WorldWideScience

Sample records for superscript 27al nmr

  1. Advances in 27Al MAS NMR studies of geopolymers

    Czech Academy of Sciences Publication Activity Database

    Brus, Jiří; Abbrent, Sabina; Kobera, Libor; Urbanová, Martina; Cuba, P.

    2016-01-01

    Roč. 88, č. 2016 (2016), s. 79-147 ISSN 0066-4103 R&D Projects: GA ČR(CZ) GA13-24155S; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : geopolymers * aluminosilicates * solid-state NMR Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.600, year: 2016

  2. Magnetic field dependence observed by 27 Al NMR of species contained in alumina colloidal dispersions

    International Nuclear Information System (INIS)

    Morgado Junior, Edisson; Menezes, Sonia M.C.; San Gil, Rosane

    1995-01-01

    The behaviour of some aluminium species front a magnetic field have been investigated by 27 Al NMR analysis, this method was used for characterization of an octahedric aluminium specie from sols prepared by bohemite acid peptization. X-ray diffraction data have identified the mineral structure. The results have been shown and discussed, and NMR spectra were also presented and studied. Concluding this work, the nature of a colloidal specie of alumina was clarified through the dependence research of magnetic field by 27 Al NMR

  3. 27Al NMR studies of NpPd5Al2

    International Nuclear Information System (INIS)

    Chudo, H.; Sakai, H.; Tokunaga, Y.; Kambe, S.; Aoki, D.; Homma, Y.; Shiokawa, Y.; Haga, Y.; Ikeda, S.; Matsuda, T.D.; Onuki, Y.; Yasuoka, H.

    2009-01-01

    We present 27 Al NMR studies for a single crystal of the Np-based superconductor NpPd 5 Al 2 (T c =4.9K). We have observed a five-line 27 Al NMR spectrum with a center line and four satellite lines separated by first-order nuclear quadrupole splittings. The Knight shift clearly drops below T c . The temperature dependence of the 27 Al nuclear spin-lattice relaxation rate shows no coherence peak below T c , indicating that NpPd 5 Al 2 is an unconventional superconductor with an anisotropic gap. The analysis of the present NMR data provides evidence for strong-coupling d-wave superconductivity in NpPd 5 Al 2 .

  4. Solid-state 27Al and 29Si NMR investigations on Si-substituted hydrogarnets

    International Nuclear Information System (INIS)

    Rivas Mercury, J.M.; Pena, P.; Aza, A.H. de; Turrillas, X.; Sobrados, I.; Sanz, J.

    2007-01-01

    Partially deuterated Ca 3 Al 2 (SiO 4 ) 3-x (OH) 4x hydrates prepared by a reaction in the presence of D 2 O of synthetic tricalcium aluminate with different amounts of amorphous silica were characterized by 29 Si and 27 Al magic-angle spinning nuclear magnetic resonance (NMR) spectroscopy. The 29 Si NMR spectroscopy was used for quantifying the non-reacted silica and the resulting hydrated products. The incorporation of Si into Ca 3 Al 2 (SiO 4 ) 3-x (OH) 4x was followed by 27 Al NMR spectroscopy: Si:OH ratios were determined quantitatively from octahedral Al signals ascribed to Al(OH) 6 and Al(OSi)(OH) 5 environments. The NMR data obtained were consistent with the concentrations of the Al and Si species deduced from transmission electron microscopy energy-dispersive spectrometry and Rietveld analysis of both X-ray and neutron diffraction data

  5. A First Laboratory Utilizing NMR for Undergraduate Education: Characterization of Edible Fats and Oils by Quantitative [superscript 13]C NMR

    Science.gov (United States)

    Fry, Charles G.; Hofstetter, Heike; Bowman, Matthew D.

    2017-01-01

    Quantitative [superscript 13]C NMR provides a straightforward method of analyzing edible oils in undergraduate chemistry laboratories. [superscript 13]C spectra are relatively easy to understand, and are much simpler to analyze and workup than corresponding [superscript 1]H spectra. Average chain length, degree of saturation, and average…

  6. Coordination Structure of Aluminum in Magnesium Aluminum Hydroxide Studied by 27Al NMR

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The coordination structure of aluminum in magnesium aluminum hydroxide was studiedby 27Al NMR. The result showed that tetrahedral aluminum (AlⅣ) existed in magnesiumaluminum hydroxide, and the contents of AlⅣ increased with the increase of the ratio of Al/Mg andwith the peptizing temperature. AlⅣ originated from the so-called Al13 polymer with the structureof one Al tetrahedron surrounded by twelve Al octahedrons.

  7. Application progress of solid 29Si, 27Al NMR in the research of cement-based materials

    International Nuclear Information System (INIS)

    Feng Chunhua; Wang Xijian; Li Dongxu

    2014-01-01

    Background: The solid-state Nuclear Magnetic Resonance (NMR) is an effective method for the research of cement-based materials. Now it focuses on using solid 29 Si and 27 Al NMR to research the hydration structure of the cement-based materials in cement chemistry. Purpose: A theoretical guidance is proposed for solid 29 Si and 27 Al NMR technology used in cement chemistry research. Methods: We reviewed the application of solid 29 Si and 27 Al NMR in the cement-based materials and analyzed the problem among the researches. Results: This paper introduced an fundamental, relevant-conditions and basic parameters of NMR, and studied the technical parameters of solid 29 Si and 27 Ai NMR together with the relationship among the hydration structure of cement based material. Moreover, this paper reviewed the related domestic and overseas achievements in the research of hydration structure of the cement-based materials using solid 29 Si and 27 Al NMR. Conclusion: There were some problems in the research on cement-based materials by technology of solid 29 Si and 27 Al NMR. NMR will promote the Hydration theory of cement-based material greatly. (authors)

  8. Solid-state 27Al and 29Si NMR characterization of hydrates formed in calcium aluminate-silica fume mixtures

    International Nuclear Information System (INIS)

    Pena, P.; Rivas Mercury, J.M.; Aza, A.H. de; Turrillas, X.; Sobrados, I.; Sanz, J.

    2008-01-01

    Partially deuterated Ca 3 Al 2 (SiO 4 ) y (OH) 12-4y -Al(OH) 3 mixtures, prepared by hydration of Ca 3 Al 2 O 6 (C 3 A), Ca 12 Al 14 O 33 (C 12 A 7 ) and CaAl 2 O 4 (CA) phases in the presence of silica fume, have been characterized by 29 Si and 27 Al magic-angle spinning-nuclear magnetic resonance (MAS-NMR) spectroscopies. NMR spectroscopy was used to characterize anhydrous and fully hydrated samples. In hydrated compounds, Ca 3 Al 2 (OH) 12 and Al(OH) 3 phases were detected. From the quantitative analysis of 27 Al NMR signals, the Al(OH) 3 /Ca 3 Al 2 (OH) 12 ratio was deduced. The incorporation of Si into the katoite structure, Ca 3 Al 2 (SiO 4 ) 3-x (OH) 4x , was followed by 27 Al and 29 Si NMR spectroscopies. Si/OH ratios were determined from the quantitative analysis of 27 Al MAS-NMR components associated with Al(OH) 6 and Al(OSi)(OH) 5 environments. The 29 Si NMR spectroscopy was also used to quantify the unreacted silica and amorphous calcium aluminosilicate hydrates formed, C-S-H and C-A-S-H for short. From 29 Si NMR spectra, the amount of Si incorporated into different phases was estimated. Si and Al concentrations, deduced by NMR, transmission electron microscopy, energy dispersive spectrometry, and Rietveld analysis of both X-ray and neutron data, indicate that only a part of available Si is incorporated in katoite structures. - Graphical abstract: Transmission electron micrograph of CaAl 2 O 4 -microsilica mixture hydrated at 90 deg. C for 31 days showing a cubic Ca 3 Al 2.0±0.2 (SiO 4 ) 0.9±0.2 (OH) 1.8 crystal surrounded by unreacted amorphous silica spheres

  9. Structural Characterization of MAO and Related Aluminum Complexes. 1. Solid-State 27 Al NMR with Comparison to EFG Tensors from ab Initio Molecular Orbital Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Pamela L.; Harwell, Chris; Mrse, Anthony A.; Emery, Earl F.; Gan, Zhedong; Caldwell, Tod; Reyes, Arneil P.; Kuhns, Philip; Hoyt, David W.; Simeral, Larry S.; Hall, Randall W.; Butler, Leslie G.

    2001-11-07

    Aminato and propanolato aluminum clusters with 3-, 4-, and 6-coordinate aluminum sites are studied with three 27Al NMR techniques optimized for large 27Al Quadrupole coupling constants: field-swept, frequency-stepped, and high-field MAS NMR. The 27Al quadrupole coupling constants and asymmetry parameters of molecular species, both experimental and derived from ab initio molecular orbital calculations, are correlated with structure.

  10. Magnetic field dependence observed by {sup 27} Al NMR of species contained in alumina colloidal dispersions; Dependencia de campo magnetico observada por RMN {sup 27} Al de especies presentes em dispersoes coloidais de alumina

    Energy Technology Data Exchange (ETDEWEB)

    Morgado Junior, Edisson; Menezes, Sonia M.C. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas; San Gil, Rosane [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Quimica

    1995-12-31

    The behaviour of some aluminium species front a magnetic field have been investigated by {sup 27} Al NMR analysis, this method was used for characterization of an octahedric aluminium specie from sols prepared by bohemite acid peptization. X-ray diffraction data have identified the mineral structure. The results have been shown and discussed, and NMR spectra were also presented and studied. Concluding this work, the nature of a colloidal specie of alumina was clarified through the dependence research of magnetic field by {sup 27} Al NMR 12 refs., 4 figs., 2 tabs.

  11. Lattice vibrations and barrier to hindered rotation in lithium tetradeuteroaluminate by 2H, 7Li and 27Al NMR

    International Nuclear Information System (INIS)

    Tarasov, V.P.; Kirakosyan, G.A.

    1996-01-01

    Temperature dependences of 2 H, 7 Li, 27 Al NMR line shape in LiAlD 4 lithium polycrystal tetradeuteroaluminate in the range of 103-420 K have been studied. The quadrupole bond constants and asymmetry parameters of electric field gradient tensor have been measured. The frequencies of lattice vibrations have been evaluated in the framework of the Buyer model. From temperature dependences of spin-lattice relaxation time and 2 H NMR line shape the activation energies of AlD 4 anion decelerated rotation, amounting to 74 and 62 k J/mol respectively, have been determined. 15 refs.; 5 figs.; 2 tabs

  12. Multinuclear (27Al, 29Si, 47,49Ti) solid-state NMR of titanium substituted zeolite USY.

    Science.gov (United States)

    Ganapathy, S; Gore, K U; Kumar, Rajiv; Amoureux, Jean-Paul

    2003-01-01

    Multinuclear solid-state NMR spectroscopy, employing 29Si MAS,27Al MAS/3Q-MAS and (47,49)Ti wide-line experiments, has been used for the structural characterization of titanium substituted ultra-stable zeolite Y (Ti-USY). 27Al MAS experiments show the presence of aluminum in four (Al(IV)), five (Al(V)), and six (Al(VI)) coordination, whereas the multiplicity within Al(IV) and Al(VI) is revealed by 27Al 3Q-MAS experiments. Two different tetrahedral and octahedral Al environments are resolved and their isotropic chemical shifts (delta(CS)) and second-order quadrupole interaction parameters (P(Q)) have been determined by a graphical analysis of the 3Q-MAS spectra. The emergence of signal with higher intensity at -101 ppm in the 29Si MAS spectrum of Ti-USY samples indicates the possible occurrence of Q4(3Si,1Ti) type silicon environments due to titanium substitution in the faujasite framework. High-field (11.74T) operation, using a probehead specially designed to handle a large sample volume, has enabled the acquisition of 47,49Ti static spectra and identification of the titanium environment in the zeolite. The chemical shielding and electric field gradient tensors for the titanium environment in the zeolite have been determined by a computer simulation of the quadrupolar broadened static 47,49Ti NMR spectra.

  13. A new aluminium-hydrate species in hydrated Portland cements characterized by 27Al and 29Si MAS NMR spectroscopy

    International Nuclear Information System (INIS)

    Andersen, Morten Daugaard; Jakobsen, Hans J.; Skibsted, Jorgen

    2006-01-01

    Recent 27 Al MAS NMR studies of hydrated Portland cements and calcium-silicate-hydrate (C-S-H) phases have shown a resonance from Al in octahedral coordination, which cannot be assigned to the well-known aluminate species in hydrated Portland cements. This resonance, which exhibits the isotropic chemical shift δ iso = 5.0 ppm and the quadrupole product parameter P Q = 1.2 MHz, has been characterized in detail by 27 Al MAS and 27 Al{ 1 H} CP/MAS NMR for different hydrated white Portland cements and C-S-H phases. These experiments demonstrate that the resonance originates from an amorphous or disordered aluminate hydrate which contains Al(OH) 6 3- or O x Al(OH) 6-x (3+x)- units. The formation of the new aluminate hydrate is related to the formation of C-S-H at ambient temperatures, however, it decomposes by thermal treatment at temperatures of 70-90 o C. From the experiments in this work it is proposed that the new aluminate hydrate is either an amorphous/disordered aluminate hydroxide or a calcium aluminate hydrate, produced as a separate phase or as a nanostructured surface precipitate on the C-S-H phase. Finally, the possibilities of Al 3+ for Ca 2+ substitution in the principal layers and interlayers of the C-S-H structure are discussed

  14. Solid-state {sup 27}Al and {sup 29}Si NMR investigations on Si-substituted hydrogarnets

    Energy Technology Data Exchange (ETDEWEB)

    Rivas Mercury, J.M. [Instituto de Ceramica y Vidrio, CSIC, Kelsen, 5, 28049 Cantoblanco-Madrid (Spain); Pena, P. [Instituto de Ceramica y Vidrio, CSIC, Kelsen, 5, 28049 Cantoblanco-Madrid (Spain)]. E-mail: ppena@icv.csic.es; Aza, A.H. de [Instituto de Ceramica y Vidrio, CSIC, Kelsen, 5, 28049 Cantoblanco-Madrid (Spain); Turrillas, X. [Instituto de Ciencias de la Construccion Eduardo Torroja, CSIC, Serrano Galvache, 4, 28033 Madrid (Spain); Sobrados, I. [Instituto de Ciencia de Materiales, CSIC, Sor Juana Ines de la Cruz, 3, 28049 Cantoblanco-Madrid (Spain); Sanz, J. [Instituto de Ciencia de Materiales, CSIC, Sor Juana Ines de la Cruz, 3, 28049 Cantoblanco-Madrid (Spain)

    2007-02-15

    Partially deuterated Ca{sub 3}Al{sub 2}(SiO{sub 4}){sub 3-x}(OH){sub 4x} hydrates prepared by a reaction in the presence of D{sub 2}O of synthetic tricalcium aluminate with different amounts of amorphous silica were characterized by {sup 29}Si and {sup 27}Al magic-angle spinning nuclear magnetic resonance (NMR) spectroscopy. The {sup 29}Si NMR spectroscopy was used for quantifying the non-reacted silica and the resulting hydrated products. The incorporation of Si into Ca{sub 3}Al{sub 2}(SiO{sub 4}){sub 3-x}(OH){sub 4x} was followed by {sup 27}Al NMR spectroscopy: Si:OH ratios were determined quantitatively from octahedral Al signals ascribed to Al(OH){sub 6} and Al(OSi)(OH){sub 5} environments. The NMR data obtained were consistent with the concentrations of the Al and Si species deduced from transmission electron microscopy energy-dispersive spectrometry and Rietveld analysis of both X-ray and neutron diffraction data.

  15. 27Al MAS NMR spectroscopic identification of reaction intermediates in the carbothermal reduction and nitridation of alumina

    International Nuclear Information System (INIS)

    Jung, Woo-Sik; Chae, Seen-Ae

    2010-01-01

    The reaction intermediates in the carbothermal reduction and nitridation (CRN) reaction of γ-Al 2 O 3 were identified by 27 Al magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. This identification ruled out the possibility of a reaction mechanism involving the gaseous reaction intermediates. In the CRN reaction of γ-Al 2 O 3 , AlO 4 units were converted to AlN stepwise via AlN x O 4-x (x = 1, 2, 3) intermediates, while AlO 6 units were more slowly converted to AlN than AlO 4 units and the NMR peaks of partially nitridated AlO 6 units were not detected. The NMR peak intensities of partially nitridated AlO 4 units became weaker with increasing reaction temperature.

  16. Studies using 27Al MAS NMR of AFm and AFt phases and the formation of Friedel's salt

    International Nuclear Information System (INIS)

    Jones, M.R.; Macphee, D.E.; Chudek, J.A.; Hunter, G.; Lannegrand, R.; Talero, R.; Scrimgeour, S.N.

    2003-01-01

    This paper describes the application of the magic angle spinning (MAS) NMR spectroscopy to study the chemical environment of 27 Al-bearing phases in Portland cement-based concrete. A specific methodology is described that allows reliable spectra to be determined for combinations of different types of cements and fillers (in this case, Portland cement, fly ash, slag, silica fume, metakaolin and limestone filler). As well as the study of 'molecular structure' of cement matrix, the paper reviews the mechanism of Friedel's salt formation in cement systems. Mechanisms based on ion exchange of chloride for hydroxide in hydroxy-AF m and on chloride absorption on formation are discussed. Finally, the nature of the chloride/hydrate binding phenomena are described to provide a reasonable robust and fundamental picture of the role different cements can play in the provision of overall concrete durability to chloride ingress from a chemical perspective

  17. Experimental Determination of pK[subscript a] Values and Metal Binding for Biomolecular Compounds Using [superscript 31]P NMR Spectroscopy

    Science.gov (United States)

    Swartz, Mason A.; Tubergen, Philip J.; Tatko, Chad D.; Baker, Rachael A.

    2018-01-01

    This lab experiment uses [superscript 31]P NMR spectroscopy of biomolecules to determine pK[subscript a] values and the binding energies of metal/biomolecule complexes. Solutions of adenosine nucleotides are prepared, and a series of [superscript 31]P NMR spectra are collected as a function of pH and in the absence and presence of magnesium or…

  18. 27Al, 63Cu NMR spectroscopy and electrical transport in Heusler Cu-Mn-Al alloy powders

    Science.gov (United States)

    Nadutov, V. M.; Perekos, A. O.; Kokorin, V. V.; Trachevskii, V. V.; Konoplyuk, S. M.; Vashchuk, D. L.

    2018-02-01

    The ultrafine powder of the Heusler Cu-13,1Mn-12,6Al (wt.%) alloy produced by electrical spark dispersion (ESD) in ethanol and the pellets prepared by pressing of the powders and aged in various gas environment (air, Ar, vacuum) were studied by XRD, nuclear magnetic resonance, magnetic and electric transport methods. The constituent phases were identified as b.c.c. α-Cu-Mn-Al, f.c.c. γ-Cu-Mn-Al, Cu2MnAl, and oxides. The sizes of the coherently scattering domains (CSD) and the saturation magnetizations were in the range of 4-90 nm and 0-1.5 Am2/kg, respectively. 27Al and 63Cu NMR spectra of the powders and pellets have shown hyperfine structure caused by contributions from atomic nuclei of the constituent phases. The aging of pellets in different gas environments had effect on their phase composition but no effect on dispersion of the phases. In contrast to the as-cast alloy, electrical resistance of the pellets evidenced semiconducting behavior at elevated temperatures due to the presence of metal oxides formed on the surfaces of nanoparticles.

  19. $^{11}$B and $^{27}$Al NMR spin-lattice relaxation and Knight shift study of Mg$_{1-x}$Al$_x$B$_2$. Evidence for anisotropic Fermi surface

    OpenAIRE

    Papavassiliou, G.; Pissas, M.; Karayanni, M.; Fardis, M.; Koutandos, S.; Prassides, K.

    2002-01-01

    We report a detailed study of $^{11}$B and $^{27}$Al NMR spin-lattice relaxation rates ($1/T_1$), as well as of $^{27}$Al Knight shift (K) of Mg$_{1-x}$Al$_x$B$_2$, $0\\leq x\\leq 1$. The obtained ($1/T_1T$) and K vs. x plots are in excellent agreement with ab initio calculations. This asserts experimentally the prediction that the Fermi surface is highly anisotropic, consisting mainly of hole-type 2-D cylindrical sheets from bonding $2p_{x,y}$ boron orbitals. It is also shown that the density ...

  20. Extraction and [superscript 1]H NMR Analysis of Fats from Convenience Foods: A Laboratory Experiment for Organic Chemistry

    Science.gov (United States)

    Hartel, Aaron M.; Moore, Amy C.

    2014-01-01

    The extraction and analysis of fats from convenience foods (crackers, cookies, chips, candies) has been developed as an experiment for a second-year undergraduate organic chemistry laboratory course. Students gravimetrically determine the fat content per serving and then perform a [superscript 1]H NMR analysis of the recovered fat to determine the…

  1. Structural characterization of MAO and related aluminum complexes. 1. Solid-state (27)Al NMR with comparison to EFG tensors from ab initio molecular orbital calculations.

    Science.gov (United States)

    Bryant, P L; Harwell, C R; Mrse, A A; Emery, E F; Gan, Z; Caldwell, T; Reyes, A P; Kuhns, P; Hoyt, D W; Simeral, L S; Hall, R W; Butler, L G

    2001-12-05

    Experimental and ab initio molecular orbital techniques are developed for study of aluminum species with large quadrupole coupling constants to test structural models for methylaluminoxanes (MAO). The techniques are applied to nitrogen- and oxygen-containing complexes of aluminum and to solid MAO isolated from active commercial MAO preparations. (Aminato)- and (propanolato)aluminum clusters with 3-, 4-, and 6-coordinate aluminum sites are studied with three (27)Al NMR techniques optimized for large (27)Al quadrupole coupling constants: field-swept, frequency-stepped, and high-field MAS NMR. Four-membered (aminato)aluminum complexes with AlN(4) coordination yield slightly smaller C(q) values than similar AlN(2)C(2) sites: 12.2 vs 15.8 MHz. Planar 3-coordinate AlN(2)C sites have the largest C(q) values, 37 MHz. In all cases, molecular orbital calculations of the electric field gradient tensors yields C(q) and eta values that match with experiment, even for a large hexameric (aminato)aluminum cage. A D(3d) symmetry hexaaluminum oxane cluster, postulated as a model for MAO, yields a calculated C(q) of -23.7 MHz, eta = 0.7474, and predicts a spectrum that is too broad to match the field-swept NMR of methylaluminoxane, which shows at least three sites, all with C(q) values greater than 15 MHz but less than 21 MHz. Thus, the proposed hexaaluminum cluster, with its strained four-membered rings, is not a major component of MAO. However, calculations for dimers of the cage complex, either edge-bridged or face-bridged, show a much closer match to experiment. Also, MAO preparations differ, with a gel form of MAO having significantly larger (27)Al C(q) values than a nongel form, a conclusion reached on the basis of (27)Al NMR line widths in field-swept NMR spectra acquired from 13 to 24 T.

  2. High field 27Al MAS NMR and TPD studies of active sites in ethanol dehydration using thermally treated transitional aluminas as catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian Zhi; Xu, Suochang; Kwak, Ja Hun; Hu, Mary Y.; Wan, Chuan; Zhao, Zhenchao; Szanyi, Janos; Bao, Xinhe; Han, Xiuwen; Wang, Yong; Peden, Charles H. F.

    2016-04-01

    Gamma-, sigma- and theta-Al2O3 are well known metastable “transitional” alumina structural polymorphs. Upon heating, Al2O3 transitions to the so-called and Al2O3 polymorphs and finally forms the thermally stable Al2O3. The poorly developed crystallinity and co-existence of the , , and Al2O3 prior to forming all Al2O3, making it difficult to characterize the structures as well as to quantify the various phases of the transition alumina. As a result, there are significant controversies in the literatures. In this work, a detailed NMR analysis was carried out at high magnetic field on three special aluminum oxide samples where the, , , Al2O3 phases are made dominant, respectively, by controlling the synthesis conditions. The goal is to simplify, including making unambiguous, spectral assignments in 27Al MAS NMR spectra of transition alumina that have not yet been commonly agreed previously. Specifically, quantitative 1D 27Al MAS NMR was used to quantify the ratios of the different alumina structural units, 2D MQMAS 27Al MAS was used for obtaining the highest spectral resolution to guide the analysis of the 1D spectrum, and a saturation pulse sequence was integrated into the 1D NMR to select the amorphous structures, including obtain spectra where the penta-coordinate sites are observed with enhanced relative intensity. Collectively, this study uniquely assigns Al-peaks (both octahedral and tetrahedral) to the Al2O3 and the Al2O3 phases and offers a new way of understanding, including quantifying, the different structural units and sites in transition alumina samples.

  3. Obtaining aluminas from the thermal decomposition of their different precursors: An {sup 27}Al MAS NMR and X-ray powder diffraction studies

    Energy Technology Data Exchange (ETDEWEB)

    Chagas, L.H.; De Carvalho, G.S.G. [Universidade Federal de Juiz de Fora, Departamento de Química, Grupo de Físico-Química de Sólidos e Interfaces, 36036-330 Juiz de Fora, MG (Brazil); San Gil, R.A.S. [Universidade Federal do Rio de Janeiro, Instituto de Química, 21949-900 Rio de Janeiro, RJ (Brazil); Chiaro, S.S.X. [PETROBRAS-CENPES, 21941-915 Rio de Janeiro, RJ (Brazil); Leitão, A.A. [Universidade Federal de Juiz de Fora, Departamento de Química, Grupo de Físico-Química de Sólidos e Interfaces, 36036-330 Juiz de Fora, MG (Brazil); Diniz, R., E-mail: renata.diniz@ufjf.edu.br [Universidade Federal de Juiz de Fora, Departamento de Química, Grupo de Físico-Química de Sólidos e Interfaces, 36036-330 Juiz de Fora, MG (Brazil)

    2014-01-01

    Graphical abstract: - Highlights: • We synthesized three precursors of alumina from different methods. • The calcination of the precursors generated several alumina polymorphs. • XRD and NMR were used for structural investigation of the polymorphs. • The synthesis route determines the structural and textural properties of the solids. - Abstract: A commercial sample of Boehmite was used as precursor of alumina polymorphs. For comparison, three other precursors were synthesized from different methods. Particularly, the use of excess of urea promoted a very crystalline form of basic aluminum carbonate. The characteristics of the four precursors were investigated by thermal, vibrational and X-ray powder diffraction (XRD) analysis. Additionally, the nuclear magnetic resonance, with magic angle spinning ({sup 27}Al MAS NMR), was used to verify the coordination of aluminum cations. Each precursor was calcined at various temperatures generating alumina polymorphs, which were structurally analyzed by XRD and {sup 27}Al MAS NMR. Due to interest in catalysis supports, special attention was given to the γ-Al{sub 2}O{sub 3} phase, which in addition to structural investigation was subjected to textural analysis. The results showed that, from different synthesis procedures and common route of calcination, one can obtain materials with the same composition but with different structural and textural properties, which in turn can significantly influence the performance of a supported catalyst.

  4. High field 27Al MAS NMR and TPD studies of active sites in ethanol dehydration using thermally treated transitional aluminas as catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian Zhi; Xu, Suochang; Kwak, Ja Hun; Hu, Mary Y.; Wan, Chuan; Zhao, Zhenchao; Szanyi, Janos; Bao, Xinhe; Han, Xiuwen; Wang, Yong; Peden, Charles H. F.

    2016-04-01

    High field quantitative 27Al MAS NMR and temperature programmed desorption (TPD) of ethanol are used to study the surface and phase transformation of gamma-Al2O3 during calcination in the temperature range of 500 to 1300 degrees C. Following ethanol adsorption, ethylene is generated during TPD with a desorption temperature > 200 degrees C. With increasing calcination temperature prior to TPD, the amount of ethylene produced decreases monotonically. Significantly, 27Al MAS NMR reveals that the amount of penta-coordinate Al3+ ions (Lewis acid sites) also decreases with increasing calcination temperature. In fact, a strong correlation between the amount of penta-coordinate Al3+ ions and the amount of strongly adsorbed ethanol molecules (i.e., the ones that convert to ethylene during TPD) is obtained. This result indicates that the penta-coordinate aluminum sites are the catalytic active sites on alumina surfaces during ethanol dehydration reaction across the entire course of gamma- to alpha-Al2O3 phase transformations.

  5. 27Al Magic Angle Spinning–Nuclear Magnetic Resonance (MAS-NMR) Analyses Applied to Historical Mortars

    Czech Academy of Sciences Publication Activity Database

    Hanzlíček, Tomáš; Perná, Ivana; Brus, Jiří

    2013-01-01

    Roč. 7, č. 2 (2013), s. 153-164 ISSN 1558-3058 R&D Projects: GA AV ČR IAA300460702 Institutional research plan: CEZ:AV0Z30460519; CEZ:AV0Z40500505 Keywords : mortars * magic angle spinning –nuclear magnetic resonance (MAS-NMR) in solid state * alumina-silicates Subject RIV: DM - Solid Waste and Recycling Impact factor: 0.714, year: 2013 http://www.tandfonline.com/doi/abs/10.1080/15583058.2011.624253

  6. [superscript 1]H NMR Spectroscopy-Based Configurational Analysis of Mono- and Disaccharides and Detection of ß-Glucosidase Activity: An Undergraduate Biochemistry Laboratory

    Science.gov (United States)

    Periyannan, Gopal R.; Lawrence, Barbara A.; Egan, Annie E.

    2015-01-01

    A [superscript 1]H NMR spectroscopy-based laboratory experiment explores mono- and disaccharide structural chemistry, and the enzyme-substrate specificity of glycosidic bond cleavage by ß-glucosidase towards cellobiose (ß-linked gluco-disaccharide) and maltose (a-linked gluco-disaccharide). Structural differences between cellobiose, maltose, and…

  7. A Discovery-Based Hydrochlorination of Carvone Utilizing a Guided-Inquiry Approach to Determine the Product Structure from [superscript 13]C NMR Spectra

    Science.gov (United States)

    Pelter, Michael W.; Walker, Natalie M.

    2012-01-01

    This experiment describes a discovery-based method for the regio- and stereoselective hydrochlorination of carvone, appropriate for a 3-h second-semester organic chemistry laboratory. The product is identified through interpretation of the [superscript 13]C NMR and DEPT spectra are obtained on an Anasazi EFT-60 at 15 MHz as neat samples. A…

  8. In-Situ Studies of Structure Transformation and Al Coordination of KAl(MoO42 during Heating by High Temperature Raman and 27Al NMR Spectroscopies

    Directory of Open Access Journals (Sweden)

    Min Wang

    2017-03-01

    Full Text Available Recent interest in optimizing composition and synthesis conditions of functional crystals, and the further exploration of new possible candidates for tunable solid-state lasers, has led to significant research on compounds in this family MIMIII(MVIO42 (MI = alkali metal, MIII = Al, In, Sc, Fe, Bi, lanthanide; MVI = Mo, W. The vibrational modes, structure transformation, and Al coordination of crystalline, glassy, and molten states of KAl(MoO42 have been investigated by in-situ high temperature Raman scattering and 27Al magic angle spinning nuclear magnetic resonance (MAS NMR spectroscopy, together with first principles density functional simulation of room temperature Raman spectrum. The results showed that, under the present fast quenching conditions, Al is present predominantly in [AlO6] octahedra in both KAl(MoO42 glass and melt, with the tetrahedrally coordinated Al being minor at approximately 2.7%. The effect of K+, from ordered arrangement in the crystal to random distribution in the melt, on the local chemical environment of Al, was also revealed. The distribution and quantitative analysis of different Al coordination subspecies are final discussed and found to be dependent on the thermal history of the glass samples.

  9. Hydration kinetics for the alite, belite, and calcium aluminate phase in Portland cements from 27Al and 29Si MAS NMR spectroscopy

    DEFF Research Database (Denmark)

    Skibsted, Jørgen; Jensen, Ole Mejlhede; Jakobsen, Hans Jørgen

    1997-01-01

    29Si magic-angle spinning (MAS) NMR spectroscopy is shown to be a valuable tool for obtaining the quantities of alite and belite in hydrated Portland cements. The hydration (1-180 days) of a white Portland cement with 10 wt.% silica fume added is investigated and the degrees of hydration for alite...

  10. Effect of alkali-earth ions on local structure of the LaAlO3-La0.67A0.33MnO3 (A = Ca, Sr, Ba) diluted solid solutions: 27Al NMR studies

    International Nuclear Information System (INIS)

    Charnaya, E.V.; Cheng Tien; Lee, M.K.; Sun, S.Y.; Chejina, N.V.

    2007-01-01

    27 Al Magic Angle Spinning (MAS) NMR studies are carried out for diluted alkali-earth metal doped lanthanum manganite solid solutions in the lanthanum aluminate (1-y)LaAlO 3 -yLa 0.67 A 0.33 MnO 3 (A = Ca, Sr, Ba) with y = 0, 2, 3, and 5 mol %. The spectra depend on the dopant species and show higher substitutional ordering for the Ba containing mixed crystals. Magnetically shifted lines are observed in all solid solutions and attributed to Al in the octahedral oxygen environment near manganese trivalent ions. Nonlinear dependences of their intensity are referred to the manganese-rich cluster formation. An additional MAS NMR line corresponding to aluminium at sites different from the octahedral site in pure LaAlO 3 is observed only in solutions doped with Ba. 3Q MAS NMR revealed that the broadening of this line is governed mainly by quadrupole coupling and allowed calculating the isotropic chemical shift [ru

  11. Introducing NMR to a General Chemistry Audience: A Structural-Based Instrumental Laboratory Relating Lewis Structures, Molecular Models, and [superscript 13]C NMR Data

    Science.gov (United States)

    Pulliam, Curtis R.; Pfeiffer, William F.; Thomas, Alyssa C.

    2015-01-01

    This paper describes a first-year general chemistry laboratory that uses NMR spectroscopy and model building to emphasize molecular shape and structure. It is appropriate for either a traditional or an atoms-first curriculum. Students learn the basis of structure and the use of NMR data through a cooperative learning hands-on laboratory…

  12. Local Structure of Cationic Sites in Dehydrated Zeolites Inferred from 27Al Magic-Angle Spinning NMR and Density Functional Theory Calculations. A Study on Li-, Na-, and K-Chabazite

    Czech Academy of Sciences Publication Activity Database

    Klein, Petr; Pashková, Veronika; Thomas, Haunani M.; Whittleton, Sarah R.; Brus, Jiří; Kobera, Libor; Dědeček, Jiří; Sklenák, Štěpán

    2016-01-01

    Roč. 120, č. 26 (2016), s. 14216-14225 ISSN 1932-7447 R&D Projects: GA ČR GA15-13876S; GA ČR(CZ) GA15-14007S Institutional support: RVO:61388955 ; RVO:61389013 Keywords : zeolites * density functional theory * NMR spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry; CD - Macromolecular Chemistry (UMCH-V) Impact factor: 4.536, year: 2016

  13. Fluctuations of charge variance and interaction time for dissipative processes in 27 Al + 27 Al collision

    International Nuclear Information System (INIS)

    Berceanu, I.; Andronic, A.; Duma, M.

    1999-01-01

    The systematic studies of dissipative processes in light systems were completed with experiments dedicated to the measurement of the excitation functions in 19 F + 27 Al and 27 Al + 27 Al systems in order to obtain deeper insight on DNS configuration and its time evolution. The excitation function for 19 F + 27 Al system evidenced fluctuations larger than the statistical errors. Large Z and angular cross correlation coefficients supported their non-statistical nature. The energy dependence of second order observables, namely the second moment of the charge distribution and the product ω·τ (ω - the angular velocity of the DNS and τ its mean lifetime) extracted from the angular distributions were studied for 19 F + 27 Al case. In this contribution we are reporting the preliminary results of similar studies performed for 27 Al + 27 Al case. The variance of the charge distribution were obtained fitting the experimental charge distribution with a Gaussian centered on Z = 13 and the product ω·τ was extracted from the angular distributions. The results for 19 F + 27 Al case are confirmed by a preliminary analysis of the data for 27 Al + 27 Al system. The charge variance and ω·τ excitation functions for Z = 11 fragment are represented together with the excitation function of the cross section. One has to mention that the data for 27 Al + 27 Al system were not corrected for particle evaporation processes. The effect of the evaporation corrections on the excitation function was studied using a Monte Carlo simulation. The α particle evaporation was also included and the evaluation of the particle separation energies was made using experimental masses of the fragments. The excitation functions for 27 Al + 27 Al system for primary and secondary fragments were simulated. No structure due to particle evaporation was observed. The correlated fluctuations in σ Z and ω·τ excitation functions support a stochastic exchange of nucleons as the main mechanism for

  14. Irradiation-induced changes in the local environment of Si and Al in LnSiAlON glasses as probed by {sup 27}Al and {sup 29}Si NMR

    Energy Technology Data Exchange (ETDEWEB)

    Sangleboeuf, J.C. [Univ Rennes 1, CNRS, FRE 2717, LARMAUR, F-35042 Rennes (France); Dauce, R.; Le Floch, M.; Verdier, P. [Univ Rennes 1, Inst Chem, UMR 6512, CNRS, F-35042 Rennes (France); Dauce, R. [CE Cadarache, DEC/SESC, F-13018 St Paul Les Durance (France)

    2007-03-15

    Two compounds have been studied: an oxide glass from the Y-Si-Al-O system and an oxynitride glass from the Y-Si-Al-O-N system, both bombarded with Sn-ions (975 MeV, fluences ranging from 10{sup 12} to 2.7 * 10{sup 13} Sn/cm{sup 2}). The changes in the environment of the silicon and the aluminium were investigated using NMR spectroscopy. Irradiation by Sn ions leads to a loss of nitrogen in the silicon and probably the aluminium environments. Part of the aluminium changes from a network former coordination to a network modifier coordination while the oxide silicate network exhibits a higher cross-linking due to an increase of the population of bridging oxygen. Part of the aluminium in five-fold coordination is formed at the expense of aluminium in six-fold coordination in the case of the oxynitride glass and the changes in the silicon environment occur at lower fluences than for the oxide glass. (authors)

  15. Effect of pressure on the short-range structure and speciation of carbon in alkali silicate and aluminosilicate glasses and melts at high pressure up to 8 GPa: 13C, 27Al, 17O and 29Si solid-state NMR study

    Science.gov (United States)

    Kim, Eun Jeong; Fei, Yingwei; Lee, Sung Keun

    2018-03-01

    Despite the pioneering efforts to explore the nature of carbon in carbon-bearing silicate melts under compression, experimental data for the speciation and the solubility of carbon in silicate melts above 4 GPa have not been reported. Here, we explore the speciation of carbon and pressure-induced changes in network structures of carbon-bearing silicate (Na2O-3SiO2, NS3) and sodium aluminosilicate (NaAlSi3O8, albite) glasses quenched from melts at high pressure up to 8 GPa using multi-nuclear solid-state NMR. The 27Al triple quantum (3Q) MAS NMR spectra for carbon-bearing albite melts revealed the pressure-induced increase in the topological disorder around 4 coordinated Al ([4]Al) without forming [5,6]Al. These structural changes are similar to those in volatile-free albite melts at high pressure, indicating that the addition of CO2 in silicate melts may not induce any additional increase in the topological disorder around Al at high pressure. 13C MAS NMR spectra for carbon-bearing albite melts show multiple carbonate species, including [4]Si(CO3)[4]Si, [4]Si(CO3)[4]Al, [4]Al(CO3)[4]Al, and free CO32-. The fraction of [4]Si(CO3)[4]Al increases with increasing pressure, while those of other bridging carbonate species decrease, indicating that the addition of CO2 may enhance mixing of Si and Al at high pressure. A noticeable change is not observed for 29Si NMR spectra for the carbon-bearing albite glasses with varying pressure at 1.5-6 GPa. These NMR results confirm that the densification mechanisms established for fluid-free, polymerized aluminosilicate melts can be applied to the carbon-bearing albite melts at high pressure. In contrast, the 29Si MAS NMR spectra for partially depolymerized, carbon-bearing NS3 glasses show that the fraction of [5,6]Si increases with increasing pressure at the expense of Q3 species ([4]Si species with one non-bridging oxygen as the nearest neighbor). The pressure-induced increase in topological disorder around Si is evident from an

  16. Solid-state 27Al nuclear magnetic resonance investigation of three aluminum-centered dyes

    KAUST Repository

    Mroué, Kamal H.

    2010-02-01

    We report the first solid-state 27Al NMR study of three aluminum phthalocyanine dyes: aluminum phthalocyanine chloride, AlPcCl (1); aluminum-1,8,15,22-tetrakis(phenylthio)-29H,31H-phthalocyanine chloride, AlPc(SPh)4Cl (2); and aluminum-2,3-naphthalocyanine chloride, AlNcCl (3). Each of these compounds contains Al3+ ions coordinating to four nitrogen atoms and a chlorine atom. Solid-state 27Al NMR spectra, including multiple-quantum magic-angle spinning (MQMAS) spectra and quadrupolar Carr-Purcell-Meiboom-Gill (QCPMG) spectra of stationary powdered samples have been acquired at multiple high magnetic field strengths (11.7, 14.1, and 21.1 T) to determine their composition and number of aluminum sites, which were analyzed to extract detailed information on the aluminum electric field gradient (EFG) and nuclear magnetic shielding tensors. The quadrupolar parameters for each 27Al site were determined from spectral simulations, with quadrupolar coupling constants (CQ) ranging from 5.40 to 10.0 MHz and asymmetry parameters (η) ranging from 0.10 to 0.50, and compared well with the results of quantum chemical calculations of these tensors. We also report the largest 27Al chemical shielding anisotropy (CSA), with a span of 120 ± 10 ppm, observed directly in a solid material. The combination of MQMAS and computational predictions are used to interpret the presence of multiple aluminum sites in two of the three samples.

  17. NMR

    International Nuclear Information System (INIS)

    Kneeland, J.B.; Lee, B.C.P.; Whalen, J.P.; Knowles, R.J.R.; Cahill, P.T.

    1984-01-01

    Although still quite new, NMR imaging has already emerged as a safe, noninvasive, painless, and effective diagnostic modality requiring no ionizing radiation. Also, NMR appears already to have established itself as the method of choice for the examination of the brain spinal cord (excluding herniated disks). Another area in which NMR excels is in the examination of the pelvis. The use of surface coils offers the promise of visualizing structures with resolution unobtainable by any other means. In addition, NMR, with its superb visualization of vascular structures and potential ability to measure flow, may soon revolutionize the diagnosis of cardiovascular disease. Finally, NMR, through biochemically and physiologically based T/sub 1/ and T/sub 2/ indices or through spectroscopy, may provide a means of monitoring therapeutic response so as to permit tailoring of treatment to the individual patient. In short, NMR is today probably at the same stage as the x-ray was in Roentgen's day

  18. Proton-threshold states in sup 27 Al and the production of sup 27 Al at low stellar temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Champagne, A E [Princeton Univ., NJ (USA). Dept. of Physics; Magnus, P V; Smith, M S [Yale Univ., New Haven, CT (USA). Wright Nuclear Structure Lab.; Howard, A J [Trinity Coll., Hartford, CT (USA). Dept. of Physics and Astronomy

    1990-06-04

    The {sup 26}Mg({sup 3}He, d){sup 27}Al reaction has been employed to measure excitation energies and proton spectroscopic factors for states corresponding to {sup 26}Mg+p resonances in the vicinity of the proton-capture threshold. The width ratio {Gamma}{sub {gamma}}/{Gamma} was measured for three previously established resonances via a study of the {sup 26}Mg({sup 3}He, d{gamma}){sup 27}Al reaction, and corresponding values of the proton widths were obtained. Combining this information establishes strengths for four of the states lying within 150 keV of the proton threshold. A {sup 26}Mg+p reaction rate is deduced, and its astrophysical implications are discussed. (orig.).

  19. Energy relaxation and mass transfer occuring in the reactions 14N+27Al and 40Ar+27Al

    International Nuclear Information System (INIS)

    Cheynis, B.

    1980-01-01

    The different mechanisms occuring in the two reactions 14 N(100 MeV) + 27 Al and 40 Ar(340 MeV) + 27 Al have been investigated. The experiments were performed on the isochronous cyclotron of Grenoble and the Alice facility of the IPN Orsay Laboratory respectively and in the first case both light and heavy products were detected, using a solid state detectors telescope and a ΔE ionisation chamber telescope. The fusion process has been first investigated. The experimental fusion cross sections have been compared with theoretical values and the data have been then analysed with a multidimensional potential calculation, taking into account the following three parameters the neck parameters, and the mass assymmetry of the entrance channel. Such a study stresses the great part of the cross section taken by peripheral interactions. In a second part energy dissipation has been analysed by looking at the correlation with the variance of the charge distributions. The different steps of the reaction have been studied in the frame of a diffusion mode. Considerable energy damping has been found to occur in the approach phase, which can not be explained by a simple Fokker Planck diffusion calculation. Indeed such a behaviour can be interpreted as a local equilibration phase followed by diffusive phenomena. Theoretical improvements in that direction give in that respect a better agreement [fr

  20. Bound states of 27Al studied at selected 26Mg(p,γ)27Al resonances, ch. 1

    International Nuclear Information System (INIS)

    Maas, J.W.; Holvast, A.J.C.D.; Baghus, A.; Endt, P.M.

    1976-01-01

    Measurements of the γ-ray decay and angular distributions at eight low-energy (Esub(P) 26 Mg (p,γ) 27 Al resonances lead to the spin and parity assignments Jsup(π) = 3/2 + , 1/2 - , 3/2 - , 5/2 + , 5/2, 3/2 - , 9/2 - and 7/2 for the bound states at Esub(x) = 3.96, 4.05, 5.15, 5.25, 5.44, 6.16, 6.99, 7.23 and 7.47 MeV, respectively. For other levels, spin and parity limitations are set. Also reported are precise excitation energies, branching and mixing ratios and lifetime limits. For the resonances, additional information is given on energies, strengths and widths. The reaction Q-value is Q = 8267.2 +- 0.7 keV. The level scheme of 27 Al, complemented with these new data, is compared with the results from recent shell-model calculations

  1. Quantification of aluminium-27 NMR spectra of high-surface-area oxides

    International Nuclear Information System (INIS)

    Pearson, R.M.; Schramm, C.M.

    1990-01-01

    This paper discusses the quantitation of 27 Al NMR spectra. It is showns that the so called 'invisible' aluminium atoms seen by recent workers are completely consistent with known continuous wave NMR studies of the 27 Al NMR spectra of high surface area aluminium oxides. The use of pulsed NMR techniques further complicate the quantitative measurement of 27 Al NMR spectra, especially when high resolution NMR spectrometers are used for this purpose. Methods are described which allow both the estimation of aluminium not seen by continuous wave techniques and the amounts of the NMR spectra lost in pulsed work. (author). 24 refs.; 6 figs.; 1 tab

  2. Correlation of Mechanical Properties in Bulk Metallic Glasses with 27Al NMR Characteristics

    Science.gov (United States)

    2011-12-01

    recycle delay of 300 ms. Magnetization measurements were conducted at room temperature using a Quantum Design SQUID magne- tometer. The magnetization of...Gangopadhyay A K, et al. First X-ray scattering studies on electrostatically levitated metallic liquids: Demonstrated influence of local icosahedral

  3. Comparison of one and two-neutron transfer near the Coulomb barrier for the 27Al(18O, 16O)29Al, 27Al(18O, 17O)28Al and 27Al(13C, 12C)28Al reactions

    International Nuclear Information System (INIS)

    Schiller, S.A.; Eck, J.S.

    1975-01-01

    Total reaction cross sections for the transfer reactions 27 Al( 18 O, 16 O) 29 Al, 27 Al( 18 O, 17 O) 28 Al and 27 Al( 13 C, 12 C) 28 Al are reported for center-of-mass energies between 13 and 20 MeV for 18 O projectiles and between 11 and 17.5 MeV for 13 C projectiles. The reaction products, 29 Al, and 28 Al, beta decay to 29 Si and 28 Si, respectively, and the subsequent γ decays of 29 Si and 28 Si were measured. Due to the relatively long beta decay half lives, data were taken in a beam-off mode, resulting in very clean spectra. Total cross sections were calculated and compared with a theoretical model for barrier penetration proposed by C.Y. Wong. Differences between 18 O induced one and two-neutron total transfer reaction cross sections are discussed. (orig.) [de

  4. Polymer Molecular Weight Analysis by [Superscript 1]H NMR Spectroscopy

    Science.gov (United States)

    Izunobi, Josephat U.; Higginbotham, Clement L.

    2011-01-01

    The measurement and analysis of molecular weight and molecular weight distribution remain matters of fundamental importance for the characterization and physical properties of polymers. Gel permeation chromatography (GPC) is the most routinely used method for the molecular weight determination of polymers whereas matrix-assisted laser…

  5. Study of the Threshold Anomaly in the Scattering of Li Isotopes on 27Al

    International Nuclear Information System (INIS)

    Fernandez Niello, J.O.; Figueira, J.M.; Abriola, D.; Arazi, A.; Capurro, O.A.; Marti, G.V.; Martinez Heinmann, D.; Pacheco, A.J.; Barbara, E. de; Padron, I.; Gomes, P.R.S.; Lubian, J.

    2007-01-01

    Angular distributions of 6,7 Li scattered by 27 Al have been measured at different bombarding energies between 6 and 18 MeV. The results obtained from an optical model analysis using several potentials indicate that there is an isotopic dependence in the energy variation of the real and imaginary strengths. Whereas the 7 Li + 27 Al system shows no indication of any threshold anomaly, the 6 Li + 27 Al reaction suggests the presence of the so-called breakup threshold anomaly

  6. Elastic scattering and total reaction cross section for the 6He + 27Al system

    International Nuclear Information System (INIS)

    Benjamim, E.A.; Lepine-Szily, A.; Mendes Junior, D.R.; Lichtenthaeler, R.; Guimaraes, V.; Gomes, P.R.S.; Chamon, L.C.; Hussein, M.S.; Moro, A.M.; Arazi, A.; Padron, I.; Alcantara Nunez, J.; Assuncao, M.; Barioni, A.; Camargo, O.; Denke, R.Z.; Faria, P.N. de; Pires, K.C.C.

    2007-01-01

    The elastic scattering of the radioactive halo nucleus 6 He on 27 Al target was measured at four energies close to the Coulomb barrier using the RIBRAS (Radioactive Ion Beams in Brazil) facility. The Sao Paulo Potential (SPP) was used and its diffuseness and imaginary strength were adjusted to fit the elastic scattering angular distributions. Reaction cross-sections were extracted from the optical model fits. The reduced reaction cross-sections of 6 He on 27 Al are similar to those for stable, weakly bound projectiles as 6,7 Li, 9 Be and larger than stable, tightly bound projectile as 16 O on 27 Al

  7. Activity-Dependent Excitability Changes Suggest Na[superscript +]/K[superscript +] Pump Dysfunction in Diabetic Neuropathy

    Science.gov (United States)

    Krishnan, Arun V.; Lin, Cindy S.-Y.; Kiernan, Matthew C.

    2008-01-01

    The present study was undertaken to evaluate the role of Na[superscript +]/K[superscript +] pump dysfunction in the development of diabetic neuropathy (DN). Nerve excitability techniques, which provide information about membrane potential and axonal ion channel function, were undertaken in 15 patients with established DN and in 10 patients with…

  8. A resonant absorption measurement in the reaction 26Mg(p, γ)27Al

    NARCIS (Netherlands)

    Leun, C. van der; Burhoven Jaspers, N.C.

    1966-01-01

    A resonant absorption measurement at the 1966 keV proton resonance in the reaction 26Mg(p, γ)27Al leads to an absolute determination of the resonance strength, (2J+1)ΓpΓγ/Γ, of 5.6±1.8 eV. Normalization of previously published strengths of 120 resonances in the reaction 26Mg(p, γ)27Al, reduces these

  9. Mechanical and wear behaviour of steel chips reinforced Zn27Al composites

    Directory of Open Access Journals (Sweden)

    Kenneth Kanayo ALANEME

    2016-12-01

    Full Text Available The mechanical and wear behaviour of Zn27Al alloy reinforced with steel machining chips (an industrial waste was investigated. Two step stir casting process was used to produce the Zn27Al based composites consisting of 5, 7.5 and 10 wt.% of the steel machining chips while unreinforced Zn27Al alloy and a composition consisting of 5 wt.% alumina were also prepared as control samples. Microstrutural analysis; mechanical and wear behaviour were assessed for these composites. The results show that the hardness and wear resistance of the composites increased with increase in weight percent of the steel chips from 5 to 10 wt.%. The UTS, strain to fracture, and the fracture toughness were however highest for the 5 wt.% steel chips reinforced composite grade; and decreased with increase in the weight percent of the steel chips from 5 to 10 wt.%. Generally the Zn27Al alloy based composites reinforced with steel machining chips, exhibited superior mechanical and wear properties in comparison to the unreinforced Zn27Al alloy and the 5 wt.% alumina reinforced Zn27Al alloy composite.

  10. Implementation of picoSpin Benchtop NMR Instruments into Organic Chemistry Teaching Laboratories through Spectral Analysis of Fischer Esterification Products

    Science.gov (United States)

    Yearty, Kasey L.; Sharp, Joseph T.; Meehan, Emma K.; Wallace, Doyle R.; Jackson, Douglas M.; Morrison, Richard W.

    2017-01-01

    [Superscript 1]H NMR analysis is an important analytical technique presented in introductory organic chemistry courses. NMR instrument access is limited for undergraduate organic chemistry students due to the size of the instrument, price of NMR solvents, and the maintenance level required for instrument upkeep. The University of Georgia Chemistry…

  11. Neutron cross section and covariance data evaluation of experimental data for {sup 27}Al

    Energy Technology Data Exchange (ETDEWEB)

    Chunjuan, Li; Jianfeng, Liu [Physics Department , Zhengzhou Univ., Zhengzhou (China); Tingjin, Liu [China Nuclear Data Center, China Inst. of Atomic Energy, Beijing (China)

    2006-07-15

    The evaluation of neutron cross section and covariance data for {sup 27}Al in the energy range from 210 keV to 20 MeV was carried out on the basis of the experimental data mainly taken from EXFOR library. After the experimental data and their errors were analyzed, selected and corrected, SPCC code was used to fit the data and merge the covariance matrix. The evaluated neutron cross section data and covariance matrix for {sup 27}Al given can be collected for the evaluated library and also can be used as the basis of theoretical calculation concerned. (authors)

  12. Neutron cross section and covariance data evaluation of experimental data for 27Al

    International Nuclear Information System (INIS)

    Li Chunjuan; Liu Jianfeng; Liu Tingjin

    2006-01-01

    The evaluation of neutron cross section and covariance data for 27 Al in the energy range from 210 keV to 20 MeV was carried out on the basis of the experimental data mainly taken from EXFOR library. After the experimental data and their errors were analyzed, selected and corrected, SPCC code was used to fit the data and merge the covariance matrix. The evaluated neutron cross section data and covariance matrix for 27 Al given can be collected for the evaluated library and also can be used as the basis of theoretical calculation concerned. (authors)

  13. Solid-state 27Al nuclear magnetic resonance investigation of three aluminum-centered dyes

    KAUST Repository

    Mroué , Kamal H.; Emwas, Abdul-Hamid M.; Power, William P.

    2010-01-01

    on the aluminum electric field gradient (EFG) and nuclear magnetic shielding tensors. The quadrupolar parameters for each 27Al site were determined from spectral simulations, with quadrupolar coupling constants (CQ) ranging from 5.40 to 10.0 MHz and asymmetry

  14. Resonance neutron capture in 23Na and 27Al from 3 to 600 keV

    International Nuclear Information System (INIS)

    Musgrove, A.R. de L.; Allen, B.J.; Macklin, R.L.

    1978-01-01

    The radiative capture cross sections of 23 Na and 27 Al were measured with the high resolution facility at the 40 m station of the Oak Ridge Electron Linear Accelerator. Resonance parameters for the individual resonances below 600 keV are given. Particular care was taken to correct the data for prompt neutron scattering effects by Monte Carlo methods

  15. Measurement and analysis of excitation functions in 20Ne + 27Al system

    International Nuclear Information System (INIS)

    Pachouri, Dipti; Singh, D.; Ali, R.; Afzal Ansari, M.; Rashid, M.H.

    2008-01-01

    In the present work, the excitation functions (EFs) for radioactive residues produced in the interaction of 20 Ne ion with 27 Al have been measured in order to study the reaction dynamics, particularly in the low mass region using the off-line γ-ray measurement activation technique for bombarding energies below 150 MeV

  16. Particle decays in /sup 28/Si: The destruction of /sup 27/Al in red giants and novae

    Energy Technology Data Exchange (ETDEWEB)

    Champagne, A E; Cella, C H; Kouzes, R T; Lowry, M M; Magnus, P V; Smith, M S; Mao, Z Q

    1988-10-10

    The /sup 27/Al(/sup 3/He,d)/sup 28/Si reaction has been used to populate states near the /sup 27/Al+p threshold and the ensuing proton and alpha decay has been measured. No evidence for new /sup 27/Al(p,..cap alpha..)/sup 24/Mg resonance strength was observed and consequently revised limits have been placed on the thermonuclear reaction rate. As a result, the /sup 27/Al(p,..cap alpha..)/sup 24/Mg reaction is found to be astrophysically unimportant at red-giant and nova temperatures.

  17. Study of the 26Al(n,p)26Mg and 26Al(n,α)23Na reactions using the 27Al(p,p')27Al inelastic scattering reaction

    International Nuclear Information System (INIS)

    Benamara, S; De Séréville, N; Hammache, F; Stefan, I; Roussel, P; Ancelin, S; Assié, M; Guillot, J; Le Crom, B; Lefebvre, L; Adsley, P; Laird, A M; Barton, C; Diget, C; Fox, S; Coc, A; Deloncle, I; Hamadache, C; Kiener, J; Lefebfre-Schuhl, A

    2016-01-01

    26 Al was the first cosmic radioactivity ever detected in the galaxy as well as one of the first extinct radioactivity observed in refractory phases of meteorites. Its nucleosynthesis in massive stars is still uncertain mainly due to the lack of nuclear information concerning the 26 Al(n,p) 26 Mg and 26 Al(n,α) 23 Na reactions. We report on a single and coincidence measurement of the 27 Al(p,p') 27 Al(p) 26 Mg and 27 Al(p,p') 27 Al(α) 23 Na reactions performed at the Orsay TANDEM facility aiming at the spectroscopy study of 27 Al above the neutron threshold. Fourteen states are observed for the first time within 350 keV above the 26 Al+n threshold. (paper)

  18. Measurement of the depolarization of the reaction 27Al (p vector, p vector.) 27Al for the study of the spin-spin potential

    International Nuclear Information System (INIS)

    Loeh, H.

    1981-01-01

    For the study of the spin-spin interactions in the optical potential the depolarization in the elastic scattering of polarized protons was measured. The double-scattering experiments were performed in the angular range 40 0 -110 0 at an incident energy of 10.35 MeV at the Erlangen QD magnetic spectrometer. The determination of the optical model parameters independent from the spin-spin potentials resulted by the fit of those to the observables and sigmasup(di). These were obtained from a measurement of the angular distribution of the analyzing power and the differential cross section in the 4π-scattering chamber for the reaction 27 Al (p vector,psub(o)) at the same energy. The compound contributions present at this energy, which can also influence the depolarization, were regarded by the calculation of the compound-elastic non-spin-flip respectively spin-flip subcross sections by means of the formalism of Hofmann, Richard, Tepel, and Weidenmueller. Because of the target nucleus 27 Al posesses in the ground state a spin I=5/2 also the possible quadrupole spin flip had to be included in the analysis. This was performed by coupled channel calculations. The depolarization data corrected according to compound contributions and quadrupole effects could now be applied to the study of the spin-spin potentials by means of DWBA calculations. As result it turned out that for the description of the experimental data a spherical spin-spin potential of the strength Vsub(SS)=1.5+-0.3 MeV had to be assumed. For the addition of a tensor term however no necessity resulted. (orig.) [de

  19. Measurement of the depolarization of the reaction 27Al(p vector,p vector.)27Al for the study of the spin-spin potential

    International Nuclear Information System (INIS)

    Loeh, H.

    1981-01-01

    For the study of the spin-spin interaction in the optical potential the depolarisation in the elastic scattering of polarized protons was measured. The double-scattering experiments were performed in the angular range 40 0 -110 0 at an incident energy of 10.35 MeV at the Erlangen QD-magnetic spectrometer. The determination of the optical model parameters independent from the spin-spin potentials was performed by the fitting of these to the observables and sigmasup(di). These were obtained from a measurement of the angular distribution of the analyzing power and the differential cross section in the 4π-scattering chamber for the reaction 27 Al(p vector,p 0 ) at the same energy. The compound contributions present at this energy, which can also influence the depolarization, were regarded by the calculation of the compound-elastic non-spin-flip respectively spin-flip subcross sections by means of the formalism of Hofmann, Richert, Tepel and Weidenmueller. Because the target nucleus 27 Al possesses in the ground state a spin I=5/2, also the possible quadrupole spin flip had to be included. This was performed by coupled-channel calculations. The respecting compound contributions and quadrupole effects corrected depolarization data could by used for the study of the spin-spin potentials by means of DWBA calculations. As result it was shown that for the description of the experimental data a spherical spin-spin potential of the strength Vsub(SS)=1.5+-0.3 MeV had to be assumed. (orig.) [de

  20. Polarized triton scattering from 26Mg, 27Al and 28Si at 17 MeV

    International Nuclear Information System (INIS)

    Hardekopf, R.A.; Brown, R.E.; Correll, F.D.; Ohlsen, G.G.

    1980-01-01

    Differential-cross-section and analyzing-power angular distributions were measured for 17 MeV tritons elastically scattered from targets of 26 Mg, 27 Al, and 28 Si in the angular range 20 to 160 0 . The experiment was performed at the Los Alamos Scientific Laboratory Van de Graaff facility using the Lamb-shift polarized triton source and the supercube scattering chamber. A pair of detector telescopes with angular resolutions of +-0.4 0 detected the reaction products, with mass identification and storage performed by an on-line computer. The triton beam intensity available at the target was about 70 nA with a polarization of 0.77. The target thicknesses were about 3 mg/cm 2 , although thinner targets were used for the 27 Al forward-angle data

  1. Breakup threshold anomaly in the elastic scattering of 6Li on 27Al

    International Nuclear Information System (INIS)

    Figueira, J. M.; Niello, J. O. Fernandez; Abriola, D.; Arazi, A.; Capurro, O. A.; Barbara, E. de; Marti, G. V.; Heimann, D. Martinez; Negri, A. E.; Pacheco, A. J.; Padron, I.; Gomes, P. R. S.; Lubian, J.; Correa, T.; Paes, B.

    2007-01-01

    Elastic scattering of the weakly bound 6 Li on 27 Al was measured at near-barrier energies. The data analysis was performed using a Woods-Saxon shape optical potential and also using the double-folding Sao Paulo potential. The results show the presence of the breakup threshold anomaly (BTA), an anomalous behavior when compared with the scattering of tightly bound nuclei. This behavior is attributed to a repulsive polarization potential produced by the coupling to the continuum breakup states

  2. Reaction and fusion cross sections for 32S on 27Al and 48Ti

    International Nuclear Information System (INIS)

    Porto, F.; Sambataro, S.; Kusterer, K.; Liu Ken Pao; Doukellis, G.; Harney, H.L.

    1981-01-01

    Elastic scattering and evaporation residues have been measured for the system 32 S + 27 Al at Esub(c)sub(.)sub(m)sub(.) = 66.4, 73.2 MeV and 32 S + 48 Ti at Esub(c)sub(.)sub(m)sub(.) = 96.0 MeV. Reaction cross sections have been obtained by use of the optical theorem and are found to be about 60% larger than the fusion cross sections. (orig.)

  3. Comparison of inelastic electron and positron scattering cross sections on 12C and 27Al

    International Nuclear Information System (INIS)

    Hartwig, S.; Heimlich, F.H.; Huber, G.; Roessle, E.; Koebberling, M.; Moritz, J.; Schmidt, K.H.; Wegener, D.; Zeller, D.; Bleckwenn, J.

    1977-06-01

    The +/- ratio R of the cross sections for inelastic positron and electron scattering on 12 C and 27 Al has been measured for four momentum transfers (0.08 - 0.45) GeV 2 /c 2 of the virtual photon and invariant masses 0.95 GeV +- 0.0007), no q 2 respectively W dependence of the ratio is observed. (orig.) [de

  4. High resolution NMR in zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Anix [INTEVEP, Filial de Petroleos de Venezuela, SA, Caracas (Venezuela). Dept. de Analisis y Evalucion

    1992-12-31

    In this work {sup 29} Si and {sup 27} Al NMR spectroscopy was used to study various types of zeolites. The corresponding spectra were used to measure the Si/Al ratios, to follow chemical modifications induced by acid and hydrothermal treatments, to determine non-equivalent crystallographic sites in highly dealuminated mordenites, and to detect modifications of faujasites due to the insertion of titanium atoms in the lattice. (author) 7 refs., 7 figs., 2 tabs.

  5. High resolution NMR in zeolites

    International Nuclear Information System (INIS)

    Diaz, Anix

    1991-01-01

    In this work 29 Si and 27 Al NMR spectroscopy was used to study various types of zeolites. The corresponding spectra were used to measure the Si/Al ratios, to follow chemical modifications induced by acid and hydrothermal treatments, to determine non-equivalent crystallographic sites in highly dealuminated mordenites, and to detect modifications of faujasites due to the insertion of titanium atoms in the lattice. (author)

  6. First observations of nuclear rainbow scattering in the 16O+27Al system

    International Nuclear Information System (INIS)

    Pereira, D.; Oliveira, J.R.B.; Chamon, L.C.; Cunsolo, A.; Cappuzzello, F.; Cavallaro, M.; Carbone, D.

    2011-01-01

    Nuclear rainbow structures have been unexpectedly predicted in the elastic channel of heavy nuclear systems like 16 O + 27 Al or 58 Ni by a new generation of coupled channel calculations, with inclusion of an imaginary potential for dissipative processes. Rainbow scattering phenomena are very sensitive to the nuclear potential in the surface interior and therefore very important to test different microscopic ion-ion potentials, as mentioned in, as well as the role of reaction couplings in the elastic channel far from the barrier region. The rainbow pattern has been experimentally well established for lighter systems like alpha-nucleus, 12 C + 12 C, 16 O + 12 C, and 16 O + 16 O - the heaviest heavy-ion system so far that has shown a prominent rainbow structure. By using the large acceptance magnetic spectrometer MAGNEX (LNS, Catania, Italy) in a high-sensitivity and high-precision experiment, we have confirmed some of the predictions cited above, for the 16 O + 27 Al system, at 100 MeV beam energy, up to about 80 degrees in the center of mass. An extremely good resolution (around 90 keV) was achieved, allowing for clear separation of the elastic channel from the first excited state of 27 Al (843.8 keV). Cross sections below 10 -4 mb were measured. Additional experiments are scheduled to April, 2011, in order to explore the backward-angle region. In this presentation, the comparison between the rainbow structures detected in this system and those in lighter systems and with weakly bound nuclei will be discussed, in connection with the predicted Airy minima. (author)

  7. Structure of 26Al studied by one - nucleon transfer reaction 27Al(d,t

    Directory of Open Access Journals (Sweden)

    Srivastava Vishal

    2015-01-01

    Full Text Available The excited states of 26Al have been produced and studied using 27Al(d,t reaction with 25 MeV deuteron as projectile. Optical model potential parameters were extracted from the measured elastic scattering angular distribution. Zero range distorted wave Born approximation analysis for the ground and 0.223 MeV states of 26Al have been done. The spectroscopic factors calculated for these states are found to be in good agreement with the previously reported values.

  8. Diffusion model analyses of the experimental data of 12C+27Al, 40Ca dissipative collisions

    International Nuclear Information System (INIS)

    SHEN Wen-qing; QIAO Wei-min; ZHU Yong-tai; ZHAN Wen-long

    1985-01-01

    Assuming that the intermediate system decays with a statistical lifetime, the general behavior of the threefold differential cross section d 3 tau/dZdEdtheta in the dissipative collisions of 68 MeV 12 C+ 27 Al and 68.6 MeV 12 C+ 40 Ca system is analyzed in the diffusion model framework. The lifetime of the intermediate system and the separation distance for the completely damped deep-inelastic component are obtained. The calculated results and the experimental data of the angular distributions and Wilczynski plots are compared. The probable reasons for the differences between them are briefly discussed

  9. Study of the 27Al(n,2,)26Al reaction via accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Wallner, A.

    2000-06-01

    The excitation function for the 27 Al(n,2n) 26 Al reaction is expected to show a strongly non-linear behavior in the neutron-energy region around 14 MeV, the neutron energy in D-T plasmas; thus the production rate of 26 Al (t 1/2 =7.2*10 5 a) in D-T fusion environments can in principle be used to measure the temperature of such plasmas. Existing measurements, however, are strongly discordant. Therefore, a new accurate measurement of the 27 Al(n,2n) 26 Al cross sections in the near threshold region (E n =13.5-14.8 MeV) was performed with the goal to achieve relative cross sections with the highest accuracy possible. In addition, the measurements were also designed to provide good absolute cross-section values, as absolute cross sections are important for radioactive waste predictions. Samples of Al metal were irradiated with neutrons in the energy range near threshold (E th =13.55 MeV) at the Radiuminstitutes of both Vienna and St. Petersburg, and in Tokai-mura, Japan. In Tuebingen irradiations with neutrons of higher energies (17 and 19 MeV) were performed. The amount of 26 Al produced during the irradiations was measured via accelerator mass spectrometry (AMS) at the Vienna Environmental Research Accelerator (VERA). This work represents the first 26 Al measurements for this new facility. With this system, a background as low as 3*10 -15 for 26 Al/ 27 Al isotope ratios was obtained, corresponding to a (n,2n) cross section of 0.04 mb. Utilizing AMS, cross sections with much higher precision and considerably closer to the threshold than in previous investigations could be measured. The prerequisite for its application as a temperature monitor, namely a very well known shape of the excitation function was met. A quantitative prediction of the sensitivity of this method for monitoring the temperature in a D-T fusion plasma was therefore possible. For thermal plasmas temperature changes in the order of 5 to 15 % should be detectable. An even higher sensitivity was found

  10. Giant quadrupole resonance in 12C, 24Mg, and 27Al observed via deuteron inelastic scattering

    International Nuclear Information System (INIS)

    Chang, C.C.; Didelez, J.P.; Kwiatowski, K.; Wo, J.R.

    1977-06-01

    Giant quadrupole resonance in 12 C, 24 Mg, and 27 Al was studied using 70 MeV deuteron beam. The results clearly show, in all three targets, resonance-like structures peaked at E/sub x/ approximately 63A/sup -1/3/ MeV, with a width of about 10 MeV. The experimental angular distributions for these resonances agree well with the l = 2 DWBA prediction. For 12 C, a binary splitting was observed, and for 24 Mg, there are indications of finer structure in the main giant quadrupole resonance region

  11. Levels of 31P from [alpha]-particle capture in 27Al

    NARCIS (Netherlands)

    Voigt, M.J.A. de; Regenboog, D.A.; Grootenhuis, J.; Leun, C. van der

    1971-01-01

    Resonance energies, strengths and decay schemes have been determined for seventeen 27Al(α, γ)31P resonances in the range Eα = 2.3–3.3 MeV. New levels of 31P are reported at Ex = 6503±3, 6792±3, 7117.7±1.0, 7441.4±1.0 and 8345.5±1.5 keV. The reaction Q-value is found as 9665.1 ±1.3 keV. Doppler-shift

  12. Giant quadrupole resonance in 24Mg, 27Al, and 28Si

    International Nuclear Information System (INIS)

    Youngblood, D.H.; Rozsa, C.M.; Moss, J.M.; Brown, D.R.; Bronson, J.D.

    1977-01-01

    The giant-resonance region of 24 Mg, 27 Al, and 28 Si was studied by inelastic scattering of 126-MeV α particles. In contrast to results at 96 MeV, considerable clustering of E2 strength was observed for 27 Al at E/sub x/ approx. 20.1 MeV with GAMMA approx. 7.6 MeV exhausting about 35% of the E2 energy weighted sum rule. E2 strength was also located in 24 Mg in two clusters of states at E-bar/sub x/ approx. 18.2, 24.4 MeV; however, contributions from other multipoles cannot be neglected. In 28 Si a multipeaked group was observed at E/sub x/ approx. 19.4 MeV with GAMMA approx. 4 MeV but no L assignment was made. The energy dependence of the cross section for the giant quadrupole resonance was found to be consistent with distorted-wave Born approximation predictions

  13. Flow of nucleons and fragments in 40Ar+27Al collisions studied with antisymmetrized molecular dynamics

    International Nuclear Information System (INIS)

    Ono, A.; Horiuchi, H.

    1995-01-01

    Collective transverse momentum flow of nucleons and fragments in intermediate energy 40 Ar+ 27 Al collisions is calculated with the antisymmetrized molecular dynamics (AMD). The observed flow and its balance energy are reproduced well by calculation with the Gogny force which corresponds to the soft equation of state (EOS) of nuclear matter. The calculated absolute value of the fragment flow is larger than that of the nucleon flow in the negative flow region, which can be explained by the existence of two components of flow. In addition to many similarities, the difference in the deuteron flow is found between 12 C+ 12 C and 40 Ar+ 27 Al collisions, and its origin is investigated by studying the production mechanism of light fragments. We also investigate the dependence of the flow of nucleons and fragments on the stochastic collision cross section and the effective interaction, and conclude that the stiff EOS without momentum dependence of the mean field is not consistent with the experimental data

  14. Fusion hindrance for 27Al+45Sc and other systems with a positive Q value

    International Nuclear Information System (INIS)

    Jiang, C. L.; Rehm, K. E.; Esbensen, H.; Back, B. B.; Janssens, R. V. F.; DiGiovine, B.; Greene, J. P.; Henderson, D. J.; Lee, H. Y.; Pardo, R. C.; Seweryniak, D.; Ugalde, C.; Zhu, S.; Collon, P.; Notani, M.; Tang, X. D.; Deibel, C. M.; Figueira, J. M.; Marley, S. T.; Patel, N.

    2010-01-01

    Fusion evaporation cross sections for the 27 Al+ 45 Sc (Q=9.63 MeV) system are measured down to about 300 nb. Deviations from standard coupled-channels calculations were observed in this system at the lowest energies. The steep fall-off of the fusion cross sections can be reproduced by calculations using a shallow potential model, which was originally developed to explain the hindrance behavior of heavy-ion fusion in medium-mass systems with negative Q values. Comparisons of the hindrance behavior between the present experiment and other systems, for example, 28 Si+ 30 Si (Q=14.3 MeV) and 36 S+ 48 Ca (Q=7.55 MeV) are presented.

  15. Integral Representation of the Pictorial Proof of Sum of [superscript n][subscript k=1]k[superscript 2] = 1/6n(n+1)(2n+1)

    Science.gov (United States)

    Kobayashi, Yukio

    2011-01-01

    The pictorial proof of the sum of [superscript n][subscript k=1] k[superscript 2] = 1/6n(n+1)(2n+1) is represented in the form of an integral. The integral representations are also applicable to the sum of [superscript n][subscript k-1] k[superscript m] (m greater than or equal to 3). These representations reveal that the sum of [superscript…

  16. 27Al nuclear magnetic resonance of glassy and crystalline Zr(1-x)AlxO(2-x/2) materials prepared from solution precursors

    International Nuclear Information System (INIS)

    Balmer, M.L.; Eckert, H.; Das, N.; Lange, F.F.

    1996-01-01

    The local environment of the aluminum atoms in a series of metastable Zr (1-x) Al x O (2-x/2) crystalline materials (0.08 ≤ x ≤ 0.57), prepared by diffusion-limited crystallization of amorphous precursors, has been determined by 27 Al magic angle spinning nuclear magnetic resonance (MAS NMR). Results show the existence of aluminum in 4-, 5-, and 6-fold coordination in both the amorphous and crystalline states. Although the relative amounts of each type of coordination show no compositional dependence in the amorphous state, the results for the crystalline materials show a systematic decrease in the average aluminum coordination number with increasing aluminum content. Comparisons of MAS NMR results between pure Al 2 O 3 precursors and Zr (1-x) Al x O (2-x/2) crystalline materials processed under similar conditions show a profound effect of ZrO 2 on the coordination environment of the aluminum atom. Both a random distribution model and a model that assumes small-scale clustering of aluminum ions are considered to explain the trends in the type of aluminum coordination as a function of composition

  17. Using Email to Enable E[superscript 3] (Effective, Efficient, and Engaging) Learning

    Science.gov (United States)

    Kim, ChanMin

    2008-01-01

    This article argues that technology that supports both noncognitive and cognitive aspects can make learning more effective, efficient, and engaging (e[superscript 3]-learning). The technology of interest in this article is email. The investigation focuses on characteristics of email that are likely to enable e[superscript 3]-learning. In addition,…

  18. Construct Validity of the WISC-IV[superscript UK] with a Large Referred Irish Sample

    Science.gov (United States)

    Watkins, Marley W.; Canivez, Gary L.; James, Trevor; James, Kate; Good, Rebecca

    2013-01-01

    Irish educational psychologists frequently use the Wechsler Intelligence Scale for Children-Fourth U.K. Edition (WISC-IV[superscript UK]) in clinical assessments of children with learning difficulties. Unfortunately, reliability and validity studies of the WISC-IV[superscript UK] have not yet been reported. This study examined the construct…

  19. Multipole decomposition analysis of the 27Al, 90Zr, 208Pb(p, n) reactions at 295 MeV

    International Nuclear Information System (INIS)

    Wakasa, T.; Greenfield, M.B.; Koori, N.; Okihana, A.; Hatanaka, K.

    1996-01-01

    Differential cross sections at θ lab between 0 and 15 and the polarization transfer D NN at zero degrees for the 27 Al, 90 Zr, 208 Pb(p,n) reactions are measured at a bombarding energy of 295 MeV. A multipole decomposition (MD) technique is applied to extract L=0, L=1, and L≥2 contributions to the cross sections. The summed Gamow-Teller strength B(GT) is compared with shell-model calculations for the 27 Al(p,n) and 90 Zr(p,n) reactions. The usefulness of the polarization transfer observable in the MD analysis is discussed. (orig.)

  20. Teaching the Modes of Ca[superscript 2+] Transport between the Plasma Membrane and Endoplasmic Reticulum Using a Classic Paper by Kwan et al.

    Science.gov (United States)

    Liang, Willmann

    2009-01-01

    This teaching article uses the report by Kwan et al., "Effects of methacholine, thapsigargin, and La[superscript 3+] on plasmalemmal and intracellular Ca[superscript 2+] transport in lacrimal acinar cells," where the effects of Ca[superscript 2+]-mobilizing agents in regulating Ca[superscript 2+] fluxes were examined under various conditions.…

  1. Neutron capture widths of s-wave resonances in 56Fe, 5860Ni and 27Al

    International Nuclear Information System (INIS)

    Wisshak, K.; Kaeppeler, F.; Reffo, G.; Fabbri, F.

    1982-01-01

    The neutron capture widths of s-wave resonances in 56 Fe (27.7 keV), 58 Ni (15.4 keV), 60 Ni (12.5 keV) and 27 Al (35.3 keV) have been determined, using a setup completely different from LINAC experiments. A pulsed 3 MV Van de Graaff accelerator and the 7 Li(p,n) reaction served as a neutron source. The proton energy was adjusted just above the reaction threshold to obtain a kinematically collimated neutron beam. This allowed to position the samples at a flight path as short as approx. 90 mm. Capture events were detected by three Moxon-Rae detectors with graphite, bismuth-graphite and pure bismuth converter, respectively. The measurements were performed relative to a gold standard. The setup allows to discriminate capture of scattered neutrons completely by time of flight and to use very thin samples (0.15 mm) in order to reduce multiple scattering. After correction for deviations of the detector efficiency from a linear increase with gamma-ray energy, the results obtained with different detectors agree within their remaining systematic uncertainty of approx. 5%. Only preliminary results are presented

  2. Deep-inelastic multinucleon transfer processes in the 16O+27Al reaction

    Science.gov (United States)

    Roy, B. J.; Sawant, Y.; Patwari, P.; Santra, S.; Pal, A.; Kundu, A.; Chattopadhyay, D.; Jha, V.; Pandit, S. K.; Parkar, V. V.; Ramachandran, K.; Mahata, K.; Nayak, B. K.; Saxena, A.; Kailas, S.; Nag, T. N.; Sahoo, R. N.; Singh, P. P.; Sekizawa, K.

    2018-03-01

    The reaction mechanism of deep-inelastic multinucleon transfer processes in the 16O+27Al reaction at an incident 16O energy (Elab=134 MeV) substantially above the Coulomb barrier has been studied both experimentally and theoretically. Elastic-scattering angular distribution, total kinetic energy loss spectra, and angular distributions for various transfer channels have been measured. The Q -value- and angle-integrated isotope production cross sections have been deduced. To obtain deeper insight into the underlying reaction mechanism, we have carried out a detailed analysis based on the time-dependent Hartree-Fock (TDHF) theory. A recently developed method, TDHF+GEMINI, has been applied to evaluate production cross sections for secondary products. From a comparison between the experimental and theoretical cross sections, we find that the theory qualitatively reproduces the experimental data. Significant effects of secondary light-particle emissions are demonstrated. Possible interplay among fusion-fission, deep-inelastic, multinucleon transfer, and particle evaporation processes is discussed.

  3. Recent advances in solid state NMR and its application to ceramics

    International Nuclear Information System (INIS)

    Maekawa, Hideki

    2006-01-01

    The basic principles of solid state NMR are explained. Four application examples contained amorphous glass, determination of defects of oxide crystal, nano particle and ionic materials. The structure of inorganic glass is measured by 29 Si, 11 B, 31 P and 23 Na NMR and Magic Angle Spinning NMR (MAS-NMR), chemical species near hydrogen by Cross-Polarization Magic Angle Spinning (CP/MAS) method, and hydrogen by Combined Rotation And Multiple Pulse Spectroscopy (CRAMPS) and MAS-NMR. Hydrous and anhydrous silicate glass with condensed 17 O was measured by 17 O Multi Quantum Magic Angle Spinning (MQ/MAS). 27 Al in slags was analyzed by 27 Al 5Q-MAS. 89 Y NMR spectrum of YSZ (Yttria Stabilization Zirconia, Y 2 O 3 -ZrO 2 ) was explained. The ion transfer phenomena in the electrolyte are observed directly by the solid state NMR. (S.Y.)

  4. Additional evaluation of alpha induced neutron production nuclear data. 9Be, 27Al, 28,29,30Si

    International Nuclear Information System (INIS)

    Murata, Toru; Shibata, Keiichi

    2005-01-01

    Alpha particle induced neutron production cross sections, emitted neutron energy spectrum and angular distributions were evaluated for the target nucleus 9 Be, 27 Al and Si isotopes; 28 Si, 29 Si and 30 Si in the incident energy region below 15 MeV. (author)

  5. Shadowing effect in inelastic electron scattering on 12C and 27Al nuclei at small four momentum transfer

    International Nuclear Information System (INIS)

    Hartwig, S.; Heimlich, F.H.; Huber, G.; Roessle, E.; Koebberling, M.; Moritz, J.; Schmidt, K.H.; Wegener, D.; Zeller, D.; Karlsruhe Univ.; Bleckwenn, J.

    1977-08-01

    The cross section for inelastic electron scattering on 12 C and 27 Al nuclei has been measured for energy transfers of the virtual photon 2 . The influence of different sources of the radiative corrections is studied in detail. Shadowing effects, which increase with decreasing values of the scalling variable x, are observed for both nuclei. (orig.) [de

  6. Measurement of activation cross sections of the {sup 27}Al(n,α){sup 24}Na and {sup 27}Al(n,p){sup 27}Mg reactions with quasi-monoenergetic neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Zaman, Muhammad; Kim, Guinyun; Kim, Kwangsoo [Kyungpook National Univ., Daegu (Korea, Republic of). Dept. of Physics; Naik, Haladhara [Kyungpook National Univ., Daegu (Korea, Republic of). Dept. of Physics; Bhabha Atomic Research Centre, Mumbai (India). Radiochemistry Div.; Lee, Young-Ouk; Cho, Young-Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of). Nuclear Data Center; Lee, Man Woo; Kang, Yeong-Rok [Dongnam Institute of Radiological and Medical Science, Busan (Korea, Republic of). Research Center

    2017-10-01

    The cross sections of the {sup 27}Al(n,α){sup 24}Na and {sup 27}Al(n,p){sup 27}Mg reactions with the average neutron energies of 15.2, 26.4, and 37.2 MeV were measured using the activation and off-line γ-ray spectrometric technique at the Korean Institute of Radiological and Medical Sciences (KIRAMS), Korea. Quasi-monoenergetic neutrons produced via the {sup 9}Be(p,n) reaction with the proton beam energies of 25, 35, and 45 MeV from the MC50 cyclotron of KIRAMS were used. The present measured values were compared with those from the evaluated nuclear data libraries ENDF/B-VII, TENDL-2015, TALYS 1.8, and from literature. In general, a close agreement with the literature data as well as the evaluated data was found.

  7. Low-energy resonances in sup 25 Mg(p,. gamma. ) sup 26 Al, sup 26 Mg(p,. gamma. ) sup 27 Al and sup 27 Al(p,. gamma. ) sup 28 Si

    Energy Technology Data Exchange (ETDEWEB)

    Iliadis, C; Schange, T; Rolfs, C; Schroeder, U; Somorjai, E; Trautvetter, H P; Wolke, K [Muenster Univ. (Germany, F.R.). Inst. fuer Kernphysik; Endt, P M; Kikstra, S W [Rijksuniversiteit Utrecht (Netherlands). Robert van de Graaff Lab.; Champagne, A E [Princeton Univ., NJ (USA). Dept. of Physics; Arnould, M; Paulus, G [Universite Libre de Bruxelles (Belgium). Inst. d' Astronomie et d' Astrophysique

    1990-06-11

    Gamma-ray decay schemes have been measured with bare and Compton-suppressed Ge detectors at low-energy resonances (E{sub p}<340 keV) in the (p, {gamma}) reactions on {sup 25}Mg, {sup 26}Mg and {sup 27}Al. Althogether 58 new decay branches have been observed and a new {sup 26}Mg(p, {gamma}){sup 27}Al resonance has been found at E{sub p}=154.5{plus minus}1.0 keV. The new branchings lead to J{sup {pi}}; T determinations (or limitations) for two states in {sup 26}Al and four states in {sup 28}Si. The absolute strengths of the {sup 25}Mg(p, {gamma}){sup 26}Al and {sup 26}Mg(p, {gamma}){sup 27}Al resonances have also been obtained, and the uncertainties of the stellar rates, deduced from the available data for both reactions, are significantly reduced. Some astrophysical consequences are discussed. (orig.).

  8. Proton pickup from /sup 27/Al via the (n,d) reaction at 56. 3 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Brady, F P; Shepard, J R; King, N S.P.; McNaughton, M W; Wang, J C [California Univ., Davis (USA)

    1977-09-26

    Energy spectra of deuterons from the /sup 27/Al(n,d)/sup 26/Mg reaction due to 56.3 MeV neutrons incident have been measured for 10/sup 0/ <= thetasub(c.m.) <= 55 /sup 0/. The angular distributions for the excitations observed at 0.0, 1.81, and 4.33 MeV are quite well described by DWBA calculations and yield spectroscopic factors in agreement with shell model calculations; but with calculations based on the rotational model, the agreement is less satisfactory particularly for the 4.33 MeV level. For the states at 7.86 and 9.16 MeV the fits, assuming p-shell pick-up, are only fair. Comparison with /sup 27/Al(d,/sup 3/He)/sup 26/Mg measurements shows that the deduced spectroscopic factors for the two reactions agree quite well.

  9. Absence of the threshold anomaly in the elastic scattering of the weakly bound projectile 7Li on 27Al

    International Nuclear Information System (INIS)

    Figueira, J.M.; Abriola, D.; Niello, J.O. Fernandez; Arazi, A.; Capurro, O.A.; Barbara, E. de; Marti, G.V.; Martinez Heimann, D.; Pacheco, A.J.; Testoni, J.E.; Padron, I.; Gomes, P.R.S.; Lubian, J.

    2006-01-01

    To study the conditions leading to the appearance of the threshold anomaly in systems involving weakly bound projectiles we measured elastic scattering cross sections for the 7 Li+ 27 Al system at ten different bombarding energies. The results were exhaustively analyzed using different optical model potentials. The similar behavior observed in all these analyses allows us to conclude that no threshold anomaly is found for the present system

  10. Study of the excited states of 28Si using the 27Al(p,γ)28Si radiative capture

    International Nuclear Information System (INIS)

    Dalmas, Jean.

    1974-01-01

    The gamma decay of 28 Si levels excited in the 27 Al(p,γ) 28 Si reaction has been investigated in the energy range Esub(p) 3 classification. A part from the K=0 + rotational band based on the ground state, the SU 3 previsions are not substantiated, but can not definitely rejected, and a few experiment are suggested. On the other band, many results are consistent with the shell model calculations [fr

  11. Fluctuation phenomena for dissipative processes in 19 F + 27 Al system

    International Nuclear Information System (INIS)

    BerceanuI, I.; Andronic, A.; Duma, M.; Moisa, D.; Petrovici, M.; Pop, A.; Simion, V.; Del Zoppo, A.; D'Erasmo, G.; Imme, G.; Lanzano, G.; Pagano, A.; Raciti, G.; Pantaleo, A.

    2000-01-01

    Non-statistical fluctuations in the excitation functions (EF) of dissipative heavy ion collisions (DHIC) were rather unexpected, the cross sections being always obtained on a 'coarse cell' of total kinetic energy and center of mass angle (θ cm ). Since the experimental fluctuations in the EF for DHIC have been evidenced, the time evolution of dinuclear system (DNS) with different mass asymmetries and total mass ≤108 has been investigated only by statistical analysis. Although many theoretical interpretations of excitation function fluctuations ground their assumptions on the observed large angular correlation, the experimental angular correlation data are rather scarce. We already reported preliminary results concerning angular correlation for DHIC in the 19 F + 27 Al interaction. In the present work the angular correlation analysis was realized for E lab = 116.75 - 129.75 MeV with a 2 angle binning in the angular distributions and total kinetic energy loss (TKEL) windows of 20±2.5, 30±2.5 and 40±2.5 MeV. Pronounced oscillations in the angular distributions, at some incident energies, were observed. These oscillations are nicely evidenced in the autocorrelation angular functions (AAF) as determined for fragments with atomic number Z = 8 at an incident energy 124.75 MeV. A decreasing number of the oscillations with increasing TKEL value could be observed. The AAFs were calculated using for the average cross section the value obtained from the fit of the angular distributions with formula: sigma/dθ cm ∝ [exp(-θ cm /ω·τ) + exp(-(2π-θ cm )/ω·τ)], where ω and τ are the angular velocity and lifetime of DNS, respectively. The moving Gaussian procedure was used for calculating the angular cross correlation coefficients C(θ,θ') for the energy averaged cross section . The results are presented. Large values for C(θ,θ') with an oscillating pattern were obtained for all studied fragments (Z = 6-8, 10). An increasing trend of C(θ,θ') values with TKEL

  12. What Is the True Color of Fresh Meat? A Biophysical Undergraduate Laboratory Experiment Investigating the Effects of Ligand Binding on Myoglobin Using Optical, EPR, and NMR Spectroscopy

    Science.gov (United States)

    Linenberger, Kimberly; Bretz, Stacey Lowery; Crowder, Michael W.; McCarrick, Robert; Lorigan, Gary A.; Tierney, David L.

    2011-01-01

    With an increased focus on integrated upper-level laboratories, we present an experiment integrating concepts from inorganic, biological, and physical chemistry content areas. Students investigate the effects of ligand strength on the spectroscopic properties of the heme center in myoglobin using UV-vis, [superscript 1]H NMR, and EPR…

  13. Cluster-spin dynamics in a GaMo{sub 4}S{sub 8}-type compound: {sup 27}Al nuclear magnetic resonance study of AlMo{sub 4}S{sub 8}

    Energy Technology Data Exchange (ETDEWEB)

    Ikeno, R; Nakamura, H; Kohara, T [Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297 (Japan)

    2007-01-31

    The cluster-spin dynamics of the tetrahedral Mo{sub 4} cluster, involved in AlMo{sub 4}S{sub 8} with a cubic GaMo{sub 4}S{sub 8} type structure, was investigated by NMR of the nonmagnetic {sup 27}Al site located outside the cluster. The nuclear spin-lattice relaxation is described well by the conventional local moment model assuming the presence of S=1/2 at each cluster, indicating that each Mo{sub 4} cluster behaves like a local spin with rigid magnitude. This behaviour is in contrast to the in-cluster relaxation, which reflects the spin-density fluctuations inside the cluster as a small unit of metal.

  14. Incremental Validity of WISC-IV[superscript UK] Factor Index Scores with a Referred Irish Sample: Predicting Performance on the WIAT-II[superscript UK

    Science.gov (United States)

    Canivez, Gary L.; Watkins, Marley W.; James, Trevor; Good, Rebecca; James, Kate

    2014-01-01

    Background: Subtest and factor scores have typically provided little incremental predictive validity beyond the omnibus IQ score. Aims: This study examined the incremental validity of Wechsler Intelligence Scale for Children-Fourth UK Edition (WISC-IV[superscript UK]; Wechsler, 2004a, "Wechsler Intelligence Scale for Children-Fourth UK…

  15. Diffusion model analyses of the experimental data of /sup 12/C+/sup 27/Al, /sup 40/Ca dissipative collisions

    Energy Technology Data Exchange (ETDEWEB)

    Weng-qing, SHEN; Wei-men, QIAO; Yong-tai, ZHU; Wen-long, ZHAN

    1984-11-01

    Assuming that the intermediate system decays with a statistical lifetime, the general behavior of the threefold differential cross section d/sup 3/sigma/dZEdtheta in the dissipative collisions of 68 MeV /sup 12/C+/sup 27/Al and 68.6 MeV /sup 12/C+/sup 40/Ca system are analyzed in the diffusion model framework. The lifetime of the intermediate system and the separation distance for the completely damped deep inelastic component are obtained. The calculated results and the experimental data of the angular distributions and Wilczynski plots are compared. The probable reasons of the differences between them are briefly discussed.

  16. Investigation of /sup 16/O+/sup 27/Al reaction at bombarding energies below 5. 3 MeV/A

    Energy Technology Data Exchange (ETDEWEB)

    Wen-Qing, Shen; Yong-Tai, Zhu; Wen-Long, Zhan; Zhong-Yan, Guo; Shu-Zhi, Yin; Wei-Min, Qiao; En-Chiu, Wu

    1987-03-01

    Quasi elastic and deep inelastic collision induced by /sup 16/O+/sup 27/Al at the bombarding energies below 5.3 MeV/A have been studied in detail. Experimental angular energy atomic charge distribution and contour plots of the differential cross sections d/sup 3/sigma/dEd..cap omega..dZ on E-theta plan are presented, their evolution with the bombarding energies are analysed. The competion between quasi elastic and deep inelastic collision as a functon of the bombarding energies has been discussed.

  17. Measurement of projectile-like fragments produced by 80. 6 MeV /sup 16/O on /sup 27/Al

    Energy Technology Data Exchange (ETDEWEB)

    Wen-Qing, SHEN; Shu-Zhi, YIN; Zhong-Yan, GUO; Wen-Long, ZHAN; Yong-Tai, ZHU; Gen-Ming, JIN; Wei-Min, QIAO; En-Chiu, WU; Cheng-Lie, JIANG

    1985-05-01

    The projectile-like fragments produced by 80.6 MeV /sup 16/O on /sup 27/Al were measured using the large area position sensitive ionization chamber. The energy spectra, angular distributions, contour plots of d/sup 2/sigma/d..cap omega..dE in the E-theta plane of the reaction products from Li to Na and the Z-distribution were obtained. The cross sections of the quasi and deep inelastic scattering were introduced. A brief discussion of the experimental results is also given.

  18. Measurement of the d({sup 26}Al{sup m},p){sup 27}Al reaction for nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Roeder, B.T.; Trache, L.; Iacob, V.E.; McCleskey, M.; Simmons, E.; Spiridon, A.; Tribble, R.E. [Texas A and M Univ., TX (United States); Davinson, T.; Lotay, G.; Woods, P.J. [University of Edinburgh (United Kingdom); La Cognata, M.; Pizzone, R.G.; Rapisarda, G.G.; Sparta, R.; Spitaleri, C. [Istituto Nazionale di Fisica Nucleare (LNS/INFN), Catania (Italy). Lab. Nazionali del Sud

    2012-07-01

    Full text: The detection of gamma rays from the decay of the {sup 26}Al ground state in the galaxy gives evidence that nucleosynthesis is occurring in present-day stars, but its origin is not yet clear. This implies that reactions involving {sup 26}Al are important for astrophysical processes. In a recent experiment at the Cyclotron Institute at Texas A and M University, reactions with the ground state and isomeric state of {sup 26}Al were investigated with the Texas A and M-Edinburgh-Catania Silicon detector Array (TECSA). TECSA is a collaborative effort to build a high-efficiency detector Si array useful for measuring reactions of interest for nuclear astrophysics and nuclear structure. The array consists of up to 16 Micron Semiconductor YY1 detectors that are each 300 μm thick. Each detector has 16 annular ring sectors to measure the energy and the scattering angle of the detected particles. Using TECSA, we measured d({sup 26}Al{sup g},p){sup 27}Al and d({sup 26}Al{sup m},p){sup 27}Al with a {sup 26}Al secondary beam prepared in-flight with the MARS spectrometer. First, the composition of the {sup 26}Al beam was determined by measuring the ratio of beta-decays to {sup 26}Al ions produced. It was found that at different spectrometer rigidities, beams of 2/3 isomer to ground state ratio or vice-versa could be obtained. Then, in the second part of the experiment, angular distributions were measured for both reactions at backward angles with TECSA. The protons were measured in TECSA in coincidence with timing signals from the beam detected by a scintillator and with the cyclotron radio-frequency. Details of the experiment and preliminary results from the analysis of the d({sup 26}Al{sup m},p){sup 27}Al and d({sup 26}Al{sup g},p){sup 27}Al data will be presented. They will give information about the proton capture reactions {sup 26}Al{sup m}(p,γ){sup 27}Si and {sup 26}Al{sup g}(p,γ){sup 27}Si taking place in stars. (author)

  19. Analysis of M1 transitions of the analog-antianalog type in 27Al and 31P nuclei

    International Nuclear Information System (INIS)

    Kopanets, E.G.; Inopin, E.V.; Korda, L.P.; Kostin, V.Ya.; Kobal', A.A.

    1977-01-01

    The study has been continued of the isobaric analog state (IAS)- isobaric antianalog state (IAAS) transitions. The probabilities have been analyzed of MI-transitions between IAS and IAAS of 27 Al nucleus and of a 31 P nucleus. An analysis of the range of coincidences of theoretical and experimental values for the probabilities of MI-transitions between IAS and IAAS has shown that the coincidence can take place only in the assumption that the equilibrium deformations of initial and final state nuclei under consideration are different

  20. Study of deep inelastic collisions in 12C+27Al at 61.8 MeV

    International Nuclear Information System (INIS)

    Feng En-pu; Wang Qi; Zhu Yong-tai

    1987-01-01

    By using a ΔE-E telescope and a time of flight detector, the energy spectra of products between 6 Li and 16 O were measured for the reaction 12 C+ 27 Al, at 61.8 MeV. The contour plots of differential cross section in the c.m. system and the angular distributions of emitted fragments were obtained. The calculated values of fully relaxed energies in deep inelastic collisions agree with the experimental values. The mean interaction time of the di-nuclear system was estimated as from 1 x 10 -21 s to 1.4 x 10 -22 s

  1. Important role of projectile excitation in 16O+60Ni and 16O+27Al scattering at intermediate energies

    Science.gov (United States)

    Zagatto, V. A. B.; Cappuzzello, F.; Lubian, J.; Cavallaro, M.; Linares, R.; Carbone, D.; Agodi, C.; Foti, A.; Tudisco, S.; Wang, J. S.; Oliveira, J. R. B.; Hussein, M. S.

    2018-05-01

    The elastic scattering angular distribution of the 16O+60Ni system at 260 MeV was measured in the range of the Rutherford cross section down to seven orders of magnitude. The cross sections of the lowest 2+ and 3- inelastic states of the target were also measured over several orders of magnitude. Coupled-channel (CC) calculations were performed and are shown to be compatible with the whole set of data only when including the excitation of the projectile and when the deformations of the imaginary part of the nuclear optical potential are taken into account. Similar results were obtained when the procedure is applied to the existing data on 16O+27Al elastic and inelastic scattering at 100 and 280 MeV. An analysis in terms of dynamical polarization potentials (DPP) indicates the major role of coupled-channel effects in the overlapping surface region of the colliding nuclei.

  2. Evaluation of neutron- and proton-induced cross sections of {sup 27}Al up to 2 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Ouk; Chang, Jonghwa [Korea Atomic Energy Research Institute, Yusung, Taejon (Korea, Republic of); Fukahori, Tokio; Chiba, Satoshi

    1999-03-01

    We have evaluated neutron and proton nuclear data of {sup 27}Al for energies up to 2 GeV. The best set of optical model parameters were obtained above 20 MeV for neutron and above reaction threshold for proton up to 250 MeV with the phenomenological potential forms proposed by Chiba. The transmission coefficients for neutron and proton derived from the optical models are fed into the GNASH code system to calculate angle-energy correlated emission spectra for light ejectiles and gamma rays. For energies above 250 MeV and below 2 GeV, the total, reaction and elastic scattering cross sections were evaluated by an empirical fit and recent systematics. Emitted nucleon and pion were estimated by use of QMD + SDM (Quantum Molecular Dynamics + Statistical Decay Model). (author)

  3. A combined NMR and XRD study of AFI and AEL type molecular sieves

    NARCIS (Netherlands)

    Peeters, M.P.J.; Ven, van de L.J.M.; Haan, de J.W.; Hooff, van J.H.C.

    1993-01-01

    Calcined dehydrated AlPO4-5 was studied by x-ray powder diffraction, 31P MAS, and 27Al double-resonance (DOR) NMR. Three crystallog. different sites can be distinguished in the structure of dehydrated AlPO4-5 in the ratio 1:1:1. The obsd. splitting of the NMR spectra is correlated to the line width

  4. An Analysis of Different Representations for Vectors and Planes in R[superscript 3]: Learning Challenges

    Science.gov (United States)

    Sandoval, Ivonne; Possani, Edgar

    2016-01-01

    The purpose of this paper is to present an analysis of the difficulties faced by students when working with different representations of vectors, planes and their intersections in R[superscript 3]. Duval's theoretical framework on semiotic representations is used to design a set of evaluating activities, and later to analyze student work. The…

  5. Training Scientific Thinking Skills: Evidence from an MCAT[superscript 2015]-Aligned Classroom Module

    Science.gov (United States)

    Stevens, Courtney; Witkow, Melissa R.

    2014-01-01

    The present study reports on the development and evaluation of a classroom module to train scientific thinking skills. The module was implemented in two of four parallel sections of introductory psychology. To assess learning, a passage-based question set from the medical college admissions test (MCAT[superscript 2015]) preview guide was included…

  6. 31P Solid-state MAS NMR spectra

    International Nuclear Information System (INIS)

    Grobet, P.J.; Geerts, H.; Martens, J.A.; Jacobs, P.A.

    1989-01-01

    The structures of the silicoaluminiophosphates MCM-1 and MCM9 were characterized by 27 Al and 31 P MAS NMR. The structural identity of MCM-1 and its silicon-free homologue AlPO 4 -H 3 is demonstrated. The presence of a structural mixture in MCM-9 is confirmed. 31 P MAS NMR spectra of MCM-9 could be interpreted as a superposition of spectra of VPI-5, AlPO 4 -H 3 and SAPO-11 phases. (author). 12 refs.; 3 figs.; 1 tab

  7. Elastic Scattering of 7Li+27Al at Backward Angles in the 7-11 MeV Energy Range for Application in RBS

    International Nuclear Information System (INIS)

    Carnelli, P. F. F.; Arazi, A.; Cardona, M. A.; Figueira, J. M.; Hojman, D.; Martinez Heimann, D.; Negri, A. E.; Pacheco, A. J.; Abriola, D.; Capurro, O. A.; Fimiani, L.; Grinberg, P.; Marti, G. V.; Fernandez Niello, J. O.

    2010-01-01

    We have measured elastic excitation functions for the 7 Li+ 27 Al system, in an energy range close to its Coulomb barrier (E lab = 8.4 MeV) in steps of 0.25 MeV. For this purpose, an array of eight surface-barrier detectors was used. To get an insight on the background composition (mainly α particles), a telescope-detector was used for atomic-number identification. Identical measurements for the 6 Li+ 27 Al system are planned for the near future.

  8. Molecular versus squared Woods-Saxon α-nucleus potentials in the 27Al(α, t)28Si reaction

    International Nuclear Information System (INIS)

    Abdullah, M N A; Das, S K; Tariq, A S B; Mahbub, M S; Mondal, A S; Uddin, M A; Basak, A K; Gupta, H M Sen; Malik, F B

    2003-01-01

    The differential cross-section of the 27 Al(α, t) 28 Si reaction for 64.5 MeV incident energy has been reanalysed in DWBA with full finite range using a squared Woods-Saxon (Michel) α-nucleus potential with the modified value of the depth parameter α = 2.0 as reported in a comment article by Michel and Reidemeister. This new value produces significant improvement in fitting the data of the reaction with its overall performance, in some cases, close to that previously observed for the molecular potential. Although the non-monotonic shallow molecular potential with a soft repulsive core and the Michel potentials produce the same quality fits to the elastic scattering and non-elastic processes, they are not phase equivalent. The two types of potential produce altogether different cross-sections, particularly at large reaction angles. The importance of the experimental cross-sections at large angles for both elastic scattering and non-elastic processes is elucidated

  9. Elastic scattering of 7Li + 27Al at several angles in the 7-11 MeV energy range

    International Nuclear Information System (INIS)

    Abriola, D.; Carnelli, P.; Arazi, A.; Figueira, J.M.; Capurro, O.A.; Cardona, M.A.; Fernandez Niello, J.O.; Hojman, D.; Fimiani, L.; Grinberg, P.; Martinez Heimann, D.; Marti, G.V.; Negri, A.E.; Pacheco, A.J.

    2010-01-01

    Elastic cross sections for the 7 Li + 27 Al system were measured at laboratory energies between 7 and 11 MeV in steps of 0.25 MeV, and angles between 135 o and 170 o in steps of 5 o . Excitation functions for the elastic scattering were measured using an array of eight Si surface-barrier detectors whereas a solid-state telescope was used to estimate and subtract background from other reactions. Contamination from α particles arising from the 7 Li breakup process at E lab ≥ 10 MeV makes the use of these energies inadvisable for RBS applications. The present results are compared with previous data obtained at 165 o (E lab ≤ 6 MeV), 140 o and 170 o (E lab ≤ 8 MeV). The experimental data were analyzed in terms of the Optical Model. Two different energy-independent potentials were found. These optical potentials allow an interpolation with physical meaning to other energies and scattering angles. The experimental cross sections will be uploaded to the IBANDL database.

  10. Intermediate behaviour of reaction mechanisms in 27Al + 63Cu collisions at 13.4 MeV/nucleon

    International Nuclear Information System (INIS)

    Bougault, R.

    1983-09-01

    This experiment aimed to investigate the nuclear reaction mechanisms in the energy transition region between 10 and 20 MeV/Nucleon. So, collisions between 27 Al (projectile) and 63 Cu (target) were studied for a bombarding energy of 13.4 MeV/nucleon. For that purpose, projectile-like fragments were detected at the grazing angle (thetasub(g)) for that system by a spectrometer and an E-ΔE telescope. A second telescope was set at various angles for light particle detection; both inclusive and coincident measurements were performed. Isotope production at angle thetasub(g) cannot be clearly explained neither by inelastic transfers nor by ''cold'' projectile fragmentation. This production seems rather to occur through an intermediate process where the Al nucleus is slowed down, and excited, and then dissociates. Moreover, kinematical correlations between fragments show evidence for a mechanism where the projectile is splitted after picking up some nucleons to the target. Finally, light particles are shown to araise essentially from a fusion-like system thermalized at T=3,5 MeV; such a temperature may be considered as an intermediate value [fr

  11. Fragmentation and direct transfer reactions for 40Ar incident beam on 27Al target at 1760 MeV

    International Nuclear Information System (INIS)

    Cisse, Ousmane

    1985-01-01

    Peripheral collision studies performed with 40 Ar projectiles at 44 MeV/A and 27 Al target show that both fragmentation and transfer reactions can be discerned in this type of interaction. The experimental observation of fragments with masses charges and velocities close to those of the incident beam are the signature of transfer reactions and a detailed analysis of the energy spectra of such fragments has been carried out and interpreted in terms of a direct diffraction transfer model. On the other hand, for large mass transfer reactions, abrasion is the suitable mechanism. Inclusive fragment measurement together with the appropriate residual nuclei-fragment coincidence results then provides experimental data in good agreement with the theoretical predictions obtained from a participant spectator model. These investigations also indicate that the separation energies of the participant from the spectator nucleus, at least within the framework of the above model, can be interpreted in terms of a friction force which becomes more efficient as the projectile energy decreases. (author) [fr

  12. Study of dissipative collisions of 20Ne (MeV/≅7-11 nucleon)+ 27Al

    International Nuclear Information System (INIS)

    Dey, Aparajita; Bhattacharya, C.; Bhattacharya, S.; Rana, T. K.; Kundu, S.; Banerjee, K.; Mukhopadhyay, S.; Banerjee, S. R.; Gupta, D.; Saha, R.

    2007-01-01

    The inclusive energy distributions of complex fragments (3≤9) emitted in the reactions 20 Ne (145, 158, 200, 218 MeV) + 27 Al have been measured in the angular range 10 deg. - 50 deg. The fusion-fission and the deep-inelastic components of the fragment yield have been extracted using multiple Gaussian functions from the experimental fragment energy spectra. The elemental yields of the fusion-fission component have been found to be fairly well explained in the framework of the standard statistical model. It is found that strong competition occurs between the fusion-fission and the deep-inelastic processes at these energies. The time scale of the deep-inelastic process was estimated to be typically in the range of ∼10 -21 -10 -22 s, and it was found to decrease with increasing fragment mass. The angular momentum dissipations in the fully energy damped deep-inelastic process have been estimated from the average energies of the deep-inelastic components of the fragment energy spectra. The estimated angular momentum dissipations, for lighter fragments in particular, are found to be greater than those predicted by the empirical sticking limit

  13. Explosive multifragmentation in the reaction {sup 32} S+{sup 27} Al at 37.5 MeV/nucleon; Multifragmentation explosive dans la reaction {sup 32}S+{sup 27}Al a 37.5 MeV/nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Chabane, A

    1995-06-01

    The study of complete events, in the reaction {sup 32}S+{sup 27}Al at 37.5 MeV/nucleon, provides evidence for multifragmentation of the composite nucleus formed by fusion of the projectile-target system. The percolation theory, innovative idea in nuclear physics, shows that our data are ``overcritical`` in the percolation sense. However with data at only one incident energy we cannot affirm the existence of a nuclear phase transition. Our data are incompatible with a binary sequential decay process (GEMINI code). Comparisons have also been made with predictions of a microcanonical multifragmentation decay process (Berlin code). Dynamical aspects of the experimental data are not consistent with the calculations. The discrepancy is most obvious when we compare the spectrum of the square of the momentum of the largest fragment and the correlation function of the reduced relative velocity of pairs of intermediate mass fragments. The use of the Boltzmann formula in the context of the canonical ensemble in order to study the charge partitions provides a good fit to the experimental data. The temperature deduced from the measured partition probabilities is 5 MeV and the freeze out volume corresponds to a density of approximately one twentieth of the normal value. The dynamical variables are very well reproduced by an explosive multifragmentation simulation code. The collective energy deduced can be understood as the consequence of a compressional effect which produces a shock wave when the compression velocity exceeds the sound velocity in nuclear matter. The measure of the collective expansion energy allows to estimate a value of the incompressibility coefficient which characterizes nuclear matter. (author). 51 refs., 73 figs., 9 tabs.

  14. Centrifugally cast Zn-27Al-xMg-ySi alloys and their in situ (Mg2Si + Si)/ZA27 composites

    International Nuclear Information System (INIS)

    Wang Qudong; Chen Yongjun; Chen Wenzhou; Wei Yinhong; Zhai Chunquan; Ding Wenjiang

    2005-01-01

    Effects of composition, mold temperature, rotating rate and modification on microstructure of centrifugally cast Zn-27Al-xMg-ySi alloys have been investigated. In situ composites of Zn-27Al-6.3Mg-3.7Si and Zn-27Al-9.8Mg-5.2Si alloys were fabricated by centrifugal casting using heated permanent mold. These composites consist of three layers: inner layer segregates lots of blocky primary Mg 2 Si and a litter blocky primary Si, middle layer contains without primary Mg 2 Si and primary Si, outer layer contains primary Mg 2 Si and primary Si. The position, quantity and distribution of primary Mg 2 Si and primary Si in the composites are determined jointly by alloy composition, solidification velocity under the effect of centrifugal force and their floating velocity inward. Na salt modifier can refine grain and primary Mg 2 Si and make primary Mg 2 Si distribute more evenly and make primary Si nodular. For centrifugally cast Zn-27Al-3.2Mg-1.8Si alloy, the microstructures of inner layer, middle layer and outer layer are almost similar, single layer materials without primary Mg 2 Si and primary Si are obtained, and their grain sizes increased with the mold temperature increasing

  15. NMR imaging

    International Nuclear Information System (INIS)

    Andrew, E.R.

    1983-01-01

    Since hydrogen is the most abundant element in all living organisms, proton NMR lends itself well as a method of investigation in biology and medicine. NMR imaging has some special advantages as a diagnostic tool: no ionizing radiation is used, it is noninvasive; it provides a safer means of imaging than the use of x-rays, gamma rays, positrons, or heavy ions. In contrast with ultrasound, the radiation penetrates the bony structures without attenuation. In additional to morphological information, NMR imaging provides additional diagnostic insights through relaxation parameters, which are not available from other imaging methods. In the decade since the first primitive NMR images were obtained, the quality of images now obtained approaches those from CT x-ray scanners. Prototype instruments are being constructed for clinical evaluation and the first whole-body scanners are beginning to appear on the market at costs comparable to CT scanners. Primary differences in equipment for conventional NMR and NMR imaging are the much larger aperture magnets that are required for the examination of human subjects and the addition of coils to generate field gradients and facilities for manipulating the gradients. Early results from clinical trials in many parts of the world are encouraging, and in a few years, the usefuleness of this modality of medical imaging to the medical profession in diagnosis and treatment of disease will be defined. 10 figures

  16. Applications of the Theorem of Pythagoras in R[superscript 3

    Science.gov (United States)

    Srinivasan, V. K.

    2010-01-01

    Three distinct points A = (a, 0, 0) B = (0, b, 0) and (c, 0, 0) with abc not equal to 0 are taken, respectively on the "x", "y" and the "z"-axes of a rectangular coordinate system in R[superscript 3]. Using the converse of the theorem of Pythagoras, it is shown that the triangle [delta]ABC can never be a right-angled triangle. The result seems to…

  17. Compact NMR

    Energy Technology Data Exchange (ETDEWEB)

    Bluemich, Bernhard; Haber-Pohlmeier, Sabina; Zia, Wasif [RWTH Aachen Univ. (Germany). Inst. fuer Technische und Makromolekulare Chemie (ITMC)

    2014-06-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is the most popular method for chemists to analyze molecular structures, while Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool for medical doctors that provides high-contrast images of biological tissue. In both applications, the sample (or patient) is positioned inside a large, superconducting magnet to magnetize the atomic nuclei. Interrogating radio-frequency pulses result in frequency spectra that provide the chemist with molecular information, the medical doctor with anatomic images, and materials scientist with NMR relaxation parameters. Recent advances in magnet technology have led to a variety of small permanent magnets to allow compact and low-cost instruments. The goal of this book is to provide an introduction to the practical use of compact NMR at a level nearly as basic as the operation of a smart phone.

  18. Measurement of {sup 27}Al(γ,2pn){sup 24}Na Reaction Cross-sections with 55 -, 60 -, 65 - MeV Bremsstrahlung Employing MCNPX Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, S. G.; Kye, Y.; Cho, M. H. [POSTECH, Pohang (Korea, Republic of); Namkung, W. [Pohang Accelerator Laboratory, Pohang (Korea, Republic of); KIm, G. N.; Kim, K. [Kyungpook National Univ., Daegu (Korea, Republic of); Lee, M. W.; Kang, Y. R. [Dongnam Inst. Of Radiological and Medical Science, Busan (Korea, Republic of)

    2014-05-15

    Aluminum is used for monitoring the photon flux. The photon flux during the activation can be measured by substituting the {sup 27}Al(γ,2pn){sup 24}Na reaction cross-section induced by bremsstrahlung to reactivity equation. Therefore, if this cross-section is more accurate, gamma-ray flux can be measure more accurately. In this work, the {sup 27}Al(γ,2pn){sup 24}Na reaction cross-sections induced by 55 - 65 MeV bremsstrahlung were measured by activation technique at the Pohang Neutron Facility (PNF) which has produced the nuclear data using Time-Of-Flight method and activation technique. In order to get the photon flux, MCNPX was used. These measurement values were compared with the data of Meyer et al (1968)

  19. Coincidence measurement between. cap alpha. -particles and projectile-like fragments in reaction of 82. 7 MeV /sup 16/O on /sup 27/Al

    Energy Technology Data Exchange (ETDEWEB)

    Wen-Qing, Shen; Wen-long, Zhan; Yong-tai, Zhu; Shu-zhi, Yin; Zhong-yan, Guo; Wei-min, Qiao; Guo-ying, Fan; Gen-ming, Jin; Song-ling, Li; Zhen, Zhang; others, and

    1987-01-01

    In the coincidence measurement between ..cap alpha..-particles and projectile-like fragments in the reaction of 82.7 MeV /sup 16/O on /sup 27/Al, the contour plot of the C-..cap alpha.. coincidence in the velocity plane and the coincident angular correlation are obtained. Different mechanisms of ..cap alpha..-particle emission are analysed. A possible reaction mechanism of incomplete DIC is discussed.

  20. Analysis of the /sup 27/Al(p,. gamma. )/sup 28/Si reaction at subbarrier energies in terms of the direct-semidirect model

    Energy Technology Data Exchange (ETDEWEB)

    Kicinska-Habior, M; Decowski, P; Dabrowska, M; Grochulski, W; Jaracz, P; Matulewicz, T; Sikora, B; Toke, J; Somorjai, E

    1983-06-01

    Differential cross sections for ..gamma..-transitions to 12 states in /sup 28/Si following nonresonant proton capture in /sup 27/Al nuclei (Esub(p)=1.625 keV) were measured and analysed in terms of the direct-semidirect model. The experimental data ar reproduced only when the complex coupling constant with the GDR is enhanced for the f partial wave in the entrance channel.

  1. Disappearance of flow and the in-medium nucleon-nucleon cross section for {sup 64}Zn+{sup 27}Al collisions at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    He, Zhi-Yong [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; [Academia Sinica, Lanzhou, GS (China). Inst. of Modern Physics; Peter, J; Angelique, J C; Bizard, G; Brou, R; Cussol, D [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; Auger, A; Cabot, C; Crema, E [Grand Accelerateur National d` Ions Lourds (GANIL), 14 - Caen (France); Buta, A [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; [Institute of Atomic Physics, Bucharest (Romania)] [and others

    1996-09-01

    Experimental measurement and theoretical comparison of collective flow can give important information about the nuclear equation of state (EOS) and the in-medium nucleon-nucleon cross section. Experimental measurements of {sup 64}Zn+{sup 27}Al collision from 35 to 79 MeV/u with the 4{pi} array MUR=TONNEAU are presented. The results are compared to BUU calculations. (K.A.).

  2. Microstructure and mechanical behavior of stir-cast Zn–27Al based composites reinforced with rice husk ash, silicon carbide, and graphite

    Directory of Open Access Journals (Sweden)

    Kenneth Kanayo Alaneme

    2017-04-01

    Full Text Available The microstructure and mechanical properties of Zn–27Al based composites reinforced with rice husk ash (RHA, silicon carbide (SiC, and graphite (Cg particles have been investigated. The Zn–27Al composites consisting of varied weight ratios of the reinforcing materials were produced using the stir casting process. Hardness test, tensile properties evaluation, fracture toughness determination, and microstructural examination, were used to characterize the composites produced. Results show that the microstructures of the composites are similar, consisting of the dendritic structure of the Zn–27Al alloy matrix with fine dispersion of the reinforcing particles. The hardness of the composites decreased with increase in the weight percent of RHA (and corresponding decrease in SiC weight percent in the reinforcement. The tensile strength and yield strength decreased slightly with increase in the weight ratio of RHA in the composites with a maximum of 8.5% and 9.6% reductions respectively observed for as much as 40% RHA (corresponding to 40% reduction in SiC in the hybrid reinforcement. Although some of the composite compositions containing RHA had slightly higher % elongation values compared with those without RHA, it was generally observed that the % elongation was invariant to the composite RHA content. The fracture toughness of the composites increases with increase in the weight percent of RHA with as much as a 20% increase obtained for as much as 40% RHA (corresponding to 40% reduction in SiC in the hybrid reinforcement.

  3. NMR evidence for Co-Al-Co molecular groups trapped in cages of Co4Al13

    International Nuclear Information System (INIS)

    Jeglic, P.; Heggen, M.; Feuerbacher, M.; Bauer, B.; Gille, P.; Haarmann, F.

    2009-01-01

    We present the results of 27 Al nuclear magnetic resonance (NMR) experiments on the phase Co 4 Al 13 . These results are compared to a recent structure model [1], which demonstrates a unique bonding for Al atoms in the Co-Al-Co molecular groups. In our measurement, two 27 Al signals were identified. The first one originates from Al atoms forming cages. The second signal corresponds to Al sites with exceptionally large almost axially symmetric quadrupole coupling. This finding is in perfect agreement with isolated Co-Al-Co molecular groups in accordance to Ref. [1].

  4. Test Review: Wechsler, D. (2014),"Wechsler Intelligence Scale for Children, Fifth Edition: Canadian 322 (WISC-V[superscript CDN])." Toronto, Ontario: Pearson Canada Assessment.

    Science.gov (United States)

    Cormier, Damien C.; Kennedy, Kathleen E.; Aquilina, Alexandra M.

    2016-01-01

    The Wechsler Intelligence Scale for Children, Fifth Edition: Canadian (WISC-V[superscript CDN]; Wechsler, 2014) is published by Pearson Canada Assessment. The WISC-V[superscript CDN] is a norm-referenced, individually administered intelligence battery that provides a comprehensive diagnostic profile of the cognitive strengths and weaknesses of…

  5. NMR imaging

    International Nuclear Information System (INIS)

    Ouchi, Toshihiro; Steiner, R.E.

    1984-01-01

    Three epidermoid and two dermoid tumours, pathologically proven, were examined by NMR and CT scans. Although most brain tumours have a low signal with a long T 1 , a dermoid cyst and one of the two components of the other dermoid tumour had a high signal and therefore a short T 1 . All three epidermoid tumours had a low signal and a long T 1 . Because of the high level contrast between some of the tumours and cerebrospinal fluid, NMR is helpful to detect the lesion. Neither of the liquid fluid levels in the tumour cysts or floating fat in the subarachnoid space was recognized in one patients, but the fine leakage of the content from the epidermoid cyst into the lateral ventricle was detected on a saturation recovery 1000 image in one case. (author)

  6. NMR signature of evolution of ductile-to-brittle transition in bulk metallic glasses.

    Science.gov (United States)

    Yuan, C C; Xiang, J F; Xi, X K; Wang, W H

    2011-12-02

    The mechanical properties of monolithic metallic glasses depend on the structures at atomic or subnanometer scales, while a clear correlation between mechanical behavior and structures has not been well established in such amorphous materials. In this work, we find a clear correlation of (27)Al NMR isotropic shifts with a microalloying induced ductile-to-brittle transition at ambient temperature in bulk metallic glasses, which indicates that the (27)Al NMR isotropic shift can be regarded as a structural signature to characterize plasticity for this metallic glass system. The study provides a compelling approach for investigating and understanding the mechanical properties of metallic glasses from the point of view of electronic structure. © 2011 American Physical Society

  7. A MAS NMR and DRIFT study of the Ga species in Ga/H-ZSM5 catalysts and their effect on propane ammoxidation

    NARCIS (Netherlands)

    Pal, P.; Quartararo, J.; Hamid, abd S.B.; Derouane, E.G.; Védrine, J.C.; Magusin, P.C.M.M.; Anderson, B.G.

    2005-01-01

    71Ga, 27Al and 29Si MAS-NMR and DRIFT spectroscopies were used to characterize the state of gallium in Ga/H-ZSM5 catalysts tested for their ability to catalyse the ammoxidation of propane. Ga-species were observed in two different possible environments: octahedrally-coordinated gallium in small

  8. NMR study of nanophase Al/Al-oxide powder and consolidated composites

    International Nuclear Information System (INIS)

    Suits, B.H.; Apte, P.; Wilken, D.E.; Siegel, R.W.

    1994-10-01

    27 Al Nuclear Magnetic Resonance (NMR) measurements from aluminum powders and consolidated nanophase aluminum made from those powders are presented. The signals from the metal and surface oxidation are easily separated and are compared before and after consolidation. The results presented indicate that the oxide coating becomes the interface region within the nanophase composite material and that during consolidation the metal has undergone a deformation equivalent to that seen for bulk material under a compressive strain of between 4% and 8%

  9. Characterization of zeolites by magic-angle-spinning NMR

    International Nuclear Information System (INIS)

    Brunner, E.; Ernst, H.; Freude, D.; Hunger, M.; Pfeifer, H.

    1988-01-01

    Magic-angle-spinning nuclear magnetic resonance (MAS NMR) has been used to study structure defects in TPA/ZSM-5, the dealumination process caused by hydrothermal treatment and acid leaching of zeolites, the influence of Lewis sites upon water as a probe molecule, the boron incorporation into the ZSM-5 framework, and the acid sites and structure defects in SAPO-5. The nuclei under study are 1 H, 11 B, 27 Al, 29 Si, and 31 P. 24 refs.; 7 figs.; 1 table

  10. Dispersive optical-model and coupled-channels descriptions of neutron scattering from 27Al and 59Co up to 80 MeV

    International Nuclear Information System (INIS)

    Nagadi, M.M.; Howell, C.R.; Tornow, W.; Weisel, G.J.; Al-Ohali, M.A.; Braun, R.T.; Setze, H.R.; Chen Zemin; Walter, R.L.; Delaroche, J.P.; Romain, P.

    2003-01-01

    Differential cross sections σ(θ) and analyzing powers A y (θ) have been measured for neutron scattering from 27 Al and 59 Co at 15 MeV at the Triangle Universities Nuclear Laboratory using standard time-of-flight techniques. In addition, σ(θ) was measured for 59 Co at 10, 12, 14, 17, and 19 MeV . Two large databases covering the energy range from 0.1 to 80 MeV were formed for these nuclei from this new data and previously published data, including that for the total cross section σ T . These sets of data were analyzed using spherical dispersive optical-model (DOM) potentials, as well as coupled-channels model (CCM) potentials. The 59 Co DOM gives good agreement with the σ(θ) data, except in the region of the first minimum. It also gives a reasonable description of our A y (θ) measurement. The 27 Al DOM gives good agreement with the data, except for σ(θ) at backward angles below 9.4 MeV and for σ T , for which there is up to 5% disagreement in the 10-50 MeV range. Compared to the DOM, the 59 Co CCM calculations give improved agreement with the σ(θ) data, especially at the first minimum. The σ T calculations agree with the data to within about 3% above 1.0 MeV . The three-level CCM calculations for 27 Al give excellent agreement with the entire database

  11. Research of Dic process induced by 92 MeV and 77 MeV /sup 14/N and /sup 27/Al

    Energy Technology Data Exchange (ETDEWEB)

    Zhong-yan, Guo; Wen-qing, Shen; Yong-tai, Zhu; Wei-min, Qiao; Shu-zhi, Yin; Wen-long, Zhang; En-jiu, Wu

    1987-07-01

    The projectile-like fragments of /sup 14/N+/sup 27/Al reaction (E/sub Lab/ = 93 and 77 MeV) were measured by using the large area position sensitive ionization chamber. The contour plots of d/sup 3/ sigma/d..cap omega..dEdZ in TKE-theta plane, angle distributions integrating over different TKEL window, the Z-distribution and angle distribution of different fragments from Li to Na were obtained. Variations of sigmaz/sup 2/, tau with TKEL were deduced. A brief discussion of the experimental results was given also.

  12. A broad angular-range measurement of elastic and inelastic scatterings in the 16O on 27Al reaction at 17.5 MeV/u

    International Nuclear Information System (INIS)

    Cappuzzello, F.; Agodi, C.; Bondì, M.; Carbone, D.; Cavallaro, M.; Cunsolo, A.; De Napoli, M.; Foti, A.; Nicolosi, D.; Tropea, S.; Faria, P.N. de; Linares, R.

    2014-01-01

    The elastic and inelastic scattering of 16 O ions on 27 Al target nuclei were measured in a broad angular range (5°<θ lab <40°) at 280 MeV incident energy. The beam was accelerated by the K800 Superconducting Cyclotron at the INFN-LNS laboratory. The ejectiles were detected by the MAGNEX large acceptance magnetic spectrometer. The matching of the beam properties with the optical characteristics of the spectrometer allowed to separate the elastic from the inelastic channels in the energy spectra and measure accurate cross-section distributed over more than eight orders of magnitude down to a few tens of nb/sr

  13. NMR spectroscopy

    International Nuclear Information System (INIS)

    Gruenert, J.

    1989-01-01

    The book reviews the applications of NMR-spectroscopy in medicine and biology. The first chapter of about 40 pages summarizes the history of development and explains the chemical and physical fundamentals of this new and non-invasive method in an easily comprehensible manner. The other chapters summarize diagnostic results obtained with this method in organs and tissues, so that the reader will find a systematic overview of the available findings obtained in the various organ systems. It must be noted, however, that ongoing research work and new insight quite naturally will necessitate corrections to be done, as is the case here with some biochemical interpretations which would need adjustment to latest research results. NMR-spectroscopy is able to measure very fine energy differences on the molecular level, and thus offers insight into metabolic processes, with the advantage that there is no need of applying ionizing radiation in order to qualitatively or quantitatively analyse the metabolic processes in the various organ systems. (orig./DG) With 40 figs., 4 tabs [de

  14. Visualizing the Inner Product Space R[superscript m x n] in a MATLAB-Assisted Linear Algebra Classroom

    Science.gov (United States)

    Caglayan, Günhan

    2018-01-01

    This linear algebra note offers teaching and learning ideas in the treatment of the inner product space R[superscript m x n] in a technology-supported learning environment. Classroom activities proposed in this note demonstrate creative ways of integrating MATLAB technology into various properties of Frobenius inner product as visualization tools…

  15. Constructing Conceptual Meaning from a Popular Scientific Paper--The Case of E = mc[superscript 2

    Science.gov (United States)

    Kapon, Shulamit

    2013-01-01

    Although high school physics students solve problems using the expression E = mc[superscript 2], the origin of this expression and its deep conceptual meaning are hardly ever discussed due to students' limited prior knowledge. In 1946, a year after the atomic bombs were first dropped, Albert Einstein published a popular scientific paper explaining…

  16. Role of L-Type Ca[superscript 2+] Channel Isoforms in the Extinction of Conditioned Fear

    Science.gov (United States)

    Busquet, Perrine; Hetzenauer, Alfred; Sinnegger-Brauns, Martina J.; Striessnig, Jorg; Singewald, Nicolas

    2008-01-01

    Dihydropyridine (DHP) L-type Ca[superscript 2+] channel (LTCC) antagonists, such as nifedipine, have been reported to impair the extinction of conditioned fear without interfering with its acquisition. Identification of the LTCC isoforms mediating this DHP effect is an essential basis to reveal their role as potential drug targets for the…

  17. Modification of Depression by COMT val[superscript 158]Met Polymorphism in Children Exposed to Early Severe Psychosocial Deprivation

    Science.gov (United States)

    Drury, Stacy S.; Theall, Katherine P.; Smyke, Anna T.; Keats, Bronya J. B.; Egger, Helen L.; Nelson, Charles A.; Fox, Nathan A.; Marshall, Peter J.; Zeanah, Charles H.

    2010-01-01

    Objective: To examine the impact of the catechol-O-methyltransferase (COMT) val[superscript 158]met allele on depressive symptoms in young children exposed to early severe social deprivation as a result of being raised in institutions. Methods: One hundred thirty six children from the Bucharest Early Intervention Project (BEIP) were randomized…

  18. Virtual Learning Environments in Social Psychology: Using "The SIMs[superscript 3]" to Teach Self-Related Processes

    Science.gov (United States)

    Stansbury, Jessica A.

    2017-01-01

    An interactive learning module was developed and implemented in a social psychology course to teach concepts of the "self" via self-exploration and game play using "The SIMS[superscript 3]." Students volunteered to play the computer video game throughout a 5-week summer session as a supplement to reading the chapter in the…

  19. An Investigation of the Mechanism Underlying Teacher Aggression: Testing I[superscript 3] Theory and the General Aggression Model

    Science.gov (United States)

    Montuoro, Paul; Mainhard, Tim

    2017-01-01

    Background: Considerable research has investigated the deleterious effects of teachers responding aggressively to students who misbehave, but the mechanism underlying this dysfunctional behaviour remains unknown. Aims: This study investigated whether the mechanism underlying teacher aggression follows I[superscript 3] theory or General Aggression…

  20. Adjusting the Adjusted X[superscript 2]/df Ratio Statistic for Dichotomous Item Response Theory Analyses: Does the Model Fit?

    Science.gov (United States)

    Tay, Louis; Drasgow, Fritz

    2012-01-01

    Two Monte Carlo simulation studies investigated the effectiveness of the mean adjusted X[superscript 2]/df statistic proposed by Drasgow and colleagues and, because of problems with the method, a new approach for assessing the goodness of fit of an item response theory model was developed. It has been previously recommended that mean adjusted…

  1. The stoichiometry of synthetic alunite as a function of hydrothermal aging investigated by solid-state NMR spectroscopy, powder X-ray diffraction and infrared spectroscopy

    DEFF Research Database (Denmark)

    Grube, Elisabeth; Nielsen, Ulla Gro

    2015-01-01

    The stoichiometry of a series of synthetic alunite (nominally KAl3(SO4)2(OH)6) samples prepared by hydrothermal methods as a function of reaction time (1 – 31 days) has been investigated by powder X-ray diffraction, Fourier transform infrared spectroscopy as well as solid-state 1H and 27Al magic...... of potassium defects present, from 17.261(1) to 17.324(5) Å. Solid-state 27Al MAS NMR revealed a decrease in the defect concentration as a function of time and showed the presence of 7-10 % impurities in the samples....

  2. Multinuclear MAS NMR studies on coked zeolites H-ZSM-5

    International Nuclear Information System (INIS)

    Ernst, H.; Freude, D.; Hunger, M.; Pfeifer, H.

    1991-01-01

    During the cracking process carbonaceous materials are deposited on the outer or inner surface of the catalyst. These deposits are in many cases the main cause of catalyst deactivation. Magic angle spinning (MAS) NMR investigations and catalytic n-hexane cracking were carried out on H-ZSM-5 zeolites after a mild hydrothermal de-alumination. By 13 C CP MAS NMR it could be shown that the enhanced catalytic activity does not enhance the coke formation and that the chemical nature of these deposits is essentially aromatic. From 1 H MAS NMR studies performed on shallow-bed activated sealed samples and 27 Al and 29 Si MAS NMR on rehydrated samples it follows that for high coke concentrations the catalyst deactivation is caused mainly by blocking of Broensted acid sites. (author). 27 refs.; 3 figs.; 2 tabs

  3. A fast-fission component with small mass drift in the reaction 84Kr + 27Al at ELab = 5.9 MeV/u

    International Nuclear Information System (INIS)

    Heusch, B.; Freiesleben, H.; Schneider, W.F.W.; Kohlmeyer, B.; Stege, H.; Puehlhofer, F.

    1985-01-01

    All reaction products in the range from target- and projectile-like to fission-like fragments were measured for the system 84 Kr + 27 Al at 5.9 MeV/u beam energy. They are assigned to the various reaction mechanisms on the basis of experimental signatures (energy dissipation, mass and angular distribution). The sum of the measured partial cross sections, including the evaporation residue yield obtained previously, agrees with the total reaction cross section derived from elastic scattering. A small fast-fission component was found, discernible from deep-inelastic reactions by its 1/sinθ angular distribution, and distinguished from compound-nucleus fission by an incomplete mass asymmetry relaxation

  4. Sub-barrier fusion of 27Al + 70,72,73,74,76Ge. Evidence for shape transition and structure effects

    International Nuclear Information System (INIS)

    Aguilera, E.F.; Vega, J.J.; Kolata, J.J.; Tighe, R.G.; Kong, X.J.; Morsad, A.

    1990-01-01

    Fusion excitation functions were obtained for 27 Al + 70,72,73,74,76 Ge at energies from about 6 MeV below to 7 MeV above the Coulomb barrier. One-dimensional barrier penetration model calculations with one free parameter yield parameters in good agreement with the systematics for fusion above the barrier. Large low-energy enhancements are observed whose trend suggests the presence of a structural change between 70,72 Ge and 73,74,76 Ge. Within the context of simple model calculations, this trend is explained as arising from the odd-A structure of 73 Ge on one hand, and from a spherical (or oblate) to prolate shape transition between 70,72,73 Ge and 74,76 Ge, on the other hand

  5. Measurement of the neutron activation constants Q0 and k0 for the 27Al(n, γ)28Al reaction at the JSI TRIGA Mark II reactor

    International Nuclear Information System (INIS)

    Vladimir Radulovic; Andrej Trkov; Radojko Jacimovic; Robert Jeraj

    2013-01-01

    Measurements of the neutron activation constants Q 0 and k 0 for the 27 Al(n, γ) 28 Al reaction have been performed in two irradiation channels with different spectral characteristics at the JSI TRIGA Mark II reactor. In the determination of Q 0 the fission spectrum contribution to the reaction rates has been corrected for. The final experimental value of the Q 0 factor was found to differ significantly from the adopted value in the k 0 -database. The experimental value of the k 0 factor is in agreement with the recommended value in the k 0 -database. The thermal cross-section and resonance integral for the reaction were found to be in good agreement with the values calculated from the cross-sections from the ENDF/B-VII.1 library. (author)

  6. Spin-spin interaction between polarized neutrons and polarized 27Al, 59Co, and 93Nb from dispersive optical model and coupled-channel analyses

    International Nuclear Information System (INIS)

    Nagadi, M.M.; Weisel, G.J.; Walter, R.L.; Delaroche, J.P.; Romain, P.

    2004-01-01

    Coupled-channel and dispersive-optical model analyses of published neutron scattering and reaction data for 27 Al, 59 Co, and 93 Nb at incident energies between 0.1 and 80 MeV have been performed. The resulting potentials are used to place constraints on the determination of the spin-spin interaction from published spin-spin cross-section measurements. For the three nuclei, the strength of the central real spin-spin potential, which was taken to have a surface plus volume shape, was found to be small. Volume integrals for this central potential component were determined to be in the 4-7 MeV fm 3 range and to decrease somewhat as mass number increases

  7. Vacancy-related defect distributions in 11B-, 14N-, and 27Al-implanted 4H-SiC: Role of channeling

    International Nuclear Information System (INIS)

    Janson, M.S.; Slotte, J.; Kuznetsov, A.Yu.; Saarinen, K.; Hallen, A.

    2004-01-01

    The defect distributions in 11 B-, 14 N-, and 27 Al-implanted epitaxial 4H-SiC are studied using monoenergetic positron beams. At least three types of defects are needed to account for the Doppler broadening annihilation spectra and two of the defects are tentatively identified as V Si , and V Si V C . By comparing the defect profiles extracted from the annihilation spectra to the chemical profiles determined by secondary ion mass spectrometry, and to the primary defect profiles obtained from binary collision approximation simulations, it is concluded that the defects found at depths considerably deeper than the projected range of the implanted ions mainly originate from deeply channeled ions

  8. Searching for multifragmentation in light asymmetric systems 93Nb+24Mg and 93Nb+27Al at 30 A.MeV

    International Nuclear Information System (INIS)

    Manduci, Loredana

    2004-01-01

    The present work analyses the inverse kinematics reactions 93 Nb+ 27 Al and 93 Nb+ 24 Mg at 30 A.MeV. The reaction events are sorted as a function of the violence of the collision and experimental sources are reconstructed. Their decay is studied by two statistical model simulations: Gemini, for binary sequential decay and SMM for prompt multifragmentation. Both models show a reasonable agreement with the experimental observables starting from a backtracking simulated source decay which has charge and excitation energy distributions comparable to the experimental ones. This result was expected because we are still under the multifragmentation onset. However both models disagree in the fragments production rate. This states the question on the different starting point for the fragment decay probability widths calculations altogether to the idea that taking into account the nuclear dynamics between the saddle-point and the scission point would improve our results. (author) [fr

  9. Elastic scattering of 120, 145 and 172.5 MeV α-particles by 12C, 24Mg and 27Al and optical model analysis

    International Nuclear Information System (INIS)

    Wiktor, S.; Mayer-Boericke, C.; Kiss, A.; Rogge, M; Turek, P.

    1980-12-01

    The 120,145 and 172.5 MeV α-particle beams from JULIC were used to measure differential cross sections for elastic scattering on 12 C, 24 Mg and 27 Al in the angular range from about 5deg to 70deg (c.m. system). The angular distributions were analysed extensively in terms of the optical model using a variety of potential forms. Apart from the parametrized forms of potential, as Wood-Saxon (WS) or rather (WS)sup(ν) also a model independent representation of potential spline potential was employed. The analysis based on the parametrized forms of the potential made it possible to find the best fit parameter sets, which were than examined on their uniqueness and energy dependence. Emphasis was given to gaining information on the radial shape of the potential. (author)

  10. Excitation function for the population of the 4.51 MeV state of 27Al inelastic proton scattering. Evidence for 6- strength?

    International Nuclear Information System (INIS)

    Spicer, B.M.; Koutsoliotas, S.

    1995-01-01

    The excitation function for emission of 2.30 MeV gamma rays from the 4.51 MeV state of 27 Al formed in inelastic proton scattering has been measured for proton energies from 5.6 to 7.3 MeV. A resonance previously seen in both inelastic electron and proton scattering from 28 Si at 17.35 MeV has been observed as a resonance in the excitation function, as well as seven other resonances, all of which are narrow (i.e., less than 100 keV wide). It is suggested that these may represent fragments of 6 - strength in 28 Si. 6 refs., 1 tab., 2 figs

  11. Diffusion-induced quadrupole relaxation of 27Al nuclei in dilute Al-Ti, Al-Cr, Al-Mn, and Al-Cu alloys at high temperatures

    International Nuclear Information System (INIS)

    Bottyan, L.; Beke, D.L.; Tompa, K.

    1983-01-01

    The temperature dependence of the laboratory frame spin-lattice relaxation time of 27 Al nuclei is measured in 5N Al and in dilute Al-Ti, Al-Cr, Al-Mn, and Al-Cu alloys at 5.7 and 9.7 MHz resonance frequencies. The relaxation in pure aluminium is found to be purely due to the conduction electrons. An excess T 1 -relaxation contribution is detected in all Al-3d alloys investigated above 670 K. The excess relaxation rate is proportional to the impurity content and the temperature dependence of the excess contribution is of Arrhenius-type with an activation energy of (1.3 +- 0.3) eV for all of the investigated alloys. The relaxation contribution is found to be quadrupolar in origin and is caused by the relative diffusional jumps of solute atoms and Al atoms relatively far from the impurity. (author)

  12. Validation of quantitative {sup 1}H NMR method for the analysis of pharmaceutical formulations; Validacao de metodo quantitativo por RMN de {sup 1}H para analises de formulacoes farmaceuticas

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Maiara da S. [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Instituto de Quimica; Colnago, Luiz Alberto, E-mail: luiz.colnago@embrapa.br [Embrapa Instrumentacao, Sao Carlos, SP (Brazil)

    2013-09-01

    The need for effective and reliable quality control in products from pharmaceutical industries renders the analyses of their active ingredients and constituents of great importance. This study presents the theoretical basis of Superscript-One H NMR for quantitative analyses and an example of the method validation according to Resolution RE N. 899 by the Brazilian National Health Surveillance Agency (ANVISA), in which the compound paracetamol was the active ingredient. All evaluated parameters (selectivity, linearity, accuracy, repeatability and robustness) showed satisfactory results. It was concluded that a single NMR measurement provides structural and quantitative information of active components and excipients in the sample. (author)

  13. A solid state NMR study of layered double hydroxides intercalated with para-amino salicylate, a tuberculosis drug

    DEFF Research Database (Denmark)

    Jensen, Nicholai Daugaard; Bjerring, Morten; Nielsen, Ulla Gro

    2016-01-01

    Para-amino salicylate (PAS), a tubercolosis drug, was intercalated in three different layered double hydroxides (MgAl, ZnAl, and CaAl-LDH) and the samples were studied by multi-nuclear (1H, 13C, and 27Al) solid state NMR (SSNMR) spectroscopy in combination with powder X-ray diffraction (PXRD....... Moreover, 13C MAS NMR and infra-red spectroscopy show that PAS did not decompose during synthesis. Large amounts (20-41%) of amorphous aluminum impurities were detected in the structure using 27Al single pulse and 3QMAS NMR spectra, which in combination with 1H single and double quantum experiments also...... showed that the M(II):Al ratio was higher than predicted from the bulk metal composition of MgAl-PAS and ZnAl-PAS. Moreover, the first high-resolution 1H SSNMR spectra of a CaAl LDH is reported and assigned using 1H single and double quantum experiments in combination with 27Al{1H} HETCOR....

  14. Emission of light particles associated with a high transverse momentum proton in the reaction sup 16 O + sup 27 Al at 94 MeV/u. Emission de particules legeres associees a un proton de grand moment transverse dans la reaction sup 16 O + sup 27 Al a 94 MeV/u (E75)

    Energy Technology Data Exchange (ETDEWEB)

    Badala, A.; Barbera, R.; Palmeri, A.; Pappalardo, G.S.; Schillaci, A. (Istituto Nazionale di Fisica Nucleare, Catania (IT)); Bizard, G.; Bougault, R.; Durand, D.; Genoux-Lubain, A.; Lefebvres, F.; Patry, J.P. (Institut des Sciences de la Matiere du Rayonnement, 14 - Caen (FR)); Jin, G.; Laville, J.L.; Rosato, E. (Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (FR))

    1989-06-01

    The emission of light particles associated with a high transverse momentum proton in the reaction {sup 16}O + {sup 27}Al at 94 MeV/u has been studied with the help of the GANIL multidetectors (MUR and TONNEAU). Data are confronted with a model based on the standard high-energy participant-spectator picture coupled with the Weisskopf theory of evaporation. Reasonable agreement is achieved indicating that the mean-field effects for this light system at such a rather high incident energy are negligible.

  15. Evidence for fluctuations in statistical model cross sections from the study of {sup 27}Al(d,{alpha}) {sup 25}Mg reaction; Mise en evidence des fluctuations de sections efficaces du modele statistique par l'etude de la reaction {sup 27}Al(d,{alpha}) {sup 25}Mg

    Energy Technology Data Exchange (ETDEWEB)

    Papineau born Heller, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-06-01

    A complete set of experimental data has been obtained for the reaction {sup 27}Al(d, {alpha}){sup 25}Mg for excitation energies in the compound nucleus {sup 29}Si between 19.7 and 27.4 MeV, in order to compare with the theoretical predictions of the statistical model of nuclear reactions including fluctuations. Numerical calculations of the theoretical cross sections were made and contributions to methods of analysis of fluctuating excitation functions are given. The results confirm strong evidence for statistical fluctuations in nuclear cross sections. (author) [French] On a obtenu un ensemble complet de donnees experimentales de la reaction {sup 27}Al(d, {alpha}){sup 25}Mg pour des energies d'excitation du noyau compose {sup 29}Si comprises entre 19,7 et 27,4 MeV, permettant la comparaison avec les previsions theoriques du modele statistique des reactions nucleaires dans sa version complete comprenant les fluctuations. Des calculs numeriques de sections efficaces theoriques ont ete effectues et des contributions ont ete apportees aux methodes d'analyse de fonctions d'excitation presentant des fluctuations. Les resultats ont clairement confirme l'existence de fluctuations statistiques de sections efficaces. (auteur)

  16. Cross sections and reaction rates for 23Na(p,n) 23Mg, 27Al(p,n) 27Si, 27Al(α,n) 30P, 29Si(α,n) 32S, and 30Si(α,n) 33S

    International Nuclear Information System (INIS)

    Flynn, D.S.; Sekharan, K.K.; Hiller, B.A.; Laumer, H.; Weil, J.L.; Gabbard, F.

    1978-01-01

    The total neutron production cross sections for the 23 Na(p,n) 23 Mg, 27 Al(p,n) 27 Si, 27 Al(α,n) 30 P, 29 Si(α,n) 32 S, and 30 Si(α,n) 33 S reactions have been measured for bombarding energies from threshold to 6.3 MeV. The neutron detector was a 60-cm diameter sphere of polyethylene with eight 10 BF 3 counters and was insensitive to the angle and energy of the emitted neutrons. Cross sections for inverse reactions have been obtained using the principle of detailed balance. The data have been used to determine parameters for statistical model calculations to facilitate extrapolation of cross sections to higher bombarding energies. These reactions are relevant to problems of nucleosynthesis and stellar evolution and to studies of radiation damage. Nucleosynthesis reaction rates, N/sub A/(sigmav), were determined for the reactions studied and are tabulated for temperatures ranging from 0.4 x 10 9 to 10.0 x 10 9 K

  17. NMR of lignins

    Science.gov (United States)

    John Ralph; Larry L. Landucci

    2010-01-01

    This chapter will consider the basic aspects and findings of several forms of NMR spectroscopy, including separate discussions of proton, carbon, heteronuclear, and multidimensional NMR. Enhanced focus will be on 13C NMR, because of its qualitative and quantitative importance, followed by NMR’s contributions to our understanding of lignin...

  18. Small angle particle-particle correlation measurements in the reactions 280 MeV 40Ar+27Al and 670 MeV 55Mn+12C

    International Nuclear Information System (INIS)

    Milosevich, Zoran; Vardaci, Emanuele; DeYoung, Paul A.; Brown, Craig M.; Kaplan, Morton; Whitfield, James P.; Peterson, Donald; Dykstra, Christopher; Barton, Matthew; Karol, Paul J.; McMahan, Margaret A.

    2001-01-01

    Small-angle particle-particle correlations were measured in the two matching reactions 280 MeV 40 Ar+ 27 Al and 670 MeV 55 Mn+ 12 C. These two reactions were used to produce the composite nucleus, 67 Ga*, at the same initial excitation energy of 127 MeV, but with different entrance channel angular momentum distributions. A simple trajectory model was used to compute the average emission times between various particle pairs, and comparisons with the data show that there is a significant difference in the deexcitation of the composite nucleus formed from the two reactions. Statistical model calculations were compared to the experimental observations with the added constraint that the model input parameters were consistent with those derived from observed charged-particle energy spectra and angular distributions. It was found that the calculated correlation functions were insensitive to the input spin distributions, but agreed fairly well with the data from the lower-spin system. The higher-spin reaction data were poorly reproduced by the calculations

  19. Coincidence measurement between α-particles and projectile-like fragments in the reaction of 82.7 MeV 16O on 27Al

    International Nuclear Information System (INIS)

    Shen Wenqing; Zhan Wenlong; Zhu Yongtai

    1988-01-01

    In a coincidence measurement between α-particles and projectile-like fragments in the reaction of 82.7 MeV 16 O on 27 Al, the contour plot of Galilean-invariant cross section of the coincidence between C-fragments and α-particles in the velocity plane, and the coincident angular correlation have been obtained. The correlated α-particles measured at positive angles (on the same side of the beam as the projectile-like fragments) were emitted mainly from the projectile-like fragments;the α-particles at large negative angles were emitted from the target-like fragments;the α-particles at small negative angles came from the fragmentation of the 16 O projectile. A possible reaction mechanism in which the residue produced in the fragmentation of the projectile continues the dissipation process during the interaction with the target has been discussed. It is also pointed out that in the large yield of C-fragments observed in the inclusive experiment, the contribution of C-fragments produced by the excited 16 O of DIC product via α-emission is quite small

  20. Light-charged-particle emission in the matched reactions 280 MeV 40Ar+27Al and 670 MeV 55Mn+12C: Coincidence results

    International Nuclear Information System (INIS)

    Brown, Craig M.; Milosevich, Zoran; Kaplan, Morton; Vardaci, Emanuele; DeYoung, Paul A.; Whitfield, James P.; Peterson, Donald; Dykstra, Christopher; Karol, Paul J.; McMahan, Margaret A.

    2000-01-01

    Exclusive measurements of light-charged-particle ( 1 H, 2 H, and 4 He) energy spectra, angular distributions, and emission multiplicities are reported for the two reactions 40 Ar+ 27 Al and 55 Mn+ 12 C at a matched excitation energy of 127 MeV. Comparisons are made with statistical model predictions for the evaporative processes in these reactions, which can be characterized as emissions from rotational-energy-dominated systems. The model simulations do well in reproducing a broad range of angular distribution data and the 4 He/ 1 H cross-section ratio, using spin distributions derived from fusion cross-section systematics. The same model parameters, however, predict particle energy spectra and coincidence cross sections which are inconsistent with the measurements for both reactions. These results support previous conclusions from model comparisons with inclusive data, and suggest fundamental flaws in the statistical model as applied to light-mass, high-spin, nuclear systems. (c) 2000 The American Physical Society

  1. Reaction cross sections and elastic scattering energy dependence around the Coulomb barrier for the {sup 7}Be+{sup 27}Al system

    Energy Technology Data Exchange (ETDEWEB)

    Morcelle, Viviane; Gomes, P.R.S.; Lubian, J.; Mendes Junior, D.R. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Lichtenthaeler, R.; Guimaraes, V.; Lepine-Szily, A.; Camargo, O.; Faria, P.N. de; Gasquez, L.; Morais, M.C.; Condori, R.P.; Pires, K.C.C.; Scarduelli, V. [Universidade de Sao Paulo (USP), SP (Brazil); Barioni, A. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil); Shorto, J.M.B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Zamora, J.C. [Technische Universitaet Darmstadt (Germany); Aguilera, E.; Martinez-Quiroz, E. [Instituto Nacional de Investigaciones Nucleares (Mexico); Kolata, J.; Jiang, H. [University of Notre Dame, IN (United States); Bechetti, F.D.; Lamm, L.O. [Michigan University, MI (United States); Lizcano, D. [Universidad Autonoma del Estado de Mexico (Mexico)

    2012-07-01

    Full text: Elastic scattering measurements were performed at energies around the Coulomb barrier at the Tandem Accelerators of the Sao Paulo (USP - Brazil ) and Notre Dame (UND - USA) Universities. The {sup 7}Be is a radioactive nucleus and has been produced by the reaction {sup 6}He({sup 6}Li,{sup 9}Be) and impinged on {sup 27}Al and {sup 197}Au secondary targets using a double superconducting systems RIBRAS ( USP ) and Twinsol (UND). The elastic scattering angular distributions were analyzed through the optical model calculations, using the Woods- Saxon form factors [1] and the Sao Paulo potential [2] to fit the experimental data. The total reaction cross sections were also derived and compared with others presented at the literature for other systems. In addition, a study of the nuclear potential energy dependence has been carried out in this work in the dispersion relation context. Due to the fact that {sup 7}Be has a small breakup threshold energy, the results can provide significant information of the influence of the breakup channel on the reactions involving this projectile. For this purpose, {chi}{sup 2}- data analysis with different kind of potentials were performed to identify the energy dependence of the real (V) and imaginary (W) parts of the potential. [1] L.C. Chamon et al., Phys. Rev. C 66, (2002) 014610. [2] R.D. Wood e D.S. Saxon, Phys. Rev. 95 ( 1954) 577. (author)

  2. Measurement of the depolarization in the elastic proton scattering on 1H, 27Al, and 89Y in the low energy range

    International Nuclear Information System (INIS)

    Schmitt, R.

    1986-01-01

    With the Erlangen QDQ magnetic spectrometer angular distributions of the depolarization in the elastic scattering of protons on 27 Al, 89 Y at 11 MeV and 1 H at 12 MeV were measured. The evaluation was performed for yttrium and aluminium by adding of additional terms in the optical model which regard the spin-spin interaction. The optical-model parameter without spin-spin potentials were stated by measurements of the cross section and the analyzing power in the 4π scattering chamber in Erlangen at several energies. The calculation of the depolarization which emerges because of the spin-spin interaction was performed by means of DWBA. The depolarization of the proton-proton scattering was evaluated by scattering-phase analysis. The fits were thereby performed on analyzing-power data. The electrical P-wave scattering phases resulted to δ 10 = 4.442±0.121, δ 11 = -2.515±0.026, and δ 12 = 0.937±0.038 (all in degrees). (orig./HSI) [de

  3. Energy loss measurements of {sup 63}Cu, {sup 28}Si and {sup 27}Al heavy ions crossing thin Polyvinylchloride (PVC) foil

    Energy Technology Data Exchange (ETDEWEB)

    Dib, A.; Ammi, H. [Centre de Recherche Nucléaire d’Alger, 2 Bd. Frantz Fanon, B.P. 399, Alger-Gare, Algiers (Algeria); Guesmia, A., E-mail: guesmia@tlabs.ac.za [Departement de physique, Faculté des Sciences, Université Saad Dahlab, B. P. 270, Route de Soumaa, Blida (Algeria); Departement de physique, Faculté des Sciences, Université M’hamed Bougara, Boumerdes (Algeria); iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West 7129 (South Africa); Msimanga, M. [Department of Physics, Arcadia Campus, Tshwane University of Technology, P. Bag X680, Pretoria (South Africa); Mammeri, S. [Centre de Recherche Nucléaire d’Alger, 2 Bd. Frantz Fanon, B.P. 399, Alger-Gare, Algiers (Algeria); Hedibel, M. [Departement de physique, Faculté des Sciences, Université M’hamed Bougara, Boumerdes (Algeria); Guedioura, B. [Centre de Recherche Nucléaire de Draria, B.P. 43, Sebala-Draria, Algiers (Algeria); Pineda-Vargas, C.A. [iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West 7129 (South Africa); Faculty of Health and Wellness Sciences, CPUT, P.O. Box 1906, Bellville 7535 (South Africa)

    2015-11-15

    Experimental stopping data of, {sup 63}Cu, {sup 28}Si and {sup 27}Al heavy ions in thin Polyvinylchloride (H{sub 3}C{sub 2}Cl{sub 1}) foil have been obtained over the 0.045–0.50 MeV/nucleon energy range. The measured energy losses were carried out by Heavy Ion Elastic Recoil Detection Analysis (HI-ERDA) technique coupled with time of flight (ToF) spectrometer. A continuous stopping power data obtained in this work are well fitted by our proposed semi-empirical formula and the results are compared to those calculated by LSS formula or generated by SRIM-2013 and MSTAR predictions. Calculations using our formula agree well with the obtained experimental stopping powers, while the LSS formula underestimates the experimental data in the whole investigated energy range. In this work a simple expression for electronic stopping power of heavy ions at low energy in solid targets is introduced. This formula is based on the Firsov and Lindhard–Sharff stopping power models with a small modification made to the original expression, by incorporating the effective charge of moving ions concept and with exponential fit function.

  4. Experimental study of the A(e,e'π+) reaction on 1H, 2H, 12C, 27Al, 63Cu, and 197Au

    International Nuclear Information System (INIS)

    Qian, X.; Gao, H.; Kramer, K.; Horn, T.; Clasie, B.; Seely, J.; Arrington, J.; El Fassi, L.; Zheng, X.; Asaturyan, R.; Mkrtchyan, H.; Navasardyan, T.; Tadevosyan, V.; Benmokhtar, F.; Boeglin, W.; Markowitz, P.; Bosted, P.; Bruell, A.; Chudakov, E.; Ent, R.

    2010-01-01

    Cross sections for the 1 H(e,e ' π + )n process on 1 H, 2 H, 12 C, 27 Al, 63 Cu, and 197 Au targets were measured at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) to extract nuclear transparencies. Data were taken from Q 2 =1.1-4.7 GeV 2 for a fixed center-of-mass energy of W=2.14 GeV. The ratio of σ L and σ T was extracted from the measured cross sections for 1 H, 2 H, 12 C, and 63 Cu targets at Q 2 =2.15 and 4.0 GeV 2 , allowing for additional studies of the reaction mechanism. In this article, we present the experimental setup and the analysis of the data in detail, including systematic uncertainty studies. Differential cross sections and nuclear transparencies as a function of the pion momentum at different values of Q 2 are presented. Our results are consistent with the predicted early onset of color transparency in mesons. Global features of the data are discussed and the data are compared with model calculations for the 1 H(e,e ' π + )n reaction from nuclear targets.

  5. Structure resolution of Ba5Al3F19 and Iivestigation of fluorine ion dynamics by synchrotron powder diffraction, variable-temperature solid-state NMR, and quantum computations

    International Nuclear Information System (INIS)

    Martineau, C.; Fayon, F.; Suchomel, M.R.; Allix, M.; Massiot, D.; Taulelle, F.

    2011-01-01

    The room temperature structure of Ba 5 Al 3 F 19 has been solved using electron microscopy and synchrotron powder diffraction data. One-dimensional (1D) 27 Al and ultrafast magic-angle-spinning (MAS) 19 F NMR spectra have been recorded and are in agreement with the proposed structural model for Ba 5 Al 3 F 19 . The 19 F isotropic chemical shift and 27 Al quadrupolar parameters have been calculated using the CASTEP code from the experimental and density functional theory geometry-optimized structures. After optimization, the calculated NMR parameters of both the 19 F and 27 Al nuclei show improved consistency with the experimental values, demonstrating that the geometry optimization step is necessary to obtain more accurate and reliable structural data. This also enables a complete and unambiguous assignment of the 19 F MAS NMR spectrum of Ba 5 Al 3 F 19 . Variable-temperature 1D MAS 19 F NMR experiments have been carried out, showing the occurrence of fluorine ion mobility. Complementary insights were obtained from both two-dimensional (2D) exchange and 2D double-quantum dipolar recoupling NMR experiments, and a detailed analysis of the anionic motion in Ba 5 Al 3 F 19 is proposed, including the distinction between reorientational processes and chemical exchange involving bond breaking and re-formation.

  6. NMR investigation of amine complexes of aluminium borohydride

    International Nuclear Information System (INIS)

    Bojko, G.N.; Malov, Yu.I.; Semenenko, K.N.; Shilkin, S.P.

    1976-01-01

    Spectra complexes of composition AlI 3 NH 2 Me, AlI 3 .NHMe 2 , AlIsub(3-n)Clsub(n).4N 2 H 4 , where I=BH 4 , where n=0, 1, 2, 3, and AlI 3 .NH 3 were measured on by 11 B-NMR and double resonances 1 H-[ 11 B] and 1 H-[ 27 Al]. In complexes of composition 1:1, the resonance signals of 1 H, 11 B, and 27 Al were shifted to the strong field in comparison with the signal position in free AlI 3 . The strongest changes of shielding were observed for Al due to symmetry changes from the planar in AlI 3 to tetrahedral in complexes. The donor activity of ligands in relation to AlI 3 changes in the order: NMe 3 >NHMe 2 >NH 2 Me>NH 3 . No proof of the existence of a bridge structure in the complexes was obtained. The observed spectra show an equivalence of all H atoms on B. For a temperature decrease, an averaging of the spin-spin interaction of the protons with B and Al was observed. At -80 0 , a narrow singlet is observed showing the equivalance of H atoms in BH 4 - and a full isolation of interactions H-B and H-Al

  7. Dynamics of {sup 47}V* formed in {sup 20}Ne + {sup 27}Al reaction in view of fusion-fission and DIC mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Grover, Neha; Sharma, Kanishka; Sharma, Manoj K. [Thapar University, School of Physics and Materials Science, Patiala (India)

    2017-12-15

    The decay mechanism of {sup 47}V* formed in direct kinematics ({sup 20}Ne + {sup 27}Al) is investigated within the collective clusterization approach of dynamical cluster decay model (DCM). All calculations are done for quadrupole (β{sub 2i}-deformed) choice of fragments by taking optimum orientations over a wide range of center of mass energies (E{sub c.m.} ∝ 83-125 MeV). According to the experimental evidence, there is a strong competition between fusion fission (FF) and deep inelastic collision (DIC) in the decay of {sup 47}V*, which are recognized as compound nucleus process and non-compound nucleus process, respectively. The decay cross sections of {sup 47}V* for both FF and DIC decay modes are addressed using DCM, and are found to be in agreement with the experimental data. It is important to mention that emitting fragments in both these decay channels maintain their homogeneity in terms of charge number, that lies in the region 3 ≤ Z ≤ 9. Hence, all possible isotopes contributing towards 3 ≤ Z ≤ 9 are taken into consideration here. Calculations of both FF and DIC are segregated on the basis of angular momentum windows, where 0 ≤ l ≤ l{sub cr} has been taken for FF and l{sub cr} < l ≤ l{sub gr} for DIC, as the later operates only due to the partial waves near grazing angular momentum. In DIC, preformation probability (P{sub 0}) is divided equally amongst the most favoured outgoing fragments. Moreover, the behavior of fragmentation potential, preformation probability, penetrability and emission time etc. is examined, in order to identify the most favorable isotopes contributing towards FF and DIC. (orig.)

  8. Study of 16O-induced deep inelastic nuclear reactions on 27Al, 48Ti, and 58Ni by spectroscopy of the gamma radiation from the reaction products

    International Nuclear Information System (INIS)

    Puchta, H.

    1980-01-01

    The present thesis deals with the spectroscopy of the gamma radiation from the reaction fragments after binary reactions in the systems 16 O + 27 Al, 48 Ti, and 58 Ni at incident energies from 90 to 100 MeV, i.e. far above the Coulomb threshold. ΔE-E telescopes, which were located at 35 0 to the beam direction, detected the projectile-like fragments and defined the reaction channel and the scattering plane. In coincidence to this the gamma quanta in a 120-cm 3 -Ge(Li)-diode and a 27 x 33-cm-NaI-spectrometer were observed. The gamma spectra are equal to those observed hitherto in fusion reactions except for the high energetic gamma lines from the ejectiles, which are raised from the gamma continuum of the heavy fragments. From the spectroscoped gamma radiation for the light as for the heavy fragments the excitation energy, the value of the fragment angular momentum, as well as the occupation of the magnetic sublevels could be determined. The hard projectile 16 O transfers the dissipated energy and the angular momentum transferred by the spin of the fragments nearly completely into the residue nucleus. The probability for the observation of a ground state transition in one of the heavy fragments extends to (0.85 +- 0.10) per carbon ejectile in the system 16 O + 48 Ti. The residue nucleus distribution corresponds to that expected by the statistical model from the decay of the compound-nucleus 52 Cr belonging to the ejectile 12 C, the excitation energy of which corresponds to the reaction Q-value. (orig./HSI) [de

  9. NMR relaxation rates and Knight shifts in the alloy Mg1-xAlxB2

    International Nuclear Information System (INIS)

    Serventi, S; Allodi, G; Bucci, C; Renzi, R De; Guidi, G; Pavarini, E; Manfrinetti, P; Palenzona, A

    2003-01-01

    We measured the 27 Al and 11 B NMR spin lattice relaxation rates and the isotropic Knight shifts in powder samples of Mg 1-x Al x B 2 , as a function of the Al concentration, x. The temperature independence of the Knight shifts and the linear temperature dependence of the relaxation are verified throughout the compositions explored. The variation with x of the measured quantities is discussed in terms of the projected densities of states at the Fermi energy, finding good qualitative as well as quantitative agreement with recent band structure calculations

  10. NMR study of thermal decomposition of lithium tetrahydroaluminate

    International Nuclear Information System (INIS)

    Tarasov, V.P.; Bakum, S.I.; Kuznetsova, S.F.

    1997-01-01

    Pyrolysis of lithium aluminotetrahydrides and deuterides, LiAlH 4 and LiAlD 4 , was studied by 1 H, 7 Li, 27 Al NMR in 20-700 deg C range. 20-30 time constriction of resonance lines of studied nuclei at 170 deg C testifies to melting of the compounds. It is shown that at LiAlD 4 melting point the first stage of pyrolysis is described by two parallel reactions: LiAlD 4 -> LiD + Al + D 2 , LiAlD 4 + LiD -> Li 3 AlD 6 , which proceed with different rates. It was revealed that reactions of lithium hydride (deuteride) with metallic aluminium at temperatures above 400 deg C resulted to formation of intermetallic compounds of LiAl and LiAl 3 composition. LiAl is characterized by higher thermal stability, than LiAl 3 . 20 refs., 6 figs., 2 tabs

  11. A multinuclear static NMR study of geopolymerisation

    Energy Technology Data Exchange (ETDEWEB)

    Favier, Aurélie, E-mail: aurelie.favier@epfl.ch [Univ Paris-Est, IFSTTAR, Materials Department, 14-20 bd Newton, F-77447 Marne la Vallée Cedex 2 (France); Habert, Guillaume [Institute for Construction and Infrastructure Management, ETH Zurich, CH-8093 Zurich (Switzerland); Roussel, Nicolas [Univ Paris-Est, IFSTTAR, Materials Department, 14-20 bd Newton, F-77447 Marne la Vallée Cedex 2 (France); D' Espinose de Lacaillerie, Jean-Baptiste [Ecole Supérieure de Physique et de Chimie Indusrtrielles de la Ville de Paris (ESPCI), ParisTech, PSL Research University, Soft Matter Sciences and Engineering Laboratory SIMM, CNRS UMR 7615, 10 rue Vauquelin, F-75005 Paris (France)

    2015-09-15

    Geopolymers are inorganic binders obtained by alkali activation of aluminosilicates. While the structure of geopolymers is now well understood, the details of the geopolymerisation reaction and their impact on the rheology of the paste remain uncertain. In this work, we follow the elastic properties of a paste made with metakaolin and sodium silicate solution. After the first sharp increase of elastic modulus occurring a few hundred of seconds after mixing and related to the heterogeneous formation of an alumina–silicate gel with a molar ratio Si/Al < 4 located at the grains boundaries, we focus on the progressive increase in elastic modulus on a period of few hours during the setting of the geopolymer. In this study, we combine the study of rheological properties of the paste with {sup 23}Na, {sup 27}Al and {sup 29}Si static NMR measurement in order to better understand the origin of this second increase in elastic modulus. Our results show that, after a few hours, Al and Na evolution in the liquid phase are concomitant. This suggests the precipitation of an aluminosilicate phase where Al is in tetrahedral position and Na compensates the charge. Furthermore, Si speciation confirms this result and allows us to identify the precipitation of a product, which has a chemical composition close to the final composition of geopolymer. This study provides strong evidence for a heterogeneous formation of an aluminosilicate glass directly from the first gel and the silicate solution without the need for a reorganisation of Gel 1 into Gel 2.

  12. NMR-CT scanner

    International Nuclear Information System (INIS)

    Kose, Katsumi; Sato, Kozo; Sugimoto, Hiroshi; Sato, Masataka.

    1983-01-01

    A brief explanation is made on the imaging methods for a practical diagnostic NMR-CT scanner : A whole-body NMR-CT scanner utilizing a resistive magnet has been developed by Toshiba in cooperation with the Institute for Solid State Physics, the University of Tokyo. Typical NMR-CT images of volunteers and patients obtained in the clinical experiments using this device are presented. Detailed specifications are also shown about the practical NMR-CTs which are to be put on the market after obtaining the government approval. (author)

  13. NMR imaging and pharmaceutical sciences

    International Nuclear Information System (INIS)

    Beall, P.T.; Good, W.R.

    1986-01-01

    Described is the technique of NMR-imaging in diagnostic medicine. Proton and phosphorus NMR in diagnosis of abnormal tissue pathology. Discussed is the value of NMR to the pharmaceutical sciences. NMR may play an important role in monitoring the response of tissues to drugs, determining the localization of drugs, performing real time pharmacokinetics and testing the use of NMR contrast pharmaceuticals

  14. Structure of framework aluminum Lewis sites and perturbed aluminum atoms in zeolites as determined by 27Al{1H} REDOR (3Q) MAS NMR spectroscopy and DFT/molecular mechanics

    Czech Academy of Sciences Publication Activity Database

    Brus, Jiří; Kobera, Libor; Schoefberger, W.; Urbanová, Martina; Klein, Petr; Sazama, Petr; Tabor, Edyta; Sklenák, Štěpán; Fishchuk, A. V.; Dědeček, Jiří

    2015-01-01

    Roč. 54, č. 2 (2015), s. 541-545 ISSN 1433-7851 R&D Projects: GA ČR(CZ) GA14-10251S; GA ČR(CZ) GA13-24155S Institutional support: RVO:61389013 ; RVO:61388955 Keywords : aluminum * density functional calculations * Lewis acids Subject RIV: JN - Civil Engineering; CI - Industrial Chemistry, Chemical Engineering (UFCH-W) Impact factor: 11.709, year: 2015

  15. Thioaluminogermanate M(AlS2)(GeS2)4 (M = Na, Ag, Cu): Synthesis, Crystal Structures, Characterization, Ion-Exchange and Solid-State 27Al and 23Na NMR Spectroscopy

    KAUST Repository

    Alahmary, Fatimah S.

    2018-03-14

    The new thioaluminogermanate Na(AlS2)(GeS2)4 (1) was successfully synthesized by a direct combination reaction. The compound crystallizes in the monoclinic space group P21/n (no. 14) with unit cell parameters a = 6.803(3) Å, b = 38.207(2) Å, c = 6.947(4) Å, and β = 119.17(3)°. The crystal structure is composed of a [(AlS2)(GeS2)4]− 3D polyanionic network, in which Al and Ge atoms share the atomic positions and Na cations occupy the channels and voids formed by the connection of (Ge/Al)S4 tetrahedra. The title compound shows a cation-exchange property with monovalent Ag+ and Cu+ ions at room temperature in solvent media, resulting in the formation of the isostructural compounds Ag(AlS2)(GeS2)4 (2) and Cu(AlS2)(GeS2)4 (3), respectively. The ion-exchange products Ag(AlS2)(GeS2)4 (2) and Cu(AlS2)(GeS2)4 (3) show higher air stability and narrower bandgap energies compared to those of the parent compound Na(AlS2)(GeS2)4 (1).

  16. Thioaluminogermanate M(AlS2)(GeS2)4 (M = Na, Ag, Cu): Synthesis, Crystal Structures, Characterization, Ion-Exchange and Solid-State 27Al and 23Na NMR Spectroscopy

    KAUST Repository

    Alahmary, Fatimah S.; Davaasuren, Bambar; Emwas, Abdul-Hamid M.; Rothenberger, Alexander

    2018-01-01

    The new thioaluminogermanate Na(AlS2)(GeS2)4 (1) was successfully synthesized by a direct combination reaction. The compound crystallizes in the monoclinic space group P21/n (no. 14) with unit cell parameters a = 6.803(3) Å, b = 38.207(2) Å, c = 6.947(4) Å, and β = 119.17(3)°. The crystal structure is composed of a [(AlS2)(GeS2)4]− 3D polyanionic network, in which Al and Ge atoms share the atomic positions and Na cations occupy the channels and voids formed by the connection of (Ge/Al)S4 tetrahedra. The title compound shows a cation-exchange property with monovalent Ag+ and Cu+ ions at room temperature in solvent media, resulting in the formation of the isostructural compounds Ag(AlS2)(GeS2)4 (2) and Cu(AlS2)(GeS2)4 (3), respectively. The ion-exchange products Ag(AlS2)(GeS2)4 (2) and Cu(AlS2)(GeS2)4 (3) show higher air stability and narrower bandgap energies compared to those of the parent compound Na(AlS2)(GeS2)4 (1).

  17. Lectures on pulsed NMR

    International Nuclear Information System (INIS)

    Pines, A.

    1988-08-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 32 refs., 56 figs

  18. Lectures on pulsed NMR

    International Nuclear Information System (INIS)

    Pines, A.

    1986-09-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 55 figs

  19. Elastic and inelastic scattering of α particles at 41MeV and elastic scattering of 3He at 46MeV on 27Al, 28Si, 29Si, and 30Si

    International Nuclear Information System (INIS)

    Mariolopoulos, Georges.

    1976-01-01

    Elastic and inelastic scattering of α particles at 41MeV has been studied on 27 Al, 28 Si, 29 Si and 30 Si between 30 and 160deg c.m. The elastic cross section for α particles on 28 Si shows more oscillation than that for the other targets in the region between 80 and 160deg c.m. The data have been analyzed using both a 9 parameters optical model potential and a coupled channel code. In order to investigate the assumption that the abnormal cross section of 28 Si is due to a cluster effect, the 27 Al, 28 Si, 29 Si, 30 Si( 3 He, 3 He) reaction have been studied between 30 and 110deg c.m., using a 46MeV beam. In this case the angular distributions of the three Si isotopes are similar. An optical model analysis of the data reveals no anomaly [fr

  20. Alterations in CNS Activity Induced by Botulinum Toxin Treatment in Spasmodic Dysphonia: An H[subscript 2][superscript 15]O PET Study

    Science.gov (United States)

    Ali, S. Omar; Thomassen, Michael; Schulz, Geralyn M.; Hosey, Lara A.; Varga, Mary; Ludlow, Christy L.; Braun, Allen R.

    2006-01-01

    Speech-related changes in regional cerebral blood flow (rCBF) were measured using H[subscript 2][superscript 15]O positron-emission tomography in 9 adults with adductor spasmodic dysphonia (ADSD) before and after botulinum toxin (BTX) injection and 10 age- and gender-matched volunteers without neurological disorders. Scans were acquired at rest…

  1. Evaluation and improvement of cross section accuracy for most important dosimetry reactions 27Al(n,p), 56Fe(n,p) and 237Np(n,f) including covariance data

    International Nuclear Information System (INIS)

    Zolotarev, K.I.

    2004-02-01

    New evaluations of cross sections and their uncertainties for dosimetry reactions 27 Al(n,p) , 56 Fe(n,p) and 237 Np(n,f) have been carried out in the frame work of IAEA Research Contract No. 11372/RB. Data files prepared for this reactions in the ENDF-6 format may be consider as candidates for the new International Reactor Dosimetry File: IRDF-2002. (author)

  2. Evaluation and improvement of cross section accuracy for most important dosimetry reactions 27Al(n,p), 56Fe(n,p) and 237Np(n,f) including covariance data

    Energy Technology Data Exchange (ETDEWEB)

    Zolotarev, K I [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    2004-02-01

    New evaluations of cross sections and their uncertainties for dosimetry reactions {sup 27}Al(n,p) , {sup 56}Fe(n,p) and {sup 237}Np(n,f) have been carried out in the frame work of IAEA Research Contract No. 11372/RB. Data files prepared for this reactions in the ENDF-6 format may be consider as candidates for the new International Reactor Dosimetry File: IRDF-2002. (author)

  3. Structural Investigations of Portland Cement Components, Hydration, and Effects of Admixtures by Solid-State NMR Spectroscopy

    DEFF Research Database (Denmark)

    Skibsted, Jørgen Bengaard; Andersen, Morten D.; Jakobsen, Hans Jørgen

    2006-01-01

    for the C-S-H phase formed during hydration. It will be demonstrated that Al3+ and flouride guest-ions in the anhydrous and hydrated calcium silicates can be studied in detail by 27Al and 19F MAS NMR, thereby providing information on the local structure and the mechanisms for incorporation of these ions......Solid-state, magic-angle spinning (MAS) NMR spectroscopy represents a valuable tool for structural investigations on the nanoscale of the most important phases in anhydrous and hydrated Portland cements and of various admixtures. This is primarily due to the fact that the method reflects the first......- and second-coordination spheres of the spin nucleus under investigation while it is less sensitive to long-range order. Thus, crystalline as well as amorphous phases can be detected in a quantitative manner by solid-state NMR. In particular the structure of the calcium-silicate-hydrate (C-S-H) phase have...

  4. NMR and NQR study of the electronic and structural properties of Al-Cu-Fe and Al-Cu-Ru quasicrystals

    International Nuclear Information System (INIS)

    Shastri, A.; Borsa, F.; Torgeson, D.R.; Shield, J.E.; Goldman, A.I.

    1994-01-01

    27 Al and 63,65 Cu NMR is reported for powdered stable Al-Cu-Fe and Al-Cu-Ru icosahedral quasicrystals and crystalline approximants, and for an Al-Pd-Mn single-grain quasicrystal. 27 Al NQR spectra at 4.2 K were observed in Al-Cu-Fe and Al-Cu-Ru samples. From quadrupole-perturbed NMR spectra at different magnetic fields, and from zero-field NQR spectra, a wide distribution of local electric-field gradient (EFG) tensor components and principal-axis-system orientations was found at the Al site. A model EFG calculation based on a 1/1 Al-Cu-Fe approximant successfully explained the observed NQR spectra. The average local gradient is largely determined by the p-electron wave function at the Al site, while the width of the distribution is due to EFG lattice contribution. Comparison of 63 Cu and 27 Al NMR shows the EFG distribution at the two sites is similar, but the electronic contribution to the EFG is considerably smaller at the Cu site, in agreement with a more s-type wave function of the conduction electrons. Overall spread of EFG values is well reproduced by calculation based on the approximant. However, the experimental spectra indicate a much larger number of nonequivalent sites when compared with the simulated NQR spectra based on the 1/1 approximant. The short-range, local chemical order is well represented by the approximant, but differences in coordination must be included at intermediate range in the quasicrystal. Measured 27 Al Knight shift, magnetic susceptibility, and nuclear spin-lattice relaxation time as a function of temperature indicate reduced density of states at the Fermi level by a factor of 7 or 8 from the value in Al metal, consistent with the notion of a pseudogap for these quasicrystals. No differences in measured parameters were detected as a function of composition of the quasicrystalline alloys

  5. Synthesis and NMR characterization of SAPO-35 from non-aqueous systems using hexamethyleneimine template

    International Nuclear Information System (INIS)

    Venkatathri, N.

    2005-01-01

    SAPO-35 was synthesized using hexamethyleneimine template in non-aqueous systems. X-ray diffraction and scanning electron micrograph analysis shows the synthesized sample is pure and well crystalline. Presence of four stages (1.6%, 0.8%, 7.8% and 8.4%) of weight loss is observed by TG/DTA analysis. FT-IR analysis in the framework region shows the presence of tetrahedral T-O-T vibrations is similar to the other known aluminophosphate molecular sieves. FT-IR spectrum in the -OH region shows stretching vibrations at 3631, 3604 and 3580 cm -1 can be assigned to OH groups in bigger cages near S6R, in bigger cages near D6R and those actually confined inside the D6R, respectively. The spectra for the as-synthesized sample show a single symmetrical 27 Al MAS NMR line at δ = 36.26 indicating the presence of a single tetrahedral aluminium species. Where as 29 Si and 31 P MAS NMR shows the presence of two peaks in both at (-89.9 and -95.15 ppm) and (-34.01 and -40.45 ppm) due to the Si substitution of P present in two different locations in double 6 ring (D6R) and in single 6 ring (S6R). 27 Al 3Q-MAS NMR shows two peaks for environmentally different tetrahedral aluminium atoms. This is the first time we are showing such a fact which is not observable using ordinary MAS NMR

  6. Synthesis, Structure Elucidation, and Redox Properties of (superscript 99)Tc Complexes of Lacunary Wells-Dawson Polyoxometalates: Insights into Molecular (superscript 99)Tc-Metal Oxide Interactions

    International Nuclear Information System (INIS)

    McGregor, Donna; Burton-Pye, Benjamin P.; Howell, Robertha C.; Mbomekalle, Israel M.; Lukens, Wayne W. Jr.; Bian, Fang; Mausolf, Edward; Poineau, Frederic; Czerwinski, Kenneth R.; Francesconi, Lynn C.

    2011-01-01

    The isotope 99 Tc (β max , 293.7; half-life, 2.1 x 10 5 years) is an abundant product of uranium-235 fission in nuclear reactors and is present throughout the radioactive waste stored in underground tanks at the Hanford and Savannah River sites. Understanding and controlling the extensive redox chemistry of 99 Tc is important in identifying tunable strategies to separate 99 Tc from spent fuel and from waste tanks and, once separated, to identify and develop an appropriately stable waste form for 99 Tc. Polyoxometalates (POMs), nanometer-sized models for metal oxide solid-state materials, are used in this study to provide a molecular level understanding of the speciation and redox chemistry of incorporated 99 Tc. In this study, 99 Tc complexes of the (α 2 -P 2 W 17 O 61 ) 10- and (α 1 -P 2 W 17 O 61 ) 10- isomers were prepared. Ethylene glycol was used as a 'transfer ligand' to minimize the formation of TcO 2 · xH 2 O. The solution structures, formulations, and purity of TcVO(α 1 /α 2 -P 2 W 17 O 61 ) 7- were determined by multinuclear NMR. X-ray absorption spectroscopy of the complexes is in agreement with the formulation and structures determined from 31 P and 183 W NMR. Preliminary electrochemistry results are consistent with the EXAFS results, showing a facile reduction of the TcVO(α 1 -P 2 W 17 O 61 ) 7- species compared to the TcVO(α 2 -P 2 W 17 O 61 ) 7- analog. The α 1 defect is unique in that a basic oxygen atom is positioned toward the α 1 site, and the Tc V O center appears to form a dative metal-metal bond with a framework W site. These attributes may lead to the assistance of protonation events that facilitate reduction. Electrochemistry comparison shows that the ReV analogs are about 200 mV more difficult to reduce in accordance with periodic trends.

  7. Functional studies using NMR

    International Nuclear Information System (INIS)

    McCready, V.R.; Leach, M.O.; Sutton; Ell, P.

    1986-01-01

    The object of this book is to discuss and evaluate an area of Nuclear Magnetic Resonance which to date has been less emphasized than it might be, namely the use of NMR for functional studies. The book commences with a discussion of the areas in which the NMR techniques might be needed due to deficiencies in other techniques. The physics of NMR especially relating to functional measurement are then explained. Technical factors in producing functional images are discussed and the use of paramagnetic substances for carrying out flow studies are detailed. Particular attention is paid to specific studies in the various organs. The book ends with a survey of imaging in each organ and the relation of NMR images to other techniques such as ultrasound, nuclear medicine and X-rays

  8. Functional studies using NMR

    International Nuclear Information System (INIS)

    McCready, V.R.; Leach, M.; Ell, P.J.

    1987-01-01

    This volume is based on a series of lectures delivered at a one-day teaching symposium on functional and metabolic aspects of NMR measurements held at the Middlesex Hospital Medical School on 1st September 1985 as a part of the European Nuclear Medicine Society Congress. Currently the major emphasis in medical NMR in vivo is on its potential to image and display abnormalities in conventional radiological images, providing increased contrast between normal and abnormal tissue, improved definition of vasculature, and possibly an increased potential for differential diagnosis. Although these areas are undeniably of major importance, it is probable that NMR will continue to complement conventional measurement methods. The major potential benefits to be derived from in vivo NMR measurements are likely to arise from its use as an instrument for functional and metabolic studies in both clinical research and in the everyday management of patients. It is to this area that this volume is directed

  9. NMR of unfolded proteins

    Indian Academy of Sciences (India)

    Unknown

    2005-01-03

    Jan 3, 2005 ... covering all the systems, so far discovered.5,7,8,12. With the increasing ... Structural investigations on proteins by NMR are, currently ... rapid analysis of unfolded proteins. ...... and hence help in design of drugs against them.

  10. Theory of NMR probe design

    International Nuclear Information System (INIS)

    Schnall, M.D.

    1988-01-01

    The NMR probe is the intrinsic part of the NMR system which allows transmission of a stimulus to a sample and the reception of a resulting signal from a sample. NMR probes are used in both imaging and spectroscopy. Optimal probe design is important to the production of adequate signal/moise. It is important for anyone using NMR techniques to understand how NMR probes work and how to optimize probe design

  11. Microprocessorized NMR measurement

    International Nuclear Information System (INIS)

    Rijllart, A.

    1984-01-01

    An MC68000 CAMAC microprocessor system for fast and accurate NMR signal measurement will be presented. A stand-alone CAMAC microprocessor system (MC68000 STAC) with a special purpose interface sweeps a digital frequency synthesizer and digitizes the NMR signal with a 16-bit ADC of 17 μs conversion time. It averages the NMR signal data over many sweeps and then transfers it through CAMAC to a computer for calculation of the signal parameters. The computer has full software control over the timing and sweep settings of this signal averager, and thus allows optimization of noise suppression. Several of these processor systems can be installed in the same crate for parallel processing, and the flexibility of the STAC also allows easy adaptation to other applications such as transient recording or phase-sensitive detection. (orig.)

  12. Fourier transform NMR

    International Nuclear Information System (INIS)

    Hallenga, K.

    1991-01-01

    This paper discusses the concept of Fourier transformation one of the many precious legacies of the French mathematician Jean Baptiste Joseph Fourier, essential for understanding the link between continuous-wave (CW) and Fourier transform (FT) NMR. Although in modern FT NMR the methods used to obtain a frequency spectrum from the time-domain signal may vary greatly, from the efficient Cooley-Tukey algorithm to very elaborate iterative least-square methods based other maximum entropy method or on linear prediction, the principles for Fourier transformation are unchanged and give invaluable insight into the interconnection of many pairs of physical entities called Fourier pairs

  13. International symposium on NMR spectroscopy

    International Nuclear Information System (INIS)

    The publication consists of 32 papers and presentations from the field of NMR spectroscopy applications submitted to the International Symposium on NMR Spectroscopy held at Smolenice between 29 Sep and 3 Oct, 1980. (B.S.)

  14. Single-sided NMR

    CERN Document Server

    Casanova, Federico; Blümich, Bernhard

    2011-01-01

    Single-Sided NMR describes the design of the first functioning single-sided tomograph, the related measurement methods, and a number of applications. One of the key advantages to this method is the speed at which the images are obtained.

  15. Autonomous driving in NMR.

    Science.gov (United States)

    Perez, Manuel

    2017-01-01

    The automatic analysis of NMR data has been a much-desired endeavour for the last six decades, as it is the case with any other analytical technique. This need for automation has only grown as advances in hardware; pulse sequences and automation have opened new research areas to NMR and increased the throughput of data. Full automatic analysis is a worthy, albeit hard, challenge, but in a world of artificial intelligence, instant communication and big data, it seems that this particular fight is happening with only one technique at a time (let this be NMR, MS, IR, UV or any other), when the reality of most laboratories is that there are several types of analytical instrumentation present. Data aggregation, verification and elucidation by using complementary techniques (e.g. MS and NMR) is a desirable outcome to pursue, although a time-consuming one if performed manually; hence, the use of automation to perform the heavy lifting for users is required to make the approach attractive for scientists. Many of the decisions and workflows that could be implemented under automation will depend on the two-way communication with databases that understand analytical data, because it is desirable not only to query these databases but also to grow them in as much of an automatic manner as possible. How these databases are designed, set up and the data inside classified will determine what workflows can be implemented. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. NMR for chemists and biologists

    CERN Document Server

    Carbajo, Rodrigo J

    2013-01-01

    This book offers a concise introduction to the field of nuclear magnetic resonance or NMR. It presents the basic foundations of NMR in a non-mathematical way and provides an overview of both recent and important biological applications of NMR.

  17. The structure of phosphate and borosilicate glasses and their structural evolution at high temperatures as studied with solid state NMR spectroscopy: Phase separation, crystallisation and dynamic species exchange

    International Nuclear Information System (INIS)

    Wegner, S.; Van Wullen, L.; Tricot, G.; Tricot, G.

    2010-01-01

    In this contribution we present an in-depth study of the network structure of different phosphate based and borosilicate glasses and its evolution at high temperatures. Employing a range of advanced solid state NMR methodologies, complemented by the results of XPS, the structural motifs on short and intermediate length scales are identified. For the phosphate based glasses, at temperatures above the glass transition temperature Tg, structural relaxation processes and the devitrification of the glasses were monitored in situ employing MAS NMR spectroscopy and X-ray diffraction. Dynamic species exchange involving rapid P-O-P and P-O-Al bond breaking and reforming was observed employing in situ 27 Al and 31 P MAS NMR spectroscopy and could be linked to viscous flow. For the borosilicate glasses, an atomic scale investigation of the phase separation processes was possible in a combined effort of ex situ NMR studies on glass samples with different thermal histories and in situ NMR studies using high temperature MAS NMR spectroscopy including 11 B MAS, 29 Si MAS and in situ 29 Si{ 11 B} REAPDOR NMR spectroscopy. (authors)

  18. NMR relaxation rates and Knight shifts in MgB2 and AlB2: theory versus experiments

    International Nuclear Information System (INIS)

    Pavarini, E; Baek, S H; Suh, B J; Borsa, F; Bud'ko, S L; Canfield, P C

    2003-01-01

    We have performed 11 B NMR measurements in 11 B enriched MgB 2 powder sample in the normal phase. The Knight shift was accurately determined by using the magic angle spinning technique. Results for 11 B and 27 Al Knight shifts (K) and relaxation rates (1/T 1 ) are also reported for AlB 2 . The data show a dramatic decrease of both K and 1/T 1 for 11 B in AlB 2 with respect to MgB 2 . We compare experimental results with ab initio calculated NMR relaxation rates and Knight shifts. The experimental values for 1/T 1 and K are in most cases in good agreement with the theoretical results. We show that the decrease of K and 1/T 1 for 11 B is consistent with a drastic drop of the density of states at the boron site in AlB 2 with respect to MgB 2

  19. Transformation of meta-stable calcium silicate hydrates to tobermorite: reaction kinetics and molecular structure from XRD and NMR spectroscopy

    Science.gov (United States)

    2009-01-01

    Understanding the integrity of well-bore systems that are lined with Portland-based cements is critical to the successful storage of sequestered CO2 in gas and oil reservoirs. As a first step, we investigate reaction rates and mechanistic pathways for cement mineral growth in the absence of CO2 by coupling water chemistry with XRD and NMR spectroscopic data. We find that semi-crystalline calcium (alumino-)silicate hydrate (Al-CSH) forms as a precursor solid to the cement mineral tobermorite. Rate constants for tobermorite growth were found to be k = 0.6 (± 0.1) × 10-5 s-1 for a solution:solid of 10:1 and 1.6 (± 0.8) × 10-4 s-1 for a solution:solid of 5:1 (batch mode; T = 150°C). This data indicates that reaction rates for tobermorite growth are faster when the solution volume is reduced by half, suggesting that rates are dependent on solution saturation and that the Gibbs free energy is the reaction driver. However, calculated solution saturation indexes for Al-CSH and tobermorite differ by less than one log unit, which is within the measured uncertainty. Based on this data, we consider both heterogeneous nucleation as the thermodynamic driver and internal restructuring as possible mechanistic pathways for growth. We also use NMR spectroscopy to characterize the site symmetry and bonding environment of Al and Si in a reacted tobermorite sample. We find two [4]Al coordination structures at δiso = 59.9 ppm and 66.3 ppm with quadrupolar product parameters (PQ) of 0.21 MHz and 0.10 MHz (± 0.08) from 27Al 3Q-MAS NMR and speculate on the Al occupancy of framework sites by probing the protonation environment of Al metal centers using 27Al{1H}CP-MAS NMR. PMID:19144195

  20. NMR, water and plants

    International Nuclear Information System (INIS)

    As, H. van.

    1982-01-01

    This thesis describes the application of a non-destructive pulsed proton NMR method mainly to measure water transport in the xylem vessels of plant stems and in some model systems. The results are equally well applicable to liquid flow in other biological objects than plants, e.g. flow of blood and other body fluids in human and animals. The method is based on a pulse sequence of equidistant π pulses in combination with a linear magnetic field gradient. (Auth.)

  1. A broad angular-range measurement of elastic and inelastic scatterings in the {sup 16}O on {sup 27}Al reaction at 17.5 MeV/u

    Energy Technology Data Exchange (ETDEWEB)

    Cappuzzello, F., E-mail: cappuzzello@lns.infn.it [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, I-95125 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, I-95125 Catania (Italy); Agodi, C. [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, I-95125 Catania (Italy); Bondì, M.; Carbone, D. [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, I-95125 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, I-95125 Catania (Italy); Cavallaro, M. [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, I-95125 Catania (Italy); Cunsolo, A. [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, I-95125 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, I-95125 Catania (Italy); De Napoli, M. [INFN - Sezione di Catania, Via S. Sofia 64, I-95125 Catania (Italy); Foti, A. [Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, I-95125 Catania (Italy); INFN - Sezione di Catania, Via S. Sofia 64, I-95125 Catania (Italy); Nicolosi, D.; Tropea, S. [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, I-95125 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, I-95125 Catania (Italy); Faria, P.N. de [Universidade de São Paulo, Departamento de Física Nuclear, Instituto de Física da Universidade de São Paulo, Caixa Postal 66318, 05315-970 São Paulo, SP (Brazil); Linares, R. [Instituto de Física, Universidade Federal Fluminense, Litoranea s/n, Gragoatá, Niterói, Rio de Janeiro 24210-340 (Brazil); and others

    2014-11-01

    The elastic and inelastic scattering of {sup 16}O ions on {sup 27}Al target nuclei were measured in a broad angular range (5°<θ{sub lab}<40°) at 280 MeV incident energy. The beam was accelerated by the K800 Superconducting Cyclotron at the INFN-LNS laboratory. The ejectiles were detected by the MAGNEX large acceptance magnetic spectrometer. The matching of the beam properties with the optical characteristics of the spectrometer allowed to separate the elastic from the inelastic channels in the energy spectra and measure accurate cross-section distributed over more than eight orders of magnitude down to a few tens of nb/sr.

  2. Investigation of silicate mineral sanidine by vibrational and NMR spectroscopic methods

    Science.gov (United States)

    Anbalagan, G.; Sankari, G.; Ponnusamy, S.; kumar, R. Thilak; Gunasekaran, S.

    2009-10-01

    Sanidine, a variety of feldspar minerals has been investigated through optical absorption, vibrational (IR and Raman), EPR and NMR spectroscopic techniques. The principal reflections occurring at the d-spacings, 3.2892, 3.2431, 2.9022 and 2.6041 Å confirm the presence of sanidine structure in the mineral. Sanidine shows five prominent characteristic infrared absorption bands in the region 1200-950, 770-720, 590-540 and 650-640 cm -1. The Raman spectrum shows the strongest band at 512 cm -1 characteristic of the feldspar structure, which contains four membered rings of tetrahedra. The UV-vis-NIR absorption spectrum had strong absorption features at 6757, 5780 and 5181 cm -1 due to the combination of fundamental OH- stretching. The bands at 11236 and 8196 cm -1and the strong, well-defined band at (30303 cm -1 attest the presence of Fe 2+ and Fe 3+, respectively, in the sample. The signals at g = 4.3 and 3.7 are interpreted in terms of Fe 3+ at two distinct tetrahedral positions Tl and T2 of the monoclinic crystal structure The 29Si NMR spectrum shows two peaks at -97 and -101 ppm corresponding to T2 and T1, respectively, and one peak in 27Al NMR for Al(IV).

  3. Magic Angle Spinning NMR Metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Zhi Hu, Jian

    2016-01-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is a non-destructive, quantitative, reproducible, untargeted and unbiased method that requires no or minimal sample preparation, and is one of the leading analytical tools for metabonomics research [1-3]. The easy quantification and the no need of prior knowledge about compounds present in a sample associated with NMR are advantageous over other techniques [1,4]. 1H NMR is especially attractive because protons are present in virtually all metabolites and its NMR sensitivity is high, enabling the simultaneous identification and monitoring of a wide range of low molecular weight metabolites.

  4. NMR in clinical practice

    International Nuclear Information System (INIS)

    Smith, F.W.

    1987-01-01

    The development of NMR for clinical use has been complicated by a number of controversies, the largest of these being the question of what is the optimum field strength for proton imaging. Many workers believe that diagnostically useful images can only be produced at high field strength (i.e. 0.5 - 2.0 T), where in fact diagnostically useful images are made using field strengths of as low as 0.02 T. Because the method is more complex than X-ray CT, which relies on the measurement of only one parameter, tissue density, many new users have difficulty in selecting the correct imaging pulse sequence to provide the most useful image for diagnosis. NMR imaging pulse sequence may be selected to produce images of the proton density, T/sub 1/ or T/sub 2/ signals, or combinations of them. When this facility is used, images which are T/sub 1/ or T/sub 2/ weighted can be selected. Inversion-recovery sequences are more appropriate for imaging the abdomen where by selecting a short TR interval the signal from subcutaneous fat, which is the major cause of image artefact in abdominal imaging, is suppressed thereby improving image quality. The use of surface receiver coils, which are applied closely to the area of the body being examined is becoming more widespread and is of particular value when examining the orbits, facial structures, neck, breast, spine and limbs. The use of these coils together with a discussion of patient selection for NMR imaging, image interpretation and data storage follow

  5. Solid state NMR, basic theory and recent progress for quadrupole nuclei with half-integer spin

    International Nuclear Information System (INIS)

    Dieter, F.

    1998-01-01

    This review describes the basic theory and some recently developed techniques for the study of quadrupole nuclei with half integer spins in powder materials. The latter is connected to the introduction of the double rotation (DOR) by A. Samoson et al. (1) and to the introduction of the multiple quantum magic-angle spinning (MQ MAS) technique by L. Frydman et. al. (2). For integer spins, especially the solid-state deuterium magnetic resonance, we refer to the review of G.L. Hoatson and R.L. Vold: '' 2 H-NMR Spectroscopy of Solids and Liquid Crystals'' (3). For single crystals we refer to O. Kanert and M. Mehring: ''Static quadrupole effects in disordered cubic solids''(4) and we would like also to mention the ''classic'' review of M.H. Cohen and F. Reif: ''Quadrupole effects in NMR studies of solids'' (5). Some more recent reviews in the field under study are D. Freude and J. Haase ''Quadrupole effects in solid-state NMR'' (6). Ch. Jager: ''Satellite Transition Spectroscopy of Quadrupolar Nuclei'' (7) and B.F. Chmelka and J.W. Zwanziger: ''Solid State NMR Line Narrowing Methods for Quadrupolar Nuclei - Double Rotation and Dynamic-Angle Spinning'' (8). A survey of nuclear quadrupole frequency data published before the end of 1982 is given by H. Chihara and N. Nakamura in Landolt-Bornstein, Vol. 20 (9). Values of the chemical shift of quadrupole nuclei in solids can be found in books such as ''Multinuclear NMR'' edited by J. Mason (10). In section 9 of ref (6) some electric field gradient and chemical shift data published from 1983 to 1992 for the most studied quadrupole nuclei sup 27 Al, sup 23 Na, and sup 17 O are given

  6. Tannin Fingerprinting in Vegetable Tanned Leather by Solid State NMR Spectroscopy and Comparison with Leathers Tanned by Other Processes

    Directory of Open Access Journals (Sweden)

    Jan H. van der Westhuizen

    2011-01-01

    Full Text Available Solid state 13C-NMR spectra of pure tannin powders from four different sources – mimosa, quebracho, chestnut and tara – are readily distinguishable from each other, both in pure commercial powder form, and in leather which they have been used to tan.  Groups of signals indicative of the source, and type (condensed vs. hydrolyzable of tannin used in the manufacture are well resolved in the spectra of the finished leathers.  These fingerprints are compared with those arising from leathers tanned with other common tanning agents.  Paramagnetic chromium (III tanning causes widespread but selective disappearance of signals from the spectrum of leather collagen, including resonances from acidic aspartyl and glutamyl residues, likely bound to Cr (III structures. Aluminium (III and glutaraldehyde tanning both cause considerable leather collagen signal sharpening suggesting some increase in molecular structural ordering. The 27Al-NMR signal from the former material is consistent with an octahedral coordination by oxygen ligands. Solid state NMR thus provides easily recognisable reagent specific spectral fingerprints of the products of vegetable and some other common tanning processes. Because spectra are related to molecular properties, NMR is potentially a powerful tool in leather process enhancement and quality or provenance assurance.

  7. On the use of atomistic simulations to aid bulk metallic glasses structural elucidation with solid-state NMR.

    Science.gov (United States)

    Ferreira, Ary R; Rino, José P

    2017-08-24

    Solid-state nuclear magnetic resonance (ssNMR) experimental 27 Al metallic shifts reported in the literature for bulk metallic glasses (BMGs) were revisited in the light of state-of-the-art atomistic simulations. In a consistent way, the Gauge-Including Projector Augmented-Wave (GIPAW) method was applied in conjunction with classical molecular dynamics (CMD). A series of Zr-Cu-Al alloys with low Al concentrations were selected as case study systems, for which realistic CMD derived structural models were used for a short- and medium-range order mining. That initial procedure allowed the detection of trends describing changes on the microstructure of the material upon Al alloying, which in turn were used to guide GIPAW calculations with a set of abstract systems in the context of ssNMR. With essential precision and accuracy, the ab initio simulations also yielded valuable trends from the electronic structure point of view, which enabled an overview of the bonding nature of Al-centered clusters as well as its influence on the experimental ssNMR outcomes. The approach described in this work might promote the use of ssNMR spectroscopy in research on glassy metals. Moreover, the results presented demonstrate the possibility to expand the applications of this technique, with deeper insight into nuclear interactions and less speculative assignments.

  8. Host-guest interaction of styrene and ethylbenzene in MIL-53 studied by solid-state NMR.

    Science.gov (United States)

    Li, Shenhui; Li, Jing; Tang, Jing; Deng, Feng

    Solid-state NMR was utilized to explore the host-guest interaction between adsorbate and adsorbent at atomic level to understand the separation mechanism of styrene (St) and ethylbenzene (EB) in MIL-53(Al). 13 C- 27 Al double-resonance NMR experiments revealed that the host-guest interaction between St and MIL-53 was much stronger than that of EB adsorption. In addition, 13 C DIPSHIFT experiments suggested that the adsorbed St was less mobile than EB confined inside the MIL-53 pore. Furthermore, the host-guest interaction model between St, EB and MIL-53 was established on the basis of the spatial proximities information extracted from 2D 1 H- 1 H homo-nuclear correlation NMR experiments. According to the experimental observation from solid-state NMR, it was found that the presence of π-π interaction between St and MIL-53 resulted in the stronger host-guest interaction and less mobility of St. This work provides direct experimental evidence for understanding the separation mechanism of St and EB using MIL-53 as an adsorbent. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. NMR spectroscopy and drug development

    International Nuclear Information System (INIS)

    Craik, D.; Munro, S.

    1990-01-01

    The use of nuclear magnetic resonance (NMR) spectroscopy for structural and conformational studies on drug molecules, the three-dimensional investigation of proteins structure and their interactions with ligands are discussed. In-vivo NMR studies of the effects of drugs on metabolism in perfused organs and whole animals are also briefly presented. 5 refs., ills

  10. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy; Bontemps, P.; Rikken, Geert L J A

    2011-01-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  11. NMR imaging of osteoarticular pathology

    International Nuclear Information System (INIS)

    Frocrain, L.; Duvauferrier, R.; Gagey, N.

    1987-01-01

    NMR imaging is assuming an increasingly important role in the diagnosis of osteo-articular disorders. Semiological descriptions of the mean pathological disorders of the locomotor system are presented. Some investigation strategies are proposed to compare NMR imaging with other imaging techniques in various pathological states [fr

  12. Nuclear magnetic resonance (NMR) tomography

    International Nuclear Information System (INIS)

    Skalpe, I.O.

    1984-01-01

    A brief survey of the working principle of the NMR technique in diagnostical medicine is given. Its clinical usefulness for locating tumors, diagnosing various other diseases, such as some mental illnesses and multiple sclerosis, and its possibilities for studying biochemical processes in vivo are mentioned. The price of NMR image scanners and the problems of the strong magnetic field around the machines are mentioned

  13. NMR imaging studies of coal

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Z.R.; Zhang, P.Z.; Ding, G.L.; Li, L.Y.; Ye, C.H. [University of Science and Technology, Beijing (China). Dept. of Chemistry

    1996-06-01

    The permeation transportation and swelling behavior of solvents into coal are investigated by NMR imaging using pyridine-d{sub 5} and acetone-d{sub 6}. Images of coal swollen with deuterated solvents illuminate proton distributions of mobile phases within the coal macromolecular networks. More information about the chemical and physical structure of coal can be obtained using NMR imaging techniques.

  14. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy

    2011-09-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  15. Structural Biology: Practical NMR Applications

    CERN Document Server

    Teng, Quincy

    2005-01-01

    This textbook begins with an overview of NMR development and applications in biological systems. It describes recent developments in instrument hardware and methodology. Chapters highlight the scope and limitation of NMR methods. While detailed math and quantum mechanics dealing with NMR theory have been addressed in several well-known NMR volumes, chapter two of this volume illustrates the fundamental principles and concepts of NMR spectroscopy in a more descriptive manner. Topics such as instrument setup, data acquisition, and data processing using a variety of offline software are discussed. Chapters further discuss several routine stategies for preparing samples, especially for macromolecules and complexes. The target market for such a volume includes researchers in the field of biochemistry, chemistry, structural biology and biophysics.

  16. Fundamentals of Protein NMR Spectroscopy

    CERN Document Server

    Rule, Gordon S

    2006-01-01

    NMR spectroscopy has proven to be a powerful technique to study the structure and dynamics of biological macromolecules. Fundamentals of Protein NMR Spectroscopy is a comprehensive textbook that guides the reader from a basic understanding of the phenomenological properties of magnetic resonance to the application and interpretation of modern multi-dimensional NMR experiments on 15N/13C-labeled proteins. Beginning with elementary quantum mechanics, a set of practical rules is presented and used to describe many commonly employed multi-dimensional, multi-nuclear NMR pulse sequences. A modular analysis of NMR pulse sequence building blocks also provides a basis for understanding and developing novel pulse programs. This text not only covers topics from chemical shift assignment to protein structure refinement, as well as the analysis of protein dynamics and chemical kinetics, but also provides a practical guide to many aspects of modern spectrometer hardware, sample preparation, experimental set-up, and data pr...

  17. Effect of thermal annealing on scintillation properties of Ce:Gd{sub 2}Y{sub 1}Ga{sub 2.7}Al{sub 2.3}O{sub 12} under different atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao; Ding, Dongzhou; Wu, Yuntao; Li, Huanying; Chen, Xiaofeng; Shi, Jian; Wang, Qingqing; Ye, Le; Ren, Guohao [Chinese Academy of Sciences, Shanghai Institute of Ceramics, Shanghai (China)

    2017-05-15

    Cerium-doped 1% Ce:Gd{sub 2}Y{sub 1}Ga{sub 2.7}Al{sub 2.3}O{sub 12}(GYGAG) single crystal samples grown via Czochralski method were annealed under air, O{sub 2} and N{sub 2} atmospheres from 350 to 1400 C. The X-ray excited luminescence spectra, energy spectra and UV as well as thermally stimulated luminescence (TSL) spectra were performed comparatively on ''as-grown'' and thermally annealed samples. It was found that the luminescence efficiency after annealing in air and O{sub 2} was significantly enhanced compared to the non-annealed samples and this phenomenon was suggested to be caused by the existence of some oxygen vacancies in the Ce:GYGAG crystals. And the oxygen vacancies in the as-grown GYGAG crystals can be effectively eliminated by means of annealing in O{sub 2} containing atmosphere without changing the luminescence mechanism. From the TSL curves before and after annealing, three traps within 77-650 K were found to be related to oxygen vacancies. (orig.)

  18. Analysis of photofission reactions of 235U, 238U, 232Th, 209Bi, natPb, 197Au, natPt, natW, 181Ta, and 27Al by photons of 69 MeV

    International Nuclear Information System (INIS)

    Paiva, Eduardo de

    1997-04-01

    Fission reactions induced in 235 U, 238 U, 232 Th, 209 Bi nat Pb, 197 Au, nat Pt, nat W, 181 Ta. and 27 Al nuclei by monochromatic photons of 69 MeV produced at the LADON facility of the Frascati National Laboratories (INFN-LNF, Frascati, Italy) have been analyzed on the basis of a simplified two-step model. In the first step of the reaction the incoming photon is considered to be absorbed by a neutron-proton pair ('quasi-deuteron') leading to excitation of the nucleus, followed, in the second step, by a mechanism of particle evaporation-fission competition for the excited residual nucleus. Estimates of nuclear fissility at 69 MeV show to be critically dependent on the parameter r (ratio of the level-density parameter at the fission saddle point to the level-density parameter of the residual nucleus after neutron evaporation), which can be determined in a semiempirical way from induced fission reaction data for various nuclei obtained at 60 - 80 MeV of excitation energy. Fissilities calculated by means of the simplified photofission reactions model are then compared with experimental data available in the literature. (author)

  19. Study of the peripheral projectile-like fragments from the reaction 129Xe on 27Al, natCu, 139La and 165Ho, at E/A = 50 MeV

    International Nuclear Information System (INIS)

    Garcia-Solis, E.J.; Russ, D.E.; Madani, H.

    1996-01-01

    There are several reaction mechanisms identified for peripheral heavy-ion collisions. For low bombarding energies (E/A ∼ 10 MeV) the predominant reaction channel is the deep-inelastic reaction mechanism. In this process, the projectile and target form a rotating binary system, interchanging nucleons and angular momentum until they separate. At higher bombarding energies (E/A ∼ 50 to 100 MeV) incomplete fusion is thought to be the prevailing reaction channel. In this type of interaction part of the projectile merges with the target during the collision. Finally, for energies greater than 100 MeV/A, the main reaction channel is characterized by the formation of a highly-excited separate fragment (fireball) produced during the overlap between the projectile and the target. The data set studied was from an experiment designed to characterize the projectile-like products of the 27 Al, nat Cu, 139 La, and 165 Ho reactions at E/A = 50 MeV, which was performed at the Michigan State University Super Cyclotron Laboratory (MSU-NSCL). The Maryland Forward Array (MFA), was used to measure projectile-like fragments in coincidence with target-like fragments and light-charge particles in the MSU 4π detector

  20. Two dimensional solid state NMR

    International Nuclear Information System (INIS)

    Kentgens, A.P.M.

    1987-01-01

    This thesis illustrates, by discussing some existing and newly developed 2D solid state experiments, that two-dimensional NMR of solids is a useful and important extension of NMR techniques. Chapter 1 gives an overview of spin interactions and averaging techniques important in solid state NMR. As 2D NMR is already an established technique in solutions, only the basics of two dimensional NMR are presented in chapter 2, with an emphasis on the aspects important for solid spectra. The following chapters discuss the theoretical background and applications of specific 2D solid state experiments. An application of 2D-J resolved NMR, analogous to J-resolved spectroscopy in solutions, to natural rubber is given in chapter 3. In chapter 4 the anisotropic chemical shift is mapped out against the heteronuclear dipolar interaction to obtain information about the orientation of the shielding tensor in poly-(oxymethylene). Chapter 5 concentrates on the study of super-slow molecular motions in polymers using a variant of the 2D exchange experiment developed by us. Finally chapter 6 discusses a new experiment, 2D nutation NMR, which makes it possible to study the quadrupole interaction of half-integer spins. 230 refs.; 48 figs.; 8 tabs

  1. Analysis of the quadrupolar coupling effect on the line intensities using single-crystal nutation NMR in α-Al2O3 crystals

    International Nuclear Information System (INIS)

    Woo, Ae Ja; Cho, So Hyun; Han, Duk Young

    2000-01-01

    With 1D-nutation NMR for a spin I = 5/2 system, the relative line intensities of central and the inner- and outer-satellite transitions are calculated as functions of quadrupolar coupling ω Q and rf pulse strength ω rf . Experimentally measured line intensities including both central and satellites are used to extract the values of ω Q and ω rf from nonlinear least-squares fits. The method is illustrated in α-Al 2 O 3 crystals (ruby and corundum) with the single-crystal 27 Al nutation NMR spectra. As a result, the new feature that the rf pulse strength shows reduced effect on the satellite transition lines according to the quadrupolar coupling is discussed by using fictitious spin-1/2 operator

  2. Project h[schwa]li?dx[superscript w]/Healthy Hearts across Generations: Development and Evaluation Design of a Tribally Based Cardiovascular Disease Prevention Intervention for American Indian Families

    Science.gov (United States)

    Walters, Karina L.; LaMarr, June; Levy, Rona L.; Pearson, Cynthia; Maresca, Teresa; Mohammed, Selina A.; Simoni, Jane M.; Evans-Campbell, Teresa; Fredriksen-Goldsen, Karen; Fryberg, Sheryl; Jobe, Jared B.

    2012-01-01

    American Indian and Alaska Native (AIAN) populations are disproportionately at risk for cardiovascular disease (CVD), diabetes, and obesity, compared with the general US population. This article describes the h[schwa]li?dx[superscript w]/Healthy Hearts Across Generations project, an AIAN-run, tribally based randomized controlled trial (January…

  3. Weight Management Guides for Pregnant Women with a Body Mass index (BMI) Greater than or Equal to 40kg/m[Superscript 2]: A Qualitative Exploration of Their Use in Maternity Care

    Science.gov (United States)

    Smith, Debbie M.; Ward, Christine; Forbes, Shareen; Reynolds, Rebecca M.; Denison, Fiona C.

    2013-01-01

    Objective: Maternal obesity (Body Mass Index [BMI] greater than or equal to 30kg/m([superscript 2]) is associated with numerous maternal and fetal complications. Recent guidelines have called for advice to be given to women as pregnancy is a good time for intervention as due to women's motivations for change being high and changes may impact on…

  4. Group Theory and Crystal Field Theory: A Simple and Rigorous Derivation of the Spectroscopic Terms Generated by the t[subscript 2g][superscript 2] Electronic Configuration in a Strong Octahedral Field

    Science.gov (United States)

    Morpurgo, Simone

    2007-01-01

    The principles of symmetry and group theory are applied to the zero-order wavefunctions associated with the strong-field t[subscript 2g][superscript 2] configuration and their symmetry-adapted linear combinations (SALC) associated with the generated energy terms are derived. This approach will enable students to better understand the use of…

  5. nmr spectroscopic study and dft calculations of giao nmr shieldings

    African Journals Online (AJOL)

    Preferred Customer

    3Department of Physics, Arts and Science Faculty, Dumlupinar University, Kütahya, ... 1H, 13C NMR chemical shifts and 1JCH coupling constants of .... then estimated using the corresponding TMS shieldings calculated in advance at the same.

  6. NMR-based milk metabolomics

    DEFF Research Database (Denmark)

    Sundekilde, Ulrik; Larsen, Lotte Bach; Bertram, Hanne Christine S.

    2013-01-01

    and processing capabilities of bovine milk is closely associated to milk composition. Metabolomics is ideal in the study of the low-molecular-weight compounds in milk, and this review focuses on the recent nuclear magnetic resonance (NMR)-based metabolomics trends in milk research, including applications linking...... compounds. Furthermore, metabolomics applications elucidating how the differential regulated genes affects milk composition are also reported. This review will highlight the recent advances in NMR-based metabolomics on milk, as well as give a brief summary of when NMR spectroscopy can be useful for gaining...

  7. Annual reports on NMR spectroscopy

    CERN Document Server

    Webb, Graham A; McCarthy, M J

    1995-01-01

    Over recent years, no other technique has grown to such importance as that of NMR spectroscopy. It is used in all branches of science where precise structural determination is required and where the nature of interactions and reactions in solution is being studied. Annual Reports on NMR Spectroscopy has established itself as a means for the specialist and non-specialist alike to become familiar with new applications of the technique in all branches of chemistry, including biochemistry, and pharmaceutics. This volume focuses on theoretical aspects of NMR nuclear shielding and on applications of

  8. β-NMR sample optimization

    CERN Document Server

    Zakoucka, Eva

    2013-01-01

    During my summer student programme I was working on sample optimization for a new β-NMR project at the ISOLDE facility. The β-NMR technique is well-established in solid-state physics and just recently it is being introduced for applications in biochemistry and life sciences. The β-NMR collaboration will be applying for beam time to the INTC committee in September for three nuclei: Cu, Zn and Mg. Sample optimization for Mg was already performed last year during the summer student programme. Therefore sample optimization for Cu and Zn had to be completed as well for the project proposal. My part in the project was to perform thorough literature research on techniques studying Cu and Zn complexes in native conditions, search for relevant binding candidates for Cu and Zn applicable for ß-NMR and eventually evaluate selected binding candidates using UV-VIS spectrometry.

  9. NMR Studies of Polymer Nanocomposites

    National Research Council Canada - National Science Library

    Greenbaum, Steve

    2001-01-01

    .... The primary tool is pulsed field gradient NMR. A static field gradient method was developed which makes possible variable pressure diffusion measurement, and the application to the important fuel cell membrane NAFION constitute the first results...

  10. Integrative NMR for biomolecular research

    International Nuclear Information System (INIS)

    Lee, Woonghee; Cornilescu, Gabriel; Dashti, Hesam; Eghbalnia, Hamid R.; Tonelli, Marco; Westler, William M.; Butcher, Samuel E.; Henzler-Wildman, Katherine A.; Markley, John L.

    2016-01-01

    NMR spectroscopy is a powerful technique for determining structural and functional features of biomolecules in physiological solution as well as for observing their intermolecular interactions in real-time. However, complex steps associated with its practice have made the approach daunting for non-specialists. We introduce an NMR platform that makes biomolecular NMR spectroscopy much more accessible by integrating tools, databases, web services, and video tutorials that can be launched by simple installation of NMRFAM software packages or using a cross-platform virtual machine that can be run on any standard laptop or desktop computer. The software package can be downloaded freely from the NMRFAM software download page ( http://pine.nmrfam.wisc.edu/download-packages.html http://pine.nmrfam.wisc.edu/download_packages.html ), and detailed instructions are available from the Integrative NMR Video Tutorial page ( http://pine.nmrfam.wisc.edu/integrative.html http://pine.nmrfam.wisc.edu/integrative.html ).

  11. Integrative NMR for biomolecular research

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Woonghee, E-mail: whlee@nmrfam.wisc.edu; Cornilescu, Gabriel; Dashti, Hesam; Eghbalnia, Hamid R.; Tonelli, Marco; Westler, William M.; Butcher, Samuel E.; Henzler-Wildman, Katherine A.; Markley, John L., E-mail: markley@nmrfam.wisc.edu [University of Wisconsin-Madison, National Magnetic Resonance Facility at Madison and Biochemistry Department (United States)

    2016-04-15

    NMR spectroscopy is a powerful technique for determining structural and functional features of biomolecules in physiological solution as well as for observing their intermolecular interactions in real-time. However, complex steps associated with its practice have made the approach daunting for non-specialists. We introduce an NMR platform that makes biomolecular NMR spectroscopy much more accessible by integrating tools, databases, web services, and video tutorials that can be launched by simple installation of NMRFAM software packages or using a cross-platform virtual machine that can be run on any standard laptop or desktop computer. The software package can be downloaded freely from the NMRFAM software download page ( http://pine.nmrfam.wisc.edu/download-packages.html http://pine.nmrfam.wisc.edu/download{sub p}ackages.html ), and detailed instructions are available from the Integrative NMR Video Tutorial page ( http://pine.nmrfam.wisc.edu/integrative.html http://pine.nmrfam.wisc.edu/integrative.html ).

  12. Interpretations of NMR images

    International Nuclear Information System (INIS)

    Shi, J.Z.; McFarland, W.D.; Chen, S.S.; Sadhu, V.K.

    1986-01-01

    Two color display schemes are generally considered in medical images: pseudo-color and color composite. Psuedo-color technique maps the intensity means of a single monochrome image into a three dimensional color space, the gray level is thus replaced by the assigned color. Such a psuedo-color assignment is somewhat arbitrary but may be advantageous if the monochrome image is composed of simple intensity patterns. A good example of psuedo-color application is in nuclear medicine: The change of gray levels can be simply determined and the isocounts from two regions with different surroundings can be readily recognized. However, the use of psuedo-color in CT or MR imaging is controversial because it does not give additional information and may exaggerate insignificant gray scale differences. The color composite technique maps three parametric image data into a three dimensional color space, and thus three monochrome images are merged to form a single color image. The color composite technique increases the number of ways information can be displayed and provides both quantitative and qualitative data about the object or event represented. This paper describes the application of color composite in NMR images

  13. NMR characterization of thin films

    Science.gov (United States)

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  14. NMR imaging of cerebral infarction

    International Nuclear Information System (INIS)

    Takusagawa, Yoshihiko; Yamaoka, Naoki; Doi, Kazuaki; Okada, Keisei

    1987-01-01

    One hundred and five patients with cerebral infarction were studied by nuclear magnetic resonance (NMR) CT (resistive type of magnet with strength of 0.1 tesla) and X-ray CT. Pulse sequences used saturation recovery (Tr = 600 mSec), Inversion recovery (Tr = 500 mSec, Td = 300 mSec) and spin echo (Tr = 1500 mSec, Te = 40, 80, 120, 160 mSec). Fifteen cases were examined by NMR-CT within 24 hours from onset. Proton NMR imaging could not detect cerebral ischemia as early as 2 hours after onset, but except could detect the lesions in Se image the area of cerebral infarct 3 hours after onset. After 5 hours from onset image changes in SE were evident and corresponded to the area of cerebral infarct, but image changes in IR could not fully delineate the infarcted area. NMR images of 41 year-old woman with cerebral embolism by MCA trunck occlusion associated with mitral stenosis were presented, and NMR-CT was examined 10 hours, 9th and 43th days after episode of MCA occlusion. Sixty patents (64 times) with lacunar infarction were studied by NMR-CT and X-ray CT. The inversion recovery images were used mainly for detection of lesions and comparison with X-ray CT. In 160 lesions which were detected by NMR-CT or X-ray CT, could 156 lesions be detected by NMR-CT and 78 lesions by X-ray CT. Inversion recovery images were more useful for detection of lacunes than X-ray CT. Calculated T1 and T2 values prolonged with time course from onset. (author)

  15. Optical pumping and xenon NMR

    International Nuclear Information System (INIS)

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping 129 Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the 131 Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen

  16. NMR characterization of thin films

    Science.gov (United States)

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  17. Medical applications of NMR imaging and NMR spectroscopy with stable isotopes. Summary

    Energy Technology Data Exchange (ETDEWEB)

    Matwiyoff, N.A.

    1983-01-01

    The current status of NMR imaging and NMR spectroscopy are summarized. For the most part examples from the March 1983 Puerto Rico symposium are used to illustrate the utility of NMR in medicine. 18 refs., 5 figs.

  18. Medical applications of NMR imaging and NMR spectroscopy with stable isotopes. Summary

    International Nuclear Information System (INIS)

    Matwiyoff, N.A.

    1983-01-01

    The current status of NMR imaging and NMR spectroscopy are summarized. For the most part examples from the March 1983 Puerto Rico symposium are used to illustrate the utility of NMR in medicine. 18 refs., 5 figs

  19. Carbon-13 NMR of flavinoids

    International Nuclear Information System (INIS)

    Agrawal, P.K.

    1989-01-01

    The present book has been written with the objective of introducing the organic chemists with the conceptual and experimental basis required for interpretation of 13 C NMR spectra of a flavonoid and to a discussion of general usefulness of the technique in solving flavonoid structural problem. After a brief general introduction to the essential aspects of flavonoids and 13 C NMR spectroscopy, considerable emphasis has been placed in chapter 2 on the various experimental methods and the interpretation of spectral details which enable individual resonance lines to be associated with the appropriate carbons in a molecule. The whole bulk of the literature, published on 13 C NMR of flavonoids in the major journals upto 1986 alongwith some recent references of 1987 has been classified in several categories such as: flavonoids, isflavonoids, other flavonoids, flavonoid glycosides, chalconoids and flavanoids. Each category constitutes a chapter. Finally the last chapter is devoted largely to a discussion for the differentiation of various categories and subcategories of flavonoids and for the establishment of aromatic substitution pattern in these compounds. It should be emphasized that the book is a data book and only concerned with the actual analysis of 13 C NMR spectra, thus a reasonable familiarity with basic instrumentation of 13 C NMR and general pattern of nuclear chemical shifts has been assumed. (author). refs.; figs.; tabs

  20. Water speciation in sodium silicate glasses (quenched melts): A comprehensive NMR study

    Science.gov (United States)

    Xue, X.; Kanzaki, M.; Eguchi, J.

    2012-12-01

    Dissolution mechanism of water is an important factor governing how the dissolved water affects the physical and thermodynamic properties of silicate melts and glasses. Our previous studies have demonstrated that 1H MAS NMR in combination with 29Si-1H and 27Al-1H double-resonance NMR experiments is an effective approach for unambiguously differentiating and quantifying different water species in quenched silicate melts (glasses). Several contrasting dissolution mechanisms have been revealed depending on the melt composition: for relatively polymerized melts, the formation of SiOH/AlOH species (plus molecular H2O) and depolymerization of the network structure dominate; whereas for depolymerized Ca-Mg silicate melts, free OH (e.g. MgOH) become increasingly important (cf. [1]). The proportion of free OH species has been shown to decrease with both increasing melt polymerization (silica content) and decreasing field strength of the network modifying cations (from Mg to Ca). Our previous 1H and 29Si MAS NMR results for hydrous Na silicate glasses of limited compositions (Na2Si4O9 and Na2Si2O5) were consistent with negligible free OH (NaOH) species and depolymerizing effect of water dissolution [2]. On the other hand, there were also other studies that proposed the presence of significant NaOH species in hydrous glasses near the Na2Si2O5 composition. The purpose of this study is apply the approach of combined 1H MAS NMR and double-resonance (29Si-1H and 23Na-1H) NMR to gain unambiguous evidence for the OH speciation in Na silicate glasses (melts) as a function of composition. Hydrous Na silicate glasses containing mostly ≤ 1 wt% H2O for a range of Na/Si ratios from 0.33 to 1.33 have been synthesized by rapidly quenching melts either at 0.2 GPa using an internally heated gas pressure vessel or at 1 GPa using a piston cylinder high-pressure apparatus. NMR spectra have been acquired using a 9.4 T Varian Unity-Inova spectrometer. The 29Si and 1H chemical shifts are

  1. NMR investigation of coal extracts

    Energy Technology Data Exchange (ETDEWEB)

    Lang, I; Sebor, G [Ceskoslovenska Akademie Ved, Prague. Hornicky Ustav; Sebor, G Jr; Hajek, M; Mostecky, J [Vysoka Skola Chemicko-Technologicka, Prague (Czechoslovakia)

    1978-07-01

    Proton NMR spectroscopy was used for the evaluation of 10% coal extract solutions in deuterated pyridine. Four types of Czechoslovak coal were analyzed. Agreement was found between the aromaticity of coal extracts calculated from /sup 1/H NMR data using Brown's method and Ladner's and Williams' method and the characterization of an average molecule of the coal extract by the number of non-bridge carbon atoms of aromatic rings, by the overall number of aromatic ring carbon atoms and the number of aromatic rings, determined by the Williams and Ferris methods. The methods for calculating carbon distribution from /sup 1/H NMR data, however, contain some constants theoretically estimated or experimentally found using the method which still remain to be verified.

  2. Two-dimensional NMR spectrometry

    International Nuclear Information System (INIS)

    Farrar, T.C.

    1987-01-01

    This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t 0 ; an evolution period, t 1 ; and a detection period, t 2

  3. Solid state NMR of materials

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Sharon A; Ferguson, David B; Haw, James F [Texas A and M Univ., College Station, TX (United States). Dept. of Chemistry

    1994-12-31

    In situ NMR experiments are studied, including probe of several structures such as the structures of the organic adsorbates, Broensted acid sites, other nuclei associated with active sites, and other framework sites. The authors report that in the absence of high concentrations of paramagnetic sites or metal particles, high resolution MAS spectra are relatively easy to obtain and interpret. It is also concluded that NMR can measure spatial distributions and rates of diffusion; and are able to characterize equilibrium structures and the frequencies and amplitudes of molecular motion

  4. Solid state NMR and LVSEM studies on the hardening of latex modified tile mortar systems

    International Nuclear Information System (INIS)

    Rottstegge, J.; Arnold, M.; Herschke, L.; Glasser, G.; Wilhelm, M.; Spiess, H.W.; Hergeth, W.D.

    2005-01-01

    Construction mortars contain a broad variety of both inorganic and organic additives beside the cement powder. Here we present a study of tile mortar systems based on portland cement, quartz, methyl cellulose and different latex additives. As known, the methyl cellulose stabilizes the freshly prepared cement paste, the latex additive enhances final hydrophobicity, flexibility and adhesion. Measurements were performed by solid state nuclear magnetic resonance (NMR) and low voltage scanning electron microscopy (LVSEM) to probe the influence of the latex additives on the hydration, hardening and the final tile mortar properties. While solid state NMR enables monitoring of the bulk composition, scanning electron microscopy affords visualization of particles and textures with respect to their shape and the distribution of the different phases. Within the alkaline cement paste, the poly(vinyl acetate) (VAc)-based latex dispersions stabilized by poly(vinyl alcohol) (PVA) were found to be relatively stable against hydrolysis. The influence of the combined organic additives methyl cellulose, poly(vinyl alcohol) and latexes stabilized by poly(vinyl alcohol) on the final silicate structure of the cement hydration products is small. But even small amounts of additives result in an increased ratio of ettringite to monosulfate within the final hydrated tile mortar as monitored by 27 Al NMR. The latex was found to be adsorbed to the inorganic surfaces, acting as glue to the inorganic components. For similar latex water interfaces built up by poly(vinyl alcohol), a variation in the latex polymer composition results in modified organic textures. In addition to the networks of the inorganic cement and of the latex, there is a weak network build up by thin polymer fibers, most probably originating from poly(vinyl alcohol). Besides the weak network, polymer fibers form well-ordered textures covering inorganic crystals such as portlandite

  5. Characterisation of different polymorphs of tris(8-hydroxyquinolinatoaluminium(III using solid-state NMR and DFT calculations

    Directory of Open Access Journals (Sweden)

    Periasamy N

    2009-11-01

    Full Text Available Abstract Background Organic light emitting devices (OLED are becoming important and characterisation of them, in terms of structure, charge distribution, and intermolecular interactions, is important. Tris(8-hydroxyquinolinato-aluminium(III, known as Alq3, an organomettalic complex has become a reference material of great importance in OLED. It is important to elucidate the structural details of Alq3 in its various isomeric and solvated forms. Solid-state nuclear magnetic resonance (NMR is a useful tool for this which can also complement the information obtained with X-ray diffraction studies. Results We report here 27Al one-dimensional (1D and two-dimensional (2D multiple-quantum magic-angle spinning (MQMAS NMR studies of the meridional (α-phase and the facial (δ-phase isomeric forms of Alq3. Quadrupolar parameters are estimated from the 1D spectra under MAS and anisotropic slices of the 2D spectra and also calculated using DFT (density functional theory quantum-chemical calculations. We have also studied solvated phase of Alq3 containing ethanol in its lattice. We show that both the XRD patterns and the quadrupolar parameters of the solvated phase are different from both the α-phase and the δ-phase, although the fluorescence emission shows no substantial difference between the α-phase and the solvated phase. Moreover, we have shown that after the removal of ethanol from the matrix the solvated Alq3 has similar XRD patterns and quadrupolar parameters to that of the α-phase. Conclusion The 2D MQMAS experiments have shown that all the different modifications of Alq3 have 27Al in single unique crystallographic site. The quadrupolar parameters predicted using the DFT calculation under the isodensity polarisable continuum model resemble closely the experimentally obtained values. The solvated phase of Alq3 containing ethanol has structural difference from the α-phase of Alq3 (containing meridional isomer from the solid-state NMR studies

  6. Characterisation of different polymorphs of tris(8-hydroxyquinolinato)aluminium(III) using solid-state NMR and DFT calculations.

    Science.gov (United States)

    Goswami, Mithun; Nayak, Pabitra K; Periasamy, N; Madhu, P K

    2009-11-09

    Organic light emitting devices (OLED) are becoming important and characterisation of them, in terms of structure, charge distribution, and intermolecular interactions, is important. Tris(8-hydroxyquinolinato)-aluminium(III), known as Alq3, an organomettalic complex has become a reference material of great importance in OLED. It is important to elucidate the structural details of Alq3 in its various isomeric and solvated forms. Solid-state nuclear magnetic resonance (NMR) is a useful tool for this which can also complement the information obtained with X-ray diffraction studies. We report here 27Al one-dimensional (1D) and two-dimensional (2D) multiple-quantum magic-angle spinning (MQMAS) NMR studies of the meridional (alpha-phase) and the facial (delta-phase) isomeric forms of Alq3. Quadrupolar parameters are estimated from the 1D spectra under MAS and anisotropic slices of the 2D spectra and also calculated using DFT (density functional theory) quantum-chemical calculations. We have also studied solvated phase of Alq3 containing ethanol in its lattice. We show that both the XRD patterns and the quadrupolar parameters of the solvated phase are different from both the alpha-phase and the delta-phase, although the fluorescence emission shows no substantial difference between the alpha-phase and the solvated phase. Moreover, we have shown that after the removal of ethanol from the matrix the solvated Alq3 has similar XRD patterns and quadrupolar parameters to that of the alpha-phase. The 2D MQMAS experiments have shown that all the different modifications of Alq3 have 27Al in single unique crystallographic site. The quadrupolar parameters predicted using the DFT calculation under the isodensity polarisable continuum model resemble closely the experimentally obtained values. The solvated phase of Alq3 containing ethanol has structural difference from the alpha-phase of Alq3 (containing meridional isomer) from the solid-state NMR studies. Solid-state NMR can hence be

  7. Push-through Direction Injectin NMR Automation

    Science.gov (United States)

    Nuclear magnetic resonance (NMR) and mass spectrometry (MS) are the two major spectroscopic techniques successfully used in metabolomics studies. The non-invasive, quantitative and reproducible characteristics make NMR spectroscopy an excellent technique for detection of endogeno...

  8. Fourier transform n.m.r. spectroscopy

    International Nuclear Information System (INIS)

    Shaw, D.

    1976-01-01

    This book is orientated to techniques rather than applications. The basic theory of n.m.r. is dealt with in a unified approach to the Fourier theory. The middle section of the book concentrates on the practical aspects of Fourier n.m.r., both instrumental and experimental. The final chapters briefly cover general application of n.m.r., but concentrate strongly on those areas where Fourier n.m.r. can give information which is not available by conventional techniques

  9. NMR investigations of molecular dynamics

    Science.gov (United States)

    Palmer, Arthur

    2011-03-01

    NMR spectroscopy is a powerful experimental approach for characterizing protein conformational dynamics on multiple time scales. The insights obtained from NMR studies are complemented and by molecular dynamics (MD) simulations, which provide full atomistic details of protein dynamics. Homologous mesophilic (E. coli) and thermophilic (T. thermophilus) ribonuclease H (RNase H) enzymes serve to illustrate how changes in protein sequence and structure that affect conformational dynamic processes can be monitored and characterized by joint analysis of NMR spectroscopy and MD simulations. A Gly residue inserted within a putative hinge between helices B and C is conserved among thermophilic RNases H, but absent in mesophilic RNases H. Experimental spin relaxation measurements show that the dynamic properties of T. thermophilus RNase H are recapitulated in E. coli RNase H by insertion of a Gly residue between helices B and C. Additional specific intramolecular interactions that modulate backbone and sidechain dynamical properties of the Gly-rich loop and of the conserved Trp residue flanking the Gly insertion site have been identified using MD simulations and subsequently confirmed by NMR spin relaxation measurements. These results emphasize the importance of hydrogen bonds and local steric interactions in restricting conformational fluctuations, and the absence of such interactions in allowing conformational adaptation to substrate binding.

  10. PSYCHE Pure Shift NMR Spectroscopy.

    Science.gov (United States)

    Foroozandeh, Mohammadali; Morris, Gareth; Nilsson, Mathias

    2018-03-13

    Broadband homodecoupling techniques in NMR, also known as "pure shift" methods, aim to enhance spectral resolution by suppressing the effects of homonuclear coupling interactions to turn multiplet signals into singlets. Such techniques typically work by selecting a subset of "active" nuclear spins to observe, and selectively inverting the remaining, "passive", spins to reverse the effects of coupling. Pure Shift Yielded by Chirp Excitation (PSYCHE) is one such method; it is relatively recent, but has already been successfully implemented in a range of different NMR experiments. Paradoxically, PSYCHE is one of the trickiest of pure shift NMR techniques to understand but one of the easiest to use. Here we offer some insights into theoretical and practical aspects of the method, and into the effects and importance of the experimental parameters. Some recent improvements that enhance the spectral purity of PSYCHE spectra will be presented, and some experimental frameworks including examples in 1D and 2D NMR spectroscopy, for the implementation of PSYCHE will be introduced. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Diffusion and the dynamics of displacive phase transitions in cryolite (Na3AlF6) and chiolite (Na5Al3F14): Multi-nuclear NMR studies

    Science.gov (United States)

    Spearing, Dane R.; Stebbins, Jonathan F.; Farnan, Ian

    1994-10-01

    Cryolite is a mixed-cation perovskite (Na2(NaAl)F6) which undergoes a monoclinic to orthorhombic displacive phase transition at ˜550° C. Chiolite (Na5Al3F14) is associated with cryolite in natural deposits, and consists of sheets of corner sharing [AlF6] octahedra interlayered with edge-sharing [NaF6] octahedra. Multi-nuclear NMR line shape and relaxation time (T1) studies were performed on cryolite and chiolite in order to gain a better understanding of the atomic motions associated with the phase transition in cryolite, and Na diffusion in cryolite and chiolite. 27Al, 23Na, and 19F static NMR spectra and T1's in cryolite suggest that oscillatory motions of the [AlF6] octahedra among four micro-twin and anti-phase domains in α-cryolite begin at least 150° C below the transition temperature and persist above it. Variable temperature 23Na MAS NMR further indicates diffusional exchange at a rate of at least 13 kHz between the Na sites by the time the transition temperature is reached. 27Al and 23Na T1's show the same behavior with increasing temperature, indicating the same relaxation mechanisms are responsible for both. The first order nature of the cryolite transition is apparent as a jump in the 23Na and 27Al T1's. Above the transition temperature, the T1's decrease slightly indicating that the motions responsible for the drop in T1, are still present above the transition, further supporting the dynamic nature of the high temperature phase of cryolite. Chiolite 23Na static spectra decrease in linewidth with increasing temperature, indicating increased Na diffusion, which is interpreted as occurring within the [NaF6] sheets in the chiolite structure, but not between the two different Na sites. 27Al and 23Na T1's show similar behavior as in cryolite, but there is no discontinuity due to a phase transition. 19F T1's are constant from room temperature to 150° C indicating no oscillatory motion of the [AlF6] octahedra in chiolite.

  12. Chromium liquid waste inertization in an inorganic alkali activated matrix: Leaching and NMR multinuclear approach

    International Nuclear Information System (INIS)

    Ponzoni, Chiara; Lancellotti, Isabella; Barbieri, Luisa; Spinella, Alberto; Saladino, Maria Luisa; Martino, Delia Chillura; Caponetti, Eugenio; Armetta, Francesco; Leonelli, Cristina

    2015-01-01

    Highlights: • Inertization of chromium liquid waste in aluminosilicate matrix. • Water less inertization technique exploiting the waste water content. • Liquid waste inertization without drying step. • Long term stabilization study through leaching test. • SEM analysis and 29 Si and 27 Al MAS NMR in relation with long curing time. - Abstract: A class of inorganic binders, also known as geopolymers, can be obtained by alkali activation of aluminosilicate powders at room temperature. The process is affected by many parameters (curing time, curing temperature, relative humidity etc.) and leads to a resistant matrix usable for inertization of hazardous waste. In this study an industrial liquid waste containing a high amount of chromium (≈2.3 wt%) in the form of metalorganic salts is inertized into a metakaolin based geopolymer matrix. One of the innovative aspects is the exploitation of the water contained in the waste for the geopolymerization process. This avoided any drying treatment, a common step in the management of liquid hazardous waste. The evolution of the process - from the precursor dissolution to the final geopolymer matrix hardening - of different geopolymers containing a waste amount ranging from 3 to 20% wt and their capability to inertize chromium cations were studied by: i) the leaching tests, according to the EN 12,457 regulation, at different curing times (15, 28, 90 and 540 days) monitoring releases of chromium ions (Cr(III) and Cr(VI)) and the cations constituting the aluminosilicate matrix (Na, Si, Al); ii) the humidity variation for different curing times (15 and 540 days); iii) SEM characterization at different curing times (28 and 540 days); iv) the trend of the solution conductivity and pH during the leaching test; v) the characterization of the short-range ordering in terms of T−O−T bonds (where T is Al or Si) by 29 Si and 27 Al solid state magic-angle spinning nuclear magnetic resonance (ss MAS NMR) for geopolymers

  13. Chromium liquid waste inertization in an inorganic alkali activated matrix: Leaching and NMR multinuclear approach

    Energy Technology Data Exchange (ETDEWEB)

    Ponzoni, Chiara, E-mail: chiara.ponzoni@unimore.it [University of Modena and Reggio Emilia, Department of Engineering “Enzo Ferrari”, Modena (Italy); Lancellotti, Isabella; Barbieri, Luisa [University of Modena and Reggio Emilia, Department of Engineering “Enzo Ferrari”, Modena (Italy); Spinella, Alberto; Saladino, Maria Luisa [University of Palermo CGA-UniNetLab, Palermo (Italy); Martino, Delia Chillura [University of Palermo, Department STEBICEF, Palermo (Italy); Caponetti, Eugenio [University of Palermo CGA-UniNetLab, Palermo (Italy); University of Palermo, Department STEBICEF, Palermo (Italy); Armetta, Francesco [University of Palermo, Department STEBICEF, Palermo (Italy); Leonelli, Cristina [University of Modena and Reggio Emilia, Department of Engineering “Enzo Ferrari”, Modena (Italy)

    2015-04-09

    Highlights: • Inertization of chromium liquid waste in aluminosilicate matrix. • Water less inertization technique exploiting the waste water content. • Liquid waste inertization without drying step. • Long term stabilization study through leaching test. • SEM analysis and {sup 29}Si and {sup 27}Al MAS NMR in relation with long curing time. - Abstract: A class of inorganic binders, also known as geopolymers, can be obtained by alkali activation of aluminosilicate powders at room temperature. The process is affected by many parameters (curing time, curing temperature, relative humidity etc.) and leads to a resistant matrix usable for inertization of hazardous waste. In this study an industrial liquid waste containing a high amount of chromium (≈2.3 wt%) in the form of metalorganic salts is inertized into a metakaolin based geopolymer matrix. One of the innovative aspects is the exploitation of the water contained in the waste for the geopolymerization process. This avoided any drying treatment, a common step in the management of liquid hazardous waste. The evolution of the process - from the precursor dissolution to the final geopolymer matrix hardening - of different geopolymers containing a waste amount ranging from 3 to 20% wt and their capability to inertize chromium cations were studied by: i) the leaching tests, according to the EN 12,457 regulation, at different curing times (15, 28, 90 and 540 days) monitoring releases of chromium ions (Cr(III) and Cr(VI)) and the cations constituting the aluminosilicate matrix (Na, Si, Al); ii) the humidity variation for different curing times (15 and 540 days); iii) SEM characterization at different curing times (28 and 540 days); iv) the trend of the solution conductivity and pH during the leaching test; v) the characterization of the short-range ordering in terms of T−O−T bonds (where T is Al or Si) by {sup 29}Si and {sup 27}Al solid state magic-angle spinning nuclear magnetic resonance (ss MAS NMR) for

  14. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    1999-01-01

    High Resolution NMR provides a broad treatment of the principles and theory of nuclear magnetic resonance (NMR) as it is used in the chemical sciences. It is written at an "intermediate" level, with mathematics used to augment, rather than replace, clear verbal descriptions of the phenomena. The book is intended to allow a graduate student, advanced undergraduate, or researcher to understand NMR at a fundamental level, and to see illustrations of the applications of NMR to the determination of the structure of small organic molecules and macromolecules, including proteins. Emphasis is on the study of NMR in liquids, but the treatment also includes high resolution NMR in the solid state and the principles of NMR imaging and localized spectroscopy. Careful attention is given to developing and interrelating four approaches - steady state energy levels, the rotating vector picture, the density matrix, and the product operator formalism. The presentation is based on the assumption that the reader has an acquaintan...

  15. PVT Degradation Studies: NMR Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Herman M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kouzes, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-06-06

    Under certain environmental conditions, polyvinyl toluene (PVT) plastic scintillator has been observed to undergo internal fogging. Nuclear magnetic resonance spectroscopy has been used to elucidate the state of water inside the PVT. The deuterium NMR results show that water absorbed by PVT under warm, humid conditions enters several distinct environments, and when the PVT is transferred from incubation to ambient temperature and humidity the water is lost on a time scale of a few hours from these samples. Most of the deuterium NMR peaks can be assigned to bulk liquid water, but almost 35% of the detected signal intensity is contained in a resonance that resembles spectra of water contained in nanometer-scale pores in mesoporous carbon.

  16. NMR imaging of human atherosclerosis

    International Nuclear Information System (INIS)

    Toussaint, J.F.

    1995-01-01

    Diagnosis and prognosis of atherosclerosis can no longer be evaluated with morphological parameters only. A description of atherosclerotic plaque composition is necessary to study the mechanisms of plaque rupture, which depends on collagenous cap and lipid core thicknesses. NMR, as a biochemical imaging technique, allows visualization of these components using T1 contrast (mobile lipids), T2 contrast (cap vs. core), spin density (calcifications), diffusion imaging, 1H and 13C spectroscopy. Today, these imaging sequences allow to study in vitro the effects of interventional techniques such as angioplasty or atherectomy. Clinical investigations begin, which will attempt to develop in vivo microscopy and test the ability of NMR to predict plaque rupture. (author). 13 refs., 7 figs

  17. NMR and NQR study of Si-doped (6,0) zigzag single-walled aluminum nitride nanotube as n or P-semiconductors.

    Science.gov (United States)

    Baei, Mohammad T; Peyghan, Ali Ahmadi; Tavakoli, Khadijeh; Babaheydari, Ali Kazemi; Moghimi, Masoumeh

    2012-09-01

    Density functional theory (DFT) calculations were performed to investigate the electronic structure properties of pristine and Si-doped aluminum nitride nanotubes as n or P-semiconductors at the B3LYP/6-31G* level of theory in order to evaluate the influence of Si-doped in the (6,0) zigzag AlNNTs. We extended the DFT calculation to predict the electronic structure properties of Si-doped aluminum nitride nanotubes, which are very important for production of solid-state devices and other applications. To this aim, pristine and Si-doped AlNNT structures in two models (Si(N) and Si(Al)) were optimized, and then the electronic properties, the isotropic (CS(I)) and anisotropic (CS(A)) chemical shielding parameters for the sites of various (27)Al and (14)N atoms, NQR parameters for the sites of various of (27)Al and (14)N atoms, and quantum molecular descriptors were calculated in the optimized structures. The optimized structures, the electronic properties, NMR and NQR parameters, and quantum molecular descriptors for the Si(N) and Si(Al) models show that the Si(N) model is a more reactive material than the pristine or Si(Al) model.

  18. Advanced NMR technology for bioscience and biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Hammel, P.C.; Hernandez, G.; Trewhella, J.; Unkefer, C.J. [Los Alamos National Lab., NM (US); Boumenthal, D.K. [Univ. of Utah, Salt Lake City, UT (US); Kennedy, M.A. [Pacific Northwest National Lab., Richland, WA (US); Moore, G.J. [Wayne State Univ., Detroit, MI (US)

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). NMR plays critical roles in bioscience and biotechnology in both imaging and structure determination. NMR is limited, however, by the inherent low sensitivity of the NMR experiment and the demands for spectral resolution required to study biomolecules. The authors addressed both of these issues by working on the development of NMR force microscopy for molecular imaging, and high field NMR with isotope labeling to overcome limitations in the size of biomolecules that can be studied using NMR. A novel rf coil design for NMR force microscopy was developed that increases the limits of sensitivity in magnetic resonance detection for imaging, and the authors demonstrated sub-surface spatial imaging capabilities. The authors also made advances in the miniaturization of two critical NMR force microscope components. They completed high field NMR and isotope labeling studies of a muscle protein complex which is responsible for regulating muscle contraction and is too large for study using conventional NMR approaches.

  19. Solid-state NMR of inorganic semiconductors.

    Science.gov (United States)

    Yesinowski, James P

    2012-01-01

    Studies of inorganic semiconductors by solid-state NMR vary widely in terms of the nature of the samples investigated, the techniques employed to observe the NMR signal, and the types of information obtained. Compared with the NMR of diamagnetic non-semiconducting substances, important differences often result from the presence of electron or hole carriers that are the hallmark of semiconductors, and whose theoretical interpretation can be involved. This review aims to provide a broad perspective on the topic for the non-expert by providing: (1) a basic introduction to semiconductor physical concepts relevant to NMR, including common crystal structures and the various methods of making samples; (2) discussions of the NMR spin Hamiltonian, details of some of the NMR techniques and strategies used to make measurements and theoretically predict NMR parameters, and examples of how each of the terms in the Hamiltonian has provided useful information in bulk semiconductors; (3) a discussion of the additional considerations needed to interpret the NMR of nanoscale semiconductors, with selected examples. The area of semiconductor NMR is being revitalized by this interest in nanoscale semiconductors, the great improvements in NMR detection sensitivity and resolution that have occurred, and the current interest in optical pumping and spintronics-related studies. Promising directions for future research will be noted throughout.

  20. Topotactic transformations of sodalite cages: synthesis and NMR study of mixed salt-free and salt-bearing sodalites.

    Science.gov (United States)

    Trill, Henning; Eckert, Hellmut; Srdanov, Vojislav I

    2002-07-17

    A series of mixed sodalite samples, Na(8)[Al(6)Si(6)O(24)]Br(x).(H(3)O(2))(2-x), with the unit cell stoichiometries varying in the 0 < x <2 region, was made by hydrothermal synthesis and subsequently transformed into Na(6+x)[Al(6)Si(6)O(24)]Br(x).(4H(2)O)(2-x) and Na(6+x)[Al(6)Si(6)O(24)]Br(x).circle(2-x) sodalites. Here, circle refers to an empty sodalite cage. The three series, referred hereafter to as the Br/basic, Br/hydro, and Br/dry series, were characterized by powder diffraction X-ray and by (23)Na, (27)Al, and (81)Br magic angle spinning (MAS) NMR and high-resolution triple quantum (TQ) MAS NMR spectroscopy. We determined that incorporation of Br(-) anions is 130 times more preferred than incorporation of H(3)O(2)(-) anions during the formation of sodalite cages, which permitted precise control of the halide content in the solid. Monotonic trends in chemical shifts were observed as a function of cage occupancy, reflecting continuous changes in structural parameters. A linear correlation between (81)Br chemical shift and lattice constant with a slope of -86 ppm/A was observed for all three series. Likewise, (23)Na chemical shifts for Na(+) cations in salt-bearing sodalite cages correlate linearly with the lattice constant. Both results indicate a universal dependence of the (23)Na and (81)Br chemical shifts on the Na-Br distance. The (27)Al chemical shifts of Br/basic and Br/hydro sodalites obey an established relation between delta(cs) and the average T-O-T bond angle of 0.72 ppm/degrees. Br/dry sodalites show two aluminum resonances, characterized by significantly different chemical shifts and quadrupolar interaction parameters. In that series, local symmetry distortions are evident from strong quadrupolar perturbations in the NMR spectra. P(Q) values for (27)Al vary between 0.8 MHz in Br/basic sodalites and 4.4 MHz in the Br/dry series caused by deviations from the tetrahedral symmetry of the salt-free sodalite cages. For (23)Na, P(Q) values of 0.8, 0

  1. IR and NMR studies of hierarchical material obtained by the treatment of zeolite Y by ammonia solution

    Science.gov (United States)

    Gackowski, Mariusz; Kuterasiński, Łukasz; Podobiński, Jerzy; Sulikowski, Bogdan; Datka, Jerzy

    2018-03-01

    Ammonia treatment of ultrastable zeolite Y has a great impact on its features. XRD showed a partial loss of crystallinity coupled with a loss of long-distance zeolite ordering. However, a typical short-range zeolite ordering, in the light of 29Si NMR studies, was largely preserved. 27Al MAS NMR spectra evidenced that most of Al was located in zeolitic tetrahedral positions, but some of them adopted a distorted configuration. Evolution of zeolites acidity was followed quantitatively by using IR. In particular, such studies revealed the presence of strongly acidic Sisbnd OHsbnd Al groups. IR studies suggest also heterogeneity of these OH groups. The heterogeneity of Sisbnd OHsbnd Al groups was a consequence of the less ordered structure of zeolites treated with ammonia solutions. It was also found that the treatment with ammonia solutions yields hierarchical material. The samples revealed promising catalytic properties in the liquid phase isomerization of α-pinene. Zeolites desilicated with ammonia may constitute an inexpensive route yielding viable hierarchical catalysts.

  2. Teaching NMR spectra analysis with nmr.cheminfo.org.

    Science.gov (United States)

    Patiny, Luc; Bolaños, Alejandro; Castillo, Andrés M; Bernal, Andrés; Wist, Julien

    2018-06-01

    Teaching spectra analysis and structure elucidation requires students to get trained on real problems. This involves solving exercises of increasing complexity and when necessary using computational tools. Although desktop software packages exist for this purpose, nmr.cheminfo.org platform offers students an online alternative. It provides a set of exercises and tools to help solving them. Only a small number of exercises are currently available, but contributors are invited to submit new ones and suggest new types of problems. Copyright © 2018 John Wiley & Sons, Ltd.

  3. Dynamic pulsed-field-gradient NMR

    CERN Document Server

    Sørland, Geir Humborstad

    2014-01-01

    Dealing with the basics, theory and applications of dynamic pulsed-field-gradient NMR NMR (PFG NMR), this book describes the essential theory behind diffusion in heterogeneous media that can be combined with NMR measurements to extract important information of the system being investigated. This information could be the surface to volume ratio, droplet size distribution in emulsions, brine profiles, fat content in food stuff, permeability/connectivity in porous materials and medical applications currently being developed. Besides theory and applications it will provide the readers with background knowledge on the experimental set-ups, and most important, deal with the pitfalls that are numerously present in work with PFG-NMR. How to analyze the NMR data and some important basic knowledge on the hardware will be explained, too.

  4. An Inversion Recovery NMR Kinetics Experiment

    OpenAIRE

    Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping

    2011-01-01

    A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this article will enable instructors to use inversion recovery as a laboratory activity in applied NMR classes and provide research students with a conveni...

  5. Transitions in Al Coordination during Gibbsite Crystallization Using High-Field 27 Al and 23 Na MAS NMR Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian Zhi [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Zhang, Xin [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Jaegers, Nicholas R. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Washington State University, Pullman, Washington 99164, United States; Wan, Chuan [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Graham, Trent R. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Washington State University, Pullman, Washington 99164, United States; Hu, Mary [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Pearce, Carolyn I. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Felmy, Andrew R. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Washington State University, Pullman, Washington 99164, United States; Clark, Sue B. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Washington State University, Pullman, Washington 99164, United States; Rosso, Kevin M. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States

    2017-11-30

    Mechanisms of nucleation and growth of Al hydroxides such as gibbsite from aqueous solution, particularly in highly alkaline conditions, remain poorly understood. In this work, quantitative 27Al and 22Na MAS NMR experiments were conducted on solid samples extracted from the crystallization of gibbsite from an amorphous aluminum hydroxide gel precursor. The use of high magnetic field and fast sample spinning allowed transitional tetrahedral (AlT) and pentahedral (AlP) aluminum species to be observed along with the octahedral aluminum (AlO) that dominates the gibbsite product. Low-coordinated Al species could be detected at concentrations as low as 0.1% of the total Al sites. It is established that (a) AlT and AlP coexist on the surface of growing gibbsites even with a combined percentage over the total Al sites of less than 1%; (b) Different synthesis methods generate gibbsite with varying amounts of low-coordinated Al; (c) the amorphous gel precursor contains a significant amount of low-coordinated Al sites with AO: AlP: AlT ratios of approximately 4:2:1; (d) upon hydration, the external, low-coordinated Al sites become six-fold coordinated by interacting with the oxygen in H2O and the 27Al MAS NMR peak position shifts to that for the AlO sites; (e) gibbsite with increased long range order is synthesized over longer times by gradually incorporating residual AlP and AlT sites into octahedrally-coordinated AlO sites; (f) trace Na is predominantly a surface species on gibbsite particles. These findings provide a basis for understanding the gibbsite crystallization mechanism, along with a general means of characterizing gibbsite surface properties that are of equal importance for understanding related processes such as dissolution behavior.

  6. NMR in structure-based drug design.

    Science.gov (United States)

    Carneiro, Marta G; Ab, Eiso; Theisgen, Stephan; Siegal, Gregg

    2017-11-08

    NMR spectroscopy is a powerful technique that can provide valuable structural information for drug discovery endeavors. Here, we discuss the strengths (and limitations) of NMR applications to structure-based drug discovery, highlighting the different levels of resolution and throughput obtainable. Additionally, the emerging field of paramagnetic NMR in drug discovery and recent developments in approaches to speed up and automate protein-observed NMR data collection and analysis are discussed. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  7. NMR spectroscopy using liquid crystal solvents

    CERN Document Server

    Emsley, JW

    2013-01-01

    NMR Spectroscopy using Liquid Crystal Solvents covers the importance of using a liquid crystal solvent in NMR to derive nuclear dipolar spin-spin coupling constants. This book is composed of ten chapters, and begins with a brief description of the features and benefits of liquid crystal in NMR spectroscopic analysis. The succeeding chapters deal with the mode of operation of nuclear spin Hamiltonian for partially oriented molecules and the analysis of NMR spectra of partially oriented molecules, as well as the determination of rigid molecule structure. These topics are followed by discussions

  8. Solution NMR structure determination of proteins revisited

    International Nuclear Information System (INIS)

    Billeter, Martin; Wagner, Gerhard; Wuethrich, Kurt

    2008-01-01

    This 'Perspective' bears on the present state of protein structure determination by NMR in solution. The focus is on a comparison of the infrastructure available for NMR structure determination when compared to protein crystal structure determination by X-ray diffraction. The main conclusion emerges that the unique potential of NMR to generate high resolution data also on dynamics, interactions and conformational equilibria has contributed to a lack of standard procedures for structure determination which would be readily amenable to improved efficiency by automation. To spark renewed discussion on the topic of NMR structure determination of proteins, procedural steps with high potential for improvement are identified

  9. NMR studies of isotopically labeled RNA

    Energy Technology Data Exchange (ETDEWEB)

    Pardi, A. [Univ. of Colorado, Boulder, CO (United States)

    1994-12-01

    In summary, the ability to generate NMR quantities of {sup 15}N and {sup 13}C-labeled RNAs has led to the development of heteronuclear multi-dimensional NMR techniques for simplifying the resonance assignment and structure determination of RNAs. These methods for synthesizing isotopically labeled RNAs are only several years old, and thus there are still relatively few applications of heteronuclear multi-dimensional NMR techniques to RNA. However, given the critical role that RNAs play in cellular function, one can expect to see an increasing number of NMR structural studies of biologically active RNAs.

  10. Ligand-receptor Interactions by NMR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Novak. P.

    2008-04-01

    Full Text Available Today NMR spectroscopy is a method of choice for elucidation of interactions between biomolecules and the potential ligands. Knowledge on these interactions is an essential prerequisite for the rational drug design. The most important contribution of NMR to drug design a few years ago was the 3D structure determination of proteins. Besides delivering the 3D structures of the free proteins as a raw material for the modeling studies on ligand binding, NMR can directly yield valuable experimental data on the biologically important protein-ligand complexes. In addition to X-ray diffraction, NMR spectroscopy can provide information on the internal protein dynamics ordynamics of intermolecular interactions. Changes in NMR parameters allow us to detect ("SAR by NMR" and quantitatively determine binding affinities (titration, diffusion NMR experiments, etc. of potential ligands. Also, it is possible to determine the binding site and conformations of ligands, receptors and receptor-ligand complexes with the help of NMR methods such as tr-NOESY. Epitopes or functional groups responsible for binding of ligands to the receptor can be identified by employing STD or WaterLOGSY experiments. In this review are described some of the most frequent NMR methods for the characterization of the interactions between biomolecules and ligands, together with their advantages and disadvantages.

  11. NMR characterization of pituitary tumors

    International Nuclear Information System (INIS)

    Osbakken, M.; Gonzales, J.; Page, R.

    1984-01-01

    Twelve patients (5 male, 7 female, mean age 37.9 +- 20) with pituitary tumors were extensively evaluated with NMR imaging using a 1.5K gauss resistive magnet. Saturation recovery (SR), inversion recovery (IR) and spin echo (SE) pulse sequences were used for qualitative characterization of the lesions. T/sub 1/ calculations were also performed for brain and pituitary. Tumor histology and endocrine status were correlated with NMR data. All tumors were large with suprasellar extension (6 with prolactin secretion, 6 without). Pituitary T/sub 1/'s ranged from .2 to .64, the mean T/sub 1/ being longer than that of brain (Brain = .4 +- .04; Pit = .48 +- .14). 3 patients with histological evidence of homogeneous adenomas had long T/sub 1/'s (0.58 +- .05). 3 patients with evidence of recent or old hemorhage into the pituitary had much shorter T/sub 1/'s (0.29 +- .12). There was no relationship between prolactin secretion and T/sub 1/. Qualitative T/sub 1/ and T/sub 2/ information can be obtained by using a combination of SR, IR, and SE images. Using this method in the patients, homogeneous adenomas had similar T/sub 1/'s and longer T/sub 2/'s compared to the brain, while patients with bleeds had shorter T/sub 1/'s and T/sub 2/'s. Image T/sub 1/ characteristics correlated well with the calculated T/sub 1/ values. The range of T/sub 1/ (and potentially T/sub 2/) values which occur in apparently similar lesions are most likely due to anatomical and pathophysiological variations in these lesions. It may be ultimately possible to separate different types of pathological processes based on NMR image T/sub 1/ and T/sub 2/ characteristics after careful comparative studies of NMR and histological data are completed. The combination of calculated T/sub 1/ and T/sub 2/ with image T/sub 1/ and T/sub 2/ information may also be useful in further characterization of lesions

  12. Short recovery time NMR probe

    International Nuclear Information System (INIS)

    Ramia, M.E.; Martin, C.A.; Jeandrevin, S.

    2011-01-01

    A NMR probe for low frequency and short recovery time is presented in this work. The probe contains the tuning circuit, diode expanders and quarter wavelength networks to protect the receiver from both the amplifier noise and the coil ringing following the transmitter power pulse. It also possesses a coil damper which is activated by of non active components. The probe performance shows a recovery time of about of 15μs a sensitive Q factor reduction and an increase of the signal to noise ratio of about 68% during the reception at a work frequency of 2 MHz. (author)

  13. Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR

    NARCIS (Netherlands)

    Van Der Schot, Gijs; Bonvin, Alexandre M J J

    We present here the performance of the WeNMR CS-Rosetta3 web server in CASD-NMR, the critical assessment of automated structure determination by NMR. The CS-Rosetta server uses only chemical shifts for structure prediction, in combination, when available, with a post-scoring procedure based on

  14. 1H-NMR urinalysis

    International Nuclear Information System (INIS)

    Yamamoto, Hideaki; Yamaguchi, Shuichi

    1988-01-01

    In an effort to examine the usefulness of 1 H-nuclear magnetic resonance (NMR) urinalysis in the diagnosis of congenital metabolic disorders, 70 kinds of urinary metabolites were analysed in relation to the diagnosis of inborn errors of amino acid and organic acid disorders. Homogated decoupling (HMG) method failed to analyze six metabolites within the undetectable range. When non-decoupling method (NON), in which the materials are dissolved in dimethyl sulfoxide, was used, the identification of signals became possible. The combination of HMG and NON methods was, therefore, considered to identify all of the metabolites. When the urine samples, which were obtained from patients with hyperglycerolemia, hyperornithinemia, glutaric acidemia type II, or glycerol kinase deficiency, were analysed by using both HMG and NON methods, abnormally increased urinary metabolites were detected. 1 H-NMR urinalysis, if used in the combination of HMG and NON methods, may allow simultanenous screening of inborn errors of metabolism of amino acid and organic acid disorders. (Namekawa, K.)

  15. Calculation of the 13C NMR shieldings of the C0 2 complexes of aluminosilicates

    Science.gov (United States)

    Tossell, J. A.

    1995-04-01

    13C NMR shieldings have been calculated using the random-phase-approximation, localized-orbital local-origins version of ab initio coupled Hartree-Fuck perturbation theory for CO 2 and and for several complexes formed by the reaction of CO 2 with molecular models for aluminosilicate glasses, H 3TOT'H3 3-n, T,T' = Si,Al. Two isomeric forms of the CO 2-aluminosilicate complexes have been considered: (1) "CO 2-like" complexes, in which the CO 2 group is bound through carbon to a bridging oxygen and (2) "CO 3-like" complexes, in which two oxygens of a central CO 3 group form bridging bonds to the two TH 3 groups. The CO 2-like isomer of CO 2-H 3SiOSiH 3 is quite weakly bonded and its 13C isotropic NMR shielding is almost identical to that in free CO 2. As Si is progressively replaced by Al in the - H terminated aluminosilicate model, the CO 2-like isomers show increasing distortion from the free CO 2 geometry and their 13C NMR shieldings decrease uniformly. The calculated 13C shielding value for H 3AlO(CO 2)AlH 3-2 is only about 6 ppm larger than that calculated for point charge stabilized CO 3-2. However, for a geometry of H 3SiO(CO 2) AlH 3-1, in which the bridging oxygen to C bond length has been artificially increased to that found in the - OH terminated cluster (OH) 3SiO(CO 2)Al(OH) 3-1, the calculated 13C shielding is almost identical to that for free CO 2. The CO 3-like isomers of the CO 2-aluminosili-cate complexes show carbonate like geometries and 13C NMR shieldings about 4-9 ppm larger than those of carbonate for all T,T' pairs. For the Si,Si tetrahedral atom pair the CO 2-like isomer is more stable energetically, while for the Si,Al and Al,Al cases the CO 3-like isomer is more stable. Addition of Na + ions to the CO 3-2 or H 3AlO(CO 2)AlH 3-2 complexes reduces the 13C NMR shieldings by about 10 ppm. Complexation with either Na + or CO 2 also reduces the 29Si NMR shieldings of the aluminosilicate models, while the changes in 27Al shielding with Na + or CO 2

  16. Early history of NMR at Los Alamos

    International Nuclear Information System (INIS)

    Jackson, J.A.

    1985-11-01

    Nuclear magnetic resonance (NMR) spectroscopy has developed into an important research tool in chemistry. More recently, NMR imaging and in vivo spectroscopy promise to produce a revolution in medicine and biochemistry. Early experiments at Los Alamos led to DOE programs involving stable isotopes of importance to biology and to medicine. These events are briefly recounted. 2 refs

  17. Characterization of natural bentonite by NMR

    International Nuclear Information System (INIS)

    Leite, Sidnei Q.M.; Dieguez, Lidia C.; Menezes, Sonia M.C.; San Gil, Rosane A.S.

    1993-01-01

    Solid state NMR as well as several other instrumental chemical analysis techniques were used in order to characterize two natural occurring bentonite. The methodology is described. The NMR spectra, together with the other used techniques suggest that the observed differences are due to iron inclusions in tetrahedral and octahedral sites

  18. Using Cloud Storage for NMR Data Distribution

    Science.gov (United States)

    Soulsby, David

    2012-01-01

    An approach using Google Groups as method for distributing student-acquired NMR data has been implemented. We describe how to configure NMR spectrometer software so that data is uploaded to a laboratory section specific Google Group, thereby removing bottlenecks associated with printing and processing at the spectrometer workstation. Outside of…

  19. Quartz Crystal Temperature Sensor for MAS NMR

    Science.gov (United States)

    Simon, Gerald

    1997-10-01

    Quartz crystal temperature sensors (QCTS) were tested for the first time as wireless thermometers in NMR MAS rotors utilizing the NMR RF technique itself for exiting and receiving electro-mechanical quartz resonances. This new tool in MAS NMR has a high sensitivity, linearity, and precision. When compared to the frequently used calibration of the variable temperature in the NMR system by a solid state NMR chemical shift thermometer (CST), such as lead nitrate, QCTS shows a number of advantages. It is an inert thermometer in close contact with solid samples operating parallel to the NMR experiment. QCTS can be manufactured for any frequency to be near a NMR frequency of interest (typically 1 to 2 MHz below or above). Due to the strong response of the crystal, signal detection is possible without changing the tuning of the MAS probe. The NMR signal is not influenced due to the relative sharp crystal resonance, restricted excitation by finite pulses, high probeQvalues, and commonly used audio filters. The quadratic dependence of the temperature increase on spinning speed is the same for the QCTS and for the CST lead nitrate and is discussed in terms of frictional heat in accordance with the literature about lead nitrate and with the results of a simple rotor speed jump experiment with differently radial located lead nitrate in the rotor.

  20. NMR studies of the structure of glasses

    International Nuclear Information System (INIS)

    Bray, P.J.; Gravina, S.J.; Stallworth, P.E.; Szu, S.P.; Jianhui Zhong

    1988-01-01

    Earlier continuous wave (CW) NMR studies of chemical bonding and structure in glasses are summarized. Examples are given of this use of the quadrupolar interaction and chemical shift to obtain structural information. New NMR data and analyses are presented for alkali borate and gallate glasses. Extensions to other elements (e.g. molybdenum, lanthanum) are suggested. 44 refs. (author)

  1. An Inversion Recovery NMR Kinetics Experiment

    Science.gov (United States)

    Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping

    2011-01-01

    A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this…

  2. Selective sensitivity enhancement in FT-NMR

    International Nuclear Information System (INIS)

    Farrar, T.C.

    1987-01-01

    In this article the basic two-spin nuclear magnetic resonance (NMR) experiment and the new sensitivity enhancement experiments are reviewed. In part two of this two-part series an overview of two-dimensional NMR experiments will be presented. Part two will appear in the June 1 issue of Analytical Chemistry

  3. 2D NMR studies of biomolecules

    International Nuclear Information System (INIS)

    Lamerichs, R.M.J.N.

    1989-01-01

    The work described in this thesis comprises two related subjects. The first part describes methods to derive high-resolution structures of proteins in solution using two-dimensional (2-D) NMR. The second part describes 2-D NMR studies on the interaction between proteins and DNA. (author). 261 refs.; 52 figs.; 23 tabs

  4. Synthesis and NMR Elucidation of Novel Pentacycloundecane ...

    African Journals Online (AJOL)

    Herein we report the synthesis and NMR elucidation of five novel pentacycloundecane (PCU)-derived short peptides as potential HIV protease inhibitors. 1H and 13C spectral analysis show major overlapping of methine resonance of the PCU 'cage' thereby making it extremely difficult to assign the NMR signals. Attachment ...

  5. Development and applications of quantitative NMR spectroscopy

    International Nuclear Information System (INIS)

    Yamazaki, Taichi

    2016-01-01

    Recently, quantitative NMR spectroscopy has attracted attention as an analytical method which can easily secure traceability to SI unit system, and discussions about its accuracy and inaccuracy are also started. This paper focuses on the literatures on the advancement of quantitative NMR spectroscopy reported between 2009 and 2016, and introduces both NMR measurement conditions and actual analysis cases in quantitative NMR. The quantitative NMR spectroscopy using an internal reference method enables accurate quantitative analysis with a quick and versatile way in general, and it is possible to obtain the precision sufficiently applicable to the evaluation of pure substances and standard solutions. Since the external reference method can easily prevent contamination to samples and the collection of samples, there are many reported cases related to the quantitative analysis of biologically related samples and highly scarce natural products in which NMR spectra are complicated. In the precision of quantitative NMR spectroscopy, the internal reference method is superior. As the quantitative NMR spectroscopy widely spreads, discussions are also progressing on how to utilize this analytical method as the official methods in various countries around the world. In Japan, this method is listed in the Pharmacopoeia and Japanese Standard of Food Additives, and it is also used as the official method for purity evaluation. In the future, this method will be expected to spread as the general-purpose analysis method that can ensure traceability to SI unit system. (A.O.)

  6. NMR imaging of soft tissue tumors

    International Nuclear Information System (INIS)

    Laval-Jeantet, M.; Tobolsk, F.; Delepine, N.; Delepine, G.; Roger, B.; Cabanis, E.A.

    1986-01-01

    Preliminary findings on NMR imaging of 30 soft tissue tumors demonstrated the indispensable value of this examination (particularly when a surface antenna is used) for preoperative investigation and diagnosis of tumoral recurrence when compared with other radiologic techniques. The possible potential of NMR imaging for characterization of tissues, apart from lipoma or liposarcoma, cannot be evaluated at the present time [fr

  7. Carbon-13 NMR spectroscopy of biological systems

    CERN Document Server

    Beckmann, Nicolau

    1995-01-01

    This book is intended to provide an in-depth understanding of 13C NMR as a tool in biological research. 13C NMR has provided unique information concerning complex biological systems, from proteins and nucleic acids to animals and humans. The subjects addressed include multidimensional heteronuclear techniques for structural studies of molecules in the liquid and solid states, the investigation of interactions in model membranes, the elucidation of metabolic pathwaysin vitro and in vivo on animals, and noninvasive metabolic studies performed on humans. The book is a unique mix of NMR methods and biological applications which makes it a convenient reference for those interested in research in this interdisciplinary area of physics, chemistry, biology, and medicine.Key Features* An interdisciplinary text with emphasis on both 13C NMR methodology and the relevant biological and biomedical issues* State-of-the-art 13C NMR techniques are described; Whenever possible, their advantages over other approaches are empha...

  8. An introduction to biological NMR spectroscopy

    International Nuclear Information System (INIS)

    Marion, Dominique

    2013-01-01

    NMR spectroscopy is a powerful tool for biologists interested in the structure, dynamics, and interactions of biological macromolecules. This review aims at presenting in an accessible manner the requirements and limitations of this technique. As an introduction, the history of NMR will highlight how the method evolved from physics to chemistry and finally to biology over several decades. We then introduce the NMR spectral parameters used in structural biology, namely the chemical shift, the J-coupling, nuclear Overhauser effects, and residual dipolar couplings. Resonance assignment, the required step for any further NMR study, bears a resemblance to jigsaw puzzle strategy. The NMR spectral parameters are then converted into angle and distances and used as input using restrained molecular dynamics to compute a bundle of structures. When interpreting a NMR-derived structure, the biologist has to judge its quality on the basis of the statistics provided. When the 3D structure is a priori known by other means, the molecular interaction with a partner can be mapped by NMR: information on the binding interface as well as on kinetic and thermodynamic constants can be gathered. NMR is suitable to monitor, over a wide range of frequencies, protein fluctuations that play a crucial role in their biological function. In the last section of this review, intrinsically disordered proteins, which have escaped the attention of classical structural biology, are discussed in the perspective of NMR, one of the rare available techniques able to describe structural ensembles. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 16 MCP). (authors)

  9. NMR imaging of the brain: initial impressions

    International Nuclear Information System (INIS)

    Spencer, D.H.; Bydder, G.M.

    1983-01-01

    An NMR imaging system designed and built by Thorn-EMI Ltd was installed at Hammersmith Hospital in March 1981. In the first year of operation 180 patients and 40 volunteers have had cranial examinations and initial impressions bases on this experience are presented. Patients with a wide variety of neurological diseases have been studied to provide a basis for diagnostic interpretation, to define distinctive features, and to evaluate different types of scanning sequences. NMR imaging appears to be of considerable value in neurological diagnosis and has a number of advantages over CT. The detailed evaluation of NMR imaging will require much more work but the initial results are very promising

  10. Oriented solid-state NMR spectrosocpy

    DEFF Research Database (Denmark)

    Bertelsen, Kresten

    This thesis is concerned with driving forward oriented solid-state NMR spectroscopy as a viable technique for studying peptides in membrane bilayers. I will show that structural heterogeneity is an intrinsic part of the peptide/lipid system and that NMR can be used to characterize static...... and dynamic structural features of the peptides and its local surroundings. In fact one need to take into account the dynamical features of the system in order to correctly predict the structure from oriented solid-state NMR spectra.      ...

  11. NMR reaction monitoring in flow synthesis

    Directory of Open Access Journals (Sweden)

    M. Victoria Gomez

    2017-02-01

    Full Text Available Recent advances in the use of flow chemistry with in-line and on-line analysis by NMR are presented. The use of macro- and microreactors, coupled with standard and custom made NMR probes involving microcoils, incorporated into high resolution and benchtop NMR instruments is reviewed. Some recent selected applications have been collected, including synthetic applications, the determination of the kinetic and thermodynamic parameters and reaction optimization, even in single experiments and on the μL scale. Finally, software that allows automatic reaction monitoring and optimization is discussed.

  12. NMR reaction monitoring in flow synthesis.

    Science.gov (United States)

    Gomez, M Victoria; de la Hoz, Antonio

    2017-01-01

    Recent advances in the use of flow chemistry with in-line and on-line analysis by NMR are presented. The use of macro- and microreactors, coupled with standard and custom made NMR probes involving microcoils, incorporated into high resolution and benchtop NMR instruments is reviewed. Some recent selected applications have been collected, including synthetic applications, the determination of the kinetic and thermodynamic parameters and reaction optimization, even in single experiments and on the μL scale. Finally, software that allows automatic reaction monitoring and optimization is discussed.

  13. Introduction to some basic aspects of NMR

    International Nuclear Information System (INIS)

    Goldman, M.

    1992-01-01

    The principal interactions are reviewed that are experienced by nuclear spins making magnetic resonance feasible and which disturb it in a way that gives access to the properties of bulk matter. The interactions leading to NMR include Zeeman interaction, dipole-dipole interactions, and exchange interactions. Spin-lattice relaxation relevant to NMR is revisited next. It is followed by an overview of spin temperature. Finally, the care of periodic Hamiltonian is discussed in detail as another contribution to NMR. (R.P.) 48 refs., 12 figs

  14. NMR study of LaPb2

    International Nuclear Information System (INIS)

    Ueda, K.; Kohara, T.; Yamada, Y.

    1995-01-01

    La and Pb NMR signals were observed in LaPb 2 with a superconducting transition temperature of about 7 K. The width of the Pb NMR spectrum with an asymmetric line shape was rather narrower than those of Er-, Gd- and Ho-Pb 2 . The spin-lattice relaxation time of Pb nuclei was twice longer than that of Pb metal. La NMR spectrum had satellites due to the electric quadrupole interaction. These results show that each local environment at La or Pb site in LaPb 2 compound is uniquely determined, compared with those in randomly substituted alloys. ((orig.))

  15. Graphical programming for pulse automated NMR experiments

    International Nuclear Information System (INIS)

    Belmonte, S.B.; Oliveira, I.S.; Guimaraes, A.P.

    1999-01-01

    We describe a software program designed to control a broadband pulse Nuclear Magnetic Resonance (NMR) spectrometer used in zero-field NMR studies of magnetic metals. The software is written in the graphical language LabVIEW. This type of programming allows modifications and the inclusion of new routines to be easily made by the non-specialist, without changing the basic structure of the program. The program corrects for differences in the gain of the two acquisition channels [U (phase) and V (quadrature)], and automatic baseline subtraction. We present examples of measurements of NMR spectra, spin-echo decay (T 2 ), and quadrupolar oscillations, performed in magnetic intermetallic compounds. (author)

  16. The characterisation of polymers using pulsed NMR

    International Nuclear Information System (INIS)

    Charlesby, A.

    1983-01-01

    Broad line pulsed NMR is applied to obtain information on radiation-induced polymer changes and other aspects of polymer science based on the interpretation of spin-spin relaxation curves. Calculations are made to determine the molecular weight, the crosslink density of simple, low molecular weight, flexible polymers. For higher molecular weight polymers, a conclusion can be drawn on the concentrations of entangled and crosslinked units by means of pulsed NMR. Some typical applications of the technique are illustrated by the examples of polyethylenes, rubbers, filled polymeric systems and aqueous polyethylene oxide solutions. The morphology of polymers can be followed by pulsed NMR. (V.N.)

  17. MAS NMR of HIV-1 protein assemblies

    Science.gov (United States)

    Suiter, Christopher L.; Quinn, Caitlin M.; Lu, Manman; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-04-01

    The negative global impact of the AIDS pandemic is well known. In this perspective article, the utility of magic angle spinning (MAS) NMR spectroscopy to answer pressing questions related to the structure and dynamics of HIV-1 protein assemblies is examined. In recent years, MAS NMR has undergone major technological developments enabling studies of large viral assemblies. We discuss some of these evolving methods and technologies and provide a perspective on the current state of MAS NMR as applied to the investigations into structure and dynamics of HIV-1 assemblies of CA capsid protein and of Gag maturation intermediates.

  18. NMR data-driven structure determination using NMR-I-TASSER in the CASD-NMR experiment

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Richard [Huazhong University of Science and Technology, School of Software Engineering (China); Wang, Yan [Huazhong University of Science and Technology, School of Life Science and Technology (China); Xue, Zhidong, E-mail: zdxue@hust.edu.cn [Huazhong University of Science and Technology, School of Software Engineering (China); Zhang, Yang, E-mail: zhng@umich.edu [University of Michigan, Department of Computational Medicine and Bioinformatics (United States)

    2015-08-15

    NMR-I-TASSER, an adaption of the I-TASSER algorithm combining NMR data for protein structure determination, recently joined the second round of the CASD-NMR experiment. Unlike many molecular dynamics-based methods, NMR-I-TASSER takes a molecular replacement-like approach to the problem by first threading the target through the PDB to identify structural templates which are then used for iterative NOE assignments and fragment structure assembly refinements. The employment of multiple templates allows NMR-I-TASSER to sample different topologies while convergence to a single structure is not required. Retroactive and blind tests of the CASD-NMR targets from Rounds 1 and 2 demonstrate that even without using NOE peak lists I-TASSER can generate correct structure topology with 15 of 20 targets having a TM-score above 0.5. With the addition of NOE-based distance restraints, NMR-I-TASSER significantly improved the I-TASSER models with all models having the TM-score above 0.5. The average RMSD was reduced from 5.29 to 2.14 Å in Round 1 and 3.18 to 1.71 Å in Round 2. There is no obvious difference in the modeling results with using raw and refined peak lists, indicating robustness of the pipeline to the NOE assignment errors. Overall, despite the low-resolution modeling the current NMR-I-TASSER pipeline provides a coarse-grained structure folding approach complementary to traditional molecular dynamics simulations, which can produce fast near-native frameworks for atomic-level structural refinement.

  19. NMR mechanisms in gel dosimetry

    International Nuclear Information System (INIS)

    Schreiner, L J

    2009-01-01

    Nuclear magnetic resonance was critical to the development of gel dosimetry, as it established the potential for three dimensional dosimetry with chemical dosimeter systems through magnetic resonance imaging [1]. In the last two decades MRI has served as the gold standard for imaging, while NMR relaxometry has played an important role in the development and understanding of the behaviour of new gel dosimetry systems. Therefore, an appreciation of the relaxation mechanisms determining the NMR behaviour of irradiated gel dosimeters is important for a full comprehension of a considerable component of the literature on gel dosimetry. A number of excellent papers have presented this important theory, this brief review will highlight some of the salient points made previously [1-5]. The spin relaxation of gel dosimeters (which determines the dose dependence in most conventional MR imaging) is determined principally by the protons on water molecules in the system. These water protons exist in different environments, or groups (see Figure 1): on bulk water, on water hydrating the chemical species that are being modified under irradiation, and on water hydrating the gel matrix used to spatially stabilize the dosimeter (e.g., gelatin, agarose, etc). The spin relaxation depends on the inherent relaxation rate of each spin group, that is, on the relaxation rate which would be observed for the specific group if it were isolated. Also, the different water environments are not isolated from each other, and the observed relaxation rate also depends on the rate of exchange of magnetization between the groups, and on the fraction of protons in each group. In fact, the water exchanges quickly between the environments, so that relaxation is in what is usually termed the fast exchange regime. In the limit of fast exchange, the relaxation of the water protons is well characterized by a single exponential and hence by a single apparent relaxation rate. In irradiated gel dosimeters this

  20. Structural investigations of substituted indolizine derivatives by NMR studies

    International Nuclear Information System (INIS)

    Furdui, Bianca; Dinica, Rodica; Demeunynck, Martine; Druta, Ioan

    2008-01-01

    Owing to the increasing importance of indolizine heterocycles in the field of biology and pharmacology we have synthesized and investigated the obtained heterocycles by NMR techniques. In order to investigate the substituent effects on the spectroscopic properties, a series of indolizine derivatives were studied by 1 H-NMR, 13 C-NMR and 2D NMR (GCOSY, GHMBC and GHMQC spectra). (authors)

  1. NMR in the SPINE Structural Proteomics project.

    Science.gov (United States)

    Ab, E; Atkinson, A R; Banci, L; Bertini, I; Ciofi-Baffoni, S; Brunner, K; Diercks, T; Dötsch, V; Engelke, F; Folkers, G E; Griesinger, C; Gronwald, W; Günther, U; Habeck, M; de Jong, R N; Kalbitzer, H R; Kieffer, B; Leeflang, B R; Loss, S; Luchinat, C; Marquardsen, T; Moskau, D; Neidig, K P; Nilges, M; Piccioli, M; Pierattelli, R; Rieping, W; Schippmann, T; Schwalbe, H; Travé, G; Trenner, J; Wöhnert, J; Zweckstetter, M; Kaptein, R

    2006-10-01

    This paper describes the developments, role and contributions of the NMR spectroscopy groups in the Structural Proteomics In Europe (SPINE) consortium. Focusing on the development of high-throughput (HTP) pipelines for NMR structure determinations of proteins, all aspects from sample preparation, data acquisition, data processing, data analysis to structure determination have been improved with respect to sensitivity, automation, speed, robustness and validation. Specific highlights are protonless (13)C-direct detection methods and inferential structure determinations (ISD). In addition to technological improvements, these methods have been applied to deliver over 60 NMR structures of proteins, among which are five that failed to crystallize. The inclusion of NMR spectroscopy in structural proteomics pipelines improves the success rate for protein structure determinations.

  2. NMR study of Albemoschus esculentus characterization

    International Nuclear Information System (INIS)

    Bathista, A.L.B.S; Silva, E.O.; Nogueira, Jose de S.; Tavares, M.I.B.

    2001-01-01

    The investigation of the main compounds presented in the Albemoschus esculentus has been carried out employing nuclear magnetic resonance spectroscopy (NMR), using solution and solid state NMR when it one was necessary. The evaluation of NMR data allowed us to characterize the main type of components presented in this kind of sample. It was necessary to use a total information from solid state NMR and also the solution response. From these information we could get that four main components were presented in this sample. One in the shell, that is cellulose, another one between the shell and seeds that is a polysaccharide and in the seed two components were found one is a starch and the second one is an oil, a triacylglycerol. These components are responsible by its physical chemistry properties. (author)

  3. Bayesian Peak Picking for NMR Spectra

    KAUST Repository

    Cheng, Yichen

    2014-02-01

    Protein structure determination is a very important topic in structural genomics, which helps people to understand varieties of biological functions such as protein-protein interactions, protein–DNA interactions and so on. Nowadays, nuclear magnetic resonance (NMR) has often been used to determine the three-dimensional structures of protein in vivo. This study aims to automate the peak picking step, the most important and tricky step in NMR structure determination. We propose to model the NMR spectrum by a mixture of bivariate Gaussian densities and use the stochastic approximation Monte Carlo algorithm as the computational tool to solve the problem. Under the Bayesian framework, the peak picking problem is casted as a variable selection problem. The proposed method can automatically distinguish true peaks from false ones without preprocessing the data. To the best of our knowledge, this is the first effort in the literature that tackles the peak picking problem for NMR spectrum data using Bayesian method.

  4. NMR and optical studies of piezoelectric polymers

    International Nuclear Information System (INIS)

    Schmidt, V.H.; Tuthill, G.F.

    1993-01-01

    Progress is reported in several areas dealing with piezoelectric (electroactive) polymers (mostly vinylidene fluoride, trifluoroethylene, copolymers, PVF 2 ) and liquid crystals. Optical studies, neutron scattering, NMR, thermal, theory and modeling were done

  5. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    2012-01-01

    High Resolution NMR: Theory and Chemical Applications discusses the principles and theory of nuclear magnetic resonance and how this concept is used in the chemical sciences. This book is written at an intermediate level, with mathematics used to augment verbal descriptions of the phenomena. This text pays attention to developing and interrelating four approaches - the steady state energy levels, the rotating vector picture, the density matrix, and the product operator formalism. The style of this book is based on the assumption that the reader has an acquaintance with the general principles of quantum mechanics, but no extensive background in quantum theory or proficiency in mathematics is required. This book begins with a description of the basic physics, together with a brief account of the historical development of the field. It looks at the study of NMR in liquids, including high resolution NMR in the solid state and the principles of NMR imaging and localized spectroscopy. This book is intended to assis...

  6. NMR studies of cerebral metabolism in vivo

    International Nuclear Information System (INIS)

    Prichard, J.W.

    1986-01-01

    The nature and extent of the potential synergism between PET and NMR methods is not yet well appreciated in the biomedical community. The long-range interest of medical neurobiology will be well served by efforts of PET and NMR scientists to follow each others' work so that opportunities for productive interchange can be efficiently exploited. Appreciation of the synergism by the rest of the biomedical community will follow naturally. PET is said by the people doing it to be still in its infancy, for they are more concerned with advancing their discipline than with admiring its already impressive achievements. On the scale of the same developmental metaphor, many NMR methods for studying the living human brain are still in utero. The best way to provide the reader a sense of the current status and future course of NMR research in medical neurobiology is by discussion of published in vivo studies. Such a discussion, adapted from another article is what follows

  7. Development of Two-Dimensional NMR

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Development of Two-Dimensional NMR: Strucure Determination of Biomolecules in Solution. Anil Kumar. General Article Volume 20 Issue 11 November 2015 pp 995-1002 ...

  8. NMR spectroscopy of coal pyrolysis products

    Energy Technology Data Exchange (ETDEWEB)

    Polonov, V.M.; Kalabin, G.A.; Kushnarev, D.F.; Shevchenko, G.G.

    1985-12-01

    The authors consider the scope for using H 1 and C 13 NMR spectroscopy to describe the products from coal pyrolysis and hydrogenization. The accuracy of the structural information provided by the best NMR methods is also considered. The stuctural parameters derived from H 1 and C 13 NMR spectra are presented. Results demonstrate the high accuracy and sensitivity of the structural information provided by H 1 AND C 13 NMR spectra for coal products. There are substantial structural differences between the soluble products from medium-temperature coking of Cheremkhov coal and high-speed pyrolysis of Kan-Acha coal, and also differences in behavior during hydrogenation. These differences are related to the structure of the organic matter in the initial coal and to differences in the pyrolysis mechanisms.

  9. NMR study of hydride systems

    International Nuclear Information System (INIS)

    Peretz, M.

    1980-02-01

    The hydrides of thorium (ThH 2 , Th 4 H 15 and Th 4 D 15 ) and the intermetallic compound system (Zr(Vsub(1-x)Cosub(x)) 2 and its hydrides were investigated using the nuclear magnetic resonance (NMR) technique. From the results for the thorium hydride samples it was concluded that the density of states at the Fermi level n(Esub(f)) is higher in Th 4 H 15 than in ThH 2 ; there is an indirect reaction between the protons and the d electrons belonging to the Th atoms in Th 4 H 15 ; n(E) has a sharp structure near Esub(f). It was also found that the hydrogen diffusion mechanism changes with temperature. From the results for the intermetallic compound system conclusions were drawn concerning variations in the electronic structure, which explain the behavior of the system. In hydrogen diffusion studies in several samples it was found that Co atoms slow the diffusion rate. Quadrupole spectra obtained at low temperatures show that the H atoms preferably occupy tetrahedral sites formed by three V atoms and one Z atom. (H.K.)

  10. Frontiers of NMR in Molecular Biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-25

    NMR spectroscopy is expanding the horizons of structural biology by determining the structures and describing the dynamics of blobular proteins in aqueous solution, as well as other classes of proteins including membrane proteins and the polypeptides that form the aggregates diagnostic of prion and amyloid diseases. Significant results are also emerging on DNA and RNA oligomers and their complexes with proteins. This meeting focused attention on key structural questions emanating from molecular biology and how NMR spectroscopy can be used to answer them.

  11. NMR studies of multiphase flows II

    Energy Technology Data Exchange (ETDEWEB)

    Altobelli, S.A.; Caprihan, A.; Fukushima, E. [Lovelace Institutes, Albuquerque, NM (United States)] [and others

    1995-12-31

    NMR techniques for measurements of spatial distribution of material phase, velocity and velocity fluctuation are being developed and refined. Versions of these techniques which provide time average liquid fraction and fluid phase velocity have been applied to several concentrated suspension systems which will not be discussed extensively here. Technical developments required to further extend the use of NMR to the multi-phase flow arena and to provide measurements of previously unobtainable parameters are the focus of this report.

  12. observed by high pressure NMR and NQR

    Indian Academy of Sciences (India)

    Akogun, Hyogo 678-1297, Japan. ∗. Email: kohara@sci.himeji tech.ac.jp. Abstract. NMR and NQR studies on two interesting systems (URu2Si2, CeTIn5) were performed under high pressure. (1) URu2Si2: In the pressure range 3.0 to 8.3 kbar, we have observed new 29Si. NMR signals arising from the antiferromagnetic ...

  13. NMRbox: A Resource for Biomolecular NMR Computation.

    Science.gov (United States)

    Maciejewski, Mark W; Schuyler, Adam D; Gryk, Michael R; Moraru, Ion I; Romero, Pedro R; Ulrich, Eldon L; Eghbalnia, Hamid R; Livny, Miron; Delaglio, Frank; Hoch, Jeffrey C

    2017-04-25

    Advances in computation have been enabling many recent advances in biomolecular applications of NMR. Due to the wide diversity of applications of NMR, the number and variety of software packages for processing and analyzing NMR data is quite large, with labs relying on dozens, if not hundreds of software packages. Discovery, acquisition, installation, and maintenance of all these packages is a burdensome task. Because the majority of software packages originate in academic labs, persistence of the software is compromised when developers graduate, funding ceases, or investigators turn to other projects. To simplify access to and use of biomolecular NMR software, foster persistence, and enhance reproducibility of computational workflows, we have developed NMRbox, a shared resource for NMR software and computation. NMRbox employs virtualization to provide a comprehensive software environment preconfigured with hundreds of software packages, available as a downloadable virtual machine or as a Platform-as-a-Service supported by a dedicated compute cloud. Ongoing development includes a metadata harvester to regularize, annotate, and preserve workflows and facilitate and enhance data depositions to BioMagResBank, and tools for Bayesian inference to enhance the robustness and extensibility of computational analyses. In addition to facilitating use and preservation of the rich and dynamic software environment for biomolecular NMR, NMRbox fosters the development and deployment of a new class of metasoftware packages. NMRbox is freely available to not-for-profit users. Copyright © 2017 Biophysical Society. All rights reserved.

  14. A microscale protein NMR sample screening pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Paolo; Swapna, G. V. T.; Huang, Yuanpeng J.; Aramini, James M. [State University of New Jersey, Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers (United States); Anklin, Clemens [Bruker Biospin Corporation (United States); Conover, Kenith; Hamilton, Keith; Xiao, Rong; Acton, Thomas B.; Ertekin, Asli; Everett, John K.; Montelione, Gaetano T., E-mail: guy@cabm.rutgers.ed [State University of New Jersey, Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers (United States)

    2010-01-15

    As part of efforts to develop improved methods for NMR protein sample preparation and structure determination, the Northeast Structural Genomics Consortium (NESG) has implemented an NMR screening pipeline for protein target selection, construct optimization, and buffer optimization, incorporating efficient microscale NMR screening of proteins using a micro-cryoprobe. The process is feasible because the newest generation probe requires only small amounts of protein, typically 30-200 {mu}g in 8-35 {mu}l volume. Extensive automation has been made possible by the combination of database tools, mechanization of key process steps, and the use of a micro-cryoprobe that gives excellent data while requiring little optimization and manual setup. In this perspective, we describe the overall process used by the NESG for screening NMR samples as part of a sample optimization process, assessing optimal construct design and solution conditions, as well as for determining protein rotational correlation times in order to assess protein oligomerization states. Database infrastructure has been developed to allow for flexible implementation of new screening protocols and harvesting of the resulting output. The NESG micro NMR screening pipeline has also been used for detergent screening of membrane proteins. Descriptions of the individual steps in the NESG NMR sample design, production, and screening pipeline are presented in the format of a standard operating procedure.

  15. O-17 NMR measurement of water

    International Nuclear Information System (INIS)

    Fukazawa, Nobuyuki

    1990-01-01

    Recently, attention has been paid to the various treatment of water and the utilization of water by magnetic treatment, electric field treatment and so on. It has been said that by these treatments, the change in the properties of water arises. The state of this treated water cannot be explained by the properties of water from conventional physical and chemical standpoints. In addition, the method of measurement of whether the change arose or not is not yet determined. It is necessary to establish the method of measurement for the basic state of water. In this study, O-17 NMR which observes the state of water directly at molecular or atomic level was investigated as the method of measuring water. The measurement of O-17 NMR was carried out with a JNR 90Q FT NMR of Fourier transformation type of JEOL Ltd. The experimental method and the results are reported. The result of measurement of the O-17 NMR spectrum for distilled ion exchange water is shown. It is know that it has very wide line width as compared with the NMR spectra of protons and C-13. The relative sensitivity of O-17 observation is about 1/100,000 of that of protons. As to the information on the state of water obtained by O-17 NMR, there are chemical shift and line width. As temperature rose, the line width showed decrease, which seemed to be related to the decrease of hydrogen combination. (K.I.)

  16. Basics of spectroscopic instruments. Hardware of NMR spectrometer

    International Nuclear Information System (INIS)

    Sato, Hajime

    2009-01-01

    NMR is a powerful tool for structure analysis of small molecules, natural products, biological macromolecules, synthesized polymers, samples from material science and so on. Magnetic Resonance Imaging (MRI) is applicable to plants and animals Because most of NMR experiments can be done by an automation mode, one can forget hardware of NMR spectrometers. It would be good to understand features and performance of NMR spectrometers. Here I present hardware of a modern NMR spectrometer which is fully equipped with digital technology. (author)

  17. 33S NMR cryogenic probe for taurine detection

    Science.gov (United States)

    Hobo, Fumio; Takahashi, Masato; Maeda, Hideaki

    2009-03-01

    With the goal of a S33 nuclear magnetic resonance (NMR) probe applicable to in vivo NMR on taurine-biological samples, we have developed the S33 NMR cryogenic probe, which is applicable to taurine solutions. The NMR sensitivity gain relative to a conventional broadband probe is as large as 3.5. This work suggests that improvements in the preamplifier could allow NMR measurements on 100 μM taurine solutions, which is the level of sensitivity necessary for biological samples.

  18. Petrophysical properties of greensand as predicted from NMR measurements

    DEFF Research Database (Denmark)

    Hossain, Zakir; Grattoni, Carlos A.; Solymar, Mikael

    2011-01-01

    ABSTRACT: Nuclear magnetic resonance (NMR) is a useful tool in reservoir evaluation. The objective of this study is to predict petrophysical properties from NMR T2 distributions. A series of laboratory experiments including core analysis, capillary pressure measurements, NMR T2 measurements...... with macro-pores. Permeability may be predicted from NMR by using Kozeny's equation when surface relaxivity is known. Capillary pressure drainage curves may be predicted from NMR T2 distribution when pore size distribution within a sample is homogeneous....

  19. Continuous Flow 1H and 13C NMR Spectroscopy in Microfluidic Stripline NMR Chips

    NARCIS (Netherlands)

    Oosthoek-de Vries, Anna Jo; Bart, Jacob; Tiggelaar, Roald M.; Janssen, Johannes W.G.; van Bentum, Jan (P.J.M.); Gardeniers, Han J.G.E.; Kentgens, Arno P.M.

    2017-01-01

    Microfluidic stripline NMR technology not only allows for NMR experiments to be performed on small sample volumes in the submicroliter range, but also experiments can easily be performed in continuous flow because of the stripline's favorable geometry. In this study we demonstrate the possibility of

  20. Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR.

    Science.gov (United States)

    van der Schot, Gijs; Bonvin, Alexandre M J J

    2015-08-01

    We present here the performance of the WeNMR CS-Rosetta3 web server in CASD-NMR, the critical assessment of automated structure determination by NMR. The CS-Rosetta server uses only chemical shifts for structure prediction, in combination, when available, with a post-scoring procedure based on unassigned NOE lists (Huang et al. in J Am Chem Soc 127:1665-1674, 2005b, doi: 10.1021/ja047109h). We compare the original submissions using a previous version of the server based on Rosetta version 2.6 with recalculated targets using the new R3FP fragment picker for fragment selection and implementing a new annotation of prediction reliability (van der Schot et al. in J Biomol NMR 57:27-35, 2013, doi: 10.1007/s10858-013-9762-6), both implemented in the CS-Rosetta3 WeNMR server. In this second round of CASD-NMR, the WeNMR CS-Rosetta server has demonstrated a much better performance than in the first round since only converged targets were submitted. Further, recalculation of all CASD-NMR targets using the new version of the server demonstrates that our new annotation of prediction quality is giving reliable results. Predictions annotated as weak are often found to provide useful models, but only for a fraction of the sequence, and should therefore only be used with caution.

  1. Use of NMR and NMR Prediction Software to Identify Components in Red Bull Energy Drinks

    Science.gov (United States)

    Simpson, Andre J.; Shirzadi, Azadeh; Burrow, Timothy E.; Dicks, Andrew P.; Lefebvre, Brent; Corrin, Tricia

    2009-01-01

    A laboratory experiment designed as part of an upper-level undergraduate analytical chemistry course is described. Students investigate two popular soft drinks (Red Bull Energy Drink and sugar-free Red Bull Energy Drink) by NMR spectroscopy. With assistance of modern NMR prediction software they identify and quantify major components in each…

  2. New methods for the correction of 31P NMR spectra in in vivo NMR spectroscopy

    International Nuclear Information System (INIS)

    Starcuk, Z.; Bartusek, K.; Starcuk, Z. jr.

    1994-01-01

    The new methods for the correction of 31 P NMR spectra in vivo NMR spectroscopy have been performed. A method for the baseline correction of the spectra which represents a combination of time-domain and frequency-domain has been discussed.The method is very fast and efficient for minimization of base line artifacts of biological tissues impact

  3. Nature and structure of aluminum surface sites grafted on silica from a combination of high-field aluminum-27 solid-state NMR spectroscopy and first-principles calculations

    KAUST Repository

    Kerber, Rachel Nathaniel; Kermagoret, Anthony; Callens, Emmanuel; Florian, Pierre A.; Massiot, Dominique; Lesage, Anne; Copé ret, Christophe; Delbecq, Franç oise; Rozanska, Xavier; Sautet, Philippe

    2012-01-01

    The determination of the nature and structure of surface sites after chemical modification of large surface area oxides such as silica is a key point for many applications and challenging from a spectroscopic point of view. This has been, for instance, a long-standing problem for silica reacted with alkylaluminum compounds, a system typically studied as a model for a supported methylaluminoxane and aluminum cocatalyst. While 27Al solid-state NMR spectroscopy would be a method of choice, it has been difficult to apply this technique because of large quadrupolar broadenings. Here, from a combined use of the highest stable field NMR instruments (17.6, 20.0, and 23.5 T) and ultrafast magic angle spinning (>60 kHz), high-quality spectra were obtained, allowing isotropic chemical shifts, quadrupolar couplings, and asymmetric parameters to be extracted. Combined with first-principles calculations, these NMR signatures were then assigned to actual structures of surface aluminum sites. For silica (here SBA-15) reacted with triethylaluminum, the surface sites are in fact mainly dinuclear Al species, grafted on the silica surface via either two terminal or two bridging siloxy ligands. Tetrahedral sites, resulting from the incorporation of Al inside the silica matrix, are also seen as minor species. No evidence for putative tri-coordinated Al atoms has been found. © 2012 American Chemical Society.

  4. Nature and structure of aluminum surface sites grafted on silica from a combination of high-field aluminum-27 solid-state NMR spectroscopy and first-principles calculations

    KAUST Repository

    Kerber, Rachel Nathaniel

    2012-04-18

    The determination of the nature and structure of surface sites after chemical modification of large surface area oxides such as silica is a key point for many applications and challenging from a spectroscopic point of view. This has been, for instance, a long-standing problem for silica reacted with alkylaluminum compounds, a system typically studied as a model for a supported methylaluminoxane and aluminum cocatalyst. While 27Al solid-state NMR spectroscopy would be a method of choice, it has been difficult to apply this technique because of large quadrupolar broadenings. Here, from a combined use of the highest stable field NMR instruments (17.6, 20.0, and 23.5 T) and ultrafast magic angle spinning (>60 kHz), high-quality spectra were obtained, allowing isotropic chemical shifts, quadrupolar couplings, and asymmetric parameters to be extracted. Combined with first-principles calculations, these NMR signatures were then assigned to actual structures of surface aluminum sites. For silica (here SBA-15) reacted with triethylaluminum, the surface sites are in fact mainly dinuclear Al species, grafted on the silica surface via either two terminal or two bridging siloxy ligands. Tetrahedral sites, resulting from the incorporation of Al inside the silica matrix, are also seen as minor species. No evidence for putative tri-coordinated Al atoms has been found. © 2012 American Chemical Society.

  5. HPLC-NMR revisited: Using time-slice HPLC-SPE-NMR with database assisted dereplication

    DEFF Research Database (Denmark)

    Johansen, Kenneth; Wubshet, Sileshi Gizachew; Nyberg, Nils

    2013-01-01

    Time based trapping of chromatographically separated compounds on to solid-phase extraction cartridges (SPE) and subsequent elution to NMR-tubes was done to emulate the function of HPLC–NMR for dereplication purposes. Sufficient mass sensitivity was obtained by the use of a state-of-the-art HPLC......–SPE–NMR-system with a cryogenically cooled probe head, designed for 1.7 mm NMR-tubes. The resulting 1H NMR spectra (600 MHz) were evaluated against a database of previously acquired and prepared spectra. The in-house developed matching algorithm, based on partitioning of the spectra and allowing for changes in the chemical shifts......, is described and the code included as Supplementary Information. Two mixtures of natural products was used to test the approach; one extract of Carthamus oxyacantha (wild safflower) containing an array of spiro compounds and one extract of the endophytic fungus Penicillum namyslowski containing griseofulvin...

  6. NMR techniques in the study of cardiovascular structure and functions

    International Nuclear Information System (INIS)

    Osbakken, M.; Haselgrove, J.

    1987-01-01

    The chapter titles of this book are: Introduction to NMR Techniques;Theory of NMR Probe Design;Overview of Magnetic Resonance Imaging to Study the Cardiovascular System;Vascular Anatomy and Physiology Studied with NMR Techniques;Assessment of Myocardial Ischemia and Infarction by Nuclear Magnetic Resonance Imaging;The Use of MRI in Congenital Heart Disease;Cardiomyopathies and Myocarditis Studied with NMR Techniques;Determination of Myocardial Mechanical Function with Magnetic Resonance Imaging Techniques;Determination of Flow Using NMR Techniques;The Use of Contrast Agents in Cardiac MRI;Can Cardiovascular Disease Be Effectively Evaluated with NMR Spectroscopy? NMR Studies of ATP Synthesis Reactions in the Isolated Heart;Studies of Intermediary Metabolism in the Heart by 13C NMR Spectroscopy;23Na and 39K NMR Spectroscopic Studies of the Intact Beating Heart;and Evaluation of Skeletal Muscle Metabolism in Patients with Congestive Heart Failure Using Phosphorus Nuclear Magnetic Resonance

  7. High resolution NMR spectroscopy of synthetic polymers in bulk

    International Nuclear Information System (INIS)

    Komorski, R.A.

    1986-01-01

    The contents of this book are: Overview of high-resolution NMR of solid polymers; High-resolution NMR of glassy amorphous polymers; Carbon-13 solid-state NMR of semicrystalline polymers; Conformational analysis of polymers of solid-state NMR; High-resolution NMR studies of oriented polymers; High-resolution solid-state NMR of protons in polymers; and Deuterium NMR of solid polymers. This work brings together the various approaches for high-resolution NMR studies of bulk polymers into one volume. Heavy emphasis is, of course, given to 13C NMR studies both above and below Tg. Standard high-power pulse and wide-line techniques are not covered

  8. Nuclear magnetic resonance (NMR): principles and applications

    International Nuclear Information System (INIS)

    Quibilan, E.I.

    The basis for the phenomenon of nuclear magnetic resonance (NMR) is the ability of certain nuclei possessing both intrinsic angular momentum or ''spin'' I and magnetic moment to absorb electromagnetic energy in the radio frequency range. In principle, there are approximately 200 nuclei which may be investigated using the NMR technique. The NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum provides a variety of qualitative and quantitative analytical applications. The most obvious applications consist of the measurements of nuclear properties, such as spin number and nuclear magnetic moment. In liquids, the fine structure of resonance spectra provides a tool for chemical identification and molecular structure analysis. Other applications include the measurements of self-diffusion coefficients, magnetic fields and field homogeneity, inter-nuclear distances, and, in some cases, the water content of biological materials. (author)

  9. NMR Phase Noise in Bitter Magnets

    Science.gov (United States)

    Sigmund, E. E.; Calder, E. S.; Thomas, G. W.; Mitrović, V. F.; Bachman, H. N.; Halperin, W. P.; Kuhns, P. L.; Reyes, A. P.

    2001-02-01

    We have studied the temporal instability of a high field resistive Bitter magnet through nuclear magnetic resonance (NMR). This instability leads to transverse spin decoherence in repeated and accumulated NMR experiments as is normally performed during signal averaging. We demonstrate this effect via Hahn echo and Carr-Purcell-Meiboom-Gill (CPMG) transverse relaxation experiments in a 23-T resistive magnet. Quantitative analysis was found to be consistent with separate measurements of the magnetic field frequency fluctuation spectrum, as well as with independent NMR experiments performed in a magnetic field with a controlled instability. Finally, the CPMG sequence with short pulse delays is shown to be successful in recovering the intrinsic spin-spin relaxation even in the presence of magnetic field temporal instability.

  10. Remote tuning of NMR probe circuits.

    Science.gov (United States)

    Kodibagkar, V D; Conradi, M S

    2000-05-01

    There are many circumstances in which the probe tuning adjustments cannot be located near the rf NMR coil. These may occur in high-temperature NMR, low-temperature NMR, and in the use of magnets with small diameter access bores. We address here circuitry for connecting a fixed-tuned probe circuit by a transmission line to a remotely located tuning network. In particular, the bandwidth over which the probe may be remotely tuned while keeping the losses in the transmission line acceptably low is considered. The results show that for all resonant circuit geometries (series, parallel, series-parallel), overcoupling of the line to the tuned circuit is key to obtaining a large tuning bandwidth. At equivalent extents of overcoupling, all resonant circuit geometries have nearly equal remote tuning bandwidths. Particularly for the case of low-loss transmission line, the tuning bandwidth can be many times the tuned circuit's bandwidth, f(o)/Q. Copyright 2000 Academic Press.

  11. Deuterium NMR, induced and intrinsic cholesteric lyomesophases

    International Nuclear Information System (INIS)

    Alcantara, M.R.

    1982-01-01

    Induced and intrinsic cholesteric lyotropic mesophases were studied. Induced cholesteric lyomesophases based on potassium laurate (KL) system, with small amounts of cholesterol added, were studied by deuterium NMR and by polarizing microscopy. Order profiles obtained from deuterium NMR of KL perdenderated chains in both induced cholesteric and normal mesophases were compared. The intrinsic cholesteric lyotropic mesophases were based on the amphiphile potassium N-lauroyl serinate (KLNS) in the resolved levo form. The study of the type I intrinsic cholesteric mesophase was made by optical microscopy under polarized light and the type II intrinsic cholesteric lyomesophase was characterized by deuterium NMR. The new texture was explained by the use of the theory of disclinations developed for thermotropic liquid crystals, specially for cholesteric type. (M.J.C.) [pt

  12. Determination of solid fat content by NMR

    International Nuclear Information System (INIS)

    Kawada, Tsukasa; Kato, Chihiro; Suzuki, Kazuaki

    1984-01-01

    To establish a standard method for determing solid fat content, the NMR method was tested at six laboratories and the results were examined for collaboration. Two types of instruments, pulse NMR and wide-line NMR were used. Standard deviation in results at six laboratories was less than 1.5 for the step wise method, but more than 1.5 for the rapid method. The standard deviation in results at a single laboratory was much less than either of these cases. No significant difference could be observed in the values obtained using both instruments. Solid fat content values measured for a mixture of fully hydrogenated rapeseed and rapeseed oil agreed well with the percentage of solid by weight. (author)

  13. Muscular pathology: echographic and NMR imaging aspects

    International Nuclear Information System (INIS)

    Pascal-Suisse, P.; Beaurain, P.; Mougniot, C.

    1995-01-01

    A comparison of echographic techniques and NMR imaging has been done for the diagnosis of muscular trauma and tumor pathologies. In traumatic pathology, the echographic analysis allows to determine the complete assessment of recent muscular injuries. NMR imaging can be used in granuloma or fibrous callosity appreciation and for the analysis of deep injury (muscles and muscles-tendon junctions) and of muscular aponeurosis. Echography must be used together with color coding Doppler technique in the diagnosis of tumor pathology and for the study of slow fluxes. The recently available energy Doppler technique seems to be powerful in the study of vascularization of small expansive formations, but their extension to adjacent bone or tissue can only be appreciated using NMR imaging. (J.S.)

  14. Contact replacement for NMR resonance assignment.

    Science.gov (United States)

    Xiong, Fei; Pandurangan, Gopal; Bailey-Kellogg, Chris

    2008-07-01

    Complementing its traditional role in structural studies of proteins, nuclear magnetic resonance (NMR) spectroscopy is playing an increasingly important role in functional studies. NMR dynamics experiments characterize motions involved in target recognition, ligand binding, etc., while NMR chemical shift perturbation experiments identify and localize protein-protein and protein-ligand interactions. The key bottleneck in these studies is to determine the backbone resonance assignment, which allows spectral peaks to be mapped to specific atoms. This article develops a novel approach to address that bottleneck, exploiting an available X-ray structure or homology model to assign the entire backbone from a set of relatively fast and cheap NMR experiments. We formulate contact replacement for resonance assignment as the problem of computing correspondences between a contact graph representing the structure and an NMR graph representing the data; the NMR graph is a significantly corrupted, ambiguous version of the contact graph. We first show that by combining connectivity and amino acid type information, and exploiting the random structure of the noise, one can provably determine unique correspondences in polynomial time with high probability, even in the presence of significant noise (a constant number of noisy edges per vertex). We then detail an efficient randomized algorithm and show that, over a variety of experimental and synthetic datasets, it is robust to typical levels of structural variation (1-2 AA), noise (250-600%) and missings (10-40%). Our algorithm achieves very good overall assignment accuracy, above 80% in alpha-helices, 70% in beta-sheets and 60% in loop regions. Our contact replacement algorithm is implemented in platform-independent Python code. The software can be freely obtained for academic use by request from the authors.

  15. Prediction of peak overlap in NMR spectra

    International Nuclear Information System (INIS)

    Hefke, Frederik; Schmucki, Roland; Güntert, Peter

    2013-01-01

    Peak overlap is one of the major factors complicating the analysis of biomolecular NMR spectra. We present a general method for predicting the extent of peak overlap in multidimensional NMR spectra and its validation using both, experimental data sets and Monte Carlo simulation. The method is based on knowledge of the magnetization transfer pathways of the NMR experiments and chemical shift statistics from the Biological Magnetic Resonance Data Bank. Assuming a normal distribution with characteristic mean value and standard deviation for the chemical shift of each observable atom, an analytic expression was derived for the expected overlap probability of the cross peaks. The analytical approach was verified to agree with the average peak overlap in a large number of individual peak lists simulated using the same chemical shift statistics. The method was applied to eight proteins, including an intrinsically disordered one, for which the prediction results could be compared with the actual overlap based on the experimentally measured chemical shifts. The extent of overlap predicted using only statistical chemical shift information was in good agreement with the overlap that was observed when the measured shifts were used in the virtual spectrum, except for the intrinsically disordered protein. Since the spectral complexity of a protein NMR spectrum is a crucial factor for protein structure determination, analytical overlap prediction can be used to identify potentially difficult proteins before conducting NMR experiments. Overlap predictions can be tailored to particular classes of proteins by preparing statistics from corresponding protein databases. The method is also suitable for optimizing recording parameters and labeling schemes for NMR experiments and improving the reliability of automated spectra analysis and protein structure determination.

  16. Applications of NMR spectroscopy to xenobiotic metabolism

    International Nuclear Information System (INIS)

    Harris, T.M.

    1989-01-01

    Recent years have seen high field NMR spectrometers become commonplace in research laboratories. At the same time, major advances in methodology for structural analysis have occurred, particularly notable among these being the development of two-dimensional spectroscopic techniques. Many applications have been made of NMR spectroscopy in the study of xenobiotic metabolic processes. This deals with two specific applications which have been made in the author's laboratory and involve mechanistic studies of the reactions of the carcinogens ethylene dibromide and aflatoxin with DNA

  17. Tritiation methods and tritium NMR spectroscopy

    International Nuclear Information System (INIS)

    Jaiswal, D.K.; Morimoto, H.; Salijoughian, M.; Williams, P.G.

    1991-09-01

    We have used a simple process for the production of highly tritiated water and characterized the product species by 1 H and 3 H NMR spectroscopy. The water is readily manipulated and used in subsequent reactions either as T 2 O, CH 3 COOT or CF 3 COOT. Development of tritiated diimide has progressed to the point where cis-hydrogenated products at 1-20 Ci/mmole S.A. are possible. Tri-n-butyl tin tritide has been produced at >95% tritium content and well characterized by multinuclear NMR techniques. 27 refs., 3 figs

  18. Applications of NMR in biological metabolic research

    International Nuclear Information System (INIS)

    Nie Jiarui; Li Xiuqin; He Chunjian

    1989-01-01

    The nuclear magnetic resonance has become a powerful means of studying biological metabolism in non-invasive and non-destructive way. Being used to study the metabolic processes of living system in normal physiological conditions as well as in molecular level, the method is better than other conventional approaches. Using important parameters such as NMR-chemical shifts, longitudinal relaxation time and transverse relaxation time, it is possible to probe the metabolic processes as well as conformation, concentration, transportation and distribution of reacting and resulting substances. The NMR spectroscopy of 1 H, 31 P and 13 C nuclei has already been widely used in metabolic researches

  19. Deuteron NMR and modelling in solid polymers

    International Nuclear Information System (INIS)

    Hirschinger, J.

    1992-01-01

    Deuteron NMR techniques are described and some recent applications to the study of rotational motions in solid polymers are reviewed. The information content and the domain of applicability of each technique are presented. Ultra-slow motions are studied in real time without any motional model consideration. For very fast motions, computer molecular dynamics simulations are shown to complement the NMR results. Experimental examples deal with the chain motion in the crystalline α-phase of poly(vinylidenefluoride) and nylon 6,6

  20. Programmable pulse series generator for NMR relaxometer

    International Nuclear Information System (INIS)

    Stolbunov, R.N.; Chichikov, S.A.; Lundin, A.G.

    2005-01-01

    Paper describes a pulse series generator for NMR relaxometer. The operation mode is set on the basis of the PC program by the PCI bus in the internal memory. The design is based on two Altera Company MAX7000S and Cyclone family microcircuits using the Qartus II 4.0 software. The basic parameters are as follows: pulse minimum length - 50 ns, time resolution - 10 ns, pulse maximum number - 1024, number of controlled output channels - 8. The designed device as a part of the NMR hardware-software system enables to record, to process and to store the experiment results in the form of electronic document [ru

  1. NMR relaxation times of natural rubber latex

    International Nuclear Information System (INIS)

    Harun, S.; Aziz, H.; Basir, Z.

    1994-01-01

    NMR relaxation times T sub 1 and T sub 2 of natural rubber latex have been measured at 25 degree C on a pulsed NMR spectrometer. The work focuses on the variation of the relaxation times with the amount of water content from 0% to 50%. The water content was adjusted by centrifuging and removing a certain amount of water from the sample. The data were analysed using a biexponential fitting procedure which yields simultaneously either T sub 1a and T sub 1b or T sub 2a and T sub 2b. The amount of solid was compared with the known amount of dry rubber content

  2. Recommendations of the wwPDB NMR Validation Task Force

    Science.gov (United States)

    Montelione, Gaetano T.; Nilges, Michael; Bax, Ad; Güntert, Peter; Herrmann, Torsten; Richardson, Jane S.; Schwieters, Charles; Vranken, Wim F.; Vuister, Geerten W.; Wishart, David S.; Berman, Helen M.; Kleywegt, Gerard J.; Markley, John L.

    2013-01-01

    As methods for analysis of biomolecular structure and dynamics using nuclear magnetic resonance spectroscopy (NMR) continue to advance, the resulting 3D structures, chemical shifts, and other NMR data are broadly impacting biology, chemistry, and medicine. Structure model assessment is a critical area of NMR methods development, and is an essential component of the process of making these structures accessible and useful to the wider scientific community. For these reasons, the Worldwide Protein Data Bank (wwPDB) has convened an NMR Validation Task Force (NMR-VTF) to work with the wwPDB partners in developing metrics and policies for biomolecular NMR data harvesting, structure representation, and structure quality assessment. This paper summarizes the recommendations of the NMR-VTF, and lays the groundwork for future work in developing standards and metrics for biomolecular NMR structure quality assessment. PMID:24010715

  3. Structural properties of carbon nanotubes derived from 13C NMR

    KAUST Repository

    Abou-Hamad, E.; Babaa, M.-R.; Bouhrara, M.; Kim, Y.; Saih, Y.; Dennler, S.; Mauri, F.; Basset, Jean-Marie; Goze-Bac, C.; Wå gberg, T.

    2011-01-01

    We present a detailed experimental and theoretical study on how structural properties of carbon nanotubes can be derived from 13C NMR investigations. Magic angle spinning solid state NMR experiments have been performed on single- and multiwalled

  4. nmrML: A Community Supported Open Data Standard for the Description, Storage, and Exchange of NMR Data.

    Science.gov (United States)

    Schober, Daniel; Jacob, Daniel; Wilson, Michael; Cruz, Joseph A; Marcu, Ana; Grant, Jason R; Moing, Annick; Deborde, Catherine; de Figueiredo, Luis F; Haug, Kenneth; Rocca-Serra, Philippe; Easton, John; Ebbels, Timothy M D; Hao, Jie; Ludwig, Christian; Günther, Ulrich L; Rosato, Antonio; Klein, Matthias S; Lewis, Ian A; Luchinat, Claudio; Jones, Andrew R; Grauslys, Arturas; Larralde, Martin; Yokochi, Masashi; Kobayashi, Naohiro; Porzel, Andrea; Griffin, Julian L; Viant, Mark R; Wishart, David S; Steinbeck, Christoph; Salek, Reza M; Neumann, Steffen

    2018-01-02

    NMR is a widely used analytical technique with a growing number of repositories available. As a result, demands for a vendor-agnostic, open data format for long-term archiving of NMR data have emerged with the aim to ease and encourage sharing, comparison, and reuse of NMR data. Here we present nmrML, an open XML-based exchange and storage format for NMR spectral data. The nmrML format is intended to be fully compatible with existing NMR data for chemical, biochemical, and metabolomics experiments. nmrML can capture raw NMR data, spectral data acquisition parameters, and where available spectral metadata, such as chemical structures associated with spectral assignments. The nmrML format is compatible with pure-compound NMR data for reference spectral libraries as well as NMR data from complex biomixtures, i.e., metabolomics experiments. To facilitate format conversions, we provide nmrML converters for Bruker, JEOL and Agilent/Varian vendor formats. In addition, easy-to-use Web-based spectral viewing, processing, and spectral assignment tools that read and write nmrML have been developed. Software libraries and Web services for data validation are available for tool developers and end-users. The nmrML format has already been adopted for capturing and disseminating NMR data for small molecules by several open source data processing tools and metabolomics reference spectral libraries, e.g., serving as storage format for the MetaboLights data repository. The nmrML open access data standard has been endorsed by the Metabolomics Standards Initiative (MSI), and we here encourage user participation and feedback to increase usability and make it a successful standard.

  5. Software Library for Bruker TopSpin NMR Data Files

    Energy Technology Data Exchange (ETDEWEB)

    2016-10-14

    A software library for parsing and manipulating frequency-domain data files that have been processed using the Bruker TopSpin NMR software package. In the context of NMR, the term "processed" indicates that the end-user of the Bruker TopSpin NMR software package has (a) Fourier transformed the raw, time-domain data (the Free Induction Decay) into the frequency-domain and (b) has extracted the list of NMR peaks.

  6. NMR imaging of the cardiovascular system

    International Nuclear Information System (INIS)

    Canby, R.C.; Evanochko, W.T.; Pohost, G.M.

    1986-01-01

    Proton nuclear magnetic resonance (NMR) imaging permits high-resolution tomographic and three-dimensional images of the human body to be obtained without exposure to ionizing radiation. Such imaging not only yields anatomic resolution comparable to X-ray examinations but also provides a potential means to discriminate between healthy tissue and diseased tissue. This potential is based on certain NMR properties known as relaxation times, which determine, in part, the signal intensity in an image. These properties are related to such factors as the sizes and concentrations of proteins and mobile lipids and the compartmentalization of the protons of water. Although NMR imaging (also called magnetic resonance imaging, MRI) is becoming widely available for clinical use, application to the cardiovascular system, though promising, remains primarily a research tool. Gated proton NMR imaging can generate cardiac images with excellent morphologic detail and contrast; however, its ultimate importance as a cardiovascular diagnostic modality will depend on the development of several unique applications. These applications are discussed in this paper

  7. NMR imaging of the musculoskeletal system

    International Nuclear Information System (INIS)

    Naegele, M.; Lienemann, A.; Hahn, D.

    1988-01-01

    NMR imaging now allows in vivo imaging of soft tissue hitherto undetectable by non-invasive means. This opens up excellent perspectives with regard to the diagnosis and therapy of various diseases in the field of traumatology and oncology, of which examples are discussed in this paper. (orig.) [de

  8. Fourier transform zero field NMR and NQR

    International Nuclear Information System (INIS)

    Zax, D.B.

    1985-01-01

    In many systems the chemical shifts measured by traditional high resolution solid state NMR methods are insufficiently sensitive, or the information contained in the dipole-dipole couplings is more important. In these cases, Fourier transform zero field magnetic resonance may make an important contribution. Zero field NMR and NQR is the subject of this thesis. Chapter I presents the quantum mechanical background and notational formalism for what follows. Chapter II gives a brief review of high resolution magnetic resonance methods, with particular emphasis on techniques applicable to dipole-dipole and quadrupolar couplings. Level crossings between spin-1/2 and quadrupolar spins during demagnetization transfer polarization from high to low λ nuclei. This is the basis of very high sensitivity zero field NQR measurements by field cycling. Chapter III provides a formal presentation of the high resolution Fourier transform zero field NMR method. Theoretical signal functions are calculated for common spin systems, and examples of typical spectra are presented. Chapters IV and V review the experimental progress in zero field NMR of dipole-dipole coupled spin-1/2 nuclei and for quadrupolar spin systems. Variations of the simple experiment describe in earlier chapters that use pulsed dc fields are presented in Chapter VI

  9. NMR analog of Bell's inequalities violation test

    International Nuclear Information System (INIS)

    Souza, A M; Oliveira, I S; Sarthour, R S; Magalhaes, A; Teles, J; Azevedo, E R de; Bonagamba, T J

    2008-01-01

    In this paper, we present an analog of Bell's inequalities violation test for N qubits to be performed in a nuclear magnetic resonance (NMR) quantum computer. This can be used to simulate or predict the results for different Bell's inequality tests, with distinct configurations and a larger number of qubits. To demonstrate our scheme, we implemented a simulation of the violation of the Clauser, Horne, Shimony and Holt (CHSH) inequality using a two-qubit NMR system and compared the results to those of a photon experiment. The experimental results are well described by the quantum mechanics theory and a local realistic hidden variables model (LRHVM) that was specifically developed for NMR. That is why we refer to this experiment as a simulation of Bell's inequality violation. Our result shows explicitly how the two theories can be compatible with each other due to the detection loophole. In the last part of this work, we discuss the possibility of testing some fundamental features of quantum mechanics using NMR with highly polarized spins, where a strong discrepancy between quantum mechanics and hidden variables models can be expected

  10. NMR Analysis of Some Pentacycloundecanedione Derivatives

    African Journals Online (AJOL)

    NJD

    Although many authors have commented on the difficulty of ... coming these former difficulties. Cookson's dione 19,10 .... and 2.58 ppm) is the common factor and the positions of H-2. (2.94 ppm) .... Owing to advances in NMR technology, the.

  11. Proton NMR imaging in experimental ischemic infarction

    International Nuclear Information System (INIS)

    Buonanno, F.S.; Pykett, I.L.; Brady, T.J.; Vielma, J.; Burt, C.T.; Goldman, M.R.; Hinshaw, W.S.; Pohost, G.M.; Kistler, J.P.

    1983-01-01

    Proton nuclear magnetic resonance (NMR) images depict the distribution and concentration of mobile protons modified by the relaxation times T1 and T2. Using the steady-state-free-precession (SSFP) technique, serial coronal images were obtained sequentially over time in laboratory animals with experimental ischemic infarction. Image changes were evident as early as 2 hours after carotid artery ligation, and corresponded to areas of ischemic infarction noted pathologically. Resulting SSFP images in experimental stroke are contrasted to inversion-recovery NMR images in an illustrative patient with established cerebral infarction. Bulk T1 and T2 measurements were made in vitro in three groups of gerbils: normal, those with clinical evidence of infarction, and those clinically normal after carotid ligature. Infarcted hemispheres had significantly prolonged T1 and T2 (1.47 +/- .12 sec, 76.0 +/- 9.0 msec, respectively) when compared to the contralateral hemisphere (T1 . 1.28 +/- .05 sec, T2 . 58.7 +/- 3.9 msec) or to the other two groups. These data suggest that changes in NMR parameters occur and can be detected by NMR imaging as early as two hours after carotid artery ligation

  12. Hyperpolarized NMR Probes for Biological Assays

    Directory of Open Access Journals (Sweden)

    Sebastian Meier

    2014-01-01

    Full Text Available During the last decade, the development of nuclear spin polarization enhanced (hyperpolarized molecular probes has opened up new opportunities for studying the inner workings of living cells in real time. The hyperpolarized probes are produced ex situ, introduced into biological systems and detected with high sensitivity and contrast against background signals using high resolution NMR spectroscopy. A variety of natural, derivatized and designed hyperpolarized probes has emerged for diverse biological studies including assays of intracellular reaction progression, pathway kinetics, probe uptake and export, pH, redox state, reactive oxygen species, ion concentrations, drug efficacy or oncogenic signaling. These probes are readily used directly under natural conditions in biofluids and are often directly developed and optimized for cellular assays, thus leaving little doubt about their specificity and utility under biologically relevant conditions. Hyperpolarized molecular probes for biological NMR spectroscopy enable the unbiased detection of complex processes by virtue of the high spectral resolution, structural specificity and quantifiability of NMR signals. Here, we provide a survey of strategies used for the selection, design and use of hyperpolarized NMR probes in biological assays, and describe current limitations and developments.

  13. Structural Studies of Biological Solids Using NMR

    Science.gov (United States)

    Ramamoorthy, Ayyalusamy

    2011-03-01

    High-resolution structure and dynamics of biological molecules are important in understanding their function. While studies have been successful in solving the structures of water-soluble biomolecules, it has been proven difficult to determine the structures of membrane proteins and fibril systems. Recent studies have shown that solid-state NMR is a promising technique and could be highly valuable in studying such non-crystalline and non-soluble biosystems. I will present strategies to study the structures of such challenging systems and also about the applications of solid-state NMR to study the modes of membrane-peptide interactions for a better assessment of the prospects of antimicrobial peptides as substitutes to antibiotics in the control of human disease. Our studies on the mechanism of membrane disruption by LL-37 (a human antimicrobial peptide), analogs of the naturally occurring antimicrobial peptide magainin2 extracted from the skin of the African frog Xenopus Laevis, and pardaxin will be presented. Solid-state NMR experiments were used to determine the secondary structure, dynamics and topology of these peptides in lipid bilayers. Similarities and difference in the cell-lysing mechanism, and their dependence on the membrane composition, of these peptides will be discussed. Atomic-level resolution NMR structures of amyloidogenic proteins revealing the misfolding pathway and early intermediates that play key roles in amyloid toxicity will also be presented.

  14. Synthesis and NMR elucidation of novel pentacycloundecane ...

    African Journals Online (AJOL)

    NICO

    SYNTHESIS AND NMR ELUCIDATION OF NOVEL. PENTACYCLOUNDECANE DERIVED PEPTIDES. Rajshekhar Karpoormath, a. Oluseye K. Onajole, a. Thavendran Govender, b. Glenn E. M. Maguire, a and Hendrik G. Kruger a* a. School of Chemistry, University of KwaZulu-Natal, Durban 4001, South Africa b. School of ...

  15. The bar coil for NMR tomograph

    International Nuclear Information System (INIS)

    Bogorodzki, P.; Piatkowski, A.; Wasielewski, J.

    1995-01-01

    The bar coil (bi-planar) for the NMR tomograph, designed for medical diagnostics, has been described. The tests of coil shown that it generates good homogenous magnetic field in a big volume what results in improving of the signal-to-noise ratio

  16. NMR characterization of polymers: Review and update

    Science.gov (United States)

    NMR spectroscopy is a major technique for the characterization and analysis of polymers. A large number of methodologies have been developed in both the liquid and the solid state, and the literature has grown considerably (1-5). The field now covers a broad spectrum of activities, including polym...

  17. Some exercises in quantitative NMR imaging

    International Nuclear Information System (INIS)

    Bakker, C.J.G.

    1985-01-01

    The articles represented in this thesis result from a series of investigations that evaluate the potential of NMR imaging as a quantitative research tool. In the first article the possible use of proton spin-lattice relaxation time T 1 in tissue characterization, tumor recognition and monitoring tissue response to radiotherapy is explored. The next article addresses the question whether water proton spin-lattice relaxation curves of biological tissues are adequately described by a single time constant T 1 , and analyzes the implications of multi-exponentiality for quantitative NMR imaging. In the third article the use of NMR imaging as a quantitative research tool is discussed on the basis of phantom experiments. The fourth article describes a method which enables unambiguous retrieval of sign information in a set of magnetic resonance images of the inversion recovery type. The next article shows how this method can be adapted to allow accurate calculation of T 1 pictures on a pixel-by-pixel basis. The sixth article, finally, describes a simulation procedure which enables a straightforward determination of NMR imaging pulse sequence parameters for optimal tissue contrast. (orig.)

  18. Structures of Biomolecules by NMR Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    an edge over the X-ray method as it can be used to study biomolecules ... currently as an Associate. Professor. ... Such a wealth of data is made available to the NMR ... important step towards structural characterization of a biomolecule. Box 1.

  19. NMR blood vessel imaging method and apparatus

    International Nuclear Information System (INIS)

    Riederer, S.J.

    1988-01-01

    A high speed method of forming computed images of blood vessels based on measurements of characteristics of a body is described comprising the steps of: subjecting a predetermined body area containing blood vessels of interest to, successively, applications of a short repetition time (TR) NMR pulse sequence during the period of high blood velocity and then to corresponding applications during the period of low blood velocity for successive heart beat cycles; weighting the collected imaging data from each application of the NMR pulse sequence according to whether the data was acquired during the period of high blood velocity or a period of low blood velocity of the corresponding heart beat cycle; accumulating weighted imaging data from a plurality of NMR pulse sequences corresponding to high blood velocity periods and from a plurality of NMR pulse sequences corresponding to low blood velocity periods; subtracting the weighted imaging data corresponding to each specific phase encoding acquired during the high blood velocity periods from the weighted imaging data for the same phase encoding corresponding to low blood velocity periods in order to compute blood vessel imaging data; and forming an image of the blood vessels of interest from the blood vessel imaging data

  20. Recent Advances in Targeted and Untargeted Metabolomics by NMR and MS/NMR Methods

    Energy Technology Data Exchange (ETDEWEB)

    Bingol, Kerem

    2018-04-18

    Metabolomics has made significant progress in multiple fronts in the last 18 months. This minireview aimed to give an overview of these advancements in the light of their contribution to targeted and untargeted metabolomics. New computational approaches have emerged to overcome manual absolute quantitation step of metabolites in 1D 1H NMR spectra. This provides more consistency between inter-laboratory comparisons. Integration of 2D NMR metabolomics databases under a unified web server allowed very accurate identification of the metabolites that have been catalogued in these databases. For the remaining uncatalogued and unknown metabolites, new cheminformatics approaches have been developed by combining NMR and mass spectrometry. These hybrid NMR/MS approaches accelerated the identification of unknowns in untargeted studies, and now they are allowing to profile ever larger number of metabolites in application studies.

  1. Solid-state NMR spectroscopy on complex biomolecules

    NARCIS (Netherlands)

    Renault, M.A.M.; Cukkemane, A.A.; Baldus, M.

    2010-01-01

    Biomolecular applications of NMR spectroscopy are often merely associated with soluble molecules or magnetic resonance imaging. However, since the late 1970s, solid-state NMR (ssNMR) spectroscopy has demonstrated its ability to provide atomic-level insight into complex biomolecular systems ranging

  2. Polymeric proanthocyanidins 13C NMR studies of procyanidins

    Science.gov (United States)

    Lawrence J. Porter; Roger H. Newman; Lai Yeap Foo; Herbert Wong; Richard W. Hemingway

    1982-01-01

    Proanthocyanidin polymers have been shown to consist entirely of flavan-3-ol units by a combination of techniques including 13C n.m.r. spectroscopy. The 13C n.m.r. spectra of the polymers and related molecules are now considered in more detail. Prior to this study UC n.m.r. data has been published of procyanidins and...

  3. Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR

    Energy Technology Data Exchange (ETDEWEB)

    Schot, Gijs van der [Uppsala University, Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology (Sweden); Bonvin, Alexandre M. J. J., E-mail: a.m.j.j.bonvin@uu.nl [Utrecht University, Faculty of Science – Chemistry, Bijvoet Center for Biomolecular Research (Netherlands)

    2015-08-15

    We present here the performance of the WeNMR CS-Rosetta3 web server in CASD-NMR, the critical assessment of automated structure determination by NMR. The CS-Rosetta server uses only chemical shifts for structure prediction, in combination, when available, with a post-scoring procedure based on unassigned NOE lists (Huang et al. in J Am Chem Soc 127:1665–1674, 2005b, doi: 10.1021/ja047109h 10.1021/ja047109h ). We compare the original submissions using a previous version of the server based on Rosetta version 2.6 with recalculated targets using the new R3FP fragment picker for fragment selection and implementing a new annotation of prediction reliability (van der Schot et al. in J Biomol NMR 57:27–35, 2013, doi: 10.1007/s10858-013-9762-6 10.1007/s10858-013-9762-6 ), both implemented in the CS-Rosetta3 WeNMR server. In this second round of CASD-NMR, the WeNMR CS-Rosetta server has demonstrated a much better performance than in the first round since only converged targets were submitted. Further, recalculation of all CASD-NMR targets using the new version of the server demonstrates that our new annotation of prediction quality is giving reliable results. Predictions annotated as weak are often found to provide useful models, but only for a fraction of the sequence, and should therefore only be used with caution.

  4. Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR

    International Nuclear Information System (INIS)

    Schot, Gijs van der; Bonvin, Alexandre M. J. J.

    2015-01-01

    We present here the performance of the WeNMR CS-Rosetta3 web server in CASD-NMR, the critical assessment of automated structure determination by NMR. The CS-Rosetta server uses only chemical shifts for structure prediction, in combination, when available, with a post-scoring procedure based on unassigned NOE lists (Huang et al. in J Am Chem Soc 127:1665–1674, 2005b, doi: 10.1021/ja047109h 10.1021/ja047109h ). We compare the original submissions using a previous version of the server based on Rosetta version 2.6 with recalculated targets using the new R3FP fragment picker for fragment selection and implementing a new annotation of prediction reliability (van der Schot et al. in J Biomol NMR 57:27–35, 2013, doi: 10.1007/s10858-013-9762-6 10.1007/s10858-013-9762-6 ), both implemented in the CS-Rosetta3 WeNMR server. In this second round of CASD-NMR, the WeNMR CS-Rosetta server has demonstrated a much better performance than in the first round since only converged targets were submitted. Further, recalculation of all CASD-NMR targets using the new version of the server demonstrates that our new annotation of prediction quality is giving reliable results. Predictions annotated as weak are often found to provide useful models, but only for a fraction of the sequence, and should therefore only be used with caution

  5. cap alpha. -transfer reactions /sup 27/Al(/sup 6/Li, d)/sup 31/P, /sup 29/Si(/sup 6/Li, d)/sup 33/S and /sup 31/P(/sup 6/Li, d)/sup 35/Cl at 36 MeV. [Angular distributions, EFR DWBA, spectroscopic strengths

    Energy Technology Data Exchange (ETDEWEB)

    Eswaran, M A; Gove, H E; Cook, R; Sikora, B [Rochester Univ., NY (USA). Nuclear Structure Research Lab.

    1979-08-13

    The ..cap alpha..-transfer reactions /sup 27/Al(/sup 6/Li,d)/sup 31/P,/sup 29/Si(/sup 6/Li,d) /sup 33/S and /sup 31/P(Li,d)/sup 35/Cl have been studied at a /sup 6/Li energy of 36 MeV. Absolute cross sections and angular distributions have been measured and an exact finite-range distorted-wave Born approximation analysis assuming a direct cluster transfer has been used to extract from the data ..cap alpha..-particle spectroscopic strengths for levels populated in /sup 31/P, /sup 33/S and /sup 35/Cl in three reactions respectively. The results show that in the case of most of the low-lying excited states of /sup 31/P a single value of L of the transferred ..cap alpha..-particle contributes, though a multiplicity of L-values are allowed by angular momentum selection rules. It is also found that the ..cap alpha..-particle spectroscopic strength of the ground state of /sup 31/P is a factor of 2 more than the strengths of the ground states of /sup 33/S and /sup 35/Cl. The ..cap alpha..-spectroscopic strengths of ground states of these, as well as other odd-A s-d shell nuclei, are compared with the presently available shell model calculations.

  6. First NMR Experiments in the Hybrid, 40T and beyond: A challenge to traditional NMR instrumentation

    Science.gov (United States)

    Reyes, Arneil P.

    2001-03-01

    The recent commissioning of the continuous 45T hybrid magnet at NHMFL has opened new horizon for science but carried with it new challenges that forced NMR spectroscopists to reevaluate the traditional approach to NMR instrumentation. Very recently, a world record frequency at 1.5GHz has been achieved, signaling the new era of NMR probe designs that may someday blur the distinction between the classic NMR and millimeter-wave spectroscopies. No longer can we ignore stray capacitances and exposed leads in the terrain where every millimeter of cable counts. The challenge brought about by ever increasing fields and consequently, frequency, requirements has stimulated ingenuity among scientists. This is eased by accelerated growth in RF communications and computing technologies that made available advanced devices with more speed, power, bandwidth, noise immunity, flexibility, and complexity in small space at very low costs. Utilization of these devices have been paramount consideration in cutting-edge designs at NHMFL for Condensed Matter NMR and will be described in this talk. I will also discuss a number of first >33T NMR experiments to date utilizing the strength of the field to expose, as well as to induce occurrence of, new physical phenomena in condensed matter and which resulted in better understanding of the physics of materials. This work has been a result of continuing collaboration with P. L Kuhns, W. G. Moulton, W. P. Halperin (NU), and W. G. Clark (UCLA). The NHMFL is supported through the National Science Foundation and the State of Florida.

  7. Direct 13C NMR Detection in HPLC Hyphenation Mode

    DEFF Research Database (Denmark)

    Wubshet, Sileshi Gizachew; Johansen, Kenneth; Nyberg, Nils

    2012-01-01

    Solid phase extraction (SPE) was introduced as a crucial step in the HPLC-SPE-NMR technique to enable online analyte enrichment from which proton-detected NMR experiments on submicrogram amounts from complex mixtures were possible. However, the significance of direct-detected (13)C NMR experiments...... application of HPLC-SPE-NMR analysis using direct-detected (13)C NMR spectra. HPLC column loading, accumulative SPE trappings, and the effect of different elution solvents were evaluated and optimized. A column loading of approximately 600 mug of a prefractionated triterpenoid mixture, six trappings...

  8. Use of NMR as an online sensor in industrial processes

    International Nuclear Information System (INIS)

    Andrade, Fabiana Diuk de

    2012-01-01

    Nuclear magnetic resonance (NMR) is one of the most versatile analytical techniques for chemical, biochemical and medical applications. Despite this great success, NMR is seldom used as a tool in industrial applications. The first application of NMR in flowing samples was published in 1951. However, only in the last ten years Flow NMR has gained momentum and new and potential applications have been proposed. In this review we present the historical evolution of flow or online NMR spectroscopy and imaging, and current developments for use in the automation of industrial processes. (author)

  9. Solid-state NMR basic principles and practice

    CERN Document Server

    Apperley, David C; Hodgkinson, Paul

    2014-01-01

    Nuclear Magnetic Resonance (NMR) has proved to be a uniquely powerful and versatile tool for analyzing and characterizing chemicals and materials of all kinds. This book focuses on the latest developments and applications for "solid-state" NMR, which has found new uses from archaeology to crystallography to biomaterials and pharmaceutical science research. The book will provide materials engineers, analytical chemists, and physicists, in and out of lab, a survey of the techniques and the essential tools of solid-state NMR, together with a practical guide on applications. In this concise introduction to the growing field of solid-state nuclear magnetic resonance spectroscopy The reader will find: * Basic NMR concepts for solids, including guidance on the spin-1/2 nuclei concept * Coverage of the quantum mechanics aspects of solid state NMR and an introduction to the concept of quadrupolar nuclei * An understanding relaxation, exchange and quantitation in NMR * An analysis and interpretation of NMR data, with e...

  10. NMR shielding calculations across the periodic table: diamagnetic uranium compounds. 2. Ligand and metal NMR.

    Science.gov (United States)

    Schreckenbach, Georg

    2002-12-16

    In this and a previous article (J. Phys. Chem. A 2000, 104, 8244), the range of application for relativistic density functional theory (DFT) is extended to the calculation of nuclear magnetic resonance (NMR) shieldings and chemical shifts in diamagnetic actinide compounds. Two relativistic DFT methods are used, ZORA ("zeroth-order regular approximation") and the quasirelativistic (QR) method. In the given second paper, NMR shieldings and chemical shifts are calculated and discussed for a wide range of compounds. The molecules studied comprise uranyl complexes, [UO(2)L(n)](+/-)(q); UF(6); inorganic UF(6) derivatives, UF(6-n)Cl(n), n = 0-6; and organometallic UF(6) derivatives, UF(6-n)(OCH(3))(n), n = 0-5. Uranyl complexes include [UO(2)F(4)](2-), [UO(2)Cl(4)](2-), [UO(2)(OH)(4)](2-), [UO(2)(CO(3))(3)](4-), and [UO(2)(H(2)O)(5)](2+). For the ligand NMR, moderate (e.g., (19)F NMR chemical shifts in UF(6-n)Cl(n)) to excellent agreement [e.g., (19)F chemical shift tensor in UF(6) or (1)H NMR in UF(6-n)(OCH(3))(n)] has been found between theory and experiment. The methods have been used to calculate the experimentally unknown (235)U NMR chemical shifts. A large chemical shift range of at least 21,000 ppm has been predicted for the (235)U nucleus. ZORA spin-orbit appears to be the most accurate method for predicting actinide metal chemical shifts. Trends in the (235)U NMR chemical shifts of UF(6-n)L(n) molecules are analyzed and explained in terms of the calculated electronic structure. It is argued that the energy separation and interaction between occupied and virtual orbitals with f-character are the determining factors.

  11. DNA oligonucleotide conformations: high resolution NMR studies

    International Nuclear Information System (INIS)

    Mellema, J.-R.

    1984-01-01

    The present work describes a DNA double-helix model, which is well comparable with the models derived from fibre-diffraction studies. The model has a mononucleotide repeat with torsion angles in accordance with average geometries as derived from 1 H NMR studies. Special attention was paid to reduce the number of short H-H nonbonding contacts, which are abundantly present in the 'classical' fibre-diffraction models. Chapter 3 describes the first complete assignment of a 1 H NMR spectrum of a DNA tetramer, d(TAAT). Preliminary conformational data derived from the spectral parameters recorded at 27 0 C are given. A more detailed analysis employing temperature-dependence studies is given in Chapter 4. (Auth.)

  12. Some nitrogen-14 NMR studies in solids

    Energy Technology Data Exchange (ETDEWEB)

    Pratum, T.K.

    1983-11-01

    The first order quadrupolar perturbation of the /sup 14/N NMR spectrum yields information regarding the static and dynamic properties of the surrounding electronic environment. Signal to noise problems caused by long /sup 14/N longitudinal relaxation times (T/sub 1/) and small equilibrium polarizations are reduced by rotating frame cross polarization (CP) experiments between /sup 14/N and /sup 1/H. Using quadrupolar echo and CP techniques, the /sup 14/N quadrupolar coupling constants (e/sup 2/qQ/h) and asymmetry parameters (eta) have been obtained for a variety of tetraalkylammonium compounds by observation of their quadrupolar powder patterns at various temperatures. For choline chloride and iodide the /sup 14/N NMR powder patterns exhibit the effects of anisotropic molecular motion, while choline bromide spectra show no such effects.

  13. Fully automated system for pulsed NMR measurements

    International Nuclear Information System (INIS)

    Cantor, D.M.

    1977-01-01

    A system is described which places many of the complex, tedious operations for pulsed NMR experiments under computer control. It automatically optimizes the experiment parameters of pulse length and phase, and precision, accuracy, and measurement speed are improved. The hardware interface between the computer and the NMR instrument is described. Design features, justification of the choices made between alternative design strategies, and details of the implementation of design goals are presented. Software features common to all the available experiments are discussed. Optimization of pulse lengths and phases is performed via a sequential search technique called Uniplex. Measurements of the spin-lattice and spin-spin relaxation times and of diffusion constants are automatic. Options for expansion of the system are explored along with some of the limitations of the system

  14. Exploring the limits to spatially resolved NMR

    Energy Technology Data Exchange (ETDEWEB)

    Gaedke, Achim; Nestle, Nikolaus [TU Darmstadt, Institute of Condensed Matter Physics (Germany)

    2010-07-01

    Recent advances in MRI have demonstrated resolutions down to 1 {mu}m. Magnetic resonance force microscopy has the potential to reach sensitivity for single nuclear spins. Given these numbers, in vivo imaging of single cells or even biomacromolecules may seem possible. However, for in vivo applications, there are fundamental differences in the contrast mechanisms compared to MRI at macroscopic scales as the length scale of of molecular self-diffusion exceeds that of the spatial resolution on the NMR time scale. Those effects - which are fundamentally different from the echo attenuation in field gradient NMR - even may lead to general limitations on the spatial resolution achievable in aqueous systems with high water content. In our contribution, we explore those effects on a model system in a high-resolution stray-field imaging setup. In addition to experimental results, simulations based on the Bloch-Torrey equation are presented.

  15. Recent topics in NMR imaging and MRI

    International Nuclear Information System (INIS)

    Watanabe, Tokuko

    2002-01-01

    NMR and NMR imaging (MRI) are finding increasing use not only in the clinical and medical fields, but also in material, physicochemical, biological, geological, industrial and environmental applications. This short review is limited to two topics: new techniques and pulse sequences and their application to non-clinical fields that may have clinical application; and new trends in MR contrast agents. The former topic addresses pulse sequence and data analysis; dynamics such as diffusion, flow, velocity and velocimetry; chemometrics; pharmacological agents; and chemotherapy; the latter topic addresses contrast agents (CA) sensitive to biochemical activity; CA based on water exchange; molecular interactions and stability of CA; characteristics of emerging CA; superparamagnetic CA; and macromolecular CA. (author)

  16. Some nitrogen-14 NMR studies in solids

    International Nuclear Information System (INIS)

    Pratum, T.K.

    1983-11-01

    The first order quadrupolar perturbation of the 14 N NMR spectrum yields information regarding the static and dynamic properties of the surrounding electronic environment. Signal to noise problems caused by long 14 N longitudinal relaxation times (T 1 ) and small equilibrium polarizations are reduced by rotating frame cross polarization (CP) experiments between 14 N and 1 H. Using quadrupolar echo and CP techniques, the 14 N quadrupolar coupling constants (e 2 qQ/h) and asymmetry parameters (eta) have been obtained for a variety of tetraalkylammonium compounds by observation of their quadrupolar powder patterns at various temperatures. For choline chloride and iodide the 14 N NMR powder patterns exhibit the effects of anisotropic molecular motion, while choline bromide spectra show no such effects

  17. NMR dispersion measurement of dynamic nuclear polarization

    International Nuclear Information System (INIS)

    Davies, K.; Cox, S.F.J.

    1978-01-01

    The feasibility of monitoring dynamic nuclear polarization from the NMR dispersive susceptibility is examined. Two prototype instruments are tested in a polarized proton target using organic target material. The more promising employs a tunnel diode oscillator, inside the target cavity, and should provide a precise polarization measurement working at a frequency far enough from the main resonance for the disturbance of the measured polarization to be negligible. Other existing methods for measuring target polarization are briefly reviewed. (author)

  18. Structure of high-resolution NMR spectra

    CERN Document Server

    Corio, PL

    2012-01-01

    Structure of High-Resolution NMR Spectra provides the principles, theories, and mathematical and physical concepts of high-resolution nuclear magnetic resonance spectra.The book presents the elementary theory of magnetic resonance; the quantum mechanical theory of angular momentum; the general theory of steady state spectra; and multiple quantum transitions, double resonance and spin echo experiments.Physicists, chemists, and researchers will find the book a valuable reference text.

  19. NMR of 1,2-dioxiquinolines

    International Nuclear Information System (INIS)

    Figueroa Villar, Jose Daniel; Santos, N.L. dos

    1993-01-01

    Several derivates of quinoline are known for presenting pharmacological activity as antibiotics and anti-parasites, from which an important group are the antibiotics for the treatment of malaria and infections of the urinary tract. This work presents the structures and the NMR spectra of three new derivates of quinoline. These compounds are being tested as possible antibiotics for the treatment of urinary infections caused by Escherichia coli which are extremely resistant to other types of antibiotics

  20. 31-P NMR spectroscopy in radiotherapy

    International Nuclear Information System (INIS)

    Kiricuta, I.C.; Schmitt, W.G.H.; Beyer, H.K.

    1987-01-01

    Results suggest 31-P NMR spectroscopy to allow a discrimination between good and bad blood supply to the tumour owing to different metabolic behaviour and to furnish important information on tumour response to radiotherapy just a few hours after the application of a relatively low dose. Spectroscopy showed the radiation-sensitive tumour cells to behave relatively uniformly after radiotherapy suggesting this behaviour to be interpreted as therapeutical effectiveness. (orig./SHA) [de

  1. 3D Reconstruction of NMR Images

    Directory of Open Access Journals (Sweden)

    Peter Izak

    2007-01-01

    Full Text Available This paper introduces experiment of 3D reconstruction NMR images scanned from magnetic resonance device. There are described methods which can be used for 3D reconstruction magnetic resonance images in biomedical application. The main idea is based on marching cubes algorithm. For this task was chosen sophistication method by program Vision Assistant, which is a part of program LabVIEW.

  2. Characterization of functional polymers by NMR

    International Nuclear Information System (INIS)

    Neto, Oscar H.S. A.S.; San Gil, Rosane A.S.; Nakayama, T.; Costa Neto, Claudio

    1993-01-01

    Several synthetic polymers are used in the chemical analysis of complexes mixtures aiming to extract certain specific functional groups for further identification. This work describes the utilization of NMR in the characterization of one of the above mentioned compounds which will be used as reagent for the synthesis of another compound of the same type, which will be further used in the chemical analysis of alcohols and phenols. The methodology is described. The results are described and discussed

  3. NMR characteristics of rat mammary tumors

    International Nuclear Information System (INIS)

    Osbakken, M.; Kreider, J.; Taczanowsky, P.

    1984-01-01

    12 rats were injected intradermally with 13762A rat mammary adenocarcinoma (1 x 10/sup 6/ cells). 3 rats died before completion of the study and 2 rat had tumor regression; the first 3 were excluded from data analysis. NMR imaging with a 1.5K gauss resistive magnet at 2, 3, 4, and 5 weeks after injection demonstrated increasing tumor mass. Saturation recovery (SR), inversion recovery (IR), and spin echo (SE) pulse sequence images and T/sub 1/ calculation were done for tumor characterization. (Tumor size was too small to identify at 2 weeks.) 3 rats were sacrificed after the last 3 imaging periods for histological studies, done to distinguish solid tumor mass from necrosis. Planimetry of tumor areas showed that as tumors grew in size, the ratio of necrotic area to area of solid tumor increased (week 3 = .3 +- .11; week 4 = .45 +- .07; week 5 = .51 +- 05); simultaneous calculated T/sub 1/ values also increased (week 3 = .35 +- .15; week 4 = .45 +- .06; week 5 = .42 +- 03). Qualitative NMR image T/sub 1/ values also increased as evidenced by progression of SR and IR tumor image intensity from very bright compared to the rest of the body at week 3 to less intense than other structures at week 5. These findings indicate that change in T/sub 1/ may be secondary to the pathophysiological change in the tumor (the increasing in necrosis, associated with increased free water). Thus, the range of T/sub 1/ values obtained in tumors in this study (and in previous studies) may be due to change in tumor physiology and anatomy. Careful correlation of histological with NMR data may allow ultimate use of NMR relaxation characteristics for determination of the physiological state of tumors

  4. 43Ca NMR in solid state

    Science.gov (United States)

    Bellot, P.-V.; Trokiner, A.; Zhdanov, Yu.; Yakubovskii, A.

    1998-02-01

    In this paper we show that 43Ca is a suitable NMR probe to study the properties of high-Tc superconducting oxides. In the normal state, we report the temperature and doping dependencies of the spin susceptibility measured by 43Ca NMR. In the superconducting state and more exactly in the mixed state, by analysing 43Ca NMR linewidth, we have studied the magnetic induction distribution due to the presence of vortices and deduced λ, the penetration depth. Dans cet article, on montre que l'isotope 43 du calcium est une bonne sonde RMN pour l'étude des propriétés des oxydes supraconducteurs à haute température. Dans l'état normal, par la détermination du déplacement de la raie, en fonction de la température, on accède à la variation thermique de la susceptibilité de spin. Dans l'état supraconducteur et plus particulièrement dans l'état mixte, la largeur de raie RMN permet d'étudier la distribution d'induction magnétique due à la présence des vortex et de déterminer λ, la longueur de pénétration.

  5. Automatic maximum entropy spectral reconstruction in NMR

    International Nuclear Information System (INIS)

    Mobli, Mehdi; Maciejewski, Mark W.; Gryk, Michael R.; Hoch, Jeffrey C.

    2007-01-01

    Developments in superconducting magnets, cryogenic probes, isotope labeling strategies, and sophisticated pulse sequences together have enabled the application, in principle, of high-resolution NMR spectroscopy to biomolecular systems approaching 1 megadalton. In practice, however, conventional approaches to NMR that utilize the fast Fourier transform, which require data collected at uniform time intervals, result in prohibitively lengthy data collection times in order to achieve the full resolution afforded by high field magnets. A variety of approaches that involve nonuniform sampling have been proposed, each utilizing a non-Fourier method of spectrum analysis. A very general non-Fourier method that is capable of utilizing data collected using any of the proposed nonuniform sampling strategies is maximum entropy reconstruction. A limiting factor in the adoption of maximum entropy reconstruction in NMR has been the need to specify non-intuitive parameters. Here we describe a fully automated system for maximum entropy reconstruction that requires no user-specified parameters. A web-accessible script generator provides the user interface to the system

  6. Phosphorus NMR of isolated perfused morris hepatomas

    International Nuclear Information System (INIS)

    Graham, R.A.; Meyer, R.A.; Brown, T.R.; Sauer, L.A.

    1986-01-01

    The authors are developing techniques for the study of perfused solid tumors by NMR. Tissue-isolated solid hepatomas were grown to 1-2 cm diameter as described previously. The arterial supply was isolated and the tumors perfused (0.5 - 1.0 ml/min) in vitro at 25 C with a 15% suspension of red blood cells in Krebs-Henseliet solution. 31 P-NMR spectra were acquired at 162 MHz in a specially-designed NMR probe using a solenoidal coil. Intracellular pH (monitored from the chemical shift of inorganic phosphate) and ATP levels were stable for up to 6 hrs during perfusion. During 30 min of global ischemia, ATP decreased by 75% and pH fell from 7.0 to 6.7. These changes were reversed by 1 hr reperfusion. In addition to ATP and phosphate, the spectra included a large resonance due to phosphomonoesters, as well as peaks consistent with glycerylphosphocholine, glyceryl-phosphoethanolamine, phosphocreatine, NAD, and UDPG. However, the most novel feature of the spectra was the presence of an unidentified peak in the phosphonate region (+ 16.9 ppm). The peak was not present in spectra of muscle, liver, brain, kidney, or fat tissues excised from the same animals. They are presently attempting to identify the compound that gives rise to this peak and to establish its metabolic origin

  7. Solid state NMR study of cumbaru flour

    International Nuclear Information System (INIS)

    Nogueira, Jose S.; Bathista, Andre L.B.S.; Silva, Emerson O.; Priante Filho, Nicolau; Tavares, Maria I.B.

    2001-01-01

    The polysaccharide obtained by seed of Dipteryx alata Vog, has been characterised by 13 C solid state, using the basic routine techniques, like MAS and CPMAS and by the proton spin-lattice relaxation time in the rotating frame parameter (T 1 H ρ). Knowing that the chemical structure and molecular dynamic are extremely necessary route to obtain information on the polysaccharides, this work contributes to the classification of the seed containing in the cumbaru fruit to get response on its application. To obtain the initial responses for our purposes some solid state NMR techniques were chosen. The CPMAS 13 C NMR spectrum of the polysaccharide was investigated to know if it has some crystallinity. The MAS 13 C NMR spectrum showed the presence of domains with distinct molecular mobility, because these domains will differ basically in the distribution size and chain packing. The variable contact time experiment was used to analyse the distribution form of 13 C decays, which give us more information about sample heterogeneity. The T 1 H ρHr values were obtained from the variable contact time and by delayed contact time experiment, because these parameter indicate the order of polysaccharides. From the values of this parameter, we found that this polysaccharide is completely non-ordered. (author)

  8. NMR measurement of bitumen at different temperatures.

    Science.gov (United States)

    Yang, Zheng; Hirasaki, George J

    2008-06-01

    Heavy oil (bitumen) is characterized by its high viscosity and density, which is a major obstacle to both well logging and recovery. Due to the lost information of T2 relaxation time shorter than echo spacing (TE) and interference of water signal, estimation of heavy oil properties from NMR T2 measurements is usually problematic. In this work, a new method has been developed to overcome the echo spacing restriction of NMR spectrometer during the application to heavy oil (bitumen). A FID measurement supplemented the start of CPMG. Constrained by its initial magnetization (M0) estimated from the FID and assuming log normal distribution for bitumen, the corrected T2 relaxation time of bitumen sample can be obtained from the interpretation of CPMG data. This new method successfully overcomes the TE restriction of the NMR spectrometer and is nearly independent on the TE applied in the measurement. This method was applied to the measurement at elevated temperatures (8-90 degrees C). Due to the significant signal-loss within the dead time of FID, the directly extrapolated M0 of bitumen at relatively lower temperatures (viscosity, the extrapolated M0 of bitumen at over 60 degrees C can be reasonably assumed to be the real value. In this manner, based on the extrapolation at higher temperatures (> or = 60 degrees C), the M0 value of bitumen at lower temperatures (index (HI), fluid content and viscosity were evaluated by using corrected T2.

  9. Rhodopsin-lipid interactions studied by NMR.

    Science.gov (United States)

    Soubias, Olivier; Gawrisch, Klaus

    2013-01-01

    The biophysical properties of the lipid matrix are known to influence function of integral membrane proteins. We report on a sample preparation method for reconstitution of membrane proteins which uses porous anodic aluminum oxide (AAO) filters with 200-nm-wide pores of high density. The substrate permits formation of tubular, single membranes that line the inner surface of pores. One square centimeter of filter with a thickness of 60μm yields on the order of 500cm(2) of solid-supported single bilayer surface, sufficient for NMR studies. The tubular bilayers are free of detergent, fully hydrated, and accessible for ligands from one side of the membrane. The use of AAO filters greatly improves reproducibility of the reconstitution process such that the influence of protein on lipid order parameters can be studied with high resolution. As an example, results for the G protein-coupled receptor of class A, bovine rhodopsin, are shown. By (2)H NMR order parameter measurements, it is detected that rhodopsin insertion elastically deforms membranes near the protein. Furthermore, by (1)H saturation-transfer NMR under conditions of magic angle spinning, we demonstrate detection of preferences in interactions of rhodopsin with particular lipid species. It is assumed that function of integral membrane proteins depends on both protein-induced elastic deformations of the lipid matrix and preferences for interaction of the protein with particular lipid species in the first layer of lipids surrounding the protein. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Principles of high resolution NMR in solids

    CERN Document Server

    Mehring, Michael

    1983-01-01

    The field of Nuclear Magnetic Resonance (NMR) has developed at a fascinating pace during the last decade. It always has been an extremely valuable tool to the organic chemist by supplying molecular "finger print" spectra at the atomic level. Unfortunately the high resolution achievable in liquid solutions could not be obtained in solids and physicists and physical chemists had to live with unresolved lines open to a wealth of curve fitting procedures and a vast amount of speculations. High resolution NMR in solids seemed to be a paradoxon. Broad structure­ less lines are usually encountered when dealing with NMR in solids. Only with the recent advent of mUltiple pulse, magic angle, cross-polarization, two-dimen­ sional and multiple-quantum spectroscopy and other techniques during the last decade it became possible to resolve finer details of nuclear spin interactions in solids. I have felt that graduate students, researchers and others beginning to get involved with these techniques needed a book which trea...

  11. Nuclear magnetic resonance apparatus having semitoroidal RF coil for use in topical NMR and NMR imaging

    International Nuclear Information System (INIS)

    Fukushima, E.; Assink, R.A.; Roeder, S.B.W.; Gibson, A.A.V.

    1984-01-01

    An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, to enable NMR measurements to be taken from selected regions inside an object, particularly human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other electric field interactions. The coil may be combined with a like orthogonal coil and suitably driven to provide a circularly polarised field; or it may be used in conjunction with a concentrically nested smaller semitoroidal coil to move the maximum field further from the coil assembly. (author)

  12. CcpNmr AnalysisAssign: a flexible platform for integrated NMR analysis

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Simon P.; Fogh, Rasmus H. [University of Leicester, Department of Molecular and Cell Biology, Leicester Institute for Structural- and Chemical Biology (United Kingdom); Boucher, Wayne [University of Cambridge, Department of Biochemistry (United Kingdom); Ragan, Timothy J.; Mureddu, Luca G.; Vuister, Geerten W., E-mail: gv29@le.ac.uk [University of Leicester, Department of Molecular and Cell Biology, Leicester Institute for Structural- and Chemical Biology (United Kingdom)

    2016-10-15

    NMR spectroscopy is an indispensably powerful technique for the analysis of biomolecules under ambient conditions, both for structural- and functional studies. However, in practice the complexity of the technique has often frustrated its application by non-specialists. In this paper, we present CcpNmr version-3, the latest software release from the Collaborative Computational Project for NMR, for all aspects of NMR data analysis, including liquid- and solid-state NMR data. This software has been designed to be simple, functional and flexible, and aims to ensure that routine tasks can be performed in a straightforward manner. We have designed the software according to modern software engineering principles and leveraged the capabilities of modern graphics libraries to simplify a variety of data analysis tasks. We describe the process of backbone assignment as an example of the flexibility and simplicity of implementing workflows, as well as the toolkit used to create the necessary graphics for this workflow. The package can be downloaded from www.ccpn.ac.uk/v3-software/downloads http://www.ccpn.ac.uk/v3-software/downloads and is freely available to all non-profit organisations.

  13. CcpNmr AnalysisAssign: a flexible platform for integrated NMR analysis

    International Nuclear Information System (INIS)

    Skinner, Simon P.; Fogh, Rasmus H.; Boucher, Wayne; Ragan, Timothy J.; Mureddu, Luca G.; Vuister, Geerten W.

    2016-01-01

    NMR spectroscopy is an indispensably powerful technique for the analysis of biomolecules under ambient conditions, both for structural- and functional studies. However, in practice the complexity of the technique has often frustrated its application by non-specialists. In this paper, we present CcpNmr version-3, the latest software release from the Collaborative Computational Project for NMR, for all aspects of NMR data analysis, including liquid- and solid-state NMR data. This software has been designed to be simple, functional and flexible, and aims to ensure that routine tasks can be performed in a straightforward manner. We have designed the software according to modern software engineering principles and leveraged the capabilities of modern graphics libraries to simplify a variety of data analysis tasks. We describe the process of backbone assignment as an example of the flexibility and simplicity of implementing workflows, as well as the toolkit used to create the necessary graphics for this workflow. The package can be downloaded from www.ccpn.ac.uk/v3-software/downloads http://www.ccpn.ac.uk/v3-software/downloads and is freely available to all non-profit organisations.

  14. Guiding automated NMR structure determination using a global optimization metric, the NMR DP score

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuanpeng Janet, E-mail: yphuang@cabm.rutgers.edu; Mao, Binchen; Xu, Fei; Montelione, Gaetano T., E-mail: gtm@rutgers.edu [Rutgers, The State University of New Jersey, Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, and Northeast Structural Genomics Consortium (United States)

    2015-08-15

    ASDP is an automated NMR NOE assignment program. It uses a distinct bottom-up topology-constrained network anchoring approach for NOE interpretation, with 2D, 3D and/or 4D NOESY peak lists and resonance assignments as input, and generates unambiguous NOE constraints for iterative structure calculations. ASDP is designed to function interactively with various structure determination programs that use distance restraints to generate molecular models. In the CASD–NMR project, ASDP was tested and further developed using blinded NMR data, including resonance assignments, either raw or manually-curated (refined) NOESY peak list data, and in some cases {sup 15}N–{sup 1}H residual dipolar coupling data. In these blinded tests, in which the reference structure was not available until after structures were generated, the fully-automated ASDP program performed very well on all targets using both the raw and refined NOESY peak list data. Improvements of ASDP relative to its predecessor program for automated NOESY peak assignments, AutoStructure, were driven by challenges provided by these CASD–NMR data. These algorithmic improvements include (1) using a global metric of structural accuracy, the discriminating power score, for guiding model selection during the iterative NOE interpretation process, and (2) identifying incorrect NOESY cross peak assignments caused by errors in the NMR resonance assignment list. These improvements provide a more robust automated NOESY analysis program, ASDP, with the unique capability of being utilized with alternative structure generation and refinement programs including CYANA, CNS, and/or Rosetta.

  15. Knowns and unknowns in metabolomics identified by multidimensional NMR and hybrid MS/NMR methods

    Energy Technology Data Exchange (ETDEWEB)

    Bingol, Kerem; Brüschweiler, Rafael

    2017-02-01

    Metabolomics continues to make rapid progress through the development of new and better methods and their applications to gain insight into the metabolism of a wide range of different biological systems from a systems biology perspective. Customization of NMR databases and search tools allows the faster and more accurate identification of known metabolites, whereas the identification of unknowns, without a need for extensive purification, requires new strategies to integrate NMR with mass spectrometry, cheminformatics, and computational methods. For some applications, the use of covalent and non-covalent attachments in the form of labeled tags or nanoparticles can significantly reduce the complexity of these tasks.

  16. Direct Comparison of 19F qNMR and 1H qNMR by Characterizing Atorvastatin Calcium Content

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-01-01

    Full Text Available Quantitative nuclear magnetic resonance (qNMR is a powerful tool in measuring drug content because of its high speed, sensitivity, and precision. Most of the reports were based on proton qNMR (1H qNMR and only a few fluorine qNMR (19F qNMR were reported. No research has been conducted to directly compare the advantage and disadvantage between these two methods. In the present study, both 19F and 1H qNMR were performed to characterize the content of atorvastatin calcium with the same internal standard. Linearity, precision, and results from two methods were compared. Results showed that 19F qNMR has similar precision and sensitivity to 1H qNMR. Both methods generate similar results compared to mass balance method. Major advantage from 19F qNMR is that the analyte signal is with less or no interference from impurities. 19F qNMR is an excellent approach to quantify fluorine-containing analytes.

  17. A MAS NMR and DRIFT study of the Ga species in Ga/H-ZSM5 catalysts and their effect on propane ammoxidation

    Energy Technology Data Exchange (ETDEWEB)

    Pal, P. [Indian Inst. of Petroleum, Dehradun (India). Catalysis Division; Quartararo, J. [Liverpool Univ., Liverpool (United Kingdom). Leverhulme Centre for Innovative Catalysis, Dept. of Chemistry; Abd Hamid, S.B. [Malaya Univ., Postgraduate School, Bangunan (Malaysia); Derouane, E.G. [Algarve Univ., Faro (Portugal). Faculdade de Ciencias e Tecnologia; Vedrine, J.C. [Laboratoire de Physico-Chimie des Surface, Paris (France). Faculdade de Ciencias e Tecnologia; Magusin, P.C.M.M.; Anderson, B.G. [Eindhoven Univ. of Technology, Eindhoven (Netherlands). Schuit Institute of Catalysis

    2005-07-01

    This paper presents the results of a study that sought information about the nature and environment of the gallium (Ga) species in Ga/H-ZSM5 zeolites following H{sub 2}-O{sub 2} redox treatments applied during their activation by use of magic-angle spinning (MAS) {sup 71}Ga, {sup 27}Al, and {sup 29}Si NMR spectroscopy (Ga coordination) complemented by diffuse reflectance FT IR (DRIFT) spectroscopy (Bronsted acidity). This information was then correlated with their catalytic behavior for the ammoxidation of propane. Ga species were observed in several environments: octahedrally coordinated gallium in small Ga{sub 2}O{sub 3} particles at the external surface of the zeolite crystals; octahedrally coordinated gallium in GaO(OH) or related species; and tetrahedrally coordinated gallium in cationic-exchange positions inside the zeolite. Redox (H{sub 2}-O{sub 2}) cycles promote the migration of gallium from the GaO(OH) or Ga{sub 2}O{sub 3} species at the external surface of the zeolite crystals to cationic-exchange sites within the zeolite channels. It was concluded that the redox treatment had a beneficial effect on its catalytic performance for the ammoxidation of propane, which occurs via a bifunctional mechanism. The main product was acetonitrile at high gallium and aluminium contents. It was suggested that higher yields in acrylonitrile could be obtained through Ga-modified zeolites with a higher gallium and lower aluminium content. 22 refs., 1 tab., 6 figs.

  18. Isotope labeling for NMR studies of macromolecular structure and interactions

    International Nuclear Information System (INIS)

    Wright, P.E.

    1994-01-01

    Implementation of biosynthetic methods for uniform or specific isotope labeling of proteins, coupled with the recent development of powerful heteronuclear multidimensional NMR methods, has led to a dramatic increase in the size and complexity of macromolecular systems that are now amenable to NMR structural analysis. In recent years, a new technology has emerged that combines uniform 13 C, 15 N labeling with heteronuclear multidimensional NMR methods to allow NMR structural studies of systems approaching 25 to 30 kDa in molecular weight. In addition, with the introduction of specific 13 C and 15 N labels into ligands, meaningful NMR studies of complexes of even higher molecular weight have become feasible. These advances usher in a new era in which the earlier, rather stringent molecular weight limitations have been greatly surpassed and NMR can begin to address many central biological problems that involve macromolecular structure, dynamics, and interactions

  19. 13C-NMR assignment, structure, and dynamics of deoxyoligonucleotides

    International Nuclear Information System (INIS)

    Zanatta, N.; Borer, P.N.; Levy, G.C.

    1986-01-01

    The unique spectral properties of 13 C-NMR for studying nucleic acids and some of the important features of 13 C-NMR in oligonucleotide studies are demostrated. The main difficulty in studying oligonucleotides by 13 C-NMR and recent improvements in NMR instrumentation and advances in oligonucleotide synthesis are presented. The high resolution 13 C-NMR spectra, T 1 relaxation times and NOEs were measured for duplex of the self-complementary oligo-DNAs: d(CG) 3 and d(GGTATACC) are studied. The target of this study is to developed a systematic 13 C-NMR spectral assignment and to investigate the structure and dynamics of these two sequences by this techniques. (M.J.C.) [pt

  20. A primer to nutritional metabolomics by NMR spectroscopy and chemometrics

    DEFF Research Database (Denmark)

    Savorani, Francesco; Rasmussen, Morten Arendt; Mikkelsen, Mette Skau

    2013-01-01

    This paper outlines the advantages and disadvantages of using high throughput NMR metabolomics for nutritional studies with emphasis on the workflow and data analytical methods for generation of new knowledge. The paper describes one-by-one the major research activities in the interdisciplinary...... metabolomics platform and highlights the opportunities that NMR spectra can provide in future nutrition studies. Three areas are emphasized: (1) NMR as an unbiased and non-destructive platform for providing an overview of the metabolome under investigation, (2) NMR for providing versatile information and data...... structures for multivariate pattern recognition methods and (3) NMR for providing a unique fingerprint of the lipoprotein status of the subject. For the first time in history, by combining NMR spectroscopy and chemometrics we are able to perform inductive nutritional research as a complement to the deductive...

  1. Isotope labeling for NMR studies of macromolecular structure and interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wright, P.E. [Scripps Research Institute, La Jolla, CA (United States)

    1994-12-01

    Implementation of biosynthetic methods for uniform or specific isotope labeling of proteins, coupled with the recent development of powerful heteronuclear multidimensional NMR methods, has led to a dramatic increase in the size and complexity of macromolecular systems that are now amenable to NMR structural analysis. In recent years, a new technology has emerged that combines uniform {sup 13}C, {sup 15}N labeling with heteronuclear multidimensional NMR methods to allow NMR structural studies of systems approaching 25 to 30 kDa in molecular weight. In addition, with the introduction of specific {sup 13}C and {sup 15}N labels into ligands, meaningful NMR studies of complexes of even higher molecular weight have become feasible. These advances usher in a new era in which the earlier, rather stringent molecular weight limitations have been greatly surpassed and NMR can begin to address many central biological problems that involve macromolecular structure, dynamics, and interactions.

  2. NMR examinations of the facial skeleton. Pt. 1

    International Nuclear Information System (INIS)

    Grodd, W.; Lenz, M.; Baumann, R.; Schroth, G.

    1984-01-01

    The resolution of NMR and CT was compared using axial sections of the normal anatomic structures of the facial skeleton. Is was shown that NMR was superior in differentiating muscles, tonsils, mucosa, lymph nodes and blood vessels. The demonstration of bone and its differentiation from air-containing spaces is often difficult. Metallic, non-ferromagnetic dental fillings, which cause serious artefacts on CT, do not after NMR. (orig.) [de

  3. NMR as a probe metabolic disorders in disease and treatment

    Energy Technology Data Exchange (ETDEWEB)

    Yushmanov, Victor E [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Chemical Physics

    1994-12-31

    The effects of malignant tumors, chemical and physical factors (toxic agents, ionizing radiation) as well as of their treatment on tissue metabolism were studied by NMR imaging. The importance of NMR is highlighted since it enables to a better understanding of molecular mechanisms of diseases and therapeutic interventions, in addition to the analysis of metabolic disorders in human beings. Combined with the studies of experimental animal pathologies, may constitute a base for new types of NMR-diagnosis in vivo 10 refs.

  4. Fluid-Rock Characterization and Interactions in NMR Well Logging

    Energy Technology Data Exchange (ETDEWEB)

    Hirasaki, George J.; Mohanty, Kishore K.

    2003-02-10

    The objective of this project was to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. The advances made in the understanding of NMR fluid properties are summarized in a chapter written for an AAPG book on NMR well logging. This includes live oils, viscous oils, natural gas mixtures, and the relation between relaxation time and diffusivity.

  5. NMR-Fragment Based Virtual Screening: A Brief Overview.

    Science.gov (United States)

    Singh, Meenakshi; Tam, Benjamin; Akabayov, Barak

    2018-01-25

    Fragment-based drug discovery (FBDD) using NMR has become a central approach over the last twenty years for development of small molecule inhibitors against biological macromolecules, to control a variety of cellular processes. Yet, several considerations should be taken into account for obtaining a therapeutically relevant agent. In this review, we aim to list the considerations that make NMR fragment screening a successful process for yielding potent inhibitors. Factors that may govern the competence of NMR in fragment based drug discovery are discussed, as well as later steps that involve optimization of hits obtained by NMR-FBDD.

  6. Optimization and practical implementation of ultrafast 2D NMR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz Junior, Luiz H. K., E-mail: professorkeng@gmail.com [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Universidade Federal de Goias (UFGO), Goiania, GO (Brazil). Inst. de Quimica; Ferreira, Antonio G. [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Giraudeau, Patrick [Universite de Nantes (France). CNRS, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation

    2013-09-01

    Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC, obtained in 0.2 s and 41 s, respectively. (author)

  7. Straightforward and complete deposition of NMR data to the PDBe

    International Nuclear Information System (INIS)

    Penkett, Christopher J.; Ginkel, Glen van; Velankar, Sameer; Swaminathan, Jawahar; Ulrich, Eldon L.; Mading, Steve; Stevens, Tim J.; Fogh, Rasmus H.; Gutmanas, Aleksandras; Kleywegt, Gerard J.; Henrick, Kim; Vranken, Wim F.

    2010-01-01

    We present a suite of software for the complete and easy deposition of NMR data to the PDB and BMRB. This suite uses the CCPN framework and introduces a freely downloadable, graphical desktop application called CcpNmr Entry Completion Interface (ECI) for the secure editing of experimental information and associated datasets through the lifetime of an NMR project. CCPN projects can be created within the CcpNmr Analysis software or by importing existing NMR data files using the CcpNmr FormatConverter. After further data entry and checking with the ECI, the project can then be rapidly deposited to the PDBe using AutoDep, or exported as a complete deposition NMR-STAR file. In full CCPN projects created with ECI, it is straightforward to select chemical shift lists, restraint data sets, structural ensembles and all relevant associated experimental collection details, which all are or will become mandatory when depositing to the PDB. Instructions and download information for the ECI are available from the PDBe web site at http://www.ebi.ac.uk/pdbe/nmr/deposition/eci.htmlhttp://www.ebi.ac.uk/pdbe/nmr/deposition/eci.html.

  8. NMR-Fragment Based Virtual Screening: A Brief Overview

    Directory of Open Access Journals (Sweden)

    Meenakshi Singh

    2018-01-01

    Full Text Available Fragment-based drug discovery (FBDD using NMR has become a central approach over the last twenty years for development of small molecule inhibitors against biological macromolecules, to control a variety of cellular processes. Yet, several considerations should be taken into account for obtaining a therapeutically relevant agent. In this review, we aim to list the considerations that make NMR fragment screening a successful process for yielding potent inhibitors. Factors that may govern the competence of NMR in fragment based drug discovery are discussed, as well as later steps that involve optimization of hits obtained by NMR-FBDD.

  9. NMR characteristics of low-grade glioma. Comparison with CT

    Energy Technology Data Exchange (ETDEWEB)

    Asato, Reinin; Tokuriki, Yasuhiko; Nakano, Yoshihisa; Itoh, Harumi; Torizuka, Kanji; Ueda, Tohru; Yamashita, Junkoh; Handa, Hajime

    1985-08-01

    Sixteen low-grade gliomas were evaluated both with nuclear magnetic resonance (NMR) imaging and with computed tomography (CT). In 13 cases (81%), the NMR images were much better in tissue contrast than the contrast-enhanced CT images. The tumors were shown as well-circumscribed oval lesions in the NMR, though they appeared as ill-defined, irregular, low-attenuation areas in the CT. The extent of the lesion, which was supposed to represent the active tumor tissue, was greater in the NMR than in the CT, because NMR tissue parameters (T/sub 1/, T/sub 2/) are more sensitive to pathological changes in brain tissue than is the X-ray attenuation coefficient. Though, in an optic glioma and a brain-stem astrocytoma, the CT with contrast enhancement displayed the contour of the mass as well as did NMR, it was inferior to the NMR in showing the cephalocaudal extension of the tumors. Calcification does not give a proton NMR signal under the present measuring conditions; thus the calcified cystic wall of a hypothalamic astrocytoma was displayed only in the CT images. In conclusion, the NMR imaging was apparently superior to contrast-enhanced CT in demonstrating the lesions due to low-grade glioma.

  10. NMR studies of spin dynamics in cuprates

    International Nuclear Information System (INIS)

    Takigawa, M.; Mitzi, D.B.

    1994-01-01

    The authors report recent NMR results in cuprates. The oxygen Knight shift and the Cu nuclear spin-lattice relaxation rate in Bi 2.1 Sr 1.94 Ca 0.88 Cu 2.07 O 8+σ single crystals revealed a gapless superconducting state, which can be most naturally explained by a d-wave pairing state and the intrinsic disorder in this material. The Cu nuclear spin-spin relaxation rate in underdoped YBa 2 Cu 3 O 6.63 shows distinct temperature dependence from the spin-lattice relaxation rate, providing direct evidence for a pseudo spin-gap near the antiferromagnetic wave vector

  11. NMR studies of spin dynamics in cuprates

    Science.gov (United States)

    Takigawa, M.; Mitzi, D. B.

    1994-04-01

    We report recent NMR results in cuprates. The oxygen Knight shift and the Cu nuclear spin-lattice relaxation rate in Bi2.1Sr1.94Ca0.88Cu2.07O8+δ single crystals revealed a gapless superconducting state, which can be most naturally explained by a d-wave pairing state and the intrinsic disorder in this material. The Cu nuclear spin-spin relaxation rate in underdoped YBa2Cu3O6.63 shows distinct temperature dependence from the spin-lattice relaxation rate, providing direct evidence for a pseudo spin-gap near the antiferromagnetic wave vector.

  12. NMR-tomography of the heart

    International Nuclear Information System (INIS)

    Weikl, A.; Bachmann, K.

    1987-01-01

    The NMR-tomography as a non-invasive imaging process is examined regarding to the value to answer clinical issues. This method allows an evaluation of qualitative, quantitative, morphological and functional parameters. The diagnostic use on the heart shows early myocardial changes, thrombosis, changes in the dynamics of the left ventricle (EDV, ESV, EF), the quantitative wall movement and the blood flow in a shunt defect. The placed value of echocardiography, myocardial scintigraphy and coronary angiography in the diagnosis of acquired valvular heart disease, myocardial perfusion and coronary heart disease is not lowered by the above mentioned method. (orig.) [de

  13. NMR-tomography of the heart

    Energy Technology Data Exchange (ETDEWEB)

    Weikl, A.; Bachmann, K.

    1987-04-03

    The NMR-tomography as a non-invasive imaging process is examined regarding to the value to answer clinical issues. This method allows an evaluation of qualitative, quantitative, morphological and functional parameters. The diagnostic use on the heart shows early myocardial changes, thrombosis, changes in the dynamics of the left ventricle (EDV, ESV, EF), the quantitative wall movement and the blood flow in a shunt defect. The placed value of echocardiography, myocardial scintigraphy and coronary angiography in the diagnosis of acquired valvular heart disease, myocardial perfusion and coronary heart disease is not lowered by the above mentioned method.

  14. Structural study of pyrones by NMR

    International Nuclear Information System (INIS)

    Mandarino, D.G.

    1985-01-01

    Extracts of two species of Aniba, designed Aniba-SA (light petroleum extract) and Aniba-SB (benzene extract), afforded by chromatographic fraccionation some compounds. The isolated compounds were identified using spectrometric data and C 13 -NMR coupled and decompled spectra of pyrones were registered. Measurement of the heteronuclear residual coupling by irradiation proton frequency off-resonance was used for distinguish C-5, C-7 and C-8 carbons of the pyrones SB-1, SB-3, SB-4 and SB-5. (M.J.C.) [pt

  15. Touch NMR: An NMR Data Processing Application for the iPad

    Science.gov (United States)

    Li, Qiyue; Chen, Zhiwei; Yan, Zhiping; Wang, Cheng; Chen, Zhong

    2014-01-01

    Nuclear magnetic resonance (NMR) spectroscopy has become one of the most powerful technologies to aid research in numerous scientific disciplines. With the development of consumer electronics, mobile devices have played increasingly important roles in our daily life. However, there is currently no application available for mobile devices able to…

  16. Extracting protein dynamics information from overlapped NMR signals using relaxation dispersion difference NMR spectroscopy.

    Science.gov (United States)

    Konuma, Tsuyoshi; Harada, Erisa; Sugase, Kenji

    2015-12-01

    Protein dynamics plays important roles in many biological events, such as ligand binding and enzyme reactions. NMR is mostly used for investigating such protein dynamics in a site-specific manner. Recently, NMR has been actively applied to large proteins and intrinsically disordered proteins, which are attractive research targets. However, signal overlap, which is often observed for such proteins, hampers accurate analysis of NMR data. In this study, we have developed a new methodology called relaxation dispersion difference that can extract conformational exchange parameters from overlapped NMR signals measured using relaxation dispersion spectroscopy. In relaxation dispersion measurements, the signal intensities of fluctuating residues vary according to the Carr-Purcell-Meiboon-Gill pulsing interval, whereas those of non-fluctuating residues are constant. Therefore, subtraction of each relaxation dispersion spectrum from that with the highest signal intensities, measured at the shortest pulsing interval, leaves only the signals of the fluctuating residues. This is the principle of the relaxation dispersion difference method. This new method enabled us to extract exchange parameters from overlapped signals of heme oxygenase-1, which is a relatively large protein. The results indicate that the structural flexibility of a kink in the heme-binding site is important for efficient heme binding. Relaxation dispersion difference requires neither selectively labeled samples nor modification of pulse programs; thus it will have wide applications in protein dynamics analysis.

  17. Extracting protein dynamics information from overlapped NMR signals using relaxation dispersion difference NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Konuma, Tsuyoshi [Icahn School of Medicine at Mount Sinai, Department of Structural and Chemical Biology (United States); Harada, Erisa [Suntory Foundation for Life Sciences, Bioorganic Research Institute (Japan); Sugase, Kenji, E-mail: sugase@sunbor.or.jp, E-mail: sugase@moleng.kyoto-u.ac.jp [Kyoto University, Department of Molecular Engineering, Graduate School of Engineering (Japan)

    2015-12-15

    Protein dynamics plays important roles in many biological events, such as ligand binding and enzyme reactions. NMR is mostly used for investigating such protein dynamics in a site-specific manner. Recently, NMR has been actively applied to large proteins and intrinsically disordered proteins, which are attractive research targets. However, signal overlap, which is often observed for such proteins, hampers accurate analysis of NMR data. In this study, we have developed a new methodology called relaxation dispersion difference that can extract conformational exchange parameters from overlapped NMR signals measured using relaxation dispersion spectroscopy. In relaxation dispersion measurements, the signal intensities of fluctuating residues vary according to the Carr-Purcell-Meiboon-Gill pulsing interval, whereas those of non-fluctuating residues are constant. Therefore, subtraction of each relaxation dispersion spectrum from that with the highest signal intensities, measured at the shortest pulsing interval, leaves only the signals of the fluctuating residues. This is the principle of the relaxation dispersion difference method. This new method enabled us to extract exchange parameters from overlapped signals of heme oxygenase-1, which is a relatively large protein. The results indicate that the structural flexibility of a kink in the heme-binding site is important for efficient heme binding. Relaxation dispersion difference requires neither selectively labeled samples nor modification of pulse programs; thus it will have wide applications in protein dynamics analysis.

  18. Proton NMR studies on Megaphaera elsdenii flavodoxin : structure elucidation by 2D-NMR and implications

    NARCIS (Netherlands)

    Mierlo, van C.

    1990-01-01

    1H NMR techniques have been applied for a thorough study of the uncrystallizable Megasphaera elsdenii flavodoxin in its three redox states. The aim of the research project described in this thesis was to obtain answers regarding questions

  19. Crystallographic and dynamic aspects of solid-state NMR calibration compounds: towards ab initio NMR crystallography

    DEFF Research Database (Denmark)

    Li, Xiaozhou; Tapmeyer, Lukas; Bolte, Michael

    2016-01-01

    The excellent results of dispersion-corrected density functional theory (DFT-D) calculations for static systems have been well established over the past decade. The introduction of dynamics into DFT-D calculations is a target, especially for the field of molecular NMR crystallography. Four 13C ss...

  20. In vivo NMR spectroscopy of ripening avocado

    International Nuclear Information System (INIS)

    Bennett, A.B.; Smith, G.M.; Nichols, B.

    1987-01-01

    Ripening of avocado fruit is associated with a dramatic increase in respiration. Previous studies have indicated that the increase in respiration is brought about by activation of the glycolytic reaction catalyzing the conversion of fructose-6-phosphate to fructose 1,6-bisphosphate. The authors reinvestigated the proposed role of glycolytic regulation in the respiratory increase using in vivo 31 P nuclear magnetic resonance (NMR) spectroscopy using an external surface coil and analysis of phosphofructokinase (PFK), phosphofructophosphotransferase (PFP), and fructose 2,6-bisphosphate (fru 2,6-P 2 ) levels in ripening avocado fruit. In vivo 31 P NMR spectroscopy revealed large increases in ATP levels accompanying the increase in respiration. Both glycolytic enzymes, PFK and PFP, were present in avocado fruit, with the latter activity being highly stimulated by fru 2,6-P 2 . Fructose 2,6-bisphosphate levels increased approximately 90% at the onset of ripening, indicating that the respiratory increase in ripening avocado may be regulated by the activation of PFP brought about by an increase in fru 2,6-P 2

  1. The D0 solenoid NMR magnetometer

    International Nuclear Information System (INIS)

    Sten Uldall Hansen; Terry Kiper; Tom Regan; John Lofgren

    2002-01-01

    A field monitoring system for the 2 Tesla Solenoid of the D0 detector is described. It is comprised of a very small NMR probe cabled to a DSP based signal processing board. The design magnetic field range is from 1.0 to 2.2 Tesla, corresponding to an RF frequency range of 42.57 to 93.67 MHz. The desired an accuracy is one part in 10 5 . To minimize material in the interaction region of the D0 detector, the overall thickness of the NMR probe is 4 mm, including its mounting plate, and its width is 10 mm. To minimize cable mass, 4mm diameter IMR-100A cables are used for transmitting the RF signals from a nearby patch panel 25 meters to each of four probes mounted within the bore of the solenoid. RG213U cables 45 meters long are used to send the RF from the movable counting house to the patch panel. With this setup, the detector signal voltage at the moving counting room is in the range of 250-400 mV

  2. System of liquid thermostatic control for jet experiments on NMR

    International Nuclear Information System (INIS)

    Selivanov, S.I.; Bogatkin, R.A.; Ershov, B.A.

    1983-01-01

    The system of liquid thermostating of a sensor of NMR spectrometer, used as a registering device in the method of continuous and interrupting stream, is described. Such method of thermostating permits to make kinetic measurements in the temperature range from -40 to +60 deg C with the accuracy +-0.1 deg C and removes the necessity for applying secondary temperature NMR standards

  3. NMR-Metabolic Methodology in the Study of GM Foods

    Science.gov (United States)

    The 1H NMR methodology used in the study of genetically modified (GM) foodstuff is discussed. The study of transgenic lettuce (Lactuca sativa cv "Luxor") over-expressing the KNAT1 gene from Arabidopsis is presented as a novel study-case. The 1H NMR metabolic profiling was carried out. Twenty-two wat...

  4. Rapid prediction of multi-dimensional NMR data sets

    International Nuclear Information System (INIS)

    Gradmann, Sabine; Ader, Christian; Heinrich, Ines; Nand, Deepak; Dittmann, Marc; Cukkemane, Abhishek; Dijk, Marc van; Bonvin, Alexandre M. J. J.; Engelhard, Martin; Baldus, Marc

    2012-01-01

    We present a computational environment for Fast Analysis of multidimensional NMR DAta Sets (FANDAS) that allows assembling multidimensional data sets from a variety of input parameters and facilitates comparing and modifying such “in silico” data sets during the various stages of the NMR data analysis. The input parameters can vary from (partial) NMR assignments directly obtained from experiments to values retrieved from in silico prediction programs. The resulting predicted data sets enable a rapid evaluation of sample labeling in light of spectral resolution and structural content, using standard NMR software such as Sparky. In addition, direct comparison to experimental data sets can be used to validate NMR assignments, distinguish different molecular components, refine structural models or other parameters derived from NMR data. The method is demonstrated in the context of solid-state NMR data obtained for the cyclic nucleotide binding domain of a bacterial cyclic nucleotide-gated channel and on membrane-embedded sensory rhodopsin II. FANDAS is freely available as web portal under WeNMR (http://www.wenmr.eu/services/FANDAShttp://www.wenmr.eu/services/FANDAS).

  5. Two-dimensional NMR spectroscopy. Applications for chemists and biochemists

    International Nuclear Information System (INIS)

    Croasmun, W.R.; Carlson, R.M.K.

    1987-01-01

    Two-dimensional nuclear magnetic resonance spectroscopy (2-D NMR) has become a very powerful class of experiments (in the hands of an adept scientist) with broad adaptability to new situations. It is the product of a happy marriage between modern pulse FT-NMR technology, with its large memory and high-speed computers, and the physicists and chemists who love to manipulate spin systems. Basic 2-D experiments are now a standard capability of modern NMR spectrometers, and this timely book intends to make 2-D NMR users of those who are familiar with normal 1-D NMR. The 2-D NMR goal is correlation of the lines of the observed NMR spectrum with other properties of the system. This book deals with applications to high-resolution spectrum analysis, utilizing either coupling between the NMR-active nuclei or chemical exchange to perform the correlation. The coupling can be scalar (through bonds) or direct through space (within 5 A). The coupling may be homonuclear (between like nuclei) or heteronuclear

  6. Rapid prediction of multi-dimensional NMR data sets

    Energy Technology Data Exchange (ETDEWEB)

    Gradmann, Sabine; Ader, Christian [Utrecht University, Faculty of Science, Bijvoet Center for Biomolecular Research (Netherlands); Heinrich, Ines [Max Planck Institute for Molecular Physiology, Department of Physical Biochemistry (Germany); Nand, Deepak [Utrecht University, Faculty of Science, Bijvoet Center for Biomolecular Research (Netherlands); Dittmann, Marc [Max Planck Institute for Molecular Physiology, Department of Physical Biochemistry (Germany); Cukkemane, Abhishek; Dijk, Marc van; Bonvin, Alexandre M. J. J. [Utrecht University, Faculty of Science, Bijvoet Center for Biomolecular Research (Netherlands); Engelhard, Martin [Max Planck Institute for Molecular Physiology, Department of Physical Biochemistry (Germany); Baldus, Marc, E-mail: m.baldus@uu.nl [Utrecht University, Faculty of Science, Bijvoet Center for Biomolecular Research (Netherlands)

    2012-12-15

    We present a computational environment for Fast Analysis of multidimensional NMR DAta Sets (FANDAS) that allows assembling multidimensional data sets from a variety of input parameters and facilitates comparing and modifying such 'in silico' data sets during the various stages of the NMR data analysis. The input parameters can vary from (partial) NMR assignments directly obtained from experiments to values retrieved from in silico prediction programs. The resulting predicted data sets enable a rapid evaluation of sample labeling in light of spectral resolution and structural content, using standard NMR software such as Sparky. In addition, direct comparison to experimental data sets can be used to validate NMR assignments, distinguish different molecular components, refine structural models or other parameters derived from NMR data. The method is demonstrated in the context of solid-state NMR data obtained for the cyclic nucleotide binding domain of a bacterial cyclic nucleotide-gated channel and on membrane-embedded sensory rhodopsin II. FANDAS is freely available as web portal under WeNMR (http://www.wenmr.eu/services/FANDAShttp://www.wenmr.eu/services/FANDAS).

  7. Improved Baseline in 29Si NMR Spectra of Water Glasses

    Czech Academy of Sciences Publication Activity Database

    Schraml, Jan; Sandor, P.; Korec, S.; Krump, M.; Foller, B.

    2013-01-01

    Roč. 51, č. 7 (2013), s. 403-406 ISSN 0749-1581 Grant - others:GA MPO(CZ) FR-TI1/335; GA MŠk(CZ) LM2011020 Institutional support: RVO:67985858 Keywords : NMR * 29Si NMR * acoustic ringing Subject RIV: JI - Composite Materials Impact factor: 1.559, year: 2013

  8. Fluid-Rock Characterization and Interactions in NMR Well Logging

    Energy Technology Data Exchange (ETDEWEB)

    George J. Hirasaki; Kishore K. Mohanty

    2005-09-05

    The objective of this report is to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. The advances made in the understanding of NMR fluid properties are summarized in a chapter written for an AAPG book on NMR well logging. This includes live oils, viscous oils, natural gas mixtures, and the relation between relaxation time and diffusivity. Oil based drilling fluids can have an adverse effect on NMR well logging if it alters the wettability of the formation. The effect of various surfactants on wettability and surface relaxivity are evaluated for silica sand. The relation between the relaxation time and diffusivity distinguishes the response of brine, oil, and gas in a NMR well log. A new NMR pulse sequence in the presence of a field gradient and a new inversion technique enables the T{sub 2} and diffusivity distributions to be displayed as a two-dimensional map. The objectives of pore morphology and rock characterization are to identify vug connectivity by using X-ray CT scan, and to improve NMR permeability correlation. Improved estimation of permeability from NMR response is possible by using estimated tortuosity as a parameter to interpolate between two existing permeability models.

  9. Solution NMR Spectroscopy in Target-Based Drug Discovery.

    Science.gov (United States)

    Li, Yan; Kang, Congbao

    2017-08-23

    Solution NMR spectroscopy is a powerful tool to study protein structures and dynamics under physiological conditions. This technique is particularly useful in target-based drug discovery projects as it provides protein-ligand binding information in solution. Accumulated studies have shown that NMR will play more and more important roles in multiple steps of the drug discovery process. In a fragment-based drug discovery process, ligand-observed and protein-observed NMR spectroscopy can be applied to screen fragments with low binding affinities. The screened fragments can be further optimized into drug-like molecules. In combination with other biophysical techniques, NMR will guide structure-based drug discovery. In this review, we describe the possible roles of NMR spectroscopy in drug discovery. We also illustrate the challenges encountered in the drug discovery process. We include several examples demonstrating the roles of NMR in target-based drug discoveries such as hit identification, ranking ligand binding affinities, and mapping the ligand binding site. We also speculate the possible roles of NMR in target engagement based on recent processes in in-cell NMR spectroscopy.

  10. SPE-NMR metabolite sub-profiling of urine

    NARCIS (Netherlands)

    Jacobs, D.M.; Spiesser, L.; Garnier, M.; Roo, de N.; Dorsten, van F.; Hollebrands, B.; Velzen, van E.; Draijer, R.; Duynhoven, van J.P.M.

    2012-01-01

    NMR-based metabolite profiling of urine is a fast and reproducible method for detection of numerous metabolites with diverse chemical properties. However, signal overlap in the (1)H NMR profiles of human urine may hamper quantification and identification of metabolites. Therefore, a new method has

  11. Crystallographically-based analysis of the NMR spectra of maghemite

    International Nuclear Information System (INIS)

    Spiers, K.M.; Cashion, J.D.

    2012-01-01

    All possible iron environments with respect to nearest neighbour vacancies in vacancy-ordered and vacancy-disordered maghemite have been evaluated and used as the foundation for a crystallographically-based analysis of the published NMR spectra of maghemite. The spectral components have been assigned to particular configurations and excellent agreement obtained in comparing predicted spectra with published spectra taken in applied magnetic fields. The broadness of the published NMR lines has been explained by calculations of the magnetic dipole fields at the various iron sites and consideration of the supertransferred hyperfine fields. - Highlights: ► Analysis of 57 Fe NMR of maghemite based on vacancy ordering and nearest neighbour vacancies. ► Assignment of NMR spectral components based on crystallographic analysis of unique iron sites. ► Strong agreement between predicted spectra and published spectra taken in applied magnetic fields. ► Maghemite NMR spectral broadening due to various iron sites and supertransferred hyperfine field.

  12. NMR and the surgery of tumours at the craniocervical junction

    International Nuclear Information System (INIS)

    Ahyai, A.; Matsumara, A.; Rittmeyer, K.

    1987-01-01

    The diagnosis of tumors in the posterior fossa and at the craniocervical junction has always been problematic. In this region of the brain a clear visualization of the exact extent and relations of a space-occupying lesion is indispensable in assessing whether it is operable. Even though a tumor with its perifocal edema can be detected by CT, NMR opens new perspectives for the neurosurgeon. The authors present these cases in 3 groups. Group 1 comprises patients for whom NMR results contra-indicated operation. Group II consists of patients who would probably not have been operated on prior to the use of NMR. Group III includes patients who would probably not have been operated on prior to the use of NMR (e.g arachnoid cysts, Dandy-Walker malformations, etc); the excellent multi-dimensional imaging by NMR rendered the advisability of operation questionable, so that improved diagnostics may have spared the patients unnecessary operations

  13. $\\beta$-NMR of copper isotopes in ionic liquids

    CERN Multimedia

    We propose to test the feasibility of spin-polarization and $\\beta$-NMR studies on several short-lived copper isotopes, $^{58}$ Cu, $^{74}$Cu and $^{75}$Cu in crystals and liquids. The motivation is given by biological studies of Cu with $\\beta$-NMR in liquid samples, since Cu is present in a large number of enzymes involved in electron transfer and activation of oxygen. The technique is based on spin-polarization via optical pumping in the new VITO beamline. We will use the existing lasers, NMR magnet and NMR chambers and we will prepare a new optical pumping system. The studies will be devoted to tests of achieved $\\beta$-asymmetry in solid hosts, the behaviour of asymmetry when increasing vacuum, and finally NMR scans in ionic liquids. The achieved spin polarization will be also relevant for the plans to measure with high precision the magnetic moments of neutron-rich Cu isotopes.

  14. Dynamics of solutions and fluid mixtures by NMR

    International Nuclear Information System (INIS)

    Delpuech, J.J.

    1994-01-01

    After a short introduction to NMR spectroscopy, with a special emphasis on dynamical aspects, an overview on two fundamental aspects of molecular dynamics, NMR relaxation and its relationship with molecular reorientation, and magnetization transfer phenomena induced by molecular rate processes (dynamic NMR) is presented, followed by specific mechanisms of relaxation encountered in paramagnetic systems or with quadrupolar nuclei. Application fields are then reviewed: solvent exchange on metal ions with a variable pressure NMR approach, applications of field gradients in NMR, aggregation phenomena and micro-heterogeneity in surfactant solutions, polymers and biopolymers in the liquid state, liquid-like molecules in rigid matrices and in soft matter (swollen polymers and gels, fluids in and on inorganic materials, food)

  15. Value of NMR logging for heavy oil characterization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.; Chen, J.; Georgi, D. [Baker Hughes, Calgary, AB (Canada); Sun, B. [Chevron Energy Technology Co., Calgary, AB (Canada)

    2008-07-01

    Non-conventional, heavy oil fields are becoming increasingly important to the security of energy supplies and are becoming economically profitable to produce. Heavy oil reservoirs are difficult to evaluate since they are typically shallow and the connate waters are very fresh. Other heavy oil reservoirs are oil-wet where the resistivities are not indicative of saturation. Nuclear magnetic resonance (NMR) detects molecular level interactions. As such, it responds distinctively to different hydrocarbon molecules, thereby opening a new avenue for constituent analysis. This feature makes NMR a more powerful technique than bulk oil density or viscosity measurements for characterizing oils, and is the basis for detecting gas in heavy oil fields. NMR logging, which measures fluid in pore space directly, is capable of separating oil from water. It is possible to discern movable from bound water by analyzing NMR logs. The oil viscosity can be also quantified from NMR logs, NMR relaxation time and diffusivity estimates. The unique challenges for heavy oil reservoir characterization for the NMR technique were discussed with reference to the extra-fast decay of the NMR signal in response to extra-heavy oil/tars, and the lack of sensitivity in measuring very slow diffusion of heavy oil molecules. This paper presented various methods for analyzing heavy oil reservoirs in different viscosity ranges. Heavy oil fields in Venezuela, Kazakhstan, Canada, Alaska and the Middle East were analyzed using different data interpretation approaches based on the reservoir formation characteristics and the heavy oil type. NMR direct fluid typing was adequate for clean sands and carbonate reservoirs while integrated approaches were used to interpret extra heavy oils and tars. It was concluded that NMR logs can provide quantitative measures for heavy oil saturation, identify sweet spots or tar streaks, and quantify heavy oil viscosity within reasonable accuracy. 14 refs., 16 figs.

  16. Investigation of zeolites by solid state quadrapole NMR

    International Nuclear Information System (INIS)

    Janssen, R.

    1990-01-01

    The subject of this thesis is the NMR investigation of zeolites. The nature and properties of zeolites are discussed. Some of the basic priniples of NMR techniques on quadrupole nuclei are presented. A special technique, namely a two-dimensional nutation experiment is discussed in detail. The theory of the nutation experiment for quadrupole spin species with spin quantum number 3/2 as well as 5/2 is presented. For both spin spcies the theoretical spectra are compared with experimental results. It is also shown that the nutation expeirment can be performed with several pulse schemes. It is shown how phase-sensitive pure-absorption nutation spectra can be obtained and an NMR-probe is presented that is capable of performing NMR experiments at high (up to 500 degree C) temperatures. The two-dimensional nutation NMR technique has been applied to sodium cations in zeolite NaA. For this purpose a numbre of zeolite samples were prepared that contained different amounts of water. With the aid of nutation NMR the hydration of the zeolite can be studied and conclusions can be drawn about the symmetry of the surrounding of the sodium cations. With the aid of an extension of the nutation NMR experiment: Rotary Echo Nutation NMR, it is shown that in zeolite NaA, in various stages of hydration, the sodium cations or water molecules are mobile. Proof is given by means of high-temperature 23 Na-NMR that dehydrates zeolite NaA undergoes a phase transition at ca. 120 degree C. In a high-temperature NMR investigation of zeolite ZSM-5 it is shown that the sodium ions start to execute motions when the temperature is increased. (author). 198 refs.; 72 figs.; 6 tabs

  17. Variations of NMR signals by hyperpolarization and ultrasound; Variation von NMR-Signalen durch Hyperpolarisation und Ultraschall

    Energy Technology Data Exchange (ETDEWEB)

    Engelbertz, A.

    2006-07-01

    In this thesis it is described how p-NMR can be applied to metals with verlo low hydrogen concentrations and how a combination of ultrasound and NMR can lead to an improvement of the measureing method. As examples measurements on H{sub 2}O and ethanol are described. (HSI)

  18. Automated protein structure calculation from NMR data

    International Nuclear Information System (INIS)

    Williamson, Mike P.; Craven, C. Jeremy

    2009-01-01

    Current software is almost at the stage to permit completely automatic structure determination of small proteins of <15 kDa, from NMR spectra to structure validation with minimal user interaction. This goal is welcome, as it makes structure calculation more objective and therefore more easily validated, without any loss in the quality of the structures generated. Moreover, it releases expert spectroscopists to carry out research that cannot be automated. It should not take much further effort to extend automation to ca 20 kDa. However, there are technological barriers to further automation, of which the biggest are identified as: routines for peak picking; adoption and sharing of a common framework for structure calculation, including the assembly of an automated and trusted package for structure validation; and sample preparation, particularly for larger proteins. These barriers should be the main target for development of methodology for protein structure determination, particularly by structural genomics consortia

  19. High Magnetic Field Vortex Microscopy by NMR

    Science.gov (United States)

    Mitrović, V. F.; Sigmund, E. E.; Bachman, H. N.; Halperin, W. P.; Reyes, A. P.; Kuhns, P.; Moulton, W. G.

    2001-03-01

    At low temperatures the ^17O NMR spectrum of HTS exhibits a characteristic vortex lattice line shape. Measurements of spin-lattice relaxation rate, T_1-1, across the vortex spectrum represent a probe of low-energy quasiparticle excitations as a function of distance from the vortex core. We report ^17O(2,3) T_1-1 measurements of YBa_2Cu_3O7 at low temperatures in magnetic fields up to 37 T. We find that the rate increases on approaching the vortex core. In the vortex core region at 37 T we observe an additional increase in the relaxation rate. The temperature dependence of the rate will also be discussed. Work at Northwestern University is supported by the NSF (DMR 91-20000) through the Science and Technology Center for Superconductivity.

  20. INFOS: spectrum fitting software for NMR analysis

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Albert A., E-mail: alsi@nmr.phys.chem.ethz.ch [ETH Zürich, Physical Chemistry (Switzerland)

    2017-02-15

    Software for fitting of NMR spectra in MATLAB is presented. Spectra are fitted in the frequency domain, using Fourier transformed lineshapes, which are derived using the experimental acquisition and processing parameters. This yields more accurate fits compared to common fitting methods that use Lorentzian or Gaussian functions. Furthermore, a very time-efficient algorithm for calculating and fitting spectra has been developed. The software also performs initial peak picking, followed by subsequent fitting and refinement of the peak list, by iteratively adding and removing peaks to improve the overall fit. Estimation of error on fitting parameters is performed using a Monte-Carlo approach. Many fitting options allow the software to be flexible enough for a wide array of applications, while still being straightforward to set up with minimal user input.

  1. NMR Measurements of Granular Flow and Compaction

    Science.gov (United States)

    Fukushima, Eiichi

    1998-03-01

    Nuclear magnetic resonance (NMR) can be used to measure statistical distributions of granular flow velocity and fluctuations of velocity, as well as spatial distributions of particulate concentration, flow velocity, its fluctuations, and other parameters that may be derived from these. All measurements have been of protons in liquid-containing particles such as mustard seeds or pharmaceutical pills. Our favorite geometry has been the slowly rotating partially filled rotating drum with granular flow taking place along the free surface of the particles. All the above-mentioned parameters have been studied as well as a spatial distribution of particulate diffusion coefficients, energy dissipation due to collisions, as well as segregation of non-uniform mixtures of granular material. Finally, we describe some motions of granular material under periodic vibrations.

  2. NMR spectroscopy: a tool for conformational analysis

    International Nuclear Information System (INIS)

    Tormena, Claudio F.; Cormanich, Rodrigo A.; Rittner, Roberto; Freitas, Matheus P.

    2011-01-01

    The present review deals with the application of NMR data to the conformational analysis of simple organic compounds, together with other experimental methods like infrared spectroscopy and with theoretical calculations. Each sub-section describes the results for a group of compounds which belong to a given organic function like ketones, esters, etc. Studies of a single compound, even of special relevance, were excluded since the main goal of this review is to compare the results for a given function, where different substituents were used or small structural changes were introduced in the substrate, in an attempt to disclose their effects in the conformational equilibrium. Moreover, the huge amount of data available in the literature, on this research field, imposed some limitations which will be detailed in the Introduction, but it can be reminded in advance that these limitations include mostly the period when these results were published. (author)

  3. ImatraNMR: Novel software for batch integration and analysis of quantitative NMR spectra

    Science.gov (United States)

    Mäkelä, A. V.; Heikkilä, O.; Kilpeläinen, I.; Heikkinen, S.

    2011-08-01

    Quantitative NMR spectroscopy is a useful and important tool for analysis of various mixtures. Recently, in addition of traditional quantitative 1D 1H and 13C NMR methods, a variety of pulse sequences aimed for quantitative or semiquantitative analysis have been developed. To obtain actual usable results from quantitative spectra, they must be processed and analyzed with suitable software. Currently, there are many processing packages available from spectrometer manufacturers and third party developers, and most of them are capable of analyzing and integration of quantitative spectra. However, they are mainly aimed for processing single or few spectra, and are slow and difficult to use when large numbers of spectra and signals are being analyzed, even when using pre-saved integration areas or custom scripting features. In this article, we present a novel software, ImatraNMR, designed for batch analysis of quantitative spectra. In addition to capability of analyzing large number of spectra, it provides results in text and CSV formats, allowing further data-analysis using spreadsheet programs or general analysis programs, such as Matlab. The software is written with Java, and thus it should run in any platform capable of providing Java Runtime Environment version 1.6 or newer, however, currently it has only been tested with Windows and Linux (Ubuntu 10.04). The software is free for non-commercial use, and is provided with source code upon request.

  4. NMR study of hyper-polarized 129Xe and applications to liquid-phase NMR experiments

    International Nuclear Information System (INIS)

    Marion, D.

    2008-07-01

    In liquid samples where both nuclear polarization and spin density are strong, the magnetization dynamics, which can be analysed by NMR (nuclear magnetic resonance) methods, is deeply influenced by the internal couplings induced by local dipolar fields. The present thesis describes some of the many consequences associated to the presence in the sample of concentrated xenon hyper-polarized by an optical pumping process. First, we deal with the induced modifications in frequency and line width of the proton and xenon spectra, then we present the results of SPIDER, a coherent polarization transfer experiment designed to enhance the polarization of protons, in order to increase their NMR signal level. A third part is dedicated to the description of the apparition of repeated chaotic maser emissions by un unstable xenon magnetization coupled to the detection coil tuned at the xenon Larmor frequency (here 138 MHz). In the last part, we present a new method allowing a better tuning of any NMR detection probe and resulting in sensible gains in terms of sensitivity and signal shaping. Finally, we conclude with a partial questioning of the classical relaxation theory in the specific field of highly polarized and concentrated spin systems in a liquid phase. (author)

  5. An Enzyme Kinetics Experiment for the Undergraduate Organic Chemistry Laboratory

    Science.gov (United States)

    Olsen, Robert J.; Olsen, Julie A.; Giles, Greta A.

    2010-01-01

    An experiment using [superscript 1]H NMR spectroscopy to observe the kinetics of the acylase 1-catalyzed hydrolysis of "N"-acetyl-DL-methionine has been developed for the organic laboratory. The L-enantiomer of the reactant is hydrolyzed completely in less than 2 h, and [superscript 1]H NMR spectroscopic data from a single sample can be worked up…

  6. Spectroscopy 101: A Practical Introduction to Spectroscopy and Analysis for Undergraduate Organic Chemistry Laboratories

    Science.gov (United States)

    Morrill, Lucas A.; Kammeyer, Jacquelin K.; Garg, Neil K.

    2017-01-01

    An undergraduate organic chemistry laboratory that provides an introduction to various spectroscopic techniques is reported. Whereas organic spectroscopy is most often learned and practiced in the context of reaction analyses, this laboratory experiment allows students to become comfortable with [superscript 1]H NMR, [superscript 13]C NMR, and IR…

  7. Can NMR solve some significant challenges in metabolomics?

    Science.gov (United States)

    Gowda, G.A. Nagana; Raftery, Daniel

    2015-01-01

    The field of metabolomics continues to witness rapid growth driven by fundamental studies, methods development, and applications in a number of disciplines that include biomedical science, plant and nutrition sciences, drug development, energy and environmental sciences, toxicology, etc. NMR spectroscopy is one of the two most widely used analytical platforms in the metabolomics field, along with mass spectrometry (MS). NMR's excellent reproducibility and quantitative accuracy, its ability to identify structures of unknown metabolites, its capacity to generate metabolite profiles using intact biospecimens with no need for separation, and its capabilities for tracing metabolic pathways using isotope labeled substrates offer unique strengths for metabolomics applications. However, NMR's limited sensitivity and resolution continue to pose a major challenge and have restricted both the number and the quantitative accuracy of metabolites analyzed by NMR. Further, the analysis of highly complex biological samples has increased the demand for new methods with improved detection, better unknown identification, and more accurate quantitation of larger numbers of metabolites. Recent efforts have contributed significant improvements in these areas, and have thereby enhanced the pool of routinely quantifiable metabolites. Additionally, efforts focused on combining NMR and MS promise opportunities to exploit the combined strength of the two analytical platforms for direct comparison of the metabolite data, unknown identification and reliable biomarker discovery that continue to challenge the metabolomics field. This article presents our perspectives on the emerging trends in NMR-based metabolomics and NMR's continuing role in the field with an emphasis on recent and ongoing research from our laboratory. PMID:26476597

  8. Can NMR solve some significant challenges in metabolomics?

    Science.gov (United States)

    Nagana Gowda, G. A.; Raftery, Daniel

    2015-11-01

    The field of metabolomics continues to witness rapid growth driven by fundamental studies, methods development, and applications in a number of disciplines that include biomedical science, plant and nutrition sciences, drug development, energy and environmental sciences, toxicology, etc. NMR spectroscopy is one of the two most widely used analytical platforms in the metabolomics field, along with mass spectrometry (MS). NMR's excellent reproducibility and quantitative accuracy, its ability to identify structures of unknown metabolites, its capacity to generate metabolite profiles using intact bio-specimens with no need for separation, and its capabilities for tracing metabolic pathways using isotope labeled substrates offer unique strengths for metabolomics applications. However, NMR's limited sensitivity and resolution continue to pose a major challenge and have restricted both the number and the quantitative accuracy of metabolites analyzed by NMR. Further, the analysis of highly complex biological samples has increased the demand for new methods with improved detection, better unknown identification, and more accurate quantitation of larger numbers of metabolites. Recent efforts have contributed significant improvements in these areas, and have thereby enhanced the pool of routinely quantifiable metabolites. Additionally, efforts focused on combining NMR and MS promise opportunities to exploit the combined strength of the two analytical platforms for direct comparison of the metabolite data, unknown identification and reliable biomarker discovery that continue to challenge the metabolomics field. This article presents our perspectives on the emerging trends in NMR-based metabolomics and NMR's continuing role in the field with an emphasis on recent and ongoing research from our laboratory.

  9. Molecular dynamics simulations on PGLa using NMR orientational constraints

    Energy Technology Data Exchange (ETDEWEB)

    Sternberg, Ulrich, E-mail: ulrich.sternberg@partner.kit.edu; Witter, Raiker [Tallinn University of Technology, Technomedicum (Estonia)

    2015-11-15

    NMR data obtained by solid state NMR from anisotropic samples are used as orientational constraints in molecular dynamics simulations for determining the structure and dynamics of the PGLa peptide within a membrane environment. For the simulation the recently developed molecular dynamics with orientational constraints technique (MDOC) is used. This method introduces orientation dependent pseudo-forces into the COSMOS-NMR force field. Acting during a molecular dynamics simulation these forces drive molecular rotations, re-orientations and folding in such a way that the motional time-averages of the tensorial NMR properties are consistent with the experimentally measured NMR parameters. This MDOC strategy does not depend on the initial choice of atomic coordinates, and is in principle suitable for any flexible and mobile kind of molecule; and it is of course possible to account for flexible parts of peptides or their side-chains. MDOC has been applied to the antimicrobial peptide PGLa and a related dimer model. With these simulations it was possible to reproduce most NMR parameters within the experimental error bounds. The alignment, conformation and order parameters of the membrane-bound molecule and its dimer were directly derived with MDOC from the NMR data. Furthermore, this new approach yielded for the first time the distribution of segmental orientations with respect to the membrane and the order parameter tensors of the dimer systems. It was demonstrated the deuterium splittings measured at the peptide to lipid ratio of 1/50 are consistent with a membrane spanning orientation of the peptide.

  10. Molecular dynamics computer simulations based on NMR data

    International Nuclear Information System (INIS)

    Vlieg, J. de.

    1989-01-01

    In the work described in this thesis atom-atom distance information obtained from two-dimensional cuclear magnetic resonance is combined with molecular dynamics simulaitons. The simulation is used to improve the accuracy of a structure model constructed on the basis of NMR data. During the MD refinement the crude NMR structure is simultaneously optimized with respect to the atomic interaction function and to the set of atom-atom distances or other NMR information. This means that insufficient experimental data is completed with theoretical knowledge and the combination will lead to more reliable structures than would be obtained from one technique alone. (author). 191 refs.; 17 figs.; 12 schemes; 22 tabs

  11. Moessbauer and NMR study of novel Tin(IV)-lactames

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmann, Erno; Szalay, Roland; Homonnay, Zoltan, E-mail: homonnay@ludens.elte.hu; Nagy, Sandor [Eoetvoes Lorand University, Institute of Chemistry (Hungary)

    2012-03-15

    N-tributylstannylated 2-pyrrolidinone was reacted with tributyltin triflate in different molar ratios and the complex formation monitored using {sup 1}H-NMR, {sup 13}C-NMR and {sup 119}Sn Moessbauer spectroscopy. Comparing the carbon NMR and tin Moessbauer results, a reaction scheme is suggested for the complexation which assumes the formation of a simultaneously O- and N-tributylstannylated pyrrolidinone cation. The formation of the only O-stannylated pyrrolidinone is also assumed to account for the non-constant Moessbauer parameters of the two tin environments in the distannylated pyrrolidinone cation when the ratio of tributyltin triflate is increased in the reaction.

  12. NMR imaging of bladder tumors in males. Preliminary clinical experience

    International Nuclear Information System (INIS)

    Sigal, R.; Rein, A.J.J.T.; Atlan, H.; Lanir, A.; Kedar, S.; Segal, S.

    1985-01-01

    Nuclear magnetic resonance (NMR) of the normal and pathologic bladder was performed in 10 male subjects: 5 normal volunteers, 4 with bladder primary carcinoma, 1 with bladder metastasis. All scanning was done using a superconductive magnet operating at 0.5 T. Spin echo was used as pulse sequence. The diagnosis was confirmed in all cases by NMR imaging. The ability of the technique to provide images in axial, sagital and coronal planes allowed a precise assessment of the morphology and the size of the tumors. The lack of hazards and the quality of images may promote NMR imaging to a prominent role in the diagnosis of human bladder cancer [fr

  13. NMR and domain wall mobility in intermetallic compounds

    International Nuclear Information System (INIS)

    Guimaraes, A.P.; Sampaio, L.C.; Cunha, S.F.; Alves, K.M.B.

    1991-01-01

    The technique of pulsed NMR can be used to study the distribution of hyperfine fields in a magnetic matrix. The dynamics of the domain walls are relevant to the generation of NMR signals. In the present study on the (R x Y 1-x ) Fe 2 intermetallic compounds, the reduction in the signals is associated to increased propagation fields. This indicates that a smaller domain wall mobility is at the origin of these effects. NMR spectra in this system show the importance of direct and indirect (i.e., mediated by Fe atoms) terms in the transferred hyperfine field. (author)

  14. NMR studies of metallic tin confined within porous matrices

    International Nuclear Information System (INIS)

    Charnaya, E. V.; Tien, Cheng; Lee, M. K.; Kumzerov, Yu. A.

    2007-01-01

    119 Sn NMR studies were carried out for metallic tin confined within synthetic opal and porous glass. Tin was embedded into nanoporous matrices in the melted state under pressure. The Knight shift for liquid confined tin was found to decrease with decreasing pore size. Correlations between NMR line shapes, Knight shift, and pore filling were observed. The melting and freezing phase transitions of tin under confinement were studied through temperature dependences of NMR signals upon warming and cooling. Melting of tin within the opal matrix agreed well with the liquid skin model suggested for small isolated particles. The influence of the pore filling on the melting process was shown

  15. Study on the Effects of Oligo chitosan and Bioliquifert on Two Rice Mutants, NMR 151 and NMR 152

    International Nuclear Information System (INIS)

    Shakinah Salleh; Faiz Ahmad; Sobri Hussein

    2016-01-01

    Nuclear Malaysia has successfully developed two new rice mutants namely NMR 151 and NMR 152. In addition, Nuclear Malaysia has also successfully developed Oligo chitosan and liquid bio fertilizer (Bioliquifert). Oligo chitosan acts as elicitor that has been proven to be very effective in controlling disease infections and improving yield productivity. Bioliquifert on the other hand is a mixture of microbes containing major nutrient-providing microorganisms. The objective of this study is to observe the effects of Oligo chitosan and Bioliquifert on rice mutants, NMR 151 and NMR 152. The treatment was applied on 14 day old seedlings of MR 219, NMR 151 and NMR 152 sowed in 20 cm pots containing silty clay from the paddy soil of Tanjung Karang, Selangor. The seedlings were then placed in the greenhouse at Nuclear Malaysia until it reaches 110 days old. Study was conducted in a Complete Randomized Design (CRD) with 3 replications was used and each replication consisted of three plants. All treatments received compound and single dressing fertilizer as recommended by National Rice Production Package except for Treatment 2 and 3, in which Treatment 2 received Oligo chitosan and Bioliquifert while Treatment 3 only received Bioliquifert. Results on plant height, number of tiller and plant fresh weight are not significantly different for all cultivar except for seed dry weight of NMR 152 and MR 219. (author)

  16. Force field refinement from NMR scalar couplings

    Energy Technology Data Exchange (ETDEWEB)

    Huang Jing [Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel (Switzerland); Meuwly, Markus, E-mail: m.meuwly@unibas.ch [Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel (Switzerland)

    2012-03-02

    Graphical abstract: We show that two classes of H-bonds are sufficient to quantitatively describe scalar NMR coupling constants in small proteins. Highlights: Black-Right-Pointing-Pointer We present force field refinements based on explicit MD simulations using scalar couplings across hydrogen bonds. Black-Right-Pointing-Pointer This leads to {sup h3}J{sub NC{sup }{sup P}{sup r}{sup i}{sup m}{sup e}} couplings to within 0.03 Hz at best compared to experiment. Black-Right-Pointing-Pointer A classification of H-bonds according to secondary structure is not sufficiently robust. Black-Right-Pointing-Pointer Grouping H-bonds into two classes and reparametrization yields an RMSD of 0.07 Hz. Black-Right-Pointing-Pointer This is an improvement of 50. - Abstract: NMR observables contain valuable information about the protein dynamics sampling a high-dimensional potential energy surface. Depending on the observable, the dynamics is sensitive to different time-windows. Scalar coupling constants {sup h3}J{sub NC{sup }{sup P}{sup r}{sup i}{sup m}{sup e}} reflect the pico- to nanosecond motions associated with the intermolecular hydrogen bond network. Including an explicit H-bond in the molecular mechanics with proton transfer (MMPT) potential allows us to reproduce experimentally determined {sup h3}J{sub NC{sup }{sup P}{sup r}{sup i}{sup m}{sup e}} couplings to within 0.02 Hz at best for ubiquitin and protein G. This is based on taking account of the chemically changing environment by grouping the H-bonds into up to seven classes. However, grouping them into two classes already reduces the RMSD between computed and observed {sup h3}J{sub NC{sup }{sup P}{sup r}{sup i}{sup m}{sup e}} couplings by almost 50%. Thus, using ensemble-averaged data with two classes of H-bonds leads to substantially improved scalar couplings from simulations with accurate force fields.

  17. 13C-NMR of diterpenes with pimarane skeleton

    International Nuclear Information System (INIS)

    Garcez, W.S.; Pereira, A.L.; Silva Queiroz, P.P. da; Silva, R.S. da; Valente, L.M.M.; Peixoto, E.M.; Cunha Pinto, A. da

    1981-01-01

    The effect of substituent groups on the chemical shift of carbons using nuclear magnetic resonance spectra of carbon 13 ( 13 C-NMR) is discussed. Diterpenes having pimarane skeleton, isolated from plants of Velloziaceae family are analysed. (ARHC) [pt

  18. Isotope labeling strategies for NMR studies of RNA

    International Nuclear Information System (INIS)

    Lu, Kun; Miyazaki, Yasuyuki; Summers, Michael F.

    2010-01-01

    The known biological functions of RNA have expanded in recent years and now include gene regulation, maintenance of sub-cellular structure, and catalysis, in addition to propagation of genetic information. As for proteins, RNA function is tightly correlated with structure. Unlike proteins, structural information for larger, biologically functional RNAs is relatively limited. NMR signal degeneracy, relaxation problems, and a paucity of long-range 1 H- 1 H dipolar contacts have limited the utility of traditional NMR approaches. Selective isotope labeling, including nucleotide-specific and segmental labeling strategies, may provide the best opportunities for obtaining structural information by NMR. Here we review methods that have been developed for preparing and purifying isotopically labeled RNAs, as well as NMR strategies that have been employed for signal assignment and structure determination.

  19. NMR - from basic physics to images of the human body

    International Nuclear Information System (INIS)

    Richards, Rex.

    1985-01-01

    Nuclear magnetic resonance (NMR) is a remarkable phenomenon which involves the exchange of very weak radio frequency radiation between atomic nuclei and a sensitive detecting apparatus. It was originally regarded as a rather esoteric effect of great theoretical interest, but has since proved to have an amazing range of applications over many scientific disciplines, including nuclear physics, solid state physics, all branches of chemistry, biochemistry, physiology and most recently in medical diagnosis. In this Discourse the principles of NMR and trace briefly the history of its applications are examined and illustrated. Headings are: early history; nuclear resonance; relaxation time; the chemical shift; spin-spin coupling (NMR spectra); chemical shifts in biological tissue; NMR imaging; conclusions. (author)

  20. Cell signaling, post-translational protein modifications and NMR spectroscopy

    International Nuclear Information System (INIS)

    Theillet, Francois-Xavier; Smet-Nocca, Caroline; Liokatis, Stamatios; Thongwichian, Rossukon; Kosten, Jonas; Yoon, Mi-Kyung; Kriwacki, Richard W.; Landrieu, Isabelle; Lippens, Guy; Selenko, Philipp

    2012-01-01

    Post-translationally modified proteins make up the majority of the proteome and establish, to a large part, the impressive level of functional diversity in higher, multi-cellular organisms. Most eukaryotic post-translational protein modifications (PTMs) denote reversible, covalent additions of small chemical entities such as phosphate-, acyl-, alkyl- and glycosyl-groups onto selected subsets of modifiable amino acids. In turn, these modifications induce highly specific changes in the chemical environments of individual protein residues, which are readily detected by high-resolution NMR spectroscopy. In the following, we provide a concise compendium of NMR characteristics of the main types of eukaryotic PTMs: serine, threonine, tyrosine and histidine phosphorylation, lysine acetylation, lysine and arginine methylation, and serine, threonine O-glycosylation. We further delineate the previously uncharacterized NMR properties of lysine propionylation, butyrylation, succinylation, malonylation and crotonylation, which, altogether, define an initial reference frame for comprehensive PTM studies by high-resolution NMR spectroscopy.

  1. EPR and NMR detection of transient radicals and reaction products

    International Nuclear Information System (INIS)

    Trifunac, A.D.

    1981-01-01

    Magnetic resonance methods in radiation chemistry are illustrated. The most recent developments in pulsed EPR and NMR studies in pulse radiolysis are outlined with emphasis on the study of transient radicals and their reaction products. 12 figures

  2. Applications of NMR to studies of tissue metabolism

    International Nuclear Information System (INIS)

    Avison, M.J.; Hetherington, H.P.; Shulman, R.G.

    1986-01-01

    From its beginnings as a tool for the elucidation of biochemical pathways and bioenergetic status in unicellular organisms, the field of NMR studie in vivo has grown to encompass not only the study of isolated perfused organs, but also the study of various aspects of the biochemistry, physiology, and pathophysiology of these same organs in the intact animal. In recent years several groups have begun to extend the techniques developed in animals to the study of clinically relevant conditions in humans. A comprehensive review of all areas of NMR studies in vivo would be either unacceptably long or very superficial. For this reason the authors have restricted this review to studies published since 1980, except where an earlier study is particularly relevant to the topic under discussion. Furthermore, they have concentrated on areas that have been extending the scope of NMR in vivo. One specific omission is review of NMR studies of tumors, since a comprehensive review has recently appeared

  3. International NMR-based Environmental Metabolomics Intercomparison Exercise

    Science.gov (United States)

    Several fundamental requirements must be met so that NMR-based metabolomics and the related technique of metabonomics can be formally adopted into environmental monitoring and chemical risk assessment. Here we report an intercomparison exercise which has evaluated the effectivene...

  4. NMR methods for the investigation of structure and transport

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, Edme H. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Mechanische Verfahrenstechnik und Mechanik

    2012-07-01

    Extensive derivations of required fundamental relations for readers with engineering background New applications based on MRI, PGSE-NMR, and low-field NMR New concepts in quantitative data evaluation and image analysis Methods of nuclear magnetic resonance (NMR) are increasingly applied in engineering sciences. The book summarizes research in the field of chemical and process engineering performed at the Karlsruhe Institute of Technology (KIT). Fundamentals of the methods are exposed for readers with an engineering background. Applications cover the fields of mechanical process engineering (filtration, solid-liquid separation, powder mixing, rheometry), chemical process engineering (trickle-bed reactor, ceramic sponges), bioprocess engineering (biofilm growth), and food process engineering (microwave heating, emulsions). Magnetic Resonance Imaging (MRI) as well as low-field NMR are covered with notes on hardware. Emphasis is placed on quantitative data analysis and image processing. (orig.)

  5. NMR methods for the investigation of structure and transport

    International Nuclear Information System (INIS)

    Hardy, Edme H.

    2012-01-01

    Extensive derivations of required fundamental relations for readers with engineering background New applications based on MRI, PGSE-NMR, and low-field NMR New concepts in quantitative data evaluation and image analysis Methods of nuclear magnetic resonance (NMR) are increasingly applied in engineering sciences. The book summarizes research in the field of chemical and process engineering performed at the Karlsruhe Institute of Technology (KIT). Fundamentals of the methods are exposed for readers with an engineering background. Applications cover the fields of mechanical process engineering (filtration, solid-liquid separation, powder mixing, rheometry), chemical process engineering (trickle-bed reactor, ceramic sponges), bioprocess engineering (biofilm growth), and food process engineering (microwave heating, emulsions). Magnetic Resonance Imaging (MRI) as well as low-field NMR are covered with notes on hardware. Emphasis is placed on quantitative data analysis and image processing. (orig.)

  6. Structure of Coordination Complexes: The Synergy between NMR ...

    African Journals Online (AJOL)

    NICO

    determined by density functional theory (DFT) methods and the application of the Boltzmann equation, are in ... single crystals suitable for crystallography can be obtained, ...... NMR analysis of bonding in transition metal olefin complexes.

  7. Simultaneous acquisition of three NMR spectra in a single ...

    Indian Academy of Sciences (India)

    Simultaneous acquisition of three NMR spectra in a single experiment ... set, which is based on a combination of different fast data acquisition techniques such as G-matrix ..... The sign and intensity of the CHn resonance depends on the delay.

  8. Applications of high resolution 3H NMR spectroscopy

    International Nuclear Information System (INIS)

    Williams, P.G.

    1987-10-01

    The advantages of tritium as an NMR nucleus are pointed out. Examples of its use are given, including labelled toluene, hydrogenation of β-methylstyrene, and maltose and its binding proteins. 7 refs., 2 figs

  9. Studies on supramolecular gel formation using DOSY NMR

    Czech Academy of Sciences Publication Activity Database

    Nonappa, N.; Šaman, David; Kolehmainen, E.

    2015-01-01

    Roč. 53, č. 4 (2015), s. 256-260 ISSN 0749-1581 Institutional support: RVO:61388963 Keywords : DOSY * VT NMR * gel * diffusion coefficients Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.226, year: 2015

  10. [Rapid analysis of suppositories by quantitative 1H NMR spectroscopy].

    Science.gov (United States)

    Abramovich, R A; Kovaleva, S A; Goriainov, S V; Vorob'ev, A N; Kalabin, G A

    2012-01-01

    Rapid analysis of suppositories with ibuprofen and arbidol by quantitative 1H NMR spectroscopy was performed. Optimal conditions for the analysis were developed. The results are useful for design of rapid methods for quality control of suppositories with different components

  11. Determination of moisture in fiber reinforced composites using pulsed NMR

    International Nuclear Information System (INIS)

    Matzkanin, G.A.

    1982-01-01

    Nuclear magnetic resonance (NMR) signals from hydrogen atoms in two organic matrix composite systems subjected to environmental conditioning at 51.6 C (125 F) and 95% relative humidity were examined. The composites were 8 ply, + or - 45 deg laminates fabricated from SP 250 resin/S2 glass fiber and Reliabond 9350 resin/Kevlar 49 fiber. Free induction decay NMR signals from the composite specimens consisted of a large amplitude, fast decaying component associated with hydrogen in rigid polymer molecules and a lower amplitude, slower decaying component associated with hydrogen in the mobile absorbed moisture molecules. The absorbed moisture NMR signals consists of distinct multiple components which were attributed to moisture in various states of molecular binding. Particularly complex free induction decay signals were observed from Kevlar composite as well as from Kevlar fiber. Good correlation was obtained between the NMR signal amplitude and the dry weight moisture percentage for both composite systems. Results of destructive tensile tests were examined

  12. 1H NMR visibility of mammalian glycogen in solution

    International Nuclear Information System (INIS)

    Zang, L.H.; Rothman, D.L.; Shulman, R.G.

    1990-01-01

    High-resolution 1 H NMR spectra of rabbit liver glycogen in 2 H 2 O were obtained at 500 MHz, and several resonances were assigned by comparison with the chemical shifts of α-linked diglucose molecules. The NMR relaxation times T 1 and T 2 of glycogen in 2 H 2 O were determined to be 1.1 and 0.029 s, respectively. The measured natural linewidth of the carbon-1 proton is in excellent agreement with that calculated from T 2 . The visibility measurements made by digesting glycogen and comparing glucose and glycogen signal intensities demonstrate that in spite of the very high molecular weight, all of the proton nuclei in glycogen contribute to the NMR spectrum. The result is not unexpected, since 100% NMR visibility was previously observed from the carbon nuclei of glycogen, due to the rapid intramolecular motions

  13. Artificial intelligence in NMR imaging and image processing

    International Nuclear Information System (INIS)

    Kuhn, M.H.

    1988-01-01

    NMR tomography offers a wealth of information and data acquisition variants. Artificial intelligence is able to efficiently support the selection of measuring parameters and the evaluation of results. (orig.) [de

  14. Structural biology by NMR: structure, dynamics, and interactions.

    Directory of Open Access Journals (Sweden)

    Phineus R L Markwick

    2008-09-01

    Full Text Available The function of bio-macromolecules is determined by both their 3D structure and conformational dynamics. These molecules are inherently flexible systems displaying a broad range of dynamics on time-scales from picoseconds to seconds. Nuclear Magnetic Resonance (NMR spectroscopy has emerged as the method of choice for studying both protein structure and dynamics in solution. Typically, NMR experiments are sensitive both to structural features and to dynamics, and hence the measured data contain information on both. Despite major progress in both experimental approaches and computational methods, obtaining a consistent view of structure and dynamics from experimental NMR data remains a challenge. Molecular dynamics simulations have emerged as an indispensable tool in the analysis of NMR data.

  15. (S)Pinning down protein interactions by NMR

    DEFF Research Database (Denmark)

    Teilum, Kaare; Kunze, Micha Ben Achim; Erlendsson, Simon

    2017-01-01

    Protein molecules are highly diverse communication platforms and their interaction repertoire stretches from atoms over small molecules such as sugars and lipids to macromolecules. An important route to understanding molecular communication is to quantitatively describe their interactions...... all types of protein reactions, which can span orders of magnitudes in affinities, reaction rates and lifetimes of states. As the more versatile technique, solution NMR spectroscopy offers a remarkable catalogue of methods that can be successfully applied to the quantitative as well as qualitative...... descriptions of protein interactions. In this review we provide an easy-access approach to NMR for the non-NMR specialist and describe how and when solution state NMR spectroscopy is the method of choice for addressing protein ligand interaction. We describe very briefly the theoretical background...

  16. NMR and MS Methods for Metabolomics.

    Science.gov (United States)

    Amberg, Alexander; Riefke, Björn; Schlotterbeck, Götz; Ross, Alfred; Senn, Hans; Dieterle, Frank; Keck, Matthias

    2017-01-01

    Metabolomics, also often referred as "metabolic profiling," is the systematic profiling of metabolites in biofluids or tissues of organisms and their temporal changes. In the last decade, metabolomics has become more and more popular in drug development, molecular medicine, and other biotechnology fields, since it profiles directly the phenotype and changes thereof in contrast to other "-omics" technologies. The increasing popularity of metabolomics has been possible only due to the enormous development in the technology and bioinformatics fields. In particular, the analytical technologies supporting metabolomics, i.e., NMR, UPLC-MS, and GC-MS, have evolved into sensitive and highly reproducible platforms allowing the determination of hundreds of metabolites in parallel. This chapter describes the best practices of metabolomics as seen today. All important steps of metabolic profiling in drug development and molecular medicine are described in great detail, starting from sample preparation to determining the measurement details of all analytical platforms, and finally to discussing the corresponding specific steps of data analysis.

  17. NMR and MS methods for metabonomics.

    Science.gov (United States)

    Dieterle, Frank; Riefke, Björn; Schlotterbeck, Götz; Ross, Alfred; Senn, Hans; Amberg, Alexander

    2011-01-01

    Metabonomics, also often referred to as "metabolomics" or "metabolic profiling," is the systematic profiling of metabolites in bio-fluids or tissues of organisms and their temporal changes. In the last decade, metabonomics has become increasingly popular in drug development, molecular medicine, and other biotechnology fields, since it profiles directly the phenotype and changes thereof in contrast to other "-omics" technologies. The increasing popularity of metabonomics has been possible only due to the enormous development in the technology and bioinformatics fields. In particular, the analytical technologies supporting metabonomics, i.e., NMR, LC-MS, UPLC-MS, and GC-MS have evolved into sensitive and highly reproducible platforms allowing the determination of hundreds of metabolites in parallel. This chapter describes the best practices of metabonomics as seen today. All important steps of metabolic profiling in drug development and molecular medicine are described in great detail, starting from sample preparation, to determining the measurement details of all analytical platforms, and finally, to discussing the corresponding specific steps of data analysis.

  18. Quantitative NMR measurements on core samples

    International Nuclear Information System (INIS)

    Olsen, Dan

    1997-01-01

    Within the frame of an EFP-95 project NMR methods for porosity determination in 2D, and for fluid saturation determination in 1D and 2D have been developed. The three methods have been developed and tested on cleaned core samples of chalk from the Danish North Sea. The main restriction for the use of the methods is the inherently short T2 relaxation constants of rock samples. Referring to measurements conducted at 200 MHz, the 2D porosity determination method is applicable to sample material with T2 relaxation constants down to 5 ms. The 1D fluid saturation determination method is applicable to sample material with T2 relaxation constants down to 3 ms, while the 2D fluid saturation determination method is applicable to material with T2 relaxation constants down to 8 ms. In the case of the 2D methods these constraints as a minimum enables work on the majority of chalk samples of Maastrichtian age. The 1D fluid saturation determination method in addition is applicable to at least some chalk samples of Danian and pre-Maastrichtian age. The spatial resolution of the 2D porosity determination method, the 1D fluid saturation methods, and the 2D fluid saturation method is respectively 0.8 mm, 0.8 mm and 2 mm. Reproducibility of pixel values is for all three methods 2%- points. (au)

  19. NMR-CT image and symbol phantoms

    International Nuclear Information System (INIS)

    Hongo, Syozo; Yamaguchi, Hiroshi; Takeshita, Hiroshi

    1990-01-01

    We have developed Japanese phantoms in two procedures. One is described as a mathematical expression. Another is 'symbol phantoms' in 3 dimensional picture-elements, each of which symbolize an organ name. The concept and the algorithm of the symbol phantom enables us to make a phantom for a individual in terms of all his transversal section images. We got 85 transversal section images of head and trunk parts, and those of 40 legs parts by using NMR-CT. We have made the individual phantom for computation of organ doses. The transversal section images were not so clear to identify all organs needed to dose estimation that we had to do hand-editing the shapes of organs with viewing a typical section images: we could not yet make symbol phantom in a automatic editing. Symbols were coded to be visual cords as ASCII characters. After we got the symbol phantom of the first stage, we can edit it easily using a word-processor. Symbol phantom could describe more freely the shape of organs than mathematical phantom. Symbol phantom has several advantages to be an individual phantom, but the only difficult point is how to determine its end-point as a reference man when we apply the method to build the reference man. (author)

  20. Proton NMR relaxation in hydrous melts

    International Nuclear Information System (INIS)

    Braunstein, J.; Bacarella, A.L.; Benjamin, B.M.; Brown, L.L.; Girard, C.

    1976-01-01

    Pulse and continuous wave NMR measurements are reported for protons in hydrous melts of calcium nitrate at temperatures between -4 and 120 0 C. Although measured in different temperature ranges, spin-lattice (T 1 ) and spin-spin (T 2 ) relaxation times appear to be nearly equal to each other and proportional to the self-diffusion coefficients of solute metal cations such as Cd 2+ . At temperatures near 50 0 C, mean Arrhenius coefficients Δ H/sub T 1 / (kcal/mol) are 7.9, 7.3, and 4.8, respectively, for melts containing 2.8, 4.0, and 8.0 moles of water per mole of calcium nitrate, compared to 4.6 kcal/mol for pure water. Temperature dependence of T 1 and T 2 in Ca(NO 3 ) 2 -2.8 H 2 O between -4 and 120 0 C are non-Arrhenius and can be represented by a Fulcher-type equation with a ''zero mobility temperature'' (T 0 ) of 225 0 K, close to the value of T 0 for solute diffusion, electrical conductance and viscosity. Resolution of the relaxation rates into correlation times for intramolecular (rotational) and intermolecular (translational) diffusional motion is discussed in terms of the Bloembergen-Purcell-Pound and more recent models for dipolar relaxation

  1. Fluid-Rock Characterization and Interactions in NMR Well Logging

    Energy Technology Data Exchange (ETDEWEB)

    Hirasaki, George J.; Mohanty, Kishore K.

    2003-02-10

    The objective of this project was to characterize the fluid properties and fluid-rock interactions which are needed for formation evaluation by NMR well logging. NMR well logging is finding wide use in formation evaluation. The formation parameters commonly estimated were porosity, permeability, and capillary bound water. Special cases include estimation of oil viscosity, residual oil saturation, location of oil/water contact, and interpretation on whether the hydrocarbon is oil or gas.

  2. Chemical shifts of oxygen-17 NMR in polyoxotungstates

    International Nuclear Information System (INIS)

    Kazanskij, L.P.; Fedotov, M.A.; Spitsyn, V.I.

    1977-01-01

    17 O NMR spectra of aqueous solutions containing paratungstate BH 2 W 12 O 42 10- and metatungstate H 2 W 12 O 40 6- anions have been measured. On the basis of the obtained data a scale of chemical shifts for oxygen atoms connected by various bonds with tungsten atoms is suggested. The obtained data are compared with the Raman spectra of crystalline salts and their aqueous solutions. Chemical shifts of 17 O NMR spectra have been also measured in other heteropolyanions

  3. Flow units from integrated WFT and NMR data

    Energy Technology Data Exchange (ETDEWEB)

    Kasap, E.; Altunbay, M.; Georgi, D.

    1997-08-01

    Reliable and continuous permeability profiles are vital as both hard and soft data required for delineating reservoir architecture. They can improve the vertical resolution of seismic data, well-to-well stratigraphic correlations, and kriging between the well locations. In conditional simulations, permeability profiles are imposed as the conditioning data. Variograms, covariance functions and other geostatistical indicators are more reliable when based on good quality permeability data. Nuclear Magnetic Resonance (NMR) logging and Wireline Formation Tests (WFT) separately generate a wealth of information, and their synthesis extends the value of this information further by providing continuous and accurate permeability profiles without increasing the cost. NMR and WFT data present a unique combination because WFTs provide discrete, in situ permeability based on fluid-flow, whilst NMR responds to the fluids in the pore space and yields effective porosity, pore-size distribution, bound and moveable fluid saturations, and permeability. The NMR permeability is derived from the T{sub 2}-distribution data. Several equations have been proposed to transform T{sub 2} data to permeability. Regardless of the transform model used, the NMR-derived permeabilities depend on interpretation parameters that may be rock specific. The objective of this study is to integrate WFT permeabilities with NMR-derived, T{sub 2} distribution-based permeabilities and thereby arrive at core quality, continuously measured permeability profiles. We outlined the procedures to integrate NMR and WFT data and applied the procedure to a field case. Finally, this study advocates the use of hydraulic unit concepts to extend the WFT-NMR derived, core quality permeabilities to uncored intervals or uncored wells.

  4. Modeling Ne-21 NMR parameters for carbon nanosystems

    Czech Academy of Sciences Publication Activity Database

    Kupka, T.; Nieradka, M.; Kaminský, Jakub; Stobinski, L.

    2013-01-01

    Roč. 51, č. 10 (2013), s. 676-681 ISSN 0749-1581 R&D Projects: GA ČR GAP208/11/0105; GA MŠk(CZ) LH11033 Grant - others:AV ČR(CZ) M200551205 Institutional support: RVO:61388963 Keywords : Ne-21 NMR * GIAO NMR * molecular modeling * carbon nanostructures Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.559, year: 2013

  5. Solid-state NMR studies of nucleic acid components

    Czech Academy of Sciences Publication Activity Database

    Dračínský, Martin; Hodgkinson, P.

    2015-01-01

    Roč. 5, č. 16 (2015), s. 12300-12310 ISSN 2046-2069 R&D Projects: GA ČR GA13-24880S Institutional support: RVO:61388963 Keywords : NMR spectroscopy * nucleic acid s * solid-state NMR Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.289, year: 2015 http://pubs.rsc.org/en/content/articlepdf/2015/ra/c4ra14404j

  6. Fast mapping of global protein folding states by multivariate NMR:

    DEFF Research Database (Denmark)

    Malmendal, Anders; Underhaug, Jarl; Otzen, Daniel

    2010-01-01

    To obtain insight into the functions of proteins and their specific roles, it is important to establish efficient procedures for exploring the states that encapsulate their conformational space. Global Protein folding State mapping by multivariate NMR (GPS NMR) is a powerful high-throughput method......-lactalbumin in the presence of the anionic surfactant sodium dodecyl sulfate, SDS, and compare these with other surfactants, acid, denaturants and heat....

  7. Solid state NMR of spin-1/2 nuclei

    International Nuclear Information System (INIS)

    Wind, R.A.

    1991-01-01

    The detection of nuclear magnetic resonance by Bloch et al. and Purcell and co-workers in 1946 has led to the development of one of the most powerful spectroscopic techniques known today. The reason is that, besides the applied external magnetic field, a nuclear spin also experiences extra local magnetic fields, which are due to surrounding electron clouds (the chemical shift) and other spins. These local fields differ for nuclei located at chemically different positions in a molecule. The result is that an NMR spectrum often consists of several lines, which can be considered to be a fingerprint of the material under investigation an can assist the clarifying its molecular structure. NMR has been especially successful in liquids and liquid like materials, where fast molecular tumblings average out the anisotropies in the local fields, resulting in well-resolved NMR spectra. This paper reports that initially the development of solid-state NMR was less dramatic. Originally, for reasons of sensitivity, attention was focused mainly on 1 H NMR. The result is that the NMR spectrum usually consists of single, broad, featureless line, which, except for special cases such as more or less isolated spin pairs or methyl groups, does not provide much information

  8. ECG gated NMR-CT for cardiovascular diseases

    International Nuclear Information System (INIS)

    Nishikawa, J.; Machida, K.; Iio, M.; Yoshimoto, N.; Sugimoto, T.; Kawaguchi, H.; Mano, H.

    1984-01-01

    The authors applied NMR-CT to cardiac study with ECG gated technique to evaluate the left ventricular (LV) function and compared it with cardiovascular nuclear medicine study (NM). The NMR-CT machine has resistive air-core magnet with 0.15 Tesla. The saturation recovery image or inversion recovery image were obtained as 256 x 256 matrix and 15 mm in thickness. The study population was ten patients who were evaluated both by NMR image and by NM performed within one week interval. The heart muscle was able to be visualized without any contrast material nor radioisotopes in inversion recovery images, whereas saturation recovery images failed to separate heart muscle from blood pool. The wall motions of LV in both methods were well correlated except for inferior wall. The values of ejection fraction in NMR image were moderately low, but two modalities showed satisfactory correlation (r=0.85). The region of myocardial infarction was revealed as wall thinning and/or wall motion abnormality. It is still preliminary to draw a conclusion, however, it can be said that in the evaluation of LV function, method by NMR might be of equal value to those of NM. It can be certain that eventually gated NMR-CT will become more effective method for various aspects of cardiovascular evaluation

  9. Protein folding on the ribosome studied using NMR spectroscopy

    Science.gov (United States)

    Waudby, Christopher A.; Launay, Hélène; Cabrita, Lisa D.; Christodoulou, John

    2013-01-01

    NMR spectroscopy is a powerful tool for the investigation of protein folding and misfolding, providing a characterization of molecular structure, dynamics and exchange processes, across a very wide range of timescales and with near atomic resolution. In recent years NMR methods have also been developed to study protein folding as it might occur within the cell, in a de novo manner, by observing the folding of nascent polypeptides in the process of emerging from the ribosome during synthesis. Despite the 2.3 MDa molecular weight of the bacterial 70S ribosome, many nascent polypeptides, and some ribosomal proteins, have sufficient local flexibility that sharp resonances may be observed in solution-state NMR spectra. In providing information on dynamic regions of the structure, NMR spectroscopy is therefore highly complementary to alternative methods such as X-ray crystallography and cryo-electron microscopy, which have successfully characterized the rigid core of the ribosome particle. However, the low working concentrations and limited sample stability associated with ribosome–nascent chain complexes means that such studies still present significant technical challenges to the NMR spectroscopist. This review will discuss the progress that has been made in this area, surveying all NMR studies that have been published to date, and with a particular focus on strategies for improving experimental sensitivity. PMID:24083462

  10. Development of 19F-NMR chemical shift detection of DNA B-Z equilibrium using 19F-NMR.

    Science.gov (United States)

    Nakamura, S; Yang, H; Hirata, C; Kersaudy, F; Fujimoto, K

    2017-06-28

    Various DNA conformational changes are in correlation with biological events. In particular, DNA B-Z equilibrium showed a high correlation with translation and transcription. In this study, we developed a DNA probe containing 5-trifluoromethylcytidine or 5-trifluoromethylthymidine to detect DNA B-Z equilibrium using 19 F-NMR. Its probe enabled the quantitative detection of B-, Z-, and ss-DNA based on 19 F-NMR chemical shift change.

  11. Catalyst surface characterized by high magnetic field NMR; Kojiba NMR ni yoru shokubai hyomen no kansatsu

    Energy Technology Data Exchange (ETDEWEB)

    Sato, S. [Chiba University, Chiba (Japan). Faculty of Engineering

    1997-08-01

    This paper introduces studies performed by the authors on observation of surface of solid catalysts by means of solid NMR measurement using the high-speed MAS technology which uses a high magnetic field device. In the studies, a device with 14.1T (resonant frequency of proton at 600 MHz) was used to conduct CP-MAS NMR measurement on {sup 29}Si to identify bonding of silica carrier in a fixed aluminum chloride catalyst. As a result, it was verified that the surface structure of aluminum chloride species deposited on the silica carrier turns to a structure in which AlCl2 species of a monomeric substance is bonded with a surface hydroxyl group and fixed in four- or five-orientation. When adjusted at low temperatures, an Al2Cl5 structure is formed, which is fixed as a dimeric substance with AlCl3 oriented in the AlCl2 species. It is conceived that the Al2Cl5 species has higher electrophilicity than the AlCl2 species as a result of AlCl3 oriented in AlCl2, whereas the hydroxyl group on the silica surface oriented with the Al2Cl5 species dissociates, discharging protons, thus showing strong acidity. 18 refs., 8 figs., 2 tabs.

  12. Whole-core analysis by 13C NMR

    International Nuclear Information System (INIS)

    Vinegar, H.J.; Tutunjian, P.N.; Edelstein, W.A.; Roemer, P.B.

    1991-01-01

    This paper reports on a whole-core nuclear magnetic resonance (NMR) system that was used to obtain natural abundance 13 C spectra. The system enables rapid, nondestructive measurements of bulk volume of movable oil, aliphatic/aromatic ratio, oil viscosity, and organic vs. carbonate carbon. 13 C NMR can be used in cores where the 1 H NMR spectrum is too broad to resolve oil and water resonances separately. A 5 1/4-in. 13 C/ 1 H NMR coil was installed on a General Electric (GE) CSI-2T NMR imager/spectrometer. With a 4-in.-OD whole core, good 13 C signal/noise ratio (SNR) is obtained within minutes, while 1 H spectra are obtained in seconds. NMR measurements have been made of the 13 C and 1 H density of crude oils with a wide range of API gravities. For light- and medium-gravity oils, the 13 C and 1 H signal per unit volume is constant within about 3.5%. For heavy crudes, the 13 C and 1 H density measured by NMR is reduced by the shortening of spin-spin relaxation time. 13 C and 1 H NMR spin-lattice relaxation times were measured on a suite of Cannon viscosity standards, crude oils (4 to 60 degrees API), and alkanes (C 5 through C 16 ) with viscosities at 77 degrees F ranging from 0.5 cp to 2.5 x 10 7 cp. The 13 C and 1 H relaxation times show a similar correlation with viscosity from which oil viscosity can be estimated accurately for viscosities up to 100 cp. The 13 C surface relaxation rate for oils on water-wet rocks is very low. Nonproton decoupled 13 C NMR is shown to be insensitive to kerogen; thus, 13 C NMR measures only the movable hydrocarbon content of the cores. In carbonates, the 13 C spectrum also contains a carbonate powder pattern useful in quantifying inorganic carbon and distinguishing organic from carbonate carbon

  13. NMR-CT in muscular disorders

    International Nuclear Information System (INIS)

    Matsumura, Kiichiro; Nakano, Imaharu; Fukuda, Nobuo; Ikehira, Hiroo; Tateno, Yukio.

    1987-01-01

    Proton NMR-CT (magnetic field strength 0.1 Tesla, resonant frequency 4.5 MHz) was performed in 10 normal females and 19 Duchenne muscular dystrophy (DMD) carriers. The mean age was 39 ± 12 years for the normal females and 42 ± 6 years for the DMD carriers. In DMD carriers, there were 4 definite, 4 probable, and 11 possible carriers. T 1 (spin-lattice relaxation time) image was obtained for a slice at the buttock, mid-thigh and calf levels respectively. T 1 values were measured for the medial portion of the gluteus maximus, the vastus lateralis of the quadriceps femoris, and the gastrocnemius. The bound water fraction (BWF) was calculated from Fullerton's equation based on the fast proton diffusion model. The following results were obtained: (1) In normal females, muscle T 1 value was highest in the gastrocnemius and lowest in the gluteus maximus. (2) In DMD carriers, T 1 values of the gluteus maximus and quadriceps femoris were significantly higher than those of the normal females. There was, however, no significant difference in T 1 value of the gastrocnemius between DMD carriers and normal females. (3) In DMD carriers, BWFs of the gluteus maximus and quadriceps femoris were significantly lower than those of the normal females. (4) In DMD carriers, no significant correlation was observed between the muscle T 1 values and the serum creatine phosphokinase values. Increased tissue water content in the lower parts of the body due to gravity is considered to be the primary cause of the high T 1 value in the gastrocnemius of normal females. The presence of the degenerating muscle fibers are presumed responsible for the high T 1 value and low BWF in the proximal muscles of DMD carriers. (author)

  14. Accessible surface area from NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Hafsa, Noor E.; Arndt, David; Wishart, David S., E-mail: david.wishart@ualberta.ca [University of Alberta, Department of Computing Science (Canada)

    2015-07-15

    Accessible surface area (ASA) is the surface area of an atom, amino acid or biomolecule that is exposed to solvent. The calculation of a molecule’s ASA requires three-dimensional coordinate data and the use of a “rolling ball” algorithm to both define and calculate the ASA. For polymers such as proteins, the ASA for individual amino acids is closely related to the hydrophobicity of the amino acid as well as its local secondary and tertiary structure. For proteins, ASA is a structural descriptor that can often be as informative as secondary structure. Consequently there has been considerable effort over the past two decades to try to predict ASA from protein sequence data and to use ASA information (derived from chemical modification studies) as a structure constraint. Recently it has become evident that protein chemical shifts are also sensitive to ASA. Given the potential utility of ASA estimates as structural constraints for NMR we decided to explore this relationship further. Using machine learning techniques (specifically a boosted tree regression model) we developed an algorithm called “ShiftASA” that combines chemical-shift and sequence derived features to accurately estimate per-residue fractional ASA values of water-soluble proteins. This method showed a correlation coefficient between predicted and experimental values of 0.79 when evaluated on a set of 65 independent test proteins, which was an 8.2 % improvement over the next best performing (sequence-only) method. On a separate test set of 92 proteins, ShiftASA reported a mean correlation coefficient of 0.82, which was 12.3 % better than the next best performing method. ShiftASA is available as a web server ( http://shiftasa.wishartlab.com http://shiftasa.wishartlab.com ) for submitting input queries for fractional ASA calculation.

  15. NMR-CT in muscular disorders

    International Nuclear Information System (INIS)

    Matsumura, Kiichiro; Nakano, Imaharu; Ikehira, Hiroo; Fukuda, Nobuo; Tateno, Yukio.

    1986-01-01

    Proton NMR-CT (magnetic field strength 0.1 Tesla, resonant frequency 4.5 MHz) was performed in 15 normal (NC) and 20 Duchenne muscular dystrophy (DMD) males. The age ranged from 3 to 47 years for the NC males, and 1 to 14 years for the DMD males. In the DMD group there were one subclinical stage, 4 stage 1, 6 stage 2, 4 stage 3, and 5 stage 5 or higher patients. T 1 (longitudinal relaxation) images were obtained for three slices at the buttock, midthigh, and calf levels. The T 1 values were measured for the medial portion of the gluteus maximus, the vastus lateralis of the quadriceps femoris, the adductors, the sartorius, the gracilis, and the gastrocnemius muscles. Bound water fraction (BWF) was calculated from Fullerton's equation based on the fast diffusion model. The following results were obtained: (1) In the NC group, muscle T 1 values declined gradually with maturation under the age of 10, and became constant beyond that. The average T 1 value was 280 ms for the age group between 3 and 6 years, 270 ms for 7 and 10 years, and 260 ms for those older than 10 years. (2) Muscle BWF increased with maturation in the NC group. (3) In the DMD group, T 1 values were initially higher than normal (300 ms), declined rapidly with the progress of the disease, and reached the same low level as the subcutaneous fat (190 ms). (4) This decrease of T 1 value in DMD was not uniform for all muscles, being most prominent in the gluteus maximus and least so in the sartorius and gracilis. (5) In the early stages of DMD, the BWF was lower than normal. (J.P.N.)

  16. Timing and related artifacts in multidimensional NMR

    International Nuclear Information System (INIS)

    Marion, Dominique

    2012-01-01

    The information content of multidimensional NMR spectra is limited by the presence of several kinds of artifacts that originate from incorrect timing of evolution periods. The objective of this review is to provide tools for successful implementation of published pulse sequences, in which timing and pulse compensations are often implicit. We will analyze the constraints set by the use of Fourier transformation, the spin precession during rectangular or shaped pulses, the Bloch-Siegert effects due to pulse on other spins and the delay introduced by the filters for the acquisition dimension. A frequency dependent phase correction or an incorrect scaling of the first data point leads to baseline offsets or curvature due to the properties of the Fourier transform. Because any r.f. pulse has a finite length, chemical shift is always active during excitation, flip-back, inversion, and refocusing pulses. Rectangular or selective shaped pulses can be split into three periods: an ideal rotation surrounded by two chemical shift evolution periods, which should be subtracted from the adjacent delays to avoid linear phase correction. Bloch-Siegert effects originate from irradiation at frequencies near those observed in the spectrum and can lead to phase or frequency shifts. They can be minimized by simultaneous irradiation on both sides of the observed spins. In terms of timing, the very end of the pulse sequence the acquisition behaves differently since the data are filtered by either analog or digital means. This additional delay is filter and spectrometer specific and should be tuned to minimize the required phase correction. Combined together, all these adjustments lead to perfectly phased spectra with flat baseline and no peak shifts or distortion. (author)

  17. Evaluation of cross-section data from threshold to 40-60 MeV for specific neutron reactions important for neutron dosimetry applications. Part 1: Evaluation of the excitation functions for the 27Al(n,α)24Na, 55Mn(n,2n)54Mn, 59Co(n,p)59Fe, 59Co(n,2n)58m+gCo and 90Zr(n,2n)89m+gZr reactions

    International Nuclear Information System (INIS)

    Zolotarev, K.I.

    2009-04-01

    Evaluations of cross sections and their associated covariance matrices have been carried out for five dosimetry reactions: - excitation functions were re-evaluated for the 27 Al(n,α) 24 Na, 55 Mn(n,2n) 54 Mn and 90 Zr(n,2n) 89m+g Zr reactions over the neutron energy range from threshold to 40 MeV; - excitation functions were re-evaluated for the 59 Co(n,p) 59 Fe and 59 Co(n,2n) 58m+g Co reactions over the neutron energy range from threshold to 60 MeV. Uncertainties in the cross sections for all of those reactions were also derived in the form of relative covariance matrices. Benchmark calculations performed for 235 U thermal fission and 252 Cf spontaneous fission neutron spectra show that the integral cross sections calculated from the newly evaluated excitation functions exhibit improved agreement with related experimental data when compared with the equivalent data from the IRDF-2002 library. (author)

  18. NMR and NQR studies of 5f-band metamagnetic UCoAl and UCo{sub 1-x}T{sub x}Al (T=Fe,Ni)

    Energy Technology Data Exchange (ETDEWEB)

    Kohori, Y. [Graduate School of Science and Technology, Chiba University, Chiba 263-8522 (Japan) and Department of Physics, Faculty of Science, Chiba University, Chiba 263-8522 (Japan)]. E-mail: kohori@faculty.chiba-u.jp; Fukazawa, H. [Graduate School of Science and Technology, Chiba University, Chiba 263-8522 (Japan); Department of Physics, Faculty of Science, Chiba University, Chiba 263-8522 (Japan); Iwamoto, Y. [Division of Cargo and Transportation Science, Kobe University, Kobe 658-0022 (Japan); Kohara, T. [Graduate School of Material Science, University of Hyogo, Hyogo 678-1297 (Japan); Andreev, A.V. [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 18040 Prague 8 (Czech Republic); Sechovsky, V. [Department of Electronic Structures, Charles University, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic)

    2006-05-01

    The 5f-band system UCoAl, which crystallizes in the hexagonal ZrNiAl-type structure, has the paramagnetic ground state. The magnetic fields H as low as 0.6T oriented along the c-axis induce the metamagnetic transition below 17K. In order to study the magnetic property of UCoAl, we performed {sup 27}Al and {sup 59}Co NMR/NQR measurements in UCoAl, UCo{sub 0.98}Fe{sub 0.02}Al and UCo{sub 0.95}Ni{sub 0.05}Al single crystals. The substitution of Fe stabilizes the ferromagnetic state, and that of Ni stabilizes the paramagnetic state. The nuclear spin-lattice relaxation rate 1/T{sub 1} obtained with the crystal c-axis perpendicular to H is nearly six times larger than the 1/T{sub 1} with the c-axis parallel to H, which reflects the anisotropy of the spin fluctuations of the system.

  19. Accurate, fully-automated NMR spectral profiling for metabolomics.

    Directory of Open Access Journals (Sweden)

    Siamak Ravanbakhsh

    Full Text Available Many diseases cause significant changes to the concentrations of small molecules (a.k.a. metabolites that appear in a person's biofluids, which means such diseases can often be readily detected from a person's "metabolic profile"-i.e., the list of concentrations of those metabolites. This information can be extracted from a biofluids Nuclear Magnetic Resonance (NMR spectrum. However, due to its complexity, NMR spectral profiling has remained manual, resulting in slow, expensive and error-prone procedures that have hindered clinical and industrial adoption of metabolomics via NMR. This paper presents a system, BAYESIL, which can quickly, accurately, and autonomously produce a person's metabolic profile. Given a 1D 1H NMR spectrum of a complex biofluid (specifically serum or cerebrospinal fluid, BAYESIL can automatically determine the metabolic profile. This requires first performing several spectral processing steps, then matching the resulting spectrum against a reference compound library, which contains the "signatures" of each relevant metabolite. BAYESIL views spectral matching as an inference problem within a probabilistic graphical model that rapidly approximates the most probable metabolic profile. Our extensive studies on a diverse set of complex mixtures including real biological samples (serum and CSF, defined mixtures and realistic computer generated spectra; involving > 50 compounds, show that BAYESIL can autonomously find the concentration of NMR-detectable metabolites accurately (~ 90% correct identification and ~ 10% quantification error, in less than 5 minutes on a single CPU. These results demonstrate that BAYESIL is the first fully-automatic publicly-accessible system that provides quantitative NMR spectral profiling effectively-with an accuracy on these biofluids that meets or exceeds the performance of trained experts. We anticipate this tool will usher in high-throughput metabolomics and enable a wealth of new applications of

  20. Comparing pharmacophore models derived from crystallography and NMR ensembles

    Science.gov (United States)

    Ghanakota, Phani; Carlson, Heather A.

    2017-11-01

    NMR and X-ray crystallography are the two most widely used methods for determining protein structures. Our previous study examining NMR versus X-Ray sources of protein conformations showed improved performance with NMR structures when used in our Multiple Protein Structures (MPS) method for receptor-based pharmacophores (Damm, Carlson, J Am Chem Soc 129:8225-8235, 2007). However, that work was based on a single test case, HIV-1 protease, because of the rich data available for that system. New data for more systems are available now, which calls for further examination of the effect of different sources of protein conformations. The MPS technique was applied to Growth factor receptor bound protein 2 (Grb2), Src SH2 homology domain (Src-SH2), FK506-binding protein 1A (FKBP12), and Peroxisome proliferator-activated receptor-γ (PPAR-γ). Pharmacophore models from both crystal and NMR ensembles were able to discriminate between high-affinity, low-affinity, and decoy molecules. As we found in our original study, NMR models showed optimal performance when all elements were used. The crystal models had more pharmacophore elements compared to their NMR counterparts. The crystal-based models exhibited optimum performance only when pharmacophore elements were dropped. This supports our assertion that the higher flexibility in NMR ensembles helps focus the models on the most essential interactions with the protein. Our studies suggest that the "extra" pharmacophore elements seen at the periphery in X-ray models arise as a result of decreased protein flexibility and make very little contribution to model performance.