016-09-01
Concentration probes are employed in supersonic flow mixing measurements. Because the typical design of such probes is essentially based on an inviscid, adiabatic, quasi-1D analysis, the scope of this work is to understand better and quantify the severe impact of viscous effects on the probe’s internal gasdynamics and the associated uncertainties in the measured quantities via a computational fluid dynamics analysis. Specifically, the focus is on the augmented errors due to the aforementioned viscous effects when coupled with various cases of probe-flow misalignment, which is a typical scenario encountered in mixing measurements of binary gas compositions (air and helium in the present work) in vortex-dominated flows. Results show phenomena such as shock induced boundary layer separation and the formation of an oblique shock train. These flow features are found to noticeably affect the accuracy of the composition measurement. The errors associated with the inviscid, adiabatic, quasi-1D analysis of the probes are quantified in this study.
Scalar fields, bent branes, and RG flow
Energy Technology Data Exchange (ETDEWEB)
Bazeia, Dionisio [Departamento de Fisica, Universidade Federal da Paraiba, Caixa Postal 5008, 58051-970 Joao Pessoa, Paraiba (Brazil); Brito, Francisco A. [Departamento de Fisica, Universidade Federal de Campina Grande, Caixa Postal 10071, 58109-970 Campina Grande, Paraiba (Brazil); Losano, Laercio [Departamento de Fisica, Universidade Federal da Paraiba, Caixa Postal 5008, 58051-970 Joao Pessoa, Paraiba (Brazil)
2006-11-15
This work deals with braneworld scenarios driven by real scalar fields with standard dynamics. We show how the first-order formalism which exists in the case of four dimensional Minkowski space-time can be extended to de Sitter or anti-de Sitter geometry in the presence of several real scalar fields. We illustrate the results with some examples, and we take advantage of our findings to investigate renormalization group flow. We have found symmetric brane solutions with four-dimensional anti-de Sitter geometry whose holographically dual field theory exhibits a weakly coupled regime at high energy.
Supersonic Jet Interactions in a Plenum Chamber
Directory of Open Access Journals (Sweden)
K. M. Venugopal
2004-07-01
Full Text Available Understanding thè supersonic jet interactions in a plenum chamber is essential for thè design of hot launch systems. Static tests were conducted in a small-scale rocket motor ioaded with a typical nitramine propellaiit to produce a nozzle exit Mach number of 3. This supersonic jet is made to interact with plenum chambers having both open and closed sides. The distance between thè nozzle exit and thè back piate of plenum chamber are varied from 2. 5 to 7. 0 times thè nozzle exit diameter. The pressure rise in thè plenum chamber was measured using pressure transducers mounted at different locatìons. The pressure-time data were analysed to obtain an insight into thè flow field in thè plenum chamber. The maximum pressure exerted on thè back piate of plenum chamber is about 25-35 per cent. of thè maximum stagnation pressure developed in thè rocket motor. Ten static tests were carried out to obtain thè effect of axial distance between thè nozzle exit and thè plenum chamber back piate, and stagnation pressure in thè rocket motoron thè flow field in thè open-sided and closed-sided plenum chambers configurations.
Benson, Thomas J.
2014-01-01
The Method of Characteristics (MOC) is a classic technique for designing supersonic nozzles. An interactive computer program using MOC has been developed to allow engineers to design and analyze supersonic nozzle flow fields. The program calculates the internal flow for many classic designs, such as a supersonic wind tunnel nozzle, an ideal 2D or axisymmetric nozzle, or a variety of plug nozzles. The program also calculates the plume flow produced by the nozzle and the external flow leading to the nozzle exit. The program can be used to assess the interactions between the internal, external and plume flows. By proper design and operation of the nozzle, it may be possible to lessen the strength of the sonic boom produced at the rear of supersonic aircraft. The program can also calculate non-ideal nozzles, such as simple cone flows, to determine flow divergence and nonuniformities at the exit, and its effect on the plume shape. The computer program is written in Java and is provided as free-ware from the NASA Glenn central software server.
Vadyak, J.; Hoffman, J. D.
1982-01-01
A computer program was developed which is capable of calculating the flow field in the supersonic portion of a mixed compression aircraft inlet operating at angle of attack. The supersonic core flow is computed using a second-order three dimensional method-of-characteristics algorithm. The bow shock and the internal shock train are treated discretely using a three dimensional shock fitting procedure. The boundary layer flows are computed using a second-order implicit finite difference method. The shock wave-boundary layer interaction is computed using an integral formulation. The general structure of the computer program is discussed, and a brief description of each subroutine is given. All program input parameters are defined, and a brief discussion on interpretation of the output is provided. A number of sample cases, complete with data listings, are provided.
Interactive flow field around two Savonius turbines
Energy Technology Data Exchange (ETDEWEB)
Shigetomi, Akinari; Murai, Yuichi; Tasaka, Yuji; Takeda, Yasushi [Laboratory for Flow Control, Division of Energy and Environmental System, Faculty of Engineering, Hokkaido University, N13W8, Sapporo 060-8628 (Japan)
2011-02-15
The use of a Savonius type of vertical axis wind turbine is expanding in urban environments as a result of its ability to withstand turbulence as well as its relatively quiet operation. In the past, single turbine performance has been investigated primarily for determining the optimum blade configuration. In contrast, combining multiple Savonius turbines in the horizontal plane produces extra power in particular configurations. This results from the interaction between the two flow fields around individual turbines. To understand quantitatively the interaction mechanism, we measured the flow field around two Savonius turbines in close configurations using particle image velocimetry. The phase-averaged flow fields with respect to the rotation angle of the turbines revealed two types of power-improvement interactions. One comes from the Magnus effect that bends the main stream behind the turbine to provide additional rotation of the downstream turbine. The other is obtained from the periodic coupling of local flow between the two turbines, which is associated with vortex shedding and cyclic pressure fluctuations. Use of this knowledge will assist the design of packaged installations of multiple Savonius turbines. (author)
The Flow Field Inside Ventricle Assist Device
Einav, Shmuel; Rosenfeld, Moshe; Avrahami, Idit
2000-11-01
The evaluation of innovative ventricle assist devices (VAD), is of major importance. A New Left Heart Assist Device, with an improved energy converter unit, has been investigated both numerically and experimentally. For this purpose, an experimental Continuous Digital Particle Imagining Velocimetry (CDPIV) is combined with a computational fluid dynamics (CFD) analysis. These tools complement each other to result into a comprehensive description of the complex 3D, viscous and time-dependent flow field inside the artificial ventricle. A 3D numerical model was constructed to simulate the VAD pump and a time-depended CFD analysis with moving walls was performed to predict the flow behaviour in the VAD during the cardiac cycle. A commercial finite element package was used to solve the Navier-Stokes equations (FIDAP, Fluent Inc., Evanston). In the experimental analysis, an optically clear elastic model of the VAD was placed inside a 2D CDPIV system. The CDPIV system is capable of sampling 15 velocity vector fields per second based on image-pairs intervals lower than 0.5 millisecond. Continuous sequences of experimental images, followed by their calculated velocity transient fields, are given as animated presentation of the distensible VAD. These results are used for validating the CFD simulations. Once validated, the CFD results provide a detailed 3D and time dependent description of the flow field, allowing the identification of stagnation or high shear stress regions.
Flow field of flexible flapping wings
Sallstrom, Erik
The agility and maneuverability of natural fliers would be desirable to incorporate into engineered micro air vehicles (MAVs). However, there is still much for engineers to learn about flapping flight in order to understand how such vehicles can be built for efficient flying. The goal of this study is to develop a methodology for capturing high quality flow field data around flexible flapping wings in a hover environment and to interpret it to gain a better understanding of how aerodynamic forces are generated. The flow field data was captured using particle image velocimetry (PIV) and required that measurements be taken around a repeatable flapping motion to obtain phase-averaged data that could be studied throughout the flapping cycle. Therefore, the study includes the development of flapping devices with a simple repeatable single degree of freedom flapping motion. The acquired flow field data has been examined qualitatively and quantitatively to investigate the mechanisms behind force production in hovering flight and to relate it to observations in previous research. Specifically, the flow fields have been investigated around a rigid wing and several carbon fiber reinforced flexible membrane wings. Throughout the whole study the wings were actuated with either a sinusoidal or a semi-linear flapping motion. The semi-linear flapping motion holds the commanded angular velocity nearly constant through half of each half-stroke while the sinusoidal motion is always either accelerating or decelerating. The flow fields were investigated by examining vorticity and vortex structures, using the Q criterion as the definition for the latter, in two and three dimensions. The measurements were combined with wing deflection measurements to demonstrate some of the key links in how the fluid-structure interactions generated aerodynamic forces. The flow fields were also used to calculate the forces generated by the flapping wings using momentum balance methods which yielded
内送粉超声速等离子喷涂流场特性分析%Numerical Analysis of Plasma Flow with Supersonic Plasma Gun
Institute of Scientific and Technical Information of China (English)
谭超; 魏正英; 魏培; 李本强; 韩志海
2015-01-01
应用流体控制方程、传热传质方程、粒子输运方程、Maxwell电磁场方程建立多场耦合数学模型，通过数值计算方法研究超声速等离子喷枪内外等离子体流动特性。所采用的内送粉三维模型包含阴、阳电极固体以及阳极边界层区域，考虑了等离子气体的电离与复合反应，以及局域热平衡效应，得到了超声速等离子喷涂在纯氩和氩氢混合气氛中的气流温度场、速度场分布以及电弧电压分布。结果表明：在加入氢之后，喷枪内等离子体温度提高了30%，速度提高了67%；喷枪外气流速度和温度在距喷嘴出口0~50mm间梯度变化大于喷涂距离50~100mm，且径向速度和温度梯度变化随着喷涂距离增大越来越小。计算得到的电弧电压与测量值相差4.4%，说明了考虑阳极边界层后计算模型的合理性。%A multi-physic fields coupling mathematical model was established using fluid controlling equa⁃tions,heat and mass transfer equations,species transport equations and Maxwell's electromagnetic equations, to predict flow field characteristics inside and outside supersonic plasma gun. The three-dimensional model con⁃tained cathode,anode and anode boundary layers,and took ionization and recombination reactions,as well as non-local thermal equilibrium into consideration. The contours of temperature and velocity of plasma jet were dis⁃played under argon and argon-hydrogen working conditions, and arc voltage was also described. The results show that gas temperature inside plasma gun increases by 30%, and velocity increases by 67%after hydrogen was added to working gas. Besides,gas temperature and velocity decrease more sharply at distance of 0~50mm from nozzle exit than that of 50~100mm,while the decrease rate of the velocity and temperature are reduced with increasing axial distance. The relative error of calculated arc voltage is 4.4%,compared with measured value,il⁃lustrating the
Properties of Supersonic Evershed Downflows
Pozuelo, S. Esteban; Bellot Rubio, L. R.; de la Cruz Rodríguez, J.
2016-12-01
We study supersonic Evershed downflows in a sunspot penumbra by means of high spatial resolution spectropolarimetric data acquired in the Fe i 617.3 nm line with the CRISP instrument at the Swedish 1 m Solar Telescope. Physical observables, such as Dopplergrams calculated from line bisectors and Stokes V zero-crossing wavelengths, and Stokes V maps in the far red-wing, are used to find regions where supersonic Evershed downflows may exist. We retrieve the line-of-sight velocity and the magnetic field vector in these regions using two-component inversions of the observed Stokes profiles with the help of the SIR code. We follow these regions during their lifetime to study their temporal behavior. Finally, we carry out a statistical analysis of the detected supersonic downflows to characterize their physical properties. Supersonic downflows are contained in compact patches moving outward, which are located in the mid- and outer penumbra. They are observed as bright, roundish structures at the outer end of penumbral filaments that resemble penumbral grains. The patches may undergo fragmentations and mergings during their lifetime; some of them are recurrent. Supersonic downflows are associated with strong and rather vertical magnetic fields with a reversed polarity compared to that of the sunspot. Our results suggest that downflows returning back to the solar surface with supersonic velocities are abruptly stopped in dense deep layers and produce a shock. Consequently, this shock enhances the temperature and is detected as a bright grain in the continuum filtergrams, which could explain the existence of outward-moving grains in the mid- and outer penumbra.
Institute of Scientific and Technical Information of China (English)
黄思源; 桂业伟; 白菡尘
2012-01-01
通过对高温超声速流中爆震波性质的研究,评估其在高超声速冲压发动机燃烧室的燃烧组织中应用的可行性,并通过数值模拟对分析结论进行了验证。提出了一种新的爆震波起爆机制,注入高温超声速流中的燃料混气可通过自身缓慢的释热使流动进入局域热壅塞状态,进而借助局域热壅塞产生的激波实现爆震波的起爆。计算结果表明在适宜的温度与马赫数条件下,注入高温超声速流中的燃料可通过新的起爆机制在超声速流中形成一道稳定的驻定爆震波。表明在高超声速冲压发动机燃烧室中存在着通过驻定爆震波实现火焰稳定的可能性。%To evaluate the feasibility for utilizing the detonation wave to stabilize flame in scramjet combustor,the detona- tion wave characteristic in high temperature environment was studied by numerical simulations. A new initiation mechanism of detonation was presented. The premixed gas injected into high temperature supersonic flow can reach local thermal choking state through the heat released by slow reaction of premixed fuel gas and then a detonation wave can be initiated by shock pro- duced in thermal choking state. The numerical results show that the fuel injected into high temperature supersonic flow can form a standing detonation wave by the new mechanism in some special temperature and Mach number flow conditions. The re- search shows that it is possible utilizing the standing detonation wave to stabilize flame in scramjet combustor.
Study on the Characteristics of Supersonic Coanda Jet
Institute of Scientific and Technical Information of China (English)
ShigeruMatsuo; ShenYu; 等
1998-01-01
Techniques using coanda effect have been applied to the fluid control devices.In this field,experimental studies were so far performed for the spiral jet obtained by the Coanda jet issuing from a conical cylinder with an annular slit ,thrust vectoring of supersonic Coanda jets and so on,It is important from the viewpoints of effective applications to investigate the characteristics of the supersonic coanda jet in detail,In the present study,The effects of pressure rations and nozzle configurations on the characteristics of the supersonic COanda jet have been investigated.experimentally by a schlieren optical method and pressure measurements.Furthermore.Navier-Stokes equations were solved numerically using a 2nd-order TVD finite-volume scheme with a 3rd-order three stage Runge-Kutta method for time integration,κ-ε model was used in the computations.The effects of initial conditions on Coanda flow were investigated numerically.As a result,the simulated flow fields were compared with experimental data in good agreement qualitatively.
Payload mass improvements of supersonic retropropulsive flight for human class missions to Mars
Fagin, Maxwell H.
Supersonic retropropulsion (SRP) is the use of retrorockets to decelerate during atmospheric flight while the vehicle is still traveling in the supersonic/hypersonic flight regime. In the context of Mars exploration, subsonic retropropulsion has a robust flight heritage for terminal landing guidance and control, but all supersonic deceleration has, to date, been performed by non-propulsive (i.e. purely aerodynamic) methods, such as aeroshells and parachutes. Extending the use of retropropulsion from the subsonic to the supersonic regime has been identified as an enabling technology for high mass humans-to-Mars architectures. However, supersonic retropropulsion still poses significant design and control challenges, stemming mainly from the complex interactions between the hypersonic engine plumes, the oncoming air flow, and the vehicle's exterior surface. These interactions lead to flow fields that are difficult to model and produce counter intuitive behaviors that are not present in purely propulsive or purely aerodynamic flight. This study will provide an overview of the work done in the design of SRP systems. Optimal throttle laws for certain trajectories will be derived that leverage aero/propulsive effects to decrease propellant requirements and increase total useful landing mass. A study of the mass savings will be made for a 10 mT reference vehicle based on a propulsive version of the Orion capsule, followed by the 100 mT ellipsoid vehicle assumed by NASA's Mars Design Reference Architecture.
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
In order to study complicated interacting flow field over projectile with lateral jets. External interacting turbulence flow over projectile with lateral jets was numerically simulated firstly in supersonic speed and zero attack angle. The three dimensional Reynolds-averaged NavierStokes equations and implicit finite volume TVD scheme grid of single zone including projectile base was produced by algebraic arithmetic. Body-fitted grid was generated for the lateral nozzle exit successfully so that the nozzle exit can be simulated more accurately. The high Reynolds number two-equation κ-ε turbulence models were used.The main features of the complex flow are captured. The two kinds of flow field over projectile with and without lateral jets are compared from shock structure, pressure of body and base, etc. It shows that lateral jets not only can provide push force, but also change aerodynamics characteristic of projectile significantly. The results are very important for the study of projectile with lateral rocket boosters.``
Analyzing the structure of the optical path difference of the supersonic film cooling
Ding, Haolin; Yi, Shihe; Fu, Jia; He, Lin
2016-10-01
While high-speed aircraft are flying in the atmosphere, its optical-hood is subjected to severe aerodynamic heating. Supersonic film cooling method can effectively isolate external heating, but the flow structures formed by the supersonic film cooling can cause the beam degradation and affect the imaging quality. To research the aero-optics of supersonic film cooling, an experimental model was adopted in this paper, its mainstream Mach number 3.4, designed jet Mach number 2.5, measured jet Mach number 2.45. High-resolution images of flow were acquired by the nano-based planar laser scattering (NPLS) technique, by reconstructing the density field of supersonic film cooling, and then, the optical path difference (OPD) were acquired by the ray-tracing method. Depending on the comparison between K-H vortex and OPD distribution, the valleys of OPD correspond to the vortex `rollers' and the peaks to the `braids'. However, the corresponding relationship becomes quite irregular for the flow field with developed vortices, and cannot be summarized in this manner. And then, the OPD were analyzed by correlation function and structure function, show that, there is a relationship between the shape of OPD correlation function and the vortex structure, the correlation function type changed with the development of the vortex. The correctness that the mixing layer makes a main contribution to the aero-optics of supersonic film cooling was verified, and the structure function of aero-optical distortion has a power relationship that is similar to that of atmospheric optics. At last, the power spectrum corresponding to the typical region of supersonic film cooling were acquired by improved periodgram.
Experimental investigation on the near flow field of dual stream nozzles
Sudhakar, S.; Karthikeyan, N.; Ashwin Kumar, S.
2017-04-01
An experimental investigation was carried out to investigate the effect of beveling of primary nozzle exit in the near field of a dual stream nozzle flow. Two exit geometry configurations of primary stream nozzle viz., (a) circular (b) bevel along with one exit geometry of the secondary stream-circular, were studied. Experiments were carried out at both subsonic and supersonic primary nozzle operating conditions Mp=0.96 and 1.2. The secondary nozzle exit Mach number was maintained at 0.65 and 0.85 respectively to maintain the velocity ratio of 0.7 between the primary and secondary jet. The by-pass ratio for this investigation is maintained at 2.0. Flow visualization using retro-reflective shadowgraph technique was used for the qualitative visualization of the near flow field at the Mach number of 1.2. The mean and turbulent quantities in near flow field were obtained using particle image Velocimetry (2D-PIV). The flow visualization and PIV investigations show significant change in mean and turbulent quantities brought about in the near field due to the beveling of the primary nozzle. PIV results show increase in the potential core length and reduction in turbulence levels in the potential core by the secondary flow regardless of the jet exit geometry. A differential trend is seen in the shear layer growth and the turbulence characteristics between the shorter and longer lips sides of the beveled nozzle. In the dual stream configurations, bevel nozzle shows lower Reynolds stress values than the circular one except in the shorter lip side at the larger downstream locations.
Energy Technology Data Exchange (ETDEWEB)
Almenara, E.; Hidalgo, M.; Saviron, J. M.
1980-07-01
This Report gives preliminary information about a Monte Carlo procedure to simulate supersonic flow past a body of a low density plasma in the transition regime. A computer program has been written for a UNIVAC 1108 machine to account for a plasma composed by neutral molecules and positive and negative ions. Different and rather general body geometries can be analyzed. Special attention is played to tho detached shock waves growth In front of the body. (Author) 30 refs.
Estimation of Dense Image Flow Fields in Fluids
DEFF Research Database (Denmark)
Larsen, Rasmus; Conradsen, Knut; Ersbøll, Bjarne Kjær
1998-01-01
The estimation of flow fields from time sequences of satellite imagery has a number of important applications. For visualisation of cloud or sea ice movements in sequences of crude temporal sampling a satisfactory non-blurred temporal interpolation can be performed only when the flow field...... images. The estimated flow fields are used in a temporal interpolation scheme....
Detonation in supersonic radial outflow
Kasimov, Aslan R.
2014-11-07
We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations are carried out in order to explore the stability of the steady-state solutions. It is found that both collapsing and expanding two-dimensional cellular detonations exist. The latter can be stabilized by putting several rigid obstacles in the flow downstream of the steady-state sonic locus. The problem of initiation of standing detonation stabilized in the radial flow is also investigated numerically. © 2014 Cambridge University Press.
Brooks, Gregory P.; Powers, Joseph M.
2004-03-01
A novel Karhunen-Loève (KL) least-squares model for the supersonic flow of an inviscid, calorically perfect ideal gas about an axisymmetric blunt body employing shock-fitting is developed; the KL least-squares model is used to accurately select an optimal configuration which minimizes drag. Accuracy and efficiency of the KL method is compared to a pseudospectral method employing global Lagrange interpolating polynomials. KL modes are derived from pseudospectral solutions at Mach 3.5 from a uniform sampling of the design space and subsequently employed as the trial functions for a least-squares method of weighted residuals. Results are presented showing the high accuracy of the method with less than 10 KL modes. Close agreement is found between the optimal geometry found using the KL model to that found from the pseudospectral solver. Not including the cost of sampling the design space and building the KL model, the KL least-squares method requires less than half the central processing unit time as the pseudospectral method to achieve the same level of accuracy. A decrease in computational cost of several orders of magnitude as reported in the literature when comparing the KL method against discrete solvers is shown not to hold for the current problem. The efficiency is lost because the nature of the nonlinearity renders a priori evaluation of certain necessary integrals impossible, requiring as a consequence many costly reevaluations of the integrals.
Nagata, T.; Nonomura, T.; Takahashi, S.; Mizuno, Y.; Fukuda, K.
2016-05-01
In this study, analysis of flow properties around a sphere and its aerodynamic coefficients in the high-Mach-and-low-Reynolds-numbers conditions is carried out by direct numerical simulations solving the three-dimensional compressible Navier-Stokes equations. The calculation is performed on a boundary-fitted coordinate system with a high-order scheme of sufficient accuracy. The analysis is conducted by assuming a rigid sphere with a Reynolds number of between 50 and 300, based on the diameter of the sphere and the freestream velocity and a freestream Mach number of between 0.3 and 2.0, together with the adiabatic wall boundary condition. The calculation shows the following yields: (1) unsteady fluctuation of hydrodynamic forces become smaller as the Mach number increases under the same Reynolds number condition, (2) the drag coefficient increases with the Mach number due to an increase in the pressure drag by the shock wave, and (3) an accurate prediction of the drag coefficient in the supersonic regime using traditional models might be difficult.
Observations of the field-aligned residual flow inside magnetic cloud structure
Institute of Scientific and Technical Information of China (English)
LI HuiJun; FENG XueShang; ZUO PingBing; XIE YanQiong
2009-01-01
In this paper, we report two MC events observed by WIND spacecraft with good examples of field-aligned residual flow inside the MC structure. For both events, the co-moving frames are determined through the deHoffman-Teller (HT) analysis and the axial orientations are inferred by the newly devel-oped minimal residue (MR) method. The nature coordinate system for both events are constructed with velocity of the HT frame and the inferred MC axis, the field and flow remaining in the HT frame are analyzed st this coordinate system. As a result, we find that the residual flows in the co-moving HT frame of the two MC events are almost anti-parallel to the helical magnetic field. We speculate that the field-aligned residual flows are large scale coherent hydrodynamic vortices co-moving with the MCs at the supersonic speed near 1 AU. Data analyses show that the event in slow ambient solar wind is ex- panding at 1 AU and another one in fast solar wind does not show apparent expansion. Proton behav-iors for both events are quasi-isothermal. Accelerated HT analysis shows that both events have no suitable HT frame with constant accelerations, which suggests that both events may be moving at the constant speed near 1 AU under the assumptions of the HT analysis. For both events, the ratio of the dynamic pressure to the magnetic pressure is larger than that of the thermal pressure to magnetic pressure, which suggests that the dynamic effects due to the plasma flows remaining in the co-moving HT frame are more important than the thermal effects in the study of MC evolution and propagation.
Interaction of a swept shock wave and a supersonic wake
He, G.; Zhao, Y. X.; Zhou, J.
2017-03-01
The interaction of a swept shock wave and a supersonic wake has been studied. The swept shock wave is generated by a swept compression sidewall, and the supersonic wake is generated by a wake generator. The flow field is visualized with the nanoparticle-based planar laser scattering method, and a supplementary numerical simulation is conducted by solving the Reynolds-averaged Navier-Stokes equations. The results show that the pressure rise induced by the swept shock wave can propagate upstream in the wake, which makes the location where vortices are generated move upstream, thickens the laminar section of the wake, and enlarges the generated vortices. The wake is swept away from the swept compression sidewall by the pressure gradient of the swept shock wave. This pressure gradient is not aligned with the density gradient of the supersonic wake, so the baroclinic torque generates streamwise vorticity and changes the distribution of the spanwise vorticity. The wake shock is curved, so the flow downstream of it is non-uniform, leaving the swept shock wave being distorted. A three-dimensional Mach disk structure is generated when the wake shock interacts with the swept shock wave.
Interaction of a swept shock wave and a supersonic wake
He, G.; Zhao, Y. X.; Zhou, J.
2017-09-01
The interaction of a swept shock wave and a supersonic wake has been studied. The swept shock wave is generated by a swept compression sidewall, and the supersonic wake is generated by a wake generator. The flow field is visualized with the nanoparticle-based planar laser scattering method, and a supplementary numerical simulation is conducted by solving the Reynolds-averaged Navier-Stokes equations. The results show that the pressure rise induced by the swept shock wave can propagate upstream in the wake, which makes the location where vortices are generated move upstream, thickens the laminar section of the wake, and enlarges the generated vortices. The wake is swept away from the swept compression sidewall by the pressure gradient of the swept shock wave. This pressure gradient is not aligned with the density gradient of the supersonic wake, so the baroclinic torque generates streamwise vorticity and changes the distribution of the spanwise vorticity. The wake shock is curved, so the flow downstream of it is non-uniform, leaving the swept shock wave being distorted. A three-dimensional Mach disk structure is generated when the wake shock interacts with the swept shock wave.
Properties of Supersonic Evershed Downflows
Pozuelo, Sara Esteban; Rodriguez, Jaime de la Cruz
2016-01-01
We study supersonic Evershed downflows in a sunspot penumbra by means of high spatial resolution spectropolarimetric data acquired in the Fe I 617.3 nm line with the CRISP instrument at the Swedish 1-m Solar Telescope. Physical observables, such as Dopplergrams calculated from line bisectors and Stokes V zero-crossing wavelengths, and Stokes V maps in the far red wing, are used to find regions where supersonic Evershed downflows may exist. We retrieve the LOS velocity and the magnetic field vector in these regions using two-component inversions of the observed Stokes profiles with the help of the SIR code. We follow these regions during their lifetime to study their temporal behavior. Finally, we carry out a statistical analysis of the detected supersonic downflows to characterize their physical properties. Supersonic downflows are contained in compact patches moving outward, which are located in the mid and outer penumbra. They are observed as bright, roundish structures at the outer end of penumbral filamen...
Water Modeling of Optimizing Tundish Flow Field
Institute of Scientific and Technical Information of China (English)
LIU Jin-gang; YAN Hui-cheng; LIU Liu; WANG Xin-hua
2007-01-01
In the water modeling experiments, three cases were considered, i.e. , a bare tundish, a tundish equipped with a turbulence inhibitor, and a rectangular tundish equipped with weirs (dams) and a turbulence inhibitor. Comparing the RTD curves, inclusion separation, and the result of the streamline experiment, it can be found that the tundish equipped with weirs (dams) and a turbulence inhibitor has a great effect on the flow field and the inclusion separation when compared with the sole use or no use of the turbulent inhibitor or weirs (dams). In addition, the enlargement of the distance between the weir and dam will result in a better effect when the tundish equipped with weirs (dam) and a turbulence inhibitor was used.
Flow field interactions between two tandem cyclists
Barry, Nathan; Burton, David; Sheridan, John; Thompson, Mark; Brown, Nicholas A. T.
2016-12-01
Aerodynamic drag is the primary resistive force acting on cyclists at racing speeds. Many events involve cyclists travelling in very close proximity. Previous studies have shown that interactions result in significant drag reductions for inline cyclists. However, the interaction between cyclist leg position (pedalling) and the vortical flow structures that contribute significantly to the drag on an isolated cyclist has not previously been quantified or described for tandem cyclists of varying separation. To this end, scale model cyclists were constructed for testing in a water channel for inline tandem configurations. Particle image velocimetry was used to capture time-averaged velocity fields around two tandem cyclists. Perhaps surprisingly, the wake of a trailing cyclist maintains strong similarity to the characteristic wake of a single cyclist despite a significant disturbance to the upstream flow. Together with streamwise velocity measurements through the wake and upstream of the trailing cyclist, this work supports previous findings, which showed that the trailing cyclist drag reduction is primarily due to upstream sheltering effects reducing the stagnation pressure on forward-facing surfaces.
Mckenzie, R. L.; Gross, K. P.; Logan, P.
1985-01-01
A pulsed laser-induced fluorescence technique is described that provides simultaneous measurements of temperature, density, and pressure in low-temperature, turbulent flows. The measurements are made with spatial and temporal resolution comparable to that obtained with modern laser anemometer techniques used for turbulent boundary layer research. The capabilities of the method are briefly described and its demonstration in a simple two-dimensional turbulent boundary layer at Mach 2 is reported. The results are compared with conventional hot-wire anemometer data obtained in the same flow.
Observations of the field-aligned residual flow inside magnetic cloud structure
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
In this paper,we report two MC events observed by WIND spacecraft with good examples of fieldaligned residual flow inside the MC structure. For both events,the co-moving frames are determined through the deHoffman-Teller (HT) analysis and the axial orientations are inferred by the newly developed minimal residue (MR) method. The nature coordinate system for both events are constructed with velocity of the HT frame and the inferred MC axis,the field and flow remaining in the HT frame are analyzed at this coordinate system. As a result,we find that the residual flows in the co-moving HT frame of the two MC events are almost anti-parallel to the helical magnetic field. We speculate that the field-aligned residual flows are large scale coherent hydrodynamic vortices co-moving with the MCs at the supersonic speed near 1 AU. Data analyses show that the event in slow ambient solar wind is expanding at 1 AU and another one in fast solar wind does not show apparent expansion. Proton behaviors for both events are quasi-isothermal. Accelerated HT analysis shows that both events have no suitable HT frame with constant accelerations,which suggests that both events may be moving at the constant speed near 1 AU under the assumptions of the HT analysis. For both events,the ratio of the dynamic pressure to the magnetic pressure is larger than that of the thermal pressure to magnetic pressure,which suggests that the dynamic effects due to the plasma flows remaining in the co-moving HT frame are more important than the thermal effects in the study of MC evolution and propagation.
Development of the 1990 Kalapana Flow Field, Kilauea Volcano, Hawaii
Mattox, T.N.; Heliker, C.; Kauahikaua, J.; Hon, K.
1993-01-01
The 1990 Kalapana flow field is a complex patchwork of tube-fed pahoehoe flows erupted from the Kupaianaha vent at a low effusion rate (approximately 3.5 m3/s). These flows accumulated over an 11-month period on the coastal plain of Kilauea Volcano, where the pre-eruption slope angle was less than 2??. the composite field thickened by the addition of new flows to its surface, as well as by inflation of these flows and flows emplaced earlier. Two major flow types were identified during the development of the flow field: large primary flows and smaller breakouts that extruded from inflated primary flows. Primary flows advanced more quickly and covered new land at a much higher rate than breakouts. The cumulative area covered by breakouts exceeded that of primary flows, although breakouts frequently covered areas already buried by recent flows. Lava tubes established within primary flows were longer-lived than those formed within breakouts and were often reoccupied by lava after a brief hiatus in supply; tubes within breakouts were never reoccupied once the supply was interrupted. During intervals of steady supply from the vent, the daily areal coverage by lava in Kalapana was constant, whereas the forward advance of the flows was sporadic. This implies that planimetric area, rather than flow length, provides the best indicator of effusion rate for pahoehoe flow fields that form on lowangle slopes. ?? 1993 Springer-Verlag.
Coherent structures in a supersonic complex nozzle
Magstadt, Andrew; Berry, Matthew; Glauser, Mark
2016-11-01
The jet flow from a complex supersonic nozzle is studied through experimental measurements. The nozzle's geometry is motivated by future engine designs for high-performance civilian and military aircraft. This rectangular jet has a single plane of symmetry, an additional shear layer (referred to as a wall jet), and an aft deck representative of airframe integration. The core flow operates at a Mach number of Mj , c = 1 . 6 , and the wall jet is choked (Mj , w = 1 . 0). This high Reynolds number jet flow is comprised of intense turbulence levels, an intricate shock structure, shear and boundary layers, and powerful corner vortices. In the present study, stereo PIV measurements are simultaneously sampled with high-speed pressure measurements, which are embedded in the aft deck, and far-field acoustics in the anechoic chamber at Syracuse University. Time-resolved schlieren measurements have indicated the existence of strong flow events at high frequencies, at a Strouhal number of St = 3 . 4 . These appear to result from von Kàrmàn vortex shedding within the nozzle and pervade the entire flow and acoustic domain. Proper orthogonal decomposition is applied on the current data to identify coherent structures in the jet and study the influence of this vortex street. AFOSR Turbulence and Transition Program (Grant No. FA9550-15-1-0435) with program managers Dr. I. Leyva and Dr. R. Ponnappan.
Estimation of fluid flow fields and their stagnation points
DEFF Research Database (Denmark)
Larsen, Rasmus
Given a temporal sequence of images of fluids we will use local polynomials to regularise obser-vations of normal flows into smooth flow fields. This technique furthermore allows us to give a qualitative local description of the flow field and to estimate the position of stagnation points...
Wolf, Stephen W. D.; Laub, James A.; King, Lyndell S.; Reda, Daniel C.
1992-01-01
A unique, low-disturbance supersonic wind tunnel is being developed at NASA-Ames to support supersonic laminar flow control research at cruise Mach numbers of the High Speed Civil Transport (HSCT). The distinctive design features of this new quiet tunnel are a low-disturbance settling chamber, laminar boundary layers along the nozzle/test section walls, and steady supersonic diffuser flow. This paper discusses these important aspects of our quiet tunnel design and the studies necessary to support this design. Experimental results from an 1/8th-scale pilot supersonic wind tunnel are presented and discussed in association with theoretical predictions. Natural laminar flow on the test section walls is demonstrated and both settling chamber and supersonic diffuser performance is examined. The full-scale wind tunnel should be commissioned by the end of 1993.
Flow of a plasma of multielectron elements along a magnetic field
Energy Technology Data Exchange (ETDEWEB)
Timofeev, A. V. [National Research Centre Kurchatov Institute, Institute of Hydrogen Energetics and Plasma Technologies (Russian Federation)
2011-11-15
An analysis is made of a flow of Ar plasma imitating plasma flows in ion separation systems such as systems for processing spent nuclear fuel or ion cyclotron resonance isotope separation systems. It is found that the electron temperature is equalized along the flow by electron heat conduction. When the electron temperature is not too low (T{sub e} {>=} E{sub ion}/10, where E{sub ion} is the ionization energy), multicharged ions are intensely produced along the entire flow. It is shown that this process is accompanied by the flow acceleration. Difficulties in describing a supersonic flow by hydrodynamic equations are pointed out.
Flow Field Simulation and Noise Control of a Twin-Screw Engine-Driven Supercharger
Directory of Open Access Journals (Sweden)
Tao Wang
2016-01-01
Full Text Available With the advantages of good low-speed torque capability and excellent instant response performance, twin-screw superchargers have great potential in the automobile market, but the noise of these superchargers is the main factor that discourages their use. Therefore, it is important to study their noise mechanism and methods of reducing it. This study included a transient numerical simulation of a twin-screw supercharger flow field with computational fluid dynamics software and an analysis of the pressure field of the running rotor. The results showed that overcompression was significant in the compression end stage of the supercharger, resulting in a surge in airflow to a supersonic speed and the production of shock waves that resulted in loud noise. On the basis of these findings, optimization of the supercharger is proposed, including expansion of the supercharger exhaust orifice and creation of a slot along the direction of the rotor spiral normal line at the exhaust port, so as to reduce the compression end pressure, improve the exhaust flow channel, and weaken the source of the noise. Experimental results showed that the noise level value of the improved twin-screw supercharger was significantly lower at the same speed than the original model, with an average decrease of about 5 dB (A.
Investigation of nonlinear turbulence models for separated supersonic flows%超声速分离流非线性湍流模式的研究
Institute of Scientific and Technical Information of China (English)
杨晓东; 马晖扬
2002-01-01
本文在低雷诺数k-ε两方程框架下,应用八个常见的非线性湍流模式,对两个激波/边界层相互作用诱导分离的超声速流动进行了研究.采用的非线性模式有:二阶模式(Wilcox & Rubesin (1980), Shih, Zhu & Lumley (1993), Shih, Zhu & Lumley (1995), Gatski & Speziale (1993))和三阶模式(Craft, Launder & Suga (1996), Lien & Leschziner (1996), Apsley & Leschziner (1998), Shih (1997)).两个超声速流动为:20°可压缩拐角绕流和轴对称尖顶拱-柱-裙组合体绕流.计算结果表明,对于激波边界层相互作用,在不做任何可压缩性修正的情况下,非线性模式并没有给出明显优于线性模式的结果.%Eight popular nonlinear turbulence models under low-Re k-ε framework have been tested and validated against experimental data of two supersonic flows with shock-wave/ boundary-layer interaction including separation. These models are: the nonlinear quadratic models ( Wilcox & Rubesin (1980), Shih, Zhu & Lumley (1993), Shih, Zhu & Lumley (1995), Gatski & Speziale (1993) ) and the nonlinear cubic models ( Craft, Launder & Suga (1996), Lien & Leschziner (1996), Apsley & Leschziner (1998), Shih (1997) ). The configurations consist of a 20°compression corner and an axisymmetric ogive-cylinder-flare. The computational results show that nonlinear models yield little improvement over linear models without any compressibility correction.
高速PIV布撒技术的改进研究%Research on Improving Technique of PIV Seeding in Hyper/supersonic Flow
Institute of Scientific and Technical Information of China (English)
王新元
2014-01-01
Based on the developed technique of Hypersonic Innovation Technique Laboratory of SJTU, the new PIV seeding system in hyper/supersonic flow is developed and improved.The new PIV seeding system is redesigned by im-proving the conduit,high pressure gas source and nozzle to overcome the instability of effective seeding of the old sys-tem. Flexibility of conduit,high press dry nitrogen and turbulence nozzle are used to reconstruct the system. The recon-struction was analyzed and experimentally tested, which shows that seeding effect is improved. At last, more directions to improve the system are offered.%基于上海交通大学高超创新实验室现有技术，为发展高速PIV技术而改进开发了高速PIV粒子布撒系统。针对原有系统经常无法有效布撒粒子的缺陷，从系统中的管道、高压气体、喷嘴等几个方向下手进行改造，设计了新的高速PIV粒子布撒系统。对管道进行了软管化设计，高压气体采用干燥的氮气，喷嘴则设计成能在罐体中产生旋流的结构。对于这些改造进行了分析和实验测试，证明了这些改造能加强布撒粒子的效果。最后提出了这套系统可以继续改进的一些方向。
A Study of Coaxial Rotor Performance and Flow Field Characteristics
2016-01-22
A Study of Coaxial Rotor Performance and Flow Field Characteristics Natasha L. Barbely Aerospace Engineer NASA Ames Research Center Moffett Field...The pressure field generated by the two airfoils aided our interpretation of the more complex coaxial rotor system flow field. The pressure fields...velocity (ft/sec) Z vertical distance between rotors (ft) αS pitch angle (deg), negative pitch down κint coaxial rotor induced power interference
Magnetohydrodynamic channel flows with weak transverse magnetic fields.
Rothmayer, A P
2014-07-28
Magnetohydrodynamic flow of an incompressible fluid through a plane channel with slowly varying walls and a magnetic field applied transverse to the channel is investigated in the high Reynolds number limit. It is found that the magnetic field can first influence the hydrodynamic flow when the Hartmann number reaches a sufficiently large value. The magnetic field is found to suppress the steady and unsteady viscous flow near the channel walls unless the wall shapes become large.
Simulating Supersonic Turbulence in Galaxy Outflows
Scannapieco, Evan
2010-01-01
We present three-dimensional, adaptive mesh simulations of dwarf galaxy out- flows driven by supersonic turbulence. Here we develop a subgrid model to track not only the thermal and bulk velocities of the gas, but also its turbulent velocities and length scales. This allows us to deposit energy from supernovae directly into supersonic turbulence, which acts on scales much larger than a particle mean free path, but much smaller than resolved large-scale flows. Unlike previous approaches, we are able to simulate a starbursting galaxy modeled after NGC 1569, with realistic radiative cooling throughout the simulation. Pockets of hot, diffuse gas around individual OB associations sweep up thick shells of material that persist for long times due to the cooling instability. The overlapping of high-pressure, rarefied regions leads to a collective central outflow that escapes the galaxy by eating away at the exterior gas through turbulent mixing, rather than gathering it into a thin, unstable shell. Supersonic, turbul...
Asymmetric flow field-flow fractionation in the field of nanomedicine.
Wagner, Michael; Holzschuh, Stephan; Traeger, Anja; Fahr, Alfred; Schubert, Ulrich S
2014-06-01
Asymmetric flow field-flow fractionation (AF4) is a widely used and versatile technique in the family of field-flow fractionations, indicated by a rapidly increasing number of publications. It represents a gentle separation and characterization method, where nonspecific interactions are reduced to a minimum, allows a broad separation range from several nano- up to micrometers and enables a superior characterization of homo- and heterogenic systems. In particular, coupling to multiangle light scattering provides detailed access to sample properties. Information about molar mass, polydispersity, size, shape/conformation, or density can be obtained nearly independent of the used material. In this Perspective, the application and progress of AF4 for (bio)macromolecules and colloids, relevant for "nano" medical and pharmaceutical issues, will be presented. The characterization of different nanosized drug or gene delivery systems, e.g., polymers, nanoparticles, micelles, dendrimers, liposomes, polyplexes, and virus-like-particles (VLP), as well as therapeutic relevant proteins, antibodies, and nanoparticles for diagnostic usage will be discussed. Thereby, the variety of obtained information, the advantages and pitfalls of this emerging technique will be highlighted. Additionally, the influence of different fractionation parameters in the separation process is discussed in detail. Moreover, a comprehensive overview is given, concerning the investigated samples, fractionation parameters as membrane types and buffers used as well as the chosen detectors and the corresponding references. The perspective ends up with an outlook to the future.
Improved method of analyzing hot-wire measurements in supersonic turbulence
Logan, Pamela
1989-01-01
The present analysis method for hot-wire data in supersonic turbulence takes sound field effects into account and yields greater accuracy in its treatment of flow variable fluctuations than existing methods despite requiring only a moderately accurate estimate of static pressure fluctuations. The method demonstrates the way in which neglecting pressure fluctuations will affect hot-wire data analysis, as well as indicating the probable direction the errors will take.
Numerical modelling of Mars supersonic disk-gap-band parachute inflation
Gao, Xinglong; Zhang, Qingbin; Tang, Qiangang
2016-06-01
The transient dynamic behaviour of supersonic disk-gap-band parachutes in a Mars entry environment involving fluid structure interactions is studied. Based on the multi-material Arbitrary Lagrange-Euler method, the coupling dynamic model between a viscous compressible fluid and a flexible large deformation structure of the parachute is solved. The inflation performance of a parachute with a fixed forebody under different flow conditions is analysed. The decelerating parameters of the parachute, including drag area, opening loads, and coefficients, are obtained from the supersonic wind tunnel test data from NASA. Meanwhile, the evolution of the three-dimensional shape of the disk-gap-band parachute during supersonic inflation is presented, and the structural dynamic behaviour of the parachute is predicted. Then, the influence of the presence of the capsule on the flow field of the parachute is investigated, and the wake of unsteady fluid and the distribution of shock wave around the supersonic parachute are presented. Finally, the structural dynamic response of the canopy fabric under high-pressure conditions is comparatively analysed. The results show that the disk-gap-band parachute is well inflated without serious collapse. As the Mach numbers increase from 2.0 to 2.5, the drag coefficients gradually decrease, along with a small decrease in inflation time, which corresponds with test results, and proves the validity of the method proposed in this paper.
A survey of drag and heat reduction in supersonic flows by a counterflowing jet and its combinations
Institute of Scientific and Technical Information of China (English)
Wei HUANG
2015-01-01
题目：逆向喷流及其组合体在超声速气流中减阻防热功效研究进展 概总结归纳国内外逆向喷流及其组合体在超声速气流中减阻防热功效的研究进展，并给出逆向喷流在某些应用领域的建议，特别是喷流的不稳定性保护、减阻与热防护之间的权衡以及流动模态转换的工作参数和结构参数临界点选取等。%Drag reduction and thermal protection is very important for hypersonic vehicles, and a counterflowing jet and its combinations is one of the most promising drag and heat release reduction strategies. In the current survey, research progress on the drag and heat release reduction induced by a counterflowing jet and its combinations is summarized. Three combinatorial configurations are considered, namely the combination of the counterflowing jet and a forward-facing cavity, the combination of the counterflowing jet and an aerospike, and the combination of the counterflowing jet and energy deposition. In conclusion, some recommendations are provided, especially for jet instability protection, for the tradeoff between drag and heat release re-ductions, and for the critical points for the operational and geometric parameters in the flow mode transition.
Stewart, Warner L; Schum, Harold J; Wong, Robert Y
1952-01-01
The experimental performance of a modified turbine for driving a supersonic compressor is presented and compared with the performance of the original configuration to illustrate the effect of small changes in the ratio of nozzle-throat area to rotor-throat area. Performance is based on the performance of turbines designed to operate with both blade rows close to choking. On the basis of the results of this investigation, the ratio of areas is concluded to become especially critical in the design of turbines such as those designed to drive high-speed, high-specific weight-flow compressors where the turbine nozzles and rotor are both very close to choking.
2011-01-01
joint team of MSU, CIAM and IGP [25]. The efforts are arrowed on a comparative test of different plasma sources by the criteria of ignition...and IGP [23-24]. Fig.3.1.3. Schlieren images overlapped with the OH PLIF images: (a) Without and (b) with the pulsed discharge. Supersonic
Dispersion of Own Frequency of Ion-Dipole by Supersonic Transverse Wave in Solid
Directory of Open Access Journals (Sweden)
Minasyan V.
2010-10-01
Full Text Available First, we predict an existence of transverse electromagnetic field formed by supersonic transverse wave in solid. This electromagnetic wave acquires frequency and speed of sound, and it propagates along of direction propagation of supersonic wave. We also show that own frequency of ion-dipole depends on frequency of supersonic transverse wave.
NUMERICAL SIMULATION OF FLOW FIELD INSIDE HYDRAULIC SPOOL VALVE
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The finite element method of computational fluid dynamics was applied to simulate the internal flow field in hydraulic spool valve which is one of the most important components in hydraulic technique. The formation of the vortexes with time was investigated under two different flow conditions. Two kinds of flow descriptions including streamline patterns and velocity vector plots were given to show the flow field inside the spool valve clearly, which is of theoretical significance and of practical values to analyze energy loss and fluid noise in the valve and to optimize the intermal flow structure of the valve.
Base flow and exhaust plume interaction. Part 1: Experimental study
Schoones, M.M.J.; Bannink, W.J.
1998-01-01
An experimental study of the flow field along an axi-symmetric body with a single operating exhaust nozzle has been performed in the scope of an investigation on base flow-jet plume interactions. The structure of under-expanded jets in a co-flowing supersonic free stream was described using analytic
Estimation of Centers and Stagnation points in optical flow fields
DEFF Research Database (Denmark)
Larsen, Rasmus
1997-01-01
In a topological sense fluid flows are characterised by their stagnation points. Given a temporal sequence of images of fluids we will consider the application of local polynomials to the estimation of smooth fluid flow fields. The normal flow at intensity contours is estimated from the local...... distribution of spatio-temporal energy, which is sampled using a set of spatio-temporal quadrature filters. These observations of normal flows are then integrated into smooth flow fields by locally approximating first order polynomials in the spatial coordinates to the flow vectors. This technique furthermore...... allows us to give a qualitative local description of the flow field and to estimate the position of stagnation points (e.g. nodes, saddles, and centers). We will apply the algorithm to two data sets. The first sequence consists of infrared images from the meteorological satellite Meteosat. Here...
Estimation of Dense Image Flow Fields in Fluids
DEFF Research Database (Denmark)
Larsen, Rasmus; Conradsen, Knut; Ersbøll, Bjarne Kjær
The estimation of flow fields from time sequences of satellite imagery has a number of important applications. For visualization of cloud or sea ice movements in sequences of crude temporal sampling a satisfactory non blurred temporal interpolation can be performed only when the flow field...... interpolation scheme....
Direct Connect Supersonic Combustion Facility (Research Cell 22)
Federal Laboratory Consortium — Description: RC22 is a continuous-flow, direct-connect supersonic-combustion research facility that is capable of simulating flight conditions from Mach 3.0 to Mach...
Magnetic geometry and particle source drive of supersonic divertor regimes
Bufferand, H.; Ciraolo, G.; Dif-Pradalier, G.; Ghendrih, P.; Tamain, Ph; Marandet, Y.; Serre, E.
2014-12-01
We present a comprehensive picture of the mechanisms driving the transition from subsonic to supersonic flows in tokamak plasmas. We demonstrate that supersonic parallel flows into the divertor volume are ubiquitous at low density and governed by the divertor magnetic geometry. As the density is increased, subsonic divertor plasmas are recovered. On detachment, we show the change in particle source can also drive the transition to a supersonic regime. The comprehensive theoretical analysis is completed by simulations in ITER geometry. Such results are essential in assessing the divertor performance and when interpreting measurements and experimental evidence.
Field methods for measuring concentrated flow erosion
Castillo, C.; Pérez, R.; James, M. R.; Quinton, J. N.; Taguas, E. V.; Gómez, J. A.
2012-04-01
techniques (3D) for measuring erosion from concentrated flow (pole, laser profilemeter, photo-reconstruction and terrestrial LiDAR) The comparison between two- and three-dimensional methods has showed the superiority of the 3D techniques for obtaining accurate cross sectional data. The results from commonly-used 2D methods can be subject to systematic errors in areal cross section that exceed magnitudes of 10 % on average. In particular, the pole simplified method has showed a clear tendency to understimate areas. Laser profilemeter results show that further research on calibrating optical devices for a variety of soil conditions must be carried out to improve its performance. For volume estimations, photo-reconstruction results provided an excellent approximation to terrestrial laser data and demonstrate that this new remote sensing technique has a promising application field in soil erosion studies. 2D approaches involved important errors even over short measurement distances. However, as well as accuracy, the cost and time requirements of a technique must be considered.
Effect of Seeding Particles on the Shock Structure of a Supersonic Jet
Porta, David; Echeverría, Carlos; Stern, Catalina
2012-11-01
The original goal of our work was to measure. With PIV, the velocity field of a supersonic flow produced by the discharge of air through a 4mm cylindrical nozzle. The results were superposed to a shadowgraph and combined with previous density measurements made with a Rayleigh scattering technique. The idea was to see if there were any changes in the flow field, close to the high density areas near the shocks. Shadowgraphs were made with and without seeding particles, (spheres of titanium dioxide). Surprisingly, it was observed that the flow structure with particles was shifted in the direction opposite to the flow with respect to the flow structure obtained without seeds. This result might contradict the belief that the seeding particles do not affect the flow and that the speed of the seeds correspond to the local speed of the flow. We acknowledge support from DGAPA UNAM through project IN117712 and from Facultad de Ciencias UNAM.
Institute of Scientific and Technical Information of China (English)
CAO; Wei
2001-01-01
.0, MNRAS,1992, 256: 349.［25］Hazard, C. , Morton, D. C., Terlevich, R. et al. , Nine new quasi-stellar objects with borad absorption lines, Astrophys.J. , 1984, 282: 33.［26］Osmer, P. S. , Q0353-383: The best case yet for abundance anomalies in quasars, Astrophys. J. , 1980, 237, 666.［27］Hamann, F. , Zuo, L., Tytler, D. , Broad Ne VIII λ774 emission from quasars in the HST-Fos snapshot survey (ABSNAP),Astrophys. J., 1995, 444: L69.［28］Laor, A. , Bahcall, J. N., Jannuzi, B. T. , The ultraviolet emission properties of five low-redshift active galactic unclei at high signal-to-noise ratio and spectral resolution, Astrophys. J., 1994, 420: 110.［29］Barthel, P. D., Tytler, D. R., Thomson, B., Optical spectra of distant radio loud quasars, A&AS, 1990, 82: 339.［30］Schmidt, M., Schneider, D. P., Gunn, J. E., Pc0910 + 5625: An optically selected quasar with a redshift of 4.04, Astro-phys. J., 1987, 321: L7.［31］Adams, M. T., Coleman, G. D., Stockman, H. S. et al., The spectrum of Markarian 132, Astrophys. J., 1978, 228:758.［32］Hammann, F. , Shields, J. C. , Ferland, G. J. et al. , Broad NE VIII lambda 744 emission from the Quasar PG 148 + 549,Astrophys. J., 1995, 454: 688.［33］Baldwin, J. A., McMahon, R., Hazard, C. et al., QSOs with narrow emission lines, Astrophys. J., 1988, 327: 103.［34］Baldwin, J. A. , Burbidge, E. M. , Hazard, C. et al. , A spectroscopic surrvey of 92 QSO candidates, Astrophys. J. ,1973, 185: 739.［35］Baldwin, J. A. , Ferland, G. J. , Korista, K. T., Very high density clumps and out flowing winds in QSO broad-line re-gions, Astrophys. J., 1996, 461: 664.［36］Ferland, G. J., Baldwin, J. A., Korista, K. T., High metal enrichments in luminous quasars, Astrophys. J., 461: 683.［37］Bceker, R. H., Helfand, D. J., White, R. L., The discovery of an X-ray selected radio-loud quasar at z = 3.9 AJ, 1992,104: 531.［38］Schneider, D. P., Lawrence, C. R., Schmide, M. et al., Deep optical and radio observations of the
Supersonic gas shell for puff pinch experiments
Smith, R. S., III; Doggett, W. O.; Roth, I.; Stallings, C.
1982-09-01
An easy-to-fabricate, conical, annular supersonic nozzle has been developed for use in high-power, puff gas z-pinch experiments. A fast responding conical pressure probe has also been developed as an accurate supersonic gas flow diagnostic for evaluating the transient gas jet formed by the nozzle. Density profile measurements show that the magnitude and radial position of the gas annulus are fairly constant with distance from the nozzle, but the gas density in the center of the annulus increases with distance from the nozzle.
Supersonic flutter analysis of thin cracked functionally graded material plates
Natarajan, S; Bordas, S
2012-01-01
In this paper, the flutter behaviour of simply supported square functionally graded material plates immersed in a supersonic flow is studied. An enriched 4-noded quadrilateral element based on field consistency approach is used for this study and the crack is modelled independent of the underlying mesh. The material properties are assumed to be temperature dependent and graded only in the thickness direction. The effective material properties are estimated using the rule of mixtures. The formulation is based on the first order shear deformation theory and the shear correction factors are evaluated employing the energy equivalence principle. The influence of the crack length, the crack orientation, the flow angle and the gradient index on the aerodynamic pressure and the frequency are numerically studied. The results obtained here reveal that the critical frequency and the critical pressure decreases with increase in crack length and it is minimum when the crack is aligned to the flow angle.
Computational analysis of the flow field downstream of flow conditioners
Energy Technology Data Exchange (ETDEWEB)
Erdal, Asbjoern
1997-12-31
Technological innovations are essential for maintaining the competitiveness for the gas companies and here metering technology is one important area. This thesis shows that computational fluid dynamic techniques can be a valuable tool for examination of several parameters that may affect the performance of a flow conditioner (FC). Previous design methods, such as screen theory, could not provide fundamental understanding of how a FC works. The thesis shows, among other things, that the flow pattern through a complex geometry, like a 19-hole plate FC, can be simulated with good accuracy by a k-{epsilon} turbulence model. The calculations illuminate how variations in pressure drop, overall porosity, grading of porosity across the cross-section and the number of holes affects the performance of FCs. These questions have been studied experimentally by researchers for a long time. Now an understanding of the important mechanisms behind efficient FCs emerges from the predictions. 179 ref., 110 figs., 8 tabs.
Field Detection of Chemical Assimilation in A Basaltic Lava Flow
Young, K. E.; Bleacher, J. E.; Needham, D. H.; Evans, C. A.; Whelley, P. L.; Scheidt, S. P.; Williams, D. A.; Rogers, A. D.; Glotch, T.
2017-01-01
Lava channels are features seen throughout the inner Solar System, including on Earth, the Moon, and Mars. Flow emplacement is therefore a crucial process in the shaping of planetary surfaces. Many studies, including some completed by members of this team at the December 1974 lava flow, have investigated the dynamics of lava flow emplacement, both on Earth and on the Moon and how pre-flow terrain can impact final channel morphology, but far fewer have focused on how the compositional characteristics of the substrate over which a flow was em-placed influenced its final flow morphology. Within the length of one flow, it is common for flows to change in morphology, a quality linked to rheology (a function of multiple factors including viscosi-ty, temperature, composition, etc.). The relationship between rheology and temperature has been well-studied but less is known about the relationship between an older flow's chemistry and how the interaction between this flow and the new flow might affect lava rheology and therefore emplacement dynamics. Lava erosion. Through visual observations of active terrestrial flows, mechanical erosion by flowing lava has been well-documented. Lava erosion by which flow composition is altered as the active lava melts and assimilates the pre-flow terrain over which it moves is also hypothesized to affect channel formation. However, there is only one previous field study that geochemically documents the process in recent basaltic flow systems.
Geology of the Tyrrhenus Mons Lava Flow Field, Mars
Crown, David A.; Mest, Scott C.
2014-11-01
The ancient, eroded Martian volcano Tyrrhenus Mons exhibits a central caldera complex, layered flank deposits dissected by radial valleys, and a 1000+ km-long flow field extending to the southwest toward Hellas Planitia. Past studies suggested an early phase of volcanism dominated by large explosive eruptions followed by subsequent effusive activity at the summit and to the southwest. As part of a new geologic mapping study of northeast Hellas, we are examining the volcanic landforms and geologic evolution of the Tyrrhenus Mons flow field, including the timing and nature of fluvial activity and effects on volcanic units. New digital geologic mapping incorporates THEMIS IR (100 m/pixel) and CTX (5 m/pixel) images as well as constraints from MOLA topography.Mapping results to-date include delineation of the boundaries of the flow field, identification and mapping of volcanic and erosional channels within the flow field, and mapping and analysis of lava flow lobes. THEMIS IR and CTX images allow improved discrimination of the numerous flow lobes that are observed in the flow field, including refinement of the margins of previously known flows and identification of additional and smaller lobes. A prominent sinuous rille extending from Tyrrhenus Mons’ summit caldera is a major feature that supplied lava to the flow field. Smaller volcanic channels are common throughout the flow field; some occur in segments along crests of local topographic highs and may delineate lava tubes. In addition to volcanic channels, the flow field surface is characterized by several types of erosional channels, including wide troughs with scour marks, elongate sinuous channels, and discontinuous chains of elongate pits and troughs. High-resolution images reveal the widespread and significant effects of fluvial activity in the region, and further mapping studies will examine spatial and temporal interactions between volcanism and fluvial processes.
Time resolved Schlieren imaging of DBD actuator flow fields
Nourgostar, Cyrus; Oksuz, Lutfi; Hershkowitz, Noah
2009-10-01
Schlieren imaging methods measure the first derivative of density in the direction of a knife-edge spatial filter. It has been used extensively in aerodynamic research to visualize the structure of flow fields. With a single barrier planer dielectric barrier discharge (DBD) actuator, Schlieren images clearly show the absence of significant vertical air flow normal to the surface, and no more than few millimeters thick induced boundary layer flow. A gated intensified CCD camera along with a Schlieren system can not only visualize the flow field induced by the actuator, but also temporarily resolve the images of the flow and plasma field. Our time resolved images with triangular applied voltage waveforms indicate that several separate discharge regimes occur during positive and negative going half cycles of single and double barrier DBD actuators. Time resolved Schlieren imaging of both single and double barrier DBDs with different applied waveforms, discharge parameters and electrode geometries reveal important information on the induced flow structure.
Variability modes in core flows inverted from geomagnetic field models
Pais, Maria A; Schaeffer, Nathanaël
2014-01-01
We use flows that we invert from two geomagnetic field models spanning centennial time periods (gufm1 and COV-OBS), and apply Principal Component Analysis and Singular Value Decomposition of coupled fields to extract the main modes characterizing their spatial and temporal variations. The quasi geostrophic flows inverted from both geomagnetic field models show similar features. However, COV-OBS has a less energetic mean flow and larger time variability. The statistical significance of flow components is tested from analyses performed on subareas of the whole domain. Bootstrapping methods are also used to extract robust flow features required by both gufm1 and COV-OBS. Three main empirical circulation modes emerge, simultaneously constrained by both geomagnetic field models and expected to be robust against the particular a priori used to build them. Mode 1 exhibits three large robust vortices at medium/high latitudes, with opposite circulation under the Atlantic and the Pacific hemispheres. Mode 2 interesting...
PIV MEASUREMENTS FOR GAS FLOW UNDER GRADIENT MAGNETIC FIELDS
Institute of Scientific and Technical Information of China (English)
RUAN Xiaodong; WU Feng; F.YAMAMOTO
2004-01-01
Particle Image Velocimetry (PIV) techniques were developed to measure the convective N2-air flow under gradient magnetic fields. The velocity fields were calculated by the Minimum Quadratic Difference (MQD) algorithm and spurious vectors were eliminated by Delaunay Tessellation.The N2-air flow was measured as the magnetic flux density varying from 0 ～ 1.5 T. A strengthened vortex flow of air was observed under the condition that the magnetic field was applied, and the velocity of N2 jet rose with the increase of the magnetic density. The experimental results show that the magnetic force will induce a vortex flow and cause a convection flow of the air mixture when both gradients of the O2 concentration and the magnetic field intensity exist.
Numerical and experimental investigations on supersonic ejectors
Energy Technology Data Exchange (ETDEWEB)
Bartosiewicz, Y.; Aidoun, Z. [CETC-Varennes, Natural Resources Canada (Canada); Desevaux, P. [CREST-UMR 6000, Belfort (France); Mercadier, Y. [Sherbrooke Univ. (Canada). THERMAUS
2005-02-01
Supersonic ejectors are widely used in a range of applications such as aerospace, propulsion and refrigeration. The primary interest of this study is to set up a reliable hydrodynamics model of a supersonic ejector, which may be extended to refrigeration applications. The first part of this work evaluated the performance of six well-known turbulence models for the study of supersonic ejectors. The validation concentrated on the shock location, shock strength and the average pressure recovery prediction. Axial pressure measurements with a capillary probe performed previously [Int. J. Turbo Jet Engines 19 (2002) 71; Conference Proc., 10th Int. Symp. Flow Visualization, Kyoto, Japan, 2002], were compared with numerical simulations while laser tomography pictures were used to evaluate the non-mixing length. The capillary probe has been included in the numerical model and the non-mixing length has been numerically evaluated by including an additional transport equation for a passive scalar, which acted as an ideal colorant in the flow. At this point, the results show that the k-omega-sst model agrees best with experiments. In the second part, the tested model was used to reproduce the different operation modes of a supersonic ejector, ranging from on-design point to off-design. In this respect, CFD turned out to be an efficient diagnosis tool of ejector analysis (mixing, flow separation), for design, and performance optimization (optimum entrainment and recompression ratios). (Author)
Ureña, A. González; Caceres, J. O.; Morato, M.
2006-09-01
In previous experimental works from this laboratory two unexpected phenomena were reported: (i) a depletion of ca. 40% in the total intensity of a pulsed He seeded NO beam when these molecules passed a homogeneous and a resonant oscillating RF electric field and (ii) a beam splitting of ca. 0.5° when the transverse beam profile is measured, under the same experimental conditions. In this work a model based on molecular beam interferences is introduced which satisfactorily accounts for these two observations. It is shown how the experimental set-up a simple device used as C-field in early molecular beam electric resonance experiments, can be employed as molecular interferometer to investigate matter-wave interferences in beams of polar molecules.
Batterton, P. G.; Arpasi, D. J.; Baumbick, R. J.
1974-01-01
A digitally implemented integrated inlet-engine control system was designed and tested on a mixed-compression, axisymmetric, Mach 2.5, supersonic inlet with 45 percent internal supersonic area contraction and a TF30-P-3 augmented turbofan engine. The control matched engine airflow to available inlet airflow. By monitoring inlet terminal shock position and over-board bypass door command, the control adjusted engine speed so that in steady state, the shock would be at the desired location and the overboard bypass doors would be closed. During engine-induced transients, such as augmentor light-off and cutoff, the inlet operating point was momentarily changed to a more supercritical point to minimize unstarts. The digital control also provided automatic inlet restart. A variable inlet throat bleed control, based on throat Mach number, provided additional inlet stability margin.
Flow Field Analysis of Submerged Horizontal Plate Type Breakwater
Institute of Scientific and Technical Information of China (English)
张志强; 栾茂田; 王科
2013-01-01
Submerged horizontal plate can be considered as a new concept breakwater. In order to reveal the wave elimination mechanism of this type breakwater, boundary element method is utilized to investigate the velocity field around plate carefully. The flow field analysis shows that the interaction between incident wave and reverse flow caused by submerged plate will lead to the formation of wave elimination area around both sides of the plate. The velocity magnitude of flow field has been reduced and this is the main reason of wave elimination.
GENERALIZED VARIATIONAL OPTIMAZATION ANALYSIS FOR 2-D FLOW FIELD
Institute of Scientific and Technical Information of China (English)
HUANG Si-xun; XU Ding-hua; LAN Wei-ren; TENG Jia-jun
2005-01-01
The Variational Optimization Analysis Method (VOAM) for 2-D flow field suggested by Sasaki was reviewed first. It is known that the VOAM can be used efficiently in most cases. However, in the cases where there are high frequency noises in 2-D flow field, it appears to be inefficient. In the present paper, based on Sasaki's VOAM, a Generalized Variational Optimization Analysis Method (GVOAM) was proposed with regularization ideas, which could deal well with flow fields containing high frequency noises. A numerical test shows that observational data can be both variationally optimized and filtered, and therefore the GVOAM is an efficient method.
2007-02-16
static pressure taps are shown along the bottom cavity wall. OMA V camera. The emission signal was collected using a Thor Labs 1 m long fibre optic bundle...in the supersonic cavity wall), and the opposite end of the fibre optic bundle was placed in front of the spectrometer slit. The use of the fibre ... optic link greatly improved the alignment of the optical diagnostics system. The O2(a 1) concentration in the discharge afterglow and the SDO yield were
Influence of Local Flow Field on Flow Accelerated Corrosion Downstream from an Orifice
Utanohara, Yoichi; Nagaya, Yukinori; Nakamura, Akira; Murase, Michio
Flow accelerated corrosion (FAC) rate downstream from an orifice was measured in a high-temperature water test loop to evaluate the effects of flow field on FAC. Orifice flow was also measured using laser Doppler velocimetry (LDV) and simulated by steady RANS simulation and large eddy simulation (LES). The LDV measurements indicated the flow structure did not depend on the flow velocity in the range of Re = 2.3×104 to 1.2×105. Flow fields predicted by RANS and LES agreed well with LDV data. Measured FAC rate was higher downstream than upstream from the orifice and the maximum appeared at 2D (D: pipe diameter) downstream. The shape of the profile of the root mean square (RMS) wall shear stress predicted by LES had relatively good agreement with the shape of the profile of FAC rate. This result indicates that the effects of flow field on FAC can be evaluated using the calculated wall shear stress.
The Density Variance--Mach Number Relation in Supersonic Turbulence: I. Isothermal, magnetised gas
Molina, F Z; Federrath, C; Klessen, R S
2012-01-01
It is widely accepted that supersonic, magnetised turbulence plays a fundamental role for star formation in molecular clouds. It produces the initial dense gas seeds out of which new stars can form. However, the exact relation between gas compression, turbulent Mach number, and magnetic field strength is still poorly understood. Here, we introduce and test an analytical prediction for the relation between the density variance and the root-mean-square Mach number in supersonic, isothermal, magnetised turbulent flows. We approximate the density and velocity structure of the interstellar medium as a superposition of shock waves. We obtain the density contrast considering the momentum continuity equation for a single magnetised shock and extrapolate this result to the entire cloud. Depending on the field geometry, we then make three different assumptions based on observational and theoretical constraints: B independent of density, B proportional to the root square of the density and B proportional to the density....
Benyo, Theresa L.
2010-01-01
This paper describes the preliminary results of a thermodynamic cycle analysis of a supersonic turbojet engine with a magnetohydrodynamic (MHD) energy bypass system that explores a wide range of MHD enthalpy extraction parameters. Through the analysis described here, it is shown that applying a magnetic field to a flow path in the Mach 2.0 to 3.5 range can increase the specific thrust of the turbojet engine up to as much as 420 N/(kg/s) provided that the magnitude of the magnetic field is in the range of 1 to 5 Tesla. The MHD energy bypass can also increase the operating Mach number range for a supersonic turbojet engine into the hypersonic flight regime. In this case, the Mach number range is shown to be extended to Mach 7.0.
Magnetoelectric-field helicities and reactive power flows
Kamenetskii, E O; Shavit, R
2015-01-01
The dual symmetry between the electric and magnetic fields underlies Maxwell's electrodynamics. Due to this symmetry one can describe topological properties of an electromagnetic field in free space and obtain the conservation law of optical (electromagnetic) helicity. What kind of the field helicity one can expect to see when the electromagnetic-field symmetry is broken? The near fields originated from small ferrite particles with magnetic dipolar mode (MDM) oscillations are the fields with the electric and magnetic components, but with broken dual (electric-magnetic) symmetry. These fields, called magnetoelectric (ME) fields, have topological properties different from such properties of electromagnetic fields. The helicity states of ME fields are topologically protected quantum like states. In this paper, we study the helicity properties of ME fields. We analyze conservation laws of the ME-field helicity and show that the helicity density is related to an imaginary part of the complex power flow density. We...
Effect of flow field on the performance of an all-vanadium redox flow battery
Kumar, S.; Jayanti, S.
2016-03-01
A comparative study of the electrochemical energy conversion performance of a single-cell all-vanadium redox flow battery (VRFB) fitted with three flow fields has been carried out experimentally. The charge-discharge, polarization curve, Coulombic, voltage and round-trip efficiencies of a 100 cm2 active area VRFB fitted with serpentine, interdigitated and conventional flow fields have been obtained under nearly identical experimental conditions. The effect of electrolyte circulation rate has also been investigated for each flow field. Stable performance has been obtained for each flow field for at least 40 charge/discharge cycles. Ex-situ measurements of pressure drop have been carried out using water over a range of Reynolds numbers. Together, the results show that the cell fitted with the serpentine flow field gives the highest energy efficiency, primarily due to high voltaic efficiency and also the lowest pressure drop. The electrolyte flow rate is seen to have considerable effect on the performance; a high round-trip energy efficiency of about 80% has been obtained at the highest flow rate with the serpentine flow field. The data offer interesting insights into the effect of electrolyte circulation on the performance of VRFB.
Specific Properties of Air Flow Field Within the Grinding Zone
Institute of Scientific and Technical Information of China (English)
ZHENG Junyi; JIANG Zhengfeng; ZHAO Liang
2006-01-01
Air barrier of grinding means a boundary layer of air existing at the circumference of the rotating wheel, which hinders coolant from entry. This paper makes a research on air flow field of the grinding zone through experiments and numerical simulations, focusing on acquainting with the specific properties of the air flow field. Finite volume method is applied to analyze air flow field within grinding wheel in the course of numerical calculations. The test devices such as Hot-wire anemometer and Betz manometer are used during the experiments of testing the pressure and velocity within grinding zone. Results of experiments agree by and large with numerical results of calculations. The conclusions obtained in this paper, the distribution of wall pressure and the distribution of air flow velocity, are important and useful to navigate the delivery of coolant into the grinding zone. In conclusion, some recommendations are made for further study and practical applications in such field.
TBA boundary flows in the tricritical Ising field theory
Energy Technology Data Exchange (ETDEWEB)
Nepomechie, Rafael I. E-mail: nepomechie@physics.miami.edu; Ahn, Changrim
2002-12-30
Boundary S matrices for the boundary tricritical Ising field theory (TIM), both with and without supersymmetry, have previously been proposed. Here we provide support for these S matrices by showing that the corresponding boundary entropies are consistent with the expected boundary flows. We develop the fusion procedure for boundary RSOS models, with which we derive exact inversion identities for the TIM. We confirm the TBA description of nonsupersymmetric boundary flows of Lesage et al. and we obtain corresponding descriptions of supersymmetric boundary flows.
Josephson flux-flow oscillators in nonuniform microwave fields
DEFF Research Database (Denmark)
Salerno, Mario; Samuelsen, Mogens Rugholm
2000-01-01
We present a simple theory for Josephson flux-flow oscillators in the presence of nonuniform microwave fields. In particular we derive an analytical expression for the I-V characteristic of the oscillator from which we show that satellite steps are spaced around the main flux-flow resonance by only...
Dynamically orthogonal field equations for stochastic flows and particle dynamics
2011-02-01
turbulence. Cambridge University Press, 1959. [10] G.K. Batchelor . An Introduction to Fluid Dynamics . Cambridge University Press, 2000. [11] D. Bau III... Dynamically orthogonal field equations for stochastic fluid flows and particle dynamics by Themistoklis P. Sapsis Dipl., National Technical...unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 2 Dynamically orthogonal field equations for stochastic fluid flows and particle
Magnetohydrodynamic cross-field boundary layer flow
Directory of Open Access Journals (Sweden)
D. B. Ingham
1982-01-01
Full Text Available The Blasius boundary layer on a flat plate in the presence of a constant ambient magnetic field is examined. A numerical integration of the MHD boundary layer equations from the leading edge is presented showing how the asymptotic solution described by Sears is approached.
Numerical Simulation of the Flow Field around Generic Formula One
Directory of Open Access Journals (Sweden)
Dang Tienphuc
2016-01-01
Full Text Available The steady Reynolds-Averaged Navier-Stokes (RANS method with the Realizable k turbulence model was used to analyze the flow field around a race car (generic Formula One. This study was conducted using the ANSYS software package. The numerical simulations were conducted at a Reynolds number based on the race car model (14.9×106. The time-averaged velocity field, flow topology, velocity magnitude, static pressure magnitude and vortex regions of the flow fields are presented in this paper. The measurements were performed on the vertical and cross-sectional planes. The results are presented graphically, showing the main characteristics of the flow field around the whole race car, whereas most previous studies only mention the flow field around individual components of race cars. The Realizable k turbulence model results showed consistency with the valuable validation data, which helps to elucidate the flow field around a model generic Formula one race car.
El-Kaddah, N.; Szekely, J.
1982-01-01
A mathematical representation was developed for the electromagnetic force field, the flow field, the temperature field (and for transport controlled kinetics), in a levitation melted metal droplet. The technique of mutual inductances was employed for the calculation of the electromagnetic force field, while the turbulent Navier - Stokes equations and the turbulent convective transport equations were used to represent the fluid flow field, the temperature field and the concentration field. The governing differential equations, written in spherical coordinates, were solved numerically. The computed results were in good agreement with measurements, regarding the lifting force, and the average temperature of the specimen and carburization rates, which were transport controlled.
Flow field characteristics of an ornithopter
Juarez, Alfredo; Allen, James
2007-11-01
This paper details phase locked PIV measurements from a model Ornithopther flying in a wind tunnel at representative flight conditions. Testing over a range of Strouhal numbers, 0.1-0.3, shows that the unsteady wake is composed of coherent vortical structures that resemble vortex rings. A single ring is formed in the wake of each wing during one wing beat. Momentum balance from velocity field measurements are used to estimate the lift and drag of the ornithopter.
Performance of Several High Order Numerical Methods for Supersonic Combustion
Sjoegreen, Bjoern; Yee, H. C.; Don, Wai Sun; Mansour, Nagi N. (Technical Monitor)
2001-01-01
The performance of two recently developed numerical methods by Yee et al. and Sjoegreen and Yee using postprocessing nonlinear filters is examined for a 2-D multiscale viscous supersonic react-live flow. These nonlinear filters can improve nonlinear instabilities and at the same time can capture shock/shear waves accurately. They do not, belong to the class of TVD, ENO or WENO schemes. Nevertheless, they combine stable behavior at discontinuities and detonation without smearing the smooth parts of the flow field. For the present study, we employ a fourth-order Runge-Kutta in time and a sixth-order non-dissipative spatial base scheme for the convection and viscous terms. We denote the resulting nonlinear filter schemes ACM466-RK4 and WAV66-RK4.
Polymer electrolyte fuel cells: flow field for efficient air operation
Energy Technology Data Exchange (ETDEWEB)
Buechi, F.N.; Tsukada, A.; Haas, O.; Scherer, G.G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1997-06-01
A new flow field was designed for a polymer electrolyte fuel cell stack with an active area of 200 cm{sup 2} for operation at low air stoichiometry and low air over pressure. Optimum of gas flow and channel dimensions were calculated based on the required pressure drop in the fluid. Single cells and a bi-cell stack with the new flow field show an improved current/voltage characteristic when operated at low air stoichiometries as compared to that of the previous non optimized design. (author) 4 figs., 3 refs.
On the flow field around a Savonius rotor
Bergeles, G.; Athanassiadis, N.
A model of a two-bucket Savonius rotor windmill was constructed and tested in a wind tunnel. The flow field around the rotor was examined visually and also quantitatively with the use of a hot wire. The flow visualization revealed an upstream influence on the flow field up to 3 rotor diameters away and a strong downwash downstream. Hot wire measurements showed a large velocity deficit behind the rotor and a quick velocity recovery downstream due to strong mixing; the latter was associated with high levels of turbulence. Energy spectra revealed that all turbulence was concentrated in a single harmonic corresponding to twice the rotational speed of the rotor.
THERMAL AND AERODYNAMIC PERFORMANCES OF THE SUPERSONIC MOTION
Directory of Open Access Journals (Sweden)
Dejan P Ninković
2010-01-01
Full Text Available Generally speaking, Mach number of 4 can be taken as a boundary value for transition from conditions for supersonic, into the area of hypersonic flow, distinguishing two areas: area of supersonic in which the effects of the aerodynamic heating can be neglected and the area of hypersonic, in which the thermal effects become dominant. This paper presents the effects in static and dynamic areas, as well as presentation of G.R.O.M. software for determination of the values of aerodynamic derivatives, which was developed on the basis of linearized theory of supersonic flow. Validation of developed software was carried out through different types of testing, proving its usefulness for engineering practice in the area of supersonic wing aerodynamic loading calculations, even at high Mach numbers, with dominant thermal effects.
VORTEX FLOW FIELD IN A SCOUR HOLE AROUND ABUTMENTS
Institute of Scientific and Technical Information of China (English)
Abdul Karim BARBHUIYA; Subhasish DEY
2003-01-01
The three-dimensional flow field in a scour hole around different abutments under a clear water regime was experimentally measured in a laboratory flume, using the Acoustic Doppler Velocimeter (ADV). Three types of abutments used in the experiments were vertical-wall (rectangular section), 45° wing-wall (45° polygonal section) and semicircular. The threedimensional time-averaged velocity components were detected at different vertical planes for vertical-wall abutment and azimuthal planes for wing-wall and semicircular abutments. The velocity components were also measured at different horizontal planes. In the upstream, presentations of flow field through vector plots at vertical / azimuthal and horizontal planes show the existence of a primary vortex associated with the downflow inside the scour hole. On the other hand, in the downstream, the flow field shows a reversed flow near the abutments having a subsequent recovery with a passage of flow as a part of the main flow. The data presented in this paper would be useful to the researchers for the development and verification of mathematical models of flow field in a scour hole at bridge abutments.
Numerical Simulations of Canted Nozzle and Scarfed Nozzle Flow Fields
Javed, Afroz; Chakraborty, Debasis
2016-06-01
Computational fluid dynamics (CFD) techniques are used for the analysis of issues concerning non-conventional (canted and scarfed) nozzle flow fields. Numerical simulations are carried out for the quality of flow in terms of axisymmetric nature at the inlet of canted nozzles of a rocket motor. Two different nozzle geometries are examined. The analysis of these simulation results shows that the flow field at the entry of the nozzles is non axisymmetric at the start of the motor. With time this asymmetry diminishes, also the flow becomes symmetric before the nozzle throat, indicating no misalignment of thrust vector with the nozzle axis. The qualitative flow fields at the inlet of the nozzles are used in selecting the geometry with lesser flow asymmetry. Further CFD methodology is used to analyse flow field of a scarfed nozzle for the evaluation of thrust developed and its direction. This work demonstrates the capability of the CFD based methods for the nozzle analysis problems which were earlier solved only approximately by making simplifying assumptions and semi empirical methods.
Flows and chemical reactions in an electromagnetic field
Prud'homme, Roger
2014-01-01
This book - a sequel of previous publications 'Flows and Chemical Reactions', 'Chemical Reactions Flows in Homogeneous Mixtures' and 'Chemical Reactions and Flows in Heterogeneous Mixtures' - is devoted to flows with chemical reactions in the electromagnetic field. The first part, entitled basic equations, consists of four chapters. The first chapter provides an overview of the equations of electromagnetism in Minkowski spacetime. This presentation is extended to balance equations, first in homogeneous media unpolarized in the second chapter and homogeneous fluid medium polarized in the thir
Pedestrian Flow in the Mean Field Limit
Haji Ali, Abdul Lateef
2012-11-01
We study the mean-field limit of a particle-based system modeling the behavior of many indistinguishable pedestrians as their number increases. The base model is a modified version of Helbing\\'s social force model. In the mean-field limit, the time-dependent density of two-dimensional pedestrians satisfies a four-dimensional integro-differential Fokker-Planck equation. To approximate the solution of the Fokker-Planck equation we use a time-splitting approach and solve the diffusion part using a Crank-Nicholson method. The advection part is solved using a Lax-Wendroff-Leveque method or an upwind Backward Euler method depending on the advection speed. Moreover, we use multilevel Monte Carlo to estimate observables from the particle-based system. We discuss these numerical methods, and present numerical results showing the convergence of observables that were calculated using the particle-based model as the number of pedestrians increases to those calculated using the probability density function satisfying the Fokker-Planck equation.
Graham, Robert C.; Tysl, Edward R.
1949-01-01
The inlet wide vanes for the supersonic compressor of the XJ55-FF-1 engine were studied as a separate component in order to determine the performance prior to installation in the compressor test rig. Turning angles approached design values, and increased approximately to through the inlet Mach number range from 0.30 to choke. A sharp break in turning angle was experienced when the choke condition was reached. The total-pressure loss through the guide vanes was approximately 1 percent for the unchoked conditions and from 5 to 6 percent when choked.
CFD Numerical Simulation of the Complex Turbulent Flow Field in an Axial-Flow Water Pump
Directory of Open Access Journals (Sweden)
Wan-You Li
2014-09-01
Full Text Available Further optimal design of an axial-flow water pump calls for a thorough recognition of the characteristics of the complex turbulent flow field in the pump, which is however extremely difficult to be measured using the up-to-date experimental techniques. In this study, a numerical simulation procedure based on computational fluid dynamics (CFD was elaborated in order to obtain the fully three-dimensional unsteady turbulent flow field in an axial-flow water pump. The shear stress transport (SST k-ω model was employed in the CFD calculation to study the unsteady internal flow of the axial-flow pump. Upon the numerical simulation results, the characteristics of the velocity field and pressure field inside the impeller region were discussed in detail. The established model procedure in this study may provide guidance to the numerical simulations of turbomachines during the design phase or the investigation of flow and pressure field characteristics and performance. The presented information can be of reference value in further optimal design of the axial-flow pump.
Numerical analysis of flow fields generated by accelerating flames
Energy Technology Data Exchange (ETDEWEB)
Kurylo, J.
1977-12-01
Presented here is a numerical technique for the analysis of non-steady flow fields generated by accelerating flames in gaseous media. Of particular interest in the study is the evaluation of the non-steady effects on the flow field and the possible transition of the combustion process to detonation caused by an abrupt change in the burning speed of an initially steady flame propagating in an unconfined combustible gas mixture. Optically recorded observations of accelerating flames established that the flow field can be considered to consist of non-steady flow fields associated with an assembly of interacting shock waves, contact discontinuities, deflagration and detonation fronts. In the analysis, these flow fields are treated as spatially one-dimensional, the influence of transport phenomena is considered to be negligible, and unburned and burned substances are assumed to behave as perfect gases with constant, but different, specific heats. The basis of the numerical technique is an explicit, two step, second order accurate, finite difference scheme employed to integrate the flow field equations expressed in divergence form. The burning speed, governing the motion of the deflagration, is expressed in the form of a power law dependence on pressure and temperature immediately ahead of its front. The steady wave solution is obtained by the vector polar interaction technique, that is, by determining the point of intersection between the loci of end states in the plane of the two interaction invariants, pressure and particle velocity. The technique is illustrated by a numerical example in which a steady flame experiences an abrupt change in its burning speed. Solutions correspond either to the eventual reestablishment of a steady state flow field commensurate with the burning speed or to the transition to detonation. The results are in satisfactory agreement with experimental observations.
On the flow magnitude and field-flow alignment at Earth's core surface
DEFF Research Database (Denmark)
Finlay, Chris; Amit, H.
We present a method to estimate the typical magnitude of flow close toEarth's core surface based on observational knowledge of the maingeomagnetic field (MF) and its secular variation (SV), together withprior information concerning field-flow alignment gleaned from numericaldynamo models. An expr......We present a method to estimate the typical magnitude of flow close toEarth's core surface based on observational knowledge of the maingeomagnetic field (MF) and its secular variation (SV), together withprior information concerning field-flow alignment gleaned from numericaldynamo models....... An expression linking the core surface flow magnitude tospherical harmonic spectra of the MF and SV is derived from the magneticinduction equation. This involves the angle gamma between the flowand the horizontal gradient of the radial field. We study gamma in asuite of numerical dynamo models and discuss...... that the amount of field-flow alignment depends primarily on amagnetic modified Rayleigh number Raeta = alpha g0 Delta T D / eta Omega , which measures the vigorof convective driving relative to the strength of magnetic dissipation.Synthetic tests of the flow magnitude estimation scheme are encouraging...
On the flow magnitude and field-flow alignment at Earth's core surface
DEFF Research Database (Denmark)
Finlay, Chris; Amit, H.
We present a method to estimate the typical magnitude of flow close toEarth's core surface based on observational knowledge of the maingeomagnetic field (MF) and its secular variation (SV), together withprior information concerning field-flow alignment gleaned from numericaldynamo models. An expr......We present a method to estimate the typical magnitude of flow close toEarth's core surface based on observational knowledge of the maingeomagnetic field (MF) and its secular variation (SV), together withprior information concerning field-flow alignment gleaned from numericaldynamo models....... An expression linking the core surface flow magnitude tospherical harmonic spectra of the MF and SV is derived from the magneticinduction equation. This involves the angle gamma between the flowand the horizontal gradient of the radial field. We study gamma in asuite of numerical dynamo models and discuss...... that the amount of field-flow alignment depends primarily on amagnetic modified Rayleigh number Raeta = alpha g0 Delta T D / eta Omega , which measures the vigorof convective driving relative to the strength of magnetic dissipation.Synthetic tests of the flow magnitude estimation scheme are encouraging...
Turbulence modelling of flow fields in thrust chambers
Chen, C. P.; Kim, Y. M.; Shang, H. M.
1993-01-01
Following the consensus of a workshop in Turbulence Modelling for Liquid Rocket Thrust Chambers, the current effort was undertaken to study the effects of second-order closure on the predictions of thermochemical flow fields. To reduce the instability and computational intensity of the full second-order Reynolds Stress Model, an Algebraic Stress Model (ASM) coupled with a two-layer near wall treatment was developed. Various test problems, including the compressible boundary layer with adiabatic and cooled walls, recirculating flows, swirling flows, and the entire SSME nozzle flow were studied to assess the performance of the current model. Detailed calculations for the SSME exit wall flow around the nozzle manifold were executed. As to the overall flow predictions, the ASM removes another assumption for appropriate comparison with experimental data to account for the non-isotropic turbulence effects.
HEAT FLOW FOR YANG-MILLS-HIGGS FIELDS, PART I
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The Yang-Mills-Higgs field generalizes the Yang-Mills field. The authors establish the local existence and uniqueness of the weak solution to the heat flow for the Yang-Mills-Higgs field in a vector bundle over a compact Riemannian 4-manifold, and show that the weak solution is gauge-equivalent to a smooth solution and there are at most finite singularities at the maximum existing time.
Directory of Open Access Journals (Sweden)
Norimasa Shiomi
2003-01-01
Full Text Available We carried out investigations for the purpose of clarifying the rotor outlet flow fields with rotating stall cell in a diagonal-flow fan. The test fan was a high–specific-speed (ns=1620 type of diagonal-flow fan that had 6 rotor blades and 11 stator blades. It has been shown that the number of the stall cell is 1, and its propagating speed is approximately 80% of its rotor speed, although little has been known about the behavior of the stall cell because a flow field with a rotating stall cell is essentially unsteady. In order to capture the behavior of the stall cell at the rotor outlet flow fields, hot-wire surveys were performed using a single-slant hotwire probe. The data obtained by these surveys were processed by means of a double phase-locked averaging technique, which enabled us to capture the flow field with the rotating stall cell in the reference coordinate system fixed to the rotor. As a result, time-dependent ensemble averages of the three-dimensional velocity components at the rotor outlet flow fields were obtained. The behavior of the stall cell was shown for each velocity component, and the flow patterns on the meridional planes were illustrated.
Laboratory observation of magnetic field growth driven by shear flow
Energy Technology Data Exchange (ETDEWEB)
Intrator, T. P., E-mail: intrator@lanl.gov; Feng, Y.; Sears, J.; Weber, T. [Los Alamos National Laboratory, M.S. E526, Los Alamos, New Mexico 87545 (United States); Dorf, L. [Applied Materials, Inc., Santa Clara, CA 95054 (United States); Sun, X. [University of Science and Technology, Hefei (China)
2014-04-15
Two magnetic flux ropes that collide and bounce have been characterized in the laboratory. We find screw pinch profiles that include ion flow v{sub i}, magnetic field B, current density J, and plasma pressure. The electron flow v{sub e} can be inferred, allowing the evaluation of the Hall J×B term in a two fluid magnetohydrodynamic Ohm's Law. Flux ropes that are initially cylindrical are mutually attracted and compress each other, which distorts the cylindrical symmetry. Magnetic field is created via the ∇×v{sub e}×B induction term in Ohm's Law where in-plane (perpendicular) shear of parallel flow (along the flux rope) is the dominant feature, along with some dissipation and magnetic reconnection. We predict and measure the growth of a quadrupole out-of-plane magnetic field δB{sub z}. This is a simple and coherent example of a shear flow driven dynamo. There is some similarity with two dimensional reconnection scenarios, which induce a current sheet and thus out-of-plane flow in the third dimension, despite the customary picture that considers flows only in the reconnection plane. These data illustrate a general and deterministic mechanism for large scale sheared flows to acquire smaller scale magnetic features, disordered structure, and possibly turbulence.
Laboratory observation of magnetic field growth driven by shear flow
Intrator, T. P.; Dorf, L.; Sun, X.; Feng, Y.; Sears, J.; Weber, T.
2014-04-01
Two magnetic flux ropes that collide and bounce have been characterized in the laboratory. We find screw pinch profiles that include ion flow vi, magnetic field B, current density J, and plasma pressure. The electron flow ve can be inferred, allowing the evaluation of the Hall J ×B term in a two fluid magnetohydrodynamic Ohm's Law. Flux ropes that are initially cylindrical are mutually attracted and compress each other, which distorts the cylindrical symmetry. Magnetic field is created via the ∇×ve×B induction term in Ohm's Law where in-plane (perpendicular) shear of parallel flow (along the flux rope) is the dominant feature, along with some dissipation and magnetic reconnection. We predict and measure the growth of a quadrupole out-of-plane magnetic field δBz. This is a simple and coherent example of a shear flow driven dynamo. There is some similarity with two dimensional reconnection scenarios, which induce a current sheet and thus out-of-plane flow in the third dimension, despite the customary picture that considers flows only in the reconnection plane. These data illustrate a general and deterministic mechanism for large scale sheared flows to acquire smaller scale magnetic features, disordered structure, and possibly turbulence.
Microrelief-Controlled Overland Flow Generation: Laboratory and Field Experiments
Directory of Open Access Journals (Sweden)
Xuefeng Chu
2015-01-01
Full Text Available Surface microrelief affects overland flow generation and the related hydrologic processes. However, such influences vary depending on other factors such as rainfall characteristics, soil properties, and initial soil moisture conditions. Thus, in-depth research is needed to better understand and evaluate the combined effects of these factors on overland flow dynamics. The objective of this experimental study was to examine how surface microrelief, in conjunction with the factors of rainfall, soil, and initial moisture conditions, impacts overland flow generation and runoff processes in both laboratory and field settings. A series of overland flow experiments were conducted for rough and smooth surfaces that represented distinct microtopographic characteristics and the experimental data were analyzed and compared. Across different soil types and initial moisture conditions, both laboratory and field experiments demonstrated that a rough soil surface experienced a delayed initiation of runoff and featured a stepwise threshold flow pattern due to the microrelief-controlled puddle filling-spilling-merging dynamics. It was found from the field experiments that a smooth plot surface was more responsive to rainfall variations especially during an initial rainfall event. However, enhanced capability of overland flow generation and faster puddle connectivity of a rough field plot occurred during the subsequent rain events.
PIV Measurements of Supersonic Internally-Mixed Dual-Stream Jets
Bridges, James E.; Wernet, Mark P.
2012-01-01
While externally mixed, or separate flow, nozzle systems are most common in high bypass-ratio aircraft, they are not as attractive for use in lower bypass-ratio systems and on aircraft that will fly supersonically. The noise of such propulsion systems is also dominated by jet noise, making the study and noise reduction of these exhaust systems very important, both for military aircraft and future civilian supersonic aircraft. This paper presents particle image velocimetry of internally mixed nozzle with different area ratios between core and bypass, and nozzles that are ideally expanded and convergent. Such configurations independently control the geometry of the internal mixing layer and of the external shock structure. These allow exploration of the impact of shocks on the turbulent mixing layers, the impact of bypass ratio on broadband shock noise and mixing noise, and the impact of temperature on the turbulent flow field. At the 2009 AIAA/CEAS Aeroacoustics Conference the authors presented data and analysis from a series of tests that looked at the acoustics of supersonic jets from internally mixed nozzles. In that paper the broadband shock and mixing noise components of the jet noise were independently manipulated by holding Mach number constant while varying bypass ratio and jet temperature. Significant portions of that analysis was predicated on assumptions regarding the flow fields of these jets, both shock structure and turbulence. In this paper we add to that analysis by presenting particle image velocimetry measurements of the flow fields of many of those jets. In addition, the turbulent velocity data documented here will be very useful for validation of computational flow codes that are being developed to design advanced nozzles for future aircraft.
Optimization and evaluation of asymmetric flow field-flow fractionation of silver nanoparticles
DEFF Research Database (Denmark)
Löschner, Katrin; Navratilova, Jana; Legros, Samuel
2013-01-01
Asymmetric flow field-flow fractionation (AF(4)) in combination with on-line optical detection and mass spectrometry is one of the most promising methods for separation and quantification of nanoparticles (NPs) in complex matrices including food. However, to obtain meaningful results regarding es...
Ciric, Jelena; Rolland-Sabate, Agnes; Guilois, Sophie; Loos, Katja
2014-01-01
Asymmetrical flow field flow fractionation (AF4), when coupled with multi-angle laser light scattering (MALLS), is a very powerful technique for determination of the macromolecular structure of high molar mass (branched) polysaccharides. AF4 is a size fractionation technique just as size exclusion c
2007-11-02
1 FLOW FIELD CHARACTERIZATION INSIDE AN ARTERIOVENOUS GRAFT- TO-VEIN ANASTOMOSIS UNDER PULSATILE FLOW CONDITIONS Nurullah Arslan1, Francis Loth2...the relationship between the distribution of turbulence intensity and the localization of stenoses inside the venous anastomosis of arteriovenous (A...found to be greatest downstream of the anastomosis . KEYWORDS: Arteriovenous graft, dialysis, turbulence, stenosis I. INTRODUCTION
Findings from the Supersonic Qualification Program of the Mars Science Laboratory Parachute System
Sengupta, Anita; Steltzner, Adam; Witkowski, Allen; Candler, Graham; Pantano, Carlos
2009-01-01
supersonic wind tunnel testing of a rigid DGB parachute with entry-vehicle to validate two high fidelity computational fluid dynamics (CFD) tools. The computer codes utilized Large Eddy Simulation and Detached Eddy Simulation numerical approaches to accurately capture the turbulent wake of the entry vehicle and its coupling to the parachute bow-shock. The second phase was the development of fluid structure interaction (FSI) computational tools to predict parachute response to the supersonic flow field. The FSI development included the integration of the CFD from the first phase with a finite element structural model of the parachute membrane and cable elements. In this phase, a 4% of full-scale supersonic flexible parachute test program was conducted to provide validation data to the FSI code and an empirical dataset of the MSL parachute in a flight-like environment. The final phase is FSI simulations of the full-scale MSL parachute in a Mars type deployment. Findings from this program will be presented in terms of code development and validation, empirical findings from the supersonic testing, and drag performance during supersonic operation.
Computational Investigation of Swirling Supersonic Jets Generated Through a Nozzle-Twisted Lance
Li, Mingming; Li, Qiang; Zou, Zongshu; An, Xizhong
2017-02-01
The dynamic characteristics of supersonic swirling jets generated through a nozzle-twisted lance are numerically studied. The essential features of the swirling jets are identified by defining a deviation angle. The effects of nozzle twist angle (NTA) on swirling flow intensity, coalescence characteristics, and dynamic parameter distributions of the jets are discussed. The rotational flow characteristics are revealed. The results show that the jets from the nozzle-twisted lance are imparted to a circumferential rotating movement around the lance axis, and such swirling flow is enhanced by increasing NTA. The enhanced swirling flow causes weaker coalescence of the jets, faster attenuations of the axial velocity, and higher heat transfer rate between the jets and surroundings. The supersonic core length, however, is found to be less sensitive to the swirling flow intensity. The radial spreading of the jets, changing non-monotonically with NTA, arrives at its maximum at 5 deg of NTA. Furthermore, the swirling flow induces a considerable tangential velocity component, and as a result, a holistic and effective horizontal swirling flow field develops. The y-vorticity distribution range and the corresponding magnitude turn larger with increasing NTA, which promote the vortex motion of the local fluid element and thus intensify the local mixing.
Directory of Open Access Journals (Sweden)
Chen Jian
2015-01-01
Full Text Available The pressure matching performance of the constant area supersonic-supersonic ejector has been studied by varying the primary and secondary Mach numbers. The effect of the primary fluid injection configurations in ejector, namely peripheral and central, has been investigated as well. Schlieren pictures of flow structure in the former part of the mixing duct with different stagnation pressure ratio of the primary and secondary flows have been taken. Pressure ratios of the primary and secondary flows at the limiting condition have been obtained from the results of pressure and optical measurements. Additionally, a computational fluid dynamics analysis has been performed to clarify the physical meaning of the pressure matching performance diagram of the ejector. The obtained results show that the pressure matching performance of the constant area supersonic-supersonic ejector increases with the increase of the secondary Mach number, and the performance decreases slightly with the increase of the primary Mach number. The phenomenon of boundary layer separation induced by shock wave results in weaker pressure matching performance of the central ejector than that of the peripheral one. Furthermore, based on the observations of the experiment, a simplified analytical model has been proposed to predict the limiting pressure ratio, and the predicted values obtained by this model agree well with the experimental data.
Magnetic field generation from shear flow in flux ropes
Intrator, T. P.; Sears, J.; Gao, K.; Klarenbeek, J.; Yoo, C.
2012-10-01
In the Reconnection Scaling Experiment (RSX) we have measured out of plane quadrupole magnetic field structure in situations where magnetic reconnection was minimal. This quadrupole out of plane magnetic signature has historically been presumed to be the smoking gun harbinger of reconnection. On the other hand, we showed that when flux ropes bounced instead of merging and reconnecting, this signature could evolve. This can follow from sheared fluid flows in the context of a generalized Ohms Law. We reconstruct a shear flow model from experimental data for flux ropes that have been experimentally well characterized in RSX as screw pinch equilibria, including plasma ion and electron flow, with self consistent profiles for magnetic field, pressure, and current density. The data can account for the quadrupole field structure.
A Numerical Comparison of Symmetric and Asymmetric Supersonic Wind Tunnels
Clark, Kylen D.
Supersonic wind tunnels are a vital aspect to the aerospace industry. Both the design and testing processes of different aerospace components often include and depend upon utilization of supersonic test facilities. Engine inlets, wing shapes, and body aerodynamics, to name a few, are aspects of aircraft that are frequently subjected to supersonic conditions in use, and thus often require supersonic wind tunnel testing. There is a need for reliable and repeatable supersonic test facilities in order to help create these vital components. The option of building and using asymmetric supersonic converging-diverging nozzles may be appealing due in part to lower construction costs. There is a need, however, to investigate the differences, if any, in the flow characteristics and performance of asymmetric type supersonic wind tunnels in comparison to symmetric due to the fact that asymmetric configurations of CD nozzle are not as common. A computational fluid dynamics (CFD) study has been conducted on an existing University of Michigan (UM) asymmetric supersonic wind tunnel geometry in order to study the effects of asymmetry on supersonic wind tunnel performance. Simulations were made on both the existing asymmetrical tunnel geometry and two axisymmetric reflections (of differing aspect ratio) of that original tunnel geometry. The Reynolds Averaged Navier Stokes equations are solved via NASAs OVERFLOW code to model flow through these configurations. In this way, information has been gleaned on the effects of asymmetry on supersonic wind tunnel performance. Shock boundary layer interactions are paid particular attention since the test section integrity is greatly dependent upon these interactions. Boundary layer and overall flow characteristics are studied. The RANS study presented in this document shows that the UM asymmetric wind tunnel/nozzle configuration is not as well suited to producing uniform test section flow as that of a symmetric configuration, specifically one
Flow field measurements in the cell culture unit
Walker, Stephen; Wilder, Mike; Dimanlig, Arsenio; Jagger, Justin; Searby, Nancy
2002-01-01
The cell culture unit (CCU) is being designed to support cell growth for long-duration life science experiments on the International Space Station (ISS). The CCU is a perfused loop system that provides a fluid environment for controlled cell growth experiments within cell specimen chambers (CSCs), and is intended to accommodate diverse cell specimen types. Many of the functional requirements depend on the fluid flow field within the CSC (e.g., feeding and gas management). A design goal of the CCU is to match, within experimental limits, all environmental conditions, other than the effects of gravity on the cells, whether the hardware is in microgravity ( micro g), normal Earth gravity, or up to 2g on the ISS centrifuge. In order to achieve this goal, two steps are being taken. The first step is to characterize the environmental conditions of current 1g cell biology experiments being performed in laboratories using ground-based hardware. The second step is to ensure that the design of the CCU allows the fluid flow conditions found in 1g to be replicated from microgravity up to 2g. The techniques that are being used to take these steps include flow visualization, particle image velocimetry (PIV), and computational fluid dynamics (CFD). Flow visualization using the injection of dye has been used to gain a global perspective of the characteristics of the CSC flow field. To characterize laboratory cell culture conditions, PIV is being used to determine the flow field parameters of cell suspension cultures grown in Erlenmeyer flasks on orbital shakers. These measured parameters will be compared to PIV measurements in the CSCs to ensure that the flow field that cells encounter in CSCs is within the bounds determined for typical laboratory experiments. Using CFD, a detailed simulation is being developed to predict the flow field within the CSC for a wide variety of flow conditions, including microgravity environments. Results from all these measurements and analyses of the
Study on multidimensional temperature and flow field in pebble core
Energy Technology Data Exchange (ETDEWEB)
Park, Goon Cherl; Lee, J. J.; Cho, Y. J.; Kim, J. W. [Seoul Nat. Univ., Seoul (Korea, Republic of); Kim, Kwang Yong; Choi, J. Y.; Lee, Y. M.; Cheong, S. H. [Inha Univ., Incheon (Korea, Republic of)
2006-02-15
This project intends to contribute to the national PBR technology development by improving the system code and investigating the applicability of CFD code to pebble core. This project consists of five research tasks below to consequently contribute to the assessment of reactor types for hydrogen production by producing a set of experimental data and the results of CFD code model assessment. Turbulent flow experiment and model assessment. CFD analysis for local flow field and heat transfer in pebble core. Experiment on accident flow and assessment of CFD applicability. Sensitivity analysis for geometrical parameters of inlet plenum. Experiment on effective thermal conductivity and model improvement.
Turbulence, flow and transport: hints from reversed field pinch
Vianello, N.; Antoni, V.; Spada, E.; Spolaore, M.; Serianni, G.; Cavazzana, R.; Bergsåker, H.; Cecconello, M.; Drake, J. R.
2006-04-01
The interplay between sheared E × B flows and turbulence has been experimentally investigated in the edge region of the Extrap-T2R reversed field pinch experiment. Electrostatic fluctuations are found to rule the momentum balance equation representing the main driving term for sheared flows which counterbalances anomalous viscous damping. The driving role of electrostatic fluctuations is proved by the spatial structure of the Reynolds stress and by the time behaviour of the mean energy production term which supports the existence of an energy exchange from the small scales of turbulence to the larger scales of the mean flow.
Experimental study on visualization of the flow field in microtube
Institute of Scientific and Technical Information of China (English)
LIU Zhigang; ZHAO Yaohua
2005-01-01
An experimental study was conducted to visualize the flow field and confirm the transitional Reynolds number from laminar to turbulent flow, as distilled water flows through quartz glass microtubes with inner diameter 315 and 520 μm. With gentian violet as colorant, the flow field pictures in the microtube, and therefore, is shot by a CCD camera with a microscope at different Reynolds numbers. Pressure drop data were also used to characterize the friction factor for those microtubes in the Reynolds number range of 200―2300. The experimental results clearly showed that the flow in the microtube was the laminar state and the friction factors agreed well with the Poiseuille equations when the Reynolds number was low. As the Reynolds number was larger than 1200 and 1500 for the microtube with inner diameter 315 and 520 μm, respectively, the friction factor departed from the classical laminar solution due to the earlier transition from laminar to turbulent flow. The flow turned into full turbulent when the Reynolds number reached 1500―1800.
Complex analysis with applications to flows and fields
Braga da Costa Campos, Luis Manuel
2012-01-01
Complex Analysis with Applications to Flows and Fields presents the theory of functions of a complex variable, from the complex plane to the calculus of residues to power series to conformal mapping. The book explores numerous physical and engineering applications concerning potential flows, the gravity field, electro- and magnetostatics, steady heat conduction, and other problems. It provides the mathematical results to sufficiently justify the solution of these problems, eliminating the need to consult external references.The book is conveniently divided into four parts. In each part, the ma
Spherical Couette flow in a dipolar magnetic field
Hollerbach, R; Fournier, A; Hollerbach, Rainer; Canet, Elisabeth; Fournier, Alexandre
2007-01-01
We consider numerically the flow of an electrically conducting fluid in a differentially rotating spherical shell, in a dipolar magnetic field. For infinitesimal differential rotation the flow consists of a super-rotating region, concentrated on the particular field line C just touching the outer sphere, in agreement with previous results. Finite differential rotation suppresses this super-rotation, and pushes it inward, toward the equator of the inner sphere. For sufficiently strong differential rotation the outer boundary layer becomes unstable, yielding time-dependent solutions. Adding an overall rotation suppresses these instabilities again. The results are in qualitative agreement with the DTS liquid sodium experiment.
Aerodynamic structures and processes in rotationally augmented flow fields
DEFF Research Database (Denmark)
Schreck, S.J.; Sørensen, Niels N.; Robinson, M.C.
2007-01-01
. Experimental measurements consisted of surface pressure data statistics used to infer sectional boundary layer state and to quantify normal force levels. Computed predictions included high-resolution boundary layer topologies and detailed above-surface flow field structures. This synergy was exploited...... to reliably identify and track pertinent features in the rotating blade boundary layer topology as they evolved in response to varying wind speed. Subsequently, boundary layer state was linked to above-surface flow field structure and used to deduce mechanisms; underlying augmented aerodynamic force...
Aerodynamic Design and Numerical Analysis of Supersonic Turbine for Turbo Pump
Fu, Chao; Zou, Zhengping; Kong, Qingguo; Cheng, Honggui; Zhang, Weihao
2016-09-01
Supersonic turbine is widely used in the turbo pump of modern rocket. A preliminary design method for supersonic turbine has been developed considering the coupling effects of turbine and nozzle. Numerical simulation has been proceeded to validate the feasibility of the design method. As the strong shockwave reflected on the mixing plane, additional numerical simulated error would be produced by the mixing plane model in the steady CFD. So unsteady CFD is employed to investigate the aerodynamic performance of the turbine and flow field in passage. Results showed that the preliminary design method developed in this paper is suitable for designing supersonic turbine. This periodical variation of complex shockwave system influences the development of secondary flow, wake and shock-boundary layer interaction, which obviously affect the secondary loss in vane passage. The periodical variation also influences the strength of reflecting shockwave, which affects the profile loss in vane passage. Besides, high circumferential velocity at vane outlet and short blade lead to high radial pressure gradient, which makes the low kinetic energy fluid moves towards hub region and produces additional loss.
Institute of Scientific and Technical Information of China (English)
关晓辉; 李占科; 宋笔锋
2012-01-01
远场组元(Far-field Composite Element,FCE)激波阻力优化方法是基于类别形状函数变换(Class Shape Transformation,CST)参数化方法发展出的一种超声速飞行器气动外形优化方法.文章使用CST参数化方法对超声速客机的大后掠机翼进行外形参数化,并以机翼容积和局部相对厚度为约束条件,使用FCE方法对其厚度分布进行以激波阻力最小为设计目标的快速优化.与原机翼相比,FCE优化方法使机翼激波阻力系数降低达61％,是超声速飞行器概念设计阶段降低激波阻力十分有用的优化方法.%Developed from the class shape transformation (CST) geometric parameterization method, the FCE wave drag optimization method is a new aerodynamic shape optimization method for supersonic aircraft. We use the CST parameterization method to perform the shape parameterization of a typical and large swept wing model of a supersonic aircraft. Sections 1 and 2 of the full paper explain our exploration, whose core consists of; (1) under the constraints of the total volume and local thicknesses of the swept wing, we carry out the quick optimization of the wing thickness distribution, aiming to achieve minimum wave drag; (2 ) we use the supersonic area rule to calculate the wave drag and to optimize the shape parameters of the swept wing with the Lagrange multiplier method, thus requiring no iteration and reducing computation complexity. The optimization results, given in Table 1 and Figs. 4, 5 and 6, and their analysis show preliminarily that, compared with the baseline wing model, our optimization method can reduce the wave drag coefficient by 61% , thus being a useful method for aerodynamic shape optimization so as to reduce the wave drag at the stage of the conceptual design of a supersonic aircraft.
Using thermal tracers to estimate flow velocities of shallow flows: laboratory and field experiments
Directory of Open Access Journals (Sweden)
Lima Rui L.P. de
2015-09-01
Full Text Available Accurate measurement of shallow flows is important for hydraulics, hydrology and water resources management. The objective of this paper is to discuss a technique for shallow flow and overland flow velocity estimation that uses infrared thermography. Laboratory flumes and different bare, vegetated and paved field surfaces were used to test the technique. Results show that shallow flow surface velocities estimated using thermal tracers and infrared technology are similar to estimates obtained using the Acoustic Doppler Velocimeter; similar results were also obtained for overland flow velocity estimates using thermography, here comparing with the dye tracer technique. The thermographic approach revealed some potential as a flow visualization technique, and leaves space for future studies and research.
Numerical Simulation of Laminar Flow Field in a Stirred Tank
Institute of Scientific and Technical Information of China (English)
范茏; 王卫京; 杨超; 毛在砂
2004-01-01
Stirred tanks are used extensively in process industry and one of the most commonly used impellers in stirred tanks is the R.ushton disk turbine. Surprisingly few data are available regarding flow and mixing in stirred-tank reactors with Rushton turbine in the laminar regime, in particular the laminar flow in baffled tanks.In this paper, the laminar flow field in a baffled tank stirred by a standard R.ushton turbine is simulated with the improved inner-outer iterative method. The non-inertial coordinate system is used for the impeller region, which is in turn used as the boundary conditions for iteration. It is found that the simulation results are in good agreement with previous experiments. In addition, the flow number and impeller power number calculated from the simulated flow field are in satisfactory agreement with experimental data. This numerical method allows prediction of flow structure requiring no experimental data as the boundary conditions and has the potential of being used to scale-up and design of related process equipment.
Mehta, M.; Sengupta, A.; Renno, N. O.; Norman, J. W.; Gulick, D. S.
2011-01-01
Numerical and experimental investigations of both far-field and near-field supersonic steady jet interactions with a flat surface at various atmospheric pressures are presented in this paper. These studies were done in assessing the landing hazards of both the NASA Mars Science Laboratory and Phoenix Mars spacecrafts. Temporal and spatial ground pressure measurements in conjunction with numerical solutions at altitudes of approx.35 nozzle exit diameters and jet expansion ratios (e) between 0.02 and 100 are used. Data from steady nitrogen jets are compared to both pulsed jets and rocket exhaust plumes at Mach approx.5. Due to engine cycling, overpressures and the plate shock dynamics are different between pulsed and steady supersonic impinging jets. In contrast to highly over-expanded (e plumes, results show that there is a relative ground pressure load maximum for moderately underexpanded (e approx.2-5) jets which demonstrate a long collimated plume shock structure. For plumes with e much >5 (lunar atmospheric regime), the ground pressure is minimal due to the development of a highly expansive shock structure. We show this is dependent on the stability of the plate shock, the length of the supersonic core and plume decay due to shear layer instability which are all a function of the jet expansion ratio. Asymmetry and large gradients in the spatial ground pressure profile and large transient overpressures are predominantly linked to the dynamics of the plate shock. More importantly, this study shows that thruster plumes exhausting into martian environments possess the largest surface pressure loads and can occur at high spacecraft altitudes in contrast to the jet interactions at terrestrial and lunar atmospheres. Theoretical and analytical results also show that subscale supersonic cold gas jets adequately simulate the flow field and loads due to rocket plume impingement provided important scaling parameters are in agreement. These studies indicate the critical
Ke, Xinyou; Prahl, Joseph M.; Alexander, J. Iwan D.; Savinell, Robert F.
2016-01-01
In this work, a two-dimensional mathematical model is developed to study the flow patterns and volumetric flow penetrations in the flow channel over the porous electrode layered system in vanadium flow battery with serpentine flow field design. The flow distributions at the interface between the flow channel and porous electrode are examined. It is found that the non-linear pressure distributions can distinguish the interface flow distributions under the ideal plug flow and ideal parabolic fl...
Characteristics of laser supersonic heating method for producing micro metallic particles
Lin, Shih-Lung; Lin, Jehnming
2005-10-01
In this article, the authors analyzed the process characteristics of laser supersonic heating method for producing metallic particles and predicted the in-flight tracks and shapes of micro-particles. A pulse Nd-YAG laser was used to heat the carbon steel target placed within an air nozzle. The high-pressure air with supersonic velocity was used to carry out carbon steel particles in the nozzle. The shock wave structures at the nozzle exit were visualized by the shadowgraph method. The carbon steel particles produced by laser supersonic heating method were grabbed and the spraying angles of the particle tracks were visualized. The velocity of the in-flight particles was measured by a photodiode sensor and compared with the numerical result. The solidification of carbon steel particles with diameters of 1-50 μm in compressible flow fields were investigated. The result shows that there is no significant difference in the dimension of solid carbon steel particles produced at shock wave fields under various entrance pressures (3-7 bar) with a constant laser energy radiation.
Institute of Scientific and Technical Information of China (English)
王江峰; 伍贻兆
2007-01-01
A parallelized upwind flux splitting scheme for supersonic reacting flows on hybrid meshes is presented. The complexity of super/hyper-sonic combustion flows makes it necessary to establish solvers with higher resolution and efficiency for multi-component Euler/N-S equations. Hence, a spatial second-order van Leer type flux vector splitting scheme is established by introducing auxiliary points in interpolation, and a domain decomposition method used on unstructured hybrid meshes for obtaining high calculating efficiency. The numerical scheme with five-stage Runge-Kutta time step method is implemented to the simulation of combustion flows, including the supersonic hydrogen/air combustion and the normal injection of hydrogen into reacting flows. Satisfying results are obtained compared with limited references.%基于有限体积迎风格式对超声速燃烧流场进行了的数值模拟.由于超声速燃烧流场绕流的复杂性,要求对多组分Euler/N-S方程求解的数值模拟方法应具有较高的计算精度及效率.本文引用辅助点方法建立了具有空间二阶精度的van Leer迎风矢通量分裂格式,并应用于超声速燃烧流场绕流的数值模拟.化学反应为氢气/空气十反应模型,采用考虑了化学反应特征时间的当地时间步长显式Runge-Kutta时间推进格式.对钝头体模型爆轰现象、后向台阶氢气喷射及二维内外流超声速燃烧流场模型进行了区域分裂技术的并行计算.计算结果与参考文献作了对比,得到了满意的结果.
DEM simulation of granular flows in a centrifugal acceleration field
Cabrera, Miguel Angel; Peng, Chong; Wu, Wei
2017-04-01
The main purpose of mass-flow experimental models is abstracting distinctive features of natural granular flows, and allow its systematic study in the laboratory. In this process, particle size, space, time, and stress scales must be considered for the proper representation of specific phenomena [5]. One of the most challenging tasks in small scale models, is matching the range of stresses and strains among the particle and fluid media observed in a field event. Centrifuge modelling offers an alternative to upscale all gravity-driven processes, and it has been recently employed in the simulation of granular flows [1, 2, 3, 6, 7]. Centrifuge scaling principles are presented in Ref. [4], collecting a wide spectrum of static and dynamic models. However, for the case of kinematic processes, the non-uniformity of the centrifugal acceleration field plays a major role (i.e., Coriolis and inertial effects). In this work, we discuss a general formulation for the centrifugal acceleration field, implemented in a discrete element model framework (DEM), and validated with centrifuge experimental results. Conventional DEM simulations relate the volumetric forces as a function of the gravitational force Gp = mpg. However, in the local coordinate system of a rotating centrifuge model, the cylindrical centrifugal acceleration field needs to be included. In this rotating system, the centrifugal acceleration of a particle depends on the rotating speed of the centrifuge, as well as the position and speed of the particle in the rotating model. Therefore, we obtain the formulation of centrifugal acceleration field by coordinate transformation. The numerical model is validated with a series of centrifuge experiments of monodispersed glass beads, flowing down an inclined plane at different acceleration levels and slope angles. Further discussion leads to the numerical parameterization necessary for simulating equivalent granular flows under an augmented acceleration field. The premise of
FFF 92: Third international symposium on field-flow fractionation
Energy Technology Data Exchange (ETDEWEB)
1992-01-01
This is a collection of abstracts from the Third International Symposium on Field-Flow Fractionation. Topics were covered in the areas of environmental analysis, pharmaceutical applications, polymer analysis, particle characterization, and theory and optimization. Individual articles are abstracted and indexed separately.
Flow Field Post Processing via Partial Differential Equations
Preusser, T.; Rumpf, M.; Telea, A.
2006-01-01
The visualization of stationary and time-dependent flow is an important and challenging topic in scientific visualization. Its aim is to represent transport phenomena governed by vector fields in an intuitively understandable way. In this paper, we review the use of methods based on partial differen
Electrohydrodynamic flow caused by field-enhanced dissociation solely
Vasilkov, S. A.; Chirkov, V. A.; Stishkov, Yu. K.
2017-06-01
Electrohydrodynamic (EHD) flows emerge in dielectric liquids under the action of the Coulomb force and underlie energy-efficient techniques for heat and mass transfer. The key issue in the phenomena is the way how the net charge is created. One of the most promising, yet poorly studied charge formation mechanisms is the field-enhanced dissociation (or the Wien effect). So the paper studies an EHD flow caused solely by the effect by virtue of both experiment and computer simulation. To preclude the competing mechanism of charge formation—the injection—a new EHD system of a special design was examined. Its main feature is the use of solid insulation to create the region of the strong electric field far from the electrode metal surfaces. The experimental study used the particle image velocimetry technique to observe velocity distributions, whereas the computations were based on the complete set of electrohydrodynamic equations employing the commercial software package COMSOL Multiphysics. Spatial distributions of key quantities (including the ion concentrations, the total space charge density, and the velocity) and the acting forces were obtained in the computer simulation and were analyzed. The experimental flow structure was observed for a number of voltages up to 30 kV. The comparison of the numerical and experimental results yielded a good quantitative agreement for strong electric fields though some overshoot was observed for weak ones. The results allow concluding on the applicability of the Onsager theory of the field-enhanced dissociation in the context of EHD flows.
Propulsion efficiency and imposed flow fields of a copepod jump
DEFF Research Database (Denmark)
Jiang, H.; Kiørboe, Thomas
2011-01-01
velocity vectors pointing towards the copepod; such a flow field may inform the predator of the whereabouts of the escaping copepod prey. High Froude propulsion efficiency (0.94–0.98) was obtained for individual power stroke durations of all simulated jumps. This is unusual for small aquatic organisms...
FLOW FIELD IN SCOURED ZONE OF CHANNEL CONTRACTIONS
Institute of Scientific and Technical Information of China (English)
Rajkumar V. RAIKAR; Subhasish DEY
2004-01-01
Experiments were conducted in a laboratory flume to measure the two-dimensional turbulent flow field in the scoured zone of channel contractions under a clear-water scour condition. The Acoustic Doppler Velocimeter (ADV) was used to detect the flow field at different vertical lines along the centerline of uncontracted (main channel) and contracted zones of the channel. The distributions of time-averaged velocity components, turbulent intensity, turbulent kinetic energy, and Reynolds stresses are presented in nondimensional graphical form. The bed shear stresses are computed from the measured Reynolds stresses being in threshold condition within the zone of contraction where bed was scoured. The data presented in this paper would be useful to the investigators for the development of kinematic flow model and morphological model of scour at a channel or river contraction.
Research on Numerical Simulation for Flow Field in a Jigger
Institute of Scientific and Technical Information of China (English)
ZENG Ming; XU Zhi-qiang; XIE Hua; ZHANG Rong-zeng
2003-01-01
Jigger is the main equipment in coal processing industry in China, which is developed towards large-scale device. By using the homemade device LTX-35 jigger as a model employing mesh division with non-orthogonal mesh for different kinds of through-flow passage, and completing the numerical simulation with the computational fluid dynamics (CDF) software-PHOENICS, the velocity distribution in different flow fields resulting from guide plates of varied structures are obtained. The results from the simulation show that 1 ) the degree of velocity uniformity of the flow field can be improved if a flat guide plate is replaced by a curved one in the jigger; 2) the best result can be achieved by using a semicircular guide plate.
Numerical simulation of electromagnetic and flow fields of TiAI melt under electric field
Institute of Scientific and Technical Information of China (English)
Zhang Yong; Ding Hongsheng; Jiang Sanyong; Chen Ruirun; Guo Jingjie
2010-01-01
This article aims at building an electromagnetic and fluid model, based on the Maxwell equations and Navier-Stokes equations, in TiAI melt under two electric fields. FEM (Finite Element Method) and APDL (ANSYS Parametric Design Language) were employed to perform the simulation, model setup, loading and problem solving. The melt in molds of same cross section area with different flakiness ratio (i.e. width/depth) under the load of sinusoidal current or pulse current was analyzed to obtain the distribution of electromagnetic field and flow field. The results show that the induced magnetic field occupies sufficiently the domain of the melt in the mold with a flakiness ratio of 5:1. The melt is driven bipolarly from the center in each electric field. It is also found that the pulse electric field actuates the TiAI melt to flow stronger than what the sinusoidal electric field does.
Nonlinear closures for scale separation in supersonic magnetohydrodynamic turbulence
Grete, Philipp; Schmidt, Wolfram; Schleicher, Dominik R G; Federrath, Christoph
2015-01-01
Turbulence in compressible plasma plays a key role in many areas of astrophysics and engineering. The extreme plasma parameters in these environments, e.g. high Reynolds numbers, supersonic and super-Alfvenic flows, however, make direct numerical simulations computationally intractable even for the simplest treatment -- magnetohydrodynamics (MHD). To overcome this problem one can use subgrid-scale (SGS) closures -- models for the influence of unresolved, subgrid-scales on the resolved ones. In this work we propose and validate a set of constant coefficient closures for the resolved, compressible, ideal MHD equations. The subgrid-scale energies are modeled by Smagorinsky-like equilibrium closures. The turbulent stresses and the electromotive force (EMF) are described by expressions that are nonlinear in terms of large scale velocity and magnetic field gradients. To verify the closures we conduct a priori tests over 137 simulation snapshots from two different codes with varying ratios of thermal to magnetic pre...
Mean-field dynamo action in renovating shearing flows.
Kolekar, Sanved; Subramanian, Kandaswamy; Sridhar, S
2012-08-01
We study mean-field dynamo action in renovating flows with finite and nonzero correlation time (τ) in the presence of shear. Previous results obtained when shear was absent are generalized to the case with shear. The question of whether the mean magnetic field can grow in the presence of shear and nonhelical turbulence, as seen in numerical simulations, is examined. We show in a general manner that, if the motions are strictly nonhelical, then such mean-field dynamo action is not possible. This result is not limited to low (fluid or magnetic) Reynolds numbers nor does it use any closure approximation; it only assumes that the flow renovates itself after each time interval τ. Specifying to a particular form of the renovating flow with helicity, we recover the standard dispersion relation of the α(2)Ω dynamo, in the small τ or large wavelength limit. Thus mean fields grow even in the presence of rapidly growing fluctuations, surprisingly, in a manner predicted by the standard quasilinear closure, even though such a closure is not strictly justified. Our work also suggests the possibility of obtaining mean-field dynamo growth in the presence of helicity fluctuations, although having a coherent helicity will be more efficient.
Experimental investigation of the structure of supersonic two-dimensional air microjets
Timofeev, Ivan; Aniskin, Vladimir; Mironov, Sergey
2016-10-01
We have experimentally studied the structure of supersonic underexpanded room-temperature air jets escaping from micronozzles with characteristic heights from 47 to 175 µm and widths within 2410-3900 µm in a range of Reynolds numbers of 1280-9460. The dimensions of the first shock cell are established. The supersonic core length of supersonic underexpanded air jets has been determined for the first time. A flow regime with a large supersonic core length has observed for air jets escaping from a 47µm high nozzle.
An experimental study of the structure of supersonic flat underexpanded microjets
Aniskin, V. M.; Maslov, A. A.; Mironov, S. G.; Tsyryulnikov, I. S.; Timofeev, I. V.
2015-05-01
We have experimentally studied the structure of supersonic flat underexpanded room-temperature air jets escaping from micro nozzles with characteristic heights from 47 to 175 μm and widths within 2410-3900 μm in a range of Reynolds numbers of 1280-9460. The dimensions of the first shock cell are established. The supersonic core length of supersonic flat underexpanded air jets has been determined for the first time. A flow regime with a large supersonic core length has been observed for air jets escaping from a 47-μm-high nozzle.
Field-Flow Fractionation Analysis of Complex Biological Samples
Directory of Open Access Journals (Sweden)
Mijić, I.
2014-03-01
Full Text Available Normal analytical methods have difficulties when analysing complex samples containing particles of different size. In the 1960s, a new analytical technique was developed, which was able to overcome those difficulties. This new, Field-Flow Fractionation (FFF technique has been primarily used in the separation of large particles such as macromolecules and colloids. The development and improvement of the FFF technique led to the coupling of the technique with other specific and sensitive analytical methods which resulted in the FFF technique becoming very useful in isolation, separation and analysis of various complex samples, such as powders, emulsions, colloids, geological sediments, biopolymers, complex proteins, polysaccharides, synthetic polymers, and many others. The separation field in the FFF technique is a thin, empty flow chamber called a channel. The structure of the ribbonlike channel with view of the parabolic flow can be seen in Fig. 1. Separation is achieved by the interaction of sample components with an externally generated field, which is applied perpendicularly to the direction of the mobile flow inside the channel. Sample components, which differ in molar mass, size or other properties are pushed by the applied perpendicular field into different velocity regions within the parabolic flow profile of the mobile phase across the channel. The flow has different velocity depending on the position within the channel; the velocity at the walls is zero and it increases towards the centre of the channel. Samples are carried downstream through the channel at different velocities and exit the channel after different retention times. The relative distribution of samples in the parabolic flow determines the separation characteristics. Different operating modes have different types of distributions. The most frequently used mechanisms of FFF separation are listed in Fig. 2. Based on the characteristics of analysed particles and applied outer
Supersonic Stall Flutter of High Speed Fans. [in turbofan engines
Adamczyk, J. J.; Stevens, W.; Jutras, R.
1981-01-01
An analytical model is developed for predicting the onset of supersonic stall bending flutter in axial flow compressors. The analysis is based on a modified two dimensional, compressible, unsteady actuator disk theory. It is applied to a rotor blade row by considering a cascade of airfoils whose geometry and dynamic response coincide with those of a rotor blade element at 85 percent of the span height (measured from the hub). The rotor blades are assumed to be unshrouded (i.e., free standing) and to vibrate in their first flexural mode. The effects of shock waves and flow separation are included in the model through quasi-steady, empirical, rotor total-pressure-loss and deviation-angle correlations. The actuator disk model predicts the unsteady aerodynamic force acting on the cascade blading as a function of the steady flow field entering the cascade and the geometry and dynamic response of the cascade. Calculations show that the present model predicts the existence of a bending flutter mode at supersonic inlet Mach numbers. This flutter mode is suppressed by increasing the reduced frequency of the system or by reducing the steady state aerodynamic loading on the cascade. The validity of the model for predicting flutter is demonstrated by correlating the measured flutter boundary of a high speed fan stage with its predicted boundary. This correlation uses a level of damping for the blade row (i.e., the log decrement of the rotor system) that is estimated from the experimental flutter data. The predicted flutter boundary is shown to be in good agreement with the measured boundary.
Ke, Xinyou; Alexander, J Iwan D; Savinell, Robert F
2016-01-01
In this work, a two-dimensional mathematical model is developed to study the flow patterns and volumetric flow penetrations in the flow channel over the porous electrode layered system in vanadium flow battery with serpentine flow field design. The flow distributions at the interface between the flow channel and porous electrode are examined. It is found that the non-linear pressure distributions can distinguish the interface flow distributions under the ideal plug flow and ideal parabolic flow inlet boundary conditions. However, the volumetric flow penetration within the porous electrode beneath the flow channel through the integration of interface flow velocity reveals that this value is identical under both ideal plug flow and ideal parabolic flow inlet boundary conditions. The volumetric flow penetrations under the advection effects of flow channel and landing/rib are estimated. The maximum current density achieved in the flow battery can be predicted based on the 100% amount of electrolyte flow reactant ...
Asymmetrical flow field-flow fractionation in the study of water-soluble macromolecules
Yohannes, Gebrenegus
2007-01-01
Asymmetrical flow field-flow fractionation (AsFlFFF) was constructed, and its applicability to industrial, biochemical, and pharmaceutical applications was studied. The effect of several parameters, such as pH, ionic strength, temperature and the reactants mixing ratios on the particle sizes, molar masses, and the formation of aggregates of macromolecules was determined by AsFlFFF. In the case of industrial application AsFlFFF proved to be a valuable tool in the characterization of the hydrod...
Optimization and evaluation of asymmetric flow field-flow fractionation of silver nanoparticles
Loeschner, Katrin; Navratilova, Jana; Legros, Samuel; Wagner, Stephan; Grombe, Ringo; Snell, James; von der Kammer, Frank; Larsen, Erik H
2013-01-01
Asymmetric flow field-flow fractionation (AF4) in combination with on-line optical detection and mass spectrometry is one of the most promising methods for separation and quantification of nanoparticles (NPs) in complex matrices including food. However, to obtain meaningful results regarding especially the NP size distribution a number of parameters influencing the separation need to be optimized. This paper describes the development of a separation method for polyvinylpyrrolidone-stabilized ...
Laboratory and field trials of Coriolis mass flow metering for three-phase flow measurement
Zhou, Feibiao; Henry, Manus; Tombs, Michael
2014-04-01
A new three-phase flow metering technology is discussed in this paper, which combines Coriolis mass flow and water cut readings and without applying any phase separation [1]. The system has undergone formal laboratory trials at TUV NEL (National Engineering Laboratory), UK and at VNIIR (National Flow Laboratory), Kazan, Russia; a number of field trials have taken place in Russia. Laboratory trial results from the TUV NEL will be described in detail. For the 50mm (2") metering system, the total liquid flow rate ranged from 2.4 kg/s up to 11 kg/s, the water cut ranged from 0% to 100%, and the gas volume fraction (GVF) from 0 to 50%. In a formally observed trial, 75 test points were taken at a temperature of approximately 40 °C and with a skid inlet pressure of approximately 350 kPa. Over 95% of the test results fell within the desired specification, defined as follows: the total (oil + water) liquid mass flow error should fall within ± 2.5%, and the gas mass flow error within ± 5.0%. The oil mass flow error limit is ± 6.0% for water cuts less than 70%, while for water cuts between 70% and 95% the oil mass flow error limit is ± 15.0%. These results demonstrate the potential for using Coriolis mass flow metering combined with water cut metering for three-phase (oil/water/gas) measurement.
Subsurface magnetic field and flow structure of simulated sunspots
Rempel, Matthias
2011-01-01
We present a series of numerical sunspot models addressing the subsurface field and flow structure in up to 16 Mm deep domains covering up to 2 days of temporal evolution. Changes in the photospheric appearance of the sunspots are driven by subsurface flows in several Mm depth. Most of magnetic field is pushed into a downflow vertex of the subsurface convection pattern, while some fraction of the flux separates from the main trunk of the spot. Flux separation in deeper layers is accompanied in the photosphere with light bridge formation in the early stages and formation of pores separating from the spot at later stages. Over a time scale of less than a day we see the development of a large scale flow pattern surrounding the sunspots, which is dominated by a radial outflow reaching about 50% of the convective rms velocity in amplitude. Several components of the large scale flow are found to be independent from the presence of a penumbra and the associated Evershed flow. While the simulated sunspots lead to blo...
Path planning in uncertain flow fields using ensemble method
Wang, Tong; Le Maître, Olivier P.; Hoteit, Ibrahim; Knio, Omar M.
2016-10-01
An ensemble-based approach is developed to conduct optimal path planning in unsteady ocean currents under uncertainty. We focus our attention on two-dimensional steady and unsteady uncertain flows, and adopt a sampling methodology that is well suited to operational forecasts, where an ensemble of deterministic predictions is used to model and quantify uncertainty. In an operational setting, much about dynamics, topography, and forcing of the ocean environment is uncertain. To address this uncertainty, the flow field is parametrized using a finite number of independent canonical random variables with known densities, and the ensemble is generated by sampling these variables. For each of the resulting realizations of the uncertain current field, we predict the path that minimizes the travel time by solving a boundary value problem (BVP), based on the Pontryagin maximum principle. A family of backward-in-time trajectories starting at the end position is used to generate suitable initial values for the BVP solver. This allows us to examine and analyze the performance of the sampling strategy and to develop insight into extensions dealing with general circulation ocean models. In particular, the ensemble method enables us to perform a statistical analysis of travel times and consequently develop a path planning approach that accounts for these statistics. The proposed methodology is tested for a number of scenarios. We first validate our algorithms by reproducing simple canonical solutions, and then demonstrate our approach in more complex flow fields, including idealized, steady and unsteady double-gyre flows.
Path planning in uncertain flow fields using ensemble method
Wang, Tong
2016-08-20
An ensemble-based approach is developed to conduct optimal path planning in unsteady ocean currents under uncertainty. We focus our attention on two-dimensional steady and unsteady uncertain flows, and adopt a sampling methodology that is well suited to operational forecasts, where an ensemble of deterministic predictions is used to model and quantify uncertainty. In an operational setting, much about dynamics, topography, and forcing of the ocean environment is uncertain. To address this uncertainty, the flow field is parametrized using a finite number of independent canonical random variables with known densities, and the ensemble is generated by sampling these variables. For each of the resulting realizations of the uncertain current field, we predict the path that minimizes the travel time by solving a boundary value problem (BVP), based on the Pontryagin maximum principle. A family of backward-in-time trajectories starting at the end position is used to generate suitable initial values for the BVP solver. This allows us to examine and analyze the performance of the sampling strategy and to develop insight into extensions dealing with general circulation ocean models. In particular, the ensemble method enables us to perform a statistical analysis of travel times and consequently develop a path planning approach that accounts for these statistics. The proposed methodology is tested for a number of scenarios. We first validate our algorithms by reproducing simple canonical solutions, and then demonstrate our approach in more complex flow fields, including idealized, steady and unsteady double-gyre flows.
Path planning in uncertain flow fields using ensemble method
Wang, Tong; Le Maître, Olivier P.; Hoteit, Ibrahim; Knio, Omar M.
2016-08-01
An ensemble-based approach is developed to conduct optimal path planning in unsteady ocean currents under uncertainty. We focus our attention on two-dimensional steady and unsteady uncertain flows, and adopt a sampling methodology that is well suited to operational forecasts, where an ensemble of deterministic predictions is used to model and quantify uncertainty. In an operational setting, much about dynamics, topography, and forcing of the ocean environment is uncertain. To address this uncertainty, the flow field is parametrized using a finite number of independent canonical random variables with known densities, and the ensemble is generated by sampling these variables. For each of the resulting realizations of the uncertain current field, we predict the path that minimizes the travel time by solving a boundary value problem (BVP), based on the Pontryagin maximum principle. A family of backward-in-time trajectories starting at the end position is used to generate suitable initial values for the BVP solver. This allows us to examine and analyze the performance of the sampling strategy and to develop insight into extensions dealing with general circulation ocean models. In particular, the ensemble method enables us to perform a statistical analysis of travel times and consequently develop a path planning approach that accounts for these statistics. The proposed methodology is tested for a number of scenarios. We first validate our algorithms by reproducing simple canonical solutions, and then demonstrate our approach in more complex flow fields, including idealized, steady and unsteady double-gyre flows.
Statnikov, Vladimir; Sayadi, Taraneh; Meinke, Matthias; Schmid, Peter; Schröder, Wolfgang
2015-01-01
A sparsity promoting dynamic mode decomposition (DMD) combined with a classical data-based statistical analysis is applied to the turbulent wake of a generic axisymmetric configuration of an Ariane 5-like launcher at Ma∞ = 6.0 computed via a zonal Reynolds-averaged Navier-Stokes/large-eddy simulation (RANS/LES) method. The objective of this work is to gain a better understanding of the wake flow dynamics of the generic launcher by clarification and visualization of initially unknown pressure perturbation sources on its after-body in coherent flow patterns. The investigated wake topology is characterized by a subsonic cavity region around the cylindrical nozzle extension which is formed due to the displacement effect of the afterexpanding jet plume emanating from the rocket nozzle (Mae = 2.52, pe/p∞ = 100) and the shear layer shedding from the main body. The cavity region contains two toroidal counter-rotating large-scale vortices which extensively interact with the turbulent shear layer, jet plume, and rocket walls, leading to the shear layer instability process to be amplified. The induced velocity fluctuations in the wake and the ultimately resulting pressure perturbations on the after-body feature three global characteristic frequency ranges, depending on the streamwise position inside the cavity. The most dominant peaks are detected at SrD r3 = 0.85 ± 0.075 near the nozzle exit, while the lower frequency peaks, in the range of SrD r2 = 0.55 ± 0.05 and SrD r1 = 0.25 ± 0.05, are found to be dominant closer to the rocket's base. A sparse promoting DMD algorithm is applied to the time-resolved velocity field to clarify the origin of the detected peaks. This analysis extracts three low-frequency spatial modes at SrD = 0.27, 0.56, and 0.85. From the three-dimensional shape of the DMD modes and the reconstructed modulation of the mean flow in time, it is deduced that the detected most dominant peaks of SrD r3 ≈ 0.85 are caused by the radial flapping motion of
Zeng, Y. K.; Zhou, X. L.; Zeng, L.; Yan, X. H.; Zhao, T. S.
2016-09-01
The catalyst for the negative electrode of iron-chromium redox flow batteries (ICRFBs) is commonly prepared by adding a small amount of Bi3+ ions in the electrolyte and synchronously electrodepositing metallic particles onto the electrode surface at the beginning of charge process. Achieving a uniform catalyst distribution in the porous electrode, which is closely related to the flow field design, is critically important to improve the ICRFB performance. In this work, the effects of flow field designs on catalyst electrodeposition and battery performance are investigated. It is found that compared to the serpentine flow field (SFF) design, the interdigitated flow field (IFF) forces the electrolyte through the porous electrode between the neighboring channels and enhances species transport during the processes of both the catalyst electrodeposition and iron/chromium redox reactions, thus enabling a more uniform catalyst distribution and higher mass transport limitation. It is further demonstrated that the energy efficiency of the ICRFB with the IFF reaches 80.7% at a high current density (320 mA cm-2), which is 8.2% higher than that of the ICRFB with the SFF. With such a high performance and intrinsically low-cost active materials, the ICRFB with the IFF offers a great promise for large-scale energy storage.
The role of finite-difference methods in design and analysis for supersonic cruise
Townsend, J. C.
1976-01-01
Finite-difference methods for analysis of steady, inviscid supersonic flows are described, and their present state of development is assessed with particular attention to their applicability to vehicles designed for efficient cruise flight. Current work is described which will allow greater geometric latitude, improve treatment of embedded shock waves, and relax the requirement that the axial velocity must be supersonic.
Flow field around a sphere colliding against a wall.
Zenit, R.; Hunt, M. L.
1998-11-01
This study investigates the flow field and the fluid agitation generated by particle collisions. The motion of a particle towards a wall, or towards another particle, will result in a collision if the Reynolds number of the flow is large. As the particle approaches the wall, the fluid in the gap between the particle and the wall will be displaced. When the particle touches the wall and rebounds, the direction of the flow will reverse. This process produces a considerable agitation in the fluid phase. To study this process an immersed pendulum experiment was built to produce controlled collisions of particles. A fine string is attached to a particle, which is positioned at rest from some initial angle. Once released, the particle accelerates towards a wall, or to another suspended particle, resulting in a collision. The fluid is seeded with neutrally buoyant micro-spheres, which illuminated by a laser sheet serve as flow tracers. The motion of the particles and tracers is recorded using a high speed digital camera. The images are digitally processed to calculate displacements and velocities for different times before and after the collision. Flow fields are obtained for different impact velocities, particle diameters and solid-fluid density ratios, as well as for particle-wall and particle-particle collisions. Preliminary results show that for the flow conditions tested, the rebound of the particle is dependent on the shape of the wake behind the particle at the moment of collision, and not only on the flow in the gap between the particle and the wall. The amount of collision-generated agitation appears to increase with impact velocity and density ratio.
Dynamics simulation of electrorheological suspensions in poiseuille flow field
Institute of Scientific and Technical Information of China (English)
朱石沙; 罗成; 周杰; 陈娜
2008-01-01
Based on a modified Maxwell-Wagner model,molecular dynamics is carried out to simulate the structural changes of ER(electrorheological) suspensions in a poiseuille flow field.The simulation results show that the flow assists in the collection of particles at the electrodes under a low pressure gradient,and the negative ER effect will show under a high pressure gradient.By analyzing the relationship curves of the shear stress and the pressure gradient in different relaxation time,it is found that for the same kind of ER suspensions materials,there is an optimal dielectric relaxation frequency.
Sanz, Ramsés; Puignou, Lluís; Galceran, Maria Teresa; Reschiglian, Pierluigi; Zattoni, Andrea; Melucci, Dora
2004-08-01
This work continues the project on field-flow fractionation characterisation of whole wine-making yeast cells reported in previous papers. When yeast cells are fractionated by gravitational field-flow fractionation and cell sizing of the collected fractions is achieved by the electrosensing zone technique (Coulter counter), it is shown that yeast cell retention depends on differences between physical indexes of yeast cells other than size. Scanning electron microscopy on collected fractions actually shows co-elution of yeast cells of different size and shape. Otherwise, the observed agreement between the particle size distribution analysis obtained by means of the Coulter counter and by flow field-flow fractionation, which employs a second mobile phase flow as applied field instead of Earth's gravity, indicates that yeast cell density can play a major role in the gravitational field-flow fractionation retention mechanism of yeast cells, in which flow field-flow fractionation retention is independent of particle density. Flow field-flow fractionation is then coupled off-line to gravitational field-flow fractionation for more accurate characterisation of the doubly-fractionated cells. Coupling gravitational and flow field-flow fractionation eventually furnishes more information on the multipolydispersity indexes of yeast cells, in particular on their shape and density polydispersity.
The 3D Flow Field Around an Embedded Planet
Fung, Jeffrey; Wu, Yanqin
2015-01-01
Understanding the 3D flow topology around a planet embedded in its natal disk is crucial to the study of planet formation. 3D modifications to the well-studied 2D flow topology have the potential to resolve longstanding problems in both planet migration and accretion. We present a detailed analysis of the 3D isothermal flow field around a 5 Earth-mass planet on a fixed circular orbit, simulated using our high-resolution multi-GPU hydrodynamics code PEnGUIn. We show that, overall, the horseshoe region has a columnar structure extending vertically much beyond the Hill sphere of the planet. This columnar structure is only broken for some of the widest horseshoe streamlines, along which high altitude fluid descends and converges rapidly toward the planet, enters its Bondi sphere, performs one horseshoe turn, and exits radially in the midplane. A portion of this flow gathers enough speed to exit the horseshoe region altogether. We call this newly identified feature the "transient" horseshoe flow. As the flow conti...
Field measurement of basal forces generated by erosive debris flows
McCoy, S.W.; Tucker, G.E.; Kean, J.W.; Coe, J.A.
2013-01-01
It has been proposed that debris flows cut bedrock valleys in steeplands worldwide, but field measurements needed to constrain mechanistic models of this process remain sparse due to the difficulty of instrumenting natural flows. Here we present and analyze measurements made using an automated sensor network, erosion bolts, and a 15.24 cm by 15.24 cm force plate installed in the bedrock channel floor of a steep catchment. These measurements allow us to quantify the distribution of basal forces from natural debris‒flow events that incised bedrock. Over the 4 year monitoring period, 11 debris‒flow events scoured the bedrock channel floor. No clear water flows were observed. Measurements of erosion bolts at the beginning and end of the study indicated that the bedrock channel floor was lowered by 36 to 64 mm. The basal force during these erosive debris‒flow events had a large‒magnitude (up to 21 kN, which was approximately 50 times larger than the concurrent time‒averaged mean force), high‒frequency (greater than 1 Hz) fluctuating component. We interpret these fluctuations as flow particles impacting the bed. The resulting variability in force magnitude increased linearly with the time‒averaged mean basal force. Probability density functions of basal normal forces were consistent with a generalized Pareto distribution, rather than the exponential distribution that is commonly found in experimental and simulated monodispersed granular flows and which has a lower probability of large forces. When the bed sediment thickness covering the force plate was greater than ~ 20 times the median bed sediment grain size, no significant fluctuations about the time‒averaged mean force were measured, indicating that a thin layer of sediment (~ 5 cm in the monitored cases) can effectively shield the subjacent bed from erosive impacts. Coarse‒grained granular surges and water‒rich, intersurge flow had very similar basal force distributions despite
Optimal separation times for electrical field flow fractionation with Couette flows.
Pascal, Jennifer; O'Hara, Ryan; Oyanader, Mario; Arce, Pedro E
2008-11-01
The prediction of optimal times of separation as a function of the applied electrical field and cation valence have been studied for the case of field flow fractionation [Martin M., Giddings J. C., J. Phys. Chem. 1981, 85, 727] with charged solutes. These predictions can be very useful to a priori design or identify optimal operating conditions for a Couette-based device for field flow fractionation when the orthogonal field is an electrical field. Mathematically friendly relationships are obtained by applying the method of spatial averaging to the solute species continuity equation; this is accomplished after the role of the capillary geometrical dimensions on the applied electrical field equations has been assessed [Oyanader M. A., Arce P., Electrophoresis 2005; 26, 2857]. Moreover, explicit analytical expressions are derived for the effective parameters, i.e. diffusivity and convective velocity as functions of the applied (orthogonal) electrical field. These effective transport parameters are used to study the effect of the cation valence of the solutes and of the magnitude of the applied orthogonal electrical field on the values of the optimal time of separation. These parameters play a significant role in controlling the optimal separation time, leading to a family of minimum values, for particular magnitudes of the applied orthogonal electrical field.
Post-processing methods of PIV instantaneous flow fields for unsteady flows in turbomachines
Cavazzini, G.; A. Dazin; Pavesi, G; Dupont, P; G. Bois
2012-01-01
The Particle Image Velocimetry is undoubtedly one of the most important technique in Fluid-dynamics since it allows to obtain a direct and instantaneous visualization of the flow field in a non-intrusive way. This innovative technique spreads in a wide number of research fields, from aerodynamics to medicine, from biology to turbulence researches, from aerodynamics to combustion processes. The book is aimed at presenting the PIV technique and its wide range of possible applications so as to p...
Elevator mode convection in flows with strong magnetic fields
Liu, Li; Zikanov, Oleg
2015-04-01
Instability modes in the form of axially uniform vertical jets, also called "elevator modes," are known to be the solutions of thermal convection problems for vertically unbounded systems. Typically, their relevance to the actual flow state is limited by three-dimensional breakdown caused by rapid growth of secondary instabilities. We consider a flow of a liquid metal in a vertical duct with a heated wall and strong transverse magnetic field and find elevator modes that are stable and, thus, not just relevant, but a dominant feature of the flow. We then explore the hypothesis suggested by recent experimental data that an analogous instability to modes of slow axial variation develops in finite-length ducts, where it causes large-amplitude fluctuations of temperature. The implications for liquid metal blankets for tokamak fusion reactors that potentially invalidate some of the currently pursued design concepts are discussed.
Elevator mode convection in flows with strong magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Liu, Li; Zikanov, Oleg, E-mail: zikanov@umich.edu [Department of Mechanical Engineering, University of Michigan-Dearborn, 48128-1491 Michigan (United States)
2015-04-15
Instability modes in the form of axially uniform vertical jets, also called “elevator modes,” are known to be the solutions of thermal convection problems for vertically unbounded systems. Typically, their relevance to the actual flow state is limited by three-dimensional breakdown caused by rapid growth of secondary instabilities. We consider a flow of a liquid metal in a vertical duct with a heated wall and strong transverse magnetic field and find elevator modes that are stable and, thus, not just relevant, but a dominant feature of the flow. We then explore the hypothesis suggested by recent experimental data that an analogous instability to modes of slow axial variation develops in finite-length ducts, where it causes large-amplitude fluctuations of temperature. The implications for liquid metal blankets for tokamak fusion reactors that potentially invalidate some of the currently pursued design concepts are discussed.
Numerical Simulation of Integrative Flow Field for Hypersonic Vehicle
Institute of Scientific and Technical Information of China (English)
HE Yuanyuan; LE Jialing; NI Hongli
2001-01-01
To meet the requirements for the aerodynamic performance and thrust force demanded in hypersonic missions,the integration design of fuselage and engine must be considered for hypersonic vehicle with a scramjet engine.The configuration of wave rider is a typical hypersonic vehicle shape, whose fore-body can compress the flow in advance and provide uniform flow for the air intake, and whose aft-body is used as an expansion surface of nozzle. In the present paper, an engineering method is applied to define total aerodynamic characteristics of an approximate wave rider configuration. A finite volume method based on the center of grid is also employed to numerically investigate the outflow pass the same configuration. The flow field details and the aerodynamic characteristics at given conditions are obtained. The evaluation for this configuration may be used as a guide for the hypersonic vehicle experiment.
Aljabri, Abdullah S.
1988-01-01
High speed subsonic transports powered by advanced propellers provide significant fuel savings compared to turbofan powered transports. Unfortunately, however, propfans must operate in aircraft-induced nonuniform flow fields which can lead to high blade cyclic stresses, vibration and noise. To optimize the design and installation of these advanced propellers, therefore, detailed knowledge of the complex flow field is required. As part of the NASA Propfan Test Assessment (PTA) program, a 1/9 scale semispan model of the Gulfstream II propfan test-bed aircraft was tested in the NASA-Lewis 8 x 6 supersonic wind tunnel to obtain propeller flow field data. Detailed radial and azimuthal surveys were made to obtain the total pressure in the flow and the three components of velocity. Data was acquired for Mach numbers ranging from 0.6 to 0.85. Analytical predictions were also made using a subsonic panel method, QUADPAN. Comparison of wind-tunnel measurements and analytical predictions show good agreement throughout the Mach range.
The laser measurement technology of combustion flow field
Wang, Mingdong; Wang, Guangyu; Qu, Dongsheng
2014-07-01
The parameters of combustion flow field such as temperature, velocity, pressure and mole-fraction are of significant value in engineering application. The laser spectroscopy technology which has the non-contact and non- interference properties has become the most important method and it has more advantages than conventionally contacting measurement. Planar laser induced fluorescence (PLIF/LIF) is provided with high sensibility and resolution. Filtered Rayleigh scattering (FRS) is a good measurement method for complex flow field .Tunable diode laser absorption spectroscopy (TDLAS) is prosperity on development and application. This article introduced the theoretical foundation, technical principle, system structure, merits and shortages. It is helpful for researchers to know about the latest development tendency and do the related research.
The Numerical Analysis of Flow Field on Warship Deck
Directory of Open Access Journals (Sweden)
Kwan Ouyang
2015-03-01
Full Text Available This study aims to simulate the exhaust flow field of ship by the method of computational fluid dynamics (CFD concerning with the interference by exhaust temperature, shape of stack and rolling angles etc.. In this research wind tunnel test for a corvette has been performed to attain associated experimental data, which were used as a reference basis. During simulation process several configurations of stacks have been selected, and combining with various rolling angles, exhaust temperatures and velocities, we have generated numerous cases from which the diffusion paths and temperature distribution of the exhaust flow field can be clearly observed and analyzed. In terms of numerical simulation, the packaged program computational fluid dynamics software has been adopted. The simulation results also possess the same trend as the experimental data, which have initially confirmed the methods developed here can be used for the arrangement of stack and superstructure at the stage of initial and conceptual design of ships.
Fuel cell with interdigitated porous flow-field
Wilson, Mahlon S.
1997-01-01
A polymer electrolyte membrane (PEM) fuel cell is formed with an improved system for distributing gaseous reactants to the membrane surface. A PEM fuel cell has an ionic transport membrane with opposed catalytic surfaces formed thereon and separates gaseous reactants that undergo reactions at the catalytic surfaces of the membrane. The fuel cell may also include a thin gas diffusion layer having first and second sides with a first side contacting at least one of the catalytic surfaces. A macroporous flow-field with interdigitated inlet and outlet reactant channels contacts the second side of the thin gas diffusion layer for distributing one of the gaseous reactants over the thin gas diffusion layer for transport to an adjacent one of the catalytic surfaces of the membrane. The porous flow field may be formed from a hydrophilic material and provides uniform support across the backside of the electrode assembly to facilitate the use of thin backing layers.
Flowing in group field theory space: a review
Carrozza, Sylvain
2016-01-01
We provide a non--technical overview of recent extensions of renormalization methods and techniques to Group Field Theories (GFTs), a class of combinatorially non--local quantum field theories which generalize matrix models to dimension $d \\geq 3$. More precisely, we focus on GFTs with so--called closure constraint, which are closely related to lattice gauge theories and quantum gravity spin foam models. With the help of modern tensor model tools, a rich landscape of renormalizable theories has been unravelled. We review our current understanding of their renormalization group flows, at both perturbative and non--perturbative levels.
Flow fields in soap films: Relating viscosity and film thickness
Prasad, V.; Weeks, Eric R.
2009-08-01
We follow the diffusive motion of colloidal particles in soap films with varying h/d , where h is the thickness of the film and d is the diameter of the particles. The hydrodynamics of these films are determined by looking at the correlated motion of pairs of particles as a function of separation R . The Trapeznikov approximation [A. A. Trapeznikov, Proceedings of the 2nd International Congress on Surface Activity (Butterworths, London, 1957), p. 242] is used to model soap films as an effective two-dimensional (2D) fluid in contact with bulk air phases. The flow fields determined from correlated particle motions show excellent agreement with what is expected for the theory of 2D fluids for all our films where 0.6≤h/d≤14.3 , with the 2D shear viscosity matching that predicted by Trapeznikov. However, the parameters of these flow fields change markedly for thick films (h/d>7±3) . Our results indicate that three-dimensional effects become important for these thicker films, despite the flow fields still having a 2D character.
Determining 3D flow fields via multi-camera light field imaging.
Truscott, Tadd T; Belden, Jesse; Nielson, Joseph R; Daily, David J; Thomson, Scott L
2013-03-06
In the field of fluid mechanics, the resolution of computational schemes has outpaced experimental methods and widened the gap between predicted and observed phenomena in fluid flows. Thus, a need exists for an accessible method capable of resolving three-dimensional (3D) data sets for a range of problems. We present a novel technique for performing quantitative 3D imaging of many types of flow fields. The 3D technique enables investigation of complicated velocity fields and bubbly flows. Measurements of these types present a variety of challenges to the instrument. For instance, optically dense bubbly multiphase flows cannot be readily imaged by traditional, non-invasive flow measurement techniques due to the bubbles occluding optical access to the interior regions of the volume of interest. By using Light Field Imaging we are able to reparameterize images captured by an array of cameras to reconstruct a 3D volumetric map for every time instance, despite partial occlusions in the volume. The technique makes use of an algorithm known as synthetic aperture (SA) refocusing, whereby a 3D focal stack is generated by combining images from several cameras post-capture (1). Light Field Imaging allows for the capture of angular as well as spatial information about the light rays, and hence enables 3D scene reconstruction. Quantitative information can then be extracted from the 3D reconstructions using a variety of processing algorithms. In particular, we have developed measurement methods based on Light Field Imaging for performing 3D particle image velocimetry (PIV), extracting bubbles in a 3D field and tracking the boundary of a flickering flame. We present the fundamentals of the Light Field Imaging methodology in the context of our setup for performing 3DPIV of the airflow passing over a set of synthetic vocal folds, and show representative results from application of the technique to a bubble-entraining plunging jet.
Mathematical Modeling of Flow Field in Ceramic Candle Filter
Institute of Scientific and Technical Information of China (English)
TaewonSeo; Joo－HongChoi; 等
1998-01-01
Integrated gasification combined cycle(IGCC)is one of the candidates to achieve stringent environmental regulation among the clean coal technologies.Advancing the technology of the hot gas cleanup systems is the most critical component in the development of the IGCC.Thus the aim of this study is to understand the flow field in the ceramic filter and the influence of ceramic filter in removal of the particles contained in the hot gas flow.The numerical model based on the Reynolds stress turbulence model with the Darycy's law in the porous region is adopted.It is found that the effect of the porosity in the flowfield is negligibly small while the effect of the filter length is significant.It is also found as the permeability decreases,the reattachment point due to the flow separation moves upstream,This is because the fluid is sucked into the filter region due to the pressure drop before the flow separation occurs.The particle follows well with the fluid stream and the particle is directly sucked into the filter due to the pressure drop even in the flow separation region.
Flow field around Vorticella: Mixing with a reciprocal stroke
Pepper, Rachel E.; Roper, Marcus; Stone, Howard A.
2008-11-01
Vorticella is a stalked protozoan. It has an extremely fast biological spring, whose contraction is among the fastest biological motions relative to size. Though the Vorticella body is typically only 30 μm across, the contracting spring accelerates it up to speeds of centimeters per second. Vorticella live in an aqueous environment attached to a solid substrate and use their spring to retract their body towards the substrate. The function of the rapid retraction is not known. Many hypothesize that it stirs the surrounding liquid and exposes the Vorticella to fresh nutrients. We evaluate this hypothesis by modeling the Vorticella as a sphere moving normal to a wall, with a stroke that moves towards the wall at high Reynolds number, and away from the wall at low Reynolds number. We approximate the flow during contraction as potential flow, while the flow during re-extension is considered Stokes flow. The analytical results are compared to the flow field obtained with a finite element (Comsol Multiphysics) simulation of the full Navier-Stokes equations.
Agosta, Roxana; Bilbija, Dushan; Deutsch, Marc; Gallant, David; Rose, Don; Shreve, Gene; Smario, David; Suffredini, Brian
1992-01-01
As intercontinental business and tourism volumes continue their rapid expansion, the need to reduce travel times becomes increasingly acute. The Edge Supersonic Transport Aircraft is designed to meet this demand by the year 2015. With a maximum range of 5750 nm, a payload of 294 passengers and a cruising speed of M = 2.4, The Edge will cut current international flight durations in half, while maintaining competitive first class, business class, and economy class comfort levels. Moreover, this transport will render a minimal impact upon the environment, and will meet all Federal Aviation Administration Part 36, Stage III noise requirements. The cornerstone of The Edge's superior flight performance is its aerodynamically efficient, dual-configuration design incorporating variable-geometry wingtips. This arrangement combines the benefits of a high aspect ratio wing at takeoff and low cruising speeds with the high performance of an arrow-wing in supersonic cruise. And while the structural weight concerns relating to swinging wingtips are substantial, The Edge looks to ever-advancing material technologies to further increase its viability. Heeding well the lessons of the past, The Edge design holds economic feasibility as its primary focus. Therefore, in addition to its inherently superior aerodynamic performance, The Edge uses a lightweight, largely windowless configuration, relying on a synthetic vision system for outside viewing by both pilot and passengers. Additionally, a fly-by-light flight control system is incorporated to address aircraft supersonic cruise instability. The Edge will be produced at an estimated volume of 400 aircraft and will be offered to airlines in 2015 at $167 million per transport (1992 dollars).
Lodato, Luigi; Harris, A.; Spampinato, L.; Calvari, Sonia; Dehn, J.; Patrick, M.
2007-01-01
The use of a hand-held thermal camera during the 2002–2003 Stromboli effusive eruption proved essential in tracking the development of flow field structures and in measuring related eruption parameters, such as the number of active vents and flow lengths. The steep underlying slope on which the flow field was emplaced resulted in a characteristic flow field morphology. This comprised a proximal shield, where flow stacking and inflation caused piling up of lava on the relatively flat ground of the vent zone, that fed a medial–distal lava flow field. This zone was characterized by the formation of lava tubes and tumuli forming a complex network of tumuli and flows linked by tubes. Most of the flow field was emplaced on extremely steep slopes and this had two effects. It caused flows to slide, as well as flow, and flow fronts to fail frequently, persistent flow front crumbling resulted in the production of an extensive debris field. Channel-fed flows were also characterized by development of excavated debris levees in this zone (Calvari et al. 2005). Collapse of lava flow fronts and inflation of the upper proximal lava shield made volume calculation very difficult. Comparison of the final field volume with that expecta by integrating the lava effusion rates through time suggests a loss of ~70% erupted lava by flow front crumbling and accumulation as debris flows below sea level. Derived relationships between effusion rate, flow length, and number of active vents showed systematic and correlated variations with time where spreading of volume between numerous flows caused an otherwise good correlation between effusion rate, flow length to break down. Observations collected during this eruption are useful in helping to understand lava flow processes on steep slopes, as well as in interpreting old lava–debris sequences found in other steep-sided volcanoes subject to effusive activity.
Penetration of conductive plasma flows across a magnetic field
Plechaty, Christopher Ryan
2008-02-01
Plasma interacts with magnetic fields in a variety of natural and laboratory settings. While a magnetic field "traps" isolated charged particles, plasma penetration across magnetic field is observed in many situations where a plasma-magnetic interface exists. For example, in the realm of pulsed power technology, this behavior is important for magnetically insulated transmission lines and for plasma opening switches. In the realm of astrophysics, the nature of the interaction between the solar wind plasma and the Earth's magnetic field affects the reliability of telecommunication devices and satellites. Experiments were performed at the Nevada Terawatt Facility to investigate how a conductive plasma penetrates an externally applied magnetic field. In experiment, a plasma flow was produced by laser ablation. This plasma was observed to penetrate an externally applied magnetic field produced by a 0.6 MA pulsed power generator. In experiment, the duration of the laser pulse was changed by three orders of magnitude, from ns (GW pulse power) to ps (TW) . This resulted in a significant variation of the plasma parameters, which in turn led to the actuation of different magnetic field penetration mechanisms.
Control of star formation by supersonic turbulence
MacLow, M M; Low, Mordecai-Mark Mac; Klessen, Ralf S.
2004-01-01
Understanding the formation of stars in galaxies is central to much of modern astrophysics. For several decades it has been thought that stellar birth is primarily controlled by the interplay between gravity and magnetostatic support, modulated by ambipolar diffusion. Recently, however, both observational and numerical work has begun to suggest that support by supersonic turbulence rather than magnetic fields controls star formation. In this review we outline a new theory of star formation relying on the control by turbulence. We demonstrate that although supersonic turbulence can provide global support, it nevertheless produces density enhancements that allow local collapse. Inefficient, isolated star formation is a hallmark of turbulent support, while efficient, clustered star formation occurs in its absence. The consequences of this theory are then explored for both local star formation and galactic scale star formation. (Abstract abbreviated)
Field-Flow Fractionation of Carbon Nanotubes and Related Materials
Energy Technology Data Exchange (ETDEWEB)
John P. Selegue
2011-11-17
During the grant period, we carried out FFF studies of carbonaceous soot, single-walled and multi-walled carbon nanotubes, carbon nano-onions and polyoxometallates. FFF alone does not provide enough information to fully characterize samples, so our suite of characterization techniques grew to include light scattering (especially Photon Correlation Spectroscopy), scanning and transmission electron microscopy, thermogravimetric analysis and spectroscopic methods. We developed convenient techniques to deposit and examine minute FFF fractions by electron microscopy. In collaboration with Arthur Cammers (University of Kentucky), we used Flow Field-Flow Fractionation (Fl-FFF) to monitor the solution-phase growth of keplerates, a class of polyoxometallate (POM) nanoparticles. We monitored the evolution of Mo-POM nanostructures over the course of weeks by by using flow field-flow fractionation and corroborated the nanoparticle structures by using transmission electron microscopy (TEM). Total molybdenum in the solution and precipitate phases was monitored by using inductively coupled plasma analyses, and total Mo-POM concentration by following the UV-visible spectra of the solution phase. We observe crystallization-driven formation of (Mo132) keplerate and solution phase-driven evolution of structurally related nanoscopic species (3-60 nm). FFF analyses of other classes of materials were less successful. Attempts to analyze platelets of layered materials, including exfoliated graphite (graphene) and TaS2 and MoS2, were disappointing. We were not able to optimize flow conditions for the layered materials. The metal sulfides react with the aqueous carrier liquid and settle out of suspension quickly because of their high density.
Robertson, T.; Whittington, A. G.; Soldati, A.; Sehlke, A.; Beem, J. R.; Gomez, F. G.
2014-12-01
Lava flow morphology is often utilized as an indicator of rheological behavior during flow emplacement. Rheological behavior can be characterized by the viscosity and yield strength of lava, which in turn are dependent on physical and chemical properties including crystallinity, vesicularity, and bulk composition. We are studying the rheology of a basaltic lava flow from a monogenetic Holocene cinder cone in the Cima lava field (Mojave Desert, California). The flow is roughly 2.5 km long and up to 700m wide, with a well-developed central channel along much of its length. Samples were collected along seven different traverses across the flow, along with real-time kinematic (RTK) GPS profiles to allow levee heights and slopes to be measured. Surface textures change from pahoehoe ropes near the vent to predominantly jagged `a`a blocks over the majority of the flow, including all levees and the toe. Chemically the lava shows little variation, plotting on the trachybasalt-basanite boundary on the total alkali-silica diagram. Mineralogically the lava is dominated by plagioclase, clinopyroxene and olivine phenocrysts, with abundant flow-aligned plagioclase microcrystals. The total crystal fraction is ~50% near the vent, with higher percentages in the distal portion of the flow. Vesicularity varies between ~10 and more than ~60%. Levees are ~10-15m high with slopes typically ~25-35˚, suggesting a yield strength at final emplacement of ~150,000 Pa. The effective emplacement temperature and yield strength of lava samples will be determined using the parallel-plate technique. We will test the hypothesis that these physical and rheological properties of the lava during final emplacement correlate with spatial patterns in flow morphology, such as average slope and levee width, which have been determined using remote sensing observations (Beem et al. 2014).
Investigation of the flow-field of two parallel round jets impinging normal to a flat surface
Myers, Leighton M.
The flow-field features of dual jet impingement were investigated through sub-scale model experiments. The experiments were designed to simulate the environment of a Short Takeoff, and Vertical Landing, STOVL, aircraft performing a hover over the ground, at different heights. Two different dual impinging jet models were designed, fabricated, and tested. The Generation 1 Model consisted of two stainless-steel nozzles, in a tandem configuration, each with an exit diameter of approximately 12.7 mm. The front convergent nozzle was operated at the sonic Mach number of 1.0, while the rear C-D nozzle was generally operated supersonically. The nozzles were embedded in a rectangular flat plate, referred to as the lift plate, which represents a generic lifting surface. The lift plate was instrumented with 36 surface pressure taps, which were used to examine the flow entrainment and recirculation patterns caused by varying the stand-off distance from the nozzle exits to a flat ground surface. The stand-off distance was adjusted with a sliding rail frame that the ground plane was mounted to. Typical dimensionless stand-off distances (ground plane separation) were H/DR = 2 to 24. A series of measurements were performed with the Generation 1 model, in the Penn State High Speed Jet Aeroacoustics Laboratory, to characterize the basic flow phenomena associated with dual jet impingement. The regions of interest in the flow-field included the vertical jet plume(s), near impingement/turning region, and wall jet outwash. Other aspects of interest included the loss of lift (suckdown) that occurs as the ground plane separation distance becomes small, and azimuthal variation of the acoustic noise radiation. Various experimental methods and techniques were used to characterize the flow-field, including flow-visualization, pressure rake surveys, surface mounted pressure taps, laser Doppler velocimetry, and acoustic microphone arrays. A second dual impinging jet scale model, Generation 2
The Intensity of the Light Diffraction by Supersonic Longitudinal Waves in Solid
Directory of Open Access Journals (Sweden)
Minasyan V.
2010-04-01
Full Text Available First, we predict existence of transverse electromagnetic field created by supersonic longitudinal waves in solid. This electromagnetic wave with frequency of ultrasonic field is moved by velocity of supersonic field toward of direction propagation of one. The average Poynting vector of superposition field is calculated by presence of the transverse electromagnetic and the optical fields which in turn provides appearance the diffraction of light.
Inclination of magnetic fields and flows in sunspot penumbrae
Langhans, K.; Scharmer, G. B.; Kiselman, D.; Löfdahl, M. G.; Berger, T. E.
2005-06-01
An observational study of the inclination of magnetic fields and flows in sunspot penumbrae at a spatial resolution of 0.2 arcsec is presented. The analysis is based on longitudinal magnetograms and Dopplergrams obtained with the Swedish 1-m Solar Telescope on La Palma using the Lockheed Solar Optical Universal Polarimeter birefringent filter. Data from two sunspots observed at several heliocentric angles between 12 ° and 39 ° were analyzed. We find that the magnetic field at the level of the formation of the Fe i-line wing (630.25 nm) is in the form of coherent structures that extend radially over nearly the entire penumbra giving the impression of vertical sheet-like structures. The inclination of the field varies up to 45 ° over azimuthal distances close to the resolution limit of the magnetograms. Dark penumbral cores, and their extensions into the outer penumbra, are prominent features associated with the more horizontal component of the magnetic field. The inclination of this dark penumbral component - designated B - increases outwards from approximately 40 ° in the inner penumbra such that the field lines are nearly horizontal or even return to the solar surface already in the middle penumbra. The bright component of filaments - designated A - is associated with the more vertical component of the magnetic field and has an inclination with respect to the normal of about 35 ° in the inner penumbra, increasing to about 60 ° towards the outer boundary. The magnetogram signal is lower in the dark component B regions than in the bright component A regions of the penumbral filaments. The measured rapid azimuthal variation of the magnetogram signal is interpreted as being caused by combined fluctuations of inclination and magnetic field strength. The Dopplergrams show that the velocity field associated with penumbral component B is roughly aligned with the magnetic field while component A flows are more horizontal than the magnetic field. The observations give
Plocková, J; Chmelík, J
2001-05-25
Gravitational field-flow fractionation (GFFF) utilizes the Earth's gravitational field as an external force that causes the settlement of particles towards the channel accumulation wall. Hydrodynamic lift forces oppose this action by elevating particles away from the channel accumulation wall. These two counteracting forces enable modulation of the resulting force field acting on particles in GFFF. In this work, force-field programming based on modulating the magnitude of hydrodynamic lift forces was implemented via changes of flow-rate, which was accomplished by a programmable pump. Several flow-rate gradients (step gradients, linear gradients, parabolic, and combined gradients) were tested and evaluated as tools for optimization of the separation of a silica gel particle mixture. The influence of increasing amount of sample injected on the peak resolution under flow-rate gradient conditions was also investigated. This is the first time that flow-rate gradients have been implemented for programming of the resulting force field acting on particles in GFFF.
Asymmetric flow field-flow fractionation of superferrimagnetic iron oxide multicore nanoparticles
DEFF Research Database (Denmark)
Dutz, Silvio; Kuntsche, Judith; Eberbeck, Dietmar
2012-01-01
. This classification was carried out by means of asymmetric flow field-flow fractionation (AF4). A clear increase of the particle size with increasing elution time was confirmed by multi-angle laser light scattering coupled to the AF4 system, dynamic light scattering and Brownian diameters determined...... size distributed MCNP fluid classified by AF4 show a strong correlation between hydrodynamic diameter and magnetic properties. Thus we state that AF4 is a suitable technology for reproducible size dependent classification of magnetic multicore nanoparticles suspended as ferrofluids....
Numerical Investigation Of Surface Roughness Effects On The Flow Field In A Swirl Flow
Directory of Open Access Journals (Sweden)
Ali SAKİN
2014-12-01
Full Text Available The aim of this study is to investigate axial and tangential velocity profiles, turbulent dissipation rate, turbulent kinetic energy and pressure losses under the influence of surface roughness for the swirling flow in a cyclone separator. The governing equations for this flow were solved by using Fluent CFD code. First, numerical analyses were run to verify numerical solution and domain with experimental results. Velocity profiles, turbulent parameters and pressure drops were calculated by increasing inlet velocity from 10 to 20 m/s and roughness height from 0 to 4 mm. Analyses of results showed that pressure losses are decreased and velocity field is considerably affected by increasing roughness height.
Field-flow fractionation of cells with chemiluminescence detection.
Melucci, Dora; Roda, Barbara; Zattoni, Andrea; Casolari, Sonia; Reschiglian, Pierluigi; Roda, Aldo
2004-11-12
Field-flow fractionation is a separation technique characterized by a retention mechanism which makes it suitable for sorting cells over a short analysis time, with low sample carry-over and preserving cell viability. Thanks to its high sensitivity, chemiluminescence detection is suitable for the quantification of just a few cells expressing chemiluminescence or bioluminescence. In this work, different formats for coupling gravitational field-flow fractionation and chemiluminescence detection are explored to achieve ultra-sensitive cell detection in the framework of cell sorting. The study is carried out using human red blood cells as model sample. The best performance is obtained with the on-line coupling format, performed in post-column flow-injection mode. Red cells are isolated from diluted whole human blood in just a few minutes and detected using the liquid phase chemiluminescent reaction of luminol catalysed by the red blood cell heme. The limit of detection is a few hundred injected cells. This is lower than the limit of detection usually achieved by means of conventional colorimetric/turbidimetric methods, and it corresponds to a red blood cell concentration in the injected sample of five orders of magnitude lower than in whole blood.
Improved Flow-Field Structures for Direct Methanol Fuel Cells
Energy Technology Data Exchange (ETDEWEB)
Gurau, Bogdan
2013-05-31
The direct methanol fuel cell (DMFC) is ideal if high energy-density liquid fuels are required. Liquid fuels have advantages over compressed hydrogen including higher energy density and ease of handling. Although state-of-the-art DMFCs exhibit manageable degradation rates, excessive fuel crossover diminishes system energy and power density. Although use of dilute methanol mitigates crossover, the concomitant lowering of the gross fuel energy density (GFED) demands a complex balance-of-plant (BOP) that includes higher flow rates, external exhaust recirculation, etc. An alternative approach is redesign of the fuel delivery system to accommodate concentrated methanol. NuVant Systems Inc. (NuVant) will maximize the GFED by design and assembly of a DMFC that uses near neat methanol. The approach is to tune the diffusion of highly concentrated methanol (to the anode catalytic layer) to the back-diffusion of water formed at the cathode (i.e. in situ generation of dilute methanol at the anode layer). Crossover will be minimized without compromising the GFED by innovative integration of the anode flow-field and the diffusion layer. The integrated flow-field-diffusion-layers (IFDLs) will widen the current and potential DMFC operating ranges and enable the use of cathodes optimized for hydrogen-air fuel cells.
Yang, Qingchun; Wang, Hongxin; Chetehouna, Khaled; Gascoin, Nicolas
2017-01-01
The supersonic combustion ramjet (scramjet) engine remains the most promising airbreathing engine cycle for hypersonic flight, particularly the high-performance dual-mode scramjet in the range of flight Mach number from 4 to 7, because it can operates under different combustion modes. Isolator is a very key component of the dual-mode scramjet engine. In this paper, nonlinear characteristics of combustion mode transition is theoretically analyzed. The discontinuous sudden changes of static pressure and Mach number are obtained as the mode transition occurs, which emphasizing the importance of predication and control of combustion modes. In this paper, a predication model of different combustion modes is developed based on these these nonlinear features in the isolator flow field. it can provide a valuable reference for control system design of the scramjet-powered aerospace vehicle.
Directory of Open Access Journals (Sweden)
C. Couder-Castañeda
2015-01-01
Full Text Available A serial source code for simulating a supersonic ejector flow is accelerated using parallelization based on OpenMP and OpenACC directives. The purpose is to reduce the development costs and to simplify the maintenance of the application due to the complexity of the FORTRAN source code. This research follows well-proven strategies in order to obtain the best performance in both OpenMP and OpenACC. OpenMP has become the programming standard for scientific multicore software and OpenACC is one true alternative for graphics accelerators without the need of programming low level kernels. The strategies using OpenMP are oriented towards reducing the creation of parallel regions, tasks creation to handle boundary conditions, and a nested control of the loop time for the programming in offload mode specifically for the Xeon Phi. In OpenACC, the strategy focuses on maintaining the data regions among the executions of the kernels. Experiments for performance and validation are conducted here on a 12-core Xeon CPU, Xeon Phi 5110p, and Tesla C2070, obtaining the best performance from the latter. The Tesla C2070 presented an acceleration factor of 9.86X, 1.6X, and 4.5X compared against the serial version on CPU, 12-core Xeon CPU, and Xeon Phi, respectively.
Effect of Impeller Geometry and Tongue Shape on the Flow Field of Cross Flow Fans
Institute of Scientific and Technical Information of China (English)
M. Govardhan; G. Venkateswarlu
2003-01-01
Experiments were conducted to investigate the effect of impeller geometry and tongue shape on the flow field of cross flow fans.Three impellers (Ⅰ,Ⅱ,Ⅲ)having same outer diameter,but different radius ratio and blade angles were employed for the investigation. Each impeller was tested with two tongue shapes. Flow survey was carded out for each impeller and tongue shape at two flow coefficients, and for each flow coefficient at different circumferential positions. The flow is two-dimensional along the blade span except near the shrouds.The total pressure developed by the impellers in each case is found to be maximum at a circumferential position of around 270°. The total and static pressures at the inlet of impellers are more or less same regardless of impeller and tongue geometry, but they vary considerably at exit of the impellers. Impeller Ⅲ with tongue T2 develops higher total pressure and efficiency where as impeller Ⅱ with tongue T_2 develops minimum total pressure.Higher diffusion and smaller vortex size are the reasons for better performance of impeller Ⅲ with tongue T2.
An analysis of the flow field in the region of the ASRM field joints
Dill, Richard A.; Whitesides, Harold R.
1992-07-01
The flow field in the region of a solid rocket motor field joint is very important since fluid dynamic and mechanical propellant stresses can couple to cause a motor failure at a joint. Presented here is an examination of the flow field in the region of the Advanced Solid Rocket Motor (ASRM) field joints. The analyses were performed as a first step in assessing the design of the ASRM forward and aft field joints in order to assure the proper operation of the motor prior to further development of test firing. The analyses presented here were performed by employing a two-dimensional axisymmetric assumption. Fluent/BFC, a three dimensional full Navier-Stokes flow field code, was used to make the numerical calculations. This code utilizes a staggered grid formulation along with the SIMPLER numerical algorithm. Wall functions are used to determine the character of the laminar sublayer, and a standard kappa-epsilon turbulence model is used to close the fluid dynamic equations. The analyses performed to this date verify that the ASRM field joint design operates properly. The fluid dynamic stresses at the field joints are small due to the inherent design of the field joints. A problem observed in some other solid rocket motors is that large fluid dynamic stresses are generated at the motor joint on the downstream propellant grain due to forward facing step geometries. The design of the ASRM field joints are such that this is not a problem as shown by the analyses. Also, the analyses of the inhibitor stub left protruding into the port flow from normal propellant burn back show that more information is necessary to complete these analyses. These analyses were performed as parametric analyses in relation to the height of the inhibitor stub left protruding into the motor port. A better estimate of the amount of the inhibitor stub remaining at later burn times must be determined since the height which the inhibitor stub protrudes into the port flow drastically affects the fluid
Field flow fractionation techniques to explore the "nano-world".
Contado, Catia
2017-04-01
Field flow fractionation (FFF) techniques are used to successfully characterize several nanomaterials by sizing nano-entities and producing information about the aggregation/agglomeration state of nanoparticles. By coupling FFF techniques to specific detectors, researchers can determine particle-size distributions (PSDs), expressed as mass-based or number-based PSDs. This review considers FFF applications in the food, biomedical, and environmental sectors, mostly drawn from the past 4 y. It thus underlines the prominent role of asymmetrical flow FFF within the FFF family. By concisely comparing FFF techniques with other techniques suitable for sizing nano-objects, the advantages and the disadvantages of these instruments become clear. A consideration of select recent publications illustrates the state of the art of some lesser-known FFF techniques and innovative instrumental set-ups.
Effect of flux flow on self-field instability
Energy Technology Data Exchange (ETDEWEB)
Dresner, L.
1977-08-01
Flux flow causes type II superconductors to develop resistance continuously rather than suddenly as transport current increases. This means that the distribution of current among the filaments in a composite conductor is determined not only by their inductive coupling but also by the longitudinal resistance they develop as they begin to carry current. The current distribution is calculated in two cases, taking flux flow into account: a composite clamped suddenly across a constant-current source and a composite charged with current at a uniform rate. The results of the latter problem are used to show that slowly charged conductors will be much more stable against self-field instability than is indicated by purely inductive calculations.
Kim, Jinyong; Luo, Gang; Wang, Chao-Yang
2017-10-01
3D fine-mesh flow-fields recently developed by Toyota Mirai improved water management and mass transport in proton exchange membrane (PEM) fuel cell stacks, suggesting their potential value for robust and high-power PEM fuel cell stack performance. In such complex flow-fields, Forchheimer's inertial effect is dominant at high current density. In this work, a two-phase flow model of 3D complex flow-fields of PEMFCs is developed by accounting for Forchheimer's inertial effect, for the first time, to elucidate the underlying mechanism of liquid water behavior and mass transport inside 3D complex flow-fields and their adjacent gas diffusion layers (GDL). It is found that Forchheimer's inertial effect enhances liquid water removal from flow-fields and adds additional flow resistance around baffles, which improves interfacial liquid water and mass transport. As a result, substantial improvements in high current density cell performance and operational stability are expected in PEMFCs with 3D complex flow-fields, compared to PEMFCs with conventional flow-fields. Higher current density operation required to further reduce PEMFC stack cost per kW in the future will necessitate optimizing complex flow-field designs using the present model, in order to efficiently remove a large amount of product water and hence minimize the mass transport voltage loss.
Magnetic Field Generation and Particle Energization in Relativistic Shear Flows
Liang, Edison; Boettcher, Markus; Smith, Ian
2012-10-01
We present Particle-in-Cell simulation results of magnetic field generation by relativistic shear flows in collisionless electron-ion (e-ion) and electron-positron (e+e-) plasmas. In the e+e- case, small current filaments are first generated at the shear interface due to streaming instabilities of the interpenetrating particles from boundary perturbations. Such current filaments create transverse magnetic fields which coalesce into larger and larger flux tubes with alternating polarity, eventually forming ordered flux ropes across the entire shear boundary layer. Particles are accelerated across field lines to form power-law tails by semi-coherent electric fields sustained by oblique Langmuir waves. In the e-ion case, a single laminar slab of transverse flux rope is formed at the shear boundary, sustained by thin current sheets on both sides due to different drift velocities of electrons and ions. The magnetic field has a single polarity for the entire boundary layer. Electrons are heated to a fraction of the ion energy, but there is no evidence of power-law tail forming in this case.
Edge topology and flows in the reversed-field pinch
Spizzo, G.; Agostini, M.; Scarin, P.; Vianello, N.; White, R. B.; Cappello, S.; Puiatti, M. E.; Valisa, M.; the RFX-mod Team
2012-05-01
Edge topology and plasma flow deeply influence transport in the reversed-field pinch as well as in all fusion devices, playing an important role in many practical aspects of plasma performance, such as access to enhanced confinement regimes, the impact on global power balance and operative limits, such as the density limit (Spizzo G. et al 2010 Plasma Phys. Control. Fusion 52 095011). A central role is played by the edge electric field, which is determined by the ambipolar constraint guaranteeing quasi-neutrality in a sheath next to the plasma wall. Its radial component is experimentally determined in RFX over the whole toroidal angle by means of a diagnostic set measuring edge plasma potential and flow with different techniques (Scarin P. et al 2011 Nucl. Fusion 51 073002). The measured radial electric field is used to construct the potential in the form Φ(ψp, θ, ζ) (ψp radial coordinate, θ, ζ angles), by means of the Hamiltonian guiding-centre code ORBIT. Simulations show that a proper functional form of the potential can balance the differential radial diffusion of electrons and ions subject to m = 0 magnetic island O- and X-points. Electrons spend more time in the X-points of such islands than in O-points; ions have comparatively larger drifts and their radial motion is more uniform over the toroidal angle. The final spatial distribution of Φ(ψp, θ, ζ) results in a complex 3D pattern, with convective cells next to the wall. Generally speaking, an edge topology dominating parallel transport with a given symmetry brings about an edge potential with the same symmetry. This fact helps us to build a first step of a unified picture of the effect of magnetic topology on the Greenwald limit, and, more generally, on flows in the edge of RFPs and tokamaks.
Sub-scale Direct Connect Supersonic Combustion Facility (Research Cell 18)
Federal Laboratory Consortium — Description: RC18 is a continuous-flow, direct-connect, supersonic-combustion research facility that is capable of simulating flight conditions from Mach 3.0 to Mach...
Field-flow fractionation: addressing the nano challenge.
Williams, S Kim Ratanathanawongs; Runyon, J Ray; Ashames, Akram A
2011-02-01
Field-flow fractionation is coming of age as a family of analytical methods for separating and characterizing macromolecules, nanoparticles, and particulates. The capabilities and versatility of these techniques are discussed in light of the challenges that are being addressed in analyzing nanometer-sized sample components and the insights gained through their use in applications ranging from materials science to biology. (To listen to a podcast about this feature, please go to the Analytical Chemistry multimedia page at pubs.acs.org/page/ancham/audio/index.html .).
Magnetohydrodynamic Ekman layers with field-aligned flow
Energy Technology Data Exchange (ETDEWEB)
Nunez, Manuel, E-mail: mnjmhd@am.uva.es [Departamento de Analisis Matematico, Universidad de Valladolid, 47005 Valladolid (Spain)
2011-05-01
The Ekman layer in a conducting fluid with constant angular velocity, provided with a magnetic field aligned with the flow, is studied here. The existence of solutions to the magnetohydrodynamic linearized equations depends on the balance between viscosity and resistivity, on the one hand, and the angular and Alfven velocities, on the other. In most cases, exponentially decreasing solutions exist, although their longitudinal oscillations do not need to be periodic. One of the instances without a solution is explained by the presence of Alfven waves traveling backwards along the streamlines.
Verifying a Simplified Fuel Oil Flow Field Measurement Protocol
Energy Technology Data Exchange (ETDEWEB)
Henderson, H.; Dentz, J.; Doty, C.
2013-07-01
The Better Buildings program is a U.S. Department of Energy program funding energy efficiency retrofits in buildings nationwide. The program is in need of an inexpensive method for measuring fuel oil consumption that can be used in evaluating the impact that retrofits have in existing properties with oil heat. This project developed and verified a fuel oil flow field measurement protocol that is cost effective and can be performed with little training for use by the Better Buildings program as well as other programs and researchers.
Relativistic gravity fields and electromagnetic fields generated by flows of matter
Bogdan, Victor M
2009-01-01
One of the highlight of this note is that the author presents the relativistic gravity field that Einstein was looking for. The field is a byproduct of the matter in motion. This field can include both the discrete and continuous components. In free space the waves produced in this field propagate with velocity of light. Another highlight is the proof of amended Feynman's formulas for electromagnetic potentials. This makes the formulas mathematically complete and precise. The main result can be stated as follows. In a fixed Lorentzian frame given is a trajectory $r_2(t,r_0)$ of flow of matter. The parameter $r_0$ changes in a compact set $F$ representing the position of the matter at some initial time $t_0.$ The flow must satisfy certain conditions of regularity. Given any signed measure $q(Q)$ of finite variation defined on Borel subsets of $F,$ representing total charge contained in the set $Q\\subset F,$ such a flow determines the scalar $\\phi$ and the vector $A$ potentials for a pair $(E,B)$ of fields sati...
Design project: LONGBOW supersonic interceptor
Stoney, Robert; Baker, Matt; Capstaff, Joseph G.; Dishman, Robert; Fick, Gregory; Frick, Stephen N.; Kelly, Mark
1993-01-01
A recent white paper entitled 'From the Sea' has spotlighted the need for Naval Aviation to provide overland support to joint operations. The base for this support, the Aircraft Carrier (CVN), will frequently be unable to operate within close range of the battleground because of littoral land-based air and subsurface threats. A high speed, long range, carrier capable aircraft would allow the CVN to provide timely support to distant battleground operations. Such an aircraft, operating as a Deck-Launched Interceptor (DLI), would also be an excellent counter to Next Generation Russian Naval Aviation (NGRNA) threats consisting of supersonic bombers, such as the Backfire, equipped with the next generation of high-speed, long-range missiles. Additionally, it would serve as an excellent high speed Reconnaissance airplane, capable of providing Battle Force commanders with timely, accurate pre-mission targeting information and post-mission Bomb Damage Assessment (BDA). Recent advances in computational hypersonic airflow modeling has produced a method of defining aircraft shapes that fit a conical shock flow model to maximize the efficiency of the vehicle. This 'Waverider' concept provides one means of achieving long ranges at high speeds. A Request for Proposal (RFP) was issued by Professor Conrad Newberry that contained design requirements for an aircraft to accomplish the above stated missions, utilizing Waverider technology.
Experimental observations of a complex, supersonic nozzle concept
Magstadt, Andrew; Berry, Matthew; Glauser, Mark; Ruscher, Christopher; Gogineni, Sivaram; Kiel, Barry; Skytop Turbulence Labs, Syracuse University Team; Spectral Energies, LLC. Team; Air Force Research Laboratory Team
2015-11-01
A complex nozzle concept, which fuses multiple canonical flows together, has been experimentally investigated via pressure, schlieren and PIV in the anechoic chamber at Syracuse University. Motivated by future engine designs of high-performance aircraft, the rectangular, supersonic jet under investigation has a single plane of symmetry, an additional shear layer (referred to as a wall jet) and an aft deck representative of airframe integration. Operating near a Reynolds number of 3 ×106 , the nozzle architecture creates an intricate flow field comprised of high turbulence levels, shocks, shear & boundary layers, and powerful corner vortices. Current data suggest that the wall jet, which is an order of magnitude less energetic than the core, has significant control authority over the acoustic power through some non-linear process. As sound is a direct product of turbulence, experimental and analytical efforts further explore this interesting phenomenon associated with the turbulent flow. The authors acknowledge the funding source, a SBIR Phase II project with Spectral Energies, LLC. and AFRL turbine engine branch under the direction of Dr. Barry Kiel.
Linear and Nonlinear Evolution of Disturbances in Supersonic Streamwise Vortices
Khorrami, Mehdi R.; Chang, Chau-Lyan; Wie, Yong-Sun
1997-11-01
Effective control of compressible streamwise vortices play a significant role in both external and internal aerodynamics. In this study, evolution of disturbances in a supersonic vortex is studied by using quasi-cylindrical linear stability analysis and parabolized stability equations (PSE)footnote M. R. Malik and C.-L. Chang, AIAA Paper 97-0758. formulation. Appropriate mean-flow profilesfootnote M. K. Smart, I. M. Kalkhoran, and J. Bentson, AIAA Paper 94-2576. suitable for stability analysis were identified and modeled successfully. Using linear stability analysis, the stability characteristics of axisymmetric vortices were mapped thoroughly. The results indicate that viscosity has very little effect while increasing Mach number significantly stabilizes the disturbance. Linear PSE analysis shows that the effect of streamwise mean flow variation is small for the case considered here. Nonlinear evolution of helical modes is also studied by using PSE. The growth of the disturbances results in the appearance of coherent large scale motion and significant mean flow distortion in the axial velocity and temperature fields. In the end, nonlinear effects tend to stabilize the vortex.
Cooling Effect of Water Injection on a High-Temperature Supersonic Jet
Directory of Open Access Journals (Sweden)
Jing Li
2015-11-01
Full Text Available The high temperature and high pressure supersonic jet is one of the key problems in the design of solid rocket motors. To reduce the jet temperature and noise, cooling water is typically injected into the exhaust plume. Numerical simulations for the gas-liquid multiphase flow field with mixture multiphase model were developed and a series of experiments were carried out. By introducing the energy source terms caused by the vaporization of liquid water into the energy equation, a coupling solution was developed to calculate the multiphase flow field. The temperature data predictions agreed well with the experimental results. When water was injected into the plume, the high temperature core region area was reduced, and the temperature on the head face was much lower than that without water. The relationship between the reduction of temperature on the bottom plate and the momentum ratio is developed, which can be used to predict the cooling effect of water injection in many cases.
Graphene field-effect transistor application for flow sensing
Directory of Open Access Journals (Sweden)
Łuszczek Maciej
2017-01-01
Full Text Available Microflow sensors offer great potential for applications in microfluidics and lab-on-a-chip systems. However, thermal-based sensors, which are commonly used in modern flow sensing technology, are mainly made of materials with positive temperature coefficients (PTC and suffer from a self-heating effect and slow response time. Therefore, the design of novel devices and careful selection of materials are required to improve the overall flow sensor performance. In this work we propose graphene field-effect transistor (GFET to be used as microflow sensor. Temperature distribution in graphene channel was simulated and the analysis of heat convection was performed to establish the relation between the fluidic flow velocity and the temperature gradient. It was shown that the negative temperature coefficient (NTC of graphene could enable the self-protection of the device and should minimize sensing error from currentinduced heating. It was also argued that the planar design of the GFET sensor makes it suitable for the real application due to supposed mechanical stability of such a construction.
Graphene field-effect transistor application for flow sensing
Łuszczek, Maciej; Świsulski, Dariusz; Hanus, Robert; Zych, Marcin; Petryka, Leszek
Microflow sensors offer great potential for applications in microfluidics and lab-on-a-chip systems. However, thermal-based sensors, which are commonly used in modern flow sensing technology, are mainly made of materials with positive temperature coefficients (PTC) and suffer from a self-heating effect and slow response time. Therefore, the design of novel devices and careful selection of materials are required to improve the overall flow sensor performance. In this work we propose graphene field-effect transistor (GFET) to be used as microflow sensor. Temperature distribution in graphene channel was simulated and the analysis of heat convection was performed to establish the relation between the fluidic flow velocity and the temperature gradient. It was shown that the negative temperature coefficient (NTC) of graphene could enable the self-protection of the device and should minimize sensing error from currentinduced heating. It was also argued that the planar design of the GFET sensor makes it suitable for the real application due to supposed mechanical stability of such a construction.
Linear models for sound from supersonic reacting mixing layers
Chary, P. Shivakanth; Samanta, Arnab
2016-12-01
We perform a linearized reduced-order modeling of the aeroacoustic sound sources in supersonic reacting mixing layers to explore their sensitivities to some of the flow parameters in radiating sound. Specifically, we investigate the role of outer modes as the effective flow compressibility is raised, when some of these are expected to dominate over the traditional Kelvin-Helmholtz (K-H) -type central mode. Although the outer modes are known to be of lesser importance in the near-field mixing, how these radiate to the far-field is uncertain, on which we focus. On keeping the flow compressibility fixed, the outer modes are realized via biasing the respective mean densities of the fast (oxidizer) or slow (fuel) side. Here the mean flows are laminar solutions of two-dimensional compressible boundary layers with an imposed composite (turbulent) spreading rate, which we show to significantly alter the growth of instability waves by saturating them earlier, similar to in nonlinear calculations, achieved here via solving the linear parabolized stability equations. As the flow parameters are varied, instability of the slow modes is shown to be more sensitive to heat release, potentially exceeding equivalent central modes, as these modes yield relatively compact sound sources with lesser spreading of the mixing layer, when compared to the corresponding fast modes. In contrast, the radiated sound seems to be relatively unaffected when the mixture equivalence ratio is varied, except for a lean mixture which is shown to yield a pronounced effect on the slow mode radiation by reducing its modal growth.
Development of a numerical code for the study of a supersonic planar wake
Hickey, Jean-Pierre; Wu, Xiaohua
2009-11-01
The fully-developed supersonic planar wake represents a canonical high-speed flow occurring in many aeronautical applications. The goal of the current research program is to perform a high-quality direct numerical simulation in order to thoroughly compare the statistics with classical experimental data and gain a better understanding of the structures present in the far-field of a supersonic planar wake. In order to study this flow a code is under development using a very efficient modified MacCormack-type scheme to solve the governing equation set. The main drawback of this numerical method is the large dispersive errors occurring in regions of sharp gradients which can occur in as shocklets in highly compressible flow. To this effect, a study of the numerical properties of this scheme is done using classical one-dimensional test cases such as the Shu-Osher and the Sod problem. The scheme compares very favorably to typical compressible schemes such as the Pade and Roe solvers but shows a very significant advantage in terms of memory usage and speed.
Fast wave power flow along SOL field lines in NSTX
Perkins, R. J.; Bell, R. E.; Diallo, A.; Gerhardt, S.; Hosea, J. C.; Jaworski, M. A.; Leblanc, B. P.; Kramer, G. J.; Phillips, C. K.; Roquemore, L.; Taylor, G.; Wilson, J. R.; Ahn, J.-W.; Gray, T. K.; Green, D. L.; McLean, A.; Maingi, R.; Ryan, P. M.; Jaeger, E. F.; Sabbagh, S.
2012-10-01
On NSTX, a major loss of high-harmonic fast wave (HHFW) power can occur along open field lines passing in front of the antenna over the width of the scrape-off layer (SOL). Up to 60% of the RF power can be lost and at least partially deposited in bright spirals on the divertor floor and ceiling [1,2]. The flow of HHFW power from the antenna region to the divertor is mostly aligned along the SOL magnetic field [3], which explains the pattern of heat deposition as measured with infrared (IR) cameras. By tracing field lines from the divertor back to the midplane, the IR data can be used to estimate the profile of HHFW power coupled to SOL field lines. We hypothesize that surface waves are being excited in the SOL, and these results should benchmark advanced simulations of the RF power deposition in the SOL (e.g., [4]). Minimizing this loss is critical optimal high-power long-pulse ICRF heating on ITER while guarding against excessive divertor erosion.[4pt] [1] J.C. Hosea et al., AIP Conf Proceedings 1187 (2009) 105. [0pt] [2] G. Taylor et al., Phys. Plasmas 17 (2010) 056114. [0pt] [3] R.J. Perkins et al., to appear in Phys. Rev. Lett. [0pt] [4] D.L. Green et al., Phys. Rev. Lett. 107 (2011) 145001.
Microscopic and continuum descriptions of Janus motor fluid flow fields
Reigh, Shang Yik; Huang, Mu-Jie; Schofield, Jeremy; Kapral, Raymond
2016-11-01
Active media, whose constituents are able to move autonomously, display novel features that differ from those of equilibrium systems. In addition to naturally occurring active systems such as populations of swimming bacteria, active systems of synthetic self-propelled nanomotors have been developed. These synthetic systems are interesting because of their potential applications in a variety of fields. Janus particles, synthetic motors of spherical geometry with one hemisphere that catalyses the conversion of fuel to product and one non-catalytic hemisphere, can propel themselves in solution by self-diffusiophoresis. In this mechanism, the concentration gradient generated by the asymmetric catalytic activity leads to a force on the motor that induces fluid flows in the surrounding medium. These fluid flows are studied in detail through microscopic simulations of Janus motor motion and continuum theory. It is shown that continuum theory is able to capture many, but not all, features of the dynamics of the Janus motor and the velocity fields of the fluid. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.
Impingement of water droplets on wedges and diamond airfoils at supersonic speeds
Serafini, John S
1953-01-01
An analytical solution has been obtained for the equations of motion of water droplets impinging on a wedge in a two-dimensional supersonic flow field with a shock wave attached to the wedge. The closed-form solution yields analytical expressions for the equation of the droplet trajectory, the local rate of impingement and the impingement velocity at any point on the wedge surface, and the total rate of impingement. The analytical expressions are utilized to determine the impingement on the forward surfaces of diamond airfoils in supersonic flow fields with attached shock waves. The results presented include the following conditions: droplet diameters from 2 to 100 microns, pressure altitudes from sea level to 30,000 feet, free-stream static temperatures from 420 degrees to 460 degrees R. Also, free-stream Mach numbers from 1.1 to 2.0, semi-apex angles for the wedge from 1.14 degrees to 7.97 degrees, thickness-to-chord ratios for the diamond airfoil from 0.02 to 0.14, chord lengths from 1 to 20 feet, and angles of attack from zero to the inverse tangent of the airfoil thickness-to-chord ratio.
Impingement of water droplets on wedges and double-wedge airfoils at supersonic speeds
Serafini, John S
1954-01-01
An analytical solution has been obtained for the equations of motion of water droplets impinging on a wedge in a two-dimensional supersonic flow field with a shock wave attached to the wedge. The closed-form solution yields analytical expressions for the equation of the droplet trajectory, the local rate of impingement and the impingement velocity at any point on the wedge surface, and the total rate of impingement. The analytical expressions are utilized to determine the impingement on the forward surfaces of diamond airfoils in supersonic flow fields with attached shock waves. The results presented include the following conditions: droplet diameters from 2 to 100 microns, pressure altitudes from sea level to 30,000 feet, free-stream static temperatures from 420 degrees r, free stream Mach numbers from 1.1 to 2.0, semiapex angles for the wedge from 1.14 degrees to 7.97 degrees, thickness-to-chord ratios for the diamond airfoil from 0.02 to 0.14, chord lengths from 1 to 20 feet, and angles of attack from zero to the inverse tangent of the airfoil thickness-to-chord ratio.
H-mode fueling optimization with the supersonic deuterium jet in NSTX
Energy Technology Data Exchange (ETDEWEB)
Soukhanovskii, V A; Bell, M G; Bell, R E; Gates, D A; Kaita, R; Kugel, H W; LeBlanc, B P; Lundberg, D P; Maingi, R; Menard, J E; Raman, R; Roquemore, A L; Stotler, D P
2008-06-18
High-performance, long-pulse 0.7-1.2 MA 6-7 MW NBI-heated small-ELM H-mode plasma discharges are developed in the National Spherical Torus Experiment (NSTX) as prototypes for confinement and current drive extrapolations to future spherical tori. It is envisioned that innovative lithium coating techniques for H-mode density pumping and a supersonic deuterium jet for plasma refueling will be used to achieve the low pedestal collisionality and low n{sub e}/n{sub G} fractions (0.3-0.6), both of which being essential conditions for maximizing the non-inductive (bootstrap and beam driven) current fractions. The low field side supersonic gas injector (SGI) on NSTX consists of a small converging-diverging graphite Laval nozzle and a piezoelectric gas valve. The nozzle is capable of producing a deuterium jet with Mach number M {le} 4, estimated gas density at the nozzle exit n {le} 5 x 10{sup 23} m{sup -3}, estimated temperature T {ge} 70 K, and flow velocity v = 2:4 km/s. The nozzle Reynolds number Reis {approx_equal} 6000. The nozzle and the valve are enclosed in a protective carbon fiber composite shroud and mounted on a movable probe at a midplane port location. Despite the beneficial L-mode fueling experience with supersonic jets in limiter tokamaks, there is a limited experience with fueling of high-performance H-mode divertor discharges and the associated density, MHD stability, and MARFE limits. In initial supersonic deuterium jet fueling experiments in NSTX, a reliable H-mode access, a low NBI power threshold, P{sub LH} {le} 2 MW, and a high fueling efficiency (0.1-0.4) have been demonstrated. Progress has also been made toward a better control of the injected fueling gas by decreasing the uncontrolled high field side (HFS) injector fueling rate by up to 95 % and complementing it with the supersonic jet fueling. These results motivated recent upgrades to the SGI gas delivery and control systems. The new SGI-Upgrade (SGI-U) capabilities include multi-pulse ms
The flow field investigations of no load conditions in axial flow fixed-blade turbine
Yang, J.; Gao, L.; Wang, Z. W.; Zhou, X. Z.; Xu, H. X.
2014-03-01
During the start-up process, the strong instabilities happened at no load operation in a low head axial flow fixed-blade turbine, with strong pressure pulsation and vibration. The rated speed can not reach until guide vane opening to some extent, and stable operation could not be maintained under the rated speed at some head, which had a negative impact on the grid-connected operation of the unit. In order to find the reason of this phenomenon, the unsteady flow field of the whole flow passage at no load conditions was carried out to analyze the detailed fluid field characteristics including the pressure pulsation and force imposed on the runner under three typical heads. The main hydraulic cause of no load conditions instability was described. It is recommended that the power station should try to reduce the no-load running time and go into the high load operation as soon as possible when connected to grid at the rated head. Following the recommendations, the plant operation practice proved the unstable degree of the unit was reduced greatly during start up and connect to the power grid.
Conductivity-Dependent Flow Field-Flow Fractionation of Fulvic and Humic Acid Aggregates
Directory of Open Access Journals (Sweden)
Martha J. M. Wells
2015-09-01
Full Text Available Fulvic (FAs and humic acids (HAs are chemically fascinating. In water, they have a strong propensity to aggregate, but this research reveals that tendency is regulated by ionic strength. In the environment, conductivity extremes occur naturally—freshwater to seawater—warranting consideration at low and high values. The flow field flow fractionation (flow FFF of FAs and HAs is observed to be concentration dependent in low ionic strength solutions whereas the corresponding flow FFF fractograms in high ionic strength solutions are concentration independent. Dynamic light scattering (DLS also reveals insight into the conductivity-dependent behavior of humic substances (HSs. Four particle size ranges for FAs and humic acid aggregates are examined: (1 <10 nm; (2 10 nm–6 µm; (3 6–100 µm; and (4 >100 µm. Representative components of the different size ranges are observed to dynamically coexist in solution. The character of the various aggregates observed—such as random-extended-coiled macromolecules, hydrogels, supramolecular, and micellar—as influenced by electrolytic conductivity, is discussed. The disaggregation/aggregation of HSs is proposed to be a dynamic equilibrium process for which the rate of aggregate formation is controlled by the electrolytic conductivity of the solution.
Multi-phase flow effect on SRM nozzle flow field and thermal protection materials
Institute of Scientific and Technical Information of China (English)
SHAFQAT Wahab; XIE Kan; LIU Yu
2009-01-01
Multi-phase flow effect generated from the combustion of aluminum based com-posite propellant was performed on the thermal protection material of solid rocket motor (SRM) nozzle. Injection of alumina (Al2O3) particles from 5% to 10% was tried on SRM nozzle flow field to see the influence of multiphase flow on heat transfer computations. A coupled, time resolved CFD (computational fluid dynamics) approach was adopted to solve the conjugate problem of multi-phase fluid flow and heat transfer in the solid rocket motor nozzle. The governing equations are discretized by using the finite volume method. Spalart-Allmaras (S-A) turbulence model was employed. The computation was executed on the dif-ferent models selected for the analysis to validate the temperature variation in the throat in-serts and baking material of SRM nozzle. Comparison for temperatures variations were also carried out at different expansion ratios of nozzle. This paper also characterized the advanced SRM nozzle composites material for their high thermo stability and their high thermo me-chanical capabilities to make it more reliable simpler and lighter.
Experimental Investigation of the Flow Field in a Multistage Axial Flow Compressor
Directory of Open Access Journals (Sweden)
B. Lakshminarayana
1996-01-01
Full Text Available The nature of the flow field in a three stage axial flow compressor, including a detailed survey at the exit of an embedded stator as well as the overall performance of the compressor is presented and interpreted in this paper. The measurements include area traverse of a miniature five hole probe (1.07 mm dia downstream of stator 2, radial traverses of a miniature five hole probe at the inlet, downstream of stator 3 and at the exit of the compressor at various circumferential locations, area traverse of a low response thermocouple probe downstream of stator 2, radial traverses of a single sensor hot-wire probe at the inlet, and casing static pressure measurements at various circumferential and axial locations across the compressor at the peak efficiency operating point. Mean velocity, pressure and total temperature contours as well as secondary flow contours at the exit of the stator 2 are reported and interpreted. Secondary flow contours show the migration of fluid particles toward the core of the low pressure regions located near the suction side casing endwall corner.
Verma, M; Deng, N; Liu, C; Shimizu, T; Wang, H; Denker, C
2011-01-01
We present a subset of multi-wavelengths observations obtained with the Japanese Hinode mission, the Solar Dynamics Observatory (SDO), and the Vacuum Tower Telescope (VTT) at Observatorio del Teide, Tenerife, Spain during the time period from 2010 November 18-23. Horizontal proper motions were derived from G-band and Ca II H images, whereas line-of-sight velocities were extracted from VTT Echelle H-alpha 656.28 nm spectra and Fe I 630.25 nm spectral data of the Hinode/Spectro-Polarimeter, which also provided three-dimensional magnetic field information. The Helioseismic and Magnetic Imager on board SDO provided continuum images and line-of-sight magnetograms as context for the high-resolution observations for the entire disk passage of the active region. We have performed a quantitative study of photospheric and chromospheric flow fields in and around decaying sunspots. In one of the trailing sunspots of active region NOAA 11126, we observed moat flow and moving magnetic features (MMFs), even after its penumb...
Large Eddy Simulation of Flow Field in Vector Flow Clean-Room
Institute of Scientific and Technical Information of China (English)
樊洪明; 刘顺隆; 何钟怡; 李先庭
2002-01-01
The turbulent large eddy simulation (LES) technique and the finite element method (FEM) of computational fluid dynamics (CFD) are used to predict the three-dimensional flow field in a vector flow clean-room under empty state and static state conditions. The partly expanded Taylor-Galerkin (TG) discretization scheme is combined with implicit stream-upwind diffusion in the finite element formulation of the basic equations with Gauss filtering. The vortex viscosity subgrid model is used in the numerical simulation. The numerical results agree well with the available experimental data, showing that the LES method can more accurately predict the size and location of large eddies in clean-rooms than the standard k-ε two equation model.
Hyperlayer hollow-fiber flow field-flow fractionation of cells.
Reschiglian, Pierluigi; Zattoni, Andrea; Roda, Barbara; Cinque, Leonardo; Melucci, Dora; Min, Byung Ryul; Moon, Myeong Hee
2003-01-24
Interest in low-cost, analytical-scale, highly efficient and sensitive separation methods for cells, among which bacteria, is increasing. Particle separation in hollow-fiber flow field-flow fractionation (HF FlFFF) has been recently improved by the optimization of the HF FIFFF channel design. The intrinsic simplicity and low cost of this HF FlFFF channel allows for its disposable usage. which is particularly appealing for analytical bio-applications. Here, for the first time, we present a feasibility study on high-performance, hyperlayer HF FIFFF of micrometer-sized bacteria (Escherichia coli) and of different types of cells (human red blood cells, wine-making yeast from Saccharomyces cerevisiae). Fractionation performance is shown to be at least comparable to that obtained with conventional, flat-channel hyperlayer FIFFF of cells, at superior size-based selectivity and reduced analysis time.
Melucci, Dora; Zattoni, Andrea; Casolari, Sonia; Reggiani, Matteo; Sanz, Ramses; Reschiglian, Pierluigi; Torsi, Giancarlo
2004-03-01
Membraneless hyperlayer flow field-flow fractionation (Hyp FIFFF) has shown improved performance with respect to Hyp FIFFF with membrane. The conditions for high recovery and recovery independent of sample loading in membraneless Hyp FIFFF have been previously determined. The effect of sample loading should be also investigated in order to optimize the form of the peaks for real samples. The effect of sample loading on peak retention parameters is of prime importance in applications such as the conversion of peaks into particle size distributions. In this paper, a systematic experimental work is performed in order to study the effect of sample loading on retention parameters. A procedure to regenerate the frit operating as accumulation wall is described. High reproducibility is obtained with low system conditioning time.
Factors affecting measurement of channel thickness in asymmetrical flow field-flow fractionation.
Dou, Haiyang; Jung, Euo Chang; Lee, Seungho
2015-05-01
Asymmetrical flow field-flow fractionation (AF4) has been considered to be a useful tool for simultaneous separation and characterization of polydisperse macromolecules or colloidal nanoparticles. AF4 analysis requires the knowledge of the channel thickness (w), which is usually measured by injecting a standard with known diffusion coefficient (D) or hydrodynamic diameter (dh). An accurate w determination is a challenge due to its uncertainties arising from the membrane's compressibility, which may vary with experimental condition. In the present study, influence of factors including the size and type of the standard on the measurement of w was systematically investigated. The results revealed that steric effect and the particles-membrane interaction by van der Waals or electrostatic force may result in an error in w measurement.
Nanoparticle separation with a miniaturized asymmetrical flow field-flow fractionation cartridge
Directory of Open Access Journals (Sweden)
David eMüller
2015-07-01
Full Text Available Asymmetrical Flow Field-Flow Fractionation (AF4 is a separation technique applicable to particles over a wide size range. Despite the many advantages of AF4, its adoption in routine particle analysis is somewhat limited by the large footprint of currently available separation cartridges, extended analysis times and significant solvent consumption. To address these issues, we describe the fabrication and characterization of miniaturized AF4 cartridges. Key features of the scale-down platform include simplified cartridge and reagent handling, reduced analysis costs and higher throughput capacities. The separation performance of the miniaturized cartridge is assessed using certified gold and silver nanoparticle standards. Analysis of gold nanoparticle populations indicates shorter analysis times and increased sensitivity compared to conventional AF4 separation schemes. Moreover, nanoparticulate titanium dioxide populations exhibiting broad size distributions are analyzed in a rapid and efficient manner. Finally, the repeatability and reproducibility of the miniaturized platform are investigated with respect to analysis time and separation efficiency.
Numerical Simulation and Experimental Investigation of 3-D Separated Flow Field around a Blunt Body
Institute of Scientific and Technical Information of China (English)
无
1999-01-01
@@Motivated by re-designing a fuselage in engineering application, the numerical and experimental investigation of the separated flow field around a special blunt body is described in this thesis. The aerodynamic response of the blunt body is successively studied. The thesis consists of four parts: the numerical simulation of the flow field around a two-dimensional blunt body; the numerical simulation of the flow field around a three-dimensional blunt body; the flow