WorldWideScience

Sample records for supersonic axial flow

  1. Double linearization theory applied to three-dimensional cascades oscillating under supersonic axial flow condition. Choonsoku jikuryu sokudo de sadosuru sanjigen shindo yokuretsu no niju senkei riron ni yoru hiteijo kukiryoku kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Toshimitsu, K; Nanba, M [Kgushu University, Fukuoka (Japan). Faculty of Engineering; Iwai, S [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)

    1993-11-25

    In order to examine the aerodynamic characteristics of a supersonic axial flow turbofan realizing flight of Mach number of 2-5, the double linearization theory was applied to a three dimensional oscillation cascade accompanying a steady load in a supersonic axial flow condition and unsteady pneumatic force and aerodynamic unstability of oscillation were studied. Moreover, the values based on the strip theory and the three-dimensional theory were comparatively evaluated. Fundamental assumptions were such that the order of steady and unsteady perturbation satisfies the holding condition of the double linearization thory in a supersonic-and equi-entropy flow of non-viscous perfect gas. The numerical calculation assumed parabolic distributions of camber and thickness in the blade shape. As a result, the strip theory prediction agreed well with the value given by the three-dimensional theory in the steady blade-plane pressure difference and in the work of an unsteady pneumatic force, showing its validity. Among the steady load components of angle of attack, camber and thickness, the component of camber whose absolute value is large has the strongest effect on the total work. The distribution reduced in the angle of attack and camber from hub toward tip gives a large and stable flutter margin. 5 refs., 13 figs., 2 tabs.

  2. Internal and external axial corner flows

    Science.gov (United States)

    Kutler, P.; Shankar, V.; Anderson, D. A.; Sorenson, R. L.

    1975-01-01

    The inviscid, internal, and external axial corner flows generated by two intersecting wedges traveling supersonically are obtained by use of a second-order shock-capturing, finite-difference approach. The governing equations are solved iteratively in conical coordinates to yield the complicated wave structure of the internal corner and the simple peripheral shock of the external corner. The numerical results for the internal flows compare favorably with existing experimental data.

  3. Turbulence models in supersonic flows

    International Nuclear Information System (INIS)

    Shirani, E.; Ahmadikia, H.; Talebi, S.

    2001-05-01

    The aim of this paper is to evaluate five different turbulence models when used in rather complicated two-dimensional and axisymmetric supersonic flows. They are Baldwin-Lomax, k-l, k-ε, k-ω and k-ζ turbulence models. The compressibility effects, axisymmetric correction terms and some modifications for transition region are used and tested in the models. Two computer codes based on the control volume approach and two flux-splitting methods. Roe and Van Leer, are developed. The codes are used to simulate supersonic mixing layers, flow behind axisymmetric body, under expanded jet, and flow over hollow cylinder flare. The results are compared with experimental data and behavior of the turbulence models is examined. It is shown that both k-l and k-ζ models produce very good results. It is also shown that the compressibility correction in the model is required to obtain more accurate results. (author)

  4. Flow Studies of Decelerators at Supersonic Speeds

    Science.gov (United States)

    1959-01-01

    Wind tunnel tests recorded the effect of decelerators on flow at various supersonic speeds. Rigid parachute models were tested for the effects of porosity, shroud length, and number of shrouds. Flexible model parachutes were tested for effects of porosity and conical-shaped canopy. Ribbon dive brakes on a missile-shaped body were tested for effect of tension cable type and ribbon flare type. The final test involved a plastic sphere on riser lines.

  5. Numerical study of MHD supersonic flow control

    Science.gov (United States)

    Ryakhovskiy, A. I.; Schmidt, A. A.

    2017-11-01

    Supersonic MHD flow around a blunted body with a constant external magnetic field has been simulated for a number of geometries as well as a range of the flow parameters. Solvers based on Balbas-Tadmor MHD schemes and HLLC-Roe Godunov-type method have been developed within the OpenFOAM framework. The stability of the solution varies depending on the intensity of magnetic interaction The obtained solutions show the potential of MHD flow control and provide insights into for the development of the flow control system. The analysis of the results proves the applicability of numerical schemes, that are being used in the solvers. A number of ways to improve both the mathematical model of the process and the developed solvers are proposed.

  6. ARBITRARY INTERACTION OF PLANE SUPERSONIC FLOWS

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2015-11-01

    Full Text Available Subject of study.We consider the Riemann problem for parameters at collision of two plane flows at a certain angle. The problem is solved in the exact statement. Most cases of interference, both stationary and non-stationary gas-dynamic discontinuities, followed by supersonic flows can be reduced to the problem of random interaction of two supersonic flows. Depending on the ratio of the parameters in the flows, outgoing discontinuities turn out to be shock waves, or rarefactionwaves. In some cases, there is no solution at all. It is important to know how to find the domain of existence for the relevant decisions, as the type of shock-wave structures in these domains is known in advance. The Riemann problem is used in numerical methods such as the method of Godunov. As a rule, approximate solution is used, known as the Osher solution, but for a number of problems with a high precision required, solution of this problem needs to be in the exact statement. Main results.Domains of existence for solutions with different types of shock-wave structure have been considered. Boundaries of existence for solutions with two outgoing shock waves are analytically defined, as well as with the outgoing shock wave and rarefaction wave. We identify the area of Mach numbers and angles at which the flows interact and there is no solution. Specific flows with two outgoing rarefaction waves are not considered. Practical significance. The results supplement interference theory of stationary gas-dynamic discontinuities and can be used to develop new methods of numerical calculation with extraction of discontinuities.

  7. Flow Visualization in Supersonic Turbulent Boundary Layers.

    Science.gov (United States)

    Smith, Michael Wayne

    This thesis is a collection of novel flow visualizations of two different flat-plate, zero pressure gradient, supersonic, turbulent boundary layers (M = 2.8, Re _theta ~ 82,000, and M = 2.5, Re_ theta ~ 25,000, respectively). The physics of supersonic shear flows has recently drawn increasing attention with the renewed interest in flight at super and hypersonic speeds. This work was driven by the belief that the study of organized, Reynolds -stress producing turbulence structures will lead to improved techniques for the modelling and control of high-speed boundary layers. Although flow-visualization is often thought of as a tool for providing qualitative information about complex flow fields, in this thesis an emphasis is placed on deriving quantitative results from image data whenever possible. Three visualization techniques were applied--'selective cut-off' schlieren, droplet seeding, and Rayleigh scattering. Two experiments employed 'selective cut-off' schlieren. In the first, high-speed movies (40,000 fps) were made of strong density gradient fronts leaning downstream at between 30^circ and 60^ circ and travelling at about 0.9U _infty. In the second experiment, the same fronts were detected with hot-wires and imaged in real time, thus allowing the examination of the density gradient fronts and their associated single-point mass -flux signals. Two experiments employed droplet seeding. In both experiments, the boundary layer was seeded by injecting a stream of acetone through a single point in the wall. The acetone is atomized by the high shear at the wall into a 'fog' of tiny (~3.5mu m) droplets. In the first droplet experiment, the fog was illuminated with copper-vapor laser sheets of various orientations. The copper vapor laser pulses 'froze' the fog motion, revealing a variety of organized turbulence structures, some with characteristic downstream inclinations, others with large-scale roll-up on the scale of delta. In the second droplet experiment, high

  8. A note on supersonic flow control with nanosecond plasma actuator

    Science.gov (United States)

    Zheng, J. G.; Cui, Y. D.; Li, J.; Khoo, B. C.

    2018-04-01

    A concept study on supersonic flow control using nanosecond pulsed plasma actuator is conducted by means of numerical simulation. The nanosecond plasma discharge is characterized by the generation of a micro-shock wave in ambient air and a residual heat in the discharge volume arising from the rapid heating of near-surface gas by the quick discharge. The residual heat has been found to be essential for the flow separation control over aerodynamic bodies like airfoil and backward-facing step. In this study, novel experiment is designed to utilize the other flow feature from discharge, i.e., instant shock wave, to control supersonic flow through shock-shock interaction. Both bow shock in front of a blunt body and attached shock anchored at the tip of supersonic projectile are manipulated via the discharged-induced shock wave in an appropriate manner. It is observed that drag on the blunt body is reduced appreciably. Meanwhile, a lateral force on sharp-edged projectile is produced, which can steer the body and give it an effective angle of attack. This opens a promising possibility for extending the applicability of this flow control technique in supersonic flow regime.

  9. Cross-flow filtration and axial filtration

    International Nuclear Information System (INIS)

    Kraus, K.A.

    1974-01-01

    Two relatively novel alternative solid-liquid-separation techniques of filtration are discussed. In cross-flow filtration, the feed is pumped past the filtering surface. While in axial filtration the filter, mounted on a rotor, is moved with respect to the feed. While large-scale application of the axial filter is still in doubt, it permits with little expenditure of time and money, duplication of many hydrodynamic aspects of cross-flow filtration for fine-particle handling problems. The technique has been applied to municipal wastes, low-level radioactive waste treatment plant, lead removal from industrial wastes, removal of pulp-mill contaminants, textile-mill wastes, and pretreatment of saline waters by lime-soda process in preparation for hyperfiltration. Economics and energy requirements are also discussed

  10. Research status of fast flows and shocks in laboratory plasmas. Supersonic plasma flow and shock waves in various magnetic channels

    International Nuclear Information System (INIS)

    Inutake, Masaaki; Ando, Akira

    2007-01-01

    Fast plasma flow is produced by Magneto-Plasma-Dynamic Arcjet (MPDA). The properties of fast flow and shock wave in various magnetic channels are reported by the experiment results. Fast plasma flow by MPDA, shocked flow in the magnetic channel, supersonic plasma flow in the divergence magnetic nozzle, ion acoustic wave in the mirror field, transonic flow and sonic throat in the magnetic Laval nozzle, fast flow in the helical magnetic channel, and future subjects are reported. Formation of the supersonic plasma flow by the divergence magnetic nozzle and effects of background gas, helical-kink instability in the fast plasma jet, and formation of convergence magnetic nozzle near outlet are described. From the phase difference of azimuthal and axial probe array signals, the plasma has twisted structure and it rotates in the same direction of the twist. Section of MPDA, principle of magnetic acceleration of MPDA, HITOP, relation among velocities, temperature, and Mach number of He ion and atom and the discharge current, distribution of magnetic-flux density in the direction of electromagnetic field, measurement of magnetic field near MPDA exit are illustrated. (S.Y.)

  11. Axial flow heat exchanger devices and methods for heat transfer using axial flow devices

    Science.gov (United States)

    Koplow, Jeffrey P.

    2016-02-16

    Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferred across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.

  12. Composite Axial Flow Propulsor for Small Aircraft

    Directory of Open Access Journals (Sweden)

    R. Poul

    2005-01-01

    Full Text Available This work focuses on the design of an axial flow ducted fan driven by a reciprocating engine. The solution minimizes the turbulization of the flow around the aircraft. The fan has a rotor - stator configuration. Due to the need for low weight of the fan, a carbon/epoxy composite material was chosen for the blades and the driving shaft.The fan is designed for optimal isentropic efficiency and free vortex flow. A stress analysis of the rotor blade was performed using the Finite Element  Method. The skin of the blade is calculated as a laminate and the foam core as a solid. A static and dynamic analysis were made. The RTM technology is compared with other technologies and is described in detail. 

  13. Kr-PLIF for scalar imaging in supersonic flows.

    Science.gov (United States)

    Narayanaswamy, V; Burns, R; Clemens, N T

    2011-11-01

    Experiments were performed to explore the use of two-photon planar laser-induced fluorescence (PLIF) of krypton gas for applications of scalar imaging in supersonic flows. Experiments were performed in an underexpanded jet of krypton, which exhibited a wide range of conditions, from subsonic to hypersonic. Excellent signal-to-noise ratios were obtained, showing the technique is suitable for single-shot imaging. The data were used to infer the distribution of gas density and temperature by correcting the fluorescence signal for quenching effects and using isentropic relations. The centerline variation of the density and temperature from the experiments agree very well with those predicted with an empirical correlation and a CFD simulation (FLUENT). Overall, the high signal levels and quantifiable measurements indicate that Kr-PLIF could be an effective scalar marker for use in supersonic and hypersonic flow applications.

  14. Flow Control for Supersonic Inlet Applications

    Science.gov (United States)

    2014-06-10

    1221-1233, May 2013 3. Loth, E., Titchener, N., Babinsky, H., Povinelli , L., “Canonical NSBLI Flows Relevant to External Compression Inlets”, AIAA J...Tennessee, Jan. 9-12, 2012 7. Loth, E.L., Titchener, N., Babinsky, H., Povinelli , L.A., “A Canonical Normal SBLI Flow Relevant to External

  15. Boundary layer flow past a circular cylinder in axial flow

    International Nuclear Information System (INIS)

    Sawchuk, S.P.; Zamir, M.; Camiletti, S.E.

    1985-01-01

    This paper discusses a study of the laminar boundary layer on a semi-infinite circular cylinder in axial incompressible flow. Unlike previous studies, the present study investigates a full range of this boundary layer problem to determine skin friction, heat transfer and other integral properties of the boundary layer

  16. Numerical analysis on flows in supersonic air intakes. Choonsoku kuki toriireguchi no nagare no suchi kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, T.; Tamura, N.; Sekino, N.; Tsujimura, N. (Nissan Motor Co. Ltd., Tokyo (Japan))

    1992-06-25

    By applying computational fluid dynamics (CFD) to a flow in the supersonic air intake of rocket, appropriateness of computational result was confirmed from a comparison with the wind tunnel test result. In order for the air intake type rocket to heighten the combustion efficiency of fuel and air, it is important to possibly minimize the total pressure loss of air which has been taken in and maintain the air flow rate. A numerical analysis was made through modeling the sectional shape of wind tunnel test body and analyzing the two-dimensional flow by Reynolds-averaged Navier-Stokes equations. The computational result of analysis coincided well with the pressure measurement result in wind tunnel test. Having elucidated the main factors of total pressure loss in a two-dimensionally curved flow passage, the CFD computation gave a possibility that the total pressure loss is considerably low against that passage if improved in shape. If simultaneously used with a characteristic curve method, the CFD computation made it possible to optimize the pressure recovery characteristics in the axially symmetric air intake. The CFD can be expected to be an effective method of designing the basic shape of supersonic air intake. 9 refs., 14 figs.

  17. Unsteady Flow in a Supersonic Turbine with Variable Specific Heats

    Science.gov (United States)

    Dorney, Daniel J.; Griffin, Lisa W.; Huber, Frank; Sondak, Douglas L.; Turner, James (Technical Monitor)

    2001-01-01

    Modern high-work turbines can be compact, transonic, supersonic, counter-rotating, or use a dense drive gas. The vast majority of modern rocket turbine designs fall into these Categories. These turbines usually have large temperature variations across a given stage, and are characterized by large amounts of flow unsteadiness. The flow unsteadiness can have a major impact on the turbine performance and durability. For example, the Space Transportation Main Engine (STME) fuel turbine, a high work, transonic design, was found to have an unsteady inter-row shock which reduced efficiency by 2 points and increased dynamic loading by 24 percent. The Revolutionary Reusable Technology Turbopump (RRTT), which uses full flow oxygen for its drive gas, was found to shed vortices with such energy as to raise serious blade durability concerns. In both cases, the sources of the problems were uncovered (before turbopump testing) with the application of validated, unsteady computational fluid dynamics (CFD) to the designs. In the case of the RRTT and the Alternate Turbopump Development (ATD) turbines, the unsteady CFD codes have been used not just to identify problems, but to guide designs which mitigate problems due to unsteadiness. Using unsteady flow analyses as a part of the design process has led to turbine designs with higher performance (which affects temperature and mass flow rate) and fewer dynamics problems. One of the many assumptions made during the design and analysis of supersonic turbine stages is that the values of the specific heats are constant. In some analyses the value is based on an average of the expected upstream and downstream temperatures. In stages where the temperature can vary by 300 to 500 K, however, the assumption of constant fluid properties may lead to erroneous performance and durability predictions. In this study the suitability of assuming constant specific heats has been investigated by performing three-dimensional unsteady Navier

  18. Heat, mass and force flows in supersonic shockwave interaction

    Science.gov (United States)

    Dixon, John Michael

    There is no cost effective way to deliver a payload to space and, with rising fuel prices, currently the price to travel commercially is also becoming more prohibitive to the public. During supersonic flight, compressive shock waves form around the craft which could be harnessed to deliver an additional lift on the craft. Using a series of hanging plates below a lifting wing design, the total lift generated can be increased above conventional values, while still maintaining a similar lift-to-drag ratio. Here, we study some of the flows involved in supersonic shockwave interaction. This analysis uses ANSYS Fluent Computational Fluid Dynamics package as the modeler. Our findings conclude an increase of up to 30% lift on the modeled craft while maintaining the lift-to-drag profile of the unmodified lifting wing. The increase in lift when utilizing the shockwave interaction could increase transport weight and reduce fuel cost for space and commercial flight, as well as mitigating negative effects associated with supersonic travel.

  19. Effect of swirling device on flow behavior in a supersonic separator for natural gas dehydration

    DEFF Research Database (Denmark)

    Wen, Chuang; Li, Anqi; Walther, Jens Honore

    2016-01-01

    is designed for an annular supersonic separator. The supersonic swirling separation flow of natural gas is calculated using the Reynolds Stress model. The results show that the viscous heating and strong swirling flow cause the adverse pressure in the annular channel, which may negatively affect......The supersonic separator is a revolutionary device to remove the condensable components from gas mixtures. One of the key issues for this novel technology is the complex supersonic swirling flow that is not well understood. A swirling device composed of an ellipsoid and several helical blades...

  20. Flow Simulation of Supersonic Inlet with Bypass Annular Duct

    Science.gov (United States)

    Kim, HyoungJin; Kumano, Takayasu; Liou, Meng-Sing; Povinelli, Louis A.; Conners, Timothy R.

    2011-01-01

    A relaxed isentropic compression supersonic inlet is a new concept that produces smaller cowl drag than a conventional inlet, but incurs lower total pressure recovery and increased flow distortion in the (radially) outer flowpath. A supersonic inlet comprising a bypass annulus to the relaxed isentropic compression inlet dumps out airflow of low quality through the bypass duct. A reliable computational fluid dynamics solution can provide considerable useful information to ascertain quantitatively relative merits of the concept, and further provide a basis for optimizing the design. For a fast and reliable performance evaluation of the inlet performance, an equivalent axisymmetric model whose area changes accounts for geometric and physical (blockage) effects resulting from the original complex three-dimensional configuration is proposed. In addition, full three-dimensional calculations are conducted for studying flow phenomena and verifying the validity of the equivalent model. The inlet-engine coupling is carried out by embedding numerical propulsion system simulation engine data into the flow solver for interactive boundary conditions at the engine fan face and exhaust plane. It was found that the blockage resulting from complex three-dimensional geometries in the bypass duct causes significant degradation of inlet performance by pushing the terminal normal shock upstream.

  1. Prediction of Mass Flow Rate in Supersonic Natural Gas Processing

    Directory of Open Access Journals (Sweden)

    Wen Chuang

    2015-11-01

    Full Text Available The mass flow rate of natural gas through the supersonic separator was numerically calculated by various cubic equations of state. The numerical results show that the compressibility factor and specific heat ratio for ideal gas law diverge remarkably from real gas models at a high inlet pressure. Simultaneously, the deviation of mass flow calculated by the ideal and real gas models reaches over 10 %. The difference increases with the lower of the inlet temperature regardless of the inlet pressure. A higher back pressure results in an earlier location of the shock wave. The pressure ratio of 0.72 is the first threshold to get the separator work normally. The second threshold is 0.95, in which case the whole flow is subsonic and cannot reach the choked state. The shock position moves upstream with the real gas model compared to the ideal gas law in the cyclonic separation section.

  2. Supersonic flows past an obstacle in Yukawa liquids

    Science.gov (United States)

    Charan, Harish; Ganesh, Rajaraman

    2018-04-01

    Shock formation, when a supersonic flow passes a stationary obstacle, is ubiquitous in nature. Considering particles mediating via a Yukawa-type interaction as a prototype for a strongly coupled complex plasma, characterized by coupling strength (Γ, ratio of the average potential to kinetic energy per particle) and screening parameter (κ, ratio of the mean inter-particle distance to the shielding length), we address the fundamental problem of supersonic fluid flow U0, past a stationary obstacle immersed in this strongly coupled system. We here report the results on the bow shocks formed in Yukawa liquids when the liquid flows at speeds larger than the speed of sound in the system. Depending on the values of Mach number MC L=U/0 CL , where CL is the longitudinal speed of sound in the system, the bow shocks are found to be either traveling or localized. We find that for the transonic flows (0.8 ≲ MC L≲ 1.2), the bow shocks travel in the upstream direction opposite to the incoming fluid. The phase velocity of the traveling bow shocks is found to be a non-monotonous function of κ, varying as ∝1 /k1.11 at a fixed value of Γ, and is found to be independent of Γ at a fixed value of κ. It is observed that for the flow values with MC L>1.5 , the shock waves do not travel in the upstream direction but instead form a stationary arc like structure around the obstacle. For the fluid flows with 1 ≲ MC L≲ 2.6 , secondary bow shocks are seen to emerge behind the stationary obstacle which travel in the downstream direction, and the phase velocity of these secondary bow shocks is found to be equal to that of the primary bow shocks.

  3. The research on flow pulsation characteristics of axial piston pump

    Science.gov (United States)

    Wang, Bingchao; Wang, Yulin

    2017-01-01

    The flow pulsation is an important factor influencing the axial piston pump performance. In this paper we implement modeling and simulation of the axial piston pump with AMESim software to explore the flow pulsation characteristics under various factors . Theory analysis shows the loading pressure, angular speed, piston numbers and the accumulator impose evident influence on the flow pulsation characteristics. This simulation and analysis can be used for reducing the flow pulsation rate via properly setting the related factors.

  4. Effect of delta wing on the particle flow in a novel gas supersonic separator

    DEFF Research Database (Denmark)

    Wen, Chuang; Yang, Yan; Walther, Jens Honore

    2016-01-01

    The present work presents numerical simulations of the complex particle motion in a supersonic separator with a delta wing located in the supersonic flow. The effect of the delta wing on the strong swirling flow is analysed using the Discrete Particle Method. The results show that the delta wings...

  5. Effects of axial gap and nozzle distribution on aerodynamic forces of a supersonic partial-admission turbine

    Directory of Open Access Journals (Sweden)

    Jinpeng JIANG

    2017-12-01

    Full Text Available The turbine in an LH2/LOX rocket engine is designed as a two-stage supersonic partial-admission turbine. Three-dimensional steady and unsteady simulations were conducted to analyze turbine performance and aerodynamic forces on rotor blades. Different configurations were employed to investigate the effects of the axial gap and nozzle distribution on the predicted performance and aerodynamic forces. Rotor blades experience unsteady aerodynamic forces because of the partial admission. Aerodynamic forces show periodicity in the admission region, and are close to zero after leaving the admission region. The unsteady forces in frequency domain indicate that components exist in a wide frequency region, and the admission passing frequency is dominant. Those multiples of the rotational frequency which are multiples of the nozzle number in a full-admission turbine are notable components. Results show that the turbine efficiency decreases as the axial gap between nozzles and the 1st stage rotor (rotor 1 increases. Fluctuation of the circumferential aerodynamic force on rotor 1 blades decreases with the axial gap increasing. The turbine efficiency decreases as the circumferential spacing between nozzles increases. Fluctuations of the circumferential and axial aerodynamic forces increase as the circumferential spacing increases. As for the non-equidistant nozzle distribution, it produces similar turbine performance and amplitude-frequency characteristics of forces to those of the normal configuration, when the mean spacing is equal to that of the normal case. Keywords: Aerodynamic force, Axial gap, Computational fluid dynamics (CFD, Nozzle distribution, Partial admission, Turbine

  6. The Design Method of Axial Flow Runners Focusing on Axial Flow Velocity Uniformization and Its Application to an Ultra-Small Axial Flow Hydraulic Turbine

    Directory of Open Access Journals (Sweden)

    Yasuyuki Nishi

    2016-01-01

    Full Text Available We proposed a portable and ultra-small axial flow hydraulic turbine that can generate electric power comparatively easily using the low head of open channels such as existing pipe conduits or small rivers. In addition, we proposed a simple design method for axial flow runners in combination with the conventional one-dimensional design method and the design method of axial flow velocity uniformization, with the support of three-dimensional flow analysis. Applying our design method to the runner of an ultra-small axial flow hydraulic turbine, the performance and internal flow of the designed runner were investigated using CFD analysis and experiment (performance test and PIV measurement. As a result, the runners designed with our design method were significantly improved in turbine efficiency compared to the original runner. Specifically, in the experiment, a new design of the runner achieved a turbine efficiency of 0.768. This reason was that the axial component of absolute velocity of the new design of the runner was relatively uniform at the runner outlet in comparison with that of the original runner, and as a result, the negative rotational flow was improved. Thus, the validity of our design method has been verified.

  7. The manipulation of an unstarting supersonic flow by plasma actuator

    International Nuclear Information System (INIS)

    Im, S; Cappelli, M A; Do, H

    2012-01-01

    The manipulation of an unstarting supersonic flow is demonstrated using a dielectric barrier discharge (DBD). Experiments are carried out in a Mach 4.7 model inlet flow. Flow features, such as boundary layers and shockwaves at low freestream static pressure (1 kPa) and temperature (60 K) are visualized with Rayleigh scattering from condensed CO 2 particles. Flow unstart, initiated by mass injection, is studied for three model inlet flow configurations, distinguished by the initial conditions (untripped or tripped, plasma actuated or not) of the boundary layers. Unstart in the presence of thick, tripped boundary layers is characterized by the formation of an oblique unstart shock just upstream of a separating and propagating boundary layer. The presence of plasma actuation of this tripped boundary layer seems to arrest the boundary layer separation and leads to the formation of a quasi-stationary pseudo-shock, delaying unstart. The flow generated with DBD actuation is more characteristic of what is seen when unstart is generated in a model flow in which thin boundary layers grow naturally. Planar laser Rayleigh scattering visualizations suggest that the DBD actuation thins the tripped boundary layer over the exposed electrode region.

  8. Thermonuclear dynamo inside ultracentrifuge with supersonic plasma flow stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Winterberg, F. [University of Nevada, Reno, Reno, Nevada (United States)

    2016-01-15

    Einstein's general theory of relativity implies the existence of virtual negative masses in the rotational reference frame of an ultracentrifuge with the negative mass density of the same order of magnitude as the positive mass density of a neutron star. In an ultracentrifuge, the repulsive gravitational field of this negative mass can simulate the attractive positive mass of a mini-neutron star, and for this reason can radially confine a dense thermonuclear plasma placed inside the centrifuge, very much as the positive mass of a star confines its plasma by its own attractive gravitational field. If the centrifuge is placed in an externally magnetic field to act as the seed field of a magnetohydrodynamic generator, the configuration resembles a magnetar driven by the release of energy through nuclear fusion, accelerating the plasma to supersonic velocities, with the magnetic field produced by the thermomagnetic Nernst effect insulating the hot plasma from the cold wall of the centrifuge. Because of the supersonic flow and the high plasma density the configuration is stable.

  9. Thermonuclear dynamo inside ultracentrifuge with supersonic plasma flow stabilization

    Science.gov (United States)

    Winterberg, F.

    2016-01-01

    Einstein's general theory of relativity implies the existence of virtual negative masses in the rotational reference frame of an ultracentrifuge with the negative mass density of the same order of magnitude as the positive mass density of a neutron star. In an ultracentrifuge, the repulsive gravitational field of this negative mass can simulate the attractive positive mass of a mini-neutron star, and for this reason can radially confine a dense thermonuclear plasma placed inside the centrifuge, very much as the positive mass of a star confines its plasma by its own attractive gravitational field. If the centrifuge is placed in an externally magnetic field to act as the seed field of a magnetohydrodynamic generator, the configuration resembles a magnetar driven by the release of energy through nuclear fusion, accelerating the plasma to supersonic velocities, with the magnetic field produced by the thermomagnetic Nernst effect insulating the hot plasma from the cold wall of the centrifuge. Because of the supersonic flow and the high plasma density the configuration is stable.

  10. Thermonuclear dynamo inside ultracentrifuge with supersonic plasma flow stabilization

    International Nuclear Information System (INIS)

    Winterberg, F.

    2016-01-01

    Einstein's general theory of relativity implies the existence of virtual negative masses in the rotational reference frame of an ultracentrifuge with the negative mass density of the same order of magnitude as the positive mass density of a neutron star. In an ultracentrifuge, the repulsive gravitational field of this negative mass can simulate the attractive positive mass of a mini-neutron star, and for this reason can radially confine a dense thermonuclear plasma placed inside the centrifuge, very much as the positive mass of a star confines its plasma by its own attractive gravitational field. If the centrifuge is placed in an externally magnetic field to act as the seed field of a magnetohydrodynamic generator, the configuration resembles a magnetar driven by the release of energy through nuclear fusion, accelerating the plasma to supersonic velocities, with the magnetic field produced by the thermomagnetic Nernst effect insulating the hot plasma from the cold wall of the centrifuge. Because of the supersonic flow and the high plasma density the configuration is stable

  11. Flight tests of a supersonic natural laminar flow airfoil

    International Nuclear Information System (INIS)

    Frederick, M A; Banks, D W; Garzon, G A; Matisheck, J R

    2015-01-01

    A flight test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80 inch (203 cm) chord and 40 inch (102 cm) span article mounted on the centerline store location of an F-15B airplane. The test article was designed with a leading edge sweep of effectively 0° to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate that the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, was similar to that of subsonic natural laminar flow wings. (paper)

  12. A Level-set based framework for viscous simulation of particle-laden supersonic flows

    Science.gov (United States)

    Das, Pratik; Sen, Oishik; Jacobs, Gustaaf; Udaykumar, H. S.

    2017-06-01

    Particle-laden supersonic flows are important in natural and industrial processes, such as, volcanic eruptions, explosions, pneumatic conveyance of particle in material processing etc. Numerical study of such high-speed particle laden flows at the mesoscale calls for a numerical framework which allows simulation of supersonic flow around multiple moving solid objects. Only a few efforts have been made toward development of numerical frameworks for viscous simulation of particle-fluid interaction in supersonic flow regime. The current work presents a Cartesian grid based sharp-interface method for viscous simulations of interaction between supersonic flow with moving rigid particles. The no-slip boundary condition is imposed at the solid-fluid interfaces using a modified ghost fluid method (GFM). The current method is validated against the similarity solution of compressible boundary layer over flat-plate and benchmark numerical solution for steady supersonic flow over cylinder. Further validation is carried out against benchmark numerical results for shock induced lift-off of a cylinder in a shock tube. 3D simulation of steady supersonic flow over sphere is performed to compare the numerically obtained drag co-efficient with experimental results. A particle-resolved viscous simulation of shock interaction with a cloud of particles is performed to demonstrate that the current method is suitable for large-scale particle resolved simulations of particle-laden supersonic flows.

  13. An efficient unstructured WENO method for supersonic reactive flows

    Science.gov (United States)

    Zhao, Wen-Geng; Zheng, Hong-Wei; Liu, Feng-Jun; Shi, Xiao-Tian; Gao, Jun; Hu, Ning; Lv, Meng; Chen, Si-Cong; Zhao, Hong-Da

    2018-03-01

    An efficient high-order numerical method for supersonic reactive flows is proposed in this article. The reactive source term and convection term are solved separately by splitting scheme. In the reaction step, an adaptive time-step method is presented, which can improve the efficiency greatly. In the convection step, a third-order accurate weighted essentially non-oscillatory (WENO) method is adopted to reconstruct the solution in the unstructured grids. Numerical results show that our new method can capture the correct propagation speed of the detonation wave exactly even in coarse grids, while high order accuracy can be achieved in the smooth region. In addition, the proposed adaptive splitting method can reduce the computational cost greatly compared with the traditional splitting method.

  14. Effect of Axisymmetric Aft Wall Angle Cavity in Supersonic Flow Field

    Science.gov (United States)

    Jeyakumar, S.; Assis, Shan M.; Jayaraman, K.

    2018-03-01

    Cavity plays a significant role in scramjet combustors to enhance mixing and flame holding of supersonic streams. In this study, the characteristics of axisymmetric cavity with varying aft wall angles in a non-reacting supersonic flow field are experimentally investigated. The experiments are conducted in a blow-down type supersonic flow facility. The facility consists of a supersonic nozzle followed by a circular cross sectional duct. The axisymmetric cavity is incorporated inside the duct. Cavity aft wall is inclined with two consecutive angles. The performance of the aft wall cavities are compared with rectangular cavity. Decreasing aft wall angle reduces the cavity drag due to the stable flow field which is vital for flame holding in supersonic combustor. Uniform mixing and gradual decrease in stagnation pressure loss can be achieved by decreasing the cavity aft wall angle.

  15. Efficient solutions to the Euler equations for supersonic flow with embedded subsonic regions

    Science.gov (United States)

    Walters, Robert W.; Dwoyer, Douglas L.

    1987-01-01

    A line Gauss-Seidel (LGS) relaxation algorithm in conjunction with a one-parameter family of upwind discretizations of the Euler equations in two dimensions is described. Convergence of the basic algorithm to the steady state is quadratic for fully supersonic flows and is linear for other flows. This is in contrast to the block alternating direction implicit methods (either central or upwind differenced) and the upwind biased relaxation schemes, all of which converge linearly, independent of the flow regime. Moreover, the algorithm presented herein is easily coupled with methods to detect regions of subsonic flow embedded in supersonic flow. This allows marching by lines in the supersonic regions, converging each line quadratically, and iterating in the subsonic regions, and yields a very efficient iteration strategy. Numerical results are presented for two-dimensional supersonic and transonic flows containing oblique and normal shock waves which confirm the efficiency of the iteration strategy.

  16. Supersonic plasma flow between high latitude conjugate ionospheres

    International Nuclear Information System (INIS)

    Roesler, G.

    1975-01-01

    The polar wind problem has been investigated for closed field lines in situations where one of the two conjugate ionospheric regions is fully illuminated by the sun and the other darkness (solstices at high latitudes). A supersonic flow between hemispheres is possible; the magnetospheric part of this flow must be symmetric with respect to the equator. The daytime fluxes are proportional to the neutral hydrogen density. Fluxes of the order of 10 8 cm -2 sec -1 are only possible with density considerably higher than given by CIRA models. For stationary solutions higher flow speeds are needed on the dark side than provided from the illuminated side. It is concluded that shock waves with upward velocities of about 5 km/sec would form above the dark ionosphere. This implies a reduction by a factor of 3 to 5 of the plasma influx into the dark hemisphere, whereby F-layer densities of only up to 2 x 10 4 cm -3 can be maintained. (orig.) [de

  17. Plasma-enhanced mixing and flameholding in supersonic flow.

    Science.gov (United States)

    Firsov, Alexander; Savelkin, Konstantin V; Yarantsev, Dmitry A; Leonov, Sergey B

    2015-08-13

    The results of experimental study of plasma-based mixing, ignition and flameholding in a supersonic model combustor are presented in the paper. The model combustor has a length of 600 mm and cross section of 72 mm width and 60 mm height. The fuel is directly injected into supersonic airflow (Mach number M=2, static pressure P(st)=160-250 Torr) through wall orifices. Two series of tests are focused on flameholding and mixing correspondingly. In the first series, the near-surface quasi-DC electrical discharge is generated by flush-mounted electrodes at electrical power deposition of W(pl)=3-24 kW. The scope includes parametric study of ignition and flame front dynamics, and comparison of three schemes of plasma generation: the first and the second layouts examine the location of plasma generators upstream and downstream from the fuel injectors. The third pattern follows a novel approach of combined mixing/ignition technique, where the electrical discharge distributes along the fuel jet. The last pattern demonstrates a significant advantage in terms of flameholding limit. In the second series of tests, a long discharge of submicrosecond duration is generated across the flow and along the fuel jet. A gasdynamic instability of thermal cavity developed after a deposition of high-power density in a thin plasma filament promotes the air-fuel mixing. The technique studied in this work has weighty potential for high-speed combustion applications, including cold start/restart of scramjet engines and support of transition regime in dual-mode scramjet and at off-design operation. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  18. Flow control of micro-ramps on supersonic forward-facing step flow

    International Nuclear Information System (INIS)

    Zhang Qing-Hu; Zhu Tao; Wu Anping; Yi Shihe

    2016-01-01

    The effects of the micro-ramps on supersonic turbulent flow over a forward-facing step (FFS) was experimentally investigated in a supersonic low-noise wind tunnel at Mach number 3 using nano-tracer planar laser scattering (NPLS) and particle image velocimetry (PIV) techniques. High spatiotemporal resolution images and velocity fields of supersonic flow over the testing model were captured. The fine structures and their spatial evolutionary characteristics without and with the micro-ramps were revealed and compared. The large-scale structures generated by the micro-ramps can survive the downstream FFS flowfield. The micro-ramps control on the flow separation and the separation shock unsteadiness was investigated by PIV results. With the micro-ramps, the reduction in the range of the reversal flow zone in streamwise direction is 50% and the turbulence intensity is also reduced. Moreover, the reduction in the average separated region and in separation shock unsteadiness are 47% and 26%, respectively. The results indicate that the micro-ramps are effective in reducing the flow separation and the separation shock unsteadiness. (paper)

  19. Numerical Studies of a Supersonic Fluidic Diverter Actuator for Flow Control

    Science.gov (United States)

    Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis e.; Raghu, Surya

    2010-01-01

    The analysis of the internal flow structure and performance of a specific fluidic diverter actuator, previously studied by time-dependent numerical computations for subsonic flow, is extended to include operation with supersonic actuator exit velocities. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The self-induced oscillatory behavior of the flow is successfully predicted and the calculated oscillation frequencies with respect to flow rate have excellent agreement with our experimental measurements. The oscillation frequency increases with Mach number, but its dependence on flow rate changes from subsonic to transonic to supersonic regimes. The delay time for the initiation of oscillations depends on the flow rate and the acoustic speed in the gaseous medium for subsonic flow, but is unaffected by the flow rate for supersonic conditions

  20. Linear and nonlinear development of m=0 instability in a diffuse Bennett Z-pinch equilibrium with sheared axial flow

    International Nuclear Information System (INIS)

    Paraschiv, I.; Bauer, B. S.; Lindemuth, I. R.; Makhin, V.

    2010-01-01

    The effect of sheared axial flow on the Z-pinch sausage instability has been examined with two-dimensional magnetohydrodynamic simulations. Diffuse Bennett equilibria in the presence of axial flows with parabolic and linear radial profiles have been considered, and a detailed study of the linear and nonlinear development of small perturbations from these equilibria has been performed. The consequences of both single-wavelength and random-seed perturbations were calculated. It was found that sheared flows changed the internal m=0 mode development by reducing the linear growth rates, decreasing the saturation amplitude, and modifying the instability spectrum. High spatial frequency modes were stabilized to small amplitudes and only long wavelengths continued to grow. Full stability was obtained for supersonic plasma flows.

  1. Numerical simulation of liquid droplet breakup in supersonic flows

    Science.gov (United States)

    Liu, Nan; Wang, Zhenguo; Sun, Mingbo; Wang, Hongbo; Wang, Bing

    2018-04-01

    A five-equation model based on finite-difference frame was utilized to simulate liquid droplet breakup in supersonic flows. To enhance the interface-capturing quality, an anti-diffusion method was introduced as a correction of volume-fraction after each step of calculation to sharpen the interface. The robustness was guaranteed by the hybrid variable reconstruction in which the second-order and high-order method were respectively employed in discontinuous and continuous flow fields. According to the recent classification of droplet breakup regimes, the simulations lay in the shear induced entrainment regime. Comparing to the momentum of the high-speed air flows, surface tension and viscid force were negligible in both two-dimensional and three-dimensional simulations. The inflow conditions were set as Mach 1.2, 1.5 and 1.8 to reach different dynamic pressure with the liquid to gas density ratio being 1000 initially. According to the results of simulations, the breakup process was divided into three stages which were analyzed in details with the consideration of interactions between gas and liquid. The shear between the high-speed gas flow and the liquid droplet was found to be the sources of surface instabilities on windward, while the instabilities on the leeward side were originated by vortices. Movement of the liquid mass center was studied, and the unsteady acceleration was observed. In addition, the characteristic breakup time was around 1.0 based on the criterion of either droplet thickness or liquid volume fraction.

  2. Analysis and control of supersonic vortex breakdown flows

    Science.gov (United States)

    Kandil, Osama A.

    1990-01-01

    Analysis and computation of steady, compressible, quasi-axisymmetric flow of an isolated, slender vortex are considered. The compressible, Navier-Stokes equations are reduced to a simpler set by using the slenderness and quasi-axisymmetry assumptions. The resulting set along with a compatibility equation are transformed from the diverging physical domain to a rectangular computational domain. Solving for a compatible set of initial profiles and specifying a compatible set of boundary conditions, the equations are solved using a type-differencing scheme. Vortex breakdown locations are detected by the failure of the scheme to converge. Computational examples include isolated vortex flows at different Mach numbers, external axial-pressure gradients and swirl ratios.

  3. Thomson scattering measurements of ion interpenetration in cylindrically converging, supersonic magnetized plasma flows

    Science.gov (United States)

    Swadling, George

    2015-11-01

    Ion interpenetration driven by high velocity plasma collisions is an important phenomenon in high energy density environments such as the interiors of ICF vacuum hohlraums and fast z-pinches. The presence of magnetic fields frozen into these colliding flows further complicates the interaction dynamics. This talk focuses on an experimental investigation of ion interpenetration in collisions between cylindrically convergent, supersonic, magnetized flows (M ~10, Vflow ~ 100km/s, ni ~ 1017cm-3) . The flows used in this study were plasma ablation streams produced by tungsten wire array z-pinches, driven by the 1.4MA, 240ns Magpie facility at Imperial College, and diagnosed using a combination of optical Thomson scattering, Faraday rotation and interferometry. Optical Thomson scattering (TS) provides time-resolved measurements of local flow velocity and plasma temperature across multiple (7 to 14) spatial positions. TS spectra are recorded simultaneously from multiple directions with respect to the probing beam, resulting in separate measurements of the rates of transverse diffusion and slowing-down of the ion velocity distribution. The measurements demonstrate flow interpenetration through the array axis at early time, and also show an axial deflection of the ions towards the anode. This deflection is induced by a toroidal magnetic field (~ 10T), frozen into the plasma that accumulates near the axis. Measurements obtained later in time show a change in the dynamics of the stream interactions, transitioning towards a collisional, shock-like interaction of the streams, and rapid radial collapse of the magnetized plasma column. The quantitative nature of the spatial profiles of the density, flow velocities and ion temperatures measured in these experiments will allow detailed verification of MHD and PIC codes used by the HEDP community. Work Supported by EPSRC (Grant No. EP/G001324/1), DOE (Cooperative Agreement Nos. DE-F03-02NA00057 & DE-SC-0001063) & Sandia National

  4. Numerical simulation of gap effect in supersonic flows

    Directory of Open Access Journals (Sweden)

    Song Mo

    2014-01-01

    Full Text Available The gap effect is a key factor in the design of the heat sealing in supersonic vehicles subjected to an aerodynamic heat load. Built on S-A turbulence model and Roe discrete format, the aerodynamic environment around a gap on the surface of a supersonic aircraft was simulated by the finite volume method. As the presented results indicate, the gap effect depends not only on the attack angle, but also on the Mach number.

  5. Transonic airfoil and axial flow rotary machine

    Science.gov (United States)

    Nagai, Naonori; Iwatani, Junji

    2015-09-01

    Sectional profiles close to a tip 124 and a part between a midportion 125 and a hub 123 are shifted to the upstream of an operating fluid flow in a sweep direction. Accordingly, an S shape is formed in which the tip 124 and the part between the midportion 125 and the hub 123 protrude. As a result, it is possible reduce various losses due to shook, waves, thereby forming a transonic airfoil having an excellent aerodynamic characteristic.

  6. Large Eddy simulation of turbulent hydrogen-fuelled supersonic combustion in an air cross-flow

    Science.gov (United States)

    Ingenito, A.; Cecere, D.; Giacomazzi, E.

    2013-09-01

    The main aim of this article is to provide a theoretical understanding of the physics of supersonic mixing and combustion. Research in advanced air-breathing propulsion systems able to push vehicles well beyond is of interest around the world. In a scramjet, the air stream flow captured by the inlet is decelerated but still maintains supersonic conditions. As the residence time is very short , the study of an efficient mixing and combustion is a key issue in the ongoing research on compressible flows. Due to experimental difficulties in measuring complex high-speed unsteady flowfields, the most convenient way to understand unsteady features of supersonic mixing and combustion is to use computational fluid dynamics. This work investigates supersonic combustion physics in the Hyshot II combustion chamber within the Large Eddy simulation framework. The resolution of this turbulent compressible reacting flow requires: (1) highly accurate non-dissipative numerical schemes to properly simulate strong gradients near shock waves and turbulent structures away from these discontinuities; (2) proper modelling of the small subgrid scales for supersonic combustion, including effects from compressibility on mixing and combustion; (3) highly detailed kinetic mechanisms (the Warnatz scheme including 9 species and 38 reactions is adopted) accounting for the formation and recombination of radicals to properly predict flame anchoring. Numerical results reveal the complex topology of the flow under investigation. The importance of baroclinic and dilatational effects on mixing and flame anchoring is evidenced. Moreover, their effects on turbulence-scale generation and the scaling law are analysed.

  7. Shock Waves Oscillations in the Interaction of Supersonic Flows with the Head of the Aircraft

    Science.gov (United States)

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    In this article we reviewed the shock wave oscillation that occurs when supersonic flows interact with conic, blunt or flat nose of aircraft, taking into account the aerospike attached to it. The main attention was paid to the problem of numerical modeling of such oscillation, flow regime classification, and cases where aerospike attachment can…

  8. Supersonic vortex breakdown over a delta wing in transonic flow

    Science.gov (United States)

    Kandil, Hamdy A.; Kandil, Osama A.; Liu, C. H.

    1993-01-01

    The effects of freestream Mach number and angle of attack on the leading-edge vortex breakdown due to the terminating shock on a 65-degree, sharp-edged, cropped delta wing are investigated computationally, using the time-accurate solution of the laminar unsteady compressible full Navier-Stokes equations with the implicit upwind flux-difference splitting, finite-volume scheme. A fine O-H grid consisting of 125 x 85 x 84 points in the wrap-around, normal, and axial directions, respectively, is used for all the flow cases. Keeping the Reynolds number fixed at 3.23 x 10 exp 6, the Mach number is varied from 0.85 to 0.9 and the angle of attack is varied from 20 to 24 deg. The results show that, at 20-deg angle of attack, the increase of the Mach number from 0.85 to 0.9 results in moving the location of the terminating shock downstream. The results also show that, at 0.85 Mach number, the increase of the angle of attack from 20 to 24 deg results in moving the location of the terminating shock upstream. The results are in good agreement with the experimental data.

  9. Stress Analysis of Fuel Rod under Axial Coolant Flow

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hai Lan; Lee, Young Shin; Lee, Hyun Seung [Chungnam National University, Daejeon (Korea, Republic of); Park, Num Kyu; Jeon, Kyung Rok [Kerea Nuclear Fuel., Daejeon (Korea, Republic of)

    2010-05-15

    A pressurized water reactor(PWR) fuel assembly, is a typical bundle structure, which uses light water as a coolant in most commercial nuclear power plants. Fuel rods that have a very slender and long clad are supported by fuel assembly which consists of several spacer grids. A coolant is a fluid which flows through device to prevent its overheating, transferring the heat produced by the device to other devices that use or dissipate it. But at the same time, the coolant flow will bring out the fluid induced vibration(FIV) of fuel rods and even damaged the fuel rod. This study has been conducted to investigate the flow characteristics and nuclear reactor fuel rod stress under effect of coolant. Fluid structure interaction(FSI) analysis on nuclear reactor fuel rod was performed. Fluid analysis of the coolant which flow along the axial direction and structural analysis under effect of flow velocity were carried out under different output flow velocity conditions

  10. Stress Analysis of Fuel Rod under Axial Coolant Flow

    International Nuclear Information System (INIS)

    Jin, Hai Lan; Lee, Young Shin; Lee, Hyun Seung; Park, Num Kyu; Jeon, Kyung Rok

    2010-01-01

    A pressurized water reactor(PWR) fuel assembly, is a typical bundle structure, which uses light water as a coolant in most commercial nuclear power plants. Fuel rods that have a very slender and long clad are supported by fuel assembly which consists of several spacer grids. A coolant is a fluid which flows through device to prevent its overheating, transferring the heat produced by the device to other devices that use or dissipate it. But at the same time, the coolant flow will bring out the fluid induced vibration(FIV) of fuel rods and even damaged the fuel rod. This study has been conducted to investigate the flow characteristics and nuclear reactor fuel rod stress under effect of coolant. Fluid structure interaction(FSI) analysis on nuclear reactor fuel rod was performed. Fluid analysis of the coolant which flow along the axial direction and structural analysis under effect of flow velocity were carried out under different output flow velocity conditions

  11. High pressure axial flow fans for modern coal power stations

    Energy Technology Data Exchange (ETDEWEB)

    Cyrus, Vaclav [AHT Energetika s.r.o., Praha (Czech Republic); Koci, Petr [ZVVZ Milevsko a.s. (Czech Republic)

    2008-07-01

    Brown coal fired power stations, located in Northern Bohemia, have mostly older boiler blocks with an output of 110 and 200 MWe. Flue gases are cleaned by the desulphurization plants installed between 1993 and 1997. Usually, each boiler block has two air fans and one to three flue gas fans. Flue gas fans operate in severe conditions; fan blades should be resistant to the flue gases containing sulphur and acid drops with the operating temperature at 170 C to 190 C. Additionally, flue gas also often contains ash particles. Currently, some boiler blocks are gradually being refurbished. New blocks with an electrical power output of 600 to 700 MWe are at the design stage. Submitted paper shows our design study of one stage axial flow fan for the new blocks. Results from the new aerodynamic research of the axial flow stages were used in the fan design. (orig.)

  12. Visualization study of flow in axial flow inducer.

    Science.gov (United States)

    Lakshminarayana, B.

    1972-01-01

    A visualization study of the flow through a three ft dia model of a four bladed inducer, which is operated in air at a flow coefficient of 0.065, is reported in this paper. The flow near the blade surfaces, inside the rotating passages, downstream and upstream of the inducer is visualized by means of smoke, tufts, ammonia filament, and lampblack techniques. Flow is found to be highly three dimensional, with appreciable radial velocity throughout the entire passage. The secondary flows observed near the hub and annulus walls agree with qualitative predictions obtained from the inviscid secondary flow theory.

  13. Moving blade for steam turbines with axial flow

    International Nuclear Information System (INIS)

    Raschke, K.; Wehle, G.

    1976-01-01

    The invention concerns the improvement of the production of moving blades for steam turbines with axial flow, especially of multi-blades produced by welding of the top plates. It is proposed to weld the top plates before the moving blades are fitted into the rotor. Welding is this made much easier and can be carried out under protective gas and with better results. (UWI) [de

  14. The New Performance Calculation Method of Fouled Axial Flow Compressor

    Directory of Open Access Journals (Sweden)

    Huadong Yang

    2014-01-01

    Full Text Available Fouling is the most important performance degradation factor, so it is necessary to accurately predict the effect of fouling on engine performance. In the previous research, it is very difficult to accurately model the fouled axial flow compressor. This paper develops a new performance calculation method of fouled multistage axial flow compressor based on experiment result and operating data. For multistage compressor, the whole compressor is decomposed into two sections. The first section includes the first 50% stages which reflect the fouling level, and the second section includes the last 50% stages which are viewed as the clean stage because of less deposits. In this model, the performance of the first section is obtained by combining scaling law method and linear progression model with traditional stage stacking method; simultaneously ambient conditions and engine configurations are considered. On the other hand, the performance of the second section is calculated by averaged infinitesimal stage method which is based on Reynolds’ law of similarity. Finally, the model is successfully applied to predict the 8-stage axial flow compressor and 16-stage LM2500-30 compressor. The change of thermodynamic parameters such as pressure ratio, efficiency with the operating time, and stage number is analyzed in detail.

  15. Effect of inlet and outlet flow conditions on natural gas parameters in supersonic separation process.

    Directory of Open Access Journals (Sweden)

    Yan Yang

    Full Text Available A supersonic separator has been introduced to remove water vapour from natural gas. The mechanisms of the upstream and downstream influences are not well understood for various flow conditions from the wellhead and the back pipelines. We used a computational model to investigate the effect of the inlet and outlet flow conditions on the supersonic separation process. We found that the shock wave was sensitive to the inlet or back pressure compared to the inlet temperature. The shock position shifted forward with a higher inlet or back pressure. It indicated that an increasing inlet pressure declined the pressure recovery capacity. Furthermore, the shock wave moved out of the diffuser when the ratio of the back pressure to the inlet one was greater than 0.75, in which the state of the low pressure and temperature was destroyed, resulting in the re-evaporation of the condensed liquids. Natural gas would be the subsonic flows in the whole supersonic separator, if the mass flow rate was less than the design value, and it could not reach the low pressure and temperature for the condensation and separation of the water vapor. These results suggested a guidance mechanism for natural gas supersonic separation in various flow conditions.

  16. Characteristics of pulsed plasma synthetic jet and its control effect on supersonic flow

    Directory of Open Access Journals (Sweden)

    Di Jin

    2015-02-01

    Full Text Available The plasma synthetic jet is a novel flow control approach which is currently being studied. In this paper its characteristic and control effect on supersonic flow is investigated both experimentally and numerically. In the experiment, the formation of plasma synthetic jet and its propagation velocity in quiescent air are recorded and calculated with time resolved schlieren method. The jet velocity is up to 100 m/s and no remarkable difference has been found after changing discharge parameters. When applied in Mach 2 supersonic flow, an obvious shockwave can be observed. In the modeling of electrical heating, the arc domain is not defined as an initial condition with fixed temperature or pressure, but a source term with time-varying input power density, which is expected to better describe the influence of heating process. Velocity variation with different heating efficiencies is presented and discussed and a peak velocity of 850 m/s is achieved in still air with heating power density of 5.0 × 1012 W/m3. For more details on the interaction between plasma synthetic jet and supersonic flow, the plasma synthetic jet induced shockwave and the disturbances in the boundary layer are numerically researched. All the results have demonstrated the control authority of plasma synthetic jet onto supersonic flow.

  17. Generation of parasitic axial flow by drift wave turbulence with broken symmetry: Theory and experiment

    Science.gov (United States)

    Hong, R.; Li, J. C.; Hajjar, R.; Chakraborty Thakur, S.; Diamond, P. H.; Tynan, G. R.

    2018-05-01

    Detailed measurements of intrinsic axial flow generation parallel to the magnetic field in the controlled shear decorrelation experiment linear plasma device with no axial momentum input are presented and compared to theory. The results show a causal link from the density gradient to drift-wave turbulence with broken spectral symmetry and development of the axial mean parallel flow. As the density gradient steepens, the axial and azimuthal Reynolds stresses increase and radially sheared azimuthal and axial mean flows develop. A turbulent axial momentum balance analysis shows that the axial Reynolds stress drives the radially sheared axial mean flow. The turbulent drive (Reynolds power) for the azimuthal flow is an order of magnitude greater than that for axial flow, suggesting that the turbulence fluctuation levels are set by azimuthal flow shear regulation. The direct energy exchange between axial and azimuthal mean flows is shown to be insignificant. Therefore, the axial flow is parasitic to the turbulence-zonal flow system and is driven primarily by the axial turbulent stress generated by that system. The non-diffusive, residual part of the axial Reynolds stress is found to be proportional to the density gradient and is formed due to dynamical asymmetry in the drift-wave turbulence.

  18. Development of supersonic plasma flows by use of a magnetic nozzle and an ICRF heating

    Energy Technology Data Exchange (ETDEWEB)

    Inutake, M.; Ando, A.; Hattori, K.; Tobari, H.; Hosokawa, Y.; Sato, R.; Hatanaka, M.; Harata, K. [Tohoku Univ., Dept. of Electrical Engineering, Sendai (Japan)

    2004-07-01

    A high-beta, supersonic plasma flow plays a crucial role in MHD phenomena in space and fusion plasmas. There are a few experimental researches on production and control of a fast flowing plasma in spite of a growing significance in the magnetized-plasma flow dynamics. A magneto-plasma-dynamic arc-jet (MPDA) is one of promising devices to produce a supersonic plasma flow and has been utilized as an electric propulsion device with a higher specific impulse and a relatively larger thrust. We have improved the performance of an MPDA to produce a quasi-steady plasma flow with a transonic and supersonic Mach number in a highly-ionized state. There are two methods in order to control an ion-acoustic Mach number of the plasma flow exhausted from an MPDA: one is to use a magnetic Laval nozzle to convert a thermal energy to a flow energy and the other is a combined system of an ion heating and a divergent magnetic nozzle. The former is an analogous method to a compressible air flow and the latter is the method proposed in an advanced thruster for a manned interplanetary space mission. We have clarified the plasma flow characteristics in various shapes of a magnetic field configuration. It was demonstrated that the Mach number of the plasma flow could increase up to almost 3 in a divergent magnetic nozzle field. This paper reports recent results on the flow field improvements: one is on a magnetic-Laval-nozzle effects observed at the muzzle region of the MPDA, and the other is on ICRF (ion-cyclotron-range of frequency) heating of a supersonic plasma by use of a helical antenna. (authors)

  19. CFD modeling of particle behavior in supersonic flows with strong swirls for gas separation

    DEFF Research Database (Denmark)

    Yang, Yan; Wen, Chuang

    2017-01-01

    flow from the dry gas outlet. The separation efficiency reached over 80%, when the droplet diameter was more than 1.5 μm. The optimum length of the cyclonic separation section was approximate 16–20 times of the nozzle throat diameter to obtain higher collection efficiency for the supersonic separator...

  20. Flowing of supersonic underexpanded micro-jets in the range of moderate Reynolds numbers

    Science.gov (United States)

    Mironov, S. G.; Aniskin, V. M.; Maslov, A. A.

    2017-10-01

    The paper presents new experimental results on the simulation of supersonic underexpanded micro-jets by macro-jet in the range of moderate Reynolds numbers of air outflow from the nozzle. A correlation is shown between the variations in the Pitot pressure in the model micro-jet with variations in the length of the supersonic core of real the micro-jets. The results of experiments on the effect of humidity on the pulsation of mass flow rate in a micro-jet are presented.

  1. Flow measurements using noise signals of axially displaced thermocouples

    Energy Technology Data Exchange (ETDEWEB)

    Kozma, R.; Hoogenboom, J.E. (Interuniversitair Reactor Inst., Delft (Netherlands))

    1990-01-01

    Determination of the flow rate of the coolant in the cooling channels of nuclear reactors is an important aspect of core monitoring. It is usually impossible to measure the flow by flowmeters in the individual channels due to the lack of space and safety reasons. An alternative method is based on the analysis of noise signals of the available in-core detectors. In such a noise method, a transit time which characterises the propagation of thermohydraulic fluctuations (density or temperature fluctuations) in the coolant is determined from the correlation between the noise signals of axially displaced detectors. In this paper, the results of flow measurements using axially displaced thermocouples in the channel wall will be presented. The experiments have been performed in a simulated MRT-type fuel assembly located in the research reactor HOR of the Interfaculty Reactor Institute, Delft. It was found that the velocities obtained via temperature noise correlation methods are significantly larger than the area-averaged velocity in the single-phase coolant flow. Model calculations show that the observed phenomenon can be explained by effects due to the radial velocity distribution in the channel. (author).

  2. Numerical flow analysis of axial flow compressor for steady and unsteady flow cases

    Science.gov (United States)

    Prabhudev, B. M.; Satish kumar, S.; Rajanna, D.

    2017-07-01

    Performance of jet engine is dependent on the performance of compressor. This paper gives numerical study of performance characteristics for axial compressor. The test rig is present at CSIR LAB Bangalore. Flow domains are meshed and fluid dynamic equations are solved using ANSYS package. Analysis is done for six different speeds and for operating conditions like choke, maximum efficiency & before stall point. Different plots are compared and results are discussed. Shock displacement, vortex flows, leakage patterns are presented along with unsteady FFT plot and time step plot.

  3. Interferometric measurement and numerical comparisons of supersonic heat transfer flows in microchannel

    International Nuclear Information System (INIS)

    Takahashi, Yuya; Chen, Lin; Okajima, Junnosuke; Iga, Yuka; Komiya, Atsuki; Maruyama, Shigenao

    2016-01-01

    Highlights: • Effective cooling design by super-/sub-sonic air flow in microchannels is proposed. • Microscale supersonic flows is successfully generated and examined. • Microchannel flow density field were visualized quantitatively by interferometer. • The bump design shows great potential of heat transfer enhancement in microscale. - Abstract: With the fast development of electronic systems and the ever-increasing demand of thermally “smart” design in space and aeronautic engineering, the heat transfer innovations and high heat flux challenges have become a hot topic for decades. This study is aimed at the effective cooling heat transfer design by super-/sub-sonic air flow in microscale channels for high heat flux devices. The design is based on the low temperature flows with supersonic expansion in microscale, which yields a compact and simple design. By careful microelectromechanical process, microscale straight and bumped channels (with simple arc curve) are fabricated and experimentally tested in this study. The microscale flow field and density distributions under new designs are visualized quantitatively by an advanced phase-shifting interferometer system, which results are then compared carefully with numerical simulations. In this study, large differences between the two designs in density distribution and temperature changes (around 50 K) are found. The high heat flux potential for supersonic microchannel flows is realized and discussion into detail. It is confirmed that the bump design contributes significantly to the heat transfer enhancement, which shows potential for future application in novel system designs.

  4. Vibration mechanism of fuel rod in axial flow

    International Nuclear Information System (INIS)

    Kang, Heung Seok; Yoon, Kyung Ho; Kim, Hyung Kyu; Song, Kee Nam

    1998-08-01

    This is a review on the previous researches for the vibration of fuel rod induced by axial flow. The analysis methods are classified into three categories accordingly as the researchers postulate the vibration to be self-excited, forced and parametric; the self-excited mechanism by Burgreen and Quinn, the forced one by Reavis, Gorman, kanazawa, and S. Chen, and the parametric one by Y. Chen. Quinn supposed that the centrifugal force by flow exaggerated the natural bow in the cylinder, and the flexural force by it diminished the bow by turns; this interactive motion leaded cylinder to vibration. The supporters to the forced mechanism considered the forces arising from pressure perturbation within the boundary layers as vibrating sources. Y. Chen insisted that the cylinder could only be excited to vibration in resonance by the small oscillation of mean flow velocity. The previous studies were based on the simple boundary conditions such as hinged-hinged or fixed-fixed single span. Therefore, for the more accurate prediction of the fuel rod vibration in reactor, the further studies need to reflect the actual boundary conditions of the fuel rod like axial force and continuous supports by grids. (author). 25 refs

  5. Parameters of the plasma of a dc pulsating discharge in a supersonic air flow

    Energy Technology Data Exchange (ETDEWEB)

    Shibkov, V. M., E-mail: shibkov@phys.msu.ru; Shibkova, L. V.; Logunov, A. A. [Moscow State University, Faculty of Physics (Russian Federation)

    2017-03-15

    A dc discharge in a cold (T = 200 K) supersonic air flow at a static pressure of 200–400 Torr was studied experimentally. The excited unsteady pulsating discharge has the form of a thin plasma channel with a diameter of ≤1 mm, stretched downstream the flow. Depending on the discharge current, the pulsation frequency varies from 800 to 1600 Hz and the electron temperature varies from 8000 to 15000 K.

  6. Measurements of gas velocity in supersonic flow using a laser beam

    International Nuclear Information System (INIS)

    Airoldi, V.J.T.; Santos, R. dos

    1982-01-01

    A study of measurements of supersonic velocities in a wind tunnel using a laser beam was performed. Techniques using lasers are most suitable because they do not disturb the gas flow. This work presents the technique entitled as fringe technique. It works using interference patterns due to two perpendicular laser beams crossing the sample (i.e. the gas flow). Experimental results are compared with other usual techniques. (R.S.)

  7. Axial and Centrifugal Compressor Mean Line Flow Analysis Method

    Science.gov (United States)

    Veres, Joseph P.

    2009-01-01

    This paper describes a method to estimate key aerodynamic parameters of single and multistage axial and centrifugal compressors. This mean-line compressor code COMDES provides the capability of sizing single and multistage compressors quickly during the conceptual design process. Based on the compressible fluid flow equations and the Euler equation, the code can estimate rotor inlet and exit blade angles when run in the design mode. The design point rotor efficiency and stator losses are inputs to the code, and are modeled at off design. When run in the off-design analysis mode, it can be used to generate performance maps based on simple models for losses due to rotor incidence and inlet guide vane reset angle. The code can provide an improved understanding of basic aerodynamic parameters such as diffusion factor, loading levels and incidence, when matching multistage compressor blade rows at design and at part-speed operation. Rotor loading levels and relative velocity ratio are correlated to the onset of compressor surge. NASA Stage 37 and the three-stage NASA 74-A axial compressors were analyzed and the results compared to test data. The code has been used to generate the performance map for the NASA 76-B three-stage axial compressor featuring variable geometry. The compressor stages were aerodynamically matched at off-design speeds by adjusting the variable inlet guide vane and variable stator geometry angles to control the rotor diffusion factor and incidence angles.

  8. Active Control Strategies to Optimize Supersonic Fuel-Air Mixing for Combustion Associated with Fully Modulated Transverse Jet in Cross Flow

    National Research Council Canada - National Science Library

    Ghenai, C; Philippidis, G. P; Lin, C. X

    2005-01-01

    ... (subsonic- supersonic) combustion studies. A high-speed imaging system was used for the visualization of pure liquid jet, aerated liquid jet and pulsed aerated jet injection into a supersonic cross flow at Mach number 1.5...

  9. Hybrid Reynolds-Averaged/Large-Eddy Simulations of a Co-Axial Supersonic Free-Jet Experiment

    Science.gov (United States)

    Baurle, R. A.; Edwards, J. R.

    2009-01-01

    Reynolds-averaged and hybrid Reynolds-averaged/large-eddy simulations have been applied to a supersonic coaxial jet flow experiment. The experiment utilized either helium or argon as the inner jet nozzle fluid, and the outer jet nozzle fluid consisted of laboratory air. The inner and outer nozzles were designed and operated to produce nearly pressure-matched Mach 1.8 flow conditions at the jet exit. The purpose of the computational effort was to assess the state-of-the-art for each modeling approach, and to use the hybrid Reynolds-averaged/large-eddy simulations to gather insight into the deficiencies of the Reynolds-averaged closure models. The Reynolds-averaged simulations displayed a strong sensitivity to choice of turbulent Schmidt number. The baseline value chosen for this parameter resulted in an over-prediction of the mixing layer spreading rate for the helium case, but the opposite trend was noted when argon was used as the injectant. A larger turbulent Schmidt number greatly improved the comparison of the results with measurements for the helium simulations, but variations in the Schmidt number did not improve the argon comparisons. The hybrid simulation results showed the same trends as the baseline Reynolds-averaged predictions. The primary reason conjectured for the discrepancy between the hybrid simulation results and the measurements centered around issues related to the transition from a Reynolds-averaged state to one with resolved turbulent content. Improvements to the inflow conditions are suggested as a remedy to this dilemma. Comparisons between resolved second-order turbulence statistics and their modeled Reynolds-averaged counterparts were also performed.

  10. An Experimental Study of Turbulent Skin Friction Reduction in Supersonic Flow Using a Microblowing Technique

    Science.gov (United States)

    Hwang, Danny P.

    1999-01-01

    A new turbulent skin friction reduction technology, called the microblowing technique has been tested in supersonic flow (Mach number of 1.9) on specially designed porous plates with microholes. The skin friction was measured directly by a force balance and the boundary layer development was measured by a total pressure rake at the tailing edge of a test plate. The free stream Reynolds number was 1.0(10 exp 6) per meter. The turbulent skin friction coefficient ratios (C(sub f)/C(sub f0)) of seven porous plates are given in this report. Test results showed that the microblowing technique could reduce the turbulent skin friction in supersonic flow (up to 90 percent below a solid flat plate value, which was even greater than in subsonic flow).

  11. SGS Modeling of the Internal Energy Equation in LES of Supersonic Channel Flow

    Science.gov (United States)

    Raghunath, Sriram; Brereton, Giles

    2011-11-01

    DNS of fully-developed turbulent supersonic channel flows (Reτ = 190) at up to Mach 3 indicate that the turbulent heat fluxes depend only weakly on Mach number, while the viscous dissipation and pressure dilatation do so strongly. Moreover, pressure dilatation makes a significant contribution to the internal energy budget at Mach 3 and higher. The balance between these terms is critical to determining the temperature (and so molecular viscosity) from the internal energy equation and so, in LES of these flows, it is essential to use accurate SGS models for the viscous dissipation and the pressure dilatation. In this talk, we present LES results for supersonic channel flow, using SGS models for these terms that are based on the resolved-scale dilatation, an inverse timescale, and SGS momentum fluxes, which intrinsically represent this Mach number effect.

  12. Characteristics of an under-expanded supersonic flow in arcjet plasmas

    Science.gov (United States)

    Namba, Shinichi; Shikama, Taiichi; Sasano, Wataru; Tamura, Naoki; Endo, Takuma

    2018-06-01

    A compact apparatus to produce arcjet plasma was fabricated to investigate supersonic flow dynamics. Periodic bright–dark emission structures were formed in the arcjets, depending on the plasma source and ambient gas pressures in the vacuum chamber. A directional Langmuir probe (DLP) and emission spectroscopy were employed to characterize plasma parameters such as the Mach number of plasma flows and clarify the mechanism for the generation of the emission pattern. In particular, in order to investigate the influence of the Mach number on probe size, we used two DLPs of different probe size. The results indicated that the arcjets could be classified into shock-free expansion and under-expansion, and the behavior of plasma flow could be described by compressible fluid dynamics. Comparison of the Langmuir probe results with emission and laser absorption spectroscopy showed that the small diameter probe was reliable to determine the Mach number, even for the supersonic jet.

  13. Advanced Supersonic Nozzle Concepts: Experimental Flow Visualization Results Paired With LES

    Science.gov (United States)

    Berry, Matthew; Magstadt, Andrew; Stack, Cory; Gaitonde, Datta; Glauser, Mark; Syracuse University Team; The Ohio State University Team

    2015-11-01

    Advanced supersonic nozzle concepts are currently under investigation, utilizing multiple bypass streams and airframe integration to bolster performance and efficiency. This work focuses on the parametric study of a supersonic, multi-stream jet with aft deck. The single plane of symmetry, rectangular nozzle, displays very complex and unique flow characteristics. Flow visualization techniques in the form of PIV and schlieren capture flow features at various deck lengths and Mach numbers. LES is compared to the experimental results to both validate the computational model and identify limitations of the simulation. By comparing experimental results to LES, this study will help create a foundation of knowledge for advanced nozzle designs in future aircraft. SBIR Phase II with Spectral Energies, LLC under direction of Barry Kiel.

  14. CFD Numerical Simulation of the Complex Turbulent Flow Field in an Axial-Flow Water Pump

    Directory of Open Access Journals (Sweden)

    Wan-You Li

    2014-09-01

    Full Text Available Further optimal design of an axial-flow water pump calls for a thorough recognition of the characteristics of the complex turbulent flow field in the pump, which is however extremely difficult to be measured using the up-to-date experimental techniques. In this study, a numerical simulation procedure based on computational fluid dynamics (CFD was elaborated in order to obtain the fully three-dimensional unsteady turbulent flow field in an axial-flow water pump. The shear stress transport (SST k-ω model was employed in the CFD calculation to study the unsteady internal flow of the axial-flow pump. Upon the numerical simulation results, the characteristics of the velocity field and pressure field inside the impeller region were discussed in detail. The established model procedure in this study may provide guidance to the numerical simulations of turbomachines during the design phase or the investigation of flow and pressure field characteristics and performance. The presented information can be of reference value in further optimal design of the axial-flow pump.

  15. Study of supersonic flow in a constant rate of momentum change (CRMC) ejector with frictional effects

    International Nuclear Information System (INIS)

    Kumar, Virendra; Singhal, Gaurav; Subbarao, P.M.V.

    2013-01-01

    The constant rate of momentum change (CRMC) is a new approach towards design of supersonic ejectors. CRMC methodology was first proposed by Eames [1] in a study which was primarily based on isentropic flow inside the diffusing region of a supersonic ejector. The prime benefit that accrues from employing a CRMC ejector is that it can effectively eliminate the irreversibility associated with occurrence of thermodynamic shock process. The present study examines the supersonic flow in a CRMC ejector from the perspective of an adiabatic flow with frictional effects inside the variable cross-section of supersonic ejector, which is apparently more realistic. An analytical model has been discussed for the prediction of flow parameter variation in a space marching formulation taking into account change in localized frictional coefficient due to corresponding changes at each step. The analytical results have been validated by conducting a computational study based on 2-D axi-symmetric viscous compressible flow formulation with turbulence in FLUENT. The results are in good agreement at on-design conditions. The predictions especially for the recovered pressure made through the analytical formulation incorporating friction are found to be in significantly better agreement than the isentropic approach. The experimental validation for the approach has also been presented with the results being in close agreement with analytically predicted values. -- Highlights: • CRMC ejector eliminates the irreversibility due to occurrence of thermodynamic shock. • Frictional effect based apparently present more realistic solution for ejector. • Static pressure variation between proposed model and numerical study is nearly 2.29%. • Static pressure variation between analytical and experimental values is nearly 4%. • Experimentally observed entrainment ratio shows 3% variation w.r.t. design point value

  16. Stability management of high speed axial flow compressor stage through axial extensions of bend skewed casing treatment

    Directory of Open Access Journals (Sweden)

    DilipkumarBhanudasji Alone

    2016-09-01

    Full Text Available This paper presents the experimental results to understand the performance of moderately loaded high speed single stage transonic axial flow compressor subjected to various configurations of axial extensions of bend skewed casing treatment with moderate porosity. The bend skewed casing treatment of 33% porosity was coupled with rectangular plenum chamber of depth equal to the slots depth. The five axial extensions of 20%, 40%, 60%, 80% and 100% were used for the experimental evaluations of compressor performance. The main objective was to identify the optimum extension of the casing treatment with reference to rotor leading edge which results in maximum stall margin improvements with minimum loss in the stage efficiency. At each axial extension the compressor performance is distinctive. The improvement in the stall margin was very significant at some axial extensions with 4%–5% penalty in the stage efficiency. The compressors stage shows recovery in terms of efficiency at lower axial extensions of 20% and 40% with increase in the peak stage efficiency. Measurements of flow parameters showed the typical behaviors at near stall flow conditions. Hot wire sensor was placed at the rotor upstream in the tip region to capture the oscillations in the inlet axial and tangential velocities at stall conditions. In the absence of casing treatment the compressor exhibit abrupt stall with very high oscillations in the inlet axial and tangential velocity of the flow. The extents of oscillations reduce with bend skewed casing treatment. Few measurements were also performed in the plenum chamber and salient results are presented in this paper.

  17. Supersonic flow with shock waves. Monte-Carlo calculations for low density plasma. I

    International Nuclear Information System (INIS)

    Almenara, E.; Hidalgo, M.; Saviron, J. M.

    1980-01-01

    This Report gives preliminary information about a Monte Carlo procedure to simulate supersonic flow past a body of a low density plasma in the transition regime. A computer program has been written for a UNIVAC 1108 machine to account for a plasma composed by neutral molecules and positive and negative ions. Different and rather general body geometries can be analyzed. Special attention is played to tho detached shock waves growth In front of the body. (Author) 30 refs

  18. Development of throughflow calculation code for axial flow compressors

    International Nuclear Information System (INIS)

    Kim, Ji Hwan; Kim, Hyeun Min; No, Hee Cheon

    2005-01-01

    The power conversion systems of the current HTGRs are based on closed Brayton cycle and major concern is thermodynamic performance of the axial flow helium gas turbines. Particularly, the helium compressor has some unique design challenges compared to the air-breathing compressor such as high hub-to-tip ratios throughout the machine and a large number of stages due to the physical property of the helium and thermodynamic cycle. Therefore, it is necessary to develop a design and analysis code for helium compressor that can estimate the design point and off-design performance accurately. KAIST nuclear system laboratory has developed a compressor design and analysis code by means of throughflow calculation and several loss models. This paper presents the outline of the development of a throughflow calculation code and its verification results

  19. Computer aided hydraulic design of axial flow pump impeller

    International Nuclear Information System (INIS)

    Sreedhar, B.K.; Rao, A.S.L.K.; Kumaraswamy, S.

    1994-01-01

    Pumps are the heart of any power plant and hence their design requires great attention. Computers with their potential for rapid computation can be successfully employed in the design and manufacture of these machines. The paper discusses a program developed for the hydraulic design of axial flow pump impeller. The program, written in FORTRAN 77, is interactive and performs the functions of design calculation, drafting and generation of numerical data for blade manufacture. The drafting function, which makes use of the software ACAD, is carried out automatically by means of suitable interface programs. In addition data for blade manufacture is also generated in either the x-y-z or r-θ-z system. (author). 4 refs., 3 figs

  20. Experiments on the Taylor system with an axial flow

    International Nuclear Information System (INIS)

    Tsameret, Avraham.

    1993-02-01

    This work is an experimental study of the Taylor system with a superimposed axial flow. The convective and absolute instability lines which are associated with the propagating Taylor vortices are measured. A quantitative agreement is found with the theoretical predictions. Noise-sustained structures are found to exist in the convectively unstable region, above a critical value of the through flow. These structures are propagating Taylor vortices that are characterized by a noisy power spectrum and irregular temporal dynamics of velocity amplitude. At the absolute instability line the power spectrum of the propagating Taylor vortices exhibits transition to a sharp peak, and the amplitude of the propagating Taylor vortices becomes stationary. The mechanism that generates the noise-sustained structures is identified with a process of permanent amplification of noise that is generated mainly near the inlet boundary. The intrinsic noise in the system is studied. This study is motivated by the question of whether the noise which generates the noise-sustained structures is thermal. The intensity of the intrinsic noise is estimated by several methods, which includes a comparison of data with numerical simulations of the amplitude equation with a noise term. It is found that the intrinsic noise is not thermal, although its intensity reaches the thermal noise level at small through-flow velocities. Novel states are manifested in the system as a result of interaction between the propagating Taylor vortices and spiral modes. These states are studied and their spatial and temporal properties are analyzed. (author)

  1. Development and Application of PIV in Supersonic flows

    Science.gov (United States)

    Rong, Z.; Liu, H.; Chen, F.

    2011-09-01

    This paper presents PIV measurements obtained in Mach 4.0 flowfields performed in the SJTU Hypersonic wind tunnel (HWT). In order to certificate this technique, PIV experiments were conducted to the empty test section to provide uniform flow data for comparison with analysis data. Dynamical properties of particle tracers were investigated to measure the particle response across an oblique shock wave. The flow over a sharp cone at Ma = 4.0 were tested in comparasion with the CFD and schlieren visualization. It is shown that shock wave angles measured with PIV are in good agreement with theory and schlieren visualization, in addition the overall flow is consistent with the CFD results.

  2. Flow of supersonic jets across flat plates: Implications for ground-level flow from volcanic blasts

    Science.gov (United States)

    Orescanin, Mara M.; Prisco, David; Austin, Joanna M.; Kieffer, Susan W.

    2014-04-01

    We report on laboratory experiments examining the interaction of a jet from an overpressurized reservoir with a canonical ground surface to simulate lateral blasts at volcanoes such as the 1980 blast at Mount St. Helens. These benchmark experiments test the application of supersonic jet models to simulate the flow of volcanic jets over a lateral topography. The internal shock structure of the free jet is modified such that the Mach disk shock is elevated above the surface. In elevation view, the width of the shock is reduced in comparison with a free jet, while in map view the dimensions are comparable. The distance of the Mach disk shock from the vent is in good agreement with free jet data and can be predicted with existing theory. The internal shock structures can interact with and penetrate the boundary layer. In the shock-boundary layer interaction, an oblique shock foot is present in the schlieren images and a distinctive ground signature is evident in surface measurements. The location of the oblique shock foot and the surface demarcation are closely correlated with the Mach disk shock location during reservoir depletion, and therefore, estimates of a ground signature in a zone devastated by a blast can be based on the calculated shock location from free jet theory. These experiments, combined with scaling arguments, suggest that the imprint of the Mach disk shock on the ground should be within the range of 4-9 km at Mount St. Helens depending on assumed reservoir pressure and vent dimensions.

  3. A supersonic fan equipped variable cycle engine for a Mach 2.7 supersonic transport

    Science.gov (United States)

    Tavares, T. S.

    1985-01-01

    The concept of a variable cycle turbofan engine with an axially supersonic fan stage as powerplant for a Mach 2.7 supersonic transport was evaluated. Quantitative cycle analysis was used to assess the effects of the fan inlet and blading efficiencies on engine performance. Thrust levels predicted by cycle analysis are shown to match the thrust requirements of a representative aircraft. Fan inlet geometry is discussed and it is shown that a fixed geometry conical spike will provide sufficient airflow throughout the operating regime. The supersonic fan considered consists of a single stage comprising a rotor and stator. The concept is similar in principle to a supersonic compressor, but differs by having a stator which removes swirl from the flow without producing a net rise in static pressure. Operating conditions peculiar to the axially supersonic fan are discussed. Geometry of rotor and stator cascades are presented which utilize a supersonic vortex flow distribution. Results of a 2-D CFD flow analysis of these cascades are presented. A simple estimate of passage losses was made using empirical methods.

  4. Evolution of the Orszag-Tang vortex system in a compressible medium. II - Supersonic flow

    Science.gov (United States)

    Picone, J. Michael; Dahlburg, Russell B.

    1991-01-01

    A study is presented on the effect of embedded supersonic flows and the resulting emerging shock waves on phenomena associated with MHD turbulence, including reconnection, the formation of current sheets and vortex structures, and the evolution of spatial and temporal correlations among physical variables. A two-dimensional model problem, the Orszag-Tang (1979) vortex system, is chosen, which involves decay from nonrandom initial conditions. The system is doubly periodic, and the initial conditions consist of single-mode solenoidal velocity and magnetic fields, each containing X points and O points. The initial mass density is flat, and the initial pressure fluctuations are incompressible, balancing the local forces for a magnetofluid of unit mass density. Results on the evolution of the local structure of the flow field, the global properties of the system, and spectral correlations are presented. The important dynamical properties and observational consequences of embedded supersonic regions and emerging shocks in the Orszag-Tang model of an MHD system undergoing reconnection are discussed. Conclusions are drawn regarding the effects of local supersonic regions on MHD turbulence.

  5. Hydroxyl tagging velocimetry in a supersonic flow over a cavity

    International Nuclear Information System (INIS)

    Pitz, Robert W.; Lahr, Michael D.; Douglas, Zachary W.; Wehrmeyer, Joseph A.; Hu Shengteng; Carter, Campbell D.; Hsu, Kuang-Yu; Lum, Chee; Koochesfahani, Manoochehr M.

    2005-01-01

    Hydroxyl tagging velocimetry (HTV) measurements of velocity were made in a Mach 2 (M 2) flow with a wall cavity. In the HTV method, ArF excimer laser (193 nm) beams pass through a humid gas and dissociate H2O into H + OH to form a tagging grid of OH molecules. In this study, a 7x7 grid of hydroxyl (OH) molecules is tracked by planar laser-induced fluorescence. The grid motion over a fixed time delay yields about 50 velocity vectors of the two-dimensional flow in the plane of the laser sheets. Velocity precision is limited by the error in finding the crossing location of the OH lines written by the excimer tag laser. With a signal-to-noise ratio of about 10 for the OH lines, the determination of the crossing location is expected to be accurate within ±0.1 pixels. Velocity precision within the freestream, where the turbulence is low, is consistent with this error. Instantaneous, single-shot measurements of two-dimensional flow patterns were made in the nonreacting M 2 flow with a wall cavity under low- and high-pressure conditions. The single-shot profiles were analyzed to yield mean and rms velocity profiles in the M 2 nonreacting flow

  6. A review and development of correlations for base pressure and base heating in supersonic flow

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, J.P. [Texas Univ., Austin, TX (United States). Dept. of Mechanical Engineering; Oberkampf, W.L. [Sandia National Labs., Albuquerque, NM (United States)

    1993-11-01

    A comprehensive review of experimental base pressure and base heating data related to supersonic and hypersonic flight vehicles has been completed. Particular attention was paid to free-flight data as well as wind tunnel data for models without rear sting support. Using theoretically based correlation parameters, a series of internally consistent, empirical prediction equations has been developed for planar and axisymmetric geometries (wedges, cones, and cylinders). These equations encompass the speed range from low supersonic to hypersonic flow and laminar and turbulent forebody boundary layers. A wide range of cone and wedge angles and cone bluntness ratios was included in the data base used to develop the correlations. The present investigation also included preliminary studies of the effect of angle of attack and specific-heat ratio of the gas.

  7. Modelling and simulation of the compressible turbulence in supersonic shear flows

    International Nuclear Information System (INIS)

    Guezengar, Dominique

    1997-02-01

    This research thesis addresses the modelling of some specific physical problems of fluid mechanics: compressibility (issue of mixing layers), large variations of volumetric mass (boundary layers), and anisotropy (compression ramps). After a presentation of the chosen physical modelling and numerical approximation, the author pays attention to flows at the vicinity of a wall, and to boundary conditions. The next part addresses existing compressibility models and their application to the calculation of supersonic mixing layers. A critical assessment is also performed through calculations of boundary layers and of compression ramps. The next part addresses problems related to large variations of volumetric mass which are not taken by compressibility models into account. A modification is thus proposed for the diffusion term, and is tested for the case of supersonic boundary layers and of mixing layers with high density rates. Finally, anisotropy effects are addressed through the implementation of Explicit Algebraic Stress k-omega Turbulence models (EARSM), and their tests on previously studied cases [fr

  8. Aerodynamic Interaction between Delta Wing and Hemisphere-Cylinder in Supersonic Flow

    Science.gov (United States)

    Nishino, Atsuhiro; Ishikawa, Takahumi; Nakamura, Yoshiaki

    As future space vehicles, Reusable Launch Vehicle (RLV) needs to be developed, where there are two kinds of RLV: Single Stage To Orbit (SSTO) and Two Stage To Orbit (TSTO). In the latter case, the shock/shock interaction and shock/boundary layer interaction play a key role. In the present study, we focus on the supersonic flow field with aerodynamic interaction between a delta wing and a hemisphere-cylinder, which imitate a TSTO, where the clearance, h, between the delta wing and hemisphere-cylinder is a key parameter. As a result, complicated flow patterns were made clear, including separation bubbles.

  9. Pressure Measurement in Supersonic Air Flow by Differential Absorptive Laser-Induced Thermal Acoustics

    Science.gov (United States)

    Hart, Roger C.; Herring, Gregory C.; Balla, Robert J.

    2007-01-01

    Nonintrusive, off-body flow barometry in Mach-2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, stream-wise velocity and static gas temperature of the same spatially-resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.

  10. Computations of the Magnus effect for slender bodies in supersonic flow

    Science.gov (United States)

    Sturek, W. B.; Schiff, L. B.

    1980-01-01

    A recently reported Parabolized Navier-Stokes code has been employed to compute the supersonic flow field about spinning cone, ogive-cylinder, and boattailed bodies of revolution at moderate incidence. The computations were performed for flow conditions where extensive measurements for wall pressure, boundary layer velocity profiles and Magnus force had been obtained. Comparisons between the computational results and experiment indicate excellent agreement for angles of attack up to six degrees. The comparisons for Magnus effects show that the code accurately predicts the effects of body shape and Mach number for the selected models for Mach numbers in the range of 2-4.

  11. Elliptic Length Scales in Laminar, Two-Dimensional Supersonic Flows

    Science.gov (United States)

    2015-06-01

    sophisticated computational fluid dynamics ( CFD ) methods. Additionally, for 3D interactions, the length scales would require determination in spanwise as well...Manna, M. “Experimental, Analytical, and Computational Methods Applied to Hypersonic Compression Ramp Flows,” AIAA Journal, Vol. 32, No. 2, Feb. 1994

  12. Numerical investigation on vibration and noise induced by unsteady flow in an axial-flow pump

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Eryun; Ma, Zui Ling; Yang, Ai Ling; Nan, Guo Fang [School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai (China); Zhao, Gai Ping [School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai (China); Li, Guo Ping [Shanghai Marine Equipment Research Institute, Shanghai (China)

    2016-12-15

    Full-scale structural vibration and noise induced by flow in an axial-flow pump was simulated by a hybrid numerical method. An unsteady flow field was solved by a large eddy simulation-based computational fluid dynamics commercial code, Fluent. An experimental validation on pressure fluctuations was performed to impose an appropriate vibration exciting source. The consistency between the computed results and experimental tests were interesting. The modes of the axial-flow pump were computed by the finite element method. After that, the pump vibration and sound field were solved using a coupled vibro-acoustic model. The numerical results indicated that the the blade-passing frequency was the dominant frequency of the vibration acceleration of the pump. This result was consistent with frequency spectral characteristics of unsteady pressure fluctuation. Finally, comparisons of the vibration acceleration between the computed results and the experimental test were conducted. These comparisons validated the computed results. This study shows that using the hybrid numerical method to evaluate the flow-induced vibration and noise generated in an axial-flow pump is feasible.

  13. Schlieren study of a sonic jet injected into a supersonic cross flow using high-current pulsed LEDs

    NARCIS (Netherlands)

    Giskes, Ella; Verschoof, Ruben A.; Segerink, Frans B.; Venner, Cornelis H.

    2017-01-01

    Benefiting from the development of increasingly advanced high speed cameras, flow visualization and analysis nowadays yield detailed data of the flow field in many applications. Notwithstanding this progress, for high speed and supersonic flows it is still not trivial to capture high quality images.

  14. Numerical Simulation of Reactive Flows in Overexpanded Supersonic Nozzle with Film Cooling

    Directory of Open Access Journals (Sweden)

    Mohamed Sellam

    2015-01-01

    Full Text Available Reignition phenomena occurring in a supersonic nozzle flow may present a crucial safety issue for rocket propulsion systems. These phenomena concern mainly rocket engines which use H2 gas (GH2 in the film cooling device, particularly when the nozzle operates under over expanded flow conditions at sea level or at low altitudes. Consequently, the induced wall thermal loads can lead to the nozzle geometry alteration, which in turn, leads to the appearance of strong side loads that may be detrimental to the rocket engine structural integrity. It is therefore necessary to understand both aerodynamic and chemical mechanisms that are at the origin of these processes. This paper is a numerical contribution which reports results from CFD analysis carried out for supersonic reactive flows in a planar nozzle cooled with GH2 film. Like the experimental observations, CFD simulations showed their ability to highlight these phenomena for the same nozzle flow conditions. Induced thermal load are also analyzed in terms of cooling efficiency and the results already give an idea on their magnitude. It was also shown that slightly increasing the film injection pressure can avoid the reignition phenomena by moving the separation shock towards the nozzle exit section.

  15. A new wall function boundary condition including heat release effect for supersonic combustion flows

    International Nuclear Information System (INIS)

    Gao, Zhen-Xun; Jiang, Chong-Wen; Lee, Chun-Hian

    2016-01-01

    Highlights: • A new wall function including heat release effect is theoretically derived. • The new wall function is a unified form holding for flows with/without combustion. • The new wall function shows good results for a supersonic combustion case. - Abstract: A new wall function boundary condition considering combustion heat release effect (denoted as CWFBC) is proposed, for efficient predictions of skin friction and heat transfer in supersonic combustion flows. Based on a standard flow model including boundary-layer combustion, the Shvab–Zeldovich coupling parameters are introduced to derive a new velocity law-of-the-wall including the influence of combustion. For the temperature law-of-the-wall, it is proposed to use the enthalpy–velocity relation, instead of the Crocco–Busemann equation, to eliminate explicit influence of chemical reactions. The obtained velocity and temperature law-of-the-walls constitute the CWFBC, which is a unified form simultaneously holding for single-species, multi-species mixing and multi-species reactive flows. The subsequent numerical simulations using this CWFBC on an experimental case indicate that the CWFBC could accurately reflect the influences on the skin friction and heat transfer by the chemical reactions and heat release, and show large improvements compared to previous WFBC. Moreover, the CWFBC can give accurate skin friction and heat flux for a coarse mesh with y"+ up to 200 for the experimental case, except for slightly larger discrepancy of the wall heat flux around ignition position.

  16. The Three Dimensional Flow Field at the Exit of an Axial-Flow Turbine Rotor

    Science.gov (United States)

    Lakshminarayana, B.; Ristic, D.; Chu, S.

    1998-01-01

    A systematic and comprehensive investigation was performed to provide detailed data on the three dimensional viscous flow phenomena downstream of a modem turbine rotor and to understand the flow physics such as origin, nature, development of wakes, secondary flow, and leakage flow. The experiment was carried out in the Axial Flow Turbine Research Facility (AFTRF) at Penn State, with velocity measurements taken with a 3-D LDV System. Two radial traverses at 1% and 10% of chord downstream of the rotor have been performed to identify the three-dimensional flow features at the exit of the rotor blade row. Sufficient spatial resolution was maintained to resolve blade wake, secondary flow, and tip leakage flow. The wake deficit is found to be substantial, especially at 1% of chord downstream of the rotor. At this location, negative axial velocity occurs near the tip, suggesting flow separation in the tip clearance region. Turbulence intensities peak in the wake region, and cross- correlations are mainly associated with the velocity gradient of the wake deficit. The radial velocities, both in the wake and in the endwall region, are found to be substantial. Two counter-rotating secondary flows are identified in the blade passage, with one occupying the half span close to the casino and the other occupying the half span close to the hub. The tip leakage flow is well restricted to 10% immersion from the blade tip. There are strong vorticity distributions associated with these secondary flows and tip leakage flow. The passage averaged data are in good agreement with design values.

  17. Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows

    Science.gov (United States)

    Allen, M. G.; Davis, S. J.; Kessler, W. J.; Sonnenfroh, D. M.

    1992-01-01

    The application of Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows is analyzed. Focussing on fluorescence of the OH molecule in typical H2-air Scramjet flows, the effects of uncharacterized variations in temperature, pressure, and collisional partner composition across the measurement plane are examined. Detailed measurements of the (1,0) band OH lineshape variations in H2-air combustions are used, along with single-pulse and time-averaged measurements of an excimer-pumped dye laser, to predict the performance of a model velocimeter with typical Scramjet flow properties. The analysis demonstrates the need for modification and control of the laser bandshape in order to permit accurate velocity measurements in the presence of multivariant flow properties.

  18. High angle of attack aerodynamics subsonic, transonic, and supersonic flows

    CERN Document Server

    Rom, Josef

    1992-01-01

    The aerodynamics of aircraft at high angles of attack is a subject which is being pursued diligently, because the modern agile fighter aircraft and many of the current generation of missiles must perform well at very high incidence, near and beyond stall. However, a comprehensive presentation of the methods and results applicable to the studies of the complex aerodynamics at high angle of attack has not been covered in monographs or textbooks. This book is not the usual textbook in that it goes beyond just presenting the basic theoretical and experimental know-how, since it contains reference material to practical calculation methods and technical and experimental results which can be useful to the practicing aerospace engineers and scientists. It can certainly be used as a text and reference book for graduate courses on subjects related to high angles of attack aerodynamics and for topics related to three-dimensional separation in viscous flow courses. In addition, the book is addressed to the aerodynamicist...

  19. Ignition of hydrocarbon-air supersonic flow by volumetric ionization

    Science.gov (United States)

    Goldfeld, Marat A.; Pozdnyakov, George A.

    2015-11-01

    The paper describes the results of the electron-beam initiation of the combustion in the mixtures of hydrogen, natural gas or kerosene vapors with air. Electron beam characteristics were studied in closed volume with immobile gas. The researches included definition of an integrated current of an electronic beam, distribution of a current density and an estimation of average energy of electrons. Possibility of fuel mixtures ignition by means of this approach in the combustor at high velocity at the entrance was demonstrated. Experiments were carried out at Mach numbers of 4 and 5. Process of ignition and combustion under electron beam action was researched. It was revealed that ignition of mixture occurs after completion of electron gun operation. Data obtained have confirmed effectiveness of electron beam application for ignition of hydrogen and natural gas. The numerical simulation of the combustion of mixture in channel was carried out by means of ANSYS CFD 12.0 instrumentation on the basis of Reynolds averaged Navier-Stokes equation using SST/k-ω turbulence model. For combustion modeling, a detailed kinetic scheme with 38 reactions of 8 species was implemented taking into account finite rate chemistry. Computations have shown that the developed model allow to predict ignition of a mixture and flame propagation even at low flow temperatures.

  20. Practical Calculation of Second-order Supersonic Flow past Nonlifting Bodies of Revolution

    Science.gov (United States)

    Van Dyke, Milton D

    1952-01-01

    Calculation of second-order supersonic flow past bodies of revolution at zero angle of attack is described in detail, and reduced to routine computation. Use of an approximate tangency condition is shown to increase the accuracy for bodies with corners. Tables of basic functions and standard computing forms are presented. The procedure is summarized so that one can apply it without necessarily understanding the details of the theory. A sample calculation is given, and several examples are compared with solutions calculated by the method of characteristics.

  1. Numerical simulation of steady supersonic flow over spinning bodies of revolution

    Science.gov (United States)

    Sturek, W. B.; Schiff, L. B.

    1982-01-01

    A recently reported parabolized Navier-Stokes code has been employed to compute the supersonic flowfield about a spinning cone and spinning and nonspinning ogive cylinder and boattailed bodies of revolution at moderate incidence. The computations were performed for flow conditions where extensive measurements for wall pressure, boundary-layer velocity profiles, and Magnus force had been obtained. Comparisons between the computational results and experiment indicate excellent agreement for angles of attack up to 6 deg. At angles greater than 6 deg discrepancies are noted which are tentatively attributed to turbulence modeling errors. The comparisons for Magnus effects show that the code accurately predicts the effects of body shape for the selected models.

  2. Equations for the kinetic modeling of supersonically flowing electrically excited lasers

    International Nuclear Information System (INIS)

    Lind, R.C.

    1973-01-01

    The equations for the kinetic modeling of a supersonically flowing electrically excited laser system are presented. The work focuses on the use of diatomic gases, in particular carbon monoxide mixtures. The equations presented include the vibrational rate equation which describes the vibrational population distribution, the electron, ion and electronic level rate equations, the gasdynamic equations for an ionized gas in the presence of an applied electric field, and the free electron Boltzmann equation including flow and gradient coupling terms. The model developed accounts for vibration--vibration collisions, vibration-translation collisions, electron-molecule inelastic excitation and superelastic de-excitation collisions, charge particle collisions, ionization and three body recombination collisions, elastic collisions, and radiative decay, all of which take place in such a system. A simplified form of the free electron Boltzmann equation is developed and discussed with emphasis placed on its coupling with the supersonic flow. A brief description of a possible solution procedure for the set of coupled equations is discussed

  3. Numerical simulation of the tip clearance flow in axial turbomachinery; Numerische Simulation der Stroemung im radialen Schaufelspalt axialer Turbomaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Melake, A [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Koeln (Germany). Inst. fuer Antriebstechnik

    1997-12-31

    A computer program has been developed to calculate the three-dimensional tip leakage flow in axial turbomachinery based on the Navier-Stokes equation. This program has been applied to investigate the leakage flow within the gap between the blade fip and casing in an annular compressor cascade. A block structured computational mesh has been used in order to resolve the flow details within the gap and the passage flow. Flow characteristics like boundary layer separation, vortex genesis and interaction of the leakage flow with the secondary flow have been investigated and compared with existing experimental data. By varying the incidence angle and the tip gap the above mentioned flow phenomena have been analysed in an annular compressor cascade and a shrouded propfan rotor respectively. Furthermore, the relationship between the total pressure loss, the axial velocity deficit and the divergence of the tip leakage vortex has been investigated. Streamlines, limited streamlines and the critical point theory have been used extensively to analyse the boundary layer separation on the casing and its roll up to form the tip clearance vortex. (orig.). 59 figs., 3 tabs., 110 refs. [Deutsch] Es wurde ein Rechenprogramm zur Berechnung der dreidimensionalen Spaltstroemung im radialen Schaufelspalt axialer Turbomaschinen auf der Basis der Navier-Stokes`schen Gleichungen entwickelt und angewendet. Um die Stroemung innerhalb des Spaltes und der Schaufelpassage besser aufloesen zu koennen, wurde eine blockstrukturierte Netztopologie verwendet. Stroemungseigenschaften wie Grenzschichtabloesung, Entstehung des Spaltwirbels, Interaktion der Spaltstroemung mit der Sekundaerstroemung werden untersucht und mit vorhandenen experimentellen Daten verglichen. Im weiteren werden durch Variation der Inzidenz und der Spaltweite die oben genannten Stroemungsphaenomene an einem axialen Verdichterringgitter und an einem ummantelten Propfan analysiert. Ferner werden die Korrelation zwischen

  4. Three Dimensional Viscous Flow Field in an Axial Flow Turbine Nozzle Passage

    Science.gov (United States)

    Ristic, D.; Lakshminarayana, B.

    1997-01-01

    The objective of this investigation is experimental and computational study of three dimensional viscous flow field in the nozzle passage of an axial flow turbine stage. The nozzle passage flow field has been measured using a two sensor hot-wire probe at various axial and radial stations. In addition, two component LDV measurements at one axial station (x/c(sum m) = 0.56) were performed to measure the velocity field. Static pressure measurements and flow visualization, using a fluorescent oil technique, were also performed to obtain the location of transition and the endwall limiting streamlines. A three dimensional boundary layer code, with a simple intermittency transition model, was used to predict the viscous layers along the blade and endwall surfaces. The boundary layers on the blade surface were found to be very thin and mostly laminar, except on the suction surface downstream of 70% axial chord. Strong radial pressure gradient, especially close to the suction surface, induces strong cross flow components in the trailing edge regions of the blade. On the end-walls the boundary layers were much thicker, especially near the suction corner of the casing surface, caused by secondary flow. The secondary flow region near the suction-casing surface corner indicates the presence of the passage vortex detached from the blade surface. The corner vortex is found to be very weak. The presence of a closely spaced rotor downstream (20% of the nozzle vane chord) introduces unsteadiness in the blade passage. The measured instantaneous velocity signal was filtered using FFT square window to remove the periodic unsteadiness introduced by the downstream rotor and fans. The filtering decreased the free stream turbulence level from 2.1% to 0.9% but had no influence on the computed turbulence length scale. The computation of the three dimensional boundary layers is found to be accurate on the nozzle passage blade surfaces, away from the end-walls and the secondary flow region. On

  5. Study of Interaction between Supersonic Flow and Rods Surrounded by Porous Cavity

    Institute of Scientific and Technical Information of China (English)

    Minoru YAGA; Kenji YAMAMOTO; Piotr DOERFFER; Kenyu OYAKAWA

    2006-01-01

    In this paper,some preliminary calculations and the experiments were performed to figure out the flow field,in which some rods were normally inserted into the main flow surrounded by a porous cavity.As a result,it is found that the starting shock wave severely interacts with the rods,the bow shock wave,its reflections,and the porous wall,which are numerically well predicted at some conditions.Moreover,inserting the rods makes the pressure on the upper wall in the porous region increase when the main flow in the porous region is completely supersonic.The calculations also suggest that three rods cause the widest suction area.

  6. Supersonic flow over a pitching delta wing using surface pressure measurements and numerical simulations

    Directory of Open Access Journals (Sweden)

    Mostafa HADIDOOLABI

    2018-01-01

    Full Text Available Experimental and numerical methods were applied to investigating high subsonic and supersonic flows over a 60° swept delta wing in fixed state and pitching oscillation. Static pressure coefficient distributions over the wing leeward surface and the hysteresis loops of pressure coefficient versus angle of attack at the sensor locations were obtained by wind tunnel tests. Similar results were obtained by numerical simulations which agreed well with the experiments. Flow structure around the wing was also demonstrated by the numerical simulation. Effects of Mach number and angle of attack on pressure distribution curves in static tests were investigated. Effects of various oscillation parameters including Mach number, mean angle of attack, pitching amplitude and frequency on hysteresis loops were investigated in dynamic tests and the associated physical mechanisms were discussed. Vortex breakdown phenomenon over the wing was identified at high angles of attack using the pressure coefficient curves and hysteresis loops, and its effects on the flow features were discussed.

  7. Modified k-l model and its ability to simulate supersonic axisymmetric turbulent flows

    International Nuclear Information System (INIS)

    Ahmadikia, H.; Shirani, E.

    2001-05-01

    The k-l turbulence model is a promising two-equation model. In this paper, the k and l model equations were derived from k-kl incompressible and one-equation turbulent models. Then the model was modified for compressible and transitional flows, and was applied to simulate supersonic axisymmetric flows over Hollow cylinder flare an hyperboloid flare bodies. The results were compared with the results obtained for the same flows experimentally as well as k-ε, k-ω and Baldwin-Lomax models. It was shown that the k-l model produces good results compared with experimental data and numerical data obtained when other turbulence models were used. It gives better results than k-ω and k-ε models in some cases. (author)

  8. A study of direct-current surface discharge plasma for a Mach 3 supersonic flow control

    Science.gov (United States)

    Shin, Jichul

    A direct-current, non-equilibrium surface glow discharge plasma in the presence of a Mach 2.85 flow is studied experimentally for flow control applications. The discharge is generated with pin-like electrodes flush mounted on a ceramic plate with sustaining currents from 25 mA to 300 mA. In the presence of a supersonic flow, two distinct discharge modes - diffuse and constricted - are observed depending on the flow and discharge operating conditions. In cathode upstream location, both diffuse and constricted discharges are observed while in cathode downstream location, the discharge mostly exhibits either constricted mode or bistable mixed mode. The effect of the discharge on the flow ("plasma actuation'') is characterized by the appearance of a weak shock wave in the vicinity of the discharge. The shock is observed at low powers (˜10 W) for the diffuse discharge mode but is absent for the higher power (˜100 W) constricted mode. High speed laser schlieren imaging suggests that the diffuse mode plasma actuation is rapid as it occurs on a time scale that is less than 100 microsec. Rotational (gas) and vibrational temperatures within the discharge are estimated by emission spectral line fits of N 2 and N+2 rovibronic bands near 365-395 nm. The electronic temperatures are estimated by using the Boltzmann plot method for Fe(I) atomic lines. Rotational temperatures are found to be high (˜1500 K) in the absence of a flow but drop sharply (˜500 K) in the presence of a supersonic flow for both the diffuse and constricted discharge modes. The vibrational and electronic temperatures are measured to be about 3000 K and 1.25 eV (14500 K), respectively, and these temperatures are the same with and without flow. The gas (rotational) temperature spatial profiles above the cathode surface are found to be similar for the diffuse and constricted modes indicating that dilatational effects due to gas heating are similar. However, complete absence of flow actuation for the

  9. A first-order Green's function approach to supersonic oscillatory flow: A mixed analytic and numeric treatment

    Science.gov (United States)

    Freedman, M. I.; Sipcic, S.; Tseng, K.

    1985-01-01

    A frequency domain Green's Function Method for unsteady supersonic potential flow around complex aircraft configurations is presented. The focus is on the supersonic range wherein the linear potential flow assumption is valid. In this range the effects of the nonlinear terms in the unsteady supersonic compressible velocity potential equation are negligible and therefore these terms will be omitted. The Green's function method is employed in order to convert the potential flow differential equation into an integral one. This integral equation is then discretized, through standard finite element technique, to yield a linear algebraic system of equations relating the unknown potential to its prescribed co-normalwash (boundary condition) on the surface of the aircraft. The arbitrary complex aircraft configuration (e.g., finite-thickness wing, wing-body-tail) is discretized into hyperboloidal (twisted quadrilateral) panels. The potential and co-normalwash are assumed to vary linearly within each panel. The long range goal is to develop a comprehensive theory for unsteady supersonic potential aerodynamic which is capable of yielding accurate results even in the low supersonic (i.e., high transonic) range.

  10. Evaluation of water cooled supersonic temperature and pressure probes for application to 2000 F flows

    Science.gov (United States)

    Lagen, Nicholas T.; Seiner, John M.

    1990-01-01

    The development of water cooled supersonic probes used to study high temperature jet plumes is addressed. These probes are: total pressure, static pressure, and total temperature. The motivation for these experiments is the determination of high temperature supersonic jet mean flow properties. A 3.54 inch exit diameter water cooled nozzle was used in the tests. It is designed for exit Mach 2 at 2000 F exit total temperature. Tests were conducted using water cooled probes capable of operating in Mach 2 flow, up to 2000 F total temperature. Of the two designs tested, an annular cooling method was chosen as superior. Data at the jet exit planes, and along the jet centerline, were obtained for total temperatures of 900 F, 1500 F, and 2000 F, for each of the probes. The data obtained from the total and static pressure probes are consistent with prior low temperature results. However, the data obtained from the total temperature probe was affected by the water coolant. The total temperature probe was tested up to 2000 F with, and without, the cooling system turned on to better understand the heat transfer process at the thermocouple bead. The rate of heat transfer across the thermocouple bead was greater when the coolant was turned on than when the coolant was turned off. This accounted for the lower temperature measurement by the cooled probe. The velocity and Mach number at the exit plane and centerline locations were determined from the Rayleigh-Pitot tube formula.

  11. Laser driven supersonic flow over a compressible foam surface on the Nike lasera)

    Science.gov (United States)

    Harding, E. C.; Drake, R. P.; Aglitskiy, Y.; Plewa, T.; Velikovich, A. L.; Gillespie, R. S.; Weaver, J. L.; Visco, A.; Grosskopf, M. J.; Ditmar, J. R.

    2010-05-01

    A laser driven millimeter-scale target was used to generate a supersonic shear layer in an attempt to create a Kelvin-Helmholtz (KH) unstable interface in a high-energy-density (HED) plasma. The KH instability is a fundamental fluid instability that remains unexplored in HED plasmas, which are relevant to the inertial confinement fusion and astrophysical environments. In the experiment presented here the Nike laser [S. P. Obenschain et al., Phys. Plasmas 3, 2098 (1996)] was used to create and drive Al plasma over a rippled foam surface. In response to the supersonic Al flow (Mach=2.6±1.1) shocks should form in the Al flow near the perturbations. The experimental data were used to infer the existence and location of these shocks. In addition, the interface perturbations show growth that has possible contributions from both KH and Richtmyer-Meshkov instabilities. Since compressible shear layers exhibit smaller growth, it is important to use the KH growth rate derived from the compressible dispersion relation.

  12. Laser driven supersonic flow over a compressible foam surface on the Nike laser

    International Nuclear Information System (INIS)

    Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Visco, A.; Grosskopf, M. J.; Ditmar, J. R.; Aglitskiy, Y.; Velikovich, A. L.; Weaver, J. L.; Plewa, T.

    2010-01-01

    A laser driven millimeter-scale target was used to generate a supersonic shear layer in an attempt to create a Kelvin-Helmholtz (KH) unstable interface in a high-energy-density (HED) plasma. The KH instability is a fundamental fluid instability that remains unexplored in HED plasmas, which are relevant to the inertial confinement fusion and astrophysical environments. In the experiment presented here the Nike laser [S. P. Obenschain et al., Phys. Plasmas 3, 2098 (1996)] was used to create and drive Al plasma over a rippled foam surface. In response to the supersonic Al flow (Mach=2.6±1.1) shocks should form in the Al flow near the perturbations. The experimental data were used to infer the existence and location of these shocks. In addition, the interface perturbations show growth that has possible contributions from both KH and Richtmyer-Meshkov instabilities. Since compressible shear layers exhibit smaller growth, it is important to use the KH growth rate derived from the compressible dispersion relation.

  13. Effects of variable specific heat on energy transfer in a high-temperature supersonic channel flow

    Science.gov (United States)

    Chen, Xiaoping; Li, Xiaopeng; Dou, Hua-Shu; Zhu, Zuchao

    2018-05-01

    An energy transfer mechanism in high-temperature supersonic turbulent flow for variable specific heat (VSH) condition through turbulent kinetic energy (TKE), mean kinetic energy (MKE), turbulent internal energy (TIE) and mean internal energy (MIE) is proposed. The similarities of energy budgets between VSH and constant specific heat (CSH) conditions are investigated by introducing a vibrational energy excited degree and considering the effects of fluctuating specific heat. Direct numerical simulation (DNS) of temporally evolving high-temperature supersonic turbulent channel flow is conducted at Mach number 3.0 and Reynolds number 4800 combined with a constant dimensional wall temperature 1192.60 K for VSH and CSH conditions to validate the proposed energy transfer mechanism. The differences between the terms in the two kinetic energy budgets for VSH and CSH conditions are small; however, the magnitude of molecular diffusion term for VSH condition is significantly smaller than that for CSH condition. The non-negligible energy transfer is obtained after neglecting several small terms of diffusion, dissipation and compressibility related. The non-negligible energy transfer involving TIE includes three processes, in which energy can be gained from TKE and MIE and lost to MIE. The same non-negligible energy transfer through TKE, MKE and MIE is observed for both the conditions.

  14. Examination of wall functions for a Parabolized Navier-Stokes code for supersonic flow

    Energy Technology Data Exchange (ETDEWEB)

    Alsbrooks, T.H. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Mechanical Engineering

    1993-04-01

    Solutions from a Parabolized Navier-Stokes (PNS) code with an algebraic turbulence model are compared with wall functions. The wall functions represent the turbulent flow profiles in the viscous sublayer, thus removing many grid points from the solution procedure. The wall functions are intended to replace the computed profiles between the body surface and a match point in the logarithmic region. A supersonic adiabatic flow case was examined first. This adiabatic case indicates close agreement between computed velocity profiles near the wall and the wall function for a limited range of suitable match points in the logarithmic region. In an attempt to improve marching stability, a laminar to turbulent transition routine was implemented at the start of the PNS code. Implementing the wall function with the transitional routine in the PNS code is expected to reduce computational time while maintaining good accuracy in computed skin friction.

  15. Examination of wall functions for a Parabolized Navier-Stokes code for supersonic flow

    Energy Technology Data Exchange (ETDEWEB)

    Alsbrooks, T.H. (New Mexico Univ., Albuquerque, NM (United States). Dept. of Mechanical Engineering)

    1993-01-01

    Solutions from a Parabolized Navier-Stokes (PNS) code with an algebraic turbulence model are compared with wall functions. The wall functions represent the turbulent flow profiles in the viscous sublayer, thus removing many grid points from the solution procedure. The wall functions are intended to replace the computed profiles between the body surface and a match point in the logarithmic region. A supersonic adiabatic flow case was examined first. This adiabatic case indicates close agreement between computed velocity profiles near the wall and the wall function for a limited range of suitable match points in the logarithmic region. In an attempt to improve marching stability, a laminar to turbulent transition routine was implemented at the start of the PNS code. Implementing the wall function with the transitional routine in the PNS code is expected to reduce computational time while maintaining good accuracy in computed skin friction.

  16. LES of Supersonic Turbulent Channel Flow at Mach Numbers 1.5 and 3

    Science.gov (United States)

    Raghunath, Sriram; Brereton, Giles

    2009-11-01

    LES of compressible, turbulent, body-force driven, isothermal-wall channel flows at Reτ of 190 and 395 at moderate supersonic speeds (Mach 1.5 and 3) are presented. Simulations are fully resolved in the wall-normal direction without the need for wall-layer models. SGS models for incompressible flows, with appropriate extensions for compressibility, are tested a priori/ with DNS results and used in LES. Convergence of the simulations is found to be sensitive to the initial conditions and to the choice of model (wall-normal damping) in the laminar sublayer. The Nicoud--Ducros wall adapting SGS model, coupled with a standard SGS heat flux model, is found to yield results in good agreement with DNS.

  17. Evaluation of water cooled supersonic temperature and pressure probes for application to 1366 K flows

    Science.gov (United States)

    Lagen, Nicholas; Seiner, John M.

    1990-01-01

    Water cooled supersonic probes are developed to investigate total pressure, static pressure, and total temperature in high-temperature jet plumes and thereby determine the mean flow properties. Two probe concepts, designed for operation at up to 1366 K in a Mach 2 flow, are tested on a water cooled nozzle. The two probe designs - the unsymmetric four-tube cooling configuration and the symmetric annular cooling design - take measurements at 755, 1089, and 1366 K of the three parameters. The cooled total and static pressure readings are found to agree with previous test results with uncooled configurations. The total-temperature probe, however, is affected by the introduction of water coolant, and effect which is explained by the increased heat transfer across the thermocouple-bead surface. Further investigation of the effect of coolant on the temperature probe is proposed to mitigate the effect and calculate more accurate temperatures in jet plumes.

  18. CFD modeling of condensation process of water vapor in supersonic flows

    DEFF Research Database (Denmark)

    Yang, Yan; Walther, Jens Honore; Yan, Yuying

    2017-01-01

    The condensation phenomenon of vapor plays an important role in various industries, such as the steam flow in turbines and refrigeration system. A mathematical model is developed to predict the spontaneous condensing phenomenon in the supersonic flows using the nucleation and droplet growth...... theories. The numerical approach is validated with the experimental data, which shows a good agreement between them. The condensation characteristics of water vapor in the Laval nozzle are described in detail. The results show that the condensation process is a rapid variation of the vapor-liquid phase...... change both in the space and in time. The spontaneous condensation of water vapor will not appear immediately when the steam reaches the saturation state. Instead, it occurs further downstream the nozzle throat, where the steam is in the state of supersaturation....

  19. Study of different aerodynamics modifications for small axial flow fan

    OpenAIRE

    Bin Abdul Jalil, Anas

    2017-01-01

    En este proyecto, se investigaron los efectos de los álabes en el comportamiento aerodinámico de pequeños ventiladores axiales para disminuir la turbulencia del flujo en su superficie y generalmente para mejorar el rendimiento aerodinámico. Se estudiaron mediante simulación dos modificaciones en la superficie de los alabes de un pequeño ventilador axial (modelo 1, prototipo): la situación de un “winglet” en el extremo del álabe (modelo 2) y el diseño denominado de “aleta de tiburón” (modelo 3...

  20. Effect of Shrouding Gas Temperature on Characteristics of a Supersonic Jet Flow Field with a Shrouding Laval Nozzle Structure

    Science.gov (United States)

    Liu, Fuhai; Sun, Dongbai; Zhu, Rong; Li, Yilin

    2018-05-01

    Coherent jet technology was been widely used in the electric arc furnace steelmaking process to protect the kinetic energy of supersonic oxygen jets and achieve a better mixing effect. For this technology, the total temperature distribution of the shrouding jet has a great impact on the velocity of the main oxygen jet. In this article, a supersonic shrouding nozzle using a preheating shrouding jet is proposed to increase the shrouding jet velocity. Both numerical simulation and experimental studies were carried out to analyze its effect on the axial velocity, total temperature and turbulence kinetic energy profiles of the main oxygen jet. Based on these results, it was found that a significant amount of kinetic energy was removed from the main oxygen jet when it passed though the shock wave using a high-temperature shrouding jet, which made the average axial velocity of the coherent jet lower than for a conventional jet in the potential core region. However, the supersonic shrouding nozzle and preheating technology employed for this nozzle design significantly improved the shrouding gas velocity, forming a low-density gas zone at the exit of the main oxygen jet and prolonging the velocity potential core length.

  1. Hybrid simulations of current-carrying instabilities in Z-pinch plasmas with sheared axial flow

    International Nuclear Information System (INIS)

    Sotnikov, Vladimir I.; Makhin, Volodymyr; Bauer, Bruno S.; Hellinger, Petr; Travnicek, Pavel; Fiala, Vladimir; Leboeuf, Jean-Noel

    2002-01-01

    The development of instabilities in z-pinch plasmas has been studied with three-dimensional (3D) hybrid simulations. Plasma equilibria without and with sheared axial flow have been considered. Results from the linear phase of the hybrid simulations compare well with linear Hall magnetohydrodynamics (MHD) calculations for sausage modes. The hybrid simulations show that sheared axial flow has a stabilizing effect on the development of both sausage and kink modes

  2. Numerical Analysis on the Compressible Flow Characteristics of Supersonic Jet Caused by High-Pressure Pipe Rupture Using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jong-Kil; Yoon, Jun-Kyu [Gachon Univ., Sungnam (Korea, Republic of); Kim, Kwang-Chu [KEPCO-E& C, Kimchun (Korea, Republic of)

    2017-10-15

    A rupture in a high-pressure pipe causes the fluid in the pipe to be discharged in the atmosphere at a high speed resulting in a supersonic jet that generates the compressible flow. This supersonic jet may display complicated and unsteady behavior in general . In this study, Computational Fluid Dynamics (CFD) analysis was performed to investigate the compressible flow generated by a supersonic jet ejected from a high-pressure pipe. A Shear Stress Transport (SST) turbulence model was selected to analyze the unsteady nature of the flow, which depends upon the various gases as well as the diameter of the pipe. In the CFD analysis, the basic boundary conditions were assumed to be as follows: pipe of diameter 10 cm, jet pressure ratio of 5, and an inlet gas temperature of 300 K. During the analysis, the behavior of the shockwave generated by a supersonic jet was observed and it was found that the blast wave was generated indirectly. The pressure wave characteristics of hydrogen gas, which possesses the smallest molecular mass, showed the shortest distance to the safety zone. There were no significant difference observed for nitrogen gas, air, and oxygen gas, which have similar molecular mass. In addition, an increase in the diameter of the pipe resulted in the ejected impact caused by the increased flow rate to become larger and the zone of jet influence to extend further.

  3. Experimental study on supersonic film cooling on the surface of a blunt body in hypersonic flow

    International Nuclear Information System (INIS)

    Fu Jia; Yi Shi-He; Wang Xiao-Hu; He Lin; Ge Yong

    2014-01-01

    The experimental study focuses on the heat flux on a double cone blunt body in the presence of tangential-slot supersonic injection into hypersonic flow. The tests are conducted in a contoured axisymmetric nozzle with Mach numbers of 7.3 and 8.1, and the total temperature is about 900 K. The injection Mach number is 3.2, and total temperature is 300 K. A constant voltage circuit is developed to supply the temperature detectors instead of the normally used constant current circuit. The schlieren photographs are presented additionally to visualize the flow and help analyze the pressure relationship between the cooling flow and the main flow. The dependence of the film-cooling effectiveness on flow parameters, i.e. the blow ratio, the convective Mach number, and the attack angle, is determined. A semi-empirical formula is tested by the present data, and is improved for a better correlation. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  4. Numerical Investigation of the Interaction of Counterflowing Jets and Supersonic Capsule Flows

    Science.gov (United States)

    Venkatachari, Balaji Shankar; Ito, Yasushi; Cheng, Gary; Chang, Chau-Lyan

    2011-01-01

    Use of counterflowing jets ejected into supersonic freestreams as a flow control concept to modify the external flowfield has gained renewed interest with regards to potential retropropulsion applications pertinent to entry, descent, and landing investigations. This study describes numerical computations of such a concept for a scaled wind-tunnel capsule model by employing the space-time conservation element solution element viscous flow solver with unstructured meshes. Both steady-state and time-accurate computations are performed for several configurations with different counterflowing jet Mach numbers. Axisymmetric computations exploring the effect of the jet flow rate and jet Mach number on the flow stability, jet interaction with the bow shock and its subsequent impact on the aerodynamic and aerothermal loads on the capsule body are carried out. Similar to previous experimental findings, both long and short penetration modes exist at a windtunnel Mach number of 3.48. It was found that both modes exhibit non-stationary behavior and the former is much more unstable than the latter. It was also found that the unstable long penetration mode only exists in a relatively small range of the jet mass flow rate. Solution-based mesh refinement procedures are used to improve solution accuracy and provide guidelines for a more effective mesh generation procedure for parametric studies. Details of the computed flowfields also serve as a means to broaden the knowledge base for future retropropulsion design studies.

  5. Characterization of the supersonic flowing microwave discharge using two dimensional plasma tomography

    Energy Technology Data Exchange (ETDEWEB)

    Nikolic, M.; Samolov, A.; Popovic, S.; Vuskovic, L.; Godunov, A. [Department of Physics, Center for Accelerator Science, Old Dominion University, Norfolk, Virginia 23529 (United States); Cuckov, F. [Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529 (United States)

    2013-03-14

    A tomographic numerical method based on the two-dimensional Radon formula for a cylindrical cavity has been employed for obtaining spatial distributions of the argon excited levels. The spectroscopy measurements were taken at different positions and directions to observe populations of excited species in the plasmoid region and the corresponding excitation temperatures. Excited argon states are concentrated near the tube walls, thus, confirming the assumption that the post discharge plasma is dominantly sustained by travelling surface wave. An automated optical measurement system has been developed for reconstruction of local plasma parameters of the plasmoid structure formed in an argon supersonic flowing microwave discharge. The system carries out angle and distance measurements using a rotating, flat mirror, as well as two high precision stepper motors operated by a microcontroller-based system and several sensors for precise feedback control.

  6. Multi-objective design optimization of the transverse gaseous jet in supersonic flows

    Science.gov (United States)

    Huang, Wei; Yang, Jun; Yan, Li

    2014-01-01

    The mixing process between the injectant and the supersonic crossflow is one of the important issues for the design of the scramjet engine, and the efficiency mixing has a great impact on the improvement of the combustion efficiency. A hovering vortex is formed between the separation region and the barrel shock wave, and this may be induced by the large negative density gradient. The separation region provides a good mixing area for the injectant and the subsonic boundary layer. In the current study, the transverse injection flow field with a freestream Mach number of 3.5 has been optimized by the non-dominated sorting genetic algorithm (NSGA II) coupled with the Kriging surrogate model; and the variance analysis method and the extreme difference analysis method have been employed to evaluate the values of the objective functions. The obtained results show that the jet-to-crossflow pressure ratio is the most important design variable for the transverse injection flow field, and the injectant molecular weight and the slot width should be considered for the mixing process between the injectant and the supersonic crossflow. There exists an optimal penetration height for the mixing efficiency, and its value is about 14.3 mm in the range considered in the current study. The larger penetration height provides a larger total pressure loss, and there must be a tradeoff between these two objection functions. In addition, this study demonstrates that the multi-objective design optimization method with the data mining technique can be used efficiently to explore the relationship between the design variables and the objective functions.

  7. Experimental and Numerical Characterization of a Pulsed Supersonic Uniform Flow for Kinetics and Spectroscopy

    Science.gov (United States)

    Suas-David, Nicolas; Thawoos, Shameemah; Broderick, Bernadette M.; Suits, Arthur

    2017-06-01

    The current CPUF (Chirped Pulse Uniform Flow) and the new UF-CRDS (Uniform Flow Cavity Ring-Down Spectroscopy) setups relie mostly on the production of a good quality supersonic uniform flow. A supersonic uniform flow is produced by expanding a gas through a Laval nozzle - similar to the nozzles used in aeronautics - linked to a vacuum chamber. The expansion is characterized by an isentropic core where constant very low kinetic temperature (down to 20K) and constant density are observed. The relatively large diameter of the isentropic core associated with homogeneous thermodynamic conditions makes it a relevant tool for low temperature spectroscopy. On the other hand, the length along the axis of the flow of this core (could be longer than 50cm) allows kinetic studies which is one of the main interest of this setup (CRESU technique. The formation of a uniform flow requires an extreme accuracy in the design of the shape of the nozzle for a set of defined temperature/density. The design is based on a Matlab program which retrieves the shape of the isentropic core according to the method of characteristics prior to calculate the thickness of the boundary layer. Two different approaches are used to test the viability of a new nozzle derived from the program. First, a computational fluid dynamic software (OpenFOAM) models the distribution of the thermodynamic properties of the expansion. Then, fabricated nozzles using 3-D printing are tested based on Pitot measurements and spectroscopic analyses. I will present comparisons of simulation and measured performance for a range of nozzles. We will see how the high level of accuracy of numerical simulations provides a deeper knowledge of the experimental conditions. J. M. Oldham, C. Abeysekera, J. Joalland, L. N. Zack, K. Prozument, I. R. Sims, G. Barrat Park, R. W. Filed and A. G. Suits, J. Chem. Phys. 141, 154202, (2014). I. Sims, J. L. Queffelec, A. Defrance, C. Rebrion-Rowe, D. Travers, P. Bocherel, B. Rowe, I. W. Smith

  8. Numerical Simulation of single-stage axial fan operation under dusty flow conditions

    Science.gov (United States)

    Minkov, L. L.; Pikushchak, E. V.

    2017-11-01

    Assessment of the aerodynamic efficiency of the single-stage axial flow fan under dusty flow conditions based on a numerical simulation using the computational package Ansys-Fluent is proposed. The influence of dust volume fraction on the dependences of the air volume flow rate and the pressure drop on the rotational speed of rotor is demonstrated. Matching functions for formulas describing a pressure drop and volume flow rate in dependence on the rotor speed and dust content are obtained by numerical simulation for the single-stage axial fan. It is shown that the aerodynamic efficiency of the single-stage axial flow fan decreases exponentially with increasing volume content of dust in the air.

  9. Mixing enhancement strategies and their mechanisms in supersonic flows: A brief review

    Science.gov (United States)

    Huang, Wei

    2018-04-01

    Achieving efficient fuel-air mixing is a crucial issue in the design of the scramjet engine due to the compressibility effect on the mixing shear layer growth and the stringent flow residence time limitation induced by the high-speed crossflow, and the potential solution is to enhance mixing between air and fuel by introducing of streamwise vortices in the flow field. In this survey, some mixing enhancement strategies based on the traditional transverse injection technique proposed in recent years, as well as their mixing augmentation mechanisms, were reviewed in detail, namely the pulsed transverse injection scheme, the traditional transverse injection coupled with the vortex generator, and the dual transverse injection system with a front porthole and a rear air porthole arranged in tandem. The streamwise vortices, through the large-scale stirring motion that they introduce, are responsible for the extraction of large amounts of energy from the mean flow that can be converted into turbulence, ultimately leading to increased mixing effectiveness. The streamwise vortices may be obtained by taking advantage of the shear layer between a jet and the cross stream or by employing intrusive physical devices. Finally, a promising mixing enhancement strategy in supersonic flows was proposed, and some remarks were provided.

  10. Space-marching gridless computation of steady supersonic/hypersonic flow

    International Nuclear Information System (INIS)

    Hui, W.H.; Hu, J.J.

    2004-01-01

    Most CFD work use Eulerian coordinates, which require generating a grid prior to flow filed computation. Despite three decades of research, grid generation is still a bottleneck of CFD, as it is time-consuming, tedious and requires specialized training. It will be shown in this paper that using the Unified Coordinates introduced by Hui et. al., there is no need for grid generation prior to flow computation; the grid is automatically generated while computing the flow. This greatly saves computing time. For steady supersonic/hypersonic flow, the Euler equations of gas dynamics are of hyperbolic type and a space-marching gridless computation along the streamlines - coordinate lines in the unified coordinates - is shown to be a complete success in that: (a) it is most robust, (b) it resolves both slip lines (also called contact lines) and shocks sharply, (c) its computing time is more than three orders of magnitude smaller than Eulerian computation and, (d) it by-passes the tedious and time-consuming grid generation stage which is needed in Eulerian computation. Three examples are given to justify these claims. (author)

  11. Axial flow velocity patterns in a normal human pulmonary artery model: pulsatile in vitro studies.

    Science.gov (United States)

    Sung, H W; Yoganathan, A P

    1990-01-01

    It has been clinically observed that the flow velocity patterns in the pulmonary artery are directly modified by disease. The present study addresses the hypothesis that altered velocity patterns relate to the severity of various diseases in the pulmonary artery. This paper lays a foundation for that analysis by providing a detailed description of flow velocity patterns in the normal pulmonary artery, using flow visualization and laser Doppler anemometry techniques. The studies were conducted in an in vitro rigid model in a right heart pulse duplicator system. In the main pulmonary artery, a broad central flow field was observed throughout systole. The maximum axial velocity (150 cm s-1) was measured at peak systole. In the left pulmonary artery, the axial velocities were approximately evenly distributed in the perpendicular plane. However, in the bifurcation plane, they were slightly skewed toward the inner wall at peak systole and during the deceleration phase. In the right pulmonary artery, the axial velocity in the perpendicular plane had a very marked M-shaped profile at peak systole and during the deceleration phase, due to a pair of strong secondary flows. In the bifurcation plane, higher axial velocities were observed along the inner wall, while lower axial velocities were observed along the outer wall and in the center. Overall, relatively low levels of turbulence were observed in all the branches during systole. The maximum turbulence intensity measured was at the boundary of the broad central flow field in the main pulmonary artery at peak systole.

  12. Nonlinear output feedback control of underwater vehicle propellers using feedback form estimated axial flow velocity

    DEFF Research Database (Denmark)

    Fossen, T. I.; Blanke, Mogens

    2000-01-01

    Accurate propeller shaft speed controllers can be designed by using nonlinear control theory and feedback from the axial water velocity in the propeller disc. In this paper, an output feedback controller is derived, reconstructing the axial flow velocity from vehicle speed measurements, using...... a three-state model of propeller shaft speed, forward (surge) speed of the vehicle, and the axial flow velocity. Lyapunov stability theory is used to prove that a nonlinear observer combined with an output feedback integral controller provide exponential stability. The output feedback controller...... compensates for variations in thrust due to time variations in advance speed. This is a major problem when applying conventional vehicle-propeller control systems, The proposed controller is simulated for an underwater vehicle equipped with a single propeller. The simulations demonstrate that the axial water...

  13. Bifurcation of cubic nonlinear parallel plate-type structure in axial flow

    International Nuclear Information System (INIS)

    Lu Li; Yang Yiren

    2005-01-01

    The Hopf bifurcation of plate-type beams with cubic nonlinear stiffness in axial flow was studied. By assuming that all the plates have the same deflections at any instant, the nonlinear model of plate-type beam in axial flow was established. The partial differential equation was turned into an ordinary differential equation by using Galerkin method. A new algebraic criterion of Hopf bifurcation was utilized to in our analysis. The results show that there's no Hopf bifurcation for simply supported plate-type beams while the cantilevered plate-type beams has. At last, the analytic expression of critical flow velocity of cantilevered plate-type beams in axial flow and the purely imaginary eigenvalues of the corresponding linear system were gotten. (authors)

  14. Linear analysis on the growth of non-spherical perturbations in supersonic accretion flows

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Kazuya; Yamada, Shoichi, E-mail: ktakahashi@heap.phys.waseda.ac.jp [Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku 169-8555 (Japan)

    2014-10-20

    We analyzed the growth of non-spherical perturbations in supersonic accretion flows. We have in mind an application to the post-bounce phase of core-collapse supernovae (CCSNe). Such non-spherical perturbations have been suggested by a series of papers by Arnett, who has numerically investigated violent convections in the outer layers of pre-collapse stars. Moreover, Couch and Ott demonstrated in their numerical simulations that such perturbations may lead to a successful supernova even for a progenitor that fails to explode without fluctuations. This study investigated the linear growth of perturbations during the infall onto a stalled shock wave. The linearized equations are solved as an initial and boundary value problem with the use of a Laplace transform. The background is a Bondi accretion flow whose parameters are chosen to mimic the 15 M {sub ☉} progenitor model by Woosley and Heger, which is supposed to be a typical progenitor of CCSNe. We found that the perturbations that are given at a large radius grow as they flow down to the shock radius; the density perturbations can be amplified by a factor of 30, for example. We analytically show that the growth rate is proportional to l, the index of the spherical harmonics. We also found that the perturbations oscillate in time with frequencies that are similar to those of the standing accretion shock instability. This may have an implication for shock revival in CCSNe, which will be investigated in our forthcoming paper in more detail.

  15. Flow past an axially aligned spinning cylinder: Experimental Study

    Science.gov (United States)

    Carlucci, Pasquale; Buckley, Liam; Mehmedagic, Igbal; Carlucci, Donald; Thangam, Siva

    2017-11-01

    Experimental investigation of flow past a spinning cylinder is presented in the context of its application and relevance to flow past projectiles. A subsonic wind tunnel is used to perform experiments on the flow past a spinning cylinder that is mounted on a forward sting and oriented such that its axis of rotation is aligned with the mean flow. The experiments cover a Reynolds number of range of up to 45000 and rotation numbers of up to 2 (based on cylinder diameter). Time-averaged mean flow and turbulence profiles in the wake flow are presented with and without spin along with comparison to published experimental data. Funded in part by the U. S. Army ARDEC, Picatinny Arsenal, NJ.

  16. Axial and radial velocities in the creeping flow in a pipe

    Directory of Open Access Journals (Sweden)

    Zuykov Andrey L'vovich

    2014-05-01

    Full Text Available The article is devoted to analytical study of transformation fields of axial and radial velocities in uneven steady creeping flow of a Newtonian fluid in the initial portion of the cylindrical channel. It is shown that the velocity field of the flow is two-dimensional and determined by the stream function. The article is a continuation of a series of papers, where normalized analytic functions of radial axial distributions in uneven steady creeping flow in a cylindrical tube with azimuthal vorticity and stream function were obtained. There is Poiseuille profile for the axial velocity in the uniform motion of a fluid at an infinite distance from the entrance of the pipe (at x = ∞, here taken equal to zero radial velocity. There is uniform distribution of the axial velocity in the cross section at the tube inlet at x = 0, at which the axial velocity is constant along the current radius. Due to the axial symmetry of the flow on the axis of the pipe (at r = 0, the radial velocities and the partial derivative of the axial velocity along the radius, corresponding to the condition of the soft function extremum, are equal to zero. The authors stated vanishing of the velocity of the fluid on the walls of the pipe (at r = R , where R - radius of the tube due to its viscous sticking and tightness of the walls. The condition of conservation of volume flow along the tube was also accepted. All the solutions are obtained in the form of the Fourier - Bessel. It is shown that the hydraulic losses at uniform creeping flow of a Newtonian fluid correspond to Poiseuille - Hagen formula.

  17. Particle flow of ceramic breeder pebble beds in bi-axial compression experiments

    International Nuclear Information System (INIS)

    Hermsmeyer, S.; Reimann, J.

    2002-01-01

    Pebble beds of ceramic material are investigated within the framework of developing solid breeder blankets for future fusion power plants. A thermo-mechanical characterisation of such pebble beds is mandatory for understanding the behaviour of pebble beds, and thus the overall blanket, under fusion environment conditions. The mechanical behaviour of pebble beds is typically explored with uni-axial, bi-axial and tri-axial compression experiments. The latter two types of experiment are particularly revealing since they contain explicitly, beyond a compression behaviour of the bed, information on the conditions for pebble flow, i.e. macroscopic relocation, in the pebble bed. (orig.)

  18. The amplitude of fluid-induced vibration of cylinders in axial flow

    Energy Technology Data Exchange (ETDEWEB)

    Paidoussis, M. P.

    1965-03-15

    This report describes a new empirical expression of the amplitude of transverse vibration of cylindrical beams and clusters of cylinders in axial flow, for application to reactor fuel. The expression is based on reported experimental observations covering a variety of geometries, cylinder materials and types of support in water, superheated steam and two-phase mixture flows. (author)

  19. The amplitude of fluid-induced vibration of cylinders in axial flow

    International Nuclear Information System (INIS)

    Paidoussis, M.P.

    1965-03-01

    This report describes a new empirical expression of the amplitude of transverse vibration of cylindrical beams and clusters of cylinders in axial flow, for application to reactor fuel. The expression is based on reported experimental observations covering a variety of geometries, cylinder materials and types of support in water, superheated steam and two-phase mixture flows. (author)

  20. Simple LMFBR axial-flow friction-factor correlation

    International Nuclear Information System (INIS)

    Chan, Y.N.; Todreas, N.E.

    1981-09-01

    Complicated LMFBR axial lead-length averaged friction factor correlations are reduced to an easy, ready-to-use function of bundle Reyonlds number for wire-wrapped bundles. The function together with the power curves to calculate the associated constants are incorporated in a computer pre-processor, EZFRIC. The constants required for the calculation of the subchannels and bundle friction factors are derived and correlated into power curves of geometrical parameters. A computer program, FRIC, which can alternatively be used to accurately calculate these constants is also included. The accuracte values of the constants and the corresponding values predicted by the power curves and percentage error of prediction are tabulated for a wide variety of geometries of interest

  1. Study of compressible turbulent flows in supersonic environment by large-eddy simulation

    Science.gov (United States)

    Genin, Franklin

    considered. It is shown that the levels of turbulence are increased through the interaction, and that the mixing is significantly improved in this flow configuration. However, the region of increased mixing is found to be localized to a region close to the impact of the shocks, and that the statistical levels of turbulence relax to their undisturbed levels some short distance downstream of the interaction. The present developments are finally applied to a practical configuration relevant to scramjet injection. The normal injection of a sonic jet into a supersonic crossflow is considered numerically, and compared to the results of an experimental study. A fair agreement in the statistics of mean and fluctuating velocity fields is obtained. Furthermore, some of the instantaneous flow structures observed in experimental visualizations are identified in the present simulation. The dynamics of the interaction for the reference case, based on the experimental study, as well as for a case of higher freestream Mach number and a case of higher momentum ratio, are examined. The classical instantaneous vortical structures are identified, and their generation mechanisms, specific to supersonic flow, are highlighted. Furthermore, two vortical structures, recently revealed in low-speed jets in crossflow but never documented for high-speed flows, are identified during the flow evolution.

  2. Characterization of fluid forces exerted on a cylinder array oscillating laterally in axial flow

    International Nuclear Information System (INIS)

    Divaret, Lise

    2014-01-01

    This thesis presents an experimental and a numerical study of the fluid forces exerted on a cylinder or a cylinder array oscillating laterally in an axial flow. The parameters of the system are the amplitude, the oscillation frequency, the confinement and the length to diameter ratio of the cylinder. The objective is to determine the fluid damping created by the axial flow, i.e. the dissipative force. The industrial application of this thesis is the determination of the fluid damping of the fuel assemblies in the core of a nuclear power plant during an earthquake. The study focuses on the configurations where the oscillation velocity is small compared to the axial flow velocity. In a first part, we study the case of a cylinder with no confinement oscillating in axial flow. Two methods are used: a dynamical and a quasi-static approach. In dynamics, the damping rate is measured during free oscillations of the cylinder. In the quasi-static approach, the damping coefficient is calculated from the normal force measured on a yawed cylinder. The range of the small ratios between the oscillation and the axial flow velocities corresponds to a range of low yaw angle where the cylinder is in near-axial flow in statics. The case of a yawed cylinder has been studied both experimentally with experiments in a wind tunnel and numerically with CFD calculations. The analyses of the fluid forces shows that for yaw angles smaller than 5 degrees, a linear lift with the yaw angle creates the damping. The origin of the lift force is discussed from pressure and velocity measurements. The results of the quasi-static approach are compared to the results of the dynamical experiments. In a second part, an experimental study is performed on a rigid cylinder array made up of 40 cylinders oscillating in an axial flow. The normal force and the displacement of the cylinder array are measured simultaneously. The added mass and damping coefficient are calculated and their variation with the

  3. Crystallinity of polyethylene in uni-axial extensional flow

    DEFF Research Database (Denmark)

    Wingstrand, Sara Lindeblad; van Drongelen, Martin; Mortensen, Kell

    Flow history of polymer melts in processing greatly influences the crystallinity and hence the solid properties of the final material. A wide range of polymer processes involve extensional flows e.g. fiber spinning, blow moulding etc. However, due to instrumental difficulties, experimental studies...... on polymer crystallization in controlled uniaxial extension are quite rare compared to studies of crystallization in shear. Inherently uniaxial extensional flows are strong and simple relative to shear flows, in the sense that chain stretch is easily obtained and that the molecules experience no tumbling...... such that crystallization from a stretched state can take place. In this work we explore this feature in the attempt to link the nonlinear extensional rheology to the final morphology. We investigate polyethylenes (PE) of various chain architectures and observe that, even for complex architectures like long chain branched...

  4. The flow field investigations of no load conditions in axial flow fixed-blade turbine

    Science.gov (United States)

    Yang, J.; Gao, L.; Wang, Z. W.; Zhou, X. Z.; Xu, H. X.

    2014-03-01

    During the start-up process, the strong instabilities happened at no load operation in a low head axial flow fixed-blade turbine, with strong pressure pulsation and vibration. The rated speed can not reach until guide vane opening to some extent, and stable operation could not be maintained under the rated speed at some head, which had a negative impact on the grid-connected operation of the unit. In order to find the reason of this phenomenon, the unsteady flow field of the whole flow passage at no load conditions was carried out to analyze the detailed fluid field characteristics including the pressure pulsation and force imposed on the runner under three typical heads. The main hydraulic cause of no load conditions instability was described. It is recommended that the power station should try to reduce the no-load running time and go into the high load operation as soon as possible when connected to grid at the rated head. Following the recommendations, the plant operation practice proved the unstable degree of the unit was reduced greatly during start up and connect to the power grid.

  5. Validation of a Computational Fluid Dynamics (CFD) Code for Supersonic Axisymmetric Base Flow

    Science.gov (United States)

    Tucker, P. Kevin

    1993-01-01

    The ability to accurately and efficiently calculate the flow structure in the base region of bodies of revolution in supersonic flight is a significant step in CFD code validation for applications ranging from base heating for rockets to drag for protectives. The FDNS code is used to compute such a flow and the results are compared to benchmark quality experimental data. Flowfield calculations are presented for a cylindrical afterbody at M = 2.46 and angle of attack a = O. Grid independent solutions are compared to mean velocity profiles in the separated wake area and downstream of the reattachment point. Additionally, quantities such as turbulent kinetic energy and shear layer growth rates are compared to the data. Finally, the computed base pressures are compared to the measured values. An effort is made to elucidate the role of turbulence models in the flowfield predictions. The level of turbulent eddy viscosity, and its origin, are used to contrast the various turbulence models and compare the results to the experimental data.

  6. Experimental and Numerical Investigation of Flow Properties of Supersonic Helium-Air Jets

    Science.gov (United States)

    Miller, Steven A. E.; Veltin, Jeremy

    2010-01-01

    Heated high speed subsonic and supersonic jets operating on- or off-design are a source of noise that is not yet fully understood. Helium-air mixtures can be used in the correct ratio to simulate the total temperature ratio of heated air jets and hence have the potential to provide inexpensive and reliable flow and acoustic measurements. This study presents a combination of flow measurements of helium-air high speed jets and numerical simulations of similar helium-air mixture and heated air jets. Jets issuing from axisymmetric convergent and convergent-divergent nozzles are investigated, and the results show very strong similarity with heated air jet measurements found in the literature. This demonstrates the validity of simulating heated high speed jets with helium-air in the laboratory, together with the excellent agreement obtained in the presented data between the numerical predictions and the experiments. The very close match between the numerical and experimental data also validates the frozen chemistry model used in the numerical simulation.

  7. Supersonic Mass Flux Measurements via Tunable Diode Laser Absorption and Non-Uniform Flow Modeling

    Science.gov (United States)

    Chang, Leyen S.; Strand, Christopher L.; Jeffries, Jay B.; Hanson, Ronald K.; Diskin, Glenn S.; Gaffney, Richard L.; Capriotti, Diego P.

    2011-01-01

    Measurements of mass flux are obtained in a vitiated supersonic ground test facility using a sensor based on line-of-sight (LOS) diode laser absorption of water vapor. Mass flux is determined from the product of measured velocity and density. The relative Doppler shift of an absorption transition for beams directed upstream and downstream in the flow is used to measure velocity. Temperature is determined from the ratio of absorption signals of two transitions (lambda(sub 1)=1349 nm and lambda(sub 2)=1341.5 nm) and is coupled with a facility pressure measurement to obtain density. The sensor exploits wavelength-modulation spectroscopy with second-harmonic detection (WMS-2f) for large signal-to-noise ratios and normalization with the 1f signal for rejection of non-absorption related transmission fluctuations. The sensor line-of-sight is translated both vertically and horizontally across the test section for spatially-resolved measurements. Time-resolved measurements of mass flux are used to assess the stability of flow conditions produced by the facility. Measurements of mass flux are within 1.5% of the value obtained using a facility predictive code. The distortion of the WMS lineshape caused by boundary layers along the laser line-of-sight is examined and the subsequent effect on the measured velocity is discussed. A method for correcting measured velocities for flow non-uniformities is introduced and application of this correction brings measured velocities within 4 m/s of the predicted value in a 1630 m/s flow.

  8. Three-Dimensional Steady Supersonic Euler Flow Past a Concave Cornered Wedge with Lower Pressure at the Downstream

    Science.gov (United States)

    Qu, Aifang; Xiang, Wei

    2018-05-01

    In this paper, we study the stability of the three-dimensional jet created by a supersonic flow past a concave cornered wedge with the lower pressure at the downstream. The gas beyond the jet boundary is assumed to be static. It can be formulated as a nonlinear hyperbolic free boundary problem in a cornered domain with two characteristic free boundaries of different types: one is the rarefaction wave, while the other one is the contact discontinuity, which can be either a vortex sheet or an entropy wave. A more delicate argument is developed to establish the existence and stability of the square jet structure under the perturbation of the supersonic incoming flow and the pressure at the downstream. The methods and techniques developed here are also helpful for other problems involving similar difficulties.

  9. Effect of shock interactions on mixing layer between co-flowing supersonic flows in a confined duct

    Science.gov (United States)

    Rao, S. M. V.; Asano, S.; Imani, I.; Saito, T.

    2018-03-01

    Experiments are conducted to observe the effect of shock interactions on a mixing layer generated between two supersonic streams of Mach number M _{1} = 1.76 and M _{2} = 1.36 in a confined duct. The development of this mixing layer within the duct is observed using high-speed schlieren and static pressure measurements. Two-dimensional, compressible Reynolds averaged Navier-Stokes equations are solved using the k-ω SST turbulence model in Fluent. Further, adverse pressure gradients are imposed by placing inserts of small ( boundary layer thickness) thickness on the walls of the test section. The unmatched pressures cause the mixing layer to bend and lead to the formation of shock structures that interact with the mixing layer. The mixing layer growth rate is found to increase after the shock interaction (nearly doubles). The strongest shock is observed when a wedge insert is placed in the M _{2} flow. This shock interacts with the mixing layer exciting flow modes that produce sinusoidal flapping structures which enhance the mixing layer growth rate to the maximum (by 1.75 times). Shock fluctuations are characterized, and it is observed that the maximum amplitude occurs when a wedge insert is placed in the M _{2} flow.

  10. Measuring retinal blood flow in rats using Doppler optical coherence tomography without knowing eyeball axial length

    International Nuclear Information System (INIS)

    Liu, Wenzhong; Yi, Ji; Chen, Siyu; Jiao, Shuliang; Zhang, Hao F.

    2015-01-01

    Purpose: Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. Methods: The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. Results: In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as −0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31μl/min among four wild-type rats. The authors’ measured flow rates were consistent with results in the literature. Conclusions: By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length

  11. Measuring retinal blood flow in rats using Doppler optical coherence tomography without knowing eyeball axial length.

    Science.gov (United States)

    Liu, Wenzhong; Yi, Ji; Chen, Siyu; Jiao, Shuliang; Zhang, Hao F

    2015-09-01

    Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as -0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31 μl/min among four wild-type rats. The authors' measured flow rates were consistent with results in the literature. By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length.

  12. Measuring retinal blood flow in rats using Doppler optical coherence tomography without knowing eyeball axial length

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenzhong; Yi, Ji; Chen, Siyu [Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Jiao, Shuliang [Department of Biomedical Engineering, Florida International University, Miami, Florida 33174 (United States); Zhang, Hao F., E-mail: hfzhang@northwestern.edu [Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208 and Department of Ophthalmology, Northwestern University, Chicago, Illinois 60611 (United States)

    2015-09-15

    Purpose: Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. Methods: The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. Results: In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as −0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31μl/min among four wild-type rats. The authors’ measured flow rates were consistent with results in the literature. Conclusions: By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length.

  13. Discussion of boundary-layer characteristics near the casing of an axial-flow compressor

    Science.gov (United States)

    Mager, Artur; Mahoney, John J; Budinger, Ray E

    1951-01-01

    Boundary-layer velocity profiles on the casing of an axial-flow compressor behind the guide vanes and rotor were measured and resolved into two components: along the streamline of the flow and perpendicular to it. Boundary-layer thickness and the deflection of the boundary layer at the wall were the generalizing parameters. By use of these results and the momentum-integral equations, the characteristics of boundary on the walls of axial-flow compressor are qualitatively discussed. Important parameters concerning secondary flow in the boundary layer appear to be turning of the flow and the product of boundary-layer thickness and streamline curvature outside the boundary layer. Two types of separation are shown to be possible in three dimensional boundary layer.

  14. Prediction of flow- induced dynamic stress in an axial pump impeller using FEM

    International Nuclear Information System (INIS)

    Gao, J Y; Hou, Y S; Xi, S Z; Cai, Z H; Yao, P P; Shi, H L

    2013-01-01

    Axial pumps play an important role in water supply and flood control projects. Along with growing requirements for high reliability and large capacity, the dynamic stress of axial pumps has become a key problem. Unsteady flow is a significant reason which results structural dynamic stress of a pump. This paper reports on a flow-induced dynamic stress simulation in an axial pump impeller at three flow conditions by using FEM code. The pressure pulsation obtained from flow simulation using CFD code was set as the force boundary condition. The results show that the maximum stress of impeller appeared at joint between blade and root flange near trailing edge or joint between blade and root flange near leading edge. The dynamic stress of the two zones was investigated under three flow conditions (0.8Q d , 1.0Q d , 1.1Q d ) in time domain and frequency domain. The frequencies of stress at zones of maximum stress are 22.9Hz and 37.5Hz as the fundamental frequency and its harmonics. The fundamental frequencies are nearly equal to vane passing frequency (22.9 Hz) and 3 times blade passing frequency (37.5Hz). The first dominant frequency at zones of maximum stress is equal to the vane passing frequency due to rotor-stator interaction between the vane and the blade. This study would be helpful for axial pumps in reducing stress, improving structure design and fatigue life

  15. Investigation of liquid phase axial dispersion in Taylor bubble flow by radiotracer residence time distribution analysis

    Directory of Open Access Journals (Sweden)

    Jin J.H.

    2013-05-01

    Full Text Available A gas-liquid Taylor bubble flow occurs in small diameter channels in which gas bubbles are separated by slugs of pure liquid. This type of flow regime is well suited for solid catalyzed gas-liquid reactors in which the reaction efficiency is a strong function of axial dispersion in the regions of pure liquid. This paper presents an experimental study of liquid phase axial dispersion in a Taylor bubble flow developed in a horizontal tube using high speed photography and radiotracer residence time distribution (RTD analysis. A parametric dependence of axial dispersion on average volume fraction of gas phase was also investigated by varying the relative volumetric flow rates of the two phases. 137mBa produced from a 137Cs/137mBa radionuclide generator was used as radiotracer and measurements were made using the NaI(Tl scintillation detectors. Validation of 137mBa in the form of barium chloride as aqueous phase radiotracer was also carried out. Axial Dispersion Model (ADM was used to simulate the hydrodynamics of the system and the results of the experiment are presented. It was observed that the system is characterized by very high values of Peclet Number (Pe∼102 which reveals an approaching plug type flow. The experimental and model estimated values of mean residence times were observed in agreement with each other.

  16. Cpuf: Chirped-Pulse Microwave Spectroscopy in Pulsed Uniform Supersonic Flows

    Science.gov (United States)

    Suits, Arthur; Abeysekera, Chamara; Zack, Lindsay N.; Joalland, Baptiste; Ariyasingha, Nuwandi M.; Park, Barratt; Field, Robert W.; Sims, Ian

    2015-06-01

    Chirped-pulse Fourier-transform microwave spectroscopy has stimulated a resurgence of interest in rotational spectroscopy owing to the dramatic reduction in spectral acquisition time it enjoys when compared to cavity-based instruments. This suggests that it might be possible to adapt the method to study chemical reaction dynamics and even chemical kinetics using rotational spectroscopy. The great advantage of this would be clear, quantifiable spectroscopic signatures for polyatomic products as well as the possibility to identify and characterize new radical reaction products and transient intermediates. To achieve this, however, several conditions must be met: 1) products must be thermalized at low temperature to maximize the population difference needed to achieve adequate signal levels and to permit product quantification based on the rotational line strength; 2) a large density and volume of reaction products is also needed to achieve adequate signal levels; and 3) for kinetics studies, a uniform density and temperature is needed throughout the course of the reaction. These conditions are all happily met by the uniform supersonic flow produced from a Laval nozzle expansion. In collaboration with the Field group at MIT we have developed a new instrument we term a CPUF (Chirped-pulse/Uniform Flow) spectrometer in which we can study reaction dynamics, photochemistry and kinetics using broadband microwave and millimeter wave spectroscopy as a product probe. We will illustrate the performance of the system with a few examples of photodissociation and reaction dynamics, and also discuss a number of challenges unique to the application of chirped-pulse microwave spectroscopy in the collisional environment of the flow. Future directions and opportunities for application of CPUF will also be explored.

  17. Investigation of the flow through an axial turbine stage

    Energy Technology Data Exchange (ETDEWEB)

    Svensdotter, S.; Wei Ning [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Energy Technology

    1995-12-31

    In this licentiate thesis the classical turbine theory and experimental results from the test turbine at KTH have been studied. The theory for the data evaluation program has also been studied and the loss models by Traupel and Denton have been investigated and applied to the measured results. The work has been performed to prepare for a theory concerning aerodynamic design of so called compound leaned blades and for future experiments on this non-conventional blade design with a new measurement system. A literature survey shows that the compound lean can be an effective three-dimensional technique in turbine designs, with significantly improved flow conditions, especially near the end-wall regions. A new measurement system, PSI, has been installed and the first preliminary tests shows good agreement with the existing system. The speed of the global measurements has been improved from about 10 minutes to about 12 seconds. The system reliability and documentation is also improved with the PSI system. The accuracy of the PSI-system is significantly better on the pressure measurement side, while the analogue side has somewhat less accuracy for the moment. From the analysis of the measurement results on the 25 mm stage, the tendencies of parameter variation versus pressure and velocity ratios were gained by the authors. The results show high secondary flow loss cores near the end-walls downstream the stator. The result is similar with those from the literature survey. The radial positions of the secondary flow cores change when simulating stator leakage flow. 140 refs, 54 figs, 14 tabs, 14 appendices

  18. An artificial nonlinear diffusivity method for supersonic reacting flows with shocks

    Science.gov (United States)

    Fiorina, B.; Lele, S. K.

    2007-03-01

    A computational approach for modeling interactions between shocks waves, contact discontinuities and reactions zones with a high-order compact scheme is investigated. To prevent the formation of spurious oscillations around shocks, artificial nonlinear viscosity [A.W. Cook, W.H. Cabot, A high-wavenumber viscosity for high resolution numerical method, J. Comput. Phys. 195 (2004) 594-601] based on high-order derivative of the strain rate tensor is used. To capture temperature and species discontinuities a nonlinear diffusivity based on the entropy gradient is added. It is shown that the damping of 'wiggles' is controlled by the model constants and is largely independent of the mesh size and the shock strength. The same holds for the numerical shock thickness and allows a determination of the L2 error. In the shock tube problem, with fluids of different initial entropy separated by the diaphragm, an artificial diffusivity is required to accurately capture the contact surface. Finally, the method is applied to a shock wave propagating into a medium with non-uniform density/entropy and to a CJ detonation wave. Multi-dimensional formulation of the model is presented and is illustrated by a 2D oblique wave reflection from an inviscid wall, by a 2D supersonic blunt body flow and by a Mach reflection problem.

  19. Supersonic shear flows in laser driven high-energy-density plasmas created by the Nike laser

    Science.gov (United States)

    Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Grosskopf, M. J.; Ditmar, J. R.; Aglitskiy, Y.; Weaver, J. L.; Velikovich, A. L.; Plewa, T.

    2008-11-01

    In high-energy-density (HED) plasmas the Kelvin-Helmholtz (KH) instability plays an important role in the evolution of Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) unstable interfaces, as well as material interfaces that experience the passage one or multiple oblique shocks. Despite the potentially important role of the KH instability few experiments have been carried out to explore its behavior in the high-energy-density regime. We report on the evolution of a supersonic shear flow that is generated by the release of a high velocity (>100 km/s) aluminum plasma onto a CRF foam (ρ = 0.1 g/cc) surface. In order to seed the Kelvin-Helmholtz (KH) instability various two-dimensional sinusoidal perturbations (λ = 100, 200, and 300 μm with peak-to-valley amplitudes of 10, 20, and 30 μm respectively) have been machined into the foam surface. This experiment was performed using the Nike laser at the Naval Research Laboratory.

  20. Detailed experimental investigations on flow behaviors and velocity field properties of a supersonic mixing layer

    Science.gov (United States)

    Tan, Jianguo; Zhang, Dongdong; Li, Hao; Hou, Juwei

    2018-03-01

    The flow behaviors and mixing characteristics of a supersonic mixing layer with a convective Mach number of 0.2 have been experimentally investigated utilizing nanoparticle-based planar laser scattering and particle image velocimetry techniques. The full development and evolution process, including the formation of Kelvin-Helmholtz vortices, breakdown of large-scale structures and establishment of self-similar turbulence, is exhibited clearly in the experiments, which can give a qualitative graphically comparing for the DNS and LES results. The shocklets are first captured at this low convective Mach number, and their generation mechanisms are elaborated and analyzed. The convective velocity derived from two images with space-time correlations is well consistent with the theoretical result. The pairing and merging process of large-scale vortices in transition region is clearly revealed in the velocity vector field. The analysis of turbulent statistics indicates that in weakly compressible mixing layers, with the increase of convective Mach number, the peak values of streamwise turbulence intensity and Reynolds shear stress experience a sharp decrease, while the anisotropy ratio seems to keep quasi unchanged. The normalized growth rate of the present experiments shows a well agreement with former experimental and DNS data. The validation of present experimental results is important for that in the future the present work can be a reference for assessing the accuracy of numerical data.

  1. Hypersonic Engine Leading Edge Experiments in a High Heat Flux, Supersonic Flow Environment

    Science.gov (United States)

    Gladden, Herbert J.; Melis, Matthew E.

    1994-01-01

    A major concern in advancing the state-of-the-art technologies for hypersonic vehicles is the development of an aeropropulsion system capable of withstanding the sustained high thermal loads expected during hypersonic flight. Three aerothermal load related concerns are the boundary layer transition from laminar to turbulent flow, articulating panel seals in high temperature environments, and strut (or cowl) leading edges with shock-on-shock interactions. A multidisciplinary approach is required to address these technical concerns. A hydrogen/oxygen rocket engine heat source has been developed at the NASA Lewis Research Center as one element in a series of facilities at national laboratories designed to experimentally evaluate the heat transfer and structural response of the strut (or cowl) leading edge. A recent experimental program conducted in this facility is discussed and related to cooling technology capability. The specific objective of the experiment discussed is to evaluate the erosion and oxidation characteristics of a coating on a cowl leading edge (or strut leading edge) in a supersonic, high heat flux environment. Heat transfer analyses of a similar leading edge concept cooled with gaseous hydrogen is included to demonstrate the complexity of the problem resulting from plastic deformation of the structures. Macro-photographic data from a coated leading edge model show progressive degradation over several thermal cycles at aerothermal conditions representative of high Mach number flight.

  2. Supersonic compressor

    Science.gov (United States)

    Roberts, II, William Byron; Lawlor, Shawn P.; Breidenthal, Robert E.

    2016-04-12

    A supersonic compressor including a rotor to deliver a gas at supersonic conditions to a diffuser. The diffuser includes a plurality of aerodynamic ducts that have converging and diverging portions, for deceleration of gas to subsonic conditions and then for expansion of subsonic gas, to change kinetic energy of the gas to static pressure. The aerodynamic ducts include vortex generating structures for controlling boundary layer, and structures for changing the effective contraction ratio to enable starting even when the aerodynamic ducts are designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of in excess of two to one, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.

  3. Control of supersonic axisymmetric base flows using passive splitter plates and pulsed plasma actuators

    Science.gov (United States)

    Reedy, Todd Mitchell

    An experimental investigation evaluating the effects of flow control on the near-wake downstream of a blunt-based axisymmetric body in supersonic flow has been conducted. To better understand and control the physical phenomena that govern these massively separated high-speed flows, this research examined both passive and active flow-control methodologies designed to alter the stability characteristics and structure of the near-wake. The passive control investigation consisted of inserting splitter plates into the recirculation region. The active control technique utilized energy deposition from multiple electric-arc plasma discharges placed around the base. The flow-control authority of both methodologies was evaluated with experimental diagnostics including particle image velocimetry, schlieren photography, surface flow visualization, pressure-sensitive paint, and discrete surface pressure measurements. Using a blowdown-type wind tunnel reconstructed specifically for these studies, baseline axisymmetric experiments without control were conducted for a nominal approach Mach number of 2.5. In addition to traditional base pressure measurements, mean velocity and turbulence quantities were acquired using two-component, planar particle image velocimetry. As a result, substantial insight was gained regarding the time-averaged and instantaneous near-wake flow fields. This dataset will supplement the previous benchmark point-wise laser Doppler velocimetry data of Herrin and Dutton (1994) for comparison with new computational predictive techniques. Next, experiments were conducted to study the effects of passive triangular splitter plates placed in the recirculation region behind a blunt-based axisymmetric body. By dividing the near-wake into 1/2, 1/3, and 1/4 cylindrical regions, the time-averaged base pressure distribution, time-series pressure fluctuations, and presumably the stability characteristics were altered. While the spatial base pressure distribution was

  4. Study on an Axial Flow Hydraulic Turbine with Collection Device

    Directory of Open Access Journals (Sweden)

    Yasuyuki Nishi

    2014-01-01

    Full Text Available We propose a new type of portable hydraulic turbine that uses the kinetic energy of flow in open channels. The turbine comprises a runner with an appended collection device that includes a diffuser section in an attempt to improve the output by catching and accelerating the flow. With such turbines, the performance of the collection device, and a composite body comprising the runner and collection device were studied using numerical analysis. Among four stand-alone collection devices, the inlet velocity ratio was most improved by the collection device featuring an inlet nozzle and brim. The inlet velocity ratio of the composite body was significantly lower than that of the stand-alone collection device, owing to the resistance of the runner itself, the decreased diffuser pressure recovery coefficient, and the increased backpressure coefficient. However, at the maximum output tip speed ratio, the inlet velocity ratio and the loading coefficient were approximately 31% and 22% higher, respectively, for the composite body than for the isolated runner. In particular, the input power coefficient significantly increased (by approximately 2.76 times owing to the increase in the inlet velocity ratio. Verification tests were also conducted in a real canal to establish the actual effectiveness of the turbine.

  5. Zeroth-order flutter prediction for cantilevered plates in supersonic flow

    CSIR Research Space (South Africa)

    Meijer, M-C

    2015-08-01

    Full Text Available An aeroelastic prediction framework in MATLAB with modularity in the quasi-steady aerodynamic methodology is developed. Local piston theory (LPT) is integrated with quasi-steady methods including shock-expansion theory and the Supersonic Hypersonic...

  6. The Application of the Probabilistic Collocation Method to a Transonic Axial Flow Compressor

    NARCIS (Netherlands)

    Loeven, G.J.A.; Bijl, H.

    2010-01-01

    In this paper the Probabilistic Collocation method is used for uncertainty quantification of operational uncertainties in a transonic axial flow compressor (i.e. NASA Rotor 37). Compressor rotors are components of a gas turbine that are highly sensitive to operational and geometrical uncertainties.

  7. Model for transversal turbulent mixing in axial flow in rod bundles

    International Nuclear Information System (INIS)

    Carajilescov, P.

    1990-01-01

    The present work consists in the development of a model for the transversal eddy diffusivity to account for the effect of turbulent thermal mixing in axial flows in rod bundles. The results were compared to existing correlations that are currently being used in reactor thermalhydraulic analysis and considered satisfactory. (author)

  8. An Algorithm for the Design of an Axial Flow Compressor of a Power ...

    African Journals Online (AJOL)

    This paper focuses on the development of an algorithm for designing an axial flow compressor for a power generation gas turbine and attempts to bring to the public domain some parameters regarded as propriety data by plant manufacturers. The theory used in this work is based on simple thermodynamics and ...

  9. High-frequency counter-flow plasma synthetic jet actuator and its application in suppression of supersonic flow separation

    Science.gov (United States)

    Wang, Hongyu; Li, Jun; Jin, Di; Tang, Mengxiao; Wu, Yun; Xiao, Lianghua

    2018-01-01

    We come up with a control strategy for suppression of supersonic flow separation based on high-frequency Counter-flow Plasma Synthetic Jet Actuator (CPSJA). The main purpose of this investigation is to verify if its control authority can be enhanced by the jet/shock interaction. We use a blunt nose to generate a bow shock, a step on a flat plate to introduce a massive separation in a Mach 2 wind tunnel, and the CPSJA to generate Plasma Synthetic Jet (PSJ). In this study, pulsed capacitive discharge is provided for an array of CPSJAs, which makes the actuation (discharge) frequency f1 = 1 kHz, f2 = 2 kHz and f3 = 3 kHz. We use the high-speed schlieren imaging and fast response pressure transducers as well as a numerical simulation to investigate the quiescent PSJ properties, the interaction between the jet and bow shock, and its disturbance effect on the downstream separated region. The schlieren images show that PSJ is characterized by a succession of vortex rings; the jet strength weakens with the increase of frequency. A 4.5 mN jet thrust is found for all the frequencies. The simulation results show that jet/shock interaction produces vorticity in the vortex ring of the jet, enhancing turbulent mixing in PSJ so that a great deal of momentum is produced into the flow. We found the downstream flow is significantly disturbed by the enhanced actuation. Actuation with frequency of f2, f3 which is close to the natural frequency fn of the separation bubble suppresses the separation with the upstream laminar boundary layer being periodically attenuated, which has a better control effect than f1. The control effect is sensitive to the position where PSJ interacts with the shear layer, but the amount of energy deposited in one pulse is not crucial in a separation reduction in the experiment.

  10. Design and Analysis of Horizontal Axial Flow Motor Shroud

    Science.gov (United States)

    Wang, Shiming; Shen, Yu

    2018-01-01

    The wind turbine diffuser can increase the wind energy utilization coefficient of the wind turbine, and the addition of the shroud to the horizontal axis wind turbine also plays a role of accelerating the flow of the condensate. First, the structure of the shroud was designed and then modeled in gambit. The fluent software was used to establish the mathematical model for simulation. The length of the shroud and the opening angle of the shroud are analyzed to determine the best shape of the shroud. Then compared the efficiency with or without the shroud, through the simulation and the experiment of the water tank, it is confirmed that the horizontal axis of the shroud can improve the hydrodynamic performance.

  11. Experimental analysis of flow structure in contra-rotating axial flow pump designed with different rotational speed concept

    Science.gov (United States)

    Cao, Linlin; Watanabe, Satoshi; Imanishi, Toshiki; Yoshimura, Hiroaki; Furukawa, Akinori

    2013-08-01

    As a high specific speed pump, the contra-rotating axial flow pump distinguishes itself in a rear rotor rotating in the opposite direction of the front rotor, which remarkably contributes to the energy conversion, the reduction of the pump size, better hydraulic and cavitation performances. However, with two rotors rotating reversely, the significant interaction between blade rows was observed in our prototype contra-rotating rotors, which highly affected the pump performance compared with the conventional axial flow pumps. Consequently, a new type of rear rotor was designed by the rotational speed optimization methodology with some additional considerations, aiming at better cavitation performance, the reduction of blade rows interaction and the secondary flow suppression. The new rear rotor showed a satisfactory performance at the design flow rate but an unfavorable positive slope of the head — flow rate curve in the partial flow rate range less than 40% of the design flow rate, which should be avoided for the reliability of pump-pipe systems. In the present research, to understand the internal flow field of new rear rotor and its relation to the performances at the partial flow rates, the velocity distributions at the inlets and outlets of the rotors are firstly investigated. Then, the boundary layer flows on rotor surfaces, which clearly reflect the secondary flow inside the rotors, are analyzed through the limiting streamline observations using the multi-color oil-film method. Finally, the unsteady numerical simulations are carried out to understand the complicated internal flow structures in the rotors.

  12. Effect of blade sweep on inlet flow in axial compressor cascades

    Directory of Open Access Journals (Sweden)

    Hao Chang

    2015-02-01

    Full Text Available This paper presents comparative numerical studies to investigate the effects of blade sweep on inlet flow in axial compressor cascades. A series of swept and straight cascades was modeled in order to obtain a general understanding of the inlet flow field that is induced by sweep. A computational fluid dynamics (CFD package was used to simulate the cascades and obtain the required three-dimensional (3D flow parameters. A circumferentially averaged method was introduced which provided the circumferential fluctuation (CF terms in the momentum equation. A program for data reduction was conducted to obtain a circumferentially averaged flow field. The influences of the inlet flow fields of the cascades were studied and spanwise distributions of each term in the momentum equation were analyzed. The results indicate that blade sweep does affect inlet radial equilibrium. The characteristic of radial fluid transfer is changed and thus influencing the axial velocity distributions. The inlet flow field varies mainly due to the combined effect of the radial pressure gradient and the CF component. The axial velocity varies consistently with the incidence variation induced by the sweep, as observed in the previous literature. In addition, factors that might influence the radial equilibrium such as blade camber angles, solidity and the effect of the distance from the leading edge are also taken into consideration and comparatively analyzed.

  13. Fluidelastic vibration of cylinder arrays in axial and cross flow--state of the art

    International Nuclear Information System (INIS)

    Paidoussis, M.P.

    1981-01-01

    A critical assessment of the state of the art for flow-induced vibrations of cylinder arrays in cross and axial flow is presented. An historical review highlights the contributions which advanced understanding of the flow-induced vibration phenomena involved and/or predictive ability. In the case of axial-flow-induced vibration, the absence of separated flow regions has contributed towards the development of analytical predictive tools. The designer may predict the onset of fluidelastic instabilities, which generally occur at very high flow velocities, with greater confidence. In contrast, in the case of cross-flow-induced vibration, the complexity of the flow has encouraged more heuristic approaches to be adopted. The state of the art in this case is discussed with the aid of a new classification of the flow-induced vibration phenomena involved, to unify and clarify the contradictory claims facing the designer. It is concluded that, although the physical understanding of cross-flow-induced vibration phenomena is not good, useful design guidelines do exist. These are capable of predicting vibration characteristics to within a factor of 2 to 10. A comprehensive bibliography is included. 115 refs

  14. Axial Fan Blade Vibration Assessment under Inlet Cross-Flow Conditions Using Laser Scanning Vibrometry

    Directory of Open Access Journals (Sweden)

    Till Heinemann

    2017-08-01

    Full Text Available In thermal power plants equipped with air-cooled condensers (ACCs, axial cooling fans operate under the influence of ambient flow fields. Under inlet cross-flow conditions, the resultant asymmetric flow field is known to introduce additional harmonic forces to the fan blades. This effect has previously only been studied numerically or by using blade-mounted strain gauges. For this study, laser scanning vibrometry (LSV was used to assess fan blade vibration under inlet cross-flow conditions in an adapted fan test rig inside a wind tunnel test section. Two co-rotating laser beams scanned a low-pressure axial fan, resulting in spectral, phase-resolved surface vibration patterns of the fan blades. Two distinct operating points with flow coefficients of 0.17 and 0.28 were examined, with and without inlet cross-flow influence. While almost identical fan vibration patterns were found for both reference operating points, the overall blade vibration increased by 100% at the low fan flow rate as a result of cross-flow, and by 20% at the high fan flow rate. While numerically predicted natural frequency modes could be confirmed from experimental data as minor peaks in the vibration amplitude spectrum, they were not excited significantly by cross-flow. Instead, primarily higher rotation-rate harmonics were amplified; that is, a synchronous blade-tip flapping was strongly excited at the blade-pass frequency.

  15. Interaction between Two-Dimensional Sonic Jets and Supersonic Flow to Model Heat Addition in a Supersonic Combustor.

    Science.gov (United States)

    1987-12-01

    pressure between two Mach 3 flows approachs absolute zero , Pb=.04 psia for Pop= 100 psia. However, viscous effects increase the base pressure. Korst theory...this problem. Acetylene was chosen as the primary fuel because of its relatively low spontaneous ignition temperature, 581 degrees Farenheit , and high...with the corresponding test section. The exit dimension could be adjusted with a screw mechanism from zero to 2.625 inches. A bracket to hold a .250

  16. Ultra-high-speed digital in-line holography system applied to particle-laden supersonic underexpanded jet flows

    DEFF Research Database (Denmark)

    Ingvorsen, Kristian Mark; Buchmann, Nicolas A.; Soria, Julio

    2012-01-01

    -fluid interactions in these high-speed flows special high performance techniques are required. The present work is an investigation into the applicability of magnified digital in-line holography with ultra-high-speed recording for the study of three-dimensional supersonic particle-laden flows. An optical setup...... × 10mm calibration grid and 120 μm particles on a glass plate. In the case with the calibration grid it is found that accurate determination of the depthwise position is possible. However, when applying the same technique to the particle target, significant problems are encountered. © 2012...

  17. The Co-axial Flow of Injectable Solid Hydrogels with Encapsulated Cells

    Science.gov (United States)

    Stewart, Brandon; Pochan, Darrin; Sathaye, Sameer

    2013-03-01

    Hydrogels are quickly becoming an important biomaterial that can be used for the safe, localized injection of cancer drugs, the injection of stem cells into areas of interest or other biological applications. Our peptides can be self-assembled in a syringe where they form a gel, sheared by injection and, once in the body, immediately reform a localized pocket of stiff gel. My project has been designed around looking at the possibility of having a co-axial strand, in which one gel can surround another. This co-axial flow can be used to change the physical properties of our gel during injection, such as stiffening our gel using hyaluronic acid or encapsulating cells in the gel and surrounding the gel with growth medium or other biological factors. Rheology on hyaluron stiffened gels and cells encapsulated in gels was performed for comparison to the results from co-axial flow. Confocal microscopy was used to examine the coaxial gels after flow and to determine how the co-axial nature of the gels is affected by the concentration of peptide.

  18. A numerical investigation on the unstable flow in a single stage of an axial compressors

    CERN Document Server

    Farhanieh, B; Ghorbanian, K

    2003-01-01

    An unsteady two-dimensional finite-volume solver was developed based on Van Leer's flux splitting algorithm in conjunction with sup M onotonic Upstream Scheme for Conservation Laws sup l imiters to improve the order of accuracy and the two-layer Baldwin-Lomax turbulence model was also implemented. Two test cases were prepared to validate the solver. The computed results were compared with the experimental data and a good agreement validated the solver. Finally, the solver was used for the flow through a multi-blade stage of an axial compressor in its off-design condition. The computed results showed a rotating stall-like instability with a periodic behavior. To investigate the flow properties during the instability condition, the flow pattern, vortex properties and the axial velocity were studied. It was concluded that the instability vortices in the multi-blade cascade do not have the same generation history of the separated vortices over a single body.

  19. Investigation of flow in axial turbine stage without shroud-seal

    Directory of Open Access Journals (Sweden)

    Straka Petr

    2015-01-01

    Full Text Available This article deals with investigation of the influence of the radial gaps on the efficiency of the axial turbine stage. The investigation was carried out for the axial stage of the low-power turbine with the drum-type rotor without the shroud. In this configuration the flow through the radial gap under the hub-end of the stator blades and above the tip-end of the rotor blades leads to generation of the strong secondary flows, which decrease the efficiency of the stage. This problem was studied by experiment as well as by numerical modelling. The experiment was performed on the test rig equipped with the water brake dynamometer, torque meter and rotatable stator together with the linear probe manipulator. Numerical modelling was carried out for both the steady flow using the ”mixing plane” interface and the unsteady flow using the ”sliding mesh” interface between the stator and rotor wheels. The influence of the radial gap was studied in two configuration a positive and b negative overlapping of the tip-ends of the rotor blades. The efficiency of the axial stage in dependence on the expansion ratio, velocity ratio and the configuration as well as the details of the flow fields are presented in this paper.

  20. CFD Simulation and Optimization of Very Low Head Axial Flow Turbine Runner

    Directory of Open Access Journals (Sweden)

    Yohannis Mitiku Tobo

    2015-10-01

    Full Text Available The main objective of this work is Computational Fluid Dynamics (CFD modelling, simulation and optimization of very low head axial flow turbine runner  to be used to drive  a centrifugal pump of turbine-driven pump. The ultimate goal of the optimization is to produce a power of 1kW at head less than 1m from flowing  river to drive centrifugal pump using mechanical coupling (speed multiplier gear directly. Flow rate, blade numbers, turbine rotational speed, inlet angle are parameters used in CFD modeling,  simulation and design optimization of the turbine runner. The computed results show that power developed by a turbine runner increases with increasing flow rate. Pressure inside the turbine runner increases with flow rate but, runner efficiency increases for some flow rate and almost constant thereafter. Efficiency and power developed by a runner drops quickly if turbine speed increases due to higher pressure losses and conversion of pressure energy to kinetic energy inside the runner. Increasing blade number increases power developed but, efficiency does not increase always. Efficiency increases for some blade number and drops down due to the fact that  change in direction of the relative flow vector at the runner exit, which decreases the net rotational momentum and increases the axial flow velocity.

  1. Flutter analysis of hybrid metal-composite low aspect ratio trapezoidal wings in supersonic flow

    Directory of Open Access Journals (Sweden)

    Shokrollahi Saeed

    2017-02-01

    Full Text Available An effective 3D supersonic Mach box approach in combination with non-classical hybrid metal-composite plate theory has been used to investigate flutter boundaries of trapezoidal low aspect ratio wings. The wing structure is composed of two main components including aluminum material (in-board section and laminated composite material (out-board section. A global Ritz method is used with simple polynomials being employed as the trial functions. The most important objective of the present research is to study the effect of composite to metal proportion of hybrid wing structure on flutter boundaries in low supersonic regime. In addition, the effect of some important geometrical parameters such as sweep angle, taper ratio and aspect ratio on flutter boundaries were studied. The results obtained by present approach for special cases like pure metallic wings and results for high supersonic regime based on piston theory show a good agreement with those obtained by other investigators.

  2. Experimental Assessment of the Hydraulics of a Miniature Axial-Flow Left Ventricular Assist Device

    Science.gov (United States)

    Smith, P. Alex; Cohn, William; Metcalfe, Ralph

    2017-11-01

    A minimally invasive partial-support left ventricular assist device (LVAD) has been proposed with a flow path from the left atrium to the arterial system to reduce left ventricular stroke work. In LVAD design, peak and average efficiency must be balanced over the operating range to reduce blood trauma. Axial flow pumps have many geometric parameters. Until recently, testing all these parameters was impractical, but modern 3D printing technology enables multi-parameter studies. Following theoretical design, experimental hydraulic evaluation in steady state conditions examines pressure, flow, pressure-flow gradient, efficiency, torque, and axial force as output parameters. Preliminary results suggest that impeller blades and stator vanes with higher inlet angles than recommended by mean line theory (MLT) produce flatter gradients and broader efficiency curves, increasing compatibility with heart physiology. These blades also produce less axial force, which reduces bearing load. However, they require slightly higher torque, which is more demanding of the motor. MLT is a low order, empirical model developed on large pumps. It does not account for the significant viscous losses in small pumps like LVADs. This emphasizes the importance of experimental testing for hydraulic design. Roderick D MacDonald Research Fund.

  3. Development and operation of an integrated sampling probe and gas analyzer for turbulent mixing studies in complex supersonic flows

    Science.gov (United States)

    Wiswall, John D.

    For many aerospace applications, mixing enhancement between co-flowing streams has been identified as a critical and enabling technology. Due to short fuel residence times in scramjet combustors, combustion is limited by the molecular mixing of hydrogen (fuel) and air. Determining the mixedness of fuel and air in these complex supersonic flowfields is critical to the advancement of novel injection schemes currently being developed at UTA in collaboration with NASA Langley and intended to be used on a future two-stage to orbit (~Mach 16) hypersonic air-breathing vehicle for space access. Expanding on previous work, an instrument has been designed, fabricated, and tested in order to measure mean concentrations of injected helium (a passive scalar used instead of hazardous hydrogen) and to quantitatively characterize the nature of the high-frequency concentration fluctuations encountered in the compressible, turbulent, and high-speed (up to Mach 3.5) complex flows associated with the new supersonic injection schemes. This important high-frequency data is not yet attainable when employing other techniques such as Laser Induced Fluorescence, Filtered Rayleigh Scattering or mass spectroscopy in the same complex supersonic flows. The probe operates by exploiting the difference between the thermodynamic properties of two species through independent massflow measurements and calibration. The probe samples isokinetically from the flowfield's area of interest and the helium concentration may be uniquely determined by hot-film anemometry and internally measured stagnation conditions. The final design has a diameter of 0.25" and is only 2.22" long. The overall accuracy of the probe is 3% in molar fraction of helium. The frequency response of mean concentration measurements is estimated at 103 Hz, while high-frequency hot-film measurements were conducted at 60 kHz. Additionally, the work presents an analysis of the probe's internal mixing effects and the effects of the spatial

  4. Flow of conductive fluid between parallel disks in an axial magnetic field, (2)

    International Nuclear Information System (INIS)

    Koike, Kazuo; Kamiyama, Shin-ichi

    1981-01-01

    The basic characteristics of the flow in a disc type non-equilibrium MHD power generator were studied. The flow of conductive fluid between parallel disks in an axial magnetic field was analyzed as the subsonic MHD turbulent approach flow of viscous compressible fluid, taking the electron temperature dependence of conductivity into account. The equations for the flow between disks are described by ordinary electromagnetic hydrodynamic approximation. Practical numerical calculation was performed for the non-equilibrium argon plasma seeded with potassium. The effects of the variation of characteristics of non-equilibrium plasma in main flow and boundary layer on the flow characteristics became clear. The qualitative tendency of the properties of MHD generators can be well explained. (Kato, T.)

  5. Axial slit wall effect on the flow instability and heat transfer in rotating concentric cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dong; Chao, Chang Qing; Wang, Ying Ze; Zhu, Fang Neng [School of Energy and Power Engineering, Jiangsu University, Zhenjiang (China); Kim, Hyoung Bum [School of Mechanical and Aerospace Engineering, Gyeongsang National University, Jinju (Korea, Republic of)

    2016-12-15

    The slit wall effect on the flow instability and heat transfer characteristics in Taylor-Couette flow was numerically studied by changing the rotating Reynolds number and applying the negative temperature gradient. The concentric cylinders with slit wall are seen in many rotating machineries. Six different models with the slit number 0, 6, 9, 12, 15 and 18 were investigated in this study. The results show the axial slit wall enhances the Taylor vortex flow and suppresses the azimuthal variation of wavy Taylor vortex flow. When negative temperature gradient exists, the results show that the heat transfer augmentation appears from laminar Taylor vortex to turbulent Taylor flow regime. The heat transfer enhancement become stronger as increasing the Reynolds number and slit number. The larger slit number model also accelerates the flow transition regardless of the negative temperature gradient or isothermal condition.

  6. Axial slit wall effect on the flow instability and heat transfer in rotating concentric cylinders

    International Nuclear Information System (INIS)

    Liu, Dong; Chao, Chang Qing; Wang, Ying Ze; Zhu, Fang Neng; Kim, Hyoung Bum

    2016-01-01

    The slit wall effect on the flow instability and heat transfer characteristics in Taylor-Couette flow was numerically studied by changing the rotating Reynolds number and applying the negative temperature gradient. The concentric cylinders with slit wall are seen in many rotating machineries. Six different models with the slit number 0, 6, 9, 12, 15 and 18 were investigated in this study. The results show the axial slit wall enhances the Taylor vortex flow and suppresses the azimuthal variation of wavy Taylor vortex flow. When negative temperature gradient exists, the results show that the heat transfer augmentation appears from laminar Taylor vortex to turbulent Taylor flow regime. The heat transfer enhancement become stronger as increasing the Reynolds number and slit number. The larger slit number model also accelerates the flow transition regardless of the negative temperature gradient or isothermal condition

  7. Mixing and axial dispersion in Taylor-Couette flow: experimental and numerical study

    International Nuclear Information System (INIS)

    Nemri, M.

    2013-01-01

    Taylor-Couette flows between two concentric cylinders have great potential applications in chemical engineering. They are particularly convenient for two-phase small scale devices enabling solvent extraction operations. An experimental device was designed with this idea in mind. It consists of two concentric cylinders with the inner one rotating and the outer one fixed. Taylor-Couette flows take place in the annular gap between them, and are known to evolve towards turbulence through a sequence of successive instabilities. Macroscopic quantities, such as axial dispersion and mixing index, are extremely sensitive to these flow structures, which may lead to flawed modelling of the coupling between hydrodynamics and mass transfer. This particular point has been studied both experimentally and numerically. The flow and mixing have been characterized by means of flow visualization and simultaneous PIV (Particle Imaging Velocimetry) and PLIF (Planar Laser Induced Fluorescence) measurements. PLIF visualizations showed clear evidences of different transport mechanisms including 'intra-vortex mixing' and 'inter-vortex mixing'. Under WVF and MWVF regimes, intra-vortex mixing is controlled by chaotic advection, due to the 3D nature of the flow, while inter-vortex transport occurs due to the presence of waves between neighboring vortices. The combination of these two mechanisms results in enhanced axial dispersion. We showed that hysteresis may occur between consecutive regimes depending on flow history and this may have a significant effect on mixing for a given Reynolds number. The axial dispersion coefficient Dx evolution along the successive flow states was investigated thanks to dye Residence Time Distribution measurements (RTD) and particle tracking (DNS). Both experimental and numerical results have confirmed the significant effect of the flow structure and history on axial dispersion. Our study confirmed that the commonly used 1-parameter chemical engineering models (e

  8. Development of a magnetic fluid shaft seal for an axial-flow blood pump.

    Science.gov (United States)

    Sekine, Kazumitsu; Mitamura, Yoshinori; Murabayashi, Shun; Nishimura, Ikuya; Yozu, Ryouhei; Kim, Dong-Wook

    2003-10-01

    A rotating impeller in a rotary blood pump requires a supporting system in blood, such as a pivot bearing or magnetic suspension. To solve potential problems such as abrasive wear and complexity of a supporting system, a magnetic fluid seal was developed for use in an axial-flow blood pump. Sealing pressures at motor speeds of up to 8,000 rpm were measured with the seal immersed in water or bovine blood. The sealing pressure was about 200 mm Hg in water and blood. The calculated theoretical sealing pressure was about 230 mm Hg. The seal remained perfect for 743 days in a static condition and for 180+ days (ongoing test) at a motor speed of 7,000 rpm. Results of measurement of cell growth activity indicated that the magnetic fluid has no negative cytological effects. The specially designed magnetic fluid shaft seal is useful for an axial-flow blood pump.

  9. Development of a miniaturized mass-flow meter for an axial flow blood pump based on computational analysis.

    Science.gov (United States)

    Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi

    2011-09-01

    In order to monitor the condition of patients with implantable left ventricular assist systems (LVAS), it is important to measure pump flow rate continuously and noninvasively. However, it is difficult to measure the pump flow rate, especially in an implantable axial flow blood pump, because the power consumption has neither linearity nor uniqueness with regard to the pump flow rate. In this study, a miniaturized mass-flow meter for discharged patients with an implantable axial blood pump was developed on the basis of computational analysis, and was evaluated in in-vitro tests. The mass-flow meter makes use of centrifugal force produced by the mass-flow rate around a curved cannula. An optimized design was investigated by use of computational fluid dynamics (CFD) analysis. On the basis of the computational analysis, a miniaturized mass-flow meter made of titanium alloy was developed. A strain gauge was adopted as a sensor element. The first strain gauge, attached to the curved area, measured both static pressure and centrifugal force. The second strain gauge, attached to the straight area, measured static pressure. By subtracting the output of the second strain gauge from the output of the first strain gauge, the mass-flow rate was determined. In in-vitro tests using a model circulation loop, the mass-flow meter was compared with a conventional flow meter. Measurement error was less than ±0.5 L/min and average time delay was 0.14 s. We confirmed that the miniaturized mass-flow meter could accurately measure the mass-flow rate continuously and noninvasively.

  10. Triple-probe method applied to the direct display of plasma parameters in a supersonic flowing continuum plasma

    International Nuclear Information System (INIS)

    Ogram, G.L.; Chang, J.; Hobson, R.M.

    1979-01-01

    The calibration of electrostatic triple-probe voltage and current response in a supersonic continuum plasma has been carried out using a low-pressure shock tube. The electron temperature T/sub e/ and charge number density N/sub e/ are compared to probe voltage and current response, respectively, for a useful range of plasma parameters (1 13 13 is the nondimensional probe voltage). The dependence of probe response on Debye ratio R/sub p//lambda/sub D/ and various flow parameters was investigated. The probe voltage response was found to depend significantly on the Debye ratio. Expressions for electron temperature determination by triple probe are presented

  11. SLIPPER PERFORMANCE INVESTIGATION IN AXIAL PISTON PUMPS AND MOTORS-FLOW AND VISCOUS POWER LOSSES

    Directory of Open Access Journals (Sweden)

    A. Osman KURBAN

    1997-01-01

    Full Text Available In this study, the slippers being the most effective on the performance of swash plate type axial piston pumps and motors, which is a good example of hydrodynamic-hydrostatic bearing applications, have been investigated. With respect to this, having derived the viscous moment loss, viscous flow leakage loss and power loss equations, the variations of these parameters under different operating conditions have been examined experimentally.

  12. Swarm intelligence based on modified PSO algorithm for the optimization of axial-flow pump impeller

    International Nuclear Information System (INIS)

    Miao, Fuqing; Kim, Chol Min; Ahn, Seok Young; Park, Hong Seok

    2015-01-01

    This paper presents a multi-objective optimization of the impeller shape of an axial-flow pump based on the Modified particle swarm optimization (MPSO) algorithm. At first, an impeller shape was designed and used as a reference in the optimization process then NPSHr and η of the axial flow pump were numerically investigated by using the commercial software ANSYS with the design variables concerning hub angle β_h, chord angle β_c, cascade solidity of chord σ_c and maximum thickness of blade H. By using the Group method of data handling (GMDH) type neural networks in commercial software DTREG, the corresponding polynomial representation for NPSHr and η with respect to the design variables were obtained. A benchmark test was employed to evaluate the performance of the MPSO algorithm in comparison with other particle swarm algorithms. Later the MPSO approach was used for Pareto based optimization. Finally, the MPSO optimization result and CFD simulation result were compared in a re-evaluation process. By using swarm intelligence based on the modified PSO algorithm, better performance pump with higher efficiency and lower NPSHr could be obtained. This novel algorithm was successfully applied for the optimization of axial-flow pump impeller shape design

  13. Swarm intelligence based on modified PSO algorithm for the optimization of axial-flow pump impeller

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Fuqing; Kim, Chol Min; Ahn, Seok Young [Pusan National University, Busan (Korea, Republic of); Park, Hong Seok [Ulsan University, Ulsan (Korea, Republic of)

    2015-11-15

    This paper presents a multi-objective optimization of the impeller shape of an axial-flow pump based on the Modified particle swarm optimization (MPSO) algorithm. At first, an impeller shape was designed and used as a reference in the optimization process then NPSHr and η of the axial flow pump were numerically investigated by using the commercial software ANSYS with the design variables concerning hub angle β{sub h}, chord angle β{sub c}, cascade solidity of chord σ{sub c} and maximum thickness of blade H. By using the Group method of data handling (GMDH) type neural networks in commercial software DTREG, the corresponding polynomial representation for NPSHr and η with respect to the design variables were obtained. A benchmark test was employed to evaluate the performance of the MPSO algorithm in comparison with other particle swarm algorithms. Later the MPSO approach was used for Pareto based optimization. Finally, the MPSO optimization result and CFD simulation result were compared in a re-evaluation process. By using swarm intelligence based on the modified PSO algorithm, better performance pump with higher efficiency and lower NPSHr could be obtained. This novel algorithm was successfully applied for the optimization of axial-flow pump impeller shape design.

  14. Effect of geometry on the downstream flow topology of a micro ramp in a supersonic turbulent boundary layer : An experimental study

    NARCIS (Netherlands)

    Tambe, S.S.; Schrijer, F.F.J.; van Oudheusden, B.W.

    2017-01-01

    The physical relation between the geometry and the flow topology of the wake of a micro ramp is investigated by means of a parametric study. Various micro ramp geometries are placed in a supersonic turbulent boundary layer at a free-stream Mach number of 2. The flow field is measured with schlieren

  15. Estimation of the supplementary axial wall stress generated at peak flow by an arterial stenosis

    International Nuclear Information System (INIS)

    Doriot, Pierre-Andre

    2003-01-01

    Mechanical stresses in arterial walls are known to be implicated in the development of atherosclerosis. While shear stress and circumferential stress have received a lot of attention, axial stress has not. Yet, stenoses can be intuitively expected to produce a supplementary axial stress during flow systole in the region immediately proximal to the constriction cone. In this paper, a model for the estimation of this effect is presented, and ten numerical examples are computed. These examples show that the cyclic increase in axial stress can be quite considerable in severe stenoses (typically 120% or more of the normal stress value). This result is in best agreement with the known mechanical or morphological risk factors of stenosis progression and restenosis (hypertension, elevated pulse pressure, degree of stenosis, stenosis geometry, residual stenosis, etc). The supplementary axial stress generated by a stenosis might create the damages in the endothelium and in the elastic membranes which potentiate the action of the other risk factors (hyperlipidaemia, diabetes, etc). It could thus be an important cause of stenosis progression and of restenosis

  16. Estimation of the supplementary axial wall stress generated at peak flow by an arterial stenosis

    Science.gov (United States)

    Doriot, Pierre-André

    2003-01-01

    Mechanical stresses in arterial walls are known to be implicated in the development of atherosclerosis. While shear stress and circumferential stress have received a lot of attention, axial stress has not. Yet, stenoses can be intuitively expected to produce a supplementary axial stress during flow systole in the region immediately proximal to the constriction cone. In this paper, a model for the estimation of this effect is presented, and ten numerical examples are computed. These examples show that the cyclic increase in axial stress can be quite considerable in severe stenoses (typically 120% or more of the normal stress value). This result is in best agreement with the known mechanical or morphological risk factors of stenosis progression and restenosis (hypertension, elevated pulse pressure, degree of stenosis, stenosis geometry, residual stenosis, etc). The supplementary axial stress generated by a stenosis might create the damages in the endothelium and in the elastic membranes which potentiate the action of the other risk factors (hyperlipidaemia, diabetes, etc). It could thus be an important cause of stenosis progression and of restenosis.

  17. Pressure drop redistribution experimental analysis in axial flow along the bundles

    International Nuclear Information System (INIS)

    Bastos Franco, C. de; Carajilescov, P.

    1992-01-01

    Fuel elements of PWR type nuclear reactors are composed of rod bundles, arranged in square arrays, held by grid type spacers. The coolant flows axially along the bundle. Although such elements are laterally open, pressure drop experiments are performed in closed type test sections, originating the appearance of subchannels of different geometries. Utilizing a test section of two bundles of 4 x 4 pins and performing experiments with and without separation between the bundles, the flow redistribution factors, the friction, and the grid drag coefficients were determined for the interior subchannels. 03 refs, 06 figs, 02 tabs. (B.C.A.)

  18. Inception mechanism and suppression of rotating stall in an axial-flow fan

    International Nuclear Information System (INIS)

    Nishioka, T

    2013-01-01

    Inception patterns of rotating stall at two stagger-angle settings for the highly loaded rotor blades were experimentally investigated in a low-speed axial-flow fan. Rotor-tip flow fields were also numerically investigated to clarify the mechanism behind the rotating stall inception. The stall inception patterns depended on the rotor stagger-angle settings. The stall inception from a rotating instability was confirmed at the design stagger-angle settings. The stall inception from a short length-scale stall cell (spike) was also confirmed at the small stagger-angle setting. The spillage of tip-leakage flow and the tip-leakage vortex breakdown influence the rotating stall inception. An air-separator has been developed based on the clarified inception mechanism of rotating stall. The rotating stall was suppressed by the developed air-separator, and the operating range of fan was extended towards low flow rate. The effect of developed air-separator was also confirmed by application to a primary air fan used in a coal fired power plant. It is concluded from these results that the developed air-separator can provide a wide operating range for an axial-flow fan

  19. Hybrid Simulation of Supersonic Flow of Weakly Ionized Plasma along Open Field Magnetic Line Effect of Background Pressure

    Science.gov (United States)

    Laosunthara, Ampan; Akatsuka, Hiroshi

    2016-09-01

    In previous study, we experimentally examined physical properties of supersonic flow of weakly ionized expanding arc-jet plasma through an open magnetic field line (Bmax 0.16T). We found supersonic velocity of helium plasma up to Mach 3 and the space potential drop at the end of the magnets. To understand the plasma in numerical point of view, the flows of ion and neutral are treated by particle-based Direct Simulation Monte Carlo (DSMC) method, electron is treated as a fluid. The previous numerical study, we assumed 2 conditions. Ion and electron temperatures were the same (LTE condition). Ion and electron velocities were the same (current-free condition). We found that ion velocity decreased by collision with residual gas molecules (background pressure). We also found that space potential changing with background pressure. In other words, it was indicated that electric field exists and the current-free assumption is not proper. In this study, we add electron continuity and electron momentum equations to obtain electron velocity and space potential. We find that space potential changing with background pressure slightly. It is indicated that electron is essential to space potential formation than ion.

  20. Filtered Rayleigh scattering mixing measurements of merging and non-merging streamwise vortex interactions in supersonic flow

    Science.gov (United States)

    Ground, Cody R.; Gopal, Vijay; Maddalena, Luca

    2018-04-01

    By introducing large-scale streamwise vortices into a supersonic flow it is possible to enhance the rate of mixing between two fluid streams. However, increased vorticity content alone does not explicitly serve as a predictor of mixing enhancement. Additional factors, particularly the mutual interactions occurring between neighboring vortical structures, affect the underlying fundamental physics that influence the rate at which the fluids mix. As part of a larger systematic study on supersonic streamwise vortex interactions, this work experimentally quantifies the average rate of mixing of helium and air in the presence of two separate modes of vortex interaction, the merging and non-merging of a pair of co-rotating vortices. In these experiments vortex-generating expansion ramps are placed on a strut injector. The freestream Mach number is set at 2.5 and helium is injected as a passive scalar. Average injectant mole fractions at selected flow planes downstream of the injector are measured utilizing the filtered Rayleigh scattering technique. The filtered Rayleigh scattering measurements reveal that, in the domain surveyed, the merging vortex interaction strongly displaces the plume from its initial horizontal orientation while the non-merging vortex interaction more rapidly mixes the helium and air. The results of the current experiments are consistent with associated knowledge derived from previous analyses of the two studied configurations which have included the detailed experimental characterization of entrainment, turbulent kinetic energy, and vorticity of both modes of vortex interaction.

  1. Calculation of the separate parameters of a countercurrent centrifuge with an axially varying internal flow

    International Nuclear Information System (INIS)

    Migliavacca, S.C.P.

    1991-01-01

    A review of the isotope separation theory for the countercurrent gas centrifuge is presented. The diffusion-convection equation is solved according to the ONSAGER-COHEN solution for the constant internal flow and adapted to an axially varying countercurrent flow. Based on that theory, a numerical program is developed for the calculation of the isotopic compositions and the separative parameters of the centrifuge. The influence of the feed flow and the internal parameters. Like cut and countercurrent flow, on the separative parameters is then analysed for a model-centrifuge, which afterwards is optimized with respect to its separative power. Finally, a comparison between the present calculation procedure and some published results, provided by different theories, shows deviations lower then 20%. (author)

  2. Voluminous lava flow from Axial Seamount's south rift constrains extension rate on northern Vance Segment

    Science.gov (United States)

    Le Saout, M.; Clague, D. A.; Paduan, J. B.

    2017-12-01

    Axial Seamount is characterized by a robust magma supply resulting from the interaction between the Cobb hotspot and the Juan de Fuca Ridge. During the last two decades, magmatic activity was focused within the summit caldera and upper and middle portions of the two rift zones, with eruptions in 1998, 2011, and 2015. However, the distal ends of both rift zones have experienced numerous eruptions in the past. The most voluminous flows are located near the extreme ends, greater than 40 kilometers from the caldera. Where Axial's South Rift Zone overlaps with the Vance Segment of the Juan de Fuca Ridge, the 2015 MBARI expedition mapped 16 km2 of the seafloor with our AUV, and collected 33 rocks and 33 sediment cores during two ROV dives. The data were used to confirm the boundaries of an extensive flow tentatively identified using modern ship based bathymetry. This flow is 18 km wide and 6 km long for a total surface area of 63 km2. The flow is modified by superficial ( 5 m deep) and deep (25 to 45 m deep) subsidence pits, with the deepest pits giving an indication of the minimum thickness of the flow. The maximum thickness of 100 m is measured at the margins of the flow. We thus estimate a volume between 2.5 and 6 km3, making this flow the most voluminous known on the global mid ocean ridge system. The minimum volume is equivalent to the present volume of the summit caldera. Radiocarbon ages of foraminifera from the basal sections of sediment cores suggest that this flow is 1000 years old. This flow travelled east and partially filled the axial valley of the adjacent Vance Segment. Since emplacement, this part of the flow has experienced deformation by fissures and faults aligned with the trend of the Vance Segment. The horizontal extension across these features allows us to estimate a local deformation rate of 3 cm/yr of tectonic extension on the northern end of Vance Segment during the last 1000 years.

  3. An effect of downcomer feedwater fraction on steam generator performance with an axial flow economizer

    International Nuclear Information System (INIS)

    Jung, Byung Ryul; Park, Hu Shin; Chung, Duk Muk; Baik, Se Jin

    2000-01-01

    The effects of feedwater flow fraction introduced into the downcomer region have been evaluated in terms of steam generator performance based on the same steam generator thermal output for the Korea Standard Nuclear Power Plant (KSNP) steam generator. The KSNP steam generator design has an integral axial flow economizer which is designed such that most of the feedwater is introduced through the economizer region and only a portion of feedwater through the downcomer region. The feedwater flow introduced into the downcomer region is not normally controlled during the power operation. However, the actual feedwater fraction into the downcomer region may differ from the design flow depending on the as-built system and component characteristics. Investigated in this paper were the downcomer feedwater flow effects on the steam pressure, circulation ratio, internal void fraction and velocity distribution in the tube bundle region at the steady state operation using SAFE and ATHOS3 codes. The results show that the steam pressure increases and the resultant total feedwater flow increases with reducing the downcomer feedwater flow fraction for the same steam generator thermal output. The slight off-design condition of downcomer feedwater flow fraction renders no significant effect on the steam generator performance such as circulation ratios, steam qualities, void fractions and internal velocity distributions. The evaluation shows that the slight off-design downcomer feedwater flow fraction deviation up to ± 5% is acceptable for the steam generator performance

  4. Study on the Influence of Blade Roughnesson Axial Flow Compressor Stage Performance

    Directory of Open Access Journals (Sweden)

    Shi Xudong

    2017-01-01

    Full Text Available A typically actual inlet stage NASA Stage 36 is chosen to study the influence of surface roughness on axial compressor performance. Firstly, a geometry model is created by blade design software BladeGen using transferred coordinates data of blade profile and flow path. Secondly, validation of simulation model is conducted by comparing computational data and field experiment data. Lastly, SST k-ω turbulence model is chosen to study the influence of blade surface roughness on performance parameters under different work points. It shows that adding roughness will significantly reduce axial compressor stage’s adiabatic efficiency and total pressure ratio and cause stage characteristic map shift toward left. It should not neglect the influence of surface roughness of stator near stall region under 100% design speed; Mach number shows a big difference after adding surface roughness, and it can be considered as a sensibility parameter of roughness.

  5. The mitigation effect of sheared axial flow on the rayleigh-taylor instability in Z-pinch plasma

    International Nuclear Information System (INIS)

    Zhang Yang

    2005-01-01

    A magnetohydrodynamic formulation is derived to investigate the mitigation effects of the sheared axial flow on the Rayleigh-Taylor (RT) instability in Z-pinch plasma. The dispersion relation of the compressible model is given. The mitigation effects of sheared axial flow on the Rayleigh-Taylor instability of Z-pinch plasma in the compressible and incompressible models are compared respectively, and the effect of compressible on the instability of system with sheared axial flow is discussed. It is found that, compressibility effects can stabilize the Rayleigh-Taylor/Kelvin-Helmholtz (RT/KH) instability, and this allows the sheared axial flow mitigate the RT instability far more effectively. The authors also find that, at the early stage of the implosion, if the temperature of the plasma is not very high, the compressible model is much more suitable to describing the state of system than the incompressible one. (author)

  6. Influence of flow stress choice on the plastic collapse estimation of axially cracked steam generator tubes

    International Nuclear Information System (INIS)

    Tonkovic, Zdenko; Skozrit, Ivica; Alfirevic, Ivo

    2008-01-01

    The influence of the choice of flow stress on the plastic collapse estimation of axially cracked steam generator (SG) tubes is considered. The plastic limit and collapse loads of thick-walled tubes with external axial semi-elliptical surface cracks are investigated by three-dimensional non-linear finite element (FE) analyses. The limit pressure solution as a function of the crack depth, length and tube geometry has been developed on the basis of extensive FE limit load analyses employing the elastic-perfectly plastic material behaviour and small strain theory. Unlike the existing solutions, the newly developed analytical approximation of the plastic limit pressure for thick-walled tubes is applicable to a wide range of crack dimensions. Further, the plastic collapse analysis with a real strain-hardening material model and a large deformation theory is performed and an analytical approximation for the estimation of the flow stress is proposed. Numerical results show that the flow stress, defined by some failure assessment diagram (FAD) methods, depends not only on the tube material, but also on the crack geometry. It is shown that the plastic collapse pressure results, in the case of deeper cracks obtained by using the flow stress as the average of the yield stress and the ultimate tensile strength, can become unsafe

  7. A study on tip leakage vortex dynamics and cavitation in axial-flow pump

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Lei; Zhang, Desheng; Jin, Yongxin; Shi, Weidong [Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013 (China); Esch, B P M van, E-mail: zds@ujs.edu.cn [Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB (Netherlands)

    2017-06-15

    The tip leakage flows and related cavitation in the tip region of an axial-flow pump were investigated in detail using the numerical and experimental methods. The numerical results of the pump model performance were in good agreement with experimental data. The flow structures in the tip clearance were clarified clearly with detailed data involving the axial velocity and turbulent kinetic energy. When depicting the feature of vortex core, the advanced vortex identification method λ {sub 2}-criterion was used. Simultaneously, the minimum tension criterion was also applied to predict the cavitation inception for different flow rates and it is consistent with the distributions of vorticity and pressure in the vortex core. The roll-up process of TLV is highly three-dimensional and the entrainment would follow different paths. Then, both the numerical and experimental approaches show the cavitation patterns for different cavitation conditions, and it also finds that slight cavitation would promote the development of tip leakage vortex (TLV) while the TLV seems to be eliminated for a low cavitation number, especially before a specific location of blade tip due to the blade loading change induced by cavitation possibly. (paper)

  8. Continuous supersonic plasma wind tunnel

    DEFF Research Database (Denmark)

    Andersen, S.A.; Jensen, Vagn Orla; Nielsen, P.

    1968-01-01

    The B field configuration of a Q-device has been modified into a magnetic Laval nozzle. Continuous supersonic plasma flow is observed with M≈3......The B field configuration of a Q-device has been modified into a magnetic Laval nozzle. Continuous supersonic plasma flow is observed with M≈3...

  9. Effect of porous material heating on the drag force of a cylinder with gas-permeable porous inserts in a supersonic flow

    Science.gov (United States)

    Mironov, S. G.; Poplavskaya, T. V.; Kirilovskiy, S. V.

    2017-10-01

    The paper presents the results of an experimental investigation of supersonic flow around a solid cylinder with a gas-permeable porous insert on its front end and of supersonic flow around a hollow cylinder with internal porous inserts in the presence of heating of the porous material. The experiments were performed in a supersonic wind tunnel with Mach number 4.85 and 7 with porous inserts of cellular-porous nickel. The results of measurements on the filtration stand of the air filtration rate through the cellular-porous nickel when it is heated are also shown. For a number of experiments, numerical modeling based on the skeletal model of a cellular-porous material was carried out.

  10. Theoretical study of flow ripple for an aviation axial-piston pump with damping holes in the valve plate

    OpenAIRE

    Guan, Changbin; Jiao, Zongxia; He, Shouzhan

    2014-01-01

    Based on the structure of a certain type of aviation axial-piston pump’s valve plate which adopts a pre-pressurization fluid path (consisting a damping hole, a buffer chamber, and an orifice) to reduce flow ripple, a single-piston model of the aviation axial-piston pump is presented. This single-piston model comprehensively considers fluid compressibility, orifice restriction effect, fluid resistance in the capillary tube, and the leakage flow. Besides, the instantaneous discharge areas used ...

  11. Controlling the position of a stabilized detonation wave in a supersonic gas mixture flow in a plane channel

    Science.gov (United States)

    Levin, V. A.; Zhuravskaya, T. A.

    2017-03-01

    Stabilization of a detonation wave in a stoichiometric hydrogen-air mixture flowing at a supersonic velocity into a plane symmetric channel with constriction has been studied in the framework of a detailed kinetic mechanism of the chemical interaction. Conditions ensuring the formation of a thrust-producing f low with a stabilized detonation wave in the channel are determined. The inf luence of the inf low Mach number, dustiness of the combustible gas mixture supplied to the channel, and output cross-section size on the position of a stabilized detonation wave in the f low has been analyzed with a view to increasing the efficiency of detonation combustion of the gas mixture. It is established that thrust-producing flow with a stabilized detonation wave can be formed in the channel without any energy consumption.

  12. Orifice Mass Flow Calculation in NASA's W-8 Single Stage Axial Compressor Facility

    Science.gov (United States)

    Bozak, Richard F.

    2018-01-01

    Updates to the orifice mass flow calculation for the W-8 Single Stage Axial Compressor Facility at NASA Glenn Research Center are provided to include the effect of humidity and incorporate ISO 5167. A methodology for including the effect of humidity into the inlet orifice mass flow calculation is provided. Orifice mass flow calculations provided by ASME PTC-19.5-2004, ASME MFC-3M-2004, ASME Fluid Meters, and ISO 5167 are compared for W-8's atmospheric inlet orifice plate. Differences in expansion factor and discharge coefficient given by these standards give a variation of about +/- 75% mass flow except for a few cases. A comparison of the calculations with an inlet static pressure mass flow correlation and a fan exit mass flow integration using test data from a 2017 turbofan rotor test in W-8 show good agreement between the inlet static pressure mass flow correlation, ISO 5167, and ASME Fluid Meters. While W-8's atmospheric inlet orifice plate violates the pipe diameter limit defined by each of the standards, the ISO 5167 is chosen to be the primary orifice mass flow calculation to use in the W-8 facility.

  13. Investigation of the Shear Flow Effect and Tip Clearance on a Low Speed Axial Flow Compressor Cascade

    Directory of Open Access Journals (Sweden)

    Mahesh Varpe

    2013-01-01

    Full Text Available This paper explores the effect of inlet shear flow on the tip leakage flow in an axial flow compressor cascade. A flow with a high shear rate is generated in the test section of an open circuit cascade wind tunnel by using a combination of screens with a prescribed solidity. It is observed that a stable shear flow of shear rate 1.33 is possible and has a gradual decay rate until 15 times the height of the shear flow generator downstream. The computational results obtained agree well with the available experimental data on the baseline configuration. The detailed numerical analysis shows that the tip clearance improves the blade loading near the tip through the promotion of favorable incidence by the tip leakage flow. The tip clearance shifts the centre of pressure on the blade surface towards the tip. It, however, has no effect on the distribution of end wall loss and deviation angle along the span up to 60% from the hub. In the presence of a shear inflow, the end wall effects are considerable. On the other hand, with a shear inflow, the effects of tip leakage flow are observed to be partly suppressed. The shear flow reduces the tip leakage losses substantially in terms of kinetic energy associated with it.

  14. Effect of surface potential and intrinsic magnetic field on resistance of a body in a supersonic flow of rarefied partially ionized gas

    International Nuclear Information System (INIS)

    Shuvalov, V.A.

    1986-01-01

    The character of flow over a body, structure of the perturbed zone, and flow resistance in a supersonic flow of rarefied partially ionized gas are determined by the intrinsic magnetic field and surface potential of the body. There have been practically no experimental studies of the effect of intrinsic magnetic field on flow of a rarefied plasma. Studies of the effect of surface potential have been limited to the case R/λd 10 2 (where R is the characteristic dimension of the body and λd is the Debye radius). At the same time R/λd > 10 2 , the regime of flow over a large body, is of the greatest practical interest. The present study will consider the effect of potential and intrinsic magnetic field on resistance of a large (R/λd > 10 2 ) axisymmetric body (disk, sphere) in a supersonic flow of rarefield partially ionized gas

  15. The effect of forward skewed rotor blades on aerodynamic and aeroacoustic performance of axial-flow fan

    Science.gov (United States)

    Wei, Jun; Zhong, Fangyuan

    Based on comparative experiment, this paper deals with using tangentially skewed rotor blades in axial-flow fan. It is seen from the comparison of the overall performance of the fan with skewed bladed rotor and radial bladed rotor that the skewed blades operate more efficiently than the radial blades, especially at low volume flows. Meanwhile, decrease in pressure rise and flow rate of axial-flow fan with skewed rotor blades is found. The rotor-stator interaction noise and broadband noise of axial-flow fan are reduced with skewed rotor blades. Forward skewed blades tend to reduce the accumulation of the blade boundary layer in the tip region resulting from the effect of centrifugal forces. The turning of streamlines from the outer radius region into inner radius region in blade passages due to the radial component of blade forces of skewed blades is the main reason for the decrease in pressure rise and flow rate.

  16. Numerical and Experimental Investigation of a Supersonic Flow Field around Solid Fuel on an Inclined Flat Plate

    Directory of Open Access Journals (Sweden)

    Uzu-Kuei Hsu

    2009-01-01

    Full Text Available This research adopts a shock tube 16 meters long and with a 9 cm bore to create a supersonic, high-temperature, and high-pressure flowfield to observe the gasification and ignition of HTPB solid fuel under different environments. Also, full-scale 3D numerical simulation is executed to enhance the comprehension of this complex phenomenon. The CFD (Computational Fluid Dynamics code is based on the control volume method and the pre-conditioning method for solving the Navier-Stokes equations to simulate the compressible and incompressible coupling problem. In the tests, a HTPB slab is placed in the windowed-test section. Various test conditions generate different supersonic Mach numbers and environmental temperatures. In addition, the incident angles of the HTPB slab were changed relative to the incoming shock wave. Results show that as the Mach number around the slab section exceeded 1.25, the flowfield temperature achieved 1100 K, which is higher than the HTPB gasification temperature (930 K ~ 1090 K. Then, gasification occurred and a short-period ignition could be observed. In particular, when the slab angle was 7∘, the phenomenon became more visible. This is due to the flow field temperature increase when the slab angle was at 7∘.

  17. Microscopic Measurements of Axial Accumulation of Red Blood Cells in Capillary Flows Effects of Deformability

    Science.gov (United States)

    Sasaki, Takahiro; Seki, Junji; Itano, Tomoaki; Sugihara-Seki, Masako

    2017-11-01

    In the microcirculation, red blood cells (RBCs) are known to accumulate in the region near the central axis of microvessels, which is called the ``axial accumulation''. Although this behavior of RBCs is considered to originate from high deformability of RBCs, there have been few experimental studies on the mechanism. In order to elucidate the effect of RBC deformability on the axial accumulation, we measured the cross-sectional distributions of RBCs flowing through capillary tubes with a high spatial resolution by a newly devised observation system for intact and softened RBCs as well as hardened RBCs to various degrees. It was found that the intact and softened RBCs are concentrated in the small area centered on the tube axis, whereas the hardened RBCs are dispersed widely over the tube cross section dependent on the degree of hardness. These results demonstrate clearly the essential role of the deformability of RBCs in the ``axial accumulation'' of RBCs. JSPS KAKENHI Grant Number 17H03176, Kansai University ORDIST group funds.

  18. Three-dimensional rotational plasma flows near solid surfaces in an axial magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Gorshunov, N. M., E-mail: gorshunov-nm@nrcki.ru; Potanin, E. P., E-mail: potanin45@yandex.ru [National Research Center Kurchatov Institute (Russian Federation)

    2016-11-15

    A rotational flow of a conducting viscous medium near an extended dielectric disk in a uniform axial magnetic field is analyzed in the magnetohydrodynamic (MHD) approach. An analytical solution to the system of nonlinear differential MHD equations of motion in the boundary layer for the general case of different rotation velocities of the disk and medium is obtained using a modified Slezkin–Targ method. A particular case of a medium rotating near a stationary disk imitating the end surface of a laboratory device is considered. The characteristics of a hydrodynamic flow near the disk surface are calculated within the model of a finite-thickness boundary layer. The influence of the magnetic field on the intensity of the secondary flow is studied. Calculations are performed for a weakly ionized dense plasma flow without allowance for the Hall effect and plasma compressibility. An MHD flow in a rotating cylinder bounded from above by a retarding cap is considered. The results obtained can be used to estimate the influence of the end surfaces on the main azimuthal flow, as well as the intensities of circulating flows in various devices with rotating plasmas, in particular, in plasma centrifuges and laboratory devices designed to study instabilities of rotating plasmas.

  19. Numerical Study of Transonic Axial Flow Rotating Cascade Aerodynamics – Part 1: 2D Case

    Directory of Open Access Journals (Sweden)

    Irina Carmen ANDREI

    2014-06-01

    Full Text Available The purpose of this paper is to present a 2D study regarding the numerical simulation of flow within a transonic highly-loaded rotating cascade from an axial compressor. In order to describe an intricate flow pattern of a complex geometry and given specific conditions of cascade’s loading and operation, an appropriate accurate flow model is a must. For such purpose, the Navier-Stokes equations system was used as flow model; from the computational point of view, the mathematical support is completed by a turbulence model. A numerical comparison has been performed for different turbulence models (e.g. KE, KO, Reynolds Stress and Spallart-Allmaras models. The convergence history was monitored in order to focus on the numerical accuracy. The force vector has been reported in order to express the aerodynamics of flow within the rotating cascade at the running regime, in terms of Lift and Drag. The numerical results, expressed by plots of the most relevant flow parameters, have been compared. It comes out that the selecting of complex flow models and appropriate turbulence models, in conjunction with CFD techniques, allows to obtain the best computational accuracy of the numerical results. This paper aims to carry on a 2D study and a prospective 3D will be intended for the same architecture.

  20. High-resolution AUV mapping of the 2015 flows at Axial Seamount, Juan de Fuca Ridge

    Science.gov (United States)

    Paduan, J. B.; Chadwick, W. W., Jr.; Clague, D. A.; Le Saout, M.; Caress, D. W.; Thomas, H. J.; Yoerger, D.

    2016-12-01

    Lava flows erupted in April 2015 at Axial Seamount were mapped at 1-m resolution with the AUV Sentry in August 2015 and the MBARI Mapping AUVs in July 2016 and observed and sampled with ROVs on those same expeditions. Thirty percent of terrain covered by new flows had been mapped by the MBARI AUVs prior to the eruption. Differencing of before and after maps (using ship-collected bathymetry where the AUV had not mapped before) allows calculation of extents and volumes of flows and shows new fissures. The maps reveal unexpected fissure patterns and shifts in the style of flow emplacement through a single eruption. There were 11 separate flows totaling 1.48 x 108 m3 of lava erupted from numerous en echelon fissures over 19 km on the NE caldera floor, on the NE flank, and down the N rift zone. Flows in and around the caldera have maximum thicknesses of 5-19 m. Most erupted as sheet flows and spread along intricate channels that terminated in thin margins. Some utilized pre-existing fissures. Some flows erupted from short fissures, while at least two longer new fissures produced little or no lava. A flow on the upper N rift has a spectacular lava channel flanked by narrow lava pillars supporting a thin roof left after the flow drained. A shatter ring still emanating warm fluid is visible in the map as a 15-m wide low cone. Hundreds of exploded pillows were observed but are not discernable in the bathymetry. The northern-most three flows deep on the N rift are similar in area to the others but comprise the bulk of the eruption volume. Differencing of ship-based bathymetry shows only these flows. Near the eruptive fissures they are sheet flows, but as they flowed downslope they built complexes of coalesced pillow mounds up to 67-128 m thick. Changes in flow morphology occurred through the course of the eruption. Large pillow mounds had molten cores that deformed as the eruption progressed. One flow began as a thin, effusive sheet flow but as the eruption rate decreased, a

  1. Kolmogorov-like spectra in decaying three-dimensional supersonic flows

    International Nuclear Information System (INIS)

    Porter, D.H.; Pouquet, A.; Woodward, P.R.

    1994-01-01

    A numerical simulation of decaying supersonic turbulence using the piecewise parabolic method (PPM) algorithm on a computational mesh of 512 3 zones indicates that, once the solenoidal part of the velocity field, representing vortical motions, is fully developed and has reached a self-similar regime, a velocity spectrum compatible with that predicted by the classical theory of Kolmogorov develops. It is followed by a domain with a shallower spectrum. A convergence study is presented to support these assertions. The formation, structure, and evolution of slip surfaces and vortex tubes are presented in terms of perspective volume renderings of fields in physical space

  2. Influence of probe geometry on pitot-probe displacement in supersonic turbulent flow

    Science.gov (United States)

    Allen, J. M.

    1975-01-01

    An experiment was conducted to determine the varying effects of six different probe-tip and support-shaft configurations on pitot tube displacement. The study was stimulated by discrepancies between supersonic wind-tunnel tests conducted by Wilson and Young (1949) and Allen (1972). Wilson (1973) had concluded that these discrepancies were caused by differences in probe geometry. It is shown that in fact, no major differences in profiles of streamwise velocity over streamwise velocity at boundary-layer edge vs normal coordinate over boundary-layer total thickness result from geometry. The true cause of the discrepancies, however, remains to be discovered.

  3. Axial-flow-induced vibration for a rod supported by translational springs at both ends

    International Nuclear Information System (INIS)

    Kang, H.S.; Song, K.N.; Kim, H.K.; Yoon, K.H.

    2003-01-01

    An axial-flow-induced vibration model was proposed for a rod supported by two translational springs at both ends in order to evaluate the sensitivity to spring stiffness on the FIV for a PWR fuel rod. For developing the model, a one-mode approximation was made based on the assumption that the first mode was dominant in vibration behavior of the single span rod. The first natural frequency and mode shape functions for the flow-induced vibration, called the FIV, model were derived by using Lagrange's method. The vibration displacements were calculated by both of the spring-supported rod and the simple-supported (SS) one. As a result, the vibration displacement for the spring-supported (50 kN m -1 ) rod was 15-20% larger than that of the SS rod when the rods are in axial flow of 5-8 m s -1 velocity. The discrepancy between both displacements became much larger as flow velocity increased, and that of the rod having the short span length was larger than that of the rod having the long span length although the displacement value itself of the long span rod was larger than that of the short one. The vibration displacement for the spring-supported rod appeared to decrease with the increase of the spring constant. Since single span beam supported by the two translational springs are focused on in this paper, further study will be needed to reflect more realistic supporting conditions of the PWR fuel rod such as two springs and four dimples and cross or swirling flow caused by the mixing vane of the spacer grid

  4. Rotating coherent flow structures as a source for narrowband tip clearance noise from axial fans

    Science.gov (United States)

    Zhu, Tao; Lallier-Daniels, Dominic; Sanjosé, Marlène; Moreau, Stéphane; Carolus, Thomas

    2018-03-01

    Noise from axial fans typically increases significantly as the tip clearance is increased. In addition to the broadband tip clearance noise at the design flow rate, narrowband humps also associated with the tip flow are observed in the far-field acoustic spectra at lower flow rate. In this study, both experimental and numerical methods are used to shed more light on the noise generation mechanism of this narrowband tip clearance noise and provide a unified description of this source. Unsteady aeroacoustic predictions with the Lattice-Boltzmann Method (LBM) are successfully compared with experiment. Such a validation allows using LBM data to conduct a detailed modal analysis of the pressure field for detecting rotating coherent flow structures which might be considered as noise sources. As previously found in ring fans the narrowband humps in the far-field noise spectra are found to be related to the tip clearance noise that is generated by an interaction of coherent flow structures present in the tip region with the leading edge of the impeller blades. The visualization of the coherent structures shows that they are indeed part of the unsteady tip clearance vortex structures. They are hidden in a complex, spatially and temporally inhomogeneous flow field, but can be recovered by means of appropriate filtering techniques. Their pressure trace corresponds to the so-called rotational instability identified in previous turbomachinery studies, which brings a unified picture of this tip-noise phenomenon for the first time.

  5. Flow control in axial fan inlet guide vanes by synthetic jets

    Directory of Open Access Journals (Sweden)

    Wurst P.

    2013-04-01

    Full Text Available Tested high pressure axial flow fan with hub/tip ratio of 0.70 and external diameter of 600 mm consisted of inlet guide vanes (IGV, rotor and stator blade rows. Fan peripheral velocity was 47 m/s. Air volume flow rate was changed by turning of rear part of the inlet guide vanes. At turning of 20 deg the flow was separated on the IGV profiles. The synthetic jets were introduced through radial holes in machine casing in the location before flow separation origin. Synthetic jet actuator was designed with the use of a speaker by UT AVCR. Its membrane had diameter of 63 mm. Excitation frequency was chosen in the range of 500 Hz – 700 Hz. Synthetic jets favourably influenced separated flow on the vane profiles in the distance of (5 – 12 mm from the casing surface. The reduction of flow separation area caused in the region near the casing the decrease of the profile loss coefficient approximately by 20%.

  6. Flow control in axial fan inlet guide vanes by synthetic jets

    Science.gov (United States)

    Cyrus, V.; Trávníček, Z.; Wurst, P.; Kordík, J.

    2013-04-01

    Tested high pressure axial flow fan with hub/tip ratio of 0.70 and external diameter of 600 mm consisted of inlet guide vanes (IGV), rotor and stator blade rows. Fan peripheral velocity was 47 m/s. Air volume flow rate was changed by turning of rear part of the inlet guide vanes. At turning of 20 deg the flow was separated on the IGV profiles. The synthetic jets were introduced through radial holes in machine casing in the location before flow separation origin. Synthetic jet actuator was designed with the use of a speaker by UT AVCR. Its membrane had diameter of 63 mm. Excitation frequency was chosen in the range of 500 Hz - 700 Hz. Synthetic jets favourably influenced separated flow on the vane profiles in the distance of (5 - 12) mm from the casing surface. The reduction of flow separation area caused in the region near the casing the decrease of the profile loss coefficient approximately by 20%.

  7. Flow performance of highly loaded axial fan with bowed rotor blades

    International Nuclear Information System (INIS)

    Chen, L; Liu, X J; Yang, A L; Dai, R

    2013-01-01

    In this paper, a partial bowed rotor blade was proposed for a newly designed high loaded axial fan. The blade was positively bowed 30 degrees from hub to 30 percent spanwise position. Flows of radial blade and bowed blade fans were numerically compared for various operation conditions. Results show that the fan's performance is improved. At the designed condition with flow coefficient of 0.52, the efficiency of the bowed blade fan is increased 1.44% and the static pressure rise is increased 11%. Comparing the flow structures, it can be found that the separated flow in the bowed fan is reduced and confined within 20 percent span, which is less than the 35 percent in the radial fan. It means that the bowed blade generates negative blade force and counteracts partial centrifugal force. It is alleviates the radial movements of boundary layers in fan's hub region. Flow losses due to 3D mixing are reduced in the rotor. Inlet flow to downstream stator is also improved

  8. Flow performance of highly loaded axial fan with bowed rotor blades

    Science.gov (United States)

    Chen, L.; Liu, X. J.; Yang, A. L.; Dai, R.

    2013-12-01

    In this paper, a partial bowed rotor blade was proposed for a newly designed high loaded axial fan. The blade was positively bowed 30 degrees from hub to 30 percent spanwise position. Flows of radial blade and bowed blade fans were numerically compared for various operation conditions. Results show that the fan's performance is improved. At the designed condition with flow coefficient of 0.52, the efficiency of the bowed blade fan is increased 1.44% and the static pressure rise is increased 11%. Comparing the flow structures, it can be found that the separated flow in the bowed fan is reduced and confined within 20 percent span, which is less than the 35 percent in the radial fan. It means that the bowed blade generates negative blade force and counteracts partial centrifugal force. It is alleviates the radial movements of boundary layers in fan's hub region. Flow losses due to 3D mixing are reduced in the rotor. Inlet flow to downstream stator is also improved.

  9. Effects of energetic coherent motions on the power and wake of an axial-flow turbine

    Science.gov (United States)

    Chamorro, L. P.; Hill, C.; Neary, V. S.; Gunawan, B.; Arndt, R. E. A.; Sotiropoulos, F.

    2015-05-01

    A laboratory experiment examined the effects of energetic coherent motions on the structure of the wake and power fluctuations generated by a model axial-flow hydrokinetic turbine. The model turbine was placed in an open-channel flow and operated under subcritical conditions. The incoming flow was locally perturbed with vertically oriented cylinders of various diameters. An array of three acoustic Doppler velocimeters aligned in the cross-stream direction and a torque transducer were used to collect high-resolution and synchronous measurements of the three-velocity components of the incoming and wake flow as well as the turbine power. A strong scale-to-scale interaction between the large-scale and broadband turbulence shed by the cylinders and the turbine power revealed how the turbulence structure modulates the turbine behavior. In particular, the response of the turbine to the distinctive von Kármán-type vortices shed from the cylinders highlighted this phenomenon. The mean and fluctuating characteristics of the turbine wake are shown to be very sensitive to the energetic motions present in the flow. Tip vortices were substantially dampened and the near-field mean wake recovery accelerated in the presence of energetic motions in the flow. Strong coherent motions are shown to be more effective than turbulence levels for triggering the break-up of the spiral structure of the tip-vortices.

  10. Hemolysis research of implantable axial flow pump for two -step heart transplantation in children

    Directory of Open Access Journals (Sweden)

    O. Yu. Dmitrieva

    2017-01-01

    Full Text Available Introduction. One of the main indicators characterizing mechanical circulatory support devices (artificial valve, implantable pumps, etc. is trauma of blood cells. Therefore, while developing new pumps, one of the key studies in vitro is to evaluate blood hemolysis. For an objective hemolysis analysis of pump it is required to create a standardized methodology of hemolysis studies. The object of the study in this paper is implantable axial pump DON for two-step heart transplantation in children.The aim of study is to develop a standardized methodology of hemolysis studies of blood pumps and to conduct research of pediatric axial pump DON.Materials and methods. To conduct hemolysis research we created a mock circulatory system consisting of a reservoir placed in water bath maintaining a constant working fluid (blood temperature, hydrodynamic resistance, connecting tubes, ports for blood sampling and pressure and flow measurement systems, and research pump. Test method is to estimate levels of free hemoglobin pHb obtained by blood samples during pump working in operating mode (for pediatric pump: blood flow 2.5 l/min, pressure difference 80 mmHg. Using the data obtained the standardized indices of hemolysis NIH and MIH are calculated based on pHb values, hematocrit, total hemoglobin, blood flow and working pump time.Results. We developed and realized a standardized methodology of hemolysis research by which we evaluated hemolysis of pediatric axial pump. The results of hemolysis tests allowed us to optimize the design of DON. Obtained values of hemolysis of the latest version of pediatric pump DON-3 have shown that they do conform to the requirements of minimum blood injury and it allows us to proceed to the next step of pediatric pump research – animal experiments.Conclusion. Developed methods and evaluation tools of hemolysis allow us to provide objective information on one of the most important indicators of developing

  11. Kinetic Energy Losses and Efficiency of an Axial Turbine Stage in Numerical Modeling of Unsteady Flows

    Directory of Open Access Journals (Sweden)

    A. S. Laskin

    2015-01-01

    Full Text Available The article presents the results of numerical investigation of kinetic energy (KE loss and blading efficiency of the single-stage axial turbine under different operating conditions, characterized by the ratio u/C0. The calculations are performed by stationary (Stage method and nonstationary (Transient method methods using ANSYS CFX. The novelty of this work lies in the fact that the numerical simulation of steady and unsteady flows in a turbine stage is conducted, and the results are obtained to determine the loss of KE, both separately by the elements of the flow range and their total values, in the stage efficiency as well. The results obtained are compared with the calculated efficiency according to one-dimensional theory.To solve these problems was selected model of axial turbine stage with D/l = 13, blade profiles of rotor and stator of constant cross-section, similar to tested ones in inverted turbine when = 0.3. The degree of reactivity ρ = 0.27, the rotor speed was varied within the range 1000 ÷ 1800 rev/min.Results obtained allow us to draw the following conclusions:1. The level of averaged coefficients of total KE losses in the range of from 0.48 to 0.75 is from 18% to 21% when calculating by the Stage method and from 21% to 25% by the Transient one.2. The level of averaged coefficients of KE losses with the output speed of in the specified range is from 9% to 13%, and almost the same when in calculating by Stage and Transient methods.3. Levels of averaged coefficients of KE loss in blade tips (relative to the differential enthalpies per stage are changed in the range: from 4% to 3% (Stage and are stored to be equal to 5% (Transient; from 5% to 6% (Stage and from 6% to 8% (Transient.4. Coefficients of KE losses in blade tips GV and RB are higher in calculations of the model stage using the Transient method than the Stage one, respectively, by = 1.5 ÷ 2.5% and = 4 ÷ 5% of the absolute values. These are values to characterize the KE

  12. Design optimization of axial flow hydraulic turbine runner: Part II - multi-objective constrained optimization method

    Science.gov (United States)

    Peng, Guoyi; Cao, Shuliang; Ishizuka, Masaru; Hayama, Shinji

    2002-06-01

    This paper is concerned with the design optimization of axial flow hydraulic turbine runner blade geometry. In order to obtain a better design plan with good performance, a new comprehensive performance optimization procedure has been presented by combining a multi-variable multi-objective constrained optimization model with a Q3D inverse computation and a performance prediction procedure. With careful analysis of the inverse design of axial hydraulic turbine runner, the total hydraulic loss and the cavitation coefficient are taken as optimization objectives and a comprehensive objective function is defined using the weight factors. Parameters of a newly proposed blade bound circulation distribution function and parameters describing positions of blade leading and training edges in the meridional flow passage are taken as optimization variables.The optimization procedure has been applied to the design optimization of a Kaplan runner with specific speed of 440 kW. Numerical results show that the performance of designed runner is successfully improved through optimization computation. The optimization model is found to be validated and it has the feature of good convergence. With the multi-objective optimization model, it is possible to control the performance of designed runner by adjusting the value of weight factors defining the comprehensive objective function. Copyright

  13. Development of a 3-dimensional flow analysis procedure for axial pump impellers

    International Nuclear Information System (INIS)

    Kim, Min Hwan; Kim, Jong In; Park, Jin Seok; Huh, Houng Huh; Chang, Moon Hee

    1999-06-01

    A fluid dynamic analysis procedure was developed using the three-dimensional solid model of an axial pump impeller which was theoretically designed using I-DEAS CAD/CAM/CAE software. The CFD software FLUENT was used in the flow field analysis. The steady-state flow regime in the MCP impeller and diffuser was simulated using the developed procedure. The results of calculation were analyzed to confirm whether the design requirements were properly implemented in the impeller model. The validity of the developed procedure was demonstrated by comparing the calculation results with the experimental data available. The pump performance at the design point could be effectively predicted using the developed procedure. The computed velocity distributions have shown a good agreement with the experimental data except for the regions near the wall. The computed head, however, was over-predicted than the experiment. The design period and cost required for the development of an axial pump impeller can be significantly reduced by applying the proposed methodology. (author). 7 refs., 2 tabs

  14. Local heat transfer performance and exit flow characteristics of a miniature axial fan

    International Nuclear Information System (INIS)

    Stafford, Jason; Walsh, Ed; Egan, Vanessa

    2010-01-01

    Dimensional restrictions in electronic equipment have resulted in miniaturization of many existing cooling technologies. In addition to this, cooling solutions are required to dissipate increased thermal loads to maintain component reliability. Axial fans are widely used in electronics cooling to meet such thermal demands. However, if the extent of non-uniform heat transfer rates, produced by highly three-dimensional air patterns is unknown in the design stages, premature component failure may result. The current study highlights these non-uniformities in heat transfer coefficient, using infrared thermography of a miniature axial fan impinging air on a flat plate. Fan rotational speed and distance from the flat plate are varied to encompass heat transfer phenomena resultant from complex exit air flow distribution. Local peaks in heat transfer coefficient have been shown to be directly related to the air flow and fan motor support interaction. Optimum locations for discrete heat source positioning have been identified which are a function of fan to plate spacing and independent of fan rotational speed when the Reynolds number effect is not apparent.

  15. Steady Stokes flow past dumbbell shaped axially symmetric body of revolution: An analytic approach

    Directory of Open Access Journals (Sweden)

    Srivastava Kumar Deepak

    2012-01-01

    Full Text Available In this paper, the problem of steady Stokes flow past dumbbell-shaped axially symmetric isolated body of revolution about its axis of symmetry is considered by utilizing a method (Datta and Srivastava, 1999 based on body geometry under the restrictions of continuously turning tangent on the boundary. The relationship between drag and moment is established in transverse flow situation. The closed form expression of Stokes drag is then calculated for dumbbell-shaped body in terms of geometric parameters b, c, d and a with the aid of this linear relation and the formula of torque obtained by (Chwang and Wu, part 1, 1974 with the use of singularity distribution along axis of symmetry. Drag coefficient and moment coefficient are defined in various forms in terms of dumbbell parameters. Their numerical values are calculated and depicted in respective graphs and compared with some known values.

  16. Modeling and design of a combined transverse and axial flow threshing unit for rice harvesters

    Directory of Open Access Journals (Sweden)

    Zhong Tang

    2014-11-01

    Full Text Available The thorough investigation of both grain threshing and grain separating processes is a crucial consideration for effective structural design and variable optimization of the tangential flow threshing cylinder and longitudinal axial flow threshing cylinder composite units (TLFC unit of small and medium-sized (SME combine harvesters. The objective of this paper was to obtain the structural variables of a TLFC unit by theoretical modeling and experimentation on a tangential flow threshing cylinder unit (TFC unit and longitudinal axial flow threshing cylinder unit (LFC unit. Threshing and separation equations for five types of threshing teeth (knife bar, trapezoidal tooth, spike tooth, rasp bar, and rectangular bar, were obtained using probability theory. Results demonstrate that the threshing and separation capacity of the knife bar TFC unit was stronger than the other threshing teeth. The length of the LFC unit was divided into four sections, with helical blades on the first section (0-0.17 m, the spike tooth on the second section (0.17-1.48 m, the trapezoidal tooth on the third section (1.48-2.91 m, and the discharge plate on the fourth section (2.91-3.35 m. Test results showed an un-threshed grain rate of 0.243%, un-separated grain rate of 0.346%, and broken grain rate of 0.184%. Evidenced by these results, threshing and separation performance is significantly improved by analyzing and optimizing the structure and variables of a TLFC unit. The results of this research can be used to successfully design the TLFC unit of small and medium-sized (SME combine harvesters.

  17. Long-term animal experiments with an intraventricular axial flow blood pump.

    Science.gov (United States)

    Yamazaki, K; Kormos, R L; Litwak, P; Tagusari, O; Mori, T; Antaki, J F; Kameneva, M; Watach, M; Gordon, L; Mukuo, H; Umezu, M; Tomioka, J; Outa, E; Griffith, B P; Koyanagai, H

    1997-01-01

    A miniature intraventricular axial flow blood pump (IVAP) is undergoing in vivo evaluation in calves. The IVAP system consists of a miniature (phi 13.9 mm) axial flow pump that resides within the left ventricular (LV) chamber and a brushless DC motor. The pump is fabricated from titanium alloy, and the pump weight is 170 g. It produces a flow rate of over 5 L/min against 100 mmHg pressure at 9,000 rpm with an 8 W total power consumption. The maximum total efficiency exceeds 17%. A purged lip seal system is used in prototype no. 8, and a newly developed "Cool-Seal" (a low temperature mechanical seal) is used in prototype no. 9. In the Cool-Seal system, a large amount of purge flow is introduced behind the seal faces to augment convective heat transfer, keeping the seal face temperature at a low level for prevention of heat denaturation of blood proteins. The Cool-Seal system consumes < 10 cc purge fluid per day and has greatly extended seal life. The pumps were implanted in three calves (26, 30, and 168 days of support). The pump was inserted through a left thoracotomy at the fifth intercostal space. Two pursestring sutures were placed on the LV apex, and the apex was cored with a myocardial punch. The pump was inserted into the LV with the outlet cannula smoothly passing through the aortic valve without any difficulty. Only 5 min elapsed between the time of chest opening and initiation of pumping. Pump function remained stable throughout in all experiments. No cardiac arrhythmias were detected, even at treadmill exercise tests. The plasma free hemoglobin level remained in the acceptable range. Post mortem examination did not reveal any interference between the pump and the mitral apparatus. No major thromboembolism was detected in the vital organs in Cases 1 or 2, but a few small renal infarcts were detected in Case 3.

  18. Effect of substrate temperature on the structure of amorphous oxygenated hydrocarbon films grown with a pulsed supersonic methane plasma flow

    Energy Technology Data Exchange (ETDEWEB)

    Fedoseeva, Yu. V., E-mail: fedoseeva@niic.nsc.ru [Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Pozdnyakov, G.A. [Khristianovich Institute of Theoretical and Applied Mechanics, SB RAS, Novosibirsk 630090 (Russian Federation); Okotrub, A.V.; Kanygin, M.A. [Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Nastaushev, Yu. V. [Rzhanov Institute of Semiconductor Physics SB RAS, Novosibirsk 630090 (Russian Federation); Vilkov, O.Y. [St. Petersburg State University, St. Petersburg 198504 (Russian Federation); Bulusheva, L.G. [Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation)

    2016-11-01

    Highlights: • A deposition of supersonic methane plasma flow on silicon substrate produces amorphous oxygenated hydrocarbon (CO{sub x}H{sub y}) film. • The thickness, composition, and wettability of the film depend on the substrate temperature. • A rise of the substrate temperature from 500 to 700 °C promotes the sp{sup 3}-hybridization carbon formation. - Abstract: Since amorphous oxygenated hydrocarbon (CO{sub x}H{sub y}) films are promising engineering materials a study of the structure and composition of the films depending on the conditions of synthesis is important for controlling of their physicochemical properties. Here, we used the methods of scanning and transmission electron microscopy, X-ray photoelectron, near-edge X-ray absorption fine structure, Fourier transform infrared and Raman spectroscopy to reveal changes in the chemical connectivity of CO{sub x}H{sub y} films grown on silicon substrates heated to 300, 500, and 700 °C using a supersonic flow of methane plasma. It was found that the CO{sub x}H{sub y} films, deposited at 300 and 500 °C, were mainly composed of the sp{sup 2}-hybridized carbon areas with various oxygen species. A rise of the substrate temperature caused an increase of the portion of tetrahedral carbon atoms as well as carboxyl and hydroxyl groups. With growth of the substrate temperature, the film thickness reduced monotonically from 400 to 180 nm, while the film adhesion improved substantially. The films, deposited at lower temperatures, showed high hydrophilicity due to porosity and presence of oxygenated groups both at the surface and in the bulk.

  19. Blade bowing effects on radial equilibrium of inlet flow in axial compressor cascades

    Directory of Open Access Journals (Sweden)

    Han XU

    2017-10-01

    Full Text Available The circumferentially averaged equation of the inlet flow radial equilibrium in axial compressor was deduced. It indicates that the blade inlet radial pressure gradient is closely related to the radial component of the circumferential fluctuation (CF source item. Several simplified cascades with/without aerodynamic loading were numerically studied to investigate the effects of blade bowing on the inlet flow radial equilibrium. A data reduction program was conducted to obtain the CF source from three-dimensional (3D simulation results. Flow parameters at the passage inlet were focused on and each term in the radial equilibrium equation was discussed quantitatively. Results indicate that the inviscid blade force is the inducement of the inlet CF due to geometrical asymmetry. Blade bowing induces variation of the inlet CF, thus changes the radial pressure gradient and leads to flow migration before leading edge (LE in the cascades. Positive bowing drives the inlet flow to migrate from end walls to mid-span and negative bowing turns it to the reverse direction to build a new equilibrium. In addition, comparative studies indicate that the inlet Mach number and blade loading can efficiently impact the effectiveness of blade bowing on radial equilibrium in compressor design.

  20. Numerical study of combustion initiation in a supersonic flow of H2-air mixture by resonance laser radiation

    International Nuclear Information System (INIS)

    Bezgin, L V; Kopchenov, V I; Kuleshov, P S; Titova, N S; Starik, A M

    2012-01-01

    A comparative analysis of the efficiency of approaches based on the exposure of reacting gas to resonance laser radiation to enhance combustion in a supersonic flow of H 2 -air mixture is conducted. The kinetic processes responsible for the intensification of chain reactions in premixed and non-premixed H 2 -air flows upon photodissociation of O 2 molecules by 193.3 nm laser radiation, excitation of these molecules to the singlet sigma state by laser photons with 762.346 nm wavelength and heating the mixture by laser radiation are analysed in a detailed manner. It is shown that both photochemical methods, photodissociation and excitation of O 2 molecules, are much more effective in shortening the ignition delay length than merely heating the mixture. For the premixed flow, the photodissociation of O 2 molecules ensures a slightly higher reduction in the ignition delay than the laser-induced excitation of molecular oxygen to the singlet sigma state. However, in the non-premixed flow the situation is inverted. The analysis shows that both photochemical methods make it possible to raise the efficiency of conversion of reactant chemical energy to thermal energy released during combustion compared with the method of heating the mixtures. (paper)

  1. Loss reduction in axial-flow compressors through low-speed model testing

    Science.gov (United States)

    Wisler, D. C.

    1984-01-01

    A systematic procedure for reducing losses in axial-flow compressors is presented. In this procedure, a large, low-speed, aerodynamic model of a high-speed core compressor is designed and fabricated based on aerodynamic similarity principles. This model is then tested at low speed where high-loss regions associated with three-dimensional endwall boundary layers flow separation, leakage, and secondary flows can be located, detailed measurements made, and loss mechanisms determined with much greater accuracy and much lower cost and risk than is possible in small, high-speed compressors. Design modifications are made by using custom-tailored airfoils and vector diagrams, airfoil endbends, and modified wall geometries in the high-loss regions. The design improvements resulting in reduced loss or increased stall margin are then scaled to high speed. This paper describes the procedure and presents experimental results to show that in some cases endwall loss has been reduced by as much as 10 percent, flow separation has been reduced or eliminated, and stall margin has been substantially improved by using these techniques.

  2. Interaction of impeller and guide vane in a series-designed axial-flow pump

    International Nuclear Information System (INIS)

    Kim, S; Choi, Y S; Lee, K Y; Kim, J H

    2012-01-01

    In this paper, the interaction of the impeller and guide vane in a series-designed axial-flow pump was examined through the implementation of a commercial CFD code. The impeller series design refers to the general design procedure of the base impeller shape which must satisfy the various flow rate and head requirements by changing the impeller setting angle and number of blades of the base impeller. An arc type meridional shape was used to keep the meridional shape of the hub and shroud with various impeller setting angles. The blade angle and the thickness distribution of the impeller were designed as an NACA airfoil type. In the design of the guide vane, it was necessary to consider the outlet flow condition of the impeller with the given setting angle. The meridional shape of the guide vane were designed taking into consideration the setting angle of the impeller, and the blade angle distribution of the guide vane was determined with a traditional design method using vane plane development. In order to achieve the optimum impeller design and guide vane, three-dimensional computational fluid dynamics and the DOE method were applied. The interaction between the impeller and guide vane with different combination set of impeller setting angles and number of impeller blades was addressed by analyzing the flow field of the computational results.

  3. Development of gas-solid direct contact heat exchanger by use of axial flow cyclone

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Akihiko; Yokomine, Takehiko [Kyushu University (Japan). Interdisciplinary Graduate School of Engineering Sciences; Nagafuchi, Tatsuro [Miura Co. Ltd., Matsuyamashi (Japan)

    2004-10-01

    A heat exchanger between particulate or granular materials and gas is developed. It makes use of a swirling gas flow similar to the usual cyclone separators but the difference from them is that the swirl making gas is issued into the cyclone chamber with downward axial velocity component. After it turns the flow direction near the bottom of the chamber, the low temperature gas receives heat from high temperature particles supplied from above at the chamber's center. Through this configuration, a direct contact and quasi counter-flow heat exchange pattern is realized so that the effective recovery of heat carried by particles is achieved. A model heat exchanger was manufactured via several numerical experiments and its performances of heat exchange as well as particle recovery were examined. Attaching a small particle diffuser below the particle-feeding nozzle brought about a drastic improvement of the heat exchange performance without deteriorating the particle recovery efficiency. The outlet gas temperature much higher than the particle outlet temperature was finally obtained, which is never realized in the parallel flow heat exchanger. (author)

  4. Flow and axial dispersion in a sinusoidal-walled tube: Effects of inertial and unsteady flows

    Science.gov (United States)

    Richmond, Marshall C.; Perkins, William A.; Scheibe, Timothy D.; Lambert, Adam; Wood, Brian D.

    2013-12-01

    In this work, we consider a sinusoidal-walled tube (a three-dimensional tube with sinusoidally-varying diameter) as a simplified conceptualization of flow in porous media. Direct numerical simulation using computational fluid dynamics (CFD) methods was used to compute velocity fields by solving the Navier-Stokes equations, and also to numerically solve the volume averaging closure problem, for a range of Reynolds numbers (Re) spanning the low-Re to inertial flow regimes, including one simulation at Re=449 for which unsteady flow was observed. The longitudinal dispersion observed for the flow was computed using a random walk particle tracking method, and this was compared to the longitudinal dispersion predicted from a volume-averaged macroscopic mass balance using the method of volume averaging; the results of the two methods were consistent. Our results are compared to experimental measurements of dispersion in porous media and to previous theoretical results for both the low-Re, Stokes flow regime and for values of Re representing the steady inertial regime. In the steady inertial regime, a power-law increase in the effective longitudinal dispersion (DL) with Re was found, and this is consistent with previous results. This rapid rate of increase is caused by trapping of solute in expansions due to flow separation (eddies). One unsteady (but non-turbulent) flow case (Re=449) was also examined. For this case, the rate of increase of DL with Re was smaller than that observed at lower Re. Velocity fluctuations in this regime lead to increased rates of solute mass transfer between the core flow and separated flow regions, thus diminishing the amount of tailing caused by solute trapping in eddies and thereby reducing longitudinal dispersion. The observed tailing was further explored through analysis of concentration skewness (third moment) and its assymptotic convergence to conventional advection-dispersion behavior (skewness = 0). The method of volume averaging was

  5. Supersonic flow. Pt. 5 Shock waves; Fondamenti fisici dei fasci molecolari supersonici. Pt 5 Onde di Shock

    Energy Technology Data Exchange (ETDEWEB)

    Sanna, G.; Tomassetti, G. [L`Aquila Univ. (Italy). Dipt. di Fisica

    1998-02-01

    The discontinuities in the flow fields (both tangential and shocks) are considered and the equations for the quantities conserved across them are written. The post-shock flow variables are expressed by the Mach number of the incident supersonic flow and its deflection angle operated by rigid wall. Normal and oblique shocks are considered and graphs and polar diagrams are introduced. Then the reflections of a shock wave operated by a rigid wall and by the boundary between a jet and a stagnating gas are analyzed. Finally, the interactions between two distinct shock waves are considered. [Italiano] Vengono considerate le discontinuita` (tangenziali e shocks) nei campi di flusso e sono scritte le equazioni per le quantita` che si conservano attraverso di esse. Le variabili del flusso oltre lo shock sono espresse in funzione del numero di Mach del flusso supersonico incidente e dell`angolo di deflessione di questo operato da una parete rigida. I casi di shock normale, obliquo e distaccato sono considerati e sono introdotti grafici vari e rappresentazioni polari. Sono quindi considerate le riflessioni di un fronte di shock da una parete rigida e dalla frontiera tra un gas in moto ed uno stagnante. Sono infine considerate le diverse interazioni tra due shock distinti.

  6. Interpenetration and deflection phenomena in collisions between supersonic, magnetized, tungsten plasma flows diagnosed using high resolution optical Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Swadling, G. F.; Lebedev, S. V.; Burdiak, G.; Suttle, L.; Patankar, S.; Smith, R. A.; Bennett, M.; Hall, G. N.; Suzuki-Vidal, F.; Bland, S. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Harvey-Thompson, A. J. [Sandia National Laboratories, PO Box 5800, Albuquerque, New Mexico 87185-1193 (United States); Rozmus, W. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); Yuan, J. [Key Laboratory of Pulsed Power, Institute of Fluid Physics, CAE, Mianyang 621900 (China)

    2015-07-15

    An optical Thomson scattering diagnostic has been used to investigate collisions between supersonic, magnetized plasma flows, in particular the transition from collisionless to collisional interaction dynamics. These flows were produced using tungsten wire array z-pinches, driven by the 1.4 MA 240 ns Magpie generator at Imperial College London. Measurements of the collective-mode Thomson scattering ion-feature clearly indicate that the ablation flows are interpenetrating at 100 ns (after current start), and this interpenetration continues until at least 140 ns. The Thomson spectrum at 150 ns shows a clear change in the dynamics of the stream interactions, transitioning towards a collisional, shock-like interaction of the streams near the axis. The Thomson scattering data also provide indirect evidence of the presence of a significant toroidal magnetic field embedded in the “precursor” plasma near the axis of the array over the period 100–140 ns; these observations are in agreement with previous measurements [Swadling et al., Phys. Rev. Lett. 113, 035003 (2014)]. The Thomson scattering measurements at 150 ns suggest that this magnetic field must collapse at around the time the dense precursor column begins to form.

  7. Experimental Methods Applied in a Study of Stall Flutter in an Axial Flow Fan

    Directory of Open Access Journals (Sweden)

    John D. Gill

    2004-01-01

    Full Text Available Flutter testing is an integral part of aircraft gas turbine engine development. In typical flutter testing blade mounted sensors in the form of strain gages and casing mounted sensors in the form of light probes (NSMS are used. Casing mounted sensors have the advantage of being non-intrusive and can detect the vibratory response of each rotating blade. Other types of casing mounted sensors can also be used to detect flutter of rotating blades. In this investigation casing mounted high frequency response pressure transducers are used to characterize the part-speed stall flutter response of a single stage unshrouded axial-flow fan. These dynamic pressure transducers are evenly spaced around the circumference at a constant axial location upstream of the fan blade leading edge plane. The pre-recorded experimental data at 70% corrected speed is analyzed for the case where the fan is back-pressured into the stall flutter zone. The experimental data is analyzed using two probe and multi-probe techniques. The analysis techniques for each method are presented. Results from these two analysis methods indicate that flutter occurred at a frequency of 411 Hz with a dominant nodal diameter of 2. The multi-probe analysis technique is a valuable method that can be used to investigate the initiation of flutter in turbomachines.

  8. Analysis of Three-dimension Viscous Flow in the Model Axial Compressor Stage K1002L

    Science.gov (United States)

    Tribunskaia, K.; Kozhukhov, Y. V.

    2017-08-01

    The main investigation subject considered in this paper is axial compressor model stage K1002L. Three simulation models were designed: Scheme 1 - inlet stage model consisting of IGV (Inlet Guide Vane), rotor and diffuser; Scheme 2 - two-stage model: IGV, first-stage rotor, first-stage diffuser, second-stage rotor, EGV (Exit Guide Vane); Scheme 3 - full-round model: IGV, rotor, diffuser. Numerical investigation of the model stage was held for four circumferential velocities at the outer diameter (Uout=125,160,180,210 m/s) within the range of flow coefficient: ϕ = 0.4 - 0.6. The computational domain was created with ANSYS CFX Workbench. According to simulation results, there were constructed aerodynamic characteristic curves of adiabatic efficiency and the adiabatic head coefficient calculated for total parameters were compared with data from the full-scale test received at the Central Boiler and Turbine Institution (CBTI), thus, verification of the calculated data was carried out. Moreover, there were conducted the following studies: comparison of aerodynamic characteristics of the schemes 1, 2; comparison of the sector and full-round models. The analysis and conclusions are supplemented by gas-dynamic method calculation for axial compressor stages.

  9. Local heat transfer where heated rods touch in axially flowing water

    International Nuclear Information System (INIS)

    Kast, S.J.

    1983-05-01

    An anlaytic model is developed to predict the azimuthal width of a stablesteam blanket region near the line of contact between two heated rods cooled by axially flowing water at high pressure. The model is intended to aid analysis of reduced surface heat transfer capability for the abnormal configuration of nuclear fuel rods bowed into contact in the core of a pressurized water nuclear reactor. The analytic model predicts the azimuthal width of the steam blanket zone having reduced surface heat transfer as a function of rod average heat flux, subchannel coolant conditions and rod dimensions. The analytic model is developed from a heat balance between the heat generated in the wall of a heated empty tube and the heat transported away by transverse mixing and axial convection in the coolant subchannel. The model is developed for seveal geometries including heated rods in line contact, a heated rod touching a short insulating plane and a heated rod touching the inside of a metal guide tube

  10. Research on flow characteristics of supercritical CO2 axial compressor blades by CFD analysis

    International Nuclear Information System (INIS)

    Takagi, Kazuhisa; Muto, Yasushi; Ishizuka, Takao; Kikura, Hiroshige; Aritomi, Masanori

    2010-01-01

    A supercritical CO 2 gas turbine of 20MPa is suitable to couple with the Na-cooled fast reactor since Na - CO 2 reaction is mild at the outlet temperature of 800K, the cycle thermal efficiency is relatively high and the size of CO 2 gas turbine is very compact. In this gas turbine cycle, a compressor operates near the critical point. The property of CO 2 and then the behavior of compressible flow near the critical point changes very sharply. So far, such a behavior is not examined sufficiently. Then, it is important to clarify compressible flow near the critical point. In this paper, an aerodynamic design of the axial supercritical CO 2 compressor for this system has been carried out based on the existing aerodynamic design method of Cohen. The cycle design point was selected to achieve the maximum cycle thermal efficiency of 43.8%. For this point, the compressor design conditions were determined. They are a mass flow rate of 2035kg/s, an inlet temperature of 308K, an inlet static pressure of 8.26MPa, an outlet static pressure of 20.6MPa and a rotational speed of 3600rpm. The mean radius was constant through axial direction. The design point was determined so as to keep the diffusion factor and blade stress within the allowable limits. Number of stages and an expected adiabatic efficiency was 14 and 87%, respectively. CFD analyses by FLUENT have been done for this compressor blade. The blade model consists of one set of a guide vane, a rotor blade and a stator blade. The analyses were conducted under the assumption both of the real gas properties and also of the modified ideal gas properties. Using the real gas properties, analysis was conducted for the 14th blade, whose condition is remote from the critical point and the possibility of divergence is very small. Then, the analyses were conducted for the blade whose conditions are nearer to the critical point. Gradually, divergence of calculation was encountered. Convergence was relatively easy for the modified

  11. NOVEL METHODS FOR AXIAL FAN IMPELLER GEOMETRY ANALYSIS AND EXPERIMENTAL INVESTIGATIONS OF THE GENERATED SWIRL TURBULENT FLOW

    Directory of Open Access Journals (Sweden)

    Zoran D Protić

    2010-01-01

    Full Text Available Geometry analysis of the axial fan impeller, experimentally obtained operating characteristics and experimental investigations of the turbulent swirl flow generated behind the impeller are presented in this paper. Formerly designed and manufactured, axial fan impeller blade geometry (originally designed by Prof. Dr-Ing. Z. Protić† has been digitized using a three-dimensional (3D scanner. In parallel, the same impeller has been modeled by beta version software for modeling axial turbomachines, based on modified classical calculation. These results were compared. Then, the axial fan operating characteristics were measured on the standardized test rig in the Laboratory for Hydraulic Machinery and Energy Systems, Faculty of Mechanical Engineering, University of Belgrade. Optimum blade impeller position was determined on the basis of these results. Afterwards, the impeller with optimum angle, without outlet vanes, was positioned in a circular pipe. Rotational speed has been varied in the range from 500 till 2500rpm. Reynolds numbers generated in this way, calculated for axial velocity component, were in the range from 0,8·105 till 6·105. LDA (Laser Doppler Anemometry measurements and stereo PIV (Particle Image Velocimetry measurements of the 3D velocity field in the swirl turbulent fluid flow behind the axial fan have been performed for each regime. Obtained results point out extraordinary complexity of the structure of generated 3D turbulent velocity fields.

  12. Experimental study of fuel bundle vibrations with rods subjected to mixed axial flow and cross-flow provided by a narrow gap (baffle jetting interaction)

    International Nuclear Information System (INIS)

    Boulanger, P.; Jacques, Y.; Fardeau, P.; Barbier, D.; Rigaudeau, J.

    1997-01-01

    The Hydraulic Core Laboratory (LHC) performs experimental studies of PWR fuel assembly mechanical behaviour submitted to representative flows in PWR core. Cross-flows prove particularly troublesome by generating on rods, in special cases, vibratory levels high enough to induce early grid to rod fretting. The fluid-structure interaction under mixed axial and cross-flow is also a major topic for analysis. The authors present a test loop devoted to the mixed axial-cross-flow fluid-structure interaction on representative half-scale mockup which is able to simulate, under ambient conditions, any complex flow (direction and flow rates) representative of PWR core flows. Despite its reduced size, the mockup retains the overall structure of a PWR fuel assembly. Rods displacement/velocity and velocity flow field are measured by laser techniques

  13. Fluid Damping Variation of a Slender Rod in Axial Flow Field

    Energy Technology Data Exchange (ETDEWEB)

    Park, Nam-Gyu; Yoo, Jong-Sung; Jung, Yil-Sup [KEPCO Nuclear Fuel Co., Daejeon (Korea, Republic of)

    2016-10-15

    This study proposed an analytic damping model considering the axial flow condition. In addition, the specific damping values with respect to the flow speeds are calculated. The flow induced damping is beneficial to fuel integrity in that impact energy due to severe accidents such as earthquake dissipates rapidly. A nuclear fuel bundle is composed of many slender fuel rods which contain fission material. The slender rod is typical structure in the fuel, therefore fluid damping estimation on the rod should be an important clue leading to fuel bundle damping identification. Severe accidents could cause fuel assembly vibration in the core, but large motion could be damped out rapidly when a strong damping mechanism is involved. This paper suggested a mathematical model of the slender structure. The physical meaning of the model is described, and the simulation results with the model are also provided. Actual damping due to the fluid is nonlinear, therefore further works are required to explain the detail behavior with the nonlinearity. The model validation test is on-going in KEPCO Nuclear Fuel, but it is believed that performance of the model is well correlated to the published work.

  14. Algebraic stress model for axial flow in a bare rod-bundle

    International Nuclear Information System (INIS)

    de Lemos, M.J.S.

    1987-01-01

    The problem of predicting transport properties for momentum and heat across the boundaries of interconnected channels has been the subject of many investigations. In the particular case of axial flow through rod-bundles, transport coefficients for channel faces aligned with rod centers are known to be considerably higher than those calculated by simple isotropic theories. And yet, it was been found that secondary flows play only a minor role in this overall transport, being turbulence highly enhanced across that hypothetical surface. In order to numerically predict the correct amount of the quantity being transported, the approach taken by many investigators was then to artificially increase the diffusion coefficient obtained via a simple isopropic theory (usually the standard k-ε model) and numerically match the correct experimentally observed mixing rates. The present paper reports an attempt to describe the turbulent stresses by means of an Algebraic Stress Model for turbulence. Relative turbulent kinetic energy distribution in all three directions are presented and compared with experiments in a square lattice. The strong directional dependence of transport terms are then obtained via a model for the Reynolds stresses. The results identify a need for a better representation of the mean-flow field part of the pressure-strain correlation term

  15. Design Optimization of An Axial Flow Fan Blade Considering Airfoil Shape and Stacking Line

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Sang; Kim, Kwang Yong; Samad, Abdus [Inha Univ., Incheon (Korea, Republic of)

    2007-07-01

    This work presents a numerical optimization procedure for a low-speed axial flow fan blade with polynomial response surface approximation model. Reynolds-averaged Navier-Stokes equations with Shear Stress Turbulence (SST) model are discretized by finite volume approximations and solved on hexahedral grids for flow analyses. The airfoil shape as well as stacking line is modified to enhance blade total efficiency, i.e., the objective function. The design variables of blade lean, maximum thickness and location of maximum thickness are selected, and a design of experiments technique produces design points where flow analyses are performed to obtain values of the objective function. A gradient-based search algorithm is used to find the optimal design in the design space from the constructed response surface model for the objective function. As a main result, the efficiency is increased effectively by the present optimization procedure. And, it is also shown that the modification of blade lean is more effective to improve the efficiency rather than modifying blade profile.

  16. Hydrodynamics and sediment transport in a meandering channel with a model axial-flow hydrokinetic turbine

    Science.gov (United States)

    Hill, Craig; Kozarek, Jessica; Sotiropoulos, Fotis; Guala, Michele

    2016-02-01

    An investigation into the interactions between a model axial-flow hydrokinetic turbine (rotor diameter, dT = 0.15 m) and the complex hydrodynamics and sediment transport processes within a meandering channel was carried out in the Outdoor StreamLab research facility at the University of Minnesota St. Anthony Falls Laboratory. This field-scale meandering stream with bulk flow and sediment discharge control provided a location for high spatiotemporally resolved measurements of bed and water surface elevations around the model turbine. The device was installed within an asymmetric, erodible channel cross section under migrating bed form and fixed outer bank conditions. A comparative analysis between velocity and topographic measurements, with and without the turbine installed, highlights the local and nonlocal features of the turbine-induced scour and deposition patterns. In particular, it shows how the cross-section geometry changes, how the bed form characteristics are altered, and how the mean flow field is distorted both upstream and downstream of the turbine. We further compare and discuss how current energy conversion deployments in meander regions would result in different interactions between the turbine operation and the local and nonlocal bathymetry compared to straight channels.

  17. A remark on "Nonlinear output feedback control of underwater vehicle propellers using feedback form estimated axial flow velocity"

    DEFF Research Database (Denmark)

    Jouffroy, Jerome; Lottin, Jacques

    2002-01-01

    For original paper see T.I.Fossen and M.Blanke, ibid., vol.25, pp.241-55 (2000). In the work presented by Fossen and Blanke, a nonlinear observer for estimation of propeller axial flow velocity for UUVs was introduced. The proof of the convergence behavior of the observer was carried out with a L......For original paper see T.I.Fossen and M.Blanke, ibid., vol.25, pp.241-55 (2000). In the work presented by Fossen and Blanke, a nonlinear observer for estimation of propeller axial flow velocity for UUVs was introduced. The proof of the convergence behavior of the observer was carried out...

  18. Influence of Fluid–Thermal–Structural Interaction on Boundary Layer Flow in Rectangular Supersonic Nozzles

    Directory of Open Access Journals (Sweden)

    Kalyani Bhide

    2018-03-01

    Full Text Available The aim of this work is to highlight the significance of Fluid–Thermal–Structural Interaction (FTSI as a diagnosis of existing designs, and as a means of preliminary investigation to ensure the feasibility of new designs before conducting experimental and field tests. The novelty of this work lies in the multi-physics simulations, which are, for the first time, performed on rectangular nozzles. An existing experimental supersonic rectangular converging/diverging nozzle geometry is considered for multi-physics 3D simulations. A design that has been improved by eliminating the sharp throat is further investigated to evaluate its structural integrity at design Nozzle Pressure Ratio (NPR 3.67 and off-design (NPR 4.5 conditions. Static structural analysis is performed by unidirectional coupling of pressure loads from steady 3D Computational Fluid Dynamics (CFD and thermal loads from steady thermal conduction simulations, such that the simulations represent the experimental set up. Structural deformation in the existing design is far less than the boundary layer thickness, because the impact of Shock wave Boundary Layer Interaction (SBLI is not as severe. FTSI demonstrates that the discharge coefficient of the improved design is 0.99, and its structural integrity remains intact at off-design conditions. This proves the feasibility of the improved design. Although FTSI influence is shown for a nozzle, the approach can be applied to any product design cycle, or as a prelude to building prototypes.

  19. Active Control of Supersonic Impinging Jets Using Supersonic Microjets

    National Research Council Canada - National Science Library

    Alvi, Farrukh

    2005-01-01

    .... Supersonic impinging jets occur in many applications including in STOVL aircraft where they lead to a highly oscillatory flow with very high unsteady loads on the nearby aircraft structures and the landing surfaces...

  20. The promising gas-dynamic schemes of vacuum deposition from the supersonic gas mixture flows

    International Nuclear Information System (INIS)

    Maltsev, R V; Rebrov, A K

    2008-01-01

    Gas jet deposition (GJD) becomes promising method of thin film and nanoparticle deposition. This paper is focused on elaboration of new methods of GJD based on different gas dynamic schemes of flow formation and interaction with substrate. Using direct statistical simulation method, the analysis was performed for: a) interaction of the jet from the sonic nozzle with a substrate; b) fan flow in the result of interaction of two opposite jets; c) convergent flow from the ring nozzle, directional to the axis; d) interaction of the jet after convergent flow with the substrate; e) fan flow in the result of interaction of two opposite jets after convergent expansion

  1. Heat Generation in Axial and Centrifugal Flow Left Ventricular Assist Devices.

    Science.gov (United States)

    Yost, Gardner; Joseph, Christine Rachel; Royston, Thomas; Tatooles, Antone; Bhat, Geetha

    Despite increasing use of left ventricular assist devices (LVADs) as a surgical treatment for advanced heart failure in an era of improved outcomes with LVAD support, the mechanical interactions between these pumps and the cardiovascular system are not completely understood. We utilized an in vitro mock circulatory loop to analyze the heat production incurred by operation of an axial flow and centrifugal flow LVAD. A HeartMate II and a HeartWare HVAD were connected to an abbreviated flow loop and were implanted in a viscoelastic gel. Temperature was measured at the surface of each LVAD. Device speed and fluid viscosity were altered and, in the HeartMate II, as artificial thrombi were attached to the inflow stator, impeller, and outflow stator. The surface temperatures of both LVADs increased in all trials and reached a plateau within 80 minutes of flow initiation. Rate of heat generation and maximum system temperature were greater when speed was increased, when viscosity was increased, and when artificial thrombi were attached to the HeartMate II impeller. Normal operation of these two widely utilized LVADs results in appreciable heat generation in vitro. Increased pump loading resulted in more rapid heat generation, which was particularly severe when a large thrombus was attached to the impeller of the HeartMate II. While heat accumulation in vivo is likely minimized by greater dissipation in the blood and soft tissues, focal temperature gains with the pump housing of these two devices during long-term operation may have negative hematological consequences.

  2. Detonation in supersonic radial outflow

    KAUST Repository

    Kasimov, Aslan R.; Korneev, Svyatoslav

    2014-01-01

    We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations

  3. Magnetohydrodynamic simulations of hypersonic flow over a cylinder using axial- and transverse-oriented magnetic dipoles.

    Science.gov (United States)

    Guarendi, Andrew N; Chandy, Abhilash J

    2013-01-01

    Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (<1) calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field.

  4. Magnetohydrodynamic Simulations of Hypersonic Flow over a Cylinder Using Axial- and Transverse-Oriented Magnetic Dipoles

    Directory of Open Access Journals (Sweden)

    Andrew N. Guarendi

    2013-01-01

    Full Text Available Numerical simulations of magnetohydrodynamic (MHD hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (≪1 calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field.

  5. A Novel Quasi-3D Method for Cascade Flow Considering Axial Velocity Density Ratio

    Science.gov (United States)

    Chen, Zhiqiang; Zhou, Ming; Xu, Quanyong; Huang, Xudong

    2018-03-01

    A novel quasi-3D Computational Fluid Dynamics (CFD) method of mid-span flow simulation for compressor cascades is proposed. Two dimension (2D) Reynolds-Averaged Navier-Stokes (RANS) method is shown facing challenge in predicting mid-span flow with a unity Axial Velocity Density Ratio (AVDR). Three dimension (3D) RANS solution also shows distinct discrepancies if the AVDR is not predicted correctly. In this paper, 2D and 3D CFD results discrepancies are analyzed and a novel quasi-3D CFD method is proposed. The new quasi-3D model is derived by reducing 3D RANS Finite Volume Method (FVM) discretization over a one-spanwise-layer structured mesh cell. The sidewall effect is considered by two parts. The first part is explicit interface fluxes of mass, momentum and energy as well as turbulence. The second part is a cell boundary scaling factor representing sidewall boundary layer contraction. The performance of the novel quasi-3D method is validated on mid-span pressure distribution, pressure loss and shock prediction of two typical cascades. The results show good agreement with the experiment data on cascade SJ301-20 and cascade AC6-10 at all test condition. The proposed quasi-3D method shows superior accuracy over traditional 2D RANS method and 3D RANS method in performance prediction of compressor cascade.

  6. Parametric modeling and stagger angle optimization of an axial flow fan

    International Nuclear Information System (INIS)

    Li, M X; Zhang, C H; Liu, Y; Zheng, S Y

    2013-01-01

    Axial flow fans are widely used in every field of social production. Improving their efficiency is a sustained and urgent demand of domestic industry. The optimization of stagger angle is an important method to improve fan performance. Parametric modeling and calculation process automation are realized in this paper to improve optimization efficiency. Geometric modeling and mesh division are parameterized based on GAMBIT. Parameter setting and flow field calculation are completed in the batch mode of FLUENT. A control program is developed in Visual C++ to dominate the data exchange of mentioned software. It also extracts calculation results for optimization algorithm module (provided by Matlab) to generate directive optimization control parameters, which as feedback are transferred upwards to modeling module. The center line of the blade airfoil, based on CLARK y profile, is constructed by non-constant circulation and triangle discharge method. Stagger angles of six airfoil sections are optimized, to reduce the influence of inlet shock loss as well as gas leak in blade tip clearance and hub resistance at blade root. Finally an optimal solution is obtained, which meets the total pressure requirement under given conditions and improves total pressure efficiency by about 6%

  7. Particle flow of ceramic breeder pebble beds in bi-axial compression experiments

    International Nuclear Information System (INIS)

    Hermsmeyer, S.; Reimann, J.

    2002-01-01

    Pebble beds of Tritium breeding ceramic material are investigated within the framework of developing solid breeder blankets for future nuclear fusion power plants. For the thermo-mechanical characterisation of such pebble beds, bed compression experiments are the standard tools. New bi-axial compression experiments on 20 and 30 mm high pebble beds show pebble flow effects much more pronounced than in previous 10 mm beds. Owing to the greater bed height, conditions are reached where the bed fails in cross direction and unhindered flow of the pebbles occurs. The paper presents measurements for the orthosilicate and metatitanate breeder materials that are envisaged to be used in a solid breeder blanket. The data are compared with calculations made with a Drucker-Prager soil model within the finite-element code ABAQUS, calibrated with data from other experiments. It is investigated empirically whether internal bed friction angles can be determined from pebble beds of the considered heights, which would simplify, and broaden the data base for, the calibration of the Drucker-Prager pebble bed models

  8. Supersonic quasi-axisymmetric vortex breakdown

    Science.gov (United States)

    Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.

    1991-01-01

    An extensive computational study of supersonic quasi-axisymmetric vortex breakdown in a configured circular duct is presented. The unsteady, compressible, full Navier-Stokes (NS) equations are used. The NS equations are solved for the quasi-axisymmetric flows using an implicit, upwind, flux difference splitting, finite volume scheme. The quasi-axisymmetric solutions are time accurate and are obtained by forcing the components of the flowfield vector to be equal on two axial planes, which are in close proximity of each other. The effect of Reynolds number, for laminar flows, on the evolution and persistence of vortex breakdown, is studied. Finally, the effect of swirl ration at the duct inlet is investigated.

  9. Local flow measurements at the inlet spike tip of a Mach 3 supersonic cruise airplane

    Science.gov (United States)

    Johnson, H. J.; Montoya, E. J.

    1973-01-01

    The flow field at the left inlet spike tip of a YF-12A airplane was examined using at 26 deg included angle conical flow sensor to obtain measurements at free-stream Mach numbers from 1.6 to 3.0. Local flow angularity, Mach number, impact pressure, and mass flow were determined and compared with free-stream values. Local flow changes occurred at the same time as free-stream changes. The local flow usually approached the spike centerline from the upper outboard side because of spike cant and toe-in. Free-stream Mach number influenced the local flow angularity; as Mach number increased above 2.2, local angle of attack increased and local sideslip angle decreased. Local Mach number was generally 3 percent less than free-stream Mach number. Impact-pressure ratio and mass flow ratio increased as free-stream Mach number increased above 2.2, indicating a beneficial forebody compression effect. No degradation of the spike tip instrumentation was observed after more than 40 flights in the high-speed thermal environment encountered by the airplane. The sensor is rugged, simple, and sensitive to small flow changes. It can provide accurate imputs necessary to control an inlet.

  10. Axial dispersion of gas and solid phases in a gas—solid packed column at trickle flow

    NARCIS (Netherlands)

    Roes, A.W.M.; van Swaaij, Willibrordus Petrus Maria

    1979-01-01

    Axial dispersion of gas and solid phases in a gas—solid packed column at trickle flow, a promising new countercurrent operation, was evaluated using residence time distribution (RTD) experiments. The column was packed with dumped Pall rings, the gas phase was air at ambient conditions and the solid

  11. Prediction of velocity distributions in rod bundle axial flow, with a statistical model (K-epsilon) of turbulence

    International Nuclear Information System (INIS)

    Silva Junior, H.C. da.

    1978-12-01

    Reactor fuel elements generally consist of rod bundles with the coolant flowing axially through the region between the rods. The confiability of the thermohydraulic design of such elements is related to a detailed description of the velocity field. A two-equation statistical model (K-epsilon) of turbulence is applied to compute main and secondary flow fields, wall shear stress distributions and friction factors of steady, fully developed turbulent flows, with incompressible, temperature independent fluid flowing axially through triangular or square arrays of rod bundles. The numerical procedure uses the vorticity and the stream function to describe the velocity field. Comparison with experimental and analytical data of several investigators is presented. Results are in good agreement. (Author) [pt

  12. Causes and solution of aperiodicity of supersonic flow field downstream of a profile cascade

    Czech Academy of Sciences Publication Activity Database

    Luxa, Martin; Synáč, J.; Šafařík, J.; Šimurda, David

    2012-01-01

    Roč. 14, 4a (2012), s. 23-28 ISSN 1335-4205 R&D Projects: GA ČR(CZ) GAP101/10/1329 Institutional support: RVO:61388998 Keywords : turbine cascade * exit flow periodicity * transonic flow * porous tailboard * limit load Subject RIV: BK - Fluid Dynamics

  13. Investigation of Two-Phase Flow in AxialCentrifugal Impeller by Hydrodynamic Modeling Methods

    Directory of Open Access Journals (Sweden)

    V. O. Lomakin

    2014-01-01

    Full Text Available The article provides a methodology to study the flow in the wet part of the pump with fundamentally new axial-centrifugal impeller by methods of hydrodynamic modeling in the software package STAR CCM +. The objective of the study was to determine the normal and cavitation characteristics of the pump with a new type of wet part, as well as optimization of the geometrical parameters of the pump. Authors solved this problem using an example of the hot coolant pump, which should meet high requirements for cavitation quality and efficiency (hydraulic efficiency up to 87%, critical value of NPSH to 2.2 m.Also, the article focuses on the methods of numerical solution of two-phase flow simulation in a pump that are needed for a more accurate simulation of cavitation in the pump and research work in liquids with high gas content.Hydrodynamic modeling was performed on a computing cluster at the department E-10 of BMSTU for pump flow simulation in unsteady statement of problem using the computational grid size to 1.5 million cells. Simultaneously, the experimental model of the pump was made by 3D printing and tested at the stand in the BMSTU. Test results, which were compared with the calculated data are also given in the article. Inaccuracy of the calculation of pump head does not exceed 5%.The simulation results may be of interest to specialists in the field of hydrodynamic modeling, and for designers of such pumps. The authors also report production of a full-length prototype of the pump in order to conduct further testing for the verification of the data in the article, primarily in terms of cavitation characteristics.

  14. Flow structure and unsteadiness in the supersonic wake of a generic space launcher

    Science.gov (United States)

    Schreyer, Anne-Marie; Stephan, Sören; Radespiel, Rolf

    2015-11-01

    At the junction between the rocket engine and the main body of a classical space launcher, a separation-dominated and highly unstable flow field develops and induces strong wall-pressure oscillations. These can excite structural vibrations detrimental to the launcher. It is desirable to minimize these effects, for which a better understanding of the flow field is required. We study the wake flow of a generic axisymmetric space-launcher model with and without propulsive jet (cold air). Experimental investigations are performed at Mach 2.9 and a Reynolds number ReD = 1 . 3 .106 based on model diameter D. The jet exits the nozzle at Mach 2.5. Velocity measurements by means of Particle Image Velocimetry and mean and unsteady wall-pressure measurements on the main-body base are performed simultaneously. Additionally, we performed hot-wire measurements at selected points in the wake. We can thus observe the evolution of the wake flow along with its spectral content. We describe the mean and turbulent flow topology and evolution of the structures in the wake flow and discuss the origin of characteristic frequencies observed in the pressure signal at the launcher base. The influence of a propulsive jet on the evolution and topology of the wake flow is discussed in detail. The German Research Foundation DFG is gratefully acknowledged for funding this research within the SFB-TR40 ``Technological foundations for the design of thermally and mechanically highly loaded components of future space transportation systems.''

  15. The Multiscale Interaction of Vibrational Energy Transfer and Turbulent Combustion in Supersonic Flows

    Science.gov (United States)

    2017-04-04

    comply with a collection of information   if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE...µm in order to facilitate the flow diagnostics. The center jet flow issues through a CNC- machined stainless nozzle, which can be replaced to provide...the mixing in the shear layer, which will be used to compare with the relaxation time of the vibrational energy, was defined as the eddy turnover time

  16. Investigation of the Impact of an External Magnetic Field on a Supersonic Plasma Flow Through and MGD Channel

    National Research Council Canada - National Science Library

    Bobashev, S. V; Mende, N. P; Sakharov, V. A; Van Wie, D. M

    2003-01-01

    .... Generally, the separation leads to harmful consequences such as an increase of the body drag, a decrease of the wing lift, unsteady loads, and at high supersonic velocities causes emergence of narrow...

  17. Aerodynamic Analysis and Three-Dimensional Redesign of a Multi-Stage Axial Flow Compressor

    Directory of Open Access Journals (Sweden)

    Tao Ning

    2016-04-01

    Full Text Available This paper describes the introduction of three-dimension (3-D blade designs into a 5-stage axial compressor with multi-stage computational fluid dynamic (CFD methods. Prior to a redesign, a validation study is conducted for the overall performance and flow details based on full-scale test data, proving that the multi-stage CFD applied is a relatively reliable tool for the analysis of the follow-up redesign. Furthermore, at the near stall point, the aerodynamic analysis demonstrates that significant separation exists in the last stator, leading to the aerodynamic redesign, which is the focus of the last stator. Multi-stage CFD methods are applied throughout the three-dimensional redesign process for the last stator to explore their aerodynamic improvement potential. An unconventional asymmetric bow configuration incorporated with leading edge re-camber and re-solidity is employed to reduce the high loss region dominated by the mainstream. The final redesigned version produces a 13% increase in the stall margin while maintaining the efficiency at the design point.

  18. Counter-rotating type axial flow pump unit in turbine mode for micro grid system

    International Nuclear Information System (INIS)

    Kasahara, R; Takano, G; Komaki, K; Murakami, T; Kanemoto, T

    2012-01-01

    Traditional type pumped storage system contributes to adjust the electric power unbalance between day and night, in general. This serial research proposes the hybrid power system combined the wind power unit with the pump-turbine unit, to provide the constant output for the grid system, even at the suddenly fluctuating/turbulent wind. In the pumping mode, the pump should operate unsteadily at not only the normal but also the partial discharge. The operation may be unstable in the rising portion of the head characteristics at the lower discharge, and/or bring the cavitation at the low suction head. To simultaneously overcome both weak points, the authors have proposed a superior pump unit that is composed of counter-rotating type impellers and a peculiar motor with double rotational armatures. This paper discusses the operation at the turbine mode of the above unit. It is concluded with the numerical simulations that this type unit can be also operated acceptably at the turbine mode, because the unit works so as to coincide the angular momentum change through the front runners/impellers with that thorough the rear runners/impellers, namely to take the axial flow at not only the inlet but also the outlet without the guide vanes.

  19. Sealing properties of mechanical seals for an axial flow blood pump.

    Science.gov (United States)

    Tomioka, J; Mori, T; Yamazaki, K; Koyanagi, H

    1999-08-01

    A miniature intraventricular axial flow blood pump for left ventricular support is under development. One of the key technologies required for such pumps is sealing of the motor shaft. In this study, to prevent blood backflow into the motor side, mechanical seals were developed and their sealing properties investigated. In the experimental apparatus, the mechanical seal separated the bovine blood on the chamber side from the cooling water on the motor side. A leakage of the blood was measured by inductively coupled plasma (ICP) light emission analysis. The rate of hemolysis was measured by the cyanmethemoglobin method. Frictional torque acting on the shaft was measured by a torque transducer. In the experiments, the rotational speed of the shaft was changed from 1,000 to 10,000 rpm, and the contact force of the seal faces was changed from 1.96 to 4.31 N. To estimate lubrication regimes, the Stribeck curve, a diagram of the coefficient of friction against the bearing characteristic G number, was drawn. The results of the experiments showed that both the leakage of blood and the rate of hemolysis were very small. The friction loss was also very small. The mechanical seal was operated in various lubrication regimes, from a fluid lubrication regime to a mixed lubrication regime.

  20. Pulsed flow modulation two-dimensional comprehensive gas chromatography-tandem mass spectrometry with supersonic molecular beams.

    Science.gov (United States)

    Poliak, Marina; Fialkov, Alexander B; Amirav, Aviv

    2008-11-07

    Pulsed flow modulation (PFM) two-dimensional comprehensive gas chromatography (GC x GC) was combined with quadrupole-based mass spectrometry (MS) via a supersonic molecular beam (SMB) interface using a triple-quadrupole system as the base platform, which enabled tandem mass spectrometry (MS-MS). PFM is a simple GC x GC modulator that does not consume cryogenic gases while providing tunable second GC x GC column injection time for enabling the use of quadrupole-based mass spectrometry regardless its limited scanning speed. The 20-ml/min second column flow rate involved with PFM is handled, splitless, by the SMB interface without affecting the sensitivity. The combinations of PFM GC x GC-MS with SMB and PFM GC x GC-MS-MS with SMB were explored with the analysis of diazinon and permethrin in coriander. PFM GC x GC-MS with SMB is characterized by enhanced molecular ion and tailing-free fast ion source response time. It enables universal pesticide analysis with full scan and data analysis with reconstructed single ion monitoring on the enhanced molecular ion and another prominent high mass fragment ion. The elimination of the third fragment ion used in standard three ions method results in significantly reduced matrix interference. GC x GC-MS with SMB improves the GC separation, and thereby our ability for sample identification using libraries. GC-MS-MS with SMB provides better reduction (elimination) of matrix interference than GC x GC-MS. However, it is a target method, which is not always applicable. GC x GC-MS-MS does not seem to further reduce matrix interferences over GC-MS-MS and unlike GC x GC-MS, it is incompatible with library identification, but it is beneficial to have both GC x GC and MS-MS capabilities in the same system.

  1. Parametric Study of Cantilever Plates Exposed to Supersonic and Hypersonic Flows

    Science.gov (United States)

    Sri Harsha, A.; Rizwan, M.; Kuldeep, S.; Giridhara Prasad, A.; Akhil, J.; Nagaraja, S. R.

    2017-08-01

    Analysis of hypersonic flows associated with re-entry vehicles has gained a lot of significance due to the advancements in Aerospace Engineering. An area that is studied extensively by researchers is the simultaneous reduction aerodynamic drag and aero heating in re-entry vehicles. Out of the many strategies being studied, the use of aerospikes at the stagnation point of the vehicle is found to give favourable results. The structural stability of the aerospike becomes important as it is exposed to very high pressures and temperatures. Keeping this in view, the deflection and vibration of an inclined cantilever plate in hypersonic flow is carried out using ANSYS. Steady state pressure distribution obtained from Fluent is applied as load to the transient structural module for analysis. After due validation of the methods, the effects of parameters like flow Mach number, plate inclination and plate thickness on the deflection and vibration are studied.

  2. Numerical research of the swirling supersonic gas flows in the self-vacuuming vortex tube

    Science.gov (United States)

    Volov, V. T.; Lyaskin, A. S.

    2018-03-01

    This article presents the results of simulation for a special type of vortex tubes – self-vacuuming vortex tube (SVVT), for which extreme values of temperature separation and vacuum are realized. The main results of this study are the flow structure in the SVVT and energy loss estimations on oblique shock waves, gas friction, instant expansion and organization of vortex bundles in SVVT.

  3. Annular Electric Discharge as an Initiator of Combustion in Supersonic Flow

    Science.gov (United States)

    2009-02-01

    Flow 5a. CONTRACT NUMBER ISTC Registration No: 3833P 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Kossyi Igor Antonovich...REPORT NUMBER(S) ISTC 07-7012 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY...

  4. High Enthalpy Effects on Two Boundary Layer Disturbances in Supersonic and Hypersonic Flow

    Science.gov (United States)

    Wagnild, Ross Martin

    The fluid flow phenomenon of boundary layer transition is a complicated and difficult process to model and predict. The importance of the state of the boundary layer with regard to vehicle design cannot be understated. The high enthalpy environment in which high speed vehicles operate in further complicates the transition process by adding several more degrees of freedom. In this environment, the internal properties of the gas can stabilize or destabilize the boundary layer as well as modify the disturbances that cause transition. In the current work, the interaction of two types of disturbances with the high enthalpy flow environment are analyzed. The first is known as a second mode disturbance, which is acoustic in nature. The second type is known as a transient growth disturbance and is associated with flows behind roughness elements. Theoretical analyses, linear stability analyses, and computation fluid dynamics (CFD) are used to determine the ways in which these disturbances interact with the high enthalpy environment as well as the consequences of these interactions. First, acoustic wave are directly studied in order to gain a basic understanding of the response of second mode disturbances in the high enthalpy boundary layer. Next, this understanding is used in interpreting the results of several computations attempting to simulate the flow through a high enthalpy flow facility as well as experiments attempting to take advantage of the acoustic interaction with the high enthalpy environment. Because of the difficulty in modeling these experiments, direct simulations of acoustic waves in a hypersonic flow of a gas with molecular vibration are performed. Lastly, compressible transient growth disturbances are simulated using a linear optimal disturbance solver as well as a CFD solver. The effect of an internal molecular process on this type of disturbance is tested through the use of a vibrational mode. It is the goal of the current work to reinforce the

  5. The effect of sheared axial flow on nonlinear Z-pinch dynamics

    International Nuclear Information System (INIS)

    Kassapakis, N.

    2000-01-01

    A two dimensional Eulerian fluid code has been used to study three problems related to Z-pinch and laser produced plasmas. a) The nonlinear evolution of a localised m=0 MHD mode neck is studied in order to extract some scaling laws for the size and form of the artificial neck. We examine whether the ubiquitous m=0 instability could be beneficially used to assist in the formation of a transient localised dense plasma. The results obtained were in satisfactory agreement with experiments and other theoretical work where available. b) The development of the m=0 instability on a Z-pinch although beneficial in the previous case, is detrimental from a stability point of view and thus to the utilisation of the device as a fusion reactor by itself. This is because the timescales of the instability development are faster than the confinement time needed for fusion to occur. Sheared axial flow is a proposed mechanism for the non-linear saturation of this particular instability. Indeed the linear growth rate also can be substantially reduced. It is hoped that it can inhibit the growth of the instabilities or at least delay their development sufficiently for fusion to take place. The numerical study of the effect of sheared axial flow on the nonlinear dynamics of the Z-pinch carried out, demonstrates that sheared flow with velocity u z z >4 Alfven speed other modes, of the Kelvin-Helmholtz type, are excited which take over from the fastest growing mode in the static case. c) The expansion of the ablated plasma in laser-solid interactions is an important phenomenon for a plethora of reasons one of which is ICF. The simulations were in direct agreement with previous experimental work regarding the bulk properties of the ablation surface. They also provided justification for some assumptions made during the analysis of the observations and helped to confirm the calibration of the diagnostics timewise. The most striking feature of the experiments, namely the density dip on the

  6. The flow over a 'high' aspect ratio gothic wing at supersonic speeds

    Science.gov (United States)

    Narayan, K. Y.

    1975-01-01

    Results are presented of an experimental investigation on a nonconical wing which supports an attached shock wave over a region of the leading edge near the vertex and a detached shock elsewhere. The shock detachment point is determined from planform schlieren photographs of the flow field and discrepancies are shown to exist between this and the one calculated by applying the oblique shock equations normal to the leading edge. On a physical basis, it is argued that the shock detachment has to obey the two-dimensional law normal to the leading edges. From this, and from other measurements on conical wings, it is thought that the planform schlieren technique may not be particularly satisfactory for detecting shock detachment. Surface pressure distributions are presented and are explained in terms of the flow over related delta wings which are identified as a vertex delta wing and a local delta wing.

  7. High speed photography for investigating kiloampere discharges in supersonic air flows

    International Nuclear Information System (INIS)

    Jones, G.R.; Strachan, D.

    1975-01-01

    Examples of the use of conventional high speed photographic techniques are given for obtaining information about the behaviour of high current arc discharges in different gas flow fields. The photographic records yield information about the extent of both the luminous arc core and the surrounding heated volume of gas. A knowledge of these parameters leads to a better understanding of arc discharges which occur in gas blast circuit breakers. (author)

  8. MONOTONIC DERIVATIVE CORRECTION FOR CALCULATION OF SUPERSONIC FLOWS WITH SHOCK WAVES

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2015-07-01

    Full Text Available Subject of Research. Numerical solution methods of gas dynamics problems based on exact and approximate solution of Riemann problem are considered. We have developed an approach to the solution of Euler equations describing flows of inviscid compressible gas based on finite volume method and finite difference schemes of various order of accuracy. Godunov scheme, Kolgan scheme, Roe scheme, Harten scheme and Chakravarthy-Osher scheme are used in calculations (order of accuracy of finite difference schemes varies from 1st to 3rd. Comparison of accuracy and efficiency of various finite difference schemes is demonstrated on the calculation example of inviscid compressible gas flow in Laval nozzle in the case of continuous acceleration of flow in the nozzle and in the case of nozzle shock wave presence. Conclusions about accuracy of various finite difference schemes and time required for calculations are made. Main Results. Comparative analysis of difference schemes for Euler equations integration has been carried out. These schemes are based on accurate and approximate solution for the problem of an arbitrary discontinuity breakdown. Calculation results show that monotonic derivative correction provides numerical solution uniformity in the breakdown neighbourhood. From the one hand, it prevents formation of new points of extremum, providing the monotonicity property, but from the other hand, causes smoothing of existing minimums and maximums and accuracy loss. Practical Relevance. Developed numerical calculation method gives the possibility to perform high accuracy calculations of flows with strong non-stationary shock and detonation waves. At the same time, there are no non-physical solution oscillations on the shock wave front.

  9. Theoretical investigations on two-phase flow instability in parallel channels under axial non-uniform heating

    International Nuclear Information System (INIS)

    Lu, Xiaodong; Wu, Yingwei; Zhou, Linglan; Tian, Wenxi; Su, Guanghui; Qiu, Suizheng; Zhang, Hong

    2014-01-01

    Highlights: • We developed a model based on homogeneous flow model to analyze two-phase flow instability in parallel channels. • The influence of axial non-uniform heating on the system stability has been investigated. • Influences of various factors on system instability under cosine heat flux have been studied. • The system under top-peaked heat flux is the most stable system. - Abstract: Two-phase flow instability in parallel channels heated by axial non-uniform heat flux has been theoretically studied in this paper. The system control equations of parallel channels were established based on the homogeneous flow model in two-phase region. Semi-implicit finite-difference scheme and staggered mesh method were used to discretize the equations, and the difference equations were solved by chasing method. Cosine, bottom-peaked and top-peaked heat fluxes were used to study the influence of non-uniform heating on two-phase flow instability of the parallel channels system. The marginal stability boundaries (MSB) of parallel channels and three-dimensional instability spaces (or instability reefs) under different heat flux conditions have been obtained. Compared with axial uniform heating, axial non-uniform heating will affect the system stability. Cosine and bottom-peaked heat fluxes can destabilize the system stability in high inlet subcooling region, while the opposite effect can be found in low inlet subcooling region. However, top-peaked heat flux can enhance the system stability in the whole region. In addition, for cosine heat flux, increasing the system pressure or inlet resistance coefficient can strengthen the system stability, and increasing the heating power will destabilize the system stability. The influence of inlet subcooling number on the system stability is multi-valued under cosine heat flux

  10. Analysis of the flow dynamics characteristics of an axial piston pump based on the computational fluid dynamics method

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2017-01-01

    Full Text Available To improve its working performance, the flow ripple characteristics of an axial piston pump were investigated with software which uses computational fluid dynamics (CFD technology. The simulation accuracy was significantly optimized through the use of the improved compressible fluid model. Flow conditions of the pump were tested using a pump flow ripple test rig, and the simulation results of the CFD model showed good agreement with the experimental data. Additionally, the composition of the flow ripple was analyzed using the improved CFD model, and the results showed that the compression ripple makes up 88% of the flow ripple. The flow dynamics of the piston pump is mainly caused by the pressure difference between the intake and discharge ports of the valve plates and the fluid oil compressibility.

  11. Sound attenuations of axial fan blade tones using flow-driven tunable resonator arrays

    Science.gov (United States)

    Gorny, Lee James

    Flow-excited, tunable quarter-wavelength resonators can be integrated into the shrouds of ducted subsonic axial fans. This study explores their effectiveness in reducing propagations of tonal noise by means of acoustic wave cancellation. Resonators are a non-intrusive method of generating a secondary sound field near the plane of a rotor. As they can be strategically tuned to reduce radiated noise at the blade passage frequency (BPF) and its harmonics, resonators can be useful for a variety of applications to quiet existing and future turbomachinery. Experiments have demonstrated that a single quarter wave resonator is effective in reducing unidirectional plane wave propagations for long wavelength ducted applications while an array is effective for shorter wavelength or un-ducted facilities where shrouded fans are used. Testing conducted at Center for Acoustics and Vibrations (CAV) at the Pennsylvania State University the Deutsches Zentrum fur Luft und Raumfahrt (DLR) in Berlin, Germany demonstrated that resonator arrays were effective in attenuating shorter wavelength plane-wave and higher order modal propagations of blade tone noise. A chiller fan enclosure, constructed in the CAV laboratory emulated an industrial chiller in its operation. Using this facility, resonators were observed to attenuate blade tone noise from a non-ideal ducted geometry. The approaches used in this study evolved from Helmholtz resonators to conventional quarter wave tubes, to mouth tunable resonators, and finally to back-wall tunable resonators. These developments in tuning allowed for independent control of a resonator's magnitude and phase of the secondary sound field produced by the resonators. It was demonstrated that the use of two tunable resonator chambers oriented axially on either side of the blade region enables a dipole-like secondary sound field to be passively generated and bi-directional attenuations of plane wave noise to be achieved. Tonal attenuations of 28 dB were

  12. Numerical Solutions for Supersonic Flow of an Ideal Gas Around Blunt Two-Dimensional Bodies

    Science.gov (United States)

    Fuller, Franklyn B.

    1961-01-01

    The method described is an inverse one; the shock shape is chosen and the solution proceeds downstream to a body. Bodies blunter than circular cylinders are readily accessible, and any adiabatic index can be chosen. The lower limit to the free-stream Mach number available in any case is determined by the extent of the subsonic field, which in turn depends upon the body shape. Some discussion of the stability of the numerical processes is given. A set of solutions for flows about circular cylinders at several Mach numbers and several values of the adiabatic index is included.

  13. A Guide to Axial-Flow Turbine Off-Design Computer Program AXOD2

    Science.gov (United States)

    Chen, Shu-Cheng S.

    2014-01-01

    A Users Guide for the axial flow turbine off-design computer program AXOD2 is composed in this paper. This Users Guide is supplementary to the original Users Manual of AXOD. Three notable contributions of AXOD2 to its predecessor AXOD, both in the context of the Guide or in the functionality of the code, are described and discussed in length. These are: 1) a rational representation of the mathematical principles applied, with concise descriptions of the formulas implemented in the actual coding. Their physical implications are addressed; 2) the creation and documentation of an Addendum Listing of input namelist-parameters unique to AXOD2, that differ from or are in addition to the original input-namelists given in the Manual of AXOD. Their usages are discussed; and 3) the institution of proper stoppages of the code execution, encoding termination messaging and error messages of the execution to AXOD2. These measures are to safe-guard the integrity of the code execution, such that a failure mode encountered during a case-study would not plunge the code execution into indefinite loop, or cause a blow-out of the program execution. Details on these are discussed and illustrated in this paper. Moreover, this computer program has since been reconstructed substantially. Standard FORTRAN Langue was instituted, and the code was formatted in Double Precision (REAL*8). As the result, the code is now suited for use in a local Desktop Computer Environment, is perfectly portable to any Operating System, and can be executed by any FORTRAN compiler equivalent to a FORTRAN 9095 compiler. AXOD2 will be available through NASA Glenn Research Center (GRC) Software Repository.

  14. Aerodynamic forces estimation on jet vanes exposed to supersonic exhaust of a CD Nozzle

    International Nuclear Information System (INIS)

    Bukhari, S.B.H.; Jehan, I.; Zahir, S.; Khan, M.A.

    2003-01-01

    A comprehensive study has been made for the estimation of aerodynamic forces on the jet Vane placed in the supersonic exhaust of a Convergent Divergent, CD-Nozzle. Such a system is used to provide the control forces that consist of four orthogonal vanes mounted in the supersonic exhaust of the CD-Nozzles. The flow field parameters for a CD Nozzle were analyzed and validated earlier. In this paper the published experimental and CFD results from RAMPANT Code from Fluent Inc. were used to estimate the axial and normal forces by using PAK-3D, a Computational Fluid Dynamics (CFD) software based on Navier-Stokes Equations solver. Results got verified quantitatively with a maximum error of 8% between PAK-3D and experiment, while 4% between PAK-3D and a CFD code, RAMPANT for the axial force. (author)

  15. Effects of casing treatment on a small, transonic axial-flow compressor

    Science.gov (United States)

    Holman, F. F.; Kidwell, J. R.

    1975-01-01

    Improved axial compressor surge margin through effective rotor casing treatment has been identified from test results on large axial compressors. A modified scale of a large compressor was built and tested to determine if similar improvements in surge margin could be duplicated in small-size turbomachinery. In addition, the effects of rotor radial running clearance, both with and without casing treatment, were investigated and are discussed. Test results of the scale configuration are presented and compared to the parent compressor.

  16. Installation, test and non-linear vibratory analysis of an experiment with four fuel assembly models under axial flow

    International Nuclear Information System (INIS)

    Clement, Simon

    2014-01-01

    The present study is in the scope of pressurized water reactors (PWR) core response to earthquakes. The goal of this thesis is to measure the coupling between fuel assemblies caused an axial water flow. The design, production and installation a new test facility named ICARE EXPERIMENTAL are presented. ICARE EXPERIMENTAL was built in order to measure simultaneously the vibrations of four fuel assemblies (2 x 2) under an axial flow. Vibrations are produced by imposing the dynamic of one of the fuel assemblies and the displacements of the three others, induced by the fluid, are measured in the horizontal plane at grids level. A new data analysis method combining time-frequency analysis and orthogonal mode decomposition (POD) is described. This method, named Sliding Window POD (SWPOD), allows analysing multicomponent data, of which spatial repartition of energy and frequency content are time dependent. In the case of mechanical systems (linear and nonlinear), the link between the proper orthogonal modes obtained through SWPOD and the normal modes (linear and nonlinear) is studied. The SWPOD is applied to experimental tests of a steam generators U-tube, showing the appearance of internal resonances. The method is also applied to dynamic experimental tests of a fuel assembly under axial flow, the evolution of its normal modes is obtained as a function of the fluid velocity. The measures acquired with the ICARE EXPERIMENTAL installation are analysed using the SWPOD. The first results show characteristic behavior of the free fuel assemblies at their resonances. The coupling between fuel assemblies, induced by the fluid, is reproduced by simulations performed using the COEUR3D code. This code is based on a porous media model in order to simulate a fuel assemblies network under axial flow. (author) [fr

  17. Measurements of density, temperature, and their fluctuations in turbulent supersonic flow using UV laser spectroscopy

    Science.gov (United States)

    Fletcher, Douglas G.; Mckenzie, R. L.

    1992-01-01

    Nonintrusive measurements of density, temperature, and their turbulent fluctuation levels were obtained in the boundary layer of an unseeded, Mach 2 wind tunnel flow. The spectroscopic technique that was used to make the measurements is based on the combination of laser-induced oxygen fluorescence and Raman scattering by oxygen and nitrogen from the same laser pulse. Results from this demonstration experiment are compared with previous measurements obtained in the same facility using conventional probes and an earlier spectroscopic technique. Densities and temperatures measured with the current technique agree with the previous surveys to within 3 percent and 2 percent, respectively. The fluctuation amplitudes for both variables agree with the measurements obtained using the earlier spectroscopic technique and show evidence of an unsteady, weak shock wave that perturbs the boundary layer.

  18. Theoretical study of flow ripple for an aviation axial-piston pump with damping holes in the valve plate

    Directory of Open Access Journals (Sweden)

    Guan Changbin

    2014-02-01

    Full Text Available Based on the structure of a certain type of aviation axial-piston pump’s valve plate which adopts a pre-pressurization fluid path (consisting a damping hole, a buffer chamber, and an orifice to reduce flow ripple, a single-piston model of the aviation axial-piston pump is presented. This single-piston model comprehensively considers fluid compressibility, orifice restriction effect, fluid resistance in the capillary tube, and the leakage flow. Besides, the instantaneous discharge areas used in the single-piston model have been calculated in detail. Based on the single-piston model, a multi-piston pump model has been established according to the simple hydraulic circuit. The single- and multi-piston pump models have been realized by the S-function in Matlab/Simulink. The developed multi-piston pump model has been validated by being compared with the numerical result by computational fluid dynamic (CFD. The effects of the pre-pressurization fluid path on the flow ripple and the instantaneous pressure in the piston chamber have been studied and optimized design recommendations for the aviation axial-piston pump have been given out.

  19. Analysis of impact of general-purpose graphics processor units in supersonic flow modeling

    Science.gov (United States)

    Emelyanov, V. N.; Karpenko, A. G.; Kozelkov, A. S.; Teterina, I. V.; Volkov, K. N.; Yalozo, A. V.

    2017-06-01

    Computational methods are widely used in prediction of complex flowfields associated with off-normal situations in aerospace engineering. Modern graphics processing units (GPU) provide architectures and new programming models that enable to harness their large processing power and to design computational fluid dynamics (CFD) simulations at both high performance and low cost. Possibilities of the use of GPUs for the simulation of external and internal flows on unstructured meshes are discussed. The finite volume method is applied to solve three-dimensional unsteady compressible Euler and Navier-Stokes equations on unstructured meshes with high resolution numerical schemes. CUDA technology is used for programming implementation of parallel computational algorithms. Solutions of some benchmark test cases on GPUs are reported, and the results computed are compared with experimental and computational data. Approaches to optimization of the CFD code related to the use of different types of memory are considered. Speedup of solution on GPUs with respect to the solution on central processor unit (CPU) is compared. Performance measurements show that numerical schemes developed achieve 20-50 speedup on GPU hardware compared to CPU reference implementation. The results obtained provide promising perspective for designing a GPU-based software framework for applications in CFD.

  20. Investigation of the turbulent swirl flow in pipe generated by axial fans using PIV and LDA methods

    Directory of Open Access Journals (Sweden)

    Čantrak Đorđe S.

    2015-01-01

    Full Text Available In this paper is presented experimental investigation of the turbulent swirl flow in pipe generated by axial fans. Two various models of industrial axial fans are used. One of these is axial fan W30, model AP 400, Minel, Serbia and has seven blades and outer diameter 0.397m. Second axial fan SP30 is model TGT/2-400-6, S&P, Spain, has six blades and outer diameter 0.386m. This results with greater clearance in the second case. Blades were adjusted for both fans at the angle of 30° at the outer diameter. Test rig length is 27.74-D, where D is average inner diameter app. 0.4 m. Measurements are performed in two measuring sections downstream the axial fans (z/D = 3.35 and z/D = 26.31 with one-component laser Doppler anemometry (LDA system and stereo particle image velocimetry (SPIV. Obtained Reynolds numbers, calculated on the basis of the average axial velocity (Um in the first measuring section are for fan SP30 Re = 226757, while for fan W30 Re = 254010. Integral flow parameters are determined such as average circulation and swirl number. Significant downstream axial velocity transformation occurs for both fans, while circumferential velocity is decreased, but non-dimensional velocity profile remains the same. Circumferential velocity distribution for both fans in the central zone corresponds to the solid body, while in r/R > 0.4, where D = 2R, distribution is more uniform. Radial velocity in the case of fan SP30 has almost zero values in the measuring section z/D = 3.35, while its values are significantly increased in the downstream section with the maximum in the vortex core region. On the contrary radial velocity decreases downstream for fan W30 and has also maximum value in the vortex core region for both measuring sections. Level of turbulence, skewness and flatness factors are calculated on the basis of the experimental data. The highest levels of turbulence for circumferential velocity are reached in the vortex core region for both fans

  1. Correlation between interstitial flow and pore structure in packed bed. 1st Report. Axial velocity measurement using MRI and visualization of axial channel flow; Juten sonai ryudo to kugeki kozo no sokan. 1. MRI ni yoru jikuhoko ryusoku bunpu no keisoku to jikiuhoko channel ryu no kashika

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, K; Yokouchi, Y; Hirai, S [Tokyo Institute of Technology, Tokyo (Japan)

    2000-02-25

    Structure and velocity measurements using magnetic resonance imaging (MRI) have been performed experimentally to obtain a correlation between pore structure and interstitial flow through the packed bed of 5 mm diameter in the tube of 36 mm ID. To measure axial velocity maps of water flow through the packed bed, the phase method of using the phase difference of water spin magnetization between flowing and stagnant fluids by applying magnetic fields with bipolar gradients was employed. The spatial resolution of the obtained map in 0.2 mm x 0.2 mm x 0.5 mm. It was made clear from the obtained axial velocity maps that channel flows with higher axial velocity were induced not only near the wall but also in the internal region of the packed bed. Furthermore, pore structure of the packed bed was characterized from multi-slice images by partitioning of void space and combining of each pore section along the axial direction to analyze the structure-flow correlation. It was found from image analysis that axial channels with long and straight void space existed in the pore structure, and that most of the channel flows with higher axial velocity were induced in the axial channels. The flow rate through an axial channel depends on the square of the averaged cross section of the axial channel. (author)

  2. Advanced supersonic propulsion study, phase 3

    Science.gov (United States)

    Howlett, R. A.; Johnson, J.; Sabatella, J.; Sewall, T.

    1976-01-01

    The variable stream control engine is determined to be the most promising propulsion system concept for advanced supersonic cruise aircraft. This concept uses variable geometry components and a unique throttle schedule for independent control of two flow streams to provide low jet noise at takeoff and high performance at both subsonic and supersonic cruise. The advanced technology offers a 25% improvement in airplane range and an 8 decibel reduction in takeoff noise, relative to first generation supersonic turbojet engines.

  3. Design optimization of axial flow hydraulic turbine runner: Part I - an improved Q3D inverse method

    Science.gov (United States)

    Peng, Guoyi; Cao, Shuliang; Ishizuka, Masaru; Hayama, Shinji

    2002-06-01

    With the aim of constructing a comprehensive design optimization procedure of axial flow hydraulic turbine, an improved quasi-three-dimensional inverse method has been proposed from the viewpoint of system and a set of rotational flow governing equations as well as a blade geometry design equation has been derived. The computation domain is firstly taken from the inlet of guide vane to the far outlet of runner blade in the inverse method and flows in different regions are solved simultaneously. So the influence of wicket gate parameters on the runner blade design can be considered and the difficulty to define the flow condition at the runner blade inlet is surmounted. As a pre-computation of initial blade design on S2m surface is newly adopted, the iteration of S1 and S2m surfaces has been reduced greatly and the convergence of inverse computation has been improved. The present model has been applied to the inverse computation of a Kaplan turbine runner. Experimental results and the direct flow analysis have proved the validation of inverse computation. Numerical investigations show that a proper enlargement of guide vane distribution diameter is advantageous to improve the performance of axial hydraulic turbine runner. Copyright

  4. Wall boundary layer development near the tip region of an IGV of an axial flow compressor

    Science.gov (United States)

    Lakshminarayana, B.; Sitaram, N.

    1983-01-01

    The annulus wall boundary layer inside the blade passage of the inlet guide vane (IGV) passage of a low-speed axial compressor stage was measured with a miniature five-hole probe. The three-dimensional velocity and pressure fields were measured at various axial and tangential locations. Limiting streamline angles and static pressures were also measured on the casing of the IGV passage. Strong secondary vorticity was developed. The data were analyzed and correlated with the existing velocity profile correlations. The end wall losses were also derived from these data.

  5. Transport of temperature-velocity covariance in gas-solid flow and its relation to the axial dispersion coefficient

    Science.gov (United States)

    Subramaniam, Shankar; Sun, Bo

    2015-11-01

    The presence of solid particles in a steady laminar flow generates velocity fluctuations with respect to the mean fluid velocity that are termed pseudo-turbulence. The level of these pseudo-turbulent velocity fluctuations has been characterized in statistically homogeneous fixed particle assemblies and freely evolving suspensions using particle-resolved direct numerical simulation (PR-DNS) by Mehrabadi et al. (JFM, 2015), and it is found to be a significant contribution to the total kinetic energy associated with the flow. The correlation of these velocity fluctuations with temperature (or a passive scalar) generates a flux term that appears in the transport equation for the average fluid temperature (or average scalar concentration). The magnitude of this transport of temperature-velocity covariance is quantified using PR-DNS of thermally fully developed flow past a statistically homogeneous fixed assembly of particles, and the budget of the average fluid temperature equation is presented. The relation of this transport term to the axial dispersion coefficient (Brenner, Phil. Trans. Roy. Soc. A, 1980) is established. The simulation results are then interpreted in the context of our understanding of axial dispersion in gas-solid flow. NSF CBET 1336941.

  6. Development of high-performance and low-noise axial-flow fan units in their local operating region

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Seung; Ha, Min Ho; Cheong, Cheol Ung [Pusan National University, Busan (Korea, Republic of); Kim, Tae Hoon [LG Electronics Inc., Changwon (Korea, Republic of)

    2015-09-15

    Aerodynamic and aeroacoustic performances of an axial-flow fan unit are improved by modifying its housing structure without changing the fan blade. The target axial-flow fan system is used to lower temperature of a compressor and a condenser in the machine room of a household refrigerator which has relatively high system resistance due to complex layout of structures inside it. First, the performance of the fan system is experimentally characterized by measuring its volume flow rate versus static pressure using a fan performance tester satisfying the AMCA (Air Movement and Control Association) regulation, AMCA 210-07. The detailed structure of flow driven by the fan is numerically investigated using a virtual fan performance tester based on computational fluid dynamics techniques. The prediction result reveals possible loss due to radial and tangential velocity components in the wake flow downstream of the fan. The length of the fan housing is chosen as a design parameter for improving the aerodynamic and aeroacoustic performances of the fan unit by reducing the identified radial and tangential velocity components. Three fan units with different housing lengths longer than the original are analyzed using the virtual fan performance tester. The results confirm the improved aerodynamic performance of the proposed three designs. The flow field driven by the proposed fan unit is closely examined to find the causes for the observed performance improvements, which ensures that the radial and tangential velocity components in the wake flow are reduced. Finally, the improved performance of the proposed fan systems is validated by comparing the P-Q and efficiency curves measured using the fan performance tester. The noise emission from the household refrigerator is also found to be lessened when the new fan units are installed.

  7. The influence of the tangential velocity of inner rotating wall on axial velocity profile of flow through vertical annular pipe with rotating inner surface

    Directory of Open Access Journals (Sweden)

    Sharf Abdusalam M.

    2014-03-01

    Full Text Available In the oil and gas industries, understanding the behaviour of a flow through an annulus gap in a vertical position, whose outer wall is stationary whilst the inner wall rotates, is a significantly important issue in drilling wells. The main emphasis is placed on experimental (using an available rig and computational (employing CFD software investigations into the effects of the rotation speed of the inner pipe on the axial velocity profiles. The measured axial velocity profiles, in the cases of low axial flow, show that the axial velocity is influenced by the rotation speed of the inner pipe in the region of almost 33% of the annulus near the inner pipe, and influenced inversely in the rest of the annulus. The position of the maximum axial velocity is shifted from the centre to be nearer the inner pipe, by increasing the rotation speed. However, in the case of higher flow, as the rotation speed increases, the axial velocity is reduced and the position of the maximum axial velocity is skewed towards the centre of the annulus. There is a reduction of the swirl velocity corresponding to the rise of the volumetric flow rate.

  8. Supersonic induction plasma jet modeling

    International Nuclear Information System (INIS)

    Selezneva, S.E.; Boulos, M.I.

    2001-01-01

    Numerical simulations have been applied to study the argon plasma flow downstream of the induction plasma torch. It is shown that by means of the convergent-divergent nozzle adjustment and chamber pressure reduction, a supersonic plasma jet can be obtained. We investigate the supersonic and a more traditional subsonic plasma jets impinging onto a normal substrate. Comparing to the subsonic jet, the supersonic one is narrower and much faster. Near-substrate velocity and temperature boundary layers are thinner, so the heat flux near the stagnation point is higher in the supersonic jet. The supersonic plasma jet is characterized by the electron overpopulation and the domination of the recombination over the dissociation, resulting into the heating of the electron gas. Because of these processes, the supersonic induction plasma permits to separate spatially different functions (dissociation and ionization, transport and deposition) and to optimize each of them. The considered configuration can be advantageous in some industrial applications, such as plasma-assisted chemical vapor deposition of diamond and polymer-like films and in plasma spraying of nanoscaled powders

  9. Modelling of the meridian flow in nominal and partial flow in axial and helico-centrifugal turbomachinery; Modelisation en regime nominal et partiel de l'ecoulement meridien dans les turbomachines axiales et helicocentrifuges

    Energy Technology Data Exchange (ETDEWEB)

    Ercolino, J.

    2001-01-15

    In this study, a fast analysis code for the meridian flow inside turbo-machineries has been developed. This code is based on the resolution of the averaged dynamical equations controlling the internal stationary and non-viscous flow in the relative reference frame. A linear combination of momentum equations has been used in the axial and radial directions to avoid the source term of the equations to become singular. The model developed is particularly adapted to the general case of compression machines, i.e.the mixed machines. Starting with the hypothesis of a finite number of blading and assuming an axisymmetric flow, the equations allowing to calculate the blading forces and the simplified kinematics of blade-to-blade flow have been developed. This kinematics takes into consideration the geometrical data supplied by manufacturers or by global design softwares. This last approach ensures a very efficient link in the framework of turbomachine design projects where the blades geometry is introduced in a very simple way for a first optimization approach. The results obtained seem to be very consistent in nominal flow but also in partial flow conditions as shown by the qualitative comparisons with test results. (J.S.)

  10. Numerical investigation of the flow in axial water turbines and marine propellers with scale-resolving simulations

    Science.gov (United States)

    Morgut, Mitja; Jošt, Dragica; Nobile, Enrico; Škerlavaj, Aljaž

    2015-11-01

    The accurate prediction of the performances of axial water turbines and naval propellers is a challenging task, of great practical relevance. In this paper a numerical prediction strategy, based on the combination of a trusted CFD solver and a calibrated mass transfer model, is applied to the turbulent flow in axial turbines and around a model scale naval propeller, under non-cavitating and cavitating conditions. Some selected results for axial water turbines and a marine propeller, and in particular the advantages, in terms of accuracy and fidelity, of ScaleResolving Simulations (SRS), like SAS (Scale Adaptive Simulation) and Zonal-LES (ZLES) compared to standard RANS approaches, are presented. Efficiency prediction for a Kaplan and a bulb turbine was significantly improved by use of the SAS SST model in combination with the ZLES in the draft tube. Size of cavitation cavity and sigma break curve for Kaplan turbine were successfully predicted with SAS model in combination with robust high resolution scheme, while for mass transfer the Zwart model with calibrated constants were used. The results obtained for a marine propeller in non-uniform inflow, under cavitating conditions, compare well with available experimental measurements, and proved that a mass transfer model, previously calibrated for RANS (Reynolds Averaged Navier Stokes), can be successfully applied also within the SRS approaches.

  11. Thermal convection in a toroidal duct of a liquid metal blanket. Part II. Effect of axial mean flow

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuan, E-mail: xuanz@umich.edu; Zikanov, Oleg

    2017-03-15

    Highlights: • 2D convection flow develops with internal heating and strong axial magnetic field. • The flow is strongly modified by the buoyancy force associated with growing T{sub m}. • Thermal convection is suppressed at high Gr. • High temperature difference between top and bottom walls is expected at high Gr. - Abstract: The work continues the exploration of the effect of thermal convection on flows in toroidal ducts of a liquid metal blanket. This time we consider the effect of the mean flow along the duct and of the associated heat transfer diverting the heat deposited by captured neutrons. Numerical simulations are conducted for a model system with two-dimensional (streamwise-uniform) fully developed flow, purely toroidal magnetic field, and perfectly electrically and thermally insulating walls. Realistically high Grashof (up to 10{sup 11}) and Reynolds (up to 10{sup 6}) numbers are used. It is found that the flow develops thermal convection in the transverse plane at moderate Grashof numbers. At large Grashof numbers, the flow is dominated by the top-bottom asymmetry of the streamwise velocity and stable stratification of temperature, which are caused by the buoyancy force due to the mean temperature growing along the duct. This leads to suppression of thermal convection, weak mixing, and substantial gradients of wall temperature. Further analysis based on more realistic models is suggested.

  12. Adaptive fuzzy PID control of hydraulic servo control system for large axial flow compressor

    Science.gov (United States)

    Wang, Yannian; Wu, Peizhi; Liu, Chengtao

    2017-09-01

    To improve the stability of the large axial compressor, an efficient and special intelligent hydraulic servo control system is designed and implemented. The adaptive fuzzy PID control algorithm is used to control the position of the hydraulic servo cylinder steadily, which overcomes the drawback that the PID parameters should be adjusted based on the different applications. The simulation and the test results show that the system has a better dynamic property and a stable state performance.

  13. An experimental and numerical study of developed single phase axial turbulent flow in a smooth rod bundle

    International Nuclear Information System (INIS)

    Hooper, J.D.

    1977-01-01

    A combined experimental and numerical model of a turbulent single phase coolant, flowing axially along the fuel pins of a nuclear reactor, was developed. The experimental rig represented two interconnected subchannels of a square array at a pitch/diameter ratio of 1.193. Air was the working fluid, and measurements were made of the mean radial velocity profiles, wall shear stress variation, turbulence velocity spectra and intensities. The numerically predicted wall shear distribution and mean velocity profiles, obtained using an empirical two-dimensional mixing length and eddy diffusivity concept to represent fluid turbulence, showed good agreement with the experimental results. (Author)

  14. Axial annular flow of power-law fluids - applicability of the limiting cases

    Czech Academy of Sciences Publication Activity Database

    Filip, Petr; David, Jiří

    2007-01-01

    Roč. 52, č. 4 (2007), s. 365-371 ISSN 0001-7043 R&D Projects: GA ČR GA103/06/1033 Institutional research plan: CEZ:AV0Z20600510 Keywords : Concentric annuli * Poiseuile flow * annular flow * power- law fluids * flow rate * pressure drop Subject RIV: BK - Fluid Dynamics

  15. Stage-by-Stage and Parallel Flow Path Compressor Modeling for a Variable Cycle Engine, NASA Advanced Air Vehicles Program - Commercial Supersonic Technology Project - AeroServoElasticity

    Science.gov (United States)

    Kopasakis, George; Connolly, Joseph W.; Cheng, Larry

    2015-01-01

    This paper covers the development of stage-by-stage and parallel flow path compressor modeling approaches for a Variable Cycle Engine. The stage-by-stage compressor modeling approach is an extension of a technique for lumped volume dynamics and performance characteristic modeling. It was developed to improve the accuracy of axial compressor dynamics over lumped volume dynamics modeling. The stage-by-stage compressor model presented here is formulated into a parallel flow path model that includes both axial and rotational dynamics. This is done to enable the study of compressor and propulsion system dynamic performance under flow distortion conditions. The approaches utilized here are generic and should be applicable for the modeling of any axial flow compressor design accurate time domain simulations. The objective of this work is as follows. Given the parameters describing the conditions of atmospheric disturbances, and utilizing the derived formulations, directly compute the transfer function poles and zeros describing these disturbances for acoustic velocity, temperature, pressure, and density. Time domain simulations of representative atmospheric turbulence can then be developed by utilizing these computed transfer functions together with the disturbance frequencies of interest.

  16. Simulation of a 3D unsteady flow in an axial turbine stage

    Directory of Open Access Journals (Sweden)

    Straka Petr

    2012-04-01

    Full Text Available The contribution deals with a numerical simulation of an unsteady flow in an axial turbine stage. The solution is performed using an in-house numerical code developed in the Aeronautical and Test Institute, Plc. in Prague. The numerical code is based on a finite volume discretization of governing equations (Favre averaged Navier-Stokes equations and a two-equations turbulence model. The temporal integration is based on the implicit second-order backward Euler formula, which is realized through the iteration process in dual time. The proposed numerical method is used for solution of the 3D, unsteady, viscous turbulent flow of a perfect gas in the axial turbine stage. The flow path consists of an input nozzle, stator blade-wheel, rotor blade-wheel, a shroud-seal gap and a diffuser. Attention is paid to the influence of a secondary flow structures, such as generated vortices and flow in shroud-seal gap.

  17. Effect of Partial Shrouds on the Performance and Flow Field of a Low-Aspect-Ratio Axial-Flow Fan Rotor

    Directory of Open Access Journals (Sweden)

    N. Sitaram

    2011-01-01

    Full Text Available The flow field at the rotor exit of a low aspect ratio axial flow fan for different tip geometries and for different flow coefficients is measured in the present study. The following configurations are tested: (1 rotor without partial shroud, designated as rotor (wos, (2 rotor with partial shroud, designated as rotor (ws, and (3 rotor with perforated (perforations in the shape of discrete circular holes partial shroud, designated as rotor (wps. From steady state measurements, the performance of rotor (wps is found to be the best. Both the rotors with partial shrouds have stalled at a higher flow coefficient compared to that of rotor (wos. From periodic flow measurements, it is concluded that the low velocity region near the tip section is considerably reduced with the use of partial shrouds with perforations. The extent of this low velocity region for both rotor (wos and rotor (wps increases with decreasing flow coefficient due to increased stage loading. This core of low momentum fluid has moved inwards of the annulus and towards the pressure side as the flow coefficient decreases. The extent of the low momentum fluid is smaller for rotor (wps than that of rotor (wos at all flow coefficients.

  18. Axial-Flow Turbine Rotor Discharge-Flow Overexpansion and Limit-Loading Condition, Part I: Computational Fluid Dynamics (CFD) Investigation

    Science.gov (United States)

    Chen, Shu-Cheng S.

    2017-01-01

    A Computational Fluid Dynamic (CFD) investigation is conducted over a two-dimensional axial-flow turbine rotor blade row to study the phenomena of turbine rotor discharge flow overexpansion at subcritical, critical, and supercritical conditions. Quantitative data of the mean-flow Mach numbers, mean-flow angles, the tangential blade pressure forces, the mean-flow mass flux, and the flow-path total pressure loss coefficients, averaged or integrated across the two-dimensional computational domain encompassing two blade-passages, are obtained over a series of 14 inlet-total to exit-static pressure ratios, from 1.5 (un-choked; subcritical condition) to 10.0 (supercritical with excessively high pressure ratio.) Detailed flow features over the full domain-of-computation, such as the streamline patterns, Mach contours, pressure contours, blade surface pressure distributions, etc. are collected and displayed in this paper. A formal, quantitative definition of the limit loading condition based on the channel flow theory is proposed and explained. Contrary to the comments made in the historical works performed on this subject, about the deficiency of the theoretical methods applied in analyzing this phenomena, using modern CFD method for the study of this subject appears to be quite adequate and successful. This paper describes the CFD work and its findings.

  19. Artificial dissipation models applied to Euler equations for analysis of supersonic flow of helium gas around a geometric configurations ramp and diffusor type

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Jussiê S., E-mail: jussie.soares@ifpi.edu.br [Instituto Federal do Piauí (IFPI), Valença, PI (Brazil); Maciel, Edisson Sávio de Góes, E-mail: edissonsavio@yahoo.com.br [Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos, SP (Brazil); Lira, Carlos A.B.O., E-mail: cabol@ufpe.edu.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Sousa, Pedro A.S.; Neto, Raimundo N.C., E-mail: augusto.96pedro@gmail.com, E-mail: r.correia17@hotmail.com [Instituto Federal do Piauí (IFPI), Teresina, PI (Brazil)

    2017-07-01

    Very High Temperature Gas Cooled Reactors - VHTGRs are studied by several research groups for the development of advanced reactors that can meet the world's growing energy demand. The analysis of the flow of helium coolant around the various geometries at the core of these reactors through computational fluid dynamics techniques is an essential tool in the development of conceptual designs of nuclear power plants that provide added security. This analysis suggests a close analogy with aeronautical cases widely studied using computational numerical techniques to solve systems of governing equations for the flow involved. The present work consists in using the DISSIPA2D{sub E}ULER code, to solve the Euler equations in a conservative form, in two-dimensional space employing a finite difference formulation for spatial discretization using the Euler method for explicit marching in time. The physical problem of supersonic flow along a ramp and diffusor configurations is considered. For this, the Jameson and Mavriplis algorithm and the artificial dissipation model linear of Pulliam was implemented. A spatially variable time step is employed aiming to accelerate the convergence to the steady state solution. The main purpose of this work is obtain computational tools for flow analysis through the study the cited dissipation model and describe their characteristics in relation to the overall quality of the solution, as well as obtain preliminary results for the development of computational tools of dynamic analysis of helium gas flow in gas-cooled reactors. (author)

  20. Artificial dissipation models applied to Euler equations for analysis of supersonic flow of helium gas around a geometric configurations ramp and diffusor type

    International Nuclear Information System (INIS)

    Rocha, Jussiê S.; Maciel, Edisson Sávio de Góes; Lira, Carlos A.B.O.; Sousa, Pedro A.S.; Neto, Raimundo N.C.

    2017-01-01

    Very High Temperature Gas Cooled Reactors - VHTGRs are studied by several research groups for the development of advanced reactors that can meet the world's growing energy demand. The analysis of the flow of helium coolant around the various geometries at the core of these reactors through computational fluid dynamics techniques is an essential tool in the development of conceptual designs of nuclear power plants that provide added security. This analysis suggests a close analogy with aeronautical cases widely studied using computational numerical techniques to solve systems of governing equations for the flow involved. The present work consists in using the DISSIPA2D E ULER code, to solve the Euler equations in a conservative form, in two-dimensional space employing a finite difference formulation for spatial discretization using the Euler method for explicit marching in time. The physical problem of supersonic flow along a ramp and diffusor configurations is considered. For this, the Jameson and Mavriplis algorithm and the artificial dissipation model linear of Pulliam was implemented. A spatially variable time step is employed aiming to accelerate the convergence to the steady state solution. The main purpose of this work is obtain computational tools for flow analysis through the study the cited dissipation model and describe their characteristics in relation to the overall quality of the solution, as well as obtain preliminary results for the development of computational tools of dynamic analysis of helium gas flow in gas-cooled reactors. (author)

  1. a Time-Dependent Three-Dimensional Numerical Study of Supersonic Rectangular Jet Flow and Noise Using the Full Navier-Stokes Equations.

    Science.gov (United States)

    Chyczewski, Thomas Stanley, Jr.

    A national interest in High Speed Civil Transports (HSCT) coupled with strict airport noise regulations has prompted the scientific community to investigate new and improved noise prediction strategies. Meeting these airport regulations is considered to be a major design challenge for the HSCT. In light of this effort, a direct simulation strategy for predicting supersonic jet noise is developed in this thesis. Direct simulations are quickly becoming the method of choice due to their generality and ever decreasing expense associated with the development of parallel processors. Supersonic jet noise is known to be dominated by the growth and decay of large scale turbulent structures. The direct simulation approach used here consists of solving the full Navier Stokes equations using high order finite difference techniques to simulate the evolution of these structures and the noise they radiate to the acoustic near field. This near field solution is then extrapolated to the far field using a Kirchhoff method. The numerical algorithm uses a fourth order Runge -Kutta method for the time integration. The spatial derivatives are approximated by a sixth order central scheme. A sixth order filter is used at each interior mesh point to damp frequencies that cannot be resolved by the spatial scheme. Second order filtering is provided only where required for stability. It is found to be confined to specific locations in the jet core and should have no effect on the acoustic solution. Characteristic based nonreflecting conditions are used to minimize reflections at the far field boundaries and have proven to be effective. Additional boundary conditions are required in the form of it model for the nozzle exit flow. The characteristics of the nozzle exit flow can have a significant impact on the noise radiation. This dependence is unfortunate since comprehensive experimental data is not available in this region of the jet. A model is developed here that addresses a variety of

  2. Numerical performance analysis of acoustic Doppler velocity profilers in the wake of an axial-flow marine hydrokinetic turbine

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, Marshall C.; Harding, Samuel F.; Romero Gomez, Pedro DJ

    2015-09-01

    The use of acoustic Doppler current profilers (ADCPs) for the characterization of flow conditions in the vicinity of both experimental and full scale marine hydrokinetic (MHK) turbines is becoming increasingly prevalent. The computation of a three dimensional velocity measurement from divergent acoustic beams requires the assumption that the flow conditions are homogeneous between all beams at a particular axial distance from the instrument. In the near wake of MHK devices, the mean fluid motion is observed to be highly spatially dependent as a result of torque generation and energy extraction. This paper examines the performance of ADCP measurements in such scenarios through the modelling of a virtual ADCP (VADCP) instrument in the velocity field in the wake of an MHK turbine resolved using unsteady computational fluid dynamics (CFD). This is achieved by sampling the CFD velocity field at equivalent locations to the sample bins of an ADCP and performing the coordinate transformation from beam coordinates to instrument coordinates and finally to global coordinates. The error in the mean velocity calculated by the VADCP relative to the reference velocity along the instrument axis is calculated for a range of instrument locations and orientations. The stream-wise velocity deficit and tangential swirl velocity caused by the rotor rotation lead to significant misrepresentation of the true flow velocity profiles by the VADCP, with the most significant errors in the transverse (cross-flow) velocity direction.

  3. Artificial dissipation models applied to Navier-Stokes equations for analysis of supersonic flow of helium gas around a geometric configuration ramp type

    International Nuclear Information System (INIS)

    Rocha, Jussie Soares da; Maciel, Edisson Savio de G.; Lira, Carlos A.B. de O.

    2015-01-01

    Very High Temperature Gas Cooled Reactors - VHTGRs are studied by several research groups for the development of advanced reactors that can meet the world's growing energy demand. The analysis of the flow of helium coolant around the various geometries at the core of these reactors through computational fluid dynamics techniques is an essential tool in the development of conceptual designs of nuclear power plants that provide added safety. This analysis suggests a close analogy with aeronautical cases widely studied using computational numerical techniques to solve systems of governing equations for the flow involved. The present work consists in solving the Navier-Stokes equations in a conservative form, in two-dimensional space employing a finite difference formulation for spatial discretization using the Euler method for explicit marching in time. The physical problem of supersonic laminar flow of helium gas along a ramp configuration is considered. For this, the Jameson and Mavriplis algorithm and the artificial dissipations models linear and nonlinear of Pulliam was implemented. A spatially variable time step is employed aiming to accelerate the convergence to the steady state solution. The main purpose of this work is to study the cited dissipation models and describe their characteristics in relation to the overall quality of the solution, aiming preliminary results for the development of computational tools of dynamic analysis of helium flow for the VHTGR core. (author)

  4. Predicting the onset of dynamic instability of a cylindrical plate under axial flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Marcum, W.R., E-mail: marcumw@engr.orst.edu [Oregon State University, Department of Nuclear Engineering and Radiation Health Physics, 116 Radiation Center, Corvallis, OR 97330 (United States); Woods, B.G. [Oregon State University, Department of Nuclear Engineering and Radiation Health Physics, 116 Radiation Center, Corvallis, OR 97330 (United States)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer A semi-numerical flow induced vibration model is developed of a cylindrical plate. Black-Right-Pointing-Pointer Test case results are presented and agree well with previous studies data. Black-Right-Pointing-Pointer The model identifies a relationship between forces and the plate natural frequency. - Abstract: The dynamic mechanical stability of a single cylindrical plate under flow conditions is considered herein. Numerous plate-type research reactors such as the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL) comprise fuel elements which contain arrays of concentrically aligned cylindrical plates. Several of these reactors are licensed to operate at extreme heat fluxes; as a corollary their hydraulic designs require large flow rates sufficient to remove this heat. These flow rates may reach superficial velocities upwards of 15 m/s through individual flow channels. Given that fuel plates typically found in such research reactors are relatively long ({approx}1.2573 m), wide ({approx}0.1397 m), and extremely thin ({approx}0.00127 m) concern is drawn toward the susceptibility of flow induced vibration (FIV). In an attempt to gain a more comprehensive understanding toward the dynamic mechanical limit of stability of cylindrical plates, a FIV model was developed using semi-numerical methods. The FIV model was developed in two separate modules; a plate stability module, and a flow module. These modules were then coupled together to produce a FIV model. In this study, a set of test cases are presented on the plate stability module under free vibration conditions, comparing well against known available information from previous studies. Results are similarly presented on the flow module and compared against a RELAP5-3D model. Lastly, results of these coupled modules are presented and discussion is given toward the relationship between plate natural frequency, geometry, and plate membrane pressures.

  5. Hydrodynamic instabilities in the developing region of an axially rotating pipe flow

    Energy Technology Data Exchange (ETDEWEB)

    Miranda-Barea, A; Fabrellas-García, C; Parras, L; Pino, C del, E-mail: cpino@uma.es [Universidad de Málaga, Escuela Técnica Superior de Ingeniería Industrial, Ampliación Campus de Teatinos, 29071, Málaga, España (Spain)

    2015-06-15

    We conduct experiments in a rotating Hagen–Poiseuille flow (RHPF) through flow visualizations when the flow becomes convectively and absolutely unstable at low-to-moderate Reynolds numbers, Re. We characterize periodic patterns at a very high swirl parameter, L, when the flow overcomes the absolutely unstable region. These non-steady helical filaments wrapped around the axis appear in the developing region of the pipe. Experimentally, we compute the onset of these oscillations in the (L, Re)-plane finding that the rotation rate decreases as the Reynolds number increases in the process of achieving the time-dependent state. Additionally, we report information regarding frequencies and wavelengths that appear downstream of the rotating pipe for convectively and absolutely unstable flows, even for very high swirl parameters at which the flow becomes time-dependent in the developing region. We do not observe variations in the trends of these parameters, so these hydrodynamic instabilities in the developing region do not affect the unstable travelling waves downstream of the pipe. (paper)

  6. Axial velocity profiles and secondary flows of developing laminar flows in a straight connected exit region of a 180 .deg. square curved duct

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Hyun Chull; Lee, Heang Nam; Park, Gil Moon [Chosun Univ., Gwangju (Korea, Republic of)

    2005-10-01

    In the present study, characteristics of steady state laminar flows of a straight duct connected to a 180 .deg. curved duct were examined in the entrance region through experimental and numerical analyses. For the analysis, the governing equations of laminar flows in the Cartesian coordinate system were applied. Flow characteristics such as velocity profiles and secondary flows were investigated numerically and experimentally in a square cross-sectional straight duct by the PIV system and a CFD code (STARCD). For the PIV measurement, smoke particles produced from mosquito coils. The experimental data were obtained at 9 points dividing the test sections by 400 mm. Experimental and numerical results can be summarized as follows. 1) Reynolds number, Re was increased, dimensionless velocity profiles at the outer wall were increased due to the effect of the centrifugal force and secondary flows. 2) The intensity of a secondary flow became stronger at the inner wall rather than the outer wall regardless of Reynolds number. Especially, fluid dynamic phenomenon called conner impact were observed at dimensionless axial position, x/D{sub h}=50.

  7. Subchannel flow analysis in Candu and ACR pressure tubes with radial and axial diameter variation

    Energy Technology Data Exchange (ETDEWEB)

    Catana, A.; Prodea, L. [RAAN, Institute for Nuclear Research, Arges (Romania); Danila, N.; Prisecaru, I.; Dupleac, D. [Bucharest Univ. Politehnica(Romania)

    2007-07-01

    The Candu (Canada Deuterium Uranium) and ACR (Advanced Candu Reactor) are pressure tubes (PT) heavy water moderated reactors. Candu are heavy water and ACR are light water cooled reactors. The pressure tube is filled with 12 bundles, each consisting of 37 respectively 43 fuel rods. One Candu reactor is in operation at Cernavoda, Romania since 1996. ACR is a proposed advanced Candu. PT diameter variation has a significant impact on the thermal-hydraulic parameters. Almost all thermal-hydraulic parameters change, but some of them have a greater significance. In this work we have considered a set of radial and axial PT diameter variations both for Candu-600 and ACR-700 reactors using various types of fuel bundles. We can conclude the following: 1) some thermal-hydraulic parameters are significantly influenced: critical heat flux (CHF), pressure drop, or void fraction; 2) the most significant parameter CHF is worsening which reduces the safety margin; 3) some fuel types present a better thermal-hydraulic behavior; and 4) fuel bundles with fresh fuel or low burnup have a worse thermal-hydraulic behaviour than those at average burn-up.

  8. Subchannel flow analysis in Candu and ACR pressure tubes with radial and axial diameter variation

    International Nuclear Information System (INIS)

    Catana, A.; Prodea, L.; Danila, N.; Prisecaru, I.; Dupleac, D.

    2007-01-01

    The Candu (Canada Deuterium Uranium) and ACR (Advanced Candu Reactor) are pressure tubes (PT) heavy water moderated reactors. Candu are heavy water and ACR are light water cooled reactors. The pressure tube is filled with 12 bundles, each consisting of 37 respectively 43 fuel rods. One Candu reactor is in operation at Cernavoda, Romania since 1996. ACR is a proposed advanced Candu. PT diameter variation has a significant impact on the thermal-hydraulic parameters. Almost all thermal-hydraulic parameters change, but some of them have a greater significance. In this work we have considered a set of radial and axial PT diameter variations both for Candu-600 and ACR-700 reactors using various types of fuel bundles. We can conclude the following: 1) some thermal-hydraulic parameters are significantly influenced: critical heat flux (CHF), pressure drop, or void fraction; 2) the most significant parameter CHF is worsening which reduces the safety margin; 3) some fuel types present a better thermal-hydraulic behavior; and 4) fuel bundles with fresh fuel or low burnup have a worse thermal-hydraulic behaviour than those at average burn-up

  9. Optimization of the axial compressor flow passage to reduce the circumferential distortion

    Science.gov (United States)

    Popov, G.; Kolmakova, D.; Shklovets, A.; Ermakov, A.

    2015-08-01

    This work is motivated by the necessity to reduce the effects of the flow circumferential distortion in the flow passage of the aircraft gas turbine engine (GTE). In previous research, the authors have proposed the approaches to decrease of the flow circumferential distortion arising from the mid-support racks of GTE compressor and having a negative impact on the blade rows, located upstream. In particular, the idea of introducing the circumferentially non-uniform blade pitch and profile stagger angle of guide vanes located in front of the support was contributed in order to redistribute the flow and decrease the dynamic stresses in the rotor wheel of the same stage. During the research presented in this paper, another principal of reduction of the flow circumferential distortion was chosen. Firstly, the variants of upgrading the existing support racks were found. Secondly, the new design of support was offered. Both the first and the second version of the support design variation took into account the availability of technological and structural limitations associated with the location of oil pipes, springs and others elements in the support racks. Investigations of modified design showed that the support with altered racks provides a reduction of dynamic stresses by 20% at resonance with the most dangerous harmonic, and the new design of support can give the decrease of 30%.

  10. Direct implementation of an axial-flow helium gas turbine tool in a system analysis tool for HTGRs

    International Nuclear Information System (INIS)

    Kim, Ji Hwan; No, Hee Cheon; Kim, Hyeun Min; Lim, Hong Sik

    2008-01-01

    This study concerns the development of dynamic models for a high-temperature gas-cooled reactor (HTGR) through direct implementation of a gas turbine analysis code with a transient analysis code. We have developed a streamline curvature analysis code based on the Newton-Raphson numerical application (SANA) to analyze the off-design performance of helium gas turbines under conditions of normal operation. The SANA code performs a detailed two-dimensional analysis by means of throughflow calculation with allowances for losses in axial-flow multistage compressors and turbines. To evaluate the performance in the steady-state and load transient of HTGRs, we developed GAMMA-T by implementing SANA in the transient system code, GAMMA, which is a multidimensional, multicomponent analysis tool for HTGRs. The reactor, heat exchangers, and connecting pipes were designed with a one-dimensional thermal-hydraulic model that uses the GAMMA code. We assessed GAMMA-T by comparing its results with the steady-state results of the GTHTR300 of JAEA. We concluded that the results are in good agreement, including the results of the vessel cooling bypass flow and the turbine cooling flow

  11. Study on unsteady tip leakage vortex cavitation in an axial-flow pump using an improved filter-based model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Desheng; Shi, Lei; Zhao, Ruijie; Shi, Weidong; Pan, Qiang [Jiangsu University, Zhenjiang (China); Esch, B. P. [Eindhoven University of Technology, Eindhoven (Netherlands)

    2017-02-15

    The aim of the present investigation is to simulate and analyze the tip leakage flow structure and instantaneous evolution of tip vortex cavitation in a scaled axial-flow pump model. The improved filter-based turbulence model based on the density correction and a homogeneous cavitation model were used for implementing this work. The results show that when entering into the tip clearance, the backward flow separates from the blade tip near the pressure side, resulting in the generation of a corner vortex with high magnitude of turbulence kinetic energy. Then, at the exit of the tip clearance, the leakage jets would re-attach on the blade tip wall. Moreover, the maximum swirling strength method was employed in identifying the TLV core and a counter-rotating induced vortex near the end-wall successfully. The three dimensional cavitation patterns and in-plain cavitation structures obtained by the improved numerical method agree well with the experimental results. At the sheet cavitation trailing edge in the tip region, the perpendicular cavitation cloud induced by TLV sheds and migrates toward the pressure side of the neighboring blade. During its migration, it breaks down abruptly and generates a large number of smallscale cavities, leading to severe degradation of the pump performance, which is similar with the phenomenon observed by Tan et al.

  12. Preliminary Axial Flow Turbine Design and Off-Design Performance Analysis Methods for Rotary Wing Aircraft Engines. Part 1; Validation

    Science.gov (United States)

    Chen, Shu-cheng, S.

    2009-01-01

    For the preliminary design and the off-design performance analysis of axial flow turbines, a pair of intermediate level-of-fidelity computer codes, TD2-2 (design; reference 1) and AXOD (off-design; reference 2), are being evaluated for use in turbine design and performance prediction of the modern high performance aircraft engines. TD2-2 employs a streamline curvature method for design, while AXOD approaches the flow analysis with an equal radius-height domain decomposition strategy. Both methods resolve only the flows in the annulus region while modeling the impact introduced by the blade rows. The mathematical formulations and derivations involved in both methods are documented in references 3, 4 for TD2-2) and in reference 5 (for AXOD). The focus of this paper is to discuss the fundamental issues of applicability and compatibility of the two codes as a pair of companion pieces, to perform preliminary design and off-design analysis for modern aircraft engine turbines. Two validation cases for the design and the off-design prediction using TD2-2 and AXOD conducted on two existing high efficiency turbines, developed and tested in the NASA/GE Energy Efficient Engine (GE-E3) Program, the High Pressure Turbine (HPT; two stages, air cooled) and the Low Pressure Turbine (LPT; five stages, un-cooled), are provided in support of the analysis and discussion presented in this paper.

  13. Hydraulic testing of intravascular axial flow blood pump designs with a protective cage of filaments for mechanical cavopulmonary assist.

    Science.gov (United States)

    Kapadia, Jugal Y; Pierce, Kathryn C; Poupore, Amy K; Throckmorton, Amy L

    2010-01-01

    To provide hemodynamic support to patients with a failing single ventricle, we are developing a percutaneously inserted, magnetically levitated axial flow blood pump designed to augment pressure in the cavopulmonary circulation. The device is designed to serve as a bridge-to-transplant, bridge-to-recovery, bridge-to-hemodynamic stability, or bridge-to-surgical reconstruction. This study evaluated the hydraulic performance of three blood pump prototypes (a four-bladed impeller, a three-bladed impeller, and a three-bladed impeller with a four-bladed diffuser) whose designs evolved from previous design optimization phases. Each prototype included the same geometric protective cage of filaments, which stabilize the rotor within the housing and protect the housing wall from the rotating blades. All prototypes delivered pressure rises over a range of flow rates and rotational speeds that would be sufficient to augment hemodynamic conditions in the cavopulmonary circulation. The four-bladed impeller outperformed the two remaining prototypes by >40%; this design was able to generate a pressure rise of 4-28 mm Hg for flow rates of 0.5-10 L/min at rotational speeds of 4,000-7,000 RPM. Successful development of this blood pump will provide clinicians with a feasible therapeutic option for mechanically supporting the failing Fontan.

  14. Investigation of Blade-row Flow Distributions in Axial-flow-compressor Stage Consisting of Guide Vanes and Rotor-blade Row

    Science.gov (United States)

    Mahoney, John J; Dugan, Paul D; Budinger, Raymond E; Goelzer, H Fred

    1950-01-01

    A 30-inch tip-diameter axial-flow compressor stage was investigated with and without rotor to determine individual blade-row performance, interblade-row effects, and outer-wall boundary-layer conditions. Velocity gradients at guide-vane outlet without rotor approximated design assumptions, when the measured variation of leaving angle was considered. With rotor in operation, Mach number and rotor-blade effects changed flow distribution leaving guide vanes and invalidated design assumption of radial equilibrium. Rotor-blade performance correlated interpolated two-dimensional results within 2 degrees, although tip stall was indicated in experimental and not two-dimensional results. Boundary-displacement thickness was less than 1.0 and 1.5 percent of passage height after guide vanes and after rotor, respectively, but increased rapidly after rotor when tip stall occurred.

  15. Experimental investigation of laminar flow of viscous oil through a circular tube having integral axial corrugation roughness and fitted with twisted tapes with oblique teeth

    Science.gov (United States)

    Pal, Sagnik; Saha, Sujoy Kumar

    2015-08-01

    The experimental friction factor and Nusselt number data for laminar flow of viscous oil through a circular duct having integral axial corrugation roughness and fitted with twisted tapes with oblique teeth have been presented. Predictive friction factor and Nusselt number correlations have also been presented. The thermohydraulic performance has been evaluated. The major findings of this experimental investigation are that the twisted tapes with oblique teeth in combination with integral axial corrugation roughness perform significantly better than the individual enhancement technique acting alone for laminar flow through a circular duct up to a certain value of fin parameter.

  16. Displacement of one Newtonian fluid by another: density effects in axial annular flow

    DEFF Research Database (Denmark)

    Szabo, Peter; Hassager, Ole

    1997-01-01

    The arbitrary Lagrange-Euler (ALE) finite elementtechnique is used to simulate 3D displacement oftwo immiscible Newtonian fluids in vertical annular wells. For equally viscous fluids the effect of distinct fluid densities is investigated in the region of low to intermediate Reynolds numbers......, the efficiency of the displacement is analysed for various flow situations....

  17. System design and optimization study of axial flow turbine applied in ...

    Indian Academy of Sciences (India)

    between parameters of the turbine and flows, three different types of turbines with ... and the water are run through a multi-stage hydro-turbine for producing electricity. ... to optimize the runner blade shape of a tubular turbine. ..... Ranade V V, Perrard M, Le Sauze N, Xuereb C and Bertrand J 2001 Trailing vortices of Rushton ...

  18. Numerical flow simulation and efficiency prediction for axial turbines by advanced turbulence models

    International Nuclear Information System (INIS)

    Jošt, D; Škerlavaj, A; Lipej, A

    2012-01-01

    Numerical prediction of an efficiency of a 6-blade Kaplan turbine is presented. At first, the results of steady state analysis performed by different turbulence models for different operating regimes are compared to the measurements. For small and optimal angles of runner blades the efficiency was quite accurately predicted, but for maximal blade angle the discrepancy between calculated and measured values was quite large. By transient analysis, especially when the Scale Adaptive Simulation Shear Stress Transport (SAS SST) model with zonal Large Eddy Simulation (ZLES) in the draft tube was used, the efficiency was significantly improved. The improvement was at all operating points, but it was the largest for maximal discharge. The reason was better flow simulation in the draft tube. Details about turbulent structure in the draft tube obtained by SST, SAS SST and SAS SST with ZLES are illustrated in order to explain the reasons for differences in flow energy losses obtained by different turbulence models.

  19. Numerical flow simulation and efficiency prediction for axial turbines by advanced turbulence models

    Science.gov (United States)

    Jošt, D.; Škerlavaj, A.; Lipej, A.

    2012-11-01

    Numerical prediction of an efficiency of a 6-blade Kaplan turbine is presented. At first, the results of steady state analysis performed by different turbulence models for different operating regimes are compared to the measurements. For small and optimal angles of runner blades the efficiency was quite accurately predicted, but for maximal blade angle the discrepancy between calculated and measured values was quite large. By transient analysis, especially when the Scale Adaptive Simulation Shear Stress Transport (SAS SST) model with zonal Large Eddy Simulation (ZLES) in the draft tube was used, the efficiency was significantly improved. The improvement was at all operating points, but it was the largest for maximal discharge. The reason was better flow simulation in the draft tube. Details about turbulent structure in the draft tube obtained by SST, SAS SST and SAS SST with ZLES are illustrated in order to explain the reasons for differences in flow energy losses obtained by different turbulence models.

  20. Reynolds number and friction coefficient for axial-parallel flow through complex cross-sections

    International Nuclear Information System (INIS)

    Markfort, D.

    1975-01-01

    Thermal and hydraulic lay-out of reactor fuel elements and other heat transfer equipment makes use of established functional relationship between dimensionless characters, the former being transferred from circular tube to more complex geometries. The stringent requirement (from theory) for 'geometrical similarity' is bypassed by defining 'equivalent diameters'. But dimensionless numbers may be derived from 'flow-integral-conditions' while the geometrical components contained therein reduce if not completely abolish the requirement for geometrical similarity. The derivation is demonstrated by using the Reynolds number. A friction coefficient valid for any kind of flow regime can be defined using integral-conditions. Correlations of friction coefficient and Reynolds number using universal-velocity profiles confirm the analysis when compared to well known experimental data. (orig.) [de

  1. Low Density Supersonic Decelerators

    Data.gov (United States)

    National Aeronautics and Space Administration — The Low-Density Supersonic Decelerator project will demonstrate the use of inflatable structures and advanced parachutes that operate at supersonic speeds to more...

  2. Enhanced performance of fast-response 3-hole wedge probes for transonic flows in axial turbomachinery

    Energy Technology Data Exchange (ETDEWEB)

    Delhaye, D.; Paniagua, G. [von Karman Institute for Fluid Dynamics, Turbomachinery and Propulsion Department, Rhode-Saint-Genese (Belgium); Fernandez Oro, J.M. [Universidad de Oviedo, Area de Mecanica de Fluidos, Gijon (Spain); Denos, R. [European Commission, Directorate General for Research, Brussels (Belgium)

    2011-01-15

    The paper presents the development and application of a three-sensor wedge probe to measure unsteady aerodynamics in a transonic turbine. CFD has been used to perform a detailed uncertainty analysis related to probe-induced perturbations, in particular the separation zones appearing on the wedge apex. The effects of the Reynolds and Mach numbers are studied using both experimental data together with CFD simulations. The angular range of the probe and linearity of the calibration maps are enhanced with a novel zonal calibration technique, used for the first time in compressible flows. The data reduction methodology is explained and demonstrated with measurements performed in a single-stage high-pressure turbine mounted in the compression tube facility of the von Karman Institute. The turbine was operated at subsonic and transonic pressure ratios (2.4 and 5.1) for a Reynolds number of 10{sup 6}, representative of modern engine conditions. Complete maps of the unsteady flow angle and rotor outlet Mach number are documented. These data allow the study of secondary flows and rotor trailing edge shocks. (orig.)

  3. Equivalent linearization method for limit cycle flutter analysis of plate-type structure in axial flow

    International Nuclear Information System (INIS)

    Lu Li; Yang Yiren

    2009-01-01

    The responses and limit cycle flutter of a plate-type structure with cubic stiffness in viscous flow were studied. The continuous system was dispersed by utilizing Galerkin Method. The equivalent linearization concept was performed to predict the ranges of limit cycle flutter velocities. The coupled map of flutter amplitude-equivalent linear stiffness-critical velocity was used to analyze the stability of limit cycle flutter. The theoretical results agree well with the results of numerical integration, which indicates that the equivalent linearization concept is available to the analysis of limit cycle flutter of plate-type structure. (authors)

  4. NUMERICAL AND EXPERIMENTAL INVESTIGATION ON THE FLUTTER OF CANTILEVERED PLATES WITH FREE LEADING EDGE IN AXIAL FLOW

    Directory of Open Access Journals (Sweden)

    I. P. G. SOPAN RAHTIKA

    2017-10-01

    Full Text Available This paper reports the results of the numerical and experimental investigation on the flutter of cantilevered thin flat plates with free leading edge in axial flow. Three methods of in-vacuo modal analyses of the plates are presented and compared in this paper, namely the finite element modal analysis using ANSYS STUDENT Modal, the analytical beam model, and the experimental modal analysis. In this study, the numerical Fluid Structure Interaction was performed using the ANSYS STUDENT Structural Transient Analysis and ANSYS STUDENT CFX to obtain the system response in the time domain. Furthermore, the experimental investigation was conducted in the smooth flow of a wind tunnel to observe the flutter speeds of the plates and their vibration characteristics. The plates’ vibration behaviors were mapped on the normalized air speed. The normalized air speed can be divided into four speed zones based on the experimental plates’ vibration characteristics. A new finding observed during the experiments is the presence of intermittent vibration behavior that is unique to the free leading edge configuration and has not been reported by other researchers in the earlier references of the clamped leading edge configuration. The potential application of this Fluid Structure Interaction configuration to wind harvesting is inquired.

  5. The Influence of Waves on the Near-Wake of an Axial-Flow Marine Hydrokinetic Turbine

    Science.gov (United States)

    Lust, Ethan; Luznik, Luksa; Flack, Karen

    2017-11-01

    Flow field results are presented for the near-wake of an axial-flow hydrokinetic turbine in the presence of surface gravity waves. The turbine is a 1/25 scale, 0.8 m diameter, two bladed turbine based on the U.S. Department of Energy's Reference Model 1 tidal current turbine. Measurements were obtained in the large towing tank facility at the U.S. Naval Academy with the turbine towed at a constant carriage speed and a tip speed ratio selected to provide maximum power. The turbine has been shown to be nearly scale independent for these conditions. Velocity measurements were obtained using an in-house designed and manufactured, submersible, planar particle image velocimetry (PIV) system at streamwise distances of up to two diameters downstream of the rotor plane. Phase averaged results for steady and unsteady conditions are presented for comparison showing further expansion of the wake in the presence of waves as compared to the quiescent case. The impact of waves on turbine tip vortex characteristics is also examined showing variation in core radius, swirl velocity, and circulation with wave phase. Some aspects of the highly coherent wake observed in the steady case are recognized in the unsteady wake, however, the unsteady velocities imposed by the waves, particularly the vertical velocity component, appears to convect tip vortices into the wake, potentially enhancing energy transport and accelerating the re-energization process.

  6. Numerical simulation of turbulent Taylor-Couette flow between conducting cylinders in an axial magnetic field at low magnetic Reynolds number

    Science.gov (United States)

    Leng, Xueyuan; Kolesnikov, Yurii B.; Krasnov, Dmitry; Li, Benwen

    2018-01-01

    The effect of an axial homogeneous magnetic field on the turbulence in the Taylor-Couette flow confined between two infinitely long conducting cylinders is studied by the direct numerical simulation using a periodic boundary condition in the axial direction. The inner cylinder is rotating, and the outer one is fixed. We consider the case when the magnetic Reynolds number Rem ≪ 1, i.e., the influence of the induced magnetic field on the flow is negligible that is typical for industry and laboratory study of liquid metals. Relevance of the present study is based on the similarity of flow characteristics at moderate and high magnetic field for the cases with periodic and end-wall conditions at the large flow aspect ratio, as proven in the earlier studies. Two sets of Reynolds numbers 4000 and 8000 with several Hartmann numbers varying from 0 to 120 are employed. The results show that the mean radial induced electrical current, resulting from the interaction of axial magnetic field with the mean flow, leads to the transformation of the mean flow and the modification of the turbulent structure. The effect of turbulence suppression is dominating at a strong magnetic field, but before reaching the complete laminarization, we capture the appearance of the hairpin-like structures in the flow.

  7. PIV Validation of 3D Multicomponent Model for Cold Spray Within Nitrogen and Helium Supersonic Flow Field

    Science.gov (United States)

    Faizan-Ur-Rab, M.; Zahiri, S. H.; Masood, S. H.; Jahedi, M.; Nagarajah, R.

    2017-06-01

    This study presents the validation of a developed three-dimensional multicomponent model for cold spray process using two particle image velocimetry (PIV) experiments. The k- ɛ type 3D model developed for spherical titanium particles was validated with the measured titanium particle velocity within a nitrogen and helium supersonic jet. The 3D model predicted lower values of particle velocity than the PIV experimental study that used irregularly shaped titanium particles. The results of the 3D model were consistent with the PIV experiment that used spherical titanium powder. The 3D model simulation of particle velocity within the helium and nitrogen jet was coupled with an estimation of titanium particle temperature. This was achieved with the consideration of the fact that cold spray particle temperature is difficult and expensive to measure due to considerably lower temperature of particles than thermal spray. The model predicted an interesting pattern of particle size distribution with respect to the location of impact with a concentration of finer particles close to the jet center. It is believed that the 3D model outcomes for particle velocity, temperature and location could be a useful tool to optimize system design, deposition process and mechanical properties of the additively manufactured cold spray structures.

  8. Analysis of Forced Convection Heat Transfer for Axial Annular Flow of Giesekus Viscoelastic Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Mohseni, Mehdi Moayed; Rashidi, Fariborz; Movagar, Mohammad Reza Khorsand [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2015-02-15

    Analytical solutions for the forced convection heat transfer of viscoelastic fluids obeying the Giesekus model are obtained in a concentric annulus under laminar flow for both thermal and hydrodynamic fully developed conditions. Boundary conditions are assumed to be (a) constant fluxes at the walls and (b) constant temperature at the walls. Temperature profiles and Nusselt numbers are derived from dimensionless energy equation. Subsequently, effects of elasticity, mobility parameter and viscous dissipation are discussed. Results show that by increasing elasticity, Nusselt number increases. However, this trend is reversed for constant wall temperature when viscous dissipation is weak. By increasing viscous dissipation, the Nusselt number decreases for the constant flux and increases for the constant wall temperature. For the wall cooling case, when the viscous dissipation exceeds a critical value, the generated heat overcomes the heat which is removed at the walls, and fluid heats up longitudinally.

  9. Design and evaluation of an aeroacoustic wind tunnel for measurement of axial flow fans.

    Science.gov (United States)

    Bilka, M; Anthoine, J; Schram, C

    2011-12-01

    An anechoic wind tunnel dedicated to fan self-noise studies has been designed and constructed at the von Karman Institute The multi-chamber, mass flow driven design allows for all fan performance characteristics, aerodynamic quantities (e.g., wake turbulence measurements), and acoustic properties to be assessed in the same facility with the same conditions. The acoustic chamber performance is assessed using the optimum reference method and found to be within the ISO 3745 standards down to 150 Hz for pure tone and broadband source mechanisms. The additional influence of installation effects of an aerodynamic inlet was found to create a scattered sound field only near the source location, while still providing good anechoic results at more distant sound pressure measurement positions. It was found to have inflow properties, span-wise uniformity, and low turbulence intensity, consistent with those desired for fan self-noise studies. © 2011 Acoustical Society of America

  10. Three-dimensional saturated-unsaturated flow with axial symmetry to a partially penetrating well in a compressible unconfined aquifer

    Science.gov (United States)

    Tartakovsky, Guzel D.; Neuman, Shlomo P.

    2007-01-01

    A new analytical solution is presented for the delayed response process characterizing flow to a partially penetrating well in an unconfined aquifer. The new solution generalizes that of Neuman (1972, 1974) by accounting for unsaturated flow above the water table. Three-dimensional, axially symmetric flow in the unsaturated zone is described by a linearized version of Richards' equation in which hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value (defining the interface between the saturated and unsaturated zones). Unsaturated soil properties are characterized by an exponent κ having the dimension of inverse length or, equivalently, a dimensionless exponent κD = κb, where b is initial saturated thickness. Our treatment of the unsaturated zone is similar to that of Kroszynski and Dagan (1975), who, however, have ignored internal (artesian) aquifer storage. According to Kroszynski and Dagan, aquifers that are not excessively shallow have values of κD (their parameter a) much greater than 10. We find that in such typical cases, unsaturated flow has little impact on early and late dimensionless time drawdown a short distance below the water table. Unsaturated flow causes drawdown to increase slightly at intermediate dimensionless time values that represent transition from an early artesian-dominated to a late water-table-dominated flow regime. Delayed drainage from the unsaturated zone becomes less and less important as κD increases; as κD → ∞, this effect dies out, and drawdown is controlled entirely by delayed decline in the water table as in the model of Neuman. The unsaturated zone has a major impact on drawdown at intermediate time and a significant impact at early and late times, in the atypical case of κD ≤ 1, becoming the dominant factor as κD approaches zero (the soil water retention capacity becomes very large and/or saturated thickness becomes insignificant). Our

  11. An analysis of supersonic flows with low-Reynolds number compressible two-equation turbulence models using LU finite volume implicit numerical techniques

    Science.gov (United States)

    Lee, J.

    1994-01-01

    A generalized flow solver using an implicit Lower-upper (LU) diagonal decomposition based numerical technique has been coupled with three low-Reynolds number kappa-epsilon models for analysis of problems with engineering applications. The feasibility of using the LU technique to obtain efficient solutions to supersonic problems using the kappa-epsilon model has been demonstrated. The flow solver is then used to explore limitations and convergence characteristics of several popular two equation turbulence models. Several changes to the LU solver have been made to improve the efficiency of turbulent flow predictions. In general, the low-Reynolds number kappa-epsilon models are easier to implement than the models with wall-functions, but require much finer near-wall grid to accurately resolve the physics. The three kappa-epsilon models use different approaches to characterize the near wall regions of the flow. Therefore, the limitations imposed by the near wall characteristics have been carefully resolved. The convergence characteristics of a particular model using a given numerical technique are also an important, but most often overlooked, aspect of turbulence model predictions. It is found that some convergence characteristics could be sacrificed for more accurate near-wall prediction. However, even this gain in accuracy is not sufficient to model the effects of an external pressure gradient imposed by a shock-wave/ boundary-layer interaction. Additional work on turbulence models, especially for compressibility, is required since the solutions obtained with base line turbulence are in only reasonable agreement with the experimental data for the viscous interaction problems.

  12. Pure axial flow of viscoelastic fluids in rectangular microchannels under combined effects of electro-osmosis and hydrodynamics

    Science.gov (United States)

    Reshadi, Milad; Saidi, Mohammad Hassan; Ebrahimi, Abbas

    2018-02-01

    This paper presents an analysis of the combined electro-osmotic and pressure-driven axial flows of viscoelastic fluids in a rectangular microchannel with arbitrary aspect ratios. The rheological behavior of the fluid is described by the complete form of Phan-Thien-Tanner (PTT) model with the Gordon-Schowalter convected derivative which covers the upper convected Maxwell, Johnson-Segalman and FENE-P models. Our numerical simulation is based on the computation of 2D Poisson-Boltzmann, Cauchy momentum and PTT constitutive equations. The solution of these governing nonlinear coupled set of equations is obtained by using the second-order central finite difference method in a non-uniform grid system and is verified against 1D analytical solution of the velocity profile with less than 0.06% relative error. Also, a parametric study is carried out to investigate the effect of channel aspect ratio (width to height), wall zeta potential and the Debye-Hückel parameter on 2D velocity profile, volumetric flow rate and the Poiseuille number in the mixed EO/PD flows of viscoelastic fluids with different Weissenberg numbers. Our results show that, for low channel aspect ratios, the previous 1D analytical models underestimate the velocity profile at the channel half-width centerline in the case of favorable pressure gradients and overestimate it in the case of adverse pressure gradients. The results reveal that the inapplicability of the Debye-Hückel approximation at high zeta potentials is more significant for higher Weissenberg number fluids. Also, it is found that, under the specified values of electrokinetic parameters, there is a threshold for velocity scale ratio in which the Poiseuille number is approximately independent of channel aspect ratio.

  13. Supersonic flow with shock waves. Monte-Carlo calculations for low density plasma. I; Flujo supersonico de un plasma con ondas de choque, un metodo de montecarlo para plasmas de baja densidad, I.

    Energy Technology Data Exchange (ETDEWEB)

    Almenara, E; Hidalgo, M; Saviron, J M

    1980-07-01

    This Report gives preliminary information about a Monte Carlo procedure to simulate supersonic flow past a body of a low density plasma in the transition regime. A computer program has been written for a UNIVAC 1108 machine to account for a plasma composed by neutral molecules and positive and negative ions. Different and rather general body geometries can be analyzed. Special attention is played to tho detached shock waves growth In front of the body. (Author) 30 refs.

  14. Computational Investigation of Swirling Supersonic Jets Generated Through a Nozzle-Twisted Lance

    Science.gov (United States)

    Li, Mingming; Li, Qiang; Zou, Zongshu; An, Xizhong

    2017-02-01

    The dynamic characteristics of supersonic swirling jets generated through a nozzle-twisted lance are numerically studied. The essential features of the swirling jets are identified by defining a deviation angle. The effects of nozzle twist angle (NTA) on swirling flow intensity, coalescence characteristics, and dynamic parameter distributions of the jets are discussed. The rotational flow characteristics are revealed. The results show that the jets from the nozzle-twisted lance are imparted to a circumferential rotating movement around the lance axis, and such swirling flow is enhanced by increasing NTA. The enhanced swirling flow causes weaker coalescence of the jets, faster attenuations of the axial velocity, and higher heat transfer rate between the jets and surroundings. The supersonic core length, however, is found to be less sensitive to the swirling flow intensity. The radial spreading of the jets, changing non-monotonically with NTA, arrives at its maximum at 5 deg of NTA. Furthermore, the swirling flow induces a considerable tangential velocity component, and as a result, a holistic and effective horizontal swirling flow field develops. The y-vorticity distribution range and the corresponding magnitude turn larger with increasing NTA, which promote the vortex motion of the local fluid element and thus intensify the local mixing.

  15. The Use of Source-Sink and Doublet Distributions Extended to the Solution of Boundary-Value Problems in Supersonic Flow

    Science.gov (United States)

    Heaslet, Max A; Lomax, Harvard

    1948-01-01

    A direct analogy is established between the use of source-sink and doublet distributions in the solution of specific boundary-value problems in subsonic wing theory and the corresponding problems in supersonic theory. The correct concept of the "finite part" of an integral is introduced and used in the calculation of the improper integrals associated with supersonic doublet distributions. The general equations developed are shown to include several previously published results and particular examples are given for the loading on rolling and pitching triangular wings with supersonic leading edges.

  16. Detonation in supersonic radial outflow

    KAUST Repository

    Kasimov, Aslan R.

    2014-11-07

    We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations are carried out in order to explore the stability of the steady-state solutions. It is found that both collapsing and expanding two-dimensional cellular detonations exist. The latter can be stabilized by putting several rigid obstacles in the flow downstream of the steady-state sonic locus. The problem of initiation of standing detonation stabilized in the radial flow is also investigated numerically. © 2014 Cambridge University Press.

  17. Development of electrical excited CO2-laser with transversal gas flow as well an axial flowed CO2-laser for material treatment, in particular for cutting

    International Nuclear Information System (INIS)

    Wollermann-Windgasse, R.; Ackermann, F.

    1987-04-01

    The project describes the development of a new generation of CO 2 -lasers using high frequency discharge (13.56 MHz) for laser excitation by capacitive dielectrical input. HF-excitation has a lot of advantages compared with direct current technology, these are higher electrical input power into the plasma, better homogeneity and stability of discharges. In addition to this, HF-excitation shows excellent possibilities for pulsing and modulation. As a result of this, there are compact powerful laser systems with the possibility of scaling up to the multi-kW-range. The examination included fast transversal flowed as well as fast axial flowed systems. In the end of this project development prototypes with laser output power of 1000 W, 1500 W and 3000 W were available. Detailed attempts of application show that these lasers on grounds of excellent laser output quality and controlability of laser power specifically to each process make possible new ways for material treatment by laser. (orig./HP) [de

  18. Applying the sequential neural-network approximation and orthogonal array algorithm to optimize the axial-flow cooling system for rapid thermal processes

    International Nuclear Information System (INIS)

    Hung, Shih-Yu; Shen, Ming-Ho; Chang, Ying-Pin

    2009-01-01

    The sequential neural-network approximation and orthogonal array (SNAOA) were used to shorten the cooling time for the rapid cooling process such that the normalized maximum resolved stress in silicon wafer was always below one in this study. An orthogonal array was first conducted to obtain the initial solution set. The initial solution set was treated as the initial training sample. Next, a back-propagation sequential neural network was trained to simulate the feasible domain to obtain the optimal parameter setting. The size of the training sample was greatly reduced due to the use of the orthogonal array. In addition, a restart strategy was also incorporated into the SNAOA so that the searching process may have a better opportunity to reach a near global optimum. In this work, we considered three different cooling control schemes during the rapid thermal process: (1) downward axial gas flow cooling scheme; (2) upward axial gas flow cooling scheme; (3) dual axial gas flow cooling scheme. Based on the maximum shear stress failure criterion, the other control factors such as flow rate, inlet diameter, outlet width, chamber height and chamber diameter were also examined with respect to cooling time. The results showed that the cooling time could be significantly reduced using the SNAOA approach

  19. Dispositivo de assistência circulatória mecânica intraventricular de fluxo axial: estudo in vitro In vitro evaluation of an intraventricular axial flow pump for mechanical circulatory support

    Directory of Open Access Journals (Sweden)

    Luiz Fernando KUBRUSLY

    2000-06-01

    Full Text Available É apresentado estudo in vitro de um dispositivo de assistência circulatória totalmente implantável no ventrículo esquerdo, de fluxo axial e de tamanho pequeno (30 cc - 7 cm comprimento. Apesar dessas características foi capaz de gerar fluxos entre 5 - 8 l/min com motor, operando em 8 W, sem causar hemólise em período de até 12 horas. O custo de produção, excetuando-se o sistema de baterias, foi projetado entre 5 - 8 mil dólares, o que o torna viável para utilização clínica rotineira em nosso país.We are currently studying an intraventricular axial flow blood pump in vitro. It is designed for long term left ventricular support. The small (30 cc, 7 cm length was capable of producing flows of 5 - 8 l/min on a 8 W motor, with no device related hemolysis throughout the 12 h of the study. The cost of production, except for the batteries, has been estimated at between 5 - 8 thousand dollars, a reasonable amount for routine clinical use in Brazil.

  20. Size-induced axial band structure and directional flow of a ternary-size granular material in a 3-D horizontal rotating drum

    Science.gov (United States)

    Yang, Shiliang; Sun, Yuhao; Ma, Honghe; Chew, Jia Wei

    2018-05-01

    Differences in the material property of the granular material induce segregation which inevitably influences both natural and industrial processes. To understand the dynamical segregation behavior, the band structure, and also the spatial redistribution of particles induced by the size differences of the particles, a ternary-size granular mixture in a three-dimensional rotating drum operating in the rolling flow regime is numerically simulated using the discrete element method. The results demonstrate that (i) the axial bands of the medium particles are spatially sandwiched in between those of the large and small ones; (ii) the total mass in the active and passive regions is a global parameter independent of segregation; (iii) nearly one-third of all the particles are in the active region, with the small particles having the highest mass fraction; (iv) the axial bands initially appear near the end wall, then become wider and purer in the particular species with time as more axial bands form toward the axial center; and (v) the medium particle type exhibits segregation later and has the narrowest axial bandwidth and least purity in the bands. Compared to the binary-size system, the presence of the medium particle type slightly increases the total mass in the active region, leads to larger mass fractions of the small and large particle types in the active region, and enhances the axial segregation in the system. The results obtained in the current work provide valuable insights regarding size segregation, and band structure and formation in the rotating drum with polydisperse particles.

  1. Single-pulse measurement of density and temperature in a turbulent, supersonic flow using UV laser spectroscopy

    Science.gov (United States)

    Fletcher, D. G.; Mckenzie, R. L.

    1992-01-01

    Nonintrusive measurements of density and temperature and their turbulent fluctuation levels have been obtained in the boundary layer of an unseeded, Mach 2 wind tunnel flow. The spectroscopic technique that was used to make the measurements is based on the combination of laser-induced oxygen fluorescence and Raman scattering by oxygen and nitrogen from the same laser pulse. Results from this demonstration experiment compare favorably with previous measurements obtained in the same facility from conventional probes and an earlier spectroscopic technique.

  2. Flow Control by Slot Position and Noise Baffle in a Self-Recirculation Casing Treatment on an Axial Fan-Rotor

    Directory of Open Access Journals (Sweden)

    Xiangjun Li

    2017-01-01

    Full Text Available To address the situations where the casing treatment needs to be used to stabilize axial compressors through strong recirculation, this paper initiated a CFD study to investigate how the flow could be suitably controlled in the casing treatment to minimize the efficiency penalty and increase the flow range. A counter-swirl self-recirculation casing treatment was first designed on a low speed axial fan rotor as a baseline case. Then three different slot positions and the influence of including the noise baffle were numerically studied. Based on the understanding of their coeffects, the shorter noise baffle was considered and it was found that the highest efficiency was achieved in the case of the upstream slot when the length of baffle was suitably adjusted to balance the incoming flow and recirculation. The largest flow range was achieved by locating the slot at the most downstream position and using a 50% length baffle since it suitably controlled the recirculating flow and relieved the separation at the low-span region. An optimization study showed that the optimum length of the baffle for efficiency was always larger than for the flow range. Both of the two optimum values reduce as the slot moves downstream.

  3. Stall margin improvement of an axial flow fan with end wall injection and suction; Hekimen fukidashi suidashi ni yoru han'yo jikuryu sofuki no shissoku kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, K.; Kuroda, H.; Obata, S.; Chimura, O. [National Defense Academy, Kanagawa (Japan)

    1999-06-25

    The experimental studies are conducted to reveal the mechanism of stall margin improvement of an axial flow fan by injection or suction from the end wall. In case of injection, the largest improvement is obtained by the injection at about 0. 14 {approx} 0 .21 times axial chord length downstream from leading edge. The reason for large improvement is that stall vortex, shed intermittent separation vortex and tip leakage vortex are dissipated by this injection, and also that this blowing suppresses the separation of boundary layer. In case of suction, the largest improvement is found for the suction from the end wall near leading edge. The amplitude of periodic static pressure after stall inception becomes smaller in comparison with injection cases. These effects are increased with the increase of suction flow rate, because the discharge of the vortex occurs more easily. On the other hand, the suction from the upstream of leading edge reduces the axial velocity near rotor tip, and then it induces stall. Also we tried to visualize the tip region flow, The suppression mechanism is discussed based on the visualization. The suppression of stall is successfully photographed. (author)

  4. A fundamental study of the supersonic microjet

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, M. S.; Kim, H. S.; Kim, H. D. [Andong National Univ., Andong (Korea, Republic of)

    2001-07-01

    Microjet flows are often encountered in many industrial applications of micro-electro-mechanical systems as well as in medical engineering fields such as a transdermal drug delivery system for needle-free injection of drugs into the skin. The Reynolds numbers of such microjets are usually several orders of magnitude below those of larger-scale jets. The supersonic microjet physics with these low Reynolds numbers are not yet understood to date. Computational modeling and simulation can provide an effective predictive capability for the major features of the supersonic microjets. In the present study, computations using the axisymmetic, compressible, Navier-Stokes equations are applied to understand the supersonic microjet flow physics. The pressure ratio of the microjets is changed to obtain both the under-and over-expanded flows at the exit of the micronozzle. Sonic and supersonic microjets are simulated and compared with some experimental results available. Based on computational results; two microjets are discussed in terms of total pressure, jet decay and supersonic core length.

  5. A fundamental study of the supersonic microjet

    International Nuclear Information System (INIS)

    Jeong, M. S.; Kim, H. S.; Kim, H. D.

    2001-01-01

    Microjet flows are often encountered in many industrial applications of micro-electro-mechanical systems as well as in medical engineering fields such as a transdermal drug delivery system for needle-free injection of drugs into the skin. The Reynolds numbers of such microjets are usually several orders of magnitude below those of larger-scale jets. The supersonic microjet physics with these low Reynolds numbers are not yet understood to date. Computational modeling and simulation can provide an effective predictive capability for the major features of the supersonic microjets. In the present study, computations using the axisymmetic, compressible, Navier-Stokes equations are applied to understand the supersonic microjet flow physics. The pressure ratio of the microjets is changed to obtain both the under-and over-expanded flows at the exit of the micronozzle. Sonic and supersonic microjets are simulated and compared with some experimental results available. Based on computational results; two microjets are discussed in terms of total pressure, jet decay and supersonic core length

  6. Vortex breakdown in a supersonic jet

    Science.gov (United States)

    Cutler, Andrew D.; Levey, Brian S.

    1991-01-01

    This paper reports a study of a vortex breakdown in a supersonic jet. A supersonic vortical jets were created by tangential injection and acceleration through a convergent-divergent nozzle. Vortex circulation was varied, and the nature of the flow in vortical jets was investigated using several types of flow visualization, including focusing schlieren and imaging of Rayleigh scattering from a laser light sheet. Results show that the vortical jet mixed much more rapidly with the ambient air than a comparable straight jet. When overexpanded, the vortical jet exhibited considerable unsteadiness and showed signs of vortex breakdown.

  7. Method for acquiring pressure measurements in presence of plasma-induced interference for supersonic flow control applications

    International Nuclear Information System (INIS)

    Narayanaswamy, Venkateswaran; Clemens, Noel T; Raja, Laxminarayan L

    2011-01-01

    The operation of pulsed-plasma actuators for flow control is often associated with the presence of charged species in the flow and severe electromagnetic interference with external circuitry. These effects can lead to time-resolved transducer pressure measurements that are contaminated with electromagnetic interference effects or even transducer damage due to the interaction with charged species. A new technique is developed that enables high-bandwidth pressure measurements to be made in the presence of such rapidly switched plasma actuators. The technique is applied for the specific configuration of a pulsed-plasma jet actuator (spark jet) that is used to control the unsteadiness of a shock wave/boundary layer interaction generated by a compression ramp in a Mach 3 flow. The critical component of the technique involves using a pulsed-ground electrode to drain the charged species from the plasma jet before they reach the pressure transducer. The pulsed-ground electrode was shown to drain charged species into the pulsed ground prior to interacting with the transducer, which made it possible to make measurements without damaging the transducer. The resulting signals were still contaminated by electromagnetic interference spikes and so a data-processing technique was used to remove the artifacts and recover a largely uncontaminated power spectrum. The signal processing scheme used interpolation schemes previously developed for laser Doppler velocimetry applications. The data-processing procedure is demonstrated with a benchmark case in which the electromagnetic interference was isolated from the pulsed-plasma jet actuation effect. It is shown that the data-processing procedure removed the contamination from the electromagnetic interference at all frequencies but for the pulsing frequency and its higher harmonics

  8. Axial myopathy

    DEFF Research Database (Denmark)

    Witting, Nanna; Andersen, Linda K; Vissing, John

    2016-01-01

    Classically, myopathies are categorized according to limb or cranial nerve muscle affection, but with the growing use of magnetic resonance imaging it has become evident that many well-known myopathies have significant involvement of the axial musculature. New disease entities with selective axial...

  9. Integrated parametric study of a hybrid-stabilized argon–water arc under subsonic, transonic and supersonic plasma flow regimes

    Czech Academy of Sciences Publication Activity Database

    Jeništa, Jiří; Takana, H.; Nishiyama, H.; Bartlová, M.; Aubrecht, V.; Křenek, Petr; Hrabovský, Milan; Kavka, Tetyana; Sember, Viktor; Mašláni, Alan

    2011-01-01

    Roč. 44, č. 43 (2011), s. 435204-435204 ISSN 0022-3727 R&D Projects: GA ČR GAP205/11/2070 Institutional research plan: CEZ:AV0Z20430508 Keywords : hybrid-stabilized electric arc * mass flow rate * net emission coefficients * partial characteristics * Mach number * shock diamonds Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.544, year: 2011 http://iopscience.iop.org/0022-3727/44/43/435204/pdf/0022-3727_44_43_435204.pdf

  10. Numerical Simulation of Hydrogen Air Supersonic Coaxial Jet

    Science.gov (United States)

    Dharavath, Malsur; Manna, Pulinbehari; Chakraborty, Debasis

    2017-10-01

    In the present study, the turbulent structure of coaxial supersonic H2-air jet is explored numerically by solving three dimensional RANS equations along with two equation k-ɛ turbulence model. Grid independence of the solution is demonstrated by estimating the error distribution using Grid Convergence Index. Distributions of flow parameters in different planes are analyzed to explain the mixing and combustion characteristics of high speed coaxial jets. The flow field is seen mostly diffusive in nature and hydrogen diffusion is confined to core region of the jet. Both single step laminar finite rate chemistry and turbulent reacting calculation employing EDM combustion model are performed to find the effect of turbulence-chemistry interaction in the flow field. Laminar reaction predicts higher H2 mol fraction compared to turbulent reaction because of lower reaction rate caused by turbulence chemistry interaction. Profiles of major species and temperature match well with experimental data at different axial locations; although, the computed profiles show a narrower shape in the far field region. These results demonstrate that standard two equation class turbulence model with single step kinetics based turbulence chemistry interaction can describe H2-air reaction adequately in high speed flows.

  11. Transonic and supersonic ground effect aerodynamics

    Science.gov (United States)

    Doig, G.

    2014-08-01

    A review of recent and historical work in the field of transonic and supersonic ground effect aerodynamics has been conducted, focussing on applied research on wings and aircraft, present and future ground transportation, projectiles, rocket sleds and other related bodies which travel in close ground proximity in the compressible regime. Methods for ground testing are described and evaluated, noting that wind tunnel testing is best performed with a symmetry model in the absence of a moving ground; sled or rail testing is ultimately preferable, though considerably more expensive. Findings are reported on shock-related ground influence on aerodynamic forces and moments in and accelerating through the transonic regime - where force reversals and the early onset of local supersonic flow is prevalent - as well as more predictable behaviours in fully supersonic to hypersonic ground effect flows.

  12. Flow ripple reduction of an axial piston pump by a combination of cross-angle and pressure relief grooves: Analysis and optimization

    International Nuclear Information System (INIS)

    Xu, Bing; Ye, Shaogan; Zhang, Junhui; Zhang, Chunfeng

    2016-01-01

    This paper investigates the potential of flow ripple reduction of an axial piston pump by a combination of cross-angle and pressure relief grooves. A dynamic model is developed to analyze the pumping dynamics of the pump and validated by experimental results. The effects of cross-angle on the flow ripples in the outlet and inlet ports, and the piston chamber pressure are investigated. The effects of pressure relief grooves on the optimal solutions obtained by a multi-objective optimization method are identified. A sensitivity analysis is performed to investigate the sensitivity of cross-angle to different working conditions. The results reveal that the flow ripples from the optimal solutions are smaller using the cross-angle and pressure relief grooves than those using the cross-angle and ordinary precompression and decompression angles and the cross-angle can be smaller. In addition, when the optimal design is used, the outlet flow ripples sensitivity can be reduced significantly.

  13. Effect of diameter and axial location on upward gas–liquid two-phase flow patterns in intermediate-scale vertical tubes

    International Nuclear Information System (INIS)

    Ansari, M.R.; Azadi, R.

    2016-01-01

    Highlights: • A vertical two-phase flow system is manufactured to study flow behavior adiabatically. • Two test sections are studied with inner diameters of 40 mm and 70 mm at two locations. • Flow pattern maps are presented for both tubes. • Effects of tube diameter and heights on pattern transition boundaries are investigated. • Three sub-patterns bubbly flow and two types of slug pattern are recognized. - Abstract: In the present research, a two-phase flow system is designed, manufactured, assembled and adjusted to study two-phase flow behavior isothermally. Test sections are tubes standing in vertical position and are made of transparent acrylic with inner diameters of 40 mm and 70 mm. Two axial locations of 1.73 m and 3.22 m are chosen for data acquisition. Flow pattern maps are presented for both tubes. Effects of tube diameter and axial location on pattern transition boundaries are investigated. Air and water are chosen as working fluids. The range of air and water superficial velocities are 0.054–9.654 m/s and 0.015–0.877 m/s for the 40 mm diameter tube, but these values are 0.038–20.44 m/s and 0.036–1.530 m/s for 70 mm diameter tube. The results show that for both tubes, increasing axial location does not affect flow transition boundaries significantly. However, slug pattern region shrinks considerably by changing tube diameter from 40 mm to 70 mm. Using image processing techniques, recorded high speed movies were investigated accurately. As a result, bubbly flow in the 40 mm tube can be divided into three sub-patterns as dispersed, agitated and agglomerated bubbly. Also, two types of slug pattern are also recognized in the same tube diameter which are called small and large slugs. Semi-annular flow is observed as an independent pattern in the 70 mm tube that does not behave as known churn or annular patterns.

  14. Effect of heated length on the Critical Heat Flux of subcooled flow boiling. 2. Effective heated length under axially nonuniform heating condition

    International Nuclear Information System (INIS)

    Kinoshita, Hidetaka; Yoshida, Takuya; Nariai, Hideki; Inasaka, Fujio

    1998-01-01

    Effect of heated length on the Critical Heat Flux (CHF) of subcooled flow boiling with water was experimentally investigated by using direct current heated tube made of stainless steel a part of whose wall thickness was axially cut for realizing nonuniform heat flux condition. The higher enhancement of the CHF was derived for shorter tube length. The effective heated length was determined for the tube under axially nonuniform heat flux condition. When the lower heat flux part below the Net Vapor Generation (NVG) heat flux exists at the middle of tube length, then the effective heated length becomes the tube length downstream the lower heat flux parts. However, when the lower heat flux part is above the NVG, then the effective heated length is full tube length. (author)

  15. Investigation of turbines for driving supersonic compressors II : performance of first configuration with 2.2 percent reduction in nozzle flow area / Warner L. Stewart, Harold J. Schum, Robert Y. Wong

    Science.gov (United States)

    Stewart, Warner L; Schum, Harold J; Wong, Robert Y

    1952-01-01

    The experimental performance of a modified turbine for driving a supersonic compressor is presented and compared with the performance of the original configuration to illustrate the effect of small changes in the ratio of nozzle-throat area to rotor-throat area. Performance is based on the performance of turbines designed to operate with both blade rows close to choking. On the basis of the results of this investigation, the ratio of areas is concluded to become especially critical in the design of turbines such as those designed to drive high-speed, high-specific weight-flow compressors where the turbine nozzles and rotor are both very close to choking.

  16. Direct Connect Supersonic Combustion Facility (Research Cell 22)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: RC22 is a continuous-flow, direct-connect supersonic-combustion research facility that is capable of simulating flight conditions from Mach 3.0 to Mach...

  17. Anatomical explanations for acute depressions in radial pattern of axial sap flow in two diffuse-porous mangrove species: implications for water use.

    Science.gov (United States)

    Zhao, Hewei; Yang, Shengchang; Guo, Xudong; Peng, Congjiao; Gu, Xiaoxuan; Deng, Chuanyuan; Chen, Luzhen

    2018-02-01

    Mangrove species have developed uniquely efficient water-use strategies in order to survive in highly saline and anaerobic environments. Herein, we estimated the stand water use of two diffuse-porous mangrove species of the same age, Sonneratia apetala Buch. Ham and Sonneratia caseolaris (L.) Engl., growing in a similar intertidal environment. Specifically, to investigate the radial patterns of axial sap flow density (Js) and understand the anatomical traits associated with them, we measured axial sap flow density in situ together with micromorphological observations. A significant decrease of Js was observed for both species. This result was accompanied by the corresponding observations of wood structure and blockages in xylem sapwood, which appeared to influence and, hence, explained the acute radial reductions of axial sap flow in the stems of both species. However, higher radial resistance in sapwood of S. caseolaris caused a steeper decline of Js radially when compared with S. apetala, thus explaining the latter's more efficient use of water. Without first considering acute reductions in Js into the sapwood from the outer bark, a total of ~55% and 51% of water use would have been overestimated, corresponding to average discrepancies in stand water use of 5.6 mm day-1 for S. apetala trees and 2.5 mm day-1 for S. caseolaris trees. This suggests that measuring radial pattern of Js is a critical factor in determining whole-tree or stand water use. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Convective heat transfer for a gaseous slip flow in micropipe and parallel-plate microchannel with uniform wall heat flux: effect of axial heat conduction

    Science.gov (United States)

    Haddout, Y.; Essaghir, E.; Oubarra, A.; Lahjomri, J.

    2018-06-01

    Thermally developing laminar slip flow through a micropipe and a parallel plate microchannel, with axial heat conduction and uniform wall heat flux, is studied analytically by using a powerful method of self-adjoint formalism. This method results from a decomposition of the elliptic energy equation into a system of two first-order partial differential equations. The advantage of this method over other methods, resides in the fact that the decomposition procedure leads to a selfadjoint problem although the initial problem is apparently not a self-adjoint one. The solution is an extension of prior studies and considers a first order slip model boundary conditions at the fluid-wall interface. The analytical expressions for the developing temperature and local Nusselt number in the thermal entrance region are obtained in the general case. Therefore, the solution obtained could be extended easily to any hydrodynamically developed flow and arbitrary heat flux distribution. The analytical results obtained are compared for select simplified cases with available numerical calculations and they both agree. The results show that the heat transfer characteristics of flow in the thermal entrance region are strongly influenced by the axial heat conduction and rarefaction effects which are respectively characterized by Péclet and Knudsen numbers.

  19. Study of axial magnetic effect

    Energy Technology Data Exchange (ETDEWEB)

    Braguta, Victor [IHEP, Protvino, Moscow region, 142284 Russia ITEP, B. Cheremushkinskaya street 25, Moscow, 117218 (Russian Federation); School of Biomedicine, Far Eastern Federal University, Ajax 10 Building 25, Russian island, Vladivostok, 690922 (Russian Federation); Chernodub, M. N. [CNRS, Laboratoire de Mathématiques et Physique Théorique, Université François-Rabelais Tours, Fédération Denis Poisson, Parc de Grandmont, 37200 Tours, France Department of Physics and Astronomy, University of Gent, Krijgslaan 281, S9, B-9000 Gent (Belgium); School of Biomedicine, Far Eastern Federal University, Ajax 10 Building 25, Russian island, Vladivostok, 690922 (Russian Federation); Goy, V. A. [School of Natural Sciences, Far Eastern Federal University, Sukhanova street 8, Vladivostok, 690950 (Russian Federation); Landsteiner, K. [Instituto de Física Teórica UAM/CSIC, C/ Nicolás Cabrera 13-15, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Molochkov, A. V. [School of Biomedicine, Far Eastern Federal University, Ajax 10 Building 25, Russian island, Vladivostok, 690922 (Russian Federation); Ulybyshev, M. [ITEP, B. Cheremushkinskaya street 25, Moscow, 117218 Russia Institute for Theoretical Problems of Microphysics, Moscow State University, Moscow, 119899 (Russian Federation)

    2016-01-22

    The Axial Magnetic Effect manifests itself as an equilibrium energy flow of massless fermions induced by the axial (chiral) magnetic field. Here we study the Axial Magnetic Effect in the quenched SU(2) lattice gauge theory with massless overlap fermions at finite temperature. We numerically observe that in the low-temperature hadron phase the effect is absent due to the quark confinement. In the high-temperature deconfinement phase the energy flow is an increasing function of the temperature which reaches the predicted asymptotic T{sup 2} behavior at high temperatures. We find, however, that energy flow is about one order of magnitude lower compared to a theoretical prediction.

  20. An analytical model for the prediction of fluid-elastic forces in a rod bundle subjected to axial flow: theory, experimental validation and application to PWR fuel assemblies

    International Nuclear Information System (INIS)

    Beaud, F.

    1997-01-01

    A model predicting the fluid-elastic forces in a bundle of circular cylinders subjected to axial flow is presented in this paper. Whereas previously published models were limited to circular flow channel, the present one allows to take a rectangular flow external boundary into account. For that purpose, an original approach is derived from the standard method of images. This model will eventually be used to predict the fluid-structure coupling between the flow of primary coolant and a fuel assemblies in PWR nuclear reactors. It is indeed of major importance since the flow is shown to induce quite high damping and could therefore mitigate the incidence of an external load like a seismic excitation on the dynamics of the assemblies. The proposed model is validated on two cases from the literature but still needs further comparisons with the experiments being currently carried out on the EDF set-up. The flow has been shown to induce an approximate 12% damping on a PWR fuel assembly, at nominal reactor conditions. The possible grid effect on the fluid-structure coupling has been neglected so far but will soon be investigated at EDF. (author)

  1. Digital integrated control of a Mach 2.5 mixed-compression supersonic inlet and an augmented mixed-flow turbofan engine

    Science.gov (United States)

    Batterton, P. G.; Arpasi, D. J.; Baumbick, R. J.

    1974-01-01

    A digitally implemented integrated inlet-engine control system was designed and tested on a mixed-compression, axisymmetric, Mach 2.5, supersonic inlet with 45 percent internal supersonic area contraction and a TF30-P-3 augmented turbofan engine. The control matched engine airflow to available inlet airflow. By monitoring inlet terminal shock position and over-board bypass door command, the control adjusted engine speed so that in steady state, the shock would be at the desired location and the overboard bypass doors would be closed. During engine-induced transients, such as augmentor light-off and cutoff, the inlet operating point was momentarily changed to a more supercritical point to minimize unstarts. The digital control also provided automatic inlet restart. A variable inlet throat bleed control, based on throat Mach number, provided additional inlet stability margin.

  2. Absolute intensities of supersonic beams

    International Nuclear Information System (INIS)

    Beijerinck, H.C.W.; Habets, A.H.M.; Verster, N.F.

    1977-01-01

    In a molecular beam experiment the center-line intensity I(0) (particles s -1 sterad -1 ) and the flow rate dN/dt (particles s -1 ) of a beam source are important features. To compare the performance of different types of beam sources the peaking factor, kappa, is defined as the ratio kappa=π(I(0)/dN/dt). The factor π is added to normalize to kappa=1 for an effusive source. The ideal peaking factor for the supersonic flow from a nozzle follows from continuum theory. Numerical values of kappa are available. Experimental values of kappa for an argon expansion are presented in this paper, confirming these calculations. The actual center-line intensity of a supersonic beam source with a skimmer is reduced in comparison to this ideal intensity if the skimmer shields part of the virtual source from the detector. Experimental data on the virtual source radius are given enabling one to predict this shielding quantitatively. (Auth.)

  3. Gas dynamic improvement of the axial compressor design for reduction of the flow non-uniformity level

    Science.gov (United States)

    Matveev, V. N.; Baturin, O. V.; Kolmakova, D. A.; Popov, G. M.

    2017-01-01

    Circumferential nonuniformity of gas flow is one of the main problems in the gas turbine engine. Usually, the flow circumferential nonuniformity appears near the annular frame located in the flow passage of the engine. The presence of circumferential nonuniformity leads to the increased dynamic stresses in the blade rows and the blade damage. The goal of this research was to find the ways of the flow non-uniformity reduction, which would not require a fundamental changing of the engine design. A new method for reducing the circumferential nonuniformity of the gas flow was proposed that allows the prediction of the pressure peak values of the rotor blades without computationally expensive CFD calculations.

  4. Modeling of an axial flow, spherical packed-bed reactor for naphtha reforming process in the presence of the catalyst deactivation

    Energy Technology Data Exchange (ETDEWEB)

    Iranshahi, D.; Pourazadi, E.; Paymooni, K.; Bahmanpour, A.M.; Rahimpour, M.R.; Shariati, A. [Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71345 (Iran, Islamic Republic of)

    2010-12-15

    Improving the octane number of the aromatics' compounds has always been an important matter in refineries and lots of investigations have been made concerning this issue. In this study, an axial-flow spherical packed-bed reactor (AF-SPBR) is considered for naphtha reforming process in the presence of catalyst deactivation. Model equations are solved by the orthogonal collocation method. The AF-SPBR results are compared with the plant data of a conventional tubular packed-bed reactor (TR). The effects of some important parameters such as pressure and temperature on aromatic and hydrogen production rates and catalyst activity have been investigated. Higher production rates of aromatics can successfully be achieved in this novel reactor. Moreover, results show the capability of flow augmentation in the proposed configuration in comparison with the TR. This study shows the superiority of AF-SPBR configuration to the conventional types. (author)

  5. Dynamics and stability of flexible cylinders subjected to liquid and two-phase axial flow in confined annuli

    International Nuclear Information System (INIS)

    Pettigrew, M.J.; Paidoussis, M.P.

    1976-03-01

    The nuclear fuel for CANDU-BLW reactors consists of fuel bundles assembled in the form of strings. The strings are inserted in fuel channels. From a fluidelastic viewpoint the strings are essentially flexible cylinders in confined annuli. Fluidelastic instability is one of the flow-induced vibration excitation mechanisms that could cause fretting damage. The fluidelastic behaviour of flexible cylinders in confined annuli was investigated experimentally. The cylinders were subjected to fuel channel flow conditions, that is flow velocities up to 10 m/s in liquid flow and mass fluxes up to 500 g/cm 2 s in two-phase flow simulated by air-water. The effect of several parameters such as flexural rigidity, end conditions, downstream end shape, and annular confinement were explored. Generally, cylinders except those with square downstream free ends experienced fluidelastic instabilities in liquid flow in the form of buckling or oscillations. Higher frequencies and higher modes were observed at higher flow velocities. Conversely cylinders with square downstream free ends were very stable in liquid flow. The behaviour in two-phase flow is completely different. The cylinder vibration response was severe and broadband random in nature. A mathematical model was formulated for the fluidelastic behaviour. The experimental results are compared to the analytical predictions. The formulated model is qualitatively valid for liquid flow but not for two-phase flow. (author)

  6. Properties of Supersonic Impinging Jets

    Science.gov (United States)

    Alvi, F. S.; Iyer, K. G.; Ladd, J.

    1999-11-01

    A detailed study examining the behavior of axisymmetric supersonic jets impinging on a ground plane is described. Our objective is to better understand the aeroacoustics governing this complex flowfield which commonly occurs in the vicinity of STOVL aircraft. Flow issuing through a Mach 1.5 C-D and a converging sonic nozzle is examined over a wide parametric range. For some cases a large diameter circular 'lift' plate, with an annular hole through which the jet is issued, is attached at the nozzle exit to simulate a generic airframe. The impinging jet flowfield was examined using Particle Image Velocimetry (PIV), which provides the velocity field for the entire region and shadowgraph visualization techniques. Near-field acoustic, as well as, mean and unsteady pressure measurements on the ground and lift plate surfaces were also obtained. The velocity field data, together with the surface flow measurements have resulted in a much better understanding of this flow from a fundamental standpoint while also identifying critical regions of interest for practical applications. Some of these findings include the presence of a stagnation bubble with recirculating flow; a very high speed (transonic/supersonic) radial wall jet; presence of large, spatially coherent turbulent structures in the primary jet and wall jet and high unsteady loads on the ground plane and lift plates. The results of a companion CFD investigation and its comparison to the experimental data will also be presented. Very good agreement has been found between the computational and experimental results thus providing confidence in the development of computational tools for the study of such flows.

  7. Some insights into the role of axial gas flow in fuel rod behaviour during the LOCA based on Halden tests and calculations with the FALCON-PSI code

    International Nuclear Information System (INIS)

    Khvostov, G.; Wiesenack, W.; Zimmermann, M.A.; Ledergerber, G.

    2011-01-01

    Highlights: → A model for the dynamics of axial gas redistribution in fuel rods during the LOCA is developed and coupled to the FALCON fuel behaviour code. → The first verification of the model is carried out using the data of the selected Halden LOCA tests. → According to calculation, the short rods used in the Halden tests show a small effect of the delayed gas redistribution during the clad ballooning. → The predicted effect is significant in the full length rods, eventually resulting in a considerable delay of the predicted moment of cladding rupture. → The predicted delay of cladding burst may be large enough to eventually affect the efficiency of the emergency core cooling system. - Abstract: A model for axial gas flow in a fuel rod during the LOCA is integrated into the FRELAX model that deals with the thermal behaviour and fuel relocation in the fuel rods of the Halden LOCA test series. The first verification was carried out using the experimental data for the inner pressure during the gas outflow after cladding rupture in tests 3, 4 and 5. Furthermore, the modified FRELAX model is implicitly coupled to the FALCON fuel behaviour code. The analysis with the new methodology shows that the dynamics of axial gas-flow along the rod and through the cladding rupture can have a strong influence on the fuel rod behaviour. Specifically, a delayed axial gas redistribution during the heat-up phase of the LOCA can result in a drop of local pressure in the ballooned area, which is eventually able to affect the cladding burst. The results of the new model seem to be useful when analysing some of the Halden LOCA tests (showing considerable fuel relocation) and selected cases of LOCA in full-length fuel rods. While the short rods used in the Halden tests only show a very small effect of the delayed gas redistribution during the clad ballooning, such an effect is predicted to be significant in the full-scale rods - with a power peak located sufficiently away from

  8. Three-dimensional supersonic vortex breakdown

    Science.gov (United States)

    Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.

    1993-01-01

    Three-dimensional supersonic vortex-breakdown problems in bound and unbound domains are solved. The solutions are obtained using the time-accurate integration of the unsteady, compressible, full Navier-Stokes (NS) equations. The computational scheme is an implicit, upwind, flux-difference splitting, finite-volume scheme. Two vortex-breakdown applications are considered in the present paper. The first is for a supersonic swirling jet which is issued from a nozzle into a supersonic uniform flow at a lower Mach number than that of the swirling jet. The second is for a supersonic swirling flow in a configured circular duct. In the first application, an extensive study of the effects of grid fineness, shape and grid-point distribution on the vortex breakdown is presented. Four grids are used in this study and they show a substantial dependence of the breakdown bubble and shock wave on the grid used. In the second application, the bubble-type and helix-type vortex breakdown have been captured.

  9. The four step axial flow compressor of the Technical University of Dresden - development concept and results of flow measurements. Der vierstufige Axialverdichter der TU Dresden - Entwicklungskonzeption und Ergebnisse von Stroemungsmessungen

    Energy Technology Data Exchange (ETDEWEB)

    Boos, P.; Moeeckel, H.; Mueller, R.; Sauer, H.; Wolf, E. (Technische Univ. Dresden (Germany))

    1999-01-01

    In this paper the results obtained from flow-technical investigations at low velocity compressor in Dresden were presented. They were supposed to give little insight on the focus of current research works in the field of axial flow compressors. A detailed solution of the flow structure applying the conventional pneumatic measuring technology as well as the hot-wire, microphone, culite, laser and light-section measuring technology enables to understand flow parameter better and to find approaches for improving power density, efficiency, environmental friendliness and operational stability. The large-scale research plant was constructed in approximately Two and a half years. The low velocity compressor in Dresden constitutes a tool in Germany and Europe that enables the manufacturers of stationary gas turbine plants and steel jet engines to improve various parameters of their products. The MTU in Munich already pointed out this fact in its contribution to the final report on the construction phase. It noted that this plant is going to extend the possibilities of research and development in Europe in the field of aerodynamics of axial flow compressors in an excellent way. (orig.)

  10. Investigation of Unsteady Tip Clearance Flow in a Low-Speed One and Half Stage Axial Compressor with LES And PIV

    Science.gov (United States)

    Hah, Chunill; Hathaway, Michael; Katz, Joseph; Tan, David

    2015-01-01

    The primary focus of this paper is to investigate how a rotor's unsteady tip clearance flow structure changes in a low speed one and half stage axial compressor when the rotor tip gap size is increased from 0.5 mm (0.49% of rotor tip blade chord, 2% of blade span) to 2.4 mm (2.34% chord, 4% span) at the design condition are investigated. The changes in unsteady tip clearance flow with the 0.62 % tip gap as the flow rate is reduced to near stall condition are also investigated. A Large Eddy Simulation (LES) is applied to calculate the unsteady flow field at these three flow conditions. Detailed Stereoscopic PIV (SPIV) measurements of the current flow fields were also performed at the Johns Hopkins University in a refractive index-matched test facility which renders the compressor blades and casing optically transparent. With this setup, the unsteady velocity field in the entire flow domain, including the flow inside the tip gap, can be measured. Unsteady tip clearance flow fields from LES are compared with the PIV measurements and both LES and PIV results are used to study changes in tip clearance flow structures. The current study shows that the tip clearance vortex is not a single structure as traditionally perceived. The tip clearance vortex is formed by multiple interlaced vorticities. Therefore, the tip clearance vortex is inherently unsteady. The multiple interlaced vortices never roll up to form a single structure. When phased-averaged, the tip clearance vortex appears as a single structure. When flow rate is reduced with the same tip gap, the tip clearance vortex rolls further upstream and the tip clearance vortex moves further radially inward and away from the suction side of the blade. When the tip gap size is increased at the design flow condition, the overall tip clearance vortex becomes stronger and it stays closer to the blade suction side and the vortex core extends all the way to the exit of the blade passage. Measured and calculated unsteady flow

  11. Nonlinear stability of supersonic jets

    Science.gov (United States)

    Tiwari, S. N. (Principal Investigator); Bhat, T. R. S. (Principal Investigator)

    1996-01-01

    The stability calculations made for a shock-free supersonic jet using the model based on parabolized stability equations are presented. In this analysis the large scale structures, which play a dominant role in the mixing as well as the noise radiated, are modeled as instability waves. This model takes into consideration non-parallel flow effects and also nonlinear interaction of the instability waves. The stability calculations have been performed for different frequencies and mode numbers over a range of jet operating temperatures. Comparisons are made, where appropriate, with the solutions to Rayleigh's equation (linear, inviscid analysis with the assumption of parallel flow). The comparison of the solutions obtained using the two approaches show very good agreement.

  12. Impact of typical steady-state conditions and transient conditions on flow ripple and its test accuracy for axial piston pump

    Science.gov (United States)

    Xu, Bing; Hu, Min; Zhang, Junhui

    2015-09-01

    The current research about the flow ripple of axial piston pump mainly focuses on the effect of the structure of parts on the flow ripple. Therein, the structure of parts are usually designed and optimized at rated working conditions. However, the pump usually has to work in large-scale and time-variant working conditions. Therefore, the flow ripple characteristics of pump and analysis for its test accuracy with respect to variant steady-state conditions and transient conditions in a wide range of operating parameters are focused in this paper. First, a simulation model has been constructed, which takes the kinematics of oil film within friction pairs into account for higher accuracy. Afterwards, a test bed which adopts Secondary Source Method is built to verify the model. The simulation and tests results show that the angular position of the piston, corresponding to the position where the peak flow ripple is produced, varies with the different pressure. The pulsating amplitude and pulsation rate of flow ripple increase with the rise of pressure and the variation rate of pressure. For the pump working at a constant speed, the flow pulsation rate decreases dramatically with the increasing speed when the speed is less than 27.78% of the maximum speed, subsequently presents a small decrease tendency with the speed further increasing. With the rise of the variation rate of speed, the pulsating amplitude and pulsation rate of flow ripple increase. As the swash plate angle augments, the pulsating amplitude of flow ripple increases, nevertheless the flow pulsation rate decreases. In contrast with the effect of the variation of pressure, the test accuracy of flow ripple is more sensitive to the variation of speed. It makes the test accuracy above 96.20% available for the pulsating amplitude of pressure deviating within a range of ±6% from the mean pressure. However, with a variation of speed deviating within a range of ±2% from the mean speed, the attainable test

  13. Study on thermal-hydraulic behavior in supersonic steam injector

    International Nuclear Information System (INIS)

    Abe, Yutaka; Fukuichi, Akira; Kawamoto, Yujiro; Iwaki, Chikako; Narabayashi, Tadashi; Mori, Michitsugu; Ohmori, Shuichi

    2007-01-01

    Supersonic steam injector is the one of the most possible devices aiming at simplifying system and improving the safety and the credibility for next-generation nuclear reactor systems. The supersonic steam injector has dual functions of a passive jet pump without rotating machine and a compact and high efficiency heat exchanger, because it is operated by the direct contact condensation between supersonic steam and subcooled water jet. It is necessary to clarify the flow behavior in the supersonic steam injector which is governed by the complicated turbulent flow with a great shear stress of supersonic steam. However, in previous study, there is little study about the turbulent heat transfer and flow behavior under such a great shear stress at the gas-liquid interface. In the present study, turbulent flow behavior including the effect of the interface between water jet and supersonic steam is developed based on the eddy viscosity model. Radial velocity distributions and the turbulent heat transfer are calculated with the model. The calculation results are compared with the experimental results done with the transparent steam injector. (author)

  14. Numerical and Experimental Investigations of Steady Micro-Tip Injection on a Subsonic Axial-Flow Compressor Rotor

    Directory of Open Access Journals (Sweden)

    Xingen Lu

    2006-01-01

    tip-clearance flow manipulation. The repositioning of the tip-clearance vortex further towards the trailing edge of the blade passage and delaying the movement of incoming/tip-clearance flow interface to the leading edge plane are the physical mechanisms responsible for extending the compressor stall margin.

  15. THERMAL AND AERODYNAMIC PERFORMANCES OF THE SUPERSONIC MOTION

    Directory of Open Access Journals (Sweden)

    Dejan P Ninković

    2010-01-01

    Full Text Available Generally speaking, Mach number of 4 can be taken as a boundary value for transition from conditions for supersonic, into the area of hypersonic flow, distinguishing two areas: area of supersonic in which the effects of the aerodynamic heating can be neglected and the area of hypersonic, in which the thermal effects become dominant. This paper presents the effects in static and dynamic areas, as well as presentation of G.R.O.M. software for determination of the values of aerodynamic derivatives, which was developed on the basis of linearized theory of supersonic flow. Validation of developed software was carried out through different types of testing, proving its usefulness for engineering practice in the area of supersonic wing aerodynamic loading calculations, even at high Mach numbers, with dominant thermal effects.

  16. Operating range, hold-up, droplet size and axial mixing of pulsed plate columns in highly disperse and low-continuity volume flows

    International Nuclear Information System (INIS)

    Schmidt, H.; Miller, H.

    Operating behavior, hold-up, droplet size and axial mixing are investigated in highly disperse and slightly continuous volume flows in a pulsed plate column. The geometry of the column of 4-m length and 10-cm inside diameter was held constant. The hole shape of the column bases was changed, wherby the cylindrical, sharp-edge drilled hole is compared with the punched, nozzle-shaped hole in their effects on the fluid-dynamic behavior. In this case we varied the volume flows, the ratio of volume flows, the pulse frequency and the operating temperature. The operation was held constant for the aqueous, the organic, the continuous and the disperse phases. The objective was to demonstrate the applicability of pulsed plate columns with very large differences between the organic disperse and the aqueous continuous volume flow, to obtain design data for such columns and to perform a scale-up to industrial reprocessing plant-size. 18 references, 11 figures, 3 tables

  17. The Trojan. [supersonic transport

    Science.gov (United States)

    1992-01-01

    The Trojan is the culmination of thousands of engineering person-hours by the Cones of Silence Design Team. The goal was to design an economically and technologically viable supersonic transport. The Trojan is the embodiment of the latest engineering tools and technology necessary for such an advanced aircraft. The efficient design of the Trojan allows for supersonic cruise of Mach 2.0 for 5,200 nautical miles, carrying 250 passengers. The per aircraft price is placed at $200 million, making the Trojan a very realistic solution for tomorrows transportation needs. The following is a detailed study of the driving factors that determined the Trojan's super design.

  18. Numerical simulation and physical aspects of supersonic vortex breakdown

    Science.gov (United States)

    Liu, C. H.; Kandil, O. A.; Kandil, H. A.

    1993-01-01

    Existing numerical simulations and physical aspects of subsonic and supersonic vortex-breakdown modes are reviewed. The solution to the problem of supersonic vortex breakdown is emphasized in this paper and carried out with the full Navier-Stokes equations for compressible flows. Numerical simulations of vortex-breakdown modes are presented in bounded and unbounded domains. The effects of different types of downstream-exit boundary conditions are studied and discussed.

  19. PIV measurements of acoustic flow-induced vibration in a rectangular channel with co-axial side branches

    International Nuclear Information System (INIS)

    Li, Yanrong; Someya, Satoshi; Okamoto, Koji

    2010-01-01

    Systems with closed side-branches are liable to an excitation of sound, as called cavity tone. In this study, flow-induced acoustic resonances of piping systems containing closed side-branches were investigated experimentally. The present investigation on the coaxial closed side-branches is the first rudimentary study to measure the pressure at the downstream side opening of the cavity by microphone and to visualize the fluid flow in the cross-section by using PIV. High-time-resolved PIV has a possibility to analyze the velocity field and the relation between sound propagation and flow field. The fluid flows at different points in the cavity interact with some phase differences and the relation can be clarified. (author)

  20. Study of Pressure Oscillations in Supersonic Parachute

    Science.gov (United States)

    Dahal, Nimesh; Fukiba, Katsuyoshi; Mizuta, Kazuki; Maru, Yusuke

    2018-04-01

    Supersonic parachutes are a critical element of planetary mission whose simple structure, light-weight characteristics together with high ratio of aerodynamic drag makes them the most suitable aerodynamic decelerators. The use of parachute in supersonic flow produces complex shock/shock and wake/shock interaction giving rise to dynamic pressure oscillations. The study of supersonic parachute is difficult, because parachute has very flexible structure which makes obtaining experimental pressure data difficult. In this study, a supersonic wind tunnel test using two rigid bodies is done. The wind tunnel test was done at Mach number 3 by varying the distance between the front and rear objects, and the distance of a bundle point which divides suspension lines and a riser. The analysis of Schlieren movies revealed shock wave oscillation which was repetitive and had large pressure variation. The pressure variation differed in each case of change in distance between the front and rear objects, and the change in distance between riser and the rear object. The causes of pressure oscillation are: interaction of wake caused by front object with the shock wave, fundamental harmonic vibration of suspension lines, interference between shock waves, and the boundary layer of suspension lines.

  1. Supersonic copper clusters

    International Nuclear Information System (INIS)

    Powers, D.E.; Hansen, S.G.; Geusic, M.E.; Michalopoulos, D.L.; Smalley, R.E.

    1983-01-01

    Copper clusters ranging in size from 1 to 29 atoms have been prepared in a supersonic beam by laser vaporization of a rotating copper target rod within the throat of a pulsed supersonic nozzle using helium for the carrier gas. The clusters were cooled extensively in the supersonic expansion [T(translational) 1 to 4 K, T(rotational) = 4 K, T(vibrational) = 20 to 70 K]. These clusters were detected in the supersonic beam by laser photoionization with time-of-flight mass analysis. Using a number of fixed frequency outputs of an exciplex laser, the threshold behavior of the photoionization cross section was monitored as a function of cluster size.nce two-photon ionization (R2PI) with mass selective detection allowed the detection of five new electronic band systems in the region between 2690 and 3200 A, for each of the three naturally occurring isotopic forms of Cu 2 . In the process of scanning the R2PI spectrum of these new electronic states, the ionization potential of the copper dimer was determined to be 7.894 +- 0.015 eV

  2. Numerical investigation on compressible flow characteristics in axial compressors using a multi block finite-volume scheme

    International Nuclear Information System (INIS)

    Farhanieh, B.; Amanifard, N.; Ghorbanian, K.

    2002-01-01

    An unsteady two-dimensional numerical investigation was performed on the viscous flow passing through a multi-blade cascade. A Cartesian finite-volume approach was linked to Van-Leer's and Roe's flux splitting schemes to evaluate inviscid flux terms. To prevent the oscillatory behavior of numerical results and to increase the accuracy, Mon tonic Upstream Scheme for Conservation Laws was added to flux splitting schemes. The Baldwin-Lo max (B L) turbulence model was implemented to solve the turbulent case studies. Implicit solution was also provided using Lower and Upper (L U) decomposition technique to compare with explicit solutions. To validate the numerical procedure, two test cases are prepared and flow over a Na Ca 0012 airfoil was investigated and the pressure coefficients were compared to the reference data. The numerical solver was implemented to study the flow passing over a compressor cascade. The results of various combinations of splitting schemes and the Mon tonic Upstream Scheme for Conventional Laws limiter were compared with each other to find the suitable methods in cascade problems. Finally the convergence histories of implemented schemes were compared to each other to show the behavior of the solver in using various methods before implementation of them in flow instability studies

  3. Axial Dispersion Model for Solid Flow in Liquid Suspension in System of Two Mixers in Total Recycle

    Czech Academy of Sciences Publication Activity Database

    Čermáková, Jiřina; Scargiali, F.; Siyakatshana, N.; Kudrna, V.; Brucato, A.; Machoň, V.

    2006-01-01

    Roč. 117, č. 2 (2006), s. 101-107 ISSN 1385-8947 R&D Projects: GA AV ČR(CZ) IAA4072402 Institutional research plan: CEZ:AV0Z40720504 Keywords : residence time distribution * dispersion model * flow mixer Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.594, year: 2006

  4. Spectroscopic validation of the supersonic plasma jet model

    International Nuclear Information System (INIS)

    Selezneva, S.E.; Sember, V.; Gravelle, D.V.; Boulos, M.I.

    2002-01-01

    Optical emission spectroscopy is applied to validate numerical simulations of supersonic plasma flow generated by induction torch with a convergent-divergent nozzle. The plasmas exhausting from the discharge tube with the pressure 0.4-1.4 atm. through two nozzle configurations (the outlet Mach number equals 1.5 and 3) into low-pressure (1.8 kPa) chamber are compared. Both modelling and experiments show that the effect of the nozzle geometry on physical properties of plasma jet is significant. The profiles of electron number density obtained from modeling and spectroscopy agree well and show the deviations from local thermodynamic equilibrium. Analysis of intercoupling between different sorts of nonequilibrium processes is performed. The results reveal that the ion recombination is more essential in the nozzle with the higher outlet number than in the nozzle with the lower outlet number. It is demonstrated that in the jets the axial electron temperature is quite low (3000-8000 K). For spectroscopic data interpretation we propose a method based on the definition of two excitation temperatures. We suppose that in mildly under expanded argon jets with frozen ion recombination the electron temperature can be defined by the electronic transitions from level 5p (the energy E=14.5 eV) to level 4p (E=13.116 eV). The obtained results are useful for the optimization of plasma reactors for plasma chemistry and plasma processing applications. (author)

  5. An investigation of the heat transfer and static pressure on the over-tip casing wall of an axial turbine operating at engine representative flow conditions. (I). Time-mean results

    International Nuclear Information System (INIS)

    Thorpe, S.J.; Yoshino, S.; Ainsworth, R.W.; Harvey, N.W.

    2004-01-01

    The over-tip casing of the high-pressure turbine in a modern gas turbine engine is subjected to strong convective heat transfer that can lead to thermally induced failure (burnout) of this component. However, the complicated flow physics in this region is dominated by the close proximity of the moving turbine blades, which gives rise to significant temporal variations at the blade-passing frequency. The understanding of the physical processes that control the casing metal temperature is still limited and this fact has significant implications for the turbine design strategy. A series of experiments has been performed that seeks to address some of these important issues. This article reports the measurements of time-mean heat transfer and time-mean static pressure that have been made on the over-tip casing of a transonic axial-flow turbine operating at flow conditions that are representative of those found in modern gas turbine engines. Time-resolved measurements of these flow variables (that reveal the details of the blade-tip/casing interaction physics) are presented in a companion paper. The nozzle guide vane exit flow conditions in these experiments were a Mach number of 0.93 and a Reynolds number of 2.7 x 10 6 based on nozzle guide vane mid-height axial chord. The axial and circumferential distributions of heat transfer rate, adiabatic wall temperature, Nusselt number and static pressure are presented. The data reveal large axial variations in the wall heat flux and adiabatic wall temperature that are shown to be primarily associated with the reduction in flow stagnation temperature through the blade row. The heat flux falls by a factor of 6 (from 120 to 20 kW/m 2 ). In contrast, the Nusselt number falls by just 36% between the rotor inlet plane and 80% rotor axial chord; additionally, this drop is near to linear from 20% to 80% rotor axial chord. The circumferential variations in heat transfer rate are small, implying that the nozzle guide vanes do not produce

  6. Characterization of supersonic radiation diffusion waves

    International Nuclear Information System (INIS)

    Moore, Alastair S.; Guymer, Thomas M.; Morton, John; Williams, Benjamin; Kline, John L.; Bazin, Nicholas; Bentley, Christopher; Allan, Shelly; Brent, Katie; Comley, Andrew J.; Flippo, Kirk; Cowan, Joseph; Taccetti, J. Martin; Mussack-Tamashiro, Katie; Schmidt, Derek W.; Hamilton, Christopher E.; Obrey, Kimberly; Lanier, Nicholas E.; Workman, Jonathan B.; Stevenson, R. Mark

    2015-01-01

    Supersonic and diffusive radiation flow is an important test problem for the radiative transfer models used in radiation-hydrodynamics computer codes owing to solutions being accessible via analytic and numeric methods. We present experimental results with which we compare these solutions by studying supersonic and diffusive flow in the laboratory. We present results of higher-accuracy experiments than previously possible studying radiation flow through up to 7 high-temperature mean free paths of low-density, chlorine-doped polystyrene foam and silicon dioxide aerogel contained by an Au tube. Measurements of the heat front position and absolute measurements of the x-ray emission arrival at the end of the tube are used to test numerical and analytical models. We find excellent absolute agreement with simulations provided that the opacity and the equation of state are adjusted within expected uncertainties; analytical models provide a good phenomenological match to measurements but are not in quantitative agreement due to their limited scope. - Highlights: • The supersonic, diffusion of x-rays through sub-solid density materials is studied. • The data are more diffusive and of higher velocity than any prior work. • Scaled 1D analytic diffusion models reproduce the heat front evolution. • Refined radiation transport approximations are tested in numerical simulations. • Simulations match the data if material properties are adjusted within uncertainties

  7. Trends in Supersonic Separator design development

    Directory of Open Access Journals (Sweden)

    Altam Rami Ali

    2017-01-01

    Full Text Available Supersonic separator is a new technology with applications in hydrocarbon dew pointing and gas dehydration which can be used to condensate and separate water and heavy hydrocarbons from natural gas. Many researchers have studied the design, performance and efficiency, economic viability, and industrial applications of these separators. The purpose of this paper is to succinctly review recent progress in the design and application of supersonic separators and their limitations. This review has found that while several aspects of this study are well studied, considerable gaps within the published literature still exists in the areas such as turndown flexibility which is a critical requirement to cater for variation of mass flow and since almost all the available designs have a fixed geometry and therefore cannot be considered suitable for variable mass flow rate, which is a common situation in actual site. Hence, the focus needs to be more on designing a flexible geometry that can maintain a high separation efficiency regardless of inlet conditions and mass flow variations. This review is focusing only on the design and application of the supersonic separators without going through the experimental facilities, industrial platform, pilot plants as well as theoretical, analytical, and numerical modelling.

  8. Altitude-Wind-Tunnel Investigation of a 4000-Pound-Thrust Axial-Flow Turbojet Engine. II - Operational Characteristics. II; Operational Characteristics

    Science.gov (United States)

    Fleming, William A.

    1948-01-01

    An investigation was conducted in the Cleveland altitude wind tunnel to determine the operational characteristics of an axial flow-type turbojet engine with a 4000-pound-thrust rating over a range of pressure altitudes from 5,000 to 50,OOO feet, ram pressure ratios from 1.00 to 1.86, and temperatures from 60 deg to -50 deg F. The low-flow (standard) compressor with which the engine was originally equipped was replaced by a high-flow compressor for part of the investigation. The effects of altitude and airspeed on such operating characteristics as operating range, stability of combustion, acceleration, starting, operation of fuel-control systems, and bearing cooling were investigated. With the low-flow compressor, the engine could be operated at full speed without serious burner unbalance at altitudes up to 50,000 feet. Increasing the altitude and airspeed greatly reduced the operable speed range of the engine by raising the minimum operating speed of the engine. In several runs with the high-flow compressor the maximum engine speed was limited to less than 7600 rpm by combustion blow-out, high tail-pipe temperatures, and compressor stall. Acceleration of the engine was relatively slow and the time required for acceleration increased with altitude. At maximum engine speed a sudden reduction in jet-nozzle area resulted in an immediate increase in thrust. The engine started normally and easily below 20,000 feet with each configuration. The use of a high-voltage ignition system made possible starts at a pressure altitude of 40,000 feet; but on these starts the tail-pipe temperatures were very high, a great deal of fuel burned in and behind the tail-pipe, and acceleration was very slow. Operation of the engine was similar with both fuel regulators except that the modified fuel regulator restricted the fuel flow in such a manner that the acceleration above 6000 rpm was very slow. The bearings did not cool properly at high altitudes and high engine speeds with a low-flow

  9. Entropy Minimization Design Approach of Supersonic Internal Passages

    Directory of Open Access Journals (Sweden)

    Jorge Sousa

    2015-08-01

    Full Text Available Fluid machinery operating in the supersonic regime unveil avenues towards more compact technology. However, internal supersonic flows are associated with high aerodynamic and thermal penalties, which usually prevent their practical implementation. Indeed, both shock losses and the limited operational range represent particular challenges to aerodynamic designers that should be taken into account at the initial phase of the design process. This paper presents a design methodology for supersonic passages based on direct evaluations of the velocity field using the method of characteristics and computation of entropy generation across shock waves. This meshless function evaluation tool is then coupled to an optimization scheme, based on evolutionary algorithms that minimize the entropy generation across the supersonic passage. Finally, we assessed the results with 3D Reynolds Averaged Navier Stokes calculations.

  10. Nonlinear control of rotating stall and surge with axisymmetric bleed and air injection on axial flow compressors

    Science.gov (United States)

    Yeung, Chung-Hei (Simon)

    The study of compressor instabilities in gas turbine engines has received much attention in recent years. In particular, rotating stall and surge are major causes of problems ranging from component stress and lifespan reduction to engine explosion. In this thesis, modeling and control of rotating stall and surge using bleed valve and air injection is studied and validated on a low speed, single stage, axial compressor at Caltech. Bleed valve control of stall is achieved only when the compressor characteristic is actuated, due to the fast growth rate of the stall cell compared to the rate limit of the valve. Furthermore, experimental results show that the actuator rate requirement for stall control is reduced by a factor of fourteen via compressor characteristic actuation. Analytical expressions based on low order models (2--3 states) and a high fidelity simulation (37 states) tool are developed to estimate the minimum rate requirement of a bleed valve for control of stall. A comparison of the tools to experiments show a good qualitative agreement, with increasing quantitative accuracy as the complexity of the underlying model increases. Air injection control of stall and surge is also investigated. Simultaneous control of stall and surge is achieved using axisymmetric air injection. Three cases with different injector back pressure are studied. Surge control via binary air injection is achieved in all three cases. Simultaneous stall and surge control is achieved for two of the cases, but is not achieved for the lowest authority case. This is consistent with previous results for control of stall with axisymmetric air injection without a plenum attached. Non-axisymmetric air injection control of stall and surge is also studied. Three existing control algorithms found in literature are modeled and analyzed. A three-state model is obtained for each algorithm. For two cases, conditions for linear stability and bifurcation criticality on control of rotating stall are

  11. Experimental and numerical examination of the unsteady flow in an axial turbine; Experimentelle und numerische Untersuchung der instationaeren Stroemung in einer Axialturbine

    Energy Technology Data Exchange (ETDEWEB)

    Gentner, C.

    2000-07-01

    The periodic instationary flow in guidevanes and runner of an axial hydraulic turbine is examined experimentally and numerically. The study is carried out at three different points of operation. The experimental study comprises the measurement of the velocity of the flow at midspan using a single channel Laser Doppler Velocimeter and the acquisition of the ozillating pressure at several locations in the casing. The unsteady numerical examination is carried out in a two dimensional plane at midspan of the runnerblades. The interaction between guidevanes and runner is taken into account by exchanging the flow properties at the adjoining edges of the two calculation grids. Further the influence of the tip clearance flow on the characteristics of the turbine is studied numerically by means of a three dimensional steady state calculation. The comparison of the results of measurement and calculation shows the abilities and the limitations of the applied numerical method. Moreover the results are helpful for the optimisation of the turbine with regard to higher efficiency and reduced cavitation. (orig.) [German] Die periodisch instationaere Stroemung in Leit- und Laufrad einer hydraulischen Axialturbine zur Druckentspannung in Rohrleitungssystemen wird fuer drei Betriebspunkte experimentell und rechnerisch untersucht. Die experimentelle Untersuchung umfasst die zeitaufgeloeste Messung der Stroemungsgeschwindigkeiten mit einem Laser-Doppler-Velozimeter im Mittelschnitt und die Erfassung des periodisch schwankenden Drucks an mehreren Punkten an der Gehaeusewand. Die instationaere numerische Untersuchung erfolgt in einem zweidimensionalen Zylinderschnitt im mittleren Durchmesser der Laufschaufeln. Die Wechselwirkung zwischen Leit- und Laufrad wird druch den Austausch der Stroemungsgroessen mittels eines Kopplungsalgorithmus an der Stossflaeche zwischen den zwei gegeneinander bewegten Berechnungsgittern erfasst. Darueber hinaus wird in einer dreidimensionalen stationaeren

  12. Analysis of the air flow generated by an air-assisted sprayer equipped with two axial fans using a 3D sonic anemometer.

    Science.gov (United States)

    García-Ramos, F Javier; Vidal, Mariano; Boné, Antonio; Malón, Hugo; Aguirre, Javier

    2012-01-01

    The flow of air generated by a new design of air assisted sprayer equipped with two axial fans of reversed rotation was analyzed. For this goal, a 3D sonic anemometer has been used (accuracy: 1.5%; measurement range: 0 to 45 m/s). The study was divided into a static test and a dynamic test. During the static test, the air velocity in the working vicinity of the sprayer was measured considering the following machine configurations: (1) one activated fan regulated at three air flows (machine working as a traditional sprayer); (2) two activated fans regulated at three air flows for each fan. In the static test 72 measurement points were considered. The location of the measurement points was as follow: left and right sides of the sprayer; three sections of measurement (A, B and C); three measurement distances from the shaft of the machine (1.5 m, 2.5 m and 3.5 m); and four measurement heights (1 m, 2 m, 3 m and 4 m). The static test results have shown significant differences in the module and the vertical angle of the air velocity vector in function of the regulations of the sprayer. In the dynamic test, the air velocity was measured at 2.5 m from the axis of the sprayer considering four measurement heights (1 m, 2 m, 3 m and 4 m). In this test, the sprayer regulations were: one or two activated fans; one air flow for each fan; forward speed of 2.8 km/h. The use of one fan (back) or two fans (back and front) produced significant differences on the duration of the presence of wind in the measurement point and on the direction of the air velocity vector. The module of the air velocity vector was not affected by the number of activated fans.

  13. Accuracy of right and left ventricular functional assessment by short-axis vs axial cine steady-state free-precession magnetic resonance imaging: intrapatient correlation with main pulmonary artery and ascending aorta phase-contrast flow measurements.

    Science.gov (United States)

    James, Susan H; Wald, Rachel; Wintersperger, Bernd J; Jimenez-Juan, Laura; Deva, Djeven; Crean, Andrew M; Nguyen, Elsie; Paul, Narinder S; Ley, Sebastian

    2013-08-01

    The left ventricle (LV) is routinely assessed with cardiac magnetic resonance imaging (MRI) by using short-axis orientation; it remains unclear whether the right ventricle (RV) can also be adequately assessed in this orientation or whether dedicated axial orientation is required. We used phase-contrast (PC) flow measurements in the main pulmonary artery (MPA) and the ascending aorta (Aorta) as nonvolumetric standard of reference and compared RV and LV volumes in short-axis and axial orientations. A retrospective analysis identified 30 patients with cardiac MRI data sets. Patients underwent MRI (1.5 T or 3 T), with retrospectively gated cine steady-state free-precession in axial and short-axis orientations. PC flow analyses of MPA and Aorta were used as the reference measure of RV and LV output. There was a high linear correlation between MPA-PC flow and RV-stroke volume (SV) short axis (r = 0.9) and RV-SV axial (r = 0.9). Bland-Altman analysis revealed a mean offset of 1.4 mL for RV axial and -2.3 mL for RV-short-axis vs MPA-PC flow. There was a high linear correlation between Aorta-PC flow and LV-SV short-axis (r = 0.9) and LV-SV axial (r = 0.9). Bland-Altman analysis revealed a mean offset of 4.8 m for LV short axis and 7.0 mL for LV axial vs Aorta-PC flow. There was no significant difference (P = .6) between short-axis-LV SV and short-axis-RV SV. No significant impact of the slice acquisition orientation for determination of RV and LV stroke volumes was found. Therefore, cardiac magnetic resonance workflow does not need to be extended by an axial data set for patients without complex cardiac disease for assessment of biventricular function and volumes. Copyright © 2013 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  14. Preliminary Axial Flow Turbine Design and Off-Design Performance Analysis Methods for Rotary Wing Aircraft Engines. Part 2; Applications

    Science.gov (United States)

    Chen, Shu-cheng, S.

    2009-01-01

    In this paper, preliminary studies on two turbine engine applications relevant to the tilt-rotor rotary wing aircraft are performed. The first case-study is the application of variable pitch turbine for the turbine performance improvement when operating at a substantially lower shaft speed. The calculations are made on the 75 percent speed and the 50 percent speed of operations. Our results indicate that with the use of the variable pitch turbines, a nominal (3 percent (probable) to 5 percent (hypothetical)) efficiency improvement at the 75 percent speed, and a notable (6 percent (probable) to 12 percent (hypothetical)) efficiency improvement at the 50 percent speed, without sacrificing the turbine power productions, are achievable if the technical difficulty of turning the turbine vanes and blades can be circumvented. The second casestudy is the contingency turbine power generation for the tilt-rotor aircraft in the One Engine Inoperative (OEI) scenario. For this study, calculations are performed on two promising methods: throttle push and steam injection. By isolating the power turbine and limiting its air mass flow rate to be no more than the air flow intake of the take-off operation, while increasing the turbine inlet total temperature (simulating the throttle push) or increasing the air-steam mixture flow rate (simulating the steam injection condition), our results show that an amount of 30 to 45 percent extra power, to the nominal take-off power, can be generated by either of the two methods. The methods of approach, the results, and discussions of these studies are presented in this paper.

  15. Altitude-wind-tunnel investigation of tail-pipe burning with a Westinghouse X24C-4B axial-flow turbojet engine

    Science.gov (United States)

    Fleming, William A; Wallner, Lewis E

    1948-01-01

    Thrust augmentation of an axial-flow type turbojet engine by burning fuel in the tail pipe has been investigated in the NACA Cleveland altitude wind tunnel. The performance was determined over a range of simulated flight conditions and tail-pipe fuel flows. The engine tail pipe was modified for the investigation to reduce the gas velocity at the inlet of the tail-pipe combustion chamber and to provide an adequate seat for the flame; four such modifications were investigated. The highest net-thrust increase obtained in the investigation was 86 percent with a net thrust specific fuel consumption of 2.91 and a total fuel-air ratio of 0.0523. The highest combustion efficiencies obtained with the four configurations ranged from 0.71 to 0.96. With three of the tail-pipe burners, for which no external cooling was provided, the exhaust nozzle and the rear part of the burner section were bright red during operation at high tail-pipe fuel-air ratios. With the tail-pipe burner for which fuel and water cooling were provided, the outer shell of the tail-pipe burner showed no evidence of elevated temperatures at any operating condition.

  16. Influence of Coherent Structures on the Wall Shear Stress in Axial Flow Between a Cylinder and a Plane Wall

    International Nuclear Information System (INIS)

    Khabbouchi, Imed; Guellouz, Mohamed Sadok; Tavoularis, Stavros

    2009-01-01

    Synchronised hot-film and hot-wire measurements were made in the narrower region of a rectangular channel containing a cylindrical rod. The hot-film probe was mounted flush with the channel bottom wall to measure the wall shear stress, while the hot-wire probe was placed at a fixed position, selected in order to easily detect the passage of coherent structures. Mean and rms profiles of the wall shear stress show the influence of the gap to diameter ratio on their respective distributions. The latter presented peculiarities that could only be explained by the presence of coherent structures in the flow between the rod and the wall. Evidence of this presence is seen in the velocity power spectra. The strong influence of the coherent structures on the wall shear stress spatial and temporal distributions is established through velocity-wall shear stress cross-correlations functions and through conditionally sampled measurements

  17. Convective heat transfer in single-phase flow in a vertical tube subjected to axial low frequency oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Pendyala, Rajashekhar; Jayanti, Sreenivas; Balakrishnan, A.R. [Indian Institute of Technology Madras, Department of Chemical Engineering, Chennai, Tamil Nadu (India)

    2008-05-15

    The effect of oscillations on the heat transfer in a vertical tube has been studied experimentally. A vertical tube was mounted on a plate and the whole plate was subjected to oscillations in the vertical plane using a mechanical oscillator to provide low frequency oscillations. A section of the tube in the middle is subjected to a constant heat flux. The effect of the oscillations on the heat transfer coefficient has been examined. It was found that the heat transfer coefficient increased with oscillations in the laminar regime. In turbulent flow regime (Re > 2,100) it is found that the effect of oscillations did not show any change. A correlation has been developed for enhancement of the local Nusselt number in terms of the effective acceleration and Reynolds number. Using this, an expression has been proposed to calculate the mean Nusselt number as a function of the tube length. (orig.)

  18. Dual-Pump CARS Development and Application to Supersonic Combustion

    Science.gov (United States)

    Magnotti, Gaetano; Cutler, Andrew D.

    2012-01-01

    A dual-pump Coherent Anti-Stokes Raman Spectroscopy (CARS) instrument has been developed to obtain simultaneous measurements of temperature and absolute mole fractions of N2, O2 and H2 in supersonic combustion and generate databases for validation and development of CFD codes. Issues that compromised previous attempts, such as beam steering and high irradiance perturbation effects, have been alleviated or avoided. Improvements in instrument precision and accuracy have been achieved. An axis-symmetric supersonic combusting coaxial jet facility has been developed to provide a simple, yet suitable flow to CFD modelers. Approximately one million dual-pump CARS single shots have been collected in the supersonic jet for varying values of flight and exit Mach numbers at several locations. Data have been acquired with a H2 co-flow (combustion case) or a N2 co-flow (mixing case). Results are presented and the effects of the compressibility and of the heat release are discussed.

  19. Measurement of Effect of Chemical Reactions on the Hydrologic Properties of Fractured Glass Media Using a Tri-axial Flow and Transport Apparatus

    International Nuclear Information System (INIS)

    Saripalli, Prasad; Lindberg, Michael J.; Meyer, P. D.

    2006-01-01

    Understanding the effect of chemical reactions on the hydrologic properties of sub-surface media is critical to many natural and engineered sub-surface systems. Methods and information for such characterization of fractured media are severely lacking. Influence of glass corrosion (precipitation and dissolution) reactions on fractured glass blocks HAN28 and LAWBP1, two candidate waste glass forms for a proposed immobilized low-activity waste (ILAW) disposal facility at the Hanford, WA site, was investigated. Flow and tracer transport experiments were conducted in such randomly and multiply fractured ILAW glass blocks, before and after subjecting them to corrosion using Vapor Hydration Testing (VHT) at 200 C temperature and 200 psig (1379 KPa) pressure, causing the precipitation of alteration products. A tri-axial fractured media flow and transport experimental apparatus, which allows the simultaneous measurement of flow and transport properties and their anisotropy, has been designed and built for this purpose. Such apparatus for fractured media characterization are being reported in the literature only recently. Hydraulic properties of fractured blocks were measured in different orientations and along different cardinal directions, before and after glass corrosion reactions. Miscible displacement experiments using a non-reactive dye were also conducted, before and after glass corrosion reactions, to study the tracer transport behavior through such media. Initial efforts to analyze breakthrough curve (BTC) data using a 1D Advection Dispersion Equation (ADE) solution revealed that a different fractured media transport model may be necessary for such interpretation. It was found that glass reactions can have a significant influence on the hydrologic properties of fractured ILAW glass media. The methods and results are unique and useful to better understand the effect of chemical reactions on the hydrologic properties of fractured geomedia in general and glass media in

  20. Axial tomography

    International Nuclear Information System (INIS)

    Brueckner, K.A.; Lewis, J.H.

    1979-01-01

    The invention relates to axial tomography, sometimes referred to as cross-sectional x-ray. The apparatus described may utilize the conventional x-ray or ultrasonic source and detector and scanning mechanism for producing the plurality of sets of radiation detector output signals. It has the means for storing the detector output signals in analog form with the signals of one set overlying the signals of another set so that signals resulting from radiation through a zone of the object being examined are summed at a corresponding zone in the storage device, typically an electronic storage tube. The summed signals are read from the storage device with a radially inversely proportional reader producing a second signal for storage, again typically in an electronic storage tube. These signals stored in the second storage device are read with Laplacian relation, with the resultant sigal being a video signal that may be connected to a TV monitor for display of the sectional image. In alternative embodiments, optical film systems and electrostatic systems are utilized. (JTA)

  1. Supersonic expansion of argon into vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Habets, A H.M.

    1977-01-21

    A theoretical description of a free supersonic expansion process is given. Three distinct regions in the expansion are discussed, namely the continuum region, the gradual transition to the collisionless regime, and the free-molecular-flow stage. Important topics are the peaking-factor formalism, the thermal-conduction model, and the virtual-source formalism. The formation of the molecular beam from the expansion and condensation phenomena occurring in the expanding gas are discussed. The molecular beam machine used in the measurements is described and special attention is given to the cryopumps used in the supersonic sources as well as to the time-of-flight analysis of the molecular beam velocity distributions. Finally, the processing of experimental data is discussed, particularly the least-squares determination of best-fit representations of the measurements.

  2. Supersonic expansion of argon into vacuum

    International Nuclear Information System (INIS)

    Habets, A.H.M.

    1977-01-01

    A theoretical description of a free supersonic expansion process is given. Three distinct regions in the expansion are discussed, namely the continuum region, the gradual transition to the collisionless regime, and the free-molecular-flow stage. Important topics are the peaking-factor formalism, the thermal-conduction model, and the virtual-source formalism. The formation of the molecular beam from the expansion and condensation phenomena occurring in the expanding gas are discussed. The molecular beam machine used in the measurements is described and special attention is given to the cryopumps used in the supersonic sources as well as to the time-of-flight analysis of the molecular beam velocity distributions. Finally, the processing of experimental data is discussed, particularly the least-squares determination of best-fit representations of the measurements

  3. Surgical treatment of tricuspid valve insufficiency promotes early reverse remodeling in patients with axial-flow left ventricular assist devices.

    Science.gov (United States)

    Maltais, Simon; Topilsky, Yan; Tchantchaleishvili, Vakhtang; McKellar, Stephen H; Durham, Lucian A; Joyce, Lyle D; Daly, Richard C; Park, Soon J

    2012-06-01

    The HeartMate II (Thoratec Corp, Pleasanton, Calif) continuous-flow left ventricular assist device has emerged as the standard of care for patients with advanced heart failure. The objective of this study was to assess the safety and early effectiveness of concomitant tricuspid valve procedures in patients undergoing implantation of a HeartMate II device. From February 2007 to April 2010, 83 patients underwent HeartMate II left ventricular assist device implantation. Of these, 37 patients had concomitant tricuspid valve procedures (32 repairs, 5 replacements) for severe tricuspid regurgitation. The effects of a tricuspid valve procedure on tricuspid regurgitation and right ventricular remodeling were assessed comparing echocardiographic findings at baseline and 30 days after left ventricular assist device implantation. Overall survival was also compared. Patients undergoing a concomitant tricuspid valve procedure had more tricuspid regurgitation (vena contracta, 5.6 ± 2.1 mm vs 2.9 ± 2.0 mm; P tricuspid regurgitation was worse in patients who underwent left ventricular assist device implantation alone (+18.6%), whereas it improved significantly in patients undergoing a concomitant tricuspid valve procedure (-50.2%) (P = .005). A corresponding significant reduction in right ventricular end-diastolic area (33.6% ± 6.2% vs 30.1% ± 9.7%; P = .03) and a trend toward better right ventricular function (55.5% ± 79.7% vs 35.7% ± 60.5%; P = .28) were noted in patients undergoing a concomitant tricuspid valve procedure. Survival was comparable between the 2 groups. In patients with severe tricuspid regurgitation undergoing left ventricular assist device implantation, a concomitant tricuspid valve procedure effectively reduces tricuspid regurgitation and promotes reverse remodeling of the right ventricle. Copyright © 2012 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  4. Numerical Assessment of Eddy-Viscosity Turbulence Models of an Axial-Flow Turbine at a Low Reynolds Number

    Science.gov (United States)

    Estrada, Nick Dagoberto

    The focus of this study is to validate studies on enzymatic degradation focusing on bulk no, flow conditions in lipase solutions. Enzymes in solution as well as immobilized on resin beads were used, in varying concentration, in order to characterize the degradation of poly(epsilon-caprolactone), PCL. PCL a material which, has a resorption lifetime of 3 years, had weight loss upwards of 60% weight while most samples in solution experienced 30% after just 10 days. It was found that enzymatic degradation is largely a surface limited reaction with the shape of a material playing little role but the volume to surface area playing an important role in the overall weight loss. Samples submerged in a mixture of immobilized lipase resin beads saw only 8% weight loss in a comparable time frame. An additional test of PCL with immobilized Candida antarctica lipase B (CalB) resin embedded within the film had the largest standard deviation in the weight loss percentage and was the only sample in which the control sample had significant weight loss. Weight loss measurements proved to be the most effective method of tracking the extent of degradation in PCL films. Differential Scanning Calorimetry and Raman Spectroscopy proved to be inefficient in tracking or characterizing hydrolysis reaction in PCL. There was no significant sign of peak splitting, new peak formation, or peak shift in any Raman Spectra which was attributed to the solubility of the cleaved polymer chains. The melting temperature remained constant at 59C since the bulk of the material did not undergo hydrolysis or transterification reactions. The degradation of PCL is supported by the significant weight loss recorded through various experiments however the exact mechanism was not identified by Raman Spectroscopy. Bioresorbable materials remain an important facet in medical research and the success of synthesizing enzymatically degradable polymers represents a new research opportunity for tissue and scaffold

  5. Numerical investigation of drag and heat flux reduction mechanism of the pulsed counterflowing jet on a blunt body in supersonic flows

    Science.gov (United States)

    Zhang, Rui-rui; Huang, Wei; Yan, Li; Li, Lang-quan; Li, Shi-bin; Moradi, R.

    2018-05-01

    To design a kind of aerospace vehicle, the drag and heat flux reduction are the most important factors. In the current study, the counterflowing jet, one of the effective drag and heat flux reduction concepts, is investigated numerically by the two-dimensional axisymmetric Reynolds-averaged Navier-Stokes equations coupled with the SST k-ω turbulence model. An axisymmetric numerical simulation mode of the counterflowing jet on the supersonic vehicle nose-tip is established, and the numerical method employed is validated by the experimental schlieren images and experimental data in the open literature. A pulsed counterflowing jet scheme is proposed, and it uses a sinusoidal function to control the total and static pressures of the counterflowing jet. The obtained results show that the long penetration mode does not exist in the whole turnaround, even in a relatively small range of the jet total and static pressures, and this is different from the phenomenon obtained under the steady condition in the open literature. At the same time, it is observed that the variation of the physical parameters, such as the Stanton number induced by the pulsed jet, has an obvious periodicity and hysteresis phenomenon.

  6. Investigation of supersonic jets shock-wave structure

    Science.gov (United States)

    Zapryagaev, V. I.; Gubanov, D. A.; Kavun, I. N.; Kiselev, N. P.; Kundasev, S. G.; Pivovarov, A. A.

    2017-10-01

    The paper presents an experimental studies overview of the free supersonic jet flow structure Ma = 1.0, Npr = 5, exhausting from a convergent profiled nozzle into a ambient space. Also was observed the jets in the presence of artificial streamwise vortices created by chevrons and microjets located on the nozzle exit. The technique of experimental investigation, schlieren-photographs and schemes of supersonic jets, and Pitot pressure distributions, are presented. A significant effect of vortex generators on the shock-wave structure of the flow is shown.

  7. Erosion of graphite surface exposed to hot supersonic hydrogen gas

    Science.gov (United States)

    Sharma, O. P.

    1972-01-01

    A theoretical model based on laminar boundary layer flow equations was developed to predict the erosion rate of a graphite (AGCarb-101) surface exposed to a hot supersonic stream of hydrogen gas. The supersonic flow in the nozzle outside the boundary layer formed over the surface of the specimen was determined by assuming one-dimensional isentropic conditions. An overall surface reaction rate expression based on experimental studies was used to describe the interaction of hydrogen with graphite. A satisfactory agreement was found between the results of the computation, and the available experimental data. Some shortcomings of the model and further possible improvements are discussed.

  8. Continuous supersonic plasma wind tunnel

    DEFF Research Database (Denmark)

    Andersen, S.A.; Jensen, Vagn Orla; Nielsen, P.

    1969-01-01

    The normal magnetic field configuration of a Q device has been modified to obtain a 'magnetic Laval nozzle'. Continuous supersonic plasma 'winds' are obtained with Mach numbers ~3. The magnetic nozzle appears well suited for the study of the interaction of supersonic plasma 'winds' with either...

  9. Gap flow in axial turbines. Effects on the flow patterns in the final turbine stage and inside the diffusor. Final report

    International Nuclear Information System (INIS)

    Krueckels, J.

    1996-01-01

    A 3D Navier-Stokes method was modified for discretisation of the gap between the tip of the rotor blade and the casing wall by an additional grid block. Flow calculations were carried out using a zoned approach in which the Navier-Stokes equations are solved only in the gap flow region inside the rotor while the Eulerian equations are solved in the other regions, thus reducing the calculation time. The results are compared with experimental data. The interdependence between turbine and diffusor is taken into account so that the pressure distribution at the rotor outlet will be modelled correctly. The distribution of static pressure at the diffusor outlet must be available as an input variable in this method [de

  10. The Edge supersonic transport

    Science.gov (United States)

    Agosta, Roxana; Bilbija, Dushan; Deutsch, Marc; Gallant, David; Rose, Don; Shreve, Gene; Smario, David; Suffredini, Brian

    1992-01-01

    As intercontinental business and tourism volumes continue their rapid expansion, the need to reduce travel times becomes increasingly acute. The Edge Supersonic Transport Aircraft is designed to meet this demand by the year 2015. With a maximum range of 5750 nm, a payload of 294 passengers and a cruising speed of M = 2.4, The Edge will cut current international flight durations in half, while maintaining competitive first class, business class, and economy class comfort levels. Moreover, this transport will render a minimal impact upon the environment, and will meet all Federal Aviation Administration Part 36, Stage III noise requirements. The cornerstone of The Edge's superior flight performance is its aerodynamically efficient, dual-configuration design incorporating variable-geometry wingtips. This arrangement combines the benefits of a high aspect ratio wing at takeoff and low cruising speeds with the high performance of an arrow-wing in supersonic cruise. And while the structural weight concerns relating to swinging wingtips are substantial, The Edge looks to ever-advancing material technologies to further increase its viability. Heeding well the lessons of the past, The Edge design holds economic feasibility as its primary focus. Therefore, in addition to its inherently superior aerodynamic performance, The Edge uses a lightweight, largely windowless configuration, relying on a synthetic vision system for outside viewing by both pilot and passengers. Additionally, a fly-by-light flight control system is incorporated to address aircraft supersonic cruise instability. The Edge will be produced at an estimated volume of 400 aircraft and will be offered to airlines in 2015 at $167 million per transport (1992 dollars).

  11. Qualidade de sementes de soja em função do horário de colheita e do sistema de trilha de fluxo radial e axial Soybean seeds quality in function of the harvest time and the radial or axial rotary flow track system

    Directory of Open Access Journals (Sweden)

    Maria C Marcondes

    2010-04-01

    Full Text Available O trabalho objetivou avaliar dois tipos de colhedoras, de fluxo radial e axial, em relação à qualidade física e fisiológica de sementes de duas cultivares de soja, BRS 184 e BRS 133, colhidas em dois horários, às 10 e 18 horas. A colhedora de fluxo radial trabalhou a 5,0 km h-1 , com o cilindro batedor a 750 rotações por minuto (rpm. A colhedora de fluxo axial trabalhou a 8,0 km h-1, e rotor com 650 rpm. Para a avaliação da qualidade física e fisiológica das sementes, foram realizados testes de germinação, envelhecimento acelerado, tetrazólio, dano mecânico (hipoclorito, umidade de campo e laboratório, sementes quebradas (bandinha e pureza. A colheita realizada às 18 horas, com grau de umidade menor que 12%, ocasionou maiores danos mecânicos nas sementes da cultivar BRS 184. A colhedora de sistema de fluxo axial resultou em sementes de melhor qualidade fisiológica para a cultivar BRS 184, e em menores percentuais de sementes quebradas e maior pureza para ambas as cultivares, comparativamente à colhedora de sistema de trilha com fluxo radial.This experiment aimed to evaluate two types of harvest combines, the radial flow and axial flow rotary, regarding the physical and physiological seed quality of BRS 184 and BRS 133 soybeans cultivars, harvested in two periods of the day, at 10 a.m. and 6 p.m. The conventional combine worked moving at 5.0 km h-1, cylinder speed at 750 rotations per minute (rpm. The axial rotary combine worked moving at 8.0 km h, rotorspeed at 650 rpm. The germination test, vigour test, tetrazolium, mechanical (hypochlorite damage, field and laboratory humidity test, broken seeds test and purity test were used to evaluate the physical and physiological quality of the seeds. The experiment performed at 6 pm, with a humidity level inferior to 12%, presented greater mechanical damages in BRS 184 seeds. The axial flow rotary harvest presented better seed physiological quality for BRS 184 cultivar, less

  12. The four step axial flow compressor of the Technical University of Dresden - development concept and results of flow measurements; Der vierstufige Axialverdichter der TU Dresden - Entwicklungskonzeption und Ergebnisse von Stroemungsmessungen

    Energy Technology Data Exchange (ETDEWEB)

    Boos, P.; Moeeckel, H.; Mueller, R.; Sauer, H.; Wolf, E. [Technische Univ. Dresden (Germany)

    1999-12-01

    In this paper the results obtained from flow-technical investigations at low velocity compressor in Dresden were presented. They were supposed to give little insight on the focus of current research works in the field of axial flow compressors. A detailed solution of the flow structure applying the conventional pneumatic measuring technology as well as the hot-wire, microphone, culite, laser and light-section measuring technology enables to understand flow parameter better and to find approaches for improving power density, efficiency, environmental friendliness and operational stability. The large-scale research plant was constructed in approximately Two and a half years. The low velocity compressor in Dresden constitutes a tool in Germany and Europe that enables the manufacturers of stationary gas turbine plants and steel jet engines to improve various parameters of their products. The MTU in Munich already pointed out this fact in its contribution to the final report on the construction phase. It noted that this plant is going to extend the possibilities of research and development in Europe in the field of aerodynamics of axial flow compressors in an excellent way. (orig.) [Deutsch] Im Vortrag wurden beispielhaft erreichte Ergebnisse stroemungstechnischer Untersuchungen am Niedergeschwindigkeitsverdichter in Dresden dargestellt. Sie sollten einen kleinen Einblick in die Moeglichkeiten der Bearbeitung von Forschungsschwerpunkten geben, die gegenwaertig fuer Axialverdichter bedeutungsvoll sind. Eine detaillierte messtechnische Aufloesung der Stroemungsstrukturen unter Anwendung der konventionellen pneumatischen Messtechnik sowie der Hitzdraht-, Mikrofon-, Kulite-, Laser- und Lichtschnittmesstechnik schafft die Voraussetzung, die Stroemungsphaenomene besser zu verstehen und Ansatzpunkte fuer Verbesserungen der Leistungsdichte, des Wirkungsgrades, der Umweltvertraeglichkeit und der Betriebsstabilitaet zu finden. In ca. 2 1/2 Jahren konnte die Grossforschungsanlage

  13. A study of air breathing rockets. 3: Supersonic mode combustors

    Science.gov (United States)

    Masuya, G.; Chinzel, N.; Kudo, K.; Murakami, A.; Komuro, T.; Ishii, S.

    An experimental study was made on supersonic mode combustors of an air breathing rocket engine. Supersonic streams of room-temperature air and hot fuel-rich rocket exhaust were coaxially mixed and burned in a concially diverging duct of 2 deg half-angle. The effect of air inlet Mach number and excess air ratio was investigated. Axial wall pressure distribution was measured to calculate one dimensional change of Mach number and stagnation temperature. Calculated results showed that supersonic combustion occurred in the duct. At the exit of the duct, gas sampling and Pitot pressure measurement was made, from which radial distributions of various properties were deduced. The distribution of mass fraction of elements from rocket exhaust showed poor mixing performance in the supersonic mode combustors compared with the previously investigated cylindrical subsonic mode combustors. Secondary combustion efficiency correlated well with the centerline mixing parameter, but not with Annushkin's non-dimensional combustor length. No major effect of air inlet Mach number or excess air ratio was seen within the range of conditions under which the experiment was conducted.

  14. On the Comparison of the Long Penetration Mode (LPM) Supersonic Counterflowing Jet to the Supersonic Screech Jet

    Science.gov (United States)

    Farr, Rebecca A.; Chang, Chau-Lyan; Jones, Jess H.; Dougherty, N. Sam

    2015-01-01

    Classic tonal screech noise created by under-expanded supersonic jets; Long Penetration Mode (LPM) supersonic phenomenon -Under-expanded counter-flowing jet in supersonic free stream -Demonstrated in several wind tunnel tests -Modeled in several computational fluid dynamics (CFD) simulations; Discussion of LPM acoustics feedback and fluid interactions -Analogous to the aero-acoustics interactions seen in screech jets; Lessons Learned: Applying certain methodologies to LPM -Developed and successfully demonstrated in the study of screech jets -Discussion of mechanically induced excitation in fluid oscillators in general; Conclusions -Large body of work done on jet screech, other aero-acoustic phenomenacan have direct application to the study and applications of LPM cold flow jets

  15. Performance of a Code Migration for the Simulation of Supersonic Ejector Flow to SMP, MIC, and GPU Using OpenMP, OpenMP+LEO, and OpenACC Directives

    Directory of Open Access Journals (Sweden)

    C. Couder-Castañeda

    2015-01-01

    Full Text Available A serial source code for simulating a supersonic ejector flow is accelerated using parallelization based on OpenMP and OpenACC directives. The purpose is to reduce the development costs and to simplify the maintenance of the application due to the complexity of the FORTRAN source code. This research follows well-proven strategies in order to obtain the best performance in both OpenMP and OpenACC. OpenMP has become the programming standard for scientific multicore software and OpenACC is one true alternative for graphics accelerators without the need of programming low level kernels. The strategies using OpenMP are oriented towards reducing the creation of parallel regions, tasks creation to handle boundary conditions, and a nested control of the loop time for the programming in offload mode specifically for the Xeon Phi. In OpenACC, the strategy focuses on maintaining the data regions among the executions of the kernels. Experiments for performance and validation are conducted here on a 12-core Xeon CPU, Xeon Phi 5110p, and Tesla C2070, obtaining the best performance from the latter. The Tesla C2070 presented an acceleration factor of 9.86X, 1.6X, and 4.5X compared against the serial version on CPU, 12-core Xeon CPU, and Xeon Phi, respectively.

  16. PAN AIR: A computer program for predicting subsonic or supersonic linear potential flows about arbitrary configurations using a higher order panel method. Volume 2: User's manual (version 3.0)

    Science.gov (United States)

    Sidwell, Kenneth W.; Baruah, Pranab K.; Bussoletti, John E.; Medan, Richard T.; Conner, R. S.; Purdon, David J.

    1990-01-01

    A comprehensive description of user problem definition for the PAN AIR (Panel Aerodynamics) system is given. PAN AIR solves the 3-D linear integral equations of subsonic and supersonic flow. Influence coefficient methods are used which employ source and doublet panels as boundary surfaces. Both analysis and design boundary conditions can be used. This User's Manual describes the information needed to use the PAN AIR system. The structure and organization of PAN AIR are described, including the job control and module execution control languages for execution of the program system. The engineering input data are described, including the mathematical and physical modeling requirements. Version 3.0 strictly applies only to PAN AIR version 3.0. The major revisions include: (1) inputs and guidelines for the new FDP module (which calculates streamlines and offbody points); (2) nine new class 1 and class 2 boundary conditions to cover commonly used modeling practices, in particular the vorticity matching Kutta condition; (3) use of the CRAY solid state Storage Device (SSD); and (4) incorporation of errata and typo's together with additional explanation and guidelines.

  17. Sub-scale Direct Connect Supersonic Combustion Facility (Research Cell 18)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: RC18 is a continuous-flow, direct-connect, supersonic-combustion research facility that is capable of simulating flight conditions from Mach 3.0 to Mach...

  18. A systematic study of supersonic jet noise.

    Science.gov (United States)

    Louis, J. F.; Letty, R. P.; Patel, J. R.

    1972-01-01

    The acoustic fields for a rectangular and for an axisymmetric nozzle configuration are studied. Both nozzles are designed for identical flow parameters. It is tried to identify the dominant noise mechanisms. The other objective of the study is to establish scaling laws of supersonic jet noise. A shock tunnel is used in the investigations. Measured sound directivity, propagation direction of Mach waves obtained by shadowgraphs, and the slight dependence of the acoustic efficiency on the level of expansion indicate that Mach waves contribute significantly to the noise produced by a rectangular jet.

  19. Achievement report for fiscal 1989. Research and development of ceramic gas turbine (Regenerative single-shaft axial-flow turbine for cogeneration); 1989 nendo ceramic gas turbine no kenkyu kaihatsu seika hokokusho. Cogeneration yo saisei ichijikushiki jikuryu turbine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-05-01

    With an objective to research and develop a 300-kW class regenerative single-shaft axial-flow turbine having inlet temperature of 1,350 degrees C and thermal efficiency of 42% or higher, activities were performed in the following three fields: 1) heat resistant ceramic members, 2) elementary technologies, and 3) studies on design, prototype fabrication, and operation. In Item 1, a mass production technology was discussed on stator blades and heat transfer pipes for a heat exchanger as the component manufacturing technology, and injection molding conditions were studied and mechanical strength measurement was performed on rotor blades of a separate type axial-flow turbine. In addition, a molding condition producing no cracks was discovered in an integrated type axial-flow turbine whose embedded section has a tapered shape, and the mass production technology was discussed. With regard to the bonding technology, preliminary discussions were given on bonding agents under a prerequisite that a bonding agent shall be used. In Item 2, detailed discussions were launched on the turbine, combustor, heat exchanger, and compressor, including shape decision on the turbine, for example, by using aerodynamic analysis, In Item 3, the basic design was performed following the conceptual design, and a metallic turbine was designed. (NEDO)

  20. Dual-Pump CARS Development and Application to Supersonic Combustion

    Science.gov (United States)

    Magnotti, Gaetano

    Successful design of hypersonic air-breathing engines requires new computational fluid dynamics (CFD) models for turbulence and turbulence-chemistry interaction in supersonic combustion. Unfortunately, not enough data are available to the modelers to develop and validate their codes, due to difficulties in taking measurements in such a harsh environment. Dual-pump coherent anti-Stokes Raman spectroscopy (CARS) is a non-intrusive, non-linear, laser-based technique that provides temporally and spatially resolved measurements of temperature and absolute mole fractions of N2, O2 and H2 in H2-air flames. A dual-pump CARS instrument has been developed to obtain measurements in supersonic combustion and generate databases for the CFD community. Issues that compromised previous attempts, such as beam steering and high irradiance perturbation effects, have been alleviated or avoided. Improvements in instrument precision and accuracy have been achieved. An axis-symmetric supersonic combusting coaxial jet facility has been developed to provide a simple, yet suitable flow to CFD modelers. The facility provides a central jet of hot "vitiated air" simulating the hot air entering the engine of a hypersonic vehicle flying at Mach numbers between 5 and 7. Three different silicon carbide nozzles, with exit Mach number 1, 1.6 and 2, are used to provide flows with the effects of varying compressibility. H2 co-flow is available in order to generate a supersonic combusting free jet. Dual-pump CARS measurements have been obtained for varying values of flight and exit Mach numbers at several locations. Approximately one million Dual-pump CARS single shots have been collected in the supersonic jet for varying values of flight and exit Mach numbers at several locations. Data have been acquired with a H2 co-flow (combustion case) or a N 2 co-flow (mixing case). Results are presented and the effects of the compressibility and of the heat release are discussed.

  1. New methods for analyzing transport phenomena in supersonic ejectors

    International Nuclear Information System (INIS)

    Lamberts, Olivier; Chatelain, Philippe; Bartosiewicz, Yann

    2017-01-01

    Highlights: • Simulation of a supersonic ejector with the open source software for CFD OpenFOAM. • Validation of the numerical tool based on flow structures obtained by schlieren. • Application of the momentum and energy tube analysis tools to a supersonic ejector. • Extension of this framework to exergy to construct exergy transport tubes. • Quantification of local transfers and losses of exergy within the ejector. - Abstract: This work aims at providing novel insights into the quantification and the location of the transfers and the irreversibilities within supersonic ejectors, and their connection with the entrainment. In this study, we propose two different and complementary approaches. First of all, recent analysis tools based on momentum and energy tubes (Meyers and Meneveau (2013)) are extended to the present compressible flow context and applied to the mean-flow structure of turbulent flow within the ejector. Furthermore, the transport equation for the mean-flow total exergy is derived and exergy transport tubes are proposed as a tool for the investigation of transport phenomena within supersonic ejectors. In addition to this topological approach, an analysis based on classical stream tubes is performed in order to quantitatively investigate transfers between the primary and the secondary streams all along the ejector. Finally, the present work identifies the location of exergy losses and their origins. Throughout this analysis, new local and cumulative parameters related to transfers and irreversibilities are introduced. The proposed methodology sheds light on the complex phenomena at play and may serve as a basis for the analysis of transport phenomena within supersonic ejectors. For the ejector under consideration, although global transfers are more important in on-design conditions, it is shown that the net gain in exergy of the secondary stream is maximum for a value of the back pressure that is close to the critical back pressure, as

  2. A self-similar solution of a curved shock wave and its time-dependent force variation for a starting flat plate airfoil in supersonic flow

    Directory of Open Access Journals (Sweden)

    Zijun CHEN

    2018-02-01

    Full Text Available The problem of aeroelasticity and maneuvering of command surface and gust wing interaction involves a starting flow period which can be seen as the flow of an airfoil attaining suddenly an angle of attack. In the linear or nonlinear case, compressive Mach or shock waves are generated on the windward side and expansive Mach or rarefaction waves are generated on the leeward side. On each side, these waves are composed of an oblique steady state wave, a vertically-moving one-dimensional unsteady wave, and a secondary wave resulting from the interaction between the steady and unsteady ones. An analytical solution in the secondary wave has been obtained by Heaslet and Lomax in the linear case, and this linear solution has been borrowed to give an approximate solution by Bai and Wu for the nonlinear case. The structure of the secondary shock wave and the appearance of various force stages are two issues not yet considered in previous studies and has been studied in the present paper. A self-similar solution is obtained for the secondary shock wave, and the reason to have an initial force plateau as observed numerically is identified. Moreover, six theoretical characteristic time scales for pressure load variation are determined which explain the slope changes of the time-dependent force curve. Keywords: Force, Self-similar solution, Shock-shock interaction, Shock waves, Unsteady flow

  3. Control of Flow Structure and Ignition of Hydrocarbon Fuel in Cavity and Behind Wallstep of Supersonic Duct by Filamentary DC Discharge

    Science.gov (United States)

    2011-01-01

    Lindstrom , K.R. Jackson, S. Williams, R. Givens, W.F. Bailey, C.J. Tam, W.F. Terry, AIAA Journal 47, 2368 (2009). 13. S.T. Sanders, J.A. Baldwin, T.P...A. Kuthi, C. Jiang, P. Ronney, and Martin A. Gundersen, ―Transient Plasma Ignition of Quiescent and Flowing Air/Fuel Mixtures‖ IEEE Transactions on...applications at elevated temperature. JQSRT 103 (2007) 565–577. 17. C.D. Lindstrom , K.R. Jackson, S. Williams, R. Givens, W.F. Bailey, C.J. Tam, W.F

  4. Store Separations From a Supersonic Cone

    National Research Council Canada - National Science Library

    Simko, Richard J

    2006-01-01

    ... analyses of supersonic store separations. Also included in this research is a study of supersonic base pressure profiles, near-wake velocity profiles, wind tunnel shock interactions and force/moment studies on a conical store and parent vehicle...

  5. Gas chromatography-mass spectrometry with supersonic molecular beams.

    Science.gov (United States)

    Amirav, Aviv; Gordin, Alexander; Poliak, Marina; Fialkov, Alexander B

    2008-02-01

    Gas chromatography-mass spectrometry (GC-MS) with supersonic molecular beams (SMBs) (also named Supersonic GC-MS) is based on GC and MS interface with SMBs and on the electron ionization (EI) of vibrationally cold analytes in the SMBs (cold EI) in a fly-through ion source. This ion source is inherently inert and further characterized by fast response and vacuum background filtration capability. The same ion source offers three modes of ionization including cold EI, classical EI and cluster chemical ionization (CI). Cold EI, as a main mode, provides enhanced molecular ions combined with an effective library sample identification, which is supplemented and complemented by a powerful isotope abundance analysis method and software. The range of low-volatility and thermally labile compounds amenable for analysis is significantly increased owing to the use of the contact-free, fly-through ion source and the ability to lower sample elution temperatures through the use of high column carrier gas flow rates. Effective, fast GC-MS is enabled particularly owing to the possible use of high column flow rates and improved system selectivity in view of the enhancement of the molecular ion. This fast GC-MS with SMB can be further improved via the added selectivity of MS-MS, which by itself benefits from the enhancement of the molecular ion, the most suitable parent ion for MS-MS. Supersonic GC-MS is characterized by low limits of detection (LOD), and its sensitivity is superior to that of standard GC-MS, particularly for samples that are hard for analysis. The GC separation of the Supersonic GC-MS can be improved with pulsed flow modulation (PFM) GC x GC-MS. Electron ionization LC-MS with SMB can also be combined with the Supersonic GC-MS, with fast and easy switching between these two modes of operation. (c) 2008 John Wiley & Sons, Ltd.

  6. Supersonic propulsion technology. [variable cycle engines

    Science.gov (United States)

    Powers, A. G.; Coltrin, R. E.; Stitt, L. E.; Weber, R. J.; Whitlow, J. B., Jr.

    1979-01-01

    Propulsion concepts for commercial supersonic transports are discussed. It is concluded that variable cycle engines, together with advanced supersonic inlets and low noise coannular nozzles, provide good operating performance for both supersonic and subsonic flight. In addition, they are reasonably quiet during takeoff and landing and have acceptable exhaust emissions.

  7. Characteristics of unsteady flow field and flow-induced noise for an axial cooling fan used in a rack mount server computer Characteristics of unsteady flow field and flow-induced noise for an axial cooling fan used in a rack mount server computer

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Tae Gyun; Jeon, Wan Ho [Technical Research Lab., CEDIC Co., Seoul (Korea, Republic of); Minorikawa, Gaku [Dept. of f Mechanical Engineering, Faculty of Science and Engineering, Hosei University, Tokyo (Japan)

    2016-10-15

    The recent development of small and lightweight rack mount servers and computers has resulted in the decrease of the size of cooling fans. However, internal fans still need to achieve a high performance to release the heat generated from interior parts, and they should emit low noise. On the contrary, measurement data, such as flow properties and flow visualizations, cannot be obtained easily when cooling fans are small. Thus, a numerical analysis approach is necessary for the performance evaluation and noise reduction of small cooling fans. In this study, the noise of a small cooling fan used for computers or servers was measured and then compared with the aeroacoustic noise result based on a numerical analysis. Three-dimensional Navier-Stokes equations were solved to predict the unsteady flow field and surface pressure fluctuation according to the blades and casing surface used. The simplified Ffowcs Williams and Hawkings equation was used to predict aeroacoustic noise by assuming that a dipole is the major cause of fan noise. Results of the aeroacoustic noise analysis agreed well with that of the experiment, and a tonal noise whose frequency was lower than the first blade passing frequency could be identified in the noise spectrum. This phenomenon is caused by the shape of the bell mouth. A coherence analysis was performed to examine the correlation between the shape of the cooling fan and the noise.

  8. Characteristics of unsteady flow field and flow-induced noise for an axial cooling fan used in a rack mount server computer Characteristics of unsteady flow field and flow-induced noise for an axial cooling fan used in a rack mount server computer

    International Nuclear Information System (INIS)

    Lim, Tae Gyun; Jeon, Wan Ho; Minorikawa, Gaku

    2016-01-01

    The recent development of small and lightweight rack mount servers and computers has resulted in the decrease of the size of cooling fans. However, internal fans still need to achieve a high performance to release the heat generated from interior parts, and they should emit low noise. On the contrary, measurement data, such as flow properties and flow visualizations, cannot be obtained easily when cooling fans are small. Thus, a numerical analysis approach is necessary for the performance evaluation and noise reduction of small cooling fans. In this study, the noise of a small cooling fan used for computers or servers was measured and then compared with the aeroacoustic noise result based on a numerical analysis. Three-dimensional Navier-Stokes equations were solved to predict the unsteady flow field and surface pressure fluctuation according to the blades and casing surface used. The simplified Ffowcs Williams and Hawkings equation was used to predict aeroacoustic noise by assuming that a dipole is the major cause of fan noise. Results of the aeroacoustic noise analysis agreed well with that of the experiment, and a tonal noise whose frequency was lower than the first blade passing frequency could be identified in the noise spectrum. This phenomenon is caused by the shape of the bell mouth. A coherence analysis was performed to examine the correlation between the shape of the cooling fan and the noise

  9. An experimental study of the supersonic, dual, coaxial jets impinging on an inclined flat plate

    International Nuclear Information System (INIS)

    Kim, Jung Bae; Lee, Jun Hee; Woo, Sun Hoon; Kim, Heuy Dong

    2002-01-01

    The impinging supersonic jets have been applied for rocket launching system, thrust control, gas turbine blade cooling, etc. Recently the supersonic, dual, coaxial jets are being extensively used in many diverse fields of industrial processes since they lead to more improved performance, compared with the conventional supersonic jets impinging on an object. In the present study, experimentation is carried out to investigate the supersonic, dual, coaxial jets impinging on an inclined flat plate. A convergent-divergent nozzle with a design Mach number of 2.0 and annular sonic nozzle are used to make the dual, coaxial jet flows. The angle of the impinging flat plate is varied from 30 .deg. to 60 .deg. and the distance between the dual coaxial nozzle and flat plate is also varied. Detailed pressures on the impinging plate are measured to analyze the flow fields, which are also visualized using Schlieren optical method

  10. Development of Technologies on Innovative-Simplified Nuclear Power Plant Using High-Efficiency Steam Injectors (12) Evaluations of Spatial Distributions of Flow and Heat Transfer in Steam Injector

    International Nuclear Information System (INIS)

    Yutaka Abe; Yujiro Kawamoto; Chikako Iwaki; Tadashi Narabayashi; Michitsugu Mori; Shuichi Ohmori

    2006-01-01

    Next-generation nuclear reactor systems have been under development aiming at simplified system and improvement of safety and credibility. One of the innovative technologies is the supersonic steam injector, which has been investigated as one of the most important component of the next-generation nuclear reactor. The steam injector has functions of a passive pump without large motor or turbo-machinery and a high efficiency heat exchanger. The performances of the supersonic steam injector as a pump and a heat exchanger are dependent on direct contact condensation phenomena between a supersonic steam and a sub-cooled water jet. In previous studies of the steam injector, there are studies about the operating characteristics of steam injector and about the direct contact condensation between static water pool and steam in atmosphere. However, there is a little study about the turbulent heat transfer and flow behavior under the great shear stress. In order to examine the heat transfer and flow behavior in supersonic steam injector, it is necessary to measure the spatial temperature distribution and velocity in detail. The present study, visible transparent supersonic steam injector is used to obtain the axial pressure distributions in the supersonic steam injector, as well as high speed visual observation of water jet and steam interface. The experiments are conducted with and without non-condensable gas. The experimental results of the interfacial flow behavior between steam and water jet are obtained. It is experimentally clarified that an entrainment exists on the water jet surface. It is also clarified that discharge pressure is depended on the steam supply pressure, the inlet water flow rate, the throat diameter and non-condensable flow rate. Finally a heat flux is estimated about 19 MW/m 2 without non-condensable gas condition in steam. (authors)

  11. Micro Ramps in Supersonic Turbulent Boundary Layers : An experimental and numerical study

    NARCIS (Netherlands)

    Sun, Z.

    2014-01-01

    The micro vortex generator (MVG) is used extensively in low speed aerodynamic problems and is now extended into the supersonic flow regime to solve undesired flow features that are associated with shock wave boundary layer interactions (SWBLI) such as flow separation and associated unsteadiness of

  12. Premixed Supersonic Combustion (Rev)

    Science.gov (United States)

    2015-02-20

    calculated using the 1-D separated flow model for the isolator described in Heiser and Pratt (Ref. 19). Several curves are shown. The green curve corresponds...Report 88-3059, 1988. [18] Krauss, R.H. and McDaniel, J.C., “A Clean Air Continuous Flow Propulsion Facility,” AIAA Report 92-3912, 1992. [19] Heiser

  13. Velocity field measurements on high-frequency, supersonic microactuators

    Science.gov (United States)

    Kreth, Phillip A.; Ali, Mohd Y.; Fernandez, Erik J.; Alvi, Farrukh S.

    2016-05-01

    The resonance-enhanced microjet actuator which was developed at the Advanced Aero-Propulsion Laboratory at Florida State University is a fluidic-based device that produces pulsed, supersonic microjets by utilizing a number of microscale, flow-acoustic resonance phenomena. The microactuator used in this study consists of an underexpanded source jet that flows into a cylindrical cavity with a single, 1-mm-diameter exhaust orifice through which an unsteady, supersonic jet issues at a resonant frequency of 7 kHz. The flowfields of a 1-mm underexpanded free jet and the microactuator are studied in detail using high-magnification, phase-locked flow visualizations (microschlieren) and two-component particle image velocimetry. These are the first direct measurements of the velocity fields produced by such actuators. Comparisons are made between the flow visualizations and the velocity field measurements. The results clearly show that the microactuator produces pulsed, supersonic jets with velocities exceeding 400 m/s for roughly 60 % of their cycles. With high unsteady momentum output, this type of microactuator has potential in a range of ow control applications.

  14. Coherent structures in a supersonic complex nozzle

    Science.gov (United States)

    Magstadt, Andrew; Berry, Matthew; Glauser, Mark

    2016-11-01

    The jet flow from a complex supersonic nozzle is studied through experimental measurements. The nozzle's geometry is motivated by future engine designs for high-performance civilian and military aircraft. This rectangular jet has a single plane of symmetry, an additional shear layer (referred to as a wall jet), and an aft deck representative of airframe integration. The core flow operates at a Mach number of Mj , c = 1 . 6 , and the wall jet is choked (Mj , w = 1 . 0). This high Reynolds number jet flow is comprised of intense turbulence levels, an intricate shock structure, shear and boundary layers, and powerful corner vortices. In the present study, stereo PIV measurements are simultaneously sampled with high-speed pressure measurements, which are embedded in the aft deck, and far-field acoustics in the anechoic chamber at Syracuse University. Time-resolved schlieren measurements have indicated the existence of strong flow events at high frequencies, at a Strouhal number of St = 3 . 4 . These appear to result from von Kàrmàn vortex shedding within the nozzle and pervade the entire flow and acoustic domain. Proper orthogonal decomposition is applied on the current data to identify coherent structures in the jet and study the influence of this vortex street. AFOSR Turbulence and Transition Program (Grant No. FA9550-15-1-0435) with program managers Dr. I. Leyva and Dr. R. Ponnappan.

  15. Flow fields in the supersonic through-flow fan. Comparison of the solutions of the linear potential theory and the numerical solution of the Euler equations; Choonsoku tsukaryu fan nai no nagareba. Senkei potential rironkai to Euler hoteishiki no suchikai no hikaku

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, N; Nanba, M; Tashiro, K [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1996-03-27

    Comparison study between solutions of a linear potential theory and numerical solution of Euler equations was made for flow in a supersonic through-flow fan. In numerical fluid dynamic technique, Euler equations are solved by finite difference method under the assumption of air and perfect gas fluid, and neglected viscosity and thermal conductivity of fluid. As a result, in a linear potential theory, expansion wave was regarded as equipotential discontinuous surface, while in Euler numerical solution, it was regarded as finite pressure gradient where a wave front fans out toward downstream. The latter reflection point of shock wave on a wing existed upstream as compared with the former reflection point. The shock wave angle was dominated by Euler equations, and different from the Mach line of a linear potential theory in both angle and discontinuous quantities in front and behind. Both calculated solutions well agreed with each other until the first reflection point of the Mach line, however, thereafter the difference between them increased toward downstream. 5 refs., 5 figs., 1 tab.

  16. Linear stability analysis of supersonic axisymmetric jets

    Directory of Open Access Journals (Sweden)

    Zhenhua Wan

    2014-01-01

    Full Text Available Stabilities of supersonic jets are examined with different velocities, momentum thicknesses, and core temperatures. Amplification rates of instability waves at inlet are evaluated by linear stability theory (LST. It is found that increased velocity and core temperature would increase amplification rates substantially and such influence varies for different azimuthal wavenumbers. The most unstable modes in thin momentum thickness cases usually have higher frequencies and azimuthal wavenumbers. Mode switching is observed for low azimuthal wavenumbers, but it appears merely in high velocity cases. In addition, the results provided by linear parabolized stability equations show that the mean-flow divergence affects the spatial evolution of instability waves greatly. The most amplified instability waves globally are sometimes found to be different from that given by LST.

  17. Gas turbine engine with supersonic compressor

    Science.gov (United States)

    Roberts, II, William Byron; Lawlor, Shawn P.

    2015-10-20

    A gas turbine engine having a compressor section using blades on a rotor to deliver a gas at supersonic conditions to a stator. The stator includes one or more of aerodynamic ducts that have converging and diverging portions for deceleration of the gas to subsonic conditions and to deliver a high pressure gas to combustors. The aerodynamic ducts include structures for changing the effective contraction ratio to enable starting even when designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of two to one (2:1) or more, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.

  18. Lagrangian solution of supersonic real gas flows

    International Nuclear Information System (INIS)

    Loh, Chingyuen; Liou, Mengsing

    1993-01-01

    This paper details the procedure of the real gas Riemann solution in the Lagrangian approach originally proposed by Loh and Hui for perfect gases. The extension to real gases is nontrivial and requires substantial development of an exact real-gas Riemann solver for the Lagrangian form of conservation laws. The first-order Gudonov scheme is enhanced for accuracy by adding limited anti-diffusive terms according to Sweby. Extensive calculations were made to test the accuracy and robustness of the present real gas Lagrangian approach, including complex wave interactions of different types. The accuracy for capturing 2D oblique waves and slip line is clearly demonstrated. In addition, we also show the real gas effect in a generic engine nozzle

  19. Lagrangian solution of supersonic real gas flows

    Science.gov (United States)

    Loh, Ching-Yuen; Liou, Meng-Sing

    1993-01-01

    The present extention of a Lagrangian approach of the Riemann solution procedure, which was originally proposed for perfect gases, to real gases, is nontrivial and requires the development of an exact real-gas Riemann solver for the Lagrangian form of the conservation laws. Calculations including complex wave interactions of various types were conducted to test the accuracy and robustness of the approach. Attention is given to the case of 2D oblique waves' capture, where a slip line is clearly in evidence; the real gas effect is demonstrated in the case of a generic engine nozzle.

  20. Fully unsteady subsonic and supersonic potential aerodynamics for complex aircraft configurations for flutter applications

    Science.gov (United States)

    Tseng, K.; Morino, L.

    1975-01-01

    A general theory for study, oscillatory or fully unsteady potential compressible aerodynamics around complex configurations is presented. Using the finite-element method to discretize the space problem, one obtains a set of differential-delay equations in time relating the potential to its normal derivative which is expressed in terms of the generalized coordinates of the structure. For oscillatory flow, the motion consists of sinusoidal oscillations around a steady, subsonic or supersonic flow. For fully unsteady flow, the motion is assumed to consist of constant subsonic or supersonic speed for time t or = 0 and of small perturbations around the steady state for time t 0.

  1. Calculations of an unsteady flow through a hydraulic axial turbine with reference to interaction between stator and rotor; Instationaere Berechnung einer hydraulischen Axialturbine unter Beruecksichtigung der Interaktion zwischen Leit- und Laufrad

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, C.

    2001-07-01

    The objective of this study is the development of an algorithm enabling coupling of nonmatching computational grids to carry out calculations of an unsteady flow through a hydraulic axial turbine with reference to interaction between stator and rotor. The algorithm should offer the possibility to operate the computational grids in a fixed position relative to each other as well as in relative movement. Furthermore, the calculation should be feasible with separate grids in parallel and different frames of reference. Employing selected examples this method is investigated in detail the results are compared with performed measurements. The unsteady numerical examination of the coupling process is carried out with different examples; especially the interaction effects between stator, rotor and draft tube of a hydraulic axial turbine are observed. In addition, the effect of tip clearance of the mean flow is described. Extensive model tests using the axial turbine have been performed at the Institute for Fluid Mechanics and Hydraulic Machinery, IHS. Flow time dependent velocities have been measured with a Laser Doppler Velocimeter placed at midspan of the blading. Periodical changes in static pressure have been recorded at different locations near the wall of the turbine casing. These measurements serve as reference for the comparison with results derived from the unsteady calculations. The confrontation of the time-dependent fluctuations of the flow quantities and the calculation of the efficiency of the turbine resulting from the simulation results allow a comparison in absolute terms. (orig.) [German] Fuer die instationaere Berechnung einer hydraulischen Axialturbine unter Beruecksichtigung der Interaktion zwischen Leit- und Laufrad wird ein Algorithmus zum Koppeln von nichtpassenden Berechnungsnetzen entwickelt. Diese Berechnungsnetze sollen zueinander ortsfest sein oder auch eine Relativbewegung zueinander haben koennen. Sie sollen ausserdem und in unterschiedlichen

  2. An investigation of the heat transfer and static pressure on the over-tip casing wall of an axial turbine operating at engine representative flow conditions. (II). Time-resolved results

    International Nuclear Information System (INIS)

    Thorpe, S.J.; Yoshino, S.; Ainsworth, R.W.; Harvey, N.W.

    2004-01-01

    This article reports the measurements of time-resolved heat transfer rate and time-resolved static pressure that have been made on the over-tip casing of a transonic axial-flow turbine operating at flow conditions that are representative of those found in modern gas turbine engines. This data is discussed and analysed in the context of explaining the physical mechanisms that influence the casing heat flux. The physical size of the measurement domain was one nozzle guide vane-pitch and from -20% to +80% rotor axial chord. Additionally, measurements of the time-resolved adiabatic wall temperature are presented. The time-mean data from the same set of experiments is presented and discussed in Part I of this article. The nozzle guide vane exit flow conditions in these experiments were a Mach number of 0.93 and a Reynolds number of 2.7 x 10 6 based on nozzle guide vane mid-height axial chord. The data reveal large temporal variations in heat transfer characteristics to the casing wall that are associated with blade-tip passing events and in particular the blade over-tip leakage flow. The highest instantaneous heat flux to the casing wall occurs within the blade-tip gap, and this has been found to be caused by a combination of increasing flow temperature and heat transfer coefficient. The time-resolved static pressure measurements have enabled a detailed understanding of the tip-leakage aerodynamics to be established, and the physical mechanisms influencing the casing heat load have been determined. In particular, this has focused on the role of the unsteady blade lift distribution that is produced by upstream vane effects. This has been seen to modulate the tip-leakage flow and cause subsequent variations in casing heat flux. The novel experimental techniques employed in these experiments have allowed the measurement of the time-resolved adiabatic wall temperature on the casing wall. These data clearly show the falling flow temperatures as work is extracted from the gas

  3. Near wake Reynolds-averaged Navier–Stokes predictions of the wake behind the MEXICO rotor in axial and yawed flow conditions

    DEFF Research Database (Denmark)

    Sørensen, Niels N.; Bechmann, Andreas; Réthoré, Pierre-Elouan

    2014-01-01

    In the present paper, Reynolds-averaged Navier–Stokes predictions of the flow field around the MEXICO rotor in yawed conditions are compared with measurements. The paper illustrates the high degree of qualitative and quantitative agreement that can be obtained for this highly unsteady flow...

  4. Supersonic Combustion of Hydrogen Jets System in Hypersonic Stream

    International Nuclear Information System (INIS)

    Zhapbasbaev, U.K.; Makashev, E.P.

    2003-01-01

    The data of calculated theoretical investigations of diffusive combustion of plane supersonic hydrogen jets in hypersonic stream received with Navier-Stokes parabola equations closed by one-para metrical (k-l) model of turbulence and multiply staged mechanism of hydrogen oxidation are given. Combustion mechanisms depending on the operating parameters are discussing. The influences of air stream composition and ways off fuel feed to the length of ignition delay and level quantity of hydrogen bum-out have been defined. The calculated theoretical results of investigations permit to make the next conclusions: 1. The diffusive combustion of the system of plane supersonic hydrogen jets in hypersonic flow happens in the cellular structures with alternation zones of intensive running of chemical reactions with their inhibition zones. 2. Gas dynamic and heat Mach waves cause a large - scale viscous formation intensifying mixing of fuel with oxidizer. 3. The system ignition of plane supersonic hydrogen jets in hypersonic airy co-flow happens with the formation of normal flame front of hydrogen airy mixture with transition to the diffusive combustion. 4. The presence of active particles in the flow composition initiates the ignition of hydrogen - airy mixture, provides the intensive running of chemical reactions and shortens the length of ignition delay. 5. The supersonic combustion of hydrogel-airy mixture is characterized by two zones: the intensive chemical reactions with an active energy heat release is occurring in the first zone and in the second - a slow hydrogen combustion limited by the mixing of fuel with oxidizer. (author)

  5. BWR AXIAL PROFILE

    International Nuclear Information System (INIS)

    Huffer, J.

    2004-01-01

    The purpose of this calculation is to develop axial profiles for estimating the axial variation in burnup of a boiling water reactor (BWR) assembly spent nuclear fuel (SNF) given the average burnup of an assembly. A discharged fuel assembly typically exhibits higher burnup in the center and lower burnup at the ends of the assembly. Criticality safety analyses taking credit for SNF burnup must account for axially varying burnup relative to calculations based on uniformly distributed assembly average burnup due to the under-burned tips. Thus, accounting for axially varying burnup in criticality analyses is also referred to as accounting for the ''end effect'' reactivity. The magnitude of the reactivity change due to ''end effect'' is dependent on the initial assembly enrichment, the assembly average burnup, and the particular axial profile characterizing the burnup distribution. The set of bounding axial profiles should incorporate multiple BWR core designs and provide statistical confidence (95 percent confidence that 95 percent of the population is bound by the profile) that end nodes are conservatively represented. The profiles should also conserve the overall burnup of the fuel assembly. More background on BWR axial profiles is provided in Attachment I

  6. Jet arrays in supersonic crossflow — An experimental study

    Science.gov (United States)

    Ali, Mohd Yousuf; Alvi, Farrukh

    2015-12-01

    Jet injection into a supersonic crossflow is a classical fluid dynamics problem with many engineering applications. Several experimental and numerical studies have been taken up to analyze the interaction of a single jet with the incoming crossflow. However, there is a dearth of the literature on the interaction of multiple jets with one another and with the crossflow. Jets in a supersonic crossflow are known to produce a three-dimensional bow-shock structure due to the blockage of the flow. Multiple jets in a streamwise linear array interact with both one another and the incoming supersonic flow. In this paper, a parametric study is carried out to analyze the effect of microjet (sub-mm diameter) injection in a Mach 1.5 supersonic crossflow using flow visualization and velocity field measurements. The variation of the microjet orifice diameter and spacing within an array is used to study the three-dimensional nature of the flow field around the jets. The strength of the microjet-generated shock, scaling of the shock wave angle with the momentum coefficient, averaged streamwise, spanwise, and cross-stream velocity fields, and microjet array trajectories are detailed in the paper. It was found that shock angles of the microjet-generated shocks scale with the momentum coefficient for the three actuator configurations tested. As the microjets issue in the crossflow, a pair of longitudinal counter-rotating vortices (CVPs) are formed. The vortex pairs remain coherent for arrays with larger spanwise spacing between the micro-orifices and exhibit significant three-dimensionality similar to that of a single jet in crossflow. As the spacing between the jets is reduced, the CVPs merge resulting in a more two-dimensional flow field. The bow shock resulting from microjet injection also becomes nearly two-dimensional as the spacing between the micro-orifices is reduced. Trajectory estimations yield that microjets in an array have similar penetration as single jets. A notional

  7. Computerised Axial Tomography (CAT)

    Science.gov (United States)

    1990-06-01

    Ministry of’ Defence, Defence Research Information Centre, UK. Computerised Axial Tomography ( CAT ) Report Secufty C"uMiauion tide Onadtiicadon (U. R, Cor S...DRIC T 8485 COMPUTERISED AXIAL TOMOGRAPHY ( CAT ) F.P. GENTILE, F. SABETTA, V. TRO1* ISS R 78/4.Rome, 1.5 Mlarch 1978 (from Italian) B Distribution(f...dello Radiazioni ISSN 0390--6477 F.P. GENTILE, F. SABETTA. V. TROI Computerised Axial Tomography ( CAT ) March 15, 1978). This paper is a review of

  8. Supersonic Retropropulsion Flight Test Concepts

    Science.gov (United States)

    Post, Ethan A.; Dupzyk, Ian C.; Korzun, Ashley M.; Dyakonov, Artem A.; Tanimoto, Rebekah L.; Edquist, Karl T.

    2011-01-01

    NASA's Exploration Technology Development and Demonstration Program has proposed plans for a series of three sub-scale flight tests at Earth for supersonic retropropulsion, a candidate decelerator technology for future, high-mass Mars missions. The first flight test in this series is intended to be a proof-of-concept test, demonstrating successful initiation and operation of supersonic retropropulsion at conditions that replicate the relevant physics of the aerodynamic-propulsive interactions expected in flight. Five sub-scale flight test article concepts, each designed for launch on sounding rockets, have been developed in consideration of this proof-of-concept flight test. Commercial, off-the-shelf components are utilized as much as possible in each concept. The design merits of the concepts are compared along with their predicted performance for a baseline trajectory. The results of a packaging study and performance-based trade studies indicate that a sounding rocket is a viable launch platform for this proof-of-concept test of supersonic retropropulsion.

  9. Molecular description of steady supersonic free jets

    Science.gov (United States)

    Montero, S.

    2017-09-01

    A detailed analysis of the non-local thermal equilibrium (n-LTE) problem in the paraxial zone of silence of supersonic free jets is reported. The study is based on a hybrid approach that combines Navier-Stokes equations with a kinetic equation derived from the generalized Boltzmann (Waldmann-Snider) equation. The resulting system is solved for those flow quantities not easily amenable to experimental measure (translational temperature, flow velocity, and entropy) in terms of the quantities that can be measured accurately (distance, number density, population of rotational states, and their gradients). The reported solutions are essentially exact and are formulated in terms of macroscopic quantities, as well as in terms of elementary collision processes. Emphasis is made on the influence of dissipative effects onto the flow (viscous and diabatic) and of the breakdown of thermal equilibrium onto the evolution of entropy and translational temperature. The influence of inelastic collisions onto these effects is analysed in depth. The reported equations are aimed at optimizing the experimental knowledge of the n-LTE problem and its quantitative interpretation in terms of state-to-state rates for inelastic collisions.

  10. Effect of Microjet Injection on Supersonic Jet Noise

    Science.gov (United States)

    Zaman, K. B. M. Q.; Podboy, G. G.

    2010-01-01

    The effect of microjet (jet) injection on the noise from supersonic jets is investigated. Three convergent-divergent (C-D) nozzles and one convergent nozzle, all having the same exit diameters, are used in the study. The jets are injected perpendicular to the primary jet close to the nozzle lip from six equally-spaced ports having a jet-to-primary-jet diameter ratio of 0.0054. Effects in the over-expanded, fully expanded as well as underexpanded flow regimes are explored. Relative to the effect on subsonic jets, larger reductions in the overall sound pressure level (OASPL) are achieved in most supersonic conditions. The largest reductions are typically associated with suppression of screech and transonic tones. For a shock-free, fully expanded case, the OASPL reductions achieved are comparable to that in the subsonic case; the same correlation, found for subsonic jet noise reduction at shallow observation angle, applies.

  11. Ethylene tetrafluoroethylene nanofibers prepared by CO2 laser supersonic drawing

    Directory of Open Access Journals (Sweden)

    A. Suzuki

    2013-06-01

    Full Text Available Ethylene tetrafluoroethylene (ETFE nanofibers were prepared by carbon dioxide (CO2 laser irradiation of asspun ETFE fibers with four different melt flow rates (MFRs in a supersonic jet that was generated by blowing air into a vacuum chamber through the fiber injection orifice. The drawability and superstructure of fibers produced by CO2 laser supersonic drawing depend on the laser power, the chamber pressure, the fiber injection speed, and the MFR. Nanofibers obtained using a laser power of 20 W, a chamber pressure of 20 kPa, and an MFR of 308 g•10 min–1 had an average diameter of 0.303 µm and a degree of crystallinity of 54%.

  12. Do supersonic aircraft avoid contrails?

    Directory of Open Access Journals (Sweden)

    A. Stenke

    2008-02-01

    Full Text Available The impact of a potential future fleet of supersonic aircraft on contrail coverage and contrail radiative forcing is investigated by means of simulations with the general circulation model ECHAM4.L39(DLR including a contrail parameterization. The model simulations consider air traffic inventories of a subsonic fleet and of a combined fleet of sub- and supersonic aircraft for the years 2025 and 2050, respectively. In case of the combined fleet, part of the subsonic fleet is replaced by supersonic aircraft. The combined air traffic scenario reveals a reduction in contrail cover at subsonic cruise levels (10 to 12 km in the northern extratropics, especially over the North Atlantic and North Pacific. At supersonic flight levels (18 to 20 km, contrail formation is mainly restricted to tropical regions. Only in winter is the northern extratropical stratosphere above the 100 hPa level cold enough for the formation of contrails. Total contrail coverage is only marginally affected by the shift in flight altitude. The model simulations indicate a global annual mean contrail cover of 0.372% for the subsonic and 0.366% for the combined fleet in 2050. The simulated contrail radiative forcing is most closely correlated to the total contrail cover, although contrails in the tropical lower stratosphere are found to be optically thinner than contrails in the extratropical upper troposphere. The global annual mean contrail radiative forcing in 2050 (2025 amounts to 24.7 mW m−2 (9.4 mW m−2 for the subsonic fleet and 24.2 mW m−2 (9.3 mW m−2 for the combined fleet. A reduction of the supersonic cruise speed from Mach 2.0 to Mach 1.6 leads to a downward shift in contrail cover, but does not affect global mean total contrail cover and contrail radiative forcing. Hence the partial substitution of subsonic air traffic leads to a shift of contrail occurrence from mid to low latitudes, but the resulting change in

  13. Signatures for axial chromodynamics

    International Nuclear Information System (INIS)

    Pati, J.C.

    1978-07-01

    Within the context of basic left-right symmetry and the hypothesis of unification of weak, electromagnetic and strong forces at a mass level approximately equal to 10 4 -10 6 GeV, relatively light ''mass'' axial gluons, confined or liberated, must be postulated. The authors remark that the existence of such ''light'' axial gluons supplementing the familiar vector octet preserves the successes of QCD, both for deep inelastic processes and charmonium physics. Through the characteristic spin-spin force, generated by their exchange, they may even help resolve some of the discrepancies between vector QCD predictions and charmonium physics. The main remark of this note is that if colour is liberated, not only vector but also axial-vector gluons are produced in high-energy e - e + experiments, e.g. at PETRA and PEP, with fairly large cross-section. Distinctive decay modes of such liberated axial gluons are noted

  14. An Interactive Method of Characteristics Java Applet to Design and Analyze Supersonic Aircraft Nozzles

    Science.gov (United States)

    Benson, Thomas J.

    2014-01-01

    The Method of Characteristics (MOC) is a classic technique for designing supersonic nozzles. An interactive computer program using MOC has been developed to allow engineers to design and analyze supersonic nozzle flow fields. The program calculates the internal flow for many classic designs, such as a supersonic wind tunnel nozzle, an ideal 2D or axisymmetric nozzle, or a variety of plug nozzles. The program also calculates the plume flow produced by the nozzle and the external flow leading to the nozzle exit. The program can be used to assess the interactions between the internal, external and plume flows. By proper design and operation of the nozzle, it may be possible to lessen the strength of the sonic boom produced at the rear of supersonic aircraft. The program can also calculate non-ideal nozzles, such as simple cone flows, to determine flow divergence and nonuniformities at the exit, and its effect on the plume shape. The computer program is written in Java and is provided as free-ware from the NASA Glenn central software server.

  15. Spatially and Temporally Resolved Measurements of Velocity in a H2-air Combustion-Heated Supersonic Jet

    Science.gov (United States)

    Bivolaru, Daniel; Cutler, Andrew D.; Danehy, Paul M.; Gaffney, Richard L.; Baurle, Robert a.

    2009-01-01

    This paper presents simultaneous measurements at multiple points of two orthogonal components of flow velocity using a single-shot interferometric Rayleigh scattering (IRS) technique. The measurements are performed on a large-scale Mach 1.6 (Mach 5.5 enthalpy) H2-air combustion jet during the 2007 test campaign in the Direct Connect Supersonic Combustion Test facility at NASA Langley Research Center. The measurements are performed simultaneously with CARS (Coherent Anti-stokes Raman Spectroscopy) using a combined CARS-IRS instrument with a common path 9-nanosecond pulsed, injection-seeded, 532-nm Nd:YAG laser probe pulse. The paper summarizes the measurements of velocities along the core of the vitiated air flow as well as two radial profiles. The average velocity measurement near the centerline at the closest point from the nozzle exit compares favorably with the CFD calculations using the VULCAN code. Further downstream, the measured axial velocity shows overall higher values than predicted with a trend of convergence at further distances. Larger discrepancies are shown in the radial profiles.

  16. Progress Toward Analytic Predictions of Supersonic Hydrocarbon-Air Combustion: Computation of Ignition Times and Supersonic Mixing Layers

    Science.gov (United States)

    Sexton, Scott Michael

    Combustion in scramjet engines is faced with the limitation of brief residence time in the combustion chamber, requiring fuel and preheated air streams to mix and ignite in a matter of milliseconds. Accurate predictions of autoignition times are needed to design reliable supersonic combustion chambers. Most efforts in estimating non-premixed autoignition times have been devoted to hydrogen-air mixtures. The present work addresses hydrocarbon-air combustion, which is of interest for future scramjet engines. Computation of ignition in supersonic flows requires adequate characterization of ignition chemistry and description of the flow, both of which are derived in this work. In particular, we have shown that activation energy asymptotics combined with a previously derived reduced chemical kinetic mechanism provides analytic predictions of autoignition times in homogeneous systems. Results are compared with data from shock tube experiments, and previous expressions which employ a fuel depletion criterion. Ignition in scramjet engines has a strong dependence on temperature, which is found by perturbing the chemically frozen mixing layer solution. The frozen solution is obtained here, accounting for effects of viscous dissipation between the fuel and air streams. We investigate variations of thermodynamic and transport properties, and compare these to simplified mixing layers which neglect these variations. Numerically integrating the mixing layer problem reveals a nonmonotonic temperature profile, with a peak occurring inside the shear layer for sufficiently high Mach numbers. These results will be essential in computation of ignition distances in supersonic combustion chambers.

  17. The electron beam diagnostic of the clustered supersonic nitrogen jets

    Science.gov (United States)

    Avtaeva, S. V.; Yakovleva, T. S.; Kalyada, V. V.; Zarvin, A. E.

    2017-11-01

    Axial and radial distributions of the rotational temperature and density of N2 molecules in supersonic nitrogen jets formed with conic nozzles (critical diameters dcr of 0.17 and 0.21 mm) were studied using the electron beam fluorescence technique at stagnation pressures P0 of 0.1-0.6 MPa. A rotational temperature Tr , equaling a gas temperature Tg owing to fast RT relaxation, was obtained using the rotational line relative intensity distribution in (0-1) vibrational band of the N2 first negative system. Gas density profiles in the jets were obtained using the integral intensity of the band. It is found, Tr at the nozzle outlet is of the order of a few tens of Kelvin and at further expansion Tr drops up to 15-20K at distance of (100-200) dcr . The gas temperature and density distributions in the studied supersonic nitrogen jets are not similar to the isentropic distributions. It is shown that the lower is the stagnation pressure the faster the gas density and temperature decrease with distance from the nozzle. Increase in P0 leads to elevating Tg in the jets. A reason for this effect may be cluster formation in the jets. Estimations of cluster mean sizes in the jets using Hagena’s parameter show presence of large clusters (M≥200) at P0 = 0.4-0.6 MPa.

  18. Oblique-Flying-Wing Supersonic Transport Airplane

    Science.gov (United States)

    Van Der Velden, Alexander J. M.

    1992-01-01

    Oblique-flying-wing supersonic airplane proposed as possible alternative to B747B (or equivalent). Tranports passengers and cargo as fast as twice speed of sound at same cost as current subsonic transports. Flies at same holding speeds as present supersonic transports but requires only half takeoff distance.

  19. Supersonic wave detection method and supersonic detection device

    International Nuclear Information System (INIS)

    Machida, Koichi; Seto, Takehiro; Ishizaki, Hideaki; Asano, Rin-ichi.

    1996-01-01

    The present invention provides a method of and device for a detection suitable to a channel box which is used while covering a fuel assembly of a BWR type reactor. Namely, a probe for transmitting/receiving supersonic waves scans on the surface of the channel box. A data processing device determines an index showing a selective orientation degree of crystal direction of the channel box based on the signals received by the probe. A judging device compares the determined index with a previously determined allowable range to judge whether the channel box is satisfactory or not based on the result of the comparison. The judgement are on the basis that (1) the bending of the channel box is caused by the difference of elongation of opposed surfaces, (2) the elongation due to irradiation is caused by the selective orientation of crystal direction, and (3) the bending of the channel box can be suppressed within a predetermined range by suppressing the index determined by the measurement of supersonic waves having a correlation with the selective orientation of the crystal direction. As a result, the performance of the channel box capable of enduring high burnup region can be confirmed in a nondestructive manner. (I.S.)

  20. Performance of a CW double electric discharge for supersonic CO lasers

    Science.gov (United States)

    Stanton, A. C.; Hanson, R. K.; Mitchner, M.

    1980-01-01

    The results of an experimental investigation of a CW double discharge in supersonic CO mixtures are reported. Stable discharges in CO/N2 and CO/Ar mixtures, with a maximum energy loading of 0.5 eV/CO molecule, were achieved in a small-scale continuous-flow supersonic channel. Detailed measurements of the discharge characteristics were performed, including electrostatic probe measurements of floating potential and electron number density and spectroscopic measurements of the CO vibrational population distributions. The results of these measurements indicate that the vibrational excitation efficiency of the discharge is approximately 60%, for moderate levels of main discharge current. These experiments, on a small scale, demonstrate that the double-discharge scheme provides adequate vibrational energy loading for efficient CO laser operation under CW supersonic flow conditions.

  1. Features of the laminar-turbulent transition in supersonic axisymmetric microjets

    Science.gov (United States)

    Maslov, A. A.; Aniskin, V. M.; Mironov, S. G.

    2016-10-01

    In this paper, a supersonic core length of microjets is studied in terms of laminar-turbulent transition in the microjet mixing layer. Previously, it was discovered that this transition has a determining influence on the supersonic core length. A possibility of simulation of microjet flows is estimated through the use of Reynolds number computed by the nozzle diameter and the nozzle exit gas parameters. These experimental data were obtained using Pitot tube when the jets escaping from the nozzle of 0.6 mm into the low-pressure space. This experiment made it possible to achieve a large jet pressure ratio when the Reynolds number values were low which specify the microjets' behavior. The supersonic core length, phase of the laminar-turbulent transition and flow characteristics in the space are obtained. Such an approach provides simulation of the characteristics of microjets and macrojets, and also explains preliminary proposition and some data obtained for microjets.

  2. Critical heat flux under zero flow conditions in a vertical 3 X 3 rod bundle with a non-uniform axial heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seok; Chun, Se Young; Moon, Sang Ki; Baek, Won Pil

    2003-11-01

    KAERI has performed an experimental study of water Critical Heat Flux (CHF) under zero flow conditions with a non-uniformly heated 3 by 3 rod bundle. Experimental conditions are in the range of a system pressure from 0.5 to 15.0 MPa and inlet water subcooling enthalpies from 67.5 to 351.5 kJ/kg. The test section used in the present experiments consisted of a vertical flow channel, upper and lower plenums, and a non-uniformly heated 3 by 3 rod bundle. The experimental results show that the CHFs in low-pressure conditions are somewhat scattered within a narrow range. As the system pressure increases, however, the CHFs show a consistent parametric trend. The CHFs occur in the upper region of the heated section, but the vertical distances of the detected CHFs from the bottom of the heated section are reduced as the system pressure increases. Even though the effects of the inlet water subcooling enthalpies and system pressure in the flooding CHF are relatively smaller than those of the flow boiling CHF, the CHF increases by increasing the inlet water subcooling enthalpies. Several existing correlations for the countercurrent flooding CHF based on Wallis's flooding correlation and Kutateladze's criterion for the onset of flooding are compared with the CHF data obtained in the present experiments to examine the applicability of the correlations.

  3. Data Quality Assurance for Supersonic Jet Noise Measurements

    Science.gov (United States)

    Brown, Clifford A.; Henderson, Brenda S.; Bridges, James E.

    2010-01-01

    The noise created by a supersonic aircraft is a primary concern in the design of future high-speed planes. The jet noise reduction technologies required on these aircraft will be developed using scale-models mounted to experimental jet rigs designed to simulate the exhaust gases from a full-scale jet engine. The jet noise data collected in these experiments must accurately predict the noise levels produced by the full-scale hardware in order to be a useful development tool. A methodology has been adopted at the NASA Glenn Research Center s Aero-Acoustic Propulsion Laboratory to insure the quality of the supersonic jet noise data acquired from the facility s High Flow Jet Exit Rig so that it can be used to develop future nozzle technologies that reduce supersonic jet noise. The methodology relies on mitigating extraneous noise sources, examining the impact of measurement location on the acoustic results, and investigating the facility independence of the measurements. The methodology is documented here as a basis for validating future improvements and its limitations are noted so that they do not affect the data analysis. Maintaining a high quality jet noise laboratory is an ongoing process. By carefully examining the data produced and continually following this methodology, data quality can be maintained and improved over time.

  4. A model for supersonic and hypersonic impactors for nanoparticles

    International Nuclear Information System (INIS)

    Abouali, Omid; Ahmadi, Goodarz

    2005-01-01

    In this study the performance of supersonic and hypersonic impactors for collection efficiency of nanoparticles (in the size range of 2-100 nm) under various operating conditions is analyzed. Axisymmetric forms of the compressible Navier-Stokes and energy equations are solved and the airflow and thermal condition in the impactor are evaluated. A Lagrangian particle trajectory analysis procedure is used and the deposition rates of different size particles under various operating conditions are studied. For dilute particle concentrations, the assumption of one-way interaction is used and the effect of particles on gas flow field is ignored. The importance of drag, lift and Brownian forces on particle motions in supersonic impactors is discussed. Sensitivity of the simulation results to the use of different assumptions for the Cunningham correction coefficient is studied. It is shown that accurate evaluation of the gas mean free path and the Cunningham correction factor is important for accurate simulation of nano-particle transport and deposition in supersonic/hypersonic impactors. The computer simulation results are compared favorably with the available experimental data

  5. The effect of gas and fluid flows on nonlinear lateral vibrations of rotating drill strings

    Science.gov (United States)

    Khajiyeva, Lelya; Kudaibergenov, Askar; Kudaibergenov, Askat

    2018-06-01

    In this work we develop nonlinear mathematical models describing coupled lateral vibrations of a rotating drill string under the effect of external supersonic gas and internal fluid flows. An axial compressive load and a torque also affect the drill string. The mathematical models are derived by the use of Novozhilov's nonlinear theory of elasticity with implementation of Hamilton's variation principle. Expressions for the gas flow pressure are determined according to the piston theory. The fluid flow is considered as added mass inside the curved tube of the drill string. Using an algorithm developed in the Mathematica computation program on the basis of the Galerkin approach and the stiffness switching method the numerical solution of the obtained approximate differential equations is found. Influences of the external loads, drill string angular speed of rotation, parameters of the gas and fluid flows on the drill string vibrations are shown.

  6. Factors Influencing Pitot Probe Centerline Displacement in a Turbulent Supersonic Boundary Layer

    Science.gov (United States)

    Grosser, Wendy I.

    1997-01-01

    When a total pressure probe is used for measuring flows with transverse total pressure gradients, a displacement of the effective center of the probe is observed (designated Delta). While this phenomenon is well documented in incompressible flow and supersonic laminar flow, there is insufficient information concerning supersonic turbulent flow. In this study, three NASA Lewis Research Center Supersonic Wind Tunnels (SWT's) were used to investigate pitot probe centerline displacement in supersonic turbulent boundary layers. The relationship between test conditions and pitot probe centerline displacement error was to be determined. For this investigation, ten circular probes with diameter-to-boundary layer ratios (D/delta) ranging from 0.015 to 0.256 were tested in the 10 ft x 10 ft SWT, the 15 cm x 15 cm SWT, and the 1 ft x 1 ft SWT. Reynolds numbers of 4.27 x 10(exp 6)/m, 6.00 x 10(exp 6)/in, 10.33 x 10(exp 6)/in, and 16.9 x 10(exp 6)/m were tested at nominal Mach numbers of 2.0 and 2.5. Boundary layer thicknesses for the three tunnels were approximately 200 mm, 13 mm, and 30 mm, respectively. Initial results indicate that boundary layer thickness, delta, and probe diameter, D/delta play a minimal role in pitot probe centerline offset error, Delta/D. It appears that the Mach gradient, dM/dy, is an important factor, though the exact relationship has not yet been determined. More data is needed to fill the map before a conclusion can be drawn with any certainty. This research provides valuable supersonic, turbulent boundary layer data from three supersonic wind tunnels with three very different boundary layers. It will prove a valuable stepping stone for future research into the factors influencing pitot probe centerline offset error.

  7. Advanced nuclear turbojet powerplant characteristics summary for supersonic aircraft

    International Nuclear Information System (INIS)

    Larson, John W.

    1959-01-01

    The estimated powerplant characteristics of an advanced nuclear powerplant intended for use in a nuclear supersonic manned airplane is contained in this report. This nuclear powerplant consists of a 575 MW, high temperature, lithium-cooled, solid fuel element-type reactor coupled to six turbojet engines especially designed for a supersonic nuclear airplane. The lithium coolant passes from the reactor at 2000F directly to the engine radiators without the use of an intermediate heat exchanger. The engines are fitted with burners enabling the thrust produced by the nuclear powerplant to be augmented by the use of chemical fuel for the take-off, transonic acceleration and landing portions of the flight. The powerplant components have been selected for a maximum thrust-to-weight ratio at Mach 3 and 55,000 feet altitude on nuclear heat only operation compromised for net thrust produced with chemical fuel augmentation during the transonic portion of flight. The power plant data presented, therefore, are primarily applicable to an all supersonic mission on nuclear heat alone. The powerplant data presented in this report are an extension of data contained in PWAC-243, 'NJ-14 All-Nuclear Supersonic Bomber Powerplant Characteristics Summary, March 11, 1958', to a higher reactor power. In addition, the engine compressor pressure ratio has been increased to improve transonic thrust characteristics. Weight data are tabulated for the 575 MW powerplant. The engine envelope based on preliminary radiator size estimates is illustrated. A liquid metal system flow schematic and piping data are included. Shield information including reactor shield outline, assumptions, weights, and direct dose pattern at 50 feet is also included. Estimated performance on nuclear heat only operation and nuclear heat plus burning is presented for an envelope of flight conditions.

  8. High-magnification velocity field measurements on high-frequency, supersonic microactuators

    Science.gov (United States)

    Kreth, Phil; Fernandez, Erik; Ali, Mohd; Alvi, Farrukh

    2014-11-01

    The Resonance-Enhanced Microjet (REM) actuator developed at our laboratory produces pulsed, supersonic microjets by utilizing a number of microscale, flow-acoustic resonance phenomena. The microactuator used in this study consists of an underexpanded source jet flowing into a cylindrical cavity with a single orifice through which an unsteady, supersonic jet issues at a resonant frequency of 7 kHz. The flowfields of a 1 mm underexpanded free jet and the microactuator are studied in detail using high-magnification, phase-locked flow visualizations (microschlieren) and 2-component particle image velocimetry. The challenges of these measurements at such small scales and supersonic velocities are discussed. The results clearly show that the microactuator produces supersonic pulsed jets with velocities exceeding 400 m/s. This is the first direct measurement of the velocity field and its temporal evolution produced by such actuators. Comparisons are made between the flow visualizations, velocity field measurements, and simulations using Implicit LES for a similar microactuator. With high, unsteady momentum output, this type of microactuator has potential in a range of flow control applications.

  9. Investigation of Cooling Water Injection into Supersonic Rocket Engine Exhaust

    Science.gov (United States)

    Jones, Hansen; Jeansonne, Christopher; Menon, Shyam

    2017-11-01

    Water spray cooling of the exhaust plume from a rocket undergoing static testing is critical in preventing thermal wear of the test stand structure, and suppressing the acoustic noise signature. A scaled test facility has been developed that utilizes non-intrusive diagnostic techniques including Focusing Color Schlieren (FCS) and Phase Doppler Particle Anemometry (PDPA) to examine the interaction of a pressure-fed water jet with a supersonic flow of compressed air. FCS is used to visually assess the interaction of the water jet with the strong density gradients in the supersonic air flow. PDPA is used in conjunction to gain statistical information regarding water droplet size and velocity as the jet is broken up. Measurement results, along with numerical simulations and jet penetration models are used to explain the observed phenomena. Following the cold flow testing campaign a scaled hybrid rocket engine will be constructed to continue tests in a combusting flow environment similar to that generated by the rocket engines tested at NASA facilities. LaSPACE.

  10. Overexpanded viscous supersonic jet interacting with a unilateral barrier

    Science.gov (United States)

    Dobrynin, B. M.; Maslennikov, V. G.; Sakharov, V. A.; Serova, E. V.

    1986-07-01

    The interaction of a two-dimensional supersonic jet with a unilateral barrier parallel to the flow symmetry plane was studied to account for effects due to gas viscosity and backgound-gas ejection from the region into which the jet expands. In the present experiments, the incident shock wave was reflected at the end of a shock tube equipped with a nozzle. The jet emerged into a pressure chamber 6 cu m in volume and the environmental pressure ratio of the flow in the quasi-stationary phase remained constant. The light source was an OGM-20 laser operating in the giant-pulse mode. Due to background-gas ejection, the gas density in the vicinity of the barrier is much less than on the unconfined side of the jet. The resulting flow is characterized by two distinct environmental pressure ratios: the flow is underexpanded near the barrier, while on the other side it is overexpanded.

  11. Stall margin improvements of conventional axial flow fans with the reformed casingtreatments; Casingtreatment ni yoru han`yo jikuryu sofuki no shissoku kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, K.; Kuroda, H.; Obata, S.; Chimura, O. [National Defense Academy, Kanagawa (Japan); Takeishi, M.

    1998-09-25

    At the first part of this paper, the experiments and results to the blowing and suction on a fan are presented, and it is found that blowing toward the down stream direction are more effective and blowing location is suitable on the leading edge side of blades. On basis of these results, the reformed casingtreatments which the blowing air from the slots makes the large relative momentum for blade chord are build, and the experiments using the two conventional fans equipped with the reformed casingtreatment and conventional one are performed. So, the very large stall margin improvements (about 1.7 times) and about 0.5% efficiency penalty of 10% stall margin improvement at design flow rate are obtained for the reformed casingtreatment. 10 refs., 15 figs., 1 tab.

  12. CFD application to supersonic/hypersonic inlet airframe integration. [computational fluid dynamics (CFD)

    Science.gov (United States)

    Benson, Thomas J.

    1988-01-01

    Supersonic external compression inlets are introduced, and the computational fluid dynamics (CFD) codes and tests needed to study flow associated with these inlets are outlined. Normal shock wave turbulent boundary layer interaction is discussed. Boundary layer control is considered. Glancing sidewall shock interaction is treated. The CFD validation of hypersonic inlet configurations is explained. Scramjet inlet modules are shown.

  13. Supersonic acoustic intensity with statistically optimized near-field acoustic holography

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn

    2011-01-01

    The concept of supersonic acoustic intensity was introduced some years ago for estimating the fraction of the flow of energy radiated by a source that propagates to the far field. It differs from the usual (active) intensity by excluding the near-field energy resulting from evanescent waves...... to the information provided by the near-field acoustic holography technique. This study proposes a version of the supersonic acoustic intensity applied to statistically optimized near-field acoustic holography (SONAH). The theory, numerical results and an experimental study are presented. The possibility of using...

  14. On renormalization of axial anomaly

    International Nuclear Information System (INIS)

    Efremov, A.V.; Teryaev, O.V.

    1989-01-01

    It is shown that multiplicative renormalization of the axial singlet current results in renormalization of the axial anomaly in all orders of perturbation theory. It is a necessary condition for the Adler - Bardeen theorem being valid. 10 refs.; 2 figs

  15. Axial tomographic scanner

    International Nuclear Information System (INIS)

    1976-01-01

    An axial tomographic system is described comprising axial tomographic means for collecting sets of data corresponding to the transmission or absorption of a number of beams of penetrating radiation through a planar slice of an object. It includes means to locate an object to be analyzed, a source and detector for directing one or more beams of penetrating radiation through the object from the source to the detector, and means to rotate (and optionally translate) the source as well as means to process the collected sets of data. Data collection, data processing, and data display can each be conducted independently of each other. An additional advantage of the system described is that the raw data (i.e., the originally collected data) are not destroyed by the data processing but instead are retained intact for further reference or use, if needed

  16. Supersonic and transonic Mach probe for calibration control in the Trisonic Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Alexandru Marius PANAIT

    2017-12-01

    Full Text Available A supersonic and high speed transonic Pitot Prandtl is described as it can be implemented in the Trisonic Wind Tunnel for calibration and verification of Mach number precision. A new calculation method for arbitrary precision Mach numbers is proposed and explained. The probe is specially designed for the Trisonic wind tunnel and would greatly simplify obtaining a precise Mach calibration in the critical high transonic and low supersonic regimes, where typically wind tunnels exhibit poor performance. The supersonic Pitot Prandtl combined probe is well known in the aerospace industry, however the proposed probe is a derivative of the standard configuration, combining a stout cone-cylinder probe with a supersonic Pitot static port which allows this configuration to validate the Mach number by three methods: conical flow method – using the pressure ports on a cone generatrix, the Schlieren-optical method of shock wave angle photogrammetry and the Rayleigh supersonic Pitot equation, while having an aerodynamic blockage similar to that of a scaled rocket model commonly used in testing. The proposed probe uses an existing cone-cylinder probe forebody and support, adding only an afterbody with a support for a static port.

  17. Computational analysis of a multistage axial compressor

    Science.gov (United States)

    Mamidoju, Chaithanya

    Turbomachines are used extensively in Aerospace, Power Generation, and Oil & Gas Industries. Efficiency of these machines is often an important factor and has led to the continuous effort to improve the design to achieve better efficiency. The axial flow compressor is a major component in a gas turbine with the turbine's overall performance depending strongly on compressor performance. Traditional analysis of axial compressors involves throughflow calculations, isolated blade passage analysis, Quasi-3D blade-to-blade analysis, single-stage (rotor-stator) analysis, and multi-stage analysis involving larger design cycles. In the current study, the detailed flow through a 15 stage axial compressor is analyzed using a 3-D Navier Stokes CFD solver in a parallel computing environment. Methodology is described for steady state (frozen rotor stator) analysis of one blade passage per component. Various effects such as mesh type and density, boundary conditions, tip clearance and numerical issues such as turbulence model choice, advection model choice, and parallel processing performance are analyzed. A high sensitivity of the predictions to the above was found. Physical explanation to the flow features observed in the computational study are given. The total pressure rise verses mass flow rate was computed.

  18. A parametric study on supersonic/hypersonic flutter behavior of aero-thermo-elastic geometrically imperfect curved skin panel

    NARCIS (Netherlands)

    Abbas, L.K.; Rui, X.; Marzocca, P.; Abdalla, M.; De Breuker, R.

    2011-01-01

    In this paper, the effect of the system parameters on the flutter of a curved skin panel forced by a supersonic/hypersonic unsteady flow is numerically investigated. The aeroelastic model investigated includes the third-order piston theory aerodynamics for modeling the flow-induced forces and the

  19. Rotating stall simulation for axial and centrifugal compressors

    Science.gov (United States)

    Halawa, Taher; Gadala, Mohamed S.

    2017-05-01

    This study presents a numerical simulation of the rotating stall phenomenon in axial and centrifugal compressors with detailed descriptions of stall precursors and its development with time. Results showed that the vaneless region of the centrifugal compressor is the most critical location affected by stall. It was found that the tip leakage flow and the back flow impingement are the main cause of the stall development at the impeller exit area for centrifugal compressors. The results of the axial compressor simulations indicated that the early separated flow combined with the tip leakage flow can block the impeller passages during stall.

  20. Supersonic impinging jet noise reduction using a hybrid control technique

    Science.gov (United States)

    Wiley, Alex; Kumar, Rajan

    2015-07-01

    Control of the highly resonant flowfield associated with supersonic impinging jet has been experimentally investigated. Measurements were made in the supersonic impinging jet facility at the Florida State University for a Mach 1.5 ideally expanded jet. Measurements included unsteady pressures on a surface plate near the nozzle exit, acoustics in the nearfield and beneath the impingement plane, and velocity field using particle image velocimetry. Both passive control using porous surface and active control with high momentum microjet injection are effective in reducing nearfield noise and flow unsteadiness over a range of geometrical parameters; however, the type of noise reduction achieved by the two techniques is different. The passive control reduces broadband noise whereas microjet injection attenuates high amplitude impinging tones. The hybrid control, a combination of two control methods, reduces both broadband and high amplitude impinging tones and surprisingly its effectiveness is more that the additive effect of the two control techniques. The flow field measurements show that with hybrid control the impinging jet is stabilized and the turbulence quantities such as streamwise turbulence intensity, transverse turbulence intensity and turbulent shear stress are significantly reduced.