WorldWideScience

Sample records for supersonic air-helium mixing

  1. Experimental and Numerical Investigation of Flow Properties of Supersonic Helium-Air Jets

    Science.gov (United States)

    Miller, Steven A. E.; Veltin, Jeremy

    2010-01-01

    Heated high speed subsonic and supersonic jets operating on- or off-design are a source of noise that is not yet fully understood. Helium-air mixtures can be used in the correct ratio to simulate the total temperature ratio of heated air jets and hence have the potential to provide inexpensive and reliable flow and acoustic measurements. This study presents a combination of flow measurements of helium-air high speed jets and numerical simulations of similar helium-air mixture and heated air jets. Jets issuing from axisymmetric convergent and convergent-divergent nozzles are investigated, and the results show very strong similarity with heated air jet measurements found in the literature. This demonstrates the validity of simulating heated high speed jets with helium-air in the laboratory, together with the excellent agreement obtained in the presented data between the numerical predictions and the experiments. The very close match between the numerical and experimental data also validates the frozen chemistry model used in the numerical simulation.

  2. Progress Toward Analytic Predictions of Supersonic Hydrocarbon-Air Combustion: Computation of Ignition Times and Supersonic Mixing Layers

    Science.gov (United States)

    Sexton, Scott Michael

    Combustion in scramjet engines is faced with the limitation of brief residence time in the combustion chamber, requiring fuel and preheated air streams to mix and ignite in a matter of milliseconds. Accurate predictions of autoignition times are needed to design reliable supersonic combustion chambers. Most efforts in estimating non-premixed autoignition times have been devoted to hydrogen-air mixtures. The present work addresses hydrocarbon-air combustion, which is of interest for future scramjet engines. Computation of ignition in supersonic flows requires adequate characterization of ignition chemistry and description of the flow, both of which are derived in this work. In particular, we have shown that activation energy asymptotics combined with a previously derived reduced chemical kinetic mechanism provides analytic predictions of autoignition times in homogeneous systems. Results are compared with data from shock tube experiments, and previous expressions which employ a fuel depletion criterion. Ignition in scramjet engines has a strong dependence on temperature, which is found by perturbing the chemically frozen mixing layer solution. The frozen solution is obtained here, accounting for effects of viscous dissipation between the fuel and air streams. We investigate variations of thermodynamic and transport properties, and compare these to simplified mixing layers which neglect these variations. Numerically integrating the mixing layer problem reveals a nonmonotonic temperature profile, with a peak occurring inside the shear layer for sufficiently high Mach numbers. These results will be essential in computation of ignition distances in supersonic combustion chambers.

  3. Filtered Rayleigh scattering mixing measurements of merging and non-merging streamwise vortex interactions in supersonic flow

    Science.gov (United States)

    Ground, Cody R.; Gopal, Vijay; Maddalena, Luca

    2018-04-01

    By introducing large-scale streamwise vortices into a supersonic flow it is possible to enhance the rate of mixing between two fluid streams. However, increased vorticity content alone does not explicitly serve as a predictor of mixing enhancement. Additional factors, particularly the mutual interactions occurring between neighboring vortical structures, affect the underlying fundamental physics that influence the rate at which the fluids mix. As part of a larger systematic study on supersonic streamwise vortex interactions, this work experimentally quantifies the average rate of mixing of helium and air in the presence of two separate modes of vortex interaction, the merging and non-merging of a pair of co-rotating vortices. In these experiments vortex-generating expansion ramps are placed on a strut injector. The freestream Mach number is set at 2.5 and helium is injected as a passive scalar. Average injectant mole fractions at selected flow planes downstream of the injector are measured utilizing the filtered Rayleigh scattering technique. The filtered Rayleigh scattering measurements reveal that, in the domain surveyed, the merging vortex interaction strongly displaces the plume from its initial horizontal orientation while the non-merging vortex interaction more rapidly mixes the helium and air. The results of the current experiments are consistent with associated knowledge derived from previous analyses of the two studied configurations which have included the detailed experimental characterization of entrainment, turbulent kinetic energy, and vorticity of both modes of vortex interaction.

  4. Development and operation of an integrated sampling probe and gas analyzer for turbulent mixing studies in complex supersonic flows

    Science.gov (United States)

    Wiswall, John D.

    For many aerospace applications, mixing enhancement between co-flowing streams has been identified as a critical and enabling technology. Due to short fuel residence times in scramjet combustors, combustion is limited by the molecular mixing of hydrogen (fuel) and air. Determining the mixedness of fuel and air in these complex supersonic flowfields is critical to the advancement of novel injection schemes currently being developed at UTA in collaboration with NASA Langley and intended to be used on a future two-stage to orbit (~Mach 16) hypersonic air-breathing vehicle for space access. Expanding on previous work, an instrument has been designed, fabricated, and tested in order to measure mean concentrations of injected helium (a passive scalar used instead of hazardous hydrogen) and to quantitatively characterize the nature of the high-frequency concentration fluctuations encountered in the compressible, turbulent, and high-speed (up to Mach 3.5) complex flows associated with the new supersonic injection schemes. This important high-frequency data is not yet attainable when employing other techniques such as Laser Induced Fluorescence, Filtered Rayleigh Scattering or mass spectroscopy in the same complex supersonic flows. The probe operates by exploiting the difference between the thermodynamic properties of two species through independent massflow measurements and calibration. The probe samples isokinetically from the flowfield's area of interest and the helium concentration may be uniquely determined by hot-film anemometry and internally measured stagnation conditions. The final design has a diameter of 0.25" and is only 2.22" long. The overall accuracy of the probe is 3% in molar fraction of helium. The frequency response of mean concentration measurements is estimated at 103 Hz, while high-frequency hot-film measurements were conducted at 60 kHz. Additionally, the work presents an analysis of the probe's internal mixing effects and the effects of the spatial

  5. A study of air breathing rockets. 3: Supersonic mode combustors

    Science.gov (United States)

    Masuya, G.; Chinzel, N.; Kudo, K.; Murakami, A.; Komuro, T.; Ishii, S.

    An experimental study was made on supersonic mode combustors of an air breathing rocket engine. Supersonic streams of room-temperature air and hot fuel-rich rocket exhaust were coaxially mixed and burned in a concially diverging duct of 2 deg half-angle. The effect of air inlet Mach number and excess air ratio was investigated. Axial wall pressure distribution was measured to calculate one dimensional change of Mach number and stagnation temperature. Calculated results showed that supersonic combustion occurred in the duct. At the exit of the duct, gas sampling and Pitot pressure measurement was made, from which radial distributions of various properties were deduced. The distribution of mass fraction of elements from rocket exhaust showed poor mixing performance in the supersonic mode combustors compared with the previously investigated cylindrical subsonic mode combustors. Secondary combustion efficiency correlated well with the centerline mixing parameter, but not with Annushkin's non-dimensional combustor length. No major effect of air inlet Mach number or excess air ratio was seen within the range of conditions under which the experiment was conducted.

  6. Supersonic jets of hydrogen and helium for laser wakefield acceleration

    CERN Document Server

    Svensson, K.; Wojda, F.; Senje, L.; Burza, M.; Aurand, B.; Genoud, G.; Persson, A.; Wahlström, C.-G.; Lundh, O.

    2016-01-01

    The properties of laser wakefield accelerated electrons in supersonic gas flows of hydrogen and helium are investigated. At identical backing pressure, we find that electron beams emerging from helium show large variations in their spectral and spatial distributions, whereas electron beams accelerated in hydrogen plasmas show a higher degree of reproducibility. In an experimental investigation of the relation between neutral gas density and backing pressure, it is found that the resulting number density for helium is ∼30% higher than for hydrogen at the same backing pressure. The observed differences in electron beam properties between the two gases can thus be explained by differences in plasma electron density. This interpretation is verified by repeating the laser wakefield acceleration experiment using similar plasma electron densities for the two gases, which then yielded electron beams with similar properties.

  7. Supersonic jets of hydrogen and helium for laser wakefield acceleration

    Directory of Open Access Journals (Sweden)

    K. Svensson

    2016-05-01

    Full Text Available The properties of laser wakefield accelerated electrons in supersonic gas flows of hydrogen and helium are investigated. At identical backing pressure, we find that electron beams emerging from helium show large variations in their spectral and spatial distributions, whereas electron beams accelerated in hydrogen plasmas show a higher degree of reproducibility. In an experimental investigation of the relation between neutral gas density and backing pressure, it is found that the resulting number density for helium is ∼30% higher than for hydrogen at the same backing pressure. The observed differences in electron beam properties between the two gases can thus be explained by differences in plasma electron density. This interpretation is verified by repeating the laser wakefield acceleration experiment using similar plasma electron densities for the two gases, which then yielded electron beams with similar properties.

  8. Large Eddy simulation of turbulent hydrogen-fuelled supersonic combustion in an air cross-flow

    Science.gov (United States)

    Ingenito, A.; Cecere, D.; Giacomazzi, E.

    2013-09-01

    The main aim of this article is to provide a theoretical understanding of the physics of supersonic mixing and combustion. Research in advanced air-breathing propulsion systems able to push vehicles well beyond is of interest around the world. In a scramjet, the air stream flow captured by the inlet is decelerated but still maintains supersonic conditions. As the residence time is very short , the study of an efficient mixing and combustion is a key issue in the ongoing research on compressible flows. Due to experimental difficulties in measuring complex high-speed unsteady flowfields, the most convenient way to understand unsteady features of supersonic mixing and combustion is to use computational fluid dynamics. This work investigates supersonic combustion physics in the Hyshot II combustion chamber within the Large Eddy simulation framework. The resolution of this turbulent compressible reacting flow requires: (1) highly accurate non-dissipative numerical schemes to properly simulate strong gradients near shock waves and turbulent structures away from these discontinuities; (2) proper modelling of the small subgrid scales for supersonic combustion, including effects from compressibility on mixing and combustion; (3) highly detailed kinetic mechanisms (the Warnatz scheme including 9 species and 38 reactions is adopted) accounting for the formation and recombination of radicals to properly predict flame anchoring. Numerical results reveal the complex topology of the flow under investigation. The importance of baroclinic and dilatational effects on mixing and flame anchoring is evidenced. Moreover, their effects on turbulence-scale generation and the scaling law are analysed.

  9. Convective mixing in helium white dwarfs

    International Nuclear Information System (INIS)

    Vauclair, G.; Fontaine, G.

    1979-01-01

    The conditions under which convective mixing episodes take place between the helium envelopes and the underlying carbon layers in helium-rich white dwarfs are investigated. It is found that, for essentially any value of the initial helium content less than the maximum mass a helium convection zone can have, mixing does occur, and leads, in the vast majority of cases, to an almost pure carbon superficial composition. Mixing products that show only traces of carbon while retaining helium-dominated envelopes are possible only if the initial helium content is quite close to the maximum possible mass of the helium convection zone. In the presence of turbulence, this restriction could be relaxed, however, and the helium-rich lambda4670 stars may possibly be explained in this fashion

  10. Preliminary study of the primary nozzle position of a supersonic air ejector with a constant-area mixing chamber

    Directory of Open Access Journals (Sweden)

    Kracik Jan

    2017-01-01

    Full Text Available This work aims at investigating the primary nozzle position in a proposed supersonic air ejector device. The ejector is primarily made up of a supersonic primary nozzle, which is located in the axis of the ejector, a suction chamber or secondary stream inlet, a mixing chamber and a diffuser. The ejector design allows to translate the primary nozzle in the axis direction and fix it in a chosen distance from the beginning of the mixing chamber and hence influence the secondary mass flow rate. In a limit case, it is possible to set the nozzle to such a position where no secondary flow occurs. If we ignore the case where no secondary flow occurs, five different nozzle distances have been investigated in this paper. Some cases seem to be alike and there are no significant dissimilarities between them. Courses of relative back-pressure ratio are carried out against the entrainment ratio and transition between on-design and off-design regimes is determined. Measurements of the mixed flow based on the standard ISO 5167 are performed by means of orifice plate method. In addition, a comparison between experiments and simulations performed by Ansys Fluent software is presented in order to indicate further improvements to the numerical model.

  11. Plasma-enhanced mixing and flameholding in supersonic flow.

    Science.gov (United States)

    Firsov, Alexander; Savelkin, Konstantin V; Yarantsev, Dmitry A; Leonov, Sergey B

    2015-08-13

    The results of experimental study of plasma-based mixing, ignition and flameholding in a supersonic model combustor are presented in the paper. The model combustor has a length of 600 mm and cross section of 72 mm width and 60 mm height. The fuel is directly injected into supersonic airflow (Mach number M=2, static pressure P(st)=160-250 Torr) through wall orifices. Two series of tests are focused on flameholding and mixing correspondingly. In the first series, the near-surface quasi-DC electrical discharge is generated by flush-mounted electrodes at electrical power deposition of W(pl)=3-24 kW. The scope includes parametric study of ignition and flame front dynamics, and comparison of three schemes of plasma generation: the first and the second layouts examine the location of plasma generators upstream and downstream from the fuel injectors. The third pattern follows a novel approach of combined mixing/ignition technique, where the electrical discharge distributes along the fuel jet. The last pattern demonstrates a significant advantage in terms of flameholding limit. In the second series of tests, a long discharge of submicrosecond duration is generated across the flow and along the fuel jet. A gasdynamic instability of thermal cavity developed after a deposition of high-power density in a thin plasma filament promotes the air-fuel mixing. The technique studied in this work has weighty potential for high-speed combustion applications, including cold start/restart of scramjet engines and support of transition regime in dual-mode scramjet and at off-design operation. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  12. Mixing enhancement strategies and their mechanisms in supersonic flows: A brief review

    Science.gov (United States)

    Huang, Wei

    2018-04-01

    Achieving efficient fuel-air mixing is a crucial issue in the design of the scramjet engine due to the compressibility effect on the mixing shear layer growth and the stringent flow residence time limitation induced by the high-speed crossflow, and the potential solution is to enhance mixing between air and fuel by introducing of streamwise vortices in the flow field. In this survey, some mixing enhancement strategies based on the traditional transverse injection technique proposed in recent years, as well as their mixing augmentation mechanisms, were reviewed in detail, namely the pulsed transverse injection scheme, the traditional transverse injection coupled with the vortex generator, and the dual transverse injection system with a front porthole and a rear air porthole arranged in tandem. The streamwise vortices, through the large-scale stirring motion that they introduce, are responsible for the extraction of large amounts of energy from the mean flow that can be converted into turbulence, ultimately leading to increased mixing effectiveness. The streamwise vortices may be obtained by taking advantage of the shear layer between a jet and the cross stream or by employing intrusive physical devices. Finally, a promising mixing enhancement strategy in supersonic flows was proposed, and some remarks were provided.

  13. PIV Measurements of Supersonic Internally-Mixed Dual-Stream Jets

    Science.gov (United States)

    Bridges, James E.; Wernet, Mark P.

    2012-01-01

    While externally mixed, or separate flow, nozzle systems are most common in high bypass-ratio aircraft, they are not as attractive for use in lower bypass-ratio systems and on aircraft that will fly supersonically. The noise of such propulsion systems is also dominated by jet noise, making the study and noise reduction of these exhaust systems very important, both for military aircraft and future civilian supersonic aircraft. This paper presents particle image velocimetry of internally mixed nozzle with different area ratios between core and bypass, and nozzles that are ideally expanded and convergent. Such configurations independently control the geometry of the internal mixing layer and of the external shock structure. These allow exploration of the impact of shocks on the turbulent mixing layers, the impact of bypass ratio on broadband shock noise and mixing noise, and the impact of temperature on the turbulent flow field. At the 2009 AIAA/CEAS Aeroacoustics Conference the authors presented data and analysis from a series of tests that looked at the acoustics of supersonic jets from internally mixed nozzles. In that paper the broadband shock and mixing noise components of the jet noise were independently manipulated by holding Mach number constant while varying bypass ratio and jet temperature. Significant portions of that analysis was predicated on assumptions regarding the flow fields of these jets, both shock structure and turbulence. In this paper we add to that analysis by presenting particle image velocimetry measurements of the flow fields of many of those jets. In addition, the turbulent velocity data documented here will be very useful for validation of computational flow codes that are being developed to design advanced nozzles for future aircraft.

  14. Helium production in mixed spectrum reactor-irradiated pure elements

    International Nuclear Information System (INIS)

    Kneff, D.W.; Oliver, B.M.; Skowronski, R.P.

    1986-01-01

    The objectives of this work are to apply helium accumulation neutron dosimetry to the measurement of neutron fluences and energy spectra in mixed-spectrum fission reactors utilized for fusion materials testing, and to measure helium generation rates of materials in these irradiation environments. Helium generation measurements have been made for several Fe, Cu Ti, Nb, Cr, and Pt samples irradiated in the mixed-spectrum High Flux Isotope Reactor (HFIR) and Oak Ridge Research Reactor (ORR) at the Oak Ridge National Laboratory. The results have been used to integrally test the ENDF/B-V Gas Production File, by comparing the measurements with helium generation predictions made by Argonne National Laboratory using ENDF/B-V cross sections and adjusted reactor spectra. The comparisons indicate consistency between the helium measurements and ENDF/B-V for iron, but cross section discrepancies exist for helium production by fast neutrons in Cu, Ti, Nb, and Cr (the latter for ORR). The Fe, Cu, and Ti work updates and extends previous measurements

  15. CFD Analysis on the Passive Heat Removal by Helium and Air in the Canister of Spent Fuel Dry Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Do Young; Jeong, Ui Ju; Kim, Sung Joong [Hanyang University, Seoul (Korea, Republic of)

    2016-05-15

    In the current commercial design, the canister of the dry storage system is mainly backfilled with helium gas. Helium gas shows very conductive behavior due to high thermal conductivity and small density change with temperature. However, other gases such as air, argon, or nitrogen are expected to show effective convective behavior. Thus these are also considered as candidates for the backfill gas to provide effective coolability. In this study, to compare the dominant cooling mechanism and effectiveness of cooling between helium gas and air, a computational fluid dynamics (CFD) analysis for the canister of spent fuel dry storage system with backfill gas of helium and air is carried out. In this study, CFD simulations for the helium and air backfilled gas for dry storage system canister were carried out using ANSYS FLUENT code. For the comparison work, two backfilled fluids were modeled with same initial and boundary conditions. The observed major difference can be summarized as follows. - The simulation results showed the difference in dominant heat removal mechanism. Conduction for helium, and convection for air considering Reynolds number distribution. - The temperature gradient inside the fuel assembly showed that in case of air, more effective heat mixing occurred compared to helium.

  16. Hybrid Reynolds-Averaged/Large-Eddy Simulations of a Coaxial Supersonic Free-Jet Experiment

    Science.gov (United States)

    Baurle, Robert A.; Edwards, Jack R.

    2010-01-01

    Reynolds-averaged and hybrid Reynolds-averaged/large-eddy simulations have been applied to a supersonic coaxial jet flow experiment. The experiment was designed to study compressible mixing flow phenomenon under conditions that are representative of those encountered in scramjet combustors. The experiment utilized either helium or argon as the inner jet nozzle fluid, and the outer jet nozzle fluid consisted of laboratory air. The inner and outer nozzles were designed and operated to produce nearly pressure-matched Mach 1.8 flow conditions at the jet exit. The purpose of the computational effort was to assess the state-of-the-art for each modeling approach, and to use the hybrid Reynolds-averaged/large-eddy simulations to gather insight into the deficiencies of the Reynolds-averaged closure models. The Reynolds-averaged simulations displayed a strong sensitivity to choice of turbulent Schmidt number. The initial value chosen for this parameter resulted in an over-prediction of the mixing layer spreading rate for the helium case, but the opposite trend was observed when argon was used as the injectant. A larger turbulent Schmidt number greatly improved the comparison of the results with measurements for the helium simulations, but variations in the Schmidt number did not improve the argon comparisons. The hybrid Reynolds-averaged/large-eddy simulations also over-predicted the mixing layer spreading rate for the helium case, while under-predicting the rate of mixing when argon was used as the injectant. The primary reason conjectured for the discrepancy between the hybrid simulation results and the measurements centered around issues related to the transition from a Reynolds-averaged state to one with resolved turbulent content. Improvements to the inflow conditions were suggested as a remedy to this dilemma. Second-order turbulence statistics were also compared to their modeled Reynolds-averaged counterparts to evaluate the effectiveness of common turbulence closure

  17. Numerical Simulation of Hydrogen Air Supersonic Coaxial Jet

    Science.gov (United States)

    Dharavath, Malsur; Manna, Pulinbehari; Chakraborty, Debasis

    2017-10-01

    In the present study, the turbulent structure of coaxial supersonic H2-air jet is explored numerically by solving three dimensional RANS equations along with two equation k-ɛ turbulence model. Grid independence of the solution is demonstrated by estimating the error distribution using Grid Convergence Index. Distributions of flow parameters in different planes are analyzed to explain the mixing and combustion characteristics of high speed coaxial jets. The flow field is seen mostly diffusive in nature and hydrogen diffusion is confined to core region of the jet. Both single step laminar finite rate chemistry and turbulent reacting calculation employing EDM combustion model are performed to find the effect of turbulence-chemistry interaction in the flow field. Laminar reaction predicts higher H2 mol fraction compared to turbulent reaction because of lower reaction rate caused by turbulence chemistry interaction. Profiles of major species and temperature match well with experimental data at different axial locations; although, the computed profiles show a narrower shape in the far field region. These results demonstrate that standard two equation class turbulence model with single step kinetics based turbulence chemistry interaction can describe H2-air reaction adequately in high speed flows.

  18. Measurement of OH density and air-helium mixture ratio in an atmospheric-pressure helium plasma jet

    International Nuclear Information System (INIS)

    Yonemori, Seiya; Ono, Ryo; Nakagawa, Yusuke; Oda, Tetsuji

    2012-01-01

    The absolute density of OH radicals in an atmospheric-pressure helium plasma jet is measured using laser-induced fluorescence (LIF). The plasma jet is generated in room air by applying a pulsed high voltage onto a quartz tube with helium gas flow. The time-averaged OH density is 0.10 ppm near the quartz tube nozzle, decreasing away from the nozzle. OH radicals are produced from water vapour in the helium flow, which is humidified by water adsorbed on the inner surface of the helium line and the quartz tube. When helium is artificially humidified using a water bubbler, the OH density increases with humidity and reaches 2.5 ppm when the water vapour content is 200 ppm. Two-dimensional distribution of air-helium mixture ratio in the plasma jet is also measured using the decay rate of the LIF signal waveform which is determined by the quenching rate of laser-excited OH radicals. (paper)

  19. Cooling by mixing of helium isotopes

    International Nuclear Information System (INIS)

    Hansen, O.P.; Olsen, M.; Rasmussen, F.B.

    1975-01-01

    The principles of the helium dilution refrigerator are outlined. The lowest temperature attained with a continuously operated dilution refrigerator was about 10 mK, and 5 mK for a limited period when the supply of concentrated 3 He to the mixing chamber was interrupted. (R.S.)

  20. Vortex breakdown in a supersonic jet

    Science.gov (United States)

    Cutler, Andrew D.; Levey, Brian S.

    1991-01-01

    This paper reports a study of a vortex breakdown in a supersonic jet. A supersonic vortical jets were created by tangential injection and acceleration through a convergent-divergent nozzle. Vortex circulation was varied, and the nature of the flow in vortical jets was investigated using several types of flow visualization, including focusing schlieren and imaging of Rayleigh scattering from a laser light sheet. Results show that the vortical jet mixed much more rapidly with the ambient air than a comparable straight jet. When overexpanded, the vortical jet exhibited considerable unsteadiness and showed signs of vortex breakdown.

  1. Experimental study on axisymmetric air intake for the supersonic transport; choonsokukiyo jikutaishogata air intake no jikken kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Sato, T. [Institute of the Space and Astronautical Science,Tokyo (Japan); Takagi, I. [Kawasaki Heavy Industries, Ltd., Kobe (Japan); Kojima, T.; Kobayashi, H. [The University of Tokyo, Tokyo (Japan)

    1998-12-05

    Mixed-compression type axisymmetric air intakes for ATREX engine have been tested in the supersonic wind tunnel from Mach 0.5 to 4 since 1993. The throat area of the intake can be variable with a translating center spike to accomplish starting and off-design operation since the ATREX intake must work well over the wide flight Mach number up to 6. Here are presented effects of the intake design Mach number, the air bleed from a center spike and/or a cowl around the throat, an angle of attack and blunt nose of the spike on the intake performance characteristics, that is total pressure recovery and mass capture ratio. It is found that bleeding from the center spike and the cowl influences mainly on total pressure recovery and mass capture ratio respectively. The advantage of rounding properly off the spike nose is confirmed. Small center spike cone angle and/or blunt nose is sensitive to the angle of attack. (author)

  2. Experimental confirmation of photon-induced spin-flip transitions in helium via triplet metastable yield spectra

    International Nuclear Information System (INIS)

    Rubensson, Jan-Erik; Moise, Angelica; Richter, Robert; Mihelic, Andrej; Bucar, Klemen; Zitnik, Matjaz

    2010-01-01

    Doubly excited states below the N=2 ionization threshold are populated by exciting helium atoms in a supersonic beam with monochromatized synchrotron radiation. The fluorescence decay of these states triggers a radiative cascade back to the ground state with large probability to populate long lived singlet and triplet helium metastable states. The yield of metastables is measured using a multichannel plate detector after the beam has passed a singlet-quenching discharge lamp. The variation of the yield observed with the lamp switched on or off is related to the triplet-singlet mixing of the doubly excited states.

  3. Supersonic copper clusters

    International Nuclear Information System (INIS)

    Powers, D.E.; Hansen, S.G.; Geusic, M.E.; Michalopoulos, D.L.; Smalley, R.E.

    1983-01-01

    Copper clusters ranging in size from 1 to 29 atoms have been prepared in a supersonic beam by laser vaporization of a rotating copper target rod within the throat of a pulsed supersonic nozzle using helium for the carrier gas. The clusters were cooled extensively in the supersonic expansion [T(translational) 1 to 4 K, T(rotational) = 4 K, T(vibrational) = 20 to 70 K]. These clusters were detected in the supersonic beam by laser photoionization with time-of-flight mass analysis. Using a number of fixed frequency outputs of an exciplex laser, the threshold behavior of the photoionization cross section was monitored as a function of cluster size.nce two-photon ionization (R2PI) with mass selective detection allowed the detection of five new electronic band systems in the region between 2690 and 3200 A, for each of the three naturally occurring isotopic forms of Cu 2 . In the process of scanning the R2PI spectrum of these new electronic states, the ionization potential of the copper dimer was determined to be 7.894 +- 0.015 eV

  4. Investigation of Countercurrent Helium-Air Flows in Air-ingress Accidents for VHTRs

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaodong; Christensen, Richard; Oh, Chang

    2013-10-03

    The primary objective of this research is to develop an extensive experimental database for the air- ingress phenomenon for the validation of computational fluid dynamics (CFD) analyses. This research is intended to be a separate-effects experimental study. However, the project team will perform a careful scaling analysis prior to designing a scaled-down test facility in order to closely tie this research with the real application. As a reference design in this study, the team will use the 600 MWth gas turbine modular helium reactor (GT-MHR) developed by General Atomic. In the test matrix of the experiments, researchers will vary the temperature and pressure of the helium— along with break size, location, shape, and orientation—to simulate deferent scenarios and to identify potential mitigation strategies. Under support of the Department of Energy, a high-temperature helium test facility has been designed and is currently being constructed at Ohio State University, primarily for high- temperature compact heat exchanger testing for the VHTR program. Once the facility is in operation (expected April 2009), this study will utilize high-temperature helium up to 900°C and 3 MPa for loss-of-coolant accident (LOCA) depressurization and air-ingress experiments. The project team will first conduct a scaling study and then design an air-ingress test facility. The major parameter to be measured in the experiments is oxygen (or nitrogen) concentration history at various locations following a LOCA scenario. The team will use two measurement techniques: 1) oxygen (or similar type) sensors employed in the flow field, which will introduce some undesirable intrusiveness, disturbing the flow, and 2) a planar laser-induced fluorescence (PLIF) imaging technique, which has no physical intrusiveness to the flow but requires a transparent window or test section that the laser beam can penetrate. The team will construct two test facilities, one for high-temperature helium tests with

  5. Error analysis of supersonic air-to-air ejector schlieren pictures

    Directory of Open Access Journals (Sweden)

    Kolář J.

    2013-04-01

    Full Text Available The scope of this article is focused on general analysis of errors and uncertainties possibly arising from CFD-to-schlieren pictures matching. Analysis is based on classic analytical equations. These are firstly evaluated with the presumption of constant density gradient along the ray course. In other words, the deflection of light-ray caused by density gradient is negligible in compare to the cross size of constant gradient area. It is the aim of this work to determine, whether this presumption is applicable in case of supersonic air-to-air ejector. The colour and black and white schlieren pictures are carried out and compared to CFD results. Simulations had covered various eddy viscosities. Computed pressure gradients are transformed into deflection angles and further to ray displacement. Resulting computed light- ray deflection is matched to experimental results

  6. Exploring the isopycnal mixing and helium-heat paradoxes in a suite of Earth system models

    Science.gov (United States)

    Gnanadesikan, A.; Pradal, M.-A.; Abernathey, R.

    2015-07-01

    This paper uses a suite of Earth system models which simulate the distribution of He isotopes and radiocarbon to examine two paradoxes in Earth science, each of which results from an inconsistency between theoretically motivated global energy balances and direct observations. The helium-heat paradox refers to the fact that helium emissions to the deep ocean are far lower than would be expected given the rate of geothermal heating, since both are thought to be the result of radioactive decay in Earth's interior. The isopycnal mixing paradox comes from the fact that many theoretical parameterizations of the isopycnal mixing coefficient ARedi that link it to baroclinic instability project it to be small (of order a few hundred m2 s-1) in the ocean interior away from boundary currents. However, direct observations using tracers and floats (largely in the upper ocean) suggest that values of this coefficient are an order of magnitude higher. Helium isotopes equilibrate rapidly with the atmosphere and thus exhibit large gradients along isopycnals while radiocarbon equilibrates slowly and thus exhibits smaller gradients along isopycnals. Thus it might be thought that resolving the isopycnal mixing paradox in favor of the higher observational estimates of ARedi might also solve the helium paradox, by increasing the transport of mantle helium to the surface more than it would radiocarbon. In this paper we show that this is not the case. In a suite of models with different spatially constant and spatially varying values of ARedi the distribution of radiocarbon and helium isotopes is sensitive to the value of ARedi. However, away from strong helium sources in the southeastern Pacific, the relationship between the two is not sensitive, indicating that large-scale advection is the limiting process for removing helium and radiocarbon from the deep ocean. The helium isotopes, in turn, suggest a higher value of ARedi below the thermocline than is seen in theoretical

  7. Hybrid Reynolds-Averaged/Large-Eddy Simulations of a Co-Axial Supersonic Free-Jet Experiment

    Science.gov (United States)

    Baurle, R. A.; Edwards, J. R.

    2009-01-01

    Reynolds-averaged and hybrid Reynolds-averaged/large-eddy simulations have been applied to a supersonic coaxial jet flow experiment. The experiment utilized either helium or argon as the inner jet nozzle fluid, and the outer jet nozzle fluid consisted of laboratory air. The inner and outer nozzles were designed and operated to produce nearly pressure-matched Mach 1.8 flow conditions at the jet exit. The purpose of the computational effort was to assess the state-of-the-art for each modeling approach, and to use the hybrid Reynolds-averaged/large-eddy simulations to gather insight into the deficiencies of the Reynolds-averaged closure models. The Reynolds-averaged simulations displayed a strong sensitivity to choice of turbulent Schmidt number. The baseline value chosen for this parameter resulted in an over-prediction of the mixing layer spreading rate for the helium case, but the opposite trend was noted when argon was used as the injectant. A larger turbulent Schmidt number greatly improved the comparison of the results with measurements for the helium simulations, but variations in the Schmidt number did not improve the argon comparisons. The hybrid simulation results showed the same trends as the baseline Reynolds-averaged predictions. The primary reason conjectured for the discrepancy between the hybrid simulation results and the measurements centered around issues related to the transition from a Reynolds-averaged state to one with resolved turbulent content. Improvements to the inflow conditions are suggested as a remedy to this dilemma. Comparisons between resolved second-order turbulence statistics and their modeled Reynolds-averaged counterparts were also performed.

  8. PIV Validation of 3D Multicomponent Model for Cold Spray Within Nitrogen and Helium Supersonic Flow Field

    Science.gov (United States)

    Faizan-Ur-Rab, M.; Zahiri, S. H.; Masood, S. H.; Jahedi, M.; Nagarajah, R.

    2017-06-01

    This study presents the validation of a developed three-dimensional multicomponent model for cold spray process using two particle image velocimetry (PIV) experiments. The k- ɛ type 3D model developed for spherical titanium particles was validated with the measured titanium particle velocity within a nitrogen and helium supersonic jet. The 3D model predicted lower values of particle velocity than the PIV experimental study that used irregularly shaped titanium particles. The results of the 3D model were consistent with the PIV experiment that used spherical titanium powder. The 3D model simulation of particle velocity within the helium and nitrogen jet was coupled with an estimation of titanium particle temperature. This was achieved with the consideration of the fact that cold spray particle temperature is difficult and expensive to measure due to considerably lower temperature of particles than thermal spray. The model predicted an interesting pattern of particle size distribution with respect to the location of impact with a concentration of finer particles close to the jet center. It is believed that the 3D model outcomes for particle velocity, temperature and location could be a useful tool to optimize system design, deposition process and mechanical properties of the additively manufactured cold spray structures.

  9. Isotopic alloying to tailor helium production rates in mixed spectrum reactors

    International Nuclear Information System (INIS)

    Mansur, L.K.; Rowcliffe, A.F.; Grossbeck, M.L.; Stoller, R.E.

    1985-01-01

    The purposes of this work are to increase the understanding of mechanisms by which helium affects microstructure and properties, to aid in the development of materials for fusion reactors, and to obtain data from fission reactors in regimes of direct interest for fusion reactor applications. Isotopic alloying is examined as a means of manipulating the ratio of helium transmutations to atom displacements in mixed spectrum reactors. The application explored is based on artificially altering the relative abundances of the stable isotopes of nickel to systematically vary the fraction of 58 Ni in nickel bearing alloys. The method of calculating helium production rates is described. Results of example calculations for proposed experiments in the High Flux Isotope Reactor are discussed

  10. Helium diffraction study of pentacene films on Au(1 1 1)

    Energy Technology Data Exchange (ETDEWEB)

    Albayrak, E. [Department of Materials and Metallurgical Engineering, Ahi Evran University, Kırşehir 40000 (Turkey); Danışman, M.F., E-mail: danisman@metu.edu.tr [Department of Chemistry, Middle East Technical University, Ankara 06531 (Turkey)

    2014-03-01

    Highlights: • Pentacene films were grown by supersonic molecular beam deposition on Au(1 1 1). • Simultaneous helium scattering and quartz crystal resonance frequency shift measurements were performed. • Helium diffraction results were consistent with a (6 × 3) monolayer structure. • No ordered multilayers could be observed. - Abstract: Here we present a helium atom diffraction study of pentacene films on Au(1 1 1) surface prepared by supersonic molecular beam deposition. Though investigated parameter space was limited no significant difference between the films prepared by different deposition energies was observed. Completion of monolayer coverage was confirmed by simultaneous helium scattering and quartz crystal resonance frequency shift measurements during pentacene film growth on the gold electrode of a quartz resonator. Monolayer films were found to adopt a (6 × 3) unit cell which was also observed for pentacene monolayers on Ag(1 1 1). However no ordered multilayer film structure could be observed which is in contrast with the previous Ag(1 1 1) studies.

  11. Dual-Pump CARS Development and Application to Supersonic Combustion

    Science.gov (United States)

    Magnotti, Gaetano

    Successful design of hypersonic air-breathing engines requires new computational fluid dynamics (CFD) models for turbulence and turbulence-chemistry interaction in supersonic combustion. Unfortunately, not enough data are available to the modelers to develop and validate their codes, due to difficulties in taking measurements in such a harsh environment. Dual-pump coherent anti-Stokes Raman spectroscopy (CARS) is a non-intrusive, non-linear, laser-based technique that provides temporally and spatially resolved measurements of temperature and absolute mole fractions of N2, O2 and H2 in H2-air flames. A dual-pump CARS instrument has been developed to obtain measurements in supersonic combustion and generate databases for the CFD community. Issues that compromised previous attempts, such as beam steering and high irradiance perturbation effects, have been alleviated or avoided. Improvements in instrument precision and accuracy have been achieved. An axis-symmetric supersonic combusting coaxial jet facility has been developed to provide a simple, yet suitable flow to CFD modelers. The facility provides a central jet of hot "vitiated air" simulating the hot air entering the engine of a hypersonic vehicle flying at Mach numbers between 5 and 7. Three different silicon carbide nozzles, with exit Mach number 1, 1.6 and 2, are used to provide flows with the effects of varying compressibility. H2 co-flow is available in order to generate a supersonic combusting free jet. Dual-pump CARS measurements have been obtained for varying values of flight and exit Mach numbers at several locations. Approximately one million Dual-pump CARS single shots have been collected in the supersonic jet for varying values of flight and exit Mach numbers at several locations. Data have been acquired with a H2 co-flow (combustion case) or a N 2 co-flow (mixing case). Results are presented and the effects of the compressibility and of the heat release are discussed.

  12. Variable geometry for supersonic mixed-compression inlets

    Science.gov (United States)

    Sorensen, N. E.; Latham, E. A.; Smeltzer, D. B.

    1974-01-01

    Study of two-dimensional and axisymmetric supersonic mixed-compression inlet systems has shown that the geometry of both systems can be varied to provide adequate transonic airflow to satisfy the airflow demand of most jet engines. Collapsing geometry systems for both types of inlet systems provide a generous amount of transonic airflow for any design Mach number inlet system. However, the mechanical practicality of collapsing centerbodies for axisymmetric inlet systems is doubtful. Therefore, translating centerbody axisymmetric inlets with auxiliary airflow systems to augment the transonic airflow capability are an attractive alternative. Estimates show that the capture mass-flow ratio at Mach number 1.0 can be increased approximately 0.20 for a very short axisymmetric inlet system designed for Mach number 2.37. With this increase in mass-flow ratio, even variable-cycle engine transonic airflow demand can be matched without oversizing the inlet at the design Mach number.

  13. Digital integrated control of a Mach 2.5 mixed-compression supersonic inlet and an augmented mixed-flow turbofan engine

    Science.gov (United States)

    Batterton, P. G.; Arpasi, D. J.; Baumbick, R. J.

    1974-01-01

    A digitally implemented integrated inlet-engine control system was designed and tested on a mixed-compression, axisymmetric, Mach 2.5, supersonic inlet with 45 percent internal supersonic area contraction and a TF30-P-3 augmented turbofan engine. The control matched engine airflow to available inlet airflow. By monitoring inlet terminal shock position and over-board bypass door command, the control adjusted engine speed so that in steady state, the shock would be at the desired location and the overboard bypass doors would be closed. During engine-induced transients, such as augmentor light-off and cutoff, the inlet operating point was momentarily changed to a more supercritical point to minimize unstarts. The digital control also provided automatic inlet restart. A variable inlet throat bleed control, based on throat Mach number, provided additional inlet stability margin.

  14. Climate impact of supersonic air traffic: an approach to optimize a potential future supersonic fleet ─ results from the EU-project SCENIC

    Directory of Open Access Journals (Sweden)

    I.S.A. Isaksen

    2007-10-01

    Full Text Available The demand for intercontinental transportation is increasing and people are requesting short travel times, which supersonic air transportation would enable. However, besides noise and sonic boom issues, which we are not referring to in this investigation, emissions from supersonic aircraft are known to alter the atmospheric composition, in particular the ozone layer, and hence affect climate significantly more than subsonic aircraft. Here, we suggest a metric to quantitatively assess different options for supersonic transport with regard to the potential destruction of the ozone layer and climate impacts. Options for fleet size, engine technology (nitrogen oxide emission level, cruising speed, range, and cruising altitude, are analyzed, based on SCENIC emission scenarios for 2050, which underlay the requirements to be as realistic as possible in terms of e.g., economic markets and profitable market penetration. This methodology is based on a number of atmosphere-chemistry and climate models to reduce model dependencies. The model results differ significantly in terms of the response to a replacement of subsonic aircraft by supersonic aircraft, e.g., concerning the ozone impact. However, model differences are smaller when comparing the different options for a supersonic fleet. Those uncertainties were taken into account to make sure that our findings are robust. The base case scenario, where supersonic aircraft get in service in 2015, a first fleet fully operational in 2025 and a second in 2050, leads in our simulations to a near surface temperature increase in 2050 of around 7 mK and with constant emissions afterwards to around 21 mK in 2100. The related total radiative forcing amounts to 22 mWm2 in 2050, with an uncertainty between 9 and 29 mWm2. A reduced supersonic cruise altitude or speed (from Mach 2 to Mach 1.6 reduces both, climate impact and ozone destruction, by around 40%. An increase in the range of the supersonic aircraft leads to

  15. Summary of the First High-Altitude, Supersonic Flight Dynamics Test for the Low-Density Supersonic Decelerator Project

    Science.gov (United States)

    Clark, Ian G.; Adler, Mark; Manning, Rob

    2015-01-01

    NASA's Low-Density Supersonic Decelerator Project is developing and testing the next generation of supersonic aerodynamic decelerators for planetary entry. A key element of that development is the testing of full-scale articles in conditions relevant to their intended use, primarily the tenuous Mars atmosphere. To achieve this testing, the LDSD project developed a test architecture similar to that used by the Viking Project in the early 1970's for the qualification of their supersonic parachute. A large, helium filled scientific balloon is used to hoist a 4.7 m blunt body test vehicle to an altitude of approximately 32 kilometers. The test vehicle is released from the balloon, spun up for gyroscopic stability, and accelerated to over four times the speed of sound and an altitude of 50 kilometers using a large solid rocket motor. Once at those conditions, the vehicle is despun and the test period begins. The first flight of this architecture occurred on June 28th of 2014. Though primarily a shake out flight of the new test system, the flight was also able to achieve an early test of two of the LDSD technologies, a large 6 m diameter Supersonic Inflatable Aerodynamic Decelerator (SIAD) and a large, 30.5 m nominal diameter supersonic parachute. This paper summarizes this first flight.

  16. Climate impact of supersonic air traffic: an approach to optimize a potential future supersonic fleet - results from the EU-project SCENIC

    Science.gov (United States)

    Grewe, V.; Stenke, A.; Ponater, M.; Sausen, R.; Pitari, G.; Iachetti, D.; Rogers, H.; Dessens, O.; Pyle, J.; Isaksen, I. S. A.; Gulstad, L.; Søvde, O. A.; Marizy, C.; Pascuillo, E.

    2007-10-01

    The demand for intercontinental transportation is increasing and people are requesting short travel times, which supersonic air transportation would enable. However, besides noise and sonic boom issues, which we are not referring to in this investigation, emissions from supersonic aircraft are known to alter the atmospheric composition, in particular the ozone layer, and hence affect climate significantly more than subsonic aircraft. Here, we suggest a metric to quantitatively assess different options for supersonic transport with regard to the potential destruction of the ozone layer and climate impacts. Options for fleet size, engine technology (nitrogen oxide emission level), cruising speed, range, and cruising altitude, are analyzed, based on SCENIC emission scenarios for 2050, which underlay the requirements to be as realistic as possible in terms of e.g., economic markets and profitable market penetration. This methodology is based on a number of atmosphere-chemistry and climate models to reduce model dependencies. The model results differ significantly in terms of the response to a replacement of subsonic aircraft by supersonic aircraft, e.g., concerning the ozone impact. However, model differences are smaller when comparing the different options for a supersonic fleet. Those uncertainties were taken into account to make sure that our findings are robust. The base case scenario, where supersonic aircraft get in service in 2015, a first fleet fully operational in 2025 and a second in 2050, leads in our simulations to a near surface temperature increase in 2050 of around 7 mK and with constant emissions afterwards to around 21 mK in 2100. The related total radiative forcing amounts to 22 mWmargin-left: -1.3em; margin-right: .5em; vertical-align: -15%; font-size: .7em; color: #000;">m2 in 2050, with an uncertainty between 9 and 29 mWmargin-left: -1.3em; margin-right: .5em; vertical-align: -15%; font-size: .7em; color: #000;">m2. A reduced supersonic cruise

  17. Artificial dissipation models applied to Navier-Stokes equations for analysis of supersonic flow of helium gas around a geometric configuration ramp type

    International Nuclear Information System (INIS)

    Rocha, Jussie Soares da; Maciel, Edisson Savio de G.; Lira, Carlos A.B. de O.

    2015-01-01

    Very High Temperature Gas Cooled Reactors - VHTGRs are studied by several research groups for the development of advanced reactors that can meet the world's growing energy demand. The analysis of the flow of helium coolant around the various geometries at the core of these reactors through computational fluid dynamics techniques is an essential tool in the development of conceptual designs of nuclear power plants that provide added safety. This analysis suggests a close analogy with aeronautical cases widely studied using computational numerical techniques to solve systems of governing equations for the flow involved. The present work consists in solving the Navier-Stokes equations in a conservative form, in two-dimensional space employing a finite difference formulation for spatial discretization using the Euler method for explicit marching in time. The physical problem of supersonic laminar flow of helium gas along a ramp configuration is considered. For this, the Jameson and Mavriplis algorithm and the artificial dissipations models linear and nonlinear of Pulliam was implemented. A spatially variable time step is employed aiming to accelerate the convergence to the steady state solution. The main purpose of this work is to study the cited dissipation models and describe their characteristics in relation to the overall quality of the solution, aiming preliminary results for the development of computational tools of dynamic analysis of helium flow for the VHTGR core. (author)

  18. Active Control Strategies to Optimize Supersonic Fuel-Air Mixing for Combustion Associated with Fully Modulated Transverse Jet in Cross Flow

    National Research Council Canada - National Science Library

    Ghenai, C; Philippidis, G. P; Lin, C. X

    2005-01-01

    ... (subsonic- supersonic) combustion studies. A high-speed imaging system was used for the visualization of pure liquid jet, aerated liquid jet and pulsed aerated jet injection into a supersonic cross flow at Mach number 1.5...

  19. Numerical analysis on flows in supersonic air intakes. Choonsoku kuki toriireguchi no nagare no suchi kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, T.; Tamura, N.; Sekino, N.; Tsujimura, N. (Nissan Motor Co. Ltd., Tokyo (Japan))

    1992-06-25

    By applying computational fluid dynamics (CFD) to a flow in the supersonic air intake of rocket, appropriateness of computational result was confirmed from a comparison with the wind tunnel test result. In order for the air intake type rocket to heighten the combustion efficiency of fuel and air, it is important to possibly minimize the total pressure loss of air which has been taken in and maintain the air flow rate. A numerical analysis was made through modeling the sectional shape of wind tunnel test body and analyzing the two-dimensional flow by Reynolds-averaged Navier-Stokes equations. The computational result of analysis coincided well with the pressure measurement result in wind tunnel test. Having elucidated the main factors of total pressure loss in a two-dimensionally curved flow passage, the CFD computation gave a possibility that the total pressure loss is considerably low against that passage if improved in shape. If simultaneously used with a characteristic curve method, the CFD computation made it possible to optimize the pressure recovery characteristics in the axially symmetric air intake. The CFD can be expected to be an effective method of designing the basic shape of supersonic air intake. 9 refs., 14 figs.

  20. CARS Temperature Measurements in a Combustion-Heated Supersonic Jet

    Science.gov (United States)

    Tedder, S. A.; Danehy, P. M.; Magnotti, G.; Cutler, A. D.

    2009-01-01

    Measurements were made in a combustion-heated supersonic axi-symmetric free jet from a nozzle with a diameter of 6.35 cm using dual-pump Coherent Anti-Stokes Raman Spectroscopy (CARS). The resulting mean and standard deviation temperature maps are presented. The temperature results show that the gas temperature on the centerline remains constant for approximately 5 nozzle diameters. As the heated gas mixes with the ambient air further downstream the mean temperature decreases. The standard deviation map shows evidence of the increase of turbulence in the shear layer as the jet proceeds downstream and mixes with the ambient air. The challenges of collecting data in a harsh environment are discussed along with influences to the data. The yield of the data collected is presented and possible improvements to the yield is presented are discussed.

  1. Supersonic Combustion of Hydrogen Jets System in Hypersonic Stream

    International Nuclear Information System (INIS)

    Zhapbasbaev, U.K.; Makashev, E.P.

    2003-01-01

    The data of calculated theoretical investigations of diffusive combustion of plane supersonic hydrogen jets in hypersonic stream received with Navier-Stokes parabola equations closed by one-para metrical (k-l) model of turbulence and multiply staged mechanism of hydrogen oxidation are given. Combustion mechanisms depending on the operating parameters are discussing. The influences of air stream composition and ways off fuel feed to the length of ignition delay and level quantity of hydrogen bum-out have been defined. The calculated theoretical results of investigations permit to make the next conclusions: 1. The diffusive combustion of the system of plane supersonic hydrogen jets in hypersonic flow happens in the cellular structures with alternation zones of intensive running of chemical reactions with their inhibition zones. 2. Gas dynamic and heat Mach waves cause a large - scale viscous formation intensifying mixing of fuel with oxidizer. 3. The system ignition of plane supersonic hydrogen jets in hypersonic airy co-flow happens with the formation of normal flame front of hydrogen airy mixture with transition to the diffusive combustion. 4. The presence of active particles in the flow composition initiates the ignition of hydrogen - airy mixture, provides the intensive running of chemical reactions and shortens the length of ignition delay. 5. The supersonic combustion of hydrogel-airy mixture is characterized by two zones: the intensive chemical reactions with an active energy heat release is occurring in the first zone and in the second - a slow hydrogen combustion limited by the mixing of fuel with oxidizer. (author)

  2. Helium-air exchange flows through partitioned opening and two-opening

    International Nuclear Information System (INIS)

    Kang, T. I.

    1997-01-01

    This paper describes experimental investigations of helium-air exchange flows through partitioned opening and two-opening. Such exchange flows may occur following rupture accident of stand pipe in high temperature engineering test reactor. A test vessel with the two types of small opening on top of test cylinder is used for experiments. An estimation method of mass increment is developed to measure the exchange flow rate. Upward flow of the helium and downward flow of the air in partitioned opening system interact out of entrance and exit of the opening. Therefore, an experiment with two-opening system is made to investigate effect of the fluids interaction of partitioned opening system. As a result of comparison of the exchange flow rates between two types of the opening system, it is demonstrated that the exchange flow rate of the two-opening system is larger than that of the partitioned opening system because of absence of the effect of fluids interaction. (author)

  3. Study on flow rate measurement and visualization of helium-air exchange flow through a small opening

    International Nuclear Information System (INIS)

    Fumizawa, Motoo

    1992-01-01

    This paper deals with an experimental investigation on buoyancy-driven exchange flows through horizontal and inclined openings. The method of the mass increment was developed to measure the flow rate in helium-air system and a displacement fringe technique was adopted in Mach-Zehnder interferometer to visualize the flow. As the result, the followings were obtained: Flow visualization results indicate that the upward and downward plumes of helium and air break through the opening intermittently, and they swing in the lateral direction through the horizontal opening. It is clearly visualized that the exchange flows through the inclined openings take place smoothly and stably in the separated passages. The inclination angle for the maximum Froude number decreases with increasing length-to-diameter ratio in the helium-air system, on the contrary to Mercer's experimental results in the water-brine system indicating that the angle remains almost constant. (author)

  4. Mixing ventilation guide on mixing air distribution design

    CERN Document Server

    Kandzia, Claudia; Kosonen, Risto; Krikor Melikov, Arsen; Nielsen, Peter Vilhelm

    2013-01-01

    In this guidebook most of the known and used in practice methods for achieving mixing air distribution are discussed. Mixing ventilation has been applied to many different spaces providing fresh air and thermal comfort to the occupants. Today, a design engineer can choose from large selection of air diffusers and exhaust openings.

  5. Thermophysical properties of hydrogen-helium mixtures: re-examination of the mixing rules via quantum molecular dynamics simulations.

    Science.gov (United States)

    Wang, Cong; He, Xian-Tu; Zhang, Ping

    2013-09-01

    Thermophysical properties of hydrogen, helium, and hydrogen-helium mixtures have been investigated in the warm dense matter regime at electron number densities ranging from 6.02 × 10^{29} ∼ 2.41 × 10^{30} m^{-3} and temperatures from 4000 to 20000 K via quantum molecular dynamics simulations. We focus on the dynamical properties such as the equation of states, diffusion coefficients, and viscosity. Mixing rules (density matching, pressure matching, and binary ionic mixing rules) have been validated by checking composite properties of pure species against that of the fully interacting mixture derived from quantum molecular dynamics simulations. These mixing rules reproduce pressures within 10% accuracy, while it is 75% and 50% for the diffusion and viscosity, respectively. The binary ionic mixing rule moves the results into better agreement. Predictions from one component plasma model are also provided and discussed.

  6. An investigation on the supersonic ejectors working with mixture of air and steam

    International Nuclear Information System (INIS)

    Shafaee, Maziar; Tavakol, Mohsen; Riazi, Rouzbeh; Sharifi, Navid

    2015-01-01

    This study evaluated the performance of an ejector using two streams of fluids as suction flow. Three motive flow pressures were considered when investigating ejector performance; the suction flow pressure was assumed to be constant. The suction flow consisted of a mixture of air and steam and the mass fraction of air in this mixture varied from 0 to 1. The ejector performance curves were analyzed for different mass fractions of air. The results indicate that variation of the mass fraction of air in the suction flow mixture had a significant effect on ejector performance. At all motive flow pressures, the ejector entertainment ratio increased as the mass fraction of air in the suction flow increased. The results also show that the sensitivity of ejector performance to variation in the mass fraction of air in the suction flow decreases at higher motive flow pressures. An increase in motive flow pressure caused the transition from supersonic to subsonic flow to occur at higher ejector discharge pressures

  7. An investigation on the supersonic ejectors working with mixture of air and steam

    Energy Technology Data Exchange (ETDEWEB)

    Shafaee, Maziar; Tavakol, Mohsen; Riazi, Rouzbeh [University of Tehran, Tehran (Iran, Islamic Republic of); Sharifi, Navid [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2015-11-15

    This study evaluated the performance of an ejector using two streams of fluids as suction flow. Three motive flow pressures were considered when investigating ejector performance; the suction flow pressure was assumed to be constant. The suction flow consisted of a mixture of air and steam and the mass fraction of air in this mixture varied from 0 to 1. The ejector performance curves were analyzed for different mass fractions of air. The results indicate that variation of the mass fraction of air in the suction flow mixture had a significant effect on ejector performance. At all motive flow pressures, the ejector entertainment ratio increased as the mass fraction of air in the suction flow increased. The results also show that the sensitivity of ejector performance to variation in the mass fraction of air in the suction flow decreases at higher motive flow pressures. An increase in motive flow pressure caused the transition from supersonic to subsonic flow to occur at higher ejector discharge pressures.

  8. ON HELIUM MIXING IN QUASI-GLOBAL SIMULATIONS OF THE INTRACLUSTER MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Berlok, Thomas; Pessah, Martin E., E-mail: berlok@nbi.dk, E-mail: mpessah@nbi.dk [Niels Bohr International Academy, Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark)

    2016-12-20

    The assumption of a spatially uniform helium distribution in the intracluster medium (ICM) can lead to biases in the estimates of key cluster parameters if composition gradients are present. The helium concentration profile in galaxy clusters is unfortunately not directly observable. Current models addressing the putative sedimentation are one-dimensional and parametrize the presence of magnetic fields in a crude way, ignoring the weakly collisional, magnetized nature of the medium. When these effects are considered, a wide variety of instabilities can play an important role in the plasma dynamics. In a series of recent papers, we have developed the local, linear theory of these instabilities and addressed their nonlinear development with a modified version of Athena. Here, we extend our study by developing a quasi-global approach that we use to simulate the mixing of helium as induced by generalizations of the heat-flux-driven buoyancy instability (HBI) and the magnetothermal instability, which feed off thermal and composition gradients. In the inner region of the ICM, mixing can occur over a few gigayears, after which the average magnetic field inclination angle is ∼30°–50°, resulting in an averaged Spitzer parameter higher by about 20% than the value obtained in homogeneous simulations. In the cluster outskirts the instabilities are rather inefficient, due to the shallow gradients. This suggests that composition gradients in cluster cores might be shallower than one-dimensional models predict. More quantitative statements demand more refined models that can incorporate the physics driving the sedimentation process and simultaneously account for the weakly collisional nature of the plasma.

  9. Contrasting characteristics of sub-microsecond pulsed atmospheric air and atmospheric pressure helium-oxygen glow discharges

    International Nuclear Information System (INIS)

    Walsh, J L; Liu, D X; Iza, F; Kong, M G; Rong, M Z

    2010-01-01

    Glow discharges in air are often considered to be the ultimate low-temperature atmospheric pressure plasmas for numerous chamber-free applications. This is due to the ubiquitous presence of air and the perceived abundance of reactive oxygen and nitrogen species in air plasmas. In this paper, sub-microsecond pulsed atmospheric air plasmas are shown to produce a low concentration of excited oxygen atoms but an abundance of excited nitrogen species, UV photons and ozone molecules. This contrasts sharply with the efficient production of excited oxygen atoms in comparable helium-oxygen discharges. Relevant reaction chemistry analysed with a global model suggests that collisional excitation of O 2 by helium metastables is significantly more efficient than electron dissociative excitation of O 2 , electron excitation of O and ion-ion recombination. These results suggest different practical uses of the two oxygen-containing atmospheric discharges, with air plasmas being well suited for nitrogen and UV based chemistry and He-O 2 plasmas for excited atomic oxygen based chemistry. (fast track communication)

  10. Linear models for sound from supersonic reacting mixing layers

    Science.gov (United States)

    Chary, P. Shivakanth; Samanta, Arnab

    2016-12-01

    We perform a linearized reduced-order modeling of the aeroacoustic sound sources in supersonic reacting mixing layers to explore their sensitivities to some of the flow parameters in radiating sound. Specifically, we investigate the role of outer modes as the effective flow compressibility is raised, when some of these are expected to dominate over the traditional Kelvin-Helmholtz (K-H) -type central mode. Although the outer modes are known to be of lesser importance in the near-field mixing, how these radiate to the far-field is uncertain, on which we focus. On keeping the flow compressibility fixed, the outer modes are realized via biasing the respective mean densities of the fast (oxidizer) or slow (fuel) side. Here the mean flows are laminar solutions of two-dimensional compressible boundary layers with an imposed composite (turbulent) spreading rate, which we show to significantly alter the growth of instability waves by saturating them earlier, similar to in nonlinear calculations, achieved here via solving the linear parabolized stability equations. As the flow parameters are varied, instability of the slow modes is shown to be more sensitive to heat release, potentially exceeding equivalent central modes, as these modes yield relatively compact sound sources with lesser spreading of the mixing layer, when compared to the corresponding fast modes. In contrast, the radiated sound seems to be relatively unaffected when the mixture equivalence ratio is varied, except for a lean mixture which is shown to yield a pronounced effect on the slow mode radiation by reducing its modal growth.

  11. Mixing Ventilation. Guide on mixing air distribution design

    DEFF Research Database (Denmark)

    Kandzia, Claudia; Kosonen, Risto; Melikov, Arsen Krikor

    In this guidebook most of the known and used in practice methods for achieving mixing air distribution are discussed. Mixing ventilation has been applied to many different spaces providing fresh air and thermal comfort to the occupants. Today, a design engineer can choose from large selection...

  12. Experimental studies on helium release and stratification within the AIHMS facility

    International Nuclear Information System (INIS)

    Prabhakar, Aneesh; Agrawal, Nilesh; Raghavan, V.; Das, Sarit K.

    2015-01-01

    Hydrogen is generated during core meltdown accidents in nuclear power plants. The study of hydrogen release and mixing within the containment is an important area of safety research. An experimental setup called the AERB-IIT Madras Hydrogen Mixing Studies (AIHMS) facility is setup at IIT Madras to study the distribution of helium (an inert surrogate to hydrogen) subsequent to release as a jet. The present paper gives details of the design, fabrication and instrumentation of the AIHMS facility. It then compares the features of the facility with respect to other facilities existing for hydrogen mitigation studies. Then it gives details of the experiments on concentration build-up studies as a result of injection of gases (air and helium) performed in this experimental facility. (author)

  13. The treatment of mixing in core helium-burning models - III. Suppressing core breathing pulses with a new constraint on overshoot

    Science.gov (United States)

    Constantino, Thomas; Campbell, Simon W.; Lattanzio, John C.

    2017-12-01

    Theoretical predictions for the core helium burning phase of stellar evolution are highly sensitive to the uncertain treatment of mixing at convective boundaries. In the last few years, interest in constraining the uncertain structure of their deep interiors has been renewed by insights from asteroseismology. Recently, Spruit proposed a limit for the rate of growth of helium-burning convective cores based on the higher buoyancy of material ingested from outside the convective core. In this paper we test the implications of such a limit for stellar models with a range of initial mass and metallicity. We find that the constraint on mixing beyond the Schwarzschild boundary has a significant effect on the evolution late in core helium burning, when core breathing pulses occur and the ingestion rate of helium is fastest. Ordinarily, core breathing pulses prolong the core helium burning lifetime to such an extent that models are at odds with observations of globular cluster populations. Across a wide range of initial stellar masses (0.83 ≤ M/M⊙ ≤ 5), applying the Spruit constraint reduces the core helium burning lifetime because core breathing pulses are either avoided or their number and severity reduced. The constraint suggested by Spruit therefore helps to resolve significant discrepancies between observations and theoretical predictions. Specifically, we find improved agreement for R2 (the observed ratio of asymptotic giant branch to horizontal branch stars in globular clusters), the luminosity difference between these two groups, and in asteroseismology, the mixed-mode period spacing detected in red clump stars in the Kepler field.

  14. Effect of Axisymmetric Aft Wall Angle Cavity in Supersonic Flow Field

    Science.gov (United States)

    Jeyakumar, S.; Assis, Shan M.; Jayaraman, K.

    2018-03-01

    Cavity plays a significant role in scramjet combustors to enhance mixing and flame holding of supersonic streams. In this study, the characteristics of axisymmetric cavity with varying aft wall angles in a non-reacting supersonic flow field are experimentally investigated. The experiments are conducted in a blow-down type supersonic flow facility. The facility consists of a supersonic nozzle followed by a circular cross sectional duct. The axisymmetric cavity is incorporated inside the duct. Cavity aft wall is inclined with two consecutive angles. The performance of the aft wall cavities are compared with rectangular cavity. Decreasing aft wall angle reduces the cavity drag due to the stable flow field which is vital for flame holding in supersonic combustor. Uniform mixing and gradual decrease in stagnation pressure loss can be achieved by decreasing the cavity aft wall angle.

  15. Parameters of the plasma of a dc pulsating discharge in a supersonic air flow

    Energy Technology Data Exchange (ETDEWEB)

    Shibkov, V. M., E-mail: shibkov@phys.msu.ru; Shibkova, L. V.; Logunov, A. A. [Moscow State University, Faculty of Physics (Russian Federation)

    2017-03-15

    A dc discharge in a cold (T = 200 K) supersonic air flow at a static pressure of 200–400 Torr was studied experimentally. The excited unsteady pulsating discharge has the form of a thin plasma channel with a diameter of ≤1 mm, stretched downstream the flow. Depending on the discharge current, the pulsation frequency varies from 800 to 1600 Hz and the electron temperature varies from 8000 to 15000 K.

  16. Supersonic Combustion in Air-Breathing Propulsion Systems for Hypersonic Flight

    Science.gov (United States)

    Urzay, Javier

    2018-01-01

    Great efforts have been dedicated during the last decades to the research and development of hypersonic aircrafts that can fly at several times the speed of sound. These aerospace vehicles have revolutionary applications in national security as advanced hypersonic weapons, in space exploration as reusable stages for access to low Earth orbit, and in commercial aviation as fast long-range methods for air transportation of passengers around the globe. This review addresses the topic of supersonic combustion, which represents the central physical process that enables scramjet hypersonic propulsion systems to accelerate aircrafts to ultra-high speeds. The description focuses on recent experimental flights and ground-based research programs and highlights associated fundamental flow physics, subgrid-scale model development, and full-system numerical simulations.

  17. Helium dilution refrigerator

    International Nuclear Information System (INIS)

    1973-01-01

    A new system of continuous heat exchange for a helium dilution refrigerator is proposed. The 3 He effluent tube is concurrent with the affluent mixed helium tube in a vertical downward direction. Heat exchange efficiency is enhanced by placing in series a number of elements with an enlarged surface area

  18. Stable electron beams from laser wakefield acceleration with few-terawatt driver using a supersonic air jet

    Science.gov (United States)

    Boháček, K.; Kozlová, M.; Nejdl, J.; Chaulagain, U.; Horný, V.; Krůs, M.; Ta Phuoc, K.

    2018-03-01

    The generation of stable electron beams produced by the laser wakefield acceleration mechanism with a few-terawatt laser system (600 mJ, 50 fs) in a supersonic synthetic air jet is reported and the requirements necessary to build such a stable electron source are experimentally investigated in conditions near the bubble regime threshold. The resulting electron beams have stable energies of (17.4 ± 1.1) MeV and an energy spread of (13.5 ± 1.5) MeV (FWHM), which has been achieved by optimizing the properties of the supersonic gas jet target for the given laser system. Due to the availability of few-terawatt laser systems in many laboratories around the world these stable electron beams open possibilities for applications of this type of particle source.

  19. Separation of compressor oil from helium

    International Nuclear Information System (INIS)

    Strauss, R.; Perrotta, K.A.

    1982-01-01

    Compression of helium by an oil-sealed rorary screw compressor entrains as much as 4000 parts per million by weight of liquid and vapor oil impurities in the gas. The reduction below about 0.1 ppm for cryogenic applications is discussed. Oil seperation equipment designed for compressed air must be modified significantly to produce the desired results with helium. The main differences between air and helium filtration are described. A description of the coalescers is given with the continuous coalescing of liquid mist from air or other gas illustrated. Oil vapor in helium is discussed in terms of typical compressor oils, experimental procedure for measuring oil vapor concentration, measured volatile hydrocarbons in the lubricants, and calculated concentration of oil vapor in Helium. Liquid oil contamination in helium gas can be reduced well below 0.1 ppm by a properly designed multiple state coalescing filter system containing graded efficiency filter elements. The oil vapor problem is best attached by efficiently treating the oil to remove most of the colatiles before charging the compressor

  20. Supersonic liquid jets: Their generation and shock wave characteristics

    Science.gov (United States)

    Pianthong, K.; Zakrzewski, S.; Behnia, M.; Milton, B. E.

    The generation of high-speed liquid (water and diesel fuel) jets in the supersonic range using a vertical single-stage powder gun is described. The effect of projectile velocity and mass on the jet velocity is investigated experimentally. Jet exit velocities for a set of nozzle inner profiles (e.g. straight cone with different cone angles, exponential, hyperbolic etc.) are compared. The optimum condition to achieve the maximum jet velocity and hence better atomization and mixing is then determined. The visual images of supersonic diesel fuel jets (velocity about 2000 m/s) were obtained by the shadowgraph method. This provides better understanding of each stage of the generation of the jets and makes the study of their characteristics and the potential for auto-ignition possible. In the experiments, a pressure relief section has been used to minimize the compressed air wave ahead of the projectile. To clarify the processes inside the section, additional experiments have been performed with the use of the shadowgraph method, showing the projectile travelling inside and leaving the pressure relief section at a velocity of about 1100 m/s.

  1. Do supersonic aircraft avoid contrails?

    Directory of Open Access Journals (Sweden)

    A. Stenke

    2008-02-01

    Full Text Available The impact of a potential future fleet of supersonic aircraft on contrail coverage and contrail radiative forcing is investigated by means of simulations with the general circulation model ECHAM4.L39(DLR including a contrail parameterization. The model simulations consider air traffic inventories of a subsonic fleet and of a combined fleet of sub- and supersonic aircraft for the years 2025 and 2050, respectively. In case of the combined fleet, part of the subsonic fleet is replaced by supersonic aircraft. The combined air traffic scenario reveals a reduction in contrail cover at subsonic cruise levels (10 to 12 km in the northern extratropics, especially over the North Atlantic and North Pacific. At supersonic flight levels (18 to 20 km, contrail formation is mainly restricted to tropical regions. Only in winter is the northern extratropical stratosphere above the 100 hPa level cold enough for the formation of contrails. Total contrail coverage is only marginally affected by the shift in flight altitude. The model simulations indicate a global annual mean contrail cover of 0.372% for the subsonic and 0.366% for the combined fleet in 2050. The simulated contrail radiative forcing is most closely correlated to the total contrail cover, although contrails in the tropical lower stratosphere are found to be optically thinner than contrails in the extratropical upper troposphere. The global annual mean contrail radiative forcing in 2050 (2025 amounts to 24.7 mW m−2 (9.4 mW m−2 for the subsonic fleet and 24.2 mW m−2 (9.3 mW m−2 for the combined fleet. A reduction of the supersonic cruise speed from Mach 2.0 to Mach 1.6 leads to a downward shift in contrail cover, but does not affect global mean total contrail cover and contrail radiative forcing. Hence the partial substitution of subsonic air traffic leads to a shift of contrail occurrence from mid to low latitudes, but the resulting change in

  2. Measurement of air entrainment in plasma jets

    International Nuclear Information System (INIS)

    Fincke, J.R.; Rodriquez, R.; Pentecost, C.G.

    1990-01-01

    The concentration and temperature of air entrained into argon and helium plasma jets has been measured using coherent anti-Stokes Raman spectroscopy (CARS). The argon plasma flow field is characterized by a short region of well behaved laminar flow near the nozzle exit followed by an abrupt transition to turbulence. Once the transition of turbulence occurs, air is rapidly mixed into the jet core. The location of the transition region is determined by the rapid cooling of the jet and the resulting increase in Reynolds number. In contrast, the helium plasma flow field never exceeds a Reynolds number of 200 and remains laminar. The entrainment process in this case is controlled by molecular diffusion rather than turbulent mixing. 9 refs., 5 figs., 1 tab

  3. FAST TRACK COMMUNICATION: Contrasting characteristics of sub-microsecond pulsed atmospheric air and atmospheric pressure helium-oxygen glow discharges

    Science.gov (United States)

    Walsh, J. L.; Liu, D. X.; Iza, F.; Rong, M. Z.; Kong, M. G.

    2010-01-01

    Glow discharges in air are often considered to be the ultimate low-temperature atmospheric pressure plasmas for numerous chamber-free applications. This is due to the ubiquitous presence of air and the perceived abundance of reactive oxygen and nitrogen species in air plasmas. In this paper, sub-microsecond pulsed atmospheric air plasmas are shown to produce a low concentration of excited oxygen atoms but an abundance of excited nitrogen species, UV photons and ozone molecules. This contrasts sharply with the efficient production of excited oxygen atoms in comparable helium-oxygen discharges. Relevant reaction chemistry analysed with a global model suggests that collisional excitation of O2 by helium metastables is significantly more efficient than electron dissociative excitation of O2, electron excitation of O and ion-ion recombination. These results suggest different practical uses of the two oxygen-containing atmospheric discharges, with air plasmas being well suited for nitrogen and UV based chemistry and He-O2 plasmas for excited atomic oxygen based chemistry.

  4. Nonlinear interaction between a pair of oblique modes in a supersonic mixing layer: Long-wave limit

    Science.gov (United States)

    Balsa, Thomas F.; Gartside, James

    1995-01-01

    The nonlinear interaction between a pair of symmetric, oblique, and spatial instability modes is studied in the long-wave limit using asymptotic methods. The base flow is taken to be a supersonic mixing layer whose Mach number is such that the corresponding vortex sheet is marginally stable according to Miles' criterion. It is shown that the amplitude of the mode obeys a nonlinear integro-differential equation. Numerical solutions of this equation show that, when the obliqueness angle is less than pi/4, the effect of the nonlinearity is to enhance the growth rate of the instability. The solution terminates in a singularity at a finite streamwise location. This result is reminiscent of that obtained in the vicinity of the neutral point by other authors in several different types of flows. On the other hand, when the obliqueness angle is more than pi/4, the streamwise development of the amplitude is characterized by a series of modulations. This arises from the fact that the nonlinear term in the amplitude equation may be either stabilizing or destabilizing, depending on the value of the streamwise coordinate. However, even in this case the amplitude of the disturbance increases, though not as rapidly as in the case for which the angle is less than pi/4. Quite generally then, the nonlinear interaction between two oblique modes in a supersonic mixing layer enhances the growth of the disturbance.

  5. A Preliminary Evaluation of Supersonic Transport Category Vehicle Operations in the National Airspace System

    Science.gov (United States)

    Underwood, Matthew C.; Guminsky, Michael D.

    2015-01-01

    Several public sector businesses and government agencies, including the National Aeronautics and Space Administration are currently working on solving key technological barriers that must be overcome in order to realize the vision of low-boom supersonic flights conducted over land. However, once these challenges are met, the manner in which this class of aircraft is integrated in the National Airspace System may become a potential constraint due to the significant environmental, efficiency, and economic repercussions that their integration may cause. Background research was performed on historic supersonic operations in the National Airspace System, including both flight deck procedures and air traffic controller procedures. Using this information, an experiment was created to test some of these historic procedures in a current-day, emerging Next Generation Air Transportation System (NextGen) environment and observe the interactions between commercial supersonic transport aircraft and modern-day air traffic. Data was gathered through batch simulations of supersonic commercial transport category aircraft operating in present-day traffic scenarios as a base-lining study to identify the magnitude of the integration problems and begin the exploration of new air traffic management technologies and architectures which will be needed to seamlessly integrate subsonic and supersonic transport aircraft operations. The data gathered include information about encounters between subsonic and supersonic aircraft that may occur when supersonic commercial transport aircraft are integrated into the National Airspace System, as well as flight time data. This initial investigation is being used to inform the creation and refinement of a preliminary Concept of Operations and for the subsequent development of technologies that will enable overland supersonic flight.

  6. Effect of shock interactions on mixing layer between co-flowing supersonic flows in a confined duct

    Science.gov (United States)

    Rao, S. M. V.; Asano, S.; Imani, I.; Saito, T.

    2018-03-01

    Experiments are conducted to observe the effect of shock interactions on a mixing layer generated between two supersonic streams of Mach number M _{1} = 1.76 and M _{2} = 1.36 in a confined duct. The development of this mixing layer within the duct is observed using high-speed schlieren and static pressure measurements. Two-dimensional, compressible Reynolds averaged Navier-Stokes equations are solved using the k-ω SST turbulence model in Fluent. Further, adverse pressure gradients are imposed by placing inserts of small ( boundary layer thickness) thickness on the walls of the test section. The unmatched pressures cause the mixing layer to bend and lead to the formation of shock structures that interact with the mixing layer. The mixing layer growth rate is found to increase after the shock interaction (nearly doubles). The strongest shock is observed when a wedge insert is placed in the M _{2} flow. This shock interacts with the mixing layer exciting flow modes that produce sinusoidal flapping structures which enhance the mixing layer growth rate to the maximum (by 1.75 times). Shock fluctuations are characterized, and it is observed that the maximum amplitude occurs when a wedge insert is placed in the M _{2} flow.

  7. Study of the helium cross-section of unsymmetric disulfide self-assembled monolayers on Au(111)

    Energy Technology Data Exchange (ETDEWEB)

    Albayrak, Erol [Department of Materials and Metallurgical Engineering, Ahi Evran University, Kırşehir 40000 (Turkey); Karabuga, Semistan [Department of Chemistry, Kahramanmaraş Sütçü İmam University, Kahramanmaraş 46030 (Turkey); Bracco, Gianangelo [CNR-IMEM and Department of Physics, University of Genoa, Via Dodecaneso 33, Genoa 16146 (Italy); Danışman, M. Fatih, E-mail: danisman@metu.edu.tr [Department of Chemistry, Middle East Technical University, Ankara 06800 (Turkey)

    2016-12-30

    Highlights: • Unsymmetrtic disulfide (HDD and HOD) self assembled monolayers were grown on Au(111) by supersonic molecular beam deposition. • Helium scattering cross sections for these two different unsymmetric disulfides were determined. • A common low temperature film phase was observed for the studied disulfides. - Abstract: We have investigated the formation of self-assembled monolayers (SAMs) of 11-hydroxyundecyl decyl disulfide (CH{sub 3}-(CH{sub 2}){sub 9}-S-S-(CH{sub 2}){sub 11}-OH, HDD) and 11-hydroxyundecyl octadecyl disulfide (CH{sub 3}-(CH{sub 2}){sub 17}-S-S-(CH{sub 2}){sub 11}-OH, HOD) produced by supersonic molecular beam deposition (SMBD). The study has been carried out by means of helium diffraction at very low film coverage. In this regime helium single molecule cross sections have been estimated in a temperature range between 100 K and 450 K. The results show a different behavior above 300 K that has been interpreted as the starting of mobility with the formation of two thiolate moieties either linked by a gold adatom or distant enough to prevent cross section overlapping. Finally, helium diffraction patterns measured at 80 K for the SAMs grown at 200 K are discussed and the results support the proposed hypothesis of molecular dissociation based on the cross section data.

  8. Artificial dissipation models applied to Euler equations for analysis of supersonic flow of helium gas around a geometric configurations ramp and diffusor type

    International Nuclear Information System (INIS)

    Rocha, Jussiê S.; Maciel, Edisson Sávio de Góes; Lira, Carlos A.B.O.; Sousa, Pedro A.S.; Neto, Raimundo N.C.

    2017-01-01

    Very High Temperature Gas Cooled Reactors - VHTGRs are studied by several research groups for the development of advanced reactors that can meet the world's growing energy demand. The analysis of the flow of helium coolant around the various geometries at the core of these reactors through computational fluid dynamics techniques is an essential tool in the development of conceptual designs of nuclear power plants that provide added security. This analysis suggests a close analogy with aeronautical cases widely studied using computational numerical techniques to solve systems of governing equations for the flow involved. The present work consists in using the DISSIPA2D E ULER code, to solve the Euler equations in a conservative form, in two-dimensional space employing a finite difference formulation for spatial discretization using the Euler method for explicit marching in time. The physical problem of supersonic flow along a ramp and diffusor configurations is considered. For this, the Jameson and Mavriplis algorithm and the artificial dissipation model linear of Pulliam was implemented. A spatially variable time step is employed aiming to accelerate the convergence to the steady state solution. The main purpose of this work is obtain computational tools for flow analysis through the study the cited dissipation model and describe their characteristics in relation to the overall quality of the solution, as well as obtain preliminary results for the development of computational tools of dynamic analysis of helium gas flow in gas-cooled reactors. (author)

  9. Artificial dissipation models applied to Euler equations for analysis of supersonic flow of helium gas around a geometric configurations ramp and diffusor type

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Jussiê S., E-mail: jussie.soares@ifpi.edu.br [Instituto Federal do Piauí (IFPI), Valença, PI (Brazil); Maciel, Edisson Sávio de Góes, E-mail: edissonsavio@yahoo.com.br [Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos, SP (Brazil); Lira, Carlos A.B.O., E-mail: cabol@ufpe.edu.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Sousa, Pedro A.S.; Neto, Raimundo N.C., E-mail: augusto.96pedro@gmail.com, E-mail: r.correia17@hotmail.com [Instituto Federal do Piauí (IFPI), Teresina, PI (Brazil)

    2017-07-01

    Very High Temperature Gas Cooled Reactors - VHTGRs are studied by several research groups for the development of advanced reactors that can meet the world's growing energy demand. The analysis of the flow of helium coolant around the various geometries at the core of these reactors through computational fluid dynamics techniques is an essential tool in the development of conceptual designs of nuclear power plants that provide added security. This analysis suggests a close analogy with aeronautical cases widely studied using computational numerical techniques to solve systems of governing equations for the flow involved. The present work consists in using the DISSIPA2D{sub E}ULER code, to solve the Euler equations in a conservative form, in two-dimensional space employing a finite difference formulation for spatial discretization using the Euler method for explicit marching in time. The physical problem of supersonic flow along a ramp and diffusor configurations is considered. For this, the Jameson and Mavriplis algorithm and the artificial dissipation model linear of Pulliam was implemented. A spatially variable time step is employed aiming to accelerate the convergence to the steady state solution. The main purpose of this work is obtain computational tools for flow analysis through the study the cited dissipation model and describe their characteristics in relation to the overall quality of the solution, as well as obtain preliminary results for the development of computational tools of dynamic analysis of helium gas flow in gas-cooled reactors. (author)

  10. Fuel/Air Mixing Characteristics of Strut Injections for Scramjet Combustor Applications (Postprint)

    Science.gov (United States)

    2008-08-01

    regions, and drag will be increased, as suggested by Povinelli .26 Both the total pressure recovery and mixing efficiency for the forward-swept strut are...Experimental Study of Cavity-Strut Combustion in Supersonic Flow,” AIAA Paper 2007-5394, 2007. 26. Povinelli , L.A., “Aerodynamic Drag and Fuel Spreading

  11. Detailed experimental study of a highly compressible supersonic turbulent plane mixing layer and comparison with most recent DNS results: “Towards an accurate description of compressibility effects in supersonic free shear flows”

    International Nuclear Information System (INIS)

    Barre, S.; Bonnet, J.P.

    2015-01-01

    Highlights: • We performed a careful experiment on a highly compressible mixing layer. • We validated the most recent DNS with the present results. • We discuss some aspects of the thermodynamics of the turbulent flow. • We performed a comparison between a computed and a measured turbulent kinetic energy budget. - Abstract: A compressible supersonic mixing layer at convective Mach number (Mc) equal to 1 has been studied experimentally in a dual stream supersonic/subsonic wind-tunnel. Laser Doppler Velocimetry (L.D.V.) measurements were performed making possible a full estimation of the mean and turbulent 3D velocity fields in the mixing layer. The Reynolds stress tensor was described. In particular, some anisotropy coefficients were obtained. It appears that the structure of the Reynolds tensor is almost not affected by compressibility at least up to Mc = 1. The turbulent kinetic energy budget was also experimentally estimated. Reynolds analogies assumptions were used to obtain density/velocity correlations in order to build the turbulent kinetic energy budget from LDV measurements. Results have been compared to other experimental and numerical results. Compressibility effects on the turbulent kinetic energy budget have been detected and commented. A study about thermodynamics flow properties was also performed using most recent DNS results experimentally validated by the present data. A non-dimensional number is then introduced in order to quantify the real effect of pressure fluctuations on the thermodynamics quantities fluctuations

  12. Experimental Investigation of the Influence of Molecular Weight on Mixing and Penetration in Supersonic Dissimilar Gaseous Injection into a Supersonic Cross-Flow

    National Research Council Canada - National Science Library

    Giese, Troy

    1997-01-01

    In pursuit of a more efficient and effective fuel-air mixing for a SCRAMjet combustor, this study investigated relative near field effects of molecular weight on mixing and penetration of different...

  13. Friction and wear studies of graphite and a carbon-carbon composite in air and in helium

    International Nuclear Information System (INIS)

    Li, C.C.; Sheehan, J.E.

    1980-10-01

    Sliding friction and wear tests were conducted on a commercial isotropic graphite and a carbon-carbon composite in air, purified helium, and a helium environment containing controlled amounts of impurities simulating the primary coolant chemistry of a high-temperature gas-cooled reactor (HTGR). The friction and wear characteristics of the materials investigated were stable and were found to be very sensitive to the testing temperature. In general, friction and wear decreased with increasing temperature in the range from ambient to 950 0 C. This temperature dependence is concluded to be due to chemisorption of impurities to form lubricating films and oxidation at higher temperatures, which reduce friction and wear. Graphite and carbon-carbon composites are concluded to be favorable candidate materials for high-temperature sliding service in helium-cooled reactors

  14. Creep properties of Hastelloy X in a carburizing helium environment

    International Nuclear Information System (INIS)

    Nakanishi, T.; Kawakami, H.

    1982-01-01

    In this work, we investigate the environmental effect on the creep behavior of Hastelloy X at 900 0 C in helium and air. Since helium coolant in HTGR is expected to be carburizing and very weakly oxidizing for most metals, testings were focused on the effect of carburizing and slight oxidation. Carburization decreases secondary creep strain rate and delays tertiary creep initiation. On the other hand, the crack growth rate on the specimen surface is enhanced due to very weak oxidation in helium, therefore the tertiary creep strain rate becomes larger than that in air. The rupture time of Hastelloy X was shorter in helium when compared with in air. Stress versus rupture time curves for both environments do not deviate with each other during up to 5000 hours test, and a ratio of rupture stress in helium to that in air was about 0.9

  15. Penetration Characteristics of Air, Carbon Dioxide and Helium Transverse Sonic Jets in Mach 5 Cross Flow

    Directory of Open Access Journals (Sweden)

    Erinc Erdem

    2014-12-01

    Full Text Available An experimental investigation of sonic air, CO2 and Helium transverse jets in Mach 5 cross flow was carried out over a flat plate. The jet to freestream momentum flux ratio, J, was kept the same for all gases. The unsteady flow topology was examined using high speed schlieren visualisation and PIV. Schlieren visualisation provided information regarding oscillating jet shear layer structures and bow shock, Mach disc and barrel shocks. Two-component PIV measurements at the centreline, provided information regarding jet penetration trajectories. Barrel shocks and Mach disc forming the jet boundary were visualised/quantified also jet penetration boundaries were determined. Even though J is kept the same for all gases, the penetration patterns were found to be remarkably different both at the nearfield and the farfield. Air and CO2 jet resulted similar nearfield and farfield penetration pattern whereas Helium jet spread minimal in the nearfield.

  16. Gas mixing under the influence of thermal-dynamic parameters such as buoyancy, jet momentum and fan-induced convection

    International Nuclear Information System (INIS)

    Chan, C.K.; Jones, S.C.A.

    1994-01-01

    Various scaling parameters for simulating mixing under the influence of buoyancy, jet momentum, and fan-induced convection were examined. Their significance was assessed by comparing the mixing of helium (a simulant for hydrogen) with air in a large-scale enclosure (1.8 m x 1.8 m x 1.8 m) to the mixing of salt-water with fresh-water in a small-scale enclosure (1/6 the size). The advantage of using the salt-water/freshwater technique is that it allows the characteristic flow regime (either turbulent or laminar flow) in the full-scale containment to be maintained in the reduced scale containment. A smoke technique for flow visualization was used to examine the mixing of the helium with air. For the small-scale salt-water/fresh-water experiment, fluorescent dye was used to provide a means to visualize the mixing process. The mixing behaviour in both sets of experiments were analyzed based on video records and concentration measurements in ten locations. Measurements showed that depending on the recirculation and jet flow rates, the injected salt-water (in small-scale experiments) and helium (in large-scale experiments) can disperse sufficiently quickly to produce an essentially 'well mixed' condition rendering the concentration measurements insensitive to the variation in the Froude or the Grashof Numbers. (author)

  17. Mixed helium-3 - helium-4 calorimeter. Very low temperature calorimetry; Calorimetre mixte a helium-3 et helium-4. Calorimetrie a tres basse temperature

    Energy Technology Data Exchange (ETDEWEB)

    Testard, O [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-06-01

    A description is given of a double-racket calorimeter using helium-4 and helium-3 as the cryogenic fluids and making it possible to vary the temperature continuously from 0.35 K to 4.2 K. By using an electric thermal regulator together with liquid hydrogen it is possible to extend this range up to about 30 K. In the second part, a review is made of the various, methods available for measuring specific heats. The method actually used in the apparatus previously described is described in detail. The difficulties arising from the use of an exchange gas for the thermal contact have been solved by the use of adsorption pumps. (author) [French] On decrit un calorimetre a double enceinte utilisant comme fluide cryogenique l'helium-4 et l'helium-3 et permettant de varier continuement la temperature de 0,35 K a 4,2 K. L'utilisation d'un regulateur thermique electrique ainsi que celle d'hydrogene, liquide permettent d'etendre cette gamme jusqu'a 30 K environ. Dans une deuxieme partie, on passe en revue les diverses methodes de mesure des chaleurs specifiques. La methode concrete utilisee dans l'appareil precedemment decrit est exposee en detail. Les difficultes inherentes a l'utilisation de gaz d'echange comme agent de contact thermique ont ete levees par la mise en oeuvre de pompes a adsorbant. (auteur)

  18. Numerical modelling of the effect of dry air traces in a helium parallel plate dielectric barrier discharge

    Science.gov (United States)

    Lazarou, C.; Belmonte, T.; Chiper, A. S.; Georghiou, G. E.

    2016-10-01

    A validated numerical model developed for the study of helium barrier discharges in the presence of dry air impurities is presented in this paper. The model was used to numerically investigate the influence of air traces on the evolution of the helium dielectric barrier discharge (DBD). The level of dry air used as impurity was in the range from 0 to 1500 ppm, which corresponds to the most commonly encountered range in atmospheric pressure discharge experiments. The results presented in this study clearly show that the plasma chemistry and consequently the discharge evolution is highly affected by the concentration level of impurities in the mixture. In particular, it was observed that air traces assist the discharge ignition at low concentration levels (~55 ppm), while on the other hand, they increase the burning voltage at higher concentration levels (~1000 ppm). Furthermore, it was found that the discharge symmetry during the voltage cycle highly depends on the concentration of air. For the interpretation of the results, a detailed analysis of the processes that occur in the discharge gap is performed and the main reaction pathways of ion production are described. Thanks to this approach, useful insight into the physics behind the evolution of the discharge is obtained.

  19. Standard Guide for Simulation of Helium Effects in Irradiated Metals

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1996-01-01

    1.1 This guide provides advice for conducting experiments to investigate the effects of helium on the properties of metals where the technique for introducing the helium differs in some way from the actual mechanism of introduction of helium in service. Simulation techniques considered for introducing helium shall include charged particle implantation, exposure to α-emitting radioisotopes, and tritium decay techniques. Procedures for the analysis of helium content and helium distribution within the specimen are also recommended. 1.2 Two other methods for introducing helium into irradiated materials are not covered in this guide. They are the enhancement of helium production in nickel-bearing alloys by spectral tailoring in mixed-spectrum fission reactors, and isotopic tailoring in both fast and mixed-spectrum fission reactors. These techniques are described in Refs (1-5). Dual ion beam techniques (6) for simultaneously implanting helium and generating displacement damage are also not included here. This lat...

  20. Significance of shock structure on supersonic jet mixing noise of axisymmetric nozzles

    Science.gov (United States)

    Kim, Chan M.; Krejsa, Eugene A.; Khavaran, Abbas

    1994-09-01

    One of the key technical elements in NASA's high speed research program is reducing the noise level to meet the federal noise regulation. The dominant noise source is associated with the supersonic jet discharged from the engine exhaust system. Whereas the turbulence mixing is largely responsible for the generation of the jet noise, a broadband shock-associated noise is also generated when the nozzle operates at conditions other than its design. For both mixing and shock noise components, because the source of the noise is embedded in the jet plume, one can expect that jet noise can be predicted from the jet flowfield computation. Mani et al. developed a unified aerodynamic/acoustic prediction scheme by applying an extension of Reichardt's aerodynamic model to compute turbulent shear stresses which are utilized in estimating the strength of the noise source. Although this method produces a fast and practical estimate of the jet noise, a modification by Khavaran et al. has led to an improvement in aerodynamic solution. The most notable feature in this work is that Reichardt's model is replaced with the computational fluid dynamics (CFD) solution of Reynolds-averaged Navier-Stokes equations. The major advantage of this work is that the essential, noise-related flow quantities such as turbulence intensity and shock strength can be better predicted. The predictions were limited to a shock-free design condition and the effect of shock structure on the jet mixing noise was not addressed. The present work is aimed at investigating this issue. Under imperfectly expanded conditions the existence of the shock cell structure and its interaction with the convecting turbulence structure may not only generate a broadband shock-associated noise but also change the turbulence structure, and thus the strength of the mixing noise source. Failure in capturing shock structures properly could lead to incorrect aeroacoustic predictions.

  1. Large scale particle image velocimetry with helium filled soap bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Bosbach, Johannes; Kuehn, Matthias; Wagner, Claus [German Aerospace Center (DLR), Institute of Aerodynamics and Flow Technology, Goettingen (Germany)

    2009-03-15

    The application of particle image velocimetry (PIV) to measurement of flows on large scales is a challenging necessity especially for the investigation of convective air flows. Combining helium filled soap bubbles as tracer particles with high power quality switched solid state lasers as light sources allows conducting PIV on scales of the order of several square meters. The technique was applied to mixed convection in a full scale double aisle aircraft cabin mock-up for validation of computational fluid dynamics simulations. (orig.)

  2. Large scale particle image velocimetry with helium filled soap bubbles

    Science.gov (United States)

    Bosbach, Johannes; Kühn, Matthias; Wagner, Claus

    2009-03-01

    The application of Particle Image Velocimetry (PIV) to measurement of flows on large scales is a challenging necessity especially for the investigation of convective air flows. Combining helium filled soap bubbles as tracer particles with high power quality switched solid state lasers as light sources allows conducting PIV on scales of the order of several square meters. The technique was applied to mixed convection in a full scale double aisle aircraft cabin mock-up for validation of Computational Fluid Dynamics simulations.

  3. Helium sources to groundwater in active volcanic terrain, and implications for tritium-helium dating at Mount St. Helens

    Energy Technology Data Exchange (ETDEWEB)

    Gates, John B. [Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, 217 Bessey Hall, Lincoln NE 68588 (United States)

    2013-07-01

    Groundwater helium sources and residence times were investigated using groundwater discharging from springs surrounding Mount St. Helens in the Cascades region of the United States. Significant contributions of mantle helium were found in all samples and are attributable to interaction between groundwater and magmatic gases. Bounding calculations for residence times were made on the basis of helium isotope mixing plots and historical tritium data. (authors)

  4. Visualization study of helium-air counter flow through a small opening

    International Nuclear Information System (INIS)

    Fumizawa, Motoo

    2007-01-01

    Buoyancy-driven counter flows of helium-air were investigated through horizontal and inclined small openings. Counter flows may occur following a window opening as ventilation, fire in the room as well as a pipe rupture accident in a high temperature gas-cooled nuclear reactor. The experiment has carried out by a test chamber filled with helium and flow was visualized by the smoke wire method. The flow behavior has recorded by a high-speed camera with a computer system. The image of the flow was transferred to the digital data, thus the flow velocity was measured by PTV software. The mass fraction in the test chamber was measured by electronic balance. The detected data was arranged by the densimetric Floude number of the counter flow rate that derived from the dimensional analysis. The method of mass increment was developed and applied to measure the counter flow rate. By removing the cover plate placed on the top of the opening, the counter flow initiated. Air enters the test chamber and the mass of the gas mixture in the test chamber increased. The volumetric counter flow rate was evaluated from the mass increment data. In the case of inclination openings, the results of both methods were compared. The inclination angle for maximum densimetric Floude number decreased with increasing length-to-diameter ratio of the opening. For a horizontal opening, the results from the method of mass increment agreed with those obtained by other authors for a water-brine system. (author)

  5. Pulsed, supersonic fuel jets-A review of their characteristics and potential for fuel injection

    International Nuclear Information System (INIS)

    Milton, B.E.; Pianthong, K.

    2005-01-01

    High pressure fuel injection has provided considerable benefits for diesel engines, substantially reducing smoke levels while increasing efficiency. Current maximum pressures provide jets that are at less than the sonic velocity of the compressed air in the cylinders at injection. It has been postulated that a further increase into the supersonic range may benefit the combustion process due to increased aerodynamic atomization and the presence of jet bow shock waves that provide higher temperatures around the fuel. Pulsed, supersonic injection may also be beneficial for scramjet engines. The current program is examining pulsed, supersonic jets from a fundamental viewpoint both experimentally and numerically. Shock wave structures have been viewed for jets ranging from 600 to 2400 m/s, velocity attenuation and penetration distance measured, different nozzle designs examined and autoignition experiments carried out. Inside the nozzle, numerical simulation using the Autodyne code has been used to support an analytic approach while in the spray, the FLUENT code has been used. While benefits have not yet been defined, it appears that some earlier claims regarding autoignition at atmospheric conditions were optimistic but that increased evaporation and mixing are probable. The higher jet velocities are likely to mean that wall interactions are increased and hence matching such injectors to engine size and airflow patterns will be important

  6. Experiments for post accident hydrogen dispersion in F.M. vault using helium

    International Nuclear Information System (INIS)

    Bajaj, S.S.; Bhattacharyya, D.; Mishra, S.

    1994-01-01

    Under certain postulated accident scenarios involving a Loss of Coolant Accident (LOCA) simultaneous with impairment of Emergency Core Cooling (ECC), generation of hydrogen due to reaction between the zirconium clad and coolant is predicted in the coolant channel. The hydrogen generated in the coolant channels would eventually get released either in Fuelling Machine (FM) vault or in the pump room atmosphere depending on the location of the break. Analytical studies carried out so far to estimate the time dependent hydrogen concentration in the accident FM Vault consider the entire vault as a single volume. Tests were, therefore, planned to assess the mixing within the FM vault atmosphere with and without the availability of cooling fan units by releasing a known quantity of helium (instead of hydrogen) at selected locations and monitoring the relative concentration of helium in air at various locations. Test was conducted by releasing about 360 1 helium over a period of to 4 minutes at preselected locations and by measuring the relative concentration (leak rates indicated by helium leak detectors) at various locations in the FM vault. The results of cases with fans operating indicate repeatable and consistent trends of good mixing in the vault. For other cases (non turbulent, still condition) the results are sensitive to various factors including orientation of release. The former set of cases (turbulent. fans operating) are more relevant for postulated accident conditions. (author). 1 tab., 18 figs

  7. A PIV Study of Slotted Air Injection for Jet Noise Reduction

    Science.gov (United States)

    Henderson, Brenda S.; Wernet, Mark P.

    2012-01-01

    Results from acoustic and Particle Image Velocimetry (PIV) measurements are presented for single and dual-stream jets with fluidic injection on the core stream. The fluidic injection nozzles delivered air to the jet through slots on the interior of the nozzle at the nozzle trailing edge. The investigations include subsonic and supersonic jet conditions. Reductions in broadband shock noise and low frequency mixing noise were obtained with the introduction of fluidic injection on single stream jets. Fluidic injection was found to eliminate shock cells, increase jet mixing, and reduce turbulent kinetic energy levels near the end of the potential core. For dual-stream subsonic jets, the introduction of fluidic injection reduced low frequency noise in the peak jet noise direction and enhanced jet mixing. For dual-stream jets with supersonic fan streams and subsonic core streams, the introduction of fluidic injection in the core stream impacted the jet shock cell structure but had little effect on mixing between the core and fan streams.

  8. Creep properties of heat-resistant superalloys for nuclear plants in helium

    International Nuclear Information System (INIS)

    Shimizu, Shigeki; Satoh, Keisuke; Matsuda, Shozo; Murase, Hirokazu; Fujioka, Junzo.

    1979-01-01

    In order to estimate the creep and rupture strengths of candidate alloys for the intermediate heat exchanger of VHTR, creep and stress rupture tests in impure helium were conducted on Hastelloy X, Inconel 617, Inconel 625, Incoloy 800 and Incoloy 807 at 900 0 C. The results were discussed in comparison with those in air and the alloys were examined from the point of view of the elevated temperature structural design. The main results obtained are summarized as follows: (1) No appreciable decrease in creep and rupture strengths in helium as compared with those in air is observed on Hastelloy X and Inconel 625. On the contrary, the creep and rupture strengths of Inconel 617 in helium decrease slightly as compared with those in air. In the case of Incoloy 807, the creep strength to cause 1 percent total strain and that to initiate secondary creep increase remarkably in helium as compared with those in air. However, the creep strength to cause initiation of tertiary creep and the rupture strength in helium remarkably decrease as compared with those in air. (2) The order of magnitude of the S 0 value for each material in helium is as follows; Hastelloy X > Inconel 617 > Incoloy 807 > Inconel 625 > Incoloy 800 Meanwhile, that of the S sub(t) value in helium is; Inconel 617 > Hastelloy X > Incoloy 807 > Inconel 625 > Incoloy 800. (author)

  9. Effects of helium and air inhalation on the innate and early adaptive immune system in healthy volunteers ex vivo

    Directory of Open Access Journals (Sweden)

    Oei Gezina TML

    2012-09-01

    Full Text Available Abstract Background Helium inhalation protects myocardium, brain and endothelium against ischemia/reperfusion injury in animals and humans, when applied according to specific “conditioning” protocols. Before widespread use of this “conditioning” agent in clinical practice, negative side effects have to be ruled out. We investigated the effect of prolonged helium inhalation on the responsiveness of the human immune response in whole blood ex vivo. Methods Male healthy volunteers inhaled 30 minutes heliox (79%He/21%O2 or air in a cross over design, with two weeks between measurements. Blood was withdrawn at T0 (baseline, T1 (25 min inhalation and T2-T5 (1, 2, 6, 24 h after inhalation and incubated with lipopolysaccharide (LPS, lipoteichoic acid (LTA, T-cell stimuli anti-CD3/ anti-CD28 (TCS or RPMI (as control for 2, 4 and 24 hours or not incubated (0 h. An additional group of six volunteers inhaled 60 minutes of heliox or air, followed by blood incubation with LPS and RPMI. Tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, interleukin-6 (IL-6, interleukin-8 (IL-8, interferon-γ (IFN-γ and interleukin-2 (IL-2 was analyzed by cytometric bead array. Statistical analysis was performed by the Wilcoxon test for matched samples. Results Incubation with LPS, LTA or TCS significantly increased TNF-α, IL-1β, IL-6, IL-8, IFN-γ and IL-2 in comparison to incubation with RPMI alone. Thirty min of helium inhalation did not influence the amounts of TNF-α, IL-1β, IL-6, IL-8, IFN-γ and IL-2 in comparison to air. Sixty min of helium inhalation did not affect cytokine production after LPS stimulation. Conclusions We conclude that 79% helium inhalation does not affect the responsiveness of the human immune system in healthy volunteers. Trial registration Dutch Trial Register: http://www.trialregister.nl/ NTR2152

  10. Experimental investigation on combustion performance of cavity-strut injection of supercritical kerosene in supersonic model combustor

    Science.gov (United States)

    Sun, Ming-bo; Zhong, Zhan; Liang, Jian-han; Wang, Hong-bo

    2016-10-01

    Supersonic combustion with cavity-strut injection of supercritical kerosene in a model scramjet engine was experimentally investigated in Mach 2.92 facility with the stagnation temperatures of approximately 1430 K. Static pressure distribution in the axial direction was determined using pressure transducers installed along the centerline of the model combustor top walls. High speed imaging camera was used to capture flame luminosity and combustion region distribution. Multi-cavities were used to and stabilize the combustion in the supersonic combustor. Intrusive injection by thin struts was used to enhance the fuel-air mixing. Supercritical kerosene at temperatures of approximately 780 K and various pressures was prepared using a heat exchanger driven by the hot gas from a pre-burner and injected at equivalence ratios of approximately 1.0. In the experiments, combustor performances with different strut injection schemes were investigated and compared to direct wall injection scheme based on the measured static pressure distributions, the specific thrust increments and the images obtained by high-speed imaging camera. The experimental results showed that the injection by thin struts could obtain an enhanced mixing in the field but could not acquire a steady flame when mixing field cannot well match cavity separation region. There is no significant difference on performance between different schemes since the unsteady intermittent and oscillating flame leads to no actual combustion efficiency improvement.

  11. Neutral-helium-atom diffraction from a micron-scale periodic structure: Photonic-crystal-membrane characterization

    Science.gov (United States)

    Nesse, Torstein; Eder, Sabrina D.; Kaltenbacher, Thomas; Grepstad, Jon Olav; Simonsen, Ingve; Holst, Bodil

    2017-06-01

    Surface scattering of neutral helium beams created by supersonic expansion is an established technique for measuring structural and dynamical properties of surfaces on the atomic scale. Helium beams have also been used in Fraunhofer and Fresnel diffraction experiments. Due to the short wavelength of the atom beams of typically 0.1 nm or less, Fraunhofer diffraction experiments in transmission have so far been limited to grating structures with a period (pitch) of up to 200 nm. However, larger periods are of interest for several applications, for example, for the characterization of photonic-crystal-membrane structures, where the period is typically in the micron to high submicron range. Here we present helium atom diffraction measurements of a photonic-crystal-membrane structure with a two-dimensional square lattice of 100 ×100 circular holes. The nominal period and the hole radius were 490 and 100 nm, respectively. To our knowledge this is the largest period that has been measured with helium diffraction. The helium diffraction measurements are interpreted using a model based on the helium beam characteristics. It is demonstrated how to successfully extract values from the experimental data for the average period of the grating, the hole diameter, and the width of the virtual source used to model the helium beam.

  12. Impacts of Mixing on Acceptable Indoor Air Quality in Homes

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max H.; Walker, Iain I.

    2010-01-01

    Ventilation reduces occupant exposure to indoor contaminants by diluting or removing them. In a multi-zone environment such as a house, every zone will have different dilution rates and contaminant source strengths. The total ventilation rate is the most important factor in determining occupant exposure to given contaminant sources, but the zone-specific distribution of exhaust and supply air and the mixing of ventilation air can play significant roles. Different types of ventilation systems will provide different amounts of mixing depending on several factors such as air leakage, air distribution system, and contaminant source and occupant locations. Most U.S. and Canadian homes have central heating, ventilation, and air conditioning systems, which tend to mix the air; thus, the indoor air in different zones tends to be well mixed for significant fractions of the year. This article reports recent results of investigations to determine the impact of air mixing on exposures of residential occupants to prototypical contaminants of concern. We summarize existing literature and extend past analyses to determine the parameters than affect air mixing as well as the impacts of mixing on occupant exposure, and to draw conclusions that are relevant for standards development and for practitioners designing and installing home ventilation systems. The primary conclusion is that mixing will not substantially affect the mean indoor air quality across a broad population of occupants, homes, and ventilation systems, but it can reduce the number of occupants who are exposed to extreme pollutant levels. If the policy objective is to minimize the number of people exposed above a given pollutant threshold, some amount of mixing will be of net benefit even though it does not benefit average exposure. If the policy is to minimize exposure on average, then mixing air in homes is detrimental and should not be encouraged. We also conclude that most homes in the US have adequate mixing

  13. Mobility of hydrogen-helium clusters in tungsten studied by molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Grigorev, Petr, E-mail: grigorievpit@gmail.com [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol, 2400 (Belgium); Ghent University, Applied Physics EA17 FUSION-DC, St.Pietersnieuwstraat, 41 B4, B-9000, Gent (Belgium); Department of Experimental Nuclear Physics K-89, Institute of Physics, Nanotechnologies, and Telecommunications, Peter the Great St.Petersburg Polytechnic University, St. Petersburg (Russian Federation); Terentyev, Dmitry; Bonny, Giovanni [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol, 2400 (Belgium); Zhurkin, Evgeny E. [Department of Experimental Nuclear Physics K-89, Institute of Physics, Nanotechnologies, and Telecommunications, Peter the Great St.Petersburg Polytechnic University, St. Petersburg (Russian Federation); Oost, Guido van [Ghent University, Applied Physics EA17 FUSION-DC, St.Pietersnieuwstraat, 41 B4, B-9000, Gent (Belgium); Noterdaeme, Jean-Marie [Ghent University, Applied Physics EA17 FUSION-DC, St.Pietersnieuwstraat, 41 B4, B-9000, Gent (Belgium); Max-Planck-Institut für Plasmaphysik, Garching (Germany)

    2016-06-15

    Tungsten is a primary candidate material for plasma facing components in fusion reactors. Interaction of plasma components with the material is unavoidable and will lead to degradation of the performance and the lifetime of the in-vessel components. In order to gain better understanding the mechanisms driving the material degradation at atomic level, atomistic simulations are employed. In this work we study migration, stability and self-trapping properties of pure helium and mixed helium-hydrogen clusters in tungsten by means of molecular dynamics simulations. We test two versions of an embedded atom model interatomic potential by comparing it with ab initio data regarding the binding properties of He clusters. By analysing the trajectories of the clusters during molecular dynamics simulations at finite temperatures we obtain the diffusion parameters. The results show that the diffusivity of mixed clusters is significantly lower, than that of pure helium clusters. The latter suggest that the formation of mixed clusters during mixed hydrogen helium plasma exposure will affect the helium diffusivity in the material.

  14. A new helium gas recovery and purification system

    International Nuclear Information System (INIS)

    Yamamotot, T.; Suzuki, H.; Ishii, J.; Hamana, I.; Hayashi, S.; Mizutani, S.; Sanjo, S.

    1974-01-01

    A helium gas recovery and purification system, based on the principle of gas permeation through a membrane, is described. The system can be used for the purification of helium gas containing air as a contaminant. The apparatus, operating at ambient temperature does not need constant attention, the recovery ratio of helium gas is satisfactory and running costs are low. Gases other than helium can be processed with the apparatus. (U.K.)

  15. Impact of Flight Enthalpy, Fuel Simulant, and Chemical Reactions on the Mixing Characteristics of Several Injectors at Hypervelocity Flow Conditions

    Science.gov (United States)

    Drozda, Tomasz G.; Baurle, Robert A.; Drummond, J. Philip

    2016-01-01

    The high total temperatures or total enthalpies required to duplicate the high-speed flight conditions in ground experiments often place stringent requirements on the material selection and cooling needs for the test articles and intrusive flow diagnostic equipment. Furthermore, for internal flows, these conditions often complicate the use of nonintrusive diagnostics that need optical access to the test section and interior portions of the flowpath. Because of the technical challenges and increased costs associated with experimentation at high values of total enthalpy, an attempt is often made to reduce it. This is the case for the Enhanced Injection and Mixing Project (EIMP) currently underway in the Arc-Heated Scramjet Test Facility at the NASA Langley Research Center. The EIMP aims to investigate supersonic combustion ramjet (scramjet) fuel injection and mixing physics, improve the understanding of underlying physical processes, and develop enhancement strategies and functional relationships between mixing performance and losses relevant to flight Mach numbers greater than 8. The experiments will consider a "direct-connect" approach and utilize a Mach 6 nozzle to simulate the combustor entrance flow of a scramjet engine. However, while the value of the Mach number is matched to that expected at the combustor entrance in flight, the maximum value of the total enthalpy for these experiments is limited by the thermal-structural limits of the uncooled experimental hardware. Furthermore, the fuel simulant is helium, not hydrogen. The use of "cold" flows and non-reacting mixtures of fuel simulants for mixing experiments is not new and has been extensively utilized as a screening technique for scramjet fuel injectors. In this study, Reynolds-averaged simulations are utilized (RAS) to systematically verify the implicit assumptions used by the EIMP. This is accomplished by first performing RAS of mixing for two injector configurations at planned nominal experimental

  16. Creep properties of superalloys for the HTGR in impure helium environments

    International Nuclear Information System (INIS)

    Kawakami, H.; Nakanishi, T.

    1981-01-01

    This paper describes creep behaviors of two heat resistant alloys, Hastelloy X and Incoloy 800, in helium environments of the HTGR. In impure helium environments, these alloys are susceptible to carburization and oxidization. We have investigated these effects separately, and related them to the creep behaviors of the alloys. Experiments were carried out at 900 0 C both in helium and in air. Carburization results in decrease of secondary creep strain rate and delay of tertiary creep initiation. Oxidization caused decrease in tertiary creep strain rate of Hastelloy X, but did not that of Incoloy 800. Enhancement in tertiary creep strain rate of Hastelloy X in a very weakly oxidizing environment was confirmed in creep crack growth experiment using notched plate specimens. The rupture time of Hastelloy X in helium was short when compared with in air. Stress versus rupture time curves for both environments were parallel up to 5000 hours test, and a ratio of rupture stress in helium to that in air was about 0.9. In case of Incoloy 800, rupture time in helium was markedly prolonged as compared with that in air. (orig.)

  17. A first-order Green's function approach to supersonic oscillatory flow: A mixed analytic and numeric treatment

    Science.gov (United States)

    Freedman, M. I.; Sipcic, S.; Tseng, K.

    1985-01-01

    A frequency domain Green's Function Method for unsteady supersonic potential flow around complex aircraft configurations is presented. The focus is on the supersonic range wherein the linear potential flow assumption is valid. In this range the effects of the nonlinear terms in the unsteady supersonic compressible velocity potential equation are negligible and therefore these terms will be omitted. The Green's function method is employed in order to convert the potential flow differential equation into an integral one. This integral equation is then discretized, through standard finite element technique, to yield a linear algebraic system of equations relating the unknown potential to its prescribed co-normalwash (boundary condition) on the surface of the aircraft. The arbitrary complex aircraft configuration (e.g., finite-thickness wing, wing-body-tail) is discretized into hyperboloidal (twisted quadrilateral) panels. The potential and co-normalwash are assumed to vary linearly within each panel. The long range goal is to develop a comprehensive theory for unsteady supersonic potential aerodynamic which is capable of yielding accurate results even in the low supersonic (i.e., high transonic) range.

  18. Simulation, experimental validation and kinematic optimization of a Stirling engine using air and helium

    International Nuclear Information System (INIS)

    Bert, Juliette; Chrenko, Daniela; Sophy, Tonino; Le Moyne, Luis; Sirot, Frédéric

    2014-01-01

    A Stirling engine with nominal output power of 1 kW is tested using air and helium as working gases. The influence of working pressure, engine speed and temperature of the hot source is studied, analyzing instantaneous gas pressure as well as instantaneous and stationary temperature at different positions to derive the effective power. A zero dimensional finite-time thermodynamic, three zones model of a generic Stirling engine is developed and successfully validated against experimental gas temperature and pressure in each zone, providing the effective power. This validation underlines the interest of different working gases as well as different geometric configurations for different applications. Furthermore, the validated model allows parametric studies of the engine, with regard to geometry, working gas and engine kinematics. It is used in order to optimize the kinematic of a Stirling engine for different working points and gases. - Highlights: • A Stirling engine of 1 kW is tested using air and helium as working gas. • Effects of working pressure, speed and temperature on power are studied. • A zero dimensional finite-time thermodynamic, three zones model of it is validated. • The validated model is used for parametric studies and optimization of the engine

  19. High burnup, high power irradiation behavior of helium-bonded mixed carbide fuel pins

    International Nuclear Information System (INIS)

    Levine, P.J.; Nayak, U.P.; Boltax, A.

    1983-01-01

    Large diameter (9.4 mm) helium-bonded mixed carbide fuel pins were successfully irradiated in EBR-II to high burnup (12%) at high power levels (100 kW/m) with peak cladding midwall temperatures of 550 0 C. The wire-wrapped pins were clad with 0.51-mm-thick, 20% cold-worked Type 316 stainless steel and contained hyperstoichiometric (Usub(0.8)Pusub(0.2))C fuel covering the smeared density range from 75-82% TD. Post-irradiation examinations revealed: extensive fuel-cladding mechanical interaction over the entire length of the fuel column, 35% fission gas release at 12% burnup, cladding carburization and fuel restructuring. (orig.)

  20. Helium-air counter flow in rectangular channels

    International Nuclear Information System (INIS)

    Fumizawa, Motoo; Tanaka, Gaku; Zhao, Hong; Hishida, Makoto; Shiina, Yasuaki

    2004-01-01

    This paper deals with numerical analysis of helium-air counter flow in a rectangular channel with an aspect ratio of 10. The channel has a cross sectional area of 5-50 mm and a length of 200 mm. The inclination angle was varied from 0 to 90 degree. The velocity profiles and concentration profiles were analyzed with a computer program [FLUENT]. Following main features of the counter flow are discussed based on the calculated results. (1) Time required for establishing a quasi-steady state counter flow. (2) The relationship between the inclination angle and the flow patterns of the counter flow. (3) The developing process of velocity profiles and concentration profiles. (4) The relationship between the inclination angle of the channel and the velocity profiles of upward flow and the downward flow. (5) The relationship between the concentration profile and the inclination angle. (6) The relationship between the net in-flow rate and the inclination angle. We compared the computed velocity profile and the net in-flow rate with experimental data. A good agreement was obtained between the calculation results and the experimental results. (author)

  1. Detailed experimental investigations on flow behaviors and velocity field properties of a supersonic mixing layer

    Science.gov (United States)

    Tan, Jianguo; Zhang, Dongdong; Li, Hao; Hou, Juwei

    2018-03-01

    The flow behaviors and mixing characteristics of a supersonic mixing layer with a convective Mach number of 0.2 have been experimentally investigated utilizing nanoparticle-based planar laser scattering and particle image velocimetry techniques. The full development and evolution process, including the formation of Kelvin-Helmholtz vortices, breakdown of large-scale structures and establishment of self-similar turbulence, is exhibited clearly in the experiments, which can give a qualitative graphically comparing for the DNS and LES results. The shocklets are first captured at this low convective Mach number, and their generation mechanisms are elaborated and analyzed. The convective velocity derived from two images with space-time correlations is well consistent with the theoretical result. The pairing and merging process of large-scale vortices in transition region is clearly revealed in the velocity vector field. The analysis of turbulent statistics indicates that in weakly compressible mixing layers, with the increase of convective Mach number, the peak values of streamwise turbulence intensity and Reynolds shear stress experience a sharp decrease, while the anisotropy ratio seems to keep quasi unchanged. The normalized growth rate of the present experiments shows a well agreement with former experimental and DNS data. The validation of present experimental results is important for that in the future the present work can be a reference for assessing the accuracy of numerical data.

  2. Detailed Measurements of Rayleigh-Taylor Mixing at Large and Small Atwood Numbers

    International Nuclear Information System (INIS)

    Malcolm, J.; Andrews, Ph.D.

    2004-01-01

    This project has two major tasks: Task 1. The construction of a new air/helium facility to collect detailed measurements of Rayleigh-Taylor (RT) mixing at high Atwood number, and the distribution of these data to LLNL, LANL, and Alliance members for code validation and design purposes. Task 2. The collection of initial condition data from the new Air/Helium facility, for use with validation of RT simulation codes at LLNL and LANL. Also, studies of multi-layer mixing with the existing water channel facility. Over the last twelve (12) months there has been excellent progress, detailed in this report, with both tasks. As of December 10, 2004, the air/helium facility is now complete and extensive testing and validation of diagnostics has been performed. Currently experiments with air/helium up to Atwood numbers of 0.25 (the maximum is 0.75, but the highest Reynolds numbers are at 0.25) are being performed. The progress matches the project plan, as does the budget, and we expect this to continue for 2005. With interest expressed from LLNL we have continued with initial condition studies using the water channel. This work has also progressed well, with one of the graduate Research Assistants (Mr. Nick Mueschke) visiting LLNL the past two summers to work with Dr. O. Schilling. Several journal papers are in preparation that describe the work. Two MSc.'s have been completed (Mr. Nick Mueschke, and Mr. Wayne Kraft, 12/1/03). Nick and Wayne are both pursuing Ph.D.s' funded by this DOE Alliances project. Presently three (3) Ph.D. graduate Research Assistants are supported on the project, and two (2) undergraduate Research Assistants. During the year two (2) journal papers and two (2) conference papers have been published, ten (10) presentations made at conferences, and three (3) invited presentations

  3. Two-temperature chemically non-equilibrium modelling of an air supersonic ICP

    Energy Technology Data Exchange (ETDEWEB)

    El Morsli, Mbark; Proulx, Pierre [Laboratoire de Modelisation de Procedes Chimiques par Ordinateur Oppus, Departement de Genie Chimique, Universite de Sherbrooke (Ciheam) J1K 2R1 (Canada)

    2007-08-21

    In this work, a non-equilibrium mathematical model for an air inductively coupled plasma torch with a supersonic nozzle is developed without making thermal and chemical equilibrium assumptions. Reaction rate equations are written, and two coupled energy equations are used, one for the calculation of the translational-rotational temperature T{sub hr} and one for the calculation of the electro-vibrational temperature T{sub ev}. The viscous dissipation is taken into account in the translational-rotational energy equation. The electro-vibrational energy equation also includes the pressure work of the electrons, the Ohmic heating power and the exchange due to elastic collision. Higher order approximations of the Chapman-Enskog method are used to obtain better accuracy for transport properties, taking advantage of the most recent sets of collisions integrals available in the literature. The results obtained are compared with those obtained using a chemical equilibrium model and a one-temperature chemical non-equilibrium model. The influence of the power and the pressure chamber on the chemical and thermal non-equilibrium is investigated.

  4. Preliminary Overview of a Helium Cooling System for the Secondary Helium Loop in VHTR-based SI Hydrogen Production Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Youngjoon; Cho, Mintaek; Kim, Dahee; Lee, Taehoon; Lee, Kiyoung; Kim, Yongwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Nuclear hydrogen production facilities consist of a very high temperature gas-cooled nuclear reactor (VHTR) system, intermediate heat exchanger (IHX) system, and a sulfur-iodine (SI) thermochemical process. This study focuses on the coupling system between the IHX system and SI thermochemical process. To prevent the propagation of the thermal disturbance owing to the abnormal operation of the SI process components from the IHX system to the VHTR system, a helium cooling system for the secondary helium of the IHX is required. In this paper, the helium cooling system has been studied. The temperature fluctuation of the secondary helium owing to the abnormal operation of the SI process was then calculated based on the proposed coupling system model. Finally, the preliminary conceptual design of the helium cooling system with a steam generator and forced-draft air-cooled heat exchanger to mitigate the thermal disturbance has been carried out. A conceptual flow diagram of a helium cooling system between the IHX and SI thermochemical processes in VHTR-based SI hydrogen production facilities has been proposed. A helium cooling system for the secondary helium of the IHX in this flow diagram prevents the propagation of the thermal disturbance from the IHX system to the VHTR system, owing to the abnormal operation of the SI process components. As a result of a dynamic simulation to anticipate the fluctuations of the secondary helium temperature owing to the abnormal operation of the SI process components with a hydrogen production rate of 60 mol·H{sub 2}/s, it is recommended that the maximum helium cooling capacity to recover the normal operation temperature of 450 .deg. C is 31,933.4 kJ/s. To satisfy this helium cooling capacity, a U-type steam generator, which has a heat transfer area of 12 m{sup 2}, and a forced-draft air-cooled condenser, which has a heat transfer area of 12,388.67 m{sup 2}, are required for the secondary helium cooling system.

  5. Propagation of atmospheric pressure helium plasma jet into ambient air at laminar gas flow

    Science.gov (United States)

    Pinchuk, M.; Stepanova, O.; Kurakina, N.; Spodobin, V.

    2017-05-01

    The formation of an atmospheric pressure plasma jet (APPJ) in a gas flow passing through the discharge gap depends on both gas-dynamic properties and electrophysical parameters of the plasma jet generator. The paper presents the results of experimental and numerical study of the propagation of the APPJ in a laminar flow of helium. A dielectric-barrier discharge (DBD) generated inside a quartz tube equipped with a coaxial electrode system, which provided gas passing through it, served as a plasma source. The transition of the laminar regime of gas flow into turbulent one was controlled by the photography of a formed plasma jet. The corresponding gas outlet velocity and Reynolds numbers were revealed experimentally and were used to simulate gas dynamics with OpenFOAM software. The data of the numerical simulation suggest that the length of plasma jet at the unvarying electrophysical parameters of DBD strongly depends on the mole fraction of ambient air in a helium flow, which is established along the direction of gas flow.

  6. Turbulence models in supersonic flows

    International Nuclear Information System (INIS)

    Shirani, E.; Ahmadikia, H.; Talebi, S.

    2001-05-01

    The aim of this paper is to evaluate five different turbulence models when used in rather complicated two-dimensional and axisymmetric supersonic flows. They are Baldwin-Lomax, k-l, k-ε, k-ω and k-ζ turbulence models. The compressibility effects, axisymmetric correction terms and some modifications for transition region are used and tested in the models. Two computer codes based on the control volume approach and two flux-splitting methods. Roe and Van Leer, are developed. The codes are used to simulate supersonic mixing layers, flow behind axisymmetric body, under expanded jet, and flow over hollow cylinder flare. The results are compared with experimental data and behavior of the turbulence models is examined. It is shown that both k-l and k-ζ models produce very good results. It is also shown that the compressibility correction in the model is required to obtain more accurate results. (author)

  7. Condensation of steam on the underside of a horizontal surface in the presence of air and helium

    International Nuclear Information System (INIS)

    Stein, R.P.; Cho, D.H.; Lambert, G.A.

    1987-01-01

    Experiments and data analysis for the condensation of steam on the underside of a horizontal surface in a closed vessel are described. Previously reported results for film condensation with air as a noncondensable gas are reviewed and compared with new data with helium as the noncondensable in the same apparatus. Observations, including photographs of the condensate configurations, related to the occurrence of dropwise condensation are also discussed. It is noted that data reproducibility over long periods of time were possible only with film condensation and that with dropwise condensation condensing surface temperatures exhibited large nonuniformities and random fluctuations with time. The well known mass transfer calculational model for accounting for the presence of noncondensable gases had been shown previously to be successful with air. The same model when applied to the helium data was not successful except for small gas contents. It appears that the suppression of convection that would be expected to occur with the less dense gas is counteracted by convection induced by fog or mist formation

  8. Aerial Deployment and Inflation System for Mars Helium Balloons

    Science.gov (United States)

    Lachenmeler, Tim; Fairbrother, Debora; Shreves, Chris; Hall, Jeffery, L.; Kerzhanovich, Viktor V.; Pauken, Michael T.; Walsh, Gerald J.; White, Christopher V.

    2009-01-01

    A method is examined for safely deploying and inflating helium balloons for missions at Mars. The key for making it possible to deploy balloons that are light enough to be buoyant in the thin, Martian atmosphere is to mitigate the transient forces on the balloon that might tear it. A fully inflated Mars balloon has a diameter of 10 m, so it must be folded up for the trip to Mars, unfolded upon arrival, and then inflated with helium gas in the atmosphere. Safe entry into the Martian atmosphere requires the use of an aeroshell vehicle, which protects against severe heating and pressure loads associated with the hypersonic entry flight. Drag decelerates the aeroshell to supersonic speeds, then two parachutes deploy to slow the vehicle down to the needed safe speed of 25 to 35 m/s for balloon deployment. The parachute system descent dynamic pressure must be approximately 5 Pa or lower at an altitude of 4 km or more above the surface.

  9. Breakdown voltage at the electric terminals of GCFR-core flow test loop fuel rod simulators in helium and air

    International Nuclear Information System (INIS)

    Huntley, W.R.; Conley, T.B.

    1979-12-01

    Tests were performed to determine the ac and dc breakdown voltage at the terminal ends of a fuel rod simulator (FRS) in helium and air atmospheres. The tests were performed at low pressures (1 to 2 atm) and at temperatures from 20 to 350 0 C (68 to 660 0 F). The area of concern was the 0.64-mm (0.025-in.) gap between the coaxial conductor of the FRS and the sheaths of the four internal thermocouples as they exit the FRS. The tests were prformed to ensure a sufficient safety margin during Core Flow Test Loop (CFTL) operations that require potentials up to 350 V ac at the FRS terminals. The primary conclusion from the test results is that the CFTL cannot be operated safely if the terminal ends of the FRSs are surrounded by a helium atmosphere but can be operated safely in air

  10. Simulation of buoyancy induced gas mixing tests performed in a large scale containment facility using GOTHIC code

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Z.; Chin, Y.S. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    This paper compares containment thermal-hydraulics simulations performed using GOTHIC against a past test set of large scale buoyancy induced helium-air-steam mixing experiments that had been performed at the AECL's Chalk River Laboratories. A number of typical post-accident containment phenomena, including thermal/gas stratification, natural convection, cool air entrainment, steam condensation on concrete walls and active local air cooler, were covered. The results provide useful insights into hydrogen gas mixing behaviour following a loss-of-coolant accident and demonstrate GOTHIC's capability in simulating these phenomena. (author)

  11. Simulation of buoyancy induced gas mixing tests performed in a large scale containment facility using GOTHIC code

    International Nuclear Information System (INIS)

    Liang, Z.; Chin, Y.S.

    2014-01-01

    This paper compares containment thermal-hydraulics simulations performed using GOTHIC against a past test set of large scale buoyancy induced helium-air-steam mixing experiments that had been performed at the AECL's Chalk River Laboratories. A number of typical post-accident containment phenomena, including thermal/gas stratification, natural convection, cool air entrainment, steam condensation on concrete walls and active local air cooler, were covered. The results provide useful insights into hydrogen gas mixing behaviour following a loss-of-coolant accident and demonstrate GOTHIC's capability in simulating these phenomena. (author)

  12. The effects of mixing on age of air

    OpenAIRE

    Garny, H.; Birner, T.; Bönisch, H.; Bunzel, F.

    2014-01-01

    Mean age of air (AoA) measures the mean transit time of air parcels along the Brewer-Dobson circulation (BDC) starting from their entry into the stratosphere. AoA is determined both by transport along the residual circulation and by two-way mass exchange (mixing). The relative roles of residual circulation transport and two-way mixing for AoA, and for projected AoA changes are not well understood. Here effects of mixing on AoA are quantified by contrasting AoA with the transit time of hypothe...

  13. Hydrogen tube vehicle for supersonic transport: 2. Speed and energy

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Arnold R. [Vehicle Projects Inc and Supersonic Tubevehicle LLC, 200 Violet St, Suite 100, Golden, CO 80401 (United States)

    2010-06-15

    The central concept of a new idea in high-speed transport is that operation of a vehicle in a hydrogen atmosphere, because of the low density of hydrogen, would increase sonic speed by a factor of 3.8 and decrease drag by 15 relative to air. A hydrogen atmosphere requires that the vehicle operate within a hydrogen-filled tube or pipeline, which serves as a phase separator. The supersonic tube vehicle (STV) can be supersonic with respect to air outside the tube while remaining subsonic inside. It breathes hydrogen fuel for its propulsion fuel cells from the tube itself. This paper, second in a series on the scientific foundations of the supersonic tube vehicle, tests the hypothesis that the STV will be simultaneously fast and energy efficient by comparing its predicted speed and energy consumption with that of four long-haul passenger transport modes: road, rail, maglev, and air. The study establishes the speed ranking STV >> airplane > maglev > train > coach (intercity bus) and the normalized energy consumption ranking Airplane >> coach > maglev > train > STV. Consistent with the hypothesis, the concept vehicle is both the fastest and lowest energy consuming mode. In theory, the vehicle can cruise at Mach 2.8 while consuming less than half the energy per passenger of a Boeing 747 at a cruise speed of Mach 0.81. (author)

  14. Investigation of mixed ion fields in the forward direction for 220.5 MeV/u helium ion beams: comparison between water and PMMA targets

    Science.gov (United States)

    Aricò, G.; Gehrke, T.; Jakubek, J.; Gallas, R.; Berke, S.; Jäkel, O.; Mairani, A.; Ferrari, A.; Martišíková, M.

    2017-10-01

    Currently there is a rising interest in helium ion beams for radiotherapy. For benchmarking of the physical beam models used in treatment planning, there is a need for experimental data on the composition and spatial distribution of mixed ion fields. Of particular interest are the attenuation of the primary helium ion fluence and the build-up of secondary hydrogen ions due to nuclear interactions. The aim of this work was to provide such data with an enhanced precision. Moreover, the validity and limits of the mixed ion field equivalence between water and PMMA targets were investigated. Experiments with a 220.5 MeV/u helium ion pencil beam were performed at the Heidelberg Ion-Beam Therapy Center in Germany. The compact detection system used for ion tracking and identification was solely based on Timepix position-sensitive semiconductor detectors. In comparison to standard techniques, this system is two orders of magnitude smaller, and provides higher precision and flexibility. The numbers of outgoing helium and hydrogen ions per primary helium ion as well as the lateral particle distributions were quantitatively investigated in the forward direction behind water and PMMA targets with 5.2-18 cm water equivalent thickness (WET). Comparing water and PMMA targets with the same WET, we found that significant differences in the amount of outgoing helium and hydrogen ions and in the lateral particle distributions arise for target thicknesses above 10 cm WET. The experimental results concerning hydrogen ions emerging from the targets were reproduced reasonably well by Monte Carlo simulations using the FLUKA code. Concerning the amount of outgoing helium ions, significant differences of 3-15% were found between experiments and simulations. We conclude that if PMMA is used in place of water in dosimetry, differences in the dose distributions could arise close to the edges of the field, in particular for deep seated targets. The results presented in this publication are

  15. A Comparison of Prominent LES Combustion Models for Nonpremixed Supersonic Combustion

    Data.gov (United States)

    National Aeronautics and Space Administration — The capability of accurately simulating supersonic combustion is a vital topic for designing and advancing hypersonic air-breathing vehicles. As a consequence, there...

  16. Characterization of the Plasma Edge for Technique of Atomic Helium Beam in the CIEMAT Fusion Device

    International Nuclear Information System (INIS)

    Hidalgo, A.

    2003-01-01

    In this report, the measurement of Electron Temperature and Density in the Boundary Plasma of TJ-II with a Supersonic Helium Beam Diagnostic and work devoted to the upgrading of this technique are described. Also, simulations of Laser Induced Fluorescence (LIF) studies of level populations of electronically excited He atoms are shown. This last technique is now being installed in the CIEMAT fusion device. (Author )

  17. Spatial and energy distributions of satellite-speed helium atoms reflected from satellite-type surfaces

    International Nuclear Information System (INIS)

    Liu, S.M.; Rodgers, W.E.; Knuth, E.L.

    1977-01-01

    Interactions of satellite-speed helium atoms (accelerated in an expansion from an arc-heated supersonic-molecular-beam source) with practical satellite surfaces have been investigated experimentally. The density and energy distributions of the scattered atoms were measured using a detection system developed for this study. This detection system includes (a) a target positioning mechanism, (b) a detector rotating mechanism, and (c) a mass spectrometer and/or a retarding-field energy analyzer. (Auth.)

  18. Modelling and simulation of the compressible turbulence in supersonic shear flows

    International Nuclear Information System (INIS)

    Guezengar, Dominique

    1997-02-01

    This research thesis addresses the modelling of some specific physical problems of fluid mechanics: compressibility (issue of mixing layers), large variations of volumetric mass (boundary layers), and anisotropy (compression ramps). After a presentation of the chosen physical modelling and numerical approximation, the author pays attention to flows at the vicinity of a wall, and to boundary conditions. The next part addresses existing compressibility models and their application to the calculation of supersonic mixing layers. A critical assessment is also performed through calculations of boundary layers and of compression ramps. The next part addresses problems related to large variations of volumetric mass which are not taken by compressibility models into account. A modification is thus proposed for the diffusion term, and is tested for the case of supersonic boundary layers and of mixing layers with high density rates. Finally, anisotropy effects are addressed through the implementation of Explicit Algebraic Stress k-omega Turbulence models (EARSM), and their tests on previously studied cases [fr

  19. Propagation of atmospheric pressure helium plasma jet into ambient air at laminar gas flow

    International Nuclear Information System (INIS)

    Pinchuk, M; Kurakina, N; Spodobin, V; Stepanova, O

    2017-01-01

    The formation of an atmospheric pressure plasma jet (APPJ) in a gas flow passing through the discharge gap depends on both gas-dynamic properties and electrophysical parameters of the plasma jet generator. The paper presents the results of experimental and numerical study of the propagation of the APPJ in a laminar flow of helium. A dielectric-barrier discharge (DBD) generated inside a quartz tube equipped with a coaxial electrode system, which provided gas passing through it, served as a plasma source. The transition of the laminar regime of gas flow into turbulent one was controlled by the photography of a formed plasma jet. The corresponding gas outlet velocity and Reynolds numbers were revealed experimentally and were used to simulate gas dynamics with OpenFOAM software. The data of the numerical simulation suggest that the length of plasma jet at the unvarying electrophysical parameters of DBD strongly depends on the mole fraction of ambient air in a helium flow, which is established along the direction of gas flow. (paper)

  20. Dual-Pump CARS Development and Application to Supersonic Combustion

    Science.gov (United States)

    Magnotti, Gaetano; Cutler, Andrew D.

    2012-01-01

    A dual-pump Coherent Anti-Stokes Raman Spectroscopy (CARS) instrument has been developed to obtain simultaneous measurements of temperature and absolute mole fractions of N2, O2 and H2 in supersonic combustion and generate databases for validation and development of CFD codes. Issues that compromised previous attempts, such as beam steering and high irradiance perturbation effects, have been alleviated or avoided. Improvements in instrument precision and accuracy have been achieved. An axis-symmetric supersonic combusting coaxial jet facility has been developed to provide a simple, yet suitable flow to CFD modelers. Approximately one million dual-pump CARS single shots have been collected in the supersonic jet for varying values of flight and exit Mach numbers at several locations. Data have been acquired with a H2 co-flow (combustion case) or a N2 co-flow (mixing case). Results are presented and the effects of the compressibility and of the heat release are discussed.

  1. Pre-Test CFD for the Design and Execution of the Enhanced Injection and Mixing Project at NASA Langley Research Center

    Science.gov (United States)

    Drozda, Tomasz G.; Axdahl, Erik L.; Cabell, Karen F.

    2014-01-01

    With the increasing costs of physics experiments and simultaneous increase in availability and maturity of computational tools it is not surprising that computational fluid dynamics (CFD) is playing an increasingly important role, not only in post-test investigations, but also in the early stages of experimental planning. This paper describes a CFD-based effort executed in close collaboration between computational fluid dynamicists and experimentalists to develop a virtual experiment during the early planning stages of the Enhanced Injection and Mixing project at NASA Langley Research Center. This projects aims to investigate supersonic combustion ramjet (scramjet) fuel injection and mixing physics, improve the understanding of underlying physical processes, and develop enhancement strategies and functional relationships relevant to flight Mach numbers greater than 8. The purpose of the virtual experiment was to provide flow field data to aid in the design of the experimental apparatus and the in-stream rake probes, to verify the nonintrusive measurements based on NO-PLIF, and to perform pre-test analysis of quantities obtainable from the experiment and CFD. The approach also allowed for the joint team to develop common data processing and analysis tools, and to test research ideas. The virtual experiment consisted of a series of Reynolds-averaged simulations (RAS). These simulations included the facility nozzle, the experimental apparatus with a baseline strut injector, and the test cabin. Pure helium and helium-air mixtures were used to determine the efficacy of different inert gases to model hydrogen injection. The results of the simulations were analyzed by computing mixing efficiency, total pressure recovery, and stream thrust potential. As the experimental effort progresses, the simulation results will be compared with the experimental data to calibrate the modeling constants present in the CFD and validate simulation fidelity. CFD will also be used to

  2. Process Control Migration of 50 LPH Helium Liquefier

    Science.gov (United States)

    Panda, U.; Mandal, A.; Das, A.; Behera, M.; Pal, Sandip

    2017-02-01

    Two helium liquefier/refrigerators are operational at VECC while one is dedicated for the Superconducting Cyclotron. The first helium liquefier of 50 LPH capacity from Air Liquide has already completed fifteen years of operation without any major trouble. This liquefier is being controlled by Eurotherm PC3000 make PLC. This PLC has become obsolete since last seven years or so. Though we can still manage to run the PLC system with existing spares, risk of discontinuation of the operation is always there due to unavailability of spare. In order to eliminate the risk, an equivalent PLC control system based on Siemens S7-300 was thought of. For smooth migration, total programming was done keeping the same field input and output interface, nomenclature and graphset. New program is a mix of S7-300 Graph, STL and LAD languages. One to one program verification of the entire process graph was done manually. The total program was run in simulation mode. Matlab mathematical model was also used for plant control simulations. EPICS based SCADA was used for process monitoring. As of now the entire hardware and software is ready for direct replacement with minimum required set up time.

  3. Wide-range vortex shedding flowmeter for high-temperature helium gas

    Energy Technology Data Exchange (ETDEWEB)

    Baker, S.P.; Herndon, P.G.; Ennis, R.M. Jr.

    1983-01-01

    The existing design of a commercially available vortex shedding flowmeter (VSFM) was modified and optimized to produce three 4-in. and one 6-in. high-performance VSFMs for measuring helium flow in a gas-cooled fast reactor (GCFR) test loop. The project was undertaken because of the significant economic and performance advantages to be realized by using a single flowmeter capable of covering the 166:1 flow range (at 350/sup 0/C and 45:1 pressure range) of the tests. A detailed calibration in air and helium at the Colorado Engineering Experiment Station showed an accuracy of +-1% of reading for a 100:1 helium flow range and +-1.75% of reading for a 288:1 flow range in both helium and air. At an extended gas temperature of 450/sup 0/C, water cooling was necessary for reliable flowmeter operation.

  4. Adsorption pump for helium pumping out

    International Nuclear Information System (INIS)

    Donde, A.L.; Semenenko, Yu.E.

    1981-01-01

    Adsorption pump with adsorbent cooling by liquid helium is described. Shuttered shield protecting adsorbent against radiation is cooled with evaporating helium passing along the coil positioned on the shield. The pump is also equipped with primed cylindrical shield, cooled with liquid nitrogen. The nitrogen shield has in the lower part the shuttered shield, on the pump casing there is a valve used for pump pre-burning, and valves for connection to recipient as well. Pumping- out rates are presented at different pressures and temperatures of adsorbent. The pumping-out rate according to air at absorbent cooling with liquid nitrogen constituted 5x10 -4 Pa-3000 l/s, at 2x10 -2 Pa-630 l/s. During the absorbent cooling with liquid hydrogen the pumping-out rate according to air was at 4x10 -4 Pa-580 l/s, at 2x10 -3 Pa-680 l/s, according to hydrogen - at 8x10 -5 Pa-2500 l/s, at 5x10 -3 Pa-4200 l/s. During adsorbent cooling with liquid helium the rate of pumping-out according to hydrogen at 3x10 5 Pa-2400% l/s, at 6x10 3 Pa-1200 l/s, and according to helium at 3.5x10 -5 Pa-2800 l/s, at 4x10 -3 Pa-1150 l/s. The limit vacuum is equal to 1x10 -7 Pa. The volume of the vessel with liquid helium is equal to 3.5 l. Helium consumption is 80 cm 3 /h. Consumption of liquid nitrogen from the shield is 400 cm 3 /h. The limit pressure in the pump is obtained after forevacuum pumping-out (adsorbent regeneration) at 300 K temperature. The pump is made of copper. The pump height together with primed tubes is 800 mm diameter-380 mm [ru

  5. Spatially and Temporally Resolved Measurements of Velocity in a H2-air Combustion-Heated Supersonic Jet

    Science.gov (United States)

    Bivolaru, Daniel; Cutler, Andrew D.; Danehy, Paul M.; Gaffney, Richard L.; Baurle, Robert a.

    2009-01-01

    This paper presents simultaneous measurements at multiple points of two orthogonal components of flow velocity using a single-shot interferometric Rayleigh scattering (IRS) technique. The measurements are performed on a large-scale Mach 1.6 (Mach 5.5 enthalpy) H2-air combustion jet during the 2007 test campaign in the Direct Connect Supersonic Combustion Test facility at NASA Langley Research Center. The measurements are performed simultaneously with CARS (Coherent Anti-stokes Raman Spectroscopy) using a combined CARS-IRS instrument with a common path 9-nanosecond pulsed, injection-seeded, 532-nm Nd:YAG laser probe pulse. The paper summarizes the measurements of velocities along the core of the vitiated air flow as well as two radial profiles. The average velocity measurement near the centerline at the closest point from the nozzle exit compares favorably with the CFD calculations using the VULCAN code. Further downstream, the measured axial velocity shows overall higher values than predicted with a trend of convergence at further distances. Larger discrepancies are shown in the radial profiles.

  6. Heat flux to the helium cryogenic system elements in the case of incidental vacuum vessel ventilation with atmospheric air

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The selection process for size in safety equipment for cold vessels or process pipes in cryogenic systems should take into consideration the incidental ventilation of the vacuum vessel with atmospheric air. In this case, a significant heat input toward the cold elements of the system can be expected. A number of experimental investigations have been done for the elements at liquid helium temperature which have been covered with 10 layers of MLI. The typical values of the heat flux were measured in a range of 3.7 to 5.0 kW/m2 of the element surface. The helium temperature parts are typically surrounded by thermal shields that are kept in a temperature range of 50-80K. On the external side, the thermal shields are covered with 30-40 layers of MLI while on the internal side, the shields are bare. The theoretical calculations of heat flux to the thermal shield, with respect to the possibility of air condensation and freezing on the bare side of the thermal shield, show that the heat flux to the thermal shield can...

  7. Helium heater design for the helium direct cycle component test facility. [for gas-cooled nuclear reactor power plant

    Science.gov (United States)

    Larson, V. R.; Gunn, S. V.; Lee, J. C.

    1975-01-01

    The paper describes a helium heater to be used to conduct non-nuclear demonstration tests of the complete power conversion loop for a direct-cycle gas-cooled nuclear reactor power plant. Requirements for the heater include: heating the helium to a 1500 F temperature, operating at a 1000 psia helium pressure, providing a thermal response capability and helium volume similar to that of the nuclear reactor, and a total heater system helium pressure drop of not more than 15 psi. The unique compact heater system design proposed consists of 18 heater modules; air preheaters, compressors, and compressor drive systems; an integral control system; piping; and auxiliary equipment. The heater modules incorporate the dual-concentric-tube 'Variflux' heat exchanger design which provides a controlled heat flux along the entire length of the tube element. The heater design as proposed will meet all system requirements. The heater uses pressurized combustion (50 psia) to provide intensive heat transfer, and to minimize furnace volume and heat storage mass.

  8. Arbitrary amplitude electrostatic wave propagation in a magnetized dense plasma containing helium ions and degenerate electrons

    Science.gov (United States)

    Mahmood, S.; Sadiq, Safeer; Haque, Q.; Ali, Munazza Z.

    2016-06-01

    The obliquely propagating arbitrary amplitude electrostatic wave is studied in a dense magnetized plasma having singly and doubly charged helium ions with nonrelativistic and ultrarelativistic degenerate electrons pressures. The Fermi temperature for ultrarelativistic degenerate electrons described by N. M. Vernet [(Cambridge University Press, Cambridge, 2007), p. 57] is used to define ion acoustic speed in ultra-dense plasmas. The pseudo-potential approach is used to solve the fully nonlinear set of dynamic equations for obliquely propagating electrostatic waves in a dense magnetized plasma containing helium ions. The upper and lower Mach number ranges for the existence of electrostatic solitons are found which depends on the obliqueness of the wave propagation with respect to applied magnetic field and charge number of the helium ions. It is found that only compressive (hump) soliton structures are formed in all the cases and only subsonic solitons are formed for a singly charged helium ions plasma case with nonrelativistic degenerate electrons. Both subsonic and supersonic soliton hump structures are formed for doubly charged helium ions with nonrelativistic degenerate electrons and ultrarelativistic degenerate electrons plasma case containing singly as well as doubly charged helium ions. The effect of propagation direction on the soliton amplitude and width of the electrostatic waves is also presented. The numerical plots are also shown for illustration using dense plasma parameters of a compact star (white dwarf) from literature.

  9. Experimental and computational analysis of steam condensation in the presence of air and helium

    International Nuclear Information System (INIS)

    Bucci, M.

    2010-01-01

    Among the different phenomena expected to occur within nuclear reactor containments during a postulated loss of coolant accident, condensation on containment walls plays a major role, since it represents an important heat sink for evacuating the energy released by the discharge of the primary water. Nevertheless, condensation strongly affects other relevant phenomena, like containment atmosphere mixing, that influences the distribution of non-condensable gases hypothetically delivered in severe accident conditions. In this scenario, the role of condensation is not obvious, since it can locally aid the hydrogen produced by the oxidation of the core claddings to concentrate and reach flammability limits, providing a dangerous effect instead of a positive one. The understanding of condensation in the presence of air and hydrogen is therefore a fundamental task for the safety analyses of reactor containments. This research has been carried out with the aim to contribute to the understanding of these phenomena. A double strategy has been adopted, including complementary experimental and computational activities. Novel data have been made available by the CONAN facility, investigating the effects induced by light non-condensable gases in experimental configurations that were scarcely investigated in past studies. Computational fluid dynamics (CFD) condensation models have been developed and validated. The suitability of helium as a substitute for hydrogen in experimental activities has been investigated by theoretical and computational analyses allowing to establish simple criteria for the scaling of condensation tests in the presence of a light non-condensable gas. (authors)

  10. A note on supersonic flow control with nanosecond plasma actuator

    Science.gov (United States)

    Zheng, J. G.; Cui, Y. D.; Li, J.; Khoo, B. C.

    2018-04-01

    A concept study on supersonic flow control using nanosecond pulsed plasma actuator is conducted by means of numerical simulation. The nanosecond plasma discharge is characterized by the generation of a micro-shock wave in ambient air and a residual heat in the discharge volume arising from the rapid heating of near-surface gas by the quick discharge. The residual heat has been found to be essential for the flow separation control over aerodynamic bodies like airfoil and backward-facing step. In this study, novel experiment is designed to utilize the other flow feature from discharge, i.e., instant shock wave, to control supersonic flow through shock-shock interaction. Both bow shock in front of a blunt body and attached shock anchored at the tip of supersonic projectile are manipulated via the discharged-induced shock wave in an appropriate manner. It is observed that drag on the blunt body is reduced appreciably. Meanwhile, a lateral force on sharp-edged projectile is produced, which can steer the body and give it an effective angle of attack. This opens a promising possibility for extending the applicability of this flow control technique in supersonic flow regime.

  11. Features of the laminar-turbulent transition in supersonic axisymmetric microjets

    Science.gov (United States)

    Maslov, A. A.; Aniskin, V. M.; Mironov, S. G.

    2016-10-01

    In this paper, a supersonic core length of microjets is studied in terms of laminar-turbulent transition in the microjet mixing layer. Previously, it was discovered that this transition has a determining influence on the supersonic core length. A possibility of simulation of microjet flows is estimated through the use of Reynolds number computed by the nozzle diameter and the nozzle exit gas parameters. These experimental data were obtained using Pitot tube when the jets escaping from the nozzle of 0.6 mm into the low-pressure space. This experiment made it possible to achieve a large jet pressure ratio when the Reynolds number values were low which specify the microjets' behavior. The supersonic core length, phase of the laminar-turbulent transition and flow characteristics in the space are obtained. Such an approach provides simulation of the characteristics of microjets and macrojets, and also explains preliminary proposition and some data obtained for microjets.

  12. Characteristics of pulsed plasma synthetic jet and its control effect on supersonic flow

    Directory of Open Access Journals (Sweden)

    Di Jin

    2015-02-01

    Full Text Available The plasma synthetic jet is a novel flow control approach which is currently being studied. In this paper its characteristic and control effect on supersonic flow is investigated both experimentally and numerically. In the experiment, the formation of plasma synthetic jet and its propagation velocity in quiescent air are recorded and calculated with time resolved schlieren method. The jet velocity is up to 100 m/s and no remarkable difference has been found after changing discharge parameters. When applied in Mach 2 supersonic flow, an obvious shockwave can be observed. In the modeling of electrical heating, the arc domain is not defined as an initial condition with fixed temperature or pressure, but a source term with time-varying input power density, which is expected to better describe the influence of heating process. Velocity variation with different heating efficiencies is presented and discussed and a peak velocity of 850 m/s is achieved in still air with heating power density of 5.0 × 1012 W/m3. For more details on the interaction between plasma synthetic jet and supersonic flow, the plasma synthetic jet induced shockwave and the disturbances in the boundary layer are numerically researched. All the results have demonstrated the control authority of plasma synthetic jet onto supersonic flow.

  13. Effect of HTGR helium on fatigue and creep properties of 2 1/4Cr-1Mo steel

    International Nuclear Information System (INIS)

    Kurumaji, T.; Yamazaki, H.; Kudo, A.

    1982-01-01

    Low cycle fatigue and creep tests have been carried out on 2 1/4Cr-1Mo steel (candidate steel for VHTR reactor pressure vessel) in helium environment containing 200 approx. 300 μatm of H 2 , 100 approx. 150 μatm CO, 7 approx. 10 μatm CH 4 , 7 approx. 10 μatm CO 2 and 1 μatm H 2 O (JAERI B Helium). Fatigue life in helium environment was longer than that in air at 450 0 C. This results can be explained by supposing that oxidation at the crack tip causes the wedge effect to promote crack propagation in air. On the otherhand, creep rupture strength showed no significant difference in both helium and air. Equivalent creep rupture strength in both helium and air may be due to the fact that detrimental internal oxidation and carburization or decarburization hardly occur at 400 approx. 450 0 C

  14. Flowing of supersonic underexpanded micro-jets in the range of moderate Reynolds numbers

    Science.gov (United States)

    Mironov, S. G.; Aniskin, V. M.; Maslov, A. A.

    2017-10-01

    The paper presents new experimental results on the simulation of supersonic underexpanded micro-jets by macro-jet in the range of moderate Reynolds numbers of air outflow from the nozzle. A correlation is shown between the variations in the Pitot pressure in the model micro-jet with variations in the length of the supersonic core of real the micro-jets. The results of experiments on the effect of humidity on the pulsation of mass flow rate in a micro-jet are presented.

  15. Study on effect of mixing mechanism by the transverse gaseous injection flow in scramjet engine with variable parameters

    Science.gov (United States)

    Yadav, Siddhita; Pandey, K. M.

    2018-04-01

    In scramjet engine the mixing mechanism of fuel and atmospheric air is very complicated, because the fuel have time in milliseconds for mixing with atmospheric air in combustion chamber having supersonic speed. Mixing efficiency of fuel and atmospheric air depends on mainly these parameters: Aspect ratio of injector, vibration amplitude, shock type, number of injector, jet to transverse flow momentum flux ratio, injector geometry, injection angle, molecular weight, incoming air stream angle, jet to transverse flow pressure ratio, spacing variation, mass flow rate of fuel etc. here is a very brief study of these parameters from previously done research on these parameters for the improvement of mixing efficiency. The mixing process have the significant role for the working of engine, and mixing between the atmospheric air and the jet fuel is significant factor for improving the overall thrust of the engine. The results obtained by study of papers are obtained by the 3D-Reynolds Average-Nervier-Stokes(RANS) equations along with the 2-equation k-ω shear-stress-transport (SST) turbulence model. Engine having multi air jets have 60% more mixing efficiency than single air jet, thus if the jets are increased, the mixing efficiency of engine can also be increased up to 150% by changing jet from 1 to 16. When using delta shape of injector the mixing efficiency is inversely proportional to the pressure ratio. When the fuel is injected inside the combustor from the top and bottom walls of the engine efficiency of mixing in reacting zone is higher than the single wall injection and in comparison to parallel flow, the transverse type flow is better as the atmospheric air jet can penetrate smoothly in the fuel jets and mixes well in less time. Hence this study of parameters and their effects on mixing can enhance the efficiency of mixing in engine.

  16. Investigation of Cooling Water Injection into Supersonic Rocket Engine Exhaust

    Science.gov (United States)

    Jones, Hansen; Jeansonne, Christopher; Menon, Shyam

    2017-11-01

    Water spray cooling of the exhaust plume from a rocket undergoing static testing is critical in preventing thermal wear of the test stand structure, and suppressing the acoustic noise signature. A scaled test facility has been developed that utilizes non-intrusive diagnostic techniques including Focusing Color Schlieren (FCS) and Phase Doppler Particle Anemometry (PDPA) to examine the interaction of a pressure-fed water jet with a supersonic flow of compressed air. FCS is used to visually assess the interaction of the water jet with the strong density gradients in the supersonic air flow. PDPA is used in conjunction to gain statistical information regarding water droplet size and velocity as the jet is broken up. Measurement results, along with numerical simulations and jet penetration models are used to explain the observed phenomena. Following the cold flow testing campaign a scaled hybrid rocket engine will be constructed to continue tests in a combusting flow environment similar to that generated by the rocket engines tested at NASA facilities. LaSPACE.

  17. Dry and mixed air cooling systems

    International Nuclear Information System (INIS)

    Gutner, Gidali.

    1975-01-01

    The various dry air cooling systems now in use or being developed are classified. The main dimensioning parameters are specified and the main systems already built are given with their characteristics. The available data allow dry air cooling to be situated against the other cooling modes and so specify the aim of the research or currently developed works. Some systems at development stages are briefly described. The interest in mixed cooling (assisted draft) and the principal available systems is analyzed. A program of research is outlined [fr

  18. The TEXTOR helium self-pumping experiment: Design, plans, and supporting ion-beam data on helium retention in nickel

    International Nuclear Information System (INIS)

    Brooks, J.N.; Krauss, A.; Mattas, R.F.; Smith, D.L.; Nygren, R.E.; Doyle, B.L.; McGrath, R.T.; Walsh, D.; Dippel, K.H.; Finken, K.H.

    1990-01-01

    A proof-of-principle experiment to demonstrate helium self-pumping in a tokamak is being undertaken in TEXTOR. The experiment will use a helium self-pumping module installed in a modified ALT-I limiter head. The module consists of two, ≅ 25x25 cm 2 heated nickel alloy trapping plates, a nickel deposition filament array, and associated diagnostics. Between plasma shots a coating of ≅ 50A nickel will be deposited on the two trapping plates. During a shot helium and hydrogen ions will impinge on the plates through a ≅ 3 cm wide entrance slot. The helium removal capability, due to trapping in the nickel, will be assessed for a variety of plasma conditions. In support of the tokamak experiment, the trapping of helium over a range of ion fluences and surface temperatures, and detrapping during subsequent exposure to hydrogen, were measured in ion beam experiments using evaporated nickel surfaces similar to that expected in TEXTOR. Also, the retention of H and He after exposure of a nickel surface to mixed He/H plasmas has been measured. The results appear favorable, showing high helium trapping (≅ 10-50% He/Ni) and little or no detrapping by hydrogen. The TEXTOR experiment is planned to begin in 1991. (orig.)

  19. The TEXTOR helium self-pumping experiment: Design, plans, and supporting ion-beam data on helium retention in nickel

    International Nuclear Information System (INIS)

    Brooks, J.N.; Krauss, A.; Mattas, R.F.; Smith, D.L.; Nygren, R.E.; Doyle, B.L.; McGrath, R.T.; Walsh, D.; Dippel, K.H.; Finken, K.H.

    1990-01-01

    A proof-of-principle experiment to demonstrate helium self-pumping in a tokamak is being undertaken in TEXTOR. The experiment will use a helium self-pumping module installed in a modified ALT-I limiter head. The module consists of two, ∼25 x 25 cm 2 heated nickel alloy trapping plates, a nickel deposition filament array, and associated diagnostics. Between plasma shots a coating of ∼50 angstrom nickel will be deposited on the two trapping plates. During a shot helium and hydrogen ions will impinge on the plates through a ∼3 cm wide entrance slot. The helium removal capability, due to trapping in the nickel, will be assessed for a variety of plasma conditions. In support of the tokamak experiment, the trapping of helium over a range of ion fluences and surface temperatures, and detrapping during subsequent exposure to hydrogen, were measured in ion beam experiments using evaporated nickel surfaces similar to that expected in TEXTOR. Also, the retention of H and He after exposure of a nickel surface to mixed He/H plasmas has bee measured. The results appear favorable, showing high helium trapping (∼10--50% He/Ni) and little or no detrapping by hydrogen. The TEXTOR experiment is planned to begin in 1991. 12 refs., 2 figs., 2 tabs

  20. Helium-air exchange flow through an opening with a partition

    International Nuclear Information System (INIS)

    Kang, Tae-il; Okamoto, Koji; Madarame, Haruki; Fumizawa, Motoo.

    1993-01-01

    The helium-air exchange flow through a small vertical opening with a partition was experimentally investigated. The vertical partition was aligned with the center line of the small opening to evaluate the effects of the multiple openings. The dimensionless exchange flow rates, i.e., Froude numbers, were experimentally obtained with several opening ratios (H 1 /D f ), i.e., the ratio of the height to the effective diameter of the opening. In the case of low opening ratios (H 1 /D f 1 /D f ≥ 0.75), the measured Froude numbers for the multiple openings were larger than those for the single opening, because the upward and downward flows were separated by the vertical partition. Based on the balance between the pressure losses in the openings and the driving force due to density difference, the exchange flow rate was calculated, and found to agree qualitatively with the measured Froude numbers. The effect of the upward and downward flow interaction at the exit of the opening was found to play an important role in the prediction of the Froude number. (author)

  1. Effects of hydrogen mixture into helium gas on deuterium removal from lithium titanate

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Akihito, E-mail: tsuchiya@frontier.hokudai.ac.jp [Laboratory of Plasma Physics and Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Hino, Tomoaki; Yamauchi, Yuji; Nobuta, Yuji [Laboratory of Plasma Physics and Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Akiba, Masato; Enoeda, Mikio [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka 311-0193 (Japan)

    2013-10-15

    Lithium titanate (Li{sub 2}TiO{sub 3}) pebbles were irradiated with deuterium ions with energy of 1.7 keV and then exposed to helium or helium–hydrogen mixed gas at various temperatures, in order to evaluate the effects of gas exposure on deuterium removal from the pebbles. The amounts of residual deuterium in the pebbles were measured by thermal desorption spectroscopy. The mixing of hydrogen gas into helium gas enhanced the removal amount of deuterium. In other words, the amount of residual deuterium after the helium–hydrogen mixed gas exposure at lower temperature was lower than that after the helium gas exposure. In addition, we also evaluated the pebbles exposed to the helium gas with different hydrogen mixture ratio from 0% to 1%, at 573 K. Although the amount of residual deuterium in the pebbles after the exposure decreased with increasing the hydrogen mixture ratio, the implanted deuterium partly remained after the exposure. These results suggest that the tritium inventory may occur at low temperature region in the blanket during the operation.

  2. Ethylene tetrafluoroethylene nanofibers prepared by CO2 laser supersonic drawing

    Directory of Open Access Journals (Sweden)

    A. Suzuki

    2013-06-01

    Full Text Available Ethylene tetrafluoroethylene (ETFE nanofibers were prepared by carbon dioxide (CO2 laser irradiation of asspun ETFE fibers with four different melt flow rates (MFRs in a supersonic jet that was generated by blowing air into a vacuum chamber through the fiber injection orifice. The drawability and superstructure of fibers produced by CO2 laser supersonic drawing depend on the laser power, the chamber pressure, the fiber injection speed, and the MFR. Nanofibers obtained using a laser power of 20 W, a chamber pressure of 20 kPa, and an MFR of 308 g•10 min–1 had an average diameter of 0.303 µm and a degree of crystallinity of 54%.

  3. A comparative study on total reflection X-ray fluorescence determination of low atomic number elements in air, helium and vacuum atmospheres using different excitation sources

    Science.gov (United States)

    Misra, N. L.; Kanrar, Buddhadev; Aggarwal, S. K.; Wobrauschek, Peter; Rauwolf, M.; Streli, Christina

    2014-09-01

    A comparison of trace element determinations of low atomic number (Z) elements Na, Mg, Al, P, K and Ca in air, helium and vacuum atmospheres using W Lβ1, Mo Kα and Cr Kα excitations has been made. For Mo Kα and W Lβ1 excitations a Si (Li) detector with beryllium window was used and measurements were performed in air and helium atmospheres. For Cr Kα excitation, a Si (Li) detector with an ultra thin polymer window (UTW) was used and measurements were made in vacuum and air atmospheres. The sensitivities of the elemental X-ray lines were determined using TXRF spectra of standard solutions and processing them by IAEA QXAS program. The elemental concentrations of the elements in other solutions were determined using their TXRF spectra and pre-determined sensitivity values. The study suggests that, using the above experimental set up, Mo Kα excitation is not suited for trace determination of low atomic number element. Excitation by WLβ1 and helium atmosphere, the spectrometer can be used for the determination of elements with Z = 15 (P) and above with fairly good detection limits whereas Cr Kα excitation with ultra thin polymer window and vacuum atmosphere is good for the elements having Z = 11 (Na) and above. The detection limits using this set up vary from 7048 pg for Na to 83 pg for Ti.

  4. The influence of droplet evaporation on fuel-air mixing rate in a burner

    Science.gov (United States)

    Komiyama, K.; Flagan, R. C.; Heywood, J. B.

    1977-01-01

    Experiments involving combustion of a variety of hydrocarbon fuels in a simple atmospheric pressure burner were used to evaluate the role of droplet evaporation in the fuel/air mixing process in liquid fuel spray flames. Both air-assist atomization and pressure atomization processes were studied; fuel/air mixing rates were determined on the basis of cross-section average oxygen concentrations for stoichiometric overall operation. In general, it is concluded that droplets act as point sources of fuel vapor until evaporation, when the fuel jet length scale may become important in determining nonuniformities of the fuel vapor concentration. In addition, air-assist atomizers are found to have short droplet evaporation times with respect to the duration of the fuel/air mixing process, while for the pressure jet atomizer the characteristic evaporation and mixing times are similar.

  5. Study on the Impact Characteristics of Coherent Supersonic Jet and Conventional Supersonic Jet in EAF Steelmaking Process

    Science.gov (United States)

    Wei, Guangsheng; Zhu, Rong; Cheng, Ting; Dong, Kai; Yang, Lingzhi; Wu, Xuetao

    2018-02-01

    Supersonic oxygen-supplying technologies, including the coherent supersonic jet and the conventional supersonic jet, are now widely applied in electric arc furnace steelmaking processes to increase the bath stirring, reaction rates, and energy efficiency. However, there has been limited research on the impact characteristics of the two supersonic jets. In the present study, by integrating theoretical modeling and numerical simulations, a hybrid model was developed and modified to calculate the penetration depth and impact zone volume of the coherent and conventional supersonic jets. The computational fluid dynamics results were validated against water model experiments. The results show that the lance height has significant influence on the jet penetration depth and jet impact zone volume. The penetration depth decreases with increasing lance height, whereas the jet impact zone volume initially increases and then decreases with increasing lance height. In addition, the penetration depth and impact zone volume of the coherent supersonic jet are larger than those of the conventional supersonic jet at the same lance height, which illustrates the advantages of the coherent supersonic jet in delivering great amounts of oxygen to liquid melt with a better stirring effect compared to the conventional supersonic jet. A newly defined parameter, the k value, reflects the velocity attenuation and the potential core length of the main supersonic jet. Finally, a hybrid model and its modifications can well predict the penetration depth and impact zone volume of the coherent and conventional supersonic jets.

  6. A supersonic fan equipped variable cycle engine for a Mach 2.7 supersonic transport

    Science.gov (United States)

    Tavares, T. S.

    1985-01-01

    The concept of a variable cycle turbofan engine with an axially supersonic fan stage as powerplant for a Mach 2.7 supersonic transport was evaluated. Quantitative cycle analysis was used to assess the effects of the fan inlet and blading efficiencies on engine performance. Thrust levels predicted by cycle analysis are shown to match the thrust requirements of a representative aircraft. Fan inlet geometry is discussed and it is shown that a fixed geometry conical spike will provide sufficient airflow throughout the operating regime. The supersonic fan considered consists of a single stage comprising a rotor and stator. The concept is similar in principle to a supersonic compressor, but differs by having a stator which removes swirl from the flow without producing a net rise in static pressure. Operating conditions peculiar to the axially supersonic fan are discussed. Geometry of rotor and stator cascades are presented which utilize a supersonic vortex flow distribution. Results of a 2-D CFD flow analysis of these cascades are presented. A simple estimate of passage losses was made using empirical methods.

  7. Low Density Supersonic Decelerators

    Data.gov (United States)

    National Aeronautics and Space Administration — The Low-Density Supersonic Decelerator project will demonstrate the use of inflatable structures and advanced parachutes that operate at supersonic speeds to more...

  8. Development of manufacturing of low dew-point mixed gas of butane-air

    Energy Technology Data Exchange (ETDEWEB)

    Komine, Hitoshi

    1988-09-10

    A dehumidifying plant was installed to supply high-quality dehumidified butane-air mixed gas aiming at saving the heat required for vaporizing liquid butane by the heat exchange with the potential heat of air as well as the dehumidification of the air used for the mixed gas by cooling with the vaporizing latent heat of liquid butane. The plant has been smoothly operated since August, 1987. Butane sent from the air-dehumidifier is completely vaporized by hot water in the vaporizer and the vaporized butane ejected by the Venturi mixer to mix with the dehumidified air. The gas production capacity is 3000Nm/sup 3//h and the treating capacities of butane and air are 661 and 2339 Nm/sup 3//h, respectively. The dew point of the mixed gas is 18/sup 0/C under 0.7kg/cm/sup 2/G at atmospheric temperature of 38/sup 0/C subject to the operation of the plant only in hot and humid summer. It was demonstrated that the plant is characterized by low construction and operating costs, low level of noise and stable heat value of the product gas. (5 figs, 4 tabs, 1 photo)

  9. Low Density Supersonic Decelerator Flight Dynamics Test-1 Flight Design and Targeting

    Science.gov (United States)

    Ivanov, Mark

    2015-01-01

    NASA's Low Density Supersonic Decelerator (LDSD) program was established to identify, develop, and eventually qualify to Test [i.e. Technology] Readiness Level (TRL) - 6 aerodynamic decelerators for eventual use on Mars. Through comprehensive Mars application studies, two distinct Supersonic Inflatable Aerodynamic Decelerator (SIAD) designs were chosen that afforded the optimum balance of benefit, cost, and development risk. In addition, a Supersonic Disk Sail (SSDS) parachute design was chosen that satisfied the same criteria. The final phase of the multi-tiered qualification process involves Earth Supersonic Flight Dynamics Tests (SFDTs) within environmental conditions similar to those that would be experienced during a Mars Entry, Descent, and Landing (EDL) mission. The first of these flight tests (i.e. SFDT-1) was completed on June 28, 2014 with two more tests scheduled for the summer of 2015 and 2016, respectively. The basic flight design for all the SFDT flights is for the SFDT test vehicle to be ferried to a float altitude of 120 kilo-feet by a 34 thousand cubic feet (Mcf) heavy lift helium balloon. Once float altitude is reached, the test vehicle is released from the balloon, spun-up for stability, and accelerated to supersonic speeds using a Star48 solid rocket motor. After burnout of the Star48 motor the vehicle decelerates to pre-flight selected test conditions for the deployment of the SIAD system. After further deceleration with the SIAD deployed, the SSDS parachute is then deployed stressing the performance of the parachute in the wake of the SIAD augmented blunt body. The test vehicle/SIAD/parachute system then descends to splashdown in the Pacific Ocean for eventual recovery. This paper will discuss the development of both the test vehicle and the trajectory sequence including design trade-offs resulting from the interaction of both engineering efforts. In addition, the SFDT-1 nominal trajectory design and associated sensitivities will be discussed

  10. Investigation of Jet Noise Using Optical Holography

    Science.gov (United States)

    1973-04-01

    Holographic interferograms have been made of cold, laboratory scale, supersonic air and nitrogen jet in the mach number range of 2.1 ot 3.4, and of helium jets in the mach number range of 1.5 to 2.95. These holograms demonstrate that the acoustic fie...

  11. Manufacturing cycle for pure neon-helium mixture production

    International Nuclear Information System (INIS)

    Batrakov, B.P.; Kravchenko, V.A.

    1980-01-01

    The manufacturing cycle for pure neon-helium mixture production with JA-300 nitrogen air distributing device has been developed. Gas mixture containing 2-3% of neon-helium mixture (the rest is mainly nitrogen 96-97%) is selected out of the cover of the JA-300 column condensator and enters the deflegmator under the 2.3-2.5 atm. pressure. The diflegmator presents a heat exchange apparatus in which at 78 K liquid nitrogen the condensation of nitrogen from the mixture of gases entering from the JA-300 column takes place. The enriched gas mixture containing 65-70% of neon-helium mixture and 30-35% of nitrogen goes out from the deflegmator. This enriched neon-helium mixture enters the gasgoeder for impure (65-70%) neon-helium mixture. Full cleaning of-neon helium mixture of nitrogen is performed by means of an adsorber. As adsorbent an activated coal has been used. Adsorption occurs at the 78 K temperature of liquid nitrogen and pressure P=0.1 atm. As activated coal cooled down to nitrogen temperature adsorbs nitrogen better than neon and helium, the nitrogen from the mixture is completely adsorbed. Pure neon-helium mixture from the adsorber comes into a separate gasgolder. In one campaign the cycle allows obtaining 2 m 3 of the mixture. The mixture contains 0.14% of nitrogen, 0.01% of oxygen and 0.06% of hydrogen

  12. Supersonic induction plasma jet modeling

    International Nuclear Information System (INIS)

    Selezneva, S.E.; Boulos, M.I.

    2001-01-01

    Numerical simulations have been applied to study the argon plasma flow downstream of the induction plasma torch. It is shown that by means of the convergent-divergent nozzle adjustment and chamber pressure reduction, a supersonic plasma jet can be obtained. We investigate the supersonic and a more traditional subsonic plasma jets impinging onto a normal substrate. Comparing to the subsonic jet, the supersonic one is narrower and much faster. Near-substrate velocity and temperature boundary layers are thinner, so the heat flux near the stagnation point is higher in the supersonic jet. The supersonic plasma jet is characterized by the electron overpopulation and the domination of the recombination over the dissociation, resulting into the heating of the electron gas. Because of these processes, the supersonic induction plasma permits to separate spatially different functions (dissociation and ionization, transport and deposition) and to optimize each of them. The considered configuration can be advantageous in some industrial applications, such as plasma-assisted chemical vapor deposition of diamond and polymer-like films and in plasma spraying of nanoscaled powders

  13. New technique for enhancing helium production in ferritic materials

    International Nuclear Information System (INIS)

    Greenwood, L.R.; Graczyk, D.G.; Kneff, D.W.

    1987-10-01

    Analyses of iron samples irradiated up to 10 27 n/m 2 in HFIR found more helium than was expected from fast neutron reactions at high neutron fluences. The helium excess increases systematically with neutron exposure, suggesting a transmutation-driven process. The extra helium may be produced in two different ways, either by fast neutron reactions on the transmuted isotopes of iron or by a thermal neutron reaction with the radioactive isotope 55 Fe. Radiometric and mass spectrometric measurements of the iron isotopes composing the irradiated samples have been used to determine limits on the cross sections for each process. Either of these processes can be used to enhance helium production in ferritic materials during irradiations in mixed-spectrum reactors by isotopically enriching the samples. Further work is needed to clarify the reaction mechanisms and helium production cross sections. Our measurements determined the thermal neutron total absorption cross section of 55 Fe to be 13.2 +- 2.1 barns. 16 refs., 3 figs., 3 tabs

  14. A multiple-scales model of the shock-cell structure of imperfectly expanded supersonic jets

    Science.gov (United States)

    Tam, C. K. W.; Jackson, J. A.; Seiner, J. M.

    1985-01-01

    The present investigation is concerned with the development of an analytical model of the quasi-periodic shock-cell structure of an imperfectly expanded supersonic jet. The investigation represents a part of a program to develop a mathematical theory of broadband shock-associated noise of supersonic jets. Tam and Tanna (1982) have suggested that this type of noise is generated by the weak interaction between the quasi-periodic shock cells and the downstream-propagating large turbulence structures in the mixing layer of the jet. In the model developed in this paper, the effect of turbulence in the mixing layer of the jet is simulated by the addition of turbulent eddy-viscosity terms to the momentum equation. Attention is given to the mean-flow profile and the numerical solution, and a comparison of the numerical results with experimental data.

  15. EFFECTS OF OXYGEN AND AIR MIXING ON VOID FRACTIONS IN A LARGE SCALE SYSTEM

    International Nuclear Information System (INIS)

    Leishear, R; Hector Guerrero, H; Michael Restivo, M

    2008-01-01

    Oxygen and air mixing with spargers was performed in a 30 foot tall by 30 inch diameter column, to investigate mass transfer as air sparged up through the column and removed saturated oxygen from solution. The mixing techniques required to support this research are the focus of this paper. The fluids tested included water, water with an antifoam agent (AFA), and a high, solids content, Bingham plastic, nuclear waste simulant with AFA, referred to as AZ01 simulant, which is non-radioactive. Mixing of fluids in the column was performed using a recirculation system and an air sparger. The re-circulation system consisted of the column, a re-circulating pump, and associated piping. The air sparger was fabricated from a two inch diameter pipe concentrically installed in the column and open near the bottom of the column. The column contents were slowly re-circulated while fluids were mixed with the air sparger. Samples were rheologically tested to ensure effective mixing, as required. Once the fluids were adequately mixed, oxygen was homogeneously added through the re-circulation loop using a sintered metal oxygen sparger followed by a static mixer. Then the air sparger was re-actuated to remove oxygen from solution as air bubbled up through solution. To monitor mixing effectiveness several variables were monitored, which included flow rates, oxygen concentration, differential pressures along the column height, fluid levels, and void fractions, which are defined as the percent of dissolved gas divided by the total volume of gas and liquid. Research showed that mixing was uniform for water and water with AFA, but mixing for the AZ101 fluid was far more complex. Although mixing of AZ101 was uniform throughout most of the column, gas entrapment and settling of solids significantly affected test results. The detailed test results presented here provide some insight into the complexities of mixing and void fractions for different fluids and how the mixing process itself

  16. EFFECTS OF OXYGEN AND AIR MIXING ON VOID FRACTIONS IN A LARGE SCALE SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, R; Hector Guerrero, H; Michael Restivo, M

    2008-09-11

    Oxygen and air mixing with spargers was performed in a 30 foot tall by 30 inch diameter column, to investigate mass transfer as air sparged up through the column and removed saturated oxygen from solution. The mixing techniques required to support this research are the focus of this paper. The fluids tested included water, water with an antifoam agent (AFA), and a high, solids content, Bingham plastic, nuclear waste simulant with AFA, referred to as AZ01 simulant, which is non-radioactive. Mixing of fluids in the column was performed using a recirculation system and an air sparger. The re-circulation system consisted of the column, a re-circulating pump, and associated piping. The air sparger was fabricated from a two inch diameter pipe concentrically installed in the column and open near the bottom of the column. The column contents were slowly re-circulated while fluids were mixed with the air sparger. Samples were rheologically tested to ensure effective mixing, as required. Once the fluids were adequately mixed, oxygen was homogeneously added through the re-circulation loop using a sintered metal oxygen sparger followed by a static mixer. Then the air sparger was re-actuated to remove oxygen from solution as air bubbled up through solution. To monitor mixing effectiveness several variables were monitored, which included flow rates, oxygen concentration, differential pressures along the column height, fluid levels, and void fractions, which are defined as the percent of dissolved gas divided by the total volume of gas and liquid. Research showed that mixing was uniform for water and water with AFA, but mixing for the AZ101 fluid was far more complex. Although mixing of AZ101 was uniform throughout most of the column, gas entrapment and settling of solids significantly affected test results. The detailed test results presented here provide some insight into the complexities of mixing and void fractions for different fluids and how the mixing process itself

  17. A computational study of the supersonic coherent jet

    International Nuclear Information System (INIS)

    Jeong, Mi Seon; Kim, Heuy Dong

    2003-01-01

    In steel-making process of iron and steel industry, the purity and quality of steel can be dependent on the amount of CO contained in the molten metal. Recently, the supersonic oxygen jet is being applied to the molten metal in the electric furnace and thus reduces the CO amount through the chemical reactions between the oxygen jet and molten metal, leading to a better quality of steel. In this application, the supersonic oxygen jet is limited in the distance over which the supersonic velocity is maintained. In order to get longer supersonic jet propagation into the molten metal, a supersonic coherent jet is suggested as one of the alternatives which are applicable to the electric furnace system. It has a flame around the conventional supersonic jet and thus the entrainment effect of the surrounding gas into the supersonic jet is reduced, leading to a longer propagation of the supersonic jet. In this regard, gasdynamics mechanism about why the combustion phenomenon surrounding the supersonic jet causes the jet core length to be longer is not yet clarified. The present study investigates the major characteristics of the supersonic coherent jet, compared with the conventional supersonic jet. A computational study is carried out to solve the compressible, axisymmetric Navier-Stokes equations. The computational results of the supersonic coherent jet are compared with the conventional supersonic jets

  18. Porous fuel air mixing enhancing nozzle (PFAMEN)

    NARCIS (Netherlands)

    Reijnders, J.J.E.; Boot, M.D.; Luijten, C.C.M.; Frijters, P.J.M.; Goey, de L.P.H.

    2009-01-01

    One of the challenges with conventional diesel engines is the emission of soot. To reduce soot emission whilst maintaining fuel efficiency, an important pathway is to improve the fuel-air mixing process. This can be achieved by creating small droplets in order to enhance evaporation. Furthermore,

  19. Air Distribution in a Furnished Room Ventilated by Mixing Ventilation

    DEFF Research Database (Denmark)

    Nielsen, June Richter; Nielsen, Peter V.; Svidt, Kjeld

    Using isothermal full-scale experiments and two-dimensional isothermal CFD simulations it is investigated how normal office furniture influences the air movements in a room with mixing ventilation. Three different set-ups are made in the experiments and different sizes and locations of the furnit......Using isothermal full-scale experiments and two-dimensional isothermal CFD simulations it is investigated how normal office furniture influences the air movements in a room with mixing ventilation. Three different set-ups are made in the experiments and different sizes and locations...

  20. Effect of a helium environment on the mechanical properties of HTGR primary system metals

    International Nuclear Information System (INIS)

    Chow, J.G.Y.; Soo, P.; Sabatini, R.L.

    1978-01-01

    Creep and high cycle fatigue tests have been carried out on Incoloy 800H and Hastelloy X in a helium environment containing 40 μ atm of H 2 O, 200 μ atm H 2 , 40 μ atm CO, 20 μ atm CH 4 and 10 μ atm CO 2 . The creep behavior of Incoloy 800H does not appear to show significant differences from that measured in air. However, the Hastelloy X at the maximum test temperature studied (871 0 C, 1600 0 F) shows behavior which is inferior. With respect to high cycle fatigue, the Incoloy 800H is weaker in the helium environment at a test temperature of 649 0 C (1200 0 F). At 760 0 C (1400 0 F) the strength in helium is higher but there is a tendency to lose strength more rapidly than for the air tests as the test time increases. Hastelloy X tested at 871 0 C (1600 0 F) also shows higher strength in helium for short test times but for extended tests the strengths in air and helium become similar. Scanning electron microprobe analyses have been carried out to correlate the strength measurements with surface oxidation characteristics and internal structural changes

  1. Helium isotopes in rocks, waters and gases of the earth's crust

    International Nuclear Information System (INIS)

    Tolstikhin, L.H.

    1984-01-01

    In this chapter the distribution of helium isotopes in various samples (rocks, minerals, terrestrial fluids, gases etc.) is interpreted from the genetic point of view, namely what sources and processes provide the abundance of helium isotopes observed in a sample. The mixing of mantle, juvenile helium with pure radiogenic helium is the main process responsible for the helium isotope composition in any sample of the earth's crust, the share of each component (reflected in the 3 He/ 4 He ratio) depending on the history of the tectono-magnetic activity in the given region. A specific chemical composition of a rock or mineral, peculiarities of losses or trapping and a peculiar kind of distribution of radioactive elements can lead to unusual isotopic ratios of 3 He/ 4 He in radiogenic helium. Lastly, technogenic radioactive isotopes are widespread in nature; one of them, tritium ( 3 H), yields 3 He excess in terrestrial waters. (orig.)

  2. Oxidation characteristics of the electron beam surface-treated Alloy 617 in high temperature helium environments

    International Nuclear Information System (INIS)

    Lee, Ho Jung; Sah, Injin; Kim, Donghoon; Kim, Hyunmyung; Jang, Changheui

    2015-01-01

    The oxidation characteristics of the electron beam surface-treated Alloy 617, which has an Al-rich surface layer, were evaluated in high temperature helium environments. Isothermal oxidation tests were performed in helium (99.999% purity) and VHTR-helium (helium of prototypical VHTR chemistry containing impurities like CO, CO 2 , CH 4 , and H 2 ) environments at 900 °C for up to 1000 h. The surface-treated Alloy 617 showed an initial transient oxidation stage followed by the steady-state oxidation in all test environments. In addition, the steady-state oxidation kinetics of the surface-treated Alloy 617 was 2-order of magnitude lower than that of the as-received Alloy 617 in both helium environments as well as in air. The improvement in oxidation resistance was primarily due to the formation of the protective Al 2 O 3 layer on the surface. The weight gain was larger in the order of air, helium, and VHTR-helium, while the parabolic rate constants (k p ) at steady-state were similar for all test environments. In both helium environments, the oxide structure consisted of the outer transition Al 2 O 3 with a small amount of Cr 2 O 3 and inner columnar structured Al 2 O 3 without an internal oxide. In the VHTR-helium environment, where the impurities were added to helium, the initial transient oxidation increased but the steady state kinetics was not affected

  3. Effects of HTGR helium on the high cycle fatigue of structural materials

    International Nuclear Information System (INIS)

    Soo, P.; Sabatini, R.L.; Gerlach, L.

    1982-01-01

    High cycle fatigue tests have been conducted on Incoloy 800H and Hastelloy X in air and in HTGR helium environments containing low and high levels of moisture. For the helium environments, a higher mositure level usually gives a lower fatigue strength. For air, however, the strength is usually much lower than those for helium. For long test times at higher test temperatures, the fatigue strengths for Incoloy 800H often show a large decrease, and the fatigue limits are much lower than those anticipated from low cycle tests. Optical and scanning electron microscope observations were made to correlate fatigue life with surface and bulk microstructural changes in the material during test. Oxide scale cracking and spallation, surface recrystallization and intergranular attack appear to contribute to losses in fatigue strength

  4. Nonlinear stability of supersonic jets

    Science.gov (United States)

    Tiwari, S. N. (Principal Investigator); Bhat, T. R. S. (Principal Investigator)

    1996-01-01

    The stability calculations made for a shock-free supersonic jet using the model based on parabolized stability equations are presented. In this analysis the large scale structures, which play a dominant role in the mixing as well as the noise radiated, are modeled as instability waves. This model takes into consideration non-parallel flow effects and also nonlinear interaction of the instability waves. The stability calculations have been performed for different frequencies and mode numbers over a range of jet operating temperatures. Comparisons are made, where appropriate, with the solutions to Rayleigh's equation (linear, inviscid analysis with the assumption of parallel flow). The comparison of the solutions obtained using the two approaches show very good agreement.

  5. Supersonic propulsion technology. [variable cycle engines

    Science.gov (United States)

    Powers, A. G.; Coltrin, R. E.; Stitt, L. E.; Weber, R. J.; Whitlow, J. B., Jr.

    1979-01-01

    Propulsion concepts for commercial supersonic transports are discussed. It is concluded that variable cycle engines, together with advanced supersonic inlets and low noise coannular nozzles, provide good operating performance for both supersonic and subsonic flight. In addition, they are reasonably quiet during takeoff and landing and have acceptable exhaust emissions.

  6. A review of helium gas turbine technology for high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    No, Hee Cheon; Kim, Ji Hwan; Kim, Hyeun Min

    2007-01-01

    Current High-Temperature Gas-cooled Reactors (HTGRs) are based on a closed brayton cycle with helium gas as the working fluid. Thermodynamic performance of the axial-flow helium gas turbines is of critical concern as it considerably affects the overall cycle efficiency. Helium gas turbines pose some design challenges compared to steam or air turbomachinery because of the physical properties of helium and the uniqueness of the operating conditions at high pressure with low pressure ratio. This report present a review of the helium Brayton cycle experiences in Germany and in Japan. The design and availability of helium gas turbines for HTGR are also presented in this study. We have developed a new throughflow calculation code to calculate the design-point performance of helium gas turbines. Use of the method has been illustrated by applying it to the GTHTR300 reference

  7. Effect of helium irradiation on fracture modes

    International Nuclear Information System (INIS)

    Hanamura, T.; Jesser, W.A.

    1982-01-01

    The objective of this work is to determine the crack opening mode during in-situ HVEM tensile testing and how it is influenced by test temperature and helium irradiation. Most cracks were mixed mode I and II. However, between 250 0 C and room temperature the effect of helium irradiation is to increase the amount of mode I crack propagation. Mode II crack opening was observed as grain boundary sliding initiated by a predominantly mode I crack steeply intersecting the grain boundary. Mode II crack opening was absent in irradiated specimens tested between 250 0 C and room temperature, but could be restored by a post irradiation anneal

  8. Multi-objective design optimization of the transverse gaseous jet in supersonic flows

    Science.gov (United States)

    Huang, Wei; Yang, Jun; Yan, Li

    2014-01-01

    The mixing process between the injectant and the supersonic crossflow is one of the important issues for the design of the scramjet engine, and the efficiency mixing has a great impact on the improvement of the combustion efficiency. A hovering vortex is formed between the separation region and the barrel shock wave, and this may be induced by the large negative density gradient. The separation region provides a good mixing area for the injectant and the subsonic boundary layer. In the current study, the transverse injection flow field with a freestream Mach number of 3.5 has been optimized by the non-dominated sorting genetic algorithm (NSGA II) coupled with the Kriging surrogate model; and the variance analysis method and the extreme difference analysis method have been employed to evaluate the values of the objective functions. The obtained results show that the jet-to-crossflow pressure ratio is the most important design variable for the transverse injection flow field, and the injectant molecular weight and the slot width should be considered for the mixing process between the injectant and the supersonic crossflow. There exists an optimal penetration height for the mixing efficiency, and its value is about 14.3 mm in the range considered in the current study. The larger penetration height provides a larger total pressure loss, and there must be a tradeoff between these two objection functions. In addition, this study demonstrates that the multi-objective design optimization method with the data mining technique can be used efficiently to explore the relationship between the design variables and the objective functions.

  9. Interferometric measurement and numerical comparisons of supersonic heat transfer flows in microchannel

    International Nuclear Information System (INIS)

    Takahashi, Yuya; Chen, Lin; Okajima, Junnosuke; Iga, Yuka; Komiya, Atsuki; Maruyama, Shigenao

    2016-01-01

    Highlights: • Effective cooling design by super-/sub-sonic air flow in microchannels is proposed. • Microscale supersonic flows is successfully generated and examined. • Microchannel flow density field were visualized quantitatively by interferometer. • The bump design shows great potential of heat transfer enhancement in microscale. - Abstract: With the fast development of electronic systems and the ever-increasing demand of thermally “smart” design in space and aeronautic engineering, the heat transfer innovations and high heat flux challenges have become a hot topic for decades. This study is aimed at the effective cooling heat transfer design by super-/sub-sonic air flow in microscale channels for high heat flux devices. The design is based on the low temperature flows with supersonic expansion in microscale, which yields a compact and simple design. By careful microelectromechanical process, microscale straight and bumped channels (with simple arc curve) are fabricated and experimentally tested in this study. The microscale flow field and density distributions under new designs are visualized quantitatively by an advanced phase-shifting interferometer system, which results are then compared carefully with numerical simulations. In this study, large differences between the two designs in density distribution and temperature changes (around 50 K) are found. The high heat flux potential for supersonic microchannel flows is realized and discussion into detail. It is confirmed that the bump design contributes significantly to the heat transfer enhancement, which shows potential for future application in novel system designs.

  10. Recent run-time experience and investigation of impurities in turbines circuit of Helium plant of SST-1

    International Nuclear Information System (INIS)

    Panchal, P.; Panchal, R.; Patel, R.

    2013-01-01

    One of the key sub-systems of Steady State superconducting Tokamak (SST-1) is cryogenic 1.3 kW at 4.5 K Helium refrigerator/liquefier system. The helium plant consists of 3 nos. of screw compressors, oil removal system, purifier and cold-box with 3 turbo expanders (turbines) and helium cold circulator. During the recent SST-1 plasma campaigns, we observed high pressure drop of the order of 3 bar between the wheel outlet of turbine A and the wheel inlet of turbine - B. This was significant higher values of pressures drop across turbines, which reduced the speed of turbine A and B and in turn reduced the overall plant capacity. The helium circuits in the plant have 10-micron filter at the mouth of turbine - B. Initially, major suspects of such high blockage are assumed to be air-impurity, dust particles or collapse of filter. Several breaks in plant operation have been taken to warm up the turbines circuits up to 90 K to remove condensation of air-impurities at filter. Still this exercise did not solve blockage of filter in turbine circuits. A detailed investigation exercise with air/water regeneration and rinsing of cold box as well as purification of helium gas in buffer tanks are carried out to remove air impurities from cold-box. A trial run of cold box was executed in liquefier mode with turbines up to cryogenic temperatures and solved blockage in turbine circuits. The paper describes run-time experience of helium plant with helium impurity in turbine circuits, methods to remove impurity, demonstration of turbine performance and lessons learnt during this operation. (author)

  11. Supersonic Turbulent Fuel-Air Mixing and Evaporation

    National Research Council Canada - National Science Library

    Moukalled, Fadi

    2003-01-01

    .... The convergence rate will be accelerated using a full non-linear multi-grid method. The discretization will use a second order scheme for diffusion and a pseudo-third order bounded scheme for convection...

  12. Application of Cascade Refrigeration System with Mixing Refrigerant in Cold Air Cutting

    Science.gov (United States)

    Yang, Y.; Tong, M. W.; Yang, G.; Wang, X. P.

    In the mechanical cutting process, the replacement of traditional cutting solution with cold air can avoid the pollution of environment. In order to high efficient the refrigerating device and flexible adjust the temperature of cold air, it is necessary to use cascade refrigeration system to supply cool quantity for the compressed air. The introduction of a two-component non-azeotropic mixing refrigerant into the cryogenic part of the cascade system, can effectively solve the problems of the system working at too high pressure and the volume expanding of refrigerant in case of the cascade refrigeration sets closed down. However, the filling ratio of mixing refrigerants impact on the relationships among the closing down pressure, refrigerating output and refrigerating efficiency. On the basis of computing and experiment, the optimal mixing ratio of refrigerant R22/R13 and a low temperature of -60° were obtained in this study. A cold air injecting device possessing high efficiency in energy saving has also been designed and manufactured. The cold air, generated from this cascade system and employed in a cutting process, takes good comprehensive effects on machining and cutting.

  13. Note: A new design for a low-temperature high-intensity helium beam source

    Science.gov (United States)

    Lechner, B. A. J.; Hedgeland, H.; Allison, W.; Ellis, J.; Jardine, A. P.

    2013-02-01

    A high-intensity supersonic beam source is a key component of any atom scattering instrument, affecting the sensitivity and energy resolution of the experiment. We present a new design for a source which can operate at temperatures as low as 11.8 K, corresponding to a beam energy of 2.5 meV. The new source improves the resolution of the Cambridge helium spin-echo spectrometer by a factor of 5.5, thus extending the accessible timescales into the nanosecond range. We describe the design of the new source and discuss experiments characterizing its performance. Spin-echo measurements of benzene/Cu(100) illustrate its merit in the study of a typical slow-moving molecular adsorbate species.

  14. Time evolution of cascade processes of muonic atoms in hydrogen-helium mixtures

    International Nuclear Information System (INIS)

    Bystritskij, V.; Czaplinski, W.; Filipowicz, M.; Gula, E.; Popov, N.

    1999-01-01

    Time dependence of population of muonic hydrogen states in hydrogen-helium mixtures is calculated for principal quantum number n. Number of muons transferred to helium nuclei is also determined. Dependence of population of the ground state of muonic hydrogen q ls He on time and target density and helium concentration is also considered. The results are in agreement with recent experimental data. The comparison of the calculated yield of K lines of x-ray in pure hydrogen and deuterium with experimental data indicates on essential role of Coulomb de-excitation process. Possible Stark mixing is also analyzed

  15. Safety in handling helium and nitrogen

    International Nuclear Information System (INIS)

    Schmauch, G.; Lansing, L.; Santay, T.; Nahmias, D.

    1991-01-01

    Based upon the authors' industrial experience and practices, they have provided an overview of safety in storage, handling, and transfer of both laboratory and bulk quantities of gaseous and liquid forms of nitrogen and helium. They have addressed the properties and characteristics of both the gaseous and liquid fluids, typical storage and transport containers, transfer techniques, and the associated hazards which include low temperatures, high pressures, and asphyxiation. Methods and procedures to control and eliminate these hazards are described, as well as risk remediation through safety awareness training, personal protective equipment, area ventilation, and atmosphere monitoring. They have included as an example a recent process hazards analysis performed by Air Products on the asphyxiation hazard associated with the use of liquid helium in MRI magnet systems

  16. Reduction of circulation power for helium-cooled fusion reactor blanket using additive CO{sub 2} gas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yeon-Gun [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Department of Nuclear and Energy Engineering, Jeju National University, 102 Jejudaehakno, Jeju-si 690-756, Jeju (Korea, Republic of); Park, Il-Woong [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Lee, Dong Won [Nuclear Fusion Engineering Development Center, Korea Atomic Energy Research Institute, Daedeokdaero 989 beon-gil, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Park, Goon-Cherl [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Kim, Eung-Soo, E-mail: kes7741@snu.ac.kr [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of)

    2015-11-15

    Helium (He) cooling requires large circulation power to remove high heat from plasma side and nuclear heating by high energy neutron in fusion reactors due to its low density. Based on the recent findings that the heat transfer capability of the light gas can be enhanced by mixing another heavier gas, this study adds CO{sub 2} to a reference helium coolant and evaluates the cooling performance of the binary mixture for various compositions. To assess the cooling performance, computational fluid dynamic (CFD) analyses on the KO HCML (Korea Helium Cooled Molten Lithium) TBM are conducted. As a result, it is revealed that the binary mixing of helium, which has favorable thermophysical properties but the density, with a heavier noble gas or an unreactive gas significantly reduces the required circulation power by an order of magnitude with meeting the thermal design requirements. This is attributed to the fact that the density can be highly increased with small amount of a heavier gas while other gas properties are kept relatively comparable. The optimal CO{sub 2} mole fraction is estimated to be 0.4 and the circulation power, in this case, can be reduced to 13% of that of pure helium. This implies that the thermal efficiency of a He-cooled blanket system can be fairly enhanced by means of the proposed binary mixing.

  17. An Opportunity for Hydrogen Fueled Supersonic Airliners

    Directory of Open Access Journals (Sweden)

    Alex Forbes

    2011-02-01

    Full Text Available This paper takes a new look at the prospects for developing supersonic civil airliners, considering global demographics, climate change issues, fuel prices and technological advances. Dramatic changes have occurred in the demographics, economics, and market intensity of the Eastern Hemisphere since the 1990s. Carbon reduction imperatives provide a major incentive to invest in developing hydrogen-fueled airliners. The “point-to-point” air route architecture has proved viable with long range mid-size airliners. With a cruise Mach number of 1.4, a large number of destinations become viable for overland supersonic flight. A conceptual design process is used to estimate cost per seat mile for a range of hydrocarbon and hydrogen fuel costs. An argument based on the ideal shape for minimal wave drag, estimates the drag penalty from using hydrogen. Viable aircraft geometries are shown to exist, that match the theoretical ideal shape, showing that the drag estimate is achievable. Conservative design arguments and market estimates suggest that hydrogen-fueled airliners can achieve seat-mile costs low enough to open a large worldwide market and justify a viable fleet size.

  18. Numerical study of combustion initiation in a supersonic flow of H2-air mixture by resonance laser radiation

    International Nuclear Information System (INIS)

    Bezgin, L V; Kopchenov, V I; Kuleshov, P S; Titova, N S; Starik, A M

    2012-01-01

    A comparative analysis of the efficiency of approaches based on the exposure of reacting gas to resonance laser radiation to enhance combustion in a supersonic flow of H 2 -air mixture is conducted. The kinetic processes responsible for the intensification of chain reactions in premixed and non-premixed H 2 -air flows upon photodissociation of O 2 molecules by 193.3 nm laser radiation, excitation of these molecules to the singlet sigma state by laser photons with 762.346 nm wavelength and heating the mixture by laser radiation are analysed in a detailed manner. It is shown that both photochemical methods, photodissociation and excitation of O 2 molecules, are much more effective in shortening the ignition delay length than merely heating the mixture. For the premixed flow, the photodissociation of O 2 molecules ensures a slightly higher reduction in the ignition delay than the laser-induced excitation of molecular oxygen to the singlet sigma state. However, in the non-premixed flow the situation is inverted. The analysis shows that both photochemical methods make it possible to raise the efficiency of conversion of reactant chemical energy to thermal energy released during combustion compared with the method of heating the mixtures. (paper)

  19. Interaction of the Helium, Hydrogen, Air, Argon, and Nitrogen Bubbles with Graphite Surface in Water.

    Science.gov (United States)

    Bartali, Ruben; Otyepka, Michal; Pykal, Martin; Lazar, Petr; Micheli, Victor; Gottardi, Gloria; Laidani, Nadhira

    2017-05-24

    The interaction of the confined gas with solid surface immersed in water is a common theme of many important fields such as self-cleaning surface, gas storage, and sensing. For that reason, we investigated the gas-graphite interaction in the water medium. The graphite surface was prepared by mechanical exfoliation of highly oriented pyrolytic graphite (HOPG). The surface chemistry and morphology were studied by X-ray photoelectron spectroscopy, profilometry, and atomic force microscopy. The surface energy of HOPG was estimated by contact angle measurements using the Owens-Wendt method. The interaction of gases (Ar, He, H 2 , N 2 , and air) with graphite was studied by a captive bubble method, in which the gas bubble was in contact with the exfoliated graphite surface in water media. The experimental data were corroborated by molecular dynamics simulations and density functional theory calculations. The surface energy of HOPG equaled to 52.8 mJ/m 2 and more of 95% of the surface energy was attributed to dispersion interactions. The results on gas-surface interaction indicated that HOPG surface had gasphilic behavior for helium and hydrogen, while gasphobic behavior for argon and nitrogen. The results showed that the variation of the gas contact angle was related to the balance between the gas-surface and gas-gas interaction potentials. For helium and hydrogen the gas-surface interaction was particularly high compared to gas-gas interaction and this promoted the favorable interaction with graphite surface.

  20. Continuous supersonic plasma wind tunnel

    DEFF Research Database (Denmark)

    Andersen, S.A.; Jensen, Vagn Orla; Nielsen, P.

    1969-01-01

    The normal magnetic field configuration of a Q device has been modified to obtain a 'magnetic Laval nozzle'. Continuous supersonic plasma 'winds' are obtained with Mach numbers ~3. The magnetic nozzle appears well suited for the study of the interaction of supersonic plasma 'winds' with either...

  1. Three-dimensional supersonic vortex breakdown

    Science.gov (United States)

    Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.

    1993-01-01

    Three-dimensional supersonic vortex-breakdown problems in bound and unbound domains are solved. The solutions are obtained using the time-accurate integration of the unsteady, compressible, full Navier-Stokes (NS) equations. The computational scheme is an implicit, upwind, flux-difference splitting, finite-volume scheme. Two vortex-breakdown applications are considered in the present paper. The first is for a supersonic swirling jet which is issued from a nozzle into a supersonic uniform flow at a lower Mach number than that of the swirling jet. The second is for a supersonic swirling flow in a configured circular duct. In the first application, an extensive study of the effects of grid fineness, shape and grid-point distribution on the vortex breakdown is presented. Four grids are used in this study and they show a substantial dependence of the breakdown bubble and shock wave on the grid used. In the second application, the bubble-type and helix-type vortex breakdown have been captured.

  2. Advanced supersonic propulsion study, phase 3

    Science.gov (United States)

    Howlett, R. A.; Johnson, J.; Sabatella, J.; Sewall, T.

    1976-01-01

    The variable stream control engine is determined to be the most promising propulsion system concept for advanced supersonic cruise aircraft. This concept uses variable geometry components and a unique throttle schedule for independent control of two flow streams to provide low jet noise at takeoff and high performance at both subsonic and supersonic cruise. The advanced technology offers a 25% improvement in airplane range and an 8 decibel reduction in takeoff noise, relative to first generation supersonic turbojet engines.

  3. An extended supersonic combustion model for the dynamic analysis of hypersonic vehicles

    Science.gov (United States)

    Bossard, J. A.; Peck, R. E.; Schmidt, D. K.

    1993-01-01

    The development of an advanced dynamic model for aeroelastic hypersonic vehicles powered by air breathing engines requires an adequate engine model. This report provides a discussion of some of the more important features of supersonic combustion and their relevance to the analysis and design of supersonic ramjet engines. Of particular interest are those aspects of combustion that impact the control of the process. Furthermore, the report summarizes efforts to enhance the aeropropulsive/aeroelastic dynamic model developed at the Aerospace Research Center of Arizona State University by focusing on combustion and improved modeling of this flow. The expanded supersonic combustor model described here has the capability to model the effects of friction, area change, and mass addition, in addition to the heat addition process. A comparison is made of the results from four cases: (1) heat addition only; (2) heat addition plus friction; (3) heat addition, friction, and area reduction, and (4) heat addition, friction, area reduction, and mass addition. The relative impact of these effects on the Mach number, static temperature, and static pressure distributions within the combustor are then shown. Finally, the effects of frozen versus equilibrium flow conditions within the exhaust plume is discussed.

  4. Continuous supersonic plasma wind tunnel

    DEFF Research Database (Denmark)

    Andersen, S.A.; Jensen, Vagn Orla; Nielsen, P.

    1968-01-01

    The B field configuration of a Q-device has been modified into a magnetic Laval nozzle. Continuous supersonic plasma flow is observed with M≈3......The B field configuration of a Q-device has been modified into a magnetic Laval nozzle. Continuous supersonic plasma flow is observed with M≈3...

  5. Supersonic compressor

    Science.gov (United States)

    Roberts, II, William Byron; Lawlor, Shawn P.; Breidenthal, Robert E.

    2016-04-12

    A supersonic compressor including a rotor to deliver a gas at supersonic conditions to a diffuser. The diffuser includes a plurality of aerodynamic ducts that have converging and diverging portions, for deceleration of gas to subsonic conditions and then for expansion of subsonic gas, to change kinetic energy of the gas to static pressure. The aerodynamic ducts include vortex generating structures for controlling boundary layer, and structures for changing the effective contraction ratio to enable starting even when the aerodynamic ducts are designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of in excess of two to one, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.

  6. Mechanical characterization of metallic materials for high-temperature gas-cooled reactors in air and in helium environments

    International Nuclear Information System (INIS)

    Sainfort, G.; Cappelaere, M.; Gregoire, J.; Sannier, J.

    1984-01-01

    In the French R and D program for high-temperature gas-cooled reactors (HTGRs), three metallic alloys were studied: steel Chromesco-3 with 2.25% chromium, alloy 800H, and Hastelloy-X. The Chromesco-3 and alloy 800H creep behavior is the same in air and in HTGR atmosphere (helium). The tensile tests of Hastelloy-X specimens reveal that aging has embrittlement and hardening effects up to 700 0 C, but the creep tests at 800 0 C show opposite effects. This particular behavior could be due to induced precipitation by aging and the depletion of hardening elements from the matrix. Tests show a low influence of cobalt content on mechanical properties of Hastelloy-X

  7. Creep and fatigue of alloy 800 in helium

    International Nuclear Information System (INIS)

    Cook, R.H.

    1975-01-01

    Proposals for use of Alloy 800 as a H.T.R. boiler material have prompted studies of its creep and high temperature fatigue properties in impure helium with comparative tests in air. In impure helium, as expected in a H.T.R., reactions of potential importance are selective oxidation (of chromium, aluminium and titanium) and possibly carburisation from carbon monoxide or methane. In air, general oxidation will occur, possibly accompanied by nitridation. The effects of these reactions will depend on specimen geometry and the nature of the deformation. Two important possibilities are: (i) that environment affects the structure and properties of a surface zone of material undegoing uniform deformation (this may modify creep rate and crack nucleation); and (ii) that environment affects behaviour of a small region (e.g. at the root of a notch or ahead of a crack) in a specimen undergoing non-uniform deformation (this will modify crack growth and hence rupture life or fatigue endurance). This paper summarises experimental work demonstrating an influence of the above reactions on mechanical properties of austenitic steels and nickel-based alloys, drawing examples where possible from the limited data available on Alloy 800. Whilst nitridation and carburisation may simply increase creep resistance at the expense of ductility (and possibly of fatigue resistance), the effects of oxidation are complex. A high oxygen pressures (as in air) oxygen may reduce creep and fatigue resistance by promoting cavitation but formation of oxide in cracks can reduce their propagation rate. At low oxygen pressures, as expected in H.T.R. helium, oxygen enhanced cavitation is less likely, but selective oxidation along grain boundaries can sometimes assist crack nucleation. (author)

  8. New flash mixing

    International Nuclear Information System (INIS)

    Sackmann, I.

    1980-01-01

    It was found that even for stars evolved away from the red giant branch, a new mixing of nucleo-synthesis products from the hydrogen-burning shells into surface layers was possible, from the penetration of the contaminated intershell region with the H- and He-ionization convection zones. This is due to the helium shell flash driving an immense expansion of an inner carbon pocket, namely, by a factor of 12,000 in radius, a drop in density of about 10 12 , and a cooling of inner pockets normally near 10 8 K to 23,000 K. The surface would be enriched in carbon ( 12 C), helium ( 4 He), and s-process elements, but not significantly in nitrogen ( 14 N), oxygen ( 16 O), or the isotope 13 C. This new type of mixing might provide the missing clue for FG Sagittae. Such a mixing had been suggested by the observations of FG Sagittae, but had been unexplainable by theory up to now

  9. Store Separations From a Supersonic Cone

    National Research Council Canada - National Science Library

    Simko, Richard J

    2006-01-01

    ... analyses of supersonic store separations. Also included in this research is a study of supersonic base pressure profiles, near-wake velocity profiles, wind tunnel shock interactions and force/moment studies on a conical store and parent vehicle...

  10. A theoretical study of mixing downstream of transverse injection into a supersonic boundary layer

    Science.gov (United States)

    Baker, A. J.; Zelazny, S. W.

    1972-01-01

    A theoretical and analytical study was made of mixing downstream of transverse hydrogen injection, from single and multiple orifices, into a Mach 4 air boundary layer over a flat plate. Numerical solutions to the governing three-dimensional, elliptic boundary layer equations were obtained using a general purpose computer program. Founded upon a finite element solution algorithm. A prototype three-dimensional turbulent transport model was developed using mixing length theory in the wall region and the mass defect concept in the outer region. Excellent agreement between the computed flow field and experimental data for a jet/freestream dynamic pressure ratio of unity was obtained in the centerplane region of the single-jet configuration. Poorer agreement off centerplane suggests an inadequacy of the extrapolated two-dimensional turbulence model. Considerable improvement in off-centerplane computational agreement occured for a multi-jet configuration, using the same turbulent transport model.

  11. A comparative study of tribological characteristics of hydrogenated DLC film sliding against ceramic mating materials for helium applications

    Science.gov (United States)

    Wu, Daheng; Ren, Siming; Pu, Jibin; Lu, Zhibin; Zhang, Guangan; Wang, Liping

    2018-05-01

    The tribological behaviors of hydrogenated DLC film sliding against Al2O3, ZrO2, Si3N4 and WC mating balls have been comparatively investigated by a ball-on-disk tribometer at 150 °C under helium and air (RH = 6%) conditions. The results showed that the mating material influenced the friction and wear behavior remarkably in helium atmosphere, where the wear rates were in inversely proportional to the friction coefficients (COF) of those tribo-pairs. Compared to the tests in helium, the tribological performance of DLC film significantly improved in air. Scanning electron microscope (SEM) and Raman spectroscopy were performed to study the friction behavior and wear mechanism of the film under different conditions. It suggested that the severe abrasion was caused by the strong interaction between the tribo-pairs in helium atmosphere at 150 °C, whereas the sufficient passivation of the dangling bonds of carbon atoms at sliding interface by chemically active molecules, such as water and oxygen, dominated the ultralow friction under air condition. Meanwhile, Hertz analysis was used to further elucidate the frictional mechanism of DLC film under helium and air conditions. It showed that the coefficient of friction was consistent with the varied tendency of the contact radius, namely, higher friction coefficient corresponded to the larger contact radius, which was the same with the relationship between the wear rate and the contact pressure. All of the results made better understanding of the essential mechanism of hydrogenated DLC film sliding against different pairs, which were able to guide the further application of DLC film in the industrial fields of helium atmosphere.

  12. Optimal sensor placement for control of a supersonic mixed-compression inlet with variable geometry

    Science.gov (United States)

    Moore, Kenneth Thomas

    A method of using fluid dynamics models for the generation of models that are useable for control design and analysis is investigated. The problem considered is the control of the normal shock location in the VDC inlet, which is a mixed-compression, supersonic, variable-geometry inlet of a jet engine. A quasi-one-dimensional set of fluid equations incorporating bleed and moving walls is developed. An object-oriented environment is developed for simulation of flow systems under closed-loop control. A public interface between the controller and fluid classes is defined. A linear model representing the dynamics of the VDC inlet is developed from the finite difference equations, and its eigenstructure is analyzed. The order of this model is reduced using the square root balanced model reduction method to produce a reduced-order linear model that is suitable for control design and analysis tasks. A modification to this method that improves the accuracy of the reduced-order linear model for the purpose of sensor placement is presented and analyzed. The reduced-order linear model is used to develop a sensor placement method that quantifies as a function of the sensor location the ability of a sensor to provide information on the variable of interest for control. This method is used to develop a sensor placement metric for the VDC inlet. The reduced-order linear model is also used to design a closed loop control system to control the shock position in the VDC inlet. The object-oriented simulation code is used to simulate the nonlinear fluid equations under closed-loop control.

  13. Effect of porous material heating on the drag force of a cylinder with gas-permeable porous inserts in a supersonic flow

    Science.gov (United States)

    Mironov, S. G.; Poplavskaya, T. V.; Kirilovskiy, S. V.

    2017-10-01

    The paper presents the results of an experimental investigation of supersonic flow around a solid cylinder with a gas-permeable porous insert on its front end and of supersonic flow around a hollow cylinder with internal porous inserts in the presence of heating of the porous material. The experiments were performed in a supersonic wind tunnel with Mach number 4.85 and 7 with porous inserts of cellular-porous nickel. The results of measurements on the filtration stand of the air filtration rate through the cellular-porous nickel when it is heated are also shown. For a number of experiments, numerical modeling based on the skeletal model of a cellular-porous material was carried out.

  14. Hydrogen in hot subdwarfs formed by double helium white dwarf mergers

    OpenAIRE

    Hall, Philip D.; Jeffery, C. Simon

    2016-01-01

    Isolated hot subdwarfs might be formed by the merging of two helium-core white dwarfs. Before merging, helium-core white dwarfs have hydrogen-rich envelopes and some of this hydrogen may survive the merger. We calculate the mass of hydrogen that is present at the start of such mergers and, with the assumption that hydrogen is mixed throughout the disrupted white dwarf in the merger process, estimate how much can survive. We find a hydrogen mass of up to about $2 \\times 10^{-3}\\,\\mathrm{M}_{\\o...

  15. Simulation tests for temperature mixing in a core bottom model of the HTR-module

    International Nuclear Information System (INIS)

    Damm, G.; Wehrlein, R.

    1992-01-01

    Interatom and Siemens are developing a helium-cooled Modular High Temperature Reactor. Under nominal operating conditions temperature differences of up to 120deg C will occur in the 700deg C hot helium flow leaving the core. In addition, cold gas leakages into the hot gas header can produce even higher temperature differences in the coolant flow. At the outlet of the reactor only a very low temperature difference of maximum ± 15deg C is allowed in order to avoid damages at the heat exchanging components due to alternating thermal loads. Since it is not possible to calculate the complex flow behaviour, experimental investigations of the temperature mixing in the core bottom had to be carried out in order to guarantee the necessary reduction of temperature differences in the helium. The presented air simulation tests in a 1:2.9 scaled plexiglas model of the core bottom showed an extremely high mixing rate of the hot gas header and the hot gas duct of the reactor. The temperature mixing of the simulated coolant flow as well as the leakage flows was larger than 95%. Transfered to reactor conditions this means a temperature difference of only ± 3deg C for the main flow at a quite resonable pressure drop. For the cold gas leakages temperature differences in the hot gas up to 400deg C proved to be permissible. The results of the simulation experiments in the Aerodynamic Test Facility of Interatom permitted to design a shorter bottom reflector of the core. (orig.)

  16. A fundamental study of the supersonic microjet

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, M. S.; Kim, H. S.; Kim, H. D. [Andong National Univ., Andong (Korea, Republic of)

    2001-07-01

    Microjet flows are often encountered in many industrial applications of micro-electro-mechanical systems as well as in medical engineering fields such as a transdermal drug delivery system for needle-free injection of drugs into the skin. The Reynolds numbers of such microjets are usually several orders of magnitude below those of larger-scale jets. The supersonic microjet physics with these low Reynolds numbers are not yet understood to date. Computational modeling and simulation can provide an effective predictive capability for the major features of the supersonic microjets. In the present study, computations using the axisymmetic, compressible, Navier-Stokes equations are applied to understand the supersonic microjet flow physics. The pressure ratio of the microjets is changed to obtain both the under-and over-expanded flows at the exit of the micronozzle. Sonic and supersonic microjets are simulated and compared with some experimental results available. Based on computational results; two microjets are discussed in terms of total pressure, jet decay and supersonic core length.

  17. A fundamental study of the supersonic microjet

    International Nuclear Information System (INIS)

    Jeong, M. S.; Kim, H. S.; Kim, H. D.

    2001-01-01

    Microjet flows are often encountered in many industrial applications of micro-electro-mechanical systems as well as in medical engineering fields such as a transdermal drug delivery system for needle-free injection of drugs into the skin. The Reynolds numbers of such microjets are usually several orders of magnitude below those of larger-scale jets. The supersonic microjet physics with these low Reynolds numbers are not yet understood to date. Computational modeling and simulation can provide an effective predictive capability for the major features of the supersonic microjets. In the present study, computations using the axisymmetic, compressible, Navier-Stokes equations are applied to understand the supersonic microjet flow physics. The pressure ratio of the microjets is changed to obtain both the under-and over-expanded flows at the exit of the micronozzle. Sonic and supersonic microjets are simulated and compared with some experimental results available. Based on computational results; two microjets are discussed in terms of total pressure, jet decay and supersonic core length

  18. Active Control of Supersonic Impinging Jets Using Supersonic Microjets

    National Research Council Canada - National Science Library

    Alvi, Farrukh

    2005-01-01

    .... Supersonic impinging jets occur in many applications including in STOVL aircraft where they lead to a highly oscillatory flow with very high unsteady loads on the nearby aircraft structures and the landing surfaces...

  19. Visualization of supersonic diesel fuel jets using a shadowgraph technique

    Science.gov (United States)

    Pianthong, Kulachate; Behnia, Masud; Milton, Brian E.

    2001-04-01

    High-speed liquid jets have been widely used to cut or penetrate material. It has been recently conjectured that the characteristics of high-speed fuel jets may also be of benefit to engines requiring direct fuel injection into the combustion chamber. Important factors are combustion efficiency and emission control enhancement for better atomization. Fundamental studies of very high velocity liquid jets are therefore very important. The characteristics and behavior of supersonic liquid jets have been studied with the aid of a shadowgraph technique. The high-speed liquid jet (in the supersonic range) is generated by the use of a vertical, single stage powder gun. The performance of the launcher and its relation to the jet exit velocity, with a range of nozzle shapes, has been examined. This paper presents the visual evidence of supersonic diesel fuel jets (velocity around 2000 m/s) investigated by the shadowgraph method. An Argon jet has been used as a light source. With a rise time of 0.07 microseconds, light duration of 0.2 microseconds and the use of high speed Polaroid film, the shadowgraph method can effectively capture the hypersonic diesel fuel jet and its strong leading edge shock waves. This provides a clearer picture of each stage of the generation of hypersonic diesel fuel jets and makes the study of supersonic diesel fuel jet characteristics and the potential for auto-ignition possible. Also, in the experiment, a pressure relief section has been used to minimize the compressed air or blast wave ahead of the projectile. However, the benefit of using a pressure relief section in the design is not clearly known. To investigate this effect, additional experiments have been performed with the use of the shadowgraph method, showing the projectile leaving and traveling inside the nozzle at a velocity around 1100 m/s.

  20. Surface morphology changes of tungsten exposed to high heat loading with mixed hydrogen/helium beams

    International Nuclear Information System (INIS)

    Greuner, H.; Maier, H.; Balden, M.; Böswirth, B.; Elgeti, S.; Schmid, K.; Schwarz-Selinger, T.

    2014-01-01

    We discuss the surface morphology modification of W samples observed after simultaneous heat and particle loading using a mixed H/He particle beam with a He concentration of 1 at.%. The applied heat flux of 10 MW/m 2 is representative for the normal operation of the divertor of DEMO or a power plant. The long pulse high heat flux experiments on actively water-cooled W samples were performed in the GLADIS facility at surface temperatures between 600 °C and 2000 °C. This allows together with the applied total fluences between 1 × 10 24 m −2 and 1 × 10 26 m −2 the temperature- and fluence dependent study of the growing nano-structures. We analyse in detail the surface modifications up to a depth of several μm by scanning electron microscopy combined with focussed ion beam preparation. The hydrogen and helium release of the samples is analysed by long term thermal desorption spectroscopy and compared with the prediction of a diffusion trapping model

  1. Cryogenic filter method produces super-pure helium and helium isotopes

    Science.gov (United States)

    Hildebrandt, A. F.

    1964-01-01

    Helium is purified when cooled in a low pressure environment until it becomes superfluid. The liquid helium is then filtered through iron oxide particles. Heating, cooling and filtering processes continue until the purified liquid helium is heated to a gas.

  2. Hybrid Simulation of Supersonic Flow of Weakly Ionized Plasma along Open Field Magnetic Line Effect of Background Pressure

    Science.gov (United States)

    Laosunthara, Ampan; Akatsuka, Hiroshi

    2016-09-01

    In previous study, we experimentally examined physical properties of supersonic flow of weakly ionized expanding arc-jet plasma through an open magnetic field line (Bmax 0.16T). We found supersonic velocity of helium plasma up to Mach 3 and the space potential drop at the end of the magnets. To understand the plasma in numerical point of view, the flows of ion and neutral are treated by particle-based Direct Simulation Monte Carlo (DSMC) method, electron is treated as a fluid. The previous numerical study, we assumed 2 conditions. Ion and electron temperatures were the same (LTE condition). Ion and electron velocities were the same (current-free condition). We found that ion velocity decreased by collision with residual gas molecules (background pressure). We also found that space potential changing with background pressure. In other words, it was indicated that electric field exists and the current-free assumption is not proper. In this study, we add electron continuity and electron momentum equations to obtain electron velocity and space potential. We find that space potential changing with background pressure slightly. It is indicated that electron is essential to space potential formation than ion.

  3. Carbon emission allowance allocation with a mixed mechanism in air passenger transport.

    Science.gov (United States)

    Qiu, Rui; Xu, Jiuping; Zeng, Ziqiang

    2017-09-15

    Air passenger transport carbon emissions have become a great challenge for both governments and airlines because of rapid developments in the aviation industry in recent decades. In this paper, a mixed mechanism composed of a cap-and-trade mechanism and a carbon tax mechanism is developed to assist governments in allocating carbon emission allowances to airlines operating on the routes. Combined this mixed mechanism with an equilibrium strategy, a bi-level multi-objective model is proposed for an air passenger transport carbon emission allowance allocation problem, in which a government is considered as a leader and the airlines as the followers. An interactive solution approach integrating a genetic algorithm and an interactive evolutionary mechanism is designed to search for satisfactory solutions of the proposed model. A case study is then presented to show its practicality and efficiency in mitigating carbon emissions. Sensitivity analyses under different tradable and taxable levels are also conducted, which can give the government insights as to the tradeoffs between lowering carbon intensity and improving airlines' operations. The computational results demonstrate that the mixed mechanism can assist greatly in carbon emission mitigation for air passenger transport and therefore, it should be established as part of air passenger transport carbon emission policies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Research on ration selection of mixed absorbent solution for membrane air-conditioning system

    International Nuclear Information System (INIS)

    Li, Xiu-Wei; Zhang, Xiao-Song; Wang, Fang; Zhao, Xiao; Zhang, Zhuo

    2015-01-01

    Highlights: • We derive models of the membrane air-conditioning system with mixed absorbents. • We make analysis on system COP, cost-effectiveness and economy. • The paper provides a new method for ideal absorbent selection. • The solutes concentration of 50% achieves the best cost-effectiveness and the economy. - Abstract: Absorption air-conditioning system is a good alternative to vapor compression system for developing low carbon society. To improve the performance of the traditional absorption system, the membrane air-conditioning system is configured and its COP can reach as high as 6. Mixed absorbents are potential for cost reduction of the membrane system while maintaining a high COP. On the purpose of finding ideal mixed absorbent groups, this paper makes analysis on COP, cost-effectiveness and economy of the membrane system with mixed LiBr–CaCl 2 absorbent solution. The models of the system have been developed for the analysis. The results show the COP is higher for the absorbent groups with lower concentration of the total solute and higher concentration ratio of LiBr. It also reveals when the total solutes concentration is about 50%, it achieves the best cost-effectiveness and the economy. The process of the analysis provides a useful method for mixed absorbents selection

  5. Interfaces and helium thin films : static properties and collective modes

    International Nuclear Information System (INIS)

    Pricaupenko, L.

    1994-12-01

    In the first part of this thesis are described the collective modes in thin films and at the free surface of helium 4. The second part deals with the spreading out of a model to describe the inhomogeneous helium 3. The influence of the quantum statistics on damping properties has also been given. In the third part is tackled some static properties of mixtures at interfaces. The instability growth rates in mixed films has been studied. At last is described the de-mixture study of two isotopes in a confined medium. (O.L.). 86 refs., 86 figs., 2 tabs

  6. Final report on the Controlled Cold Helium Spill Test in the LHC tunnel at CERN

    CERN Document Server

    Dufay-Chanat, L; Casas-Cubillos, J; Chorowski, M; Grabowski, M; Jedrusyna, A; Lindell, G; Nonis, M; Koettig, T; Vauthier, N; van Weelderen, R; Winkler, T

    2015-01-01

    The 27 km circumference LHC underground tunnel is a space in which the helium cooled LHC magnets are installed. The vacuum enclosures of the superconducting magnets are protected by over-pressure safety relief devices that open whenever cold helium escapes either from the magnet cold enclosure or from the helium supply headers, into this vacuum enclosure. A 3-m long no stay zone around these devices is defined based on scale model studies, protecting the personnel against cold burns or asphyxia caused by such a helium release event. Recently, several simulation studies have been carried out modelling the propagation of the helium/air mixture, resulting from the opening of such a safety device, along the tunnel. The released helium flows vary in the range between 1 kg/s and 0.1 kg/s. To validate these different simulation studies, real life mock-up tests have been performed inside the LHC tunnel, releasing helium flow rates of 1 kg/s, 0.3 kg/s and 0.1 kg/s. For each test, up to 1000 liters of liquid helium wer...

  7. The distribution of helium isotopes of natural gas and tectonic environment

    International Nuclear Information System (INIS)

    Sun Mingliang; Tao Mingxin

    1993-01-01

    Based on the 3 He/ 4 He data of the main oil-gas bearing basins in continental China, a systematic study has been made for the first time on the relations between the space distribution of the helium isotopes of natural gas and the tectonic environment. The average value R-bar of 3 He/ 4 He in eastern China bordering on the Pacific Ocean is 2.08 x 10 -6 >Ra, and that is dualistic mixed helium containing mantle source helium. The R-bar of central and western China is 4.96 x 10 -8 , and that is mainly crust source radioactive helium. The R-bar of Huabei and Zhongyuan oil-gas fields is 8.00 x 10 -7 , and that is a kind of transitional helium intercepted between the eastern region and the central western region of China. On the whole, the 3 He/ 4 He values decrease gradually with the distance from the subduction zone of the Western Pacific Ocean. The results show that the space distributions of the helium isotopes is controlled by the tectonic environment, that is the environment of tensile rift, especially in the neighborhood of deep megafractures advantageous to the rise of mantle source helium, so then and there the 3 He/ 4 He value is the highest; In the most stable craton basins, the value is the lowest and the helium is a typical crust source radioactive one. Between the active area (rift) and stable area, there is the transitional helium and its value is 10 -7 , as is the case in Huabei-Zhongyuan oil-gas field

  8. Fluid mixing in reactor containment

    International Nuclear Information System (INIS)

    Deoras M Prabhudharwadkar; Kannan N Iyer

    2005-01-01

    Full text of publication follows: Hydrogen release and distribution in nuclear power plant containment is an important safety issue. Selection of a proper turbulence model is important for accurate estimation of the mixing process. The selection of turbulence model is dictated by the best compromise between accuracy and computational efforts. For this, three different turbulence models, viz. Standard k-ε, RNG k-ε and Reynolds Stress Model, based on Reynolds averaged Navier Stokes equations (RANS) approach, were used. The computations were done using the CFD code FLUENT, which is based on the control volume methodology. The computational results were compared with the experimental results of HYMIS test facility, where helium was used to simulate hydrogen. The processes of helium plume rise, multiple plume merging, distribution and mixing were studied. Based on these computations, a simple analytical/empirical zone based model was formulated for the same problem, which predicted the helium concentration reasonably accurately and quickly. (authors)

  9. Stress corrosion cracking of U-0.1% Cr in humid helium atmosphere

    International Nuclear Information System (INIS)

    Zalkind, S.; Eshkenazy, R.; Harush, S.; Halperin, D.; Moreno, D.; Abramov, E.; Venkert, A.

    1994-01-01

    Rivets were matched into adapted drilled holes in plates, both made of U-0.1% Cr alloy and were placed in different environments containing dry air and helium and humid air and helium for a variety of exposure times. After opening, the most significant amounts of corrosion products were detected in the specimens that stayed for three years in humid helium (5% RH) environment. Radial cracks, developed in the bore edge, were detected in the specimens. X-ray diffraction patterns of the corrosion products gave the composition of UH 3 and UO 2 . The microstructure was examined using light and electron microscopy techniques. The hydride phase that was observed, formed mainly beneath the oxide layer and penetrated into the metal matrix as needle-like forms. The formation of a lower density hydride phase, yielded in a large volume change causing the development of high stresses at the rivet-bore interface. The combination of the high stress and the weakening of the bore edge due to the presence of the brittle hydride phase led to radial crack formation around the bore edge. (orig.)

  10. Investigation of strut-ramp injector in a Scramjet combustor: Effect of strut geometry, fuel and jet diameter on mixing characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Soni, Rahul Kumar; De, Ashoke De [Indian Institute of Technology Kanpur, Kanpur (India)

    2017-03-15

    The strut-based injector has been found to be one of the most promising injector designs for a supersonic combustor, offering enhanced mixing of fuel and air. The mixing and flow field characteristics of the straight (SS) and Tapered strut (TS), with fixed ramp angle and height at free stream Mach number 2 in conjunction with fuel injection at Mach 2.3 have been investigated numerically and reported. In the present investigation, hydrogen (H{sub 2}) and ethylene (C{sub 2}H{sub 4}) are injected in oncoming supersonic flow from the back of the strut, where jet to free stream momentum ratio is maintained at 0.79 and 0.69 for H2 and C{sub 2}H{sub 4}, respectively. The predicted wall static pressure and species mole fractions at various downstream locations are compared with the experimental data for TS case with 0.6 mm jet diameter and found to be in good agreement. Further, the effect of jet diameter and strut geometry on the near field mixing in strut ramp configuration is discussed for both the fuels. The numerical results are assessed based on various parameters for the performance evaluation of different strut ramp configurations. The SS configuration for both the injectant has been found to be an optimum candidate; also it is observed that for higher jet diameter larger combustor length is required to achieve satisfactory near field mixing.

  11. Phase transition of LB films of mixed diblock copolymer at the air/water interface

    Science.gov (United States)

    Seo, Y. S.; Kim, K. S.; Samuilov, V.; Rafailovich, M. H.; Sokolov, J.; Lammertink, Rob G. H.; Vancso, G. J.

    2000-03-01

    We have studied the morphology of Langmuir blodgett films at the air/water interface of mixed diblock copolymer films. Solutions of poly(styrene-b-ferrocenyldimethylsilane) and PS-b-P2VP mixed in a ratio of 20/80 in chloroform were spread at the air/water interface. The morphology of the films was studied with AFM as a function of the surface pressure and the diblock copolymer molecular weight. The results show that the two diblock copolymers can be induced to mix at the air/water interface with increasing surface pressure. A reversible transition from spherical to cylindrical morphologies is induced in the mixture which can not be observed in films formed of the two components separately. The effective surface phase diagram as a function of block copolymer composition and pressure will be presented.

  12. Helium cryogenics

    CERN Document Server

    Van Sciver, Steven W

    2012-01-01

    Twenty five years have elapsed since the original publication of Helium Cryogenics. During this time, a considerable amount of research and development involving helium fluids has been carried out culminating in several large-scale projects. Furthermore, the field has matured through these efforts so that there is now a broad engineering base to assist the development of future projects. Helium Cryogenics, 2nd edition brings these advances in helium cryogenics together in an updated form. As in the original edition, the author's approach is to survey the field of cryogenics with emphasis on helium fluids. This approach is more specialized and fundamental than that contained in other cryogenics books, which treat the associated range of cryogenic fluids. As a result, the level of treatment is more advanced and assumes a certain knowledge of fundamental engineering and physics principles, including some quantum mechanics. The goal throughout the work is to bridge the gap between the physics and engineering aspe...

  13. The Air University Pantheon of Air, Space, and Cyberspace Power Thinkers

    Science.gov (United States)

    2009-08-01

    Air Force would not have come as soon as it did. Learn more . . . • James J. Cooke, Billy Mitchell (Boulder, CO: L. Rienner, 2002). • Alfred F...Winter 1974): 18–25. • James Parton, “Air Force Spoken Here”: General Ira Eaker and the Command of the Air (Bethesda, MD: Adler and... Adler , 1986). 99 100 101 Dr. Theodore von Kármán (1881–1963) ♦ Father of supersonic flight ♦ Guggenheim Aeronautics Laboratory professor at the

  14. CFD investigations on supersonic ejectors for refrigeration applications

    International Nuclear Information System (INIS)

    Bartosiewicz, Y.; Aidoun, Z.; Mercadier, Y.

    2004-01-01

    This paper presents numerical results of a supersonic ejector for refrigeration applications. One of the interesting features is that the current model is based on the NIST properties for the R142b refrigerant: to the authors knowledge, it is the first paper dealing with a local CFD model which takes into account shock-boundary layer interactions in a real refrigerant. The numerical results put demonstrate the crucial role of the secondary nozzle for the mixing rate performance. In addition, these results point out the need of an extensive validation of the turbulence model, especially in the modeling of the off-design mode. (author)

  15. PAN AIR: A computer program for predicting subsonic or supersonic linear potential flows about arbitrary configurations using a higher order panel method. Volume 2: User's manual (version 3.0)

    Science.gov (United States)

    Sidwell, Kenneth W.; Baruah, Pranab K.; Bussoletti, John E.; Medan, Richard T.; Conner, R. S.; Purdon, David J.

    1990-01-01

    A comprehensive description of user problem definition for the PAN AIR (Panel Aerodynamics) system is given. PAN AIR solves the 3-D linear integral equations of subsonic and supersonic flow. Influence coefficient methods are used which employ source and doublet panels as boundary surfaces. Both analysis and design boundary conditions can be used. This User's Manual describes the information needed to use the PAN AIR system. The structure and organization of PAN AIR are described, including the job control and module execution control languages for execution of the program system. The engineering input data are described, including the mathematical and physical modeling requirements. Version 3.0 strictly applies only to PAN AIR version 3.0. The major revisions include: (1) inputs and guidelines for the new FDP module (which calculates streamlines and offbody points); (2) nine new class 1 and class 2 boundary conditions to cover commonly used modeling practices, in particular the vorticity matching Kutta condition; (3) use of the CRAY solid state Storage Device (SSD); and (4) incorporation of errata and typo's together with additional explanation and guidelines.

  16. The effect of helium on ventilator performance: study of five ventilators and a bedside Pitot tube spirometer.

    Science.gov (United States)

    Oppenheim-Eden, A; Cohen, Y; Weissman, C; Pizov, R

    2001-08-01

    To assess in vitro the performance of five mechanical ventilators-Siemens 300 and 900C (Siemens-Elma; Solna, Sweden), Puritan Bennett 7200 (Nellcor Puritan Bennett; Pleasanton, CA), Evita 4 (Dragerwerk; Lubeck, Germany), and Bear 1000 (Bear Medical Systems; Riverside CA)-and a bedside sidestream spirometer (Datex CS3 Respiratory Module; Datex-Ohmeda; Helsinki, Finland) during ventilation with helium-oxygen mixtures. In vitro study. ICUs of two university-affiliated hospitals. Each ventilator was connected to 100% helium through compressed air inlets and then tested at three to six different tidal volume (VT) settings using various helium-oxygen concentrations (fraction of inspired oxygen [FIO(2)] of 0.2 to 1.0). FIO(2) and VT were measured with the Datex CS3 spirometer, and VT was validated with a water-displacement spirometer. The Puritan Bennett 7200 ventilator did not function with helium. With the other four ventilators, delivered FIO(2) was lower than the set FIO(2). For the Siemens 300 and 900C ventilators, this difference could be explained by the lack of 21% oxygen when helium was connected to the air supply port, while for the other two ventilators, a nonlinear relation was found. The VT of the Siemens 300 ventilator was independent of helium concentration, while for the other three ventilators, delivered VT was greater than the set VT and was dependent on helium concentration. During ventilation with 80% helium and 20% oxygen, VT increased to 125% of set VT for the Siemens 900C ventilator, and more than doubled for the Evita 4 and Bear 1000 ventilators. Under the same conditions, the Datex CS3 spirometer underestimated the delivered VT by about 33%. At present, no mechanical ventilator is calibrated for use with helium. This investigation offers correction factors for four ventilators for ventilation with helium.

  17. Final report on the Controlled Cold Helium Spill Test in the LHC tunnel at CERN

    International Nuclear Information System (INIS)

    Dufay-Chanat, L; Bremer, J; Casas-Cubillos, J; Koettig, T; Vauthier, N; Van Weelderen, R; Winkler, T; Chorowski, M; Grabowski, M; Jedrusyna, A; Lindell, G; Nonis, M

    2015-01-01

    The 27 km circumference LHC underground tunnel is a space in which the helium cooled LHC magnets are installed. The vacuum enclosures of the superconducting magnets are protected by over-pressure safety relief devices that open whenever cold helium escapes either from the magnet cold enclosure or from the helium supply headers, into this vacuum enclosure. A 3-m long no stay zone around these devices is defined based on scale model studies, protecting the personnel against cold burns or asphyxia caused by such a helium release event. Recently, several simulation studies have been carried out modelling the propagation of the helium/air mixture, resulting from the opening of such a safety device, along the tunnel. The released helium flows vary in the range between 1 kg/s and 0.1 kg/s. To validate these different simulation studies, real life mock-up tests have been performed inside the LHC tunnel, releasing helium flow rates of 1 kg/s, 0.3 kg/s and 0.1 kg/s. For each test, up to 1000 liters of liquid helium were released under standard operational tunnel conditions. The data recorded include oxygen concentration, temperature and flow speed measurements, and video footage used to assess qualitatively the visibility. These measurements have been made in the up- and downstream directions, with respect to the air ventilation flow, of the spill point.This paper presents the experimental set-up under which these release tests were made, the effects of these releases on the atmospheric tunnel condition as a function of the release flow rate. We discuss the modification to the personnel access conditions to the LHC tunnel that are presently implemented as a result of these tests. (paper)

  18. Final report on the Controlled Cold Helium Spill Test in the LHC tunnel at CERN

    Science.gov (United States)

    Dufay-Chanat, L.; Bremer, J.; Casas-Cubillos, J.; Chorowski, M.; Grabowski, M.; Jedrusyna, A.; Lindell, G.; Nonis, M.; Koettig, T.; Vauthier, N.; van Weelderen, R.; Winkler, T.

    2015-12-01

    The 27 km circumference LHC underground tunnel is a space in which the helium cooled LHC magnets are installed. The vacuum enclosures of the superconducting magnets are protected by over-pressure safety relief devices that open whenever cold helium escapes either from the magnet cold enclosure or from the helium supply headers, into this vacuum enclosure. A 3-m long no stay zone around these devices is defined based on scale model studies, protecting the personnel against cold burns or asphyxia caused by such a helium release event. Recently, several simulation studies have been carried out modelling the propagation of the helium/air mixture, resulting from the opening of such a safety device, along the tunnel. The released helium flows vary in the range between 1 kg/s and 0.1 kg/s. To validate these different simulation studies, real life mock-up tests have been performed inside the LHC tunnel, releasing helium flow rates of 1 kg/s, 0.3 kg/s and 0.1 kg/s. For each test, up to 1000 liters of liquid helium were released under standard operational tunnel conditions. The data recorded include oxygen concentration, temperature and flow speed measurements, and video footage used to assess qualitatively the visibility. These measurements have been made in the up- and downstream directions, with respect to the air ventilation flow, of the spill point. This paper presents the experimental set-up under which these release tests were made, the effects of these releases on the atmospheric tunnel condition as a function of the release flow rate. We discuss the modification to the personnel access conditions to the LHC tunnel that are presently implemented as a result of these tests.

  19. Oblique-Flying-Wing Supersonic Transport Airplane

    Science.gov (United States)

    Van Der Velden, Alexander J. M.

    1992-01-01

    Oblique-flying-wing supersonic airplane proposed as possible alternative to B747B (or equivalent). Tranports passengers and cargo as fast as twice speed of sound at same cost as current subsonic transports. Flies at same holding speeds as present supersonic transports but requires only half takeoff distance.

  20. Liquid helium

    CERN Document Server

    Atkins, K R

    1959-01-01

    Originally published in 1959 as part of the Cambridge Monographs on Physics series, this book addresses liquid helium from the dual perspectives of statistical mechanics and hydrodynamics. Atkins looks at both Helium Three and Helium Four, as well as the properties of a combination of the two isotopes. This book will be of value to anyone with an interest in the history of science and the study of one of the universe's most fundamental elements.

  1. Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows

    Science.gov (United States)

    Allen, M. G.; Davis, S. J.; Kessler, W. J.; Sonnenfroh, D. M.

    1992-01-01

    The application of Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows is analyzed. Focussing on fluorescence of the OH molecule in typical H2-air Scramjet flows, the effects of uncharacterized variations in temperature, pressure, and collisional partner composition across the measurement plane are examined. Detailed measurements of the (1,0) band OH lineshape variations in H2-air combustions are used, along with single-pulse and time-averaged measurements of an excimer-pumped dye laser, to predict the performance of a model velocimeter with typical Scramjet flow properties. The analysis demonstrates the need for modification and control of the laser bandshape in order to permit accurate velocity measurements in the presence of multivariant flow properties.

  2. Results from flamelet and non-flamelet models for supersonic combustion

    Science.gov (United States)

    Ladeinde, Foluso; Li, Wenhai

    2017-11-01

    Air-breathing propulsion systems (scramjets) have been identified as a viable alternative to rocket engines for improved efficiency. A scramjet engine, which operates at flight Mach numbers around 7 or above, is characterized by the existence of supersonic flow conditions in the combustor. In a dual-mode scramjet, this phenomenon is possible because of the relatively low value of the equivalence ratio and high stagnation temperature, which, together, inhibits thermal choking downstream of transverse injectors. The flamelet method has been our choice for turbulence-combustion interaction modeling and we have extended the basic approach in several dimensions, with a focus on the way the pressure and progress variable are modeled. Improved results have been obtained. We have also examined non-flamelet models, including laminar chemistry (QL), eddy dissipation concept (EDC), and partially-stirred reactor (PaSR). The pressure/progress variable-corrected simulations give better results compared with the original model, with reaction rates that are lower than those from EDC and PaSR. In general, QL tends to over-predict the reaction rate for the supersonic combustion problems investigated in our work.

  3. Nickel–copper hybrid electrodes self-adhered onto a silicon wafer by supersonic cold-spray

    International Nuclear Information System (INIS)

    Lee, Jong-Gun; Kim, Do-Yeon; Kang, Byungjun; Kim, Donghwan; Song, Hee-eun; Kim, Jooyoung; Jung, Woonsuk; Lee, Dukhaeng; Al-Deyab, Salem S.; James, Scott C.; Yoon, Sam S.

    2015-01-01

    High-performance electrodes are fabricated through supersonic spraying of nickel and copper particles. These electrodes yield low specific resistivities, comparable to electrodes produced by screen-printed silver paste and light-induced plating. The appeal of this fabrication method is the low cost of copper and large area scalability of supersonic spray-coating techniques. The copper and nickel electrode was fabricated in the open air without any pre- or post-treatment. The spray-coated copper–nickel electrode was characterized by optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction, and energy dispersive spectroscopy. Although both SEM and TEM images confirmed voids trapped between flattened particles in the fabricated electrode, this electrode’s resistivity was order 10 −6 Ω cm, which is comparable to the bulk value for pure copper

  4. Controlled Cold Helium Spill Test in the LHC Tunnel at CERN

    Science.gov (United States)

    Koettig, T.; Casas-Cubillos, J.; Chorowski, M.; Dufay-Chanat, L.; Grabowski, M.; Jedrusyna, A.; Lindell, G.; Nonis, M.; Vauthier, N.; van Weelderen, R.; Winkler, T.; Bremer, J.

    The helium cooled magnets of the LHC particle accelerator are installed in a confined space, formed by a 27 km circumference 3.8 m diameter underground tunnel. The vacuum enclosures of the superconducting LHC magnets are protected by a lift plate against excessive overpressure created by eventual leaks from the magnet helium bath, or from the helium supply headers. A three-meter long no stay zone has been defined centered to these plates, based on earlier scale model studies, to protect the personnel against the consequences of an eventual opening of such a lift plate. More recently several simulation studies have been carried out modelling the propagation of the resulting helium/air mixture along the tunnel in case of such a cold helium release at a rate in the range of 1 kg/s. To validate the different scale models and simulation studies, real life mock-up tests have been performed in the LHC, releasing about 1000 liter of liquid helium under standard operational tunnel conditions. Data recorded during these tests include oxygen level, temperature and flow speed as well as video recordings, taken up- and downstream of the spill point (-100 m to +200 m) with respect to the ventilation direction in the LHC tunnel. The experimental set-up and measurement results are presented. Generic effects found during the tests will be discussed to allow the transposal to possible cold helium release cases in similar facilities.

  5. On the Comparison of the Long Penetration Mode (LPM) Supersonic Counterflowing Jet to the Supersonic Screech Jet

    Science.gov (United States)

    Farr, Rebecca A.; Chang, Chau-Lyan; Jones, Jess H.; Dougherty, N. Sam

    2015-01-01

    Classic tonal screech noise created by under-expanded supersonic jets; Long Penetration Mode (LPM) supersonic phenomenon -Under-expanded counter-flowing jet in supersonic free stream -Demonstrated in several wind tunnel tests -Modeled in several computational fluid dynamics (CFD) simulations; Discussion of LPM acoustics feedback and fluid interactions -Analogous to the aero-acoustics interactions seen in screech jets; Lessons Learned: Applying certain methodologies to LPM -Developed and successfully demonstrated in the study of screech jets -Discussion of mechanically induced excitation in fluid oscillators in general; Conclusions -Large body of work done on jet screech, other aero-acoustic phenomenacan have direct application to the study and applications of LPM cold flow jets

  6. CALCULATED REGENERATOR PERFORMANCE AT 4 K WITH HELIUM-4 AND HELIUM-3

    International Nuclear Information System (INIS)

    Radebaugh, Ray; Huang Yonghua; O'Gallagher, Agnes; Gary, John

    2008-01-01

    The helium-4 working fluid in regenerative cryocoolers operating with the cold end near 4 K deviates considerably from an ideal gas. As a result, losses in the regenerator, given by the time-averaged enthalpy flux, are increased and are strong functions of the operating pressure and temperature. Helium-3, with its lower boiling point, behaves somewhat closer to an ideal gas in this low temperature range and can reduce the losses in 4 K regenerators. An analytical model is used to find the fluid properties that strongly influence the regenerator losses as well as the gross refrigeration power. The thermodynamic and transport properties of helium-3 were incorporated into the latest NIST regenerator numerical model, known as REGEN3.3, which was used to model regenerator performance with either helium-4 or helium-3. With this model we show how the use of helium-3 in place of helium-4 can improve the performance of 4 K regenerative cryocoolers. The effects of operating pressure, warm-end temperature, and frequency on regenerators with helium-4 and helium-3 are investigated and compared. The results are used to find optimum operating conditions. The frequency range investigated varies from 1 Hz to 30 Hz, with particular emphasis on higher frequencies

  7. Collisional-radiative model for neutral helium in plasma. Excitation cross section and singlet-triplet wavefunction mixing

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Motoshi [National Inst. for Fusion Science, Toki, Gifu (Japan); Fujimoto, Takashi

    1997-10-01

    We have revised the collisional-radiative (CR) model code of neutral helium (T. Fujimoto, JQSRT 21, 1979). The spin-orbit interaction gives rise to mixing of the wavefunctions of the singlet and triplet states. The degree of the mixing depends on the magnetic field, and at the field strength of the level-anticrossings complete mixing, or complete breakdown of the L-S coupling scheme, occurs. We have approximately incorporated this effect into the code. We have reviewed the excitation cross section data for electron impacts. For transitions starting from the ground state, the recent assessment by the group led by Dr. de Heer is judged satisfactory. For transitions from the metastable levels the assessment by the same group appears rather conservative; there remains a question about the cross section values near the threshold. For transitions between different-l levels within the same multiplicity and same n, a semi-empirical formula based on the Born cross section gives a good agreement with experiment. Proton impacts are also considered for these transitions. We compare the new cross sections with those used in the original version. These cross sections for transitions starting from the metastable levels are fitted by analytical formulas and the parameter values are given. We also give parameter values for the excitation rate coefficient for these transitions as well as for transitions starting from the ground state. With all the above revisions incorporated into the CR model code, we have calculated the energy loss rates and the line intensity ratios for the purpose of plasma diagnostics, where the effect of a magnetic field is noted. The calculated population distribution over excited levels are compared with experiment, and a tentative conclusion is drawn concerning the excitation cross section from the metastable level. (author)

  8. Towards numerical simulations of supersonic liquid jets using ghost fluid method

    International Nuclear Information System (INIS)

    Majidi, Sahand; Afshari, Asghar

    2015-01-01

    Highlights: • A ghost fluid method based solver is developed for numerical simulation of compressible multiphase flows. • The performance of the numerical tool is validated via several benchmark problems. • Emergence of supersonic liquid jets in quiescent gaseous environment is simulated using ghost fluid method for the first time. • Bow-shock formation ahead of the liquid jet is clearly observed in the obtained numerical results. • Radiation of mach waves from the phase-interface witnessed experimentally is evidently captured in our numerical simulations. - Abstract: A computational tool based on the ghost fluid method (GFM) is developed to study supersonic liquid jets involving strong shocks and contact discontinuities with high density ratios. The solver utilizes constrained reinitialization method and is capable of switching between the exact and approximate Riemann solvers to increase the robustness. The numerical methodology is validated through several benchmark test problems; these include one-dimensional multiphase shock tube problem, shock–bubble interaction, air cavity collapse in water, and underwater-explosion. A comparison between our results and numerical and experimental observations indicate that the developed solver performs well investigating these problems. The code is then used to simulate the emergence of a supersonic liquid jet into a quiescent gaseous medium, which is the very first time to be studied by a ghost fluid method. The results of simulations are in good agreement with the experimental investigations. Also some of the famous flow characteristics, like the propagation of pressure-waves from the liquid jet interface and dependence of the Mach cone structure on the inlet Mach number, are reproduced numerically. The numerical simulations conducted here suggest that the ghost fluid method is an affordable and reliable scheme to study complicated interfacial evolutions in complex multiphase systems such as supersonic liquid

  9. The effect on the transmission loss of a double wall panel of using helium gas in the gap

    Science.gov (United States)

    Atwal, M. S.; Crocker, M. J.

    The possibility of increasing the sound-power transmission loss of a double panel by using helium gas in the gap is investigated. The transmission loss of a panel is defined as ten times the common logarithm of the ratio of the sound power incident on the panel to the sound power transmitted to the space on the other side of the panel. The work is associated with extensive research being done to develop new techniques for predicting the interior noise levels on board high-speed advanced turboprop aircraft and reducing the noise levels with a minimum weight penalty. Helium gas was chosen for its inert properties and its low impedance compared with air. With helium in the gap, the impedance mismatch experienced by the sound wave will be greater than that with air in the gap. It is seen that helium gas in the gap increases the transmission loss of the double panel over a wide range of frequencies.

  10. Use of Helium-3 and Tritium tracers in oceanography

    International Nuclear Information System (INIS)

    Andrie, Chantal

    1987-01-01

    As tritium considered as a transient tracer has become one of the most promising tool for the study of oceanic circulation and of the ocean capacity to absorb anthropogenic carbon, and as the simultaneous use of its radioactive descendant, Helium-3, brings an additional information (together, these tracers build up a clock in the study of water masses), and as all helium-3 and tritium measurements are made by mass spectroscopy, this research thesis addresses the analytical process, the detection limit, and the method reproducibility associated with this use of both tracers. The author reports and discusses helium-3 data obtained during a measurement campaign which allowed the localisation of an active source and the evidence of an intermediate back current, and tritium data obtained during another measurement campaign which allowed the description of the high time variability of convection processes, and an assessment of water renewal delays and of some deep water circulations. He also reports and discusses the simultaneous use of helium-3 data and tritium data to localize areas where convection processes occur. A theoretical approach to this simultaneous use is proposed which uses a mixing model which distinguishes the venting transit time. Measurement campaigns were performed in Red Sea, western Mediterranean Sea, and north-eastern Atlantic Ocean [fr

  11. New helium spectrum variable and a new helium-rich star

    International Nuclear Information System (INIS)

    Walborn, N.R.

    1974-01-01

    HD 184927, known previously as a helium-rich star, has been found to have a variable helium spectrum; the equivalent widths of five He I lines are larger by an average of 46 percent on a 1974 spectrogram than on one obtained with the same equipment in 1970. HD 186205 has been found to be a new, pronounced helium-rich star. (auth)

  12. Measurement of electric fields in the H-1NF heliac

    International Nuclear Information System (INIS)

    James, B.W.; Howard, J.

    1999-01-01

    There are a number of laser induced fluorescence techniques which can be used to measure internal plasma electric fields. It is planned to use a technique based on Stark mixing of energy levels in a supersonic beam containing metastable helium atoms to measure radial electric fields in H-1NF. Enhanced values of radial electric field are associated with improved confinement modes in H-1NF and other magnetically confined plasmas

  13. The influence of (n-n')-mixing processes in He*(n)+He(1s2) collisions on He*(n) atoms' populations in weakly ionized helium plasmas

    International Nuclear Information System (INIS)

    Mihajlov, A.A.; Ignjatovic, Lj.M.; Sreckovic, V.A.; Djuric, Z.

    2008-01-01

    The results of semi-classical calculations of rate coefficients of (n-n ' )-mixing processes due to collisions of Rydberg atoms He*(n) with He(1s 2 ) atoms are presented. It is assumed that these processes are caused by the resonant energy exchange within the electron component of He*(n)+He collision system. The method is realized through the numerical simulation of the (n-n ' )-mixing processes, and is applied for calculations of the corresponding rate coefficients. The calculations are performed for the principal quantum numbers n,n ' in ranges 4≤n ' ≤10, and the atom and electron temperatures, T a ,T e , in domains 5000K≤T a ≤T e ≤20000K. It is shown that the (n-n ' )-mixing processes can significantly influence the populations of Rydberg atoms in non-equilibrium weakly ionized helium plasmas with ionization degree ∼10 -4 . Therefore, these processes have to be included in the appropriate models of such plasmas

  14. New Observational Evidence of Flash Mixing on the White Dwarf Cooling Curve

    Science.gov (United States)

    Brown, T. M.; Lanz, T.; Sweigart, A. V.; Cracraft, Misty; Hubeny, Ivan; Landsman, W. B.

    2011-01-01

    Blue hook stars are a class of subluminous extreme horizontal branch stars that were discovered in UV images of the massive globular clusters w Cen and NGC 2808. These stars occupy a region of the HR diagram that is unexplained by canonical stellar evolution theory. Using new theoretical evolutionary and atmospheric models, we have shown that the blue hook stars are very likely the progeny of stars that undergo extensive internal mixing during a late helium-core flash on the white dwarf cooling curve. This "flash mixing" produces hotter-than-normal EHB stars with atmospheres significantly enhanced in helium and carbon. The larger bolometric correction, combined with the decrease in hydrogen opacity, makes these stars appear sub luminous in the optical and UV. Flash mixing is more likely to occur in stars born with a high helium abundance, due to their lower mass at the main sequence turnoff. For this reason, the phenomenon is more common in those massive globular clusters that show evidence for secondary populations enhanced in helium. However, a high helium abundance does not, by itself, explain the presence of blue hook stars in massive globular clusters. Here, we present new observational evidence for flash mixing, using recent HST observations. These include UV color-magnitude diagrams of six massive globular clusters and far-UV spectroscopy of hot subdwarfs in one of these clusters (NGC 2808).

  15. Test ventilation with smoke, bubbles, and balloons

    International Nuclear Information System (INIS)

    Pickering, P.L.; Cucchiara, A.L.; McAtee, J.L.; Gonzales, M.

    1987-01-01

    The behavior of smoke, bubbles, and helium-filled balloons was videotaped to demonstrate the mixing of air in the plutonium chemistry laboratories, a plutonium facility. The air-distribution patterns, as indicated by each method, were compared. Helium-filled balloons proved more useful than bubbles or smoke in the visualization of airflow patterns. The replay of various segments of the videotape proved useful in evaluating the different techniques and in identifying airflow trends responsible for air mixing. 6 refs

  16. Reviews Toy: Air swimmers Book: Their Arrows will Darken the Sun: The Evolution and Science of Ballistics Book: Physics Experiments for your Bag Book: Quantum Physics for Poets Equipment: SEP colour wheel kit Equipment: SEP colour mixing kit Software: USB DrDAQ App: iHandy Level Equipment: Photonics Explorer kit Web Watch

    Science.gov (United States)

    2012-01-01

    WE RECOMMEND Air swimmers Helium balloon swims like a fish Their Arrows will Darken the Sun: The Evolution and Science of Ballistics Ballistics book hits the spot Physics Experiments for your Bag Handy experiments for your lessons Quantum Physics for Poets Book shows the economic importance of physics SEP colour wheel kit Wheels investigate colour theory SEP colour mixing kit Cheap colour mixing kit uses red, green and blue LEDs iHandy Level iPhone app superbly measures angles Photonics Explorer kit Free optics kit given to schools WORTH A LOOK DrDAQ DrDAQ software gets an upgrade WEB WATCH Websites show range of physics

  17. Performance of the Helium Circulation System on a Commercialized MEG

    International Nuclear Information System (INIS)

    Takeda, T; Miyazaki, T; Okamoto, M; Katagiri, K

    2012-01-01

    We report the performance of a helium circulation system (HCS) mounted on a MEG (Magnetoencephalography) at Nagoya University, Japan. This instrument is the first commercialized version of an HCS. The HCS collects warm helium gas at approximately 300 K and then cools it to approximately 40 K. The gas is returned to the neck tube of a Dewar of the MEG to keep it cold. It also collects helium gas in the region just above the liquid helium surface while it is still cold, re-liquefies the gas and returns it to the Dewar. A special transfer tube (TT) of approximately 3 m length was developed to allow for dual helium streams. This tube separates the HCS using a MEG to reduce magnetic noise. A refiner was incorporated to effectively collect contaminating gases by freezing them. The refiner was equipped with an electric heater to remove the frozen contaminants as gases into the air. A gas flow controller was also developed, which automatically controlled the heater and electric valves to clean up contamination. The developed TT exhibited a very low heat inflow of less than 0.1 W/m to the liquid helium, ensuring efficient operation. The insert tube diameter, which was 1.5 in. was reduced to a standard 0.5 in. size. This dimensional change enabled the HCS to mount onto any commercialized MEG without any modifications to the MEG. The HCS can increase liquid helium in the Dewar by at least 3 liters/Day using two GM cryocoolers (SRDK-415D, Sumitomo Heavy Industries, Ltd.). The noise levels were virtually the same as before this installation.

  18. Tritium Decay Helium-3 Effects in Tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Merrill, B. J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-06-01

    A critical challenge for long-term operation of ITER and beyond to a Demonstration reactor (DEMO) and future fusion reactor will be the development of plasma-facing components (PFCs) that demonstrate erosion resistance to steady-state/transient heat fluxes and intense neutral/ion particle fluxes under the extreme fusion nuclear environment, while at the same time minimizing in-vessel tritium inventories and permeation fluxes into the PFC’s coolant. Tritium will diffuse in bulk tungsten at elevated temperatures, and can be trapped in radiation-induced trap site (up to 1 at. % T/W) in tungsten [1,2]. Tritium decay into helium-3 may also play a major role in microstructural evolution (e.g. helium embrittlement) in tungsten due to relatively low helium-4 production (e.g. He/dpa ratio of 0.4-0.7 appm [3]) in tungsten. Tritium-decay helium-3 effect on tungsten is hardly understood, and its database is very limited. Two tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) were exposed to high flux (ion flux of 1.0x1022 m-2s-1 and ion fluence of 1.0x1026 m-2) 0.5%T2/D2 plasma at two different temperatures (200, and 500°C) in Tritium Plasma Experiment (TPE) at Idaho National Laboratory. Tritium implanted samples were stored at ambient temperature in air for more than 3 years to investigate tritium decay helium-3 effect in tungsten. The tritium distributions on plasma-exposed was monitored by a tritium imaging plate technique during storage period [4]. Thermal desorption spectroscopy was performed with a ramp rate of 10°C/min up to 900°C to outgas residual deuterium and tritium but keep helium-3 in tungsten. These helium-3 implanted samples were exposed to deuterium plasma in TPE to investigate helium-3 effect on deuterium behavior in tungsten. The results show that tritium surface concentration in 200°C sample decreased to 30 %, but tritium surface concentration in 500°C sample did not alter over the 3 years storage period, indicating possible tritium

  19. Helium the disappearing element

    CERN Document Server

    Sears, Wheeler M

    2015-01-01

    The subject of the book is helium, the element, and its use in myriad applications including MRI machines, particle accelerators, space telescopes, and of course balloons and blimps. It was at the birth of our Universe, or the Big Bang, where the majority of cosmic helium was created; and stellar helium production continues. Although helium is the second most abundant element in the Universe, it is actually quite rare here on Earth and only exists because of radioactive elements deep within the Earth. This book includes a detailed history of the discovery of helium, of the commercial industry built around it, how the helium we actually encounter is produced within the Earth, and the state of the helium industry today. The gas that most people associate with birthday party balloons is running out. “Who cares?” you might ask. Well, without helium, MRI machines could not function, rockets could not go into space, particle accelerators such as those used by CERN could not operate, fiber optic cables would not...

  20. Effect of Water-Air Clearing on Thermal Mixing in IRWST Using Three-Dimensional CFD Analysis

    International Nuclear Information System (INIS)

    Ha, Jeong Hee; Lee, Doo Yong; Hong, Soon Joon; Jeong, Jae Sik; Park, Man Heung; Moon, Young Tae

    2013-01-01

    In this paper, the water-air clearing effects on thermal mixing in the IRWST were investigated with the CFD simulation. The boundary conditions for each discharge phase were obtained from the RELAP5 simulation. The flow distribution in the IRWST for the water clearing phase was reflected as the initial condition for the air clearing simulation. The flow distribution for the air clearing phase was applied as the initial condition for the steam condensation phase. The result of the steam condensation phase with the SCRM showed that the thermal mixing in the IRWST might be enhanced by the mixing effects of the water-air clearing before the steam discharge. IRWST (in-containment refueling water storage tank) is one of the advanced design features of APR1400 (Advanced Power Reactor . 1400). Connected to the Safety Depressurization and Vent System (SDVS), IRWST is designed to absorb the high energy flow from Pilot Operated Safety and Relief Valves (POSRVs) to protect the over-pressurization of the Reactor Coolant System. Due to thermal hydraulic loads induced by discharged fluids, it is crucial to understand the phenomena occur in the IRWST and thermal mixing is one of them. It has been known that the unstable steam condensation which results in oscillations and acts as the loads on the IRWST wall and structures can occur if there is a large local temperature difference. Thus, there is a regulation related to IRWST temperature distribution (difference) to be satisfied. To understand the phenomena and design the IRWST with sufficient safety margin, many experimental and numerical researches have been performed. The results of these researches showed that the CFD analysis predicts well the temperature distribution in the pool globally and can be a proper evaluation methodology to analyze the complex thermal mixing phenomena in the IRWST with a sufficiently fine mesh distribution and proper numerical models. But the previous studies have tended to focus the phenomenological

  1. Control device of air-fuel ratio of alcohol-gasoline mixed fuel

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Kazuo

    1987-08-19

    Concerning alcohol-gasoline mixed fuel, even the same amount of the fuel shows different air-fuel ratio depending upon alcohol concentration in the fuel, accordingly it is required to know the alcohol concentration when it is intended to make the air-fuel ratio to be the same as the predetermined ratio. Although a sensor which can detect in quick response and exactly the alcohol concentration has not been developed, the alcohol concentration in gasoline can be detected by detecting the concentration of the water in exhaust gas and many hygrometers which can detect the concentration of the water with high precision are available. With regard to an internal combustion engine equipped with a fuel supply device in order to supply alcohol-gasoline mixed fuel into an engine suction passage, this invention offers an air-fuel ratio control device to control the amount of the fuel to be supplied from the fuel supply device by detecting the concentration of alcohol in the gasoline from among the output signals of the main hygrometer and the auxiliary hygrometer. The former hygrometer to detect the concentration of the water in the exhaust gas is set in the engine exhaust gas passage and the latter is installed to detect the concentration of the water in the air. (4 figs)

  2. Helium Isotopes and Noble Gas Abundances of Cave Dripping Water in Three Caves in East Asia

    Science.gov (United States)

    Chen, A. T.; Shen, C. C.; Tan, M.; Li, T.; Uemura, R.; Asami, R.

    2015-12-01

    Paleo-temperature recorded in nature archives is a critical parameter to understand climate change in the past. With advantages of unique inert chemical characteristics and sensitive solubilities with temperature, dissolved noble gases in speleothem inclusion water were recently proposed to retrieve terrestrial temperature history. In order to accurately apply this newly-developed speleothem noble gas temperature (NGT) as a reliable proxy, a fundamental issue about behaviors of noble gases in the karst should be first clarified. In this study, we measured noble gas contents in air and dripping water to evaluate any ratio deviation between noble gases. Cave dripping water samples was collected from three selected caves, Shihua Cave in northern China, Furong Cave in southwestern, and Gyukusen Cave in an island located in the western Pacific. For these caves are characterized by a thorough mixing and long-term storage of waters in a karst aquifer by the absence of seasonal oxygen isotope shifts. Ratios of dripping water noble gases are statistically insignificant from air data. Helium isotopic ratios in the dripping water samples match air value. The results indicate that elemental and isotopic signatures of noble gases from air can be frankly preserved in the epikarst and support the fidelity of NGT techniques.

  3. Study on thermal-hydraulic behavior in supersonic steam injector

    International Nuclear Information System (INIS)

    Abe, Yutaka; Fukuichi, Akira; Kawamoto, Yujiro; Iwaki, Chikako; Narabayashi, Tadashi; Mori, Michitsugu; Ohmori, Shuichi

    2007-01-01

    Supersonic steam injector is the one of the most possible devices aiming at simplifying system and improving the safety and the credibility for next-generation nuclear reactor systems. The supersonic steam injector has dual functions of a passive jet pump without rotating machine and a compact and high efficiency heat exchanger, because it is operated by the direct contact condensation between supersonic steam and subcooled water jet. It is necessary to clarify the flow behavior in the supersonic steam injector which is governed by the complicated turbulent flow with a great shear stress of supersonic steam. However, in previous study, there is little study about the turbulent heat transfer and flow behavior under such a great shear stress at the gas-liquid interface. In the present study, turbulent flow behavior including the effect of the interface between water jet and supersonic steam is developed based on the eddy viscosity model. Radial velocity distributions and the turbulent heat transfer are calculated with the model. The calculation results are compared with the experimental results done with the transparent steam injector. (author)

  4. Liquid helium target

    International Nuclear Information System (INIS)

    Fujii, Y.; Kitami, T.; Torikoshi, M.

    1984-12-01

    A liquid helium target system has been built and used for the experiment on the reaction 4 He(γ, p). The target system has worked satisfactorily; the consumption rate of liquid helium is 360 ml/h and the cryogenic system retains liquid helium for about ten hours. The structure, operation and performance of the target system are reported. (author)

  5. Distribution and Room Air Mixing Risks to Retrofitted Homes

    Energy Technology Data Exchange (ETDEWEB)

    Burdick, A. [IBACOS, Inc., Pittsburgh, PA (United States)

    2014-12-01

    Energy efficiency upgrades reduce heating and cooling loads on a house. With enough load reduction and if the HVAC system warrants replacement, the HVAC system is often upgraded with a more efficient, lower capacity system that meets the loads of the upgraded house. For a single-story house with ceiling supply air diffusers, ducts are often removed and upgraded. For houses with ducts that are embedded in walls, the cost of demolition precludes the replacement of ducts. The challenge with the use of existing ducts is that the reduced airflow creates a decreased throw at the supply registers, and the supply air and room air do not mix well, leading to potential thermal comfort complaints. This project investigates this retrofit scenario. The issues and solutions discussed here are relevant to all climate zones, with emphasis on climates that require cooling.

  6. An evaluation of supersonic STOVL technology

    Science.gov (United States)

    Kidwell, G. H., Jr.; Lampkin, B. A.

    1983-01-01

    The purpose of this paper is to document the status of supersonic STOVL aircraft technology. The major focus is the presentation of summaries of pertinent aspects of supersonic STOVL technology, such as justification for STOVL aircraft, current designs and their recognized areas of uncertainty, recent research programs, current activities, plans, etc. The remainder of the paper is an evaluation of the performance differential between a current supersonic STOVL design and three production (or near production) fighters, one of them the AV-8B. The results indicate that there is not a large range difference between a STOL aircraft and a STOVL aircraft, and that other aspects of performance, such as field performance or combat maneuverability, may more than make up for this decrement.

  7. Preliminary study on helium turbomachine for high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Chen Yihua; Wang Jie; Zhang Zuoyi

    2003-01-01

    In the high temperature gas-cooled reactor (HTGR), gas turbine cycle is a new concept in the field of nuclear power. It combines two technologies of HTGR and gas turbine cycle, which represent the state-of-the-art technologies of nuclear power and fossil fuel generation respectively. This approach is expected to improve safety and economy of nuclear power plant significantly. So it is a potential scheme with competitiveness. The heat-recuperated cycle is the main stream of gas turbine cycle. In this cycle, the work medium is helium, which is very different from the air, so that the design features of the helium turbomachine and combustion gas turbomachine are different. The paper shows the basic design consideration for the heat-recuperated cycle as well as helium turbomachine and highlights its main design features compared with combustion gas turbomachine

  8. Thermal transport properties of helium, helium--air mixtures, water, and tubing steel used in the CACHE program to compute HTGR auxiliary heat exchanger performance

    International Nuclear Information System (INIS)

    Tallackson, J.R.

    1976-02-01

    A description is presented of the thermal transport properties of the materials involved in digital computer calculations of heat transfer rates by the core auxiliary heat exchangers in large HTGR nuclear steam supply systems. These materials are pure helium, mixtures of helium with common gases having molecular weights in the range of 28 to 32, alloy steel tubing, and water. For use in programmed computations the viscosity, thermal conductivity, and specific heat are represented primarily by equations augmented by curves and tabulations. Materials supporting the development and selection of the property equations are included

  9. Trace element analysis of single synthetic fibres by proton induced X-ray analysis in a helium atmosphere

    International Nuclear Information System (INIS)

    Ahmed, M.; Cookson, J.A.

    1976-10-01

    A technique for measuring the trace element content of synthetic fibres by detecting X-rays produced by 3 MeV proton bombardment has been developed. Largely to reduce the problems of removing heat from the fibres, an arrangement was used in which the beam was brought out of the vacuum into air or helium. Kapton, aluminium, nickel and molybdenum were tested for suitability as exit windows. Of these, aluminium produced significantly the most background in X-ray spectra while helium was found to be significantly better than air as the medium around the targets. With a kapton window, helium in the target chamber, and suitable collimation, trace element concentration down to a few parts per million could be measured when quantities of fibre of only a few times 10 -5 g were available for analysis. (author)

  10. A liquid helium saver

    International Nuclear Information System (INIS)

    Avenel, O.; Der Nigohossian, G.; Roubeau, P.

    1976-01-01

    A cryostat equipped with a 'liquid helium saver' is described. A mass flow rate M of helium gas at high pressure is injected in a counter-flow heat exchanger extending from room to liquid helium temperature. After isenthalpic expansion through a calibrated flow impedance this helium gas returns via the low pressure side of the heat exchanger. The helium boil-off of the cryostat represents a mass flow rate m, which provides additional precooling of the incoming helium gas. Two operating regimes appear possible giving nearly the same efficiency: (1) high pressure (20 to 25 atm) and minimum flow (M . L/W approximately = 1.5) which would be used in an open circuit with helium taken from a high pressure cylinder; and (2) low pressure (approximately = 3 atm), high flow (M . L/W > 10) which would be used in a closed circuit with a rubber diaphragm pumping-compressing unit; both provide a minimum theoretical boil-off factor of about 8%. Experimental results are reported. (U.K.)

  11. Supersonic flaw detection device for nozzle

    International Nuclear Information System (INIS)

    Hata, Moriki.

    1996-01-01

    In a supersonic flaw detection device to be attached to a body surface of a reactor pressure vessel for automatically detecting flaws of a welded portion of a horizontally connected nozzle by using supersonic waves, a running vehicle automatically running along a circumferential direction of the nozzle comprises a supersonic flaw detection means for detecting flaws of the welded portion of the nozzle by using supersonic waves, and an inclination angle sensor for detecting the inclination angle of the running vehicle relative to the central axis of the nozzle. The running distance of the vehicle running along the circumference of the nozzle, namely, the position of the running vehicle from a reference point of the nozzle can be detected accurately by dividing the distance around the nozzle by the inclination angle detected by the inclination angle sensor. Accordingly, disadvantages in the prior art, for example, that the detected values obtained by using an encoder are changed by slipping or idle running of the magnet wheels are eliminated, and accurate flaw detection can be conducted. In addition, an operation of visually adjusting the reference point for the device can be eliminated. An operator's exposure dose can be reduced. (N.H.)

  12. Supersonic Retropropulsion Flight Test Concepts

    Science.gov (United States)

    Post, Ethan A.; Dupzyk, Ian C.; Korzun, Ashley M.; Dyakonov, Artem A.; Tanimoto, Rebekah L.; Edquist, Karl T.

    2011-01-01

    NASA's Exploration Technology Development and Demonstration Program has proposed plans for a series of three sub-scale flight tests at Earth for supersonic retropropulsion, a candidate decelerator technology for future, high-mass Mars missions. The first flight test in this series is intended to be a proof-of-concept test, demonstrating successful initiation and operation of supersonic retropropulsion at conditions that replicate the relevant physics of the aerodynamic-propulsive interactions expected in flight. Five sub-scale flight test article concepts, each designed for launch on sounding rockets, have been developed in consideration of this proof-of-concept flight test. Commercial, off-the-shelf components are utilized as much as possible in each concept. The design merits of the concepts are compared along with their predicted performance for a baseline trajectory. The results of a packaging study and performance-based trade studies indicate that a sounding rocket is a viable launch platform for this proof-of-concept test of supersonic retropropulsion.

  13. Development of a Supersonic Atomic Oxygen Nozzle Beam Source for Crossed Beam Scattering Experiments

    Science.gov (United States)

    Sibener, S. J.; Buss, R. J.; Lee, Y. T.

    1978-05-01

    A high pressure, supersonic, radio frequency discharge nozzle beam source was developed for the production of intense beams of ground state oxygen atoms. An efficient impedance matching scheme was devised for coupling the radio frequency power to the plasma as a function of both gas pressure and composition. Techniques for localizing the discharge directly behind the orifice of a water-cooled quartz nozzle were also developed. The above combine to yield an atomic oxygen beam source which produces high molecular dissociation in oxygen seeded rare gas mixtures at total pressures up to 200 torr: 80 to 90% dissociation for oxygen/argon mixtures and 60 to 70% for oxygen/helium mixtures. Atomic oxygen intensities are found to be greater than 10{sup 17} atom sr{sup -1} sec{sup -1}. A brief discussion of the reaction dynamics of 0 + IC1 ..-->.. I0 + C1 is also presented.

  14. Characterization of the Plasma Edge for Technique of Atomic Helium Beam in the CIEMAT Fusion Device; Caracterizacion del Borde del Plasma del Dispositivo de Fusion TJ-II del CIEMAT mediante el Diagnostico del Haz Supersonico de Helio

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo, A.

    2003-07-01

    In this report, the measurement of Electron Temperature and Density in the Boundary Plasma of TJ-II with a Supersonic Helium Beam Diagnostic and work devoted to the upgrading of this technique are described. Also, simulations of Laser Induced Fluorescence (LIF) studies of level populations of electronically excited He atoms are shown. This last technique is now being installed in the CIEMAT fusion device. (Author ) 36 refs.

  15. The Trojan. [supersonic transport

    Science.gov (United States)

    1992-01-01

    The Trojan is the culmination of thousands of engineering person-hours by the Cones of Silence Design Team. The goal was to design an economically and technologically viable supersonic transport. The Trojan is the embodiment of the latest engineering tools and technology necessary for such an advanced aircraft. The efficient design of the Trojan allows for supersonic cruise of Mach 2.0 for 5,200 nautical miles, carrying 250 passengers. The per aircraft price is placed at $200 million, making the Trojan a very realistic solution for tomorrows transportation needs. The following is a detailed study of the driving factors that determined the Trojan's super design.

  16. Analysis of helium purification system capability during water ingress accident in RDE

    Science.gov (United States)

    Sriyono; Kusmastuti, Rahayu; Bakhri, Syaiful; Sunaryo, Geni Rina

    2018-02-01

    The water ingress accident caused by steam generator tube rupture (SGTR) in RDE (Experimental Power Reactor) must be anticipated. During the accident, steam from secondary system diffused and mixed with helium gas in the primary coolant. To avoid graphite corrosion in the core, steam will be removed by Helium purification system (HPS). There are two trains in HPS, first train for normal operation and the second for the regeneration and accident. The second train is responsible to clean the coolant during accident condition. The second train is equipped with additional component, i.e. water cooler, post accident blower, and water separator to remove this mixture gas. During water ingress, the water release from rupture tube is mixed with helium gas. The water cooler acts as a steam condenser, where the steam will be separated by water separator from the helium gas. This paper analyses capability of HPS during water ingress accident. The goal of the research is to determine the time consumed by HPS to remove the total amount of water ingress. The method used is modelling and simulation of the HPS by using ChemCAD software. The BDBA and DBA scenarios will be simulated. In BDBA scenario, up to 110 kg of water is assumed to infiltrate to primary coolant while DBA is up to 35 kg. By using ChemCAD simulation, the second train will purify steam ingress maximum in 0.5 hours. The HPS of RDE has a capability to anticipate the water ingress accident.

  17. Evaluation of mixing rules for VLE calculations

    International Nuclear Information System (INIS)

    Adachi, Y.; Chung, W.K.; Lu, B.C.Y.; Yu, J.M.

    1983-01-01

    This chapter calculates vapor-liquid equilibrium (VLE) values for a number of binary systems of cryogenic interest, including hydrogen- and helium-containing mixtures, by means of several selected cubic equations of state using different sets of mixing rules. The aim is to test the capabilities of these equations for representing VLE values for the selected mixtures, and to identify and recommend the most suitable equation of state together with its compatible mixing rules for the desired data representation. It is determined that the conventional mixing rules together with the modified van der Waals equation, or the four-parameter equation, are suitable for calculating VLE values for the selected systems at cryogenic conditions. The Peng-Robinson and four-parameter equations may yield slightly better results for helium-containing systems

  18. Direct Monte Carlo simulation of nanoscale mixed gas bearings

    Directory of Open Access Journals (Sweden)

    Kyaw Sett Myo

    2015-06-01

    Full Text Available The conception of sealed hard drives with helium gas mixture has been recently suggested over the current hard drives for achieving higher reliability and less position error. Therefore, it is important to understand the effects of different helium gas mixtures on the slider bearing characteristics in the head–disk interface. In this article, the helium/air and helium/argon gas mixtures are applied as the working fluids and their effects on the bearing characteristics are studied using the direct simulation Monte Carlo method. Based on direct simulation Monte Carlo simulations, the physical properties of these gas mixtures such as mean free path and dynamic viscosity are achieved and compared with those obtained from theoretical models. It is observed that both results are comparable. Using these gas mixture properties, the bearing pressure distributions are calculated under different fractions of helium with conventional molecular gas lubrication models. The outcomes reveal that the molecular gas lubrication results could have relatively good agreement with those of direct simulation Monte Carlo simulations, especially for pure air, helium, or argon gas cases. For gas mixtures, the bearing pressures predicted by molecular gas lubrication model are slightly larger than those from direct simulation Monte Carlo simulation.

  19. Atmospheric ammonia mixing ratios at an open-air cattle feeding facility.

    Science.gov (United States)

    Hiranuma, Naruki; Brooks, Sarah D; Thornton, Daniel C O; Auvermann, Brent W

    2010-02-01

    Mixing ratios of total and gaseous ammonia were measured at an open-air cattle feeding facility in the Texas Panhandle in the summers of 2007 and 2008. Samples were collected at the nominally upwind and downwind edges of the facility. In 2008, a series of far-field samples was also collected 3.5 km north of the facility. Ammonium concentrations were determined by two complementary laboratory methods, a novel application of visible spectrophotometry and standard ion chromatography (IC). Results of the two techniques agreed very well, and spectrophotometry is faster, easier, and cheaper than chromatography. Ammonia mixing ratios measured at the immediate downwind site were drastically higher (approximately 2900 parts per billion by volume [ppbv]) than thos measured at the upwind site (open-air animal feeding operations, especially under the hot and dry conditions present during these measurements.

  20. DETERMINING THE INITIAL HELIUM ABUNDANCE OF THE SUN

    International Nuclear Information System (INIS)

    Serenelli, Aldo M.; Basu, Sarbani

    2010-01-01

    We determine the dependence of the initial helium abundance and the present-day helium abundance in the convective envelope of solar models (Y ini and Y surf , respectively) on the parameters that are used to construct the models. We do so by using reference standard solar models (SSMs) to compute the power-law coefficients of the dependence of Y ini and Y surf on the input parameters. We use these dependencies to determine the correlation between Y ini and Y surf and use this correlation to eliminate uncertainties in Y ini from all solar model input parameters except the microscopic diffusion rate. We find an expression for Y ini that depends only on Y surf and the diffusion rate. By adopting the helioseismic determination of solar surface helium abundance, Y surf sun = 0.2485 ± 0.0035, and an uncertainty of 20% for the diffusion rate, we find that the initial solar helium abundance, Y ini sun , is 0.278 ± 0.006 independently of the reference SSMs (and particularly on the adopted solar abundances) used in the derivation of the correlation between Y ini and Y surf . When non-SSMs with extra mixing are used, then we derive Y ini sun = 0.273 ± 0.006. In both cases, the derived Y ini sun value is higher than that directly derived from solar model calibrations when the low-metallicity solar abundances (e.g., by Asplund et al.) are adopted in the models.

  1. Helium gas purity monitor based on low frequency acoustic resonance

    Science.gov (United States)

    Kasthurirengan, S.; Jacob, S.; Karunanithi, R.; Karthikeyan, A.

    1996-05-01

    Monitoring gas purity is an important aspect of gas recovery stations where air is usually one of the major impurities. Purity monitors of Katherometric type are commercially available for this purpose. Alternatively, we discuss here a helium gas purity monitor based on acoustic resonance of a cavity at audio frequencies. It measures the purity by monitoring the resonant frequency of a cylindrical cavity filled with the gas under test and excited by conventional telephone transducers fixed at the ends. The use of the latter simplifies the design considerably. The paper discusses the details of the resonant cavity and the electronic circuit along with temperature compensation. The unit has been calibrated with helium gas of known purities. The unit has a response time of the order of 10 minutes and measures the gas purity to an accuracy of 0.02%. The unit has been installed in our helium recovery system and is found to perform satisfactorily.

  2. Canada's helium output rising fast

    Energy Technology Data Exchange (ETDEWEB)

    1966-12-01

    About 12 months from now, International Helium Limited will be almost ready to start up Canada's second helium extraction plant at Mankota, in Saskatchewan's Wood Mountain area about 100 miles southwest of Moose Jaw. Another 80 miles north is Saskatchewan's (and Canada's) first helium plant, operated by Canadian Helium and sitting on a gas deposit at Wilhelm, 9 miles north of Swift Current. It contains almost 2% helium, some COD2U, and the rest nitrogen. One year in production was apparently enough to convince Canadian Helium that the export market (it sells most of its helium in W. Europe) can take a lot more than it's getting. Construction began this summer on an addition to the Swift Current plant that will raise its capacity from 12 to 36MMcf per yr when it goes on stream next spring. Six months later, International Helium's 40 MMcf per yr plant to be located about 4 miles from its 2 Wood Mountain wells will double Canada's helium output again.

  3. Silent and Efficient Supersonic Bi-Directional Flying Wing

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a Phase I study for a novel concept of a supersonic bi-directional (SBiDir) flying wing (FW) that has the potential to revolutionize supersonic flight...

  4. Mechanical property changes induced in structural alloys by neutron irradiations with different helium to displacement ratios*1

    Science.gov (United States)

    Mansur, L. K.; Grossbeck, M. L.

    1988-07-01

    Effects of helium on mechanical properties of irradiated structural materials are reviewed. In particular, variations in response to the ratio of helium to displacement damage serve as the focus. Ductility in creep and tensile tests is emphasized. A variety of early work has led to the current concentration on helium effects for fusion reactor materials applications. A battery of techniques has been developed by which the helium to displacement ratio can be varied. Our main discussion is devoted to the techniques of spectral tailoring and isotopic alloying currently of interest for mixed-spectrum reactors. Theoretical models of physical mechanisms by which helium interacts with displacement damage have been developed in terms of hardening to dislocation motion and grain boundary cavitation. Austenitic stainless steels, ferritic/martensitic steels and vanadium alloys are considered. In each case, work at low strain rates, where the main problems may lie, at the helium to displacement ratios appropriate to fusion reactor materials is lacking. Recent experimental evidence suggests that both in-reactor and high helium results may differ substantially from post-irradiation or low helium results. It is suggested that work in these areas is especially needed.

  5. Diffusion of helium and nucleation-growth of helium-bubbles in metallic materials

    International Nuclear Information System (INIS)

    Zhang Chonghong; Chen Keqin; Wang Yinshu

    2001-01-01

    Studies of diffusion and aggregation behaviour of helium in metallic materials are very important to solve the problem of helium embrittlement in structural materials used in the environment of nuclear power. Experimental studies on helium diffusion and aggregation in austenitic stainless steels in a wide temperature range have been performed in authors' research group and the main results obtained are briefly summarized. The mechanism of nucleation-growth of helium-bubbles has been discussed and some problems to be solved are also given

  6. THERMAL AND AERODYNAMIC PERFORMANCES OF THE SUPERSONIC MOTION

    Directory of Open Access Journals (Sweden)

    Dejan P Ninković

    2010-01-01

    Full Text Available Generally speaking, Mach number of 4 can be taken as a boundary value for transition from conditions for supersonic, into the area of hypersonic flow, distinguishing two areas: area of supersonic in which the effects of the aerodynamic heating can be neglected and the area of hypersonic, in which the thermal effects become dominant. This paper presents the effects in static and dynamic areas, as well as presentation of G.R.O.M. software for determination of the values of aerodynamic derivatives, which was developed on the basis of linearized theory of supersonic flow. Validation of developed software was carried out through different types of testing, proving its usefulness for engineering practice in the area of supersonic wing aerodynamic loading calculations, even at high Mach numbers, with dominant thermal effects.

  7. Entropy Minimization Design Approach of Supersonic Internal Passages

    Directory of Open Access Journals (Sweden)

    Jorge Sousa

    2015-08-01

    Full Text Available Fluid machinery operating in the supersonic regime unveil avenues towards more compact technology. However, internal supersonic flows are associated with high aerodynamic and thermal penalties, which usually prevent their practical implementation. Indeed, both shock losses and the limited operational range represent particular challenges to aerodynamic designers that should be taken into account at the initial phase of the design process. This paper presents a design methodology for supersonic passages based on direct evaluations of the velocity field using the method of characteristics and computation of entropy generation across shock waves. This meshless function evaluation tool is then coupled to an optimization scheme, based on evolutionary algorithms that minimize the entropy generation across the supersonic passage. Finally, we assessed the results with 3D Reynolds Averaged Navier Stokes calculations.

  8. Partial admission effect on the performance and vibration of a supersonic impulse turbine

    Science.gov (United States)

    Lee, Hang Gi; Shin, Ju Hyun; Choi, Chang-Ho; Jeong, Eunhwan; Kwon, Sejin

    2018-04-01

    This study experimentally investigates the effects of partial admission on the performance and vibration outcomes of a supersonic impulse turbine with circular nozzles. The turbine of a turbopump for a gas-generator-type liquid rocket engine in the Korea Space Launch Vehicle-II is of the supersonic impulse type with the partial admission configuration for obtaining a high specific power. Partial admission turbines with a low-flow-rate working gas exhibit benefits over turbines with full admission, such as loss reduction, ease of controllability of the turbine power output, and simple turbine configurations with separate starting sections. However, the radial force of the turbine rotor due to the partial admission causes an increase in turbine vibration. Few experimental studies have previously been conducted regarding the partial admission effects on supersonic impulse turbines with circular nozzles. In the present study, performance tests of supersonic impulse turbines with circular nozzles were conducted for various partial admission ratios using a turbine test facility with high-pressure air in order to investigate the resulting aerodynamic performance and vibration. Four types of turbines with partial admission ratios of 0.17, 0.42, 0.75 and 0.83 were tested. Results show that the efficiencies at the design point increase linearly as the partial admission ratios increase. Moreover, as the velocity ratios increase, the difference in efficiency from the reference turbine with a partial admission ratio of 0.83 becomes increasingly significant, and the magnitudes of these differences are proportional to the square of the velocity ratios. Likewise, the decrease in the partial admission ratio results in an increase in the turbine vibration level owing to the increase in the radial force.

  9. Helium generation in fusion reactor materials. Technical progress report, April--September 1977

    International Nuclear Information System (INIS)

    1978-01-01

    The near-term objectives of this program are to measure the spectrum-integrated helium generation rates and cross sections of a number of pure elements and alloys in several high-intensity neutron sources, and to develop and demonstrate neutron dosimetry procedures using some of these materials. To this end, four neutron irradiation experiments have now been run: one using accelerator-produced d-Be neutrons, two using the accelerator-produced d-T reaction, and one in the neutron field of a mixed-spectrum fission reactor. All of these irradiations have incorporated a large number of helium-generation materials

  10. Transonic and supersonic ground effect aerodynamics

    Science.gov (United States)

    Doig, G.

    2014-08-01

    A review of recent and historical work in the field of transonic and supersonic ground effect aerodynamics has been conducted, focussing on applied research on wings and aircraft, present and future ground transportation, projectiles, rocket sleds and other related bodies which travel in close ground proximity in the compressible regime. Methods for ground testing are described and evaluated, noting that wind tunnel testing is best performed with a symmetry model in the absence of a moving ground; sled or rail testing is ultimately preferable, though considerably more expensive. Findings are reported on shock-related ground influence on aerodynamic forces and moments in and accelerating through the transonic regime - where force reversals and the early onset of local supersonic flow is prevalent - as well as more predictable behaviours in fully supersonic to hypersonic ground effect flows.

  11. Effect of helium on fatigue crack growth and life of reduced activation ferritic/martensitic steel

    International Nuclear Information System (INIS)

    Nogami, Shuhei; Takahashi, Manabu; Hasegawa, Akira; Yamazaki, Masanori

    2013-01-01

    The effects of helium on the fatigue life, micro-crack growth behavior up to final fatigue failure, and fracture mode under fatigue in the reduced activation ferritic/martensitic steel, F82H IEA-heat, were investigated by low cycle fatigue tests at room temperature in air at a total strain range of 0.6–1.5%. Significant reduction of the fatigue life due to helium implantation was observed for a total strain range of 1.0–1.5%, which might be attributable to an increase in the micro-crack propagation rate. However, the reduction of fatigue life due to helium implantation was not significant for a total strain range of 0.6–0.8%. A brittle fracture surface (an original point of micro-crack initiation) and a cleavage fracture surface were observed in the helium-implanted region of fracture surface. A striation pattern was observed in the non-implanted region. These fracture modes of the helium-implanted specimen were independent of the strain range

  12. Fluid flow and fuel-air mixing in a motored two-dimensional Wankel rotary engine

    Science.gov (United States)

    Shih, T. I.-P.; Nguyen, H. L.; Stegeman, J.

    1986-01-01

    The implicit-factored method of Beam and Warming was employed to obtain numerical solutions to the conservation equations of mass, species, momentum, and energy to study the unsteady, multidimensional flow and mixing of fuel and air inside the combustion chambers of a two-dimensional Wankel rotary engine under motored conditions. The effects of the following engine design and operating parameters on fluid flow and fuel-air mixing during the intake and compression cycles were studied: engine speed, angle of gaseous fuel injection during compression cycle, and speed of the fuel leaving fuel injector.

  13. Helium turbomachinery operating experience from gas turbine power plants and test facilities

    International Nuclear Information System (INIS)

    McDonald, Colin F.

    2012-01-01

    The closed-cycle gas turbine, pioneered and deployed in Europe, is not well known in the USA. Since nuclear power plant studies currently being conducted in several countries involve the coupling of a high temperature gas-cooled nuclear reactor with a helium closed-cycle gas turbine power conversion system, the experience gained from operated helium turbomachinery is the focus of this paper. A study done as early as 1945 foresaw the use of a helium closed-cycle gas turbine coupled with a high temperature gas-cooled nuclear reactor, and some two decades later this was investigated but not implemented because of lack of technology readiness. However, the first practical use of helium as a gas turbine working fluid was recognized for cryogenic processes, and the first two small fossil-fired helium gas turbines to operate were in the USA for air liquefaction and nitrogen production facilities. In the 1970's a larger helium gas turbine plant and helium test facilities were built and operated in Germany to establish technology bases for a projected future high efficiency large nuclear gas turbine power plant concept. This review paper covers the experience gained, and the lessons learned from the operation of helium gas turbine plants and related test facilities, and puts these into perspective since over three decades have passed since they were deployed. An understanding of the many unexpected events encountered, and how the problems, some of them serious, were resolved is important to avoid them being replicated in future helium turbomachines. The valuable lessons learned in the past, in many cases the hard way, particularly from the operation in Germany of the Oberhausen II 50 MWe helium gas turbine plant, and the technical know-how gained from the formidable HHV helium turbine test facility, are viewed as being germane in the context of current helium turbomachine design work being done for future high efficiency nuclear gas turbine plant concepts. - Highlights:

  14. Vortex Generators in a Streamline-Traced, External-Compression Supersonic Inlet

    Science.gov (United States)

    Baydar, Ezgihan; Lu, Frank K.; Slater, John W.; Trefny, Charles J.

    2017-01-01

    Vortex generators within a streamline-traced, external-compression supersonic inlet for Mach 1.66 were investigated to determine their ability to increase total pressure recovery and reduce total pressure distortion. The vortex generators studied were rectangular vanes arranged in counter-rotating and co-rotating arrays. The vane geometric factors of interest included height, length, spacing, angle-of-incidence, and positions upstream and downstream of the inlet terminal shock. The flow through the inlet was simulated numerically through the solution of the steady-state, Reynolds-averaged Navier-Stokes equations on multi-block, structured grids using the Wind-US flow solver. The vanes were simulated using a vortex generator model. The inlet performance was characterized by the inlet total pressure recovery and the radial and circumferential total pressure distortion indices at the engine face. Design of experiments and statistical analysis methods were applied to quantify the effect of the geometric factors of the vanes and search for optimal vane arrays. Co-rotating vane arrays with negative angles-of-incidence positioned on the supersonic diffuser were effective in sweeping low-momentum flow from the top toward the sides of the subsonic diffuser. This distributed the low-momentum flow more evenly about the circumference of the subsonic diffuser and reduced distortion. Co-rotating vane arrays with negative angles-of-incidence or counter-rotating vane arrays positioned downstream of the terminal shock were effective in mixing higher-momentum flow with lower-momentum flow to increase recovery and decrease distortion. A strategy of combining a co-rotating vane array on the supersonic diffuser with a counter-rotating vane array on the subsonic diffuser was effective in increasing recovery and reducing distortion.

  15. Air Distribution and Ventilation Effectiveness in a room with Floor/Ceiling Heating and Mixing/Displacement Ventilation

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Fang, Lei; Olesen, Bjarne W.

    2014-01-01

    vertical air temperature differences and air velocities for different hybrid systems are less than 3 C and 0.2 m/s when supply air temperature is 19 C, air change rate is 4.2 h-1, and heated surface temperature of floor/ceiling heating system is 25 C. Ventilation effectiveness of mixing ventilation system...... combined with floor/ceiling heating systems is approximately equal to 1.0, and ventilation effectiveness of displacement ventilation system combined with floor/ceiling heating systems ranges from 1.0 to 1.2. The floor/ceiling heating systems combined with mixing ventilation system have more uniform indoor...... air distribution but smaller ventilation effectiveness compared with the floor/ceiling heating systems combined with displacement ventilation system. With regard to the building heat loss increased by non-uniform indoor air distribution and small ventilation effectiveness, there should be an optimal...

  16. The consequences of helium production on microstructural development in isotopically tailored ferritic alloys

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1996-01-01

    A series of alloys have been made adding various isotopes of nickel in order to vary the production of helium during irradiation by a two step nuclear reaction in a mixed spectrum reactor. The alloys use a base composition of Fe-12Cr with an addition of 1.5% nickel, either in the form of 60 Ni which produces no helium, 59 Ni which produces helium at a rate of about 10 appm He/dpa, or natural nickel ( Nat Ni) which provides an intermediate level of helium due to delayed development of 59 Ni. Specimens were irradiated in the HFIR at Oak Ridge, TN to ∼7 dpa at 300 and 400 degrees C. Microstructural examinations indicated that nickel additions promote precipitation in all alloys, but the effect appears to be much stronger at 400 degrees C than at 300 degrees C. There is sufficient dose by 7 dpa (and with 2 appm He) to initiate void swelling in ferritic/martensitic alloys. Little difference was found between response from 59 Ni and Nat Ni. Also, helium bubble development for high helium generation conditions appeared to be very different at 300 and 400 degrees C. At 300 degrees C, it appeared that high densities of bubbles formed whereas at 400 degrees C, bubbles could not be identified, possibly because of the complexity of the microstructure, but more likely because helium accumulated at precipitate interfaces

  17. The consequences of helium production on microstructural development in isotopically tailored ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, D.S. [Pacific Northwest Lab., Richland, WA (United States)

    1996-10-01

    A series of alloys have been made adding various isotopes of nickel in order to vary the production of helium during irradiation by a two step nuclear reaction in a mixed spectrum reactor. The alloys use a base composition of Fe-12Cr with an addition of 1.5% nickel, either in the form of {sup 60}Ni which produces no helium, {sup 59}Ni which produces helium at a rate of about 10 appm He/dpa, or natural nickel ({sup Nat}Ni) which provides an intermediate level of helium due to delayed development of {sup 59}Ni. Specimens were irradiated in the HFIR at Oak Ridge, TN to {approx}7 dpa at 300 and 400{degrees}C. Microstructural examinations indicated that nickel additions promote precipitation in all alloys, but the effect appears to be much stronger at 400{degrees}C than at 300{degrees}C. There is sufficient dose by 7 dpa (and with 2 appm He) to initiate void swelling in ferritic/martensitic alloys. Little difference was found between response from {sup 59}Ni and {sup Nat}Ni. Also, helium bubble development for high helium generation conditions appeared to be very different at 300 and 400{degrees}C. At 300{degrees}C, it appeared that high densities of bubbles formed whereas at 400{degrees}C, bubbles could not be identified, possibly because of the complexity of the microstructure, but more likely because helium accumulated at precipitate interfaces.

  18. 75 FR 8427 - Civil Supersonic Aircraft Panel Discussion

    Science.gov (United States)

    2010-02-24

    ... entitled, ``State of the Art of Supersonics Aircraft Technology--What has progressed in science since 1973... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Civil Supersonic Aircraft Panel Discussion AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of meeting participation...

  19. Pressure Measurement in Supersonic Air Flow by Differential Absorptive Laser-Induced Thermal Acoustics

    Science.gov (United States)

    Hart, Roger C.; Herring, Gregory C.; Balla, Robert J.

    2007-01-01

    Nonintrusive, off-body flow barometry in Mach-2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, stream-wise velocity and static gas temperature of the same spatially-resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.

  20. Simulation of Oxygen Disintegration and Mixing With Hydrogen or Helium at Supercritical Pressure

    Science.gov (United States)

    Bellan, Josette; Taskinoglu, Ezgi

    2012-01-01

    -correction should be on reconstructing the primitive variable gradients rather than their coefficients, and proposes the approximate deconvolution model (ADM) as an effective means of flow field reconstruction for LES heat flux calculation. Further, results for a study conducted for temporal mixing layers initially containing oxygen in the lower stream, and hydrogen or helium in the upper stream, show that, for any LES, including SGS-flux models (constant-coefficient Gradient or Scale-Similarity models, dynamic-coefficient Smagorinsky/Yoshizawa or mixed Smagorinsky/Yoshizawa/Gradient models), the inclusion of the q-correction in the LES leads to the theoretical maximum reduction of the SGS heat-flux difference. The remaining error in modeling this new subgrid term is thus irreducible.

  1. The effect of helium-oxygen-assisted mechanical ventilation on chronic obstructive pulmonary disease exacerbation: A systemic review and meta-analysis.

    Science.gov (United States)

    Wu, Xu; Shao, Chuan; Zhang, Liang; Tu, Jinjing; Xu, Hui; Lin, Zhihui; Xu, Shuguang; Yu, Biyun; Tang, Yaodong; Li, Shanqun

    2018-03-01

    Chronic obstructive pulmonary disease (COPD) is often accompanied by acute exacerbations. Patients of COPD exacerbation suffering from respiratory failure often need the support of mechanical ventilation. Helium-oxygen can be used to reduce airway resistance during mechanical ventilation. The aim of this study is to evaluate the effect of helium-oxygen-assisted mechanical ventilation on COPD exacerbation through a meta-analysis. A comprehensive literature search through databases of Pub Med (1966∼2016), Ovid MEDLINE (1965∼2016), Cochrane EBM (1991∼2016), EMBASE (1974∼2016) and Ovid MEDLINE was performed to identify associated studies. Randomized clinical trials met our inclusion criteria that focus on helium-oxygen-assisted mechanical ventilation on COPD exacerbation were included. The quality of the papers was evaluated after inclusion and information was extracted for meta-analysis. Six articles and 392 patients were included in total. Meta-analysis revealed that helium-oxygen-assisted mechanical ventilation reduced Borg dyspnea scale and increased arterial PH compared with air-oxygen. No statistically significant difference was observed between helium-oxygen and air-oxygen as regards to WOB, PaCO 2 , OI, tracheal intubation rates and mortality within hospital. Our study suggests helium-oxygen-assisted mechanical ventilation can help to reduce Borg dyspnea scale. In terms of the tiny change of PH, its clinical benefit is negligible. There is no conclusive evidence indicating the beneficial effect of helium-oxygen-assisted mechanical ventilation on clinical outcomes or prognosis of COPD exacerbation. © 2017 John Wiley & Sons Ltd.

  2. A pulsed supersonic gas jet target for precision spectroscopy at the HITRAP facility at GSI

    Science.gov (United States)

    Tiedemann, D.; Stiebing, K. E.; Winters, D. F. A.; Quint, W.; Varentsov, V.; Warczak, A.; Malarz, A.; Stöhlker, Th.

    2014-11-01

    A pulsed supersonic gas jet target for experiments at the HITRAP facility at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt has been designed and built as a multi-purpose installation for key experiments on fundamental atomic physics in strong fields. This setup is currently installed at the Institut für Kernphysik of Goethe-University, Frankfurt am Main (IKF), in order to explore its operation prior to its installation at the HITRAP facility. Design and performance of the target are described. The measured target densities of 5.9×1012 atoms/cm3 for helium and 8.1×1012 atoms/cm³ for argon at the stagnation pressure of 30 bar match the required values. The target-beam diameter of 0.9 mm and the pulsed operation mode (jet built-up-time ≤15 ms) are well suited for the use at HITRAP.

  3. Supersonic Cruise Research 1979, part 2. [airframe structures and materials, systems integration, economic analysis

    Science.gov (United States)

    1980-01-01

    Advances in airframe structure and materials technology for supersonic cruise aircraft are reported with emphasis on titanium and composite structures. The operation of the Concorde is examined as a baseline for projections into the future. A market survey of U.S. passenger attitudes and preferences, the impact of advanced air transport technology and the integration of systems for the advanced SST and for a smaller research/business jet vehicle are also discussed.

  4. Screw compressor system for industrial-scale helium refrigerators or industrial ammonia screw compressors for helium refrigeration systems; Schraubenkompressor-System fuer Helium-Grosskaelteanlage oder Ammoniak-Schraubenverdichter aus Industrieanwendungen fuer Helium-Kaelteanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Fredrich, O.; Mosemann, D.; Zaytsev, D. [GEA Grasso GmbH Refrigeration Technology, Berlin (Germany)

    2007-07-01

    Material characteristics, requirements and measured data of ammonia and helium compression are compared. The compressor lines for industrial ammonia and helium refrigerators are presented, and important characteristics of the compressors are explained. The test stand for performance measurements with helium and ammonia is described, and results are presented. In spite of the different characteristics of the fluids, the compressor-specific efficiencies (supply characteristic, quality characteristic) were found to be largely identical. The values calculated for helium on the basis of NH3 test runs were found to be realistic, which means that the decades of experience with ammonia in industrial applications can be applied to helium compression as well. The design of screw compressor aggregates (skids) in industrial refrigeration is discussed and illustrated by examples. (orig.)

  5. A mixed-pH dual-electrolyte microfluidic aluminum–air cell with high performance

    International Nuclear Information System (INIS)

    Chen, Binbin; Leung, Dennis Y.C.; Xuan, Jin; Wang, Huizhi

    2017-01-01

    Highlights: • A mix-pH dual-electrolyte Al–air cell is proposed. • Cells with dual-electrolyte exhibit higher performance. • Cell performance increases with increasing electrolyte concentration and flow rate. • Optimized channel thickness is 0.3 mm. • A restriction of reaction activation on the Al side is observed. - Abstract: Energy storage capacity has been a major limiting factor in pursuit of increasing functionality and mobility for portable devices. To increase capacity limits, novel battery designs with multi-electron redox couples and increased voltages have been listed as a priority research direction by the US Department of Energy. This study leverages the benefits of microfluidics technology to develop a novel mixed-pH media aluminum–air cell which incorporates the advantages of the trivalence of aluminum and mixed-pH thermodynamics. Experimentally, the new cell exhibited an open circuit potential of 2.2 V and a maximum power density of 176 mW cm −2 , which are respectively 37.5% and 104.6% higher than conventional single alkaline aluminum–air cell under similar conditions. With further optimization of channel thickness, a power density of 216 mW cm −2 was achieved in the present study.

  6. Self-trapping of helium in metals

    International Nuclear Information System (INIS)

    Wilson, W.D.; Bisson, C.L.; Baskes, M.I.

    1981-01-01

    Atomistic calculations are presented which demonstrate that helium atoms in a metal lattice are able to cluster with each other, producing vacancies and nearby self-interstitial defects. Even a small number of helium atoms is found to be sufficient to create these large distortions. As few as five interstitial helium can spontaneously produce a lattice vacancy and nearby self-interstitial. An eight-helium-atom cluster gives rise to two such defects, and 16 helium atoms to more than five self-interstitial vacancy pairs. It was noted that the self-interstitials prefer to agglomerate on the same ''side'' of the helium cluster rather than to spread themselves out uniformly. The binding energy of each additional helium atom to these clusters increases with helium concentration and the trap is apparently unsaturable. A rate theory using these atomistic binding energies has been used to calculate the kinetics of helium-bubble nucleation and growth. The results are consistent with measurements of the properties of helium resulting from tritium decay

  7. Microstructural evolution in dual-ion irradiated 316SS under various helium injection schedules

    International Nuclear Information System (INIS)

    Kohyama, A.; Igata, N.; Ayrault, G.; Tokyo Univ.

    1984-01-01

    Dual-ion irradiated 316 SS samples with various helium injection schedules were studied. The intent of using different schedules was to either approximate the MFR condition, mimic the mixed spectrum reactor condition or mimic the fast reactor condition. The objective of this investigation is to study the influence of these different helium injection schedules on the microstructural development under irradiation. The materials for this study was 316 SS (MFE heat) with three thermomechanical pre-irradiation treatments: solution annealed, solution annealed and aged and 20% cold worked. The cavity nucleation and growth stages were investigated using high resolution TEM. (orig.)

  8. Thermal instability of helium-burning shell in stars evolving toward carbon-detonation supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, D; Nomoto, K [Tokyo Univ. (Japan). Coll. of General Education

    1975-07-01

    Artificially suppressing the occurrence of thermal pulses, evolution in the phase of a growing carbon-oxygen core was computed through the ignition of carbon burning. From this computation we chose two models with the core masses of 1.074 and 1.393 Msub(solar mass). Starting from these models, we followed by numerical computation the occurrence of thermal pulses in the helium-burning shell. We have found the following. More than 4000 thermal pulses take place through the evolutionary phase. The peak energy generation rate is 10/sup 7/Lsub(solar) at most, a rate too small to induce any major dynamical effect. After each pulse the convective envelope penetrates into the helium zone, and the products of helium burning, which contain carbon and s-process elements, are mixed into the convective envelope, which thereby develops composition characteristics of carbon stars.

  9. A second-generation supersonic transport

    Science.gov (United States)

    Humphrey, W.; Grayson, G.; Gump, J.; Hutko, G.; Kubicko, R.; Obrien, J.; Orndorff, R.; Oscher, R.; Polster, M.; Ulrich, C.

    1989-01-01

    Ever since the advent of commercial flight vehicles, one goal of designers has been to develop aircraft that can fly faster and carry more passengers than before. After the development of practical supersonic military aircraft, this desire was naturally manifested in a search for a practical supersonic commercial aircraft. The first and, to date, only supersonic civil transport is the Concorde, manufactured by a consortium of British and French aerospace companies. Unfortunately, due to a number of factors, including low passenger capacity and limited range, the Concorde has not been an economic success. It is for this reason that there is considerable interest in developing a design for a supersonic civil transport that addresses some of the inadequacies of the Concorde. For the design of such an aircraft to be feasible in the near term, certain guidelines must be established at the outset. Based upon the experience with the Concorde, whose 100-passenger capacity is not large enough for profitable operation, a minimum capacity of 250 passengers is desired. Second, to date, because of the limited range of the Concorde, supersonic commercial flight has been restricted to trans-Atlantic routes. In order to broaden the potential market, any new design must have the capability of trans-Pacific flight. A summary of the potential markets involved is presented. Also, because of both the cost and complexity involved with actively cooling an entire aircraft, an additional design constraint is that the aircraft as a whole be passively cooled. One additional design constraint is somewhat less quantitative in nature but of great importance nonetheless. Any time a new design is attempted, the tendency is to assume great strides in technology that serve as the basis for actual realization of the design. While it is not always possible to avoid this dependence on 'enabling technology,' since this design is desired for the near term, it is prudent, wherever possible, to rely on

  10. Numerical Analysis on the Compressible Flow Characteristics of Supersonic Jet Caused by High-Pressure Pipe Rupture Using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jong-Kil; Yoon, Jun-Kyu [Gachon Univ., Sungnam (Korea, Republic of); Kim, Kwang-Chu [KEPCO-E& C, Kimchun (Korea, Republic of)

    2017-10-15

    A rupture in a high-pressure pipe causes the fluid in the pipe to be discharged in the atmosphere at a high speed resulting in a supersonic jet that generates the compressible flow. This supersonic jet may display complicated and unsteady behavior in general . In this study, Computational Fluid Dynamics (CFD) analysis was performed to investigate the compressible flow generated by a supersonic jet ejected from a high-pressure pipe. A Shear Stress Transport (SST) turbulence model was selected to analyze the unsteady nature of the flow, which depends upon the various gases as well as the diameter of the pipe. In the CFD analysis, the basic boundary conditions were assumed to be as follows: pipe of diameter 10 cm, jet pressure ratio of 5, and an inlet gas temperature of 300 K. During the analysis, the behavior of the shockwave generated by a supersonic jet was observed and it was found that the blast wave was generated indirectly. The pressure wave characteristics of hydrogen gas, which possesses the smallest molecular mass, showed the shortest distance to the safety zone. There were no significant difference observed for nitrogen gas, air, and oxygen gas, which have similar molecular mass. In addition, an increase in the diameter of the pipe resulted in the ejected impact caused by the increased flow rate to become larger and the zone of jet influence to extend further.

  11. Structure of mixed β-lactoglobulin/pectin adsorbed layers at air/water interfaces; a spectroscopy study

    NARCIS (Netherlands)

    Ganzevles, R.A.; Fokkink, R.; Vliet, T. van; Cohen Stuart, M.A.; Jongh, H.H.J. de

    2008-01-01

    Based on earlier reported surface rheological behaviour two factors appeared to be important for the functional behaviour of mixed protein/polysaccharide adsorbed layers at air/water interfaces: (1) protein/polysaccharide mixing ratio and (2) formation history of the layers. In this study complexes

  12. Structure of mixed Beta-lactoglobulin/pectin adsorbed layers at air/water interfaces; a spectroscopy study

    NARCIS (Netherlands)

    Ganzevles, R.A.; Fokkink, R.G.; Vliet, van T.; Cohen Stuart, M.A.; Jongh, de H.H.J.

    2008-01-01

    Based on earlier reported surface rheological behaviour two factors appeared to be important for the functional behaviour of mixed protein/polysaccharide adsorbed layers at air/water interfaces: (1) protein/polysaccharide mixing ratio and (2) formation history of the layers. In this study complexes

  13. Study of Pressure Oscillations in Supersonic Parachute

    Science.gov (United States)

    Dahal, Nimesh; Fukiba, Katsuyoshi; Mizuta, Kazuki; Maru, Yusuke

    2018-04-01

    Supersonic parachutes are a critical element of planetary mission whose simple structure, light-weight characteristics together with high ratio of aerodynamic drag makes them the most suitable aerodynamic decelerators. The use of parachute in supersonic flow produces complex shock/shock and wake/shock interaction giving rise to dynamic pressure oscillations. The study of supersonic parachute is difficult, because parachute has very flexible structure which makes obtaining experimental pressure data difficult. In this study, a supersonic wind tunnel test using two rigid bodies is done. The wind tunnel test was done at Mach number 3 by varying the distance between the front and rear objects, and the distance of a bundle point which divides suspension lines and a riser. The analysis of Schlieren movies revealed shock wave oscillation which was repetitive and had large pressure variation. The pressure variation differed in each case of change in distance between the front and rear objects, and the change in distance between riser and the rear object. The causes of pressure oscillation are: interaction of wake caused by front object with the shock wave, fundamental harmonic vibration of suspension lines, interference between shock waves, and the boundary layer of suspension lines.

  14. Supersonic micro-jets and their application to few-cycle laser-driven electron acceleration

    International Nuclear Information System (INIS)

    Schmid, Karl

    2009-01-01

    This thesis covers the few-cycle laser-driven acceleration of electrons in a laser-generated plasma. The laser system employed in this work is a new development based on optical parametric chirped pulse amplification and is the only multi-TW few-cycle laser in the world. In the experiment, the laser beam is focused onto a supersonic helium gas jet which leads to the formation of a plasma channel. The laser pulse, having an intensity of 10 19 W/cm 2 propagates through the plasma with an electron density of 2 x 10 19 cm -3 and forms via a highly nonlinear interaction a strongly anharmonic plasma wave. The amplitude of the wave is so large that the wave breaks, thereby injecting electrons from the background plasma into the accelerating phase. The energy transfer from the laser pulse to the plasma is so strong that the maximum propagation distance is limited to the 100 m range. Therefore, gas jets specifically tuned to these requirements have to be employed. The properties of microscopic supersonic gas jets are thoroughly analyzed in this work. Based on numeric flow simulation, this study encompasses several extensive parameter studies that illuminate all relevant features of supersonic flows in microscopic gas nozzles. This allowed the optimized design of de Laval nozzles with exit diameters ranging from 150 μm to 3 mm. The employment of these nozzles in the experiment greatly improved the electron beam quality. After these optimizations, the laser-driven electron accelerator now yields monoenergetic electron pulses with energies up to 50 MeV and charges between one and ten pC. The electron beam has a typical divergence of 5 mrad and comprises an energy spectrum that is virtually free from low energetic background. The electron pulse duration could not yet be determined experimentally but simulations point towards values in the range of 1 fs. The acceleration gradient is estimated from simulation and experiment to be approximately 0.5 TV/m. The electron accelerator

  15. Supersonic micro-jets and their application to few-cycle laser-driven electron acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Karl

    2009-07-23

    This thesis covers the few-cycle laser-driven acceleration of electrons in a laser-generated plasma. The laser system employed in this work is a new development based on optical parametric chirped pulse amplification and is the only multi-TW few-cycle laser in the world. In the experiment, the laser beam is focused onto a supersonic helium gas jet which leads to the formation of a plasma channel. The laser pulse, having an intensity of 10{sup 19} W/cm{sup 2} propagates through the plasma with an electron density of 2 x 10{sup 19} cm{sup -3} and forms via a highly nonlinear interaction a strongly anharmonic plasma wave. The amplitude of the wave is so large that the wave breaks, thereby injecting electrons from the background plasma into the accelerating phase. The energy transfer from the laser pulse to the plasma is so strong that the maximum propagation distance is limited to the 100 m range. Therefore, gas jets specifically tuned to these requirements have to be employed. The properties of microscopic supersonic gas jets are thoroughly analyzed in this work. Based on numeric flow simulation, this study encompasses several extensive parameter studies that illuminate all relevant features of supersonic flows in microscopic gas nozzles. This allowed the optimized design of de Laval nozzles with exit diameters ranging from 150 {mu}m to 3 mm. The employment of these nozzles in the experiment greatly improved the electron beam quality. After these optimizations, the laser-driven electron accelerator now yields monoenergetic electron pulses with energies up to 50 MeV and charges between one and ten pC. The electron beam has a typical divergence of 5 mrad and comprises an energy spectrum that is virtually free from low energetic background. The electron pulse duration could not yet be determined experimentally but simulations point towards values in the range of 1 fs. The acceleration gradient is estimated from simulation and experiment to be approximately 0.5 TV/m. The

  16. Supersonic wave detection method and supersonic detection device

    International Nuclear Information System (INIS)

    Machida, Koichi; Seto, Takehiro; Ishizaki, Hideaki; Asano, Rin-ichi.

    1996-01-01

    The present invention provides a method of and device for a detection suitable to a channel box which is used while covering a fuel assembly of a BWR type reactor. Namely, a probe for transmitting/receiving supersonic waves scans on the surface of the channel box. A data processing device determines an index showing a selective orientation degree of crystal direction of the channel box based on the signals received by the probe. A judging device compares the determined index with a previously determined allowable range to judge whether the channel box is satisfactory or not based on the result of the comparison. The judgement are on the basis that (1) the bending of the channel box is caused by the difference of elongation of opposed surfaces, (2) the elongation due to irradiation is caused by the selective orientation of crystal direction, and (3) the bending of the channel box can be suppressed within a predetermined range by suppressing the index determined by the measurement of supersonic waves having a correlation with the selective orientation of the crystal direction. As a result, the performance of the channel box capable of enduring high burnup region can be confirmed in a nondestructive manner. (I.S.)

  17. 76 FR 30231 - Civil Supersonic Aircraft Panel Discussion

    Science.gov (United States)

    2011-05-24

    ... awareness of the continuing technological advancements in supersonic aircraft technology aimed at reducing... Wednesday, April 21, 2010, as part of the joint meeting of the 159th Acoustical Society of America and NOISE... advances in supersonic technology, and for the FAA, the National Aeronautics and Space Administration (NASA...

  18. Friendly fermions of helium-three

    International Nuclear Information System (INIS)

    Leggatt, T.

    1976-01-01

    The importance of helium in showing up the effects of atomic indistinguishability and as a material by which to test some of the most fundamental principles of quantum mechanics is discussed. Helium not only remains liquid down to zero temperature but of the two isotopes helium-three has intrinsic spin 1/2 and should therefore obey the Pauli principle, while helium-four has spin zero and is expected to undergo Bose condensation. Helium-three becomes superfluid at temperatures of a few thousandths of a degree above absolute zero by the bulk liquid collecting its atoms into spinning pairs. There are three different superfluid phases, now conveniently called A, B and A 1 and each is characterised by a different behaviour of the spin and/or relative angular motion of the atoms composing the Cooper pairs. Problems surrounding the complicated physical system of helium-three are discussed. It is suggested that the combined coherence and directionality of superfluid helium-three should create some fascinating physics. (U.K.)

  19. Helium turbo-expander with an alternator

    International Nuclear Information System (INIS)

    Akiyama, Yoshitane

    1980-01-01

    Study was made on a helium turbo-expander, the heart of helium refrigerator systems, in order to develop a system which satisfies the required conditions. A helium turbo-expander with externally pressurized helium gas bearings at the temperature of liquid nitrogen and an alternator as a brake have been employed. The essential difference between a helium turbo-expander and a nitrogen turbo-expander was clarified. The gas bearing lubricated with nitrogen at room temperature and the gas bearing lubricated with helium at low temperature were tested. The flow rate of helium in a helium refrigerator for a large superconducting magnet is comparatively small, therefore a helium turbine must be small, but the standard for large turbine design can be applied to such small turbine. Using the alternator as a brake, the turbo-expander was easily controllable electrically. The prototype turbo-expander was made, and the liquefaction test with it and MHD power generation test were carried out. (Kako, I.)

  20. Studies on air ingress for pebble bed reactors

    International Nuclear Information System (INIS)

    Moore, R.L.; Oh, C.H.; Merrill, B.J.; Petti, D.A.

    2002-01-01

    A loss-of-coolant accident (LOCA) has been considered a critical event for helium-cooled pebbled bed reactors. Following helium depressurization, it is anticipated that unless countermeasures are taken air will enter the core through the break and then by molecular diffusion and ultimately by natural convection leading to oxidation of the in-core graphite structure and graphite pebbles. Thus, without any mitigating features a LOCA will lead to an air ingress event. The INEEL is studying such an event with two well-respected light water reactor transient response codes: RELAP5/ATHENA and MELCOR. To study the degree of graphite oxidation occurring due to an air ingress event, a MELCOR model of a reference pebble bed design was constructed. A modified version of MELCOR developed at INEEL, which includes graphite oxidation capabilities, and molecular diffusion of air into helium was used for these calculations. Results show that the lower reflector graphite consumes all of the oxygen before reaching the core. The results also show a long time delay between the time that the depressurization phase of the accident is over and the time that natural circulation air through the core occurs. (author)

  1. Three-dimensional studies of mixing and stratification in containments cooled by internal condensers

    Energy Technology Data Exchange (ETDEWEB)

    Putz, F.; Dury, T. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    2001-07-01

    Within the scope of the fourth EU Framework Programme IPSS project, two passive containment cooling systems, the so-called Building Condenser (BC, under an additional bilateral contract between PSI and Siemens) and Plate Condenser (PC), have been studied at the PSI PANDA facility. From the two tests series, tests BC4 and PC1 have been selected for analysis with the code GOTHIC 6.0. Particular phenomena which are of importance with regard to the condensers operating conditions (mixing/stratification of non-condensable gases, such as air and helium) have been analysed. The GOTHIC simulations have been complemented by CFD calculations with CFX-4. (author)

  2. Three-dimensional studies of mixing and stratification in containments cooled by internal condensers

    International Nuclear Information System (INIS)

    Putz, F.; Dury, T.

    2001-01-01

    Within the scope of the fourth EU Framework Programme IPSS project, two passive containment cooling systems, the so-called Building Condenser (BC, under an additional bilateral contract between PSI and Siemens) and Plate Condenser (PC), have been studied at the PSI PANDA facility. From the two tests series, tests BC4 and PC1 have been selected for analysis with the code GOTHIC 6.0. Particular phenomena which are of importance with regard to the condensers operating conditions (mixing/stratification of non-condensable gases, such as air and helium) have been analysed. The GOTHIC simulations have been complemented by CFD calculations with CFX-4. (author)

  3. Exposure to aerosol and gaseous pollutants in a room ventilated with mixing air distribution

    DEFF Research Database (Denmark)

    Bivolarova, Mariya Petrova; Ondráček, Jakub; Ždímal, Vladimír

    2016-01-01

    The present study investigates the aerosol and gas dispersal in a mechanically ventilated room and the personal exposure to these contaminants. The study was performed in a full-scale climate chamber. The room was air conditioned via mixing total volume ventilation system. The room occupancy was ...... of the thermal manikin were measured. The results showed higher exposure to the contaminants measured at the breathing zone than at the ambient air. The behaviour of the tracer gas and the aerosols was similar.......The present study investigates the aerosol and gas dispersal in a mechanically ventilated room and the personal exposure to these contaminants. The study was performed in a full-scale climate chamber. The room was air conditioned via mixing total volume ventilation system. The room occupancy...... was simulated by a sitting dressed thermal manikin with realistic body shape. During the experiments monodisperse aerosols of three sizes and nitrous oxide tracer gas were generated simultaneously from one location in the room. The aerosol and gas concentrations in the bulk room air and in the breathing zone...

  4. A study of direct-current surface discharge plasma for a Mach 3 supersonic flow control

    Science.gov (United States)

    Shin, Jichul

    A direct-current, non-equilibrium surface glow discharge plasma in the presence of a Mach 2.85 flow is studied experimentally for flow control applications. The discharge is generated with pin-like electrodes flush mounted on a ceramic plate with sustaining currents from 25 mA to 300 mA. In the presence of a supersonic flow, two distinct discharge modes - diffuse and constricted - are observed depending on the flow and discharge operating conditions. In cathode upstream location, both diffuse and constricted discharges are observed while in cathode downstream location, the discharge mostly exhibits either constricted mode or bistable mixed mode. The effect of the discharge on the flow ("plasma actuation'') is characterized by the appearance of a weak shock wave in the vicinity of the discharge. The shock is observed at low powers (˜10 W) for the diffuse discharge mode but is absent for the higher power (˜100 W) constricted mode. High speed laser schlieren imaging suggests that the diffuse mode plasma actuation is rapid as it occurs on a time scale that is less than 100 microsec. Rotational (gas) and vibrational temperatures within the discharge are estimated by emission spectral line fits of N 2 and N+2 rovibronic bands near 365-395 nm. The electronic temperatures are estimated by using the Boltzmann plot method for Fe(I) atomic lines. Rotational temperatures are found to be high (˜1500 K) in the absence of a flow but drop sharply (˜500 K) in the presence of a supersonic flow for both the diffuse and constricted discharge modes. The vibrational and electronic temperatures are measured to be about 3000 K and 1.25 eV (14500 K), respectively, and these temperatures are the same with and without flow. The gas (rotational) temperature spatial profiles above the cathode surface are found to be similar for the diffuse and constricted modes indicating that dilatational effects due to gas heating are similar. However, complete absence of flow actuation for the

  5. Helium in inert matrix dispersion fuels

    International Nuclear Information System (INIS)

    Veen, A. van; Konings, R.J.M.; Fedorov, A.V.

    2003-01-01

    The behaviour of helium, an important decay product in the transmutation chains of actinides, in dispersion-type inert matrix fuels is discussed. A phenomenological description of its accumulation and release in CERCER and CERMET fuel is given. A summary of recent He-implantation studies with inert matrix metal oxides (ZrO 2 , MgAl 2 O 4 , MgO and Al 2 O 3 ) is presented. A general picture is that for high helium concentrations helium and vacancy defects form helium clusters which convert into over-pressurized bubbles. At elevated temperature helium is released from the bubbles. On some occasions thermal stable nano-cavities or nano-pores remain. On the basis of these results the consequences for helium induced swelling and helium storage in oxide matrices kept at 800-1000 deg. C will be discussed. In addition, results of He-implantation studies for metal matrices (W, Mo, Nb and V alloys) will be presented. Introduction of helium in metals at elevated temperatures leads to clustering of helium to bubbles. When operational temperatures are higher than 0.5 melting temperature, swelling and helium embrittlement might occur

  6. Operating Manual of Helium Refrigerator (Rev. 2)

    Energy Technology Data Exchange (ETDEWEB)

    Song, K.M.; Son, S.H.; Kim, K.S.; Lee, S.K.; Kim, M.S. [Korea Electric Power Research Institute, Taejon (Korea)

    2002-07-01

    A helium refrigerator was installed as a supplier of 20K cold helium to the cryogenic distillation system of WTRF pilot plant. The operating procedures of the helium refrigerator, helium compressor and auxiliary apparatus are described for the safety and efficient operation in this manual. The function of the helium refrigerator is to remove the impurities from the compressed helium of about 250psig, to cool down the helium from ambient temperature to 20K through the heat exchanger and expansion engine and to transfer the cold helium to the cryogenic distillation system. For the smoothly operation of helium refrigerator, the preparation, the start-up, the cool-down and the shut-down of the helium refrigerator are described in this operating manual. (author). 3 refs., 14 tabs.

  7. Computational fluid dynamics analysis of the initial stages of a VHTR air-ingress accident using a scaled-down model

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Tae K., E-mail: taekyu8@gmail.com [Nuclear Engineering Program, The Ohio State University, Columbus, OH 43210 (United States); Arcilesi, David J., E-mail: arcilesi.1@osu.edu [Nuclear Engineering Program, The Ohio State University, Columbus, OH 43210 (United States); Kim, In H., E-mail: ihkim0730@gmail.com [Nuclear Engineering Program, The Ohio State University, Columbus, OH 43210 (United States); Sun, Xiaodong, E-mail: sun.200@osu.edu [Nuclear Engineering Program, The Ohio State University, Columbus, OH 43210 (United States); Christensen, Richard N., E-mail: rchristensen@uidaho.edu [Nuclear Engineering Program, The Ohio State University, Columbus, OH 43210 (United States); Oh, Chang H. [Idaho National Laboratory, Idaho Falls, ID 83402 (United States); Kim, Eung S., E-mail: kes7741@snu.ac.kr [Idaho National Laboratory, Idaho Falls, ID 83402 (United States)

    2016-04-15

    shows that flow reversal could occur due to Taylor wave expansion near the end of the depressurization, which could affect subsequent stages of the air ingress accident scenario. Therefore, to properly understand and evaluate the depressurization effects, numerical simulations are performed for the double-ended guillotine break of the Gas Turbine-Modular Helium Reactor (GT-MHR) cross vessel with a computational fluid dynamics (CFD) tool, ANSYS FLUENT. A benchmark and error quantification study of the depressurization shows that the ANSYS FLUENT model can predict the depressurization problem with relatively low uncertainty. In addition, the computational results show that the depressurization of a double-ended guillotine break behaves as an isentropic process. The observed flow oscillations near the end of the depressurization promote mixing of helium gas and air near the break. The results of the CFD analyses also show that the density-driven stratified flow, which is postulated to be the next stage of the air-ingress accident scenario, is strongly dependent on the density difference between the air–helium mixture in the containment and the helium in the reactor vessel. Therefore, the flow oscillations near the end of the depressurization stage may have a minor, yet notable, effect to slow down the air ingress due to density-driven stratified flow by decreasing the bulk density of the gas mixture in the containment through the addition of helium and increasing the bulk density in the reactor vessel through the addition of air.

  8. Development of a nonlocal convective mixing scheme with varying upward mixing rates for use in air quality and chemical transport models.

    Science.gov (United States)

    Mihailović, Dragutin T; Alapaty, Kiran; Sakradzija, Mirjana

    2008-06-01

    Asymmetrical convective non-local scheme (CON) with varying upward mixing rates is developed for simulation of vertical turbulent mixing in the convective boundary layer in air quality and chemical transport models. The upward mixing rate form the surface layer is parameterized using the sensible heat flux and the friction and convective velocities. Upward mixing rates varying with height are scaled with an amount of turbulent kinetic energy in layer, while the downward mixing rates are derived from mass conservation. This scheme provides a less rapid mass transport out of surface layer into other layers than other asymmetrical convective mixing schemes. In this paper, we studied the performance of a nonlocal convective mixing scheme with varying upward mixing in the atmospheric boundary layer and its impact on the concentration of pollutants calculated with chemical and air-quality models. This scheme was additionally compared versus a local eddy-diffusivity scheme (KSC). Simulated concentrations of NO(2) and the nitrate wet deposition by the CON scheme are closer to the observations when compared to those obtained from using the KSC scheme. Concentrations calculated with the CON scheme are in general higher and closer to the observations than those obtained by the KSC scheme (of the order of 15-20%). Nitrate wet deposition calculated with the CON scheme are in general higher and closer to the observations than those obtained by the KSC scheme. To examine the performance of the scheme, simulated and measured concentrations of a pollutant (NO(2)) and nitrate wet deposition was compared for the year 2002. The comparison was made for the whole domain used in simulations performed by the chemical European Monitoring and Evaluation Programme Unified model (version UNI-ACID, rv2.0) where schemes were incorporated.

  9. Study on the characteristics of the supersonic steam injector

    International Nuclear Information System (INIS)

    Abe, Yutaka; Shibayama, Shunsuke

    2014-01-01

    Steam injector is a passive jet pump which operates without power source or rotating machinery and it has high heat transfer performance due to the direct-contact condensation of supersonic steam flow onto subcooled water jet. It has been considered to be applied to the passive safety system for the next-generation nuclear power plants. The objective of the present study is to clarify operating mechanisms of the steam injector and to determine the operating ranges. In this study, temperature and velocity distribution in the mixing nozzle as well as flow directional pressure distribution were measured. In addition, flow structure in whole of the injector was observed with high-speed video camera. It was confirmed that there were unsteady interfacial behavior in mixing nozzle which enhanced heat transfer between steam flow and water jet with calculation of heat transfer coefficient. Discharge pressure at diffuser was also estimated with a one-dimensional model proposed previously. Furthermore, it was clarified that steam flow did not condense completely in mixing nozzle and it was two-phase flow in throat and diffuser, which seemed to induce shock wave. From those results, several discussions and suggestions to develop a physical model which predicts the steam injectors operating characteristics are described in this paper

  10. Development of supersonic plasma flows by use of a magnetic nozzle and an ICRF heating

    Energy Technology Data Exchange (ETDEWEB)

    Inutake, M.; Ando, A.; Hattori, K.; Tobari, H.; Hosokawa, Y.; Sato, R.; Hatanaka, M.; Harata, K. [Tohoku Univ., Dept. of Electrical Engineering, Sendai (Japan)

    2004-07-01

    A high-beta, supersonic plasma flow plays a crucial role in MHD phenomena in space and fusion plasmas. There are a few experimental researches on production and control of a fast flowing plasma in spite of a growing significance in the magnetized-plasma flow dynamics. A magneto-plasma-dynamic arc-jet (MPDA) is one of promising devices to produce a supersonic plasma flow and has been utilized as an electric propulsion device with a higher specific impulse and a relatively larger thrust. We have improved the performance of an MPDA to produce a quasi-steady plasma flow with a transonic and supersonic Mach number in a highly-ionized state. There are two methods in order to control an ion-acoustic Mach number of the plasma flow exhausted from an MPDA: one is to use a magnetic Laval nozzle to convert a thermal energy to a flow energy and the other is a combined system of an ion heating and a divergent magnetic nozzle. The former is an analogous method to a compressible air flow and the latter is the method proposed in an advanced thruster for a manned interplanetary space mission. We have clarified the plasma flow characteristics in various shapes of a magnetic field configuration. It was demonstrated that the Mach number of the plasma flow could increase up to almost 3 in a divergent magnetic nozzle field. This paper reports recent results on the flow field improvements: one is on a magnetic-Laval-nozzle effects observed at the muzzle region of the MPDA, and the other is on ICRF (ion-cyclotron-range of frequency) heating of a supersonic plasma by use of a helical antenna. (authors)

  11. Relation between the conditions of helium ion implantation and helium void equilibrium parameters

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Rybalko, V.F.; Ruzhitskij, V.V.; Tolstolutskaya, G.D.

    1981-01-01

    The conditions of helium thermodynamic equilibrium in a system of voids produced by helium ion bombardment of a metal sample are studied. As an initial equation for description of the equilibrium the Clapeyron equation was used. The equation is obtained relating basic parameters of helium voids (average diameter and density) to irradiation parameters (dose, ion energy (straggling)) and properties of the metal (surface tension coefficient, yield strength). Comparison of the calculations with experimental data on helium in nickel found in literature shows that the equation yields satisfactory resutls for the dose range 1.10 16 -1x10 17 cm -2 and temperatures T [ru

  12. Helium behaviour in nuclear glasses

    International Nuclear Information System (INIS)

    Fares, T.

    2011-01-01

    The present thesis focuses on the study of helium behavior in R7T7 nuclear waste glass. Helium is generated by the minor actinides alpha decays incorporated in the glass matrix. Therefore, four types of materials were used in this work. These are non radioactive R7T7 glasses saturated with helium under pressure, glasses implanted with 3 He + ions, glasses doped with curium and glasses irradiated in nuclear reactor. The study of helium solubility in saturated R7T7 glass has shown that helium atoms are inserted in the glass free volume. The results yielded a solubility of about 10 16 at. cm -3 atm. -1 . The incorporation limit of helium in this type of glass has been determined; its value amounted to about 2*10 21 at. cm -3 , corresponding to 2.5 at.%. Diffusion studies have shown that the helium migration is controlled by the single population dissolved in the glass free volume. An ideal diffusion model was used to simulate the helium release data which allowed to determine diffusion coefficients obeying to the following Arrhenius law: D = D 0 exp(-E a /kBT), where D 0 = 2.2*10 -2 and 5.4*10 -3 cm 2 s -1 and E a = 0.61 eV for the helium saturated and the curium doped glass respectively. These results reflect a thermally activated diffusion mechanism which seems to be not influenced by the glass radiation damage and helium concentrations studied in the present work (up to 8*10 19 at. g -1 , corresponding to 0.1 at.%). Characterizations of the macroscopic, structural and microstructural properties of glasses irradiated in nuclear reactor did not reveal any impact associated with the presence of helium at high concentrations. The observed modifications i.e. a swelling of 0.7 %, a decrease in hardness by 38 %, an increase between 8 and 34 % of the fracture toughness and a stabilization of the glass structure under irradiation, were attributed to the glass nuclear damage induced by the irradiation in reactor. Characterizations by SEM and TEM of R7T7 glasses implanted

  13. Stark effect in Rydberg states of helium and barium

    International Nuclear Information System (INIS)

    Lahaije, C.T.W.

    1989-01-01

    This thesis, which deals with the effect of an electric field up to moderate field strengths on atoms with two valence electrons outside closed shells, in casu helium and barium, contains chapter in which the linear Stark effect in the 1 snp 1, 3 p Rydberg states of helium (n around 40) has been studied in a CW laser-atomic beam experiment. The evolution of the angular momentum manifolds into the n-mixing regime was followed and avoided level crossings were observed. Stark manifolds were also calculated by diagonalization of the complete energy matrix in the presence of an electric field. It turned out to be necessary to include up to five n-values in the calculations already at moderate values of the field to reproduce the data within the experimental accuracy (a few MHz), especially in the regime of the avoided crossings. (author). 147 refs.; 30 figs.; 8 tabs

  14. Gas Flow Validation with Panda Tests from the OECD SETH Benchmark Covering Steam/Air and Steam/Helium/Air Mixtures

    International Nuclear Information System (INIS)

    Royl, P.; Travis, J.R.; Breitung, W.; Kim, J.; Kim, S.B.

    2009-01-01

    The CFD code GASFLOW solves the time-dependent compressible Navier-Stokes Equations with multiple gas species. GASFLOW was developed for nonnuclear and nuclear applications. The major nuclear applications of GASFLOW are 3D analyses of steam/hydrogen distributions in complex PWR containment buildings to simulate scenarios of beyond design basis accidents. Validation of GASFLOW has been a continuously ongoing process together with the development of this code. This contribution reports the results from the open posttest GASFLOW calculations that have been performed for new experiments from the OECD SETH Benchmark. Discussed are the steam distribution tests 9 and 9 bis, 21 and 21 bis involving comparable sequences with and without steam condensation and the last SETH test 25 with steam/helium release and condensation. The latter one involves lighter gas mixture sources like they can result in real accidents. The helium is taken as simulant for hydrogen

  15. Cooling with Superfluid Helium

    Energy Technology Data Exchange (ETDEWEB)

    Lebrun, P; Tavian, L [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    The technical properties of helium II (‘superfluid’ helium) are presented in view of its applications to the cooling of superconducting devices, particularly in particle accelerators. Cooling schemes are discussed in terms of heat transfer performance and limitations. Large-capacity refrigeration techniques below 2 K are reviewed, with regard to thermodynamic cycles as well as process machinery. Examples drawn from existing or planned projects illustrate the presentation. Keywords: superfluid helium, cryogenics.

  16. Bed system performance in helium circulation mode

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yean Jin; Jung, Kwang Jin; Ahn, Do Hee; Chung, Hong Suk [UST, Daejeon (Korea, Republic of); Kang, Hee Suk [KAERI, Daejeon (Korea, Republic of); Yun, Sei Hun [NFRI, Deajeon (Korea, Republic of)

    2016-05-15

    As a part of the International Thermonuclear Experimental Reactor (ITER) Project, We have conducted an experiment for storing hydrogen to depleted uranium and zirconium cobalt. The helium blanket effect has been observed in experiments using metal hydrides. The collapse of the hydrogen isotopes are accompanied by the decay heat and helium-3. Helium-3 dramatically reduces the hydrogen isotope storage capacity by surrounding the metal. This phenomenon is called a helium blanket effect. In addition the authors are working on the recovery and removal techniques of helium-3. In this paper, we discuss the equipment used to test the helium blanket effect and the results of a helium circulation experiment. The helium-3 produced surrounds the storage material surface and thus disturbs the reaction of the storage material and the hydrogen isotope. Even if the amount of helium-3 is small, the storage capacity of the SDS bed significantly drops. This phenomenon is the helium blanket effect. To resolve this phenomenon, a circulating loop was introduced. Using a circulating system, helium can be separated from the storage material. We made a helium loop that includes a ZrCo bed. Then using a metal bellows pump, we tested the helium circulation.

  17. Helium clusters as cold, liquid matrix for the laser spectroscopy of silver atoms, silver clusters and C60 fullerenes

    International Nuclear Information System (INIS)

    Hoffmann, K.

    1999-01-01

    One of the main obstacles in the study of gas phase metal clusters is their high temperature. Even cooling in a seeded beam is only of limited used, since the condensation continuously releases energy into the system. As a consequence, spectroscopic studies of free metal clusters typically yield broad structures, which are interpreted as plasma resonances of a free electron gas. An experiment on ionic sodium clusters has shown that low temperatures lead to a narrowing of the absorption bands and the appearance of additional structure, that can not be explained within the free electron model. Thus the need for cold clusters is evident. In principle the deposition of metal clusters into inert matrices eliminates the temperature problem but it can also inflict strong changes on the electronic spectra. Droplets of liquid helium serve as a much more gentle matrix that avoids many of the above problems. In this thesis the new technique of helium droplet spectroscopy is presented as a tool for the study of extremely cold metal clusters. Clusters of silver up to a mass greater than 7000 amu have been produced by pickup of single atoms by a beam of helium droplets. The droplets are formed in a supersonic expansion. The cluster's binding energy is removed by evaporative cooling and the system remains at 0.4 K. The doped droplets are probed by laser spectroscopy with a depletion technique or resonant two photon ionization. We were able to measure the first UV absorption spectrum of metal atoms (silver) inside helium droplets. Another experiment shows that a small fraction of the captured silver atoms resides on the surface of the droplet like alkali atoms. In a two photon process previously unobserved s- and d-Rydberg states of the free silver atom (20 left angle n left angle 80) were excited. The silver atoms, initially embedded in the helium droplets, are found to move to the surface and desorb when excited to the broadened 5p level. This is the first result showing laser

  18. Effect of ramp-cavity on hydrogen fueled scramjet combustor

    Directory of Open Access Journals (Sweden)

    J.V.S. Moorthy

    2014-03-01

    Full Text Available Sustained combustion and optimization of combustor are the two challenges being faced by combustion scientists working in the area of supersonic combustion. Thorough mixing, lower stagnation pressure losses, positive thrust and sustained combustion are the key issues in the field of supersonic combustion. Special fluid mechanism is required to achieve good mixing. To induce such mechanisms in supersonic inflows, the fuel injectors should be critically shaped incurring less flow losses. Present investigations are focused on the effect of fuel injection scheme on a model scramjet combustor performance. Ramps at supersonic flow generate axial vortices that help in macro-mixing of fuel with air. Interaction of shocks generated by ramps with the fuel stream generates boro-clinic torque at the air & liquid fuel interface, enhancing micro-mixing. Recirculation zones present in cavities increase the residence time of the combustible mixture. Making use of the advantageous features of both, a ramp-cavity combustor is designed. The combustor has two sections. First, constant height section consists of a backward facing step followed by ramps and cavities on both the top and bottom walls. The ramps are located alternately on top and bottom walls. The complete combustor width is utilized for the cavities. The second section of the combustor is diverging area section. This is provided to avoid thermal choking. In the present work gaseous hydrogen is considered as fuel. This study was mainly focused on the mixing characteristics of four different fuel injection locations. It was found that injecting fuel upstream of the ramp was beneficial from fuel spread point of view.

  19. Helium supply demand in future years

    International Nuclear Information System (INIS)

    Laverick, C.

    1975-01-01

    Adequate helium will be available to the year 2000 AD to meet anticipated helium demands for present day applications and the development of new superconducting technologies of potential importance to the nation. It is almost certain that there will not be enough helium at acceptable financial and energy cost after the turn of the century to meet the needs of the many promising helium based technologies now under development. Serious consideration should be given to establishing priorities in development and application based upon their relative value to the country. In the first half of the next century, three ways of estimating helium demand lead to cumulative ranges of from 75 to 125 Gcf (economic study), 89 to 470 Gcf (projected national energy growth rates) and 154 to 328 Gcf (needs for new technologies). These needs contrast with estimated helium resources in natural gas after 2000 AD which may be as low as 10 or 126 Gcf depending upon how the federal helium program is managed and the nation's natural gas resources are utilized. The technological and financial return on a modest national investment in further helium storage and a rational long term helium program promises to be considerable

  20. Computational Study of Shock/Plume Interactions Between Multiple Jets in Supersonic Crossflow

    Science.gov (United States)

    Tylczak, Erik B.

    The interaction of multiple jets in supersonic crossflow is simulated using hybrid Reynolds- Averaged Navier Stokes and Large Eddy Simulation turbulence models. The blockage of a jet generates a curved bow shock, and in multi-jet flows, each shock impinges on the other fuel plumes. The curved nature of each shock generates vorticity directly, and the impingement of each shock on the vortical structures within the adjacent fuel plumes strengthens vortical structures already present. These stirring motions are the major driver of fuel-air mixing, and so mixing enhancement is predicted to occur in multi-port configurations. The primary geometry considered is that of the combustion duct at the Calspan- University of Buffalo Research Center 48" Large Energy National Shock (LENS) tunnel. This geometry was developed to be representative of the geometry and flow physics of the Flight 2 test vehicle of the Hypersonic International Flight Research Experimenta- tion Program (HiFIRE-2). This geometry takes the form of a symmetric pair of external compression ramps that feed an isolator of approximately 4" x 1" cross-section. Nine interdigitated flush-wall injectors, four on one wall and five on the other, inject hydrogen at an angle of 30 degrees to the freestream. Two freestream flow conditions are consid- ered: approximately Mach 7.2 at a static temperature of 214K and a density of 0.039 kg/m3 for the five-injector case, and approximately Mach 8.9 at a static temperature of 167K and density of 0.014 kg/m 3 for the nine-injector case. Validation computations are performed on a single-port experiment with an imposed shock wave. Unsteady calculations are performed on five-port and nine-port configura- tions, and the five-port configuration is compared to calculations performed with only a single active port on the same geometry. Analysis of statistical data demonstrates enhanced mixing in the multi-port configurations in regions where shock impingement occurs.

  1. Surface electrons of helium films

    International Nuclear Information System (INIS)

    Studart, N.; Hipolito, O.

    1986-01-01

    Theoretical calculations of some properties of two-dimensional electrons on a liquid helium film adsorbed on a solid substrate are reviewed. We describe the spectrum of electron bound states on bulk helium as well on helium films. The correlational properties, such as the structure factor and correlation energy, are determined as functions of the film thickness for different types of substrates in the framework of a Generalized Random-Phase Approximation. The collective excitations of this system are also described. The results for electrons on the surface of thin films and bulk helium are easily obtained. we examine the electron interaction with the excitations of the liquid helium surface resulting in a new polaron state, which was observed very recently. The ground state energy and the effective mass of this polaron are determined by using the path-integral formalism and unitary-transformation method. Recent speculations about the phase diagram of electrons on the helium film are also discussed. (Author) [pt

  2. COMMERCIAL SUPERSONIC TRANSPORT PROGRAM. PHASE II-C REPORT. HIGH STRENGTH STEEL EVALUATION FOR SUPERSONIC AIRCRAFT.

    Science.gov (United States)

    JET TRANSPORT AIRCRAFT, *AIRFRAMES, SUPERSONIC AIRCRAFT, STEEL , STRUCTURAL PROPERTIES, FRACTURE(MECHANICS), FATIGUE(MECHANICS), STRESS CORROSION...MICROPHOTOGRAPHY, HIGH TEMPERATURE, NICKEL ALLOYS, COBALT ALLOYS, CARBON, BAINITE , COMMERCIAL AIRCRAFT.

  3. Effects of mixing on resolved and unresolved scales on stratospheric age of air

    Directory of Open Access Journals (Sweden)

    S. Dietmüller

    2017-06-01

    Full Text Available Mean age of air (AoA is a widely used metric to describe the transport along the Brewer–Dobson circulation. We seek to untangle the effects of different processes on the simulation of AoA, using the chemistry–climate model EMAC (ECHAM/MESSy Atmospheric Chemistry and the Chemical Lagrangian Model of the Stratosphere (CLaMS. Here, the effects of residual transport and two-way mixing on AoA are calculated. To do so, we calculate the residual circulation transit time (RCTT. The difference of AoA and RCTT is defined as aging by mixing. However, as diffusion is also included in this difference, we further use a method to directly calculate aging by mixing on resolved scales. Comparing these two methods of calculating aging by mixing allows for separating the effect of unresolved aging by mixing (which we term aging by diffusion in the following in EMAC and CLaMS. We find that diffusion impacts AoA by making air older, but its contribution plays a minor role (order of 10 % in all simulations. However, due to the different advection schemes of the two models, aging by diffusion has a larger effect on AoA and mixing efficiency in EMAC, compared to CLaMS. Regarding the trends in AoA, in CLaMS the AoA trend is negative throughout the stratosphere except in the Northern Hemisphere middle stratosphere, consistent with observations. This slight positive trend is neither reproduced in a free-running nor in a nudged simulation with EMAC – in both simulations the AoA trend is negative throughout the stratosphere. Trends in AoA are mainly driven by the contributions of RCTT and aging by mixing, whereas the contribution of aging by diffusion plays a minor role.

  4. Exploring the isopycnal mixing and helium–heat paradoxes in a suite of Earth system models

    Directory of Open Access Journals (Sweden)

    A. Gnanadesikan

    2015-07-01

    this paper we show that this is not the case. In a suite of models with different spatially constant and spatially varying values of ARedi the distribution of radiocarbon and helium isotopes is sensitive to the value of ARedi. However, away from strong helium sources in the southeastern Pacific, the relationship between the two is not sensitive, indicating that large-scale advection is the limiting process for removing helium and radiocarbon from the deep ocean. The helium isotopes, in turn, suggest a higher value of ARedi below the thermocline than is seen in theoretical parameterizations based on baroclinic growth rates. We argue that a key part of resolving the isopycnal mixing paradox is to abandon the idea that ARedi has a direct relationship to local baroclinic instability and to the so-called "thickness" mixing coefficient AGM.

  5. Effect of Shrouding Gas Temperature on Characteristics of a Supersonic Jet Flow Field with a Shrouding Laval Nozzle Structure

    Science.gov (United States)

    Liu, Fuhai; Sun, Dongbai; Zhu, Rong; Li, Yilin

    2018-05-01

    Coherent jet technology was been widely used in the electric arc furnace steelmaking process to protect the kinetic energy of supersonic oxygen jets and achieve a better mixing effect. For this technology, the total temperature distribution of the shrouding jet has a great impact on the velocity of the main oxygen jet. In this article, a supersonic shrouding nozzle using a preheating shrouding jet is proposed to increase the shrouding jet velocity. Both numerical simulation and experimental studies were carried out to analyze its effect on the axial velocity, total temperature and turbulence kinetic energy profiles of the main oxygen jet. Based on these results, it was found that a significant amount of kinetic energy was removed from the main oxygen jet when it passed though the shock wave using a high-temperature shrouding jet, which made the average axial velocity of the coherent jet lower than for a conventional jet in the potential core region. However, the supersonic shrouding nozzle and preheating technology employed for this nozzle design significantly improved the shrouding gas velocity, forming a low-density gas zone at the exit of the main oxygen jet and prolonging the velocity potential core length.

  6. 3rd year final contractor report for: U.S. Department of Energy Stewardship Science Academic Alliances Program Project Title: Detailed Measurements of Rayleigh-Taylor Mixing at Large and Small Atwood Numbers

    International Nuclear Information System (INIS)

    Malcolm J. Andrews

    2006-01-01

    This project had two major tasks: Task 1. The construction of a new air/helium facility to collect detailed measurements of Rayleigh-Taylor (RT) mixing at high Atwood number, and the distribution of these data to LLNL, LANL, and Alliance members for code validation and design purposes. Task 2. The collection of initial condition data from the new Air/Helium facility, for use with validation of RT simulation codes at LLNL and LANL. This report describes work done in the last twelve (12) months of the project, and also contains a summary of the complete work done over the three (3) life of the project. As of April 1, 2006, the air/helium facility (Task 1) is now complete and extensive testing and validation of diagnostics has been performed. Initial condition studies (Task 2) is also complete. Detailed experiments with air/helium with Atwood numbers up to 0.1 have been completed, and Atwood numbers of 0.25. Within the last three (3) months we have been able to successfully run the facility at Atwood numbers of 0.5. The progress matches the project plan, as does the budget. We have finished the initial condition studies using the water channel, and this work has been accepted for publication on the Journal of Fluid Mechanics (the top fluid mechanics journal). Mr. Nick Mueschke and Mr. Wayne Kraft are continuing with their studies to obtain PhDs in the same field, and will also continue their collaboration visits to LANL and LLNL. Over its three (3) year life the project has supported two(2) Ph.D.'s and three (3) MS's, and produced nine (9) international journal publications, twenty four (24) conference publications, and numerous other reports. The highlight of the project has been our close collaboration with LLNL (Dr. Oleg Schilling) and LANL (Drs. Dimonte, Ristorcelli, Gore, and Harlow)

  7. Cooling of nuclear power stations with high temperature reactors and helium turbine cycles

    International Nuclear Information System (INIS)

    Foerster, S.; Hewing, G.

    1977-01-01

    On nuclear power stations with high temperature reactors and helium turbine cycles (HTR-single circuits) the residual heat from the energy conversion process in the primary and intermediate coolers is removed from cycled gas, helium. Water, which is circulated for safety reasons through a closed circuit, is used for cooling. The primary and intermediate coolers as well as other cooling equipment of the power plant are installed within the reactor building. The heat from the helium turbine cycle is removed to the environment most effectively by natural draught cooling towers. In this way a net plant efficiency of about 40% is attainable. The low quantities of residual heat thereby produced and the high (in comparison with power stations with steam turbine cycles) cooling agent pressure and cooling water reheat pressure in the circulating coolers enable an economically favourable design of the overall 'cold end' to be expected. In the so-called unit range it is possible to make do with one or two cooling towers. Known techniques and existing operating experience can be used for these dry cooling towers. After-heat removal reactor shutdown is effected by a separate, redundant cooling system with forced air dry coolers. The heat from the cooling process at such locations in the power station is removed to the environment either by a forced air dry cooling installation or by a wet cooling system. (orig.) [de

  8. High Response Dew Point Measurement System for a Supersonic Wind Tunnel

    Science.gov (United States)

    Blumenthal, Philip Z.

    1996-01-01

    A new high response on-line measurement system has been developed to continuously display and record the air stream dew point in the NASA Lewis 10 x 10 supersonic wind tunnel. Previous instruments suffered from such problems as very slow response, erratic readings, and high susceptibility to contamination. The system operates over the entire pressure level range of the 10 x 10 SWT, from less than 2 psia to 45 psia, without the need for a vacuum pump to provide sample flow. The system speeds up tunnel testing, provides large savings in tunnel power costs and provides the dew point input for the data-reduction subroutines which calculate test section conditions.

  9. The Generation, Radiation and Prediction of Supersonic Jet Noise. Volume 1

    Science.gov (United States)

    1978-10-01

    supersonic Jet noise, the U. S. Air Force and the U. S. Department of Transportation Jointly Initiated a series of research contracts directed toward this need...ofMeasurdUAiDigPNOLE Specta an PreictiosDBaedLo 9ih0eqec LiEDICTIEquation Solutos eimTmeaueJt TP 80.Mthd1 *7 60 .........em131 1 (a 6300 I dB 100 90j 80...C3 - -21 Vjm 2Ao/a, a 2 de C4 - 21 Z- Ao, C5 - - 2IH 2VIMM6, and C6 - iVAob/. The form of j, for r >r m may be found by substituting Equation (3-107

  10. Supersonic cruise vehicle research/business jet

    Science.gov (United States)

    Kelly, R. J.

    1980-01-01

    A comparison study of a GE-21 variable propulsion system with a Multimode Integrated Propulsion System (MMIPS) was conducted while installed in small M = 2.7 supersonic cruise vehicles with military and business jet possibilities. The 1984 state of the art vehicles were sized to the same transatlantic range, takeoff distance, and sideline noise. The results indicate the MMIPS would result in a heavier vehicle with better subsonic cruise performance. The MMIPS arrangement with one fan engine and two satellite turbojet engines would not be appropriate for a small supersonic business jet because of design integration penalties and lack of redundancy.

  11. Backscattered Helium Spectroscopy in the Helium Ion Microscope: Principles, Resolution and Applications

    NARCIS (Netherlands)

    van Gastel, Raoul; Hlawacek, G.; Dutta, S.; Poelsema, Bene

    2015-01-01

    We demonstrate the possibilities and limitations for microstructure characterization using backscattered particles from a sharply focused helium ion beam. The interaction of helium ions with matter enables the imaging, spectroscopic characterization, as well as the nanometer scale modification of

  12. HeREF-2003: Helium Refrigeration Techniques

    CERN Multimedia

    2003-01-01

    CERN Technical Training 2003: Learning for the LHC ! Theory, Technology, Maintenance and Control of Helium Refrigerators HeREF-2003 is a course in the framework of the 2002 Technical Training Programme, that will provide a complete introduction to Helium refrigeration, with a practical approach to theory, technology, maintenance and control of Helium refrigeration installations. Theoretical aspects and equations will be limited to a minimum. HeREF-2003 targets an audience of technicians and operators of Helium refrigeration plants at CERN, as well as physicists and engineers needing an overview of current Helium refrigeration techniques. HeREF-2003 will address, among other, issues related to component technology, installation maintenance, process control and Helium purity. A commented visit to a couple of CERN Helium refrigeration or liquefaction plants will also take place. Duration: 7 half days (4 mornings and 3 afternoons), 6-10 October, 2003 Cost per participant: 500.- CHF Language: Bilingual English...

  13. HeREF-2003 : Helium Refrigeration Techniques

    CERN Multimedia

    2003-01-01

    CERN Technical Training 2003: Learning for the LHC ! Theory, Technology, Maintenance and Control of Helium Refrigerators HeREF-2003 is a course in the framework of the 2002 Technical Training Programme, that will provide a complete introduction to Helium refrigeration, with a practical approach to theory, technology, maintenance and control of Helium refrigeration installations. Theoretical aspects and equations will be limited to a minimum. HeREF-2003 targets an audience of technicians and operators of Helium refrigeration plants at CERN, as well as physicists and engineers needing an overview of current Helium refrigeration techniques. HeREF-2003 will address, among other, issues related to component technology, installation maintenance, process control and Helium purity. A commented visit to a couple of CERN Helium refrigeration or liquefaction plants will also take place. • Duration: 7 half days (4 mornings and 3 afternoons), 6-10 October, 2003 • Cost per participant: 500.- CHF ...

  14. Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars

    DEFF Research Database (Denmark)

    Bedding, Timothy R.; Mosser, Benoit; Huber, Daniel

    2011-01-01

    Red giants are evolved stars that have exhausted the supply of hydrogen in their cores and instead burn hydrogen in a surrounding shell. Once a red giant is sufficiently evolved, the helium in the core also undergoes fusion. Outstanding issues in our understanding of red giants include...... uncertainties in the amount of mass lost at the surface before helium ignition and the amount of internal mixing from rotation and other processes. Progress is hampered by our inability to distinguish between red giants burning helium in the core and those still only burning hydrogen in a shell....... Asteroseismology offers a way forward, being a powerful tool for probing the internal structures of stars using their natural oscillation frequencies. Here we report observations of gravity-mode period spacings in red giants that permit a distinction between evolutionary stages to be made. We use high...

  15. Helium localization around the microscopic impurities embedded to liquid helium

    International Nuclear Information System (INIS)

    Gordon, E.B.; Shestakov, A.F.

    2000-01-01

    The structure and properties of the environment round the impurity atoms (Im) embedded in liquid helium are considered. It is shown that there are two qualitatively different types of structure of the He atom layer next to Im - attraction and repulsion structures. For the center attraction structure (strong Im-He interaction) the Im-He separation is longer than the equilibrium one for the pair Im-He potential, and the density and localization of He atoms are higher than in the bulk. It this case the He atom content in the layer, n, is almost independent of applied pressure. In the repulsion structure realized for alkaline metal atoms the Im-He separation is shorter than the equilibrium one and the density is lower than in the helium bulk. At T approx 1 K occupied are several states with different n and their energies differ only by approx 0.1 K, an increase in pressure resulting in a considerable reduction of n. The optical and EPR spectra of the atoms embedded to liquid and solid helium are interpreted on the basis of the analysis carried out. A simple model is proposed to evaluate the helium surroundings characteristics from the experimental pressure dependences of atomic line shifts in the absorption and emission spectra. The attraction structures in 3 He - 4 He mixtures are suggested to be highly enriched by 4 He atoms which the repulsion structures - by 3 He atoms. a possibility for existence of phase transitions in helium shells surrounding impurity atoms is considered

  16. The Edge supersonic transport

    Science.gov (United States)

    Agosta, Roxana; Bilbija, Dushan; Deutsch, Marc; Gallant, David; Rose, Don; Shreve, Gene; Smario, David; Suffredini, Brian

    1992-01-01

    As intercontinental business and tourism volumes continue their rapid expansion, the need to reduce travel times becomes increasingly acute. The Edge Supersonic Transport Aircraft is designed to meet this demand by the year 2015. With a maximum range of 5750 nm, a payload of 294 passengers and a cruising speed of M = 2.4, The Edge will cut current international flight durations in half, while maintaining competitive first class, business class, and economy class comfort levels. Moreover, this transport will render a minimal impact upon the environment, and will meet all Federal Aviation Administration Part 36, Stage III noise requirements. The cornerstone of The Edge's superior flight performance is its aerodynamically efficient, dual-configuration design incorporating variable-geometry wingtips. This arrangement combines the benefits of a high aspect ratio wing at takeoff and low cruising speeds with the high performance of an arrow-wing in supersonic cruise. And while the structural weight concerns relating to swinging wingtips are substantial, The Edge looks to ever-advancing material technologies to further increase its viability. Heeding well the lessons of the past, The Edge design holds economic feasibility as its primary focus. Therefore, in addition to its inherently superior aerodynamic performance, The Edge uses a lightweight, largely windowless configuration, relying on a synthetic vision system for outside viewing by both pilot and passengers. Additionally, a fly-by-light flight control system is incorporated to address aircraft supersonic cruise instability. The Edge will be produced at an estimated volume of 400 aircraft and will be offered to airlines in 2015 at $167 million per transport (1992 dollars).

  17. Test of a cryogenic helium pump

    International Nuclear Information System (INIS)

    Lue, J.W.; Miller, J.R.; Walstrom, P.L.; Herz, W.

    1981-01-01

    The design of a cryogenic helium pump for circulating liquid helium in a magnet and the design of a test loop for measuring the pump performance in terms of mass flow vs pump head at various pump speeds are described. A commercial cryogenic helium pump was tested successfully. Despite flaws in the demountable connections, the piston pump itself has performed satisfactorily. A helium pump of this type is suitable for the use of flowing supercritical helium through Internally Cooled Superconductor (ICS) magnets. It has pumped supercritical helium up to 7.5 atm with a pump head up to 2.8 atm. The maximum mass flow rate obtained was about 16 g/s. Performance of the pump was degraded at lower pumping speeds

  18. Chromatographic method of measurement of helium concentration in underground waters for dating in hydrological questions

    International Nuclear Information System (INIS)

    Najman, J.

    2008-04-01

    Research methods which use natural environmental indicators are widely applied in hydrology. Different concentrations of indicators and their isotopic components in ground waters allow to determine the genesis of waters and are valuable source of information about the water flow dynamics. One of the significant indicator is helium. The concentration of 4 He (helium) in ground water is a fine indicator in water dating in a range from a hundreds to millions of years (Aeschbach-Hertig i in., 1999; Andrews i in., 1989; Castro i in., 2000; Zuber i in., 2007). 4 He is also used for dating young waters of age about 10 years (Solomon i in., 1996). Thesis consist the description of elaborated in IFJ PAN in Krakow chromatographic measurement method of helium concentration in ground waters in aim of dating. Chapter 1 contain short introduction about ground water dating and chapter 2 description of helium property and chosen applications of helium for example in technology and earthquake predictions. Helium sources in ground waters are described in chapter 3. Helium concentration in water after infiltration (originated from atmosphere) to the ground water system depends mainly on the helium concentration coming from the equilibration with the atmosphere increased by additional concentration from '' excess air ''. With the increasing resistance time of ground water during the flow, radiogenic, non-atmospheric component of helium dissolves also in water. In chapter 4 two measurement methods of helium concentration in ground waters were introduced: mass spectrometric and gas chromatographic method. Detailed description of elaborated chromatographic measurement method of helium concentration in ground water contain chapter 5. To verify developed method the concentration of helium in ground waters from the regions of Krakow and Busko Zdroj were measured. For this waters the concentrations of helium are known from the earlier mass spectrometric measurements. The results of

  19. Premixer assembly for mixing air and fuel for combustion

    Science.gov (United States)

    York, William David; Johnson, Thomas Edward; Keener, Christopher Paul

    2016-12-13

    A premixer assembly for mixing air and fuel for combustion includes a plurality of tubes disposed at a head end of a combustor assembly. Also included is a tube of the plurality of tubes, the tube including an inlet end and an outlet end. Further included is at least one non-circular portion of the tube extending along a length of the tube, the at least one non-circular portion having a non-circular cross-section, and the tube having a substantially constant cross-sectional area along its length

  20. A multivariate quadrature based moment method for LES based modeling of supersonic combustion

    Science.gov (United States)

    Donde, Pratik; Koo, Heeseok; Raman, Venkat

    2012-07-01

    The transported probability density function (PDF) approach is a powerful technique for large eddy simulation (LES) based modeling of scramjet combustors. In this approach, a high-dimensional transport equation for the joint composition-enthalpy PDF needs to be solved. Quadrature based approaches provide deterministic Eulerian methods for solving the joint-PDF transport equation. In this work, it is first demonstrated that the numerical errors associated with LES require special care in the development of PDF solution algorithms. The direct quadrature method of moments (DQMOM) is one quadrature-based approach developed for supersonic combustion modeling. This approach is shown to generate inconsistent evolution of the scalar moments. Further, gradient-based source terms that appear in the DQMOM transport equations are severely underpredicted in LES leading to artificial mixing of fuel and oxidizer. To overcome these numerical issues, a semi-discrete quadrature method of moments (SeQMOM) is formulated. The performance of the new technique is compared with the DQMOM approach in canonical flow configurations as well as a three-dimensional supersonic cavity stabilized flame configuration. The SeQMOM approach is shown to predict subfilter statistics accurately compared to the DQMOM approach.

  1. Post-giant evolution of helium stars

    International Nuclear Information System (INIS)

    Schoenberner, D.

    1977-01-01

    Extremely hydrogen deficient stars (helium stars and R Coronae Borealis variables) are considered to be remnants of double shell source stars (of the asymptotic giant branch). The evolution of stars with a condensed C/O-core and a helium envelope is followed numerically from the red giant stage to the white dwarf domain, crossing the regions of R CrB- and helium stars (so far analyzed). They have typically masses M/M(sun) = 0.7 and luminosities log L/L(sun) = 4.1. The time for crossing the helium star domain is some 10 3 years. The corresponding times in the R CrB-region amounts up to several 10 4 years. The lower limit of the death rate of helium stars is estimated to be 4 x 10 -14 pc -3 yr -1 . This value is only a factor of ten lower than the birth rate of all non-DA white dwarfs. It is therefore possible that the helium stars are the precursors of helium rich white dwarfs. As a consequence, a significant fraction of all stars which end their lives as white dwarfs should pass through the helium star phase. (orig.) [de

  2. Investigation of impurity-helium solid phase decomposition

    International Nuclear Information System (INIS)

    Boltnev, R.E.; Gordon, E.B.; Krushinskaya, I.N.; Martynenko, M.V.; Pel'menev, A.A.; Popov, E.A.; Khmelenko, V.V.; Shestakov, A.F.

    1997-01-01

    The element composition of the impurity-helium solid phase (IHSP), grown by injecting helium gas jet, involving Ne, Ar, Kr, and Xe atoms and N 2 molecules, into superfluid helium, has been studied. The measured stoichiometric ratios, S = N H e / N I m, are well over the values expected from the model of frozen together monolayer helium clusters. The theoretical possibility for the freezing of two layers helium clusters is justified in the context of the model of IHSP helium subsystem, filled the space between rigid impurity centers. The process of decomposition of impurity-helium (IH)-samples taken out of liquid helium in the temperature range 1,5 - 12 K and the pressure range 10-500 Torr has been studied. It is found that there are two stages of samples decomposition: a slow stage characterized by sample self cooling and a fast one accompanied by heat release. These results suggest, that the IHSP consists of two types of helium - weakly bound and strongly bound helium - that can be assigned to the second and the first coordination helium spheres, respectively, formed around heavy impurity particles. A tendency for enhancement of IHSP thermo stability with increasing the impurity mass is observed. Increase of helium vapor pressure above the sample causes the improvement of IH sample stability. Upon destruction of IH samples, containing nitrogen atoms, a thermoluminescence induced by atom recombination has been detected in the temperature region 3-4,5 K. This suggests that numerous chemical reactions may be realized in solidified helium

  3. Mixing core material into the envelopes of red grants

    International Nuclear Information System (INIS)

    Deupree, R.G.

    1986-01-01

    A discussion is presented of calculations of four core helium flashes in red giant stars. The starting point for these calculations is a point source explosion on the polar axis of a two-dimensional finite difference grid. The amount of residue of the core helium flash mixed into and above the hydrogen shell is calculated at four temperatures for the elements carbon, oxygen, neon, magnesium, silicon, and sulfur. 7 refs., 1 tab

  4. Influence of air mass source sector on variations in CO2 mixing ratio at a boreal site in northern Finland

    International Nuclear Information System (INIS)

    Aalto, T.; Hatakka, J.; Viisanen, Y.

    2003-01-01

    CO 2 mixing ratio in air masses coming from different source sectors was studied at Pallas measurement station in Lapland. Source sectors were defined using back trajectories and wind direction measurements. Air masses from the North and West sectors showed an annual variation of 17 ppm, possibly affected by a long range transported marine air. A larger variation of 20 ppm was observed in air masses from the more continental South and East sectors. During late autumn mixing ratios in air masses from the South sector were high in comparison with the other sectors. Different methods for a source sector definition were considered for the site, located in a contoured terrain. 52%-73% of wind direction-based source sector definitions agreed with trajectory- based definitions. However, the number of cases with reliable sector definitions may remain low when considering all observations. Different definition methods can cause differences of the order of 1 ppm in sectorially selected monthly mean CO 2 mixing ratios. (orig.)

  5. On the shock cell structure and noise of supersonic jets

    Science.gov (United States)

    Tam, C. K. W.; Jackson, J. A.

    1983-01-01

    A linear solution modeling the shock cell structure of an axisymmetric supersonic jet operated at off-design conditions is developed by the method of multiple-scales. The model solution takes into account the gradual spatial change of the mean flow in the downstream direction. Turbulence in the mixing layer of the jet has the tendency of smoothing out the sharp velocity and density gradients induced by the shocks. To simulate this effect, eddy viscosity terms are incorporated in the model. It is known that the interaction between the quasi-periodic shock cells and the downstream propagating large turbulence structures in the mixing layer of the jet is responsible for the generation of broadband shock associated noise. Experimentally, the dominant part of this noise has been found to originate from the part of the jet near the end of the potential core. Calculated shock cell spacing at the end of the jet core according to the present model is used to estimate the peak frequencies of the shock associated noise for a range of observation angles. Very favorable agreement with experimental measurements is found.

  6. Study, by simple or double extraction of pure or doped supersonic jets, of the effects intervening in the formation of a molecular beam of high intensity and with energy comprised between 0 and 25 eV

    International Nuclear Information System (INIS)

    Campargue, Roger

    1970-01-01

    This research thesis addresses the use of supersonic molecular jets. The author first recalls conventional laws related to gas flows in ducts, presents some already known properties of free jets and of the associated shock structures, and gives the rate characteristic curves for the both sonic ducts which are the most commonly used. Then, he presents the results obtained by simple extraction by using only the first two chambers of the generator. In the third part, he recalls the theory of conventional and supersonic molecular jets, presents experimental conditions to obtain these jets, discusses the assumptions associated with theoretical results, and describes the developed generators which operate by double extraction with relatively high pressures. In the next parts, the author reports the production and study of high intensity molecular jets, and the production of intermediate energy molecular jets obtained by aerodynamically accelerating heavy molecules by means of a light gas (hydrogen or helium)

  7. Investigation of supersonic jets shock-wave structure

    Science.gov (United States)

    Zapryagaev, V. I.; Gubanov, D. A.; Kavun, I. N.; Kiselev, N. P.; Kundasev, S. G.; Pivovarov, A. A.

    2017-10-01

    The paper presents an experimental studies overview of the free supersonic jet flow structure Ma = 1.0, Npr = 5, exhausting from a convergent profiled nozzle into a ambient space. Also was observed the jets in the presence of artificial streamwise vortices created by chevrons and microjets located on the nozzle exit. The technique of experimental investigation, schlieren-photographs and schemes of supersonic jets, and Pitot pressure distributions, are presented. A significant effect of vortex generators on the shock-wave structure of the flow is shown.

  8. The multipurpose helium refrigerators/liquefiers for the new CERN experimental area

    CERN Document Server

    Eber, N; Kurtcuoglu, K; Senn, A

    1979-01-01

    The helium plants described have a nominal capacity of 100 liters/hour or 400 Watts at 4.4K and can also be operated in mixed duty over the whole performance range. The plants feature oilfree labyrinth-piston compressors and turboexpanders with self-supporting gas bearings plus magnetic auxiliary bearings. The greatest peculiarity of the new plants is the first time combined use of cold and warm ejectors. (1 refs).

  9. Determination of helium in beryl minerals

    International Nuclear Information System (INIS)

    Souza Barcellos, E. de.

    1985-08-01

    In order to obtain the diffusion coefficients of helium in beryl and phenacite samples at various temperatures, helium leak rates were measured in these minerals at these temperatures. Mass spectrometry (MS) was used to obtain helium leak rates and the gas flow was plotted against time. The gas quantity determined by MS was first obtained at various temperatures until no helium leak rate was detected. After that, these samples were irradiated with fast neutrons to produce helium which was measured again. This procedure was used to estimate the experimental error. The quantity of helium produced by interaction of gamma radiation with beryl minerals was theoretically calculated from the amount of thorium-232 at the neighbourhood of the samples. The quantity of helium produced in the minerals due to uranium and thorium decay was calculated using the amount of these heavy elements, and the results were compared with the amounts determined by MS. The amount of potassium-40 was determined in order to derive the quantity of argonium-40, since some workers found argonium in excess in these minerals. The quantity of helium in the beryl samples (s) was determined in the center and in the surface of the samples in order to obtain informations about the effectiveness of the Be(α, η) He reaction. Beryl and phenacite minerals were choosen in this research since they are opposite each other with respect to the helium contents. Both have beryllium in their compositon but beryl hold a large amount of helium while phenacite, in spite of having about three times more beryllium than beryl, do not hold the gas. (author) [pt

  10. Helium localisation in tritides

    International Nuclear Information System (INIS)

    Flament, J.L.; Lozes, G.

    1982-06-01

    Study of titanium and LaNi 5 type alloys tritides lattice parameters evolution revealed that helium created by tritium decay remains in interstitial sites up to a limit material dependant concentration. Beyond this one exceeding helium precipites in voids [fr

  11. Computational Investigation of Swirling Supersonic Jets Generated Through a Nozzle-Twisted Lance

    Science.gov (United States)

    Li, Mingming; Li, Qiang; Zou, Zongshu; An, Xizhong

    2017-02-01

    The dynamic characteristics of supersonic swirling jets generated through a nozzle-twisted lance are numerically studied. The essential features of the swirling jets are identified by defining a deviation angle. The effects of nozzle twist angle (NTA) on swirling flow intensity, coalescence characteristics, and dynamic parameter distributions of the jets are discussed. The rotational flow characteristics are revealed. The results show that the jets from the nozzle-twisted lance are imparted to a circumferential rotating movement around the lance axis, and such swirling flow is enhanced by increasing NTA. The enhanced swirling flow causes weaker coalescence of the jets, faster attenuations of the axial velocity, and higher heat transfer rate between the jets and surroundings. The supersonic core length, however, is found to be less sensitive to the swirling flow intensity. The radial spreading of the jets, changing non-monotonically with NTA, arrives at its maximum at 5 deg of NTA. Furthermore, the swirling flow induces a considerable tangential velocity component, and as a result, a holistic and effective horizontal swirling flow field develops. The y-vorticity distribution range and the corresponding magnitude turn larger with increasing NTA, which promote the vortex motion of the local fluid element and thus intensify the local mixing.

  12. On the empirical determination of positron trapping coefficient at nano-scale helium bubbles in steels irradiated in spallation target

    Science.gov (United States)

    Krsjak, Vladimir; Kuriplach, Jan; Vieh, Christiane; Peng, Lei; Dai, Yong

    2018-06-01

    In the present work, the specific positron trapping rate of small helium bubbles was empirically derived from positron annihilation lifetime spectroscopy (PALS) and transmission electron microscopy (TEM) studies of Fe9Cr martensitic steels. Both techniques are well known to be sensitive to nanometer-sized helium-filled cavities induced during irradiation in a mixed proton-neutron spectrum of spallation target. Complementary TEM and PALS studies show that positrons are being trapped to these defects at a rate of 1.2 ± 0.8 × 10-14 m3s-1. This suggests that helium bubbles in ferritic/martensitic steels are attractive traps for positrons comparable to mono-vacancies and quantitative analysis of the bubbles by PALS technique is plausible.

  13. Distribution and Room Air Mixing Risks to Retrofitted Homes

    Energy Technology Data Exchange (ETDEWEB)

    Burdick, A. [IBACOS, Inc., Pittsburgh, PA (United States)

    2014-12-01

    An energy efficiency upgrade reduces a home’s heating and cooling load. If the load reduction is great enough and the heating, ventilation, and air conditioning system warrants replacement, that system is often upgraded with a more efficient, lower capacity system that meets the load of the upgraded house. For a single-story house with floor supply air diffusers, the ducts often are removed and upgraded. For houses with ducts that are embedded in walls, the cost of demolition precludes the replacement of ducts. The challenge with the use of existing ducts is that the reduced airflow creates a decreased throw at the supply registers, and the supply air and room air do not mix well, leading to potential thermal comfort complaints. This project investigates this retrofit scenario. The issues and solutions discussed here are relevant to all climate zones, with emphasis on climates that require cooling. In this project, IBACOS performed load calculations for a two-story 1960s house and characterized duct sizes and layouts based on industry “rules of thumb” (Herk et al. 2014). The team performed duct-sizing calculations for unaltered ducts and post-retrofit airflows and examined airflow velocities and pressure changes with respect to various factors. The team then used a mocked-up duct and register setup to measure the characteristics of isothermal air—to reduce the effects of buoyancy from the observations—passing through the duct and leaving the register.

  14. Fundamental Aeronautics Program: Overview of Project Work in Supersonic Cruise Efficiency

    Science.gov (United States)

    Castner, Raymond

    2011-01-01

    The Supersonics Project, part of NASA?s Fundamental Aeronautics Program, contains a number of technical challenge areas which include sonic boom community response, airport noise, high altitude emissions, cruise efficiency, light weight durable engines/airframes, and integrated multi-discipline system design. This presentation provides an overview of the current (2011) activities in the supersonic cruise efficiency technical challenge, and is focused specifically on propulsion technologies. The intent is to develop and validate high-performance supersonic inlet and nozzle technologies. Additional work is planned for design and analysis tools for highly-integrated low-noise, low-boom applications. If successful, the payoffs include improved technologies and tools for optimized propulsion systems, propulsion technologies for a minimized sonic boom signature, and a balanced approach to meeting efficiency and community noise goals. In this propulsion area, the work is divided into advanced supersonic inlet concepts, advanced supersonic nozzle concepts, low fidelity computational tool development, high fidelity computational tools, and improved sensors and measurement capability. The current work in each area is summarized.

  15. Use of stable helium tracer for the early detection of impaired pulmonary function

    International Nuclear Information System (INIS)

    Susskind, H.; Richards, P.; Atkins, H.L.

    1975-01-01

    Methodology and instrumentation are being developed to measure distal airway closure, a very sensitive diagnostic technique for the early detection of emphysema and other obstructive lung diseases and premature closure indicating abnormalities. The procedure is rapid and involves the inhalation of only a 1 ml bolus of readily available stable 4 He, continuous measurement of its concentration in the exhaled air with a helium leak detector type of mass spectrometer, and the subsequent analysis of the single-breath washout curve. Helium appears to be an ideal tracer, well-suited for testing in clinics and hospitals, as well as for epidemiological studies relating the effects of atmospheric pollutants and lung impairment and for screening of large populations for pulmonary dysfunction

  16. Linear theory period ratios for surface helium enhanced double-mode Cepheids

    International Nuclear Information System (INIS)

    Cox, A.N.; Hodson, S.W.; King, D.S.

    1979-01-01

    Linear nonadiabatic theory period ratios for models of double-mode Cepheids with their two periods between 1 and 7 days have been computed, assuming differing amounts and depths of surface helium enhancement. Evolution theory masses and luminosities are found to be consistent with the observed periods. All models give Pi 1 /Pi 0 approx. =0.70 as observed for the 11 known variables, contrary to previous theoretical conclusions. The composition structure that best fits the period ratios has the helium mass fraction in the outer 10 -3 of the stellar mass (T< or =250,000 K) as 0.65, similar to a previous model for the triple-mode pulsator AC And. This enrichment can be established by a Cepheid wind and downward inverted μ gradient instability mixing in the lifetime of these low-mass classical Cepheids

  17. Bovine insulin-phosphatidylcholine mixed Langmuir monolayers: behavior at the air-water interface.

    Science.gov (United States)

    Pérez-López, S; Blanco-Vila, N M; Vila-Romeu, N

    2011-08-04

    The behavior of the binary mixed Langmuir monolayers of bovine insulin (INS) and phosphatidylcholine (PC) spread at the air-water interface was investigated under various subphase conditions. Pure and mixed monolayers were spread on water, on NaOH and phosphate-buffered solutions of pH 7.4, and on Zn(2+)-containing solutions. Miscibility and interactions between the components were studied on the basis of the analysis of the surface pressure (π)-mean molecular area (A) isotherms, surface compression modulus (C(s)(-1))-π curves, and plots of A versus mole fraction of INS (X(INS)). Our results indicate that intermolecular interactions between INS and PC depend on both the monolayer state and the structural characteristics of INS at the interface, which are strongly influenced by the subphase pH and salt content. Brewster angle microscopy (BAM) was applied to investigate the peptide aggregation pattern at the air-water interface in the presence of the studied lipid under any experimental condition investigated. The influence of the lipid on the INS behavior at the interface strongly depends on the subphase conditions.

  18. System design overview of JAXA small supersonic experimental airplane (NEXST-1)

    OpenAIRE

    Takami, Hikaru; 高見 光

    2007-01-01

    The system of JAXA small supersonic experimental airplane (NEXST-1: National EXperimental Supersonic Transport-1) has been briefly explained. Some design problems that the designers have encountered have also been briefly explained.

  19. Conceptual study on air ingress mitigation for VHTRs

    International Nuclear Information System (INIS)

    Oh, Chang H.; Kim, Eung Soo

    2012-01-01

    Highlights: ► Important factors that affect air-ingress process in the VHTRs were investigated and identified. ► Two air ingress mitigation concepts were developed using a root-cause analysis. ► These concepts were validated using computational fluid dynamic method. ► In-vessel helium injection and ex-vessel enclosure concept will mitigate air-ingress effectively. - Abstract: An air ingress accident following a postulated pipe break is considered a critical event for a very high temperature gas-cooled reactor (VHTR) safety. Following helium depressurization, it is anticipated that air will enter the core through the break leading to oxidation of the in-core graphite structures. Under extreme circumstances and without mitigation features this accident may lead to exothermic chemical reactions between graphite and oxygen depending on the accident scenario and the design. Under extreme circumstances (beyond design basis), a loss of structural integrity may occur in some core structures and lead to elevated release of radiological inventory for the fuel matrix. This paper discusses various air ingress mitigation concepts applicable for the VHTRs that would prevent core damage even in the most extreme scenarios. The study begins with identifying important factors (or phenomena) associated with the air ingress accident using root-cause analysis. By preventing main causes of the important events identified in the root-cause diagram, the basic air ingress mitigation ideas were conceived and developed. Among them, two concepts were finally evaluated as effective candidates. One concept is to inject helium directly into the lower plenum (direct in-vessel injection); the other concept is to enclose the reactor with a non-pressure boundary with an opening at the bottom (ex-vessel enclosure). Computational fluid dynamics (CFD) methods were used to evaluate these concepts for proof of these principles. Results indicate that both concepts can effectively suppress air

  20. Conceptual study on air ingress mitigation for VHTRs

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Chang H., E-mail: Chang.Oh@inl.gov [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3870 (United States); Kim, Eung Soo [Department of Nuclear Engineering, Seoul National University, 559 Gwanak-ro, Gwanak-gu, Seoul (Korea, Republic of)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Important factors that affect air-ingress process in the VHTRs were investigated and identified. Black-Right-Pointing-Pointer Two air ingress mitigation concepts were developed using a root-cause analysis. Black-Right-Pointing-Pointer These concepts were validated using computational fluid dynamic method. Black-Right-Pointing-Pointer In-vessel helium injection and ex-vessel enclosure concept will mitigate air-ingress effectively. - Abstract: An air ingress accident following a postulated pipe break is considered a critical event for a very high temperature gas-cooled reactor (VHTR) safety. Following helium depressurization, it is anticipated that air will enter the core through the break leading to oxidation of the in-core graphite structures. Under extreme circumstances and without mitigation features this accident may lead to exothermic chemical reactions between graphite and oxygen depending on the accident scenario and the design. Under extreme circumstances (beyond design basis), a loss of structural integrity may occur in some core structures and lead to elevated release of radiological inventory for the fuel matrix. This paper discusses various air ingress mitigation concepts applicable for the VHTRs that would prevent core damage even in the most extreme scenarios. The study begins with identifying important factors (or phenomena) associated with the air ingress accident using root-cause analysis. By preventing main causes of the important events identified in the root-cause diagram, the basic air ingress mitigation ideas were conceived and developed. Among them, two concepts were finally evaluated as effective candidates. One concept is to inject helium directly into the lower plenum (direct in-vessel injection); the other concept is to enclose the reactor with a non-pressure boundary with an opening at the bottom (ex-vessel enclosure). Computational fluid dynamics (CFD) methods were used to evaluate these concepts

  1. Resistivity studies of interstitial helium mobility in niobium

    International Nuclear Information System (INIS)

    Chen, C.G.; Birnbaum, H.K.; Johnson, A.B. Jr.

    1979-01-01

    The mobility of interstitial helium in Nb and Nb-O alloys was studied in the temperature range of 10-383 K using resistivity measurements. The helium was introduced by radioactive decay of solute tritium (approximately 1 at%). At T < 100 K the resistivity increased due to conversion of tritium trapped at oxygen interstititals to helium. The formation of helium caused a very significant resistance increase at room temperature and above. The results suggest that helium is mobile at temperatures above 295 K and that the precipitation of large helium bubbles occurs along grain boundaries. The mobile helium species may either be single interstitials or small helium clusters. The activation enthalpy for the diffusion of the mobile helium species was estimated to be about 55 kJ/mol (0.66 eV). (Auth.)

  2. Laser induced fluorescence measurements of the mixing of fuel oil with air

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, A; Bombach, R; Hubschmid, W; Kaeppeli, B [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    We report on measurements of the mixing of fuel oil with air at atmospheric pressure in an industrial premixed gas turbine burner. The concentration of the vaporized fuel oil was measured with laser induced fluorescence. We reason that the fuel oil concentration can be considered with good accuracy as proportional to the fluorescence intensity. (author) 6 fig., 3 refs.

  3. Helium-induced hardening effect in polycrystalline tungsten

    Science.gov (United States)

    Kong, Fanhang; Qu, Miao; Yan, Sha; Zhang, Ailin; Peng, Shixiang; Xue, Jianming; Wang, Yugang

    2017-09-01

    In this paper, helium induced hardening effect of tungsten was investigated. 50 keV He2+ ions at fluences vary from 5 × 1015 cm-2 to 5 × 1017 cm-2 were implanted into polycrystalline tungsten at RT to create helium bubble-rich layers near the surface. The microstructure and mechanical properties of the irradiated specimens were studied by TEM and nano-indentor. Helium bubble rich layers are formed in near surface region, and the layers become thicker with the rise of fluences. Helium bubbles in the area of helium concentration peak are found to grow up, while the bubble density is almost unchanged. Obvious hardening effect is induced by helium implantation in tungsten. Micro hardness increases rapidly with the fluence firstly, and more slowly when the fluence is above 5 × 1016 cm-2. The hardening effect of tungsten can be attributed to helium bubbles, which is found to be in agreement with the Bacon-Orowan stress formula. The growing diameter is the major factor rather than helium bubbles density (voids distance) in the process of helium implantation at fluences below 5 × 1017 cm-2.

  4. Low helium flux from the mantle inferred from simulations of oceanic helium isotope data

    Science.gov (United States)

    Bianchi, Daniele; Sarmiento, Jorge L.; Gnanadesikan, Anand; Key, Robert M.; Schlosser, Peter; Newton, Robert

    2010-09-01

    The high 3He/ 4He isotopic ratio of oceanic helium relative to the atmosphere has long been recognized as the signature of mantle 3He outgassing from the Earth's interior. The outgassing flux of helium is frequently used to normalize estimates of chemical fluxes of elements from the solid Earth, and provides a strong constraint to models of mantle degassing. Here we use a suite of ocean general circulation models and helium isotope data obtained by the World Ocean Circulation Experiment to constrain the flux of helium from the mantle to the oceans. Our results suggest that the currently accepted flux is overestimated by a factor of 2. We show that a flux of 527 ± 102 mol year - 1 is required for ocean general circulation models that produce distributions of ocean ventilation tracers such as radiocarbon and chlorofluorocarbons that match observations. This new estimate calls for a reevaluation of the degassing fluxes of elements that are currently tied to the helium fluxes, including noble gases and carbon dioxide.

  5. Analysis of the wind data and estimation of the resultant air concentration rates

    International Nuclear Information System (INIS)

    Hu, Shze Jer; Katagiri, Hiroshi; Kobayashi, Hideo

    1988-09-01

    Statistical analyses and comparisons of the meteorological wind data obtained by the propeller and supersonic anemometers for the year of 1987 in the Japan Atomic Energy Research Institute, Tokai, were performed. For wind speeds less than 1 m/s, the propeller readings are generally 0.5 m/s less than those of the supersonic readings. The resultant average air concentration and ground level γ exposure rates due to the radioactive releases for the normal operation of a nuclear plant are over-estimated when calculated using the propeller wind data. As supersonic anemometer can give accurate wind speed to as low as 0.01 m/s, it should be used to measure the low wind speed. The difference in the average air concentrations and γ exposure rates calculated using the two different sets of wind data, is due to the influence of low wind speeds at calm. If the number at calm is large, actual low wind speeds and wind directions should be used in the statistical analysis of atmospheric dispersion to give a more accurate and realistic estimation of the air concentrations and γ exposure rates due to the normal operation of a nuclear plant. (author). 4 refs, 3 figs, 9 tabs

  6. Observation of visible emission from the molecular helium ion in the afterglow of a dense helium Z-pinch plasma

    International Nuclear Information System (INIS)

    Tucker, J.E.; Brake, M.L.; Gilgenbach, R.M.

    1986-01-01

    The authors present the results of axial and radial time resolved visible emission spectroscopy from the afterglow of a dense helium Z-pinch. These results show that the visible emissions in the pinch afterglow are dominated by line emissions from molecular helium and He II. Axial spectroscopy measurements show the occurrence of several absorption bands which cannot be identified as molecular or atomic helium nor impurities from the discharge chamber materials. The authors believe that these absorption bands are attributable to the molecular helium ion which is present in the discharge. The molecular ion has been observed by others in low pressure and temperature helium discharges directly by means of mass spectrometry and indirectly by the presence of helium atoms in the 2/sup 3/S state, (the He 2/sup 3/S state is believed to result from molecular helium ion recombination). However, the molecular helium ion has not previously been observed spectroscopically

  7. On calculation of collisional angular-momentum mixing of Rydberg states

    International Nuclear Information System (INIS)

    Oreg, J.; Strauss, M.; Hazak, G.

    1983-09-01

    Exact solutions of the coupled differential equations for collisional mixing probabilities are presented for a sodium-helium system. The results show that complete mixing is not reached in this model. The main contribution to the collisional mixing cross-section of the sodium ''nd'' state comes from impact parameters b within the range n 2 2 . The total cross-sections obtained are in agreement with the experiment. (author)

  8. Supersonic laser spray of aluminium alloy on a ceramic substrate

    International Nuclear Information System (INIS)

    Riveiro, A.; Lusquinos, F.; Comesana, R.; Quintero, F.; Pou, J.

    2007-01-01

    Applying a ceramic coating onto a metallic substrate to improve its wear resistance or corrosion resistance has attracted the interest of many researchers during decades. However, only few works explore the possibility to apply a metallic layer onto a ceramic material. This work presents a novel technique to coat ceramic materials with metals: the supersonic laser spraying. In this technique a laser beam is focused on the surface of the precursor metal in such a way that the metal is transformed to the liquid state in the beam-metal interaction zone. A supersonic jet expels the molten material and propels it to the surface of the ceramic substrate. In this study, we present the preliminary results obtained using the supersonic laser spray to coat a commercial cordierite ceramic plate with an Al-Cu alloy using a 3.5 kW CO 2 laser and a supersonic jet of Argon. Coatings were characterized by scanning electron microscopy (SEM) and interferometric profilometry

  9. Detonation in supersonic radial outflow

    KAUST Repository

    Kasimov, Aslan R.; Korneev, Svyatoslav

    2014-01-01

    We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations

  10. Re-Examination of Mixed Media Communication: The Impact of Voice, Data Link, and Mixed Air Traffic Control Environments on the Flight Deck

    Science.gov (United States)

    Dunbar, Melisa; McGann, Alison; Mackintosh, Margaret-Anne; Lozito, Sandra; Ashford, Rose (Technical Monitor)

    2001-01-01

    A simulation in the B747-400 was conducted at NASA Ames Research Center that compared how crews handled voice and data link air traffic control (ATC) messages in a single medium versus a mixed voice and data link ATC environment The interval between ATC messages was also varied to examine the influence of time pressure in voice, data link, and mixed ATC environments. For messages sent via voice, transaction times were lengthened in the mixed media environment for closely spaced messages. The type of environment did not affect data link times. However, messages times were lengthened in both single and mixed-modality environments under time pressure. Closely spaced messages also increased the number of requests for clarification for voice messages in the mixed environment and review menu use for data link messages. Results indicated that when time pressure is introduced, the mix of voice and data link does not necessarily capitalize on the advantages of both media. These findings emphasize the need to develop procedures for managing communication in mixed voice and data link environments.

  11. The influence of (n-n{sup '})-mixing processes in He*(n)+He(1s{sup 2}) collisions on He*(n) atoms' populations in weakly ionized helium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mihajlov, A.A. [Institute of Physics, P.O. Box 57, 11001 Belgrade (Serbia and Montenegro); Ignjatovic, Lj.M. [Institute of Physics, P.O. Box 57, 11001 Belgrade (Serbia)], E-mail: ljuba@phy.bg.ac.yu; Sreckovic, V.A. [Institute of Physics, P.O. Box 57, 11001 Belgrade (Serbia); Djuric, Z. [Silvaco Data Systems, Compass Point, St Ives PE27 5JL (United Kingdom)

    2008-03-15

    The results of semi-classical calculations of rate coefficients of (n-n{sup '})-mixing processes due to collisions of Rydberg atoms He*(n) with He(1s{sup 2}) atoms are presented. It is assumed that these processes are caused by the resonant energy exchange within the electron component of He*(n)+He collision system. The method is realized through the numerical simulation of the (n-n{sup '})-mixing processes, and is applied for calculations of the corresponding rate coefficients. The calculations are performed for the principal quantum numbers n,n{sup '} in ranges 4{<=}nmixing processes can significantly influence the populations of Rydberg atoms in non-equilibrium weakly ionized helium plasmas with ionization degree {approx}10{sup -4}. Therefore, these processes have to be included in the appropriate models of such plasmas.

  12. Helium Extraction from LNG End Flash

    OpenAIRE

    Kim, Donghoi

    2014-01-01

    Helium is an invaluable element as it is widely used in industry such as cryo-genics and welding due to its unique properties. However, helium shortage is expected in near future because of increasing demand and the anxiety of sup-ply. Consequently, helium production has attracted the attention of industry. The main source of He is natural gas and extracting it from LNG end-flash is considered as the most promising way of producing crude helium. Thus, many process suppliers have proposed proc...

  13. Numerical simulation of gap effect in supersonic flows

    Directory of Open Access Journals (Sweden)

    Song Mo

    2014-01-01

    Full Text Available The gap effect is a key factor in the design of the heat sealing in supersonic vehicles subjected to an aerodynamic heat load. Built on S-A turbulence model and Roe discrete format, the aerodynamic environment around a gap on the surface of a supersonic aircraft was simulated by the finite volume method. As the presented results indicate, the gap effect depends not only on the attack angle, but also on the Mach number.

  14. Growing quasi-modes in dynamics of supersonic collapse

    International Nuclear Information System (INIS)

    Malkin, V.M.; Khudik, V.N.

    1989-01-01

    The hypothesis of globally stable self-similar regimes existence for supersonic Langmuir collapse plays a significant role in the attempts to construct a theory of strong Langmuir turbulence. A possibility for destruction of the stable against infinitely small perturbations self-similar regime of supersonic collapse by growing quasi-modes is demonstrated via the numerical solution of Cauchi problem for Zakharov equations. The quantitative criterion for the destruction of self-similar regimes is formulated. 9 refs.; 5 figs

  15. Diffuse Helium Emission as a Precursory Sign of Volcanic Unrest

    Science.gov (United States)

    Padron, E.; Perez, N.; Hernandez Perez, P. A.; Sumino, H.; Melian Rodriguez, G.; Barrancos, J.; Nolasco, D.; Padilla, G.; Dionis, S.; Rodriguez, F.; Hernandez, I.; Calvo, D.; Peraza, M.; Nagao, K.

    2012-12-01

    Since July 16, 2011, an anomalous seismicity at El Hierro island, the youngest and smallest of the Canary Islands, was recorded by IGN seismic network. After the occurrence of more than 10,000 seismic events, volcanic tremor was recorded since 05:15 of the October 10, by all of the seismic stations on the island, with highest amplitudes recorded in the southernmost station. During the afternoon of October 12 a large light-green coloured area was observed in the sea to the souht of La Restinga village (at the southernmost part of El Hierro island), suggesting the existence of a submarine eruption. Since October 12, frequent episodes of, turbulent gas emission and foaming, and the appearance of steamy lava fragments has been observed on the sea surface. As part of the volcanic surveillance of the island, the Instituto Volcanologico de Canarias (INVOLCAN) geochemical monitoring program is carrying out diffuse helium surveys on the surface environment of El Hierro (soil atmosphere). This nobel gas has been investigated because it has been considered an almost ideal geochemical indicator because it is chemically inert, physically stable, nonbiogenic, sparingly soluble in water under ambient conditions and almost non-adsorbable. At each survey, 600 sampling sites covering the whole island and following an homogeneous distribution are selected for helium measurements in the soil gases, The helium concentration gradients with respect to its value on air (5.24 ppm) allow us to estimate a pure diffusive emission rate of helium throughout the island. The first survey was carried out on the summer of 2003, when the island was on a quiescence period. At this survey, the amount of helium released by the volcanic system of El Hierro was estimated in 6 kg/d. Since the beginning of the seismic unrest, 13 helium emission surveys have been carried out. The helium emission rate has shown an excellent agreement with the evolution of the volcanic crisis of the island, reaching 30 kg

  16. Improving The Safety Of Room Air Pneumoperitoneum For ...

    African Journals Online (AJOL)

    N2O), Carbondioxide (CO2), Helium, Xenon and Air. Study Design and Method: This was a prospective study in a private fertility centre in Nnewi, Nigeria aimed at reducing the morbidities inherent in the use Room Air pneumoperitoneum for ...

  17. Gas chromatography-mass spectrometry with supersonic molecular beams.

    Science.gov (United States)

    Amirav, Aviv; Gordin, Alexander; Poliak, Marina; Fialkov, Alexander B

    2008-02-01

    Gas chromatography-mass spectrometry (GC-MS) with supersonic molecular beams (SMBs) (also named Supersonic GC-MS) is based on GC and MS interface with SMBs and on the electron ionization (EI) of vibrationally cold analytes in the SMBs (cold EI) in a fly-through ion source. This ion source is inherently inert and further characterized by fast response and vacuum background filtration capability. The same ion source offers three modes of ionization including cold EI, classical EI and cluster chemical ionization (CI). Cold EI, as a main mode, provides enhanced molecular ions combined with an effective library sample identification, which is supplemented and complemented by a powerful isotope abundance analysis method and software. The range of low-volatility and thermally labile compounds amenable for analysis is significantly increased owing to the use of the contact-free, fly-through ion source and the ability to lower sample elution temperatures through the use of high column carrier gas flow rates. Effective, fast GC-MS is enabled particularly owing to the possible use of high column flow rates and improved system selectivity in view of the enhancement of the molecular ion. This fast GC-MS with SMB can be further improved via the added selectivity of MS-MS, which by itself benefits from the enhancement of the molecular ion, the most suitable parent ion for MS-MS. Supersonic GC-MS is characterized by low limits of detection (LOD), and its sensitivity is superior to that of standard GC-MS, particularly for samples that are hard for analysis. The GC separation of the Supersonic GC-MS can be improved with pulsed flow modulation (PFM) GC x GC-MS. Electron ionization LC-MS with SMB can also be combined with the Supersonic GC-MS, with fast and easy switching between these two modes of operation. (c) 2008 John Wiley & Sons, Ltd.

  18. Use of separating nozzles or ultra-centrifuges for obtaining helium from gas mixtures containing helium

    International Nuclear Information System (INIS)

    Reimann, T.

    1987-01-01

    To obtain helium from gas mixtures containing helium, particularly from natural gas, it is proposed to match the dimensions of the separation devices for a ratio of the molecular weights to be separated of 4:1 of more, which ensures a higher separation factor and therefore a smaller number of separation stages to be connected in series. The process should make reasonably priced separation of helium possible. (orig./HP) [de

  19. Potential efficiencies of open- and closed-cycle CO, supersonic, electric-discharge lasers

    Science.gov (United States)

    Monson, D. J.

    1976-01-01

    Computed open- and closed-cycle system efficiencies (laser power output divided by electrical power input) are presented for a CW carbon monoxide, supersonic, electric-discharge laser. Closed-system results include the compressor power required to overcome stagnation pressure losses due to supersonic heat addition and a supersonic diffuser. The paper shows the effect on the system efficiencies of varying several important parameters. These parameters include: gas mixture, gas temperature, gas total temperature, gas density, total discharge energy loading, discharge efficiency, saturated gain coefficient, optical cavity size and location with respect to the discharge, and supersonic diffuser efficiency. Maximum open-cycle efficiency of 80-90% is predicted; the best closed-cycle result is 60-70%.

  20. Trends in Supersonic Separator design development

    Directory of Open Access Journals (Sweden)

    Altam Rami Ali

    2017-01-01

    Full Text Available Supersonic separator is a new technology with applications in hydrocarbon dew pointing and gas dehydration which can be used to condensate and separate water and heavy hydrocarbons from natural gas. Many researchers have studied the design, performance and efficiency, economic viability, and industrial applications of these separators. The purpose of this paper is to succinctly review recent progress in the design and application of supersonic separators and their limitations. This review has found that while several aspects of this study are well studied, considerable gaps within the published literature still exists in the areas such as turndown flexibility which is a critical requirement to cater for variation of mass flow and since almost all the available designs have a fixed geometry and therefore cannot be considered suitable for variable mass flow rate, which is a common situation in actual site. Hence, the focus needs to be more on designing a flexible geometry that can maintain a high separation efficiency regardless of inlet conditions and mass flow variations. This review is focusing only on the design and application of the supersonic separators without going through the experimental facilities, industrial platform, pilot plants as well as theoretical, analytical, and numerical modelling.

  1. Helium diffusion in nickel at high temperatures

    International Nuclear Information System (INIS)

    Philipps, V.

    1980-09-01

    Helium has been implanted at certain temperatures between 800 and 1250 0 C into single and polycrystalline Ni-samples with implantation depths between 15 and 90 μm. Simultaneously the helium reemission from the sample is measured by a mass-spectrometer. It has been shown that the time dependence of the observed reemission rate is governed by volume diffusion of the helium. Measuring this time dependence as a function of temperature the helium diffusion constant has been determined. The He-diffusion is interpreted as a interstitial diffusion hindered by thermal vacancies. Depending on the implantation depth more or less of the implanted helium remains in the sample and forms large helium bubbles. (orig./GSCH)

  2. Neutron-induced helium implantation in GCFR cladding

    International Nuclear Information System (INIS)

    Yamada, H.; Poeppel, R.B.; Sevy, R.H.

    1980-10-01

    The neutron-induced implantation of helium atoms on the exterior surfaces of the cladding of a prototypic gas-cooled fast reactor (GCFR) has been investigated analytically. A flux of recoil helium particles as high as 4.2 x 10 10 He/cm 2 .s at the cladding surface has been calculated at the peak power location in the core of a 300-MWe GCFR. The calculated profile of the helium implantation rates indicates that although some helium is implanted as deep as 20 μm, more than 99% of helium particles are implanted in the first 2-μm-deep layer below the cladding surface. Therefore, the implanted helium particles should mainly affect surface properties of the GCFR cladding

  3. Experimental mechanistic investigation of the nanostructuring of tungsten with low energy helium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fiflis, P., E-mail: fiflis1@illinois.edu; Connolly, N.; Ruzic, D.N.

    2016-12-15

    Helium ion bombardment of tungsten at temperatures between approximately one third and one half of its melting point has shown growth of nanostructures colloquially referred to as “fuzz”. The nanostructures take the form of thin tendrils of diameter about 30 nm and grow out of the bulk material. Tungsten will and does compose one of the key materials for plasma facing components (PFCs) in fusion reactors. The formation of nanostructured fuzz layers on PFCs would be detrimental to the performance of the reactor, and must therefore be avoided. Previous experiments have shown evidence that tungsten fuzz is initially grown by loop punching of helium bubbles created in the bulk. However, once the tendrils grow to sufficient length, the tendrils should intercept the entire helium flux, halting the production of fuzz. Fuzz continues to grow though. To increase the understanding of the mechanisms of tungsten fuzz formation, and thereby aid the avoidance of its production, a series of tests were performed to examine the validity of several theories regarding later stage tungsten fuzz growth. Tests showed that the fuzz formation was dependent solely on the bombardment of helium ions, and not on electric fields, or adatom diffusion. Experiments employing a tungsten coated molybdenum sample indicate the presence of a strong mixing layer and strongly suggest that tungsten fuzz growth continues to occur from the bottom up even as the tendrils grow in size. Tests also show a similarity between different metals exposed to helium ion fluxes where the ratio of bubble diameter to tendril diameter is constant.

  4. Experimental mechanistic investigation of the nanostructuring of tungsten with low energy helium plasmas

    International Nuclear Information System (INIS)

    Fiflis, P.; Connolly, N.; Ruzic, D.N.

    2016-01-01

    Helium ion bombardment of tungsten at temperatures between approximately one third and one half of its melting point has shown growth of nanostructures colloquially referred to as “fuzz”. The nanostructures take the form of thin tendrils of diameter about 30 nm and grow out of the bulk material. Tungsten will and does compose one of the key materials for plasma facing components (PFCs) in fusion reactors. The formation of nanostructured fuzz layers on PFCs would be detrimental to the performance of the reactor, and must therefore be avoided. Previous experiments have shown evidence that tungsten fuzz is initially grown by loop punching of helium bubbles created in the bulk. However, once the tendrils grow to sufficient length, the tendrils should intercept the entire helium flux, halting the production of fuzz. Fuzz continues to grow though. To increase the understanding of the mechanisms of tungsten fuzz formation, and thereby aid the avoidance of its production, a series of tests were performed to examine the validity of several theories regarding later stage tungsten fuzz growth. Tests showed that the fuzz formation was dependent solely on the bombardment of helium ions, and not on electric fields, or adatom diffusion. Experiments employing a tungsten coated molybdenum sample indicate the presence of a strong mixing layer and strongly suggest that tungsten fuzz growth continues to occur from the bottom up even as the tendrils grow in size. Tests also show a similarity between different metals exposed to helium ion fluxes where the ratio of bubble diameter to tendril diameter is constant.

  5. Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) Plume Induced Environment Modelling

    Science.gov (United States)

    Mobley, B. L.; Smith, S. D.; Van Norman, J. W.; Muppidi, S.; Clark, I

    2016-01-01

    Provide plume induced heating (radiation & convection) predictions in support of the LDSD thermal design (pre-flight SFDT-1) Predict plume induced aerodynamics in support of flight dynamics, to achieve targeted freestream conditions to test supersonic deceleration technologies (post-flight SFDT-1, pre-flight SFDT-2)

  6. Unexpected O and O3 production in the effluent of He/O2 microplasma jets emanating into ambient air

    International Nuclear Information System (INIS)

    Ellerweg, D; Von Keudell, A; Benedikt, J

    2012-01-01

    Microplasma jets are commonly used to treat samples in ambient air. The effect of admixing air into the effluent may severely affect the composition of the emerging species. Here, the effluent of a He/O 2 microplasma jet has been analyzed in a helium and in an air atmosphere by molecular beam mass spectrometry. First, the composition of the effluent in air was recorded as a function of the distance to determine how fast air admixes into the effluent. Then, the spatial distribution of atomic oxygen and ozone in the effluent was recorded in ambient air and compared with measurements in a helium atmosphere. Additionally, a fluid model of the gas flow with reaction kinetics of reactive oxygen species in the effluent was constructed. In ambient air, the O density declines only slightly faster with distance compared with a helium atmosphere. In contrast, the O 3 density in ambient air increases significantly faster with distance compared with a helium atmosphere. This unexpected behavior cannot be explained by simple recombination reactions of O atoms with O 2 molecules. A reaction scheme involving the reaction of plasma-produced excited O 2 * species of unknown identity with ground state O 2 molecules is proposed as a possible explanation for these observations. (paper)

  7. Internal flow characteristics of a rectangular ramjet air intake

    NARCIS (Netherlands)

    Moerel, J.-L.; Veraar, R.G.; Halswijk, W.H.C.; Pimentel, R.; Corriveau, D.; Hamel, N.; Lesage, F.; Vos, J.B.

    2009-01-01

    Two research institutes TNO Defence, Security and Safety and DRDC-Valcartier have worked together on the improvement of modeling and simulation tools for the functioning of supersonic air intakes for realistic ramjet engines of tactical missiles. The emphasis laid on complex rectangular intake

  8. Ventilation distribution in rats: Part 2 – A comparison of electrical impedance tomography and hyperpolarised helium magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Dunster Kimble R

    2012-09-01

    Full Text Available Abstract Background Hyperpolarised helium MRI (He3 MRI is a new technique that enables imaging of the air distribution within the lungs. This allows accurate determination of the ventilation distribution in vivo. The technique has the disadvantages of requiring an expensive helium isotope, complex apparatus and moving the patient to a compatible MRI scanner. Electrical impedance tomography (EIT a non-invasive bedside technique that allows constant monitoring of lung impedance, which is dependent on changes in air space capacity in the lung. We have used He3MRI measurements of ventilation distribution as the gold standard for assessment of EIT. Methods Seven rats were ventilated in supine, prone, left and right lateral position with 70% helium/30% oxygen for EIT measurements and pure helium for He3 MRI. The same ventilator and settings were used for both measurements. Image dimensions, geometric centre and global in homogeneity index were calculated. Results EIT images were smaller and of lower resolution and contained less anatomical detail than those from He3 MRI. However, both methods could measure positional induced changes in lung ventilation, as assessed by the geometric centre. The global in homogeneity index were comparable between the techniques. Conclusion EIT is a suitable technique for monitoring ventilation distribution and inhomgeneity as assessed by comparison with He3 MRI.

  9. Quantum statistics and liquid helium 3 - helum 4 mixtures

    International Nuclear Information System (INIS)

    Cohen, E.G.D.

    1979-01-01

    The behaviour of liquid helium 3-helium 4 mixtures is considered from the point of view of manifestation of quantum statistics effects in macrophysics. The Boze=Einstein statistics is shown to be of great importance for understanding superfluid helium-4 properties whereas the Fermi-Dirac statistics is of importance for understanding helium-3 properties. Without taking into consideration the interaction between the helium atoms it is impossible to understand the basic properties of liquid helium 33 - helium 4 mixtures at constant pressure. Proposed is a simple model of the liquid helium 3-helium 4 mixture, namely the binary mixture consisting of solid spheres of two types subjecting to the Fermi-Dirac and Bose-Einstein statistics relatively. This model predicts correctly the most surprising peculiarities of phase diagrams of concentration dependence on temperature for helium solutions. In particular, the helium 4 Bose-Einstein statistics is responsible for the phase lamination of helium solutions at low temperatures. It starts in the peculiar critical point. The helium 4 Fermi-Dirac statistics results in incomplete phase lamination close to the absolute zero temperatures, that permits operation of a powerful cooling facility, namely refrigerating machine on helium solution

  10. Modelling of containment atmosphere mixing and stratification experiment using CFD approach

    International Nuclear Information System (INIS)

    Ivo Kljenak; Miroslav Babic; Borut Mavko; Ivan Bajsic

    2005-01-01

    An experiment on containment atmosphere mixing and stratification, which was originally performed in the TOSQAN facility in Saclay (France), was simulated with the Computational Fluid Dynamics code CFX. The TOSQAN facility consists of a large cylindrical vessel in which gases are injected. In the considered experiment, steam, air and helium were injected during different phases of the experiment, with steam condensing on vessel walls. Three intermediate steady states, which were obtained with different boundary conditions, were simulated independently. A two-dimensional axisymmetric model of the TOSQAN vessel for the CFX4.4 code was developed. The flow in the simulation domain was modelled as single-phase. Steam condensation on vessel walls was modelled as a sink of mass and energy. Calculated profiles of temperature, steam concentration, and velocity components are compared to experimental results. (authors)

  11. High Efficiency Regenerative Helium Compressor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Helium plays several critical rolls in spacecraft propulsion. High pressure helium is commonly used to pressurize propellant fuel tanks. Helium cryocoolers can be...

  12. Computational and experimental analysis of supersonic air ejector: Turbulence modeling and assessment of 3D effects

    International Nuclear Information System (INIS)

    Mazzelli, Federico; Little, Adrienne B.; Garimella, Srinivas; Bartosiewicz, Yann

    2015-01-01

    Highlights: • Computational and experimental assessment of computational techniques for ejector flows. • Comparisons to 2D/3D (k–ε, k–ε realizable, k–ω SST, and stress–ω RSM) turbulence models. • k–ω SST model performs best while ε-based models more accurate at low motive pressures. • Good on-design agreement across 2D and 3D models; off-design needs 3D simulations. - Abstract: Numerical and experimental analyses are performed on a supersonic air ejector to evaluate the effectiveness of commonly-used computational techniques when predicting ejector flow characteristics. Three series of experimental curves at different operating conditions are compared with 2D and 3D simulations using RANS, steady, wall-resolved models. Four different turbulence models are tested: k–ε, k–ε realizable, k–ω SST, and the stress–ω Reynolds Stress Model. An extensive analysis is performed to interpret the differences between numerical and experimental results. The results show that while differences between turbulence models are typically small with respect to the prediction of global parameters such as ejector inlet mass flow rates and Mass Entrainment Ratio (MER), the k–ω SST model generally performs best whereas ε-based models are more accurate at low motive pressures. Good agreement is found across all 2D and 3D models at on-design conditions. However, prediction at off-design conditions is only acceptable with 3D models, making 3D simulations mandatory to correctly predict the critical pressure and achieve reasonable results at off-design conditions. This may partly depend on the specific geometry under consideration, which in the present study has a rectangular cross section with low aspect ratio.

  13. A Level-set based framework for viscous simulation of particle-laden supersonic flows

    Science.gov (United States)

    Das, Pratik; Sen, Oishik; Jacobs, Gustaaf; Udaykumar, H. S.

    2017-06-01

    Particle-laden supersonic flows are important in natural and industrial processes, such as, volcanic eruptions, explosions, pneumatic conveyance of particle in material processing etc. Numerical study of such high-speed particle laden flows at the mesoscale calls for a numerical framework which allows simulation of supersonic flow around multiple moving solid objects. Only a few efforts have been made toward development of numerical frameworks for viscous simulation of particle-fluid interaction in supersonic flow regime. The current work presents a Cartesian grid based sharp-interface method for viscous simulations of interaction between supersonic flow with moving rigid particles. The no-slip boundary condition is imposed at the solid-fluid interfaces using a modified ghost fluid method (GFM). The current method is validated against the similarity solution of compressible boundary layer over flat-plate and benchmark numerical solution for steady supersonic flow over cylinder. Further validation is carried out against benchmark numerical results for shock induced lift-off of a cylinder in a shock tube. 3D simulation of steady supersonic flow over sphere is performed to compare the numerically obtained drag co-efficient with experimental results. A particle-resolved viscous simulation of shock interaction with a cloud of particles is performed to demonstrate that the current method is suitable for large-scale particle resolved simulations of particle-laden supersonic flows.

  14. Seismological measurement of solar helium abundance

    International Nuclear Information System (INIS)

    Vorontsov, S.V.; Pamyatnykh, A.A.

    1991-01-01

    The internal structure and evolution of the Sun depends on its chemical composition, particularly the helium abundance. In addition, the helium abundance in the solar envelope is thought to represent the protosolar value, making it a datum of cosmological significance. Spectroscopic measurements of the helium abundance are uncertain, and the most reliable estimates until now have come from the calibration of solar evolutionary models. The frequencies of solar acoustic oscillations are sensitive, however, to the behaviour of the speed of sound in the Sun's helium ionization zone, which allows a helioseismological determination of the helium abundance. Sound-speed inversion of helioseismological data can be used for this purpose, but precise frequency measurements of high-degree oscillation modes are needed. Here we describe a new approach based on an analysis of the phase shift of acoustic waves of intermediate-degree modes. From the accurate intermediate-mode data now available, we obtain a helium mass fraction Y=0.25±0.01 in the solar convection zone, significantly smaller than the value Y=0.27-0.29 predicted by recent solar evolutionary models. The discrepancy indicates either that initial helium abundance was reduced in the envelope by downward diffusion or that the protosolar value was lower than currently accepted. (author)

  15. Mixing Ventilation

    DEFF Research Database (Denmark)

    Kandzia, Claudia; Kosonen, Risto; Melikov, Arsen Krikor

    In this guidebook most of the known and used in practice methods for achieving mixing air distribution are discussed. Mixing ventilation has been applied to many different spaces providing fresh air and thermal comfort to the occupants. Today, a design engineer can choose from large selection...

  16. Review of Membranes for Helium Separation and Purification

    Directory of Open Access Journals (Sweden)

    Colin A. Scholes

    2017-02-01

    Full Text Available Membrane gas separation has potential for the recovery and purification of helium, because the majority of membranes have selectivity for helium. This review reports on the current state of the research and patent literature for membranes undertaking helium separation. This includes direct recovery from natural gas, as an ancillary stage in natural gas processing, as well as niche applications where helium recycling has potential. A review of the available polymeric and inorganic membranes for helium separation is provided. Commercial gas separation membranes in comparable gas industries are discussed in terms of their potential in helium separation. Also presented are the various membrane process designs patented for the recovery and purification of helium from various sources, as these demonstrate that it is viable to separate helium through currently available polymeric membranes. This review places a particular focus on those processes where membranes are combined in series with another separation technology, commonly pressure swing adsorption. These combined processes have the most potential for membranes to produce a high purity helium product. The review demonstrates that membrane gas separation is technically feasible for helium recovery and purification, though membranes are currently only applied in niche applications focused on reusing helium rather than separation from natural sources.

  17. Production and characterization of supersonic carbon cluster beams

    International Nuclear Information System (INIS)

    Rohlfing, E.A.; Cox, D.M.; Kaldor, A.

    1984-01-01

    Laser vaporization of a substrate within the throat of a pulsed nozzle is used to generate a supersonic beam of carbon clusters. The neutral cluster beam is probed downstream by UV laser photoionization with time-of-flight mass analysis of the resulting photoions. Using graphite as the substrate, carbon clusters C/sub n/ for n = 1--190 have been produced having a distinctly bimodal cluster size distribution: (i) Both even and odd clusters for C/sub n/, 1 + /sub n/ signals are interpreted on the basis of cluster formation and stability arguments. Ionizing laser power dependences taken at several different photon energies are used to roughly bracket the carbon cluster ionization potentials, and, at high laser intensity, to observe the onset of multiphoton fragmentation. By treating the graphite rod with KOH, a greatly altered carbon cluster distribution with mixed carbon/potassium clusters of formula K 2 C/sub 2n/ is produced

  18. Effects of a helium/oxygen mixture on individuals’ lung function and metabolic cost during submaximal exercise for participants with obstructive lung diseases

    Directory of Open Access Journals (Sweden)

    Häussermann S

    2015-09-01

    Full Text Available Sabine Häussermann,1 Anja Schulze,1 Ira M Katz,2,3 Andrew R Martin,4 Christiane Herpich,1 Theresa Hunger,1 Joëlle Texereau2 1Inamed GmbH, Gauting, Germany; 2Medical R&D, Air Liquide Santé International, Centre de Recherche Paris-Saclay, Les Loges-en-Josas, France; 3Department of Mechanical Engineering, Lafayette College, Easton, PA, USA; 4Department of Mechanical Engineering, University of Alberta, Edmonton, AB, CanadaBackground: Helium/oxygen therapies have been studied as a means to reduce the symptoms of obstructive lung diseases with inconclusive results in clinical trials. To better understand this variability in results, an exploratory physiological study was performed comparing the effects of helium/oxygen mixture (78%/22% to that of medical air.Methods: The gas mixtures were administered to healthy, asthmatic, and chronic obstructive pulmonary disease (COPD participants, both moderate and severe (6 participants in each disease group, a total of 30; at rest and during submaximal cycling exercise with equivalent work rates. Measurements of ventilatory parameters, forced spirometry, and ergospirometry were obtained.Results: There was no statistical difference in ventilatory and cardiac responses to breathing helium/oxygen during submaximal exercise. For asthmatics, but not for the COPD participants, there was a statistically significant benefit in reduced metabolic cost, determined through measurement of oxygen uptake, for the same exercise work rate. However, the individual data show that there were a mixture of responders and nonresponders to helium/oxygen in all of the groups.Conclusion: The inconsistent response to helium/oxygen between individuals is perhaps the key drawback to the more effective and widespread use of helium/oxygen to increase exercise capacity and for other therapeutic applications. Keywords: helium/oxygen, inspiratory capacity, oxygen uptake, COPD, asthma, obstructive airway diseases, exercise, heliox

  19. Air Distribution in a Room and Design Considerations of Mixing Ventilation by Flow Elements

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Jensen, Rasmus Lund; Pedersen, D. N.

    2001-01-01

    The paper shows detailed measurements of the air distribution in a room ventilated by mixing ventilation according to the specifications given by the International Energy Agency work. (Energy Conservation in Buildings and Community Systems Programme, Annex 20). It describes a number of flow...

  20. Morphine reduces the threshold of helium preconditioning against myocardial infarction: the role of opioid receptors in rabbits

    Science.gov (United States)

    Pagel, Paul S.; Krolikowski, John G.; Amour, Julien; Warltier, David C.; Weihrauch, Dorothee

    2015-01-01

    Objectives Brief, repetitive administration of helium before prolonged coronary artery occlusion and reperfusion protects myocardium against infarction. Opioid receptors mediate the cardioprotective effects of ischemic pre- and postconditioning, but whether these receptors also play a role in helium preconditioning is unknown. We tested the hypotheses that opioid receptors mediate helium preconditioning and that morphine (a μ1-opioid receptor agonist with δ1-opioid agonist properties) lowers the threshold of cardioprotection produced by helium in vivo. Design Randomized, prospective study. Setting University research laboratory. Participants Male New Zealand white rabbits. Interventions Rabbits (n=56) were instrumented for measurement of systemic hemodynamics and subjected to a 30 min left anterior descending coronary artery (LAD) occlusion and 3 h reperfusion. In separate experimental groups, rabbits (n=6 or 7 per group) received 0.9% saline (control), one or three cycles of 70% helium-30% oxygen administered for 5 min interspersed with 5 min of an air-oxygen mixture, morphine (0.1 mg/kg, i.v.), or the nonselective opioid antagonist naloxone (6 mg/kg, i.v.) before LAD occlusion. Other groups of rabbits received three cycles of helium or one cycle of helium plus morphine (0.1 mg/kg) in the absence or presence of naloxone (6 mg/kg) before ischemia and reperfusion. Statistical analysis of data was performed with analysis of variance for repeated measures followed by Bonferroni’s modification of Student’s t test. Measurements and Main Results Myocardial infarct size was determined using triphenyltetrazolium chloride staining and presented as a percentage of the left ventricular area at risk. Helium reduced myocardial infarct size in an exposure-related manner [36±6 (P>0.05) and 25±4% (P<0.05 versus control) for one and three cycles of helium, respectively; data are mean±SD] compared with control (44±7%). Morphine and naloxone alone did not affect infarct

  1. Li/Li2 supersonic nozzle beam

    International Nuclear Information System (INIS)

    Wu, C.Y.R.; Crooks, J.B.; Yang, S.C.; Way, K.R.; Stwalley, W.C.

    1977-01-01

    The characterization of a lithium supersonic nozzle beam was made using spectroscopic techniques. It is found that at a stagnation pressure of 5.3 kPa (40 torr) and a nozzle throat diameter of 0.4 mm the ground state vibrational population of Li 2 can be described by a Boltzmann distribution with T/sub v/ = 195 +- 30 0 K. The rotational temperature is found to be T/sub r/ = 70 +- 20 0 K by band shape analysis. Measurements by quadrupole mass spectrometer indicates that approximately 10 mole per cent Li 2 dimers are formed at an oven body temperature of 1370 0 K n the supersonic nozzle expansion. This measured mole fraction is in good agreement with the existing dimerization theory

  2. Theoretical Study of Triatomic Systems Involving Helium Atoms

    International Nuclear Information System (INIS)

    Suno, H.; Hiyama, E.; Kamimura, M.

    2013-01-01

    The triatomic 4 He system and its isotopic species 4 He 2 3 He are theoretically investigated. By adopting the best empirical helium interaction potentials, we calculate the bound state energy levels as well as the rates for the three-body recombination processes: 4 He + 4 He + 4 He → 4 He 2 + 4 He and 4 He + 4 He + 3 He → 4 He 2 + 3 He. We consider not only zero total angular momentum J = 0 states, but also J > 0 states. We also extend our study to mixed helium-alkali triatomic systems, that is 4 He 2 X with X = 7 Li, 23 Na, 39 K, 85 Rb, and 133 Cs. The energy levels of all the J ≥ 0 bound states for these species are calculated as well as the rates for three-body recombination processes such as 4 He + 4 He + 7 Li → 4 He 2 + 7 Li and 4 He + 4 He + 7 Li → 4 He 7 Li + 4 He. In our calculations, the adiabatic hyperspherical representation is employed but we also obtain preliminary results using the Gaussian expansion method. (author)

  3. Nuclear fuel rod helium leak inspection apparatus and method

    International Nuclear Information System (INIS)

    Ahmed, H.J.

    1991-01-01

    This patent describes an inspection apparatus for testing nuclear fuel rods for helium leaks. It comprises a test chamber being openable and closable for receiving at least one nuclear fuel rod; means separate from the fuel rod for supplying helium and constantly leaking helium at a predetermined known positive value into the test chamber to constantly provide an atmosphere of helium at the predetermined known positive value in the test chamber; and means for sampling the atmosphere within the chamber and measuring the helium in the atmosphere such that a measured helium value below a preset minimum helium value substantially equal to the predetermined known positive value of the atmosphere of helium being constantly provided in the test chamber indicates a malfunction in the inspection apparatus, above a preset maximum helium value greater than the predetermined known positive in the test chamber indicates the existence of a helium leak from the fuel rod, or between the preset minimum and maximum helium values indicates the absence of a helium leak from the fuel rod

  4. Hot HB Stars in Globular Clusters: Physical Parameters and Consequences for Theory. 5; Radiative Levitation Versus Helium Mixing

    Science.gov (United States)

    Moehler, S.; Sweigart, A. V.; Landsman, W. B.; Heber, U.

    2000-01-01

    Atmospheric parameters (T(sub eff), log g), masses and helium abundances are derived for 42 hot horizontal branch (HB) stars in the globular cluster NGC6752. For 19 stars we derive magnesium and iron abundances as well and find that iron is enriched by a factor of 50 on average with respect to the cluster abundance whereas the magnesium abundances are consistent with the cluster abundance. Radiation pressure may levitate heavy elements like iron to the surface of the star in a diffusive process. Taking into account the enrichment of heavy elements in our spectroscopic analyses we find that high iron abundances can explain part, but not all, of the problem of anomalously low gravities along the blue HB. The blue HB stars cooler than about 15,100 K and the sdB stars (T(sub eff) greater than or = 20,000 K) agree well with canonical theory when analysed with metal-rich ([M/H] = +0.5) model atmospheres, but the stars in between these two groups remain offset towards lower gravities and masses. Deep Mixing in the red giant progenitor phase is discussed as another mechanism that may influence the position of the blue HB stars in the (T(sub eff), log g)-plane but not their masses.

  5. High-magnification velocity field measurements on high-frequency, supersonic microactuators

    Science.gov (United States)

    Kreth, Phil; Fernandez, Erik; Ali, Mohd; Alvi, Farrukh

    2014-11-01

    The Resonance-Enhanced Microjet (REM) actuator developed at our laboratory produces pulsed, supersonic microjets by utilizing a number of microscale, flow-acoustic resonance phenomena. The microactuator used in this study consists of an underexpanded source jet flowing into a cylindrical cavity with a single orifice through which an unsteady, supersonic jet issues at a resonant frequency of 7 kHz. The flowfields of a 1 mm underexpanded free jet and the microactuator are studied in detail using high-magnification, phase-locked flow visualizations (microschlieren) and 2-component particle image velocimetry. The challenges of these measurements at such small scales and supersonic velocities are discussed. The results clearly show that the microactuator produces supersonic pulsed jets with velocities exceeding 400 m/s. This is the first direct measurement of the velocity field and its temporal evolution produced by such actuators. Comparisons are made between the flow visualizations, velocity field measurements, and simulations using Implicit LES for a similar microactuator. With high, unsteady momentum output, this type of microactuator has potential in a range of flow control applications.

  6. Advanced supersonic propulsion study. [with emphasis on noise level reduction

    Science.gov (United States)

    Sabatella, J. A. (Editor)

    1974-01-01

    A study was conducted to determine the promising propulsion systems for advanced supersonic transport application, and to identify the critical propulsion technology requirements. It is shown that noise constraints have a major effect on the selection of the various engine types and cycle parameters. Several promising advanced propulsion systems were identified which show the potential of achieving lower levels of sideline jet noise than the first generation supersonic transport systems. The non-afterburning turbojet engine, utilizing a very high level of jet suppression, shows the potential to achieve FAR 36 noise level. The duct-heating turbofan with a low level of jet suppression is the most attractive engine for noise levels from FAR 36 to FAR 36 minus 5 EPNdb, and some series/parallel variable cycle engines show the potential of achieving noise levels down to FAR 36 minus 10 EPNdb with moderate additional penalty. The study also shows that an advanced supersonic commercial transport would benefit appreciably from advanced propulsion technology. The critical propulsion technology needed for a viable supersonic propulsion system, and the required specific propulsion technology programs are outlined.

  7. Numerical simulation and physical aspects of supersonic vortex breakdown

    Science.gov (United States)

    Liu, C. H.; Kandil, O. A.; Kandil, H. A.

    1993-01-01

    Existing numerical simulations and physical aspects of subsonic and supersonic vortex-breakdown modes are reviewed. The solution to the problem of supersonic vortex breakdown is emphasized in this paper and carried out with the full Navier-Stokes equations for compressible flows. Numerical simulations of vortex-breakdown modes are presented in bounded and unbounded domains. The effects of different types of downstream-exit boundary conditions are studied and discussed.

  8. Helium behaviour in implanted boron carbide

    Directory of Open Access Journals (Sweden)

    Motte Vianney

    2015-01-01

    Full Text Available When boron carbide is used as a neutron absorber in nuclear power plants, large quantities of helium are produced. To simulate the gas behaviour, helium implantations were carried out in boron carbide. The samples were then annealed up to 1500 °C in order to observe the influence of temperature and duration of annealing. The determination of the helium diffusion coefficient was carried out using the 3He(d,p4He nuclear reaction (NRA method. From the evolution of the width of implanted 3He helium profiles (fluence 1 × 1015/cm2, 3 MeV corresponding to a maximum helium concentration of about 1020/cm3 as a function of annealing temperatures, an Arrhenius diagram was plotted and an apparent diffusion coefficient was deduced (Ea = 0.52 ± 0.11 eV/atom. The dynamic of helium clusters was observed by transmission electron microscopy (TEM of samples implanted with 1.5 × 1016/cm2, 2.8 to 3 MeV 4He ions, leading to an implanted slab about 1 μm wide with a maximum helium concentration of about 1021/cm3. After annealing at 900 °C and 1100 °C, small (5–20 nm flat oriented bubbles appeared in the grain, then at the grain boundaries. At 1500 °C, due to long-range diffusion, intra-granular bubbles were no longer observed; helium segregates at the grain boundaries, either as bubbles or inducing grain boundaries opening.

  9. Helium storage and control system for the PBMR

    International Nuclear Information System (INIS)

    Verkerk, E.C.

    1997-01-01

    The power conversion unit will convert the heat energy in the reactor core to electrical power. The direct-closed cycle recuperated Brayton Cycle employed for this concept consists of a primary helium cycle with helium powered turbo compressors and a power turbine. The helium is actively cooled with water before the compression stages. A recuperator is used to preheat the helium before entering the core. The start of the direct cycle is initiated by a mass flow from the helium inventory and control system via a jet pump. When the PBMR is connected to the grid, changes in power demand can be followed by changing the helium flow and pressure inside the primary loop. Small rapid adjustments can be performed without changing the helium inventory of the primary loop. The stator blade settings on the turbines and compressors are adjustable and it is possible to bypass reactor and turbine. This temporarily reduces the efficiency at which the power conversion unit is operating. Larger or long term adjustments require storage or addition of helium in order to maintain a sufficient level of efficiency in the power conversion unit. The helium will be temporarily stored in high pressure tanks. After a rise in power demand it will be injected back into the system. Some possibilities how to store the helium are presented in this paper. The change of helium inventory will cause transients in the primary helium loop in order to acquire the desired power level. At this stage, it seems that the change of helium inventory does not strongly effect the stability of the power conversion unit. (author)

  10. Structural Controls on Helium, Nitrogen and Carbon Isotope Signatures in Geothermal Fluids Along the Liquiñe-Ofqui Fault System, Southern Chile.

    Science.gov (United States)

    Tardani, D.; Reich, M.; Roulleau, E.; Sano, Y.; Takahata, N.; Perez-Flores, P.; Sanchez-Alfaro, P.; Cembrano, J. M.; Arancibia, G.

    2016-12-01

    There is a general agreement that fault-fracture meshes exert a primary control on fluid flow in both volcanic/magmatic and geothermal/hydrothermal systems. In the Southern Volcanic Zone (SVZ) of the Chilean Andes, both volcanism and hydrothermal activity are spatially controlled by the Liquiñe-Ofqui Fault System (LOFS), an intra-arc, strike-slip fault, and by the Arc-oblique Long-lived Basement Fault System (ALFS), a set of transpressive NW-striking faults. However, the role that principal and subsidiary fault systems exert on magma degassing, hydrothermal fluid flow and fluid compositions remains poorly constrained. In this study we report new helium, carbon and nitrogen isotope data (3He/4He, d13C-CO2 and d15N) of a suite of fumarole and hot spring gas samples from 23 volcanic/geothermal localities that are spatially associated with either the LOFS or the ALFS in the central part of the SVZ. The dataset is characterized by a wide range of 3He/4He ratios (3.39 Ra to 7.53 Ra, where Ra = (3He/4He)air), d13C-CO2 values (-7.44‰ to -49.41‰) and d15N values (0.02‰to 4.93‰). The regional variations in 3He/4He, d13C-CO2 and d15N values are consistent with those reported for 87Sr/86Sr in lavas along the studied segment, which are controlled by the regional faults distribution. Two samples associated with the northern transtensional termination of the LOFS are the only datapoints showing pure MORB-like helium signatures. Whereas, towards the south the mantle-derived helium mixed with radiogenic component derived from magmatic assimilation of 4He-rich country rocks or contamination during the passage of the fluids through the upper crust. The degree of 4He contamination is related with the faults controlling the occurrence of volcanic and geothermal systems, with the most contaminated values associated with NW-striking structures. This is confirmed by d15N values that show increased mixing with crustal sediments and meteoric waters along NW faults (AFLS), while d13

  11. Performance analysis of a large-scale helium Brayton cryo-refrigerator with static gas bearing turboexpander

    International Nuclear Information System (INIS)

    Zhang, Yu; Li, Qiang; Wu, Jihao; Li, Qing; Lu, Wenhai; Xiong, Lianyou; Liu, Liqiang; Xu, Xiangdong; Sun, Lijia; Sun, Yu; Xie, Xiujuan; Wang, Bingming; Qiu, Yinan; Zhang, Peng

    2015-01-01

    Highlights: • A 2 kW at 20.0 K helium Brayton cryo-refrigerator is built in China. • A series of tests have been systematically conducted to investigate the performance of the cryo-refrigerator. • Maximum heat conductance proportion (90.7%) appears in the heat exchangers of cold box rather than those of heat reservoirs. • A model of helium Brayton cryo-refrigerator/cycle is presented according to finite-time thermodynamics. - Abstract: Large-scale helium cryo-refrigerator is widely used in superconducting systems, nuclear fusion engineering, and scientific researches, etc., however, its energy efficiency is quite low. First, a 2 kW at 20.0 K helium Brayton cryo-refrigerator is built, and a series of tests have been systematically conducted to investigate the performance of the cryo-refrigerator. It is found that maximum heat conductance proportion (90.7%) appears in the heat exchangers of cold box rather than those of heat reservoirs, which is the main characteristic of the helium Brayton cryo-refrigerator/cycle different from the air Brayton refrigerator/cycle. Other three characteristics also lie in the configuration of refrigerant helium bypass, internal purifier and non-linearity of specific heat of helium. Second, a model of helium Brayton cryo-refrigerator/cycle is presented according to finite-time thermodynamics. The assumption named internal purification temperature depth (PTD) is introduced, and the heat capacity rate of whole cycle is divided into three different regions in accordance with the PTD: room temperature region, upper internal purification temperature region and lower one. Analytical expressions of cooling capacity and COP are obtained, and we found that the expressions are piecewise functions. Further, comparison between the model and the experimental results for cooling capacity of the helium cryo-refrigerator shows that error is less than 7.6%. The PTD not only helps to achieve the analytical formulae and indicates the working

  12. Helium behaviour in aluminium under hydrostatic pressure

    International Nuclear Information System (INIS)

    Sokurskij, Yu.N.; Tebus, V.N.; Zudilin, V.A.; Tumanova, G.M.

    1989-01-01

    Effect of hydrostatic compression on equilibrium helium bubbles in low aluminium-lithium alloy irradiated in reactor at 570 K is investigated. Measurements of hydrostatic density and electron-microscopic investigations have shown, that application of up to 2 GPa pressure reduces equilibrium size of helium bubbles and reduces helium swelling. Kinetics and thermodynamics of the process are considered with application of 'rigid sphere' equation which describes helium state in bubbles

  13. Nucleation path of helium bubbles in metals during irradiation

    International Nuclear Information System (INIS)

    Morishita, Kazunori

    2008-01-01

    Thermodynamical formalization is made for description of the nucleation and growth of helium bubbles in metals during irradiation. The proposed formalization is available or evaluating both microstructural changes in fusion first wall materials where helium is produced by (n, α) nuclear transmutation reactions, and those in fusion divertor materials where helium particles with low energy are directly implanted. Calculated nucleation barrier is significantly reduced by the presence of helium, showing that a helium bubble with an appropriate number of helium atoms depending on bubble size can nucleate without any large nucleation barriers, even at a condition where an empty void has very large nucleation barrier without helium. With the proposed thermodynamical formalization, the nucleation and growth process of helium bubbles in iron during irradiation is simulated by the kinetic Monte-Carlo (KMC) technique. It shows the nucleation path of a helium bubble on the (N He , N V ) space as functions of temperatures and the concentration of helium in the matrix, where N He and N V are the number of helium atoms and vacancies in the helium bubble, respectively. Bubble growth rates depend on the nucleation path and suggest that two different mechanisms operate for bubble growth: one is controlled by vacancy diffusion and the other is controlled by interstitial helium diffusion. (author)

  14. Interferometric analysis of laboratory photoionized plasmas utilizing supersonic gas jet targets.

    Science.gov (United States)

    Swanson, Kyle James; Ivanov, Vladimir; Mancini, Roberto; Mayes, Daniel C.

    2018-06-01

    Photoionized plasmas are an important component of active galactic nuclei, x-ray binary systems and other astrophysical objects. Laboratory produced photoionized plasmas have mainly been studied at large scale facilities, due to the need for high intensity broadband x-ray flux. Using supersonic gas jets as targets has allowed university scale pulsed power generators to begin similar research. The two main advantages of this approach with supersonic gas jets include: possibility of a closer location to the x-ray source and no attenuation related to material used for containment and or tamping. Due to these factors, this experimental platform creates a laboratory environment that more closely resembles astrophysical environments. This system was developed at the Nevada Terawatt Facility using the 1 MA pulsed power generator Zebra. Neon, argon, and nitrogen supersonic gas jets are produced approximately 7-8mm from the z-pinch axis. The high intensity broadband x-ray flux produced by the collapse of the z-pinch wire array implosion irradiates the gas jet. Cylindrical wire arrays are made with 4 and 8 gold 10µm thick wire. The z-pinch radiates approximately 12-16kj of x-ray energy, with x-ray photons under 1Kev in energy. The photoionized plasma is measured via x-ray absorption spectroscopy and interferometry. A Mach-Zehnder interferometer is used to the measure neutral density of the jet prior to the zebra shot at a wavelength of 266 nm. A dual channel air-wedge shearing interferometer is used to measure electron density of the ionized gas jet during the shot, at wavelengths of 532nm and 266nm. Using a newly developed interferometric analysis tool, average ionization state maps of the plasma can be calculated. Interferometry for nitrogen and argon show an average ionization state in the range of 3-8. Preliminary x-ray absorption spectroscopy collected show neon absorption lines. This work was sponsored in part by DOE Office of Science Grant DE-SC0014451.

  15. Characterization of supersonic radiation diffusion waves

    International Nuclear Information System (INIS)

    Moore, Alastair S.; Guymer, Thomas M.; Morton, John; Williams, Benjamin; Kline, John L.; Bazin, Nicholas; Bentley, Christopher; Allan, Shelly; Brent, Katie; Comley, Andrew J.; Flippo, Kirk; Cowan, Joseph; Taccetti, J. Martin; Mussack-Tamashiro, Katie; Schmidt, Derek W.; Hamilton, Christopher E.; Obrey, Kimberly; Lanier, Nicholas E.; Workman, Jonathan B.; Stevenson, R. Mark

    2015-01-01

    Supersonic and diffusive radiation flow is an important test problem for the radiative transfer models used in radiation-hydrodynamics computer codes owing to solutions being accessible via analytic and numeric methods. We present experimental results with which we compare these solutions by studying supersonic and diffusive flow in the laboratory. We present results of higher-accuracy experiments than previously possible studying radiation flow through up to 7 high-temperature mean free paths of low-density, chlorine-doped polystyrene foam and silicon dioxide aerogel contained by an Au tube. Measurements of the heat front position and absolute measurements of the x-ray emission arrival at the end of the tube are used to test numerical and analytical models. We find excellent absolute agreement with simulations provided that the opacity and the equation of state are adjusted within expected uncertainties; analytical models provide a good phenomenological match to measurements but are not in quantitative agreement due to their limited scope. - Highlights: • The supersonic, diffusion of x-rays through sub-solid density materials is studied. • The data are more diffusive and of higher velocity than any prior work. • Scaled 1D analytic diffusion models reproduce the heat front evolution. • Refined radiation transport approximations are tested in numerical simulations. • Simulations match the data if material properties are adjusted within uncertainties

  16. Helium mobility in advanced nuclear ceramics

    International Nuclear Information System (INIS)

    Agarwal, Shradha

    2014-01-01

    The main goal of this work is to improve our knowledge on the mechanisms able to drive the helium behaviour in transition metal carbides and nitrides submitted to thermal annealing or ion irradiation. TiC, TiN and ZrC polycrystals were implanted with 3 MeV 3 He ions at room temperature in the fluence range 2 * 10 15 et 6 * 10 16 cm -2 . Some of them have been pre-irradiated with self-ions (14 MeV Ti or Zr). Fully controlled thermal annealing tests were subsequently carried out in the temperature range 1000 - 1600 C for two hours. The evolution of the helium depth distribution in function of implantation dose, temperature and pre-irradiation dose was measured thanks to the deuteron-induced nuclear reaction 3 He(d, p 0 ) 4 He between 900 keV and 1.8 MeV. The microstructure of implanted and annealed samples was investigated by transmission electron microscopy on thin foils prepared using the FIB technique. Additional characterization tools, as X-ray diffraction and Raman microspectrometry, have been also applied in order to obtain complementary information. Among the most relevant results obtained, the following have to be outlined: - double-peak helium depth profile was measured on as implanted sample for the three compounds. The first peak is located near the end of range and includes the major part of helium, a second peak located close to the surface corresponds to the helium atoms trapped by the native vacancies; - the helium retention capacity in transition metal carbides and nitrides submitted to fully controlled thermal treatments varies according to ZrC 0.92 ≤ TiC 0.96 ≤ TiN 0.96 ; - whatever the investigated material, a self-ion-induced pre-damaging does not modify the initial helium profile extent. The influence of the post-implantation thermal treatment remains preponderant in any case; - the apparent diffusion coefficient of helium is in the range 4 * 10 -18 - 2 * 10 -17 m 2 s -1 in TiC0.96 and 3.5 * 10 -19 - 5.3 * 10 -18 m 2 s -1 in TiN 0.96 between

  17. Measurement of helium production cross sections of iron for d-T neutrons by helium accumulation method

    Energy Technology Data Exchange (ETDEWEB)

    Takao, Yoshiyuki; Kanda, Yukinori; Nagae, Koji; Fujimoto, Toshihiro [Kyushu Univ., Fukuoka (Japan); Ikeda, Yujiro

    1997-03-01

    Helium production cross sections of Iron were measured by helium accumulation method for neutron energies from 13.5 to 14.9 MeV. Iron samples were irradiated with FNS, an intense d-T neutron source of JAERI. As the neutron energy varies according to the emission angle at the neutron source, the samples were set around the neutron source and were irradiated by neutrons of different energy depending on each sample position. The amount of helium produced in a sample was measured by Helium Atoms Measurement System at Kyushu University. The results of this work are in good agreement with other experimental data in the literature and also compared with the evaluated values in JENDL-3. (author)

  18. General characteristics and technical subjects on helium closed cycle gas turbine

    International Nuclear Information System (INIS)

    Shimomura, Hiroaki

    1996-06-01

    Making the subjects clarified on nuclear-heated gas turbine that will apply the inherent features of HTGR, the present paper discusses the difference of the helium closed cycle gas turbine, which is a candidate of nuclear gas turbine, with the open cycle gas turbine and indicates inherent problems of closed cycle gas turbine, its effects onto thermal efficiency and turbine output and difficulties due to the pressure ratio and specific speed from use of helium. The paper also discusses effects of the external pressure losses onto the efficiencies of compressor and turbine that are major components of the gas turbine. According to the discussions above, the paper concludes indicating the key idea on heat exchangers for the closed cycle gas turbine and design basis to solve the problems and finally offers new gas turbine conception using nitrogen or air that is changeable into open cycle gas turbine. (author)

  19. High-temperature helium-loop facility

    International Nuclear Information System (INIS)

    Tokarz, R.D.

    1981-09-01

    The high-temperature helium loop is a facility for materials testing in ultrapure helium gas at high temperatures. The closed loop system is capable of recirculating high-purity helium or helium with controlled impurities. The gas loop maximum operating conditions are as follows: 300 psi pressure, 500 lb/h flow rate, and 2100 0 F temperature. The two test sections can accept samples up to 3.5 in. diameter and 5 ft long. The gas loop is fully instrumented to continuously monitor all parameters of loop operation as well as helium impurities. The loop is fully automated to operate continuously and requires only a daily servicing by a qualified operator to replenish recorder charts and helium makeup gas. Because of its versatility and high degree of parameter control, the helium loop is applicable to many types of materials research. This report describes the test apparatus, operating parameters, peripheral systems, and instrumentation system. The experimental capabilities and test conand presents the results that have been obtained. The study has been conducted using a four-phase approach. The first phase develops the solution to the steady-state radon-diffusion equation in one-dimensieered barriers; disposal charge analysis; analysis of spent fuel policy implementation; spent f water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Uranium concentrations in the sediments which were above detection limits ranged from 0.10 t 51.2 ppM. The mean of the logarithms of the uranium concentrations was 0.53. A group of high uranium concentrations occurs near the junctions of quadrangles AB, AC, BB, a 200 mK. In case 2), x-ray studies of isotopic phase separation in 3 He-- 4 He bcc solids were carried out by B. A. Fraass

  20. Class B Fire-Extinguishing Performance Evaluation of a Compressed Air Foam System at Different Air-to-Aqueous Foam Solution Mixing Ratios

    Directory of Open Access Journals (Sweden)

    Dong-Ho Rie

    2016-06-01

    Full Text Available The purpose of this research is to evaluate the fire-extinguishing performance of a compressed air foam system at different mixing ratios of pressurized air. In this system, compressed air is injected into an aqueous solution of foam and then discharged. The experimental device uses an exclusive fire-extinguishing technology with compressed air foam that is produced based on the Canada National Laboratory and UL (Underwriters Laboratories 162 standards, with a 20-unit oil fire model (Class B applied as the fire extinguisher. Compressed air is injected through the air mixture, and results with different air-to-aqueous solution foam ratios of 1:4, 1:7, and 1:10 are studied. In addition, comparison experiments between synthetic surfactant foam and a foam type which forms an aqueous film are carried out at an air-to-aqueous solution foam ratio of 1:4. From the experimental results, at identical discharging flows, it was found that the fire-extinguishing effect of the aqueous film-forming foam is greatest at an air-to-aqueous solution foam ratio of 1:7 and weakest at 1:10. Moreover, the fire-extinguishing effect of the aqueous film-forming foam in the comparison experiments between the aqueous film-forming foam and the synthetic surfactant foam is greatest.

  1. Effect of helium on void swelling in vanadium

    International Nuclear Information System (INIS)

    Brimhall, J.L.; Simonen, E.P.

    1975-01-01

    Little difference in void microstructural swelling of vanadium is observed when helium is injected simultaneously with a 46- or 5-MeV nickel beam as compared to no helium injection, at least at high dose rates. At lower dose rates, a strong helium effect is seen when the helium is injected prior to heavy ion bombardment. The effect of the helium is shown to be a strong function of the overall displacement damage rate

  2. Integration of the effects of air quality measures in the SOLVE mix of measures

    International Nuclear Information System (INIS)

    Hesselmans, T.; Heijnis, F.

    2008-01-01

    SOLVE is the Dutch abbreviation for fast solutions for air and traffic and is a website by means of which provinces and municipalities in the Netherlands can gain insight into the best measures for traffic to improve the quality of the ambient air. Since halfway June 2008, the effects on air quality of approximately 35 traffic measures were included in the SOLVE mix of measures. The effects of traffic measures on emissions of particulate matter and nitrogen dioxide have been calculated. The effects are expressed in a decrease of the contribution of traffic indicated in a scale from A (very large decrease) to E (no decrease). The outcome depends on the location where the measure is implemented. [mk] [nl

  3. New airborne pathogen transport model for upper-room UVGI spaces conditioned by chilled ceiling and mixed displacement ventilation: Enhancing air quality and energy performance

    International Nuclear Information System (INIS)

    Kanaan, Mohamad; Ghaddar, Nesreen; Ghali, Kamel; Araj, Georges

    2014-01-01

    Highlights: • A model of bacteria transport is developed in CC/DV conditioned spaces with UVGI. • The model identifies buoyant, partially mixed, and fully mixed transport zones. • The predicted bacteria concentration agreed well with CFD results. • The higher the supply flow rate, the more restrictive is return air mixing ratio. • Upper-room UVGI results in higher return mixing and 33% in energy savings. - Abstract: The maximum allowable return air ratio in chilled ceiling (CC) and mixed displacement ventilation (DV) system for good air quality is regulated by acceptable levels of CO 2 concentration not to exceed 700 ppm and airborne bacterial count to satisfy World Health Organization (WHO) requirement for bacterial count not to exceed 500 CFU/m 3 . Since the CC/DV system relies on buoyancy effects for driving the contaminated air upwards, infectious particles will recirculate in the upper zone allowing effective utilization of upper-room ultraviolet germicidal irradiation (UVGI) to clean return air. The aim of this work is to develop a new airborne bacteria transport plume-multi-layer zonal model at low computational cost to predict bacteria concentration distribution in mixed CC/DV conditioned room without and with upper-room UVGI installed. The results of the simplified model were compared with layer-averaged concentration predictions of a detailed and experimentally-validated 3-D computational fluid dynamics (CFD) model. The comparison showed good agreement between bacteria transport model results and CFD predictions of room air bacteria concentration with maximum error of ±10.4 CFU/m 3 in exhaust air. The simplified model captured the vertical bacteria concentration distribution in room air as well as the locking effect of highest concentration happening at the stratification level. The developed bacteria transport model was used in a case study to determine the return air mixing ratio that minimizes energy consumption and maintains acceptable IAQ

  4. Clustering of Helium Atoms at a ½

    NARCIS (Netherlands)

    Berg, F. v.d.; Heugten, W. v.; Caspers, L.M.; Veen, A. v.; Hosson, J.Th.M. de

    1977-01-01

    Atomistic calculations on a ½<111>{110} edge dislocation show a restricted tendency of clustering of helium atom along this dislocation. Clusters with up to 4 helium atoms have been studied. A cluster with 3 helium proved to be most stable.

  5. Effect of helium on void formation in nickel

    International Nuclear Information System (INIS)

    Brimhall, J.L.; Simonen, E.P.

    1977-01-01

    This study examines the influence of helium on void formation in self-ion irradiated nickel. Helium was injected either simultaneously with, or prior to, the self-ion bombardment. The void microstructure was characterized as a function of helium deposition rate and the total heavy-ion dose. In particular, at 575 0 C and 5 X 10 -3 displacements per atom per second the void density is found to be proportional to the helium deposition rate. The dose dependence of swelling is initially dominated by helium driven nucleation. The void density rapidly saturates after which swelling continues with increasing dose only from void growth. It is concluded that helium promotes void nucleation in nickel with either helium implantation technique, pre-injection or simultaneous injection. Qualitative differences, however, are recognized. (Auth.)

  6. The installation of helium auxiliary systems in HTGR

    International Nuclear Information System (INIS)

    Qin Zhenya; Fu Xiaodong

    1993-01-01

    The inert gas Helium was chosen as reactor coolant in high temperature gas coolant reactor, therefore a set of Special and uncomplex helium auxiliary systems will be installed, the safe operation of HTR-10 can be safeguarded. It does not effect the inherent safety of HTR-10 MW if any one of all those systems were damaged during operation condition. This article introduces the design function and the system principle of all helium auxiliary systems to be installed in HTR-10. Those systems include: helium purification and its regeneration system, helium supply and storage system, pressure control and release system of primary system, dump system for helium auxiliary system and fuel handling, gaseous waste storage system, water extraction system for helium auxiliary systems and evacuation system for primary system

  7. Thirty years of screw compressors for helium; Dreissig Jahre Schraubenkompressoren fuer Helium

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, H. [Kaeser Kompressoren GmbH, Coburg (Germany). Technisches Buero/Auftragskonstruktion

    2007-07-01

    KAESER helium compressors, as well as their other industrial compressors, will be further developed with the intention to improve the availability and reliability of helium liquefaction systems. Further improvement of compressor and control system efficiency will ensure a low and sustainable operating cost. Fast supply of replacement parts with several years of warranty is ensured by a world-wide distribution system and is also worked on continuously. (orig.)

  8. Commercial helium reserves, continental rifting and volcanism

    Science.gov (United States)

    Ballentine, C. J.; Barry, P. H.; Hillegonds, D.; Fontijn, K.; Bluett, J.; Abraham-James, T.; Danabalan, D.; Gluyas, J.; Brennwald, M. S.; Pluess, B.; Seneshens, D.; Sherwood Lollar, B.

    2017-12-01

    Helium has many industrial applications, but notably provides the unique cooling medium for superconducting magnets in medical MRI scanners and high energy beam lines. In 2013 the global supply chainfailed to meet demand causing significant concern - the `Liquid Helium Crisis' [1]. The 2017 closure of Quatar borders, a major helium supplier, is likely to further disrupt helium supply, and accentuates the urgent need to diversify supply. Helium is found in very few natural gas reservoirs that have focused 4He produced by the dispersed decay (a-particle) of U and Th in the crust. We show here, using the example of the Rukwa section of the Tanzanian East African Rift, how continental rifting and local volcanism provides the combination of processes required to generate helium reserves. The ancient continental crust provides the source of 4He. Rifting and associated magmatism provides the tectonic and thermal mechanism to mobilise deep fluid circulation, focusing flow to the near surface along major basement faults. Helium-rich springs in the Tanzanian Great Rift Valley were first identified in the 1950's[2]. The isotopic compositions and major element chemistry of the gases from springs and seeps are consistent with their release from the crystalline basement during rifting [3]. Within the Rukwa Rift Valley, helium seeps occur in the vicinity of trapping structures that have the potential to store significant reserves of helium [3]. Soil gas surveys over 6 prospective trapping structures (1m depth, n=1486) show helium anomalies in 5 out of the 6 at levels similar to those observed over a known helium-rich gas reservoir at 1200m depth (7% He - Harley Dome, Utah). Detailed macroseep gas compositions collected over two days (n=17) at one site allows us to distinguish shallow gas contributions and shows the deep gas to contain between 8-10% helium, significantly increasing resource estimates based on uncorrected values (1.8-4.2%)[2,3]. The remainder of the deep gas is

  9. Supersonic expansion of argon into vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Habets, A H.M.

    1977-01-21

    A theoretical description of a free supersonic expansion process is given. Three distinct regions in the expansion are discussed, namely the continuum region, the gradual transition to the collisionless regime, and the free-molecular-flow stage. Important topics are the peaking-factor formalism, the thermal-conduction model, and the virtual-source formalism. The formation of the molecular beam from the expansion and condensation phenomena occurring in the expanding gas are discussed. The molecular beam machine used in the measurements is described and special attention is given to the cryopumps used in the supersonic sources as well as to the time-of-flight analysis of the molecular beam velocity distributions. Finally, the processing of experimental data is discussed, particularly the least-squares determination of best-fit representations of the measurements.

  10. Supersonic expansion of argon into vacuum

    International Nuclear Information System (INIS)

    Habets, A.H.M.

    1977-01-01

    A theoretical description of a free supersonic expansion process is given. Three distinct regions in the expansion are discussed, namely the continuum region, the gradual transition to the collisionless regime, and the free-molecular-flow stage. Important topics are the peaking-factor formalism, the thermal-conduction model, and the virtual-source formalism. The formation of the molecular beam from the expansion and condensation phenomena occurring in the expanding gas are discussed. The molecular beam machine used in the measurements is described and special attention is given to the cryopumps used in the supersonic sources as well as to the time-of-flight analysis of the molecular beam velocity distributions. Finally, the processing of experimental data is discussed, particularly the least-squares determination of best-fit representations of the measurements

  11. Absolute intensities of supersonic beams

    International Nuclear Information System (INIS)

    Beijerinck, H.C.W.; Habets, A.H.M.; Verster, N.F.

    1977-01-01

    In a molecular beam experiment the center-line intensity I(0) (particles s -1 sterad -1 ) and the flow rate dN/dt (particles s -1 ) of a beam source are important features. To compare the performance of different types of beam sources the peaking factor, kappa, is defined as the ratio kappa=π(I(0)/dN/dt). The factor π is added to normalize to kappa=1 for an effusive source. The ideal peaking factor for the supersonic flow from a nozzle follows from continuum theory. Numerical values of kappa are available. Experimental values of kappa for an argon expansion are presented in this paper, confirming these calculations. The actual center-line intensity of a supersonic beam source with a skimmer is reduced in comparison to this ideal intensity if the skimmer shields part of the virtual source from the detector. Experimental data on the virtual source radius are given enabling one to predict this shielding quantitatively. (Auth.)

  12. Mass spectrometric analysis of helium in stainless steel

    International Nuclear Information System (INIS)

    Isagawa, Hiroto; Wada, Yukio; Asakura, Yoshiro; Tsuji, Nobuo; Sato, Hitoshi; Tsutsumi, Kenichi

    1974-01-01

    Vacuum fusion mass-spectrometry was adopted for the analysis of helium in stainless steel. Samples were heated in a vacuum crucible, and helium in the samples was extracted and collected into a reservoir tank. The gas was then introduced through an orifice into a mass spectrometer, where the amount of helium was determined. The maspeq 070 quadrupole type mass spectrometer made by Shimazu Seisakusho, Ltd. was used. The resolving power was 150, and the mass range of the apparatus was 0-150. The determination limit of helium was about 2 x 10 -3 μg when standard helium gas was analyzed, and was about 10 -2 μg when the helium in stainless steel was analyzed. The relative standard deviation of helium intensity in repetitive measurement was about 2% in the amount of helium of 0.05 μg. Helium was injected into stainless steel by means of alpha particle irradiation with a cyclotron. The amount of helium in stainless steel was then determined. The energy of alpha particles was 34 MeV, and the beam area was 10 mm x 10 mm. The experimental data were higher than the expected value in one case, and were lower in the other case. This difference was attributable to the fluctuation of alpha particle beam, misplacement of sample plates, and unevenness of the alpha beam. (Fukutomi, T.)

  13. Nonequilibrium Supersonic Freestream Studied Using Coherent Anti-Stokes Raman Spectroscopy

    Science.gov (United States)

    Cutler, Andrew D.; Cantu, Luca M.; Gallo, Emanuela C. A.; Baurle, Rob; Danehy, Paul M.; Rockwell, Robert; Goyne, Christopher; McDaniel, Jim

    2015-01-01

    Measurements were conducted at the University of Virginia Supersonic Combustion Facility of the flow in a constant-area duct downstream of a Mach 2 nozzle. The airflow was heated to approximately 1200 K in the facility heater upstream of the nozzle. Dual-pump coherent anti-Stokes Raman spectroscopy was used to measure the rotational and vibrational temperatures of N2 and O2 at two planes in the duct. The expectation was that the vibrational temperature would be in equilibrium, because most scramjet facilities are vitiated air facilities and are in vibrational equilibrium. However, with a flow of clean air, the vibrational temperature of N2 along a streamline remains approximately constant between the measurement plane and the facility heater, the vibrational temperature of O2 in the duct is about 1000 K, and the rotational temperature is consistent with the isentropic flow. The measurements of N2 vibrational temperature enabled cross-stream nonuniformities in the temperature exiting the facility heater to be documented. The measurements are in agreement with computational fluid dynamics models employing separate lumped vibrational and translational/rotational temperatures. Measurements and computations are also reported for a few percent steam addition to the air. The effect of the steam is to bring the flow to thermal equilibrium, also in agreement with the computational fluid dynamics.

  14. Helium trapping in aluminum and sintered aluminum powders

    International Nuclear Information System (INIS)

    Das, S.K.; Kaminsky, M.; Rossing, T.

    1975-01-01

    The surface erosion of annealed aluminum and of sintered aluminum powder (SAP) due to blistering from implantation of 100-keV 4 He + ions at room temperature has been investigated. A substantial reduction in the blistering erosion rate in SAP was observed from that in pure annealed aluminum. In order to determine whether the observed reduction in blistering is due to enhanced helium trapping or due to helium released, the implanted helium profiles in annealed aluminum and in SAP have been studied by Rutherford backscattering. The results show that more helium is trapped in SAP than in aluminum for identical irradiation conditions. The observed reduction in erosion from helium blistering in SAP is more likely due to the dispersion of trapped helium at the large Al-Al 2 O 3 interfaces and at the large grain boundaries in SAP than to helium release

  15. Helium cooling of fusion reactors

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Baxi, C.; Bourque, R.; Dahms, C.; Inamati, S.; Ryder, R.; Sager, G.; Schleicher, R.

    1994-01-01

    On the basis of worldwide design experience and in coordination with the evolution of the International Thermonuclear Experimental Reactor (ITER) program, the application of helium as a coolant for fusion appears to be at the verge of a transition from conceptual design to engineering development. This paper presents a review of the use of helium as the coolant for fusion reactor blanket and divertor designs. The concept of a high-pressure helium cooling radial plate design was studied for both ITER and PULSAR. These designs can resolve many engineering issues, and can help with reaching the goals of low activation and high performance designs. The combination of helium cooling, advanced low-activation materials, and gas turbine technology may permit high thermal efficiency and reduced costs, resulting in the environmental advantages and competitive economics required to make fusion a 21st century power source. ((orig.))

  16. Velocity field measurements on high-frequency, supersonic microactuators

    Science.gov (United States)

    Kreth, Phillip A.; Ali, Mohd Y.; Fernandez, Erik J.; Alvi, Farrukh S.

    2016-05-01

    The resonance-enhanced microjet actuator which was developed at the Advanced Aero-Propulsion Laboratory at Florida State University is a fluidic-based device that produces pulsed, supersonic microjets by utilizing a number of microscale, flow-acoustic resonance phenomena. The microactuator used in this study consists of an underexpanded source jet that flows into a cylindrical cavity with a single, 1-mm-diameter exhaust orifice through which an unsteady, supersonic jet issues at a resonant frequency of 7 kHz. The flowfields of a 1-mm underexpanded free jet and the microactuator are studied in detail using high-magnification, phase-locked flow visualizations (microschlieren) and two-component particle image velocimetry. These are the first direct measurements of the velocity fields produced by such actuators. Comparisons are made between the flow visualizations and the velocity field measurements. The results clearly show that the microactuator produces pulsed, supersonic jets with velocities exceeding 400 m/s for roughly 60 % of their cycles. With high unsteady momentum output, this type of microactuator has potential in a range of ow control applications.

  17. Development of producing equipment of mixed butane-air with low dew point. Energy saving dewatering apparatus and 6A-Gas producing apparatus utilizing vaporization latent heat of butane and potential heat of air

    Energy Technology Data Exchange (ETDEWEB)

    Komine, Jin; Okada, Hiroto; Taniue, Nobuo; Tanoue, Keiju; Yamada, Tatsuhiko; Maekawa, Hisami; Murakami, Keiji

    1988-02-10

    A producing equipment of mixed butane-air with low dew point was developed. The dewatering was made during the period from the middle of May to the middle of October with high atmospheric humidity. The production capacity of the mixed gas is 3000 Nm/sup 3/ of 22% of butane and 78% of air per hour. The designed dew point is 18/sup 0/C or less under the pressure of 0.7 kg/cm/sup 2/G. The saturation temperature is 7.5/sup 0/C after the liquid butane is evacuated by a regulating valve. The air introduced into the dehumidifier through finned tubes is cooled to dewater based on those data. The partially vaporized butane is completely gasified by hot water in a vaporizer and mixed with the dewatered air by a venture mixer to produce the mixed butane-air. When the dewatering is incomplete, the spray nozzle must be just exchanged. The dew point of the produced gas was sufficiently below the designed value. The investment cost is low. The total operating cost is reduced by the remarkably decreased fuel cost though the power cost is increased. The noise level is low and the heat control is easy. (11 figs, 4 tabs, 1 photo)

  18. Microstructural observation on helium injected and creep ruptured JPCA

    International Nuclear Information System (INIS)

    Yamamoto, N.; Shiraishi, H.; Hishinuma, A.

    1986-01-01

    Detailed and quantitative TEM observation was performed on high temperature helium injected and creep ruptured JPCA to seek the prominent TiC distribution developed for suppression of helium embrittlement. Three different preinjection treatments were adopted for changing the TiC distribution. Considerable degradation in creep rupture strength by helium occurred in solution-annealed specimens, although there was much less effect of other treatments which included aging prior to injection. The concentration of helium at grain boundaries and the promotion of precipitation by helium during injection were responsible for the degradation. Therefore, the presence of TiC precipitates before helium introduction will help prevent degradation. On the other hand, the rupture elongation was reduced by helium after all treatments, although helium trapping by TiC precipitates in the matrix was successfully achieved. Consequently, the combined use of several methods may be necessary for further suppression of helium embrittlement. (orig.)

  19. Helium induced fine structure in the electronic spectra of anthracene derivatives doped into superfluid helium nanodroplets

    International Nuclear Information System (INIS)

    Pentlehner, D.; Slenczka, A.

    2015-01-01

    Electronic spectra of organic molecules doped into superfluid helium nanodroplets show characteristic features induced by the helium environment. Besides a solvent induced shift of the electronic transition frequency, in many cases, a spectral fine structure can be resolved for electronic and vibronic transitions which goes beyond the expected feature of a zero phonon line accompanied by a phonon wing as known from matrix isolation spectroscopy. The spectral shape of the zero phonon line and the helium induced phonon wing depends strongly on the dopant species. Phonon wings, for example, are reported ranging from single or multiple sharp transitions to broad (Δν > 100 cm −1 ) diffuse signals. Despite the large number of example spectra in the literature, a quantitative understanding of the helium induced fine structure of the zero phonon line and the phonon wing is missing. Our approach is a systematic investigation of related molecular compounds, which may help to shed light on this key feature of microsolvation in superfluid helium droplets. This paper is part of a comparative study of the helium induced fine structure observed in electronic spectra of anthracene derivatives with particular emphasis on a spectrally sharp multiplet splitting at the electronic origin. In addition to previously discussed species, 9-cyanoanthracene and 9-chloroanthracene will be presented in this study for the first time

  20. The future of helium as a natural resource

    CERN Document Server

    Glowacki, Bartek A; Nuttall, William J

    2012-01-01

    The book reveals the changing dynamics of the helium industry on both the supply-side and the demand-side. The helium industry has a long-term future and this important gas will have a role to play for many decades to come. Major new users of helium are expected to enter the market, especially in nuclear energy (both fission and fusion). Prices and volumes supplied and expected to rise and this will prompt greater efforts towards the development of new helium sources and helium conservation and recycling.

  1. Dynamic modeling and simulation of the superconducting super collider cryogenic helium system

    International Nuclear Information System (INIS)

    Hartzog, D.G.; Fox, V.G.; Mathias, P.M.; Nahmias, D.; McAshan, M.; Carcagno, R.

    1989-01-01

    To study the operation of the Superconducting Super Collider (SSC) cryogenic system during transient operating conditions, they have developed and programmed in FORTRAN, a time-dependent, nonlinear, homogeneous, lumped-parameter simulation model of the SSC cryogenic system. This dynamic simulator has a modular structure so that process flowsheet modifications can be easily accommodated with minimal recoding. It uses the LSODES integration package to advance the solution in time. For helium properties it uses Air Products implementation of the standard thermodynamic model developed by the NBS. Two additional simplified helium thermodynamic models developed by Air Products are available as options to reduce computation time. To facilitate the interpretation of output, they have linked the simulator to the speakeasy conversational language. The authors present a flowsheet of the process simulated, and the material and energy balances used in the engineering models. They then show simulation results for three transient operating scenarios: startup of the refrigeration system from standby to full load; the loss of 4K refrigeration caused by the tripping of one of two parallel compressors in a sector; and a full-field quench of a single magnet half-cell. They discuss the response of the fluid within the cryogenic circuits during these scenarios. 14 refs., 19 figs., 2 tabs

  2. Electronic properties of physisorbed helium

    International Nuclear Information System (INIS)

    Kossler, Sarah

    2011-01-01

    This thesis deals with electronic excitations of helium physisorbed on metal substrates. It is studied to what extent the electronic properties change compared to the gas phase due to the increased helium density and the proximity of the metal. Furthermore, the influence of different substrate materials is investigated systematically. To this end, up to two helium layers were adsorbed onto Ru (001), Pt (111), Cu (111), and Ag (111) surfaces in a custom-made cryostat. These samples were studied spectroscopically using synchrotron radiation and a time-of-flight detector. The experimental results were then analyzed in comparison with extensive theoretical model calculations.

  3. Electronic properties of physisorbed helium

    Energy Technology Data Exchange (ETDEWEB)

    Kossler, Sarah

    2011-09-22

    This thesis deals with electronic excitations of helium physisorbed on metal substrates. It is studied to what extent the electronic properties change compared to the gas phase due to the increased helium density and the proximity of the metal. Furthermore, the influence of different substrate materials is investigated systematically. To this end, up to two helium layers were adsorbed onto Ru (001), Pt (111), Cu (111), and Ag (111) surfaces in a custom-made cryostat. These samples were studied spectroscopically using synchrotron radiation and a time-of-flight detector. The experimental results were then analyzed in comparison with extensive theoretical model calculations.

  4. Measurement of Vibrational Non-Equilibrium in a Supersonic Freestream Using Dual-Pump CARS

    Science.gov (United States)

    Cutler, Andrew D.; Magnotti, Gaetano; Cantu, Luca M. L.; Gallo, Emanuela C. A.; Danehy, Paul M.; Burle, Rob; Rockwell, Robert; Goyne, Christopher; McDaniel, James

    2012-01-01

    Measurements have been conducted at the University of Virginia Supersonic Combustion Facility of the flow in a constant area duct downstream of a Mach 2 nozzle, where the airflow has first been heated to approximately 1200 K. Dual-pump CARS was used to acquire rotational and vibrational temperatures of N2 and O2 at two planes in the duct at different downstream distances from the nozzle exit. Wall static pressures in the nozzle are also reported. With a flow of clean air, the vibrational temperature of N2 freezes at close to the heater stagnation temperature, while the O2 vibrational temperature is about 1000 K. The results are well predicted by computational fluid mechanics models employing separate "lumped" vibrational and translational/rotational temperatures. Experimental results are also reported for a few percent steam addition to the air and the effect of the steam is to bring the flow to thermal equilibrium.

  5. Convective mixing and accretion in white dwarfs

    International Nuclear Information System (INIS)

    Koester, D.

    1976-01-01

    The evolution of convection zones in cooling white dwarfs with helium envelopes and outer hydrogen layers is calculated with a complete stellar evolution code. It is shown that white dwarfs of spectral type DB cannot be formed from DA stars by convective mixing. However, for cooler temperatures (Tsub(e) [de

  6. Thermal conductivity and Kapitza resistance of cyanate ester epoxy mix and tri-functional epoxy electrical insulations at superfluid helium temperature

    CERN Document Server

    Pietrowicz, S; Jones, S; Canfer, S; Baudouy, B

    2012-01-01

    In the framework of the European Union FP7 project EuCARD, two composite insulation systems made of cyanate ester epoxy mix and tri-functional epoxy (TGPAP-DETDA) with S-glass fiber have been thermally tested as possible candidates to be the electrical insulation of 13 T Nb$_{3}$Sn high field magnets under development for this program. Since it is expected to be operated in pressurized superfluid helium at 1.9 K and 1 atm, the thermal conductivity and the Kapitza resistance are the most important input parameters for the thermal design of this type of magnet and have been determined in this study. For determining these thermal properties, three sheets of each material with different thicknesses varying from 245 μm to 598 μm have been tested in steady-state condition in the temperature range of 1.6 K - 2.0 K. The thermal conductivity for the tri-functional epoxy (TGPAP-DETDA) epoxy resin insulation is found to be k=[(34.2±5.5).T-(16.4±8.2)]×10-3 Wm-1K-1 and for the cyanate ester epoxy k=[(26.8±4.8).T- (9...

  7. Exploring the isopycnal mixing and helium-heat paradoxes in a suite of Earth System Models

    OpenAIRE

    A. Gnanadesikan; R. Abernathey; M.-A. Pradal

    2014-01-01

    This paper uses a suite of Earth system models which simulate the distribution of He isotopes and radiocarbon to examine two paradoxes in Earth science, each of which results from an inconsistency between theoretically motivated global energy balances and direct observations. The helium–heat paradox refers to the fact that helium emissions to the deep ocean are far lower than would be expected given the rate of geothermal heating, since both are thought to b...

  8. Spectroscopy of Cold LiCa Molecules Formed on Helium Nanodroplets

    Science.gov (United States)

    2013-01-01

    We report on the formation of mixed alkali–alkaline earth molecules (LiCa) on helium nanodroplets and present a comprehensive experimental and theoretical study of the ground and excited states of LiCa. Resonance enhanced multiphoton ionization time-of-flight (REMPI-TOF) spectroscopy and laser induced fluorescence (LIF) spectroscopy were used for the experimental investigation of LiCa from 15000 to 25500 cm–1. The 42Σ+ and 32Π states show a vibrational structure accompanied by distinct phonon wings, which allows us to determine molecular parameters as well as to study the interaction of the molecule with the helium droplet. Higher excited states (42Π, 52Σ+, 52Π, and 62Σ+) are not vibrationally resolved and vibronic transitions start to overlap. The experimental spectrum is well reproduced by high-level ab initio calculations. By using a multireference configuration interaction (MRCI) approach, we calculated the 19 lowest lying potential energy curves (PECs) of the LiCa molecule. On the basis of these calculations, we could identify previously unobserved transitions. Our results demonstrate that the helium droplet isolation approach is a powerful method for the characterization of tailor-made alkali–alkaline earth molecules. In this way, important contributions can be made to the search for optimal pathways toward the creation of ultracold alkali–alkaline earth ground state molecules from the corresponding atomic species. Furthermore, a test for PECs calculated by ab initio methods is provided. PMID:24028555

  9. Two-dimensional unsteady lift problems in supersonic flight

    Science.gov (United States)

    Heaslet, Max A; Lomax, Harvard

    1949-01-01

    The variation of pressure distribution is calculated for a two-dimensional supersonic airfoil either experiencing a sudden angle-of-attack change or entering a sharp-edge gust. From these pressure distributions the indicial lift functions applicable to unsteady lift problems are determined for two cases. Results are presented which permit the determination of maximum increment in lift coefficient attained by an unrestrained airfoil during its flight through a gust. As an application of these results, the minimum altitude for safe flight through a specific gust is calculated for a particular supersonic wing of given strength and wing loading.

  10. Laser spectroscopy of antiprotonic helium

    CERN Document Server

    Hori, M

    2005-01-01

    When antiprotons (i.e. the antimatter counterpart of protons) are stopped in helium gas, 97% of them annihilate within picoseconds by reacting with the helium nuclei; a 3% fraction, however, survive with an anomalously long lifetime of several microseconds. This longevity is due to the formation of antiprotonic helium, which is a three-body Rydberg atom composed of an antiproton, electron, and helium nucleus. The ASACUSA experimental collaboration has recently synthesized large numbers of these atoms using CERN's Antiproton Decelerator facility, and measured the atom's transition frequencies to 60 parts per billion by laser spectroscopy. By comparing the experimental results with recent three-body QED calculations and the known antiproton cyclotron frequency, we were able to show that the antiproton mass and charge are the same as the corresponding proton values to a precision of 10 parts per billion. Ongoing and future series of experiments will further improve the experimental precision by using chirp-compe...

  11. Effect of swirling device on flow behavior in a supersonic separator for natural gas dehydration

    DEFF Research Database (Denmark)

    Wen, Chuang; Li, Anqi; Walther, Jens Honore

    2016-01-01

    is designed for an annular supersonic separator. The supersonic swirling separation flow of natural gas is calculated using the Reynolds Stress model. The results show that the viscous heating and strong swirling flow cause the adverse pressure in the annular channel, which may negatively affect......The supersonic separator is a revolutionary device to remove the condensable components from gas mixtures. One of the key issues for this novel technology is the complex supersonic swirling flow that is not well understood. A swirling device composed of an ellipsoid and several helical blades...

  12. Femtosecond spectroscopy on alkali-doped helium nanodroplets; Femtosekundenspektroskopie an alkalidotierten Helium-Nanotroepfchen

    Energy Technology Data Exchange (ETDEWEB)

    Claas, P.

    2006-01-15

    In the present thesis first studies on the short-time dynamics in alkali dimers and microclusters, which were bound on the surface of superfluid helium droplets, were presented. The experiments comprehended pump-probe measurements on the fs scale on the vibration dynamics on the dimers and on the fragmentation dynamics on the clusters. Generally by the studies it was shown that such extremely short slopes can also be observed on helium droplets by means of the femtosecond spectroscopy.

  13. Evolution from Rydberg gas to ultracold plasma in a supersonic atomic beam of Xe

    International Nuclear Information System (INIS)

    Hung, J; Sadeghi, H; Schulz-Weiling, M; Grant, E R

    2014-01-01

    A Rydberg gas of xenon, entrained in a supersonic atomic beam, evolves slowly to form an ultracold plasma. In the early stages of this evolution, when the free-electron density is low, Rydberg atoms undergo long-range ℓ-mixing collisions, yielding states of high orbital angular momentum. The development of high-ℓ states promotes dipole–dipole interactions that help to drive Penning ionization. The electron density increases until it reaches the threshold for avalanche. Ninety μs after the production of a Rydberg gas with the initial state, n 0 ℓ 0 =42d, a 432 V cm −1 electrostatic pulse fails to separate charge in the excited volume, an effect which is ascribed to screening by free electrons. Photoexcitation cross sections, observed rates of ℓ-mixing, and a coupled-rate-equation model simulating the onset of the electron-impact avalanche point consistently to an initial Rydberg gas density of 5×10 8 cm −3 . (paper)

  14. Evolution from Rydberg gas to ultracold plasma in a supersonic atomic beam of Xe

    Science.gov (United States)

    Hung, J.; Sadeghi, H.; Schulz-Weiling, M.; Grant, E. R.

    2014-08-01

    A Rydberg gas of xenon, entrained in a supersonic atomic beam, evolves slowly to form an ultracold plasma. In the early stages of this evolution, when the free-electron density is low, Rydberg atoms undergo long-range \\ell -mixing collisions, yielding states of high orbital angular momentum. The development of high-\\ell states promotes dipole-dipole interactions that help to drive Penning ionization. The electron density increases until it reaches the threshold for avalanche. Ninety μs after the production of a Rydberg gas with the initial state, {{n}_{0}}{{\\ell }_{0}}=42d, a 432 V cm-1 electrostatic pulse fails to separate charge in the excited volume, an effect which is ascribed to screening by free electrons. Photoexcitation cross sections, observed rates of \\ell -mixing, and a coupled-rate-equation model simulating the onset of the electron-impact avalanche point consistently to an initial Rydberg gas density of 5\\times {{10}^{8}}\\;c{{m}^{-3}}.

  15. Helium 3 precipitation in AISI 316L stainless steel induced by radioactive decay of tritium: Microstructural study of helium bubble precipitation

    International Nuclear Information System (INIS)

    Brass, A.M.; Chene, J.

    1994-01-01

    The development of the thermonuclear technology has given rise to a renewed interest in the study of the behavior of helium in metals. A great amount of work is still required for the understanding of the role of helium on the mechanical properties of structural materials for fusion technology, especially austenitic stainless steels. This article deals with the study of the influence of thermomechanical heat treatments, aging conditions (temperature and time), and helium concentration of helium bubble precipitation in a 316L austenitic steel. Helium was generated by the radioactive decay of tritium (tritium trick). Helium bubbles impede the grain growth in 316L steel aged at 1,373 K and also the recrystallization reaction at this temperature if cold working is performed prior to aging. Transmission electron microscopy (TEM) observations indicated a weak helium precipitation at 1,073 and 1,223 K, presumably due to the presence of trapping sites for tritium, and no bubble growth after aging up to 100 hours. Precipitation sites are mainly dislocations in the matrix at 1,073 K and grain boundaries and individual dislocations in the matrix at 1,223 K. The large bubble size (50 nm) observed at 1,373 K, even for short aging times (0.083), can partly be attributed to bubble dragging by dislocations toward the grain boundaries. Cold deformation prior to aging leads to a larger bubble size due to growth enhancement during recrystallization. Decreasing the helium content leads to a smaller helium bubble size and density. Tritium trapping at helium bubbles may favor helium 3 accumulation on defects such as grain boundaries, as observed by tritium autoradiography

  16. Ammonium carboxylate production from sugarcane trash using long-term air-lime pretreatment followed by mixed-culture fermentation.

    Science.gov (United States)

    Nachiappan, Balasubramaniyan; Fu, Zhihong; Holtzapple, Mark T

    2011-03-01

    Sugarcane trash (ST) was converted to ammonium carboxylates using a novel bioprocessing strategy known as long-term air-lime pretreatment/mixed-culture fermentation. At mild conditions (50°C, 5 weeks, 1-atm air, and excess lime loading of 0.4 g Ca(OH)(2)/(g dry biomass)), air-lime pretreatment of ST had moderate delignification (64.4%) with little loss in polysaccharides. Without employing detoxification, sterility, expensive nutrients, or costly enzymes, the feedstock (80% treated ST/20% chicken manure) was fermented to primarily ammonium acetate (>75%) and butyrate by a mixed culture of marine microorganisms at 55°C. In the best four-stage countercurrent fermentation, the product yield was 0.36 g total acids/(g VS fed) and the substrate conversion was 64%. Model predictions indicate both high acid concentrations (>47.5 g/L) and high substrate conversions (>70%) are possible at industrial scale. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Heat, mass and force flows in supersonic shockwave interaction

    Science.gov (United States)

    Dixon, John Michael

    There is no cost effective way to deliver a payload to space and, with rising fuel prices, currently the price to travel commercially is also becoming more prohibitive to the public. During supersonic flight, compressive shock waves form around the craft which could be harnessed to deliver an additional lift on the craft. Using a series of hanging plates below a lifting wing design, the total lift generated can be increased above conventional values, while still maintaining a similar lift-to-drag ratio. Here, we study some of the flows involved in supersonic shockwave interaction. This analysis uses ANSYS Fluent Computational Fluid Dynamics package as the modeler. Our findings conclude an increase of up to 30% lift on the modeled craft while maintaining the lift-to-drag profile of the unmodified lifting wing. The increase in lift when utilizing the shockwave interaction could increase transport weight and reduce fuel cost for space and commercial flight, as well as mitigating negative effects associated with supersonic travel.

  18. The adsorption of helium atoms on coronene cations

    Energy Technology Data Exchange (ETDEWEB)

    Kurzthaler, Thomas; Rasul, Bilal; Kuhn, Martin; Scheier, Paul, E-mail: Paul.Scheier@uibk.ac.at, E-mail: andrew.ellis@le.ac.uk [Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck (Austria); Lindinger, Albrecht [Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin (Germany); Ellis, Andrew M., E-mail: Paul.Scheier@uibk.ac.at, E-mail: andrew.ellis@le.ac.uk [Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)

    2016-08-14

    We report the first experimental study of the attachment of multiple foreign atoms to a cationic polycyclic aromatic hydrocarbon (PAH). The chosen PAH was coronene, C{sub 24}H{sub 12}, which was added to liquid helium nanodroplets and then subjected to electron bombardment. Using mass spectrometry, coronene cations decorated with helium atoms were clearly seen and the spectrum shows peaks with anomalously high intensities (“magic number” peaks), which represent ion-helium complexes with added stability. The data suggest the formation of a rigid helium layer consisting of 38 helium atoms that completely cover both faces of the coronene ion. Additional magic numbers can be seen for the further addition of 3 and 6 helium atoms, which are thought to attach to the edge of the coronene. The observation of magic numbers for the addition of 38 and 44 helium atoms is in good agreement with a recent path integral Monte Carlo prediction for helium atoms on neutral coronene. An understanding of how atoms and molecules attach to PAH ions is important for a number of reasons including the potential role such complexes might play in the chemistry of the interstellar medium.

  19. Effects of NO{sub x} and SO{sub 2} injections by supersonic aviation on sulfate aerosol and ozone in the troposphere and stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Dyominov, I.G.; Zadorozhny, A.M. [Novosibirsk State Univ. (Russian Federation); Elansky, N.F. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Atmospheric Physics

    1997-12-31

    The impact of supersonic aviation on atmospheric ozone and sulfate aerosol is examined with the help of a two-dimensional dynamical/radiative/chemical model of ozonosphere including aerosol physics. For SO{sub 2} emissions from aircraft as gas, gas/particles (90%/10%) mix, and particles of 0.01 {mu}m radius the sulphate aerosol surface density at maximum of changes increases against its background value by {approx}50%, {approx}75%, and {approx}200%, respectively. This effect of SO{sub 2} emissions with insignificant NO{sub x} injection leads to a significant decrease of total ozone by 2015 in the entire atmosphere. For NO{sub x} emissions which are anticipated in future (EI(NO{sub x}) = 15) any kind of SO{sub 2} emission results in significant weakening of supersonic aviation impact on ozone layer in the Northern Hemisphere. (author) 14 refs.

  20. Effects of NO{sub x} and SO{sub 2} injections by supersonic aviation on sulfate aerosol and ozone in the troposphere and stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Dyominov, I G; Zadorozhny, A M [Novosibirsk State Univ. (Russian Federation); Elansky, N F [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Atmospheric Physics

    1998-12-31

    The impact of supersonic aviation on atmospheric ozone and sulfate aerosol is examined with the help of a two-dimensional dynamical/radiative/chemical model of ozonosphere including aerosol physics. For SO{sub 2} emissions from aircraft as gas, gas/particles (90%/10%) mix, and particles of 0.01 {mu}m radius the sulphate aerosol surface density at maximum of changes increases against its background value by {approx}50%, {approx}75%, and {approx}200%, respectively. This effect of SO{sub 2} emissions with insignificant NO{sub x} injection leads to a significant decrease of total ozone by 2015 in the entire atmosphere. For NO{sub x} emissions which are anticipated in future (EI(NO{sub x}) = 15) any kind of SO{sub 2} emission results in significant weakening of supersonic aviation impact on ozone layer in the Northern Hemisphere. (author) 14 refs.

  1. ASSESSING THE IMPACT OF WIND SPEED AND MIXING-LAYER HEIGHT ON AIR QUALITY IN KRAKOW (POLAND IN THE YEARS 2014-2015

    Directory of Open Access Journals (Sweden)

    Robert OLENIACZ

    2016-05-01

    Full Text Available The paper discusses the role of wind speed and mixing-layer height in shaping the levels of pollutant concentrations in the air of Krakow (Southern Poland. The hourly averaged measurements of concentrations of selected air pollutants and wind speed values from the period of 2014-2015, recorded at two of the air quality monitoring stations within Krakow (both industrial and urban background were used for this purpose. Temporal variability of mixing-layer height in the area of the monitoring stations was determined using numerical modelling with the CALMET model and the measurements derived from, i.a., two upper air stations. It was found that wind speed and mixing-layer height are in at least moderate agreement with the concentration values for some pollutants. For PM10, PM2.5, NO2, NOx, CO and C6H6 correlation coefficient is of negative value, which indicates that the low wind speed and low mixing-layer height may be the dominant reason for elevated concentrations of these substances in the air, especially in the winter months. Moderate but positive correlation was found between O3 concentrations and analysed meteorological parameters, proving that the availability of appropriate precursors and their inflow from the neighbouring areas have an important role in the formation of tropospheric ozone. On the other hand, in case of SO2, a weak both positive and negative correlation coefficient was obtained, depending on the period and location of the station concerned.

  2. Initial assessment of environmental effects on SiC/SiC composites in helium-cooled nuclear systems

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I [ORNL

    2013-09-01

    This report summarized the information available in the literature on the chemical reactivity of SiC/SiC composites and of their components in contact with the helium coolant used in HTGR, VHTR and GFR designs. In normal operation conditions, ultra-high purity helium will have chemically controlled impurities (water, oxygen, carbon dioxide, carbon monoxide, methane, hydrogen) that will create a slightly oxidizing gas environment. Little is known from direct experiments on the reactivity of third generation (nuclear grade) SiC/SiC composites in contact with low concentrations of water or oxygen in inert gas, at high temperature. However, there is ample information about the oxidation in dry and moist air of SiC/SiC composites at high temperatures. This information is reviewed first in the next chapters. The emphasis is places on the improvement in material oxidation, thermal, and mechanical properties during three stages of development of SiC fibers and at least two stages of development of the fiber/matrix interphase. The chemical stability of SiC/SiC composites in contact with oxygen or steam at temperatures that may develop in off-normal reactor conditions supports the conclusion that most advanced composites (also known as nuclear grade SiC/SiC composites) have the chemical resistance that would allow them maintain mechanical properties at temperatures up to 1200 1300 oC in the extreme conditions of an air or water ingress accident scenario. Further research is needed to assess the long-term stability of advanced SiC/SiC composites in inert gas (helium) in presence of very low concentrations (traces) of water and oxygen at the temperatures of normal operation of helium-cooled reactors. Another aspect that needs to be investigated is the effect of fast neutron irradiation on the oxidation stability of advanced SiC/SiC composites in normal operation conditions.

  3. Self-deformation in a direct current driven helium jet micro discharge

    International Nuclear Information System (INIS)

    Xu, S. F.; Zhong, X. X.

    2016-01-01

    We report on the experimental observation of three dimensional self-deformation in an atmospheric micro discharge of the helium microjet through a tube into the ambient air upon a water electrode. The geometry of the discharge system is axial symmetric. While decreasing the discharge current, three dimensional collective motion of plasma filaments is directly observed. The three dimensional configuration of the discharge self changed from an axial symmetrical horn to a rectangular horn when the water acts as a cathode

  4. Self-deformation in a direct current driven helium jet micro discharge

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S. F.; Zhong, X. X., E-mail: xxzhong@sjtu.edu.cn [State Key Laboratory of Advanced Optical Communication Systems and Networks and Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2016-01-15

    We report on the experimental observation of three dimensional self-deformation in an atmospheric micro discharge of the helium microjet through a tube into the ambient air upon a water electrode. The geometry of the discharge system is axial symmetric. While decreasing the discharge current, three dimensional collective motion of plasma filaments is directly observed. The three dimensional configuration of the discharge self changed from an axial symmetrical horn to a rectangular horn when the water acts as a cathode.

  5. Self-deformation in a direct current driven helium jet micro discharge

    Science.gov (United States)

    Xu, S. F.; Zhong, X. X.

    2016-01-01

    We report on the experimental observation of three dimensional self-deformation in an atmospheric micro discharge of the helium microjet through a tube into the ambient air upon a water electrode. The geometry of the discharge system is axial symmetric. While decreasing the discharge current, three dimensional collective motion of plasma filaments is directly observed. The three dimensional configuration of the discharge self changed from an axial symmetrical horn to a rectangular horn when the water acts as a cathode.

  6. Helium release from radioisotope heat sources

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, D.E.; Early, J.W.; Starzynski, J.S.; Land, C.C.

    1984-05-01

    Diffusion of helium in /sup 238/PuO/sub 2/ fuel was characterized as a function of the heating rate and the fuel microstructure. The samples were thermally ramped in an induction furnace and the helium release rates measured with an automated mass spectrometer. The diffusion constants and activation energies were obtained from the data using a simple diffusion model. The release rates of helium were correlated with the fuel microstructure by metallographic examination of fuel samples. The release mechanism consists of four regimes, which are dependent upon the temperature. Initially, the release is controlled by movement of point defects combined with trapping along grain boundaries. This regime is followed by a process dominated by formation and growth of helium bubbles along grain boundaries. The third regime involves volume diffusion controlled by movement of oxygen vacancies. Finally, the release at the highest temperatures follows the diffusion rate of intragranular bubbles. The tendency for helium to be trapped within the grain boundaries diminishes with small grain sizes, slow thermal pulses, and older fuel.

  7. Recent developments in liquid helium 3

    International Nuclear Information System (INIS)

    Ramarao, I.

    1977-01-01

    The current status of the theories for the ground state of liquid helium 3, are reviewed. To begin with, a brief summary of the experimental results on the thermodynamic properties of liquid helium 3 including its recently discovered superfulid phases is given. The basic ideas of the Landau theory of a normal Fermi liquid are then introduced. A qualitative discussion of the current understanding of the anisotropic phases of superfluid helium 3 is given, the microscopic calculaations for the binding energy of liquid helium 3 are reviewed and the results obtained for the two-body contributions to the binding energy using the Brueckner-Goldstone formulation and that of Mohling and his collaborators are summarized and discussed. The importance of a proper estimate of the three-body contributions to the binding energy is stressed. The results obtained in the literature using variational methods and constrained variational methods are discussed. A critical analysis of the results by various methods is given. Despite much effort the basic problem of the ground state of liquid helium 3, remains unresolved. (author)

  8. Helium release from radioisotope heat sources

    International Nuclear Information System (INIS)

    Peterson, D.E.; Early, J.W.; Starzynski, J.S.; Land, C.C.

    1984-05-01

    Diffusion of helium in 238 PuO 2 fuel was characterized as a function of the heating rate and the fuel microstructure. The samples were thermally ramped in an induction furnace and the helium release rates measured with an automated mass spectrometer. The diffusion constants and activation energies were obtained from the data using a simple diffusion model. The release rates of helium were correlated with the fuel microstructure by metallographic examination of fuel samples. The release mechanism consists of four regimes, which are dependent upon the temperature. Initially, the release is controlled by movement of point defects combined with trapping along grain boundaries. This regime is followed by a process dominated by formation and growth of helium bubbles along grain boundaries. The third regime involves volume diffusion controlled by movement of oxygen vacancies. Finally, the release at the highest temperatures follows the diffusion rate of intragranular bubbles. The tendency for helium to be trapped within the grain boundaries diminishes with small grain sizes, slow thermal pulses, and older fuel

  9. Cosmological helium production simplified

    International Nuclear Information System (INIS)

    Bernstein, J.; Brown, L.S.; Feinberg, G.

    1988-01-01

    We present a simplified model of helium synthesis in the early universe. The purpose of the model is to explain clearly the physical ideas relevant to the cosmological helium synthesis, in a manner that does not overlay these ideas with complex computer calculations. The model closely follows the standard calculation, except that it neglects the small effect of Fermi-Dirac statistics for the leptons. We also neglect the temperature difference between photons and neutrinos during the period in which neutrons and protons interconvert. These approximations allow us to express the neutron-proton conversion rates in a closed form, which agrees to 10% accuracy or better with the exact rates. Using these analytic expressions for the rates, we reduce the calculation of the neutron-proton ratio as a function of temperature to a simple numerical integral. We also estimate the effect of neutron decay on the helium abundance. Our result for this quantity agrees well with precise computer calculations. We use our semi-analytic formulas to determine how the predicted helium abundance varies with such parameters as the neutron life-time, the baryon to photon ratio, the number of neutrino species, and a possible electron-neutrino chemical potential. 19 refs., 1 fig., 1 tab

  10. Low-temperature centrifugal helium compressor

    International Nuclear Information System (INIS)

    Kawada, M.; Togo, S.; Akiyama, Y.; Wada, R.

    1974-01-01

    A centrifugal helium compressor with gas bearings, which can be operated at the temperature of liquid nitrogen, has been investigated. This compressor has the advantages that the compression ratio should be higher than the room temperature operation and that the contamination of helium could be eliminated. The outer diameter of the rotor is 112 mm. The experimental result for helium gas at low temperature shows a flow rate of 47 g/s and a compression ratio of 1.2 when the inlet pressure was 1 ata and the rotational speed 550 rev/s. The investigation is now focused on obtaining a compression ratio of 1.5. (author)

  11. Production of amorphous nanoparticles by supersonic spray-drying with a microfluidic nebulator

    Science.gov (United States)

    Amstad, Esther; Gopinadhan, Manesh; Holtze, Christian; Osuji, Chinedum O.; Brenner, Michael P.; Spaepen, Frans; Weitz, David A.

    2015-08-01

    Amorphous nanoparticles (a-NPs) have physicochemical properties distinctly different from those of the corresponding bulk crystals; for example, their solubility is much higher. However, many materials have a high propensity to crystallize and are difficult to formulate in an amorphous structure without stabilizers. We fabricated a microfluidic nebulator that can produce amorphous NPs from a wide range of materials, even including pure table salt (NaCl). By using supersonic air flow, the nebulator produces drops that are so small that they dry before crystal nuclei can form. The small size of the resulting spray-dried a-NPs limits the probability of crystal nucleation in any given particle during storage. The kinetic stability of the a-NPs—on the order of months—is advantageous for hydrophobic drug molecules.

  12. Fundamental Aeronautics Program: Overview of Propulsion Work in the Supersonic Cruise Efficiency Technical Challenge

    Science.gov (United States)

    Castner, Ray

    2012-01-01

    The Supersonics Project, part of NASA's Fundamental Aeronautics Program, contains a number of technical challenge areas which include sonic boom community response, airport noise, high altitude emissions, cruise efficiency, light weight durable engines/airframes, and integrated multi-discipline system design. This presentation provides an overview of the current (2012) activities in the supersonic cruise efficiency technical challenge, and is focused specifically on propulsion technologies. The intent is to develop and validate high-performance supersonic inlet and nozzle technologies. Additional work is planned for design and analysis tools for highly-integrated low-noise, low-boom applications. If successful, the payoffs include improved technologies and tools for optimized propulsion systems, propulsion technologies for a minimized sonic boom signature, and a balanced approach to meeting efficiency and community noise goals. In this propulsion area, the work is divided into advanced supersonic inlet concepts, advanced supersonic nozzle concepts, low fidelity computational tool development, high fidelity computational tools, and improved sensors and measurement capability. The current work in each area is summarized.

  13. Reduced energy reqirement for air conditioning by using air diffusion with air flow from floor to ceiling

    Energy Technology Data Exchange (ETDEWEB)

    Bach, H; Dittes, W; Mangelsdorf, R; Detzer, R; Jungbaeck, E; Fitzner, K; Radtke, W; Soethout, F

    1982-02-01

    The condition of the air in the occupied zone in airconditioned rooms is influenced by the mixing of supply air with room air. When supplying air from the ceiling there is a mixing all over the room, when supplying from the floor or from desks there is a mixing region only in the lower area. Above this their is warm air from which the return air is drawn. For air supply from below the cooling load can be decreased. In combination with the possible enthalpy difference between room air and supply air this decrease of the cooling load influences the necessary air rate. The interdependence of various air conditioning systems and various air temperatures is shown with a computer program. The load factor for various air distribution system at various cooling loads have been measured in a room of (8 x 5)m/sup 2/ x 3m. Experiments in a smaller model room (scale 1:3) showed how the heat was transported from the mixing region to the stratification region. The theoretically gained influence of the supply air jets of the height of the mixing region and on the load rate could be verified by the experiments. For the design of the fresh air rate, experience has been gained by measurements with tracegas (N/sub 2/O) in a third room. In comparing calculations the annual energy consumption has been computed for a building assuming various air conditioning systems and typical operation data. From experience with the existing systems the conclusions have been drawn how air distribution from floor to ceiling can be installed and operated.

  14. Retention of hydrogen isotopes and helium in nickel

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Mitsumasa; Sato, Rikiya; Yamaguchi, Kenji; Yamawaki, Michio [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1996-10-01

    In the present study, a thin foil of nickel was irradiated by H{sub 2}{sup +}, D{sub 2}{sup +} and He{sup +} to a fluence of 1.2-6.0x10{sup 20}/m{sup 2} using the TBTS (Tritium Beam Test System) apparatus. The thermal desorption spectroscopy (TDS) technique was employed to evaluate the total amount of retained hydrogen isotope and helium atoms in nickel. In the spectra, two peaks appeared at 440-585K and 720-735K for helium. Hydrogen isotopes irradiation after helium preirradiation were found to enhance the helium release and to decrease the peak temperatures. Helium irradiation after hydrogen isotopes preirradiation were found to enhance the helium release, but the peak temperature showed little difference from that without preirradiation. (author)

  15. Radiation and gas conduction heat transport across a helium dewer multilayer insulation system

    Energy Technology Data Exchange (ETDEWEB)

    Green, M.A. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    This report describes a method for calculating mixed heat transfer through the multilayer insulation used to insulated a 4K liquid helium cryostat. The method described permits one to estimate the insulation potential for a multilayer insulation system from first principles. The heat transfer regimes included are: radiation, conduction by free molecule gas conduction, and conduction through continuum gas conduction. Heat transfer in the transition region between the two gas conduction regimes is also included.

  16. Explosive helium burning in white dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Khokhlov, A.M. (AN SSSR, Moscow. Astronomicheskij Sovet)

    1984-04-01

    Helium burning kinetics in white dwarfs has been considered at constant temperatures T >= 10/sup 9/ K and densities rho >10/sup 5/ g/cm/sup 3/. It is found, that helium detonation in white dwarfs does not lead to formation of light (A < 56) elements. Thus, helium white dwarf model for supernova 1 is inconsistent with observations.

  17. Liquid to gas leak ratios with liquid nitrogen and liquid helium

    International Nuclear Information System (INIS)

    Batzer, T.H.; Call, W.R.

    1985-01-01

    To predict the leak rates of liquid helium and liquid nitrogen containers at operating conditions we need to know how small leaks (10 -8 to 10 -5 atm-cm 3 air/s), measured at standard conditions, behave when flooded with these cryogens. Two small leaks were measured at ambient conditions (about 750 Torr and 295 K), at the normal boiling points of LN 2 and LHe, and at elevated pressures above the liquids. The ratios of the leak rates of the liquids at ambient pressure to the gases at ambient pressure and room temperature are presented. The leak rate ratio of LN 2 at elevated pressure was linear with pressure. The leak rate ratio of LHe at elevated pressure was also linear with pressure

  18. The Effect of Air Preheat at Atmospheric Pressure on the Formation of NO(x) in the Quick-Mix Sections of an Axially Staged Combustor

    Science.gov (United States)

    Vardakas, M. A.; Leong, M. Y.; Brouwer, J.; Samuelsen, G. S.; Holdeman, J. D.

    1999-01-01

    The Rich-burn/Quick-mix/Lean-burn (RQL) combustor concept has been proposed to minimize the formation of nitrogen oxides (NO(x)) in gas turbine systems. The success of this combustor strategy is dependent upon the efficiency of the mixing section bridging the fuel-rich and fuel-lean stages. Note that although these results were obtained from an experiment designed to study an RQL mixer, the link between mixing and NOx signatures is considerably broader than this application, in that the need to understand this link exists in most advanced combustors. The experiment reported herein was designed to study the effects of inlet air temperature on NO(x) formation in a mixing section. The results indicate that NO(x) emission is increased for all preheated cases compared to non-preheated cases. When comparing the various mixing modules, the affect of jet penetration is important, as this determines where NO(x) concentrations peak, and affects overall NO(x) production. Although jet air comprises 70 percent of the total airflow, the impact that jet air preheat has on overall NO(x) emissions is small compared to preheating both main and jet air flow.

  19. The measurement of mass spectrometric peak height ratio of helium isotope in trace samples

    International Nuclear Information System (INIS)

    Sun Mingliang

    1989-01-01

    An experiment study on the measurement of mass spectrometric peak height ratio of helium isotope in the trace gaseous sample is discussed by using the gas purification line designed by the authors and model VG-5400 static-vacuum noble gas mass spectrometer imported and air helium as a standard. The results show that the amount of He and Ne in natural gas sample is 99% after purification. When the amount of He in Mass Spectrometer is more than 4 x 10 -7 cm 3 STP, it's sensitivity remains stable, about 10 -4 A/cm 3 STP He and the precision of 3 He/ 4 He ratio within the following 17 days is 1.32%. The 'ABA' pattern and experiment condition in the measurement of mass spectrometric peak height ratio of He isotope are presented

  20. Stellar evolution as seen by mixed modes

    Directory of Open Access Journals (Sweden)

    Mosser Benoît

    2015-01-01

    Full Text Available The detection of mixed modes in subgiants and red giants allows us to monitor stellar evolution from the main sequence to the asymptotic giant branch and draw seismic evolutionary tracks. Quantified asteroseismic definitions that characterize the change in the evolutionary stages have been defined. This seismic information can now be used for stellar modelling, especially for studying the energy transport in the helium burning core or for specifying the inner properties of stars all along their evolution. Modelling will also allow us to study stars identified in the helium subflash stage, high-mass stars either arriving or quitting the secondary clump, or stars that could be in the blue-loop stage.

  1. Numerical study on dissimilar guide vane design with SCC piston for air and emulsified biofuel mixing improvement

    Directory of Open Access Journals (Sweden)

    Hamid Mohd Fadzli

    2017-01-01

    Full Text Available Crude palm oil (CPO is one of the most potential biofuels that can be applied in the conventional diesel engines, where the chemical properties of CPO are comparable to diesel fuel. However, its higher viscosity and heavier molecules can contributes to several engine problems such as low atomization during injection, carbon deposit formation, injector clogging, low mixing with air and lower combustion efficiency. An emulsification of biofuel and modifications of few engine critical components have been identified to mitigate the issues. This paper presents the effects of dissimilar guide vane design (GVD in terms of height variation of 0.25R, 0.3R and 0.35R at the intake manifold with shallow depth re-entrance combustion chamber (SCC piston application to the incylinder air flow characteristics improvement. The simulation results show that the intake manifold with GVD improved the performance of the air flow characteristic particularly swirl, tumble and cross tumble ratios from the intake manifold to the engine. The GVD with the height of 0.3R was found to be the optimum design with respect to the overall improvement of the air flow characteristic. The improvement of the air flow characteristic with the application of GVD and SCC piston in the engine was expected to contribute to a better air fuel mixing, fuel atomization and combustion efficiency of the engine using emulsified biofuel as a source of fuel.

  2. The subcontinental mantle beneath southern New Zealand, characterised by helium isotopes in intraplate basalts and gas-rich springs

    Science.gov (United States)

    Hoke, L.; Poreda, R.; Reay, A.; Weaver, S. D.

    2000-07-01

    New helium isotope data measured in Cenozoic intraplate basalts and their mantle xenoliths are compared with present-day mantle helium emission on a regional scale from thermal and nonthermal gas discharges on the South Island of New Zealand and the offshore Chatham Islands. Cenozoic intraplate basaltic volcanism in southern New Zealand has ocean island basalt affinities but is restricted to continental areas and absent from adjacent Pacific oceanic crust. Its distribution is diffuse and widespread, it is of intermittent timing and characterised by low magma volumes. Most of the 3He/ 4He ratios measured in fluid inclusions in mantle xenocrysts and basalt phenocrysts such as olivine, garnet, and amphibole fall within the narrow range of 8.5 ± 1.5 Ra (Ra is the atmospheric 3He/ 4He ratio) with a maximum value of 11.5 Ra. This range is characteristic of the relatively homogeneous and degassed upper MORB-mantle helium reservoir. No helium isotope ratios typical of the lower less degassed mantle (>12 Ra), such as exemplified by the modern hot-spot region of Hawaii (with up to 32 Ra) were measured. Helium isotope ratios of less than 8 Ra are interpreted in terms of dilution of upper mantle helium with a radiogenic component, due to either age of crystallisation or small-scale mantle heterogeneities caused by mixing of crustal material into the upper mantle. The crude correlation between age of samples and helium isotopes with generally lower R/Ra values in mantle xenoliths compared with host rock phenocrysts and the in general depleted Nd and Sr isotope ratios and the light rare earth element enrichment of the basalts supports derivation of melts as small melt fractions from a depleted upper mantle, with posteruptive ingrowth of radiogenic helium as a function of lithospheric age. In comparison, the regional helium isotope survey of thermal and nonthermal gas discharges of the South Island of New Zealand shows that mantle 3He anomalies in general do not show an obvious

  3. Helium leak and chemical impurities control technology in HTTR

    International Nuclear Information System (INIS)

    Tochio, Daisuke; Shimizu, Atsushi; Hamamoto, Shimpei; Sakaba, Nariaki

    2014-01-01

    Japan Atomic Energy Agency (JAEA) has designed and developed high-temperature gas-cooled reactor (HTGR) hydrogen cogeneration system named gas turbine high-temperature reactor (GTHTR300C) as a commercial HTGR. Helium gas is used as the primary coolant in HTGR. Helium gas is easy to leak, and the primary helium leakage should be controlled tightly from the viewpoint of preventing the release of radioactive materials to the environment. Moreover from the viewpoint of preventing the oxidization of graphite and metallic material, the helium coolant chemistry should be controlled tightly. The primary helium leakage and the helium coolant chemistry during the operation is the major factor in the HTGR for commercialization of HTGR system. This paper shows the design concept and the obtained operational experience on the primary helium leakage control and primary helium impurity control in the high-temperature engineering test reactor (HTTR) of JAEA. Moreover, the future plan to obtain operational experience of these controls for commercialization of HTGR system is shown. (author)

  4. Supersonic and transonic Mach probe for calibration control in the Trisonic Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Alexandru Marius PANAIT

    2017-12-01

    Full Text Available A supersonic and high speed transonic Pitot Prandtl is described as it can be implemented in the Trisonic Wind Tunnel for calibration and verification of Mach number precision. A new calculation method for arbitrary precision Mach numbers is proposed and explained. The probe is specially designed for the Trisonic wind tunnel and would greatly simplify obtaining a precise Mach calibration in the critical high transonic and low supersonic regimes, where typically wind tunnels exhibit poor performance. The supersonic Pitot Prandtl combined probe is well known in the aerospace industry, however the proposed probe is a derivative of the standard configuration, combining a stout cone-cylinder probe with a supersonic Pitot static port which allows this configuration to validate the Mach number by three methods: conical flow method – using the pressure ports on a cone generatrix, the Schlieren-optical method of shock wave angle photogrammetry and the Rayleigh supersonic Pitot equation, while having an aerodynamic blockage similar to that of a scaled rocket model commonly used in testing. The proposed probe uses an existing cone-cylinder probe forebody and support, adding only an afterbody with a support for a static port.

  5. Identification of novel synthetic organic compounds with supersonic gas chromatography-mass spectrometry.

    Science.gov (United States)

    Fialkov, Alexander B; Amirav, Aviv

    2004-11-26

    Several novel synthetic organic compounds were successfully analyzed with a unique type of GC-MS titled Supersonic GC-MS following a failure in their analysis with standard GC-MS. Supersonic GC-MS is based on interfacing GC and MS with a supersonic molecular beam (SMB) and on electron ionization of sample compounds as vibrationally cold molecules while in the SMB, or by cluster chemical ionization. The analyses of novel synthetic organic compounds significantly benefited from the extended range of compounds amenable to analyses with the Supersonic GC-MS. The Supersonic GC-MS enabled the analysis of thermally labile compounds that usually degrade in the GC injector, column and/or ion source. Due to the high carrier gas flow rate at the injector liner and column these compounds eluted without degradation at significantly lower elution temperatures and the use of fly-through EI ion source eliminated any sample degradation at the ion source. The cold EI feature of providing trustworthy enhanced molecular ion (M+), complemented by its optional further confirmation with cluster CI was highly valued by the synthetic organic chemists that were served by the Supersonic GC-MS. Furthermore, the provision of extended mass spectral structural, isomer and isotope information combined with short (a few minutes) GC-MS analysis times also proved beneficial for the analysis of unknown synthetic organic compounds. As a result, the synthetic organic chemists were provided with both qualitative and quantitative data on the composition of their synthetic mixture, and could better follow the path of their synthetic chemistry. Ten cases of such analyses are demonstrated in figures and discussed.

  6. A reciprocating liquid helium pump used for forced flow of supercritical helium

    International Nuclear Information System (INIS)

    Krafft, G.; Zahn, G.

    1978-01-01

    The performance of a small double acting piston pump for circulating helium in a closed heat transfer loop is described. The pump was manufactured by LINDE AG, Munich, West Germany. The measured flow rate of supercritical helium was about 17 gs -1 (500 lhr -1 ) with a differential pressure of Δp = 0.5 x 10 5 Nm -2 at a working pressure of p = 6 x 10 5 Nm -2 . At differential pressures beyond 0.5 x 10 5 Nm -2 the volumetric efficiency decreases. (author)

  7. Scaled experiments using the helium technique to study the vehicular blockage effect on longitudinal ventilation control in tunnels

    DEFF Research Database (Denmark)

    Alva, Wilson Ulises Rojas; Jomaas, Grunde; Dederichs, Anne

    2015-01-01

    A model tunnel (1:30 compared to a standard tunnel section) with a helium-air smoke mixture was used to study the vehicular blockage effect on longitudinal ventilation smoke control. The experimental results showed excellent agreement with full-scale data and confirmed that the critical velocity...

  8. Hyperpolarized 3-helium MR imaging of the lungs: testing the concept of a central production facility

    International Nuclear Information System (INIS)

    Beek, E.J.R. van; Schmiedeskamp, J.; Filbir, F.; Heil, W.; Wolf, M.; Otten, E.; Wild, J.M.; Paley, M.N.J.; Fichele, S.; Woodhouse, N.; Swift, A.; Knitz, F.; Mills, G.H.

    2003-01-01

    The aim of this study was to test the feasibility of a central production facility with distribution network for implementation of hyperpolarized 3-helium MRI. The 3-helium was hyperpolarized to 50-65% using a large-scale production facility based at a university in Germany. Using a specially designed transport box, containing a permanent low-field shielded magnet and dedicated iron-free glass cells, the hyperpolarized 3-helium gas was transported via airfreight to a university in the UK. At this location, the gas was used to perform in vivo MR experiments in normal volunteers and patients with chronic obstructive lung diseases. Following initial tests, the transport (road-air-road cargo) was successfully arranged on six occasions (approximately once per month). The duration of transport to imaging averaged 18 h (range 16-20 h), which was due mainly to organizational issues such as working times and flight connections. During the course of the project, polarization at imaging increased from 20% to more than 30%. A total of 4 healthy volunteers and 8 patients with chronic obstructive pulmonary disease were imaged. The feasibility of a central production facility for hyperpolarized 3-helium was demonstrated. This should enable a wider distribution of gas for this novel technology without the need for local start-up costs. (orig.)

  9. Investigation of helium-induced embrittlement

    International Nuclear Information System (INIS)

    Sabelova, V.; Slugen, V.; Krsjak, V.

    2014-01-01

    In this work, the hardness of Fe-9%(wt.) Cr binary alloy implanted by helium ions up to 1000 nm was investigated. The implantations were performed using linear accelerator at temperatures below 80 grad C. Isochronal annealing up to 700 grad C with the step of 100 grad C was applied on the helium implanted samples in order to investigate helium induced embrittlement of material. Obtained results were compared with theoretical calculations of dpa profiles. Due to the results, the nano-hardness technique results to be an appropriate approach to the hardness determination of thin layers of implanted alloys. Both, experimental and theoretical calculation techniques (SRIM) show significant correlation of measured results of induced defects. (authors)

  10. Jet arrays in supersonic crossflow — An experimental study

    Science.gov (United States)

    Ali, Mohd Yousuf; Alvi, Farrukh

    2015-12-01

    Jet injection into a supersonic crossflow is a classical fluid dynamics problem with many engineering applications. Several experimental and numerical studies have been taken up to analyze the interaction of a single jet with the incoming crossflow. However, there is a dearth of the literature on the interaction of multiple jets with one another and with the crossflow. Jets in a supersonic crossflow are known to produce a three-dimensional bow-shock structure due to the blockage of the flow. Multiple jets in a streamwise linear array interact with both one another and the incoming supersonic flow. In this paper, a parametric study is carried out to analyze the effect of microjet (sub-mm diameter) injection in a Mach 1.5 supersonic crossflow using flow visualization and velocity field measurements. The variation of the microjet orifice diameter and spacing within an array is used to study the three-dimensional nature of the flow field around the jets. The strength of the microjet-generated shock, scaling of the shock wave angle with the momentum coefficient, averaged streamwise, spanwise, and cross-stream velocity fields, and microjet array trajectories are detailed in the paper. It was found that shock angles of the microjet-generated shocks scale with the momentum coefficient for the three actuator configurations tested. As the microjets issue in the crossflow, a pair of longitudinal counter-rotating vortices (CVPs) are formed. The vortex pairs remain coherent for arrays with larger spanwise spacing between the micro-orifices and exhibit significant three-dimensionality similar to that of a single jet in crossflow. As the spacing between the jets is reduced, the CVPs merge resulting in a more two-dimensional flow field. The bow shock resulting from microjet injection also becomes nearly two-dimensional as the spacing between the micro-orifices is reduced. Trajectory estimations yield that microjets in an array have similar penetration as single jets. A notional

  11. New methods for analyzing transport phenomena in supersonic ejectors

    International Nuclear Information System (INIS)

    Lamberts, Olivier; Chatelain, Philippe; Bartosiewicz, Yann

    2017-01-01

    Highlights: • Simulation of a supersonic ejector with the open source software for CFD OpenFOAM. • Validation of the numerical tool based on flow structures obtained by schlieren. • Application of the momentum and energy tube analysis tools to a supersonic ejector. • Extension of this framework to exergy to construct exergy transport tubes. • Quantification of local transfers and losses of exergy within the ejector. - Abstract: This work aims at providing novel insights into the quantification and the location of the transfers and the irreversibilities within supersonic ejectors, and their connection with the entrainment. In this study, we propose two different and complementary approaches. First of all, recent analysis tools based on momentum and energy tubes (Meyers and Meneveau (2013)) are extended to the present compressible flow context and applied to the mean-flow structure of turbulent flow within the ejector. Furthermore, the transport equation for the mean-flow total exergy is derived and exergy transport tubes are proposed as a tool for the investigation of transport phenomena within supersonic ejectors. In addition to this topological approach, an analysis based on classical stream tubes is performed in order to quantitatively investigate transfers between the primary and the secondary streams all along the ejector. Finally, the present work identifies the location of exergy losses and their origins. Throughout this analysis, new local and cumulative parameters related to transfers and irreversibilities are introduced. The proposed methodology sheds light on the complex phenomena at play and may serve as a basis for the analysis of transport phenomena within supersonic ejectors. For the ejector under consideration, although global transfers are more important in on-design conditions, it is shown that the net gain in exergy of the secondary stream is maximum for a value of the back pressure that is close to the critical back pressure, as

  12. Sonic Helium Detectors in the Fermilab Tevatron

    Science.gov (United States)

    Bossert, R. J.

    2006-04-01

    In the Fermilab Tevatron cryogenic system there are many remotely located low-pressure plate relief valves that must vent large volumes of cold helium gas when magnet quenches occur. These valves can occasionally stick open or not reseat completely, resulting in a large helium loss. As such, the need exists for a detector to monitor the relief valve's discharge area for the presence of helium. Due to the quantity needed, cost is an important factor. A unit has been developed and built for this purpose that is quite inexpensive. Its operating principle is based on the speed of sound, where two closely matched tubes operate at their acoustic resonant frequency. When helium is introduced into one of these tubes, the resulting difference in acoustic time of flight is used to trigger an alarm. At present, there are 39 of these units installed and operating in the Tevatron. They have detected many minor and major helium leaks, and have also been found useful in detecting a rise in the helium background in the enclosed refrigerator buildings. This paper covers the construction, usage and operational experience gained with these units over the last several years.

  13. Sonic helium detectors in the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Bossert, R.J.; Fermilab

    2006-01-01

    In the Fermilab Tevatron cryogenic system there are many remotely located low-pressure plate relief valves that must vent large volumes of cold helium gas when magnet quenches occur. These valves can occasionally stick open or not reseat completely, resulting in a large helium loss. As such, the need exists for a detector to monitor the relief valve's discharge area for the presence of helium. Due to the quantity needed, cost is an important factor. A unit has been developed and built for this purpose that is quite inexpensive. Its operating principle is based on the speed of sound, where two closely matched tubes operate at their acoustic resonant frequency. When helium is introduced into one of these tubes, the resulting difference in acoustic time of flight is used to trigger an alarm. At present, there are 39 of these units installed and operating in the Tevatron. They have detected many minor and major helium leaks, and have also been found useful in detecting a rise in the helium background in the enclosed refrigerator buildings. This paper covers the construction, usage and operational experience gained with these units over the last several years

  14. Helium production in reactor materials

    International Nuclear Information System (INIS)

    Lippincott, E.P.; McElroy, W.N.; Farrar, H. IV.

    1975-02-01

    Comparisons of integral helium production measurements with predictions based on ENDF/B Version IV cross sections have been made. It is concluded that an ENDF/B helium production cross section file should be established in order to ensure a complete and consistent cross section evaluation to meet accuracies required for LMFBR, CTR, and LWR applications. (U.S.)

  15. Pressurized helium II-cooled magnet test facility

    International Nuclear Information System (INIS)

    Warren, R.P.; Lambertson, G.R.; Gilbert, W.S.; Meuser, R.B.; Caspi, S.; Schafer, R.V.

    1980-06-01

    A facility for testing superconducting magnets in a pressurized bath of helium II has been constructed and operated. The cryostat accepts magnets up to 0.32 m diameter and 1.32 m length with current to 3000 A. In initial tests, the volume of helium II surrounding the superconducting magnet was 90 liters. Minimum temperature reached was 1.7 K at which point the pumping system was throttled to maintain steady temperature. Helium II reservoir temperatures were easily controlled as long as the temperature upstream of the JT valve remained above T lambda; at lower temperatures control became difficult. Positive control of the temperature difference between the liquid and cold sink by means of an internal heat source appears necessary to avoid this problem. The epoxy-sealed vessel closures, with which we have had considerable experience with normal helium vacuum, also worked well in the helium II/vacuum environment

  16. Modeling Secondary Neutral Helium in the Heliosphere

    International Nuclear Information System (INIS)

    Müller, Hans-Reinhard; Möbius, Eberhard; Wood, Brian E.

    2016-01-01

    An accurate, analytic heliospheric neutral test-particle code for helium atoms from the interstellar medium (ISM) is coupled to global heliospheric models dominated by hydrogen and protons from the solar wind and the ISM. This coupling enables the forward-calculation of secondary helium neutrals from first principles. Secondaries are produced predominantly in the outer heliosheath, upwind of the heliopause, by charge exchange of helium ions with neutral atoms. The forward model integrates the secondary production terms along neutral trajectories and calculates the combined neutral helium phase space density in the innermost heliosphere where it can be related to in-situ observations. The phase space density of the secondary component is lower than that of primary neutral helium, but its presence can change the analysis of primaries and the ISM, and can yield valuable insight into the characteristics of the plasma in the outer heliosheath. (paper)

  17. Investigation of the helium proportion influence on the Prandtl number value of gas mixtures

    Directory of Open Access Journals (Sweden)

    S. A. Burtsev

    2014-01-01

    Full Text Available The paper investigates an influence of helium fraction (light gases on the Prandtl number value for binary and more complex gas mixtures.It is shown that a low value of the Prandtl number (Pr-number results in decreasing a temperature recovery factor value and, respectively, in reducing a recovery temperature value on the wall (thermoinsulated wall temperature with the compressive gas flow bypassing it. This, in turn, allows us to increase efficiency of gasdynamic energy separation in Leontyev's tube.The paper conducts a numerical research of the influence of binary and more complex gas mixture composition on the Prandtl number value. It is shown that a mixture of two gases with small and large molecular weight allows us to produce a mixture with a lower value of the Prandtl number in comparison with the initial gases. Thus, the value of Prandtl number decreases by 1.5-3.2 times in comparison with values for pure components (the more a difference of molar mass of components, the stronger is a decrease.The technique to determine the Prandtl number value for mixtures of gases in the wide range of temperatures and pressure is developed. Its verification based on experimental data and results of numerical calculations of other authors is executed. It is shown that it allows correct calculation of binary and more complex mixtures of gasesFor the mixtures of inert gases it has been obtained that the minimum value of the Prandtl number is as follows: for helium - xenon mixtures (He-Xe makes 0.2-0.22, for helium - krypton mixtures (He-Kr – 0.3, for helium - argon mixes (He-Ar – 0.41.For helium mixture with carbon dioxide the minimum value of the Prandtl number makes about 0.4, for helium mixture with N2 nitrogen the minimum value of the Prandtl number is equal to 0.48, for helium-methane (CH4 - 0.5 and helium – oxygen (O2 – 0.46.This decrease is caused by the fact that the thermal capacity of mixture changes under the linear law in regard to the

  18. Meteoritic anomalies and explosive neutron processing of helium-burning shells

    International Nuclear Information System (INIS)

    Thielemann, F.K.; Arnould, M.; Hillebrandt, W.

    1978-07-01

    The late addition to the average solar mix of some heavy elements, and particularly r-process nuclei of exotic composition seems to be compatible with recent meteoritic analyses. The very origin of such alien components and their peculiar composition have to be understood on grounds of astrophysical models. As a first step in this direction, the present work analyses the explosive nuclear processing associated with the passage of a supernova shock front through the helium-burning shell of a massive presupernova star, and particularly examines the resulting heavy (A >= 60) element yields. (orig.) 891 WL [de

  19. Behaviour of helium after implantation in molybdenum

    International Nuclear Information System (INIS)

    Viaud, C.; Maillard, S.; Carlot, G.; Valot, C.; Gilabert, E.; Sauvage, T.; Peaucelle, C.; Moncoffre, N.

    2009-01-01

    This study deals with the behaviour of helium in a molybdenum liner dedicated to the retention of fission products. More precisely this work contributes to evaluate the release of implanted helium when the gas has precipitated into nanometric bubbles close to the free surface. A simple model dedicated to calculate the helium release in such a condition is presented. The specificity of this model lays on the assumption that the gas is in equilibrium with a simple distribution of growing bubbles. This effort is encouraging since the calculated helium release fits an experimental dataset with a set of parameters in good agreement with the literature

  20. Use of helium in uranium exploration, Grants district

    International Nuclear Information System (INIS)

    DeVoto, R.H.; Mead, R.H.; Martin, J.P.; Bergquist, L.E.

    1980-01-01

    The continuous generation of inert helium gas from uranium and its daughter products provides a potentially useful means for remote detection of uranium deposits. The practicality of conducting helium surveys in the atmosphere, soil gas, and ground water to explore for buried uranium deposits has been tested in the Grants district and in the Powder River Basin of Wyoming. No detectable helium anomalies related to buried or surface uranium deposits were found in the atmosphere. However, reproducible helium-in-soil-gas anomalies were detected spatially related to uranium deposits buried from 50 to 800 ft deep. Diurnal and atmospheric effects can cause helium content variations (noise) in soil gas that are as great as the anomalies observed from instantaneous soil-gas samples. Cumulative soil-gas helium analyses, such as those obtained from collecting undisturbed soil samples and degassing them in the laboratory, may reveal anomalies from 5 to 100 percent above background. Ground water samples from the Grants district, New Mexico, and the Powder River Basin, Wyoming, have distinctly anomalous helium values spatially related to buried uranium deposits. In the southern Powder River Basin, helium values 20 to 200 percent above background occur 2 to 18 mile down the ground-water flow path from known uranium roll-front deposits. In the Grants district, helium contents 40 to 700 percent above background levels are present in ground waters from the host sandstone in the vicinity of uranium deposits and from aquifers up to 3,000 ft stratigraphically above the deep uranium deposits. The use of helium in soil and ground-water surveys, along with uranium and radon analyses of the same materials, is strongly recommended is expensive, deep, uranium-exploration programs such as those being conducted in the Grants district