WorldWideScience

Sample records for supersoft symmetry energy

  1. The nuclear symmetry energy

    Science.gov (United States)

    Baldo, M.; Burgio, G. F.

    2016-11-01

    The nuclear symmetry energy characterizes the variation of the binding energy as the neutron to proton ratio of a nuclear system is varied. This is one of the most important features of nuclear physics in general, since it is just related to the two component nature of the nuclear systems. As such it is one of the most relevant physical parameters that affect the physics of many phenomena and nuclear processes. This review paper presents a survey of the role and relevance of the nuclear symmetry energy in different fields of research and of the accuracy of its determination from the phenomenology and from the microscopic many-body theory. In recent years, a great interest was devoted not only to the Nuclear Matter symmetry energy at saturation density but also to its whole density dependence, which is an essential ingredient for our understanding of many phenomena. We analyze the nuclear symmetry energy in different realms of nuclear physics and astrophysics. In particular we consider the nuclear symmetry energy in relation to nuclear structure, astrophysics of Neutron Stars and supernovae, and heavy ion collision experiments, trying to elucidate the connections of these different fields on the basis of the symmetry energy peculiarities. The interplay between experimental and observational data and theoretical developments is stressed. The expected future developments and improvements are schematically addressed, together with most demanded experimental and theoretical advances for the next few years.

  2. Symmetry energy and density

    CERN Document Server

    Trautmann, Wolfgang; Russotto, Paolo

    2016-01-01

    The nuclear equation-of-state is a topic of highest current interest in nuclear structure and reactions as well as in astrophysics. In particular, the equation-of-state of asymmetric matter and the symmetry energy representing the difference between the energy densities of neutron matter and of symmetric nuclear matter are not sufficiently well constrained at present. The density dependence of the symmetry energy is conventionally expressed in the form of the slope parameter L describing the derivative with respect to density of the symmetry energy at saturation. Results deduced from nuclear structure and heavy-ion reaction data are distributed around a mean value L=60 MeV. Recent studies have more thoroughly investigated the density range that a particular observable is predominantly sensitive to. Two thirds of the saturation density is a value typical for the information contained in nuclear-structure data. Higher values exceeding saturation have been shown to be probed with meson production and collective ...

  3. The Nuclear Symmetry Energy

    CERN Document Server

    Baldo, M

    2016-01-01

    The nuclear symmetry energy characterizes the variation of the binding energy as the neutron to proton ratio of a nuclear system is varied. This is one of the most important features of nuclear physics in general, since it is just related to the two component nature of the nuclear systems. As such it is one of the most relevant physical parameters that affect the physics of many phenomena and nuclear processes. This review paper presents a survey of the role and relevance of the nuclear symmetry energy in different fields of research and of the accuracy of its determination from the phenomenology and from the microscopic many-body theory. In recent years, a great interest was devoted not only to the Nuclear Matter symmetry energy at saturation density but also to its whole density dependence, which is an essential ingredient for our understanding of many phenomena. We analyze the nuclear symmetry energy in different realms of nuclear physics and astrophysics. In particular we consider the nuclear symmetry ene...

  4. The nuclear symmetry energy

    NARCIS (Netherlands)

    Dieperink, AEL; van Neck, D; Suzuki, T; Otsuka, T; Ichimura, M

    2005-01-01

    The role of isospin asymmetry in nuclei and neutron stars is discussed, with an emphasis on the density dependence of the nuclear symmetry energy. Results obtained with the self-consistent Green function method are presented and compared with various other theoretical predictions. Implications for t

  5. Dark Energy and Spacetime Symmetry

    Directory of Open Access Journals (Sweden)

    Irina Dymnikova

    2017-03-01

    Full Text Available The Petrov classification of stress-energy tensors provides a model-independent definition of a vacuum by the algebraic structure of its stress-energy tensor and implies the existence of vacua whose symmetry is reduced as compared with the maximally symmetric de Sitter vacuum associated with the Einstein cosmological term. This allows to describe a vacuum in general setting by dynamical vacuum dark fluid, presented by a variable cosmological term with the reduced symmetry which makes vacuum fluid essentially anisotropic and allows it to be evolving and clustering. The relevant solutions to the Einstein equations describe regular cosmological models with time-evolving and spatially inhomogeneous vacuum dark energy, and compact vacuum objects generically related to a dark energy: regular black holes, their remnants and self-gravitating vacuum solitons with de Sitter vacuum interiors—which can be responsible for observational effects typically related to a dark matter. The mass of objects with de Sitter interior is generically related to vacuum dark energy and to breaking of space-time symmetry. In the cosmological context spacetime symmetry provides a mechanism for relaxing cosmological constant to a needed non-zero value.

  6. Impact of Crust Matter on Properties of Neutron Star with Supersoft Symmetry Energy

    Institute of Scientific and Technical Information of China (English)

    HUANG Qi-Zhi; WEN De-Hua

    2011-01-01

    By employing three typical equations of states (EOSs) of the crust matter, the effect of the crust on the structure and properties are investigated, where the core matter is described by the MDIxl model and the non-Newtonian gravity (described by the Yukawa contribution) is considered.It is shown that the EOSs of the crust matter have a notable effect on the mass-radius relation and the moment of inertia.

  7. Symmetry energy of dilute warm nuclear matter.

    Science.gov (United States)

    Natowitz, J B; Röpke, G; Typel, S; Blaschke, D; Bonasera, A; Hagel, K; Klähn, T; Kowalski, S; Qin, L; Shlomo, S; Wada, R; Wolter, H H

    2010-05-21

    The symmetry energy of nuclear matter is a fundamental ingredient in the investigation of exotic nuclei, heavy-ion collisions, and astrophysical phenomena. New data from heavy-ion collisions can be used to extract the free symmetry energy and the internal symmetry energy at subsaturation densities and temperatures below 10 MeV. Conventional theoretical calculations of the symmetry energy based on mean-field approaches fail to give the correct low-temperature, low-density limit that is governed by correlations, in particular, by the appearance of bound states. A recently developed quantum-statistical approach that takes the formation of clusters into account predicts symmetry energies that are in very good agreement with the experimental data. A consistent description of the symmetry energy is given that joins the correct low-density limit with quasiparticle approaches valid near the saturation density.

  8. Nuclear symmetry energy: An experimental overview

    Indian Academy of Sciences (India)

    D V Shetty; S J Yennello

    2010-08-01

    The nuclear symmetry energy is a fundamental quantity important for studying the structure of systems as diverse as the atomic nucleus and the neutron star. Considerable efforts are being made to experimentally extract the symmetry energy and its dependence on nuclear density and temperature. In this article, the experimental studies carried out up-to-date and their current status are reviewed.

  9. Symmetry energy III: Isovector skins

    Science.gov (United States)

    Danielewicz, Paweł; Singh, Pardeep; Lee, Jenny

    2017-02-01

    Isoscalar density is a sum of neutron and proton densities and isovector is a normalized difference. Here, we report the experimental evidence for the displacement of the isovector and isoscalar surfaces in nuclei, by ∼ 0.9 fm from each other. We analyze data on quasielastic (QE) charge exchange (p,n) reactions, concurrently with proton and neutron elastic scattering data for the same target nuclei, following the concepts of the isoscalar and isovector potentials combined into Lane optical potential. The elastic data largely probe the geometry of the isoscalar potential and the (p,n) data largely probe a relation between the geometries of the isovector and isoscalar potentials. The targets include 48Ca, 90Zr, 120Sn and 208Pb and projectile incident energy values span the range of (10-50) MeV. In our fit to elastic and QE charge-exchange data, we allow the values of isoscalar and isovector radii, diffusivities and overall potential normalizations to float away from those in the popular Koning and Delaroche parametrization. We find that the best-fit isovector radii are consistently larger than isoscalar and the best-fit isovector surfaces are steeper. Upon identifying the displacement of the potential surfaces with the displacement of the surfaces for the densities in the Skyrme-Hartree-Fock calculations, and by supplementing the results with those from analyzing excitation energies to isobaric analog states in the past, we arrive at the slope and value of the symmetry energy at normal density of 70 < L < 101 MeV and 33.5 < aaV < 36.4 MeV, respectively.

  10. Symmetry energy of warm nuclear systems

    Science.gov (United States)

    Agrawal, B. K.; De, J. N.; Samaddar, S. K.; Centelles, M.; Viñas, X.

    2014-02-01

    The temperature dependence of the symmetry energy and symmetry free energy coefficients of infinite nuclear matter and of finite nuclei is investigated. For infinite matter, both these coefficients are found to have a weaker dependence on temperature at densities close to saturation; at low but homogeneous densities, the temperature dependence becomes stronger. For finite systems, different definitions of symmetry energy coefficients are encountered in the literature yielding different values. A resolution to this problem is suggested from a global liquid-drop-inspired fit of the energies and free energies of a host of nuclei covering the entire periodic table. The hot nucleus is modeled in a subtracted finite-temperature Thomas-Fermi framework, with dynamical surface phonon coupling to nucleonic motion plugged in. Contrary to infinite nuclear matter, a substantial change in the symmetry energy coefficients is observed for finite nuclei with temperature.

  11. Symmetry energy of warm nuclear systems

    CERN Document Server

    Agrawal, B K; Samaddar, S K; Centelles, M; Viñas, X

    2013-01-01

    The temperature dependence of the symmetry energy and symmetry free energy coefficients of infinite nuclear matter and of finite nuclei is investigated. For infinite matter, both these coefficients are found to have a weaker dependence on temperature at densities close to saturation; at low but homogeneous densities, the temperature dependence becomes stronger. For finite systems, different definitions of symmetry energy coefficients are encountered in the literature yielding different values. A resolution to this problem is suggested from a global liquid-drop-inspired fit of the energies and free energies of a host of nuclei covering the entire periodic table. The hot nucleus is modeled in a subtracted finite-temperature-Thomas-Fermi framework, with dynamical surface phonon coupling to nucleonic motion plugged in. Contrary to infinite nuclear matter, a substantial change in the symmetry energy coefficients is observed for finite nuclei with temperature.

  12. Density Dependence of Nuclear Symmetry Energy

    CERN Document Server

    Behera, B; Tripathy, S K

    2016-01-01

    High density behaviour of nuclear symmetry energy is studied on the basis of a stiffest density dependence of asymmetric contribution to energy per nucleon in charge neutral $n+p+e+\\mu$ matter under beta equilibrium. The density dependence of nuclear symmetry energy obtained in this way is neither very stiff nor soft at high densities and is found to be in conformity with recent observations of neutron stars

  13. Density dependence of nuclear symmetry energy

    Science.gov (United States)

    Behera, B.; Routray, T. R.; Tripathy, S. K.

    2016-10-01

    High density behavior of nuclear symmetry energy is studied on the basis of the stiffest density dependence of asymmetric contribution to energy per nucleon in charge neutral n + p + e + μ matter under beta equilibrium. The density dependence of nuclear symmetry energy obtained in this way is neither very stiff nor soft at high densities and is found to be in conformity with recent observations of neutron stars.

  14. Nuclear symmetry energy and neutron skin thickness

    CERN Document Server

    Warda, M; Viñas, X; Roca-Maza, X

    2012-01-01

    The relation between the slope of the nuclear symmetry energy at saturation density and the neutron skin thickness is investigated. Constraints on the slope of the symmetry energy are deduced from the neutron skin data obtained in experiments with antiprotonic atoms. Two types of neutron skin are distinguished: the "surface" and the "bulk". A combination of both types forms neutron skin in most of nuclei. A prescription to calculate neutron skin thickness and the slope of symmetry energy parameter $L$ from the parity violating asymmetry measured in the PREX experiment is proposed.

  15. Symmetry energy in cold dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kie Sang, E-mail: k.s.jeong@yonsei.ac.kr; Lee, Su Houng, E-mail: suhoung@yonsei.ac.kr

    2016-01-15

    We calculate the symmetry energy in cold dense matter both in the normal quark phase and in the 2-color superconductor (2SC) phase. For the normal phase, the thermodynamic potential is calculated by using hard dense loop (HDL) resummation to leading order, where the dominant contribution comes from the longitudinal gluon rest mass. The effect of gluonic interaction on the symmetry energy, obtained from the thermodynamic potential, was found to be small. In the 2SC phase, the non-perturbative BCS paring gives enhanced symmetry energy as the gapped states are forced to be in the common Fermi sea reducing the number of available quarks that can contribute to the asymmetry. We used high density effective field theory to estimate the contribution of gluon interaction to the symmetry energy. Among the gluon rest masses in 2SC phase, only the Meissner mass has iso-spin dependence although the magnitude is much smaller than the Debye mass. As the iso-spin dependence of gluon rest masses is even smaller than the case in the normal phase, we expect that the contribution of gluonic interaction to the symmetry energy in the 2SC phase will be minimal. The different value of symmetry energy in each phase will lead to different prediction for the particle yields in heavy ion collision experiment.

  16. Unitary Gas Constraints on Nuclear Symmetry Energy

    CERN Document Server

    Kolomeitsev, Evgeni E; Ohnishi, Akira; Tews, Ingo

    2016-01-01

    We show the existence of a lower bound on the volume symmetry energy parameter $S_0$ from unitary gas considerations. We further demonstrate that values of $S_0$ above this minimum imply upper and lower bounds on the symmetry energy parameter $L$ describing its lowest-order density dependence. The bounds are found to be consistent with both recent calculations of the energies of pure neutron matter and constraints from nuclear experiments. These results are significant because many equations of state in active use for simulations of nuclear structure, heavy ion collisions, supernovae, neutron star mergers, and neutron star structure violate these constraints.

  17. Isospin asymmetry in nuclei and nuclear symmetry energy

    OpenAIRE

    Mukhopadhyay, Tapan; Basu, D. N.

    2006-01-01

    The volume and surface symmetry parts of the nuclear symmetry energy and other coefficients of the liquid droplet model are determined from the measured atomic masses by the maximum likelihood estimator. The volume symmetry energy coefficient extracted from finite nuclei provides a constraint on the nuclear symmetry energy. This approach also yields the neutron skin of a finite nucleus through its relationship with the volume and surface symmetry terms and the Coulomb energy coefficient. The ...

  18. The symmetry energy in cold dense matter

    CERN Document Server

    Jeong, Kie Sang

    2015-01-01

    We calculate the symmetry energy in cold dense matter both in the normal quark phase and in the 2-color superconductor (2SC) phase. For the normal phase, the thermodynamic potential is calculated by using hard dense loop (HDL) resummation to leading order, where the dominant contribution comes from the longitudinal gluon rest mass. The effect of gluonic interaction to the symmetry energy, obtained from the thermodynamic potential, was found to be small. In the 2SC phase, the non-perturbative BCS paring gives enhanced symmetry energy as the gapped states are forced to be in the common Fermi sea reducing the number of available quarks that can contribute to the asymmetry. We used high density effective field theory to estimate the contribution of gluon interaction to the symmetry energy. Among the gluon rest masses in 2SC phase, only the Meissner mass has iso-spin dependence although the magnitude is much smaller than the Debye mass. As the iso-spin dependence of gluon rest masses is even smaller than the case ...

  19. Symmetry Energy III: Isovector Skins

    CERN Document Server

    Danielewicz, Pawel; Lee, Jenny

    2016-01-01

    Isoscalar density is a sum of neutron and proton densities and isovector is a normalized difference. Here, we report on the experimental evidence for the displacement of the isovector and isoscalar surfaces in nuclei, by $\\sim$$0.9 \\, \\text{fm}$ from each other. We analyze data on quasielastic (QE) charge exchange (p,n) reactions, concurrently with proton and neutron elastic scattering data for the same target nuclei, following the concepts of the isoscalar and isovector potentials combined into Lane optical potential. The elastic data largely probe the geometry of the isoscalar potential and the (p,n) data largely probe a relation between the geometries of the isovector and isoscalar potentials. The targets include $^{48}$Ca, $^{90}$Zr, $^{120}$Sn and $^{208}$Pb and projectile incident energy values span the range of (10-50)$\\,\\text{MeV}$. In our fit to elastic and QE charge-exchange data, we allow the values of isoscalar and isovector radii, diffusivities and overall potential normalizations to float away f...

  20. Observable to explore high density behaviour of symmetry energy

    CERN Document Server

    Sood, Aman D

    2011-01-01

    We aim to see the sensitivity of collective transverse in-plane flow to symmetry energy at low as well as high densities and also to see the effect of different density dependencies of symmetry energy on the same.

  1. Probing the density content of the nuclear symmetry energy

    Indian Academy of Sciences (India)

    B K Agrawal; J N De; S K Samaddar

    2014-05-01

    The nature of equation of state for the neutron star matter is crucially governed by the density dependence of the nuclear symmetry energy. We attempt to probe the behaviour of the nuclear symmetry energy around the saturation density by exploiting the empirical values for volume and surface symmetry energy coefficients extracted from the precise data on the nuclear masses.

  2. Influence of coupling constants on nuclear symmetry energy

    Institute of Scientific and Technical Information of China (English)

    LIU Bei-Bei; OUYANG Fei; CHEN Wei

    2013-01-01

    By studying the energy of neutron star matter,we discuss the nuclear symmetry energy at different baryon densities and different coupling constants in the relativistic mean field approximation.The results show that the symmetry energy increases with baryon density at various coupling constants and incompressibilities.Furthermore,the symmetry energy at saturation density increases with increasing incompressibility at fixed d,and decreases at fixed c.Specifically,when coupling constants gv and gs are fixed,respectively,the symmetry energy has a little change with increasing incompressibility.It is demonstrated that the NN coupling constants have greater influences on the symmetry energy than the self-coupling constants.

  3. Competition of symmetry energy and Wigner energy in nuclei

    CERN Document Server

    Tian, Junlong; Gao, Teng; Wang, Ning

    2015-01-01

    We propose a method to extract the symmetry energy coefficient (including the coefficient $a_{\\rm sym}^{(4)}$ of $I^{4}$ term) from the differences of available experimental binding energies of isobaric nuclei. The advantage of this approach is that one can efficiently remove the volume, surface and pairing energies in the process. It is found that the extracted symmetry energy coefficient $a^{*}_{\\rm sym}(A,I)$ decreases with increasing of isospin asymmetry $I$, which is mainly caused by Wigner correction, since $e^{*}_{\\rm sym}$ is the summation of the traditional symmetry energy $e_{\\rm sym}$ and the Wigner energy $e_{\\rm W}$. We obtain the optimal values $J=30.25$ MeV, $a_{\\rm ss}=56.18$ MeV, $a_{\\rm sym}^{(4)}=8.33$ MeV and the Wigner parameter $x=2.38$ through the polynomial fit to 2240 measured binding energies for nuclei with $20 \\leq A \\leq 261$ with an rms deviation of 23.42 keV. We also find that the volume-symmetry coefficient $J\\simeq 30$ MeV is insensitive to the value $x$, whereas the surface-s...

  4. Density content of nuclear symmetry energy from nuclear observables

    Indian Academy of Sciences (India)

    B K Agrawal

    2014-11-01

    The nuclear symmetry energy at a given density measures the energy transferred in converting symmetric nuclear matter into the pure neutron matter. The density content of nuclear symmetry energy remains poorly constrained. Our recent results for the density content of the nuclear symmetry energy, around the saturation density, extracted using experimental data for accurately known nuclear masses, giant resonances and neutron-skin thickness in heavy nuclei are summarized.

  5. X-ray Energy Spectra of the Super-soft X-ray Sources CAL87 and RXJ0925.7-4758 Observed with ASCA

    CERN Document Server

    Ebisawa, K; Kotani, T; Asai, K; Dotani, T; Nagase, F; Hartmann, H W; Heise, J; Kahabka, P; Van Teeseling, A

    2000-01-01

    We report observation results of the super-soft X-ray sources (SSS) CAL87 and RXJ0925.7-4758 with the X-ray CCD cameras (Solid-state Imaging Spectrometer; SIS) on-board the ASCA satellite. We have applied theoretical spectral models to CAL87, and constrained the white dwarf mass and intrinsic luminosity as 0.8 - 1.2 M_solar and 4 x 10^{37}- 1.2 x 10^{38} erg s^{-1}, respectively. However, we have found the observed luminosity is an order of magnitude smaller than the theoretical estimate, which indicates the white dwarf is permanently blocked by the accretion disk, and we are observing a scattering emission by a fully ionized accretion disk corona (ADC) whose column density is ~ 1.5 x 10^{23} cm^{-2}. Through simulation, we have shown that the orbital eclipse can be explained by the ADC model, such that a part of the extended X-ray emission from the ADC is blocked by the companion star filling its Roche lobe. We have found that very high surface gravity and temperature, ~ 10^{10} cm s^{-2} and ~ 100 eV respec...

  6. Origins and Impacts of High-Density Symmetry Energy

    CERN Document Server

    Li, Bao-An

    2016-01-01

    What is nuclear symmetry energy? Why is it important? What do we know about it? Why is it so uncertain especially at high densities? Can the total symmetry energy or its kinetic part be negative? What are the effects of three-body and/or tensor force on symmetry energy? How can we probe the density dependence of nuclear symmetry energy with terrestrial nuclear experiments? What observables of heavy-ion reactions are sensitive to the high-density behavior of nuclear symmetry energy? How does the symmetry energy affect properties of neutron stars, gravitational waves and our understanding about the nature of strong-field gravity? In this lecture, we try to answer these questions as best as we can based on some of our recent work and/or understanding of research done by others. This note summarizes the main points of the lecture.

  7. Symmetry Analysis of Thermoelectric Energy Converters with Inhomogeneous Legs

    Science.gov (United States)

    Korzhuev, M. A.

    2010-09-01

    Symmetry analysis has been applied to thermoelectric energy converters [thermoelectric generators (TEG), coolers (TEC), and heaters (TEH)] with inhomogeneous legs. The features of the crystallographic symmetry of thermoelectric materials and the symmetry of legs, thermocouples, and modules are studied. The effect of symmetry on the figure of merit Z of thermoelectric energy converters is considered. A general rule for proper placement of legs in thermoelectric converters is developed. A modified tetratomic classification for thermoelectric energy converters with inhomogeneous legs (TEGa, TEGb, TEC, and TEH) is proposed. An increase in Z for thermoelectric energy converters with inhomogeneous legs is due to the bulk thermoelectric effect. An increase in Z gives the reduction of irreversible processes in the modules (Joule heating and thermal conductivity), accompanying breaking of the symmetry of the legs. It is found that violations of the symmetry requirements can lead to significant energy losses in converters.

  8. Energy Spectrum Symmetry of Heisenberg Model in Fock Space

    Institute of Scientific and Technical Information of China (English)

    WANG An-Min; ZHU Ren-Gui

    2006-01-01

    @@ We extend the BCS paring model with equally spaced energy levels to a general one-dimensional spin-l/2 Heisenberg model. The two well-known symmetries of the Heisenberg model, i.e. permutational and spin-inversion symmetries, no longer exist. However, when jointing these two operations together, we find a new symmetry of energy spectrum between its subspace n and subspace L - n of the Fock space. A rigorous proof is presented.

  9. Kaon Condensates, Nuclear Symmetry Energy and Cooling of Neutron Stars

    CERN Document Server

    Kubis, S

    2003-01-01

    The cooling of neutron stars by URCA processes in the kaon-condensed neutron star matter for various forms of nuclear symmetry energy is investigated. The kaon-nucleon interactions are described by a chiral lagrangian. Nuclear matter energy is parametrized in terms of the isoscalar contribution and the nuclear symmetry energy in the isovector sector. High density behaviour of nuclear symmetry energy plays an essential role in determining the composition of the kaon-condensed neutron star matter which in turn affects the cooling properties. We find that the symmetry energy which decreases at higher densities makes the kaon-condensed neutron star matter fully protonized. This effect inhibits strongly direct URCA processes resulting in slower cooling of neutron stars as only kaon-induced URCA cycles are present. In contrast, for increasing symmetry energy direct URCA processes are allowed in the almost whole density range where the kaon condensation exists.

  10. Symmetry energy effects in the neutron star crust properties

    CERN Document Server

    Porebska, J

    2009-01-01

    Different shapes of the nuclear symmetry energy leads to a different crust-core transition point in the neutron star. The basic properties of a crust, like thickness, mass and moment of inertia were investigated for various forms of the symmetry energy.

  11. Symmetry energy in the liquid-gas mixture

    Science.gov (United States)

    López, J. A.; Terrazas Porras, S.

    2017-01-01

    Results from classical molecular dynamics simulations of infinite nuclear systems with varying density, temperature and isospin content are used to calculate the symmetry energy at low densities. The results show an excellent agreement with the experimental data and corroborate the claim that the formation of clusters has a strong influence on the symmetry energy in the liquid-gas coexistence region.

  12. Symmetry energy in the liquid–gas mixture

    Energy Technology Data Exchange (ETDEWEB)

    López, J.A., E-mail: jorgelopez@utep.edu [University of Texas at El Paso, El Paso, TX 79968 (United States); Terrazas Porras, S. [Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua (Mexico)

    2017-01-15

    Results from classical molecular dynamics simulations of infinite nuclear systems with varying density, temperature and isospin content are used to calculate the symmetry energy at low densities. The results show an excellent agreement with the experimental data and corroborate the claim that the formation of clusters has a strong influence on the symmetry energy in the liquid–gas coexistence region.

  13. SURFACE SYMMETRY ENERGY OF NUCLEAR ENERGY DENSITY FUNCTIONALS

    Energy Technology Data Exchange (ETDEWEB)

    Nikolov, N; Schunck, N; Nazarewicz, W; Bender, M; Pei, J

    2010-12-20

    We study the bulk deformation properties of the Skyrme nuclear energy density functionals. Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band-heads in Hg and Pb isotopes, and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear energy density functionals. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface-symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.

  14. Fluctuations and symmetry energy in nuclear fragmentation dynamics.

    Science.gov (United States)

    Colonna, M

    2013-01-25

    Within a dynamical description of nuclear fragmentation, based on the liquid-gas phase transition scenario, we explore the relation between neutron-proton density fluctuations and nuclear symmetry energy. We show that, along the fragmentation path, isovector fluctuations follow the evolution of the local density and approach an equilibrium value connected to the local symmetry energy. Higher-density regions are characterized by smaller average asymmetry and narrower isotopic distributions. This dynamical analysis points out that fragment final state isospin fluctuations can probe the symmetry energy of the density domains from which fragments originate.

  15. Role of symmetry potential in nuclear symmetry energy and its density slope parameter

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, S. [Department of Physics, M.M.M. College, Durgapur, West Bengal (India); Sahoo, B. [Department of Applied Sciences, DIATM, Durgapur, West Bengal (India); Sahoo, S., E-mail: sukadevsahoo@yahoo.com [Department of Physics, National Institute of Technology, Durgapur, West Bengal (India)

    2013-08-21

    Using a density dependent finite-range effective interaction of Yukawa form the nuclear mean field in asymmetric nuclear matter is expanded in terms of power series of asymmetry β (=(ρ{sub n}−ρ{sub p})/(ρ) ) as u{sub τ}(k,ρ,β)=u{sub 0}(k,ρ)±u{sub sym,1}(k,ρ)β+u{sub sym,2}(ρ)β{sup 2}. The behavior of nuclear symmetry potential u{sub sym,1}(k,ρ) around the Fermi momentum k{sub f} is found to be connected to the density dependence of symmetry energy E{sub sym}(ρ) and nucleon effective mass (m{sub 0}{sup ⁎})/m (k=k{sub f},ρ) in symmetric nuclear matter. Two different trends of momentum dependence for nuclear symmetry potential is observed depending on the choice of strength parameters of exchange interaction, but at Fermi momentum it is found to be independent of the choice of parameters. The nuclear symmetry energy E{sub sym}(ρ) and its slope L(ρ) are expressed analytically in terms of nuclear mean field in isospin asymmetric nuclear matter using the same interaction. We find that the second order nuclear symmetry potential u{sub sym,2}(ρ) cannot be neglected while calculating the density slope of symmetry energy L(ρ) as well as the nuclear mean field in extremely neutron (proton) rich nuclear matter.

  16. Impacts of the Nuclear Symmetry Energy on Neutron Star Crusts

    CERN Document Server

    Bao, Shishao

    2015-01-01

    Using the relativistic mean-field theory, we adopt two different methods, namely, the coexisting phase method and the self-consistent Thomas-Fermi approximation, to study the impacts of the nuclear symmetry energy on properties of neutron star crusts within a wide range of densities. It is found that the nuclear symmetry energy and its density slope play an important role in determining the pasta phases and the crust-core transition.

  17. Symmetry energy effects in the neutron star properties

    CERN Document Server

    Alvarez-Castillo, David Edwin

    2012-01-01

    The functional form of the nuclear symmetry energy has only been determined in a very narrow range of densities. Uncertainties concern both the low as well as the high density behaviour of this function. In this work different shapes of the symmetry energy, consistent with the experimental data, were introduced and their consequences for the crustal properties of neutron stars are presented. The resulting models are in agreement with astrophysical observations.

  18. The symmetry energy in nuclei and in nuclear matter

    NARCIS (Netherlands)

    Dieperink, A. E. L.; Van Isacker, P.

    We discuss to what extent information on ground-state properties of finite nuclei ( energies and radii) can be used to obtain constraints on the symmetry energy in nuclear matter and its dependence on the density. The starting point is a generalized Weizsacker formula for ground-state energies. In

  19. The symmetry energy in nuclei and in nuclear matter

    NARCIS (Netherlands)

    Van Isacker, P.; Dieperink, A. E. L.

    2006-01-01

    We discuss to what extent information on ground-state properties of finite nuclei (energies and radii) can be used to obtain constraints on the symmetry energy in nuclear matter and its dependence on the density. The starting point is a generalized Weizsacker formula for ground-state energies. In

  20. Flavor Symmetry and Topology Change in Nuclear Symmetry Energy for Compact Stars

    Science.gov (United States)

    Lee, Hyun Kyu; Rho, Mannque

    2013-03-01

    The nuclear symmetry energy figures crucially in the structure of asymmetric nuclei and, more importantly, in the equation of state (EoS) of compact stars. At present it is almost totally unknown, both experimentally and theoretically, in the density regime appropriate for the interior of neutron stars. Basing on a strong-coupled structure of dense baryonic matter encoded in the skyrmion crystal approach with a topology change and resorting to the notion of generalized hidden local symmetry in hadronic interactions, we address a variety of hitherto unexplored issues of nuclear interactions associated with the symmetry energy, i.e., kaon condensation and hyperons, possible topology change in dense matter, nuclear tensor forces, conformal symmetry, chiral symmetry, etc., in the EoS of dense compact-star matter. One of the surprising results coming from HLS structure that is distinct from what is given by standard phenomenological approaches is that at high density, baryonic matter is driven by renormalization group flow to the "dilaton-limit fixed point" constrained by "mended symmetries". We further propose how to formulate kaon condensation and hyperons in compact-star matter in a framework anchored on a single effective Lagrangian by treating hyperons as the Callan-Klebanov kaon-skyrmion bound states simulated on crystal lattice. This formulation suggests that hyperons can figure in the stellar matter — if at all — when or after kaons condense, in contrast to the standard phenomenological approaches where the hyperons appear as the first strangeness degree of freedom in matter, thereby suppressing or delaying kaon condensation. In our simplified description of the stellar structure in terms of symmetry energies, which is compatible with that of the 1.97 solar mass star, kaon condensation plays a role of "doorway state" to strange quark matter.

  1. Symmetry Energy from Systematic of Isobaric Analog States

    CERN Document Server

    Danielewicz, Pawel

    2011-01-01

    Excitation energies to isobaric states, that are analogs of ground states, are dominated by contributions from the symmetry energy. This opens up a possibility of investigating the symmetry energy on nucleus-by-nucleus basis. Upon correcting energies of measured nuclear levels for shell and pairing effects, we find that the lowest energies for a given isospin rise in proportion to the square of isospin, allowing for an interpretation of the coefficient of proportionality in terms of a symmetry coefficient for a given nucleus. In the (A,Z) regions where there are enough data, we demonstrate a Z-independence of that coefficient. We further concentrate on the A-dependence of the coefficient, in order to learn about the density dependence of symmetry energy in uniform matter, given the changes of the density in the surface region. In parallel to the analysis of data, we carry out an analysis of the coefficient for nuclei calculated within the Skyrme-Hartree-Fock (SHF) approach, with known symmetry energy for unif...

  2. Obscuring Supersoft X-ray Sources in Stellar Winds

    DEFF Research Database (Denmark)

    Nielsen, Mikkel Thomas Bøje; Dominik, Carsten; Nelemans, Gijs

    2011-01-01

    We investigate the possibility of obscuring supersoft X-ray sources in the winds of companion stars. We derive limits on the amount of circumstellar material needed to fully obscure a 'canonical' supersoft X-ray source in the Large Magellanic Cloud, as observed with the Chandra X-ray Observatory....

  3. Effect of the density dependent symmetry energy on fragmentation

    CERN Document Server

    Vinayak, Karan Singh

    2011-01-01

    The effect of the density dependence of symmetry energy on fragmentation is studied using isospin-dependent quantum molecular dynamics model(IQMD) Model. We have used the reduced isospin-dependent cross-section with soft equation of state to explain the experimental findings for the system 79_Au^197 + 79_Au^197 for the full colliding geometry. In addition to that we have tried to study the collective response of the momentum dependent interactions(MDI) and symmetry energy towards the multifragmentation

  4. Robustness of the I4 symmetry energy coefficient

    Science.gov (United States)

    Jiang, H.; Cheng, Y. Y.; Wang, N.; Chen, Lie-Wen; Zhao, Y. M.; Arima, A.

    2016-12-01

    In this paper we investigate the I4 symmetry energy coefficient [I =(N -Z )/A ] extracted from a few popular mass models, and their corresponding databases improved, respectively, by the radial basis function (RBF) approach and the RBF with odd-even corrections. Our results show that the linear correlation between our resultant I4 symmetry energy coefficients (denoted by c4(V )) and the corresponding root-mean-square deviations from experimental masses of these theoretical databases is very robust. Interestingly, the extrapolated values of c4(V ) using the above three versions of databases are consistent with each other.

  5. Symmetry energy systematics and its high density behavior

    CERN Document Server

    Chen, Lie-Wen

    2015-01-01

    We explore the systematics of the density dependence of nuclear matter symmetry energy in the ambit of microscopic calculations with various energy density functionals, and find that the symmetry energy from subsaturation density to supra-saturation density can be well determined by three characteristic parameters of the symmetry energy at saturation density $\\rho_0 $, i.e., the magnitude $E_{\\text{sym}}({\\rho_0 })$, the density slope $L$ and the density curvature $K_{\\text{sym}}$. This finding opens a new window to constrain the supra-saturation density behavior of the symmetry energy from its (sub-)saturation density behavior. In particular, we obtain $L=46.7 \\pm 12.8$ MeV and $K_{\\text{sym}}=-166.9 \\pm 168.3$ MeV as well as $E_{\\text{sym}}({2\\rho _{0}}) \\approx 40.2 \\pm 12.8$ MeV and $L({2\\rho _{0}}) \\approx 8.9 \\pm 108.7$ MeV based on the present knowledge of $E_{\\text{sym}}({\\rho_{0}}) = 32.5 \\pm 0.5$ MeV, $E_{\\text{sym}}({\\rho_c}) = 26.65 \\pm 0.2$ MeV and $L({\\rho_c}) = 46.0 \\pm 4.5$ MeV at $\\rho_{\\rm{c...

  6. Ultraviolet spectroscopy of the supersoft X-ray source RX J0439.8-6809

    Science.gov (United States)

    Van Teeseling, Andre

    1997-07-01

    Observationally, supersoft X-ray sources are classified as near-Eddington stellar objects with almost all emission at energies blue star in the LMC. A 3sigma upper limit to the peak-to-peak optical variability is 0.07 mag. Of all optically identified supersoft X-ray sources, RX J0439.8-6809 has the lowest optical-to-X-ray flux ratio. The nature of RX J0439.8-6809 is still unknown. It might be the hottest known pre-white dwarf, suffering a late helium shell flash. Alternatively, RX J0439.8-6809 could be an accreting binary, in which case it might be the first known double-degenerate supersoft X-ray source with a predicted orbital period of only a few minutes. An ultraviolet spectrum is essential to distinguish between these two spectacular possibilities, and to bridge the gap between the X-ray and optical observations. Such a spectrum can only be obtained with the HST STIS. Therefore, we propose to obtain two ultraviolet spectra, which will test the assumption that the optical spectrum is the Rayleigh-Jeans tail of the soft X-ray component, which will determine the spectral energy distribution, and which may provide the first direct evidence for accretion in this source by detecting an excess in the ultraviolet or ultraviolet emission lines like N V Lambda 1240.

  7. Optically thick outflows in ultraluminous supersoft sources

    CERN Document Server

    Urquhart, Ryan

    2015-01-01

    Ultraluminous supersoft sources (ULSs) are defined by a thermal spectrum with colour temperatures ~0.1 keV, bolometric luminosities ~ a few 10^39 erg/s, and almost no emission above 1 keV. It has never been clear how they fit into the general scheme of accreting compact objects. To address this problem, we studied a sample of seven ULSs with extensive Chandra and XMM-Newton coverage. We find an anticorrelation between fitted temperatures and radii of the thermal emitter, and no correlation between bolometric luminosity and radius or temperature. We compare the physical parameters of ULSs with those of classical supersoft sources, thought to be surface-nuclear-burning white dwarfs, and of ultraluminous X-ray sources (ULXs), thought to be super-Eddington stellar-mass black holes. We argue that ULSs are the sub-class of ULXs seen through the densest wind, perhaps an extension of the soft-ultraluminous regime. We suggest that in ULSs, the massive disk outflow becomes effectively optically thick and forms a large ...

  8. Probing the nuclear symmetry energy with heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    De Filippo E.

    2015-01-01

    Full Text Available Heavy ion collisions (HIC have been widely used to extract the parametrization of symmetry energy term of nuclear equation of state as a function of barionic density. HIC in fact are a unique tool in terrestrial laboratories to explore the symmetry energy around the saturation density (ρ0 = 0.16fm−3 from sub-saturation densities (Fermi energies towards compressed nuclear matter (ρ > 2 − 3ρ0 that can be reached at relativistic energies, as a function of different conditions of temperature, mass asymmetry and isospin. One of the main study at present is to reach a coherent description of EOS of asymmetric nuclear matter from heavy ion collisions of stable and exotic nuclei, nuclear structure studies and astrophysical observations. In this work an overview of the current status of the research is shortly reviewed together with new perspectives aimed to reduce the present experimental and theoretical uncertainties.

  9. Symmetry Energy Effects in a Statistical Multifragmentation Model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; GAO Yuan1; ZHANG Hong-Fei; CHEN Xi-Meng; Yu Mei-Ling; LI Jun-Qing

    2011-01-01

    The symmetry energy effects on the nuclear disintegration mechanisms of the neutron-rich system (A0 = 200, Z0 = 78) are studied in the framework of the statistical multifragmentation model (SMM) within its micro-canonical ensemble. A modified symmetry energy term with consideration of the volume and surface asymmetry is adopted instead of the original invariable value in the standard SMM model. The results indicate that as the volume and surface asymmetries are considered, the neutron-rich system translates to a fission-like process from evaporation earlier than the original standard SMM model at lower excitation energies, and its mass distribution has larger probabilities in the medium-heavy nuclei range so that the system breaks up more averagely. When the excitation energy becomes higher, the volume and surface asymmetry lead to a smaller average multiplicity.%The symmetry energy effects on the nuclear disintegration mechanisms of the neutron-rich system (A0 =200,Z0 =78) are studied in the framework of the statistical multifragmentation model (SMM) within its micro-canonical ensemble.A modified symmetry energy term with consideration of the volume and surface asymmetry is adopted instead of the original invariable value in the standard SMM model.The results indicate that as the volume and surface asymmetries are considered,the neutron-rich system translates to a fission-like process from evaporation earlier than the original standard SMM model at lower excitation energies,and its mass distribution has larger probabilities in the medium-heavy nuclei range so that the system breaks up more averagely.When the excitation energy becomes higher,the volume and surface asymmetry lead to a smaller average multiplicity.

  10. Multiwavelength modelling the SED of supersoft X-ray sources. I. The method and examples

    CERN Document Server

    Skopal, Augustin

    2014-01-01

    Radiation of supersoft X-ray sources (SSS) dominates both the supersof X-ray and the far-UV domain. A fraction of their radiation can be reprocessed into the thermal nebular emission, seen in the spectrum from the near-UV to longer wavelengths. In the case of symbiotic X-ray binaries (SyXBs) a strong contribution from their cool giants is indicated in the optical/near-IR. In this paper I introduce a method of multiwavelength modelling the spectral energy distribution (SED) of SSSs from the supersoft X-rays to the near-IR with the aim to determine the physical parameters of their composite spectra. The method is demonstrated on two extragalactic SSSs, the SyXB RX J0059.1-7505 (LIN 358) in the Small Magellanic Cloud (SMC), RX J0439.8-6809 in the Large Magellanic Cloud (LMC) and two Galactic SSSs, the classical nova RX J2030.5+5237 (V1974 Cyg) during its supersoft phase and the classical symbiotic star RX J1601.6+6648 (AG Dra) during its quiescent phase. The multiwavelength approach overcomes the problem of the ...

  11. Constraining the Symmetry Energy Using Radioactive Ion Beams

    Science.gov (United States)

    Stiefel, Krystin; Kohley, Zachary; Morrissey, Dave; Thoennessen, Michael; MoNA Collaboration

    2016-09-01

    Calculations from the constrained molecular dynamics (CoMD) model have shown that the N/Z ratio of the residue fragments and neutron emissions from projectile fragmentation reactions is sensitive to the form of the symmetry energy, a term in the nuclear equation of state. In order to constrain the symmetry energy using the N/Z ratio observable, an experiment was performed using the MoNA-LISA and Sweeper magnet arrangement at the NSCL. Beams of 30S and 40S impinged on 9Be targets and the heavy residue fragments were measured in coincidence with fast neutrons. Comparison of the new experimental data with theoretical models should provide a constraint on the form of the symmetry energy. Some of the data from this experiment will be presented and discussed. This work is partially supported by the National Science Foundation under Grant No. PHY-1102511 and the Department of Energy National Nuclear Security Administration under Award No. DE-NA0000979.

  12. Symmetry energy of deformed neutron-rich nuclei

    CERN Document Server

    Gaidarov, M K; Sarriguren, P; de Guerra, E Moya

    2012-01-01

    The symmetry energy, the neutron pressure and the asymmetric compressibility of deformed neutron-rich even-even nuclei are calculated on the examples of Kr and Sm isotopes within the coherent density fluctuation model using the symmetry energy as a function of density within the Brueckner energy-density functional. The correlation between the thickness of the neutron skin and the characteristics related with the density dependence of the nuclear symmetry energy is investigated for isotopic chains of these nuclei in the framework of the self-consistent Skyrme-Hartree-Fock plus BCS method. Results for an extended chain of Pb isotopes are also presented. A remarkable difference is found in the trend followed by the different isotopic chains: the studied correlations reveal a smoother behavior in the Pb case than in the other cases. We also notice that the neutron skin thickness obtained for $^{208}$Pb with SLy4 force is found to be in a good agreement with recent data.

  13. Nuclear symmetry energy in a modified quark meson coupling model

    CERN Document Server

    Mishra, R N; Panda, P K; Barik, N; Frederico, T

    2015-01-01

    We study nuclear symmetry energy and the thermodynamic instabilities of asymmetric nuclear matter in a self-consistent manner by using a modified quark-meson coupling model where the confining interaction for quarks inside a nucleon is represented by a phenomenologically averaged potential in an equally mixed scalar-vector harmonic form. The nucleon-nucleon interaction in nuclear matter is then realized by introducing additional quark couplings to $\\sigma$, $\\omega$, and $\\rho$ mesons through mean-field approximations. We find an analytic expression for the symmetry energy ${\\cal E}_{sym}$ as a function of its slope $L$. Our result establishes a linear correlation between $L$ and ${\\cal E}_{sym}$. We also analyze the constraint on neutron star radii in $(pn)$ matter with $\\beta$ equilibrium.

  14. Ab initio predictions of the symmetry energy and recent constraints

    Science.gov (United States)

    Sammarruca, Francesca

    2017-01-01

    The symmetry energy plays a crucial role in the structure and the dynamics of neutron-rich systems, including the formation of neutron skins, the location of neutron drip lines, as well as intriguing correlations with the structure of compact stars. With experimental efforts in progress or being planned to shed light on the less known aspects of the nuclear chart, microscopic predictions based on ab initio approaches are very important. In recent years, chiral effective field theory has become popular because of its firm connection with quantum chromodynamics and its systematic approach to the development of nuclear forces. Predictions of the symmetry energy obtained from modern chiral interactions will be discussed in the light of recent empirical constraints extracted from heavy ion collisions at 400 MeV per nucleon at GSI. Applications of our equations of state to neutron-rich systems will also be discussed, with particular emphasis on neutron skins, which are sensitive to the density dependence of the symmetry energy.

  15. Covariance analysis of symmetry energy observables from heavy ion collision

    Directory of Open Access Journals (Sweden)

    Yingxun Zhang

    2015-10-01

    Full Text Available Using covariance analysis, we quantify the correlations between the interaction parameters in a transport model and the observables commonly used to extract information of the Equation of State of Asymmetric Nuclear Matter in experiments. By simulating 124Sn + 124Sn, 124Sn + 112Sn and 112Sn + 112Sn reactions at beam energies of 50 and 120 MeV per nucleon, we have identified that the nucleon effective mass splitting is most strongly correlated to the neutrons and protons yield ratios with high kinetic energy from central collisions especially at high incident energy. The best observable to determine the slope of the symmetry energy, L, at saturation density is the isospin diffusion observable even though the correlation is not very strong (∼0.7. Similar magnitude of correlation but opposite in sign exists for isospin diffusion and nucleon isoscalar effective mass. At 120 MeV/u, the effective mass splitting and the isoscalar effective mass also have opposite correlation for the double n/p and isoscaling p/p yield ratios. By combining data and simulations at different beam energies, it should be possible to place constraints on the slope of symmetry energy (L and effective mass splitting with reasonable uncertainties.

  16. Lorentz symmetry violation, dark matter and dark energy

    CERN Document Server

    Gonzalez-Mestres, Luis

    2009-01-01

    Taking into account the experimental results of the HiRes and AUGER collaborations, the present status of bounds on Lorentz symmetry violation (LSV) patterns is discussed. Although significant constraints will emerge, a wide range of models and values of parameters will still be left open. Cosmological implications of allowed LSV patterns are discussed focusing on the origin of our Universe, the cosmological constant, dark matter and dark energy. Superbradyons (superluminal preons) may be the actual constituents of vacuum and of standard particles, and form equally a cosmological sea leading to new forms of dark matter and dark energy.

  17. Conformal symmetry wormholes and the null energy condition

    CERN Document Server

    Kuhfittig, Peter K F

    2016-01-01

    In this paper we seek a relationship between the assumption of conformal symmetry and the exotic matter needed to hold a wormhole open. By starting with a Morris-Thorne wormhole having a constant energy density, it is shown that the conformal factor provides the extra degree of freedom sufficient to account for the exotic matter. The same holds for Morris-Thorne wormholes in a noncommutative-geometry setting. Applied to thin shells, there would exist a radius that results in a wormhole with positive surface density and negative surface pressure and which violates the null energy condition on the thin shell.

  18. A scalar field dark energy model: Noether symmetry approach

    Science.gov (United States)

    Dutta, Sourav; Panja, Madan Mohan; Chakraborty, Subenoy

    2016-04-01

    Scalar field dark energy cosmology has been investigated in the present paper in the frame work of Einstein gravity. In the context of Friedmann-Lemaitre-Robertson-Walker space time minimally coupled scalar field with self interacting potential and non-interacting perfect fluid with barotropic equation of state (dark matter) is chosen as the matter context. By imposing Noether symmetry on the Lagrangian of the system the symmetry vector is obtained and the self interacting potential for the scalar field is determined. Then we choose a point transformation (a, φ )→ (u, v) such that one of the transformation variable (say u) is cyclic for the Lagrangian. Subsequently, using conserved charge (corresponding to the cyclic co-ordinate) and the constant of motion, solutions are obtained. Finally, the cosmological implication of the solutions in the perspective of recent observation has been examined.

  19. Gauge Invariance and Symmetry Breaking by Topology and Energy Gap

    Directory of Open Access Journals (Sweden)

    Franco Strocchi

    2015-10-01

    Full Text Available For the description of observables and states of a quantum system, it may be convenient to use a canonical Weyl algebra of which only a subalgebra A, with a non-trivial center Z, describes observables, the other Weyl operators playing the role of intertwiners between inequivalent representations of A. In particular, this gives rise to a gauge symmetry described by the action of Z. A distinguished case is when the center of the observables arises from the fundamental group of the manifold of the positions of the quantum system. Symmetries that do not commute with the topological invariants represented by elements of Z are then spontaneously broken in each irreducible representation of the observable algebra, compatibly with an energy gap; such a breaking exhibits a mechanism radically different from Goldstone and Higgs mechanisms. This is clearly displayed by the quantum particle on a circle, the Bloch electron and the two body problem.

  20. Isospin and symmetry energy study in nuclear EOS

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This paper summarizes the isoscaling and isospin related studies in asymmetry nuclear reactions by different dynamic and sta tistical models. Isospin dependent quantum molecular dynamics model (IQMD) and lattice gas model (LGM) are used to study the isoscaling properties and isoscaling parameters dependence on incident energies, impact parameters, temperature and other parameters. In the LGM model, the signal of phase transition has been found in free neutron (proton) chemical potential dif ference Δμn or Δμp as a function of temperature, or in free neutron and proton chemical potential difference Δμn-Δμp. Density dependence of symmetry energy coefficient Csym(ρ/ρ0) is also studied in the frame of LGM, with the potential parameters which can reproduce the nuclear ground state property, soft density dependence of symmetry energy is deduced from the sim ulation results. Giant dipole resonance (GDR) induced by isospin asymmetry in entrance channel is also studied via IQMD model, and the dynamic dipole resonance shows isospin sensitivity on the isospin asymmetry of entrance channel and sym metry energy of the nuclear equation of state (EOS). GDR can also be regarded as a possible isospin sensitive signature.

  1. The neutron star inner crust and symmetry energy

    CERN Document Server

    Grill, Fabrizio; Providência, Constança

    2012-01-01

    The cell structure of clusters in the inner crust of a cold \\beta-equilibrium neutron star is studied within a Thomas Fermi approach and compared with other approaches which include shell effects. Relativistic nuclear models are considered. We conclude that the symmetry energy slope L may have quite dramatic effects on the cell structure if it is very large or small. Rod-like and slab-like pasta clusters have been obtained in all models except one with a large slope L.

  2. High-Energy Nuclear Physics with Lorentz Symmetry Violation

    CERN Document Server

    González-Mestres, L

    1997-01-01

    If textbook Lorentz invariance is actually a property of the equations describing a sector of the excitations of vacuum above some critical distance scale, several sectors of matter with different critical speeds in vacuum can coexist and an absolute rest frame (the vacuum rest frame) may exist without contradicting the apparent Lorentz invariance felt by "ordinary" particles (particles with critical speed in vacuum equal to $c$ , the speed of light). Sectorial Lorentz invariance, reflected by the fact that all particles of a given dynamical sector have the same critical speed in vacuum, will then be an expression of a fundamental sectorial symmetry (e.g. preonic grand unification or extended supersymmetry) protecting a parameter of the equations of motion. Furthermore, the sectorial Lorentz symmetry may be only a low-energy limit, in the same way as the relation $\\omega $ (frequency) = $c_s$ (speed of sound) $k$ (wave vector) holds for low-energy phonons in a crystal. In this context, phenomena such as the a...

  3. A way forward in the study of the symmetry energy: experiment, theory, and observation

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Charles; Brown, E F.; Kim, Y; Lynch, W G.; Michaels, Robert; Ono, A; Piekarewicz, Jorge; Tsang, M B.; Wolter, H H.

    2014-07-01

    The symmetry energy describes how the energy of nuclear matter rises as one goes away from equal numbers of neutrons and protons. This is very important to describe neutron rich matter in astrophysics. This article reviews our knowledge of the symmetry energy from theoretical calculations, nuclear structure measurements, heavy ion collisions, and astronomical observations. We then present a roadmap to make progress in areas of relevance to the symmetry energy that promotes collaboration between astrophysics and the nuclear physics communities.

  4. Nuclear matter symmetry energy from generalized polarizabilities: dependences on momentum, isospin, density and temperature

    CERN Document Server

    Braghin, F L

    2004-01-01

    Symmetry energy terms from macroscopic mass formulae are investigated as generalized polarizabilities of nuclear matter. Besides the neutron-proton (n-p) symmetry energy the spin dependent symmetry energies and a scalar one are also defined. They depend on the nuclear densities ($\\rho$), neutron-proton asymmetry ($b$), temperature ($T$) and exchanged energy and momentum ($q$). Based on a standard expression for the generalized polarizabilities, a differential equation is proposed to constrain the dependence of the symmetry energy on the n-p asymmetry and on the density. Some solutions are discussed. The q-dependence (zero frequence) of the symmetry energy coefficients with Skyrme-type forces is investigated in the four channels of the particle-hole interaction. Spin dependent symmetry energies are also investigated indicating much stronger differences in behavior with $q$ for each Skyrme force than the results for the neutron-proton one.

  5. Broken flavor symmetries in high energy particle phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Antaramian, A.

    1995-02-22

    Over the past couple of decades, the Standard Model of high energy particle physics has clearly established itself as an invaluable tool in the analysis of high energy particle phenomenon. However, from a field theorists point of view, there are many dissatisfying aspects to the model. One of these, is the large number of free parameters in the theory arising from the Yukawa couplings of the Higgs doublet. In this thesis, we examine various issues relating to the Yukawa coupeng structure of high energy particle field theories. We begin by examining extensions to the Standard Model of particle physics which contain additional scalar fields. By appealing to the flavor structure observed in the fermion mass and Kobayashi-Maskawa matrices, we propose a reasonable phenomenological parameterization of the new Yukawa couplings based on the concept of approximate flavor symmetries. It is shown that such a parameterization eliminates the need for discrete symmetries which limit the allowed couplings of the new scalars. New scalar particles which can mediate exotic flavor changing reactions can have masses as low as the weak scale. Next, we turn to the issue of neutrino mass matrices, where we examine a particular texture which leads to matter independent neutrino oscillation results for solar neutrinos. We, then, examine the basis for extremely strict limits placed on flavor changing interactions which also break lepton- and/or baryon-number. These limits are derived from cosmological considerations. Finally, we embark on an extended analysis of proton decay in supersymmetric SO(10) grand unified theories. In such theories, the dominant decay diagrams involve the Yukawa couplings of a heavy triplet superfield. We argue that past calculations of proton decay which were based on the minimal supersymmetric SU(5) model require reexamination because the Yukawa couplings of that theory are known to be wrong.

  6. Exploiting Lipid Permutation Symmetry to Compute Membrane Remodeling Free Energies

    Science.gov (United States)

    Bubnis, Greg; Risselada, Herre Jelger; Grubmüller, Helmut

    2016-10-01

    A complete physical description of membrane remodeling processes, such as fusion or fission, requires knowledge of the underlying free energy landscapes, particularly in barrier regions involving collective shape changes, topological transitions, and high curvature, where Canham-Helfrich (CH) continuum descriptions may fail. To calculate these free energies using atomistic simulations, one must address not only the sampling problem due to high free energy barriers, but also an orthogonal sampling problem of combinatorial complexity stemming from the permutation symmetry of identical lipids. Here, we solve the combinatorial problem with a permutation reduction scheme to map a structural ensemble into a compact, nondegenerate subregion of configuration space, thereby permitting straightforward free energy calculations via umbrella sampling. We applied this approach, using a coarse-grained lipid model, to test the CH description of bending and found sharp increases in the bending modulus for curvature radii below 10 nm. These deviations suggest that an anharmonic bending term may be required for CH models to give quantitative energetics of highly curved states.

  7. Covariance Analysis of Symmetry Energy Observables from Heavy Ion Collision

    CERN Document Server

    Zhang, Yingxun; Li, Zhuxia

    2015-01-01

    Using covariance analysis, we quantify the correlations between the interaction parameters in a transport model and the observables commonly used to extract information of the Equation of State of Asymmetric Nuclear Matter in experiments. By simulating $^{124}$Sn+$^{124}$Sn, $^{124}$Sn+$^{112}$Sn and $^{112}$Sn+$^{112}$Sn reactions at beam energies of 50 and 120 MeV per nucleon, we have identified that the nucleon effective mass splitting are most strongly correlated to the neutrons and protons yield ratios with high kinetic energy from central collisions especially at high incident energy. The best observable to determine the slope of the symmetry energy, L, at saturation density is the isospin diffusion observable even though the correlation is not very strong ($\\sim$0.7). Similar magnitude of correlation but opposite in sign exists for isospin diffusion and nucleon isoscalar effective mass. At 120 MeV/u, the effective mass splitting and the isoscalar effective mass also have opposite correlation for the do...

  8. Symmetry energy, unstable nuclei, and neutron star crusts

    CERN Document Server

    Iida, Kei

    2013-01-01

    Phenomenological approach to inhomogeneous nuclear matter is useful to describe fundamental properties of atomic nuclei and neutron star crusts in terms of the equation of state of uniform nuclear matter. We review a series of researches that we have developed by following this approach. We start with more than 200 equations of state that are consistent with empirical masses and charge radii of stable nuclei and then apply them to describe matter radii and masses of unstable nuclei, proton elastic scattering and total reaction cross sections off unstable nuclei, and nuclei in neutron star crusts including nuclear pasta. We finally discuss the possibility of constraining the density dependence of the symmetry energy from experiments on unstable nuclei and even observations of quasi-periodic oscillations in giant flares of soft gamma-ray repeaters.

  9. Symmetry energy, unstable nuclei and neutron star crusts

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Kei [Kochi University, Department of Natural Science, Kochi (Japan); RIKEN Nishina Center, Saitama (Japan); Oyamatsu, Kazuhiro [RIKEN Nishina Center, Saitama (Japan); Aichi Shukutoku University, Department of Human Informatics, Aichi (Japan)

    2014-02-15

    The phenomenological approach to inhomogeneous nuclear matter is useful to describe fundamental properties of atomic nuclei and neutron star crusts in terms of the equation of state of uniform nuclear matter. We review a series of researches that we have developed by following this approach. We start with more than 200 equations of state that are consistent with empirical masses and charge radii of stable nuclei and then apply them to describe matter radii and masses of unstable nuclei, proton elastic scattering and total reaction cross sections off unstable nuclei, and nuclei in neutron star crusts including nuclear pasta. We finally discuss the possibility of constraining the density dependence of the symmetry energy from experiments on unstable nuclei and even observations of quasi-periodic oscillations in giant flares of soft gamma-ray repeaters. (orig.)

  10. The first pre-supersoft X-ray binary

    Science.gov (United States)

    Parsons, S. G.; Schreiber, M. R.; Gänsicke, B. T.; Rebassa-Mansergas, A.; Brahm, R.; Zorotovic, M.; Toloza, O.; Pala, A. F.; Tappert, C.; Bayo, A.; Jordán, A.

    2015-09-01

    We report the discovery of an extremely close white dwarf plus F dwarf main-sequence star in a 12 h binary identified by combining data from the Radial Velocity Experiment survey and the Galaxy Evolution Explorer survey. A combination of spectral energy distribution fitting and optical and Hubble Space Telescope ultraviolet spectroscopy allowed us to place fairly precise constraints on the physical parameters of the binary. The system, TYC 6760-497-1, consists of a hot Teff ˜ 20 000 K, M_{WD}˜ 0.6 {{M_{{⊙}}}} white dwarf and an F8 star (M_{MS}˜ 1.23{M_{⊙}}, R_{MS}˜ 1.3 {R_{⊙}}) seen at a low inclination (i ˜ 37°). The system is likely the descendant of a binary that contained the F star and an ˜2 M⊙ A-type star that filled its Roche lobe on the thermally pulsating asymptotic giant branch, initiating a common envelope phase. The F star is extremely close to Roche lobe filling and there is likely to be a short phase of thermal time-scale mass transfer on to the white dwarf during which stable hydrogen burning occurs. During this phase, it will grow in mass by up to 20 per cent, until the mass ratio reaches close to unity, at which point it will appear as a standard cataclysmic variable star. Therefore, TYC 6760-497-1 is the first known progenitor of a supersoft source system, but will not undergo a Type Ia supernova explosion. Once an accurate distance to the system is determined by Gaia, we will be able to place very tight constraints on the stellar and binary parameters.

  11. The nuclear symmetry energy and stability of matter in neutron star

    CERN Document Server

    Kubis, S

    2006-01-01

    It is shown that behavior of the nuclear symmetry energy is the key quantity in the stability consideration in neutron star matter. The symmetry energy controls the position of crust-core transition and also may lead to new effects in the inner core of neutron star.

  12. Constraints on Symmetry Energy and Nucleon Effective Mass Splitting With Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Ying-xun; M.B.Tsang; LI; Zhu-xia; LIU; Hang

    2013-01-01

    The symmetry energy is of fundamental importance in our understanding of nature’s asymmetric objects including neutron stars as well as heavy nuclei with very different number of neutrons and protons.Theoretical predictions on the symmetry energy have large uncertainties.This stimulates a lot of efforts in the nuclear physics communities to provide experimental constraints on the density dependence of

  13. Symmetry energy effects on isovector properties of neutron rich nuclei with a density functional approach

    CERN Document Server

    Papazoglou, M C

    2014-01-01

    We employ a variational method to study the effect of the symmetry energy on the neutron skin thickness and the symmetry energy coefficients of various neutron rich nuclei. We concentrate our interest on $^{208}$Pb, $^{124}$Sn, $^{90}$Zr, and $^{48}$Ca, although the method can be applied in the totality of medium and heavy neutron rich nuclei. Our approach has the advantage that the isospin asymmetry function $\\alpha(r)$, which is the key quantity to calculate isovector properties of various nuclei, is directly related with the symmetry energy as a consequence of the variational principle. Moreover, the Coulomb interaction is included in a self-consistent way and its effects can be separated easily from the nucleon-nucleon interaction. We confirm, both qualitatively and quantitatively, the strong dependence of the symmetry energy on the various isovector properties for the relevant nuclei, using possible constraints between the slope and the value of the symmetry energy at the saturation density.

  14. Emergent scale symmetry: Connecting inflation and dark energy

    Science.gov (United States)

    Rubio, Javier; Wetterich, Christof

    2017-09-01

    Quantum gravity computations suggest the existence of an ultraviolet and an infrared fixed point where quantum scale invariance emerges as an exact symmetry. We discuss a particular variable gravity model for the crossover between these fixed points which can naturally account for inflation and dark energy, using a single scalar field. In the Einstein-frame formulation, the potential can be expressed in terms of Lambert functions, interpolating between a power-law inflationary potential and a mixed-quintessence potential. For two natural heating scenarios, the transition between inflation and radiation domination proceeds through a "graceful reheating" stage. The radiation temperature significantly exceeds the temperature of big bang nucleosynthesis. For this type of model, the observable consequences of the heating process can be summarized in a single parameter, the heating efficiency. Our quantitative analysis of compatibility with cosmological observations reveals the existence of realistic models able to describe the whole history of the Universe using only a single metric and scalar field and involving just a small number of order 1 parameters.

  15. Symmetry Energy, Temperature, Density and Isoscaling Parameter as a Function of Excitation energy in A $\\sim$ 100 mass region

    CERN Document Server

    Shetty, D V; Souliotis, G A; Keksis, A L; Soisson, S N; Stein, B C; Wuenschel, S

    2006-01-01

    The symmetry energy, temperature, density and isoscaling parameter, in $^{58}$Ni + $^{58}$Ni, $^{58}$Fe + $^{58}$Ni and $^{58}$Fe + $^{58}$Fe reactions at beam energies of 30, 40 and 47 MeV/nucleon, are studied as a function of excitation energy of the multifragmenting source. It is shown that the decrease in the isoscaling parameter is related to the near flattening of the temperature in the caloric curve, and the decrease in the density and the symmetry energy with increasing excitation energy. The decrease in the symmetry energy is mainly a consequence of decreasing density with increasing excitation rather than the increasing temperature. The symmetry energy as a function of density obtained from the correlation is in close agreement with the form, E$_{sym}(\\rho)$ $=$ 31.6 ($\\rho/\\rho_{\\circ})^{0.69}$.

  16. Kaon condensation in neutron stars and high density behaviour of nuclear symmetry energy

    CERN Document Server

    Kubis, S

    1999-01-01

    We study the influence of a high density behaviour of the nuclear symmetry energy on a kaon condensation in neutron stars. We find that the symmetry energy typical for several realistic nuclear potentials, which decreases at high densities, inhibits kaon condensation for weaker kaon-nucleon couplings. There exists a threshold coupling above which the kaon condensate forms at densities exceeding some critical value. This is in contrast to the case of rising symmetry energy, as e.g. for relativistic mean field models, when the kaon condensate can form for any coupling at a sufficiently high density. Properties of the condensate are also different in both cases.

  17. Systematic study of symmetry energy within the SMM picture of multifragmentation

    CERN Document Server

    Marini, P; Souliotis, G A; Cammarata, P; Wuenschel, S; Tripathi, R; Kohley, Z; Hagel, K; Heilborn, L; Mabiala, J; May, L W; McIntosh, A B; Yennello, S J

    2012-01-01

    A systematic study on the effect of secondary decay on the symmetry energy coefficient extracted by isoscaling and the recently proposed isobaric yield ratio methods within the Statistical Multifragmentation Model is performed. The correlations between the input symmetry energy coefficients and the calculated ones from both primary and secondary fragment yields are analysed. Results for secondary fragments show that the best estimation of the input symmetry energy coefficient within SMM is obtained by the isoscaling method, using the yields of light fragments. A comparison to experimental results is also presented.

  18. Influence of the symmetry energy on nuclear pasta in neutron star crusts

    CERN Document Server

    Bao, S S

    2014-01-01

    We investigate the effects of the symmetry energy on nuclear pasta phases and the crust-core transition in neutron stars. We employ the relativistic mean-field approach and the coexisting phases method to study the properties of pasta phases presented in the inner crust of neutron stars. It is found that the slope of the nuclear symmetry energy at saturation density plays an important role in the crust-core transition and pasta phase properties. The correlation between the symmetry energy slope and the crust-core transition density obtained in this study is consistent with those obtained by other methods.

  19. Symmetry energy and neutron star properties in the saturated Nambu–Jona-Lasinio model

    Directory of Open Access Journals (Sweden)

    Si-Na Wei

    2016-12-01

    Full Text Available In this work, we adopt the Nambu–Jona-Lasinio (NJL model that ensures the nuclear matter saturation properties to study the density dependence of the symmetry energy. With the interactions constrained by the chiral symmetry, the symmetry energy shows novel characters different from those in conventional mean-field models. First, the negative symmetry energy at high densities that is absent in relativistic mean-field (RMF models can be obtained in the RMF approximation by introducing a chiral isovector–vector interaction, although it would be ruled out by the neutron star (NS stability. Second, with the inclusion of the isovector–scalar interaction the symmetry energy exhibits a general softening at high densities even for the large slope parameter of the symmetry energy. The NS properties obtained in the present NJL model can be in accord with the observations. The NS maximum mass obtained with various isovector–scalar couplings and momentum cutoffs is well above the 2M⊙, and the NS radius obtained well meets the limits extracted from recent measurements. In particular, the significant reduction of the canonical NS radius occurs with the moderate decrease of the slope of the symmetry energy.

  20. The influence of the symmetry energy on the cone-azimuthal emission

    CERN Document Server

    Gao, Yuan; Wang, Yong-Jia; Li, Qing-Feng; Zuo, Wei

    2013-01-01

    In the framework of the isospin-dependent Boltzmann-Uehling-Uhlenbeck transport model, effects of the symmetry energy on the evolutions of free n/p ratio and charged pion ratio in the semi-central collision of $^{197}$Au+$^{197}$Au at an incident beam energy of 400 MeV/nucleon are studied. At the beginning of the reaction (before 11 fm/c) they are both affected by the low-density behavior of the symmetry energy but soon after are affected by the high-density behavior of the symmetry energy after nuclei are compressed (after 11 fm/c) and the effects of the symmetry energy are generally smaller compared with the central collision case. Interestingly, their dependences on the symmetry energy are shown to arise with increase of cone-azimuthal angle of the emitted particles. In the direction perpendicular to the reaction plane, the $\\pi^{-}/\\pi ^{+}$ ratio or free n/p ratio especially at high kinetic energies exhibits significant sensitivity to the symmetry energy.

  1. New Supersoft Supersymmetry Breaking Operators and a Solution to the $\\mu$ Problem

    CERN Document Server

    Nelson, Ann E

    2015-01-01

    We propose the framework, "generalized supersoft supersymmetry breaking." "Supersoft" models, with D-type supersymmetry breaking and heavy Dirac gauginos, are considerably less constrained by the LHC searches than the well studied MSSM. These models also ameliorate the supersymmetric flavor and CP problems. However, previously considered mechanisms for obtaining a natural size Higgsino mass parameter (namely, $\\mu$) in supersoft models have been relatively complicated and contrived. Obtaining a 125 GeV for the mass of the lightest Higgs boson has also been difficult. Additional issues with the supersoft scenario arise from the fact that these models contain new scalars in the adjoint representation of the standard model, which may obtain negative squared-masses, breaking color and generating too large a T-parameter. In this work we introduce new operators into supersoft models which can potentially solve all these issues. A novel feature of this framework is that the new $\\mu$-term can give unequal masses to ...

  2. Warm unstable asymmetric nuclear matter: Critical properties and the density dependence of the symmetry energy

    Science.gov (United States)

    Alam, N.; Pais, H.; Providência, C.; Agrawal, B. K.

    2017-05-01

    The spinodal instabilities in hot asymmetric nuclear matter and some important critical parameters derived thereof are studied by using six different families of relativistic mean-field models. The slopes of the symmetry energy coefficient vary over a wide range within each family. The critical densities and proton fractions are more sensitive to the symmetry energy slope parameter at temperatures much below its critical value (Tc˜14 -16 MeV ). The spread in the critical proton fraction at a given symmetry energy slope parameter is noticeably larger near Tc, indicating that the equation of state of warm asymmetric nuclear matter at subsaturation densities is not sufficiently constrained. The distillation effects are sensitive to the density dependence of the symmetry energy at low temperatures which tend to wash out with increasing temperature.

  3. Thermodynamics of the symmetry energy and the equation of state of isospin-asymmetric nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Wellenhofer, Corbinian; Kaiser, Norbert [Physik Department, Technische Universitaet Muenchen (Germany); Holt, Jeremy W. [Department of Physics, University of Washington, Seattle (United States); Weise, Wolfram [Physik Department, Technische Universitaet Muenchen (Germany); ECT, Villa Tambosi, Trento (Italy)

    2015-07-01

    Knowledge of the thermodynamic properties of the nuclear symmetry energy is essential for the study of heavy-ion collisions and a multitude of astrophysical phenomena. In this work, we investigate the density and temperature dependence of the symmetry energy using many-body perturbation theory with microscopic chiral nuclear forces. The calculational methods and nuclear force models are benchmarked against empirical constraints for isospin-symmetric nuclear matter and the virial expansion of low-density neutron matter. It is found that whereas the symmetry free energy and entropy both increase uniformly with temperature, the symmetry energy exhibits almost universal behavior. Moreover, we show results for the equation of state of isospin-asymmetric nuclear matter, obtained from the parabolic approximation. The different thermodynamic instabilities at subsaturation densities are examined, and we construct the equation of state corresponding to an equilibrium liquid-gas phase transition by means of the generalized Maxwell construction for two-component fluids.

  4. Constraints on the Symmetry Energy Using the Mass-Radius Relation of Neutron Stars

    CERN Document Server

    Lattimer, James M

    2014-01-01

    The nuclear symmetry energy is intimately connected with nuclear astrophysics. This contribution focuses on the estimation of the symmetry energy from experiment and how it is related to the structure of neutron stars. The most important connection is between the radii of neutron stars and the pressure of neutron star matter in the vicinity of the nuclear saturation density $n_s$. This pressure is essentially controlled by the nuclear symmetry energy parameters $S_v$ and $L$, the first two coefficients of a Taylor expansion of the symmetry energy around $n_s$. We discuss constraints on these parameters that can be found from nuclear experiments. We demonstrate that these constraints are largely model-independent by deriving them qualitatively from a simple nuclear model. We also summarize how recent theoretical studies of pure neutron matter can reinforce these constraints. To date, several different astrophysical measurements of neutron star radii have been attempted. Attention is focused on photospheric rad...

  5. Nuclear charge symmetry breaking and the /sup 3/H-/sup 3/He binding energy difference

    Energy Technology Data Exchange (ETDEWEB)

    Brandenburg, R.A.; Chulick, G.S.; Kim, Y.E.; Klepacki, D.J.; Machleidt, R.; Picklesimer, A.; Thaler, R.M.

    1988-02-01

    We study the /sup 3/H- /sup 3/He binding energy difference, taking into account the Coulomb interaction and charge symmetry breaking of the nuclear force consistent with recent NN experimental data. Realistic interactions are generated which describe the charge symmetry violations reflected in the different nucleon-nucleon scattering lengths. The influence of nuclear charge symmetry breaking on the perturbative Coulomb contribution to the /sup 3/He binding energy is discussed. It is shown that the experimental mass difference can be explained by these and theoretical estimates of other known effects.

  6. Nuclear charge symmetry breaking and the 3H-3He binding energy difference

    Science.gov (United States)

    Brandenburg, R. A.; Chulick, G. S.; Kim, Y. E.; Klepacki, D. J.; Machleidt, R.; Picklesimer, A.; Thaler, R. M.

    1988-02-01

    We study the 3H- 3He binding energy difference, taking into account the Coulomb interaction and charge symmetry breaking of the nuclear force consistent with recent NN experimental data. Realistic interactions are generated which describe the charge symmetry violations reflected in the different nucleon-nucleon scattering lengths. The influence of nuclear charge symmetry breaking on the perturbative Coulomb contribution to the 3He binding energy is discussed. It is shown that the experimental mass difference can be explained by these and theoretical estimates of other known effects.

  7. Systematic analysis of symmetry energy effects in the neutron star crust properties

    CERN Document Server

    Kubis, Sebastian

    2012-01-01

    The functional form of the nuclear symmetry energy in the whole range of densities relevant for the neutron stars is still unknown. Discrepancies concern both the low as well as the high density behaviour of this function. By use of Bezier curves three different families of the symmetry energy shapes, relevant for different density range were introduced. Their consequences for the crustal properties of neutron stars are presented.

  8. The symmetry energy at subnuclear densities and nuclei in neutron star crusts

    CERN Document Server

    Oyamatsu, K; Iida, Kei; Oyamatsu, Kazuhiro

    2006-01-01

    We examine how the properties of inhomogeneous nuclear matter at subnuclear densities depend on the density dependence of the symmetry energy. Using a macroscopic nuclear model we calculate the size and shape of nuclei in neutron star matter at zero temperature in a way dependent on the density dependence of the symmetry energy. We find that for smaller symmetry energy at subnuclear densities, corresponding to larger density symmetry coefficient L, the charge number of nuclei is smaller, and the critical density at which matter with nuclei or bubbles becomes uniform is lower. The decrease in the charge number is associated with the dependence of the surface tension on the nuclear density and the density of a sea of neutrons, while the decrease in the critical density can be generally understood in terms of proton clustering instability in uniform matter.

  9. Effects of symmetry energy and momentum dependent interaction on low-energy reaction mechanisms

    CERN Document Server

    Zheng, H; Baran, V; Burrello, S

    2015-01-01

    We study the dipole response associated with the Pygmy Dipole Resonance (PDR) and the Isovector Giant Dipole Resonance (IVGDR), in connection with specific properties of the nuclear effective interaction (symmetry energy and momentum dependence), in the neutron-rich systems $^{68}$Ni, $^{132}$Sn and $^{208}$Pb. We perform our investigation within a microscopic transport model based on the Landau-Vlasov kinetic equation. We observe that the peak energies of PDR and IVGDR are shifted to higher values when employing momentum dependent interactions, with respect to the results obtained neglecting momentum dependence. The calculated energies are close to the experimental values and similar to the results obtained in Hartree-Fock (HF) with Random Phase Approximation (RPA) calculations.

  10. Effects of symmetry energy and momentum dependent interaction on low-energy reaction mechanisms

    Directory of Open Access Journals (Sweden)

    Zheng H.

    2016-01-01

    Full Text Available We study the dipole response associated with the Pygmy Dipole Resonance (PDR and the Isovector Giant Dipole Resonance (IVGDR, in connection with specific properties of the nuclear effective interaction (symmetry energy and momentum dependence, in the neutron-rich systems 68Ni, 132Sn and 208Pb. We perform our investigation within a microscopic transport model based on the Landau-Vlasov kinetic equation.We observe that the peak energies of PDR and IVGDR are shifted to higher values when employing momentum dependent interactions, with respect to the results obtained neglecting momentum dependence. The calculated energies are close to the experimental values and similar to the results obtained in Hartree-Fock (HF with Random Phase Approximation (RPA calculations.

  11. CXO J004318.8+412016, a steady supersoft X-ray source in M 31

    Science.gov (United States)

    Orio, Marina; Luna, G. J. M.; Kotulla, R.; Gallager, J. S.; Zampieri, L.; Mikolajewska, J.; Harbeck, D.; Bianchini, A.; Chiosi, E.; Della Valle, M.; de Martino, D.; Kaur, A.; Mapelli, M.; Munari, U.; Odendaal, A.; Trinchieri, G.; Wade, J.; Zemko, P.

    2017-09-01

    We obtained an optical spectrum of a star we identify as the optical counterpart of the M31 Chandra source CXO J004318.8+412016, because of prominent emission lines of the Balmer series, of neutral helium, and a He II line at 4686 Å. The continuum energy distribution and the spectral characteristics demonstrate the presence of a red giant of K or earlier spectral type, so we concluded that the binary is likely to be a symbiotic system. CXO J004318.8+412016 has been observed in X-rays as a luminous supersoft source (SSS) since 1979, with effective temperature exceeding 40 eV and variable X-ray luminosity, oscillating between a few times 1035 erg s-1 and a few times 1037 erg s-1 in the space of a few weeks. The optical, infrared and ultraviolet colours of the optical object are consistent with an an accretion disc around a compact object companion, which may be either a white dwarf or a black hole, depending on the system parameters. If the origin of the luminous supersoft X-rays is the atmosphere of a white dwarf that is burning hydrogen in shell, it is as hot and luminous as post-thermonuclear flash novae, yet no major optical outburst has ever been observed, suggesting that the white dwarf is very massive (m ≥ 1.2 M⊙) and it is accreting and burning at the high rate \\dot{m} > 10^{-8} M⊙ yr-1 expected for Type Ia supernovae progenitors. In this case, the X-ray variability may be due to a very short recurrence time of only mildly degenerate thermonuclear flashes.

  12. Spin Hamilton Operators, Symmetry Breaking, Energy Level Crossing and Entanglement

    OpenAIRE

    Steeb, Willi-Hans; Hardy, Yorick; de Greef, Jacqueline

    2011-01-01

    We study finite-dimensional product Hilbert spaces, coupled spin systems, entanglement and energy level crossing. The Hamilton operators are based on the Pauli group. We show that swapping the interacting term can lead from unentangled eigenstates to entangled eigenstates and from an energy spectrum with energy level crossing to avoided energy level crossing.

  13. Probing the nuclear symmetry energy with heavy-ion reactions induced by neutron-rich nuclei

    Institute of Scientific and Technical Information of China (English)

    CHEN Lie-wen; KO Che-Ming; LI Bao-an; YONG Gao-chan

    2007-01-01

    Heavy-ion reactions induced by neutron-rich nuclei provide a unique means to investigate the equation of state of isospin-asymmetric nuclear matter,especially the density dependence of the nuclear symmetry energy.In particular,recent analyses of the isospin diffusion data in heavyion reactions have already put a stringent constraint on thenuclear symmetry energy around the nuclear matter saturation density.We review this exciting result and discuss its implications on nuclear effective interactions and the neutron skin thickness of heavy nuclei.In addition,we also review the theoretical progress on probing the high density behaviors of the nuclear symmetry energy in heavy-ion reactions induced by high energy radioactive beams.

  14. Symmetry energy effects on properties of neutron star crusts around the neutron drip density

    CERN Document Server

    Bao, S S; Zhang, Z W; Shen, H

    2014-01-01

    We study the effects of the symmetry energy on the neutron drip density and properties of nuclei in neutron star crusts. The nonuniform matter around the neutron drip point is calculated using the Thomas--Fermi approximation with the relativistic mean-field model. The neutron drip density and the composition of the crust are found to be correlated with the symmetry energy and its slope. We compare the self-consistent Thomas--Fermi approximation with other treatments of surface and Coulomb energies, and find that these finite-size effects play an essential role in determining the equilibrium state at low density.

  15. Effective dissipation: Breaking time-reversal symmetry in driven microscopic energy transmission

    Science.gov (United States)

    Brown, Aidan I.; Sivak, David A.

    2016-09-01

    At molecular scales, fluctuations play a significant role and prevent biomolecular processes from always proceeding in a preferred direction, raising the question of how limited amounts of free energy can be dissipated to obtain directed progress. We examine the system and process characteristics that efficiently break time-reversal symmetry at fixed energy loss; in particular for a simple model of a molecular machine, an intermediate energy barrier produces unusually high asymmetry for a given dissipation. We relate the symmetry-breaking factors found in this model to recent observations of biomolecular machines.

  16. Model dependence of the neutron-skin thickness on the symmetry energy

    Science.gov (United States)

    Mondal, C.; Agrawal, B. K.; Centelles, M.; Colò, G.; Roca-Maza, X.; Paar, N.; Viñas, X.; Singh, S. K.; Patra, S. K.

    2016-06-01

    The model dependence in the correlations of the neutron-skin thickness in heavy nuclei with various symmetry-energy parameters is analyzed by using several families of systematically varied microscopic mean-field models. Such correlations show a varying degree of model dependence once the results for all the different families are combined. Some mean-field models associated with similar values of the symmetry-energy slope parameter at saturation density L , and pertaining to different families, yield a greater-than-expected spread in the neutron-skin thickness of the 208Pb nucleus. The effective value of the symmetry-energy slope parameter Leff, determined by using the nucleon density profiles of the finite nucleus and the density derivative S'(ρ ) of the symmetry energy starting from about saturation density up to low densities typical of the surface of nuclei, seems to account for the spread in the neutron-skin thickness for the models with similar L . The differences in the values of Leff are mainly due to the small differences in the nucleon density distributions of heavy nuclei in the surface region and the behavior of the symmetry energy at subsaturation densities.

  17. Imprint of the symmetry energy on the inner crust and strangeness content of neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Providencia, Constanca; Chiacchiera, Silvia; Grill, Fabrizio; Rabhi, Aziz; Vidana, Isaac [University of Coimbra, Centro de Fisica Computacional, Department of Physics, Coimbra (Portugal); Avancini, Sidney S.; Menezes, Debora P. [Universidade Federal de Santa Catarina, Departamento de Fisica, SC - CP. 476, Florianopolis (Brazil); Cavagnoli, Rafael [Universidade Federal de Pelotas, Departamento de Fisica, CP 354, Pelotas/SC (Brazil); Ducoin, Camille; Margueron, Jerome [Universite Claude Bernard Lyon 1, Institut de Physique Nucleaire de Lyon, Villeurbanne (France)

    2014-02-15

    In this work we study the effect of the symmetry energy on several properties of neutron stars. First, we discuss its effect on the density, proton fraction and pressure of the neutron star crust-core transition. We show that whereas the first two quantities present a clear correlation with the slope parameter L of the symmetry energy, no satisfactory correlation is seen between the transition pressure and L. However, a linear combination of the slope and curvature parameters at ρ = 0.1 fm{sup -3} is well correlated with the transition pressure. In the second part we analyze the effect of the symmetry energy on the pasta phase. It is shown that the size of the pasta clusters, number of nucleons and the cluster proton fraction depend on the density dependence of the symmetry energy: a small L gives rise to larger clusters. The influence of the equation of state at subsaturation densities on the extension of the inner crust of the neutron star is also discussed. Finally, the effect of the density dependence of the symmetry energy on the strangeness content of neutron stars is studied in the last part of the work. It is found that charged (neutral) hyperons appear at smaller (larger) densities for smaller values of the slope parameter L. A linear correlation between the radius and the strangeness content of a star with a fixed mass is also found. (orig.)

  18. Effects of Symmetry Energy in the Reaction 40Ca+124Sn at 140 MeV/nucleon

    CERN Document Server

    Zhang, Fang; Yong, Gao-Chan; Zuo, Wei

    2012-01-01

    The density-dependent symmetry energy is a hot topic in nuclear physics. Many laboratories over the world are planning to perform related experiments to probe the symmetry energy. Based on the semiclassical Boltzmann-Uehling-Uhlenbeck (BUU) transport model, we study the effects of nuclear symmetry energy in the central reaction 40Ca+124Sn at 140MeV/nucleon in the laboratory system. It is found that the rapidity distribution of free nucleon's neutron-to-proton ratio is sensitive to the symmetry energy, especially at large rapidities. The free neutron-to-proton ratios at small or large rapidities may reflect high or low density behavior of nuclear symmetry energy. To probe the density dependence of nuclear symmetry energy, it is better to give the kinetic distribution and the rapidity distribution of emitted nucleons at the same time.

  19. Generalized Supersoft Supersymmetry Breaking and a Solution to the μ Problem

    Science.gov (United States)

    Nelson, Ann E.; Roy, Tuhin S.

    2015-05-01

    We propose the framework generalized supersoft supersymmetry breaking. "Supersoft" models, with D -type supersymmetry breaking and heavy Dirac gauginos, are considerably less constrained by the LHC searches than the well studied MSSM. These models also ameliorate the supersymmetric flavor and C P problems. However, previously considered mechanisms for obtaining a natural size Higgsino mass parameter (namely, μ ) in supersoft models have been relatively complicated and contrived. Obtaining a 125 GeV for the mass of the lightest Higgs boson has also been difficult. Additional issues with the supersoft scenario arise from the fact that these models contain new scalars in the adjoint representation of the standard model, which may obtain negative squared-masses, breaking color and generating too large a T parameter. In this Letter, we introduce new operators into supersoft models which can potentially solve all these issues. A novel feature of this framework is that the new μ term can give unequal masses to the up and down type Higgs fields, and the Higgsinos can be much heavier than the Higgs boson without fine-tuning. However, unequal Higgs and Higgsino masses also remove some attractive features of supersoft supersymmetry.

  20. Constraining the Symmetry Energy: A Journey in the Isospin Physics from Coulomb Barrier to Deconfinement

    CERN Document Server

    Di Toro, M; Greco, V; Ferini, G; Rizzo, C; Rizzo, J; Baran, V; Gaitanos, T; Prassa, V; Wolter, H H; Zielinska-Pfabé, M

    2007-01-01

    Heavy Ion Collisions (HIC) represent a unique tool to probe the in-medium nuclear interaction in regions away from saturation. In this work we present a selection of reaction observables in dissipative collisions particularly sensitive to the isovector part of the interaction, i.e. to the symmetry term of the nuclear Equation of State (EoS). At low energies the behavior of the symmetry energy around saturation influences dissipation and fragment production mechanisms. We will first discuss the recently observed Dynamical Dipole Radiation, due to a collective neutron-proton oscillation during the charge equilibration in fusion and deep-inelastic collisions. Important Iso-EOS effects are stressed. Reactions induced by unstable 132Sn beams appear to be very promising tools to test the sub-saturation Isovector EoS. New Isospin sensitive observables are also presented for deep-inelastic, fragmentation collisions and Isospin equilibration measurements (Imbalance Ratios). The high density symmetry term can be derive...

  1. Symmetry energy and surface properties of neutron-rich exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gaidarov, M. K.; Antonov, A. N. [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia 1784 (Bulgaria); Sarriguren, P. [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 123, E-28006 Madrid (Spain); Moya de Guerra, E. [Departamento de Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

    2014-07-23

    The symmetry energy, the neutron pressure and the asymmetric compressibility of spherical Ni, Sn, and Pb and deformed Kr and Sm neutron-rich even-even nuclei are calculated within the coherent density fluctuation model using the symmetry energy as a function of density within the Brueckner energy-density functional. The correlation between the thickness of the neutron skin and the characteristics related with the density dependence of the nuclear symmetry energy is investigated for isotopic chains of these nuclei in the framework of the deformed self-consistent mean-field Skyrme HF+BCS method. The mass dependence of the nuclear symmetry energy and the neutron skin thickness are also studied together with the role of the neutron-proton asymmetry. The studied correlations reveal a smoother behavior in the case of spherical nuclei than for deformed ones. We also notice that the neutron skin thickness obtained for {sup 208}Pb with SLy4 force is found to be in a good agreement with the recent data. In addition to the interest that this study may have by itself, we give some numerical arguments in proof of the existence of peculiarities of the studied quantities in Ni and Sn isotopic chains that are not present in the Pb chain.

  2. Energy level alignment symmetry at Co/pentacene/Co interfaces

    NARCIS (Netherlands)

    Popinciuc, M.; Jonkman, H. T.; van Wees, B. J.

    2006-01-01

    We have employed x-ray and ultraviolet photoemission spectroscopies (XPS and UPS) to study the energy level alignment and electronic structure at the Co/pentacene/Co interfaces. In the case of pentacene deposition on Co we found an interfacial dipole of about 1.05 eV and a hole injection barrier of

  3. Model dependence of the neutron-skin thickness on the symmetry energy

    CERN Document Server

    Mondal, C; Centelles, M; Colò, G; Roca-Maza, X; Paar, N; Viñas, X; Singh, S K; Patra, S K

    2016-01-01

    The model dependence in the correlations of the neutron-skin thickness in heavy nuclei with various symmetry energy parameters is analyzed by using several families of systematically varied microscopic mean field models. Such correlations show a varying degree of model dependence once the results for all the different families are combined. Some mean field models associated with similar values of the symmetry energy slope parameter at saturation density $L$, and pertaining to different families, yield a greater-than-expected spread in the neutron-skin thickness of the $^{208}$Pb nucleus. The effective value of the symmetry energy slope parameter $L_{\\rm eff}$, determined by using the nucleon density profiles of the finite nucleus and the density derivative $S^\\prime(\\rho)$ of the symmetry energy starting from about saturation density up to low densities typical of the surface of nuclei, seems to account for the spread in the neutron-skin thickness for the models with similar $L$. The differences in the values...

  4. Broken symmetries and directed collective energy transport in spatially extended systems

    DEFF Research Database (Denmark)

    Flach, S.; Zolotaryuk, Yaroslav; Miroshnichenko, A. E.;

    2002-01-01

    We study the appearance of directed energy current in homogeneous spatially extended systems coupled to a heat bath in the presence of an external ac field E(t) . The systems are described by nonlinear field equations. By making use of a symmetry analysis, we predict the right choice of E(t) and ...

  5. Symmetry energy at subsaturation densities and the neutron skin thickness of 208Pb

    CERN Document Server

    Fan, Xiaohua; Zuo, Wei

    2015-01-01

    The mass-dependent symmetry energy coefficients $a_{sym}(A)$ has been extracted by analysing the heavy nuclear mass differences reducing the uncertainties as far as possible in our previous work. Taking advantage of the obtained symmetry energy coefficient $a_{sym}(A)$ and the density profiles obtained by switching off the Coulomb interaction in $^{208}\\text{Pb}$, we calculated the slope parameter $L_{0.11}$ of the symmetry energy at the density of $0.11\\text{fm}^{-3}$. The calculated $L_{0.11}$ ranges from 40.5 MeV to 60.3 MeV. The slope parameter $L_{0.11}$ of the symmetry energy at the density of $0.11\\text{fm}^{-3}$ is also calculated directly with Skyrme interactions for nuclear matter and is found to have a fine linear relation with the neutron skin thickness of $^{208}\\text{Pb}$, which is the difference of the neutron and proton rms radii of the nucleus. With the linear relation the neutron skin thickness $ \\Delta R_{np} $ of $^{208}\\text{Pb}$ is predicted to be 0.15 - 0.21 fm.

  6. Imprint of the symmetry energy on the inner crust and strangeness content of neutron stars

    CERN Document Server

    Providência, Constança; Cavagnoli, Rafael; Chiacchiera, Silvia; Ducoin, Camille; Grill, Fabrizio; Margueron, Jérôme; Menezes, Débora P; Rabhi, Aziz; Vidaña, Isaac

    2013-01-01

    In this work we study the effect of the symmetry energy on several properties of neutron stars. First, we discuss its effect on the density, proton fraction and pressure of the neutron star crust-core transition. We show that whereas the first two quantities present a clear correlation with the slope parameter $L$ of the symmetry energy, no satisfactory correlation is seen between the transition pressure and $L$. However, a linear combination of the slope and curvature parameters at $\\rho=0.1$ fm$^{-3}$ is well correlated with the transition pressure. In the second part we analyze the effect of the symmetry energy on the pasta phase. It is shown that the size of the pasta clusters, number of nucleons and the cluster proton fraction depend on the density dependence of the symmetry energy: a small $L$ gives rise to larger clusters. The influence of the equation of state at subsaturation densities on the extension of the inner crust of the neutron star is also discussed. Finally, the effect of the effect of the ...

  7. Higher-order symmetry energy of nuclear matter and the inner edge of neutron star crusts

    CERN Document Server

    Seif, W M

    2014-01-01

    The parabolic approximation to the equation of state of the isospin asymmetric nuclear matter (ANM) is widely used in the literature to make predictions for the nuclear structure and the neutron star properties. Based on the realistic M3Y-Paris and M3Y-Reid nucleon-nucleon interactions, we investigate the effects of the higher-order symmetry energy on the proton fraction in neutron stars and the location of the inner edge of their crusts and their core-crust transition density and pressure, thermodynamically. Analytical expressions for different-order symmetry energy coefficients of ANM are derived using the realistic interactions mentioned above. It is found that the higher-order terms of the symmetry energy coefficients up to its eighth-order (E$_{sym8}$) contributes substantially to the proton fraction in $\\beta$ stable neutron star matter at different nuclear matter densities, the core-crust transition density and pressure. Even by considering the symmetry energy coefficients up to E$_{sym8}$, we obtain a...

  8. Isospin splitting of nucleon effective mass and symmetry energy in isotopic nuclear reactions

    CERN Document Server

    Guo, Ya-Fei; Niu, Fei; Zhang, Hong-Fei; Jin, Gen-Ming; Feng, Zhao-Qing

    2016-01-01

    Within an isospin and momentum dependent transport model, the dynamics of isospin particles (nucleons and light clusters) in Fermi-energy heavy-ion collisions are investigated for constraining the isospin splitting of nucleon effective mass and the symmetry energy at subsaturation densities. The mass splitting of $m^{*}_{n}>m^{*}_{p}$ and $m^{*}_{n}symmetry energy are used in the model. The single and double neutron to proton ratios of free nucleons and light particles are thoroughly investigated in the isotopic nuclear reactions of $^{112}$Sn+$^{112}$Sn and $^{124}$Sn+$^{124}$Sn at the incident energies of 50 and 120 MeV/nucleon, respectively. It is found that the both effective mass splitting and symmetry energy impact the kinetic energy spectra of the single ratios, in particular at the high energy tail (larger than 20 MeV). Specific constraints are obtained from the double ratio spectra, which are evaluated from the ratios of isospin observab...

  9. Symmetry energy from elliptic flow in {sup 197}Au + {sup 197}Au

    Energy Technology Data Exchange (ETDEWEB)

    Russotto, P. [INFN-LNS and Universita di Catania, I-95123 Catania (Italy); Wu, P.Z. [University of Liverpool, Physics Department, Liverpool L69 7ZE (United Kingdom); Zoric, M. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Ruder Boskovic Institute. HR-10002 Zagreb (Croatia); Chartier, M. [University of Liverpool, Physics Department, Liverpool L69 7ZE (United Kingdom); Leifels, Y. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Lemmon, R.C. [STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Li, Q. [School of Science, Huzhou Teachers College, Huzhou 313000 (China); Lukasik, J. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); IFJ-PAN, Pl-31342 Krakow (Poland); Pagano, A. [INFN-Sezione di Catania, I-95123 Catania (Italy); Pawlowski, P. [IFJ-PAN, Pl-31342 Krakow (Poland); Trautmann, W., E-mail: w.trautmann@gsi.d [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany)

    2011-03-21

    The elliptic-flow ratio of neutrons with respect to protons or light complex particles in reactions of neutron-rich systems at relativistic energies is proposed as an observable sensitive to the strength of the symmetry term in the equation of state at supra-normal densities. The results obtained from the existing FOPI/LAND data for {sup 197}Au + {sup 197}Au collisions at 400 MeV/nucleon in comparison with the UrQMD model favor a moderately soft symmetry term with a density dependence of the potential term proportional to ({rho}/{rho}{sub 0}){sup {gamma}} with {gamma}=0.9{+-}0.4.

  10. Low-energy R-parity violating SUSY with horizontal flavor symmetries

    CERN Document Server

    Monteux, Angelo

    2013-01-01

    In this talk, I will present the general structure of RPV couplings when a Froggatt-Nielsen horizontal symmetry is responsible for the flavor structure of both the SM and the MSSM. For sub-TeV ({\\it natural}) SUSY, lepton number must be an accidental symmetry, while low-energy SUSY is still allowed by baryonic RPV, which lowers the MET signature of superparticles decays. The largest RPV coupling involves the stop, and it is constrained between $10^{-3}$ (from FCNCs) and $10^{-9}$ (from LHC searches).

  11. The maximum mass and radius of neutron stars and the nuclear symmetry energy

    CERN Document Server

    Gandolfi, S; Reddy, Sanjay

    2011-01-01

    We calculate the equation of state of neutron matter with realistic two- and three-nucleon interactions using Quantum Monte Carlo techniques, and demonstrate that the short-range three-neutron interaction determines the correlation between neutron matter energy at nuclear saturation density and the higher densities relevant to neutron stars. Our model for the nuclear interactions makes an experimentally testable prediction for the correlation between the neutron matter energy (which in turn is related to the symmetry energy) and its density dependence. This correlation is solely determined by the strength of the short-range 3 neutron force. The same force also provides a stringent constraint on the maximum mass and radius of neutron stars. An experimental measurement of the symmetry energy with an accuracy of $\\lsim 1$ MeV will enable model predictions for neutron star structure that can be tested with current and anticipated constraints on the masses and radii of neutron stars from x-ray observations.

  12. Constraining the symmetry energy content of nuclear matter from nuclear masses: a covariance analysis

    CERN Document Server

    Mondal, C; De, J N

    2015-01-01

    Elements of nuclear symmetry energy evaluated from different energy density functionals parametrized by fitting selective bulk properties of few representative nuclei are seen to vary widely. Those obtained from experimental data on nuclear masses across the periodic table, however, show that they are better constrained. A possible direction in reconciling this paradox may be gleaned from comparison of results obtained from use of the binding energies in the fitting protocol within a microscopic model with two sets of nuclei, one a representative standard set and another where very highly asymmetric nuclei are additionally included. A covariance analysis reveals that the additional fitting protocol reduces the uncertainties in the nuclear symmetry energy coefficient, its slope parameter as well as the neutron-skin thickness in $^{208}$Pb nucleus by $\\sim 50\\%$. The central values of these entities are also seen to be slightly reduced.

  13. Nuclear Symmetry Energy: constraints from Giant Quadrupole Resonances and Parity Violating Electron Scattering

    CERN Document Server

    Roca-Maza, X; Bortignon, P F; Brenna, M; Cao, Li-Gang; Centelles, M; Colò, G; Paar, N; Viñas, X; Vretenar, D; Warda, M

    2013-01-01

    Experimental and theoretical efforts are being devoted to the study of observables that can shed light on the properties of the nuclear symmetry energy. We present our new results on the excitation energy [X. Roca-Maza et al., Phys. Rev. C 87, 034301 (2013)] and polarizability of the Isovector Giant Quadrupole Resonance (IVGQR), which has been the object of new experimental investigation [S. S. Henshaw et al., Phys. Rev. Lett. 107, 222501 (2011)]. We also present our theoretical analysis on the parity violating asymmetry at the kinematics of the Lead Radius Experiment [S. Abrahamyan et al. (PREx Collaboration), Phys. Rev. Lett. 108, 112502 (2012)] and highlight its relation with the density dependence of the symmetry energy [X. Roca-Maza et al., Phys. Rev. Lett. 106, 252501 (2011)].

  14. A New Nonrelativistic Atomic Energy Spectrum of Energy Dependent Potential for Heavy Quarkouniom in Noncommutative Spaces and Phases Symmetries

    OpenAIRE

    Abdelmadjid Maireche

    2016-01-01

    The main objective of this search work is to study a three dimensional space-phase modified Schrödinger equation with energy dependent potential plus three terms: , and is carried out. Together with the Boopp’s shift method and standard perturbation theory the new energy spectra shown to be dependent with new atomic quantum in the non-commutative three dimensional real spaces and phases symmetries (NC-3D: RSP) and we have also constructed the corresponding deformed noncommutative Hamiltonia...

  15. Impact of density-dependent symmetry energy and Coulomb interactions on the evolution of intermediate mass fragments

    Indian Academy of Sciences (India)

    Karan Singh Vinayak; Suneel Kumar

    2014-03-01

    Within the framework of isospin-dependent quantum molecular dynamics (IQMD) model, we demonstrate the evolution of intermediate mass fragments in heavy-ion collisions. In this paper, we study the time evolution, impact parameter, and excitation energy dependence of IMF production for the different forms of density-dependent symmetry energy. The IMF production and charge distribution show a minor but considerable sensitivity towards various forms of densitydependent symmetry energy. The Coulomb interactions affect the IMF production significantly at peripheral collisions. The IMF production increases with the stiffness of symmetry energy.

  16. A study of positive energy condition in Bianchi V spacetimes via Noether symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Sajid; Hussain, Ibrar [National University of Sciences and Technology, Department of Basic Sciences, School of Electrical Engineering and Computer Science, Islamabad (Pakistan)

    2016-02-15

    In this paper we use Noether symmetries of the geodesic Lagrangian in Bianchi V spacetimes to study various cosmological solutions of Einstein's field equations. Our first result is the identification of the subalgebras of Noether symmetries of the equations of motion in such spacetimes with dimension 4, 5, 6, 7, 9 or 10 of the maximal algebra of Lie point symmetries of dimension 13. Second, we give a physical interpretation of new cosmological solutions which satisfy the positive energy condition and yield critical bounds on the expansion coefficient α, in which the underlying nonflat spacetimes have interesting physical properties. Specifically the energy density behaves in one of the following ways. (i) It is positive and constant for all time. (ii) It varies with time and attains a global maximum after some time and then asymptotically converges to zero. (iii) It increases for all time and attains a maximum value at the asymptotic limit t → ∞ In particular a non-flat spacetime is obtained that mimics the expansion in a flat FRW universe dominated by vacuum energy such that the expansion factor has the same form in both. However, the energy density is dynamical in the former. (orig.)

  17. Nuclear symmetry energy in a modified quark-meson coupling model

    Science.gov (United States)

    Mishra, R. N.; Sahoo, H. S.; Panda, P. K.; Barik, N.; Frederico, T.

    2015-10-01

    We study nuclear symmetry energy and the thermodynamic instabilities of asymmetric nuclear matter in a self-consistent manner by using a modified quark-meson coupling model where the confining interaction for quarks inside a nucleon is represented by a phenomenologically averaged potential in an equally mixed scalar-vector harmonic form. The nucleon-nucleon interaction in nuclear matter is then realized by introducing additional quark couplings to σ ,ω , and ρ mesons through mean-field approximations. We find an analytic expression for the symmetry energy Esym as a function of its slope L . Our result establishes a linear correlation between L and Esym. We also analyze the constraint on neutron star radii in (p n ) matter with β equilibrium.

  18. Shape Transitions and Chiral Symmetry Breaking in the Energy Landscape of the Mitotic Chromosome

    CERN Document Server

    Zhang, Bin

    2015-01-01

    We derive an unbiased information theoretic energy landscape for chromosomes at metaphase using a maximum entropy approach that accurately reproduces the details of the experimentally measured pair-wise contact probabilities between genomic loci. Dynamical simulations using this landscape lead to cylindrical, helically twisted structures reflecting liquid crystalline order. These structures are similar to those arising from a generic ideal homogenized chromosome energy landscape. The helical twist can be either right or left handed so chiral symmetry is broken spontaneously. The ideal chromosome landscape when augmented by interactions like those leading to topologically associating domain (TAD) formation in the interphase chromosome reproduces these behaviors. The phase diagram of this landscape shows the helical fiber order and the cylindrical shape persist at temperatures above the onset of chiral symmetry breaking which is limited by the TAD interaction strength.

  19. Spontaneous mirror-symmetry breaking induces inverse energy cascade in 3D active fluids

    CERN Document Server

    Słomka, Jonasz

    2016-01-01

    Classical turbulence theory assumes that energy transport in a 3D turbulent flow proceeds through a Richardson cascade whereby larger vortices successively decay into smaller ones. By contrast, an additional inverse cascade characterized by vortex-mergers exists in 2D fluids and gases, with profound implications for meteorological flows and fluid mixing. The possibility of a helicity-driven inverse cascade in 3D fluids had been rejected in the 1970s based on equilibrium-thermodynamic arguments. Recently, however, it was proposed that certain symmetry breaking processes could potentially trigger a 3D inverse cascade, but no physical system exhibiting this phenomenon has been identified to date. Here, we present direct analytical and numerical evidence for the existence of a robust inverse energy cascade in an experimentally validated 3D active fluid model, describing microbial suspension flows that spontaneously break mirror-symmetry. We show analytically that self-organized scale selection, a generic feature ...

  20. Isospin effects and the density dependence of the nuclear symmetry energy

    CERN Document Server

    Souza, S R; Carlson, B V; Donangelo, R; Lynch, W G; Steiner, A W

    2009-01-01

    The density dependence of the nuclear symmetry energy is inspected using the Statistical Multifragmentation Model with Skyrme effective interactions. The model consistently considers the expansion of the fragments' volumes at finite temperature at the freeze-out stage. By selecting parameterizations of the Skyrme force that lead to very different equations of state for the symmetry energy, we investigate the sensitivity of different observables to the properties of the effective forces. Our results suggest that, in spite of being sensitive to the thermal dilation of the fragments' volumes, it is difficult to distinguish among the Skyrme forces from the isoscaling analysis. On the other hand, the isotopic distribution of the emitted fragments turns out to be very sensitive to the force employed in the calculation.

  1. Neutron skin of 208Pb, nuclear symmetry energy, and the parity radius experiment

    CERN Document Server

    Roca-Maza, X; Viñas, X; Warda, M

    2011-01-01

    A precise determination of the neutron skin thickness of a heavy nucleus sets a basic constraint on the nuclear symmetry energy. The parity radius experiment (PREX) may achieve it by model-independent parity-violating electron scattering on 208Pb. We investigate parity-violating electron scattering in nuclear mean field approach to allow the accurate extraction of the neutron skin thickness of 208Pb from the parity-violating asymmetry that the experiment measures. We demonstrate a close linear correlation between the parity-violating asymmetry and the neutron skin thickness in successful mean field forces as a best means to constrain the neutron skin of 208Pb from this innovative experiment. The quality of the correlation supports the commissioning of an improved PREX run to measure the parity-violating asymmetry more accurately. We study the consequences for constraining the density slope of the nuclear symmetry energy.

  2. Shape Transitions and Chiral Symmetry Breaking in the Energy Landscape of the Mitotic Chromosome

    Science.gov (United States)

    Zhang, Bin; Wolynes, Peter G.

    2016-06-01

    We derive an unbiased information theoretic energy landscape for chromosomes at metaphase using a maximum entropy approach that accurately reproduces the details of the experimentally measured pairwise contact probabilities between genomic loci. Dynamical simulations using this landscape lead to cylindrical, helically twisted structures reflecting liquid crystalline order. These structures are similar to those arising from a generic ideal homogenized chromosome energy landscape. The helical twist can be either right or left handed so chiral symmetry is broken spontaneously. The ideal chromosome landscape when augmented by interactions like those leading to topologically associating domain formation in the interphase chromosome reproduces these behaviors. The phase diagram of this landscape shows that the helical fiber order and the cylindrical shape persist at temperatures above the onset of chiral symmetry breaking, which is limited by the topologically associating domain interaction strength.

  3. The ASY-EOS experiment at GSI: Constraining the symmetry energy at supra-saturation densities

    Directory of Open Access Journals (Sweden)

    Russotto P.

    2015-01-01

    Full Text Available The elliptic-flow ratio of neutrons with respect to protons or light complex particles in reactions of heavy ions at pre-relativistic energies has been proposed as an observable sensitive to the strength of the symmetry term of the nuclear equation of state at supra-saturation densities. In the ASY-EOS experiment at the GSI laboratory, flows of neutrons and light charged particles were measured for 197Au+197Au, 96Zr+96Zr and 96Ru+96Ru collisions at 400 MeV/nucleon with the Large Area Neutron Detector LAND as part of a setup with several additional detection systems used for the event characterization. Flow results obtained for the Au+Au system, in comparison with predictions of the UrQMD transport model, confirm the moderately soft to linear density dependence of the symmetry energy deduced from the earlier FOPI-LAND data.

  4. Nuclear symmetry energy with mesonic cross-couplings in the effective chiral model

    Science.gov (United States)

    Malik, Tuhin; Banerjee, Kinjal; Jha, T. K.; Agrawal, B. K.

    2017-09-01

    The effective chiral model is extended by introducing the contributions from the cross-couplings between isovector and isoscalar mesons. These cross-couplings are found to be instrumental in improving the density content of the nuclear symmetry energy. The nuclear symmetry energy as well as its slope and curvature parameters at the saturation density are in harmony with those deduced from a diverse set of experimental data. The equation of state for pure neutron matter at subsaturation densities is also in accordance with the ones obtained from different microscopic models. The maximum mass of a neutron star is consistent with the measurement, and the radius at the canonical mass of the neutron star is within the empirical bounds.

  5. Empirical information on nuclear matter fourth-order symmetry energy from an extended nuclear mass formula

    Science.gov (United States)

    Wang, Rui; Chen, Lie-Wen

    2017-10-01

    We establish a relation between the equation of state of nuclear matter and the fourth-order symmetry energy asym,4 (A) of finite nuclei in a semi-empirical nuclear mass formula by self-consistently considering the bulk, surface and Coulomb contributions to the nuclear mass. Such a relation allows us to extract information on nuclear matter fourth-order symmetry energy Esym,4 (ρ0) at normal nuclear density ρ0 from analyzing nuclear mass data. Based on the recent precise extraction of asym,4 (A) via the double difference of the ;experimental; symmetry energy extracted from nuclear masses, for the first time, we estimate a value of Esym,4 (ρ0) = 20.0 ± 4.6 MeV. Such a value of Esym,4 (ρ0) is significantly larger than the predictions from mean-field models and thus suggests the importance of considering the effects of beyond the mean-field approximation in nuclear matter calculations.

  6. Constraint on Nuclear Symmetry Energy through Heavy RI Collision Experiment by Using SπRIT Device at RIBF-SAMURAI

    Science.gov (United States)

    Isobe, Tadaaki

    The symmetry energy of the nuclear Equation of State (EoS) is essential in many aspects of the astrophysics. However it has large ambiguity mainly for the dense region of ρ > ρ0. In order to give a constraint on the dencity dependent nuclear symmetry energy, an international experimental project at RIKEN-RIBF: SπRIT was launched. By using newly developed Time Projection Chamber (TPC) as a main device of SπRIT experiment, first heavy RI collision experiment was performed in the spring of 2016. In this experiment, charged π meson was measured as main observable as it is expected to be most sensitive to the symmetry energy.

  7. Observation of 54Ni: cross-conjugate symmetry in f7/2 mirror energy differences.

    Science.gov (United States)

    Gadea, A; Lenzi, S M; Lunardi, S; Mărginean, N; Zuker, A P; de Angelis, G; Axiotis, M; Martínez, T; Napoli, D R; Farnea, E; Menegazzo, R; Pavan, P; Ur, C A; Bazzacco, D; Venturelli, R; Kleinheinz, P; Bednarczyk, P; Curien, D; Dorvaux, O; Nyberg, J; Grawe, H; Górska, M; Palacz, M; Lagergren, K; Milechina, L; Ekman, J; Rudolph, D; Andreoiu, C; Bentley, M A; Gelletly, W; Rubio, B; Algora, A; Nacher, E; Caballero, L; Trotta, M; Moszyński, M

    2006-10-13

    Gamma decays from excited states up to Jpi=6+ in the N=Z-2 nucleus 54Ni have been identified for the first time. Level energies are compared with those of the isobars 54Co and 54Fe and of the cross-conjugate nuclei of mass A=42. The good but puzzling f7/ cross-conjugate symmetry in mirror and triplet energy differences is analyzed. Shell model calculations reproduce the new data but the necessary nuclear charge-dependent phenomenology is not fully explained by modern nucleon-nucleon potentials.

  8. Regularities with random interactions in energy centroids defined by group symmetries

    CERN Document Server

    Kota, V K B

    2005-01-01

    Regular structures generated by random interactions in energy centroids defined over irreducible representations (irreps) of some of the group symmetries of the interacting boson models $sd$IBM, $sdg$IBM, $sd$IBM-$T$ and $sd$IBM-$ST$ are studied by deriving trace propagations equations for the centroids. It is found that, with random interactions, the lowest and highest group irreps in general carry most of the probability for the corresponding centroids to be lowest in energy. This generalizes the result known earlier, via numerical diagonalization, for the more complicated fixed spin ($J$) centroids where simple trace propagation is not possible.

  9. Nuclear symmetry energy in calcium-calcium collisions (INDRA-VAMOS

    Directory of Open Access Journals (Sweden)

    Chartier M.

    2012-07-01

    Full Text Available The density dependence of the symmetry energy is of great interest to many fields of nuclear physics and nuclear astro-physics. The E503 INDRA-VAMOS experiment performed at GANIL in 2007 is intended to provide further sub-saturation constraints using calcium-calcium collisions around the Fermi energy (35AMeV. In these proceedings this experiment will be discussed in the context of the physics it is aiming to study and will give a brief summary of the current progress of the data analysis.

  10. Symmetry and size effects on energy and entanglement of an exciton in coupled quantum dots

    Institute of Scientific and Technical Information of China (English)

    Shen Man; Bai Yan-Kui; An Xing-Tao; Liu Jian-Jun

    2013-01-01

    We study theoretically the essential properties of an exciton in vertically coupled Gaussian quantum dots in the presence of an extemal magnetic field.The ground state energy of a heavy-hole exciton is split into four energy levels due to the Zeeman effect.For the symmetrical system,the entanglement entropy of the exciton state can reach a value of 1.However,for a system with broken symmetry,it is close to zero.Our results are in good agreement with previous studies.

  11. Neutron-proton effective mass splitting in terms of symmetry energy and its density slope

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, S. [M. M. M. College, Department of Physics (India); Sahoo, B. [DIATM, Department of Applied Sciences (India); Sahoo, S., E-mail: sukadevsahoo@yahoo.com [National Institute of Technology, Department of Physics (India)

    2015-01-15

    Using a simple density-dependent finite-range effective interaction having Yukawa form, the density dependence of isoscalar and isovector effective masses is studied. The isovector effective mass is found to be different for different pairs of like and unlike nucleons. Using HVH theorem, the neutron-proton effective mass splitting is represented in terms of symmetry energy and its density slope. It is again observed that the neutron-proton effective mass splitting has got a positive value when isoscalar effective mass is greater than the isovector effective mass and has a negative value for the opposite case. Furthermore, the neutron-proton effective mass splitting is found to have a linear dependence on asymmetry β. The second-order symmetry potential has a vital role in the determination of density slope of symmetry energy but it does not have any contribution on neutron-proton effective mass splitting. The finite-range effective interaction is compared with the SLy2, SKM, f{sub −}, f{sub 0}, and f{sub +} forms of interactions.

  12. A study of positive energy condition in Bianchi V spacetimes via Noether symmetries

    CERN Document Server

    Ali, Sajid

    2015-01-01

    In this paper we use Noether symmetries of the geodesic Lagrangian in Bianchi V spacetimes to study various cosmological solutions of Einstein's field equations. Our first result is the identification of the subalgebras of Noether symmetries of the equations of motions in such spacetimes with dimension 4, 5, 6, 7, 9 or 10 of the maximal algebra of Lie point symmetries of dimension 13. Secondly we give physical interpretation of new cosmological solutions which satisfy positive energy condition and yield critical bounds on the expansion coefficient $\\alpha$, in which the underlying non-flat spacetimes carry interesting physical properties. Specifically the energy density behaves in one of the following ways. (i) It is positive and constant for all time. (ii) It varies with time and attains a global maximum after some time and then asymptotically converges to zero. (iii) It increases for all time and attains a maximum value at the asymptotic limit $t\\rightarrow \\infty$. In particular a non-flat spacetime is obt...

  13. Volume and surface contributions to the nuclear symmetry energy within the coherent density fluctuation model

    CERN Document Server

    Antonov, A N; Sarriguren, P; de Guerra, E Moya

    2016-01-01

    The volume and surface components of the nuclear symmetry energy (NSE) and their ratio are calculated within the coherent density fluctuation model (CDFM). The estimations use the results of the model for the NSE in finite nuclei based on the Brueckner energy-density functional for nuclear matter. In addition, we present results for the NSE and its volume and surface contributions obtained by using the Skyrme energy-density functional. The CDFM weight function is obtained using the proton and neutron densities from the self-consistent HF+BCS method with Skyrme interactions. We present and discuss the values of the volume and surface contributions to the NSE and their ratio obtained for the Ni, Sn, and Pb isotopic chains studying their isotopic sensitivity. The results are compared with estimations of other approaches which have used available experimental data on binding energies, neutron-skin thicknesses, excitation energies to isobaric analog states (IAS) and also with results of other theoretical methods.

  14. An efficient method for energy levels calculation using full symmetry and exact kinetic energy operator: Tetrahedral molecules

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, A. V., E-mail: avn@lts.iao.ru [Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, SB RAS, 1, Academician Zuev square, 634021 Tomsk (Russian Federation); Tomsk State University, 36 Lenin Avenue, 634050 Tomsk (Russian Federation); Rey, M.; Tyuterev, Vl. G. [Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, Université de Reims, U.F.R. Sciences, B.P. 1039, 51687 Cedex 2 Reims (France)

    2015-03-07

    A simultaneous use of the full molecular symmetry and of an exact kinetic energy operator (KEO) is of key importance for accurate predictions of vibrational levels at a high energy range from a potential energy surface (PES). An efficient method that permits a fast convergence of variational calculations would allow iterative optimization of the PES parameters using experimental data. In this work, we propose such a method applied to tetrahedral AB{sub 4} molecules for which a use of high symmetry is crucial for vibrational calculations. A symmetry-adapted contracted angular basis set for six redundant angles is introduced. Simple formulas using this basis set for explicit calculation of the angular matrix elements of KEO and PES are reported. The symmetric form (six redundant angles) of vibrational KEO without the sin(q){sup −2} type singularity is derived. The efficient recursive algorithm based on the tensorial formalism is used for the calculation of vibrational matrix elements. A good basis set convergence for the calculations of vibrational levels of the CH{sub 4} molecule is demonstrated.

  15. An efficient method for energy levels calculation using full symmetry and exact kinetic energy operator: tetrahedral molecules.

    Science.gov (United States)

    Nikitin, A V; Rey, M; Tyuterev, Vl G

    2015-03-07

    A simultaneous use of the full molecular symmetry and of an exact kinetic energy operator (KEO) is of key importance for accurate predictions of vibrational levels at a high energy range from a potential energy surface (PES). An efficient method that permits a fast convergence of variational calculations would allow iterative optimization of the PES parameters using experimental data. In this work, we propose such a method applied to tetrahedral AB4 molecules for which a use of high symmetry is crucial for vibrational calculations. A symmetry-adapted contracted angular basis set for six redundant angles is introduced. Simple formulas using this basis set for explicit calculation of the angular matrix elements of KEO and PES are reported. The symmetric form (six redundant angles) of vibrational KEO without the sin(q)(-2) type singularity is derived. The efficient recursive algorithm based on the tensorial formalism is used for the calculation of vibrational matrix elements. A good basis set convergence for the calculations of vibrational levels of the CH4 molecule is demonstrated.

  16. The ASY-EOS experiment at GSI: investigating the symmetry energy at supra-saturation densities

    CERN Document Server

    Russotto, P; De Filippo, E; Févre, A Le; Gannon, S; Gašparić, I; Kiš, M; Kupny, S; Leifels, Y; Lemmon, R C; Łukasik, J; Marini, P; Pagano, A; Pawłowski, P; Santoro, S; Trautmann, W; Veselsky, M; Acosta, L; Adamczyk, M; Al-Ajlan, A; Al-Garawi, M; Al-Homaidhi, S; Amorini, F; Auditore, L; Aumann, T; Ayyad, Y; Baran, V; Basrak, Z; Benlliure, J; Boiano, C; Boisjoli, M; Boretzky, K; Brzychczyk, J; Budzanowski, A; Cardella, G; Cammarata, P; Chajecki, Z; Chbihi, A; Colonna, M; Cozma, D; Czech, B; Di Toro, M; Famiano, M; Geraci, E; Greco, V; Grassi, L; Guazzoni, C; Guazzoni, P; Heil, M; Heilborn, L; Introzzi, R; Isobe, T; Kezzar, K; Krasznahorkay, A; Kurz, N; La Guidara, E; Lanzalone, G; Lasko, P; Li, Q; Lombardo, I; Lynch, W G; Matthews, Z; May, L; Minniti, T; Mostazo, M; Papa, M; Pirrone, S; Politi, G; Porto, F; Reifarth, R; Reisdorf, W; Riccio, F; Rizzo, F; Rosato, E; Rossi, D; Simon, H; Skwirczynska, I; Sosin, Z; Stuhl, L; Trifiró, A; Trimarchi, M; Tsang, M B; Verde, G; Vigilante, M; Wieloch, A; Wigg, P; Wolter, H H; Wu, P; Yennello, S; Zambon, P; Zetta, L; Zoric, M

    2012-01-01

    The elliptic-flow ratio of neutrons with respect to protons in reactions of neutron rich heavy-ions systems at intermediate energies has been proposed as an observable sensitive to the strength of the symmetry term in the nuclear Equation Of State (EOS) at supra-saturation densities. The recent results obtained from the existing FOPI/LAND data for $^{197}$Au+$^{197}$Au collisions at 400 MeV/nucleon in comparison with the UrQMD model allowed a first estimate of the symmetry term of the EOS but suffer from a considerable statistical uncertainty. In order to obtain an improved data set for Au+Au collisions and to extend the study to other systems, a new experiment was carried out at the GSI laboratory by the ASY-EOS collaboration in May 2011.

  17. The ASY-EOS experiment at GSI: investigating symmetry energy at supra-saturation densities

    Directory of Open Access Journals (Sweden)

    Russotto P.

    2014-03-01

    Full Text Available The elliptic-flow ratio of neutrons with respect to protons or light complex particles in reactions of heavy-ions at pre-relativistic energies has been proposed as an observable sensitive to the strength of the symmetry term of the nuclear equation of state at supra-saturation densities. The results obtained from the existing FOPI/LAND data for 197Au+197Au collisions at 400 MeV/nucleon in comparison with the UrQMD model simulations favoured a moderately soft symmetry term, but suffer from a considerable statistical uncertainty. These results have been confirmed by an independent analysis based on the Tübingen QMD simulations. In order to obtain an improved data set for Au+Au collisions and to extend the study to other systems, a new experiment was carried out at the GSI laboratory by the ASY-EOS collaboration. The present status of the data analysis is reported

  18. The ASY-EOS experiment at GSI: investigating symmetry energy at supra-saturation densities

    Science.gov (United States)

    Russotto, P.; Chartier, M.; Cozma, M. D.; De Filippo, E.; Le Fèvre, A.; Gannon, S.; Gašparić, I.; Kiš, M.; Kupny, S.; Leifels, Y.; Lemmon, R. C.; Li, Q.; Łukasik, J.; Marini, P.; Pawłowski, P.; Santoro, S.; Trautmann, W.; Veselsky, M.; Acosta, L.; Adamczyk, M.; Al-Ajlan, A.; Al-Garawi, M.; Al-Homaidhi, S.; Amorini, F.; Auditore, L.; Aumann, T.; Ayyad, Y.; Baran, V.; Basrak, Z.; Bassini, R.; Benlliure, J.; Boiano, C.; Boisjoli, M.; Boretzky, K.; Brzychczyk, J.; Budzanowski, A.; Cardella, G.; Cammarata, P.; Chajecki, Z.; Chbihi, A.; Colonna, M.; Czech, B.; Di Toro, M.; Famiano, M.; Greco, V.; Grassi, L.; Guazzoni, C.; Guazzoni, P.; Heil, M.; Heilborn, L.; Introzzi, R.; Isobe, T.; Kezzar, K.; Krasznahorkay, A.; Kurz, N.; La Guidara, E.; Lanzalone, G.; Lasko, P.; Lombardo, I.; Lynch, W. G.; Matthews, Z.; May, L.; Minniti, T.; Mostazo, M.; Pagano, A.; Papa, M.; Pirrone, S.; Pleskac, R.; Politi, G.; Porto, F.; Reifarth, R.; Reisdorf, W.; Riccio, F.; Rizzo, F.; Rosato, E.; Rossi, D.; Simon, H.; Skwirczynska, I.; Sosin, Z.; Stuhl, L.; Trifirò, A.; Trimarchi, M.; Tsang, M. B.; Verde, G.; Vigilante, M.; Wieloch, A.; Wigg, P.; Wolter, H. H.; Wu, P.; Yennello, S.; Zambon, P.; Zetta, L.; Zoric, M.

    2014-03-01

    The elliptic-flow ratio of neutrons with respect to protons or light complex particles in reactions of heavy-ions at pre-relativistic energies has been proposed as an observable sensitive to the strength of the symmetry term of the nuclear equation of state at supra-saturation densities. The results obtained from the existing FOPI/LAND data for 197Au+197Au collisions at 400 MeV/nucleon in comparison with the UrQMD model simulations favoured a moderately soft symmetry term, but suffer from a considerable statistical uncertainty. These results have been confirmed by an independent analysis based on the Tübingen QMD simulations. In order to obtain an improved data set for Au+Au collisions and to extend the study to other systems, a new experiment was carried out at the GSI laboratory by the ASY-EOS collaboration. The present status of the data analysis is reported

  19. Symmetries, Symmetry Breaking, Gauge Symmetries

    CERN Document Server

    Strocchi, Franco

    2015-01-01

    The concepts of symmetry, symmetry breaking and gauge symmetries are discussed, their operational meaning being displayed by the observables {\\em and} the (physical) states. For infinitely extended systems the states fall into physically disjoint {\\em phases} characterized by their behavior at infinity or boundary conditions, encoded in the ground state, which provide the cause of symmetry breaking without contradicting Curie Principle. Global gauge symmetries, not seen by the observables, are nevertheless displayed by detectable properties of the states (superselected quantum numbers and parastatistics). Local gauge symmetries are not seen also by the physical states; they appear only in non-positive representations of field algebras. Their role at the Lagrangian level is merely to ensure the validity on the physical states of local Gauss laws, obeyed by the currents which generate the corresponding global gauge symmetries; they are responsible for most distinctive physical properties of gauge quantum field ...

  20. Attenuation of super-soft X-ray sources by circumstellar material

    DEFF Research Database (Denmark)

    Nielsen, Mikkel; Gilfanov, Marat

    2015-01-01

    of the circumbinary material photo-ionised by the radiation of the central source. Our results show that the circumstellar mass-loss rates required for obcuration of super-soft X-ray sources is about an order of magnitude larger than those reported in earlier studies, for comparable model parameters. While this does...

  1. Dynamic Isovector Reorientation of Deuteron as a Probe to Nuclear Symmetry Energy.

    Science.gov (United States)

    Ou, Li; Xiao, Zhigang; Yi, Han; Wang, Ning; Liu, Min; Tian, Junlong

    2015-11-20

    We present the calculations on a novel reorientation effect of deuteron attributed to isovector interaction in the nuclear field of heavy target nuclei. The correlation angle determined by the relative momentum vector of the proton and the neutron originating from the breakup deuteron, which is experimentally detectable, exhibits significant dependence on the isovector nuclear potential but is robust against the variation of the isoscaler sector. In terms of sensitivity and cleanness, the breakup reactions induced by the polarized deuteron beam at about 100 MeV/u provide a more stringent constraint to the symmetry energy at subsaturation densities.

  2. Linking Dynamical Gluon Mass to Chiral Symmetry Breaking via a QCD Low Energy Effective Field Theory

    CERN Document Server

    Oliveira, O; Frederico, T

    2011-01-01

    A low energy effective field theory model for QCD with a scalar color octet field is discussed. The model relates the gluon mass, the constituent quark masses and the quark condensate. The gluon mass comes about $\\sqrt{N_c}\\, \\Lambda_{QCD}$ with the quark condensate being proportional to the gluon mass squared. The model suggests that the restoration of chiral symmetry and the deconfinement transition occur at the same temperature and that, near the transition, the critical exponent for the condensate is twice the gluon mass one. The model also favors the decoupling like solution for the gluon propagator.

  3. Teleparallel dark energy model with a fermionic field via Noether symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Kucukakca, Yusuf [Akdeniz University, Department of Physics, Faculty of Science, Antalya (Turkey)

    2014-10-15

    In the present work, we consider a model with a fermionic field that is non-minimally coupled to gravity in the framework of teleparallel gravity. In order to determine the forms of the coupling and potential function of fermionic field for the considered model, we use the Noether symmetry approach. By applying this approach, for the Friedman-Robertson-Walker metric, we obtain the respective potential and coupling functions as a linear and power-law form of the bilinear Ψ. Furthermore, we search for the exact cosmological solution of the model. It is shown that the fermionic field plays the role of dark energy. (orig.)

  4. Test of isospin symmetry via low energy $^1$H($\\pi^-$,$\\pi^o$)$n$ charge exchange

    CERN Document Server

    Jia, Y; Hasinoff, M D; Kovash, M A; Ojha, M; Pavan, M M; Tripathi, S; Zolnierczuk, P A

    2008-01-01

    We report measurements of the $\\pi^- p \\to \\pi^o n$ differential cross sections at six momenta (104-143 MeV/c) and four angles (0-40 deg) by detection of $\\gamma$-ray pairs from $\\pi^o \\to \\gamma \\gamma$ decays using the TRIUMF RMC spectrometer. This region exhibits a vanishing zero-degree cross section from destructive interference between s-- and p--waves, thus yielding special sensitivity to pion-nucleon dynamics and isospin symmetry breaking. Our data and previous data do not agree, with important implications for earlier claims of large isospin violating effects in low energy pion-nucleon interactions.

  5. Neutron skin of (208)Pb, nuclear symmetry energy, and the parity radius experiment.

    Science.gov (United States)

    Roca-Maza, X; Centelles, M; Viñas, X; Warda, M

    2011-06-24

    A precise determination of the neutron skin Δr(np) of a heavy nucleus sets a basic constraint on the nuclear symmetry energy (Δr(np) is the difference of the neutron and proton rms radii of the nucleus). The parity radius experiment (PREX) may achieve it by electroweak parity-violating electron scattering (PVES) on (208)Pb. We investigate PVES in nuclear mean field approach to allow the accurate extraction of Δr(np) of (208)Pb from the parity-violating asymmetry A(PV) probed in the experiment. We demonstrate a high linear correlation between A(PV) and Δr(np) in successful mean field forces as the best means to constrain the neutron skin of (208)Pb from PREX, without assumptions on the neutron density shape. Continuation of the experiment with higher precision in A(PV) is motivated since the present method can support it to constrain the density slope of the nuclear symmetry energy to new accuracy.

  6. Delineating effects of tensor force on the density dependence of nuclear symmetry energy

    CERN Document Server

    Xu, Chang; Li, Bao-An

    2012-01-01

    In this talk, we report results of our recent studies to delineate effects of the tensor force on the density dependence of nuclear symmetry energy within phenomenological models. The tensor force active in the isosinglet neutron-proton interaction channel leads to appreciable depletion/population of nucleons below/above the Fermi surface in the single-nucleon momentum distribution in cold symmetric nuclear matter (SNM). We found that as a consequence of the high momentum tail in SNM the kinetic part of the symmetry energy $E^{kin}_{sym}(\\rho)$ is significantly below the well-known Fermi gas model prediction of approximately $12.5 (\\rho/\\rho_0)^{2/3}$. With about 15% nucleons in the high momentum tail as indicated by the recent experiments at J-Lab by the CLAS Collaboration, the $E^{kin}_{sym}(\\rho)$ is negligibly small. It even becomes negative when more nucleons are in the high momentum tail in SNM. These features have recently been confirmed by three independent studies based on the state-of-the-art micros...

  7. How sensitive is the neutron star r-mode instability window to the density dependence of nuclear symmetry energy?

    CERN Document Server

    Wen, De-Hua; Li, Bao-An

    2011-01-01

    Using a simple model of a neutron star with a perfectly rigid crust constructed with a set of crust and core equations of state that span the range of nuclear experimental uncertainty in the symmetry energy, we calculate the instability window for the onset of the Chandrasekhar-Friedmann-Schutz (CFS) instability in r-mode oscillations for canonical neutron stars ($1.4 M_{\\odot}$) and massive neutron stars ($2.0 M_{\\odot}$). The crustal thickness is calculated consistently with the core equation of state (EOS). The EOSs are calculated using a simple model for the energy density of nuclear matter and probe the dependence on the symmetry energy by varying the slope of the symmetry energy at saturation density $L$ from 25 MeV (soft symmetry energy and EOS) to 115 MeV (stiff symmetry energy and EOS) while keeping the EOS of symmetric nuclear matter fixed. The instability window is reduced by a frequency of up to $\\approx150Hz$ from the softest to the stiffest EOSs and by $\\approx 100$ Hz from $1.4 M_{\\odot}$ to $2...

  8. Study of low density nuclear matter with quantum molecular dynamics : the role of the symmetry energy

    CERN Document Server

    Nandi, Rana

    2016-01-01

    We study the effect of isospin-dependent nuclear forces on the pasta phase in the inner crust of neutron stars. To this end we model the crust within the framework of quantum molecular dynamics (QMD). For maximizing the numerical performance, the newly developed code has been implemented on GPU processors. As a first application of the crust studies we investigate the dependence of the particular pasta phases on the slope of the symmetry energy slope L. To isolate the effect of different values of L, we adopt an established QMD Hamiltonian and extend it to include non-linear terms in the isospin-dependent interaction. The strengths of the isospin-dependent forces are used to adjust the asymmetry energy and slope of the matter. Our results indicate that in contrast to earlier studies the phase diagram of the pasta phase is not very sensitive to the value of L.

  9. On the Binding Energy and the Charge Symmetry Breaking in A<=16 Lambda-hypernuclei

    CERN Document Server

    Botta, E; Feliciello, A

    2016-01-01

    Recent achievements in hypernuclear spectroscopy, in particular the determination of the $\\Lambda$-binding energy B$_{\\Lambda}$ by high precision magnetic spectrometry, contributed to stimulate considerably the search for Charge Symmetry Breaking effects in $\\Lambda$-hypernuclei isomultiplets. We have reorganized the results from the FINUDA experiment and we have produced a list of B$_{\\Lambda}$ values for hypernuclei with A$\\leq$16 considering only the data from magnetic spectrometers with an absolute calibration of the energy scale (FINUDA at DA$\\Phi$NE and electroproduction experiments). By comparing them with the corresponding B$_{\\Lambda}$ from the emulsion experiments, we observe that there is a systematic small difference that is taken into account. A synopsis of all the results on B$_{\\Lambda}$ so far published is finally suggested. Several interesting conclusions are drawn, among which the equality within the errors of B$_{\\Lambda}$ for the A=7, 12, 16 isomultiplets, based only on recent spectrometri...

  10. Hierarchy of kissing numbers for exceptional Lie symmetry groups in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    El Naschie, M.S. [Donghua University, Shanghai (China); Department of Physics University of Alexandria, Alexandria (Egypt)], E-mail: Chaossf@aol.com

    2008-01-15

    We are constructing a hierarchy of kissing numbers representing singular contact points of hyper-spheres in exceptional Lie symmetry groups lattice arrangement embedded in the 26 dimensional bosonic strings spacetime. That way we find a total number of points and dimensions equal to 548. This is 52 more than the order of E{sub 8}E{sub 8} of heterotic string theory and leads to the prediction of 69 elementary particles at an energy scale under 1 T. In other words, our mathematical model predicts nine more particles than what is currently experimentally known to exist in the standard model of high energy physics namely only 60. The result is thus in full agreement with all our previous theoretical findings.

  11. Field cage development for a time-projection chamber to constrain the nuclear symmetry energy

    Science.gov (United States)

    Estee, J.; Barney, J.; Chajecki, Z.; Famiano, M.; Dunn, J.; Lu, F.; Lynch, W. G.; McIntosh, A. B.; Isobe, T.; Murakami, T.; Sakurai, H.; Shane, R.; Taketani, A.; Tangwancharoen, S.; Tsang, M. B.; Yennello, S.

    2012-10-01

    The SAMURAI time-projection chamber (sTPC) is being developed for use in the dipole magnet of the newly-commissioned SAMURAI spectrometer at the RIBF facility in Japan. The main scientific objective of the sTPC is to provide constraints on the nuclear symmetry energy at supra-saturation densities. The TPC allows for tracking and identification of light charged particles such as pions, protons, tritons and ^3He. The sTPC must have a Cartesian geometry to match the symmetry of the dipole magnet. The walls of the field cage (FC) detector volume consist of sections of rigid, two-layer circuit boards. Inside and outside copper strips form decreasing equipotentials via a resistor chain, and create a uniform electric field with a maximum of 400 V/cm. The FC volume is hermetically sealed from the enclosure volume to create an insulation volume which can be filled with dry N2 to inhibit corona discharge. I will be presenting the current status of the design and assembly of the sTPC field cage.

  12. Impact of the symmetry energy on nuclear pasta phases and crust-core transition in neutron stars

    CERN Document Server

    Bao, S S

    2015-01-01

    We study the impact of the symmetry energy on properties of nuclear pasta phases and crust-core transition in neutron stars. We perform a self-consistent Thomas--Fermi calculation employing the relativistic mean-field model. The properties of pasta phases presented in the inner crust of neutron stars are investigated and the crust-core transition is examined. It is found that the slope of the symmetry energy plays an important role in determining the pasta phase structure and the crust-core transition. The correlation between the symmetry energy slope and the crust-core transition density obtained in the Thomas--Fermi approximation is consistent with that predicted by the liquid-drop model.

  13. Probing nuclear symmetry energy at high densities using pion, kaon, eta and photon productions in heavy-ion collisions

    CERN Document Server

    Xiao, Zhi-Gang; Chen, Lie-Wen; Li, Bao-An; Zhang, Ming; Xiao, Guo-Qing; Xu, Nu

    2013-01-01

    The high-density behavior of nuclear symmetry energy is among the most uncertain properties of dense neutron-rich matter. Its accurate determination has significant ramifications in understanding not only the reaction dynamics of heavy-ion reactions especially those induced by radioactive beams but also many interesting phenomena in astrophysics, such as the explosion mechanism of supernova and the properties of neutron stars. The heavy-ion physics community has devoted much effort during the last few years to constrain the high-density symmetry using various probes. In particular, the pion-/pion+ ratio has been most extensively studied both theoretically and experimentally. All models have consistently predicted qualitatively that the pion-/pion+ ratio is a sensitive probe of the high-density symmetry energy especially with beam energies near the pion production threshold. However, the predicted values of the pion-/pion+ ratio are still quite model dependent mostly because of the complexity of modeling pion ...

  14. Chiral symmetry restoration in heavy-ion collisions at intermediate energies

    CERN Document Server

    Palmese, A; Seifert, E; Steinert, T; Moreau, P; Bratkovskaya, E L

    2016-01-01

    We study the effect of the chiral symmetry restoration (CSR) on heavy-ion collisions observables in the energy range $\\sqrt{s_{NN}}$=3-20 GeV within the Parton-Hadron-String Dynamics (PHSD) transport approach. The PHSD includes the deconfinement phase transition as well as essential aspects of CSR in the dense and hot hadronic medium, which are incorporated in the Schwinger mechanism for the hadronic particle production. We adopt different parametrizations of the nuclear equation of state from the non-linear $\\sigma-\\omega$ model, which enter in the computation of the quark scalar density for the CSR mechanism, in order to estimate the uncertainty in our calculations.

  15. Peroxyacetyl radical: Electronic excitation energies, fundamental vibrational frequencies, and symmetry breaking in the first excited state

    Energy Technology Data Exchange (ETDEWEB)

    Copan, Andreas V.; Wiens, Avery E.; Nowara, Ewa M.; Schaefer, Henry F.; Agarwal, Jay, E-mail: jagarwal@uga.edu [Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602 (United States)

    2015-02-07

    Peroxyacetyl radical [CH{sub 3}C(O)O{sub 2}] is among the most abundant peroxy radicals in the atmosphere and is involved in OH-radical recycling along with peroxyacetyl nitrate formation. Herein, the ground (X{sup ~}) and first (A{sup ~}) excited state surfaces of cis and trans peroxyacetyl radical are characterized using high-level ab initio methods. Geometries, anharmonic vibrational frequencies, and adiabatic excitation energies extrapolated to the complete basis-set limit are reported from computations with coupled-cluster theory. Excitation of the trans conformer is found to induce a symmetry-breaking conformational change due to second-order Jahn-Teller interactions with higher-lying excited states. Additional benchmark computations are provided to aid future theoretical work on peroxy radicals.

  16. Probing the nuclear equation-of-state and the symmetry energy with heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Verde Giuseppe

    2014-03-01

    Full Text Available The present status of studies aimed at constraining the nuclear equation of state with heavy-ion collision dynamics is presented. Multifragmentation phenomena, including their isotopic distributions, charge correlations and emission time-scales, may revel the existence of liquid-gas transitions in the phase diagram. Exploring the isotopic degree of freedom in nuclear dynamics is then required in order to constrain the equation of state of asymmetric nuclear matter which presently represents a major priority due to its relevance to both nuclear physics and astrophysics. Some observables that have successfully constrained the density dependence of the symmetry energy are presented, such as neutron-proton yield ratios and isospin diffusion and drift phenomena. The reported results and status of the art is discussed by also considering some of the present problems and some future perspectives for the heavy-ion collision community.

  17. The nuclear symmetry energy, the inner crust, and global neutron star modeling

    CERN Document Server

    Newton, William G; Hooker, Josh; Li, Bao-An

    2011-01-01

    The structure and composition of the inner crust of neutron stars, as well as global stellar properties such as radius and moment of inertia, have been shown to correlate with parameters characterizing the symmetry energy of nuclear matter such as its magnitude J and density dependence L at saturation density. It is thus mutually beneficial to nuclear physicists and astrophysicists to examine the combined effects of such correlations on potential neutron star observables in the light of recent experimental and theoretical constraints on J, L, and relationships between them. We review some basic correlations between these nuclear and astrophysical observables, and illustrate the impact of recent progress in constraining the J-L parameter space on the composition of the inner crust, crust-core transition density and pressure, and extent of the hypothesized pasta region. We use a simple compressible liquid drop model in conjunction with a simple model of nuclear matter which allows for independent, smooth, varia...

  18. Probing the symmetry energy at high baryon density with heavy ion collisions

    CERN Document Server

    Greco, V; Di Toro, M; Wolter, H H

    2009-01-01

    The nuclear symmetry energy at densities above saturation density ($\\rho_0\\sim 0.16 fm^{-3}$) is poorly constrained theoretically and very few relevant experimental data exist. Its study is possible through Heavy Ion Collisions (HIC) at energies $E/A> 200$ MeV, particularly with beams of neutron-rich radioactive nuclei. The energy range implies that the momentum dependence of the isospin fields, i.e. the difference of the effective masses on protons and neutrons, also has to be investigated before a safe constraint on $\\esy(\\rho)$ is possible. We discuss the several observables which have been suggested, like $n/p$ emission and their collective flows and the ratio of meson yields with different isospin projection, $\\pi^-/\\pi^+$ and $K^0/K^+$. We point out several physical mechanisms that should be included in the theoretical models to allow a direct comparison to the more precise experiments which will be able to distinguish the isospin projection of the detected particles: CSR/Lanzhou, FAIR/GSI, RIBF/RIKEN, ...

  19. On the binding energy and the charge symmetry breaking in A ≤ 16 Λ-hypernuclei

    Science.gov (United States)

    Botta, E.; Bressani, T.; Feliciello, A.

    2017-04-01

    In recent years, several experiments using magnetic spectrometers provided high precision results in the field of Hypernuclear Physics. In particular, the accurate determination of the Λ-binding energy, BΛ, contributed to stimulate considerably the discussion about the Charge Symmetry Breaking effect in Λ-hypernuclei isomultiplets. We have reorganized the results from the FINUDA experiment and we have obtained a series of BΛ values for Λ-hypernuclei with A≤ 16 by taking into account data only from magnetic spectrometers implementing an absolute calibration of the energy scale (FINUDA at DAΦNE and electroproduction experiments at JLab and at MaMi). We have then critically revisited the results obtained at KEK by the SKS Collaboration in order to make possible a direct comparison between data from experiments with and without such an absolute energy scale. A synopsis of recent spectrometric measurements of BΛ is presented, including also emulsion experiment results. Several interesting conclusions are drawn, among which the equality within the errors of BΛ for the A = 7 , 12 , 16 isomultiplets, based only on recent spectrometric data. This observation is in nice agreement with a recent theoretical prediction. Ideas for possible new measurements which should improve the present experimental knowledge are finally put forward.

  20. Supersoft X-ray Light Curve of RS Oph -- The White Dwarf Mass is Now Increasing

    CERN Document Server

    Kato, Mariko; Luna, Gerardo Juan Manuel

    2008-01-01

    The recurrent nova RS Ophiuchi, one of the candidates for Type Ia supernova progenitors, underwent the sixth recorded outburst in February 2006. We report a complete light curve of supersoft X-ray that is obtained for the first time. A numerical table of X-ray data is provided. The supersoft X-ray flux emerges about 30 days after the optical peak and continues until about 85 days when the optical flux shows the final decline. Such a long duration of supersoft X-ray phase can be naturally understood by our model in which a significant amount of helium layer piles up beneath the hydrogen burning zone during the outburst, suggesting that the white dwarf mass is effectively growing up. We have estimated the white dwarf mass in RS Oph to be 1.35 \\pm 0.01 M_\\sun and its growth rate to be about (0.5-1) \\times 10^{-7} M_\\sun yr^{-1} in average.

  1. Effects of symmetry energy and effective k -mass splitting on central 96Ru(96Zr)+96Zr(96Ru) collisions at 50 to 400 MeV/nucleon

    Science.gov (United States)

    Su, Jun; Zhu, Long; Huang, Ching-Yuan; Xie, Wen-Jie; Zhang, Feng-Shou

    2017-08-01

    The isospin mixing between projectile and target in central 96Ru(96Zr)+96Zr(96Ru) collisions at 50 to 400 MeV/nucleon is investigated within the isospin-dependent quantum molecular dynamics model in combination with the statistical decay code gemini. Four groups of parameters, which provide different density dependences of symmetry energy and effective k -mass splitting, are applied in the model. Calculations within the same effective k -mass splittings show that the isospin mixing is more likely to take place for soft symmetry energy than hard symmetry energy. Calculations within similar symmetry energies show that the isospin mixing is more likely to take place for mn*mp* . Significantly, the effects of effective k -mass splitting on the isospin mixing become stronger with increasing incident energies, while those of symmetry energy are similar at different incident energies.

  2. A simple representation of energy matrix elements in terms of symmetry-invariant bases.

    Science.gov (United States)

    Cui, Peng; Wu, Jian; Zhang, Guiqing; Boyd, Russell J

    2010-02-01

    When a system under consideration has some symmetry, usually its Hamiltonian space can be parallel partitioned into a set of subspaces, which is invariant under symmetry operations. The bases that span these invariant subspaces are also invariant under the symmetry operations, and they are the symmetry-invariant bases. A standard methodology is available to construct a series of generator functions (GFs) and corresponding symmetry-adapted basis (SAB) functions from these symmetry-invariant bases. Elements of the factorized Hamiltonian and overlap matrix can be expressed in terms of these SAB functions, and their simple representations can be deduced in terms of GFs. The application of this method to the Heisenberg spin Hamiltonian is demonstrated.

  3. Strong correlations of neutron star radii with the slopes of nuclear matter incompressibility and symmetry energy at saturation

    Science.gov (United States)

    Alam, N.; Agrawal, B. K.; Fortin, M.; Pais, H.; Providência, C.; Raduta, Ad. R.; Sulaksono, A.

    2016-11-01

    We examine the correlations of neutron star radii with the nuclear matter incompressibility, symmetry energy, and their slopes, which are the key parameters of the equation of state (EoS) of asymmetric nuclear matter. The neutron star radii and the EoS parameters are evaluated using a representative set of 24 Skyrme-type effective forces and 18 relativistic mean field models, and two microscopic calculations, all describing 2 M⊙ neutron stars. Unified EoSs for the inner-crust-core region have been built for all the phenomenological models, both relativistic and nonrelativistic. Our investigation shows the existence of a strong correlation of the neutron star radii with the linear combination of the slopes of the nuclear matter incompressibility and the symmetry energy coefficients at the saturation density. Such correlations are found to be almost independent of the neutron star mass in the range 0.6 -1.8 M⊙ . This correlation can be linked to the empirical relation existing between the star radius and the pressure at a nucleonic density between one and two times saturation density, and the dependence of the pressure on the nuclear matter incompressibility, its slope, and the symmetry energy slope. The slopes of the nuclear matter incompressibility and the symmetry energy coefficients as estimated from the finite nuclei data yield the radius of a 1.4 M⊙ neutron star in the range 11.09 -12.86 km.

  4. Sensitivity of the fusion cross section to the density dependence of the symmetry energy

    CERN Document Server

    Reinhard, P -G; Stevenson, P D; Piekarewicz, J; Oberacker, V E; Maruhn, J A

    2016-01-01

    It is the aim of this paper to discuss the impact of nuclear fusion on the EOS. This is a timely subject given the expected availability of increasingly exotic beams at rare isotope facilities\\,\\cite{balantekin2014}. In practice, we focus on $^{48}$Ca+$^{48}$Ca fusion. We employ three different approaches to calculate fusion cross-sections for a set of energy density functionals with systematically varying nuclear matter properties. Fusion calculations are performed using frozen densities, using a dynamic microscopic method based on density-constrained time-dependent Hartree-Fock (DC-TDHF) approach, as well as direct TDHF study of above barrier cross-sections. For these studies, we employ a family of Skyrme parametrizations with systematically varied nuclear matter properties. We find a slight preference for forces which deliver a slope of symmetry energy of $L\\approx 50$\\,MeV that corresponds to a neutron-skin thickness of $^{48}$Ca of $R_\\mathrm{skin}\\!=\\!(0.180\\!-\\!0.210)$\\,fm.

  5. Electron detachment energies in high-symmetry alkali halide solvated-electron anions

    Science.gov (United States)

    Anusiewicz, Iwona; Berdys, Joanna; Simons, Jack; Skurski, Piotr

    2003-07-01

    We decompose the vertical electron detachment energies (VDEs) in solvated-electron clusters of alkali halides in terms of (i) an electrostatic contribution that correlates with the dipole moment (μ) of the individual alkali halide molecule and (ii) a relaxation component that is related to the polarizability (α) of the alkali halide molecule. Detailed numerical ab initio results for twelve species (MX)n- (M=Li,Na; X=F,Cl,Br; n=2,3) are used to construct an interpolation model that relates the clusters' VDEs to their μ and α values as well as a cluster size parameter r that we show is closely related to the alkali cation's ionic radius. The interpolation formula is then tested by applying it to predict the VDEs of four systems [i.e., (KF)2-, (KF)3-, (KCl)2-, and (KCl)3-] that were not used in determining the parameters of the model. The average difference between the model's predicted VDEs and the ab initio calculated electron binding energies is less than 4% (for the twelve species studied). It is concluded that one can easily estimate the VDE of a given high-symmetry solvated electron system by employing the model put forth here if the α, μ and cation ionic radii are known. Alternatively, if VDEs are measured for an alkali halide cluster and the α and μ values are known, one can estimate the r parameter, which, in turn, determines the "size" of the cluster anion.

  6. Potential energy curves for Mo2: multi-component symmetry-projected Hartree-Fock and beyond

    Science.gov (United States)

    Bytautas, Laimutis; Jiménez-Hoyos, Carlos A.; Rodríguez-Guzmán, R.; Scuseria, Gustavo E.

    2014-07-01

    The molybdenum dimer is an example of a transition metal system with a formal sextuple bond that constitutes a challenging case for ab initio quantum chemistry methods. In particular, the complex binding pattern in the Mo2 molecule requires a high-quality description of non-dynamic and dynamic electron correlation in order to yield the correct shape of the potential energy curve. The present study examines the performance of a recently implemented multi-component symmetry projected Hartree-Fock (HF) approach. In this work, the spin and spatial symmetries of a trial wavefunction written in terms of non-orthogonal Slater determinants are deliberately broken and then restored in a variation-after-projection framework. The resulting symmetry-projected HF wavefunctions, which possess well-defined quantum numbers, can account for static and some dynamic correlations. A single symmetry-projected configuration in a D∞hS-UHF or a D∞hKS-UHF framework offers a reasonable description of the potential energy curve of Mo2, though the binding energy is too small for the former. Our multi-component strategy offers a way to improve on the single configuration result in a systematic way towards the exact wavefunction: in the def2-TZVP basis set considered in this study, a 7-determinant multi-component D∞hS-UHF approach yields a bond length of 2.01 Å, in good agreement with experimental results, while the predicted binding energy is 39.2 mhartree. The results of this exploratory study suggest that a multi-component symmetry-projected HF stategy is a promising alternative in a high-accuracy description of the electronic structure of challenging systems. We also present and discuss some benchmark calculations based on the CEEIS-FCI (correlation energy extrapolation by intrinsic scaling - full configuration interaction) method for selected geometries.

  7. Chiral symmetry restoration in heavy-ion collisions at intermediate energies

    Science.gov (United States)

    Palmese, A.; Cassing, W.; Seifert, E.; Steinert, T.; Moreau, P.; Bratkovskaya, E. L.

    2016-10-01

    We study the effect of the chiral symmetry restoration (CSR) on heavy-ion collisions observables in the energy range √{sN N}=3 -20 GeV within the parton-hadron-string dynamics (PHSD) transport approach. The PHSD includes the deconfinement phase transition as well as essential aspects of CSR in the dense and hot hadronic medium, which are incorporated in the Schwinger mechanism for the hadronic particle production. We adopt different parametrizations of the nuclear equation of state from the nonlinear σ -ω model, which enter in the computation of the quark scalar density for the CSR mechanism, in order to estimate the uncertainty in our calculations. For the pion-nucleon Σ term we adopt Σπ≈ 45 MeV, which corresponds to some world average. Our systematic studies show that chiral symmetry restoration plays a crucial role in the description of heavy-ion collisions at √{sN N}=3 -20 GeV, realizing an increase of the hadronic particle production in the strangeness sector with respect to the nonstrange one. We identify particle abundances and rapidity spectra to be suitable probes in order to extract information about CSR, while transverse mass spectra are less sensitive. Our results provide a microscopic explanation for the so-called horn structure in the excitation function of the K+/π+ ratio: The CSR in the hadronic phase produces the steep increase of this particle ratio up to √{sN N}≈7 GeV, while the drop at higher energies is associated to the appearance of a deconfined partonic medium. Furthermore, the appearance and disappearance of the horn-structure are investigated as functions of the system size and collision centrality. We close this work by an analysis of strangeness production in the (T ,μB ) plane (as extracted from the PHSD for central Au+Au collisions) and discuss the possibilities to identify a possible critical point in the phase diagram.

  8. Reconstructed primary fragments and symmetry energy, temperature and density of the fragmenting source in $^{64}$Zn + $^{112}$Sn at 40 MeV/nucleon

    CERN Document Server

    Liu, X; Wada, R; Huang, M; Zhang, S; Ren, P; Chen, Z; Wang, J; Xiao, G Q; Han, R; Liu, J; Shi, F; Rodrigues, M R D; Kowalski, S; Keutgen, T; Hagel, K; Barbui, M; Zheng, H; Bonasera, A; Natowitz, J B

    2014-01-01

    Symmetry energy, temperature and density at the time of the intermediate mass fragment formation are determined in a self-consistent manner, using the experimentally reconstructed primary hot isotope yields and anti-symmetrized molecular dynamics (AMD) simulations. The yields of primary hot fragments are experimentally reconstructed for multifragmentation events in the reaction system $^{64}$Zn + $^{112}$Sn at 40 MeV/nucleon. Using the reconstructed hot isotope yields and an improved method, based on the modified Fisher model, symmetry energy values relative to the apparent temperature, $a_{sym}/T$, are extracted. The extracted values are compared with those of the AMD simulations, extracted in the same way as that for the experiment, with the Gogny interaction with three different density-dependent symmetry energy terms. $a_{sym}/T$ values change according to the density-dependent symmetry energy terms used. Using this relation, the density of the fragmenting system is extracted first. Then symmetry energy a...

  9. Constraining the density dependence of the symmetry energy using the multiplicity and average pT ratios of charged pions

    Science.gov (United States)

    Cozma, M. D.

    2017-01-01

    The charged pion multiplicity ratio in intermediate-energy heavy-ion collisions, a probe of the density dependence of symmetry energy above the saturation point, has been proven in a previous study to be extremely sensitive to the strength of the isovector Δ (1232 ) potential in nuclear matter. As there is no knowledge, either from theory or experiment, about the magnitude of this quantity, the extraction of constraints on the slope of the symmetry energy at saturation by using exclusively the mentioned observable is hindered at present. It is shown that, by including the ratio of average pT of charged pions / in the list of fitted observables, the noted problem can be circumvented. A realistic description of this observable requires accounting for the interaction of pions with the dense nuclear matter environment by the incorporation of the so-called S -wave and P -wave pion optical potentials. This is performed within the framework of a quantum molecular dynamics transport model that enforces the conservation of the total energy of the system. It is shown that constraints on the slope of the symmetry energy at saturation density and the strength of the Δ (1232) potential can be simultaneously extracted. A symmetry energy with a value of the slope parameter L >50 MeV is favored, at 1 σ confidence level, from a comparison with published FOPI experimental data. A precise constraint will require experimental data more accurate than presently available, particularly for the charged pion multiplicity ratio, and better knowledge of the density and momentum dependence of the pion potential for the whole range of these two variables probed in intermediate-energy heavy-ion collisions.

  10. SπRIT: A time-projection chamber for symmetry-energy studies

    Energy Technology Data Exchange (ETDEWEB)

    Shane, R. [NSCL and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); McIntosh, A.B. [Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States); Isobe, T. [RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351‐0198 (Japan); Lynch, W.G., E-mail: lynch@nscl.msu.edu [NSCL and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Baba, H. [RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351‐0198 (Japan); Barney, J.; Chajecki, Z. [NSCL and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Chartier, M. [Department of Physics, University of Liverpool, Liverpool, Merseyside, L69 7ZE (United Kingdom); Estee, J. [NSCL and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Famiano, M. [Department of Physics, Western Michigan University, Kalamazoo, MI 49008-5252 (United States); Hong, B. [Department of Physics, Korea University, Seoul 136-701 (Korea, Republic of); Ieki, K. [Department of Physics, Rikkyo University, Toshima‐ku, Tokyo 171‐8501 (Japan); Jhang, G. [Department of Physics, Korea University, Seoul 136-701 (Korea, Republic of); Lemmon, R. [Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, Cheshire WA4 4AD (United Kingdom); Lu, F. [NSCL and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Shanghai Institute of Applied Physics, CAS, Shanghai 201800 (China); Murakami, T.; Nakatsuka, N. [Department of Physics, Kyoto University, Kita-shirakawa, Kyoto 606-8502 (Japan); Nishimura, M. [RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351‐0198 (Japan); Olsen, R. [Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States); Powell, W. [Department of Physics, University of Liverpool, Liverpool, Merseyside, L69 7ZE (United Kingdom); and others

    2015-06-01

    A time-projection chamber (TPC) called the SAMURAI Pion-Reconstruction and Ion-Tracker (SπRIT) has recently been constructed at Michigan State University as part of an international effort to constrain the symmetry-energy term in the nuclear Equation of State (EoS). The SπRIT TPC will be used in conjunction with the SAMURAI spectrometer at the Radioactive Isotope Beam Factory (RIBF) at RIKEN to measure yield ratios for pions and other light isospin multiplets produced in central collisions of neutron-rich heavy ions, such as {sup 132}Sn+{sup 124}Sn. The SπRIT TPC can function both as a TPC detector and as an active target. It has a vertical drift length of 50 cm, parallel to the magnetic field. Gas multiplication is achieved through the use of a multi-wire anode plane. Image charges, produced in the 12096 pads, are read out with the recently developed Generic Electronics for TPCs.

  11. S$\\pi$RIT: A time-projection chamber for symmetry-energy studies

    CERN Document Server

    Shane, R; Isobe, T; Lynch, W G; Baba, H; Barney, J; Chajecki, Z; Chartier, M; Estee, J; Famiano, M; Hong, B; Ieki, K; Jhang, G; Lemmon, R; Lu, F; Murakami, T; Nakatsuka, N; Nishimura, M; Olsen, R; Powell, W; Sakurai, H; Taketani, A; Tangwancharoen, S; Tsang, M B; Usukura, T; Wang, R; Yennello, S J; Yurkon, J

    2014-01-01

    A Time-Projection Chamber (TPC) called the SAMURAI Pion-Reconstruction and Ion-Tracker (S$\\pi$RIT) has recently been constructed at Michigan State University as part of an international effort to constrain the symmetry-energy term in the nuclear Equation of State (EoS). The S$\\pi$RIT TPC will be used in conjunction with the SAMURAI spectrometer at the Radioactive Isotope Beam Factory (RIBF) at RIKEN to measure yield ratios for pions and other light isospin multiplets produced in central collisions of neutron-rich heavy ions, such as $^{132}$Sn + $^{124}$Sn. The S$\\pi$RIT TPC can function both as a TPC detector and as an active target. It has a vertical drift length of 50 cm, parallel to the magnetic field. Gas multiplication is achieved through the use of a multi-wire anode. Image charges are produced in the 12096 pads, and are read out with the recently developed Generic Electronics for TPCs.

  12. Equation of state of the neutron star matter, and the nuclear symmetry energy

    CERN Document Server

    Loan, Doan Thi; Khoa, Dao T; Margueron, Jerome

    2011-01-01

    The nuclear mean-field potentials obtained in the Hartree-Fock method with different choices of the in-medium nucleon-nucleon (NN) interaction have been used to study the equation of state (EOS) of the neutron star (NS) matter. The EOS of the uniform NS core has been calculated for the np$e\\mu$ composition in the $\\beta$-equilibrium at zero temperature, using version Sly4 of the Skyrme interaction as well as two density-dependent versions of the finite-range M3Y interaction (CDM3Y$n$ and M3Y-P$n$), and versions D1S and D1N of the Gogny interaction. Although the considered effective NN interactions were proven to be quite realistic in numerous nuclear structure and/or reaction studies, they give quite different behaviors of the symmetry energy of nuclear matter at supranuclear densities that lead to the \\emph{soft} and \\emph{stiff} scenarios discussed recently in the literature. Different EOS's of the NS core and the EOS of the NS crust given by the compressible liquid drop model have been used as input of the...

  13. Nuclear symmetry energy and the role of three-body forces

    CERN Document Server

    Goudarzi, S; Haensel, P

    2016-01-01

    Density dependence of nuclear symmetry energy as well as its partial wave decomposition is studied within the framework of lowest-order constrained variational (LOCV) method using AV18 two-body interaction supplemented by UIX three-body force. The main focus of the present work is to introduce a revised version of three-body force which is based on an isospin-dependent parametrization of coefficients in the UIX force, in order to overcome the inability to produce correct saturation-point parameters} in the framework of LOCV method. We find that employing the new model of {\\ph three-body force} in the LOCV formalism leads to successfully reproducing the semi-empirical parameters of cold nuclear matter, including} $E_{sym}(\\rho_0)$, $L$, and $K_{sym}$. All our models of three-body force combined with AV18 two-body force give maximum neutron star mass higher than $2\\;M_\\odot$. The fraction of protons in the nucleon cores of neutron stars strongly depends on the three-body force parametrization.

  14. Constraints on the symmetry energy from observational probes of the neutron star crust

    CERN Document Server

    Newton, William G; Gearheart, Michael; Murphy, Kyleah; Wen, De-Hua; Fattoyev, Farrukh; Li, Bao-An

    2015-01-01

    A number of observed phenomena associated with individual neutron star systems or neutron star populations find explanations in models in which the neutron star crust plays an important role. We review recent work examining the sensitivity to the slope of the symmetry energy $L$ of such models, and constraints extracted on $L$ from confronting them with observations. We focus on six sets of observations and proposed explanations: (i) The cooling rate of the neutron star in Cassiopeia A, confronting cooling models which include enhanced cooling in the nuclear pasta regions of the inner crust, (ii) the upper limit of the observed periods of young X-ray pulsars, confronting models of magnetic field decay in the crust caused by the high resistivity of the nuclear pasta layer, (iii) glitches from the Vela pulsar, confronting the paradigm that they arise due to a sudden re-coupling of the crustal neutron superfluid to the crustal lattice after a period during which they were decoupled due to vortex pinning, (iv) Th...

  15. Nuclear matter fourth-order symmetry energy in relativistic mean field models

    CERN Document Server

    Cai, Bao-Jun

    2011-01-01

    Within the nonlinear relativistic mean field model, we derive the analytical expression of the nuclear matter fourth-order symmetry energy $E_{4}(\\rho)$. Our results show that the value of $E_{4}(\\rho)$ at normal nuclear matter density $\\rho_{0}$ is generally less than 1 MeV, confirming the empirical parabolic approximation to the equation of state for asymmetric nuclear matter at $\\rho_{0}$. On the other hand, we find that the $E_{4}(\\rho)$ may become nonnegligible at high densities. Furthermore, the analytical form of the $E_{4}(\\rho)$ provides the possibility to study the higher-order effects on the isobaric incompressibility of asymmetric nuclear matter, i.e., $K_{\\mathrm{sat}}(\\delta)=K_{0}+K_{\\mathrm{{sat},2}}\\delta ^{2}+K_{\\mathrm{{sat},4}}\\delta ^{4}+\\mathcal{O}(\\delta ^{6})$ where $\\delta =(\\rho_{n}-\\rho_{p})/\\rho $ is the isospin asymmetry, and we find that the value of $K_{\\mathrm{{sat},4}}$ is generally comparable with that of the $K_{\\mathrm{{sat},2}}$. In addition, we study the effects of the $E...

  16. ACADEMIC TRAINING: Low Energy Experiments that Measure Fundamental Constants and Test Basic Symmetries

    CERN Multimedia

    Françoise Benz

    2002-01-01

    17, 18, 19 , 21 June LECTURE SERIES from 11.00 to 12.00 hrs - Auditorium, bldg. 500 Low Energy Experiments that Measure Fundamental Constants and Test Basic Symmetries by G. GABRIELSE / Professor of Physics and Chair of the Harvard Physics Department, Spokesperson for the ATRAP Collaboration Lecture 1: Particle Traps: the World's Tiniest Accelerators A single elementary particle, or a single ion, can be confined in a tiny accelerator called a particle trap. A single electron was held this way for more than ten months, and antiprotons for months. Mass spectroscopy of exquisite precision is possible with such systems. CERN's TRAP Collaboration thereby compared the charge-to-mass ratios of the antiproton and proton to a precision of 90 parts per trillion, by far the most stringent CPT test done with a baryon system. The important ratio of the masses of the electron and proton have been similarly measured, as have a variety of ions masses, and the neutron mass is most accurately known from such measurements. An i...

  17. Low-mass neutron stars: universal relations, the nuclear symmetry energy and gravitational radiation

    CERN Document Server

    Silva, Hector O; Berti, Emanuele

    2016-01-01

    The lowest neutron star masses currently measured are in the range $1.0-1.1~M_\\odot$, but these measurement have either large uncertainties or refer to isolated neutron stars. The recent claim of a precisely measured mass $M/M_{\\odot} = 1.174 \\pm 0.004$ by Martinez et al [Astrophys.J. 812, 143 (2015)] in a double neutron star system suggests that low-mass neutron stars may be an interesting target for gravitational-wave detectors. Furthermore, Sotani et al [PTEP 2014, 051E01 (2014)] recently found empirical formulas relating the mass and surface redshift of nonrotating neutron stars to the star's central density and to the parameter $\\eta\\equiv (K_0 L^2)^{1/3}$, where $K_0$ is the incompressibility of symmetric nuclear matter and $L$ is the slope of the symmetry energy at saturation density. Motivated by these considerations, we extend the work by Sotani et al to slowly rotating and tidally deformed neutron stars. We compute the moment of inertia, quadrupole moment, quadrupole ellipticity, tidal and rotationa...

  18. Low-mass neutron stars: universal relations, the nuclear symmetry energy and gravitational radiation

    Science.gov (United States)

    Silva, Hector O.; Sotani, Hajime; Berti, Emanuele

    2016-07-01

    The lowest neutron star masses currently measured are in the range 1.0-1.1 M⊙, but these measurement have either large uncertainties or refer to isolated neutron stars. The recent claim of a precisely measured mass M/M⊙ = 1.174 ± 0.004 (Martinez et al. 2015) in a double neutron star system suggests that low-mass neutron stars may be an interesting target for gravitational-wave detectors. Furthermore, Sotani et al. recently found empirical formulas relating the mass and surface redshift of non-rotating neutron stars to the star's central density and to the parameter η ≡ (K0L2)1/3, where K0 is the incompressibility of symmetric nuclear matter and L is the slope of the symmetry energy at saturation density. Motivated by these considerations, we extend the work by Sotani et al. to slowly rotating and tidally deformed neutron stars. We compute the moment of inertia, quadrupole moment, quadrupole ellipticity, tidal and rotational Love number and apsidal constant of slowly rotating neutron stars by integrating the Hartle-Thorne equations at second order in rotation, and we fit all of these quantities as functions of η and of the central density. These fits may be used to constrain η, either via observations of binary pulsars in the electromagnetic spectrum, or via near-future observations of inspiralling compact binaries in the gravitational-wave spectrum.

  19. Zero-crossing angle in the np analyzing power at medium energies and its relation to charge symmetry

    Science.gov (United States)

    Bhatia, T. S.; Glass, G.; Hiebert, J. C.; Northcliffe, L. C.; Tippens, W. B.; Bonner, B. E.; Simmons, J. E.; Hollas, C. L.; Newsom, C. R.; Riley, P. J.; Ransome, R. D.

    1981-08-01

    The angle at which the analyzing power for free np scattering becomes zero, the zero-crossing angle θ0, has been measured simultaneously for the n-->p and np--> scattering processes at 425, 565, and 665 MeV incident neutron energies. A rather strong energy dependence of the zerocrossing angle is found. Knowledge of this energy dependence is important in designing an experiment which tests for charge symmetry breaking forces by comparing high precision measurements of θ0(n-->p) and θ0(np-->). [NUCLEAR REACTIONS p(n,p)n, E=425,565, and 665 MeV; polarized neutron beam, polarized proton target; measured analyzing powers A(E,θ) deduced zero-crossing angles; charge symmetry.

  20. Proper and improper zero energy modes in Hartree-Fock theory and their relevance for symmetry breaking and restoration.

    Science.gov (United States)

    Cui, Yao; Bulik, Ireneusz W; Jiménez-Hoyos, Carlos A; Henderson, Thomas M; Scuseria, Gustavo E

    2013-10-21

    We study the spectra of the molecular orbital Hessian (stability matrix) and random-phase approximation (RPA) Hamiltonian of broken-symmetry Hartree-Fock solutions, focusing on zero eigenvalue modes. After all negative eigenvalues are removed from the Hessian by following their eigenvectors downhill, one is left with only positive and zero eigenvalues. Zero modes correspond to orbital rotations with no restoring force. These rotations determine states in the Goldstone manifold, which originates from a spontaneously broken continuous symmetry in the wave function. Zero modes can be classified as improper or proper according to their different mathematical and physical properties. Improper modes arise from symmetry breaking and their restoration always lowers the energy. Proper modes, on the other hand, correspond to degeneracies of the wave function, and their symmetry restoration does not necessarily lower the energy. We discuss how the RPA Hamiltonian distinguishes between proper and improper modes by doubling the number of zero eigenvalues associated with the latter. Proper modes in the Hessian always appear in pairs which do not double in RPA. We present several pedagogical cases exemplifying the above statements. The relevance of these results for projected Hartree-Fock methods is also addressed.

  1. The impact of energy conservation in transport models on the $\\pi^-/\\pi^+$ multiplicity ratio in heavy-ion collisions and the symmetry energy

    CERN Document Server

    Cozma, M D

    2014-01-01

    The charged pion multiplicity ratio in intermediate energy central heavy-ion collisions has been proposed as a suitable observable to constrain the high density dependence of the isovector part of the equation of state, with contradicting results. Using an upgraded version of the T\\"ubingen QMD transport model, which allows the conservation of energy at a local or global level by accounting for the potential energy of hadrons in two-body collisions and leading thus to particle production threshold shifts, we demonstrate that compatible constraints for the symmetry energy stiffness can be extracted from pion multiplicity and elliptic flow observables. Nevertheless, pion multiplicities are proven to be highly sensitive to the yet unknown isovector part of the in-medium $\\Delta$(1232) potential which hinders presently the extraction of meaningful information on the high density dependence of the symmetry energy. A solution to this problem together with the inclusion of contributions presently neglected, such as ...

  2. On the global and local nuclear stopping in mass asymmetric nuclear collisions using density-dependent symmetry energy

    Science.gov (United States)

    Amandeep, K.; Suneel, K.

    2017-09-01

    The present theoretical calculations have been performed within the framework of IQMD model to study a particular set of mass symmetric and asymmetric reactions (keeping total mass fixed) over a wide range of incident energies and colliding geometries. It has been observed that global as well as local nuclear stopping is influenced by the mass asymmetry of the reaction strongly. Influence of density-dependent symmetry energy has been observed in local nuclear stopping. Global stopping decreases with the increase in colliding geometry. Effect of colliding geometry on nuclear stopping is more at higher energies.

  3. Functional approach for pairing in finite systems: How to define restoration of broken symmetries in Energy Density Functional theory?

    Energy Technology Data Exchange (ETDEWEB)

    Hupin, G; Lacroix, D [Grand Accelerateur National d' Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, Bvd Henri Becquerel, 14076 Caen (France); Bender, M, E-mail: hupin@ganil.fr, E-mail: lacroix@ganil.fr, E-mail: bender@ganil.fr [Universite Bordeaux, Centre d' Etudes Nucleaires de Bordeaux Gradignan, UMR5797, F-33175 Gradignan (France)

    2011-09-16

    The Multi-Reference Energy Density Functional (MR-EDF) approach (also called configuration mixing or Generator Coordinate Method), that is commonly used to treat pairing in finite nuclei and project onto particle number, is re-analyzed. It is shown that, under certain conditions, the MR-EDF energy can be interpreted as a functional of the one-body density matrix of the projected state with good particle number. Based on this observation, we propose a new approach, called Symmetry-Conserving EDF (SC-EDF), where the breaking and restoration of symmetry are accounted for simultaneously. We show, that such an approach is free from pathologies recently observed in MR-EDF and can be used with a large flexibility on the density dependence of the functional.

  4. Constraints on the symmetry energy from observational probes of the neutron star crust

    Energy Technology Data Exchange (ETDEWEB)

    Newton, William G.; Hooker, Joshua; Gearheart, Michael; Fattoyev, Farrukh J.; Li, Bao-An [Texas A and M University-Commerce, Department of Physics and Astronomy, Commerce (United States); Murphy, Kyleah [Texas A and M University-Commerce, Department of Physics and Astronomy, Commerce (United States); Umpqua Community College, Roseburg, Oregon (United States); Wen, De-Hua [Texas A and M University-Commerce, Department of Physics and Astronomy, Commerce (United States); South China University of Technology, Department of Physics, Guangzhou (China)

    2014-02-15

    A number of observed phenomena associated with individual neutron star systems or neutron star populations find explanations in models in which the neutron star crust plays an important role. We review recent work examining the sensitivity to the slope of the symmetry energy L of such models, and constraints extracted on L from confronting them with observations. We focus on six sets of observations and proposed explanations: (i) The cooling rate of the neutron star in Cassiopeia A, confronting cooling models which include enhanced cooling in the nuclear pasta regions of the inner crust; (ii) the upper limit of the observed periods of young X-ray pulsars, confronting models of magnetic field decay in the crust caused by the high resistivity of the nuclear pasta layer; (iii) glitches from the Vela pulsar, confronting the paradigm that they arise due to a sudden recoupling of the crustal neutron superfluid to the crustal lattice after a period during which they were decoupled due to vortex pinning; (iv) the frequencies of quasi-periodic oscillations in the X-ray tail of light curves from giant flares from soft gamma-ray repeaters, confronting models of torsional crust oscillations; (v) the upper limit on the frequency to which millisecond pulsars can be spun-up due to accretion from a binary companion, confronting models of the r-mode instability arising above a threshold frequency determined in part by the viscous dissipation timescale at the crust-core boundary; and (vi) the observations of precursor electromagnetic flares a few seconds before short gamma-ray bursts, confronting a model of crust shattering caused by resonant excitation of a crustal oscillation mode by the tidal gravitational field of a companion neutron star just before merger. (orig.)

  5. Spatial assignment of symmetry adapted perturbation theory interaction energy components: The atomic SAPT partition.

    Science.gov (United States)

    Parrish, Robert M; Sherrill, C David

    2014-07-28

    We develop a physically-motivated assignment of symmetry adapted perturbation theory for intermolecular interactions (SAPT) into atom-pairwise contributions (the A-SAPT partition). The basic precept of A-SAPT is that the many-body interaction energy components are computed normally under the formalism of SAPT, following which a spatially-localized two-body quasiparticle interaction is extracted from the many-body interaction terms. For electrostatics and induction source terms, the relevant quasiparticles are atoms, which are obtained in this work through the iterative stockholder analysis (ISA) procedure. For the exchange, induction response, and dispersion terms, the relevant quasiparticles are local occupied orbitals, which are obtained in this work through the Pipek-Mezey procedure. The local orbital atomic charges obtained from ISA additionally allow the terms involving local orbitals to be assigned in an atom-pairwise manner. Further summation over the atoms of one or the other monomer allows for a chemically intuitive visualization of the contribution of each atom and interaction component to the overall noncovalent interaction strength. Herein, we present the intuitive development and mathematical form for A-SAPT applied in the SAPT0 approximation (the A-SAPT0 partition). We also provide an efficient series of algorithms for the computation of the A-SAPT0 partition with essentially the same computational cost as the corresponding SAPT0 decomposition. We probe the sensitivity of the A-SAPT0 partition to the ISA grid and convergence parameter, orbital localization metric, and induction coupling treatment, and recommend a set of practical choices which closes the definition of the A-SAPT0 partition. We demonstrate the utility and computational tractability of the A-SAPT0 partition in the context of side-on cation-π interactions and the intercalation of DNA by proflavine. A-SAPT0 clearly shows the key processes in these complicated noncovalent interactions, in

  6. Dark energy and dark matter from hidden symmetry of gravity model with a non-Riemannian volume form

    Energy Technology Data Exchange (ETDEWEB)

    Guendelman, Eduardo [Ben-Gurion University of the Negev, Department of Physics, Beersheba (Israel); Nissimov, Emil; Pacheva, Svetlana [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria)

    2015-10-15

    We show that dark energy and dark matter can be described simultaneously by ordinary Einstein gravity interacting with a single scalar field provided the scalar field Lagrangian couples in a symmetric fashion to two different spacetime volume forms (covariant integration measure densities) on the spacetime manifold - one standard Riemannian given by √(-g) (square root of the determinant of the pertinent Riemannian metric) and another non-Riemannian volume form independent of the Riemannian metric, defined in terms of an auxiliary antisymmetric tensor gauge field of maximal rank. Integration of the equations of motion of the latter auxiliary gauge field produce an a priori arbitrary integration constant that plays the role of a dynamically generated cosmological constant or dark energy. Moreover, the above modified scalar field action turns out to possess a hidden Noether symmetry whose associated conserved current describes a pressureless ''dust'' fluid which we can identify with the dark matter completely decoupled from the dark energy. The form of both the dark energy and dark matter that results from the above class of models is insensitive to the specific form of the scalar field Lagrangian. By adding an appropriate perturbation, which breaks the above hidden symmetry and along with this couples dark matter and dark energy, we also suggest a way to obtain growing dark energy in the present universe's epoch without evolution pathologies. (orig.)

  7. Symmetry group prerequisite for E-infinity in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    El Naschie, M.S. [Department of Physics, Alexandria University (United Kingdom); KACST, Riyadh (Saudi Arabia); Department of Astrophysics, Cairo University, Cairo (Egypt)], E-mail: Chaossf@aol.com

    2008-01-15

    The work addresses the question of extending certain symplectic and exceptional Lie Symmetry groups to the realm of chaotic dynamics. Using a collection of simple examples, the technique of transfinite continuation is illustrated and various physically relevant results are obtained. The paper is intended as an elementary introduction to the use of symmetry groups in transfinite physics and as such is a sequel to a series of previous papers constituting the elementary and advanced mathematical prerequisite for a proper understanding of E-infinity theory.

  8. Relativistic baryonic jets from an ultraluminous supersoft X-ray source

    CERN Document Server

    Liu, Ji-Feng; Wang, Song; Justham, Stephen; Lu, You-Jun; Gu, Wei-Min; Liu, Qing-Zhong; Di Stefano, Rosanne; Guo, Jin-Cheng; Cabrera-Lavers, Antonio; Alvarez, Pedro; Cao, Yi; Kulkarni, Shri

    2015-01-01

    The formation of relativistic jets by an accreting compact object is one of the fundamental mysteries of astrophysics. While the theory is poorly understood, observations of relativistic jets from systems known as microquasars\\cite{Mirabel98,Paredes03} have led to a well-established phenomenology\\cite{Fender04,Migliari06}. Relativistic jets are not expected from sources with soft or supersoft X-ray spectra, although two such systems are known to produce relatively low-velocity bipolar outflows\\cite{Southwell96,Becker98}. Here we report optical spectra of an ultraluminous supersoft X-ray source (ULS\\cite{DiStefano03,Swartz02}) in the nearby galaxy M81 (M81 ULS-1\\cite{Liu08a,Liu08b}) showing blueshifted broad H\\alpha\\ emission lines, characteristic of baryonic jets with relativistic speeds. The time variable jets have projected velocities ~17 per cent of the speed of light, and seem similar to those in the prototype microquasar SS 433\\cite{Margon84,Blundell07}. Such relativistic jets are not expected to be laun...

  9. A radio survey of supersoft, persistent and transient X-ray sources in the Magellanic Clouds

    CERN Document Server

    Fender, R P; Tzioumis, A K

    1998-01-01

    We present a radio survey of X-ray sources in the Large and Small Magellanic clouds with the Australia Telescope Compact Array at 6.3 and 3.5 cm. Specifically, we have observed the fields of five LMC and two SMC supersoft X-ray sources, the X-ray binaries LMC X-1, X-2, X-3 & X-4, the X-ray transient Nova SMC 1992, and the soft gamma-ray repeater SGR 0525-66. None of the targets are detected as point sources at their catalogued positions. In particular, the proposed supersoft jet source RXJ 0513-69 is not detected, placing constraints on its radio luminosity compared to Galactic jet sources. Limits on emission from the black hole candidate systems LMC X-1 and X-3 are consistent with the radio behaviour of persistent Galactic black hole X-ray binaries, and a previous possible radio detection of LMC X-1 is found to almost certainly be due to nearby field sources. The SNR N49 in the field of SGR 0525-66 is mapped at higher resolution than previously, but there is still no evidence for any enhanced emission or...

  10. Thermoelectric energy converters under a trade-off figure of merit with broken time-reversal symmetry

    Science.gov (United States)

    Iyyappan, I.; Ponmurugan, M.

    2017-09-01

    We study the performance of a three-terminal thermoelectric device such as heat engine and refrigerator with broken time-reversal symmetry by applying the unified trade-off figure of merit (\\dotΩ criterion) which accounts for both useful energy and losses. For the heat engine, we find that a thermoelectric device working under the maximum \\dotΩ criterion gives a significantly better performance than a device working at maximum power output. Within the framework of linear irreversible thermodynamics such a direct comparison is not possible for refrigerators, however, our study indicates that, for refrigerator, the maximum cooling load gives a better performance than the maximum \\dotΩ criterion for a larger asymmetry. Our results can be useful to choose a suitable optimization criterion for operating a real thermoelectric device with broken time-reversal symmetry.

  11. Broken symmetries, zero-energy modes, and quantum transport in disordered graphene: from supermetallic to insulating regimes.

    Science.gov (United States)

    Cresti, Alessandro; Ortmann, Frank; Louvet, Thibaud; Van Tuan, Dinh; Roche, Stephan

    2013-05-10

    The role of defect-induced zero-energy modes on charge transport in graphene is investigated using Kubo and Landauer transport calculations. By tuning the density of random distributions of monovacancies either equally populating the two sublattices or exclusively located on a single sublattice, all conduction regimes are covered from direct tunneling through evanescent modes to mesoscopic transport in bulk disordered graphene. Depending on the transport measurement geometry, defect density, and broken sublattice symmetry, the Dirac-point conductivity is either exceptionally robust against disorder (supermetallic state) or suppressed through a gap opening or by algebraic localization of zero-energy modes, whereas weak localization and the Anderson insulating regime are obtained for higher energies. These findings clarify the contribution of zero-energy modes to transport at the Dirac point, hitherto controversial.

  12. Ground-state properties and symmetry energy of neutron-rich and neutron-deficient Mg isotopes

    CERN Document Server

    Gaidarov, M K; Antonov, A N; de Guerra, E Moya

    2015-01-01

    A comprehensive study of various ground-state properties of neutron-rich and neutron-deficient Mg isotopes with $A$=20-36 is performed in the framework of the self-consistent deformed Skyrme-Hartree-Fock plus BCS method. The correlation between the skin thickness and the characteristics related with the density dependence of the nuclear symmetry energy is investigated for this isotopic chain following the theoretical approach based on the coherent density fluctuation model and using the Brueckner energy-density functional. The results of the calculations show that the behavior of the nuclear charge radii and the nuclear symmetry energy in the Mg isotopic chain is closely related to the nuclear deformation. We also study, within our theoretical scheme, the emergence of an "island of inversion" at neutron-rich $^{32}$Mg nucleus, that was recently proposed from the analyses of spectroscopic measurements of $^{32}$Mg low-lying energy spectrum and the charge rms radii of all magnesium isotopes in the $sd$ shell.

  13. Low energy phenomena in a model with symmetry group SUSY SO (10) ×△(48)×U(1)

    Institute of Scientific and Technical Information of China (English)

    周光召; 吴岳良

    1996-01-01

    Fermion masses and mixing angles including that of neutrinos are studied in a model with symmetry group SUSY S0(10) x4(48) xU(i). Universality of Yukawa coupling of superfields is assumed. The resulting texture of mass matrices in the low energy region depends only on a single coupling constant and VEVs caused by necessary symmetry breaking. 13 parameters involving masses and mixing angles in the quark and charged lepton sector are successfully described by only five parameters with two of them determined by the scales of U(1), SO (10) and SU(5) symmetry breaking compatible with the requirement of grand unification and proton decay. The neutrino masses and mixing angles in the leptonic sector are also determined with the addition of a Majorana coupling term. It is found that LSND, events, atmospheric neutrino deficit and the mass limit put by hot dark matter can be naturally explained. Solar neutrino puzzle can be solved only by introducing sterile neutrino with one additional parameter. More precise me

  14. Constraining the density dependence of the symmetry energy using the multiplicity and average $p_T$ ratios of charged pions

    CERN Document Server

    Cozma, M D

    2016-01-01

    The charged pion multiplicity ratio in intermediate energy heavy-ion collisions, a probe of the density dependence of symmetry energy above the saturation point, has been proven in a previous study to be extremely sensitive to the strength of the isovector $\\Delta$(1232) potential in nuclear matter. As there is no current knowledge, either from theory or experiment, about the magnitude of this quantity, the extraction of constraints for the slope of the symmetry energy at saturation by using exclusively the mentioned observable is hindered at present. It is shown that, by including the ratio of average $p_T$ of charged pions $\\langle p_T^{(\\pi^+)}\\rangle/\\langle p_T^{(\\pi^-)}\\rangle$ in the list of fitted observables, the noted problem can be circumvented. A realistic description of this observable requires the accounting for the interaction of pions with the dense nuclear matter environment by the incorporation of the so called S-wave and P-wave pion optical potentials. This is performed within the framework...

  15. Isospin and symmetry energy effects on nuclear fragment production in liquid-gas type phase transition region

    CERN Document Server

    Buyukcizmeci, N; Botvina, A S

    2005-01-01

    We have demonstrated that the isospin of nuclei influences the fragment production during the nuclear liquid-gas phase transition. Calculations for Au197, Sn124, La124 and Kr78 at various excitation energies were carried out on the basis of the statistical multifragmentation model (SMM). We analyzed the behavior of the critical exponent tau with the excitation energy and its dependence on the critical temperature. Relative yields of fragments were classified with respect to the mass number of the fragments in the transition region. In this way, we have demonstrated that nuclear multifragmentation exhibits a 'bimodality' behavior. We have also shown that the symmetry energy has a small influence on fragment mass distribution, however, its effect is more pronounced in the isotope distributions of produced fragments.

  16. Isospin and symmetry energy effects on nuclear fragment distributions in liquid-gas type phase transition region

    CERN Document Server

    Buyukcizmeci, N; Botvina, A S

    2004-01-01

    We have demonstrated that the isospin of nuclei influences the fragment distributions during the nuclear liquid-gas phase transition. Calculations for Au197, Sn124, La124 and Kr78 at various excitation energies were carried out on the basis of the statistical multifragmentation model (SMM). We analyzed the behavior of the critical exponent tau with the excitation energy and its dependence on the critical temperature. Relative yields of fragments were classified with respect to the mass number of the fragments in the transition region. In this way, we have demonstrated that nuclear multifragmentation exhibits a 'bimodality' behavior. We have also shown that the symmetry energy has a small influence on fragment mass distribution, however, its effect is more pronounced in the isotope distributions of produced fragments.

  17. The first pre-supersoft X-ray binary

    CERN Document Server

    Parsons, S G; Gansicke, B T; Rebassa-Mansergas, A; Brahm, R; Zorotovic, M; Toloza, O; Pala, A F; Tappert, C; Bayo, A; Jordan, A

    2015-01-01

    We report the discovery of an extremely close white dwarf plus F dwarf main-sequence star in a 12 hour binary identified by combining data from the RAdial Velocity Experiment (RAVE) survey and the Galaxy Evolution Explorer (GALEX) survey. A combination of spectral energy distribution fitting and optical and Hubble Space Telescope ultraviolet spectroscopy allowed us to place fairly precise constraints on the physical parameters of the binary. The system, TYC 6760-497-1, consists of a hot Teff~21,500K, M~0.65Ms white dwarf and an F8 star (M~1.23Ms, R~1.35Rs) seen at a low inclination (i~35 deg). The system is likely the descendent of a binary that contained the F star and a ~2Ms A-type star that filled its Roche-lobe on the second asymptotic giant branch, initiating a common envelope phase. The F star is extremely close to Roche-lobe filling and there is likely to be a short phase of thermal timescale mass-transfer onto the white dwarf. During this phase it will grow in mass by up to 20 per cent, until the mass...

  18. The impact of energy conservation in transport models on the π−/π+ multiplicity ratio in heavy-ion collisions and the symmetry energy

    Directory of Open Access Journals (Sweden)

    M.D. Cozma

    2016-02-01

    Full Text Available The charged pion multiplicity ratio in intermediate energy central heavy-ion collisions has been proposed as a suitable observable to constrain the high density dependence of the isovector part of the equation of state. A comparison of various transport model predictions with existing experimental data has led, however, to contradictory results. Using an upgraded version of the Tübingen QMD transport model, which allows the conservation of energy at a local or global level by accounting for the potential energy of hadrons in two-body collisions and leading thus to particle production threshold shifts, we demonstrate that compatible constraints for the symmetry energy stiffness can be extracted from pion multiplicity and elliptic flow observables. However, pion multiplicities and ratios are proven to be highly sensitive to the yet unknown isovector part of the in-medium Δ(1232 potential which hinders, at present, the extraction of meaningful information on the high density dependence of the symmetry energy. A solution to this problem together with the inclusion of contributions presently neglected, such as in-medium pion potentials and retardation effects, are needed for a final verdict on this topic.

  19. Effects of medium modification of pion production threshold in heavy ion collisions and the nuclear symmetry energy

    CERN Document Server

    Song, Taesoo

    2014-01-01

    Using the relativistic Vlasov-Uehling-Uhlenbeck (RVUU) equation based on mean fields from the nonlinear relativistic models, we study the effect of medium modification of pion production threshold on the total pion yield and the $\\pi^-/\\pi^+$ ratio in Au+Au collisions. We find that the in-medium threshold effect enhances both the total pion yield and the $\\pi^-/\\pi^+$ ratio, compared to those without this effect. Furthermore, including the medium modification of the pion production threshold in asymmetric nuclear matter leads to a larger $\\pi^-/\\pi^+$ ratio for the $NL\\rho\\delta$ model with a stiffer symmetry energy than the $NL\\rho$ model with a softer symmetry energy, opposite to that found without the in-medium threshold effect. Experimental data from the FOPI Collaboration are reproduced after including a density-dependent cross section for $\\Delta$ baryon production from nucleon-nucleon collisions, which suppresses the total pion yield but hardly changes the $\\pi^-/\\pi^+$ ratio. The large errors in the e...

  20. Einstein's Physical Strategy, Energy Conservation, Symmetries, and Stability: "but Grossmann & I believed that the conservation laws were not satisfied"

    CERN Document Server

    Pitts, J Brian

    2016-01-01

    Recent work on the history of General Relativity by Renn, Sauer, Janssen et al. shows that Einstein found his field equations partly by a physical strategy including the Newtonian limit, the electromagnetic analogy, and energy conservation. Such themes are similar to those later used by particle physicists. How do Einstein's physical strategy and the particle physics derivations compare? What energy-momentum complex(es) did he use and why? Did Einstein tie conservation to symmetries, and if so, to which? Einstein used an identity from his assumed linear coordinate covariance x'= Mx to relate it to the canonical tensor. Usually he avoided using matter Euler-Lagrange equations and so was not well positioned to use or reinvent the Herglotz-Mie-Born understanding that the canonical tensor was conserved due to translation symmetries, a result with roots in Lagrange, Hamilton and Jacobi. Whereas Mie and Born were concerned about the canonical tensor's asymmetry, Einstein did not need to worry because his Entwurf La...

  1. Optical Dark-Field and Electron Energy Loss Imaging and Spectroscopy of Symmetry-Forbidden Modes in Loaded Nanogap Antennas.

    Science.gov (United States)

    Brintlinger, Todd; Herzing, Andrew A; Long, James P; Vurgaftman, Igor; Stroud, Rhonda; Simpkins, B S

    2015-06-23

    We have produced large numbers of hybrid metal-semiconductor nanogap antennas using a scalable electrochemical approach and systematically characterized the spectral and spatial character of their plasmonic modes with optical dark-field scattering, electron energy loss spectroscopy with principal component analysis, and full wave simulations. The coordination of these techniques reveal that these nanostructures support degenerate transverse modes which split due to substrate interactions, a longitudinal mode which scales with antenna length, and a symmetry-forbidden gap-localized transverse mode. This gap-localized transverse mode arises from mode splitting of transverse resonances supported on both antenna arms and is confined to the gap load enabling (i) delivery of substantial energy to the gap material and (ii) the possibility of tuning the antenna resonance via active modulation of the gap material's optical properties. The resonant position of this symmetry-forbidden mode is sensitive to gap size, dielectric strength of the gap material, and is highly suppressed in air-gapped structures which may explain its absence from the literature to date. Understanding the complex modal structure supported on hybrid nanosystems is necessary to enable the multifunctional components many seek.

  2. Strong correlations of neutron star radii with the slopes of nuclear matter incompressibility and symmetry energy at saturation

    CERN Document Server

    Alam, N; Fortin, M; Pais, H; Providência, C; Raduta, Ad R; Sulaksono, A

    2016-01-01

    We examine the correlations of neutron star radii with the nuclear matter incompressibility, symmetry energy, and their slopes, which are the key parameters of the equation of state (EoS) of asymmetric nuclear matter. The neutron star radii and the EoS parameters are evaluated using a representative set of 24 Skyrme-type effective forces and 18 relativistic mean field models, and two microscopic calculations, all describing 2$M_\\odot$ neutron stars. Unified EoSs for the inner-crust-core region have been built for all the phenomenological models, both relativistic and non-relativistic. Our investigation shows the existence of a strong correlation of the neutron star radii with the linear combination of the slopes of the nuclear matter incompressibility and the symmetry energy coefficients at the saturation density. Such correlations are found to be almost independent of the neutron star mass in the range $0.6\\text{-}1.8M_{\\odot}$. This correlation can be linked to the empirical relation existing between the st...

  3. Ultrahigh-energy photons as probes of Lorentz symmetry violations in stringy space-time foam models.

    Science.gov (United States)

    Maccione, Luca; Liberati, Stefano; Sigl, Günter

    2010-07-09

    The time delays between γ rays of different energies from extragalactic sources have often been used to probe quantum gravity models in which Lorentz symmetry is violated. It has been claimed that these time delays can be explained by or at least put the strongest available constraints on quantum gravity scenarios that cannot be cast within an effective field theory framework, such as the space-time foam, D-brane model. Here we show that this model would predict too many photons in the ultrahigh energy cosmic ray flux to be consistent with observations. The resulting constraints on the space-time foam model are much stronger than limits from time delays and allow for Lorentz violation effects way too small for explaining the observed time delays.

  4. Dark Energy and Dark Matter From Hidden Symmetry of Gravity Model with a Non-Riemannian Volume Form

    CERN Document Server

    Guendelman, Eduardo; Pacheva, Svetlana

    2015-01-01

    We show that dark energy and dark matter can be described simultaneously by ordinary Einstein gravity interacting with a single scalar field provided the scalar field Lagrangian couples in a symmetric fashion to two different spacetime volume-forms (covariant integration measure densities) on the spacetime manifold - one standard Riemannian given by the square-root of the determinant of the pertinent Riemannian metric and another non-Riemannian volume-form independent of the Riemannian metric, defined in terms of an auxiliary antisymmetric tensor gauge field of maximal rank. Integration of the equations of motion of the latter auxiliary gauge field produce an a priori arbitrary integration constant that plays the role of a dynamically generated cosmological constant or dark energy. Moreover, the above modified scalar field action turns out to possess a hidden Noether symmetry whose associated conserved current describes a pressureless "dust" fluid which we can identify with the dark matter completely decouple...

  5. Ultra high energy photons as probes of Lorentz symmetry violations in stringy space-time foam models

    Energy Technology Data Exchange (ETDEWEB)

    Maccione, Luca [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Liberati, Stefano [SISSA, Trieste (Italy); INFN, Trieste (Italy); Sigl, Guenter [Hamburg Univ. (Germany). Inst. fuer Theoretische Physik

    2010-03-15

    The time delays between gamma-rays of different energies from extragalactic sources have often been used to probe quantum gravity models in which Lorentz symmetry is violated. It has been claimed that these time delays can be explained by or at least put the strongest available constraints on quantum gravity scenarios that cannot be cast within an effective field theory framework, such as the space-time foam, D-brane model. Here we show that this model would predict too many photons in the ultra-high energy cosmic ray flux to be consistent with observations. The resulting constraints on the space-time foam model are much stronger than limits from time delays and allow for Lorentz violations effects way too small for explaining the observed time delays. (orig.)

  6. On double-degenerate type Ia supernova progenitors as supersoft X-ray sources. A population synthesis analysis using SeBa

    Science.gov (United States)

    Nielsen, M. T. B.; Nelemans, G.; Voss, R.; Toonen, S.

    2014-03-01

    Context. The nature of the progenitors of type Ia supernova progenitors remains unclear. While it is usually agreed that single-degenerate progenitor systems would be luminous supersoft X-ray sources, it was recently suggested that double-degenerate progenitors might also go through a supersoft X-ray phase. Aims: We aim to examine the possibility of double-degenerate progenitor systems being supersoft X-ray systems, and place stringent upper limits on the maximally possible durations of any supersoft X-ray source phases and expected number of these systems in a galactic population. Methods: We employ the binary population synthesis code SeBa to examine the mass-transfer characteristics of a possible supersoft X-ray phase of double-degenerate type Ia supernova progenitor systems for 1) the standard SeBa assumptions; and 2) an optimistic best-case scenario. The latter case establishes firm upper limits on the possible population of supersoft source double-degenerate type Ia supernova progenitor systems. Results: Our results indicate that unlike what is expected for single-degenerate progenitor systems, the vast majority of the material accreted by either pure wind mass transfer or a combination of wind and RLOF mass transfer is helium rather than hydrogen. Even with extremely optimistic assumptions concerning the mass-transfer and retention efficiencies, the average mass accreted by systems that eventually become double-degenerate type Ia supernovae is small. Consequently, the lengths of time that these systems may be supersoft X-ray sources are short, even under optimal conditions, and the expected number of such systems in a galactic population is negligible. Conclusions: The population of double-degenerate type Ia supernova progenitors that are supersoft X-ray sources is at least an order of magnitude smaller than the population of single-degenerate progenitors expected to be supersoft X-ray sources, and the supersoft X-ray behaviour of double-degenerate systems

  7. Experimental effects of dynamics and thermodynamics in nuclear reactions on the symmetry energy as seen by the CHIMERA 4 π detector

    Energy Technology Data Exchange (ETDEWEB)

    De Filippo, E.; Pagano, A. [INFN, Catania (Italy)

    2014-02-15

    Heavy-ion collisions have been widely used in the last decade to constrain the parameterizations of the symmetry energy term of the nuclear equation of state (EOS) for asymmetric nuclear matter as a function of baryonic density. In the Fermi energy domain one is faced with variations of the density within a narrow range of values around the saturation density ρ{sub 0}=0.16 fm{sup -3} down towards sub-saturation densities. The experimental observables which are sensitive to the symmetry energy are constructed starting from the detected light particles, clusters and heavy fragments that, in heavy-ion collisions, are generally produced by different emission mechanisms at different stages and time scales of the reaction. In this review the effects of dynamics and thermodynamics on the symmetry energy in nuclear reactions are discussed and characterized using an overview of the data taken so far with the CHIMERA multi detector array. (orig.)

  8. Reconstructed primary fragments and symmetry energy, temperature and density of the fragmenting source in {sup 64}Zn+{sup 112}Sn at 40 MeV/nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X., E-mail: liuxingquan@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Lin, W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wada, R., E-mail: wada@comp.tamu.edu [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); Huang, M. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); Ren, P. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Chen, Z.; Wang, J.; Xiao, G.Q. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); Zhang, S. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Han, R.; Liu, J.; Shi, F. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); Rodrigues, M.R.D. [Instituto de Física, Universidade de São Paulo, Caixa Postal 66318, CEP 05389-970, São Paulo, SP (Brazil); Kowalski, S. [Institute of Physics, Silesia University, Katowice (Poland); Keutgen, T. [FNRS and IPN, Université Catholique de Louvain, B-1348 Louvain-Neuve (Belgium); Hagel, K.; Barbui, M. [Cyclotron Institute, Texas A and M University, College Station, TX 77843 (United States); Bonasera, A. [Cyclotron Institute, Texas A and M University, College Station, TX 77843 (United States); Laboratori Nazionali del Sud, INFN, via Santa Sofia, 62, 95123 Catania (Italy); Natowitz, J.B. [Cyclotron Institute, Texas A and M University, College Station, TX 77843 (United States); and others

    2015-01-15

    Symmetry energy, temperature and density at the time of the intermediate mass fragment formation are determined in a self-consistent manner, using the experimentally reconstructed primary hot isotope yields and anti-symmetrized molecular dynamics (AMD) simulations. The yields of primary hot fragments are experimentally reconstructed for multifragmentation events in the reaction system {sup 64}Zn+{sup 112}Sn at 40 MeV/nucleon. Using the reconstructed hot isotope yields and an improved method, based on the modified Fisher model, symmetry energy values relative to the apparent temperature, a{sub sym}/T, are extracted. The extracted values are compared with those of the AMD simulations, extracted in the same way as those for the experiment, with the Gogny interaction with three different density-dependent symmetry energy terms. The a{sub sym}/T values change according to the density-dependent symmetry energy terms used. Using this relation, the density of the fragmenting system is extracted first. Then symmetry energy and apparent temperature are determined in a self consistent manner in the AMD model simulations. Comparing the calculated a{sub sym}/T values and those of the experimental values from the reconstructed yields, ρ/ρ{sub 0}=0.65±0.02, a{sub sym}=23.1±0.6 MeV and T=5.0±0.4 MeV are evaluated for the fragmenting system experimentally observed in the reaction studied.

  9. The optical counterpart of the supersoft X-ray source r3-8 in M31

    Science.gov (United States)

    Orio, M.; Luna, G. J. M.; Kotulla, R.; Gallagher, J. S. G.

    2015-10-01

    On behalf of a larger collaboration we announce that we have obtained spectra of the M31 supersoft X-ray source defined as r3-8 in the Chandra catalogs (see Chiosi et al. 2014, MNRAS 443, 1821, and references therein) using GMOS and the B600 grating at Gemini North, in the 4150-7100 Angstrom range, on 2015/9/9.

  10. Quantifying Correlations Between Isovector Observables and the Density Dependence of Nuclear Symmetry Energy away from Saturation Density

    CERN Document Server

    Fattoyev, F J; Li, Bao-An

    2014-01-01

    According to the Hugenholtz-Van Hove theorem, the nuclear symmetry energy $S(\\rho)$ and its slope $L(\\rho)$ at arbitrary densities can be decomposed in terms of the density and momentum dependence of the single-nucleon potentials in isospin-asymmetric nuclear matter which are potentially accessible to experiment. We quantify the correlations between several well-known isovector observables and $L(\\rho)$ to locate the density range in which each isovector observable is most sensitive to the density dependence of the $S(\\rho)$. We then study the correlation coefficients between those isovector observables and all the components of the $L(\\rho)$. The neutron skin thickness of $^{208}$Pb is found to be strongly correlated with the $L(\\rho)$ at a subsaturation density of $\\rho = 0.59 \\rho_0$ through the density dependence of the first-order symmetry potential. Neutron star radii are found to be strongly correlated with the $L(\\rho)$ over a wide range of supra-saturation densities mainly through both the density an...

  11. Einstein's physical strategy, energy conservation, symmetries, and stability: "But Grossmann & I believed that the conservation laws were not satisfied"

    Science.gov (United States)

    Pitts, J. Brian

    2016-05-01

    Recent work on the history of General Relativity by Renn et al. shows that Einstein found his field equations partly by a physical strategy including the Newtonian limit, the electromagnetic analogy, and energy conservation. Such themes are similar to those later used by particle physicists. How do Einstein's physical strategy and the particle physics derivations compare? What energy-momentum complex(es) did he use and why? Did Einstein tie conservation to symmetries, and if so, to which? How did his work relate to emerging knowledge (1911-1914) of the canonical energy-momentum tensor and its translation-induced conservation? After initially using energy-momentum tensors hand-crafted from the gravitational field equations, Einstein used an identity from his assumed linear coordinate covariance xμ‧ = Mνμ xν to relate it to the canonical tensor. Usually he avoided using matter Euler-Lagrange equations and so was not well positioned to use or reinvent the Herglotz-Mie-Born understanding that the canonical tensor was conserved due to translation symmetries, a result with roots in Lagrange, Hamilton and Jacobi. Whereas Mie and Born were concerned about the canonical tensor's asymmetry, Einstein did not need to worry because his Entwurf Lagrangian is modeled not so much on Maxwell's theory (which avoids negative-energies but gets an asymmetric canonical tensor as a result) as on a scalar theory (the Newtonian limit). Einstein's theory thus has a symmetric canonical energy-momentum tensor. But as a result, it also has 3 negative-energy field degrees of freedom (later called "ghosts" in particle physics). Thus the Entwurf theory fails a 1920s-1930s a priori particle physics stability test with antecedents in Lagrange's and Dirichlet's stability work; one might anticipate possible gravitational instability. This critique of the Entwurf theory can be compared with Einstein's 1915 critique of his Entwurf theory for not admitting rotating coordinates and not getting

  12. The role of symmetry in the theory of inelastic high-energy electron scattering and its application to atomic-resolution core-loss imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, C., E-mail: c.dwyer@fz-juelich.de [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Jülich D-52425 (Germany); Peter Grünberg Institute, Forschungszentrum Jülich, Jülich D-52425 (Germany)

    2015-04-15

    The inelastic scattering of a high-energy electron in a solid constitutes a bipartite quantum system with an intrinsically large number of excitations, posing a considerable challenge for theorists. It is demonstrated how and why the utilization of symmetries, or approximate symmetries, can lead to significant improvements in both the description of the scattering physics and the efficiency of numerical computations. These ideas are explored thoroughly for the case of core-loss excitations, where it is shown that the coupled angular momentum basis leads to dramatic improvements over the bases employed in previous work. The resulting gains in efficiency are demonstrated explicitly for K-, L- and M-shell excitations, including such excitations in the context of atomic-resolution imaging in the scanning transmission electron microscope. The utilization of other symmetries is also discussed. - Highlights: • It is explained how and why symmetry improves the efficiency of inelastic scattering calculations in general. • This includes approximate symmetries, which are often easier to specify. • Specific examples are given for core-loss scattering in STEM. • The utilization of approximate symmetries associated with ELNES, the detector geometry, and the energy loss are also discussed.

  13. Mean-field study of hot beta-stable protoneutron star matter: Impact of the symmetry energy and nucleon effective mass

    CERN Document Server

    Tan, Ngo Hai; Khoa, Dao T; Margueron, Jerome

    2016-01-01

    A consistent Hartree-Fock study of the equation of state (EOS) of asymmetric nuclear matter at finite temperature has been performed using realistic choices of the effective, density dependent nucleon-nucleon (NN) interaction, which were successfully used in different nuclear structure and reaction studies. Given the importance of the nuclear symmetry energy in the neutron star formation, EOS's associated with different behaviors of the symmetry energy were used to study hot asymmetric nuclear matter. The slope of the symmetry energy and nucleon effective mass with increasing baryon density was found to affect the thermal properties of nuclear matter significantly. Different density dependent NN interactions were further used to study the EOS of hot protoneutron star (PNS) matter of the $npe\\mu\

  14. Constraints on the Neutron Skin and the Symmetry Energy from the Anti-analog Giant Dipole Resonance in 208Pb

    CERN Document Server

    Cao, L G; Colo', G; Sagawa, H

    2015-01-01

    We investigate the impact of the neutron-skin thickness Delta(R) on the energy difference between the anti-analog giant dipole resonance (AGDR), E(AGDR), and the isobaric analog state (IAS), E(IAS), in a heavy nucleus such as 208Pb. For guidance, we first develop a simple and analytic, yet physical, approach based on the Droplet Model that linearly connects the energy difference E(AGDR)-E(IAS) with Delta(R). To test this correlation on more fundamental grounds, we employ a family of systematically varied Skyrme energy density functionals where variations on the value of the symmetry energy at saturation density J are explored. The calculations have been performed within the fully self consistent Hartree-Fock (HF) plus charge-exchange random phase approximation (RPA) framework. We confirm the linear correlation within our microscopic apporach and, by comparing our results with available experimental data in 208Pb, we find that our analysis is consistent with Delta(R) = 0.204 \\pm 0.009 fm, J = 31.4 \\pm 0.5 MeV ...

  15. Coulomb energy difference as a probe of isospin-symmetry breaking in the upper fp-shell nuclei

    CERN Document Server

    Kaneko, K; Sun, Y; Tazaki, S; de Angelis, G

    2012-01-01

    The anomaly in Coulomb energy differences (CED) between the isospin T=1 states in the odd-odd N=Z nucleus 70Br and the analogue states in its even-even partner 70Se has remained a puzzle. This is a direct manifestation of isospin-symmetry breaking in effective nuclear interactions. Here, we perform large-scale shell-model calculations for nuclei with A=66-78 using the new filter diagonalization method based on the Sakurai-Sugiura algorithm. The calculations reproduce well the experimental CED. The observed negative CED for A=70 are accounted for by the cross-shell neutron excitations from the fp-shell to the g9/2 intruder orbit with the enhanced electromagnetic spin-orbit contribution at this special nucleon number.

  16. High-energy zero-norm states and symmetries of string theory.

    Science.gov (United States)

    Chan, Chuan-Tsung; Ho, Pei-Ming; Lee, Jen-Chi; Teraguchi, Shunsuke; Yang, Yi

    2006-05-05

    High-energy limit of zero-norm states in the old covariant first quantized spectrum of the 26D open bosonic string, together with the assumption of a smooth behavior of string theory in this limit, are used to derive infinitely many linear relations among the leading high-energy, fixed-angle behavior of four-point functions of different string states. As a result, ratios among all high-energy scattering amplitudes of four arbitrary string states can be calculated algebraically and the leading order amplitudes can be expressed in terms of that of four tachyons as conjectured by Gross in 1988. A dual calculation can also be performed and equivalent results are obtained by taking the high-energy limit of Virasoro constraints. Finally, we compute all high-energy scattering amplitudes of three tachyons and one massive state at the leading order by saddle-point approximation to verify our results.

  17. Duality and self-duality of action in classical and quantum mechanics. Energy spectrum reflection symmetry of quasi-exactly solvable models, revisited

    CERN Document Server

    Kreshchuk, Michael

    2016-01-01

    The phenomenon of duality reflects a link between the behaviour of a system in different regimes. The goal of this work is to expose the classical origins of such links, and to demonstrate how they come to life in some quasi-exactly solvable problems of quantum mechanics. By studying the global properties of the Riemannian surface of the classical momentum, we reveal that the abbreviated classical action possesses a symmetry which holds also at the quantum level and underlies the energy reflection symmetry of the quantum energy levels.

  18. Control of Electronic Symmetry and Rectification through Energy Level Variations in Bilayer Molecular Junctions.

    Science.gov (United States)

    Bayat, Akhtar; Lacroix, Jean-Christophe; McCreery, Richard L

    2016-09-21

    Two layers of molecular oligomers were deposited on flat carbon electrode surfaces by electrochemical reduction of diazonium reagents, then a top contact applied to complete a solid-state molecular junction containing a molecular bilayer. The structures and energy levels of the molecular layers included donor molecules with relatively high energy occupied orbitals and acceptors with low energy unoccupied orbitals. When the energy levels of the two molecular layers were similar, the device had electronic characteristics similar to a thick layer of a single molecule, but if the energy levels differed, the current voltage behavior exhibited pronounced rectification. Higher current was observed when the acceptor molecule was biased negatively in eight different bilayer combinations, and the direction of rectification was reversed if the molecular layers were also reversed. Rectification persisted at very low temperature (7 K), and was activationless between 7 and 100 K. The results are a clear example of a "molecular signature" in which electronic behavior is directly affected by molecular structure and orbital energies. The rectification mechanism is discussed, and may provide a basis for rational design of electronic properties by variation of molecular structure.

  19. Swift detection of the super-swift switch-on of the super-soft phase in nova V745 Sco (2014)

    CERN Document Server

    Page, K L; Kuin, N P M; Henze, M; Walter, F M; Beardmore, A P; Bode, M F; Darnley, M J; Delgado, L; Drake, J J; Hernanz, M; Mukai, K; Nelson, T; Ness, J -U; Schwarz, G J; Shore, S N; Starrfield, S; Woodward, C E

    2015-01-01

    V745 Sco is a recurrent nova, with the most recent eruption occurring in February 2014. V745 Sco was first observed by Swift a mere 3.7 hr after the announcement of the optical discovery, with the super-soft X-ray emission being detected around four days later and lasting for only ~two days, making it both the fastest follow-up of a nova by Swift and the earliest switch-on of super-soft emission yet detected. Such an early switch-on time suggests a combination of a very high velocity outflow and low ejected mass and, together with the high effective temperature reached by the super-soft emission, a high mass white dwarf (>1.3 M_sun). The X-ray spectral evolution was followed from an early epoch where shocked emission was evident, through the entirety of the super-soft phase, showing evolving column density, emission lines, absorption edges and thermal continuum temperature. UV grism data were also obtained throughout the super-soft interval, with the spectra showing mainly emission lines from lower ionization...

  20. Chemical Assignment of Symmetry-Adapted Perturbation Theory Interaction Energy Components: The Functional-Group SAPT Partition.

    Science.gov (United States)

    Parrish, Robert M; Parker, Trent M; Sherrill, C David

    2014-10-14

    Recently, we introduced an effective atom-pairwise partition of the many-body symmetry-adapted perturbation theory (SAPT) interaction energy decomposition, producing a method known as atomic SAPT (A-SAPT) [Parrish, R. M.; Sherrill, C. D. J. Chem. Phys. 2014, 141, 044115]. A-SAPT provides ab initio atom-pair potentials for force field development and also automatic visualizations of the spatial contributions of noncovalent interactions, but often has difficulty producing chemically useful partitions of the electrostatic energy, due to the buildup of oscillating partial charges on adjacent functional groups. In this work, we substitute chemical functional groups in place of atoms as the relevant local quasiparticles in the partition, resulting in a functional-group-pairwise partition denoted as functional-group SAPT (F-SAPT). F-SAPT assigns integral sets of local occupied electronic orbitals and protons to chemical functional groups and linking σ bonds. Link-bond contributions can be further assigned to chemical functional groups to simplify the analysis. This approach yields a SAPT partition between pairs of functional groups with integral charge (usually neutral), preventing oscillations in the electrostatic partition. F-SAPT qualitatively matches chemical intuition and the cut-and-cap fragmentation technique but additionally yields the quantitative many-body SAPT interaction energy. The conceptual simplicity, chemical utility, and computational efficiency of F-SAPT is demonstrated in the context of phenol dimer, proflavine(+)-DNA intercalation, and a cucurbituril host-guest inclusion complex.

  1. Nuclear breathing mode in neutron-rich Nickel isotopes: sensitivity to the symmetry energy and the role of the continuum

    CERN Document Server

    Piekarewicz, J

    2014-01-01

    In this new era of radioactive beam facilities, the discovery of novel modes of excitation in nuclei far away from stability represents an area of intense research activity. In addition, these modes of excitation appear to be sensitive to the uncertain density dependence of the symmetry energy. We study the emergence, evolution, and nature of both the soft and giant isoscalar monopole modes as a function of neutron excess in three unstable Nickel isotopes: 56Ni, 68Ni, and 78Ni. The distribution of isoscalar monopole strength is computed in a relativistic random-phase approximation using several accurately calibrated effective interactions. In particular, a non-spectral Green's function approach is adopted that allows for an exact treatment of the continuum without any reliance on discretization. The discretization of the continuum is neither required nor admitted. In the case of 56Ni, the lack of low-energy strength results in a direct correlation between the centroid energy of the giant monopole resonance an...

  2. Ubiquitous symmetries

    Science.gov (United States)

    Nucci, M. C.

    2016-09-01

    We review some of our recent work devoted to the problem of quantization with preservation of Noether symmetries, finding hidden linearity in superintegrable systems, and showing that nonlocal symmetries are in fact local. In particular, we derive the Schrödinger equation for the isochronous Calogero goldfish model using its relation to Darwin equation. We prove the linearity of a classical superintegrable system on a plane of nonconstant curvature. We find the Lie point symmetries that correspond to the nonlocal symmetries (also reinterpreted as λ-symmetries) of the Riccati chain.

  3. Studies of Supersoft X-ray Sources (SSS) and Quasisoft X-ray Sources (QSS) in the Milky Way and Magellanic Clouds

    Science.gov (United States)

    Pun, Chun-Shing J.; Li, K.; Kong, A. K. H.; DiStefano, R.

    2010-03-01

    Quasisoft X-ray sources (QSSs) are luminous (L > 1036 erg s-1, kT between 120eV and 350eV) X-ray sources emitting few or no photons at energy above 2 keV yet clearly emitting at above 1.1 keV. While their spectra are harder than luminous supersoft X-ray sources (SSSs), which have characteristic temperatures of tens of eV, QSSs are significantly softer than most canonical X-ray sources. They have been identified in elliptical galaxies, spiral galaxies (in both spiral arms and halos), and globular clusters. We report here on the progress of a comprehensive and systematic search of SSSs and QSSs in the Milky Way and in the Magellanic Clouds using archival X-ray data. Our focus is to conduct an optimized search to identify all candidates in order to differentiate between the different natures of SSSs and QSSs. The candidates collected would be checked for counterparts in other wavelengths, which could possibly help us to determine the fundamental nature of these sources, including the properties, if present, of the accretors and the accretion disks. This work is supported by a Hong Kong SAR Research Grants Council General Research Fund and by a NASA ADP grant.

  4. Symmetry, vibrational energy redistribution and vibronic coupling: The internal conversion processes of cycloketones

    DEFF Research Database (Denmark)

    Kuhlman, Thomas Scheby; Sauer, Stephan P.A.; Sølling, Theis I.

    2012-01-01

    In this paper, we discern two basic mechanisms of internal conversion processes; one direct, where immediate activation of coupling modes leads to fast population transfer and one indirect, where internal vibrational energy redistribution leads to equidistribution of energy, i.e., ergodicity......, and slower population transfer follows. Using model vibronic coupling Hamiltonians parameterized on the basis of coupled-cluster calculations, we investigate the nature of the Rydberg to valence excited-state internal conversion in two cycloketones, cyclobutanone and cyclopentanone. The two basic mechanisms...... can amply explain the significantly different time scales for this process in the two molecules, a difference which has also been reported in recent experimental findings [T. S. Kuhlman, T. I. Sølling, and K. B. Møller, ChemPhysChem. 13, 820 (2012)]...

  5. Lorentz symmetry violating low energy dispersion relations from a dimension-five photon scalar mixing operator

    CERN Document Server

    Ganguly, Avijit K

    2016-01-01

    Dimension-five photon $(\\gamma )$ scalar $(\\phi)$ interaction terms usually appear in the bosonic sector of unified theories of electromagnetism and gravity. In these theories the three propagation eigenstates are different from the three field eigenstates. The dispersion relation in an external magnetic field shows that, for a non- zero energy $(\\omega)$, out of the three propagating eigenstates one has superluminal phase velocity $v_p$. During propagation, another eigenstate undergoes amplification or attenuation, showing signs of an unstable system. The remaining one maintains causality. In this paper, using techniques from optics as well as gravity, we identify the energy $(\\omega)$ interval outside which $v_p \\le c$ for the field eigenstates $|\\gamma_{\\parallel} > $ and $ |\\phi > $, and stability of the system is restored. The behavior of group velocity $v_g$ is also explored in the same context. We conclude by pointing out its possible astrophysical implications.

  6. Tetrahedral symmetry in Zr nuclei: Calculations of low-energy excitations with Gogny interaction

    CERN Document Server

    Tagami, Shingo; Dudek, Jerzy

    2014-01-01

    We report on the results of the calculations of the low energy excitation patterns for three Zirconium isotopes, viz. $^{80}$Zr$_{40}$, $^{96}$Zr$_{56}$ and $^{110}$Zr$_{70}$, reported by other authors to be doubly-magic tetrahedral nuclei (with tetrahedral magic numbers $Z$=40 and $N$=40, 56 and 70). We employ the realistic Gogny effective interactions using three variants of their parametrisation and the particle-number, parity and the angular-momentum projection techniques. We confirm quantitatively that the resulting spectra directly follow the pattern expected from the group theory considerations for the tetrahedral symmetric quantum objects. We also find out that, for all the nuclei studied, the correlation energy obtained after the angular momentum projection is very large for the tetrahedral deformation as well as other octupole deformations. The lowering of the energies of the resulting configurations is considerable, i.e. by about 10 MeV or even more, once again confirming the significance of the an...

  7. Results of the ASY-EOS experiment at GSI: The symmetry energy at supra-saturation density

    CERN Document Server

    Russotto, P; Kupny, S; Lasko, P; Acosta, L; Adamczyk, M; Al-Ajlan, A; Al-Garawi, M; Al-Homaidhi, S; Amorini, F; Auditore, L; Aumann, T; Ayyad, Y; Basrak, Z; Benlliure, J; Boisjoli, M; Boretzky, K; Brzychczyk, J; Budzanowski, A; Caesar, C; Cardella, G; Cammarata, P; Chajecki, Z; Chartier, M; Chbihi, A; Colonna, M; Cozma, M D; Czech, B; De Filippo, E; Di Toro, M; Famiano, M; Gašparić, I; Grassi, L; Guazzoni, C; Guazzoni, P; Heil, M; Heilborn, L; Introzzi, R; Isobe, T; Kezzar, K; Kiš, M; Krasznahorkay, A; Kurz, N; La Guidara, E; Lanzalone, G; Fèvre, A Le; Leifels, Y; Lemmon, R C; Li, Q F; Lombardo, I; Lukasik, J; Lynch, W G; Marini, P; Matthews, Z; May, L; Minniti, T; Mostazo, M; Pagano, A; Pagano, E V; Papa, M; Pawlowski, P; Pirrone, S; Politi, G; Porto, F; Reviol, W; Riccio, F; Rizzo, F; Rosato, E; Rossi, D; Santoro, S; Sarantites, D G; Simon, H; Skwirczynska, I; Sosin, Z; Stuhl, L; Trautmann, W; Trifirò, A; Trimarchi, M; Tsang, M B; Verde, G; Veselsky, M; Vigilante, M; Wang, Yongjia; Wieloch, A; Wigg, P; Winkelbauer, J; Wolter, H H; Wu, P; Yennello, S; Zambon, P; Zetta, L; Zoric, M

    2016-01-01

    Directed and elliptic flows of neutrons and light charged particles were measured for the reaction 197Au+197Au at 400 MeV/nucleon incident energy within the ASY-EOS experimental campaign at the GSI laboratory. The detection system consisted of the Large Area Neutron Detector LAND, combined with parts of the CHIMERA multidetector, of the ALADIN Time-of-flight Wall, and of the Washington-University Microball detector. The latter three arrays were used for the event characterization and reaction-plane reconstruction. In addition, an array of triple telescopes, KRATTA, was used for complementary measurements of the isotopic composition and flows of light charged particles. From the comparison of the elliptic flow ratio of neutrons with respect to charged particles with UrQMD predictions, a value \\gamma = 0.72 \\pm 0.19 is obtained for the power-law coefficient describing the density dependence of the potential part in the parametrization of the symmetry energy. It represents a new and more stringent constraint for...

  8. Energy level statistics in the transition regime between integrability and chaos for systems with broken antiunitary symmetry

    CERN Document Server

    Robnik, M; Prosen, T; Robnik, Marko; Dobnikar, Jure; Prosen, Tomaz

    1999-01-01

    Energy spectra of a particle with mass $m$ and charge $e$ in the cubic Aharonov-Bohm billiard containing around $10^4$ consecutive levels starting from the ground state have been analysed. The cubic Aharonov-Bohm billiard is a plane billiard defined by the cubic conformal mapping of the unit disc pervaded by a point magnetic flux through the origin perpendicular to the plane of the billiard. The magnetic flux does not influence the classical dynamics, but breaks the antiunitary symmetry in the system, which affects the statistics of energy levels. By varying the shape parameter $\\lam$ the classical dynamics goes from integrable ($\\lam =0$) to fully chaotic ($\\lam = 0.2$; Africa billiard). The level spacing distribution $P(S)$ and the number variance interval ($0\\le\\lam\\le0.2$). GUE statistics has proven correct for completely chaotic case, while in the mixed regime the fractional power law level repulsion has been observed. The exponent of the level repulsion has been analysed and is found to change smoothly ...

  9. Multiwavelength search for counterparts of supersoft X-ray sources in M31

    CERN Document Server

    Chiosi, E; Bernardini, F; Henze, M; Jamialiahmadi, N

    2014-01-01

    We searched optical/UV/IR counterparts of seven supersoft X-ray sources (SSS) in M31 in the Hubble Space Telescope (HST) "Panchromatic Hubble Andromeda Treasury" (PHAT) archival images and photometric catalog. Three of the SSS were transient, the other four are persistent sources. The PHAT offers the opportunity to identify SSS hosting very massive white dwarfs that may explode as type Ia supernovae in single degenerate binaries, with magnitudes and color indexes typical of symbiotic stars, high mass close binaries, or systems with optically luminous accretion disks. We find evidence that the transient SSS were classical or recurrent novae; two likely counterparts we identified are probably symbiotic binaries undergoing mass transfer at a very high rate. There is a candidate accreting white dwarf binary in the error circle of one of the persistent sources, r3-8. In the spatial error circle of the best studied SSS in M31, r2-12, no red giants or AGB stars are sufficiently luminous in the optical and UV bands t...

  10. Revisiting the ultraluminous supersoft source in M101: an optically thick outflow model

    CERN Document Server

    Soria, Roberto

    2015-01-01

    The M101 galaxy contains the best-known example of an ultraluminous supersoft source (ULS), dominated by a thermal component at kT ~ 0.1 keV. The origin of the thermal component and the relation between ULSs and standard (broad-band spectrum) ultraluminous X-ray sources (ULXs) are still controversial. We re-examined the X-ray spectral and timing properties of the M101 ULS using archival Chandra and XMM-Newton observations. We show that the X-ray time-variability and spectral properties are inconsistent with standard disk emission. The characteristic radius R_{bb} of the thermal emitter varies from epoch to epoch between ~10,000 km and ~100,000 km; the colour temperature kT_{bb} varies between ~50 eV and ~140 eV; and the two quantities scale approximately as R_{bb} ~ T_{bb}^{-2}. In addition to the smooth continuum, we also find (at some epochs) spectral residuals well fitted with thermal plasma models and absorption edges: we interpret this as evidence that we are looking at a clumpy, multi-temperature outflo...

  11. Where are all of the nebulae ionized by supersoft X-ray sources?

    CERN Document Server

    Woods, T E

    2015-01-01

    Accreting, steadily nuclear-burning white dwarfs are associated with so-called close-binary supersoft X-ray sources (SSSs), observed to have temperatures of a few$\\times 10^{5}$K and luminosities on the order of $10^{38}$erg/s. These and other types of SSSs are expected to be capable of ionizing their surrounding circumstellar medium, however, to date only one such nebula was detected in the Large Magellanic Cloud (of its 6 known close-binary SSSs), surrounding the accreting, nuclear-burning WD CAL 83. This has led to the conclusion that most SSSs cannot have been both luminous ($\\gtrsim 10^{37}$erg/s) and hot ($\\gtrsim$ few $\\times 10^{4}$K) for the majority of their past accretion history, unless the density of the ISM surrounding most sources is much less than that inferred for the CAL 83 nebula (4--10$\\rm{cm}^{-3}$). Here we demonstrate that most SSSs must lie in much lower density media than CAL 83. Past efforts to detect such nebulae have not accounted for the structure of the ISM in star-forming galaxi...

  12. Quasilocal variables in spherical symmetry: Numerical applications to dark matter and dark energy sources

    Science.gov (United States)

    Sussman, Roberto A.

    2009-01-01

    A numerical approach is considered for spherically symmetric spacetimes that generalize Lemaître Tolman Bondi dust solutions to nonzero pressure (“LTB spacetimes”). We introduce quasilocal (QL) variables that are covariant LTB objects satisfying evolution equations of Friedman Lemaître Robertson Walker (FLRW) cosmologies. We prove rigorously that relative deviations of the local covariant scalars from the QL scalars are nonlinear, gauge invariant and covariant perturbations on a FLRW formal background given by the QL scalars. The dynamics of LTB spacetimes is completely determined by the QL scalars and these exact perturbations. Since LTB spacetimes are compatible with a wide variety of “equations of state,” either single fluids or mixtures, a large number of known solutions with dark matter and dark energy sources in a FLRW framework (or with linear perturbations) can be readily examined under idealized but nontrivial inhomogeneous conditions. Coordinate choices and initial conditions are derived for a numerical treatment of the perturbation equations, allowing us to study nonlinear effects in a variety of phenomena, such as gravitational collapse, nonlocal effects, void formation, dark matter and dark energy couplings, and particle creation. In particular, the embedding of inhomogeneous regions can be performed by a smooth matching with a suitable FLRW solution, thus generalizing the Newtonian “top hat” models that are widely used in astrophysical literature. As examples of the application of the formalism, we examine numerically the formation of a black hole in an expanding Chaplygin gas FLRW universe, as well as the evolution of density clumps and voids in an interactive mixture of cold dark matter and dark energy.

  13. Conservation of energy-momentum tensor in fermionic superfluid phase: Effects of U(1) broken symmetry

    Science.gov (United States)

    He, Yan; Guo, Hao

    2016-07-01

    Respecting the conservation laws of momentum and energy in a many body theory is very important for understanding the transport phenomena. The previous conserving approximation requires that the self-energy of a single particle could be written as a functional derivative of a full dressed Green's function. This condition can not be satisfied in the G0 G t-matrix or pair fluctuation theory which emphasizes the fermion pairing with a stronger than the Bardeen-Cooper-Schrieffer (BCS) attraction. In the previous work [1], we have shown that when the temperature is above the superfluid transition temperature Tc, the G0 G t-matrix theory can be put into a form that satisfies the stress tensor Ward identity (WI) or local form of conservation laws by introducing a new type of vertex correction. In this paper, we will extend the above conservation approximation to the superfluid phase in the BCS mean field level. To establish the stress tensor WI, we have to include the fluctuation of the order parameter or the contribution from the Goldstone mode. The result will be useful for understanding the transport properties such as the behavior of the viscosity of Fermionic gases in the superfluid phases.

  14. The role of symmetry in the theory of inelastic high-energy electron scattering and its application to atomic-resolution core-loss imaging.

    Science.gov (United States)

    Dwyer, C

    2015-04-01

    The inelastic scattering of a high-energy electron in a solid constitutes a bipartite quantum system with an intrinsically large number of excitations, posing a considerable challenge for theorists. It is demonstrated how and why the utilization of symmetries, or approximate symmetries, can lead to significant improvements in both the description of the scattering physics and the efficiency of numerical computations. These ideas are explored thoroughly for the case of core-loss excitations, where it is shown that the coupled angular momentum basis leads to dramatic improvements over the bases employed in previous work. The resulting gains in efficiency are demonstrated explicitly for K-, L- and M-shell excitations, including such excitations in the context of atomic-resolution imaging in the scanning transmission electron microscope. The utilization of other symmetries is also discussed.

  15. Probing equilibration in HICs and symmetry energy by using isospin-related observables

    CERN Document Server

    Li Qi

    2002-01-01

    The authors have studied the equilibration with respect to isospin degree of freedom in four systems sup 9 sup 6 Ru + sup 9 sup 6 Ru, sup 9 sup 6 Ru + sup 9 sup 6 Zr, sup 9 sup 6 Zr + sup 9 sup 6 Ru, sup 9 sup 6 Zr + sup 9 sup 6 Zr at 100 MeV/u and 400 MeV/u with isospin dependent QMD. It is proposed that the neutron-proton differential rapidity distribution is a sensitive probe to the degree of equilibration with respect to the isospin degree of freedom. By analyzing the average N/Z ratio of emitted nucleons, light charged particles (LCP) and intermediate mass fragments (IMF), it is found that there exists memory effect in multifragmentation process. The average N/Z ratio of IMF reduces largely as beam energy increases from 100 MeV/u to 400 MeV/u, which may result from the change of the behavior of the isotope distribution of IMF. The isotope distribution of IMF does also show certain memory effect at 100 MeV/u case but not at 400 MeV/u case. The authors also found the rapidity distribution of differential n...

  16. The Nuclear Symmetry Energy and the Mass-Radius Relation of Neutron Stars

    Science.gov (United States)

    Lattimer, James

    2017-01-01

    The assumptions that i) neutron stars have hadronic crusts, ii) the equation of state is causal, iii) GR is the correct theory of gravity, and iv) their largest observed mass is 2 solar masses, when coupled with recent results from nuclear experiment and theoretical studies of neutron matter, generate powerful constraints on their structure. These include restriction of the radii of typical neutron stars to the range 11-13 km, as well as significant correlations among their masses, compactnesses, moments of inertia, binding energies, and tidal deformabilities. In addition, properties of quark matter, including the location and magnitude of the quark-hadron phase transition, can also be limited. The implications of recent and forthcoming experiments, such as those pertaining to the neutron skin thickness and astrophysical measurements of various structural properties is discussed. For the latter, emphasis is placed on pulsar timing, X-ray observations, supernova neutrino detections, and gravitational waves from mergers involving neutron stars. Supported in part by the US DOE grant DE-AC02-87ER40317.

  17. The cooling of the Cassiopeia A neutron star as a probe of the nuclear symmetry energy and nuclear pasta

    CERN Document Server

    Newton, William G; Hooker, Joshua; Li, Bao-An

    2013-01-01

    X-ray observations of the neutron star in the Cas A supernova remnant over the past decade suggest the star is undergoing rapid cooling, with a drop in surface temperature of $\\approx$ 2-5.5%. One of the leading explanations suggests the rapid cooling is triggered by the onset of neutron superfluidity in the core of the star, causing enhanced neutrino emission from neutron Cooper pair breaking and formation (PBF). Using consistent neutron star crust and core equations of state (EOSs) and compositions, we explore the sensitivity of this interpretation to the density dependence of the symmetry energy $L$ of the EOS used, and to the presence of enhanced neutrino cooling in the bubble phases of crustal "nuclear pasta". Using a conservative range of possible neutron star masses and envelope compositions, we find $L\\lesssim70$ MeV, competitive with constraints from terrestrial experimental constraints and other astrophysical observations. If one demands that $M\\gtrsim 1.4 M_{\\odot}$, the constraint becomes more res...

  18. THE COOLING OF THE CASSIOPEIA A NEUTRON STAR AS A PROBE OF THE NUCLEAR SYMMETRY ENERGY AND NUCLEAR PASTA

    Energy Technology Data Exchange (ETDEWEB)

    Newton, William G.; Hooker, Joshua; Li, Bao-An [Department of Physics and Astronomy, Texas A and M University-Commerce, Commerce, TX 75429-3011 (United States); Murphy, Kyleah [Umpqua Community College, Roseburg, OR 97470 (United States)

    2013-12-10

    X-ray observations of the neutron star (NS) in the Cas A supernova remnant over the past decade suggest the star is undergoing a rapid drop in surface temperature of ≈2%-5.5%. One explanation suggests the rapid cooling is triggered by the onset of neutron superfluidity in the core of the star, causing enhanced neutrino emission from neutron Cooper pair breaking and formation (PBF). Using consistent NS crust and core equations of state (EOSs) and compositions, we explore the sensitivity of this interpretation to the density dependence of the symmetry energy L of the EOS used, and to the presence of enhanced neutrino cooling in the bubble phases of crustal ''nuclear pasta''. Modeling cooling over a conservative range of NS masses and envelope compositions, we find L ≲ 70 MeV, competitive with terrestrial experimental constraints and other astrophysical observations. For masses near the most likely mass of M ≳ 1.65 M {sub ☉}, the constraint becomes more restrictive 35 ≲ L ≲ 55 MeV. The inclusion of the bubble cooling processes decreases the cooling rate of the star during the PBF phase, matching the observed rate only when L ≲ 45 MeV, taking all masses into consideration, corresponding to NS radii ≲ 11 km.

  19. Fill-level symmetry and minimization of energy states in rotating tumblers with polygonal cross-sections

    Science.gov (United States)

    Pohlman, Nicholas A.; Paprocki, Daniel F., Jr.; Si, Yun

    2012-11-01

    Typically in rotating tumblers, constant rotation rates and circular cross-sections are used as they jointly produce a steady, uniform flowing layer at the free surface. On the other hand, experiments conducted in polygon-shaped tumblers produce unsteady conditions due to the rapidly changing flowing layer length. Results analyzing free surface properties indicate that the particle dynamics within the flowing layer attempt to minimize energy of the flowing system: The arithmetic difference between the angle of repose and the tumbler orientation has a functional relationship with the instantaneous flowing layer length in the form of a catenary. The peaks of the catenary are affected by the number of sides on the polygon cross-section as well as the symmetry around the critical 50% fill fraction. Furthermore, oscillation of the flowing layer position appears to affect the free surface curvature. This result is likely due to the rapidly increasing and decreasing length of the free surface and the rotational inertia of particles entering the flowing layer. Funding provided by NIU's Office of Student Engagement and Experiential Learning.

  20. Correlations between isospin dynamics and Intermediate Mass Fragments emission time scales: a probe for the symmetry energy in asymmetric nuclear matter

    CERN Document Server

    De Filippo, E; Auditore, L; Baran, V; Berceanu, I; Cardella, G; Colonna, M; Geraci, E; Gianì, S; Grassi, L; Grzeszczuk, A; Guazzoni, P; Han, J; La Guidara, E; Lanzalone, G; Lombardo, I; Maiolino, C; Minniti, T; Pagano, A; Papa, M; Piasecki, E; Pirrone, S; Politi, G; Pop, A; Porto, F; Rizzo, F; Russotto, P; Santoro, S; Trifirò, A; Trimarchi, M; Verde, G; Vigilante, M; Wilczyński, J; Zetta, L

    2012-01-01

    We show new data from the $^{64}$Ni+$^{124}$Sn and $^{58}$Ni+$^{112}$Sn reactions studied in direct kinematics with the CHIMERA detector at INFN-LNS and compared with the reverse kinematics reactions at the same incident beam energy (35 A MeV). Analyzing the data with the method of relative velocity correlations, fragments coming from statistical decay of an excited projectile-like (PLF) or target-like (TLF) fragments are discriminated from the ones coming from dynamical emission in the early stages of the reaction. By comparing data of the reverse kinematics experiment with a stochastic mean field (SMF) + GEMINI calculations our results show that observables from neck fragmentation mechanism add valuable constraints on the density dependence of symmetry energy. An indication is found for a moderately stiff symmetry energy potential term of EOS.

  1. From ultraluminous X-ray sources to ultraluminous supersoft sources: NGC 55 ULX, the missing link

    Science.gov (United States)

    Pinto, C.; Alston, W.; Soria, R.; Middleton, M. J.; Walton, D. J.; Sutton, A. D.; Fabian, A. C.; Earnshaw, H.; Urquhart, R.; Kara, E.; Roberts, T. P.

    2017-07-01

    In recent work with high-resolution reflection grating spectrometers (RGS) aboard XMM-Newton, Pinto et al. have discovered that two bright and archetypal ultraluminous X-ray sources (ULXs) have strong relativistic winds in agreement with theoretical predictions of high accretion rates. It has been proposed that such winds can become optically thick enough to block and reprocess the disc X-ray photons almost entirely, making the source appear as a soft thermal emitter or ultraluminous supersoft X-ray source (ULS). To test this hypothesis, we have studied a ULX where the wind is strong enough to cause significant absorption of the hard X-ray continuum: NGC 55 ULX. The RGS spectrum of NGC 55 ULX shows a wealth of emission and absorption lines blueshifted by significant fractions of the light speed (0.01-0.20)c indicating the presence of a powerful wind. The wind has a complex dynamical structure with the ionization state increasing with the outflow velocity, which may indicate launching from different regions of the accretion disc. The comparison with other ULXs such as NGC 1313 X-1 and NGC 5408 X-1 suggests that NGC 55 ULX is being observed at higher inclination. The wind partly absorbs the source flux above 1 keV, generating a spectral drop similar to that observed in ULSs. The softening of the spectrum at lower (˜ Eddington) luminosities and the detection of a soft lag agree with the scenario of wind clumps crossing the line of sight, partly absorbing and reprocessing the hard X-rays from the innermost region.

  2. Mirror symmetry

    CERN Document Server

    Voisin, Claire

    1999-01-01

    This is the English translation of Professor Voisin's book reflecting the discovery of the mirror symmetry phenomenon. The first chapter is devoted to the geometry of Calabi-Yau manifolds, and the second describes, as motivation, the ideas from quantum field theory that led to the discovery of mirror symmetry. The other chapters deal with more specialized aspects of the subject: the work of Candelas, de la Ossa, Greene, and Parkes, based on the fact that under the mirror symmetry hypothesis, the variation of Hodge structure of a Calabi-Yau threefold determines the Gromov-Witten invariants of its mirror; Batyrev's construction, which exhibits the mirror symmetry phenomenon between hypersurfaces of toric Fano varieties, after a combinatorial classification of the latter; the mathematical construction of the Gromov-Witten potential, and the proof of its crucial property (that it satisfies the WDVV equation), which makes it possible to construct a flat connection underlying a variation of Hodge structure in the ...

  3. Quantum Symmetry

    CERN Document Server

    Häring, Reto Andreas

    1993-01-01

    The representations of the observable algebra of a low dimensional quantum field theory form the objects of a braided tensor category. The search for gauge symmetry in the theory amounts to finding an algebra which has the same representation category. In this paper we try to establish that every quantum field theory satisfying some basic axioms posseses a weak quasi Hopf algebra as gauge symmetry. The first step is to construct a functor from the representation category to the category of finite dimensional vector spaces. Given such a functor we can use a generalized reconstruction theorem to find the symmetry algebra. It is shown how this symmetry algebra is used to build a gauge covariant field algebra and we investigate the question why this generality is necessary.

  4. Correlation of the neutron star crust-core properties with the slope of the symmetry energy and the lead skin thickness

    CERN Document Server

    Pais, H; Agrawal, B K; Providência, C

    2016-01-01

    The correlations of the crust-core transition density and pressure in neutron stars with the slope of the symmetry energy and the neutron skin thickness are investigated, using different families of relativistic mean field parametrizations with constant couplings and non-linear terms mixing the $\\sigma$, $\\omega$ and $\\rho$-meson fields. It is shown that the modification of the density dependence of the symmetry energy, involving the $\\sigma$ or the $\\omega$ meson, gives rise to different behaviors: the effect of the $\\omega$-meson may also be reproduced within non-relativistic phenomenological models, while the effect of the $\\sigma$-meson is essentially relativistic. Depending on the parametrization with $\\sigma-\\rho$ or $\\omega-\\rho$ mixing terms, different values of the slope of the symmetry energy at saturation must be considered in order to obtain a neutron matter equation of state compatible with results from chiral effective field theory. This difference leads to different pressures at the crust-core ...

  5. Neutron-skin thickness of 208Pb, and symmetry-energy constraints from the study of the anti-analog giant dipole resonance

    CERN Document Server

    Krasznahorkay, A; Csige, L; Eriksen, T K; Giacoppo, F; Görgen, A; Hagen, T W; Harakeh, M N; Julin, R; Koehler, P; Paar, N; Siem, S; Stuhl, L; Tornyi, T; Vretenar, D

    2013-01-01

    The 208Pb(p,ngamma p)207Pb reaction at a beam energy of 30 MeV has been used to excite the anti-analog of the giant dipole resonance (AGDR) and to measure its gamma-decay of to the isobaric analog state. The energy of the transition has also been calculated with the self-consistent relativistic random-phase approximation (RRPA), and found to be linearly correlated to the predicted value of the neutron-skin thickness (DR_pn). By comparing the theoretical results with the measured transition energy, the value of 0.190 +- 0.028 fm has been determined for DR_pn of 208Pb, in agreement with previous experimental results. The AGDR excitation energy has also been used to calculate the symmetry energy at saturation (J=32.7+- 0.6 MeV) and the slope of the symmetry energy (L=49.7 +- 4.4 MeV), resulting in more stringent constraints than most of the previous studies.

  6. Energy Level Statistics of SO(5) Limit of Super-symmetry U(6/4) in Interacting Boson-Fermion Model

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    We study the energy level statistics of the SO(5) limit of super-symmetry U(6/4) in odd-A nucleus using the interacting boson-fermion model. The nearest neighbor spacing distribution (NSD) and the spectral rigidity (△3)are investigated, and the factors that affect the properties of level statistics are also discussed. The results show that the boson number N is a dominant factor. If N is small, both the interaction strengths of subgroups SOB(5) and SOBF(5)and the spin play important roles in the energy level statistics, however, along with the increase of N, the statistics distribution would tend to be in Poisson form.

  7. Electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Chanowitz, M.S.

    1990-09-01

    The Higgs mechanism is reviewed in its most general form, requiring the existence of a new symmetry-breaking force and associated particles, which need not however be Higgs bosons. The first lecture reviews the essential elements of the Higgs mechanism, which suffice to establish low energy theorems for the scattering of longitudinally polarized W and Z gauge bosons. An upper bound on the scale of the symmetry-breaking physics then follows from the low energy theorems and partial wave unitarity. The second lecture reviews particular models, with and without Higgs bosons, paying special attention to how the general features discussed in lecture 1 are realized in each model. The third lecture focuses on the experimental signals of strong WW scattering that can be observed at the SSC above 1 TeV in the WW subenergy, which will allow direct measurement of the strength of the symmetry-breaking force. 52 refs., 10 figs.

  8. Hole localization and symmetry breaking

    NARCIS (Netherlands)

    Broer, R; Nieuwpoort, W.C.

    1999-01-01

    A brief overview is presented of some theoretical work on the symmetry breaking of electronic wavefunctions that followed the early work on Bagus and Schaefer who observed that a considerable lower SCF energy could be obtained for an ionized state of the O2 molecule with a 1s hole if the symmetry re

  9. Leptogenesis and residual CP symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Peng; Ding, Gui-Jun [Department of Modern Physics, University of Science and Technology of China,Hefei, Anhui 230026 (China); King, Stephen F. [Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom)

    2016-03-31

    We discuss flavour dependent leptogenesis in the framework of lepton flavour models based on discrete flavour and CP symmetries applied to the type-I seesaw model. Working in the flavour basis, we analyse the case of two general residual CP symmetries in the neutrino sector, which corresponds to all possible semi-direct models based on a preserved Z{sub 2} in the neutrino sector, together with a CP symmetry, which constrains the PMNS matrix up to a single free parameter which may be fixed by the reactor angle. We systematically study and classify this case for all possible residual CP symmetries, and show that the R-matrix is tightly constrained up to a single free parameter, with only certain forms being consistent with successful leptogenesis, leading to possible connections between leptogenesis and PMNS parameters. The formalism is completely general in the sense that the two residual CP symmetries could result from any high energy discrete flavour theory which respects any CP symmetry. As a simple example, we apply the formalism to a high energy S{sub 4} flavour symmetry with a generalized CP symmetry, broken to two residual CP symmetries in the neutrino sector, recovering familiar results for PMNS predictions, together with new results for flavour dependent leptogenesis.

  10. Inherited Symmetry

    Science.gov (United States)

    Attanucci, Frank J.; Losse, John

    2008-01-01

    In a first calculus course, it is not unusual for students to encounter the theorems which state: If f is an even (odd) differentiable function, then its derivative is odd (even). In our paper, we prove some theorems which show how the symmetry of a continuous function f with respect to (i) the vertical line: x = a or (ii) with respect to the…

  11. UV completion without symmetry restoration

    CERN Document Server

    Endlich, Solomon; Penco, Riccardo

    2013-01-01

    We show that it is not possible to UV-complete certain low-energy effective theories with spontaneously broken space-time symmetries by embedding them into linear sigma models, that is, by adding "radial" modes and restoring the broken symmetries. When such a UV completion is not possible, one can still raise the cutoff up to arbitrarily higher energies by adding fields that transform non-linearly under the broken symmetries, that is, new Goldstone bosons. However, this (partial) UV completion does not necessarily restore any of the broken symmetries. We illustrate this point by considering a concrete example in which a combination of space-time and internal symmetries is broken down to a diagonal subgroup. Along the way, we clarify a recently proposed interpretation of inverse Higgs constraints as gauge-fixing conditions.

  12. Symmetry, Symmetry Breaking and Topology

    Directory of Open Access Journals (Sweden)

    Siddhartha Sen

    2010-07-01

    Full Text Available The ground state of a system with symmetry can be described by a group G. This symmetry group G can be discrete or continuous. Thus for a crystal G is a finite group while for the vacuum state of a grand unified theory G is a continuous Lie group. The ground state symmetry described by G can change spontaneously from G to one of its subgroups H as the external parameters of the system are modified. Such a macroscopic change of the ground state symmetry of a system from G to H correspond to a “phase transition”. Such phase transitions have been extensively studied within a framework due to Landau. A vast range of systems can be described using Landau’s approach, however there are also systems where the framework does not work. Recently there has been growing interest in looking at such non-Landau type of phase transitions. For instance there are several “quantum phase transitions” that are not of the Landau type. In this short review we first describe a refined version of Landau’s approach in which topological ideas are used together with group theory. The combined use of group theory and topological arguments allows us to determine selection rule which forbid transitions from G to certain of its subgroups. We end by making a few brief remarks about non-Landau type of phase transition.

  13. Four-fold symmetry of resistivity and flux pinning energy in Ba0.67K0.33BiO3+δ single crystal

    Science.gov (United States)

    Wu, Z. F.; Tao, J.; Xu, X. B.; Qiu, L.; Yang, S. G.; Wang, Z. H.

    2017-01-01

    Ba0.67K0.33BiO3+δ single crystal with T c ˜ 26.4 K has been prepared by the molten salt electrochemical method. We observed a four-fold symmetry in the angular dependence of ab-plane resistance R (θ) at H = 0.5 T and T = 25.5 K for the first time. The data can be scaled by R = [R 1sin2(θ + 45°) + R 2cos2(θ + 45°) - R(90°)]|sin2θ| + R(90°). Although dip structure appears in R(θ) when the angles between the magnetic field direction and c-axis are 0°, 90°, 180° and 270°, respectively, the maximal position of resistance tilted away θ = 45° and θ = 135°, namely the angle difference between two peaks is 79° or 101°. This result indicates the superconducting Ba0.67K0.33BiO3+δ single crystal is probably an orthorhombic structure with distorted Bi-O octahedron. We consider that the angular dependence of resistivity comes from the superconducting energy gap with {{{d}}{x}}2{{}-{y}}2 pairing symmetry. The flux pinning energy for θ = 90° is higher than that for θ = 135° proves the existence of the anisotropic vortex pinning effect. The field dependence of flux pinning energy displays a power law, U ∝ H -α . The irreversibility line was also discussed.

  14. Interface free-energy exponent in the one-dimensional Ising spin glass with long-range interactions in both the droplet and broken replica symmetry regions

    Science.gov (United States)

    Aspelmeier, T.; Wang, Wenlong; Moore, M. A.; Katzgraber, Helmut G.

    2016-08-01

    The one-dimensional Ising spin-glass model with power-law long-range interactions is a useful proxy model for studying spin glasses in higher space dimensions and for finding the dimension at which the spin-glass state changes from having broken replica symmetry to that of droplet behavior. To this end we have calculated the exponent that describes the difference in free energy between periodic and antiperiodic boundary conditions. Numerical work is done to support some of the assumptions made in the calculations and to determine the behavior of the interface free-energy exponent of the power law of the interactions. Our numerical results for the interface free-energy exponent are badly affected by finite-size problems.

  15. Breaking Symmetries

    Directory of Open Access Journals (Sweden)

    Kirstin Peters

    2010-11-01

    Full Text Available A well-known result by Palamidessi tells us that πmix (the π-calculus with mixed choice is more expressive than πsep (its subset with only separate choice. The proof of this result argues with their different expressive power concerning leader election in symmetric networks. Later on, Gorla offered an arguably simpler proof that, instead of leader election in symmetric networks, employed the reducibility of incestual processes (mixed choices that include both enabled senders and receivers for the same channel when running two copies in parallel. In both proofs, the role of breaking (initial symmetries is more or less apparent. In this paper, we shed more light on this role by re-proving the above result - based on a proper formalization of what it means to break symmetries without referring to another layer of the distinguishing problem domain of leader election. Both Palamidessi and Gorla rephrased their results by stating that there is no uniform and reasonable encoding from πmix into πsep. We indicate how the respective proofs can be adapted and exhibit the consequences of varying notions of uniformity and reasonableness. In each case, the ability to break initial symmetries turns out to be essential.

  16. Chiral Symmetry Restoration with a Chiral Chemical Potential: the Role of Momentum Dependent Quark Self-energy

    CERN Document Server

    Ruggieri, M

    2016-01-01

    In this article we study restoration of chiral symmetry at finite temperature for quark matter with a chiral chemical potential, $\\mu_5$, by means of a nonlocal Nambu-Jona-Lasinio model. This model allows to introduce in the simplest way possible a Euclidean momentum, $p_E$, dependent quark mass function which decays (neglecting logarithms) as $1/p_E^2$ for large $p_E$ in agreement with asymptotic behaviour expected in presence of a nonperturbative quark condensate. We show that the momentum dependence of the quark mass function, which has been neglected in all of the previous model studies, drastically affects the dependence of the critical temperature versus $\\mu_5$. We explain this in terms of a natural removal of ultraviolet modes at $T>0$ in the gap equation, as well as of the natural addition of these modes at $T=0$ which help to catalyze chiral symmetry breaking. As a result we find that within this model the critical temperature increases with $\\mu_5$.

  17. Approximate Flavor Symmetry in Supersymmetric Model

    OpenAIRE

    Tao, Zhijian

    1998-01-01

    We investigate the maximal approximate flavor symmetry in the framework of generic minimal supersymmetric standard model. We consider the low energy effective theory of the flavor physics with all the possible operators included. Spontaneous flavor symmetry breaking leads to the approximate flavor symmetry in Yukawa sector and the supersymmetry breaking sector. Fermion mass and mixing hierachies are the results of the hierachy of the flavor symmetry breaking. It is found that in this theory i...

  18. Theory of excitation energy transfer in the primary processes of photosynthesis. II. Group symmetry analysis of the bacterial light-harvesting complex

    Science.gov (United States)

    Skala, L.; Jungwirth, P.

    1989-10-01

    A group symmetry analysis of the Pauli master equation for the excitation energy transfer in the cyclic arrangement of N ( N= 6- 36) antenna Bchl molecules surrounding the bacterial reaction center of Rhodopseudomonas viridis is performed. The group theory allows to find analytic expressions for the most important observables (the antenna and reaction center fluorescence intensities and the quantum yield of the transfer to the charge transfer state) and to express their dependence on N. The time dependence of the fluorescence intensities is given by two exponentials, however, a single-exponential approximation can be used for t> t0 = 4-25 ps. The quantum yield of the excitation energy transfer to the reaction center charge transfer state is high (0.71- 0.98) for the whole range of physically acceptable values of the Förster radius R0 = 46-96 Å.

  19. Breaking Symmetries

    CERN Document Server

    Peters, Kirstin

    2010-01-01

    A well-known result by Palamidessi tells us that {\\pi}mix (the {\\pi}-calculus with mixed choice) is more expressive than {\\pi}sep (its subset with only separate choice). The proof of this result argues with their different expressive power concerning leader election in symmetric networks. Later on, Gorla of- fered an arguably simpler proof that, instead of leader election in symmetric networks, employed the reducibility of "incestual" processes (mixed choices that include both enabled senders and receivers for the same channel) when running two copies in parallel. In both proofs, the role of breaking (ini- tial) symmetries is more or less apparent. In this paper, we shed more light on this role by re-proving the above result-based on a proper formalization of what it means to break symmetries-without referring to another layer of the distinguishing problem domain of leader election. Both Palamidessi and Gorla rephrased their results by stating that there is no uniform and reason- able encoding from {\\pi}mix i...

  20. Breaking Symmetries

    CERN Document Server

    Peters, Kirstin; 10.4204/EPTCS.41.10

    2010-01-01

    A well-known result by Palamidessi tells us that \\pimix (the \\pi-calculus with mixed choice) is more expressive than \\pisep (its subset with only separate choice). The proof of this result argues with their different expressive power concerning leader election in symmetric networks. Later on, Gorla offered an arguably simpler proof that, instead of leader election in symmetric networks, employed the reducibility of incestual processes (mixed choices that include both enabled senders and receivers for the same channel) when running two copies in parallel. In both proofs, the role of breaking (initial) symmetries is more or less apparent. In this paper, we shed more light on this role by re-proving the above result - based on a proper formalization of what it means to break symmetries without referring to another layer of the distinguishing problem domain of leader election. Both Palamidessi and Gorla rephrased their results by stating that there is no uniform and reasonable encoding from \\pimix into \\pisep. We...

  1. Folding model study of the charge-exchange scattering to the isobaric analog state and implication for the nuclear symmetry energy

    Energy Technology Data Exchange (ETDEWEB)

    Khoa, Dao T.; Thang, Dang Ngoc [VINATOM, Institute for Nuclear Science and Technique, Hanoi (Viet Nam); Loc, Bui Minh [VINATOM, Institute for Nuclear Science and Technique, Hanoi (Viet Nam); University of Pedagogy, Ho Chi Minh City (Viet Nam)

    2014-02-15

    The Fermi transition (ΔL = ΔS = 0 and ΔT = 1) between the nuclear isobaric analog states (IAS), induced by the charge-exchange (p, n) or ({sup 3}He, t) reaction, can be considered as ''elastic'' scattering of proton or {sup 3}He by the isovector term of the optical potential (OP) that flips the projectile isospin. The accurately measured (p, n) or ({sup 3}He, t) scattering cross section to the IAS can be used, therefore, to probe the isospin dependence of the proton or {sup 3}He optical potential. Within the folding model, the isovector part of the OP is determined exclusively by the neutron-proton difference in the nuclear densities and the isospin dependence of the effective nucleon-nucleon (NN) interaction. Because the isovector coupling explicitly links the isovector part of the proton or {sup 3}He optical potential to the cross section of the charge-exchange (p, n) or ({sup 3}He, t) scattering to the IAS, the isospin dependence of the effective (in-medium) NN interaction can be well tested in the folding model analysis of these charge-exchange reactions. On the other hand, the same isospin- and density-dependent NN interaction can also be used in a Hartree-Fock calculation of asymmetric nuclear matter, to estimate the nuclear matter energy and its asymmetry part (the nuclear symmetry energy). As a result, the fine-tuning of the isospin dependence of the effective NN interaction against the measured (p, n) or ({sup 3}He, t) cross sections should allow us to make some realistic prediction of the nuclear symmetry energy and its density dependence. (orig.)

  2. Noether gauge symmetry approach in quintom cosmology

    CERN Document Server

    Aslam, Adnan; Momeni, Davood; Myrzakulov, Ratbay; Rashid, Muneer Ahmad; Raza, Muhammad

    2013-01-01

    In literature usual point like symmetries of the Lagrangian have been introduced to study the symmetries and the structure of the fields. This kind of Noether symmetry is a subclass of a more general family of symmetries, called Noether Gauge Symmetries (NGS). Motivated by this mathematical tool, in this article, we discuss the generalized Noether symmetry of Quintom model of dark energy, which is a two component fluid model of quintessence and phantom fields. Our model is a generalization of the Noether symmetries of a single and multiple components which have been investigated in detail before. We found the general form of the quintom potential in which the whole dynamical system has a point like symmetry. We investigated different possible solutions of the system for diverse family of gauge function. Specially, we discovered two family of potentials, one corresponds to a free quintessence (phantom) and the second is in the form of quadratic interaction between two components. These two families of potentia...

  3. Discrete R Symmetries and Anomalies

    OpenAIRE

    Michael Dine(Santa Cruz Institute for Particle Physics and Department of Physics, Santa Cruz CA 95064, U.S.A.); Angelo Monteux(Santa Cruz Institute for Particle Physics, University of California Santa Cruz, 1156 High Street, Santa Cruz, U.S.A.)

    2012-01-01

    We comment on aspects of discrete anomaly conditions focussing particularly on $R$ symmetries. We review the Green-Schwarz cancellation of discrete anomalies, providing a heuristic explanation why, in the heterotic string, only the "model-independent dilaton" transforms non-linearly under discrete symmetries; this argument suggests that, in other theories, multiple fields might play a role in anomaly cancellations, further weakening any anomaly constraints at low energies. We provide examples...

  4. Minimal Standard Model self-energies at finite temperature in the presence of weak magnetic fields: towards a full symmetry restoration study

    CERN Document Server

    Tejeda-Yeomans, Maria E; Sanchez, Angel; Piccinelli, Gabriella; Ayala, Alejandro

    2008-01-01

    The study of the universe's primordial plasma at high temperature plays an important role when tackling different questions in cosmology, such as the origin of the matter-antimatter asymmetry. In the Minimal Standard Model (MSM) neither the amount of CP violation nor the strength of the phase transition are enough to produce and preserve baryon number during the Electroweak Phase Transition (EWPT), which are two of the three ingredients needed to develop baryon asymmetry. In this talk we present the first part of the analysis done within a scenario where it is viable to have improvements to the aforementioned situation: we work with the degrees of freedom in the broken symmetry phase of the MSM and analyze the development of the EWPT in the presence of a weak magnetic field. More specifically, we calculate the particle self-energies that include the effects of the weak magnetic field, needed for the MSM effective potential up to ring diagrams.

  5. Rapid Variability as a Diagnostic of Accretion and Nuclear Burning in Symbiotic Stars and Supersoft X-ray Sources

    CERN Document Server

    Sokoloski, J L

    2002-01-01

    Accretion disks and nuclear shell burning are present in some symbiotic stars (SS) and probably all supersoft X-ray binaries (SSXBs). Both the disk and burning shell may be involved in the production of dramatic outbursts and, in some cases, collimated jets. A strong magnetic field may also affect the accretion flow and activity in some systems. Rapid-variability studies can probe the interesting region close to the accreting white dwarf (WD) in both SS and SSXBs. I describe fast photometric observations of several individual systems in detail, and review the results of a photometric variability survey of 35 SS. These timing studies reveal the first clearly magnetic SS (Z And), and suggest that an accretion disk is involved in jet production in CH Cyg as well as in the outbursts of both CH Cyg and Z And. They also support the notion that the fundamental power source in most SS is nuclear burning on the surface of a WD, and raise questions about the structure of disks in the SSXBs. Finally, spectroscopic obser...

  6. The X-ray eclipse geometry of the super-soft X-ray source CAL 87

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, T.; Lopes de Oliveira, R. [Departamento de Física, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, 49100-000 São Cristóvão, SE (Brazil); Borges, B. W., E-mail: tribeiro@ufs.br, E-mail: rlopes@ufs.br, E-mail: bernardo@astro.ufsc.br [Universidade Federal de Santa Catarina, Campus Araranguá, 88905-120 Araranguá, SC (Brazil)

    2014-09-01

    We explore XMM-Newton observations of the eclipsing super-soft X-ray source CAL 87 in order to map the accretion structures of the system. Indirect imaging techniques were applied in X-ray light curves to provide eclipse maps. The surface brightness distribution exhibits an extended and symmetric emission, and a feature is revealed from the hardest X-rays that is likely due to a bright spot. A rate of P-dot =(+6±2)×10{sup −10} for changes in the orbital period of the system was derived from the eclipses. There is no significant variation of the emission lines even during eclipses, arguing that the lines are formed in an extended region. The continuum emission dominates the decrease in flux that is observed during eclipses. The O VIII Lyα line reveals a broadening velocity that is estimated to be 365{sub −69}{sup +65} km s{sup –1} (at 1σ), marginal evidence for asymmetry in its profile, and sometimes shows evidence of double-peaked emission. Together, the results support that the wind-driven mass transfer scenario is running in CAL 87.

  7. Multiwavelength modelling the SED of supersoft X-ray sources. II. RS Ophiuchi: From the explosion to the SSS phase

    CERN Document Server

    Skopal, Augustin

    2014-01-01

    RS Oph is a recurrent symbiotic nova that undergoes nova-like outbursts on a time scale of 20 years. Its two last eruptions (1985 and 2006) were subject of intensive multiwavelengths observational campaign from the X-rays to the radio. This contribution aims to determine physical parameters and the ionization structure of the nova from its explosion to the first emergence of the supersoft X-rays (day 26) by using the method of multiwavelength modelling the SED. From the very beginning of the eruption, the model SED revealed the presence of both a strong stellar and nebular component of radiation in the spectrum. During the first 4 days, the nova evinced a biconical ionization structure. The $\\sim 8200$ K warm and 160 - 200 R$_{\\odot}$ extended pseudo-photosphere encompassed the white dwarf (WD) around its equator to the latitude $>40^{\\circ}$. The remaining space around the WD's poles was ionized, producing a strong nebular continuum with the emission measure $EM \\sim 2.3 \\times 10^{62}$ cm$^{-3}$ via the fas...

  8. Formulation of the low-energy effective theory of electroweak symmetry-breaking without a Higgs particle; Formulation de la theorie effective a basse energie du secteur electrofaible sans particule de Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Hirn, J

    2004-07-01

    The low-energy effective theory of electroweak symmetry-breaking without a Higgs particle is constructed using the methods of Chiral Perturbation Theory. Weinberg's power-counting formula demonstrates the consistency of the loop expansion, with the corresponding renormalization. We find that the suppression of effective operators by a mass scale, which was automatic in the case of the Standard Model, no longer holds in the Higgs-less case. Moreover, the incriminated operators appear at leading order in the chiral expansion, at variance with experiments. To account for their suppression, invariance under a larger symmetry is required, corresponding to the composite sector (which produces the three Goldstone modes) being decoupled from the elementary sector (quarks, leptons and Yang-Mills fields). The couplings are introduced via spurions: this reduces the symmetry to SU(2) x U(1). In the simultaneous expansion in powers of momenta and spurions, the aforementioned operators are relegated to higher orders. In addition, the method allows for a systematic treatment of weak isospin breaking. The Weinberg power-counting formula can be recovered, and small neutrino masses accounted for. The three right-handed neutrinos (lighter than the TeV), which are introduced in connection with the custodial symmetry, are quasi-sterile and stable. A constraint on the underlying theory is obtained by studying the anomaly-matching in the composite sector and generalizing the Wess-Zumino construction. The spurion formalism is also applied to open linear moose models, for which generalized Weinberg sum rules are derived. (author)

  9. CP and other Symmetries of Symmetries

    CERN Document Server

    Trautner, Andreas

    2016-01-01

    Outer automorphisms of symmetries ("symmetries of symmetries") in relativistic quantum field theories are studied, including charge conjugation (C), space-reflection (P) , and time-reversal (T) transformations. The group theory of outer automorphisms is pedagogically introduced and it is shown that CP transformations are special outer automorphisms of the global, local, and space-time symmetries of a theory. It is shown that certain discrete groups allow for a group theoretical prediction of parameter independent CP violating complex phases with fixed geometrical values. The remainder of this thesis pioneers the study of outer automorphisms which are not related to C, P, or T. It is shown how outer automorphisms, in general, relate symmetry invariants and, in theories with spontaneous symmetry breaking, imply relations between different vacuum expectation values. Thereby, outer automorphisms can give rise to emergent symmetries. An example model with a discrete symmetry and three copies of the Standard Model ...

  10. Energy and symmetry of dd excitations in undoped layered cuprates measured by Cu L{sub 3} resonant inelastic x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Moretti Sala, M; Minola, M [CNISM and Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Bisogni, V; Brookes, N B [European Synchrotron Radiation Facility, BoIte Postale 220, F-38043 Grenoble (France); Aruta, C; Luca, G M de; Miletto Granozio, F; Perna, P; Radovic, M; Salluzzo, M [CNR-SPIN and Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , Complesso di Monte S Angelo, Via Cinthia, I-80126 Napoli (Italy); Balestrino, G; Di Castro, D; Medaglia, P G [CNR-SPIN and Dipartimento di Ingegneria Meccanica, Universita di Roma Tor Vergata, Via del Politecnico 1, I-00133 Roma (Italy); Berger, H; Grioni, M; Guarise, M [Ecole Polytechnique Federale de Lausanne (EPFL), Institut de Physique de la Matiere Condensee, CH-1015 Lausanne (Switzerland); Schmitt, T; Zhou, K J [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Braicovich, L; Ghiringhelli, G, E-mail: marco.moretti@esrf.fr [CNR-SPIN and Dipartimento di Fisica, Politecnico di Milano, piazza Leonardo da Vinci 32, I-20133 Milano (Italy)

    2011-04-15

    We measured the high-resolution Cu L{sub 3} edge resonant inelastic x-ray scattering (RIXS) of undoped cuprates La{sub 2}CuO{sub 4}, Sr{sub 2}CuO{sub 2}Cl{sub 2}, CaCuO{sub 2} and NdBa{sub 2}Cu{sub 3}O{sub 6}. The dominant spectral features were assigned to dd excitations and we extensively studied their polarization and scattering geometry dependence. In a pure ionic picture, we calculated the theoretical cross sections for those excitations and used these to fit the experimental data with excellent agreement. By doing so, we were able to determine the energy and symmetry of Cu-3d states for the four systems with unprecedented accuracy and confidence. The values of the effective parameters could be obtained for the single-ion crystal field model but not for a simple two-dimensional cluster model. The firm experimental assessment of dd excitation energies carries important consequences for the physics of high-T{sub c} superconductors. On the one hand, we found that the minimum energy of orbital excitation is always {>=}1.4 eV, i.e. well above the mid-infrared spectral range, which leaves to magnetic excitations (up to 300 meV) a major role in Cooper pairing in cuprates. On the other hand, it has become possible to study quantitatively the effective influence of dd excitations on the superconducting gap in cuprates.

  11. Strong coupling electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Barklow, T.L. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Burdman, G. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics; Chivukula, R.S. [Boston Univ., MA (United States). Dept. of Physics

    1997-04-01

    The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models.

  12. Some symmetries in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Henley, E.M.

    1981-09-01

    Internal and space-time symmetries are discussed in this group of lectures. The first of the lectures deals with an internal symmetry, or rather two related symmetries called charge independence and charge symmetry. The next two discuss space-time symmetries which also hold approximately, but are broken only by the weak forces; that is, these symmetries hold for both the hadronic and electromagnetic forces. (GHT)

  13. Symmetry and symmetry breaking in particle physics

    OpenAIRE

    Tsou, ST

    1998-01-01

    Symmetry, in particular gauge symmetry, is a fundamental principle in theoretical physics. It is intimately connected to the geometry of fibre bundles. A refinement to the gauge principle, known as ``spontaneous symmetry breaking'', leads to one of the most successful theories in modern particle physics. In this short talk, I shall try to give a taste of this beautiful and exciting concept.

  14. On double-degenerate type Ia supernova progenitors as supersoft X-ray sources - A population synthesis analysis using SeBa

    DEFF Research Database (Denmark)

    Nielsen, Mikkel T. B.; Nelemans, Gijs; Voss, Rasmus

    2013-01-01

    a SSS phase. Aims: We aim to examine the possibility of double-degenerate progenitor systems being SSSs, and place stringent upper limits on the maximally possible durations of any SSS phases and expected number of these systems in a galactic population. Method: We employ the binary population synthesis...... code SeBa to examine the mass-transfer characteristics of a possible SSS phase of double-degenerate type Ia SN progenitor systems for 1) the standard SeBa assumptions, and 2) an optimistic best-case scenario. The latter case establishes firm upper limits on the possible population of supersoft source...

  15. Precise tests of fundamental symmetries at low energies using a {sup 3}He-{sup 129}Xe comagnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Allmendinger, Fabian

    2015-01-21

    Effects of theories beyond the Standard Model would become directly apparent at high energies, which are probably out of reach for colliders. As an alternative, low-energy high-precision measurements of quantities are performed, looking for deviations from the Standard Model (SM) predictions. In this case: Firstly, a small amount of the large effects of quantum gravity at the Planck scale should remain at low energies, which is tested by looking for Lorentz invariance violation in the neutron sector. Secondly, new sources of CP-violation would cause permanent electric dipole moments (EDMs)of particles that are many orders of magnitude larger than the EDMs predicted by the SM. The experimental approach is to measure the free precession of nuclear spin polarized {sup 3}He and {sup 129}Xe atoms in a homogeneous magnetic guiding field of about 400 nT using LT{sub C} SQUIDs as low-noise magnetic flux detectors. This dissertation reports on the search for a CPT and Lorentz invariance violating coupling of the {sup 3}He and {sup 129}Xe nuclear spins to posited background fields. An upper limit on the equatorial component of the background field interacting with the spin of the bound neutron b{sup n} {sub perpendicular} {sub to} <8.4.10{sup -34} GeV (68% C.L.) was obtained. Furthermore, the technical developments and preparations for measurements of the {sup 129}Xe EDM are described.

  16. Impacts of the tensor couplings of $\\omega$ and $\\rho$ mesons and Coulomb exchange terms on super-heavy nuclei and their relation to symmetry energy

    CERN Document Server

    Liliani, N; Diningrum, J P; Sulaksono, A

    2016-01-01

    We have studied the effects of tensor coupling of $\\omega$ and $\\rho$ meson terms, Coulomb exchange term in local density approximation and various isoscalar-isovector coupling terms of relativistic mean field model on the properties of nuclear matter, finite nuclei, and super-heavy nuclei. We found that for the same fixed value of symmetry energy $J$ or its slope $L$ the presence of tensor coupling of $\\omega$ and $\\rho$ meson terms and Coulomb exchange term yields thicker neutron skin thickness of $^{208}$Pb. We also found that the roles of tensor coupling of $\\omega$ and $\\rho$ meson terms, Coulomb exchange term in local density approximation and various isoscalar-isovector coupling terms on the bulk properties of finite nuclei varies depending on the corresponding nucleus mass. However, on average, tensor coupling terms play a significant role in predicting the bulk properties of finite nuclei in a quite wide mass range especially in binding energies. We also observed that for some particular nuclei, the ...

  17. Impacts of the tensor couplings of ω and ρ mesons and Coulomb-exchange terms on superheavy nuclei and their relation to the symmetry energy

    Science.gov (United States)

    Liliani, N.; Nugraha, A. M.; Diningrum, J. P.; Sulaksono, A.

    2016-05-01

    We have studied the effects of tensor coupling of ω and ρ meson terms, the Coulomb exchange term in local density approximation, and various isoscalar-isovector coupling terms of relativistic mean-field model on the properties of nuclear matter, finite nuclei, and superheavy nuclei. We found that for the same fixed value of symmetry energy J or its slope L the presence of tensor coupling of ω and ρ meson terms and the Coulomb exchange term yields thicker neutron skin thickness of 208Pb. We also found that the roles of tensor coupling of ω and ρ meson terms, the Coulomb-exchange term in local density approximation, and various isoscalar-isovector coupling terms on the bulk properties of finite nuclei vary depending on the corresponding nucleus mass. However, on average, tensor coupling terms play a significant role in predicting the bulk properties of finite nuclei in a quite wide mass range, especially in binding energies. We also observed that for some particular nuclei, the corresponding experimental data of binding energies are rather less compatible with the presence of the Coulomb-exchange term in local density approximation and they tend to disfavor the presence of isoscalar-isovector coupling term with too-high Λ value. Furthermore, we have found that these terms influence the detail properties of 292120 superheavy nucleus such as binding energies, the magnitude of two-nucleon gaps, single-particle spectra, neutron densities, neutron skin thicknesses, and mean-square charge radii. However, the shell-closure predictions of 208Pb and 292120 nuclei are not affected by the presence of these terms.

  18. Dynamics-dependent symmetries in Newtonian mechanics

    CERN Document Server

    Holland, Peter

    2014-01-01

    We exhibit two symmetries of one-dimensional Newtonian mechanics whereby a solution is built from the history of another solution via a generally nonlinear and complex potential-dependent transformation of the time. One symmetry intertwines the square roots of the kinetic and potential energies and connects solutions of the same dynamical problem (the potential is an invariant function). The other symmetry connects solutions of different dynamical problems (the potential is a scalar function). The existence of corresponding conserved quantities is examined using Noethers theorem and it is shown that the invariant-potential symmetry is correlated with energy conservation. In the Hamilton-Jacobi picture the invariant-potential transformation provides an example of a field-dependent symmetry in point mechanics. It is shown that this transformation is not a symmetry of the Schroedinger equation.

  19. Galactic oscillator symmetry

    Science.gov (United States)

    Rosensteel, George

    1995-01-01

    Riemann ellipsoids model rotating galaxies when the galactic velocity field is a linear function of the Cartesian coordinates of the galactic masses. In nuclear physics, the kinetic energy in the linear velocity field approximation is known as the collective kinetic energy. But, the linear approximation neglects intrinsic degrees of freedom associated with nonlinear velocity fields. To remove this limitation, the theory of symplectic dynamical symmetry is developed for classical systems. A classical phase space for a self-gravitating symplectic system is a co-adjoint orbit of the noncompact group SP(3,R). The degenerate co-adjoint orbit is the 12 dimensional homogeneous space Sp(3,R)/U(3), where the maximal compact subgroup U(3) is the symmetry group of the harmonic oscillator. The Hamiltonian equations of motion on each orbit form a Lax system X = (X,F), where X and F are elements of the symplectic Lie algebra. The elements of the matrix X are the generators of the symplectic Lie algebra, viz., the one-body collective quadratic functions of the positions and momenta of the galactic masses. The matrix F is composed from the self-gravitating potential energy, the angular velocity, and the hydostatic pressure. Solutions to the hamiltonian dynamical system on Sp(3,R)/U(3) are given by symplectic isospectral deformations. The Casimirs of Sp(3,R), equal to the traces of powers of X, are conserved quantities.

  20. Symmetry in chemistry

    CERN Document Server

    Jaffé, Hans H

    1977-01-01

    This book, devoted exclusively to symmetry in chemistry and developed in an essentially nonmathematical way, is a must for students and researchers. Topics include symmetry elements and operations, multiple symmetry operations, multiplication tables and point groups, group theory applications, and crystal symmetry. Extensive appendices provide useful tables.

  1. Lattice Regularization and Symmetries

    CERN Document Server

    Hasenfratz, Peter; Von Allmen, R; Allmen, Reto von; Hasenfratz, Peter; Niedermayer, Ferenc

    2006-01-01

    Finding the relation between the symmetry transformations in the continuum and on the lattice might be a nontrivial task as illustrated by the history of chiral symmetry. Lattice actions induced by a renormalization group procedure inherit all symmetries of the continuum theory. We give a general procedure which gives the corresponding symmetry transformations on the lattice.

  2. Deriving diffeomorphism symmetry

    CERN Document Server

    Kleppe, Astri

    2014-01-01

    In an earlier article, we have "derived" space, as a part of the Random Dynamics project. In order to get locality we need to obtain reparametrization symmetry, or equivalently, diffeomorphism symmetry. There we sketched a procedure for how to get locality by first obtaining reparametrization symmetry, or equivalently, diffeomorphism symmetry. This is the object of the present article.

  3. Sensitive Probe for Symmetry Potential

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-Ye; XIAO Guo-Qing; GUO Wen-Jun; REN ZhongZhou; ZUO Wei; LEE Xi-Guo

    2007-01-01

    Based on both very obvious isospin effect of the neutron-proton number ratio of nucleon emissions (n/p)nucl on symmetry potential and (n/p)nucl's sensitive dependence on symmetry potential in the nuclear reactions induced by halo-neutron projectiles, compared to the same mass stable projectile, probing symmetry potential is investigated within the isospin-dependent quantum molecular dynamics with isospin and momentum-dependent interactions for different symmetry potentials U1sym and U2sym. It is found that the neutron-halo projectile induces very obvious increase of (n/p)nucl and strengthens the dependence of (n/p)nucl on the symmetry potential for all the beam energies and impact parameters, compared to the same mass stable projectile under the same incident channel condition. Therefore (n/p)nucl induced by the neutron-halo projectile is a more favourable probe than the normal neutron-rich and neutron-poor projectiles for extracting the symmetry potential.

  4. Leptogenesis and residual CP symmetry

    CERN Document Server

    Chen, Peng; King, Stephen F

    2016-01-01

    We discuss flavour dependent leptogenesis in the framework of lepton flavour models based on discrete flavour and CP symmetries applied to the type-I seesaw model. Working in the flavour basis, we analyse the case of two general residual CP symmetries in the neutrino sector, which corresponds to all possible semi-direct models based on a preserved $Z_2$ in the neutrino sector, together with a CP symmetry, which constrains the PMNS matrix up to a single free parameter which may be fixed by the reactor angle. We systematically study and classify this case for all possible residual CP symmetries, and show that the $R$-matrix is tightly constrained up to a single free parameter, with only certain forms being consistent with successful leptogenesis, leading to possible connections between leptogenesis and PMNS parameters. The formalism is completely general in the sense that the two residual CP symmetries could result from any high energy discrete flavour theory which respects any CP symmetry. As a simple example,...

  5. SASS: a symmetry adapted stochastic search algorithm exploiting site symmetry.

    Science.gov (United States)

    Wheeler, Steven E; Schleyer, Paul V R; Schaefer, Henry F

    2007-03-14

    A simple symmetry adapted search algorithm (SASS) exploiting point group symmetry increases the efficiency of systematic explorations of complex quantum mechanical potential energy surfaces. In contrast to previously described stochastic approaches, which do not employ symmetry, candidate structures are generated within simple point groups, such as C2, Cs, and C2v. This facilitates efficient sampling of the 3N-6 Pople's dimensional configuration space and increases the speed and effectiveness of quantum chemical geometry optimizations. Pople's concept of framework groups [J. Am. Chem. Soc. 102, 4615 (1980)] is used to partition the configuration space into structures spanning all possible distributions of sets of symmetry equivalent atoms. This provides an efficient means of computing all structures of a given symmetry with minimum redundancy. This approach also is advantageous for generating initial structures for global optimizations via genetic algorithm and other stochastic global search techniques. Application of the SASS method is illustrated by locating 14 low-lying stationary points on the cc-pwCVDZ ROCCSD(T) potential energy surface of Li5H2. The global minimum structure is identified, along with many unique, nonintuitive, energetically favorable isomers.

  6. Symmetries in Nuclei

    CERN Document Server

    Van Isacker, P

    2010-01-01

    The use of dynamical symmetries or spectrum generating algebras for the solution of the nuclear many-body problem is reviewed. General notions of symmetry and dynamical symmetry in quantum mechanics are introduced and illustrated with simple examples such as the SO(4) symmetry of the hydrogen atom and the isospin symmetry in nuclei. Two nuclear models, the shell model and the interacting boson model, are reviewed with particular emphasis on their use of group-theoretical techniques.

  7. An Introduction to Emergent Symmetries

    CERN Document Server

    Gomes, Pedro R S

    2015-01-01

    These are intended to be introductory notes on emergent symmetries, i.e., symmetries which manifest themselves in specific sectors of energy in many systems. The emphasis is on the physical aspects rather than computation methods. We include some elementary background material and proceed to our discussion by examining several interesting problems in field theory, statistical mechanics and condensed matter. These problems illustrate how some important symmetries, such as Lorentz invariance and supersymmetry, usually believed to be fundamental, can arise naturally in low-energy regimes of systems involving a large number of degrees of freedom. The aim is to discuss how these examples could help us to face other complex and fundamental problems.

  8. On double-degenerate type Ia supernova progenitors as supersoft X-ray sources - A population synthesis analysis using SeBa

    CERN Document Server

    Nielsen, Mikkel T B; Voss, Rasmus; Toonen, Silvia

    2013-01-01

    Context: The nature of the progenitors of type Ia supernova (SN) progenitors remains unclear. While it is usually agreed that single-degenerate progenitor systems would be luminous supersoft X-ray sources (SSSs), it was recently suggested that double-degenerate progenitors might also go through a SSS phase. Aims: We aim to examine the possibility of double-degenerate progenitor systems being SSSs, and place stringent upper limits on the maximally possible durations of any SSS phases and expected number of these systems in a galactic population. Method: We employ the binary population synthesis code SeBa to examine the mass-transfer characteristics of a possible SSS phase of double-degenerate type Ia SN progenitor systems for 1) the standard SeBa assumptions, and 2) an optimistic best-case scenario. The latter case establishes firm upper limits on the possible population of supersoft source double-degenerate type Ia SN progenitor systems. Results: Our results indicate that unlike what is expected for single-de...

  9. Identical Wells, Symmetry Breaking, and the Near-Unitary Limit

    Science.gov (United States)

    Harshman, N. L.

    2017-03-01

    Energy level splitting from the unitary limit of contact interactions to the near unitary limit for a few identical atoms in an effectively one-dimensional well can be understood as an example of symmetry breaking. At the unitary limit in addition to particle permutation symmetry there is a larger symmetry corresponding to exchanging the N! possible orderings of N particles. In the near unitary limit, this larger symmetry is broken, and different shapes of traps break the symmetry to different degrees. This brief note exploits these symmetries to present a useful, geometric analogy with graph theory and build an algebraic framework for calculating energy splitting in the near unitary limit.

  10. The symmetry of man.

    Science.gov (United States)

    Ermolenko, Alexander E; Perepada, Elena A

    2007-01-01

    The paper contains a description of basic regularities in the manifestation of symmetry of human structural organization and its ontogenetic and phylogenetic development. A concept of macrobiocrystalloid with inherent complex symmetry is proposed for the description of the human organism in its integrity. The symmetry can be characterized as two-plane radial (quadrilateral), where the planar symmetry is predominant while the layout of organs of radial symmetry is subordinated to it. Out of the two planes of symmetry (sagittal and horizontal), the sagittal plane is predominant. The symmetry of the chromosome, of the embrio at the early stages of cell cleavage as well as of some organs and systems in their phylogenetic development is described. An hypothesis is postulated that the two-plane symmetry is formed by two mechanisms: a) the impact of morphogenetic fields of the whole crystalloid organism during embriogenesis and, b) genetic mechanisms of the development of chromosomes having two-plane symmetry.

  11. Practical approximation of the non-adiabatic coupling terms for same-symmetry interstate crossings by using adiabatic potential energies only

    Science.gov (United States)

    Baeck, Kyoung Koo; An, Heesun

    2017-02-01

    A very simple equation, Fij A p p=[(∂2(Via-Vja ) /∂Q2 ) /(Via-Vja ) ] 1 /2/2 , giving a reliable magnitude of non-adiabatic coupling terms (NACTs, Fij's) based on adiabatic potential energies only (Via and Vja) was discovered, and its reliability was tested for several prototypes of same-symmetry interstate crossings in LiF, C2, NH3Cl, and C6H5SH molecules. Our theoretical derivation starts from the analysis of the relationship between the Lorentzian dependence of NACTs along a diabatization coordinate and the well-established linear vibronic coupling scheme. This analysis results in a very simple equation, α =2 κ /Δc , enabling the evaluation of the Lorentz function α parameter in terms of the coupling constant κ and the energy gap Δc (Δc=|Via-Vja| Q c ) between adiabatic states at the crossing point QC. Subsequently, it was shown that QC corresponds to the point where Fij A p p exhibit maximum values if we set the coupling parameter as κ =[(Via-Vja ) ṡ(∂2(Via-Vja ) /∂Q2 ) ] Qc1 /2 /2 . Finally, we conjectured that this relation could give reasonable values of NACTs not only at the crossing point but also at other geometries near QC. In this final approximation, the pre-defined crossing point QC is not required. The results of our test demonstrate that the approximation works much better than initially expected. The present new method does not depend on the selection of an ab initio method for adiabatic electronic states but is currently limited to local non-adiabatic regions where only two electronic states are dominantly involved within a nuclear degree of freedom.

  12. Cosmological Reflection of Particle Symmetry

    Directory of Open Access Journals (Sweden)

    Maxim Khlopov

    2016-08-01

    Full Text Available The standard model involves particle symmetry and the mechanism of its breaking. Modern cosmology is based on inflationary models with baryosynthesis and dark matter/energy, which involves physics beyond the standard model. Studies of the physical basis of modern cosmology combine direct searches for new physics at accelerators with its indirect non-accelerator probes, in which cosmological consequences of particle models play an important role. The cosmological reflection of particle symmetry and the mechanisms of its breaking are the subject of the present review.

  13. Symmetries in Physics

    Science.gov (United States)

    Brading, Katherine; Castellani, Elena

    2010-01-01

    Preface; Copyright acknowledgements; List of contributors; 1. Introduction; Part I. Continuous Symmetries: 2. Classic texts: extracts from Weyl and Wigner; 3. Review paper: On the significance of continuous symmetry to the foundations of physics C. Martin; 4. The philosophical roots of the gauge principle: Weyl and transcendental phenomenological idealism T. Ryckman; 5. Symmetries and Noether's theorems K. A. Brading and H. R. Brown; 6. General covariance, gauge theories, and the Kretschmann objection J. Norton; 7. The interpretation of gauge symmetry M. Redhead; 8. Tracking down gauge: an ode to the constrained Hamiltonian formalism J. Earman; 9. Time-dependent symmetries: the link between gauge symmetries and indeterminism D. Wallace; 10. A fourth way to the Aharanov-Bohm effect A. Nounou; Part II. Discrete Symmetries: 11. Classic texts: extracts from Lebniz, Kant and Black; 12. Review paper: Understanding permutation symmetry S. French and D. Rickles; 13. Quarticles and the identity of discernibles N. Hugget; 14. Review paper: Handedness, parity violation, and the reality of space O. Pooley; 15. Mirror symmetry: what is it for a relational space to be orientable? N. Huggett; 16. Physics and Leibniz's principles S. Saunders; Part III. Symmetry Breaking: 17: Classic texts: extracts from Curie and Weyl; 18. Extract from G. Jona-Lasinio: Cross-fertilization in theoretical physics: the case of condensed matter and particle physics G. Jona-Lasinio; 19. Review paper: On the meaning of symmetry breaking E. Castellani; 20. Rough guide to spontaneous symmetry breaking J. Earman; 21. Spontaneous symmetry breaking: theoretical arguments and philosophical problems M. Morrison; Part IV. General Interpretative Issues: 22. Classic texts: extracts from Wigner; 23. Symmetry as a guide to superfluous theoretical structure J. Ismael and B. van Fraassen; 24. Notes on symmetries G. Belot; 25. Symmetry, objectivity, and design P. Kosso; 26. Symmetry and equivalence E. Castellani.

  14. Approximate flavor symmetries

    OpenAIRE

    Rašin, Andrija

    1994-01-01

    We discuss the idea of approximate flavor symmetries. Relations between approximate flavor symmetries and natural flavor conservation and democracy models is explored. Implications for neutrino physics are also discussed.

  15. The Symmetry Principle

    Directory of Open Access Journals (Sweden)

    Joe Rosen

    2005-12-01

    Full Text Available Abstract: The symmetry principle is described in this paper. The full details are given in the book: J. Rosen, Symmetry in Science: An Introduction to the General Theory (Springer-Verlag, New York, 1995.

  16. Origin of family symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Nilles, Hans Peter [Bonn Univ. (Germany). Bethe Center for Theoretical Physics; Bonn Univ. (Germany). Physikalisches Inst.; Ratz, Michael [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-04-15

    Discrete (family) symmetries might play an important role in models of elementary particle physics. We discuss the origin of such symmetries in the framework of consistent ultraviolet completions of the standard model in field and string theory. The symmetries can arise due to special geometrical properties of extra compact dimensions and the localization of fields in this geometrical landscape. We also comment on anomaly constraints for discrete symmetries.

  17. Neutrinos and flavor symmetries

    Science.gov (United States)

    Tanimoto, Morimitsu

    2015-07-01

    We discuss the recent progress of flavor models with the non-Abelian discrete symmetry in the lepton sector focusing on the θ13 and CP violating phase. In both direct approach and indirect approach of the flavor symmetry, the non-vanishing θ13 is predictable. The flavor symmetry with the generalised CP symmetry can also predicts the CP violating phase. We show the phenomenological analyses of neutrino mixing for the typical flavor models.

  18. Neutrinos and flavor symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Tanimoto, Morimitsu

    2015-07-15

    We discuss the recent progress of flavor models with the non-Abelian discrete symmetry in the lepton sector focusing on the θ{sub 13} and CP violating phase. In both direct approach and indirect approach of the flavor symmetry, the non-vanishing θ{sub 13} is predictable. The flavor symmetry with the generalised CP symmetry can also predicts the CP violating phase. We show the phenomenological analyses of neutrino mixing for the typical flavor models.

  19. Polynomial Graphs and Symmetry

    Science.gov (United States)

    Goehle, Geoff; Kobayashi, Mitsuo

    2013-01-01

    Most quadratic functions are not even, but every parabola has symmetry with respect to some vertical line. Similarly, every cubic has rotational symmetry with respect to some point, though most cubics are not odd. We show that every polynomial has at most one point of symmetry and give conditions under which the polynomial has rotational or…

  20. Polynomial Graphs and Symmetry

    Science.gov (United States)

    Goehle, Geoff; Kobayashi, Mitsuo

    2013-01-01

    Most quadratic functions are not even, but every parabola has symmetry with respect to some vertical line. Similarly, every cubic has rotational symmetry with respect to some point, though most cubics are not odd. We show that every polynomial has at most one point of symmetry and give conditions under which the polynomial has rotational or…

  1. Chiral symmetry and chiral-symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)

  2. Translational Symmetry and Microscopic Constraints on Symmetry-Enriched Topological Phases: A View from the Surface

    Science.gov (United States)

    Cheng, Meng; Zaletel, Michael; Barkeshli, Maissam; Vishwanath, Ashvin; Bonderson, Parsa

    2016-10-01

    The Lieb-Schultz-Mattis theorem and its higher-dimensional generalizations by Oshikawa and Hastings require that translationally invariant 2D spin systems with a half-integer spin per unit cell must either have a continuum of low energy excitations, spontaneously break some symmetries, or exhibit topological order with anyonic excitations. We establish a connection between these constraints and a remarkably similar set of constraints at the surface of a 3D interacting topological insulator. This, combined with recent work on symmetry-enriched topological phases with on-site unitary symmetries, enables us to develop a framework for understanding the structure of symmetry-enriched topological phases with both translational and on-site unitary symmetries, including the effective theory of symmetry defects. This framework places stringent constraints on the possible types of symmetry fractionalization that can occur in 2D systems whose unit cell contains fractional spin, fractional charge, or a projective representation of the symmetry group. As a concrete application, we determine when a topological phase must possess a "spinon" excitation, even in cases when spin rotational invariance is broken down to a discrete subgroup by the crystal structure. We also describe the phenomena of "anyonic spin-orbit coupling," which may arise from the interplay of translational and on-site symmetries. These include the possibility of on-site symmetry defect branch lines carrying topological charge per unit length and lattice dislocations inducing degeneracies protected by on-site symmetry.

  3. W-symmetry

    CERN Document Server

    Bouwknegt, P G

    1995-01-01

    W-symmetry is an extension of conformal symmetry in two dimensions. Since its introduction in 1985, W-symmetry has become one of the central notions in the study of two-dimensional conformal field theory. The mathematical structures that underlie W-symmetry are so-called W-algebras, which are higher-spin extensions of the Virasoro algebra. This book contains a collection of papers on W-symmetry, covering the period from 1985 through 1993. Its main focus is the construction of W-algebras and their representation theory. A recurrent theme is the intimate connection between W-algebras and affine

  4. Discrete R-symmetries and anomaly universality in heterotic orbifolds

    NARCIS (Netherlands)

    Cabo Bizet, Nana G.; Kobayashi, Tatsuo; Pena, Damian K. Mayorga; Parameswaran, Susha L.; Schmitz, Matthias; Zavala Carrasco, Ivonne

    2014-01-01

    We study discrete R-symmetries, which appear in the 4D low energy effective field theory derived from heterotic orbifold models. We derive the R-symmetries directly from the geometrical symmetries of the orbifolds. In particular, we obtain the corresponding R-charges by requiring that the couplings

  5. Black hole entropy from conformal symmetry on the horizon

    Science.gov (United States)

    Carlip, Steven

    2017-01-01

    The idea that black hole entropy might be governed by a conformal symmetry is an old one, but until now most efforts have focused on either asymptotic symmetries or symmetries on a ``stretched horizon. For two-dimensional dilaton gravity, I show the existence of a well-behaved conformal symmetry that is on the horizon, with a central charge that correctly determines the black hole entropy. Supported by Department of Energy grant DE-FG02-91ER40674.

  6. Statistical Properties of the E(5) and X(5) Symmetries

    CERN Document Server

    Shu, J; Liu, Y X; Shu, Jing; Jia, Hong-Bo; Liu, Yu-Xin

    2002-01-01

    We study the energy level statistics of the states in E(5) and X(5) transitional dynamical symmetries. The calculated results indicate that the statistics of E(5) symmetry is regular and follows Poisson statistics, while the statistics of X(5) symmetry involves two maxima in the nearest neighbor level spacing distribution $P(s)$ and the $\\Delta_{3}$ statistics follows the GOE statistics. It provides an evidence that the X(5) symmetry is at the critical point exhibiting competing degree of freedom.

  7. On a symmetry relating gravity with antigravity

    CERN Document Server

    Quiros, Israel

    2014-01-01

    I investigate the impact of a "would be" fundamental symmetry of the laws of nature under the interchange of gravity and antigravity, on the understanding of negative energies in general relativity. For this purpose a toy model that is based on Einstein-Hilbert gravity with two minimally coupled self-interacting scalar fields is explored, where the second (exotic) scalar field with negative energy density may be regarded, alternatively, as an antigravitating field with positive energy. Spontaneous breakdown of reflection symmetry is then considered in order to discuss the implications the proposed "would be" fundamental symmetry might have for the vanishing of the cosmological constant. A possible connection of the gravity-antigravity symmetry with the so called quintom field is also explored.

  8. Lie symmetries and 2D Material Physics

    CERN Document Server

    Belhaj, Adil

    2014-01-01

    Inspired from Lie symmetry classification, we establish a correspondence between rank two Lie symmetries and 2D material physics. The material unit cell is accordingly interpreted as the geometry of a root system. The hexagonal cells, appearing in graphene like models, are analyzed in some details and are found to be associated with A_2 and G_2 Lie symmetries. This approach can be applied to Lie supersymmetries associated with fermionic degrees of freedom. It has been suggested that these extended symmetries can offer a new way to deal with doping material geometries. Motivated by Lie symmetry applications in high energy physics, we speculate on a possible connection with (p,q) brane networks used in the string theory compactification on singular Calabi-Yau manifolds.

  9. Molecular Symmetry Analysis of Low-Energy Torsional and Vibrational States in the S_{0} and S_{1} States of p-XYLENE to Interpret the Rempi Spectrum

    Science.gov (United States)

    Groner, Peter; Gardner, Adrian M.; Tuttle, William Duncan; Wright, Timothy G.

    2017-06-01

    The electronic transition S_{1} ← S_{0} of p-xylene (pXyl) has been observed by REMPI spectroscopy. Its analysis required a detailed investigation of the molecular symmetry of pXyl whose methyl groups are almost free internal rotors. The molecular symmetry group of pXyl has 72 operators. This group, called [33]D_{2h}, is isomorphic to G_{36}(EM), the double group for ethane and dimethyl acetylene even though it is NOT a double group for pXyl. Loosely speaking, the group symbol, [33]D_{2h}, indicates that is for a molecule with two threefold rotors on a molecular frame with D_{2h} point group symmetry. The transformation properties of the (i) free internal rotor basis functions for the torsional coordinates, (ii) the asymmetric rotor (Wang) basis functions for the Eulerian angles, (iii) nuclear spin functions, (iv) potential function, and (v) transitions dipole moment functions were determined. The forms of the torsional potential in the S_{0} and S_{1} states and the dependence of the first order torsional splittings on the potential coefficients have been obtained. AM Gardner, WD Tuttle, P. Groner, TG Wright, J. Chem. Phys., submitted Dec 2016 P Groner, JR Durig, J. Chem. Phys., 66 (1977) 1856 PR Bunker, P Jensen, Molecular Symmetry and Spectroscopy (1998, NRC Research Press, Ottawa, 2nd ed.)

  10. ON THE NOETHER SYMMETRY AND LIE SYMMETRY OF MECHANICAL SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    梅凤翔; 郑改华

    2002-01-01

    The Noether symmetry is an invariance of Hamilton action under infinitesimal transformations of time and the coordinates. The Lie symmetry is an invariance of the differential equations of motion under the transformations. In this paper, the relation between these two symmetries is proved definitely and firstly for mechanical systems. The results indicate that all the Noether symmetries are Lie symmetries for Lagrangian systems meanwhile a Noether symmetry is a Lie symmetry for the general holonomic or nonholonomic systems provided that some conditions hold.

  11. Cosmological Reflection of Particle Symmetry

    OpenAIRE

    Maxim Khlopov

    2016-01-01

    The standard model involves particle symmetry and the mechanism of its breaking. Modern cosmology is based on inflationary models with baryosynthesis and dark matter/energy, which involves physics beyond the standard model. Studies of the physical basis of modern cosmology combine direct searches for new physics at accelerators with its indirect non-accelerator probes, in which cosmological consequences of particle models play an important role. The cosmological reflection of particle symmetr...

  12. From physical symmetries to emergent gauge symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Barceló, Carlos [Instituto de Astrofísica de Andalucía (IAA-CSIC),Glorieta de la Astronomía, 18008 Granada (Spain); Carballo-Rubio, Raúl [Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Laboratory for Quantum Gravity & Strings,Department of Mathematics & Applied Mathematics, University of Cape Town,Private Bag, Rondebosch 7701 (South Africa); Di Filippo, Francesco [Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Dipartamento di Scienze Fisiche “E.R. Caianiello”, Università di Salerno,I-84081 Fisciano (Italy); Garay, Luis J. [Departamento de Física Teórica II, Universidad Complutense de Madrid, 28040 Madrid (Spain); Instituto de Estructura de la Materia (IEM-CSIC), Serrano 121, 28006 Madrid (Spain)

    2016-10-17

    Gauge symmetries indicate redundancies in the description of the relevant degrees of freedom of a given field theory and restrict the nature of observable quantities. One of the problems faced by emergent theories of relativistic fields is to understand how gauge symmetries can show up in systems that contain no trace of these symmetries at a more fundamental level. In this paper we start a systematic study aimed to establish a satisfactory mathematical and physical picture of this issue, dealing first with abelian field theories. We discuss how the trivialization, due to the decoupling and lack of excitation of some degrees of freedom, of the Noether currents associated with physical symmetries leads to emergent gauge symmetries in specific situations. An example of a relativistic field theory of a vector field is worked out in detail in order to make explicit how this mechanism works and to clarify the physics behind it. The interplay of these ideas with well-known results of importance to the emergent gravity program, such as the Weinberg-Witten theorem, are discussed.

  13. From physical symmetries to emergent gauge symmetries

    Science.gov (United States)

    Barceló, Carlos; Carballo-Rubio, Raúl; Di Filippo, Francesco; Garay, Luis J.

    2016-10-01

    Gauge symmetries indicate redundancies in the description of the relevant degrees of freedom of a given field theory and restrict the nature of observable quantities. One of the problems faced by emergent theories of relativistic fields is to understand how gauge symmetries can show up in systems that contain no trace of these symmetries at a more fundamental level. In this paper we start a systematic study aimed to establish a satisfactory mathematical and physical picture of this issue, dealing first with abelian field theories. We discuss how the trivialization, due to the decoupling and lack of excitation of some degrees of freedom, of the Noether currents associated with physical symmetries leads to emergent gauge symmetries in specific situations. An example of a relativistic field theory of a vector field is worked out in detail in order to make explicit how this mechanism works and to clarify the physics behind it. The interplay of these ideas with well-known results of importance to the emergent gravity program, such as the Weinberg-Witten theorem, are discussed.

  14. From physical symmetries to emergent gauge symmetries

    CERN Document Server

    Barceló, Carlos; Di Filippo, Francesco; Garay, Luis J

    2016-01-01

    Gauge symmetries indicate redundancies in the description of the relevant degrees of freedom of a given field theory and restrict the nature of observable quantities. One of the problems faced by emergent theories of relativistic fields is to understand how gauge symmetries can show up in systems that contain no trace of these symmetries at a more fundamental level. In this paper we start a systematic study aimed to establish a satisfactory mathematical and physical picture of this issue, dealing first with abelian field theories. We discuss how the trivialization, due to the decoupling and lack of excitation of some degrees of freedom, of the Noether currents associated with physical symmetries leads to emergent gauge symmetries in specific situations. An example of a relativistic field theory of a vector field is worked out in detail in order to make explicit how this mechanism works and to clarify the physics behind it. The interplay of these ideas with well-known results of importance to the emergent grav...

  15. Optimization leads to symmetry

    Institute of Scientific and Technical Information of China (English)

    Chenghong WANG; Yuqian GUO; Daizhan CHENG

    2004-01-01

    The science of complexity studies the behavior and properties of complex systems in nature and human society.Particular interest has been put on their certain simple common properties.Symmetry is one of such properties.Symmetric phenomena can be found in many complex systems.The purpose of this paper is to reveal the internal reason of the symmetry.Using some physical systems and geometric objects,the paper shows that many symmetries are caused by optimization under certain criteria.It has also been revealed that an evolutional process may lead to symmetry.

  16. Approximate and renormgroup symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Ibragimov, Nail H. [Blekinge Institute of Technology, Karlskrona (Sweden). Dept. of Mathematics Science; Kovalev, Vladimir F. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Mathematical Modeling

    2009-07-01

    ''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)

  17. Symmetries in atmospheric sciences

    CERN Document Server

    Bihlo, Alexander

    2009-01-01

    Selected applications of symmetry methods in the atmospheric sciences are reviewed briefly. In particular, focus is put on the utilisation of the classical Lie symmetry approach to derive classes of exact solutions from atmospheric models. This is illustrated with the barotropic vorticity equation. Moreover, the possibility for construction of partially-invariant solutions is discussed for this model. A further point is a discussion of using symmetries for relating different classes of differential equations. This is illustrated with the spherical and the potential vorticity equation. Finally, discrete symmetries are used to derive the minimal finite-mode version of the vorticity equation first discussed by E. Lorenz (1960) in a sound mathematical fashion.

  18. Applications of hidden symmetries to black hole physics

    Energy Technology Data Exchange (ETDEWEB)

    Frolov, Valeri, E-mail: vfrolov@ualberta.ca [Institute of Theoretical Physics, Department of Physics University of Alberta, Edmonton, Alberta, T6G 2G7 (Canada)

    2011-02-01

    This work is a brief review of applications of hidden symmetries to black hole physics. Symmetry is one of the most important concepts of the science. In physics and mathematics the symmetry allows one to simplify a problem, and often to make it solvable. According to the Noether theorem symmetries are responsible for conservation laws. Besides evident (explicit) spacetime symmetries, responsible for conservation of energy, momentum, and angular momentum of a system, there also exist what is called hidden symmetries, which are connected with higher order in momentum integrals of motion. A remarkable fact is that black holes in four and higher dimensions always possess a set ('tower') of explicit and hidden symmetries which make the equations of motion of particles and light completely integrable. The paper gives a general review of the recently obtained results. The main focus is on understanding why at all black holes have something (symmetry) to hide.

  19. Applications of hidden symmetries to black hole physics

    CERN Document Server

    Frolov, Valeri

    2010-01-01

    This work is a brief review of applications of hidden symmetries to black hole physics. Symmetry is one of the most important concepts of the science. In physics and mathematics the symmetry allows one to simplify a problem, and often to make it solvable. According to the Noether theorem symmetries are responsible for conservation laws. Besides evident (explicit) spacetime symmetries, responsible for conservation of energy, momentum, and angular momentum of a system, there also exist what is called hidden symmetries, which are connected with higher order in momentum integrals of motion. A remarkable fact is that black holes in four and higher dimensions always possess a set (`tower') of explicit and hidden symmetries which make the equations of motion of particles and light completely integrable. The paper gives a general review of the recently obtained results. The main focus is on understanding why at all black holes have something (symmetry) to hide.

  20. Symmetry Breaking and Second Order Phase Transitions

    Institute of Scientific and Technical Information of China (English)

    ZhangFengshou; R.M.Lynden-Bell

    2003-01-01

    In an earlier paper we showed that symmetry breaking could be induced in the triiodide ion by varying the solvent. Experiments and simulations suggest that protic solvents which can form hydrogen bonds with a negative ion cause symmetry breaking of the ion, so that the charge becomes concentrated at one end of the ion and the corresponding bond elongates. We suggested that one could draw an analogy between the mean field Ising model with free energy,

  1. Symmetry and Interculturality

    Science.gov (United States)

    Marchis, Iuliana

    2009-01-01

    Symmetry is one of the fundamental concepts in Geometry. It is a Mathematical concept, which can be very well connected with Art and Ethnography. The aim of the article is to show how to link the geometrical concept symmetry with interculturality. For this mosaics from different countries are used.

  2. Symmetry Festival 2016

    CERN Document Server

    2016-01-01

    The Symmetry Festival is a science and art program series, the most important periodic event (see its history) to bring together scientists, artists, educators and practitioners interested in symmetry (its roots, what is behind, applications, etc.), or in the consequences of its absence.

  3. Symmetries in Optimal Control

    NARCIS (Netherlands)

    Schaft, A.J. van der

    1987-01-01

    It is argued that the existence of symmetries may simplify, as in classical mechanics, the solution of optimal control problems. A procedure for obtaining symmetries for the optimal Hamiltonian resulting from the Maximum Principle is given; this avoids the actual calculation of the optimal

  4. Lectures on Yangian Symmetry

    CERN Document Server

    Loebbert, Florian

    2016-01-01

    In these introductory lectures we discuss the topic of Yangian symmetry from various perspectives. Forming the classical counterpart of the Yangian and an extension of ordinary Noether symmetries, first the concept of nonlocal charges in classical, two-dimensional field theory is reviewed. We then define the Yangian algebra following Drinfeld's original motivation to construct solutions to the quantum Yang-Baxter equation. Different realizations of the Yangian and its mathematical role as a Hopf algebra and quantum group are discussed. We demonstrate how the Yangian algebra is implemented in quantum, two-dimensional field theories and how its generators are renormalized. Implications of Yangian symmetry on the two-dimensional scattering matrix are investigated. We furthermore consider the important case of discrete Yangian symmetry realized on integrable spin chains. Finally we give a brief introduction to Yangian symmetry in planar, four-dimensional super Yang-Mills theory and indicate its impact on the dila...

  5. Spontaneous Symmetry Probing

    CERN Document Server

    Nicolis, Alberto

    2011-01-01

    For relativistic quantum field theories, we consider Lorentz breaking, spatially homogeneous field configurations or states that evolve in time along a symmetry direction. We dub this situation "spontaneous symmetry probing" (SSP). We mainly focus on internal symmetries, i.e. on symmetries that commute with the Poincare group. We prove that the fluctuations around SSP states have a Lagrangian that is explicitly time independent, and we provide the field space parameterization that makes this manifest. We show that there is always a gapless Goldstone excitation that perturbs the system in the direction of motion in field space. Perhaps more interestingly, we show that if such a direction is part of a non-Abelian group of symmetries, the Goldstone bosons associated with spontaneously broken generators that do not commute with the SSP one acquire a gap, proportional to the SSP state's "speed". We outline possible applications of this formalism to inflationary cosmology.

  6. Partial Dynamical Symmetry as an Intermediate Symmetry Structure

    CERN Document Server

    Leviatan, A

    2003-01-01

    We introduce the notion of a partial dynamical symmetry for which a prescribed symmetry is neither exact nor completely broken. We survey the different types of partial dynamical symmetries and present empirical examples in each category.

  7. Mei Symmetry and Lie Symmetry of Relativistic Hamiltonian System

    Institute of Scientific and Technical Information of China (English)

    FANG Jian-Hui; YAN Xiang-Hong; LI Hong; CHEN Pei-Sheng

    2004-01-01

    The Mei symmetry and the Lie symmetry of the relativistic Hamiltonian system are studied. The definition and criterion of the Mei symmetry and the Lie symmetry of the relativistic Hamiltonian system are given. The relationship between them is found. The conserved quantities which the Mei symmetry and the Lie symmetry lead to are obtained.An example is given to illustrate the application of the result.

  8. Effective dissipation: breaking time-reversal symmetry

    CERN Document Server

    Brown, Aidan I

    2016-01-01

    At molecular scales, fluctuations play a significant role and prevent biomolecular processes from always proceeding in a preferred direction, raising the question of how limited amounts of free energy can be dissipated to obtain directed progress. We examine the system and process characteristics that efficiently break time-reversal symmetry at fixed energy loss; in particular for a simple model of a molecular machine, an intermediate energy barrier produces unusually high asymmetry for a given dissipation. Such insight into symmetry-breaking factors that produce particularly high time asymmetry suggests generalizations to a broader class of systems.

  9. Partial Dynamical Symmetries

    CERN Document Server

    Leviatan, A

    2010-01-01

    This overview focuses on the notion of partial dynamical symmetry (PDS), for which a prescribed symmetry is obeyed by a subset of solvable eigenstates, but is not shared by the Hamiltonian. General algorithms are presented to identify interactions, of a given order, with such intermediate-symmetry structure. Explicit bosonic and fermionic Hamiltonians with PDS are constructed in the framework of models based on spectrum generating algebras. PDSs of various types are shown to be relevant to nuclear spectroscopy, quantum phase transitions and systems with mixed chaotic and regular dynamics.

  10. Physics from symmetry

    CERN Document Server

    Schwichtenberg, Jakob

    2015-01-01

    This is a textbook that derives the fundamental theories of physics from symmetry.   It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations.

  11. Valence ionized states of iron pentacarbonyl and eta5-cyclopentadienyl cobalt dicarbonyl studied by symmetry-adapted cluster-configuration interaction calculation and collision-energy resolved Penning ionization electron spectroscopy.

    Science.gov (United States)

    Fukuda, Ryoichi; Ehara, Masahiro; Nakatsuji, Hiroshi; Kishimoto, Naoki; Ohno, Koichi

    2010-02-28

    Valence ionized states of iron pentacarbonyl Fe(CO)(5) and eta(5)-cyclopentadienyl cobalt dicarbonyl Co(eta(5)-C(5)H(5))(CO)(2) have been studied by ultraviolet photoelectron spectroscopy, two-dimensional Penning ionization electron spectroscopy (2D-PIES), and symmetry-adapted cluster-configuration interaction calculations. Theory provided reliable assignments for the complex ionization spectra of these molecules, which have metal-carbonyl bonds. Theoretical ionization energies agreed well with experimental observations and the calculated wave functions could explain the relative intensities of PIES spectra. The collision-energy dependence of partial ionization cross sections (CEDPICS) was obtained by 2D-PIES. To interpret these CEDPICS, the interaction potentials between the molecules and a Li atom were examined in several coordinates by calculations. The relation between the slope of the CEDPICS and the electronic structure of the ionized states, such as molecular symmetry and the spatial distribution of ionizing orbitals, was analyzed. In Fe(CO)(5), an attractive interaction was obtained for the equatorial CO, while the interaction for the axial CO direction was repulsive. For Co(eta(5)-C(5)H(5))(CO)(2), the interaction potential in the direction of both Co-C-O and Co-Cp ring was attractive. These anisotropic interactions and ionizing orbital distributions consistently explain the relative slopes of the CEDPICS.

  12. Symmetry and the thermodynamics of currents in open quantum systems

    Science.gov (United States)

    Manzano, Daniel; Hurtado, Pablo I.

    2014-09-01

    Symmetry is a powerful concept in physics, and its recent application to understand nonequilibrium behavior is providing deep insights and groundbreaking exact results. Here we show how to harness symmetry to control transport and statistics in open quantum systems. Such control is enabled by a first-order-type dynamic phase transition in current statistics and the associated coexistence of different transport channels (or nonequilibrium steady states) classified by symmetry. Microreversibility then ensues, via the Gallavotti-Cohen fluctuation theorem, a twin dynamic phase transition for rare current fluctuations. Interestingly, the symmetry present in the initial state is spontaneously broken at the fluctuating level, where the quantum system selects the symmetry sector that maximally facilitates a given fluctuation. We illustrate these results in a qubit network model motivated by the problem of coherent energy harvesting in photosynthetic complexes, and introduce the concept of a symmetry-controlled quantum thermal switch, suggesting symmetry-based design strategies for quantum devices with controllable transport properties.

  13. Animal Gaits and Symmetry

    Science.gov (United States)

    Golubitsky, Martin

    2012-04-01

    Many gaits of four-legged animals are described by symmetry. For example, when a horse paces it moves both left legs in unison and then both right legs and so on. The motion is described by two symmetries: Interchange front and back legs, and swap left and right legs with a half-period phase shift. Biologists postulate the existence of a central pattern generator (CPG) in the neuronal system that sends periodic signals to the legs. CPGs can be thought of as electrical circuits that produce periodic signals and can be modeled by systems with symmetry. In this lecture we discuss animal gaits; use gait symmetries to construct a simplest CPG architecture that naturally produces quadrupedal gait rhythms; and make several testable predictions about gaits.

  14. Dynamical spacetime symmetry

    CERN Document Server

    Lovelady, Benjamin C

    2015-01-01

    According to the Coleman-Mandula theorem, any gauge theory of gravity combined with an internal symmetry based on a Lie group must take the form of a direct product in order to be consistent with basic assumptions of quantum field theory. However, we show that an alternative gauging of a simple group can lead dynamically to a spacetime with compact internal symmetry. The biconformal gauging of the conformal symmetry of n-dim Euclidean space doubles the dimension to give a symplectic manifold. Examining one of the Lagrangian submanifolds in the flat case, we find that in addition to the expected SO(n) connection and curvature, the solder form necessarily becomes Lorentzian. General coordinate invariance gives rise to an SO(n-1,1) connection on the spacetime. The principal fiber bundle character of the original SO(n) guarantees that the two symmetries enter as a direct product, in agreement with the Coleman-Mandula theorem.

  15. Gauge symmetry from decoupling

    Energy Technology Data Exchange (ETDEWEB)

    Wetterich, C., E-mail: c.wetterich@thphys.uni-heidelberg.de

    2017-02-15

    Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.

  16. Gauge symmetry from decoupling

    Directory of Open Access Journals (Sweden)

    C. Wetterich

    2017-02-01

    Full Text Available Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.

  17. CPT Symmetry Without Hermiticity

    CERN Document Server

    Mannheim, Philip D

    2016-01-01

    In the literature the $CPT$ theorem has only been established for Hamiltonians that are Hermitian. Here we extend the $CPT$ theorem to quantum field theories with non-Hermitian Hamiltonians. Our derivation is a quite minimal one as it requires only the time independent evolution of scalar products and invariance under complex Lorentz transformations. The first of these requirements does not force the Hamiltonian to be Hermitian. Rather, it forces its eigenvalues to either be real or to appear in complex conjugate pairs, forces the eigenvectors of such conjugate pairs to be conjugates of each other, and forces the Hamiltonian to admit of an antilinear symmetry. The latter requirement then forces this antilinear symmetry to be $CPT$, with Hermiticity of a Hamiltonian thus only being a sufficient condition for $CPT$ symmetry and not a necessary one. $CPT$ symmetry thus has primacy over Hermiticity, and it rather than Hermiticity should be taken as a guiding principle for constructing quantum theories. With confo...

  18. Gauge symmetry from decoupling

    Science.gov (United States)

    Wetterich, C.

    2017-02-01

    Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang-Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.

  19. Dynamical spacetime symmetry

    Science.gov (United States)

    Lovelady, Benjamin C.; Wheeler, James T.

    2016-04-01

    According to the Coleman-Mandula theorem, any gauge theory of gravity combined with an internal symmetry based on a Lie group must take the form of a direct product in order to be consistent with basic assumptions of quantum field theory. However, we show that an alternative gauging of a simple group can lead dynamically to a spacetime with compact internal symmetry. The biconformal gauging of the conformal symmetry of n-dimensional Euclidean space doubles the dimension to give a symplectic manifold. Examining one of the Lagrangian submanifolds in the flat case, we find that in addition to the expected S O (n ) connection and curvature, the solder form necessarily becomes Lorentzian. General coordinate invariance gives rise to an S O (n -1 ,1 ) connection on the spacetime. The principal fiber bundle character of the original S O (n ) guarantees that the two symmetries enter as a direct product, in agreement with the Coleman-Mandula theorem.

  20. Superconductivity and symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Sarasua, L.G., E-mail: sarasua@fisica.edu.uy [Instituto de Fisica, Facultad de Ciencias, Universidad de la Republica, Montevideo (Uruguay)

    2012-02-15

    In the present work we consider the relation between superconductivity and spontaneous gauge symmetry breaking (SGBS). We show that ODLRO does not require in principle SBGS, even in the presence of particle number fluctuations, by examining exact solutions of a fermionic pairing model. The criteria become equivalent if a symmetry breaking field is allowed, which can be attributed to the interaction with the environment. However, superconducting states without SBGS are not forbidden.

  1. Quantum Spectral Symmetries

    Science.gov (United States)

    Hamhalter, Jan; Turilova, Ekaterina

    2017-02-01

    Quantum symmetries of spectral lattices are studied. Basic properties of spectral order on A W ∗-algebras are summarized. Connection between projection and spectral automorphisms is clarified by showing that, under mild conditions, any spectral automorphism is a composition of function calculus and Jordan ∗-automorphism. Complete description of quantum spectral symmetries on Type I and Type II A W ∗-factors are completely described.

  2. Dihedral flavor symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Alexander Simon

    2009-06-10

    This thesis deals with the possibility of describing the flavor sector of the Standard Model of Particle Physics (with neutrino masses), that is the fermion masses and mixing matrices, with a discrete, non-abelian flavor symmetry. In particular, mass independent textures are considered, where one or several of the mixing angles are determined by group theory alone and are independent of the fermion masses. To this end a systematic analysis of a large class of discrete symmetries, the dihedral groups, is analyzed. Mass independent textures originating from such symmetries are described and it is shown that such structures arise naturally from the minimization of scalar potentials, where the scalars are gauge singlet flavons transforming non-trivially only under the flavor group. Two models are constructed from this input, one describing leptons, based on the group D{sub 4}, the other describing quarks and employing the symmetry D{sub 14}. In the latter model it is the quark mixing matrix element V{sub ud} - basically the Cabibbo angle - which is at leading order predicted from group theory. Finally, discrete flavor groups are discussed as subgroups of a continuous gauge symmetry and it is shown that this implies that the original gauge symmetry is broken by fairly large representations. (orig.)

  3. Multiwavelength Observations and State Transitions of an Ultra-luminous Supersoft X-ray Source: Evidence for an Intermediate-Mass Black Hole

    CERN Document Server

    Kong, A K H; Sjouwerman, L O; Di Stefano, R

    2005-01-01

    We report the results of Chandra and XMM-Newton observations of an ultra-luminous supersoft X-ray source in M101. M101 ULX-1 underwent 2 outbursts in 2004 during which the peak bolometric luminosities reached 1e41 erg/s. The outburst spectra were very soft and can generally be fitted with a blackbody model with temperatures of 50-160 eV. In two of the observations, absorption edges at 0.33 keV, 0.56 keV, 0.66 keV, and 0.88 keV were found. A cool accretion disk was also found in the 2004 December outburst. During the low luminosity state, a power-law tail was seen up to 7 keV. It is clear the source changed from a low/hard state to a high/soft state. In addition, it showed at least 5 outbursts between 1996 and 2004. This is the first ultra-luminous X-ray source for which recurrent outbursts with state transitions similar to Galactic X-ray binaries have been observed. From the Hubble Space Telescope data, we found an optical counterpart to the source. During the 2004 outbursts, we also performed radio and groun...

  4. Nature of the soft ULX in NGC 247: super-Eddington outflow and transition between the supersoft and soft ultraluminous regimes

    CERN Document Server

    Feng, Hua; Kaaret, Philip; Grise, Fabien

    2016-01-01

    We report on XMM-Newton/Chandra/Swift/HST observations of the ultraluminous X-ray source (ULX) in NGC 247, which is found to make transitions between the supersoft ultraluminous (SSUL) regime with a spectrum dominated by a cool ($\\sim 0.1$ keV) blackbody component and the soft ultraluminous (SUL) regime with comparable luminosities shared by the blackbody and power-law components. Multi-epoch observations revealed an anti-correlation between the blackbody radius and temperature, $R_{\\rm bb} \\propto T_{\\rm bb}^{-2.8 \\pm 0.3}$, ruling out a standard accretion disk as the origin of the soft X-ray emission. The soft X-ray emission is much more variable on both short and long timescales in the SSUL regime than in the SUL regime. We suggest that the SSUL regime may be an extension of the ultraluminous state toward the high accretion end, being an extreme case of the SUL regime, with the blackbody emission arising from the photosphere of thick outflows and the hard X-rays being emission leaked from the embedded accr...

  5. Relativistic RPA in axial symmetry

    CERN Document Server

    Arteaga, D Pena; 10.1103/PhysRevC.77.034317

    2009-01-01

    Covariant density functional theory, in the framework of self-consistent Relativistic Mean Field (RMF) and Relativistic Random Phase approximation (RPA), is for the first time applied to axially deformed nuclei. The fully self-consistent RMF+RRPA equations are posed for the case of axial symmetry and non-linear energy functionals, and solved with the help of a new parallel code. Formal properties of RPA theory are studied and special care is taken in order to validate the proper decoupling of spurious modes and their influence on the physical response. Sample applications to the magnetic and electric dipole transitions in $^{20}$Ne are presented and analyzed.

  6. Local particle-ghost symmetry

    CERN Document Server

    Kawamura, Yoshiharu

    2015-01-01

    We study the quantization of systems with local particle-ghost symmetries. The systems contain ordinary particles including gauge bosons and their counterparts obeying different statistics. The particle-ghost symmetry is a kind of fermionic symmetry, different from the space-time supersymmetry and the BRST symmetry. Subsidiary conditions on states guarantee the unitarity of systems.

  7. Noether Gauge Symmetry Approach in f(R) Gravity

    CERN Document Server

    Hussain, Ibrar; Mahomed, F M

    2011-01-01

    We discuss the f(R) gravity model in which the origin of dark energy is identified as a modification of gravity. The Noether symmetry with gauge term is investigated for the f(R) cosmological model. By utilization of the Noether Gauge Symmetry (NGS) approach, we obtain two exact forms f(R) for which such symmetries exist. Further it is shown that these forms of f(R) are stable.

  8. SUGRA new inflation with Heisenberg symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Antusch, Stefan; Cefalà, Francesco, E-mail: f.cefala@unibas.ch, E-mail: stefan.antusch@unibas.ch [Department of Physics, University of Basel, Klingelbergstr. 82, CH-4056 Basel (Switzerland)

    2013-10-01

    We propose a realisation of ''new inflation'' in supergravity (SUGRA), where the flatness of the inflaton potential is protected by a Heisenberg symmetry. Inflation can be associated with a particle physics phase transition, with the inflaton being a (D-flat) direction of Higgs fields which break some symmetry at high energies, e.g. of GUT Higgs fields or of Higgs fields for flavour symmetry breaking. This is possible since compared to a shift symmetry, which is usually used to protect a flat inflaton potential, the Heisenberg symmetry is compatible with a (gauge) non-singlet inflaton field. In contrast to conventional new inflation models in SUGRA, where the predictions depend on unknown parameters of the Kaehler potential, the model with Heisenberg symmetry makes discrete predictions for the primordial perturbation parameters which depend only on the order n at which the inflaton appears in the effective superpotential. The predictions for the spectral index n{sub s} can be close to the best-fit value of the latest Planck 2013 results.

  9. SUGRA New Inflation with Heisenberg Symmetry

    CERN Document Server

    Antusch, Stefan

    2013-01-01

    We propose a realisation of 'new inflation' in supergravity (SUGRA), where the flatness of the inflaton potential is protected by a Heisenberg symmetry. Inflation can be associated with a particle physics phase transition, with the inflaton being a (D-flat) direction of Higgs fields which break some symmetry at high energies, e.g. of GUT Higgs fields or of Higgs fields for flavour symmetry breaking. This is possible since compared to a shift symmetry, which is usually used to protect a flat inflaton potential, the Heisenberg symmetry is compatible with a (gauge) non-singlet inflaton field. In contrast to conventional new inflation models in SUGRA, where the predictions depend on unknown parameters of the K"ahler potential, the model with Heisenberg symmetry makes discrete predictions for the primordial perturbation parameters which depend only on the order n at which the inflaton appears in the effective superpotential. The predictions for the spectral index n_s can be close to the best-fit value of the lates...

  10. Invariants of broken discrete symmetries

    CERN Document Server

    Kalozoumis, P; Diakonos, F K; Schmelcher, P

    2014-01-01

    The parity and Bloch theorems are generalized to the case of broken global symmetry. Local inversion or translation symmetries are shown to yield invariant currents that characterize wave propagation. These currents map the wave function from an arbitrary spatial domain to any symmetry-related domain. Our approach addresses any combination of local symmetries, thus applying in particular to acoustic, optical and matter waves. Nonvanishing values of the invariant currents provide a systematic pathway to the breaking of discrete global symmetries.

  11. Lectures on Yangian symmetry

    Science.gov (United States)

    Loebbert, Florian

    2016-08-01

    In these introductory lectures we discuss the topic of Yangian symmetry from various perspectives. Forming the classical counterpart of the Yangian and an extension of ordinary Noether symmetries, first the concept of nonlocal charges in classical, two-dimensional field theory is reviewed. We then define the Yangian algebra following Drinfel’d's original motivation to construct solutions to the quantum Yang-Baxter equation. Different realizations of the Yangian and its mathematical role as a Hopf algebra and quantum group are discussed. We demonstrate how the Yangian algebra is implemented in quantum, two-dimensional field theories and how its generators are renormalized. Implications of Yangian symmetry on the two-dimensional scattering matrix are investigated. We furthermore consider the important case of discrete Yangian symmetry realized on integrable spin chains. Finally we give a brief introduction to Yangian symmetry in planar, four-dimensional super Yang-Mills theory and indicate its impact on the dilatation operator and tree-level scattering amplitudes. These lectures are illustrated by several examples, in particular the two-dimensional chiral Gross-Neveu model, the Heisenberg spin chain and { N }=4 superconformal Yang-Mills theory in four dimensions.

  12. Universal 23 symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Joshipura, A.S. [Physical Research Laboratory, Navarangpura, Ahmedabad (India)

    2008-01-15

    The possible maximal mixing seen in the oscillations of atmospheric neutrinos has led to the postulate of {mu}-{tau} symmetry, which interchanges {nu}{sub {mu}} and {nu}{sub {tau}}. We argue that such a symmetry need not be special to neutrinos but can be extended to all fermions. The assumption that all fermion mass matrices are approximately invariant under the interchange of the second and the third generation fields is shown to be phenomenologically viable and has interesting consequences. In the quark sector, the smallness of V{sub ub} and V{sub cb} can be consequences of this approximate 2-3 symmetry. The same approximate symmetry can simultaneously lead to a large atmospheric mixing angle and can describe the leptonic mixing quite well. We identify two generic scenarios leading to this. One is based on the conventional type-I seesaw mechanism and the other follows from the type-II seesaw model. The latter requires a quasi-degenerate neutrino spectrum for obtaining large atmospheric neutrino mixing in the presence of an approximate {mu}-{tau} symmetry. (orig.)

  13. Rigidity and symmetry

    CERN Document Server

    Weiss, Asia; Whiteley, Walter

    2014-01-01

    This book contains recent contributions to the fields of rigidity and symmetry with two primary focuses: to present the mathematically rigorous treatment of rigidity of structures, and to explore the interaction of geometry, algebra, and combinatorics. Overall, the book shows how researchers from diverse backgrounds explore connections among the various discrete structures with symmetry as the unifying theme.  Contributions present recent trends and advances in discrete geometry, particularly in the theory of polytopes. The rapid development of abstract polytope theory has resulted in a rich theory featuring an attractive interplay of methods and tools from discrete geometry, group theory, classical geometry, hyperbolic geometry and topology.  The volume will also be a valuable source as an introduction to the ideas of both combinatorial and geometric rigidity theory and its applications, incorporating the surprising impact of symmetry. It will appeal to students at both the advanced undergraduate and gradu...

  14. Seeing Science through Symmetry

    Science.gov (United States)

    Gould, L. I.

    Seeing Through Symmetry is a course that introduces non-science majors to the pervasive influence of symmetry in science. The concept of symmetry is usedboth as a link between subjects (such as physics, biology, mathematics, music, poetry, and art) and as a method within a subject. This is done through the development and use of interactive multimedia learning environments to stimulate learning. Computer-based labs enable the student to further explore the concept by being gently led from the arts to science. This talk is an update that includes some of the latest changes to the course. Explanations are given on methodology and how a variety of interactive multimedia tools contribute to both the lecture and lab portion of the course (created in 1991 and taught almost every semester since then, including one in Sweden).

  15. Binary Tetrahedral Flavor Symmetry

    CERN Document Server

    Eby, David A

    2013-01-01

    A study of the T' Model and its variants utilizing Binary Tetrahedral Flavor Symmetry. We begin with a description of the historical context and motivations for this theory, together with some conceptual background for added clarity, and an account of our theory's inception in previous works. Our model endeavors to bridge two categories of particles, leptons and quarks, a unification made possible by the inclusion of additional Higgs particles, shared between the two fermion sectors and creating a single coherent system. This is achieved through the use of the Binary Tetrahedral symmetry group and an investigation of the Tribimaximal symmetry evidenced by neutrinos. Our work details perturbations and extensions of this T' Model as we apply our framework to neutrino mixing, quark mixing, unification, and dark matter. Where possible, we evaluate model predictions against experimental results and find excellent matching with the atmospheric and reactor neutrino mixing angles, an accurate prediction of the Cabibb...

  16. Segmentation Using Symmetry Deviation

    DEFF Research Database (Denmark)

    Hollensen, Christian; Højgaard, L.; Specht, L.

    2011-01-01

    and evaluate the method. The method uses deformable registration on computed tomography(CT) to find anatomical symmetry deviations of Head & Neck squamous cell carcinoma and combining it with positron emission tomography (PET) images. The method allows the use anatomical and symmetrical information of CT scans...... to improve automatic delineations. Materials: PET/CT scans from 30 patients were used for this study, 20 without cancer in hypopharyngeal volume and 10 with hypharyngeal carcinoma. An head and neck atlas was created from the 20 normal patients. The atlas was created using affine and non-rigid registration...... of the CT-scans into a single atlas. Afterwards the standard deviation of anatomical symmetry for the 20 normal patients was evaluated using non-rigid registration and registered onto the atlas to create an atlas for normal anatomical symmetry deviation. The same non-rigid registration was used on the 10...

  17. Leadership, power and symmetry

    DEFF Research Database (Denmark)

    Spaten, Ole Michael

    2016-01-01

    Research publications concerning managers who coach their own employees are barely visible despite its wide- spread use in enterprises (McCarthy & Milner, 2013; Gregory & Levy, 2011; Crabb, 2011). This article focuses on leadership, power and moments of symmetry in the coaching relationship...... session. Thereafter we executed qualitative interviews with both managers and employees. Subsequently, a Thematic Analysis resulted in several themes, including power and moments of symmetry in the coaching relationship. One main conclusion is that the most fruitful coaching was obtained when the coachee...... experienced moments of symmetry and that necessary and sufficient conditions to bring forth such moments include a strong working alliance and the coach being aware of the power at play....

  18. Gravitation and Duality Symmetry

    CERN Document Server

    D'Andrade, V C; Pereira, J G

    2005-01-01

    By generalizing the Hodge dual operator to the case of soldered bundles, and working in the context of the teleparallel equivalent of general relativity, an analysis of the duality symmetry in gravitation is performed. Although the basic conclusion is that, at least in the general case, gravitation does not present duality symmetry, there is a particular theory in which this symmetry is present. This theory is a self dual (or anti-self dual) teleparallel gravity in which, owing to the fact that it does not contribute to the gravitational interaction of fermions, the purely tensor part of torsion is assumed to vanish. The corresponding fermionic gravitational interaction is found to be chiral. Since duality is intimately related to renormalizability, this theory will probably be much more amenable to renormalization than teleparallel gravity or general relativity. Although obtained in the context of teleparallel gravity, these results must also be true for general relativity.

  19. To see symmetry in a forest of trees [string theory

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Chuan-Tsung, E-mail: ctchan@go.thu.edu.tw [Department of Physics, Tunghai University, Taichung 40704, Taiwan (China); National Center for Theoretical Sciences, Hsinchu 30013, Taiwan (China); Kawamoto, Shoichi, E-mail: kawamoto@thu.edu.tw [Department of Physics, Tunghai University, Taichung 40704, Taiwan (China); National Center for Theoretical Sciences, Hsinchu 30013, Taiwan (China); Tomino, Dan, E-mail: dantomino@thu.edu.tw [Department of Physics, Tunghai University, Taichung 40704, Taiwan (China)

    2014-08-15

    The exact symmetry identities among four-point tree-level amplitudes of bosonic open string theory as derived by G.W. Moore are re-examined. The main focuses of this work are: (1) Explicit construction of kinematic configurations and a new polarization basis for the scattering processes. These setups simplify greatly the functional forms of the exact symmetry identities, and help us to extract easily high-energy limits of stringy amplitudes appearing in the exact identities. (2) Connection and comparison between D.J. Gross's high-energy stringy symmetry and the exact symmetry identities as derived by G.W. Moore. (3) Observation of symmetry patterns of stringy amplitudes with respect to the order of energy dependence in scattering amplitudes.

  20. Flavour from accidental symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Ferretti, Luca [SISSA/ISAS and INFN, I-34013 Trieste (Italy); King, Stephen F. [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Romanino, Andrea [SISSA/ISAS and INFN, I-34013 Trieste (Italy)

    2006-11-15

    We consider a new approach to fermion masses and mixings in which no special 'horizontal' dynamics is invoked to account for the hierarchical pattern of charged fermion masses and for the peculiar features of neutrino masses. The hierarchy follows from the vertical, family-independent structure of the model, in particular from the breaking pattern of the Pati-Salam group. The lightness of the first two fermion families can be related to two family symmetries emerging in this context as accidental symmetries.

  1. Symmetry, structure, and spacetime

    CERN Document Server

    Rickles, Dean

    2007-01-01

    In this book Rickles considers several interpretative difficulties raised by gauge-type symmetries (those that correspond to no change in physical state). The ubiquity of such symmetries in modern physics renders them an urgent topic in philosophy of physics. Rickles focuses on spacetime physics, and in particular classical and quantum general relativity. Here the problems posed are at their most pathological, involving the apparent disappearance of spacetime! Rickles argues that both traditional ontological positions should be replaced by a structuralist account according to which relational

  2. Weakly broken galileon symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Pirtskhalava, David [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy); Santoni, Luca; Trincherini, Enrico [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy); INFN, Sezione di Pisa, Piazza dei Cavalieri 7, 56126 Pisa (Italy); Vernizzi, Filippo [Institut de Physique Théorique, Université Paris Saclay, CEA, CNRS, Gif-sur-Yvette cédex, F-91191 (France)

    2015-09-01

    Effective theories of a scalar ϕ invariant under the internal galileon symmetryϕ→ϕ+b{sub μ}x{sup μ} have been extensively studied due to their special theoretical and phenomenological properties. In this paper, we introduce the notion of weakly broken galileon invariance, which characterizes the unique class of couplings of such theories to gravity that maximally retain their defining symmetry. The curved-space remnant of the galileon’s quantum properties allows to construct (quasi) de Sitter backgrounds largely insensitive to loop corrections. We exploit this fact to build novel cosmological models with interesting phenomenology, relevant for both inflation and late-time acceleration of the universe.

  3. Baryons and Chiral Symmetry

    CERN Document Server

    Liu, Keh-Fei

    2016-01-01

    The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of $\\pi N \\sigma$ term and strangeness. The third one is the role of chiral $U(1)$ anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.

  4. Deformed discrete symmetries

    Science.gov (United States)

    Arzano, Michele; Kowalski-Glikman, Jerzy

    2016-09-01

    We construct discrete symmetry transformations for deformed relativistic kinematics based on group valued momenta. We focus on the specific example of κ-deformations of the Poincaré algebra with associated momenta living on (a sub-manifold of) de Sitter space. Our approach relies on the description of quantum states constructed from deformed kinematics and the observable charges associated with them. The results we present provide the first step towards the analysis of experimental bounds on the deformation parameter κ to be derived via precision measurements of discrete symmetries and CPT.

  5. The hidden symmetry and Mr. Higgs!

    CERN Document Server

    Papachristou, C J

    2014-01-01

    Written in non-technical language, this review article explains the significance of the Higgs field and the associated Higgs boson in High-Energy Physics. The connection of symmetry with particle interactions and their unification is also discussed in this context. The presentation is informal and physical concepts are demonstrated through metaphors from everyday experience.

  6. Fermion Determinant with Dynamical Chiral Symmetry Breaking

    Institute of Scientific and Technical Information of China (English)

    LU Qin; YANG Hua; WANG Qing

    2002-01-01

    One-loop fermion determinant is discussed for the case in which the dynamical chiral symmetry breakingcaused by momentum-dependent fermion self-energy ∑(p2) takes place. The obtained series generalizes the heat kernelexpansion for hard fermion mass.

  7. Symmetries and fundamental interactions—selected topics

    NARCIS (Netherlands)

    Jungmann, Klaus P.

    2014-01-01

    Abstract High precision experiments at low energies on discrete and continuous symmetries offer the possibility to search for New Physics beyond the Standard Model. Examples are dedicated searches for violations of the C, P, CP and CPT as well as of Lorentz Invariance using matter and anti-matter. A

  8. Empirical Example of Nucleus with Transitional Dynamical Symmetry X(5)

    Institute of Scientific and Technical Information of China (English)

    张大立; 赵惠英

    2002-01-01

    By analysing the energy spectrum, E2 transition rates and branching ratios, it is shown explicitly that the nucleus 150Nd provides an empirical example with X(5) symmetry at the critical point of the transition from U(5) to SU(3) symmetry.

  9. SU(5) symmetry of spdfg interacting boson model

    Institute of Scientific and Technical Information of China (English)

    LI; Jingsheng(李京生); LIU; Yuxin(刘玉鑫); GAO; Peng(高鹏)

    2003-01-01

    The extended interacting boson model with s-, p-, d-, f- and g-bosons included (spdfg IBM)is investigated. The algebraic structure including the generators, the Casimir operators of the groups at the SU(5) dynamical symmetry and the branching rules of the irreducible representation reductions along the group chain are obtained. The typical energy spectrum of the symmetry is given.

  10. Symmetry breaking and cosmic acceleration in scalar field models

    CERN Document Server

    Sadjadi, M Mohseni; Sepangi, H R

    2015-01-01

    We study the possible role of symmetry breaking in the onset of the acceleration of the Universe in a scalar field dark energy model. We propose a new scenario in which acceleration of the Universe is driven by a positive potential produced by means of symmetry breaking.

  11. Symmetries of Differential equations and Applications in Relativistic Physics

    CERN Document Server

    Paliathanasis, Andronikos

    2015-01-01

    In this thesis, we study the one parameter point transformations which leave invariant the differential equations. In particular we study the Lie and the Noether point symmetries of second order differential equations. We establish a new geometric method which relates the point symmetries of the differential equations with the collineations of the underlying manifold where the motion occurs. This geometric method is applied in order the two and three dimensional Newtonian dynamical systems to be classified in relation to the point symmetries; to generalize the Newtonian Kepler-Ermakov system in Riemannian spaces; to study the symmetries between classical and quantum systems and to investigate the geometric origin of the Type II hidden symmetries for the homogeneous heat equation and for the Laplace equation in Riemannian spaces. At last but not least, we apply this geometric approach in order to determine the dark energy models by use the Noether symmetries as a geometric criterion in modified theories of gra...

  12. Discrete R-symmetries and Anomaly Universality in Heterotic Orbifolds

    CERN Document Server

    Bizet, Nana Geraldine Cabo; Pena, Damian Kaloni Mayorga; Parameswaran, Susha L; Schmitz, Matthias; Zavala, Ivonne

    2013-01-01

    We study discrete R-symmetries, which appear in 4D low energy effective field theory derived from hetetoric orbifold models. We derive the R-symmetries directly from geometrical symmetries of orbifolds. In particular, we obtain the corresponding R-charges by requiring that the couplings be invariant under these symmetries. This allows for a more general treatment than the explicit computations of correlation functions made previously by the authors, including models with discrete Wilson lines, and orbifold symmetries beyond plane-by-plane rotational invariance. Surprisingly, for the cases covered by earlier explicit computations, the R-charges differ from the previous result. We study the anomalies associated with these R-symmetries, and comment on the results.

  13. Discrete R-symmetries and anomaly universality in heterotic orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Bizet, Nana G. Cabo [Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear,Calle 30, esq.a 5ta Ave, Miramar, 6122 La Habana (Cuba); Kobayashi, Tatsuo [Department of Physics, Kyoto University,Kyoto 606-8502 (Japan); Peña, Damián K. Mayorga [Bethe Center for Theoretical Physics and Physikalisches Institut der Universität Bonn,Nussallee 12, 53115 Bonn (Germany); Parameswaran, Susha L. [Department of Mathematics and Physics, Leibniz Universität Hannover,Welfengarten 1, 30167 Hannover (Germany); Schmitz, Matthias [Bethe Center for Theoretical Physics and Physikalisches Institut der Universität Bonn,Nussallee 12, 53115 Bonn (Germany); Zavala, Ivonne [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands)

    2014-02-24

    We study discrete R-symmetries, which appear in the 4D low energy effective field theory derived from heterotic orbifold models. We derive the R-symmetries directly from the geometrical symmetries of the orbifolds. In particular, we obtain the corresponding R-charges by requiring that the couplings be invariant under these symmetries. This allows for a more general treatment than the explicit computations of correlation functions made previously by the authors, including models with discrete Wilson lines, and orbifold symmetries beyond plane-by-plane rotational invariance. The R-charges obtained in this manner differ from those derived in earlier explicit computations. We study the anomalies associated with these R-symmetries, and comment on the results.

  14. Quantum entanglement and symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Chruscinski, D; Kossakowski, A [Institute of Physics, Nicolaus Copernicus University, Grudziadzka 5/7, 87-100 Torun (Poland)

    2007-11-15

    One of the main problem in Quantum Information Theory is to test whether a given state of a composite quantum system is entangled or separable. It turns out that within a class of states invariant under the action of the symmetry group this problem considerably simplifies. We analyze multipartite invariant states and the corresponding symmetric quantum channels.

  15. Quantum entanglement and symmetry

    Science.gov (United States)

    Chruściński, D.; Kossakowski, A.

    2007-11-01

    One of the main problem in Quantum Information Theory is to test whether a given state of a composite quantum system is entangled or separable. It turns out that within a class of states invariant under the action of the symmetry group this problem considerably simplifies. We analyze multipartite invariant states and the corresponding symmetric quantum channels.

  16. Broken symmetry makes helium

    CERN Multimedia

    Gray, P L

    2003-01-01

    "The subatomic pion particle breaks the charge symmetry rule that governs both fusion and decay. In experiments performed at the Indiana University Cyclotron Laboratory, physicists forced heavy hydrogen (1 proton + 1 neutron) to fuse into helium in a controlled, measurable environment" (1 paragraph).

  17. Symmetries in fundamental physics

    CERN Document Server

    Sundermeyer, Kurt

    2014-01-01

    Over the course of the last century it has become clear that both elementary particle physics and relativity theories are based on the notion of symmetries. These symmetries become manifest in that the "laws of nature" are invariant under spacetime transformations and/or gauge transformations. The consequences of these symmetries were analyzed as early as in 1918 by Emmy Noether on the level of action functionals. Her work did not receive due recognition for nearly half a century, but can today be understood as a recurring theme in classical mechanics, electrodynamics and special relativity, Yang-Mills type quantum field theories, and in general relativity. As a matter of fact, as shown in this monograph, many aspects of physics can be derived solely from symmetry considerations. This substantiates the statement of E.P.Wigner "... if we knew all the laws of nature, or the ultimate Law of nature, the invariance properties of these laws would not furnish us new information." Thanks to Wigner we now also underst...

  18. Symmetries in fundamental physics

    CERN Document Server

    Sundermeyer, Kurt

    2014-01-01

    Over the course of the last century it has become clear that both elementary particle physics and relativity theories are based on the notion of symmetries. These symmetries become manifest in that the "laws of nature" are invariant under spacetime transformations and/or gauge transformations. The consequences of these symmetries were analyzed as early as in 1918 by Emmy Noether on the level of action functionals. Her work did not receive due recognition for nearly half a century, but can today be understood as a recurring theme in classical mechanics, electrodynamics and special relativity, Yang-Mills type quantum field theories, and in general relativity. As a matter of fact, as shown in this monograph, many aspects of physics can be derived solely from symmetry considerations. This substantiates the statement of E.P. Wigner "... if we knew all the laws of nature, or the ultimate Law of nature, the invariance properties of these laws would not furnish us new information." Thanks to Wigner we now also unders...

  19. Horror Vacui Symmetry.

    Science.gov (United States)

    Crumpecker, Cheryl

    2003-01-01

    Describes an art lesson used with children in the third grade to help them learn about symmetry, as well as encouraging them to draw larger than usual. Explains that students learn about the belief called "Horror Vacui" of the Northwest American Indian tribes and create their interpretation of this belief. (CMK)

  20. Gauging without Initial Symmetry

    CERN Document Server

    Kotov, Alexei

    2016-01-01

    The gauge principle is at the heart of a good part of fundamental physics: Starting with a group G of so-called rigid symmetries of a functional defined over space-time Sigma, the original functional is extended appropriately by additional Lie(G)-valued 1-form gauge fields so as to lift the symmetry to Maps(Sigma,G). Physically relevant quantities are then to be obtained as the quotient of the solutions to the Euler-Lagrange equations by these gauge symmetries. In this article we show that one can construct a gauge theory for a standard sigma model in arbitrary space-time dimensions where the target metric is not invariant with respect to any rigid symmetry group, but satisfies a much weaker condition: It is sufficient to find a collection of vector fields v_a on the target M satisfying the extended Killing equation v_{a(i;j)}=0 for some connection acting on the index a. For regular foliations this is equivalent to merely requiring the distribution orthogonal to the leaves to be invariant with respect to leaf...

  1. The politics of symmetry

    NARCIS (Netherlands)

    Pels, D.L.

    1996-01-01

    While symmetry and impartiality have become ruling principles in S&TS, defining its core ideal of a 'value-free relativism', their philosophical anchorage has attracted much less discussion than the issue or:how far their jurisdiction can be extended or generalized. This paper seeks to argue that sy

  2. Applications of chiral symmetry

    CERN Document Server

    Pisarski, R D

    1995-01-01

    I discuss several topics in the applications of chiral symmetry at nonzero temperature, including: where the rho goes, disoriented chiral condensates, and the phase diagram for QCD with 2+1 flavors. (Based upon talks presented at the "Workshop on Finite Temperature QCD", Wuhan, P.R.C., April, 1994.)

  3. Testing for central symmetry

    NARCIS (Netherlands)

    Einmahl, John; Gan, Zhuojiong

    2016-01-01

    Omnibus tests for central symmetry of a bivariate probability distribution are proposed. The test statistics compare empirical measures of opposite regions. Under rather weak conditions, we establish the asymptotic distribution of the test statistics under the null hypothesis; it follows that they a

  4. Symmetry and symmetry breaking in quantum mechanics; Symetrie et brisure de symetrie en mechanique quantique

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Philippe [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France)

    1998-12-31

    In the world of infinitely small, the world of atoms, nuclei and particles, the quantum mechanics enforces its laws. The discovery of Quanta, this unbelievable castration of the Possible in grains of matter and radiation, in discrete energy levels compels us of thinking the Single to comprehend the Universal. Quantum Numbers, magic Numbers and Numbers sign the wave. The matter is vibration. To describe the music of the world one needs keys, measures, notes, rules and partition: one needs quantum mechanics. The particles reduce themselves not in material points as the scholars of the past centuries thought, but they must be conceived throughout the space, in the accomplishment of shapes of volumes. When Einstein asked himself whether God plays dice, there was no doubt among its contemporaries that if He exists He is a geometer. In a Nature reduced to Geometry, the symmetries assume their role in servicing the Harmony. The symmetries allow ordering the energy levels to make them understandable. They impose there geometrical rules to the matter waves, giving them properties which sometimes astonish us. Hidden symmetries, internal symmetries and newly conceived symmetries have to be adopted subsequently to the observation of some order in this world of Quanta. In turn, the symmetries provide new observables which open new spaces of observation 17 refs., 16 figs.

  5. Symmetries of hadrons after unbreaking the chiral symmetry

    CERN Document Server

    Glozman, L Ya; Schröck, M

    2012-01-01

    We study hadron correlators upon artificial restoration of the spontaneously broken chiral symmetry. In a dynamical lattice simulation we remove the lowest lying eigenmodes of the Dirac operator from the valence quark propagators and study evolution of the hadron masses obtained. All mesons and baryons in our study, except for a pion, survive unbreaking the chiral symmetry and their exponential decay signals become essentially better. From the analysis of the observed spectroscopic patterns we conclude that confinement still persists while the chiral symmetry is restored. All hadrons fall into different chiral multiplets. The broken U(1)_A symmetry does not get restored upon unbreaking the chiral symmetry. We also observe signals of some higher symmetry that includes chiral symmetry as a subgroup. Finally, from comparison of the \\Delta - N splitting before and after unbreaking of the chiral symmetry we conclude that both the color-magnetic and the flavor-spin quark-quark interactions are of equal importance.

  6. Cascading Multicriticality in Nonrelativistic Spontaneous Symmetry Breaking

    CERN Document Server

    Griffin, Tom; Horava, Petr; Yan, Ziqi

    2015-01-01

    Without Lorentz invariance, spontaneous global symmetry breaking can lead to multicritical Nambu-Goldstone modes with a higher-order low-energy dispersion $\\omega\\sim k^n$ ($n=2,3,\\ldots$), whose naturalness is protected by polynomial shift symmetries. Here we investigate the role of infrared divergences and the nonrelativistic generalization of the Coleman-Hohenberg-Mermin-Wagner (CHMW) theorem. We find novel cascading phenomena with large hierarchies between the scales at which the value of $n$ changes, leading to an evasion of the "no-go" consequences of the relativistic CHMW theorem.

  7. Relativistic effect of spin and pseudospin symmetries

    CERN Document Server

    Chen, Shou-Wan

    2012-01-01

    Dirac Hamiltonian is scaled in the atomic units $\\hbar =m=1$, which allows us to take the non-relativistic limit by setting the Compton wavelength $% \\lambda \\rightarrow 0 $. The evolutions of the spin and pseudospin symmetries towards the non-relativistic limit are investigated by solving the Dirac equation with the parameter $\\lambda$. With $\\lambda$ transformation from the original Compton wavelength to 0, the spin splittings decrease monotonously in all spin doublets, and the pseudospin splittings increase in several pseudospin doublets, no change, or even reduce in several other pseudospin doublets. The various energy splitting behaviors of both the spin and pseudospin doublets with $\\lambda$ are well explained by the perturbation calculations of Dirac Hamiltonian in the present units. It indicates that the origin of spin symmetry is entirely due to the relativistic effect, while the origin of pseudospin symmetry cannot be uniquely attributed to the relativistic effect.

  8. Workshop on electroweak symmetry breaking: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Hinchliffe, I. (ed.)

    1984-10-01

    A theoretical workshop on electroweak symmetry breaking at the Superconducting Supercollider was held at Lawrence Berkeley Laboratory, June 4-22, 1984. The purpose of the workshop was to focus theoretical attention on the ways in which experimentation at the SSC could reveal manifestations of the phenomenon responsible for electroweak symmetry breaking. This issue represents, at present, the most compelling scientific argument for the need to explore the energy region to be made accessible by the SSC, and a major aim of the workshop was to involve a broad cross section of particle theorists in the ongoing process of sharpening the requirements for both accelerator and detector design that will ensure detection and identification of meaningful signals, whatever form the electroweak symmetry breaking phenomenon should actually take. Separate entries were prepared for the data base for the papers presented.

  9. Test of Relativistic Eigenfunctions for Pseudospin Symmetry

    Science.gov (United States)

    Ginocchio, Joseph N.

    2001-10-01

    Pseudospin symmetry has been shown to be a relativistic symmetry of the Dirac Hamiltonian [1] and the generators of this symmetry have been determined [2]. Although the measured energy splittings between pseudospin doublets are small, the eigenfunctions of the doublets have been examined only recently [3]. We show to what extent the pseudospin partners of realistic relativistic mean field eigenfunctions [4] are themselves eigenfunctions of the same Dirac Hamiltonian. 1) J. N. Ginocchio, Phys. Rev. Lett. 78, 436 (1997). 2) J. N. Ginocchio and A. Leviatan, Phys. Lett. B 425, 1 (1998). 3) J. N. Ginocchio and A. Leviatan, to be published in Phys. Rev. Lett. (2001). 4) J. N. Ginocchio and D. G. Madland, Phys. Rev. C 57, 1167 (1998).

  10. Symmetry transforms for ideal magnetohydrodynamics equilibria.

    Science.gov (United States)

    Bogoyavlenskij, Oleg I

    2002-11-01

    A method for constructing ideal magnetohydrodynamics (MHD) equilibria is introduced. The method consists of the application of symmetry transforms to any known MHD equilibrium [ O. I. Bogoyavlenskij, Phys. Rev. E. 62, 8616, (2000)]. The transforms break the geometrical symmetries of the field-aligned solutions and produce continuous families of the nonsymmetric MHD equilibria. The method of symmetry transforms also allows to obtain MHD equilibria with current sheets and exact solutions with noncollinear vector fields B and V. A model of the nonsymmetric astrophysical jets outside of their accretion disks is developed. The total magnetic and kinetic energy of the jet is finite in any layer c(1)

  11. On Symmetries in Optimal Control

    OpenAIRE

    van der Schaft, A. J.

    1986-01-01

    We discuss the use of symmetries in solving optimal control problems. In particular a procedure for obtaining symmetries is given which can be performed before the actual calculation of the optimal control and optimal Hamiltonian.

  12. On Symmetries in Optimal Control

    NARCIS (Netherlands)

    Schaft, A.J. van der

    1986-01-01

    We discuss the use of symmetries in solving optimal control problems. In particular a procedure for obtaining symmetries is given which can be performed before the actual calculation of the optimal control and optimal Hamiltonian.

  13. A relativistic symmetry in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ginocchio, J N [MS B283, Theoretical Division, Los Alamos National Laboratory Los Alamos, New Mexico 87545 (Mexico)

    2007-11-15

    We review some of the empirical and theoretical evidence supporting pseudospin symmetry in nuclei as a relativistic symmetry. We review the case that the eigenfunctions of realistic relativistic nuclear mean fields approximately conserve pseudospin symmetry in nuclei. We discuss the implications of pseudospin symmetry for magnetic dipole transitions and Gamow-Teller transitions between states in pseudospin doublets. We explore a more fundamental rationale for pseudospin symmetry in terms of quantum chromodynamics (QCD), the basic theory of the strong interactions. We show that pseudospin symmetry in nuclei implies spin symmetry for an anti-nucleon in a nuclear environment. We also discuss the future and what role pseudospin symmetry may be expected to play in an effective field theory of nucleons.

  14. Introduction to Electroweak Symmetry Breaking

    Energy Technology Data Exchange (ETDEWEB)

    Dawson,S.

    2008-10-02

    The Standard Model (SM) is the backbone of elementary particle physics-not only does it provide a consistent framework for studying the interactions of quark and leptons, but it also gives predictions which have been extensively tested experimentally. In these notes, I review the electroweak sector of the Standard Model, discuss the calculation of electroweak radiative corrections to observables, and summarize the status of SM Higgs boson searches. Despite the impressive experimental successes, however, the electroweak theory is not completely satisfactory and the mechanism of electroweak symmetry breaking is untested. I will discuss the logic behind the oft-repeated statement: 'There must be new physics at the TeV scale'. These lectures reflect my strongly held belief that upcoming results from the LHC will fundamentally change our understanding of electroweak symmetry breaking. In these lectures, I review the status of the electroweak sector of the Standard Model, with an emphasis on the importance of radiative corrections and searches for the Standard Model Higgs boson. A discussion of the special role of the TeV energy scale in electroweak physics is included.

  15. Duality and hidden symmetries in interacting particle systems

    CERN Document Server

    Giardina, Cristian; Redig, Frank; Vafayi, Kiamars

    2008-01-01

    In the context of Markov processes, both in discrete and continuous setting, we show a general relation between duality functions and symmetries of the generator. If the generator can be written in the form of a Hamiltonian of a quantum spin system, then the "hidden" symmetries are easily derived. We illustrate our approach in processes of symmetric exclusion type, in which the symmetry is of SU(2) type, as well as for the Kipnis-Marchioro-Presutti (KMP) model for which we unveil its SU(1,1) symmetry. The KMP model is in turn an instantaneous thermalization limit of the energy process associated to a large family of models of interacting diffusions, which we call Brownian energy process (BEP) and which all possess the SU(1,1) symmetry. We treat in details the case where the system is in contact with reservoirs and the dual process becomes absorbing.

  16. Reflection symmetries of Isolated Self-consistent Stellar Systems

    CERN Document Server

    An, J; Sanders, J L

    2016-01-01

    Isolated, steady-state galaxies correspond to equilibrium solutions of the Poisson--Vlasov system. We show that (i) all galaxies with a distribution function depending on energy alone must be spherically symmetric and (ii) all axisymmetric galaxies with a distribution function depending on energy and the angular momentum component parallel to the symmetry axis must also be reflection-symmetric about the plane $z=0$. The former result is Lichtenstein's Theorem, derived here by a method exploiting symmetries of solutions of elliptic partial differential equations, while the latter result is new. These results are subsumed into the Symmetry Theorem, which specifies how the symmetries of the distribution function in configuration or velocity space can control the planes of reflection symmetries of the ensuing stellar system.

  17. Invariants of broken discrete symmetries

    OpenAIRE

    Kalozoumis, P.; Morfonios, C.; Diakonos, F. K.; Schmelcher, P.

    2014-01-01

    The parity and Bloch theorems are generalized to the case of broken global symmetry. Local inversion or translation symmetries are shown to yield invariant currents that characterize wave propagation. These currents map the wave function from an arbitrary spatial domain to any symmetry-related domain. Our approach addresses any combination of local symmetries, thus applying in particular to acoustic, optical and matter waves. Nonvanishing values of the invariant currents provide a systematic ...

  18. Symmetry of “Twins”

    OpenAIRE

    Vladan Nikolić; Ljiljana Radović; Biserka Marković

    2015-01-01

    The idea of construction of twin buildings is as old as architecture itself, and yet there is hardly any study emphasizing their specificity. Most frequently there are two objects or elements in an architectural composition of “twins” in which there may be various symmetry relations, mostly bilateral symmetries. The classification of “twins” symmetry in this paper is based on the existence of bilateral symmetry, in terms of the perception of an observer. The classification includes both, 2D a...

  19. Dynamical Symmetries in Classical Mechanics

    Science.gov (United States)

    Boozer, A. D.

    2012-01-01

    We show how symmetries of a classical dynamical system can be described in terms of operators that act on the state space for the system. We illustrate our results by considering a number of possible symmetries that a classical dynamical system might have, and for each symmetry we give examples of dynamical systems that do and do not possess that…

  20. Scattering matrices with block symmetries

    OpenAIRE

    Życzkowski, Karol

    1997-01-01

    Scattering matrices with block symmetry, which corresponds to scattering process on cavities with geometrical symmetry, are analyzed. The distribution of transmission coefficient is computed for different number of channels in the case of a system with or without the time reversal invariance. An interpolating formula for the case of gradual time reversal symmetry breaking is proposed.

  1. Emergence of Symmetries from Entanglement

    CERN Document Server

    CERN. Geneva

    2016-01-01

    Maximal Entanglement appears to be a key ingredient for the emergence of symmetries. We first illustrate this phenomenon using two examples: the emergence of conformal symmetry in condensed matter systems and  the relation of tensor networks to holography. We further present a Principle of Maximal Entanglement that seems to dictate to a large extend the structure of gauge symmetry.

  2. Leadership, power and symmetry

    DEFF Research Database (Denmark)

    Spaten, Ole Michael

    2016-01-01

    regarding managers coaching their employees and it is asked; what contributes to coaching of high quality when one reflects on the power aspect as being immanent? Fourteen middle managers coached five of their employees, and all members of each party wrote down cues and experiences immediately after each......Research publications concerning managers who coach their own employees are barely visible despite its wide- spread use in enterprises (McCarthy & Milner, 2013; Gregory & Levy, 2011; Crabb, 2011). This article focuses on leadership, power and moments of symmetry in the coaching relationship...... session. Thereafter we executed qualitative interviews with both managers and employees. Subsequently, a Thematic Analysis resulted in several themes, including power and moments of symmetry in the coaching relationship. One main conclusion is that the most fruitful coaching was obtained when the coachee...

  3. Asymmetry, Symmetry and Beauty

    Directory of Open Access Journals (Sweden)

    Abbe R. Kopra

    2010-07-01

    Full Text Available Asymmetry and symmetry coexist in natural and human processes.  The vital role of symmetry in art has been well demonstrated. This article highlights the complementary role of asymmetry. Further we show that the interaction of asymmetric action (recursion and symmetric opposition (sinusoidal waves are instrumental in generating creative features (relatively low entropy, temporal complexity, novelty (less recurrence in the data than in randomized copies and complex frequency composition. These features define Bios, a pattern found in musical compositions and in poetry, except for recurrence instead of novelty. Bios is a common pattern in many natural and human processes (quantum processes, the expansion of the universe, gravitational waves, cosmic microwave background radiation, DNA, physiological processes, animal and human populations, and economic time series. The reduction in entropy is significant, as it reveals creativity and contradicts the standard claim of unavoidable decay towards disorder. Artistic creations capture fundamental features of the world.

  4. Symmetry rules How science and nature are founded on symmetry

    CERN Document Server

    Rosen, Joe

    2008-01-01

    When we use science to describe and understand the world around us, we are in essence grasping nature through symmetry. In fact, modern theoretical physics suggests that symmetry is a, if not the, foundational principle of nature. Emphasizing the concepts, this book leads the reader coherently and comprehensively into the fertile field of symmetry and its applications. Among the most important applications considered are the fundamental forces of nature and the Universe. It is shown that the Universe cannot possess exact symmetry, which is a principle of fundamental significance. Curie's principle - which states that the symmetry of the effect is at least that of the cause - features prominently. An introduction to group theory, the mathematical language of symmetry, is included. This book will convince all interested readers of the importance of symmetry in science. Furthermore, it will serve as valuable background reading for all students in the physical sciences.

  5. Symmetry-Driven Band Gap Engineering in Hydrogen Functionalized Graphene

    DEFF Research Database (Denmark)

    Jørgensen, Jakob Holm; Grubisic Cabo, Antonija; Balog, Richard;

    2016-01-01

    Band gap engineering in hydrogen functionalized graphene is demonstrated by changing the symmetry of the functionalization structures. Small differences in hydrogen adsorbate binding energies on graphene on Ir(111) allow tailoring of highly periodic functionalization structures favoring one disti...

  6. Local Rotational Symmetries.

    Science.gov (United States)

    1985-08-01

    way to choose among them. Spirals can occur in natural figures, e.g. a spiralled tail or a coil of rope or vine tendril, and in line drawings. Since...generated and removes it and all regions similar to it from the list of regions. The end result is a pruned list of distinct optimal regions. 4.7...that, at least to a first approximation, the potential symmetry regions pruned by the locality restriction are not perceptually salient. For example

  7. Symmetry and quantum mechanics

    CERN Document Server

    Corry, Scott

    2016-01-01

    This book offers an introduction to quantum mechanics for professionals, students, and others in the field of mathematics who have a minimal background in physics with an understanding of linear algebra and group theory. It covers such topics as Lie groups, algebras and their representations, and analysis (Hilbert space, distributions, the spectral Theorem, and the Stone-Von Neumann Theorem). The book emphasizes the role of symmetry and is useful to physicists as it provides a mathematical introduction to the topic.

  8. Symmetry issue in Galileons

    CERN Document Server

    Momeni, Davood

    2014-01-01

    The symmetry issue for Galileons has been studied. In particular we address scaling (conformal) and Noether symmetrized Galileons. We have been proven a series of theorems about the form of Noether conserved charge (current) for irregular (not quadratic) dynamical systems. Special attentions have been made on Galileons. We have been proven that for Galileons always is possible to find a way to "symmetrized" Galileo's field .

  9. Invisibility and PT symmetry

    OpenAIRE

    MOSTAFAZADEH, Ali

    2013-01-01

    PHYSICAL REVIEW A 87, 012103 (2013) Invisibility and PT symmetry Ali Mostafazadeh* Department of Mathematics, Koc¸ University, Sarıyer 34450, Istanbul, Turkey (Received 9 July 2012; published 3 January 2013) For a general complex scattering potential defined on a real line, we show that the equations governing invisibility of the potential are invariant under the combined action of parity and time-reversal (PT ) transformation. We determine the PT -symmetric as well as no...

  10. Symmetry in music

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, O F, E-mail: o.f.herrero@hotmail.co [Conservatorio Superior de Musica ' Eduardo Martinez Torner' Corrada del Obispo s/n 33003 - Oviedo - Asturias (Spain)

    2010-06-01

    Music and Physics are very close because of the symmetry that appears in music. A periodic wave is what music really is, and there is a field of Physics devoted to waves researching. The different musical scales are the base of all kind of music. This article tries to show how this musical scales are made, how the consonance is the base of many of them and how symmetric they are.

  11. Continuous symmetry of C60 fullerene and its derivatives.

    Science.gov (United States)

    Sheka, E F; Razbirin, B S; Nelson, D K

    2011-04-21

    Conventionally, the I(h) symmetry of fullerene C(60) is accepted, which is supported by numerous calculations. However, this conclusion results from the consideration of the molecule electron system, of its odd electrons in particular, in a closed-shell approximation without taking the electron spin into account. Passing to the open-shell approximation has led to both the energy and the symmetry lowering up to C(i). Seemingly contradicting to a high-symmetry pattern of experimental recording, particularly concerning the molecule electronic spectra, the finding is considered in this Article from the continuous symmetry viewpoint. Exploiting continuous symmetry measure and continuous symmetry level approaches, it was shown that formal C(i) symmetry of the molecule is by 99.99% I(h). A similar continuous symmetry analysis of the fullerene monoderivatives gives a reasonable explanation of a large variety of their optical spectra patterns within the framework of the same C(1) formal symmetry exhibiting a strong stability of the C(60) skeleton. TOC color pictures present chemical portrait of C(60) in terms of atomic chemical susceptibility (Sheka, E. Fullerenes: Nanochemistry, Nanomagnetism, Nanomedicine, Nanophotonics; CRC Press: Taylor and Francis Group, Boca Raton, 2011).

  12. Antimatter and Time-Symmetry

    CERN Document Server

    Pitts, T

    1998-01-01

    This theory makes time symmetric by Weyl's definition; it hypothesizes that space, time and mass-energy expand outward from the Big Bang along the time axis equally in the (+-) and (-) directions. In the Feynman-Stueckelberg Interpretation, antimatter is identical to matter but moves backward in time. This essay argues that this interpretation is physically real via an analysis of the time-symmetry of the Schrodinger equation. As time expands from zero, in both directions in time away from the origin, quantum uncertainty allows a brief, decreasing leakage of mass between (+-) and (-) universes. Matter leaking from (-) to (+-) time moves forward in time, producing a preponderance of matter in (+-) time. Antimatter leakage from (+-) time to (-) time in the same way produces an antimatter preponderance in the (-) time universe. The remaining opposite particles left behind after the leakage, (antimatter and matter respectively) proceeding outward in antitime and time respectively, after many annihilations also in...

  13. Supergravity backgrounds and symmetry superalgebras

    CERN Document Server

    Ertem, Ümit

    2016-01-01

    We consider the bosonic sectors of supergravity theories in ten and eleven dimensions which correspond to the low energy limits of string theories and M-theory. The solutions of supergravity field equations are known as supergravity backgrounds and the number of preserved supersymmetries in those backgrounds are determined by Killing spinors. We provide some examples of supergravity backgrounds which preserve different fractions of supersymmetry. An important invariant for the characterization of supergravity backgrounds is their Killing superalgebras which are constructed out of Killing vectors and Killing spinors of the background. After constructing Killing superalgebras of some special supergravity backgrounds, we discuss about the possibilities of the extensions of these superalgebras to include the higher degree hidden symmetries of the background.

  14. Relativistic pseudospin symmetry and shell model Hamiltonians that conserve pseudospin symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Ginocchio, Joseph N [Los Alamos National Laboratory

    2010-09-21

    Professor Akito Arima and his colleagues discovered 'pseudospin' doublets forty-one years ago in spherical nuclei. These doublets were subsequently discovered in deformed nuclei. We show that pseudospin symmetry is an SU(2) symmetry of the Dirac Hamiltonian which occurs when the scalar and vector potentials are opposite in sign but equal in magnitude. This symmetry occurs independent of the shape of the nucleus: spherical, axial deformed, triaxial, and gamma unstable. We survey some of the evidence that pseudospin symmetry is approximately conserved for a Dirac Hamiltonian with realistic scalar and vector potentials by examining the energy spectra, the lower components of the Dirac eigenfunctions, the magnetic dipole and Gamow-Teller transitions in nuclei, the upper components of the Dirac eigenfunctions, and nucleon-nucleus scattering. We shall also suggest that pseudospin symmetry may have a fundamental origin in chiral symmetry breaking by examining QCD sum rules. Finally we derive the shell model Hamiltonians which conserve pseudospin and show that they involve tensor interactions.

  15. An efficient computational scheme for electronic excitation spectra of molecules in solution using the symmetry-adapted cluster-configuration interaction method: The accuracy of excitation energies and intuitive charge-transfer indices

    Science.gov (United States)

    Fukuda, Ryoichi; Ehara, Masahiro

    2014-10-01

    Solvent effects on electronic excitation spectra are considerable in many situations; therefore, we propose an efficient and reliable computational scheme that is based on the symmetry-adapted cluster-configuration interaction (SAC-CI) method and the polarizable continuum model (PCM) for describing electronic excitations in solution. The new scheme combines the recently proposed first-order PCM SAC-CI method with the PTE (perturbation theory at the energy level) PCM SAC scheme. This is essentially equivalent to the usual SAC and SAC-CI computations with using the PCM Hartree-Fock orbital and integrals, except for the additional correction terms that represent solute-solvent interactions. The test calculations demonstrate that the present method is a very good approximation of the more costly iterative PCM SAC-CI method for excitation energies of closed-shell molecules in their equilibrium geometry. This method provides very accurate values of electric dipole moments but is insufficient for describing the charge-transfer (CT) indices in polar solvent. The present method accurately reproduces the absorption spectra and their solvatochromism of push-pull type 2,2'-bithiophene molecules. Significant solvent and substituent effects on these molecules are intuitively visualized using the CT indices. The present method is the simplest and theoretically consistent extension of SAC-CI method for including PCM environment, and therefore, it is useful for theoretical and computational spectroscopy.

  16. Symmetry and Condensed Matter Physics

    Science.gov (United States)

    El-Batanouny, M.; Wooten, F.

    2008-03-01

    Preface; 1. Symmetry and physics; 2. Symmetry and group theory; 3. Group representations: concepts; 4. Group representations: formalism and methodology; 5. Dixon's method for computing group characters; 6. Group action and symmetry projection operators; 7. Construction of the irreducible representations; 8. Product groups and product representations; 9. Induced representations; 10. Crystallographic symmetry and space-groups; 11. Space groups: Irreps; 12. Time-reversal symmetry: color groups and the Onsager relations; 13. Tensors and tensor fields; 14. Electronic properties of solids; 15. Dynamical properties of molecules, solids and surfaces; 16. Experimental measurements and selection rules; 17. Landau's theory of phase transitions; 18. Incommensurate systems and quasi-crystals; References; Bibliography; Index.

  17. Invariants of Broken Discrete Symmetries

    Science.gov (United States)

    Kalozoumis, P. A.; Morfonios, C.; Diakonos, F. K.; Schmelcher, P.

    2014-08-01

    The parity and Bloch theorems are generalized to the case of broken global symmetry. Local inversion or translation symmetries in one dimension are shown to yield invariant currents that characterize wave propagation. These currents map the wave function from an arbitrary spatial domain to any symmetry-related domain. Our approach addresses any combination of local symmetries, thus applying, in particular, to acoustic, optical, and matter waves. Nonvanishing values of the invariant currents provide a systematic pathway to the breaking of discrete global symmetries.

  18. O(5) symmetry in IBA-1 - the O(6)-U(5) transition region

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A.; Novoselsky, A.; Talmi, I.

    1986-05-15

    All IBA-1 hamiltonians whose eigenstates are combinations of states with numbers of d-bosons differing by an even number have O(5) symmetry. Consequences of this symmetry are presented for the O(6)-U(5) transition region for energy levels and electromagnetic transitions. We draw the distinction between evidence for O(6) character of nuclei and that for O(5) symmetry only.

  19. Test of Lorentz symmetry with trapped ions

    Science.gov (United States)

    Pruttivarasin, Thaned

    2016-05-01

    The outcome of an experiment should not depend on the orientation of the apparatus in space. This important cornerstone of physics is deeply engrained into the Standard Model of Physics by requiring that all fields must be Lorentz invariant. However, it is well-known that the Standard Model is incomplete. Some theories conjecture that at the Planck scale Lorentz symmetry might be broken and measurable at experimentally accessible energy scales. Therefore, a search for violation of Lorentz symmetry directly probes physics beyond the Standard model. We present a novel experiment utilizing trapped calcium ions as a direct probe of Lorentz-violation in the electron-photon sector. We monitor the energy between atomic states with different orientations of the electronic wave-functions as they rotate together with the motion of the Earth. This is analogous to the famous Michelson-Morley experiment. To remove magnetic field noise, we perform the experiment with the ions prepared in the decoherence-free states. Our result improves on the most stringent bounds on Lorentz symmetry for electrons by 100 times. The experimental scheme is readily applicable to many ion species, hence opening up paths toward much improved test of Lorentz symmetry in the future. (Ph. D. Advisor: Hartmut Haeffner, University of California, Berkeley).

  20. Symmetry of “Twins”

    Directory of Open Access Journals (Sweden)

    Vladan Nikolić

    2015-02-01

    Full Text Available The idea of construction of twin buildings is as old as architecture itself, and yet there is hardly any study emphasizing their specificity. Most frequently there are two objects or elements in an architectural composition of “twins” in which there may be various symmetry relations, mostly bilateral symmetries. The classification of “twins” symmetry in this paper is based on the existence of bilateral symmetry, in terms of the perception of an observer. The classification includes both, 2D and 3D perception analyses. We start analyzing a pair of twin buildings with projection of the architectural composition elements in 2D picture plane (plane of the composition and we distinguish four 2D keyframe cases based on the relation between the bilateral symmetry of the twin composition and the bilateral symmetry of each element. In 3D perception for each 2D keyframe case there are two sub-variants, with and without a symmetry plane parallel to the picture plane. The bilateral symmetry is dominant if the corresponding symmetry plane is orthogonal to the picture plane. The essence of the complete classification is relation between the bilateral (dominant symmetry of the architectural composition and the bilateral symmetry of each element of that composition.

  1. Transition energies and oscillator strength calculated for d-s symmetry-forbidden electronic transition for Cu{sup +} impurities in sodium fluoride host lattice

    Energy Technology Data Exchange (ETDEWEB)

    Uhl, Elmar [Instituto de Quimica, Departamento de Fisico-Quimica, Universidade Federal do Rio de Janeiro, Cidade Universitaria, CT Bloco A. Rio de Janeiro, 21941-909 Rio de Janeiro (Brazil); Leitao, Alexandre A. [Departamento de Quimica, Universidade Federal de Juiz de Fora, Campus Universitario, Juiz de Fora, MG 36036-900 (Brazil); Rocha, Alexandre B., E-mail: rocha@iq.ufrj.br [Instituto de Quimica, Departamento de Fisico-Quimica, Universidade Federal do Rio de Janeiro, Cidade Universitaria, CT Bloco A. Rio de Janeiro, 21941-909 Rio de Janeiro (Brazil)

    2011-11-07

    Graphical abstract: Temperature dependence of oscillator strengths calculated through vibronic coupling for electronic transitions of Cu{sup +} impurity in NaF host, described by embedded cluster model. Highlights: Black-Right-Pointing-Pointer Embedded cluster model for impurity levels in the NaF:Cu{sup +} system. Black-Right-Pointing-Pointer Oscillator strengths (OSs) calculated by direct vibronic coupling method. Black-Right-Pointing-Pointer The dependence of the OS on temperature is reported. Black-Right-Pointing-Pointer OS and transition energies calculated at CASSCF and CASSCF/SOCI level. - Abstract: An embedded cluster model is used to describe electronic structure of Cu{sup +} ion in NaF host. Transition energies and oscillator strengths are calculated for the 3d{sup 10} {yields} 3d{sup 9}4s{sup 1} Cu{sup +} ligand field transitions. These are forbidden by dipole selection rules, which can, though, be broken by vibronic coupling. The basic model consists of a [CuF{sub 6}]{sup 5-} cluster surrounded by total ion potentials representing second, third and fourth neighbors to the central Cu{sup +}. The resulting structure is placed inside a cube of point charges to take long distance Coulomb interactions into account. Variations of this basic model needed especially to the calculation of transition energy. The oscillator strengths are calculated by the direct vibronic coupling method we have previously proposed. The effect of temperature on the value of the oscillator strength is calculated for the first time as well as their absolute value. Results are in good agreement with available experiment.

  2. Groups and symmetry

    CERN Document Server

    Farmer, David W

    1995-01-01

    In most mathematics textbooks, the most exciting part of mathematics-the process of invention and discovery-is completely hidden from the reader. The aim of Groups and Symmetry is to change all that. By means of a series of carefully selected tasks, this book leads readers to discover some real mathematics. There are no formulas to memorize; no procedures to follow. The book is a guide: Its job is to start you in the right direction and to bring you back if you stray too far. Discovery is left to you. Suitable for a one-semester course at the beginning undergraduate level, there are no prerequ

  3. Symmetry implies independence

    CERN Document Server

    Renner, R

    2007-01-01

    Given a quantum system consisting of many parts, we show that symmetry of the system's state, i.e., invariance under swappings of the subsystems, implies that almost all of its parts are virtually identical and independent of each other. This result generalises de Finetti's classical representation theorem for infinitely exchangeable sequences of random variables as well as its quantum-mechanical analogue. It has applications in various areas of physics as well as information theory and cryptography. For example, in experimental physics, one typically collects data by running a certain experiment many times, assuming that the individual runs are mutually independent. Our result can be used to justify this assumption.

  4. Geometry and symmetry

    CERN Document Server

    Yale, Paul B

    2012-01-01

    This book is an introduction to the geometry of Euclidean, affine, and projective spaces with special emphasis on the important groups of symmetries of these spaces. The two major objectives of the text are to introduce the main ideas of affine and projective spaces and to develop facility in handling transformations and groups of transformations. Since there are many good texts on affine and projective planes, the author has concentrated on the n-dimensional cases.Designed to be used in advanced undergraduate mathematics or physics courses, the book focuses on ""practical geometry,"" emphasi

  5. Mirror symmetry II

    CERN Document Server

    Greene, Brian R

    1997-01-01

    Mirror symmetry has undergone dramatic progress during the last five years. Tremendous insight has been gained on a number of key issues. This volume surveys these results. Some of the contributions in this work have appeared elsewhere, while others were written specifically for this collection. The areas covered are organized into 4 sections, and each presents papers by both physicists and mathematicians. This volume collects the most important developments that have taken place in mathematical physics since 1991. It is an essential reference tool for both mathematics and physics libraries and for students of physics and mathematics.

  6. Partial dynamical symmetry in the symplectic shell model

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J. [TRIUMF, Vancouver, British Columbia (Canada); Leviatan, A. [Hebrew Univ., Racah Inst. of Physics, Jerusalem (Israel)

    2000-08-01

    We present an example of a partial dynamical symmetry (PDS) in an interacting fermion system and demonstrate the close relationship of the associated Hamiltonians with a realistic quadrupole-quadrupole interaction, thus shedding light on this important interaction. Specifically, in the framework of the symplectic shell model of nuclei, we prove the existence of a family of fermionic Hamiltonians with partial SU(3) symmetry. We outline the construction process for the PDS eigenstates with good symmetry and give analytic expressions for the energies of these states and E2 transition strengths between them. Characteristics of both pure and mixed-symmetry PDS eigenstates are discussed and the resulting spectra and transition strengths are compared to those of real nuclei. The PDS concept is shown to be relevant to the description of prolate, oblate, as well as triaxially deformed nuclei. Similarities and differences between the fermion case and the previously established partial SU(3) symmetry in the interacting boson model are considered. (author)

  7. Partial Dynamical Symmetry in the Symplectic Shell Model

    CERN Document Server

    Escher, J; Escher, Jutta; Leviatan, Amiram

    2002-01-01

    We present an example of a partial dynamical symmetry (PDS) in an interacting fermion system and demonstrate the close relationship of the associated Hamiltonians with a realistic quadrupole-quadrupole interaction, thus shedding new light on this important interaction. Specifically, in the framework of the symplectic shell model of nuclei, we prove the existence of a family of fermionic Hamiltonians with partial SU(3) symmetry. We outline the construction process for the PDS eigenstates with good symmetry and give analytic expressions for the energies of these states and E2 transition strengths between them. Characteristics of both pure and mixed-symmetry PDS eigenstates are discussed and the resulting spectra and transition strengths are compared to those of real nuclei. The PDS concept is shown to be relevant to the description of prolate, oblate, as well as triaxially deformed nuclei. Similarities and differences between the fermion case and the previously established partial SU(3) symmetry in the Interact...

  8. Lattice realization of the generalized chiral symmetry in two dimensions

    Science.gov (United States)

    Kawarabayashi, Tohru; Aoki, Hideo; Hatsugai, Yasuhiro

    2016-12-01

    While it has been pointed out that the chiral symmetry, which is important for the Dirac fermions in graphene, can be generalized to tilted Dirac fermions as in organic metals, such a generalized symmetry was so far defined only for a continuous low-energy Hamiltonian. Here we show that the generalized chiral symmetry can be rigorously defined for lattice fermions as well. A key concept is a continuous "algebraic deformation" of Hamiltonians, which generates lattice models with the generalized chiral symmetry from those with the conventional chiral symmetry. This enables us to explicitly express zero modes of the deformed Hamiltonian in terms of that of the original Hamiltonian. Another virtue is that the deformation can be extended to nonuniform systems, such as fermion-vortex systems and disordered systems. Application to fermion vortices in a deformed system shows how the zero modes for the conventional Dirac fermions with vortices can be extended to the tilted case.

  9. Bootstrap Dynamical Symmetry Breaking

    Directory of Open Access Journals (Sweden)

    Wei-Shu Hou

    2013-01-01

    Full Text Available Despite the emergence of a 125 GeV Higgs-like particle at the LHC, we explore the possibility of dynamical electroweak symmetry breaking by strong Yukawa coupling of very heavy new chiral quarks Q . Taking the 125 GeV object to be a dilaton with suppressed couplings, we note that the Goldstone bosons G exist as longitudinal modes V L of the weak bosons and would couple to Q with Yukawa coupling λ Q . With m Q ≳ 700  GeV from LHC, the strong λ Q ≳ 4 could lead to deeply bound Q Q ¯ states. We postulate that the leading “collapsed state,” the color-singlet (heavy isotriplet, pseudoscalar Q Q ¯ meson π 1 , is G itself, and a gap equation without Higgs is constructed. Dynamical symmetry breaking is affected via strong λ Q , generating m Q while self-consistently justifying treating G as massless in the loop, hence, “bootstrap,” Solving such a gap equation, we find that m Q should be several TeV, or λ Q ≳ 4 π , and would become much heavier if there is a light Higgs boson. For such heavy chiral quarks, we find analogy with the π − N system, by which we conjecture the possible annihilation phenomena of Q Q ¯ → n V L with high multiplicity, the search of which might be aided by Yukawa-bound Q Q ¯ resonances.

  10. Applications of chiral symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Pisarski, R.D.

    1995-03-01

    The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T{sub {chi}} implies that the {rho} and a{sub 1} vector mesons are degenerate in mass. In a gauged linear sigma model the {rho} mass increases with temperature, m{sub {rho}}(T{sub {chi}}) > m{sub {rho}}(0). The author conjectures that at T{sub {chi}} the thermal {rho} - a{sub 1}, peak is relatively high, at about {approximately}1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The {omega} meson also increases in mass, nearly degenerate with the {rho}, but its width grows dramatically with temperature, increasing to at least {approximately}100 MeV by T{sub {chi}}. The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from {open_quotes}quenched{close_quotes} heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates.

  11. Symmetry in Complex Networks

    Directory of Open Access Journals (Sweden)

    Angel Garrido

    2011-01-01

    Full Text Available In this paper, we analyze a few interrelated concepts about graphs, such as their degree, entropy, or their symmetry/asymmetry levels. These concepts prove useful in the study of different types of Systems, and particularly, in the analysis of Complex Networks. A System can be defined as any set of components functioning together as a whole. A systemic point of view allows us to isolate a part of the world, and so, we can focus on those aspects that interact more closely than others. Network Science analyzes the interconnections among diverse networks from different domains: physics, engineering, biology, semantics, and so on. Current developments in the quantitative analysis of Complex Networks, based on graph theory, have been rapidly translated to studies of brain network organization. The brain's systems have complex network features—such as the small-world topology, highly connected hubs and modularity. These networks are not random. The topology of many different networks shows striking similarities, such as the scale-free structure, with the degree distribution following a Power Law. How can very different systems have the same underlying topological features? Modeling and characterizing these networks, looking for their governing laws, are the current lines of research. So, we will dedicate this Special Issue paper to show measures of symmetry in Complex Networks, and highlight their close relation with measures of information and entropy.

  12. From symmetry to particles

    Energy Technology Data Exchange (ETDEWEB)

    El Naschie, M.S. [King Abdul Aziz City of Science and Technology, Riyadh (Saudi Arabia)

    2007-04-15

    The notion of a particle-like state emerging from a symmetry breaking is given five corresponding pictures. We start from a geometrical picture in two dimensions involving a modular curve constructed using 336 triangles. The same number of building blocks is found again, this time as 336 contact points in the ten dimensional space of super string theory in the context of the largest kissing number of lattice sphere packing. The next corresponding representation is an abstract one pertinent to the order of the simple linear Lie group SL(2, n) in seven dimensions (n = 7) which leads to 336 symmetries. Subsequently a tensorial picture is given using the Riemannian tensor of relativity theory but this time in an eight dimensional space (n = 8) for which the number of independent components is again 336. Finally we use a physical string theory related picture in the 12 dimensions of F theory to find 336 moduli space dimensions representing the instanton cells of our theory. It is evident that the five preceding pictures are ten fold interconnected and exchangeable. This additional mental freedom does not only enhance the feeling of understanding, but also facilitates the easy recognition of complex mathematical relations and its connection to the physical concepts.

  13. SYMMETRY IN WORLD TRADE NETWORK

    Institute of Scientific and Technical Information of China (English)

    Hui WANG; Guangle YAN; Yanghua XIAO

    2009-01-01

    Symmetry of the world trade network provides a novel perspective to understand the world-wide trading system. However, symmetry in the world trade network (WTN) has been rarely studied so far. In this paper, the authors systematically explore the symmetry in WTN. The authors construct WTN in 2005 and explore the size and structure of its automorphism group, through which the authors find that WTN is symmetric, particularly, locally symmetric to a certain degree. Furthermore, the authors work out the symmetric motifs of WTN and investigate the structure and function of the symmetric motifs, coming to the conclusion that local symmetry will have great effect on the stability of the WTN and that continuous symmetry-breakings will generate complexity and diversity of the trade network. Finally, utilizing the local symmetry of the network, the authors work out the quotient of WTN, which is the structural skeleton dominating stability and evolution of WTN.

  14. In search of symmetry lost

    CERN Multimedia

    Wilczek, Frank

    2004-01-01

    Powerful symmetry principles have guided physicists in their quest for nature's fundamental laws. The successful gauge theory of electroweak interactions postulates a more extensive symmetry for its equations than are manifest in the world (8 pages) Powerful symmetry principles have guided physicists in their quest for nature's fundamental laws. The successful gauge theory of electroweak interactions postulates a more extensive symmetry for its equations than are manifest in the world. The discrepancy is ascribed to a pervasive symmetry-breaking field, which fills all space uniformly, rendering the Universe a sort of exotic superconductor. So far, the evidence for these bold ideas is indirect. But soon the theory will undergo a critical test depending on whether the quanta of this symmetry-breaking field, the so-called Higgs particles, are produced at the Large Hadron Collider (due to begin operation in 2007).

  15. Symmetry of crystals and molecules

    CERN Document Server

    Ladd, Mark

    2014-01-01

    This book successfully combines a thorough treatment of molecular and crystalline symmetry with a simple and informal writing style. By means of familiar examples the author helps to provide the reader with those conceptual tools necessary for the development of a clear understanding of what are often regarded as 'difficult' topics. Christopher Hammond, University of Leeds This book should tell you everything you need to know about crystal and molecular symmetry. Ladd adopts an integrated approach so that the relationships between crystal symmetry, molecular symmetry and features of chemical interest are maintained and reinforced. The theoretical aspects of bonding and symmetry are also well represented, as are symmetry-dependent physical properties and the applications of group theory. The comprehensive coverage will make this book a valuable resource for a broad range of readers.

  16. Symmetry breaking. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Strocchi, F. [Scuola Normale Superiore, Classe di Scienze, Pisa (Italy)

    2008-07-01

    This new edition of Prof. Strocchi's well received primer on rigorous aspects of symmetry breaking presents a more detailed and thorough discussion of the mechanism of symmetry breaking in classical field theory in relation with the Noether theorem. Moreover, the link between symmetry breaking without massless Goldstone bosons in Coulomb systems and in gauge theories is made more explicit in terms of the delocalized Coulomb dynamics. Furthermore, the chapter on the Higgs mechanism has been significantly expanded with a non-perturbative treatment of the Higgs phenomenon, at the basis of the standard model of particle physics, in the local and in the Coulomb gauges. Last but not least, a subject index has been added and a number of misprints have been corrected. From the reviews of the first edition: The notion of spontaneous symmetry breaking has proven extremely valuable, the problem is that most derivations are perturbative and heuristic. Yet mathematically precise versions do exist, but are not widely known. It is precisely the aim of his book to correct this unbalance. - It is remarkable to see how much material can actually be presented in a rigorous way (incidentally, many of the results presented are due to Strocchi himself), yet this is largely ignored, the original heuristic derivations being, as a rule, more popular. - At each step he strongly emphasizes the physical meaning and motivation of the various notions introduced, a book that fills a conspicuous gap in the literature, and does it rather well. It could also be a good basis for a graduate course in mathematical physics. It can be recommended to physicists as well and, of course, for physics/mathematics libraries. J.-P. Antoine, Physicalia 28/2, 2006 Strocchi's main emphasis is on the fact that the loss of symmetric behaviour requires both the non-symmetric ground states and the infinite extension of the system. It is written in a pleasant style at a level suitable for graduate students in

  17. Theory Overview of Testing Fundamental Symmetries

    CERN Document Server

    Mavromatos, Nick E

    2013-01-01

    I review first some theoretical motivations for violation of Lorentz and/or CPT Invariance. Although the latter symmetries may be violated in a quantum gravity setting, nevertheless there are situations in which these violations are due to a given classical background geometry that may characterised early epochs of our Universe, and in fact be responsible for the observed dominance of matter over antimatter in the Universe. In this way I estimate some of the coefficients of the Standard Model Extension (SME), which is a framework for a field theoretic study of such a breakdown of fundamental symmetries. Then I describe briefly some tests of these symmetries, giving emphasis in low-energy antiproton physics and electric dipole moment measurements, of interest to this conference. I also mention the r\\^ole of entangled states of neutral mesons in providing independent measurements of T(ime reversal) and CP Violation, thus providing independent tests of CPT symmetry, as well as novel ("smoking-gun" type) tests of...

  18. Symmetry, Group Theory, and the Physical Properties of Crystals

    Science.gov (United States)

    Powell, Richard C.

    The intent of this book is to demonstrate the importance of symmetry in determining the properties of solids and the power of using group theory and tensor algebra to elucidate these properties. It is not meant to be a comprehensive text on solid state physics, so many important aspects of condensed matter physics not related to symmetry are not covered here. The book begins by discussing the concepts of symmetry relevant to crystal structures. This is followed by a summary of the basics of group theory and how it is applied to quantum mechanics. Next is a discussion of the description of the macroscopic properties of crystals by tensors and how symmetry determines the form of these tensors. The basic concepts covered in these early chapters are then applied to a series of different examples. There is a discussion of the use of point symmetry in the crystal field theory treatment of point defects in solids. Next is a discussion of crystal symmetry in determining the optical properties of solids, followed by a chapter on the nonlinear optical properties of solids. Then the role of symmetry in treating lattice vibrations is described. The last chapter discusses the effects of translational symmetry on electronic energy bands in solids.

  19. Exact Dynamical and Partial Symmetries

    CERN Document Server

    Leviatan, A

    2010-01-01

    We discuss a hierarchy of broken symmetries with special emphasis on partial dynamical symmetries (PDS). The latter correspond to a situation in which a non-invariant Hamiltonian accommodates a subset of solvable eigenstates with good symmetry, while other eigenstates are mixed. We present an algorithm for constructing Hamiltonians with this property and demonstrate the relevance of the PDS notion to nuclear spectroscopy, to quantum phase transitions and to mixed systems with coexisting regularity and chaos.

  20. Exact dynamical and partial symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A, E-mail: ami@phys.huji.ac.il [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel)

    2011-03-01

    We discuss a hierarchy of broken symmetries with special emphasis on partial dynamical symmetries (PDS). The latter correspond to a situation in which a non-invariant Hamiltonian accommodates a subset of solvable eigenstates with good symmetry, while other eigenstates are mixed. We present an algorithm for constructing Hamiltonians with this property and demonstrate the relevance of the PDS notion to nuclear spectroscopy, to quantum phase transitions and to mixed systems with coexisting regularity and chaos.

  1. Physical Theories with Average Symmetry

    OpenAIRE

    Alamino, Roberto C.

    2013-01-01

    This Letter probes the existence of physical laws invariant only in average when subjected to some transformation. The concept of a symmetry transformation is broadened to include corruption by random noise and average symmetry is introduced by considering functions which are invariant only in average under these transformations. It is then shown that actions with average symmetry obey a modified version of Noether's Theorem with dissipative currents. The relation of this with possible violat...

  2. Physical Theories with Average Symmetry

    CERN Document Server

    Alamino, Roberto C

    2013-01-01

    This Letter probes the existence of physical laws invariant only in average when subjected to some transformation. The concept of a symmetry transformation is broadened to include corruption by random noise and average symmetry is introduced by considering functions which are invariant only in average under these transformations. It is then shown that actions with average symmetry obey a modified version of Noether's Theorem with dissipative currents. The relation of this with possible violations of physical symmetries, as for instance Lorentz invariance in some quantum gravity theories, is briefly commented.

  3. The conservation of orbital symmetry

    CERN Document Server

    Woodward, R B

    2013-01-01

    The Conservation of Orbital Symmetry examines the principle of conservation of orbital symmetry and its use. The central content of the principle was that reactions occur readily when there is congruence between orbital symmetry characteristics of reactants and products, and only with difficulty when that congruence does not obtain-or to put it more succinctly, orbital symmetry is conserved in concerted reaction. This principle is expected to endure, whatever the language in which it may be couched, or whatever greater precision may be developed in its application and extension. The book ope

  4. Toric Symmetry of CP^3

    CERN Document Server

    Karp, Dagan; Riggins, Paul; Whitcher, Ursula

    2011-01-01

    We exhaustively analyze the toric symmetries of CP^3 and its toric blowups. Our motivation is to study toric symmetry as a computational technique in Gromov-Witten theory and Donaldson-Thomas theory. We identify all nontrivial toric symmetries. The induced nontrivial isomorphisms lift and provide new symmetries at the level of Gromov-Witten Theory and Donaldson-Thomas Theory. The polytopes of the toric varieties in question include the permutohedron, the cyclohedron, the associahedron, and in fact all graph associahedra, among others.

  5. Givental graphs and inversion symmetry

    CERN Document Server

    Dunin-Barkowski, P; Spitz, L

    2012-01-01

    Inversion symmetry is a very non-trivial discrete symmetry of Frobenius manifolds. It was obtained by Dubrovin from one of the elementary Schlesinger transformations of a special ODE associated to Frobenius manifold. In this paper, we review the Givental group action on Frobenius manifolds in terms of Feynman graphs and then we obtain an interpretation of the inversion symmetry in terms of the action of the Givental group. We also consider the implication of this interpretation of the inversion symmetry for the Schlesinger transformations and for the Hamiltonians of the associated principle hierarchy.

  6. Symmetry fractionalization and twist defects

    Science.gov (United States)

    Tarantino, Nicolas; Lindner, Netanel H.; Fidkowski, Lukasz

    2016-03-01

    Topological order in two-dimensions can be described in terms of deconfined quasiparticle excitations—anyons—and their braiding statistics. However, it has recently been realized that this data does not completely describe the situation in the presence of an unbroken global symmetry. In this case, there can be multiple distinct quantum phases with the same anyons and statistics, but with different patterns of symmetry fractionalization—termed symmetry enriched topological order. When the global symmetry group G, which we take to be discrete, does not change topological superselection sectors—i.e. does not change one type of anyon into a different type of anyon—one can imagine a local version of the action of G around each anyon. This leads to projective representations and a group cohomology description of symmetry fractionalization, with the second cohomology group {H}2(G,{{ A }}{{abelian}}) being the relevant group. In this paper, we treat the general case of a symmetry group G possibly permuting anyon types. We show that despite the lack of a local action of G, one can still make sense of a so-called twisted group cohomology description of symmetry fractionalization, and show how this data is encoded in the associativity of fusion rules of the extrinsic ‘twist’ defects of the symmetry. Furthermore, building on work of Hermele (2014 Phys. Rev. B 90 184418), we construct a wide class of exactly-solvable models which exhibit this twisted symmetry fractionalization, and connect them to our formal framework.

  7. Orientational glass: Full replica symmetry breaking in generalized spin glass-like models without reflection symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Tareyeva, E.E. [Institute for High Pressure Physics, Russian Academy of Sciences, 142190 Troitsk (Russian Federation); Schelkacheva, T.I., E-mail: tanschelk@gmail.com [Institute for High Pressure Physics, Russian Academy of Sciences, 142190 Troitsk (Russian Federation); Chtchelkatchev, N.M. [Institute for High Pressure Physics, Russian Academy of Sciences, 142190 Troitsk (Russian Federation); L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, 117940 Moscow (Russian Federation); Department of Theoretical Physics, Moscow Institute of Physics and Technology, 141700 Moscow (Russian Federation)

    2013-02-15

    We investigate near the point of glass transition the expansion of the free energy corresponding to the generalized Sherrington–Kirkpatrick model with arbitrary diagonal operators U{sup -hat} standing instead of Ising spins. We focus on the case when U{sup -hat} is an operator with broken reflection symmetry. Such a consideration is important for understanding the behavior of spin glass-like phases in a number of real physical systems, mainly in orientational glasses in mixed molecular crystals which present just the case. We build explicitly a full replica symmetry breaking (FRSB) solution of the equations for the orientational glass order parameters when the nonsymmetric part of U{sup -hat} is small. This particular result presents a counterexample in the context of usually adopted conjecture of the absence of FRSB solution in systems with no reflection symmetry.

  8. Orientational glass: Full replica symmetry breaking in generalized spin glass-like models without reflection symmetry

    Science.gov (United States)

    Tareyeva, E. E.; Schelkacheva, T. I.; Chtchelkatchev, N. M.

    2013-02-01

    We investigate near the point of glass transition the expansion of the free energy corresponding to the generalized Sherrington-Kirkpatrick model with arbitrary diagonal operators Uˆ standing instead of Ising spins. We focus on the case when Uˆ is an operator with broken reflection symmetry. Such a consideration is important for understanding the behavior of spin glass-like phases in a number of real physical systems, mainly in orientational glasses in mixed molecular crystals which present just the case. We build explicitly a full replica symmetry breaking (FRSB) solution of the equations for the orientational glass order parameters when the nonsymmetric part of Uˆ is small. This particular result presents a counterexample in the context of usually adopted conjecture of the absence of FRSB solution in systems with no reflection symmetry.

  9. Neutrino Mixing:. from the Broken μ-τ Symmetry to the Broken Friedberg-Lee Symmetry

    Science.gov (United States)

    Xing, Zhi-Zhong

    I argue that the observed flavor structures of leptons and quarks might imply the existence of certain flavor symmetries. The latter should be a good starting point to build realistic models towards deeper understanding of the fermion mass spectra and flavor mixing patterns. The μ-τ permutation symmetry serves for such an example to interpret the almost maximal atmospheric neutrino mixing angle (θ23 ~ 45°) and the strongly suppressed CHOOZ neutrino mixing angle (θ13 Friedberg-Lee symmetry, for the effective Majorana neutrino mass operator. Luo and I have shown that this symmetry can be broken in an oblique way, such that the lightest neutrino remains massless but an experimentally-favored neutrino mixing pattern is achievable. We get a novel prediction for θ13 in the CP-conserving case: sinθ13 = tanθ12|(1 - tanθ23)/(1 + tanθ23)|. Our scenario can simply be generalized to accommodate CP violation and be combined with the seesaw mechanism. Finally I stress the importance of probing possible effects of μ-τ symmetry breaking either in terrestrial neutrino oscillation experiments or with ultrahigh-energy cosmic neutrino telescopes.

  10. On the symmetries of the 12C nucleus

    CERN Document Server

    Cseh, J

    2016-01-01

    The consequences of some symmetries of the three-alpha system are discussed. In particular, the recent description of the low-energy spectrum of the 12C nucleus in terms of the Algebraic Cluster Model (ACM) is compared to that of the Semimicroscopic Algebraic Cluster Model (SACM). The previous one applies interactions of a D3h geometric symmetry [1], while the latter one has a U(3) multichannel dynamical symmetry, that connects the shell and cluster pictures. The available data is in line with both descriptions.

  11. Symmetry reduction related with nonlocal symmetry for Gardner equation

    Science.gov (United States)

    Ren, Bo

    2017-01-01

    Based on the truncated Painlevé method or the Möbious (conformal) invariant form, the nonlocal symmetry for the (1+1)-dimensional Gardner equation is derived. The nonlocal symmetry can be localized to the Lie point symmetry by introducing one new dependent variable. Thanks to the localization procedure, the finite symmetry transformations are obtained by solving the initial value problem of the prolonged systems. Furthermore, by using the symmetry reduction method to the enlarged systems, many explicit interaction solutions among different types of solutions such as solitary waves, rational solutions, Painlevé II solutions are given. Especially, some special concrete soliton-cnoidal interaction solutions are analyzed both in analytical and graphical ways.

  12. Bosonization and Mirror Symmetry

    CERN Document Server

    Kachru, Shamit; Torroba, Gonzalo; Wang, Huajia

    2016-01-01

    We study bosonization in 2+1 dimensions using mirror symmetry, a duality that relates pairs of supersymmetric theories. Upon breaking supersymmetry in a controlled way, we dynamically obtain the bosonization duality that equates the theory of a free Dirac fermion to QED3 with a single scalar boson. This duality may be used to demonstrate the bosonization duality relating an $O(2)$-symmetric Wilson-Fisher fixed point to QED3 with a single Dirac fermion, Peskin-Dasgupta-Halperin duality, and the recently conjectured duality relating the theory of a free Dirac fermion to fermionic QED3 with a single flavor. Chern-Simons and BF couplings for both dynamical and background gauge fields play a central role in our approach. In the course of our study, we describe a chiral mirror pair that may be viewed as the minimal supersymmetric generalization of the two bosonization dualities.

  13. Quantum mechanics symmetries

    CERN Document Server

    Greiner, Walter

    1989-01-01

    "Quantum Dynamics" is a major survey of quantum theory based on Walter Greiner's long-running and highly successful courses at the University of Frankfurt. The key to understanding in quantum theory is to reinforce lecture attendance and textual study by working through plenty of representative and detailed examples. Firm belief in this principle led Greiner to develop his unique course and to transform it into a remarkable and comprehensive text. The text features a large number of examples and exercises involving many of the most advanced topics in quantum theory. These examples give practical and precise demonstrations of how to use the often subtle mathematics behind quantum theory. The text is divided into five volumes: Quantum Mechanics I - An Introduction, Quantum Mechanics II - Symmetries, Relativistic Quantum Mechanics, Quantum Electrodynamics, Gauge Theory of Weak Interactions. These five volumes take the reader from the fundamental postulates of quantum mechanics up to the latest research in partic...

  14. Gauged Flavor Symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Heeck, Julian

    2013-04-15

    Augmenting the Standard Model by three right-handed neutrinos allows for an anomaly-free gauge group extension G{sub max}=U(1){sub B−L}×U(1){sub L{sub e−L{sub μ}}}×U(1){sub L{sub μ−L{sub τ}}}. Simple U(1) subgroups of G{sub max} can be used to impose structure on the righthanded neutrino mass matrix, which then propagates to the active neutrino mass matrix via the seesaw mechanism. We show how this framework can be used to gauge the approximate lepton-number symmetries behind the normal, inverted, and quasidegenerate neutrino mass spectrum, and also how to generate texture-zeros and vanishing minors in the neutrino mass matrix, leading to testable relations among mixing parameters.

  15. Bosonization and mirror symmetry

    Science.gov (United States)

    Kachru, Shamit; Mulligan, Michael; Torroba, Gonzalo; Wang, Huajia

    2016-10-01

    We study bosonization in 2 +1 dimensions using mirror symmetry, a duality that relates pairs of supersymmetric theories. Upon breaking supersymmetry in a controlled way, we dynamically obtain the bosonization duality that equates the theory of a free Dirac fermion to QED3 with a single scalar boson. This duality may be used to demonstrate the bosonization duality relating an O (2 )-symmetric Wilson-Fisher fixed point to QED3 with a single Dirac fermion, Peskin-Dasgupta-Halperin duality, and the recently conjectured duality relating the theory of a free Dirac fermion to fermionic QED3 with a single flavor. Chern-Simons and BF couplings for both dynamical and background gauge fields play a central role in our approach. In the course of our study, we describe a "chiral" mirror pair that may be viewed as the minimal supersymmetric generalization of the two bosonization dualities.

  16. Lie symmetries and conserved quantities of discrete nonholonomic Hamiltonian systems

    Institute of Scientific and Technical Information of China (English)

    Wang Xing-Zhong; Fu Hao; Fu Jing-Li

    2012-01-01

    This paper focuses on studying Lie symmetries and conserved quantities of discrete nonholonomic Hamiltonian systems.Firstly,the discrete generalized Hamiltonian canonical equations and discrete energy equation of nonholonomic Hamiltonian systems are derived from discrete Hamiltonian action.Secondly,the determining equations and structure equation of Lie symmetry of the system are obtained.Thirdly,the Lie theorems and the conservation quantities are given for the discrete nonholonomic Hamiltonian systems.Finally,an example is discussed to illustrate the application of the results.

  17. Experimental Tests of Charge Symmetry Violation in Parton Distributions

    Energy Technology Data Exchange (ETDEWEB)

    J.T. Londergan; D.P. Murdock; A.W. Thomas

    2005-07-01

    Recently, a global phenomenological fit to high energy data has included charge symmetry breaking terms, leading to limits on the allowed magnitude of such effects. We discuss two possible experiments that could search for isospin violation in valence parton distributions. We show that, given the magnitude of charge symmetry violation consistent with existing global data, such experiments might expect to see effects at a level of several percent. Alternatively, such experiments could significantly decrease the upper limits on isospin violation in parton distributions.

  18. Spacetime-symmetry violations: motivations, phenomenology, and tests

    CERN Document Server

    Lehnert, Ralf

    2014-01-01

    An important open question in fundamental physics concerns the nature of spacetime at distance scales associated with the Planck length. The widespread belief that probing such distances necessitates Planck-energy particles has impeded phenomenological and experimental research in this context. However, it has been realized that various theoretical approaches to underlying physics can accommodate Planck-scale violations of spacetime symmetries. This talk surveys the motivations for spacetime-symmetry research, the SME test framework, and experimental efforts in this field.

  19. Edge states protected by chiral symmetry in disordered photonic graphene

    CERN Document Server

    Zeuner, Julia M; Nolte, Stefan; Szameit, Alexander

    2013-01-01

    We experimentally investigate the impact of uncorrelated composite and structural disorder in photonic graphene. We find that in case of structural disorder not only chiral symmetry, but also the vanishing of the density of states at zero energy is preserved. This is in contrast to composite disorder, where chiral symmetry as well as the vanishing of the density of states are destroyed. Our observations are experimentally proven by exciting edge states at the bearded edge in disordered photonic graphene.

  20. Symmetry Breaking by Nonstationay Optimisation

    NARCIS (Netherlands)

    Prestwich, S.; Hnich, B.; Rossi, R.; Tarim, S.A.

    2008-01-01

    We describe a new partial symmetry breaking method that can be used to break arbitrary variable/value symmetries in combination with depth first search, static value ordering and dynamic variable ordering. The main novelty of the method is a new dominance detection technique based on local search in

  1. Lie Symmetries of Ishimori Equation

    Institute of Scientific and Technical Information of China (English)

    SONG Xu-Xia

    2013-01-01

    The Ishimori equation is one of the most important (2+1)-dimensional integrable models,which is an integrable generalization of (1+1)-dimensional classical continuous Heisenberg ferromagnetic spin equations.Based on importance of Lie symmetries in analysis of differential equations,in this paper,we derive Lie symmetries for the Ishimori equation by Hirota's direct method.

  2. Symmetry Breaking by Nonstationay Optimisation

    NARCIS (Netherlands)

    Prestwich, S.; Hnich, B.; Rossi, R.; Tarim, S.A.

    2008-01-01

    We describe a new partial symmetry breaking method that can be used to break arbitrary variable/value symmetries in combination with depth first search, static value ordering and dynamic variable ordering. The main novelty of the method is a new dominance detection technique based on local search in

  3. Quantum mechanics with non-unitary symmetries

    CERN Document Server

    Bistrovic, B

    2000-01-01

    This article shows how to properly extend symmetries of non-relativistic quantum mechanics to include non-unitary representations of Lorentz group for all spins. It follows from this that (almost) all existing relativistic single particle Lagrangians and equations are incorrect. This is shown in particular for Dirac's equation and Proca equations. It is shown that properly constructed relativistic extensions have no negative energies, zitterbewegung effects and have proper symmetric energy-momentum tensor and angular momentum density tensor. The downside is that states with negative norm are inevitable in all representations.

  4. Constitutive modelling of magnetic shape memory alloys with discrete and continuous symmetries.

    Science.gov (United States)

    Haldar, K; Lagoudas, D C

    2014-09-08

    A free energy-based constitutive formulation is considered for magnetic shape memory alloys. Internal state variables are introduced whose evolution describes the transition from reference state to the deformed and transformed one. We impose material symmetry restrictions on the Gibbs free energy and on the evolution equations of the internal state variables. Discrete symmetry is considered for single crystals, whereas continuous symmetry is considered for polycrystalline materials.

  5. Asymptotic Symmetries from finite boxes

    CERN Document Server

    Andrade, Tomas

    2015-01-01

    It is natural to regulate an infinite-sized system by imposing a boundary condition at finite distance, placing the system in a "box." This breaks symmetries, though the breaking is small when the box is large. One should thus be able to obtain the asymptotic symmetries of the infinite system by studying regulated systems. We provide concrete examples in the context of Einstein-Hilbert gravity (with negative or zero cosmological constant) by showing in 4 or more dimensions how the Anti-de Sitter and Poincar\\'e asymptotic symmetries can be extracted from gravity in a spherical box with Dirichlet boundary conditions. In 2+1 dimensions we obtain the full double-Virasoro algebra of asymptotic symmetries for AdS$_3$ and, correspondingly, the full Bondi-Metzner-Sachs (BMS) algebra for asymptotically flat space. In higher dimensions, a related approach may continue to be useful for constructing a good asymptotically flat phase space with BMS asymptotic symmetries.

  6. Discrete symmetries in the MSSM

    Energy Technology Data Exchange (ETDEWEB)

    Schieren, Roland

    2010-12-02

    The use of discrete symmetries, especially abelian ones, in physics beyond the standard model of particle physics is discussed. A method is developed how a general, abelian, discrete symmetry can be obtained via spontaneous symmetry breaking. In addition, anomalies are treated in the path integral approach with special attention to anomaly cancellation via the Green-Schwarz mechanism. All this is applied to the minimal supersymmetric standard model. A unique Z{sup R}{sub 4} symmetry is discovered which solves the {mu}-problem as well as problems with proton decay and allows to embed the standard model gauge group into a simple group, i.e. the Z{sup R}{sub 4} is compatible with grand unification. Also the flavor problem in the context of minimal flavor violation is addressed. Finally, a string theory model is presented which exhibits the mentioned Z{sup R}{sub 4} symmetry and other desirable features. (orig.)

  7. Shape analysis with subspace symmetries

    KAUST Repository

    Berner, Alexander

    2011-04-01

    We address the problem of partial symmetry detection, i.e., the identification of building blocks a complex shape is composed of. Previous techniques identify parts that relate to each other by simple rigid mappings, similarity transforms, or, more recently, intrinsic isometries. Our approach generalizes the notion of partial symmetries to more general deformations. We introduce subspace symmetries whereby we characterize similarity by requiring the set of symmetric parts to form a low dimensional shape space. We present an algorithm to discover subspace symmetries based on detecting linearly correlated correspondences among graphs of invariant features. We evaluate our technique on various data sets. We show that for models with pronounced surface features, subspace symmetries can be found fully automatically. For complicated cases, a small amount of user input is used to resolve ambiguities. Our technique computes dense correspondences that can subsequently be used in various applications, such as model repair and denoising. © 2010 The Author(s).

  8. Symmetry of the superconducting order parameter in Bi2Sr2CaCu2Ox

    Science.gov (United States)

    Kelley, R. J.; Ma, Jian; Margaritondo, G.; Onellion, M.

    1993-12-01

    We analyzed the symmetry of the superconducting-phase condensate of Bi2Sr2CaCu2Ox with photoemission at high energy and angular resolution. The result unambiguously demonstrates that the photohole must include non-s-wave components. Under the hypothesis of a pure d-wave symmetry, this would be identified as dxz+dyz. Our superconducting state data are, specifically, incompatible with pure d2x-y2 symmetry. Mixed symmetries, however, cannot be excluded as long as they include a non-s-wave component. We specifically observe a change in the symmetry of electronic states between the normal state and the superconducting state.

  9. High Energy Molecules of High Symmetry.

    Science.gov (United States)

    1987-08-01

    consists of several narrow bands bearing a resemblance to the bands of ice. Large contributions to the heat capacity of triquinoyl hydrate are presumably...sodium hydroxide (to remove acetic acid). During the final drying some crystalline material separated from the gummy residue. The infrared spectrum on

  10. Vacuum energy sequestering and conformal symmetry

    Science.gov (United States)

    Ben-Dayan, Ido; Richter, Robert; Ruehle, Fabian; Westphal, Alexander

    2016-05-01

    In a series of recent papers Kaloper and Padilla proposed a mechanism to sequester standard model vacuum contributions to the cosmological constant. We study the consequences of embedding their proposal into a fully local quantum theory. In the original work, the bare cosmological constant Λ and a scaling parameter λ are introduced as global fields. We find that in the local case the resulting Lagrangian is that of a spontaneously broken conformal field theory where λ plays the role of the dilaton. A vanishing or a small cosmological constant is thus a consequence of the underlying conformal field theory structure.

  11. Generalized Morse Potential Symmetry and Satellite Potentials

    CERN Document Server

    Del Sol-Mesa, A; Smirnov, Yu F; Smirnov, Yu. F.

    1998-01-01

    We study in detail the bound state spectrum of the generalized Morse potential~(GMP), which was proposed by Deng and Fan as a potential function for diatomic molecules. By connecting the corresponding Schrödinger equation with the Laplace equation on the hyperboloid and the Schrödinger equation for the an $so(2,2)$ symmetry algebra, and obtain an explicit realization of the latter as $su(1,1) \\oplus su(1,1)$. We prove that some of the $so(2,2)$ generators connect among themselves wave functions belonging to different GMP's (called satellite potentials). The conserved quantity is some combination of the potential parameters instead of the level energy, as for potential algebras. Hence, $so(2,2)$ belongs to a new class of symmetry algebras. We also stress the usefulness of our algebraic results for simplifying the calculation of Frank-Condon factors for electromagnetic transitions between rovibrational levels based on different electronic states.

  12. Discrete Symmetries of Off-Shell Electromagnetism

    CERN Document Server

    Land, M

    2005-01-01

    We discuss the discrete symmetries of the Stueckelberg-Schrodinger relativistic quantum theory and its associated 5D local gauge theory, a dynamical description of particle/antiparticle interactions, with monotonically increasing Poincare-invariant parameter. In this framework, worldlines are traced out through the parameterized evolution of spacetime events, advancing or retreating with respect to the laboratory clock, with negative energy trajectories appearing as antiparticles when the observer describes the evolution using the laboratory clock. The associated gauge theory describes local interactions between events (correlated by the invariant parameter) mediated by five off-shell gauge fields. These gauge fields are shown to transform tensorially under under space and time reflections, unlike the standard Maxwell fields, and the interacting quantum theory therefore remains manifestly Lorentz covariant. Charge conjugation symmetry in the quantum theory is achieved by simultaneous reflection of the sense o...

  13. State of Modeling Symmetry in Hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Jones, O. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-07-22

    Modeling radiation drive asymmetry is challenging problem whose agreement with data depends on the hohlraum gas fill density. Modeling to date uses the HYDRA code with crossbeam energy transfer (CBET) calculated separately, and backscattered light removed from the input laser. For high fill hohlraums (~>1 mg/cc), matching symmetry requires ad hoc adjustments to CBET during picket and peak of drive. For near-vacuum hohlraums, there is little CBET or backscatter, and drive is more waist-high than predicted. For intermediate fill densities (~0.6 mg/cc) there appears to be a region of small CBET and backscatter where symmetry is reasonably well modeled. A new technique where backscatter and CBET are done “inline” appears it could bring high fill simulations closer to data.

  14. Rotational symmetry breaking in baby Skyrme models

    CERN Document Server

    Hen, Itay

    2007-01-01

    We consider multisolitons with charges 1 =< B =< 5 in the baby Skyrme model for the one-parametric family of potentials U=\\mu^2 (1-\\phi_3)^s with 0symmetry is exhibited only in the small s region; above a certain critical value of s, this symmetry is broken and a strong repulsion between the constituent one-Skyrmions becomes apparent. We also compute the spatial energy distributions of these solutions.

  15. Mei Symmetry and Lie Symmetry of the Rotational Relativistic Variable Mass System

    Institute of Scientific and Technical Information of China (English)

    FANGJian-Hui

    2003-01-01

    The Mei symmetry and the Lie symmetry of a rotational relativistic variable mass system are studied. The definitions and criteria of the Mei symmetry and the Lie symmetry of the rotational relativistic variable mass system are given. The relation between the Mei symmetry and the Lie symmetry is found. The conserved quantities which the Mei symmetry and the Lie symmetry lead to are obtained. An example is given to illustrate the application of the result.

  16. Chlorophylls, Symmetry, Chirality, and Photosynthesis

    Directory of Open Access Journals (Sweden)

    Mathias O. Senge

    2014-09-01

    Full Text Available Chlorophylls are a fundamental class of tetrapyrroles and function as the central reaction center, accessory and photoprotective pigments in photosynthesis. Their unique individual photochemical properties are a consequence of the tetrapyrrole macrocycle, the structural chemistry and coordination behavior of the phytochlorin system, and specific substituent pattern. They achieve their full potential in solar energy conversion by working in concert in highly complex, supramolecular structures such as the reaction centers and light-harvesting complexes of photobiology. The biochemical function of these structures depends on the controlled interplay of structural and functional principles of the apoprotein and pigment cofactors. Chlorophylls and bacteriochlorophylls are optically active molecules with several chiral centers, which are necessary for their natural biological function and the assembly of their supramolecular complexes. However, in many cases the exact role of chromophore stereochemistry in the biological context is unknown. This review gives an overview of chlorophyll research in terms of basic function, biosynthesis and their functional and structural role in photosynthesis. It highlights aspects of chirality and symmetry of chlorophylls to elicit further interest in their role in nature.

  17. Molecular symmetry group analysis of the low-wavenumber torsions and vibration-torsions in the S1 state and ground state cation of p-xylene: An investigation using resonance-enhanced multiphoton ionization (REMPI) and zero-kinetic-energy (ZEKE) spectroscopy

    Science.gov (United States)

    Gardner, Adrian M.; Tuttle, William D.; Groner, Peter; Wright, Timothy G.

    2017-03-01

    For the first time, a molecular symmetry group (MSG) analysis has been undertaken in the investigation of the electronic spectroscopy of p-xylene (p-dimethylbenzene). Torsional and vibration-torsional (vibtor) levels in the S1 state and ground state of the cation of p-xylene are investigated using resonance-enhanced multiphoton ionization (REMPI) and zero-kinetic-energy (ZEKE) spectroscopy. In the present work, we concentrate on the 0-350 cm-1 region, where there are a number of torsional and vibtor bands and we discuss the assignment of this region. In Paper II [W. D. Tuttle et al., J. Chem. Phys. 146, 124309 (2017)], we examine the 350-600 cm-1 region where vibtor levels are observed as part of a Fermi resonance. The similarity of much of the observed spectral activity to that in the related substituted benzenes, toluene and para-fluorotoluene, is striking, despite the different symmetries. The discussion necessitates a consideration of the MSG of p-xylene, which has been designated G72, but we shall also designate [{3,3}]D2h and we include the symmetry operations, character table, and direct product table for this. We also discuss the symmetries of the internal rotor (torsional) levels and the selection rules for the particular electronic transition of p-xylene investigated here.

  18. Aspects Of Baryon Number As A U(1) Symmetry

    CERN Document Server

    Pawl, A E

    2005-01-01

    The non-observation of proton decay strongly suggests that baryon number is a global U(1) (phase rotation) symmetry of the low-energy effective Lagrangian of particle physics. In the first half of this thesis, we explore the surprisingly dramatic consequences of this U(1) symmetry for the Affleck-Dine model of baryogenesis. Affleck-Dine baryogenesis is a popular model for the creation of a matter-antimatter asymmetry which relys on setting a complex scalar field into phase rotation. The phase symmetry of the Lagrangian has all important effect oil the evolution of this scalar field. The baryon number symmetry need not be restricted to a global symmetry. There is growing evidence from string theory, in fact, that global U(1) symmetries must have a gauge origin. In the second half of this thesis, we consider the details of how two different approaches to breaking a, gauged U(1) baryon symmetry would function in a universe with a low Planck scale. A universe with a low Planck scale (Mpl ∼ 103 GeV) has r...

  19. Probing symmetry and symmetry breaking in resonant soft-x-ray fluorescence spectra of molecules

    Energy Technology Data Exchange (ETDEWEB)

    Glans, P.; Gunnelin, K.; Guo, J. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    Conventional non-resonant soft X-ray emission brings about information about electronic structure through its symmetry and polarization selectivity, the character of which is governed by simple dipole rules. For centro-symmetric molecules with the emitting atom at the inversion center these rules lead to selective emission through the required parity change. For the more common classes of molecules which have lower symmetry or for systems with degenerate core orbitals (delocalized over identical sites), it is merely the local symmetry selectivity that provides a probe of the local atomic orbital contribution to the molecular orbital. For instance, in X-ray spectra of first row species the intensities essentially map the p-density at each particular atomic site, and, in a molecular orbital picture, the contribution of the local p-type atomic orbitals in the LCAO description of the molecular orbitals. The situation is different for resonant X-ray fluorescence spectra. Here strict parity and symmetry selectivity gives rise to a strong frequency dependence for all molecules with an element of symmetry. In addition to symmetry selectivity the strong frequency dependence of resonant X-ray emission is caused by the interplay between the shape of a narrow X-ray excitation energy function and the lifetime and vibrational broadenings of the resonantly excited core states. This interplay leads to various observable effects, such as linear dispersion, resonance narrowing and emission line (Stokes) doubling. Also from the point of view of polarization selectivity, the resonantly excited X-ray spectra are much more informative than the corresponding non-resonant spectra. Examples are presented for nitrogen, oxygen, and carbon dioxide molecules.

  20. Gravitation and Gauge Symmetries

    CERN Document Server

    Stewart, J

    2002-01-01

    The purpose of this book (I quote verbatim from the back cover) is to 'shed light upon the intrinsic structure of gravity and the principle of gauge invariance, which may lead to a consistent unified field theory', a very laudable aim. The content divides fairly clearly into four sections (and origins). After a brief introduction, chapters 2-6 review the 'Structure of gravity as a theory based on spacetime gauge symmetries'. This is fairly straightforward material, apparently based on a one-semester graduate course taught at the University of Belgrade for about two decades, and, by implication, this is a reasonably accurate description of its level and assumed knowledge. There follow two chapters of new material entitled 'Gravity in flat spacetime' and 'Nonlinear effects in gravity'. The final three chapters, entitled 'Supersymmetry and supergravity', 'Kaluza-Klein theory' and 'String theory' have been used for the basis of a one-semester graduate course on the unification of fundamental interactions. The boo...

  1. Symmetries in nuclear structure

    CERN Document Server

    Allaart, K; Dieperink, A

    1983-01-01

    The 1982 summer school on nuclear physics, organized by the Nuclear Physics Division of the Netherlands' Physical Society, was the fifth in a series that started in 1963. The number of students attending has always been about one hundred, coming from about thirty countries. The theme of this year's school was symmetry in nuclear physics. This book covers the material presented by the enthusi­ astic speakers, who were invited to lecture on this subject. We think they have succeeded in presenting us with clear and thorough introductory talks at graduate or higher level. The time schedule of the school and the location allowed the participants to make many informal contacts during many social activities, ranging from billiards to surf board sailing. We hope and expect that the combination of a relaxed atmosphere during part of the time and hard work during most of the time, has furthered the interest in, and understanding of, nuclear physics. The organization of the summer school was made possible by substantia...

  2. O'Hanlon actions by Noether symmetry

    OpenAIRE

    Darabi, F.

    2015-01-01

    By using the conformal symmetry between Brans-Dicke action with $\\omega=-\\frac{3}{2}$ and O'Hanlon action, we seek the O'Hanlon actions in Einstein frame respecting the Noether symmetry. Since the Noether symmetry is preserved under conformal transformations, the existence of Noether symmetry in the Brans-Dicke action asserts the Noether symmetry in O'Hanlon action in Einstein frame. Therefore, the potentials respecting Noether symmetry in Brans-Dicke action give the corresponding potentials ...

  3. Spectral theorem and partial symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Gozdz, A. [University of Maria Curie-Sklodowska, Department of Mathematical Physics, Institute of Physics (Poland); Gozdz, M. [University of Maria Curie-Sklodowska, Department of Complex Systems and Neurodynamics, Institute of Informatics (Poland)

    2012-10-15

    A novel method of the decompositon of a quantum system's Hamiltonian is presented. In this approach the criterion of the decomposition is determined by the symmetries possessed by the sub-Hamiltonians. This procedure is rather generic and independent of the actual global symmetry, or the lack of it, of the full Hamilton operator. A detailed investigation of the time evolution of the various sub-Hamiltonians, therefore the change in time of the symmetry of the physical object, is presented for the case of a vibrator-plus-rotor model. Analytical results are illustrated by direct numerical calculations.

  4. Astroparticle tests of Lorentz symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Jorge [Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2016-07-01

    Lorentz symmetry is a cornerstone of modern physics. As the spacetime symmetry of special relativity, Lorentz invariance is a basic component of the standard model of particle physics and general relativity, which to date constitute our most successful descriptions of nature. Deviations from exact symmetry would radically change our view of the universe and current experiments allow us to test the validity of this assumption. In this talk, I describe effects of Lorentz violation in cosmic rays and gamma rays that can be studied in current observatories.

  5. Symmetry protected single photon subradiance

    CERN Document Server

    Cai, Han; Svidzinsky, Anatoly A; Zhu, Shi-Yao; Scully, Marlan O

    2016-01-01

    We study the protection of subradiant states by the symmetry of the atomic distributions in the Dicke limit, in which collective Lamb shift cannot be neglected. We find that anti-symmetric states are subradiant states for distribution with reflection symmetry. These states can be prepared by anti-symmetric optical modes and converted to superradiant states by properly tailored 2\\pipulses. Continuous symmetry can also be used to achieve subradiance. This study is relevant to the problem of robust quantum memory with long storage time and fast readout.

  6. Symmetry analysis of transport properties in helical superconductor junctions

    Science.gov (United States)

    Cheng, Qiang; Zhang, Yinhan; Zhang, Kunhua; Jin, Biao; Zhang, Changlian

    2017-03-01

    We study the discrete symmetries satisfied by helical p-wave superconductors with the d-vectors {{k}x}\\hat{x}+/- {{k}y}\\hat{y} or {{k}y}\\hat{x}+/- {{k}x}\\hat{y} and the transformations brought by symmetry operations to ferromagnet and spin-singlet superconductors, which show intimate associations with the transport properties in heterojunctions, including helical superconductors. In particular, the partial symmetries of the Hamiltonian under spin-rotation and gauge-rotation operations are responsible for the novel invariances of the conductance in tunnel junctions and the new selection rules for the lowest current and peculiar phase diagrams in Josephson junctions, which were reported recently. The symmetries of constructed free energies for Josephson junctions are also analyzed, and are consistent with the results from the Hamiltonian.

  7. Misunderstanding that the Effective Action is Convex under Broken Symmetry

    CERN Document Server

    Asanuma, Nobu-Hiko

    2016-01-01

    The widespread belief that the effective action is convex and has a flat bottom under broken global symmetry is shown to be wrong. We show spontaneous symmetry breaking necessarily accompanies non-convexity in the effective action for quantum field theory, or in the free energy for statistical mechanics, and clarify the magnitude of non-convexity. For quantum field theory, it is also explicitly proved that translational invariance breaks spontaneously when the system is in the non-convex region, and that different vacua of spontaneously broken symmetry cannot be superposed. As applications of non-convexity, we study the first-order phase transition which happens at the zero field limit of spontaneously broken symmetry, and we propose a simple model of phase coexistence which obeys the Born rule.

  8. Tests of Lorentz Symmetry in the Gravitational Sector

    Directory of Open Access Journals (Sweden)

    Aurélien Hees

    2016-12-01

    Full Text Available Lorentz symmetry is one of the pillars of both General Relativity and the Standard Model of particle physics. Motivated by ideas about quantum gravity, unification theories and violations of CPT symmetry, a significant effort has been put the last decades into testing Lorentz symmetry. This review focuses on Lorentz symmetry tests performed in the gravitational sector. We briefly review the basics of the pure gravitational sector of the Standard-Model Extension (SME framework, a formalism developed in order to systematically parametrize hypothetical violations of the Lorentz invariance. Furthermore, we discuss the latest constraints obtained within this formalism including analyses of the following measurements: atomic gravimetry, Lunar Laser Ranging, Very Long Baseline Interferometry, planetary ephemerides, Gravity Probe B, binary pulsars, high energy cosmic rays, … In addition, we propose a combined analysis of all these results. We also discuss possible improvements on current analyses and present some sensitivity analyses for future observations.

  9. Tests of Lorentz symmetry in the gravitational sector

    CERN Document Server

    Hees, Aurélien; Bourgoin, Adrien; Bars, Hélène Pihan-Le; Guerlin, Christine; Poncin-Lafitte, Christophe Le

    2016-01-01

    Lorentz symmetry is one of the pillars of both General Relativity and the Standard Model of particle physics. Motivated by ideas about quantum gravity, unification theories and violations of CPT symmetry, a significant effort has been put the last decades into testing Lorentz symmetry. This review focuses on Lorentz symmetry tests performed in the gravitational sector. We briefly review the basics of the pure gravitational sector of the Standard-Model Extension (SME) framework, a formalism developed in order to systematically parametrize hypothetical violations of the Lorentz invariance. Furthermore, we discuss the latest constraints obtained within this formalism including analyses of the following measurements: atomic gravimetry, Lunar Laser Ranging, Very Long Baseline Interferometry, planetary ephemerides, Gravity Probe B, binary pulsars, high energy cosmic rays,... In addition, we propose a combined analysis of all these results. We also discuss possible improvements on current analyses and present some s...

  10. Symmetry enrichment in three-dimensional topological phases

    Science.gov (United States)

    Ning, Shang-Qiang; Liu, Zheng-Xin; Ye, Peng

    2016-12-01

    While two-dimensional symmetry-enriched topological phases (SETs ) have been studied intensively and systematically, three-dimensional ones are still open issues. We propose an algorithmic approach of imposing global symmetry Gs on gauge theories (denoted by GT) with gauge group Gg. The resulting symmetric gauge theories are dubbed "symmetry-enriched gauge theories" (SEG), which may be served as low-energy effective theories of three-dimensional symmetric topological quantum spin liquids. We focus on SEGs with gauge group Gg=ZN1×ZN2×⋯ and onsite unitary symmetry group Gs=ZK1×ZK2×⋯ or Gs=U (1 ) ×ZK 1×⋯ . Each SEG(Gg,Gs) is described in the path-integral formalism associated with certain symmetry assignment. From the path-integral expression, we propose how to physically diagnose the ground-state properties (i.e., SET orders) of SEGs in experiments of charge-loop braidings (patterns of symmetry fractionalization) and the mixed multiloop braidings among deconfined loop excitations and confined symmetry fluxes. From these symmetry-enriched properties, one can obtain the map from SEGs to SETs . By giving full dynamics to background gauge fields, SEGs may be eventually promoted to a set of new gauge theories (denoted by GT*). Based on their gauge groups, GT*s may be further regrouped into different classes, each of which is labeled by a gauge group Gg*. Finally, a web of gauge theories involving GT,SEG,SET, and GT* is achieved. We demonstrate the above symmetry-enrichment physics and the web of gauge theories through many concrete examples.

  11. Global symmetries, volume independence and continuity

    CERN Document Server

    Sulejmanpasic, Tin

    2016-01-01

    We discuss quantum field theories with global $SU(N)$ and $O(N)$ symmetries for which temporal direction is compactified on a circle of size $L$ with periodicity of fields up to a global symmetry transformation, i.e. twisted boundary conditions. Such boundary conditions correspond to insertions of the global symmetry operator in the partition function. We argue that for a special choice of twists most of the excited states get projected out, leaving only either mesonic states or states whose energy scales with $N$. When $N\\rightarrow \\infty$ all excitations become suppressed at any compact radius and the twisted partition function gets a contribution from the ground-state only, rendering observables independent of the radius of compactification, i.e. volume independent. We explicitly prove that this is indeed the case for the $CP(N-1)$ and $O(N)$ non-linear sigma models in any number of dimensions. We further focus on the two-dimensional $CP(N-1)$ case which is asymptotically free, and demonstrate, unlike its...

  12. The Limits of Custodial Symmetry

    CERN Document Server

    Chivukula, R Sekhar; Foadi, Roshan; Simmons, Elizabeth H

    2010-01-01

    We introduce a toy model implementing the proposal of using a custodial symmetry to protect the Z b_L bbar_L coupling from large corrections. This "doublet-extended standard model" adds a weak doublet of fermions (including a heavy partner of the top quark) to the particle content of the standard model in order to implement an O(4) x U(1)_X = SU(2)_L x SU(2)_R x P_LR x U(1)_X symmetry in the top-quark mass generating sector. This symmetry is softly broken to the gauged SU(2)_L x U(1)_Y electroweak symmetry by a Dirac mass M for the new doublet; adjusting the value of M allows us to explore the range of possibilities between the O(4)-symmetric (M to 0) and standard-model-like (M to infinity) limits.

  13. The Limits of Custodial Symmetry

    CERN Document Server

    Chivukula, R Sekhar; Foadi, Roshan; Simmons, Elizabeth H

    2010-01-01

    We introduce a toy model implementing the proposal of using a custodial symmetry to protect the Zbb coupling from large corrections. This "doublet-extended standard model" adds a weak doublet of fermions (including a heavy partner of the top quark) to the particle content of the standard model in order to implement an O(4) x U(1)_X = SU(2)_L x SU(2)_R x P_{LR} x U(1)_X symmetry that protects the Zbb coupling. This symmetry is softly broken to the gauged SU(2)_L x U(1)_Y electroweak symmetry by a Dirac mass M for the new doublet; adjusting the value of M allows us to explore the range of possibilities between the O(4)-symmetric (M to 0) and standard-model-like (M to infinity) limits.

  14. Symmetries from the solution manifold

    Science.gov (United States)

    Aldaya, Víctor; Guerrero, Julio; Lopez-Ruiz, Francisco F.; Cossío, Francisco

    2015-07-01

    We face a revision of the role of symmetries of a physical system aiming at characterizing the corresponding Solution Manifold (SM) by means of Noether invariants as a preliminary step towards a proper, non-canonical, quantization. To this end, "point symmetries" of the Lagrangian are generally not enough, and we must resort to the more general concept of contact symmetries. They are defined in terms of the Poincaré-Cartan form, which allows us, in turn, to find the symplectic structure on the SM, through some sort of Hamilton-Jacobi (HJ) transformation. These basic symmetries are realized as Hamiltonian vector fields, associated with (coordinate) functions on the SM, lifted back to the Evolution Manifold through the inverse of this HJ mapping, that constitutes an inverse of the Noether Theorem. The specific examples of a particle moving on S3, at the mechanical level, and nonlinear SU(2)-sigma model in field theory are sketched.

  15. External symmetry in general relativity

    CERN Document Server

    Cotaescu, I I

    2000-01-01

    We propose a generalization of the isometry transformations to the geometric context of the field theories with spin where the local frames are explicitly involved. We define the external symmetry transformations as isometries combined with suitable tetrad gauge transformations and we show that these form a group which is locally isomorphic with the isometry one. We point out that the symmetry transformations that leave invariant the equations of the fields with spin have generators with specific spin terms which represent new physical observables. The examples we present are the generators of the central symmetry and those of the maximal symmetries of the de Sitter and anti-de Sitter spacetimes derived in different tetrad gauge fixings. Pacs: 04.20.Cv, 04.62.+v, 11.30.-j

  16. Using MT2 to distinguish dark matter stabilization symmetries

    Science.gov (United States)

    Agashe, Kaustubh; Kim, Doojin; Walker, Devin G. E.; Zhu, Lijun

    2011-09-01

    We examine the potential of using colliders to distinguish models with parity (Z2) stabilized dark matter (DM) from models in which the DM is stabilized by other symmetries, taking the latter to be a Z3 symmetry for illustration. The key observation is that a heavier mother particle charged under a Z3 stabilization symmetry can decay into one or two DM particles along with standard model particles. This can be contrasted with the decay of a mother particle charged under a parity symmetry; typically, only one DM particle appears in the decay chain. The arXiv:1003.0899 studied the distributions of visible invariant mass from the decay of a single such mother particle in order to highlight the resulting distinctive signatures of Z3 symmetry versus parity symmetry stabilized dark matter candidates. We now describe a complementary study which focuses on decay chains of the two mother particles which are necessarily present in these events. We also include in our analysis the missing energy/momentum in the event. For the Z3 symmetry stabilized mothers, the resulting inclusive final state can have two, three or four DM particles. In contrast, models with Z2 symmetry can have only two. We show that the shapes and edges of the distribution of MT2-type variables, along with ratio of the visible momentum/energy on the two sides of the event, are powerful in distinguishing these different scenarios. Finally we conclude by outlining future work which focuses on reducing combinatoric ambiguities from reconstructing multijet events. Increasing the reconstruction efficiency can allow better reconstruction of events with two or three dark matter candidates in the final state.

  17. Symmetry via Lie algebra cohomology

    CERN Document Server

    Eastwood, Michael

    2010-01-01

    The Killing operator on a Riemannian manifold is a linear differential operator on vector fields whose kernel provides the infinitesimal Riemannian symmetries. The Killing operator is best understood in terms of its prolongation, which entails some simple tensor identities. These simple identities can be viewed as arising from the identification of certain Lie algebra cohomologies. The point is that this case provides a model for more complicated operators similarly concerned with symmetry.

  18. Dynamical (Super)Symmetry Breaking

    CERN Document Server

    Murayama, H

    2001-01-01

    Dynamical Symmetry Breaking (DSB) is a concept theorists rely on very often in the discussions of strong dynamics, model building, and hierarchy problems. In this talk, I will discuss why this is such a permeating concept among theorists and how they are used in understanding physics. I also briefly review recent progress in using dynamical symmetry breaking to construct models of supersymmetry breaking and fermion masses.

  19. Mei Symmetry and Lie Symmetry of the Rotational Relativistic Variable Mass System

    Institute of Scientific and Technical Information of China (English)

    FANG Jian-Hui

    2003-01-01

    The Mei symmetry and the Lie symmetry of a rotational relativistic variable masssystem are studied. Thedefinitions and criteria of the Mei symmetry and the Lie symmetry of the rotational relativistic variable mass system aregiven. The relation between the Mei symmetry and the Lie symmetry is found. The conserved quantities which the Meisymmetry and the Lie symmetry lead to are obtained. An example is given to illustrate the application of the result.

  20. A broken-symmetry density functional study of structures, energies, and protonation states along the catalytic O-O bond cleavage pathway in ba3 cytochrome c oxidase from Thermus thermophilus.

    Science.gov (United States)

    Han Du, Wen-Ge; Götz, Andreas W; Yang, Longhua; Walker, Ross C; Noodleman, Louis

    2016-08-21

    Broken-symmetry density functional calculations have been performed on the [Fea3, CuB] dinuclear center (DNC) of ba3 cytochrome c oxidase from Thermus thermophilus in the states of [Fea3(3+)-(HO2)(-)-CuB(2+), Tyr237(-)] and [Fea3(4+)[double bond, length as m-dash]O(2-), OH(-)-CuB(2+), Tyr237˙], using both PW91-D3 and OLYP-D3 functionals. Tyr237 is a special tyrosine cross-linked to His233, a ligand of CuB. The calculations have shown that the DNC in these states strongly favors the protonation of His376, which is above propionate-A, but not of the carboxylate group of propionate-A. The energies of the structures obtained by constrained geometry optimizations along the O-O bond cleavage pathway between [Fea3(3+)-(O-OH)(-)-CuB(2+), Tyr237(-)] and [Fea3(4+)[double bond, length as m-dash]O(2-)HO(-)-CuB(2+), Tyr237˙] have also been calculated. The transition of [Fea3(3+)-(O-OH)(-)-CuB(2+), Tyr237(-)] → [Fea3(4+)[double bond, length as m-dash]O(2-)HO(-)-CuB(2+), Tyr237˙] shows a very small barrier, which is less than 3.0/2.0 kcal mol(-1) in PW91-D3/OLYP-D3 calculations. The protonation state of His376 does not affect this O-O cleavage barrier. The rate limiting step of the transition from state A (in which O2 binds to Fea3(2+)) to state PM ([Fea3(4+)[double bond, length as m-dash]O(2-), OH(-)-CuB(2+), Tyr237˙], where the O-O bond is cleaved) in the catalytic cycle is, therefore, the proton transfer originating from Tyr237 to O-O to form the hydroperoxo [Fea3(3+)-(O-OH)(-)-CuB(2+), Tyr237(-)] state. The importance of His376 in proton uptake and the function of propionate-A/neutral-Asp372 as a gate to prevent the proton from back-flowing to the DNC are also shown.