WorldWideScience

Sample records for superscript 13c peaks

  1. Discovering [superscript 13]C NMR, [superscript 1]H NMR, and IR Spectroscopy in the General Chemistry Laboratory through a Sequence of Guided-Inquiry Exercises

    Science.gov (United States)

    Iler, H. Darrell; Justice, David; Brauer, Shari; Landis, Amanda

    2012-01-01

    This sequence of three guided-inquiry labs is designed for a second-semester general chemistry course and challenges students to discover basic theoretical principles associated with [superscript 13]C NMR, [superscript 1]H NMR, and IR spectroscopy. Students learn to identify and explain basic concepts of magnetic resonance and vibrational…

  2. Discovering [superscript 13]C NMR, [superscript 1]H NMR, and IR Spectroscopy in the General Chemistry Laboratory through a Sequence of Guided-Inquiry Exercises

    Science.gov (United States)

    Iler, H. Darrell; Justice, David; Brauer, Shari; Landis, Amanda

    2012-01-01

    This sequence of three guided-inquiry labs is designed for a second-semester general chemistry course and challenges students to discover basic theoretical principles associated with [superscript 13]C NMR, [superscript 1]H NMR, and IR spectroscopy. Students learn to identify and explain basic concepts of magnetic resonance and vibrational…

  3. A Discovery-Based Hydrochlorination of Carvone Utilizing a Guided-Inquiry Approach to Determine the Product Structure from [superscript 13]C NMR Spectra

    Science.gov (United States)

    Pelter, Michael W.; Walker, Natalie M.

    2012-01-01

    This experiment describes a discovery-based method for the regio- and stereoselective hydrochlorination of carvone, appropriate for a 3-h second-semester organic chemistry laboratory. The product is identified through interpretation of the [superscript 13]C NMR and DEPT spectra are obtained on an Anasazi EFT-60 at 15 MHz as neat samples. A…

  4. A Discovery-Based Hydrochlorination of Carvone Utilizing a Guided-Inquiry Approach to Determine the Product Structure from [superscript 13]C NMR Spectra

    Science.gov (United States)

    Pelter, Michael W.; Walker, Natalie M.

    2012-01-01

    This experiment describes a discovery-based method for the regio- and stereoselective hydrochlorination of carvone, appropriate for a 3-h second-semester organic chemistry laboratory. The product is identified through interpretation of the [superscript 13]C NMR and DEPT spectra are obtained on an Anasazi EFT-60 at 15 MHz as neat samples. A…

  5. A NEW PEAK (T4) IN THE 13C-NMR SPECTRUM OF POLYBUTADIENE

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zinan; XIE Demin; ZHANG Jianguo; WU Qinyi; FENG Zhiliu

    1983-01-01

    A new peak at 39.0 ppm in the 13C-NMR spectrum of polybutadiene (PBD) was discovered.This peak is assigned to the fourth peak (T4) of trans-1,4-sequence marked with an asterisk as shown in Fig. 3 in the text.The occurrence of T4 carbon nuclei is strongly affected by their neighboring 1,2-units. So long as both contents of trans-1,4- and 1,2-units attain their proper amounts the peak (T4) with appear in the 13C-NMR spectrum of PBD.

  6. Increased resolution of aromatic cross peaks using alternate {sup 13}C labeling and TROSY

    Energy Technology Data Exchange (ETDEWEB)

    Milbradt, Alexander G. [AstraZeneca Discovery Sciences, Structure and Biophysics UK (United Kingdom); Arthanari, Haribabu [Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology (United States); Takeuchi, Koh [National Institute of Advanced Industrial Science and Technology, Biomedicinal Information Research Center and Molecular Profiling Research Center for Drug Discovery (Japan); Boeszoermenyi, Andras; Hagn, Franz; Wagner, Gerhard, E-mail: gerhard-wagner@hms.harvard.edu [Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology (United States)

    2015-07-15

    For typical globular proteins, contacts involving aromatic side chains would constitute the largest number of distance constraints that could be used to define the structure of proteins and protein complexes based on NOE contacts. However, the {sup 1}H NMR signals of aromatic side chains are often heavily overlapped, which hampers extensive use of aromatic NOE cross peaks. Some of this overlap can be overcome by recording {sup 13}C-dispersed NOESY spectra. However, the resolution in the carbon dimension is rather low due to the narrow dispersion of the carbon signals, large one-bond carbon–carbon (C–C) couplings, and line broadening due to chemical shift anisotropy (CSA). Although it has been noted that the CSA of aromatic carbons could be used in TROSY experiments for enhancing resolution, this has not been used much in practice because of complications arising from large aromatic one-bond C–C couplings, and 3D or 4D carbon dispersed NOESY are typically recorded at low resolution hampering straightforward peak assignments. Here we show that the aromatic TROSY effect can optimally be used when employing alternate {sup 13}C labeling using 2-{sup 13}C glycerol, 2-{sup 13}C pyruvate, or 3-{sup 13}C pyruvate as the carbon source. With the elimination of the strong one-bond C–C coupling, the TROSY effect can easily be exploited. We show that {sup 1}H–{sup 13}C TROSY spectra of alternately {sup 13}C labeled samples can be recorded at high resolution, and we employ 3D NOESY aromatic-TROSY spectra to obtain valuable intramolecular and intermolecular cross peaks on a protein complex.

  7. Direct Characterization of Kerogen by X-ray and Solid-State [superscript 13]C Nuclear Magnetic Resonance Methods

    Energy Technology Data Exchange (ETDEWEB)

    Kelemen, S. R.; Afeworki, M.; Gorbaty, M.L.; Sansone, M.; Kwiatek, P.J.; Walters, C.C.; Freund, H.; Siskin, M.; Bence, A.E.; Curry, D.J.; Solum, M.; Pugmire, R.J.; Vandenbroucke, M.; Leblond, M.; Behar, F. (ExxonMobil); (ExxonMobil); (IFP); (Utah)

    2008-06-12

    A combination of solid-state {sup 13}C NMR, X-ray photoelectron spectroscopy (XPS) and sulfur X-ray absorption near edge structure (S-XANES) techniques are used to characterize organic oxygen, nitrogen, and sulfur species and carbon chemical/structural features in kerogens. The kerogens studied represent a wide range of organic matter types and maturities. A van Krevelen plot based on elemental H/C data and XPS derived O/C data shows the well established pattern for type I, type II, and type III kerogens. The anticipated relationship between the Rock-Eval hydrogen index and H/C is independent of organic matter type. Carbon structural and lattice parameters are derived from solid-state {sup 13}C NMR analysis. As expected, the amount of aromatic carbon, measured by both {sup 13}C NMR and XPS, increases with decreasing H/C. The correlation between aromatic carbon and Rock-Eval T{sub max}, an indicator of maturity, is linear for types II and IIIC kerogens, but each organic matter type follows a different relationship. The average aliphatic carbon chain length (Cn) decreases with an increasing amount of aromatic carbon in a similar manner across all organic matter types. The fraction of aromatic carbons with attachments (FAA) decreases, while the average number of aromatic carbons per cluster (C) increases with an increasing amount of aromatic carbon. FAA values range from 0.2 to 0.4, and C values range from 12 to 20 indicating that kerogens possess on average 2- to 5-ring aromatic carbon units that are highly substituted. There is basic agreement between XPS and {sup 13}C NMR results for the amount and speciation of organic oxygen. XPS results show that the amount of carbon oxygen single bonded species increases and carbonyl-carboxyl species decrease with an increasing amount of aromatic carbon. Patterns for the relative abundances of nitrogen and sulfur species exist regardless of the large differences in the total amount of organic nitrogen and sulfur seen in the

  8. Munc13 C[subscript 2]B domain is an activity-dependent Ca[superscript 2+] regulator of synaptic exocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ok-Ho; Lu, Jun; Rhee, Jeong-Seop; Tomchick, Diana R.; Pang, Zhiping P.; Wojcik, Sonja M.; Camacho-Perez, Marcial; Brose, Nils; Machius, Mischa; Rizo, Josep; Rosenmund, Christian; Südhof, Thomas C. (Baylor); (MXPL-B); (MXPL); (UTSMC)

    2010-04-26

    Munc13 is a multidomain protein present in presynaptic active zones that mediates the priming and plasticity of synaptic vesicle exocytosis, but the mechanisms involved remain unclear. Here we use biophysical, biochemical and electrophysiological approaches to show that the central C{sub 2}B domain of Munc13 functions as a Ca{sup 2+} regulator of short-term synaptic plasticity. The crystal structure of the C{sub 2}B domain revealed an unusual Ca{sup 2+}-binding site with an amphipathic {alpha}-helix. This configuration confers onto the C{sub 2}B domain unique Ca{sup 2+}-dependent phospholipid-binding properties that favor phosphatidylinositolphosphates. A mutation that inactivated Ca{sup 2+}-dependent phospholipid binding to the C{sub 2}B domain did not alter neurotransmitter release evoked by isolated action potentials, but it did depress release evoked by action-potential trains. In contrast, a mutation that increased Ca{sup 2+}-dependent phosphatidylinositolbisphosphate binding to the C{sub 2}B domain enhanced release evoked by isolated action potentials and by action-potential trains. Our data suggest that, during repeated action potentials, Ca{sup 2+} and phosphatidylinositolphosphate binding to the Munc13 C{sub 2}B domain potentiate synaptic vesicle exocytosis, thereby offsetting synaptic depression induced by vesicle depletion.

  9. Novel Peak Assignments of in Vivo 13C MRS in Human Brain at 1.5 T

    Science.gov (United States)

    Blüml, Stefan; Hwang, Jong-Hee; Moreno, Angel; Ross, Brian D.

    2000-04-01

    13C MRS studies at natural abundance and after intravenous 1-13C glucose infusion were performed on a 1.5-T clinical scanner in four subjects. Localization to the occipital cortex was achieved by a surface coil. In natural abundance spectra glucose C3β,5β, myo-inositol, glutamate C1,2,5, glutamine C1,2,5, N-acetyl-aspartate C1-4,Cdbnd O, creatine CH2, CH3, and CCdbnd N, taurine C2,3, bicarbonate HCO-3 were identified. After glucose infusion 13C enrichment of glucose C1α,1β, glutamate C1-4, glutamine C1-4, aspartate C2,3, N-acetyl-aspartate C2,3, lactate C3, alanine C3, and HCO-3 were observed. The observation of 13C enrichment of resonances resonating at >150 ppm is an extension of previously published studies and will provide a more precise determination of metabolic rates and substrate decarboxylation in human brain.

  10. Accurate determinations of one-bond 13C-13C couplings in 13C-labeled carbohydrates

    Science.gov (United States)

    Azurmendi, Hugo F.; Freedberg, Darón I.

    2013-03-01

    Carbon plays a central role in the molecular architecture of carbohydrates, yet the availability of accurate methods for 1DCC determination has not been sufficiently explored, despite the importance that such data could play in structural studies of oligo- and polysaccharides. Existing methods require fitting intensity ratios of cross- to diagonal-peaks as a function of the constant-time (CT) in CT-COSY experiments, while other methods utilize measurement of peak separation. The former strategies suffer from complications due to peak overlap, primarily in regions close to the diagonal, while the latter strategies are negatively impacted by the common occurrence of strong coupling in sugars, which requires a reliable assessment of their influence in the context of RDC determination. We detail a 13C-13C CT-COSY method that combines a variation in the CT processed with diagonal filtering to yield 1JCC and RDCs. The strategy, which relies solely on cross-peak intensity modulation, is inspired in the cross-peak nulling method used for JHH determinations, but adapted and extended to applications where, like in sugars, large one-bond 13C-13C couplings coexist with relatively small long-range couplings. Because diagonal peaks are not utilized, overlap problems are greatly alleviated. Thus, one-bond couplings can be determined from different cross-peaks as either active or passive coupling. This results in increased accuracy when more than one determination is available, and in more opportunities to measure a specific coupling in the presence of severe overlap. In addition, we evaluate the influence of strong couplings on the determination of RDCs by computer simulations. We show that individual scalar couplings are notably affected by the presence of strong couplings but, at least for the simple cases studied, the obtained RDC values for use in structural calculations were not, because the errors introduced by strong couplings for the isotropic and oriented phases are very

  11. Accurate determinations of one-bond 13C-13C couplings in 13C-labeled carbohydrates.

    Science.gov (United States)

    Azurmendi, Hugo F; Freedberg, Darón I

    2013-03-01

    Carbon plays a central role in the molecular architecture of carbohydrates, yet the availability of accurate methods for (1)D(CC) determination has not been sufficiently explored, despite the importance that such data could play in structural studies of oligo- and polysaccharides. Existing methods require fitting intensity ratios of cross- to diagonal-peaks as a function of the constant-time (CT) in CT-COSY experiments, while other methods utilize measurement of peak separation. The former strategies suffer from complications due to peak overlap, primarily in regions close to the diagonal, while the latter strategies are negatively impacted by the common occurrence of strong coupling in sugars, which requires a reliable assessment of their influence in the context of RDC determination. We detail a (13)C-(13)C CT-COSY method that combines a variation in the CT processed with diagonal filtering to yield (1)J(CC) and RDCs. The strategy, which relies solely on cross-peak intensity modulation, is inspired in the cross-peak nulling method used for J(HH) determinations, but adapted and extended to applications where, like in sugars, large one-bond (13)C-(13)C couplings coexist with relatively small long-range couplings. Because diagonal peaks are not utilized, overlap problems are greatly alleviated. Thus, one-bond couplings can be determined from different cross-peaks as either active or passive coupling. This results in increased accuracy when more than one determination is available, and in more opportunities to measure a specific coupling in the presence of severe overlap. In addition, we evaluate the influence of strong couplings on the determination of RDCs by computer simulations. We show that individual scalar couplings are notably affected by the presence of strong couplings but, at least for the simple cases studied, the obtained RDC values for use in structural calculations were not, because the errors introduced by strong couplings for the isotropic and

  12. Do Humans Really Learn A[superscript n] B[superscript n] Artificial Grammars from Exemplars?

    Science.gov (United States)

    Hochmann, Jean-Remy; Azadpour, Mahan; Mehler, Jacques

    2008-01-01

    An important topic in the evolution of language is the kinds of grammars that can be computed by humans and other animals. Fitch and Hauser (F&H; 2004) approached this question by assessing the ability of different species to learn 2 grammars, (AB)[superscript n] and A[superscript n] B[superscript n]. A[superscript n] B[superscript n] was taken to…

  13. Peak metamorphic temperatures from Raman Spectroscopy on Carbonaceous Matter (RSCM) and δ18O and δ13C (carb) isotope composition of a major mélange zone in the South Norwegian Caledonides

    Science.gov (United States)

    Jakob, Johannes; Beyssac, Olivier; Boulvais, Philippe; Andersen, Torgeir B.

    2016-04-01

    A mélange in southern Norway comprises a matrix of garnet, mica- and black carbonaceous schists and phyllites of abyssal origin, interlayered with originally coarser grained siliciclastic metasediments, serpentinite conglomerates and sandstones, solitary metaperidotites and thin slivers of gneisses. Several models for the formation of the mélange have been suggested, including formation as a) an ophiolitic mélange formed during ophiolite obduction, b) an unconformable post-obduction transgressive sequence or c) a mélange formed during hyperextension along the pre-Caledonian margin of Baltica. In the past, the mélange has therefore not been treated as one single tectonic unit, but has been assigned to various tectonic positions with both outboard Iapetus and inboard Baltican origins. In this study we argue that the mélange occupies a tectonostratigraphic position below major Baltican basement nappe-complexes previously assigned to the Middle Allochthon. Furthermore, we present new consistent results on the peak metamorphic temperatures (T ˜ 500° C), based on RSCM, and a characteristic δ18Ocarb isotope composition (11-15.5 ‰ SMOW), both consistent for more than 250 km along strike of the mélange. δ13Ccarb values fall within three clusters around 1, - 2 , and - 7 ‰ (PDB), respectively. The stable isotope investigation presented here was carried out in order to explore if pre-Caledonian isotope signatures in various generations of carbonate veins and the early Ordovician fossils at Otta, could have been preserved through a later Caledonian metamorphic overprint. The results presented here however, suggest that re-equilibration of the carbonates took place in the Silurian, most likely coeval with peak metamorphism of ˜ 500° C at ˜ 420 Ma, and the main fabric development close to the base of the nappe-stack. Re-equilibration of the carbonates was assisted by the presence a pervasive static fluid, allowing for oxygen isotope exchange with the surrounding

  14. Use of [superscript 1]H, [superscript 13]C, and [superscript 19]F-NMR Spectroscopy and Computational Modeling to Explore Chemoselectivity in the Formation of a Grignard Reagent

    Science.gov (United States)

    Hein, Sara M.; Kopitzke, Robert W.; Nalli, Thomas W.; Esselman, Brian J.; Hill, Nicholas J.

    2015-01-01

    A discovery-based Grignard experiment for a second-year undergraduate organic chemistry course is described. The exclusive Grignard reagent formed by the reaction of 1-bromo-4-fluorobenzene (1) with Mg is 4-fluorophenylmagnesium bromide (2), which is treated with either benzophenone or CO[subscript 2] to produce the corresponding fluorinated…

  15. Use of [superscript 1]H, [superscript 13]C, and [superscript 19]F-NMR Spectroscopy and Computational Modeling to Explore Chemoselectivity in the Formation of a Grignard Reagent

    Science.gov (United States)

    Hein, Sara M.; Kopitzke, Robert W.; Nalli, Thomas W.; Esselman, Brian J.; Hill, Nicholas J.

    2015-01-01

    A discovery-based Grignard experiment for a second-year undergraduate organic chemistry course is described. The exclusive Grignard reagent formed by the reaction of 1-bromo-4-fluorobenzene (1) with Mg is 4-fluorophenylmagnesium bromide (2), which is treated with either benzophenone or CO[subscript 2] to produce the corresponding fluorinated…

  16. Simultaneous Multiagent Hyperpolarized 13C Perfusion Imaging

    DEFF Research Database (Denmark)

    von Morze, Cornelius; Bok, Robert A.; Reed, Galen D.

    2014-01-01

    Purpose: To demonstrate simultaneous hyperpolarization and imaging of three 13C-labeled perfusion MRI contrast agents with dissimilar molecular structures ([13C]urea, [13C]hydroxymethyl cyclopropane, and [13C]t-butanol) and correspondingly variable chemical shifts and physiological characteristic...

  17. Synthesis of exemestane labelled with (13)C.

    Science.gov (United States)

    Fontana, Erminia; Pignatti, Alberto; Giribone, Danilo; Di Salle, Enrico

    2008-08-01

    The synthesis of exemestane Aromasin, an irreversible steroidal aromatase inhibitor, specifically labelled with (13)C is reported. The preparation of [(13)C(3)]exemestane was achieved according to an eight-step procedure starting from the commercially available testosterone.

  18. The First in Vivo Observation of 13C- 15N Coupling in Mammalian Brain

    Science.gov (United States)

    Kanamori, Keiko; Ross, Brian D.

    2001-12-01

    [5-13C,15N]Glutamine, with 1J(13C-15N) of 16 Hz, was observed in vivo in the brain of spontaneously breathing rats by 13C MRS at 4.7 T. The brain [5-13C]glutamine peak consisted of the doublet from [5-13C,15N]glutamine and the center [5-13C,14N]glutamine peak, resulting in an apparent triplet with a separation of 8 Hz. The time course of formation of brain [5-13C,15N]glutamine was monitored in vivo with a time resolution of 20-35 min. This [5-13C,15N]glutamine was formed by glial uptake of released neurotransmitter [5-13C]glutamate and its reaction with 15NH3 catalyzed by the glia-specific glutamine synthetase. The neurotransmitter glutamate C5 was selectively13C-enriched by intravenous [2,5-13C]glucose infusion to 13C-label whole-brain glutamate C5, followed by [12C]glucose infusion to chase 13C from the small and rapidly turning-over glial glutamate pool, leaving 13C mainly in the neurotransmitter [5-13C]glutamate pool, which is sequestered in vesicles until release. Hence, the observed [5-13C,15N]glutamine arises from a coupling between 13C of neuronal origin and 15N of glial origin. Measurement of the rate of brain [5-13C,15N]glutamine formation provides a novel noninvasive method of studying the kinetics of neurotransmitter uptake into glia in vivo, a process that is crucial for protecting the brain from glutamate excitotoxicity.

  19. Synthesis of /sup 13/C-labelled medroxyprogesterone acetate with three /sup 13/C isotopes (1)

    Energy Technology Data Exchange (ETDEWEB)

    Rao, P.N.; Damodaran, K.M. (Southwest Foundation for Research and Education, San Antonio, TX (USA))

    1982-03-01

    17..cap alpha..-hydroxyprogesterone was condensed with phenyl acetate /sup 13/C/sub 2/ in the presence of sodium hydride. Treatment with acetic and hydrochloric acids and acetylation gave 17..cap alpha..-acetoxyprogesterone /sup 13/C/sub 2/. Treatment with tetrabromomethane /sup 13/C and hydrogenation yielded medroxyprogesterone acetate with three /sup 13/C isotopes.

  20. The use of dynamic nuclear polarization 13C-pyruvate MRS in cancer

    DEFF Research Database (Denmark)

    Borgwardt, Henrik Gutte; Espe Hansen, Adam; Hjort Johannesen, Helle

    2015-01-01

    -pyruvate due to favoring technicalities. Intravenous injection of the hyperpolarized 13C-pyruvate results in appearance of 13C-lactate, 13C-alanine and 13C-bicarbonate resonance peaks depending on the tissue, disease and the metabolic state probed. In cancer, the lactate level is increased due to increased...... of hyperpolarized 13C-pyruvate in healthy subjects and prostate cancer patients. The study showed an elevated 13C-lactate/13C-pyruvate ratio in regions of biopsy-proven prostate cancer compared to noncancerous tissue. However, more studies are needed in order to establish use of hyperpolarized 13C MRS imaging......In recent years there has been an immense development of new targeted anti-cancer drugs. For practicing precision medicine, a sensitive method imaging for non-invasive, assessment of early treatment response and for assisting in developing new drugs is warranted. Magnetic Resonance Spectroscopy...

  1. Detection of Fe[superscript 3+] and Al[superscript 3+] by Test Paper

    Science.gov (United States)

    Li, Lili; Xiang, Haifeng; Zhou, Xiangge; Li, Menglong; Wu, Di

    2012-01-01

    A porphyrin-based test paper has been designed and prepared. It can be used to analyze for Al[superscript 3+] and Fe[superscript 3+] in aqueous solution. An experiment employing the test paper can help students understand basic principles of spectrophotometry and how spectrophotometry is used in analyzing for metal ions. (Contains 1 scheme and 1…

  2. Molecular Orbitals of NO, NO[superscript+], and NO[superscript-]: A Computational Quantum Chemistry Experiment

    Science.gov (United States)

    Orenha, Renato P.; Galembeck, Sérgio E.

    2014-01-01

    This computational experiment presents qualitative molecular orbital (QMO) and computational quantum chemistry exercises of NO, NO[superscript+], and NO[superscript-]. Initially students explore several properties of the target molecules by Lewis diagrams and the QMO theory. Then, they compare qualitative conclusions with EHT and DFT calculations…

  3. Neutron halo state of 13C

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Angular distributions for the 12C(d, p)13C transfer reactionshave been measured at Ed = 11.8 MeV, and compared with those of the DWBA calculations. By means of this comparison, density distributions of the last neutron in the ground state and the first 1/2+ state of 13C are extracted. The properties of these states in 13C have also been studied in the framework of the nonlinear relativistic mean-field theory with NL-SH parameters. It is found that the first 1/2+ state in 13C is a neutron halo state shown by both the experimental and theoretical density distributions of the last neutron.

  4. The use of dynamic nuclear polarization (13)C-pyruvate MRS in cancer

    DEFF Research Database (Denmark)

    Gutte Borgwardt, Henrik; Hansen, Adam Espe; Johannesen, Helle Hjorth

    2015-01-01

    -pyruvate due to favoring technicalities. Intravenous injection of the hyperpolarized (13)C-pyruvate results in appearance of (13)C-lactate, (13)C-alanine and (13)C-bicarbonate resonance peaks depending on the tissue, disease and the metabolic state probed. In cancer, the lactate level is increased due...... the safety of hyperpolarized (13)C-pyruvate in healthy subjects and prostate cancer patients. The study showed an elevated (13)C-lactate/(13)C-pyruvate ratio in regions of biopsy-proven prostate cancer compared to noncancerous tissue. However, more studies are needed in order to establish use......In recent years there has been an immense development of new targeted anti-cancer drugs. For practicing precision medicine, a sensitive method imaging for non-invasive, assessment of early treatment response and for assisting in developing new drugs is warranted. Magnetic Resonance Spectroscopy...

  5. Synthesis of Gemcitabine-13C, 15N2 and Gemcitabine-13C, 15N2 Metabolites

    Directory of Open Access Journals (Sweden)

    ZHU Cheng-gu;YANG Shao-zu;YAN Sheng-wang;FANG Ning-jing;CAI Ding-long;LI Gang

    2014-02-01

    Full Text Available Homemade urea-13C, 15N2 was used to react with 3-methyl acrylonitrile closure to form cytosine-13C, 15N2 (2,which was protected by trimethylsilylation with BSA and condensed with 2-deoxy-2,2-difluoro-D-erythro-pentofuranose-3,5-dibenzoate-1-methanesulfonate at 120 ℃ to afford blocked gemcitabine-13C, 15N2. Hydrolytic removal of the blocking groups of gemcitabine-13C, 15N2 with NaOH gave gemcitabine-13C, 15N2, and its metabolite was obtained by further hydrolytic deamination of gemcitabine-13C, 15N2. The final products were characterized and detected by HPLC, LC-MS and NMR, and confirmed that the chemical purities were higher than 98%, isotopic abundances were 99% 13C, 98% 15N, and they were suitable for drug metabolism studies.

  6. Global ocean climatology of the 13C Suess effect and preindustrial δ13C

    Science.gov (United States)

    Eide, Marie; Olsen, Are; Ninnemann, Ulysses; Eldevik, Tor; Johannessen, Truls

    2017-04-01

    We present the first observationally based estimate of the full global ocean 13C Suess effect since preindustrial times. This was constructed by using Olsen and Ninnemann's [2010] back-calculation method to calculate the 13C Suess effect with data from 29 cruises spanning the world ocean. We find a strong 13C Suess effect in the upper 1000 m of all basins, with strongest decrease in the Subtropical Gyres of the Northern Hemisphere, where δ13C has decreased by more than 0.8‰ since the industrial revolution. At greater depths, a significant 13C Suess effect can only be detected in the northern parts of the North Atlantic Ocean. The magnitude of the 13C Suess effect is correlated with the concentration of anthropogenic carbon, but their relationship varying strongly between water masses, reflecting the degree to which source waters are equilibrated with the atmospheric 13C Suess effect before sinking. From the 13C Suess effect estimates, we have estimated the preindustrial δ13C (δ13CPI) along the 29 sections. Further, we developed regional multilinear regression equations, which were applied on the World Ocean Atlas data to construct the δ13CPI climatology, which reveals the natural δ13C distribution in the global ocean. Compared to the modern distribution, the preindustrial δ13C spans a larger range of values, and we find that in some regions in the high northern latitudes, the gradient in modern ocean δ13C is completely reversed compared to the preindustrial. Maximum δ13CPI, of up to 1.8‰, are found in the subtropical gyres of all basins, in the upper and intermediate waters of the North Atlantic, as well as in mode waters with a Southern Ocean origin. Particularly strong gradients occur at intermediate depths, revealing a strong potential for using δ13C as a tracer for changes in water mass geometry at these levels. Further, we identify a much tighter relationship between δ13C and Apparent Oxygen Utilization (AOU) than between δ13C and phosphate that

  7. Electric dipole moment of 13C

    Science.gov (United States)

    Yamanaka, Nodoka; Yamada, Taiichi; Hiyama, Emiko; Funaki, Yasuro

    2017-06-01

    We calculate for the first time the electric dipole moment (EDM) of 13C generated by the isovector charge conjugation-parity (CP)-odd pion exchange nuclear force in the α -cluster model, which describes well the structures of low-lying states of the 13C nucleus. The linear dependence of the EDM of 13C on the neutron EDM and the isovector CP-odd nuclear coupling is found to be d13C=-0.33 dn-0.0020 G¯π(1 ) . The linear enhancement factor of the CP-odd nuclear coupling is smaller than that of the deuteron, due to the difference of the structure between the 1 /21- state and the opposite-parity (1 /2+ ) states. We clarify the role of the structure played in the enhancement of the EDM. This result provides good guiding principles to search for other nuclei with large enhancement factor. We also mention the role of the EDM of 13C in determining the new physics beyond the standard model.

  8. Analysing Groundwater Using the 13C Isotope

    Science.gov (United States)

    Awad, Sadek

    The stable isotope of the carbon atom (13C) give information about the type of the mineralisation of the groundwater existing during the water seepage and about the recharge conditions of the groundwater. The concentration of the CO2(aq.) dissolved during the infiltration of the water through the soil's layers has an effect on the mineralisation of this water. The type of the photosynthesis's cycle (C-3 or C-4 carbon cycle) can have a very important role to determine the conditions (closed or open system) of the mineralisation of groundwater. The isotope 13C of the dissolved CO2 in water give us a certain information about the origin and the area of pollution of water. The proportion of the biogenic carbon and its percentage in the mineralisation of groundwater is determined by using the isotope 13C.

  9. States of 13C with abnormal radii

    Directory of Open Access Journals (Sweden)

    Demyanova A.S.

    2016-01-01

    Full Text Available Differential cross-sections of the elastic and inelastic 13C + α scattering were measured at E(α = 90 MeV. The root mean-square radii( of 13C nucleus in the states: 8.86 (1/2−, 3.09 (1/2+ and 9.90 (3/2− MeV were determined by the Modified diffraction model (MDM. The radii of the first two levels are enhanced compared to that of the ground state of 13C, confirming the suggestion that the 8.86 MeV state is an analogue of the Hoyle state in 12C and the 3.09 MeV state has a neutron halo. Some indications to the abnormally small size of the 9.90 MeV state were obtained.

  10. The electric dipole moment of $^{13}$C

    CERN Document Server

    Yamanaka, Nodoka; Hiyama, Emiko; Funaki, Yasuro

    2016-01-01

    We calculate for the first time the electric dipole moment (EDM) of $^{13}$C generated by the isovector CP-odd pion exchange nuclear force in the $\\alpha$-cluster model, which describes well the structures of low lying states of the $^{13}$C nucleus. The linear dependence of the EDM of $^{13}$C on the neutron EDM and the isovector CP-odd nuclear coupling is found to be $d_{^{13}{\\rm C}} = -0.33 d_n - 0.0012 \\bar G_\\pi^{(1)}$. The linear enhancement factor of the CP-odd nuclear coupling is smaller than that of the deuteron, due to the difference of the structure between the $1/2^-_1$ state and the opposite parity ($1/2^+$) states. We clarify the role of the structure played in the enhancement of the EDM. This result provides good guiding principles to search for other nuclei with large enhancement factor. We also mention the role of the EDM of $^{13}$C in determining the new physics beyond the standard model.

  11. Synthesis and NMR Spectral Analysis of Amine Heterocycles: The Effect of Asymmetry on the [superscript 1]H and [superscript 13]C NMR Spectra of N,O-Acetals

    Science.gov (United States)

    Saba, Shahrokh; Ciaccio, James A.; Espinal, Jennifer; Aman, Courtney E.

    2007-01-01

    The stereochemical investigation is conducted to give students the combined experience of chemical synthesis of amines and N-heterocycles and structural stereochemical analysis using NMR spectroscopy. Students are introduced to the concept of topicity-stereochemical relationships between ligands within a molecule by synthesizing N,O-acetals.

  12. Spectroscopy of exotic states of 13C

    Directory of Open Access Journals (Sweden)

    Demyanova A.S.

    2014-03-01

    Full Text Available The differential cross-sections of the elastic and inelastic 13C + α scattering were measured at E(α = 65 MeV. The radii of the states: 8.86 (1/2−, 3.09 (1/2+ and 9.90 (3/2− MeV were determined by the Modified diffraction model (MDM. The radii of the first two levels are enhanced relatively that of the ground state of 13C, confirming the suggestion that the 8.86 MeV state could be an analogue of the Hoyle state in 12C and the 3.09 MeV state has a neutron halo. No enhancement of the radius of the 9.90 MeV state was observed.

  13. Hepatic UDP-glucose 13C isotopomers from [U-13C]glucose: a simple analysis by 13C NMR of urinary menthol glucuronide.

    Science.gov (United States)

    Mendes, Ana C; Caldeira, M Madalena; Silva, Claudia; Burgess, Shawn C; Merritt, Matthew E; Gomes, Filipe; Barosa, Cristina; Delgado, Teresa C; Franco, Fatima; Monteiro, Pedro; Providencia, Luis; Jones, John G

    2006-11-01

    Menthol glucuronide was isolated from the urine of a healthy 70-kg female subject following ingestion of 400 mg of peppermint oil and 6 g of 99% [U-(13)C]glucose. Glucuronide (13)C-excess enrichment levels were 4-6% and thus provided high signal-to-noise ratios (SNRs) for confident assignment of (13)C-(13)C spin-coupled multiplet components within each (13)C resonance by (13)C NMR. The [U-(13)C]glucuronide isotopomer derived via direct pathway conversion of [U-(13)C]glucose to [U-(13)C]UDP-glucose was resolved from [1,2,3-(13)C(3)]- and [1,2-(13)C(2)]glucuronide isotopomers derived via Cori cycle or indirect pathway metabolism of [U-(13)C]glucose. In a second study, a group of four overnight-fasted patients (63 +/- 10 kg) with severe heart failure were given peppermint oil and infused with [U-(13)C]glucose for 4 hr (14 mg/kg prime, 0.12 mg/kg/min constant infusion) resulting in a steady-state plasma [U-(13)C]glucose enrichment of 4.6% +/- 0.6%. Menthol glucuronide was harvested and glucuronide (13)C-isotopomers were analyzed by (13)C NMR. [U-(13)C]glucuronide enrichment was 0.6% +/- 0.1%, and the sum of [1,2,3-(13)C(3)] and [1,2-(13)C(2)]glucuronide enrichments was 0.9% +/- 0.2%. From these data, flux of plasma glucose to hepatic UDPG was estimated to be 15% +/- 4% that of endogenous glucose production (EGP), and the Cori cycle accounted for at least 32% +/- 10% of GP. (c) 2006 Wiley-Liss, Inc.

  14. (13)C MRS of human brain at 7 Tesla using [2-(13)C]glucose infusion and low power broadband stochastic proton decoupling.

    Science.gov (United States)

    Li, Shizhe; An, Li; Yu, Shao; Ferraris Araneta, Maria; Johnson, Christopher S; Wang, Shumin; Shen, Jun

    2016-03-01

    Carbon-13 ((13)C) MR spectroscopy (MRS) of the human brain at 7 Tesla (T) may pose patient safety issues due to high radiofrequency (RF) power deposition for proton decoupling. The purpose of present work is to study the feasibility of in vivo (13)C MRS of human brain at 7 T using broadband low RF power proton decoupling. Carboxylic/amide (13)C MRS of human brain by broadband stochastic proton decoupling was demonstrated on a 7 T scanner. RF safety was evaluated using the finite-difference time-domain method. (13)C signal enhancement by nuclear Overhauser effect (NOE) and proton decoupling was evaluated in both phantoms and in vivo. At 7 T, the peak amplitude of carboxylic/amide (13)C signals was increased by a factor of greater than 4 due to the combined effects of NOE and proton decoupling. The 7 T (13)C MRS technique used decoupling power and average transmit power of less than 35 watts (W) and 3.6 W, respectively. In vivo (13)C MRS studies of human brain can be performed at 7 T, well below the RF safety threshold, by detecting carboxylic/amide carbons with broadband stochastic proton decoupling. © 2015 Wiley Periodicals, Inc.

  15. 13C MRS of Human Brain at 7 Tesla Using [2-13C]Glucose Infusion and Low Power Broadband Stochastic Proton Decoupling

    Science.gov (United States)

    Li, Shizhe; An, Li; Yu, Shao; Araneta, Maria Ferraris; Johnson, Christopher S.; Wang, Shumin; Shen, Jun

    2015-01-01

    Purpose 13C magnetic resonance spectroscopy (MRS) of human brain at 7 Tesla (T) may pose patient safety issues due to high RF power deposition for proton decoupling. The purpose of present work is to study the feasibility of in vivo 13C MRS of human brain at 7 T using broadband low RF power proton decoupling. Methods Carboxylic/amide 13C MRS of human brain by broadband stochastic proton decoupling was demonstrated on a 7 T scanner. RF safety was evaluated using the finite-difference time-domain method. 13C signal enhancement by nuclear Overhauser effect (NOE) and proton decoupling was evaluated in both phantoms and in vivo. Results At 7 T, the peak amplitude of carboxylic/amide 13C signals was increased by a factor of greater than 4 due to the combined effects of NOE and proton decoupling. The 7 T 13C MRS technique used decoupling power and average transmit power of less than 35 W and 3.6 W, respectively. Conclusion In vivo 13C MRS studies of human brain can be performed at 7 T well below the RF safety threshold by detecting carboxylic/amide carbons with broadband stochastic proton decoupling. PMID:25917936

  16. Optoacoustic 13C-breath test analyzer

    Science.gov (United States)

    Harde, Hermann; Helmrich, Günther; Wolff, Marcus

    2010-02-01

    The composition and concentration of exhaled volatile gases reflects the physical ability of a patient. Therefore, a breath analysis allows to recognize an infectious disease in an organ or even to identify a tumor. One of the most prominent breath tests is the 13C-urea-breath test, applied to ascertain the presence of the bacterium helicobacter pylori in the stomach wall as an indication of a gastric ulcer. In this contribution we present a new optical analyzer that employs a compact and simple set-up based on photoacoustic spectroscopy. It consists of two identical photoacoustic cells containing two breath samples, one taken before and one after capturing an isotope-marked substrate, where the most common isotope 12C is replaced to a large extent by 13C. The analyzer measures simultaneously the relative CO2 isotopologue concentrations in both samples by exciting the molecules on specially selected absorption lines with a semiconductor laser operating at a wavelength of 2.744 μm. For a reliable diagnosis changes of the 13CO2 concentration of 1% in the exhaled breath have to be detected at a concentration level of this isotope in the breath of about 500 ppm.

  17. Multisite Kinetic Modeling of 13C Metabolic MR Using [1-13C]Pyruvate

    Directory of Open Access Journals (Sweden)

    Pedro A. Gómez Damián

    2014-01-01

    Full Text Available Hyperpolarized 13C imaging allows real-time in vivo measurements of metabolite levels. Quantification of metabolite conversion between [1-13C]pyruvate and downstream metabolites [1-13C]alanine, [1-13C]lactate, and [13C]bicarbonate can be achieved through kinetic modeling. Since pyruvate interacts dynamically and simultaneously with its downstream metabolites, the purpose of this work is the determination of parameter values through a multisite, dynamic model involving possible biochemical pathways present in MR spectroscopy. Kinetic modeling parameters were determined by fitting the multisite model to time-domain dynamic metabolite data. The results for different pyruvate doses were compared with those of different two-site models to evaluate the hypothesis that for identical data the uncertainty of a model and the signal-to-noise ratio determine the sensitivity in detecting small physiological differences in the target metabolism. In comparison to the two-site exchange models, the multisite model yielded metabolic conversion rates with smaller bias and smaller standard deviation, as demonstrated in simulations with different signal-to-noise ratio. Pyruvate dose effects observed previously were confirmed and quantified through metabolic conversion rate values. Parameter interdependency allowed an accurate quantification and can therefore be useful for monitoring metabolic activity in different tissues.

  18. Activity-Dependent Excitability Changes Suggest Na[superscript +]/K[superscript +] Pump Dysfunction in Diabetic Neuropathy

    Science.gov (United States)

    Krishnan, Arun V.; Lin, Cindy S.-Y.; Kiernan, Matthew C.

    2008-01-01

    The present study was undertaken to evaluate the role of Na[superscript +]/K[superscript +] pump dysfunction in the development of diabetic neuropathy (DN). Nerve excitability techniques, which provide information about membrane potential and axonal ion channel function, were undertaken in 15 patients with established DN and in 10 patients with…

  19. Neutron orbital radii in {sup 13} C; Radios orbitales neutronicos en {sup 13} C

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera R, E.F.; Murillo, G.; Ramirez, J.J.; Avila, O.L. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1988-01-15

    In this work its were carried out experimental measurements of the reaction {sup 12}C(d,p) {sup 13}C at low energy. Preliminary results of a DWBA analysis of the data are presented, and the possibility of using this reaction to obtain the orbital radius of the transferred neutron is investigated. (Author)

  20. An Overview of Methods using 13C for Improved Compound Identification in Metabolomics and Natural Products

    Directory of Open Access Journals (Sweden)

    Chaevien S Clendinen

    2015-08-01

    Full Text Available Compound identification is a major bottleneck in metabolomics studies. In nuclear magnetic resonance (NMR investigations, resonance overlap often hinders unambiguous database matching or de novo compound identification. In liquid chromatography-mass spectrometry (LC-MS, discriminating between biological signals and background artifacts and reliable determination of molecular formulae are not always straightforward. We have designed and implemented several NMR and LC-MS approaches that utilize 13C, either enriched or at natural abundance, in metabolomics applications. For LC-MS applications, we describe a technique called isotopic ratio outlier analysis (IROA, which utilizes samples that are isotopically labeled with 5% (test and 95% (control 13C. This labeling strategy leads to characteristic isotopic patterns that allow the differentiation of biological signals from artifacts and yield the exact number of carbons, significantly reducing possible molecular formulae. The relative abundance between the test and control samples for every IROA feature can be determined simply by integrating the peaks that arise from the 5% and 95% channels. For NMR applications, we describe two 13C-based approaches. For samples at natural abundance, we have developed a workflow to obtain 13C-13C and 13C-1H statistical correlations using 1D 13C and 1H NMR spectra. For samples that can be isotopically labeled, we describe another NMR approach to obtain direct 13C-13C spectroscopic correlations. These methods both provide extensive information about the carbon framework of compounds in the mixture for either database matching or de novo compound identification. We also discuss strategies in which 13C NMR can be used to identify unknown compounds from IROA experiments. By combining technologies with the same samples, we can identify important biomarkers and corresponding metabolites of interest.

  1. Proof without Words: (1 + 1/n)[superscript n] less than e less than (1 + 1/n)[superscript n+1

    Science.gov (United States)

    Khattri, Sanjay Kumar

    2008-01-01

    We present a pictorial proof of the inequation (1 + 1/n)[superscript n] less than e less than (1 + 1/n)[superscript n+1]. The inequation is also confirmed through the Taylor expansion and alternating series theorem.

  2. Proof without Words: (1 + 1/n)[superscript n] less than e less than (1 + 1/n)[superscript n+1

    Science.gov (United States)

    Khattri, Sanjay Kumar

    2008-01-01

    We present a pictorial proof of the inequation (1 + 1/n)[superscript n] less than e less than (1 + 1/n)[superscript n+1]. The inequation is also confirmed through the Taylor expansion and alternating series theorem.

  3. Synthesis and structural analysis of 13C-fatty acids

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The 13C-labeled fatty acids octanoic-1-13C acid and palmitic-l-13C acid were synthetically prepared from Ba 13CO3. The yield of the former was more than 90% and that of the latter was above 85%. MS, IR, 1H-NMR and 13NMR were performed to analyze the structures of the two 13C-fatty acids, compared with their unlabeled fatty acids.

  4. {sup 13}C-{sup 13}C NOESY spectra of a 480 kDa protein: solution NMR of ferritin

    Energy Technology Data Exchange (ETDEWEB)

    Matzapetakis, Manolis; Turano, Paola [University of Florence, Department of Chemistry, CERM (Italy); Theil, Elizabeth C. [Children' s Hospital Oakland Research Institute, CeBIC (Council for BioIron at CHORI) (United States); Bertini, Ivano [University of Florence, Department of Chemistry, CERM (Italy)], E-mail: ivanobertini@cerm.unifi.it

    2007-07-15

    Molecular size has limited solution NMR analyses of proteins. We report {sup 13}C-{sup 13}C NOESY experiments on a 480 kDa protein, the multi-subunit ferritin nanocage with gated pores. By exploiting {sup 13}C-resonance-specific chemical shifts and spin diffusion effects, we identified 75% of the amino acids, with intraresidue C-C connectivities between nuclei separated by 1-4 bonds. These results show the potential of {sup 13}C-{sup 13}C NOESY for solution studies of molecular assemblies >100 kDa.

  5. 13C isotope effects on infrared bands of quenched carbonaceous composite (QCC)

    CERN Document Server

    Wada, S; Yamamura, I; Murata, Y; Tokunaga, A T

    2003-01-01

    We investigate carbon isotope effects on the infrared bands of a laboratory analogue of carbonaceous dust, the quenched carbonaceous composite (QCC), synthesized from a plasma gas of methane with various 12C/13C ratios. Peak shifts to longer wavelengths due to the substitution of 12C by 13C are clearly observed in several absorption bands. The shifts are almost linearly proportional to the 13C fraction. New features associated with 13C are not seen, indicating that the infrared bands in the QCC are not very localized vibration modes but come from vibrations associated with rather large carbon structures. An appreciable peak shift is detected in the 6.2 micron band, which is attributed to a carbon-carbon vibration. A peak shift in an out-of-plane bending mode of aromatic C--H at 11.4 micron is also observed, while only a small shift is detected in the 3.3 micron band, which arises from a C--H stretching mode. The present experiment suggests that peak shifts in the unidentified infrared (UIR) bands, particularl...

  6. Monitoring Cancer Response to Treatment with Hyperpolarized 13C MRS

    DEFF Research Database (Denmark)

    Eldirdiri, Abubakr

    Monitoring the cancer response to treatment, non-invasively, by medical imaging is a key element in the management of cancer. For patients undergoing treatment, it is crucial to determine responders from non-responders in order to guide treatment decisions. Currently, PET is the most widely used......, and the patient is exposed to ionizing radiation. The introduction of hyperpolarized 13C MRS has opened completely new possibilities to study the biochemical changes in disease processes. Numerous 13C-labeled compounds were proposed to interrogate various aspects of cancer cell metabolism. The aim of this study...... is to investigate the relevance of [1-13C]pyruvate and [1,4-13C2]fumarate in monitoring the changes in cellular metabolism and necrosis that may occur as a result of cancer therapy. This project also aims to improve existing 13C MRSI methods to efficiently utilize the signal from hyperpolarized 13C substrates...

  7. Simultaneous hyperpolarized (13)C-pyruvate MRI and (18)F-FDG-PET in cancer (hyperPET)

    DEFF Research Database (Denmark)

    Gutte Borgwardt, Henrik; Hansen, Adam E; Henriksen, Sarah T

    2015-01-01

    (DNP) and use of (13)C-pyruvate it is now possible to directly study the Warburg Effect through the rate of conversion of (13)C-pyruvate to (13)C-lactate. In this study, we combined it with (18)F-FDG-PET that studies uptake of glucose in the cells. A canine cancer patient with a histology verified......In this paper we demonstrate, for the first time, the feasibility of a new imaging concept - combined hyperpolarized (13)C-pyruvate magnetic resonance spectroscopic imaging (MRSI) and (18)F-FDG-PET imaging. This procedure was performed in a clinical PET/MRI scanner with a canine cancer patient. We...... have named this concept hyper PET. Intravenous injection of the hyperpolarized (13)C-pyruvate results in an increase of (13)C-lactate, (13)C-alanine and (13)C-CO2 ((13)C-HCO3) resonance peaks relative to the tissue, disease and the metabolic state probed. Accordingly, with dynamic nuclear polarization...

  8. Simultaneous hyperpolarized (13)C-pyruvate MRI and (18)F-FDG-PET in cancer (hyperPET)

    DEFF Research Database (Denmark)

    Gutte Borgwardt, Henrik; Hansen, Adam E; Henriksen, Sarah T

    2015-01-01

    have named this concept hyper PET. Intravenous injection of the hyperpolarized (13)C-pyruvate results in an increase of (13)C-lactate, (13)C-alanine and (13)C-CO2 ((13)C-HCO3) resonance peaks relative to the tissue, disease and the metabolic state probed. Accordingly, with dynamic nuclear polarization...... (DNP) and use of (13)C-pyruvate it is now possible to directly study the Warburg Effect through the rate of conversion of (13)C-pyruvate to (13)C-lactate. In this study, we combined it with (18)F-FDG-PET that studies uptake of glucose in the cells. A canine cancer patient with a histology verified...... increased (13)C-lactate production, which also corresponded to high (18)F-FDG uptake on PET. This is in agreement with the fact that glycolysis and production of lactate are increased in tumor cells compared to normal cells. Yet, most interestingly, also in the muscle of the forepaw of the dog high (18)F...

  9. Non-stationary (13)C-metabolic flux ratio analysis.

    Science.gov (United States)

    Hörl, Manuel; Schnidder, Julian; Sauer, Uwe; Zamboni, Nicola

    2013-12-01

    (13)C-metabolic flux analysis ((13)C-MFA) has become a key method for metabolic engineering and systems biology. In the most common methodology, fluxes are calculated by global isotopomer balancing and iterative fitting to stationary (13)C-labeling data. This approach requires a closed carbon balance, long-lasting metabolic steady state, and the detection of (13)C-patterns in a large number of metabolites. These restrictions mostly reduced the application of (13)C-MFA to the central carbon metabolism of well-studied model organisms grown in minimal media with a single carbon source. Here we introduce non-stationary (13)C-metabolic flux ratio analysis as a novel method for (13)C-MFA to allow estimating local, relative fluxes from ultra-short (13)C-labeling experiments and without the need for global isotopomer balancing. The approach relies on the acquisition of non-stationary (13)C-labeling data exclusively for metabolites in the proximity of a node of converging fluxes and a local parameter estimation with a system of ordinary differential equations. We developed a generalized workflow that takes into account reaction types and the availability of mass spectrometric data on molecular ions or fragments for data processing, modeling, parameter and error estimation. We demonstrated the approach by analyzing three key nodes of converging fluxes in central metabolism of Bacillus subtilis. We obtained flux estimates that are in agreement with published results obtained from steady state experiments, but reduced the duration of the necessary (13)C-labeling experiment to less than a minute. These results show that our strategy enables to formally estimate relative pathway fluxes on extremely short time scale, neglecting cellular carbon balancing. Hence this approach paves the road to targeted (13)C-MFA in dynamic systems with multiple carbon sources and towards rich media.

  10. Increasing 13C CP-MAS NMR resolution using single crystals: application to model octaethyl porphyrins.

    Science.gov (United States)

    Dugar, Sneha; Fu, Riqiang; Dalal, Naresh S

    2012-08-02

    Octaethyl porphyrin (OEP) and its Ni and Zn derivatives are considered as model compounds in biochemical, photophysical, and fossil fuel chemistry. They have thus been investigated by high-resolution solid-state (13)C NMR using powders, but peak assignment has been difficult because of large line widths. Arguing that a significant cause of broadening might be the anisotropic bulk magnetic susceptibility, we utilized single crystals in our (13)C cross-polarization magic angle spinning (CP-MAS) measurements and observed a nearly 2-fold line narrowing. This enhanced resolution enabled us to assign chemical shifts to each carbon for all the three compounds. The new assignments are now in agreement with X-ray structural data and allowed us to probe the motional dynamics of the methyl and methylene carbons of the OEP side chains. It is apparent that the use of single crystals in (13)C CP-MAS measurements has a significantly wider impact than previously thought.

  11. Polymeric proanthocyanidins 13C NMR studies of procyanidins

    Science.gov (United States)

    Lawrence J. Porter; Roger H. Newman; Lai Yeap Foo; Herbert Wong; Richard W. Hemingway

    1982-01-01

    Proanthocyanidin polymers have been shown to consist entirely of flavan-3-ol units by a combination of techniques including 13C n.m.r. spectroscopy. The 13C n.m.r. spectra of the polymers and related molecules are now considered in more detail. Prior to this study UC n.m.r. data has been published of procyanidins and...

  12. 1H and 13C NMR study of perdeuterated pyrazoles

    OpenAIRE

    Jimeno, María Luisa; Jagerovic, Nadine; Elguero, José; Junk, Thomas; Catallo, W. James

    1997-01-01

    The 1H and 13C chemical shifts as well as the 1H–2H and 2H–13C coupling constants of perdeuterated 3,5-dimethylpyrazole and 3,5-diphenylpyrazole have been measured and the values compared with those of the unlabelled compounds.

  13. Functional groups identified by solid state 13C NMR spectroscopy

    Science.gov (United States)

    Animal manure is generally high in organic matter intensity so it is well suitable for 13C nuclear magnetic resonance (NMR) analysis. Solid-state 13C NMR techniques used in characterizing organic matter and its components include, but are not limited to, cross-polarization /magic angle spinning (CP...

  14. M[superscript 2+]•EDTA Binding Affinities: A Modern Experiment in Thermodynamics for the Physical Chemistry Laboratory

    Science.gov (United States)

    O'Brien, Leah C.; Root, Hannah B.; Wei, Chin-Chuan; Jensen, Drake; Shabestary, Nahid; De Meo, Cristina; Eder, Douglas J.

    2015-01-01

    Isothermal titration calorimetry was used to experimentally determine thermodynamic values for the ethylenediaminetetraacetic acid (EDTA)(aq) + M[superscript 2+](aq) reactions (M[superscript 2+] = Ca[superscript 2+] and Mg[superscript 2+]). Students showed that for reactions in a N-(2-hydroxyethyl)piperazine-N"-ethanesulfonic acid (HEPES)…

  15. 13C-Enrichment of Urinary Uric Acid after l-[Ring-2-13C]Histidine Dose in Adult Humans

    Directory of Open Access Journals (Sweden)

    Tsunenobu Tamura

    2015-01-01

    Full Text Available We determined whether ring-2 carbon of histidine is folate-dependently transferred to carbons 8 (C8 and/or 2 (C2 in urinary uric acid in humans. Two adults collected each urine void for four days. Aliquots of urine for the first day were used for baseline values; then the subjects ingested 0.7 g (3.3 mmol of l-[ring-2-13C]histidine and collected urine for three experimental days. Aliquots were analyzed for percentage 13C-content at C2 and C8 by a liquid-chromatography-mass spectrometry method. Percentage enrichment was determined by subtracting time-of-day paired baseline percentage 13C-content from experimental percentage 13C-content for each void. C2 was predominantly 13C-enriched in the majority of voids. The percentage enrichments at C2 for two subjects were 0.14 (±0.028 [SEM], n = 26 and 0.18 (±0.049, n = 21, whereas at C8, they were 0.008 (±0.006 and −0.005 (±0.008, respectively. The mean C2-enrichments were significantly greater than zero (p < 0.01, whereas those of C8 were not (p > 0.2. The enrichment had a diurnal rhythm peaking in the morning. Our results may be useful in the estimation of the timing for the administration of drugs that interfere with purine nucleotide biosynthesis in the treatment of cancer and autoimmune disease.

  16. NMR structure analysis of uniformly 13C-labeled carbohydrates.

    Science.gov (United States)

    Fontana, Carolina; Kovacs, Helena; Widmalm, Göran

    2014-06-01

    In this study, a set of nuclear magnetic resonance experiments, some of them commonly used in the study of (13)C-labeled proteins and/or nucleic acids, is applied for the structure determination of uniformly (13)C-enriched carbohydrates. Two model substances were employed: one compound of low molecular weight [(UL-(13)C)-sucrose, 342 Da] and one compound of medium molecular weight ((13)C-enriched O-antigenic polysaccharide isolated from Escherichia coli O142, ~10 kDa). The first step in this approach involves the assignment of the carbon resonances in each monosaccharide spin system using the anomeric carbon signal as the starting point. The (13)C resonances are traced using (13)C-(13)C correlations from homonuclear experiments, such as (H)CC-CT-COSY, (H)CC-NOESY, CC-CT-TOCSY and/or virtually decoupled (H)CC-TOCSY. Based on the assignment of the (13)C resonances, the (1)H chemical shifts are derived in a straightforward manner using one-bond (1)H-(13)C correlations from heteronuclear experiments (HC-CT-HSQC). In order to avoid the (1) J CC splitting of the (13)C resonances and to improve the resolution, either constant-time (CT) in the indirect dimension or virtual decoupling in the direct dimension were used. The monosaccharide sequence and linkage positions in oligosaccharides were determined using either (13)C or (1)H detected experiments, namely CC-CT-COSY, band-selective (H)CC-TOCSY, HC-CT-HSQC-NOESY or long-range HC-CT-HSQC. However, due to the short T2 relaxation time associated with larger polysaccharides, the sequential information in the O-antigen polysaccharide from E. coli O142 could only be elucidated using the (1)H-detected experiments. Exchanging protons of hydroxyl groups and N-acetyl amides in the (13)C-enriched polysaccharide were assigned by using HC-H2BC spectra. The assignment of the N-acetyl groups with (15)N at natural abundance was completed by using HN-SOFAST-HMQC, HNCA, HNCO and (13)C-detected (H)CACO spectra.

  17. Study of Urban environmental quality through Isotopes δ13C

    Science.gov (United States)

    González-Sosa, E.; Mastachi-Loza, C.; Becerril-Piña, R.; Ramos-Salinas, N. M.

    2012-04-01

    Usually, trees with similar pH values on their bark develop epiphytes of similar species, the acidity to be a factor for growth. The aim of the study was evaluate the air quality through isotope δ13C in order to define the levels of environmental quality in the city of Queretaro, Mexico. In this work were collected at least 4 epiphytes positioned in trees of the species Prosopis Laevigata at 25 sites of Queretaro City. The samples were analyzed for trace elements with an inductively coupled plasma atomic emission spectroscopy (ICP). The collecting took place during dry period, in May and early rain June 2011 period, and on four sectors to identify the spatial distribution of pollution, using isotopic analysis of concentration of δ 13C. According with the results there are significant differences among the species in each of the sampled areas. The 5 February Avenue presented greater diversity and richness of δ13C, followed by those who were surveyed in the proximity of the UAQ and finally in the middle-east area. An average value of δ13C-17.92%, followed by those surveyed in the vicinity of the UAQ that correspond to sector I and II with an concentration of δ13C-17.55% and δ13C-17.22%, and finally the samples collected in trees scattered in the East-Sector II and IV with a value of δ13C-17.02% and δ13C-15.62%, respectively. Also were observed differences between the dry and wet period. It is likely that these results of δ 13C in moist period reflect the drag of the isotopes due to rain events that could mark a trend in the dilution of this element, however there is a trend in terms of abundance and composition of finding more impact in those species sampled in dry period, in May and early June 2011.

  18. Simultaneous hyperpolarized 13C-pyruvate MRI and 18F-FDG-PET in cancer (hyperPET)

    DEFF Research Database (Denmark)

    Gutte, Henrik; Hansen, Adam E.; Henriksen, Sarah T.

    2015-01-01

    of 13C-pyruvate it is now possible to directly study the Warburg Effect through the rate of conversion of 13C-pyruvate to 13C-lactate. In this study, we combined it with 18F-FDG-PET that studies uptake of glucose in the cells. A canine cancer patient with a histology verified local recurrence......In this paper we demonstrate, for the first time, the feasibility of a new imaging concept - combined hyperpolarized 13C-pyruvate magnetic resonance spectroscopic imaging (MRSI) and 18F-FDG-PET imaging. This procedure was performed in a clinical PET/MRI scanner with a canine cancer patient. We have...... named this concept hyper PET. Intravenous injection of the hyperpolarized 13C-pyruvate results in an increase of 13C-lactate, 13C-alanine and 13CCO2 (13C-HCO3) resonance peaks relative to the tissue, disease and the metabolic state probed. Accordingly, with dynamic nuclear polarization (DNP) and use...

  19. (13)C metabolic flux analysis of recombinant expression hosts.

    Science.gov (United States)

    Young, Jamey D

    2014-12-01

    Identifying host cell metabolic phenotypes that promote high recombinant protein titer is a major goal of the biotech industry. (13)C metabolic flux analysis (MFA) provides a rigorous approach to quantify these metabolic phenotypes by applying isotope tracers to map the flow of carbon through intracellular metabolic pathways. Recent advances in tracer theory and measurements are enabling more information to be extracted from (13)C labeling experiments. Sustained development of publicly available software tools and standardization of experimental workflows is simultaneously encouraging increased adoption of (13)C MFA within the biotech research community. A number of recent (13)C MFA studies have identified increased citric acid cycle and pentose phosphate pathway fluxes as consistent markers of high recombinant protein expression, both in mammalian and microbial hosts. Further work is needed to determine whether redirecting flux into these pathways can effectively enhance protein titers while maintaining acceptable glycan profiles.

  20. Dihydroflavanonols from Cedrus deodara, A (13)C NMR study.

    Science.gov (United States)

    Agrawal, P K; Agarwal, S K; Rastogi, R P; Osterdahal, B G

    1981-09-01

    High resolution (13)C NMR study of taxifolin, cedeodarin, cedrin and their methyl ethers allowed unambiguous placement of the Me in 5,7-dihydroxyflavanonol nucleus, besides providing other valuable information on the substitution pattern in the molecule.

  1. Regio-selective detection of dynamic structure of transmembrane alpha-helices as revealed from (13)C NMR spectra of [3-13C]Ala-labeled bacteriorhodopsin in the presence of Mn2+ ion.

    Science.gov (United States)

    Tuzi, S; Hasegawa, J; Kawaminami, R; Naito, A; Saitô, H

    2001-07-01

    13C Nuclear magnetic resonance (NMR) spectra of [3-(13)C]Ala-labeled bacteriorhodopsin (bR) were edited to give rise to regio-selective signals from hydrophobic transmembrane alpha-helices by using NMR relaxation reagent, Mn(2+) ion. As a result of selective suppression of (13)C NMR signals from the surfaces in the presence of Mn(2+) ions, several (13)C NMR signals of Ala residues in the transmembrane alpha-helices were identified on the basis of site-directed mutagenesis without overlaps from (13)C NMR signals of residues located near the bilayer surfaces. The upper bound of the interatomic distances between (13)C nucleus in bR and Mn(2+) ions bound to the hydrophilic surface to cause suppressed peaks by the presence of Mn(2+) ion was estimated as 8.7 A to result in the signal broadening to 100 Hz and consistent with the data based on experimental finding. The Ala C(beta) (13)C NMR peaks corresponding to Ala-51, Ala-53, Ala-81, Ala-84, and Ala-215 located around the extracellular half of the proton channel and Ala-184 located at the kink in the helix F were successfully identified on the basis of (13)C NMR spectra of bR in the presence of Mn(2+) ion and site-directed replacement of Ala by Gly or Val. Utilizing these peaks as probes to observe local structure in the transmembrane alpha-helices, dynamic conformation of the extracellular half of bR at ambient temperature was examined, and the local structures of Ala-215 and 184 were compared with those elucidated at low temperature. Conformational changes in the transmembrane alpha-helices induced in D85N and E204Q and its long-range transmission from the proton release site to the site around the Schiff base in E204Q were also examined.

  2. Pulsed polarization transfer for 13C NMR in solids

    Science.gov (United States)

    Bax, Ad; Szeverenyi, Nikolaus M.; Maciel, Gary E.

    A new pulsed polarization transfer experiment method is described for the polarization of 13C spins in a solid by magnetization transfer from protons. The method is directly analogous to the INEPT sequence for liquids introduced by Freeman and Morris. As polarization is transferred in PPT between individual 1H 13C pairs, rather than between spin reservoirs, different opportunities exist for structurally selective experiments. Results on p-diethoxybenzene and coronene are presented.

  3. Quantification of protein secondary structure by (13)C solid-state NMR.

    Science.gov (United States)

    Andrade, Fabiana Diuk; Forato, Lucimara Aparecida; Bernardes Filho, Rubens; Colnago, Luiz Alberto

    2016-05-01

    High-resolution (13)C solid-state NMR stands out as one of the most promising techniques to solve the structure of insoluble proteins featuring biological and technological importance. The simplest nuclear magnetic resonance (NMR) spectroscopy method to quantify the secondary structure of proteins uses the areas of carbonyl and alpha carbon peaks. The quantification obtained by fitting procedures depends on the assignment of the peaks to the structure, type of line shape, number of peaks to be used, and other parameters that are set by the operator. In this paper, we demonstrate that the analysis of (13)C NMR spectra by a pattern recognition method-based on the singular value decomposition (SVD) regression, which does not depend on the operator-shows higher correlation coefficients for α-helix and β-sheet (0.96 and 0.91, respectively) than Fourier transform infrared spectroscopy (FTIR) method. Therefore, the use of (13)C solid-state NMR spectra and SVD is a simple and reliable method for quantifying the secondary structures of insoluble proteins in solid-state.

  4. A simplified 13C-Urea breath test (13C-UBT) in the diagnosis of Helicobacter pylori (HP) infection

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, T.; Bartholomeusz, F.D. L.; Bellon, M.S.; Chatterton, B.E. [Royal Adelaide Hospital, Adelaide. SA (Australia). Department of Nuclear Medicine

    1998-06-01

    Full text: The Urea Breath Test (UBT) is an accurate, noninvasive means of assessing the presence of Helicobacter pylori in the stomach. Two tests are currently available, using 13C- and 14C-labelled urea, respectively. 13C is a nonradioactive isotope, unlike 14C, but the 13C-UBT is technically more challenging. The aim of this study was to determine the accuracy of a simplified 13C-UBT with no test meal, using the 14C-UBT as the previously validated standard. 76 studies were performed on 72 patients; 4 patients performed the test twice. 28 patients were female, 44 male. The mean age was 51.1 years (range 23-86 years). 42 patients presented for post-eradication follow up, and 30 for initial diagnosis. All subjects underwent a 14C-UBT with a 15 minute sample. The 13C-UBT was then performed without a test meal and the breath samples obtained at baseline and 20 minutes. Of the 14C-UBT studies, 27 were positive, ranging from 1372 to 10,987 DPM (Normal <1000 DPM), and 49 were negative, range 177-946 DPM. 26 of the 13C-UBT studies were positive, with a Delta value ranging from 4.29-47.89 (Normal: Delta <3.5), and 50 were negative, range -0.20-2.80. There were 1 false-positive and 2 false-negative 13-UBT studies. This yielded a sensitivity of 92.6% and specificity of 98.0% for the simplified 13C-UBT. From these results we conclude that the simplified 13C-UBT is an accurate means of detecting the presence of Helicobacter pylori within the stomach

  5. Concerning the Integral dx/x[superscript m] (1+x)

    Science.gov (United States)

    Walters, William; Huber, Michael

    2010-01-01

    Consider the integral dx/x[superscript m] (1+x). In the "CRC Standard Mathematical Tables," this integral can require repeated integral evaluations. Enter this integral into your favourite computer algebra system, and the results may be unrecognizable. In this article, we seek to provide a simpler evaluation for integrals of this form. We state up…

  6. Concerning the Integral dx/x[superscript m] (1+x)

    Science.gov (United States)

    Walters, William; Huber, Michael

    2010-01-01

    Consider the integral dx/x[superscript m] (1+x). In the "CRC Standard Mathematical Tables," this integral can require repeated integral evaluations. Enter this integral into your favourite computer algebra system, and the results may be unrecognizable. In this article, we seek to provide a simpler evaluation for integrals of this form. We state up…

  7. A scientific workflow framework for (13)C metabolic flux analysis.

    Science.gov (United States)

    Dalman, Tolga; Wiechert, Wolfgang; Nöh, Katharina

    2016-08-20

    Metabolic flux analysis (MFA) with (13)C labeling data is a high-precision technique to quantify intracellular reaction rates (fluxes). One of the major challenges of (13)C MFA is the interactivity of the computational workflow according to which the fluxes are determined from the input data (metabolic network model, labeling data, and physiological rates). Here, the workflow assembly is inevitably determined by the scientist who has to consider interacting biological, experimental, and computational aspects. Decision-making is context dependent and requires expertise, rendering an automated evaluation process hardly possible. Here, we present a scientific workflow framework (SWF) for creating, executing, and controlling on demand (13)C MFA workflows. (13)C MFA-specific tools and libraries, such as the high-performance simulation toolbox 13CFLUX2, are wrapped as web services and thereby integrated into a service-oriented architecture. Besides workflow steering, the SWF features transparent provenance collection and enables full flexibility for ad hoc scripting solutions. To handle compute-intensive tasks, cloud computing is supported. We demonstrate how the challenges posed by (13)C MFA workflows can be solved with our approach on the basis of two proof-of-concept use cases.

  8. 13C-based metabolic flux analysis: fundamentals and practice.

    Science.gov (United States)

    Yang, Tae Hoon

    2013-01-01

    Isotope-based metabolic flux analysis is one of the emerging technologies applied to system level metabolic phenotype characterization in metabolic engineering. Among the developed approaches, (13)C-based metabolic flux analysis has been established as a standard tool and has been widely applied to quantitative pathway characterization of diverse biological systems. To implement (13)C-based metabolic flux analysis in practice, comprehending the underlying mathematical and computational modeling fundamentals is of importance along with carefully conducted experiments and analytical measurements. Such knowledge is also crucial when designing (13)C-labeling experiments and properly acquiring key data sets essential for in vivo flux analysis implementation. In this regard, the modeling fundamentals of (13)C-labeling systems and analytical data processing are the main topics we will deal with in this chapter. Along with this, the relevant numerical optimization techniques are addressed to help implementation of the entire computational procedures aiming at (13)C-based metabolic flux analysis in vivo.

  9. Synthesis and applications of {sup 13}C glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Stocking, E.; Khalsa, O.; Martinez, R.A.; Silks, L.A. III [Los Alamos National Laboratory, NM (United States)

    1994-12-01

    Due in part to the use of labeled glycerol for the {sup 13}C enrichment of biomolecules, we are currently developing new synthetic routes to various isotopomers of glycerol. Judging from our experience, traditional methods of glycerol synthesis are not easily adapted for isotopic enrichment and/or have poor overall yields (12 to 15%). Furthermore, the use of glycerol for enrichment can be prohibitively expensive and its availability is limited by the level of demand. We are presently developing a short de novo synthesis of glycerol from carbon dioxide ({approximately}53% overall yield for four steps) and are examining the feasibility of synthesizing site-specific {sup 13}C-labeled glycerol and dihydroxyacetone (DHA) from labeled methanol and carbon dioxide. One application of {sup 13}C glycerol we have examined is enzymatic conversion of glycerol to glyceraldehyde-3-monophosphate or dihydroxyacetone monophosphate (DHAP) with yields ranging from 25 to 50% (as determined by NMR spectroscopy). We are also pursuing the chemical conversion of {sup 13}C-labeled DHA to DHAP. We are especially interested in {sup 13}C-labeled DHAP because we are investigating its use as a chemo-enzymatic precursor for both labeled 2-deoxyribose and 2-deoxyribonucleic acids.

  10. {sup 13}C relaxation in an RNA hairpin

    Energy Technology Data Exchange (ETDEWEB)

    King, G.C. [Univ. of South Wales, Kensington (Australia)]|[Rice Univ., Houston, TX (United States); Akratos, C. [Univ. of South Wales, Kensington (Australia); Xi, Z.; Michnica, M.J. [Rice Univ., Houston, TX (United States)

    1994-12-01

    This initial survey of {sup 13}C relaxation in the {triangle}TAR RNA element has generated a number of interesting results that should prove generally useful for future studies. The most readily comparable study in the literature monitored {sup 13}C relaxation of the methyl groups from unusual bases in tRNA{sup Phe}. The study, which used T{sub 1} and NOE data only, reported order parameters for the methyl group axis that ranged between 0.51 and 0.97-a range similar to that observed here. However, they reported a breakdown of the standard order parameter analysis at higher (118-MHz {sup 13}C) frequencies, which should serve to emphasize the need for a thorough exploration of suitable motional models.

  11. Study of molecular interactions with 13C DNP-NMR.

    Science.gov (United States)

    Lerche, Mathilde H; Meier, Sebastian; Jensen, Pernille R; Baumann, Herbert; Petersen, Bent O; Karlsson, Magnus; Duus, Jens Ø; Ardenkjaer-Larsen, Jan H

    2010-03-01

    NMR spectroscopy is an established, versatile technique for the detection of molecular interactions, even when these interactions are weak. Signal enhancement by several orders of magnitude through dynamic nuclear polarization alleviates several practical limitations of NMR-based interaction studies. This enhanced non-equilibrium polarization contributes sensitivity for the detection of molecular interactions in a single NMR transient. We show that direct (13)C NMR ligand binding studies at natural isotopic abundance of (13)C gets feasible in this way. Resultant screens are easy to interpret and can be performed at (13)C concentrations below muM. In addition to such ligand-detected studies of molecular interaction, ligand binding can be assessed and quantified with enzymatic assays that employ hyperpolarized substrates at varying enzyme inhibitor concentrations. The physical labeling of nuclear spins by hyperpolarization thus provides the opportunity to devise fast novel in vitro experiments with low material requirement and without the need for synthetic modifications of target or ligands.

  12. Molecular structure of crude beeswax studied by solid-state 13C NMR.

    Science.gov (United States)

    Kameda, Tsunenori

    2004-01-01

    13C solid-state NMR experiments were performed to investigate the structure of beeswax in the native state (crude beeswax) for the first time. From quantitative direct polarization 13C MAS NMR spectrum, it was found that the fraction of internal-chain methylene (int-(CH2)) component compared to other components of crude beeswax was over 95%. The line shape of the int-(CH2) carbon resonance region was comprehensively analyzed in terms of NMR chemical shift. The 13C broad peak component covering from 31 to 35 ppm corresponds to int-(CH2) carbons with trans conformation in crystalline domains, whereas the sharp signal at 30.3 ppm corresponds to gauche conformation in the non-crystalline domain. From peak deconvolution of the aliphatic region, it was found that over 85% of the int-(CH2) has a crystal structure and several kinds of molecular packing for int-(CH2), at least three, exist in the crystalline domain.

  13. Direct 13C NMR Detection in HPLC Hyphenation Mode

    DEFF Research Database (Denmark)

    Wubshet, Sileshi Gizachew; Johansen, Kenneth; Nyberg, Nils

    2012-01-01

    Solid phase extraction (SPE) was introduced as a crucial step in the HPLC-SPE-NMR technique to enable online analyte enrichment from which proton-detected NMR experiments on submicrogram amounts from complex mixtures were possible. However, the significance of direct-detected (13)C NMR experiments...... application of HPLC-SPE-NMR analysis using direct-detected (13)C NMR spectra. HPLC column loading, accumulative SPE trappings, and the effect of different elution solvents were evaluated and optimized. A column loading of approximately 600 mug of a prefractionated triterpenoid mixture, six trappings...

  14. 13C NMR studies of porphobilinogen synthase: observation of intermediates bound to a 280,000-dalton protein.

    Science.gov (United States)

    Jaffe, E K; Markham, G D

    1987-07-14

    13C NMR has been used to observe the equilibrium complex of [4-13C]-5-aminolevulinate ([4-13C]ALA) bound to porphobilinogen (PBG) synthase (5-aminolevulinate dehydratase), a 280,000-dalton protein. [4-13C]ALA (chemical shift = 205.9 ppm) forms [3,5-13C]PBG (chemical shifts = 121.0 and 123.0 ppm). PBG prepared from a mixture of [4-13C]ALA and [15N]ALA was used to assign the 121.0 and 123.0 ppm resonances to C5 and C3, respectively. For the enzyme-bound equilibrium complex formed from holoenzyme and [4-13C]ALA, two peaks of equal area with chemical shifts of 121.5 and 127.2 ppm are observed (line widths approximately 50 Hz), indicating that the predominant species is probably a distorted form of PBG. When excess free PBG is present, it is in slow exchange with bound PBG, indicating an exchange rate of less than 10 s-1, which is consistent with the turnover rate of the enzyme. For the complex formed from [4-13C]ALA and methyl methanethiosulfonate (MMTS) modified PBG synthase, which does not catalyze PBG formation, the predominant species is a Schiff base adduct (chemical shift = 166.5 ppm, line width approximately 50 Hz). Free ALA is in slow exchange with the Schiff base. Activation of the MMTS-modified enzyme-Schiff base complex with 113Cd and 2-mercaptoethanol results in the loss of the Schiff base signal and the appearance of bound PBG with the same chemical shifts as for the bound equilibrium complex with Zn(II) enzyme. Neither splitting nor broadening from 113Cd-13C coupling was observed.

  15. Metabolic flux analysis using 13C peptide label measurements

    Science.gov (United States)

    13C metabolic flux analysis (MFA) has become the experimental method of choice to investigate cellular metabolism. MFA has established flux maps of central metabolism for dozens of microbes, cell cultures, and plant seeds. Steady-state MFA utilizes isotopic labeling measurements of amino acids obtai...

  16. Revisiting the metathesis of 13C-monolabeled ethane

    KAUST Repository

    Maury, Olivier

    2010-12-13

    The metathesis of 13C-monolabeled ethane leads to the parallel occurrence of degenerate and productive reactions, affording the statistical distribution of the various product isotopomers, which can be rationalized in terms of a mechanistic reaction scheme combining both processes. © 2010 American Chemical Society.

  17. δ13C-CH4 in ice core samples

    DEFF Research Database (Denmark)

    Sperlich, Peter

    Ice core records of δ13C-CH4 reflect the variability of CH4 biogeochemistry in response to climate change and show this system is far more complex than expected. The first part of this work is concerned with the development of analytical techniques that allow 1) precise referencing and 2) measure......Ice core records of δ13C-CH4 reflect the variability of CH4 biogeochemistry in response to climate change and show this system is far more complex than expected. The first part of this work is concerned with the development of analytical techniques that allow 1) precise referencing and 2......) measurements of δ13C-CH4 in ice core samples as is required when δ13C-CH4 records that are measured in several laboratories are merged for analysis. Both the referencing and measurement techniques have been compared to further laboratories which proofed the accuracy of the analytical systems. The second part...

  18. δ13C-CH4 in ice core samples

    DEFF Research Database (Denmark)

    Sperlich, Peter

    Ice core records of δ13C-CH4 reflect the variability of CH4 biogeochemistry in response to climate change and show this system is far more complex than expected. The first part of this work is concerned with the development of analytical techniques that allow 1) precise referencing and 2) measure......Ice core records of δ13C-CH4 reflect the variability of CH4 biogeochemistry in response to climate change and show this system is far more complex than expected. The first part of this work is concerned with the development of analytical techniques that allow 1) precise referencing and 2......) measurements of δ13C-CH4 in ice core samples as is required when δ13C-CH4 records that are measured in several laboratories are merged for analysis. Both the referencing and measurement techniques have been compared to further laboratories which proofed the accuracy of the analytical systems. The second part...

  19. Does the Shuram δ13C excursion record Ediacaran oxygenation?

    Science.gov (United States)

    Husson, J. M.; Maloof, A. C.; Schoene, B.; Higgins, J. A.

    2013-12-01

    The most negative carbon isotope excursion in Earth history is found in carbonate rocks of the Ediacaran Period (635-542 Ma). Known colloquially as the the 'Shuram' excursion, workers have long noted its tantalizing, broad concordance with the rise of abundant macro-scale fossils in the rock record, variously interpreted as animals, giant protists, macro-algae and lichen, and known as the 'Ediacaran Biota.' Thus, the Shuram excursion has been interpreted by many in the context of a dramatically changing redox state of the Ediacaran oceans - e.g., a result of methane cycling in a low O2 atmosphere, the final destruction of a large pool of recalcitrant dissolved organic carbon (DOC), and the step-wise oxidation of the Ediacaran oceans. More recently, diagenetic interpretations of the Shuram excursion - e.g. sedimentary in-growth of very δ13C depleted authigenic carbonates, meteoric alteration of Ediacaran carbonates, late-stage burial diagenesis - have challenged the various Ediacaran redox models. A rigorous geologic context is required to discriminate between these explanatory models, and determine whether the Shuram excursion can be used to evaluate terminal Neoproterozoic oxygenation. Here, we present chemo-stratigraphic data (δ13C, δ18O, δ44/42Ca and redox sensitive trace element abundances) from 12 measured sections of the Ediacaran-aged Wonoka Formation (Fm.) of South Australia that require a syn-depositional age for the extraordinary range of δ13C values (-12 to +4‰) observed in the formation. In some locations, the Wonoka Fm. is ~700 meters (m) of mixed shelf limestones and siliclastics that record the full 16 ‰ δ13C excursion in a remarkably consistent fashion across 100s of square kilometers of basin area. Fabric-altering diagenesis, where present, occurs at the sub-meter vertical scale, only results in sub-permil offsets in δ13C and cannot be used to explain the full δ13C excursion. In other places, the Wonoka Fm. is host to deep (1 km

  20. Recent insights into intramolecular 13C isotope composition of biomolecules

    Science.gov (United States)

    Gilbert, A.; Yamada, K.; Julien, M.; Yoshida, N.; Remaud, G.; Robins, R.

    2016-12-01

    In 1961 Abelson & Hoering shown that the intramolecular 13C distribution in amino acids was not homogeneous, namely the carboxylic acid positions were 13C-enriched compared with the mean of the remaining C-atoms in the molecule [1]. Nearly 20 years later, Monson & Hayes were able to demonstrate that even and odd positions in acetogenic fatty acids also showed non-statistical 13C isotope distributions, and that the pattern varied depending on the organism [2]. It took a further decade for the intramolecular 13C distribution in the key metabolite, glucose, to be defined [3]. Although informative, much of this work was incomplete, a number of positions having to be deduced by difference. This limitation arose mainly due to the lack of techniques enabling the separation and quantification of 13C isotopomers of the target molecule. In the past decade, quantitative 13C NMR has been developed for the determination of the intramolecular isotope composition of a given molecule with a precision of 1‰ or better [4]. This breakthrough has made possible a comprehensive view of the determinants governing intramolecular isotope composition of biological molecules. In particular, it can be shown that intramolecular pattern in sugars is influenced by the C-assimilation pathway and by post-photosynthetic fractionation associated with carbohydrate metabolism [5]. In addition, analysis by NMR of the alkyl chain of acetogenic lipids (fatty acids, n-alkanes) shows an alternation between odd and even C-atom positions, as observed by Monson& Hayes [2], throughout the molecule [6]. Overall, it is becoming apparent that this pattern is influenced by two principal metabolic factors: (i) the 13C pattern extant in the starting compounds; (ii) isotope fractionation associated with the enzymes involved in the biosynthetic pathway. On the whole, the determination of intramolecular isotope patterns in biomolecules allows better insights into the conditions and pathways by which they are formed

  1. Optical hyperpolarization of 13C nuclear spins in nanodiamond ensembles

    Science.gov (United States)

    Chen, Q.; Schwarz, I.; Jelezko, F.; Retzker, A.; Plenio, M. B.

    2015-11-01

    Dynamical nuclear polarization holds the key for orders of magnitude enhancements of nuclear magnetic resonance signals which, in turn, would enable a wide range of novel applications in biomedical sciences. However, current implementations of DNP require cryogenic temperatures and long times for achieving high polarization. Here we propose and analyze in detail protocols that can achieve rapid hyperpolarization of 13C nuclear spins in randomly oriented ensembles of nanodiamonds at room temperature. Our protocols exploit a combination of optical polarization of electron spins in nitrogen-vacancy centers and the transfer of this polarization to 13C nuclei by means of microwave control to overcome the severe challenges that are posed by the random orientation of the nanodiamonds and their nitrogen-vacancy centers. Specifically, these random orientations result in exceedingly large energy variations of the electron spin levels that render the polarization and coherent control of the nitrogen-vacancy center electron spins as well as the control of their coherent interaction with the surrounding 13C nuclear spins highly inefficient. We address these challenges by a combination of an off-resonant microwave double resonance scheme in conjunction with a realization of the integrated solid effect which, together with adiabatic rotations of external magnetic fields or rotations of nanodiamonds, leads to a protocol that achieves high levels of hyperpolarization of the entire nuclear-spin bath in a randomly oriented ensemble of nanodiamonds even at room temperature. This hyperpolarization together with the long nuclear-spin polarization lifetimes in nanodiamonds and the relatively high density of 13C nuclei has the potential to result in a major signal enhancement in 13C nuclear magnetic resonance imaging and suggests functionalized and hyperpolarized nanodiamonds as a unique probe for molecular imaging both in vitro and in vivo.

  2. Metabolism of (1-(13)C) glucose and (2-(13)C, 2-(2)H(3)) acetate in the neuronal and glial compartments of the adult rat brain as detected by [(13)C, (2)H] NMR spectroscopy.

    Science.gov (United States)

    Chapa, F; Cruz, F; García-Martín, M L; García-Espinosa, M A; Cerdán, S

    2000-01-01

    Ex vivo ¿(13)C, (2)H¿ NMR spectroscopy allowed to estimate the relative sizes of neuronal and glial glutamate pools and the relative contributions of (1-(13)C) glucose and (2-(13)C, 2-(2)H(3)) acetate to the neuronal and glial tricarboxylic acid cycles of the adult rat brain. Rats were infused during 60 min in the right jugular vein with solutions containing (2-(13)C, 2-(2)H(3)) acetate and (1-(13)C) glucose or (2-(13)C, 2-(2)H(3)) acetate only. At the end of the infusion the brains were frozen in situ and perchloric acid extracts were prepared and analyzed by high resolution (13)C NMR spectroscopy (90.5 MHz). The relative sizes of the neuronal and glial glutamate pools and the contributions of acetyl-CoA molecules derived from (2-(13)C, (2)H(3)) acetate or (1-(13)C) glucose entering the tricarboxylic acid cycles of both compartments, could be determined by the analysis of (2)H-(13)C multiplets and (2)H induced isotopic shifts observed in the C4 carbon resonances of glutamate and glutamine. During the infusions with (2-(13)C, 2-(2)H(3)) acetate and (1-(13)C) glucose, the glial glutamate pool contributed 9% of total cerebral glutamate being derived from (2-(13)C, 2-(2)H(3)) acetyl-CoA (4%), (2-(13)C) acetyl-CoA (3%) and recycled (2-(13)C, 2-(2)H) acetyl-CoA (2%). The neuronal glutamate pool accounted for 91% of the total cerebral glutamate being mainly originated from (2-(13)C) acetyl-CoA (86%) and (2-(13)C, 2-(2)H) acetyl-CoA (5%). During the infusions of (2-(13)C, 2-(2)H(3)) acetate only, the glial glutamate pool contributed 73% of the cerebral glutamate, being derived from (2-(13)C, 2-(2)H(3)) acetyl-CoA (36%), (2-(13)C, 2-(2)H) acetyl-CoA (27%) and (2-(13)C) acetyl-CoA (10%). The neuronal pool contributed 27% of cerebral glutamate being formed from (2-(13)C) acetyl-CoA (11%) and recycled (2-(13)C, 2-(2)H) acetyl-CoA (16%). These results illustrate the potential of ¿(13)C, (2)H¿ NMR spectroscopy as a novel approach to investigate substrate selection and

  3. Modified oligosaccharides. Pt. 1. Analysis of the /sup 13/C NMR spectra of some keto derivatives of disaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Temeriusz, A.; Piekarska, B.; Radomski, J.; Stepinski, J. (Warsaw Univ. (Poland). Inst. Podstawowych Problemow Chemii)

    1980-01-01

    The /sup 13/C-NMR spectra of substituted disaccharides and their keto derivatives are analyzed and discussed. The peaks have been assigned by correlating the spectra of disaccharides with those of the constituent monosaccharides. Substituent effects caused by the formation of a new glycosyl bond are described.

  4. Integral Representation of the Pictorial Proof of Sum of [superscript n][subscript k=1]k[superscript 2] = 1/6n(n+1)(2n+1)

    Science.gov (United States)

    Kobayashi, Yukio

    2011-01-01

    The pictorial proof of the sum of [superscript n][subscript k=1] k[superscript 2] = 1/6n(n+1)(2n+1) is represented in the form of an integral. The integral representations are also applicable to the sum of [superscript n][subscript k-1] k[superscript m] (m greater than or equal to 3). These representations reveal that the sum of [superscript…

  5. Integral Representation of the Pictorial Proof of Sum of [superscript n][subscript k=1]k[superscript 2] = 1/6n(n+1)(2n+1)

    Science.gov (United States)

    Kobayashi, Yukio

    2011-01-01

    The pictorial proof of the sum of [superscript n][subscript k=1] k[superscript 2] = 1/6n(n+1)(2n+1) is represented in the form of an integral. The integral representations are also applicable to the sum of [superscript n][subscript k-1] k[superscript m] (m greater than or equal to 3). These representations reveal that the sum of [superscript…

  6. Interpreting the 13C / 12C ratio of carbon dioxide in an urban airshed in the Yangtze River Delta, China

    Science.gov (United States)

    Xu, Jiaping; Lee, Xuhui; Xiao, Wei; Cao, Chang; Liu, Shoudong; Wen, Xuefa; Xu, Jingzheng; Zhang, Zhen; Zhao, Jiayu

    2017-03-01

    Observations of atmospheric CO2 mole fraction and the 13C / 12C ratio (expressed as δ13C) in urban airsheds provide constraints on the roles of anthropogenic and natural sources and sinks in local and regional carbon cycles. In this study, we report observations of these quantities in Nanjing at hourly intervals from March 2013 to August 2015, using a laser-based optical instrument. Nanjing is the second largest city located in the highly industrialized Yangtze River Delta (YRD), eastern China. The mean CO2 mole fraction and δ13C were (439.7 ± 7.5) µmol mol-1 and (-8.48 ± 0.56) ‰ over this observational period. The peak monthly mean δ13C (-7.44 ‰, July 2013) was 0.74 ‰ higher than that observed at Mount Waliguan, a WMO (World Meteorological Organization) baseline site on the Tibetan Plateau and upwind of the YRD region. The highly 13C-enriched signal was partly attributed to the influence of cement production in the region. By applying the Miller-Tans method to nighttime and daytime observations to represent signals from the city of Nanjing and the YRD, respectively, we showed that the 13C / 12C ratio of CO2 sources in the Nanjing municipality was (0.21 ± 0.53) ‰ lower than that in the YRD. Flux partitioning calculations revealed that natural ecosystems in the YRD were a negligibly small source of atmospheric CO2.

  7. {sup 13}C solid-state NMR analysis of heterogeneous structure of beeswax in native state

    Energy Technology Data Exchange (ETDEWEB)

    Kameda, Tsunenori [National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8634 (Japan)

    2005-12-21

    I investigated the molecular structure of natural wax from Japanese bees (Apis cerana japonica) in its native state (neither purified nor recrystallized) by {sup 13}C and {sup 1}H solid-state NMR. Two strong {sup 13}C peaks at 32.9 and 34.0 ppm were attributed to signals from internal-chain methylene carbons [int-(CH{sub 2})] in two types of crystal form. The peak at 32.9 ppm was assigned to an orthorhombic crystal form, and that at 34.0 ppm was assigned to a triclinic or monoclinic form. In both crystalline regions, bi-exponential decay of {sup 13}C spin-lattice relaxation [T{sub 1}(C)] for the crystalline peaks due to chain diffusion was observed. {sup 1}H spin-lattice relaxation [T{sub 1}(H)] values for protons of the CH{sub 3} group and for int-(CH{sub 2}) in the crystalline and amorphous regions were identical; this was interpreted as being due to averaging of the T{sub 1}(H) relaxation rates via spin diffusion. In contrast, although the T{sub 1{sub {rho}}}(H) decay curves for protons of the CH{sub 3} group and for int-(CH{sub 2}) in the amorphous and orthorhombic forms were almost identical, those of the triclinic or monoclinic forms were different. This unhomogeneous character of T{sub 1{sub {rho}}}(H) was interpreted as resulting from differences in the molecular composition of each crystal form. Moreover, two components with long and short {sup 1}H spin-spin relaxation [T{sub 2}(H)] values, arising from the mobile and rigid phases, respectively, were observed at above about -30 deg. C.

  8. 13C solid-state NMR analysis of heterogeneous structure of beeswax in native state

    Science.gov (United States)

    Kameda, Tsunenori

    2005-12-01

    I investigated the molecular structure of natural wax from Japanese bees (Apis cerana japonica) in its native state (neither purified nor recrystallized) by 13C and 1H solid-state NMR. Two strong 13C peaks at 32.9 and 34.0 ppm were attributed to signals from internal-chain methylene carbons [int-(CH2)] in two types of crystal form. The peak at 32.9 ppm was assigned to an orthorhombic crystal form, and that at 34.0 ppm was assigned to a triclinic or monoclinic form. In both crystalline regions, bi-exponential decay of 13C spin-lattice relaxation [T1(C)] for the crystalline peaks due to chain diffusion was observed. 1H spin-lattice relaxation [T1(H)] values for protons of the CH3 group and for int-(CH2) in the crystalline and amorphous regions were identical; this was interpreted as being due to averaging of the T1(H) relaxation rates via spin diffusion. In contrast, although the T_{{1}_{\\rho}}(H) decay curves for protons of the CH3 group and for int-(CH2) in the amorphous and orthorhombic forms were almost identical, those of the triclinic or monoclinic forms were different. This unhomogeneous character of T_{{1}_{\\rho}}(H) was interpreted as resulting from differences in the molecular composition of each crystal form. Moreover, two components with long and short 1H spin-spin relaxation [T2(H)] values, arising from the mobile and rigid phases, respectively, were observed at above about -30 °C.

  9. Cardiac metabolism measured noninvasively by hyperpolarized 13C MRI

    DEFF Research Database (Denmark)

    Golman, K.; Petersson, J.S.; Magnusson, P.

    2008-01-01

    Pyruvate is included in the energy production of the heart muscle and is metabolized into lactate, alanine, and CO(2) in equilibrium with HCO(3) (-). The aim of this study was to evaluate the feasibility of using (13)C hyperpolarization enhanced MRI to monitor pyruvate metabolism in the heart...... was almost absent (0.2-11%) and the alanine signal was reduced (27-51%). Due to image-folding artifacts the data obtained for lactate were inconclusive. These studies demonstrate that cardiac metabolic imaging with hyperpolarized 1-(13)C-pyruvate is feasible. The changes in concentrations of the metabolites...... within a minute after injection can be detected and metabolic maps constructed Udgivelsesdato: 2008/5...

  10. Direct 13C NMR Detection in HPLC Hyphenation Mode

    DEFF Research Database (Denmark)

    Wubshet, Sileshi Gizachew; Johansen, Kenneth; Nyberg, Nils

    2012-01-01

    Solid phase extraction (SPE) was introduced as a crucial step in the HPLC-SPE-NMR technique to enable online analyte enrichment from which proton-detected NMR experiments on submicrogram amounts from complex mixtures were possible. However, the significance of direct-detected (13)C NMR experiments......, and an acquisition time of 13 h resulted in spectra with adequate signal-to-noise ratios to detect all C-13 signals....

  11. Hyperpolarized 13C MR Markers of Renal Tumor Aggressiveness

    Science.gov (United States)

    2015-12-01

    detection of HP citrate and glutamate allows a measurement of flux through the citric acid cycle , and following cardiac ischemia, the TCA cycle ...biomedical research potential. For instance, the directionality of reactions within the citric acid cycle has become an area of increased interest as...incorporated into tricarboxylic acid (TCA) cycle intermediates rather than being released as 13CO2. This makes [2- 13C]pyruvate an attractive

  12. High resolution 13C DOSY: The DEPTSE experiment

    Science.gov (United States)

    Botana, Adolfo; Howe, Peter W. A.; Caër, Valérie; Morris, Gareth A.; Nilsson, Mathias

    2011-07-01

    High Resolution Diffusion-ordered Spectroscopy (HR-DOSY) is a valuable tool for mixture analysis by NMR. It separates the signals from different components according to their diffusion behavior, and can provide exquisite diffusion resolution when there is no signal overlap. In HR-DOSY experiments on 1H (by far the most common nucleus used for DOSY) there is frequent signal overlap that confuses interpretation. In contrast, a 13C spectrum usually has little overlap, and is in this respect a much better option for a DOSY experiment. The low signal-to-noise ratio is a critical limiting factor, but with recent technical advances such as cryogenic probes this problem is now less acute. The most widely-used pulse sequences for 13C DOSY perform diffusion encoding with 1H, using a stimulated echo in which half of the signal is lost. This signal loss can be avoided by encoding diffusion with 13C in a spin echo experiment such as the DEPTSE pulse sequence described here.

  13. PEDOGENIC CARBONATE δ13C AND ENVIRONMENTAL PRECIPITATION CONDITIONS

    Directory of Open Access Journals (Sweden)

    Marcella Catoni

    2011-12-01

    Full Text Available Carbon isotopic analysis is a useful tool for investigating paleoenvironments, as the pedogenic carbonate δ13C is related to δ13CSOM and to the proportions of C3/C4 plants. In this work we interpreted the paleoenvironmental conditions at the time of carbonate precipitation in soils formed under different climates and during different geological ages. Samples were taken from a Bk (PR1, Holocene and from two Bkm horizons (PR2 and PR3, Pleistocene. When the mean δ13C plant values and the most plausible paleotemperatures were used in the evaluation, PR1 showed a lower percentage of C4 plants (48% than Pleistocene soils (~53%, in agreement with paleoclimate changes. When instead the δ13C values of current plants were used for PR1, C4 plants ranged from 59 (12°C to 66% (18°C, suggesting two possible interpretations: either plant species changed during the Holocene, or the plant mean values normally used in the literature are not suitable for Pleistocene reconstructions

  14. Solid state 13C NMR of unlabeled phosphatidylcholine bilayers: spectral assignments and measurement of carbon-phosphorus dipolar couplings and 13C chemical shift anisotropies.

    Science.gov (United States)

    Sanders, C R

    1993-01-01

    The direct measurement of 13C chemical shift anisotropies (CSA) and 31P-13C dipolar splitting in random dispersions of unlabeled L alpha-phase phosphatidylcholine (PC) has traditionally been difficult because of extreme spectral boradening due to anisotropy. In this study, mixtures of dimyristoyl phosphatidylcholine (DMPC) with three different detergents known to promote the magnetic orientation of DMPC were employed to eliminate the powder-pattern nature of signals without totally averaging out spectral anisotropy. The detergents utilized were CHAPSO, Triton X-100, and dihexanoylphosphatidylcholine (DHPC). Using such mixtures, many of the individual 13C resonances from DMPC were resolved and a number of 13C-31P dipolar couplings were evident. In addition, differing line widths were observed for the components of some dipolar doublets, suggestive of dipolar/chemical shift anisotropy (CSA) relaxation interference effects. Oriented sample resonance assignments were made by varying the CHAPSO or DHPC to DMPC ratio to systematically scale overall bilayer order towards the isotropic limit. In this manner, peaks could be identified based upon extrapolation to their isotropic positions, for which assignments have previously been made (Lee, C.W.B., and R.G. Griffin. 1989. Biophys. J. 55:355-358; Forbes, J., J. Bowers, X. Shan, L. Moran, E. Oldfield, and M.A. Moscarello. 1988. J. Chem. Soc., Faraday, Trans. 1 84:3821-3849). It was observed that the plots of CSA or dipolar coupling versus overall bilayer order obtained from DHPC and CHAPSO titrations were linear. Estimates of the intrinsic dipolar couplings and chemical shift anisotropies for pure DMPC bilayers were made by extrapolating shifts and couplings from the detergent titrations to zero detergent. Both detergent titrations led to similar "intrinsic" CSAs and dipolar couplings. Results extracted from an oriented Triton-DMPC mixture also led to similar estimates for the detergent-free DMPC shifts and couplings. The

  15. Introducing NMR to a General Chemistry Audience: A Structural-Based Instrumental Laboratory Relating Lewis Structures, Molecular Models, and [superscript 13]C NMR Data

    Science.gov (United States)

    Pulliam, Curtis R.; Pfeiffer, William F.; Thomas, Alyssa C.

    2015-01-01

    This paper describes a first-year general chemistry laboratory that uses NMR spectroscopy and model building to emphasize molecular shape and structure. It is appropriate for either a traditional or an atoms-first curriculum. Students learn the basis of structure and the use of NMR data through a cooperative learning hands-on laboratory…

  16. Introducing NMR to a General Chemistry Audience: A Structural-Based Instrumental Laboratory Relating Lewis Structures, Molecular Models, and [superscript 13]C NMR Data

    Science.gov (United States)

    Pulliam, Curtis R.; Pfeiffer, William F.; Thomas, Alyssa C.

    2015-01-01

    This paper describes a first-year general chemistry laboratory that uses NMR spectroscopy and model building to emphasize molecular shape and structure. It is appropriate for either a traditional or an atoms-first curriculum. Students learn the basis of structure and the use of NMR data through a cooperative learning hands-on laboratory…

  17. Assessing Cardiff University's Curricula Contribution to Sustainable Development Using the STAUNCH[superscript (RTM)] System

    Science.gov (United States)

    Lozano, Rodrigo; Peattie, Ken

    2011-01-01

    This article presents the results of the sustainable development curricula assessment undertaken at 19 of the 28 schools of Cardiff University using the Sustainability Tool for Assessing UNiversity's Curricula Holistically (STAUNCH[superscript (RTM)]. STAUNCH[superscript (RTM)] was developed with two objectives: (1) to systematically assess how…

  18. Construct Validity of the WISC-IV[superscript UK] with a Large Referred Irish Sample

    Science.gov (United States)

    Watkins, Marley W.; Canivez, Gary L.; James, Trevor; James, Kate; Good, Rebecca

    2013-01-01

    Irish educational psychologists frequently use the Wechsler Intelligence Scale for Children-Fourth U.K. Edition (WISC-IV[superscript UK]) in clinical assessments of children with learning difficulties. Unfortunately, reliability and validity studies of the WISC-IV[superscript UK] have not yet been reported. This study examined the construct…

  19. Phosphorylation of K[superscript +] Channels at Single Residues Regulates Memory Formation

    Science.gov (United States)

    Vernon, Jeffrey; Irvine, Elaine E.; Peters, Marco; Jeyabalan, Jeshmi; Giese, K. Peter

    2016-01-01

    Phosphorylation is a ubiquitous post-translational modification of proteins, and a known physiological regulator of K[superscript +] channel function. Phosphorylation of K[superscript +] channels by kinases has long been presumed to regulate neuronal processing and behavior. Although circumstantial evidence has accumulated from behavioral studies…

  20. Health Literacy Study Circles[superscript +]. Introduction: Overview, Planning, and Facilitation Tips

    Science.gov (United States)

    Rudd, Rima; Soricone, Lisa; Santos, Maricel; Zobel, Emily; Smith, Janet

    2005-01-01

    A Health Literacy Study Circle[superscript +] is a multi-session professional development activity for adult education practitioners, conducted by a facilitator. All the information and materials required to conduct each Health Literacy Study Circle[superscript +] is presented in two parts: this Introduction and the "Facilitator's Guide" for each…

  1. Using Email to Enable E[superscript 3] (Effective, Efficient, and Engaging) Learning

    Science.gov (United States)

    Kim, ChanMin

    2008-01-01

    This article argues that technology that supports both noncognitive and cognitive aspects can make learning more effective, efficient, and engaging (e[superscript 3]-learning). The technology of interest in this article is email. The investigation focuses on characteristics of email that are likely to enable e[superscript 3]-learning. In addition,…

  2. Teaching the Modes of Ca[superscript 2+] Transport between the Plasma Membrane and Endoplasmic Reticulum Using a Classic Paper by Kwan et al.

    Science.gov (United States)

    Liang, Willmann

    2009-01-01

    This teaching article uses the report by Kwan et al., "Effects of methacholine, thapsigargin, and La[superscript 3+] on plasmalemmal and intracellular Ca[superscript 2+] transport in lacrimal acinar cells," where the effects of Ca[superscript 2+]-mobilizing agents in regulating Ca[superscript 2+] fluxes were examined under various conditions.…

  3. Solid-state 13C NMR and molecular modeling studies of acetyl aleuritolic acid obtained from Croton cajucara Benth

    Science.gov (United States)

    da Silva San Gil, Rosane Aguiar; Albuquerque, Magaly Girão; de Alencastro, Ricardo Bicca; da Cunha Pinto, Angelo; do Espírito Santo Gomes, Fabiano; de Castro Dantas, Tereza Neuma; Maciel, Maria Aparecida Medeiros

    2008-08-01

    Solid-state 13C nuclear magnetic resonance ( 13C NMR) with magic-angle spinning (MAS) and with cross-polarization and magic-angle spinning (CP/MAS) spectra, and differential scanning calorimetry (DSC) techniques were used to obtain structural data from a sample of acetyl aleuritolic acid (AAA) extracted from the stem bark of Croton cajucara Benth. (Euphorbiaceae) and recrystallized from acetone. Since solid-state 13C NMR results suggested the presence of more than one molecule in the unitary cell for the AAA, DSC analysis and molecular modeling calculations were used to access this possibility. The absence of phase transition peaks in the DSC spectra and the dimeric models of AAA simulated using the semi-empirical PM3 method are in agreement with that proposal.

  4. Galactose oxidation using 13C in healthy and galactosemic children

    Directory of Open Access Journals (Sweden)

    D.R. Resende-Campanholi

    2015-03-01

    Full Text Available Galactosemia is an inborn error of galactose metabolism that occurs mainly as the outcome of galactose-1-phosphate uridyltransferase (GALT deficiency. The ability to assess galactose oxidation following administration of a galactose-labeled isotope (1-13C-galactose allows the determination of galactose metabolism in a practical manner. We aimed to assess the level of galactose oxidation in both healthy and galactosemic Brazilian children. Twenty-one healthy children and seven children with galactosemia ranging from 1 to 7 years of age were studied. A breath test was used to quantitate 13CO2 enrichment in exhaled air before and at 30, 60, and 120 min after the oral administration of 7 mg/kg of an aqueous solution of 1-13C-galactose to all children. The molar ratios of 13CO2 and 12CO2 were quantified by the mass/charge ratio (m/z of stable isotopes in each air sample by gas-isotope-ratio mass spectrometry. In sick children, the cumulative percentage of 13C from labeled galactose (CUMPCD in the exhaled air ranged from 0.03% at 30 min to 1.67% at 120 min. In contrast, healthy subjects showed a much broader range in CUMPCD, with values from 0.4% at 30 min to 5.58% at 120 min. The study found a significant difference in galactose oxidation between children with and without galactosemia, demonstrating that the breath test is useful in discriminating children with GALT deficiencies.

  5. {sup 10}Be({alpha},n){sup 13}C angular distribution measurements

    Energy Technology Data Exchange (ETDEWEB)

    Guillemette, J.; Massey, T.N.; O`Donnell, J.E.; Saito, E.F.; Lane, R.O. [Ohio Univ., Athens, OH (United States)

    1993-10-01

    As a continuation of our investigation of the {sup 14}C system, {sup 10}Be targets have been bombarded with a pulsed beam of alpha particles from the Ohio University Tandem Accelerator. The {sup 10}Be target is in the form of {sup 10}BeO (92 {mu}g/cm{sup 2}) deposited on a platinum foil. Neutron time-of-flight spectra were produced with the Beam Swinger facility and a 4.88 in flight path. Fifty-four neutron angular distributions for the {sup 10}Be({alpha},n{sub {circ}}){sup 13}C and {sup 10}Be({alpha},n{sub 1}){sup 13}C reactions were obtained at angles 0{degrees} to 160{degrees} for 3.675 MeV {le} E{sub {alpha}} {le} 6.325 MeV. A zero-degree excitation function for alpha particles between 3.5 MeV and 8.5 MeV in 75 keV steps was also produced. A preliminary analysis of the ground state transition shows only a narrow peak of approximately 200 keV FWHM and a broad peak of approximately 1.0 MeV FWHM at E{sub {alpha}} = 4.0 MeV and E{sub {alpha}} = 5.6 MeV, respectively. Details and results of this investigation as well as preliminary R-Matrix calculations will be discussed.

  6. A novel method for concurrent measurements of dissolved inorganic carbon concentration and its carbon isotope composition δ13C

    Science.gov (United States)

    Huang, K.; Cai, W. J.; Kim-Hak, D.; Jonsson, B. F.

    2016-02-01

    The concentration of dissolved inorganic carbon ([DIC]) and its stable carbon isotopic composition (δ13C) in the surface ocean are key to studying the important processes in the carbon cycle, e.g., photosynthesis and respiration, calcification, water mass mixing, and, in particularly, the Suess effect as well as the penetration of anthropogenic carbon into the surface ocean and the subsequent ocean acidification. Real-time, shipboard measurements of these properties are highly desired. Here we present a new method that concurrently measures [DIC] and δ13C of DIC in the surface ocean. The method couples sample acidification and delivery techniques (Apollo Scitech) with a cavity ring-down spectrometer (CRDS, Picarro), and works automatically to analyzer samples at the throughput of 8 minutes/sample. In each sampling cycle, a syringe pump withdraws a fixed volume of phosphoric acid and seawater sample, and injects them slowly into a reaction chamber where they were mixed. In the meantime, the CO2 evolved from the acidified sample is purged by a CO2-free gas flow into a CRDS carbon isotope analyzer for measurements of the CO2 concentration and δ13C-CO2. The concurrent injection, acidification, and purging yield a broad, flat peak of CO2 which is precisely and frequently measured by the CRDS analyzer. [DIC] and δ13C can then be calculated by integrating the concentration and δ13C of the CO2 peak. The precision of the [DIC] and δ13C is automated to run continuously onboard a research vessel as well as discrete samples in a lab environment.

  7. Probing site-specific 13C/15N-isotope enrichment of spider silk with liquid-state NMR spectroscopy.

    Science.gov (United States)

    Shi, Xiangyan; Yarger, Jeffery L; Holland, Gregory P

    2013-05-01

    Solid-state nuclear magnetic resonance (NMR) has been extensively used to elucidate spider silk protein structure and dynamics. In many of these studies, site-specific isotope enrichment is critical for designing particular NMR methods for silk structure determination. The commonly used isotope analysis techniques, isotope-ratio mass spectroscopy and liquid/gas chromatography-mass spectroscopy, are typically not capable of providing the site-specific isotope information for many systems because an appropriate sample derivatization method is not available. In contrast, NMR does not require any sample derivatization or separation prior to analysis. In this article, conventional liquid-state (1)H NMR was implemented to evaluate incorporation of (13)C/(15)N-labeled amino acids in hydrolyzed spider dragline silk. To determine site-specific (13)C and (15)N isotope enrichments, an analysis method was developed to fit the (1)H-(13)C and (1)H-(15)N J-splitting (J CH and J NH) (1)H NMR peak patterns of hydrolyzed silk fiber. This is demonstrated for Nephila clavipes spiders, where [U-(13)C3,(15)N]-Ala and [1-(13)C,(15)N]-Gly were dissolved in their water supplies. Overall, contents for Ala and Gly isotopomers are extracted for these silk samples. The current methodology can be applied to many fields where site-specific tracking of isotopes is of interest.

  8. Variability of cork from Portuguese Quercus suber studied by solid-state (13)C-NMR and FTIR spectroscopies.

    Science.gov (United States)

    Lopes, M H; Barros, A S; Pascoal Neto, C; Rutledge, D; Delgadillo, I; Gil, A M

    2001-01-01

    A new approach is presented for the study of the variability of Portuguese reproduction cork using solid-state (13)C-NMR spectroscopy and photoacoustic (PAS) FTIR (FTIR-PAS) spectroscopy combined with chemometrics. Cork samples were collected from 12 different geographical sites, and their (13)C-cross-polarization with magic angle spinning (CP/MAS) and FTIR spectra were registered. A large spectral variability among the cork samples was detected by principal component analysis and found to relate to the suberin and carbohydrate contents. This variability was independent of the sample geographical origin but significantly dependent on the cork quality, thus enabling the distinction of cork samples according to the latter property. The suberin content of the cork samples was predicted using multivariate regression models based on the (13)C-NMR and FTIR spectra of the samples as reported previously. Finally, the relationship between the variability of the (13)C-CP/MAS spectra with that of the FTIR-PAS spectra was studied by outer product analysis. This type of multivariate analysis enabled a clear correlation to be established between the peaks assigned to suberin and carbohydrate in the FTIR spectrum and those appearing in the (13)C-CP/MAS spectra.

  9. Design of a sup 13 C (1H) RF probe for monitoring the in vivo metabolism of (1- sup 13 C)glucose in primate brain

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, B.E.; Sacks, W.; Bigler, R.E.; Hennessy, M.J.; Sacks, S.; Fleischer, A.; Zanzonico, P.B. (Intermagnetics General Corporation, Guilderland, NY (USA))

    1990-01-01

    The design of an RF probe suitable for obtaining proton-decoupled {sup 13}C spectra from a subhuman primate brain is described. Two orthogonal saddle coils, one tuned to the resonant frequency of {sup 13}C and the other to the resonant frequency of 1H, were used to monitor the in vivo metabolism of (1-{sup 13}C)glucose in rhesus monkey brain at 2.1 T. Difference spectra showed the appearance of {sup 13}C-enriched glutamate and glutamine 30 to 40 min after a bolus injection of (1-{sup 13}C)glucose.

  10. Glucogenesis in an insect, Manduca sexta L., estimated from the 13C isotopomer distribution in trehalose synthesized from [1,3-13C2]glycerol.

    Science.gov (United States)

    Thompson, S N

    1997-07-19

    Glucogenesis from [3-13C]alanine and [1,3-13C2]glycerol was demonstrated in the insect Manduca sexta by examining the 13C enrichment of trehalose, a non-reducing disaccharide of glucose synthesized in the insect fat body and released into the blood or hemolymph. In insects maintained on a low carbohydrate diet, trehalose synthesized from [3-13C]alanine was selectively enriched at C1 and C6, and C2 and C5. The 13C-labelling pattern indicated the carboxylation of [3-13C]pyruvate, formed by transamination of the [3-13C]alanine followed by randomization of the label at the fumarate step of the tricarboxylic acid cycle and glucose synthesis via the gluconeogenic pathway. 13C enrichment of trehalose was absent in similarly maintained insect larvae administered 3-mercaptopicolinic acid, an inhibitor of hepatic phosphoenolpyruvate carboxykinase. Insects on the low carbohydrate diet also synthesized trehalose from [1,3-13C2]glycerol. 13C multiplets were observed in trehalose C3 and C4 demonstrating the synthesis of three 13C enriched glucose isotopomers from the 13C-labelled glycerol. The relative contributions of 13C-labelled glycerol and unlabelled 3 carbon substrates to the synthesis of the 13C enriched trehalose isotopomers were determined from the multiplet structure at C3, and calculation of minimal rates of glucogenesis were based on the 13C enrichment of C4. The C4/C3 13C enrichment ratio in trehalose synthesized from [1,3-13C2]glycerol was close to unity, and total glucogenesis was calculated after estimation of the expected contribution of unlabelled trehalose synthesis from 3 carbon substrates by comparison of the ratio of unlabelled and labelled contributions to the 13C enriched trehalose isotopomers with the 13C enrichment of [1,3-13C2]glycerol-3-phosphate. The estimated total rates of glucogenesis varied from 0.33 to 2.80 micromol glucose/g fresh weight/h. The blood sugar level of M. sexta was also highly variable. Although the potential importance of

  11. The Influence of Plant Litter on Soil Water Repellency: Insight from 13C NMR Spectroscopy.

    Science.gov (United States)

    Cesarano, Gaspare; Incerti, Guido; Bonanomi, Giuliano

    2016-01-01

    Soil water repellency (SWR, i.e. reduced affinity for water owing to the presence of organic hydrophobic coatings on soil particles) has relevant hydrological implications because low rates of infiltration enhance water runoff, and untargeted diffusion of fertilizers and pesticides. Previous studies investigated the occurrence of SWR in ecosystems with different vegetation cover but did not clarify its relationships with litter biochemical quality. Here, we investigated the capability of different plant litter types to induce SWR by using fresh and decomposed leaf materials from 12 species, to amend a model sandy soil over a year-long microcosm experiment. Water repellency, measured by the Molarity of an Ethanol Droplet (MED) test, was tested for the effects of litter species and age, and compared with litter quality assessed by 13C-CPMAS NMR in solid state and elemental chemical parameters. All litter types were highly water repellent, with MED values of 18% or higher. In contrast, when litter was incorporated into the soil, only undecomposed materials induced SWR, but with a large variability of onset and peak dynamics among litter types. Surprisingly, SWR induced by litter addition was unrelated to the aliphatic fraction of litter. In contrast, lignin-poor but labile C-rich litter, as defined by O-alkyl C and N-alkyl and methoxyl C of 13C-CPMAS NMR spectral regions, respectively, induced a stronger SWR. This study suggests that biochemical quality of plant litter is a major controlling factor of SWR and, by defining litter quality with 13C-CPMAS NMR, our results provide a significant novel contribution towards a full understanding of the relationships between plant litter biochemistry and SWR.

  12. The Influence of Plant Litter on Soil Water Repellency: Insight from 13C NMR Spectroscopy.

    Directory of Open Access Journals (Sweden)

    Gaspare Cesarano

    Full Text Available Soil water repellency (SWR, i.e. reduced affinity for water owing to the presence of organic hydrophobic coatings on soil particles has relevant hydrological implications because low rates of infiltration enhance water runoff, and untargeted diffusion of fertilizers and pesticides. Previous studies investigated the occurrence of SWR in ecosystems with different vegetation cover but did not clarify its relationships with litter biochemical quality. Here, we investigated the capability of different plant litter types to induce SWR by using fresh and decomposed leaf materials from 12 species, to amend a model sandy soil over a year-long microcosm experiment. Water repellency, measured by the Molarity of an Ethanol Droplet (MED test, was tested for the effects of litter species and age, and compared with litter quality assessed by 13C-CPMAS NMR in solid state and elemental chemical parameters. All litter types were highly water repellent, with MED values of 18% or higher. In contrast, when litter was incorporated into the soil, only undecomposed materials induced SWR, but with a large variability of onset and peak dynamics among litter types. Surprisingly, SWR induced by litter addition was unrelated to the aliphatic fraction of litter. In contrast, lignin-poor but labile C-rich litter, as defined by O-alkyl C and N-alkyl and methoxyl C of 13C-CPMAS NMR spectral regions, respectively, induced a stronger SWR. This study suggests that biochemical quality of plant litter is a major controlling factor of SWR and, by defining litter quality with 13C-CPMAS NMR, our results provide a significant novel contribution towards a full understanding of the relationships between plant litter biochemistry and SWR.

  13. Approaches to studies on neuronal/glial relationships by 13C-MRS analysis.

    Science.gov (United States)

    Taylor, A; McLean, M; Morris, P; Bachelard, H

    1996-01-01

    The use of different 13C-labelled precursors alone or in combination ([1-13C]glucose, [2-13C]glucose, [1-13C]acetate, [2-13C]acetate and [1,2-13C2]acetate) to study neuronal/glial metabolic relationships by MRS is discussed. Glutamine and citrate resonances represent glial metabolism if a combination of [1-13C]glucose + [2-13C]acetate is used, but only for short time periods. A combination of [2-13C]glucose + [2-13C]acetate will label -COO- groups from glucose and -CH2 groups from acetate, respectively, which distinguish well in theory. However, this approach is severely limited by the long T1S of -COO- groups and low S/N. Contributions of the anaplerotic pathway can be assessed using [2-13C]glucose, but again can be limited by the long T1S of -COO- groups. Labelling of glycerol-3-phosphate (believed to be produced in glia) from [1-13C]glucose is difficult to see under normal conditions but has proved useful in, e.g., hypoxia. We believe the most promising approach is the use of [1-13C] glucose with [1,2-13C2]acetate, by analysis of the multiplets ('isotopomers') of the amino acid resonances.

  14. Microwave spectra for the three 13C1 isotopologues of propene and new rotational constants for propene and its 13C1 isotopologues

    Science.gov (United States)

    Craig, Norman C.; Groner, Peter; Conrad, Andrew R.; Gurusinghe, Ranil; Tubergen, Michael J.

    2016-10-01

    New measurements of microwave lines (A and E) of propene and its three 13C1 isotopologues have been made in the 10-22 GHz region with FT accuracy. The revised lines for propene along with many hundreds from the literature were fitted with the ERHAM program for internal rotors to give improved rotational constants. The new constants are A0 = 46280.2904(16), B0 = 9305.24260(30), and C0 = 8134.22685(28) MHz. Lines for the 3-13C1 species were observed in a pure sample; lines for the 1-13C1 and 2-13C1 species were observed in natural abundance. In fitting the limited sets of lines for the 13C1 species, many of the centrifugal distortion constants and most of the tunneling parameters were transferred from the fit of propene itself with 27 parameters. Improved rotational constants for the 13C1 species are reported.

  15. Quantitative importance of the pentose phosphate pathway determined by incorporation of 13C from [2-13C]- and [3-13C]glucose into TCA cycle intermediates and neurotransmitter amino acids in functionally intact neurons

    DEFF Research Database (Denmark)

    Brekke, Eva Marie; Walls, Anne Byriel; Schousboe, Arne

    2012-01-01

    is known about the PPP in neurons. The activity of the PPP was quantified in cultured cerebral cortical and cerebellar neurons after incubation in the presence of [2-(13)C]glucose or [3-(13)C]glucose. The activity of the PPP was several fold lower than glycolysis in both types of neurons. While metabolism...

  16. /sup 13/C-trioctanoin: a nonradioactive breath test to detect fat malabsorption

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, J.B. (Children' s Hospital Medical Center, Boston); Schoeller, D.A.; Klein, P.D.; Ott, D.G.; Newcomer, A.D.; Hofmann, A.F.

    1977-09-01

    Fat malabsorption may be accurately detected in adults by measuring the excretion of /sup 14/CO/sub 2/ in breath following oral administration of a tracer dose of /sup 14/C-labeled triglyceride. In order to detect fat malabsorption in children and in women of child-bearing age without radiation hazard, the use of trioctanoin labeled with the stable, nonradioactive isotope /sup 13/C has been inaugurated and validated for use in this breath test. The validation tests with both /sup 14/C- and /sup 13/C-trioctanoin were conducted in 14 adult patients with varying degrees of fat malabsorption and demonstrated that the labels were excreted at nearly identical rates (r = 0.97). After establishment of dose requirements and measurement of endogenous /sup 13/CO/sub 2/ production rates, nine children aged 3 months to 5 years were evaluated for fat malabsorption. The results obtained with the /sup 13/C-trioctanoin breath test were compared to those obtained by a quantitative 72 hr fat balance study. The cumulative excretion of /sup 13/CO/sub 2/ by 2 hr was 25 +- 2.5% (ave. +- S.D.) of the dose in patients with normal fat absorption and provided a clear differentiation (p < 0.001) from the 3.5 +- 2.5% of the dose excreted by those with steatorrhea due to untreated pancreatic insufficiency resulting from cystic fibrosis. Peak /sup 13/CO/sub 2/ levels occurred at 1.5 hr in both groups with some overlap. Addition of exogenous pancreatic enzymes improved fat absorption and increased /sup 13/CO/sub 2/ excretion fourfold. The correlation between the percent of fat intake excreted and the cumulative /sup 13/CO/sub 2//mmol CO/sub 2/ excreted by 3 hr was very good (r = -0.88) in all patients. These data indicate that the /sup 13/C-trioctanoin breath test provides accurate detection of fat malabsorption in children with pancreatic insufficiency. This noninvasive technique is more convenient than 72 hr stool collection and permits safe and sensitive metabolic studies in children without

  17. 13C NMR DETERMINATION OF EIGHT BENZO[h]QUINOLINES%8种苯并[h]喹啉的13C NMR归属

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    报道了8种新的苯并[h]喹啉的13C NMR谱.应用13C NMR等谱确定了这8种新化合物的分子结构,并对全部谱峰进行了归属,初步探讨了分子结构对13C NMR化学位移的影响.

  18. A high resolution δ13C record in a modern Porites lobata coral: Insights into controls on skeletal δ13C

    Science.gov (United States)

    Allison, Nicola; Finch, Adrian A.; EIMF

    2012-05-01

    δ13C was determined at a high spatial resolution by secondary ion mass spectrometry (SIMS) across a 1 year section of a modern Porites lobata coral skeleton from Hawaii. Skeletal δ13C is dominated by large oscillations of 5-7‰ that typically cover skeletal distances equivalent to periods of ˜14-40 days. These variations do not reflect seawater temperature and it is unlikely that they reflect variations in the δ13C of local seawater. We observe no correlation between skeletal δ13C and the pH of the calcification fluid (estimated from previous measurements of skeletal δ11B). We conclude that either the proportion of skeletal carbon derived from metabolic CO2 is not reflected by estimated ECF pH (as the [CO2] in the overlying coral tissue varies) and/or the δ13C composition of the metabolic CO2 is highly variable. We also observe no correlation between skeletal δ13C and previous δ18O SIMS measurements. Variations in skeletal δ13C and δ18O do not have a common timing, providing no evidence that skeletal δ13C and δ18O vary in response to a single factor. This suggests that skeletal δ13C is principally driven by variations in the δ13C composition of metabolic CO2 rather than by the abundance of metabolic CO2, which would also affect skeletal δ18O. The δ13C composition of metabolic CO2 reflects the processes of photosynthesis, heterotrophic feeding and respiration in the overlying coral tissue. Corals catabolise stored lipid reserves to meet energetic demands when photosynthesis conditions are sub-optimal. Variations in the amounts and types of reserves utilised could induce changes in the δ13C composition of metabolic CO2 and the resultant skeleton which are temporally offset from skeletal δ18O records.

  19. Detecting response of rat C6 glioma tumors to radiotherapy using hyperpolarized [1-13C]pyruvate and 13C magnetic resonance spectroscopic imaging

    OpenAIRE

    Day, Sam E.; Kettunen, Mikko I.; Cherkuri, Murali Krishna; James B Mitchell; Lizak, Martin J.; Morris, H. Douglas; Koretsky, Alan P.; Brindle, Kevin M.

    2010-01-01

    13C chemical shift images acquired following intravenous injection of hyperpolarized [1-13C]pyruvate into rats with implanted C6 gliomas showed significant labeling of lactate within the tumors but not in surrounding brain tissue. Signal from pyruvate was observed in blood vessels above the brain and from other major vessels elsewhere in the rat head. Pyruvate was largely undetectable within the tumor or surrounding normal brain tissue. The ratio of hyperpolarized 13C label in the injected py...

  20. Biosynthesis of highly enriched 13C-lycopene for human metabolic studies using repeated batch tomato cell culturing with 13C-glucose

    OpenAIRE

    Moran, Nancy E.; Rogers, Randy B.; Lu, Chi-Hua; Conlon, Lauren E.; Lila, Mary Ann; Clinton, Steven K.; Erdman, John W

    2013-01-01

    While putative disease-preventing lycopene metabolites are found in both tomato (Solanum lycopersicum) products and in their consumers, mammalian lycopene metabolism is poorly understood. Advances in tomato cell culturing techniques offer an economical tool for generation of highly-enriched 13C-lycopene for human bioavailability and metabolism studies. To enhance the 13C-enrichment and yields of labeled lycopene from the hp-1 tomato cell line, cultures were first grown in 13C-glucose media fo...

  1. IRMS detection of testosterone manipulated with {sup 13}C labeled standards in human urine by removing the labeled {sup 13}C

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingzhu, E-mail: wangjingzhu@chinada.cn [National Anti-Doping Laboratory, China Anti-Doping Agency, Beijing (China); Yang, Rui [Sport Science College, Beijing Sport University Beijing, Beijing (China); Yang, Wenning [School of Pharmacy, Beijing University of Chinese Medicine, Beijing (China); Liu, Xin; Xing, Yanyi; Xu, Youxuan [National Anti-Doping Laboratory, China Anti-Doping Agency, Beijing (China)

    2014-12-10

    Highlights: • {sup 13}C labeled testosterone can be used to adjust the isotope ratio of testosterone. • The novel testosterone cannot be detected by the regular IRMS method in doping test. • A method was explored to remove the labeled {sup 13}C. • The established method can be used to detect the manipulated testosterone. - Abstract: Isotope ratio mass spectrometry (IRMS) is applied to confirm testosterone (T) abuse by determining the carbon isotope ratios (δ{sup 13}C value). However, {sup 13}C labeled standards can be used to control the δ{sup 13}C value and produce manipulated T which cannot be detected by the current method. A method was explored to remove the {sup 13}C labeled atom at C-3 from the molecule of androsterone (Andro), the metabolite of T in urine, to produce the resultant (A-nor-5α-androstane-2,17-dione, ANAD). The difference in δ{sup 13}C values between Andro and ANAD (Δδ{sup 13}C{sub Andro–ANAD}, ‰) would change significantly in case manipulated T is abused. Twenty-one volunteers administered T manipulated with different {sup 13}C labeled standards. The collected urine samples were analyzed with the established method, and the maximum value of Δδ{sup 13}C{sub Andro–ANAD} post ingestion ranged from 3.0‰ to 8.8‰. Based on the population reference, the cut-off value of Δδ{sup 13}C{sub Andro–ANAD} for positive result was suggested as 1.2‰. The developed method could be used to detect T manipulated with 3-{sup 13}C labeled standards.

  2. (13C-(13c homonuclear recoupling in solid-state nuclear magnetic resonance at a moderately high magic-angle-spinning frequency.

    Directory of Open Access Journals (Sweden)

    Venus Singh Mithu

    Full Text Available Two-dimensional (13C-(13C correlation experiments are widely employed in structure determination of protein assemblies using solid-state nuclear magnetic resonance. Here, we investigate the process of (13C-(13C magnetisation transfer at a moderate magic-angle-spinning frequency of 30 kHz using some of the prominent second-order dipolar recoupling schemes. The effect of isotropic chemical-shift difference and spatial distance between two carbons and amplitude of radio frequency on (1H channel on the magnetisation transfer efficiency of these schemes is discussed in detail.

  3. 13C-13C Homonuclear Recoupling in Solid-State Nuclear Magnetic Resonance at a Moderately High Magic-Angle-Spinning Frequency

    Science.gov (United States)

    Mithu, Venus Singh; Bakthavatsalam, Subha; Madhu, Perunthiruthy K.

    2013-01-01

    Two-dimensional 13C-13C correlation experiments are widely employed in structure determination of protein assemblies using solid-state nuclear magnetic resonance. Here, we investigate the process of 13C-13C magnetisation transfer at a moderate magic-angle-spinning frequency of 30 kHz using some of the prominent second-order dipolar recoupling schemes. The effect of isotropic chemical-shift difference and spatial distance between two carbons and amplitude of radio frequency on 1H channel on the magnetisation transfer efficiency of these schemes is discussed in detail. PMID:23326308

  4. (13)C-(13)c homonuclear recoupling in solid-state nuclear magnetic resonance at a moderately high magic-angle-spinning frequency.

    Science.gov (United States)

    Mithu, Venus Singh; Bakthavatsalam, Subha; Madhu, Perunthiruthy K

    2013-01-01

    Two-dimensional (13)C-(13)C correlation experiments are widely employed in structure determination of protein assemblies using solid-state nuclear magnetic resonance. Here, we investigate the process of (13)C-(13)C magnetisation transfer at a moderate magic-angle-spinning frequency of 30 kHz using some of the prominent second-order dipolar recoupling schemes. The effect of isotropic chemical-shift difference and spatial distance between two carbons and amplitude of radio frequency on (1)H channel on the magnetisation transfer efficiency of these schemes is discussed in detail.

  5. 13C NMR relaxation studies on cartilage and cartilage components.

    Science.gov (United States)

    Naji, L; Kaufmann, J; Huster, D; Schiller, J; Arnold, K

    2000-08-07

    We have investigated the molecular motions of polysaccharides of bovine nasal and pig articular cartilage by measuring the 13C NMR relaxation times (T1 and T2). Both types of cartilage differ significantly towards their collagen/glycosaminoglycan ratio, leading to different NMR spectra. As chondroitin sulfate is the main constituent of cartilage, aqueous solutions of related poly- and monosaccharides (N-acetylglucosamine and glucuronic acid) were also investigated. Although there are only slight differences in T1 relaxation of the mono- and the polysaccharides, T2 decreases about one order of magnitude, when glucuronic acid or N-acetylglucosamine and chondroitin sulfate are compared. It is concluded that the ring carbons are motion-restricted primarily by the embedment in the rigid pyranose structure and, thus, additional limitations of mobility do not more show a major effect. Significant differences were observed between bovine nasal and pig articular cartilage, resulting in a considerable line-broadening and a lower signal to noise ratio in the spectra of pig articular cartilage. This is most likely caused by the higher collagen content of articular cartilage in comparison to the polysaccharide-rich bovine nasal cartilage.

  6. Inelastic pion scattering by /sup 13/C at low energies

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, J.H.

    1987-03-01

    Angular distributions for inelastically scattered pions were obtained for several states in /sup 13/C at an incident energy of 65 MeV. The data include results from both ..pi../sup +/ and ..pi../sup -/ measurements. In addition, ..pi../sup -/ measurements were made at T/sub ..pi../ = 50 MeV at one angle to give a two point fixed-q excitation function. The data are compared to theory and the data of others. As might be expected, medium corrections are shown to be considerably more important at low energies than at resonance. This is true for inelastic transitions of multipolarity 0,2 and 3. Parameters derived from an analysis of elastic pion scattering and SCX data also provide an adequate description of the inelastic transitions. The charge asymmetry in the cross sections for the 9/2/sup +/ state that was seen at resonance persists at these energies. This result is consistent with an impulse approximation treatment of the spin-flip amplitude. This is true even though the incoming energy of the pions is far below the range where the validity of an impulse treatment is expected. 65 refs., 45 figs.

  7. Fractional {sup 13}C enrichment of isolated carbons using [1-{sup 13}C]- or [2-{sup 13}C]-glucose facilitates the accurate measurement of dynamics at backbone C{sup {alpha}} and side-chain methyl positions in proteins

    Energy Technology Data Exchange (ETDEWEB)

    Lundstroem, Patrik [University of Toronto, Departments of Medical Genetics and Chemistry (Canada); Teilum, Kaare; Carstensen, Tommy [Lund University, Department of Biophysical Chemistry (Sweden); Bezsonova, Irina [University of Toronto, Department of Chemistry (Canada); Wiesner, Silke [University of Toronto, Department of Biochemistry (Canada); Hansen, D. Flemming [University of Toronto, Departments of Medical Genetics and Chemistry (Canada); Religa, Tomasz L. [Medical Research Council Centre for Protein Engineering (United Kingdom); Akke, Mikael [Lund University, Department of Biophysical Chemistry (Sweden); Kay, Lewis E. [University of Toronto, Departments of Medical Genetics and Chemistry (Canada)], E-mail: kay@pound.med.utoronto.ca

    2007-07-15

    A simple labeling approach is presented based on protein expression in [1-{sup 13}C]- or [2-{sup 13}C]-glucose containing media that produces molecules enriched at methyl carbon positions or backbone C{sup {alpha}} sites, respectively. All of the methyl groups, with the exception of Thr and Ile({delta}1) are produced with isolated {sup 13}C spins (i.e., no {sup 13}C-{sup 13}C one bond couplings), facilitating studies of dynamics through the use of spin-spin relaxation experiments without artifacts introduced by evolution due to large homonuclear scalar couplings. Carbon-{alpha} sites are labeled without concomitant labeling at C{sup {beta}} positions for 17 of the common 20 amino acids and there are no cases for which {sup 13}C{sup {alpha}}-{sup 13}CO spin pairs are observed. A large number of probes are thus available for the study of protein dynamics with the results obtained complimenting those from more traditional backbone {sup 15}N studies. The utility of the labeling is established by recording {sup 13}C R{sub 1{rho}} and CPMG-based experiments on a number of different protein systems.

  8. Fluxomers: a new approach for 13C metabolic flux analysis

    Directory of Open Access Journals (Sweden)

    Young Jamey D

    2011-08-01

    Full Text Available Abstract Background The ability to perform quantitative studies using isotope tracers and metabolic flux analysis (MFA is critical for detecting pathway bottlenecks and elucidating network regulation in biological systems, especially those that have been engineered to alter their native metabolic capacities. Mathematically, MFA models are traditionally formulated using separate state variables for reaction fluxes and isotopomer abundances. Analysis of isotope labeling experiments using this set of variables results in a non-convex optimization problem that suffers from both implementation complexity and convergence problems. Results This article addresses the mathematical and computational formulation of 13C MFA models using a new set of variables referred to as fluxomers. These composite variables combine both fluxes and isotopomer abundances, which results in a simply-posed formulation and an improved error model that is insensitive to isotopomer measurement normalization. A powerful fluxomer iterative algorithm (FIA is developed and applied to solve the MFA optimization problem. For moderate-sized networks, the algorithm is shown to outperform the commonly used 13CFLUX cumomer-based algorithm and the more recently introduced OpenFLUX software that relies upon an elementary metabolite unit (EMU network decomposition, both in terms of convergence time and output variability. Conclusions Substantial improvements in convergence time and statistical quality of results can be achieved by applying fluxomer variables and the FIA algorithm to compute best-fit solutions to MFA models. We expect that the fluxomer formulation will provide a more suitable basis for future algorithms that analyze very large scale networks and design optimal isotope labeling experiments.

  9. Structural properties of carbon nanotubes derived from 13C NMR

    KAUST Repository

    Abou-Hamad, E.

    2011-10-10

    We present a detailed experimental and theoretical study on how structural properties of carbon nanotubes can be derived from 13C NMR investigations. Magic angle spinning solid state NMR experiments have been performed on single- and multiwalled carbon nanotubes with diameters in the range from 0.7 to 100 nm and with number of walls from 1 to 90. We provide models on how diameter and the number of nanotube walls influence NMR linewidth and line position. Both models are supported by theoretical calculations. Increasing the diameter D, from the smallest investigated nanotube, which in our study corresponds to the inner nanotube of a double-walled tube to the largest studied diameter, corresponding to large multiwalled nanotubes, leads to a 23.5 ppm diamagnetic shift of the isotropic NMR line position δ. We show that the isotropic line follows the relation δ = 18.3/D + 102.5 ppm, where D is the diameter of the tube and NMR line position δ is relative to tetramethylsilane. The relation asymptotically tends to approach the line position expected in graphene. A characteristic broadening of the line shape is observed with the increasing number of walls. This feature can be rationalized by an isotropic shift distribution originating from different diamagnetic shielding of the encapsulated nanotubes together with a heterogeneity of the samples. Based on our results, NMR is shown to be a nondestructive spectroscopic method that can be used as a complementary method to, for example, transmission electron microscopy to obtain structural information for carbon nanotubes, especially bulk samples.

  10. δ 13C as a marker to study digesta passage kinetics in ruminants: a combined in vivo and in vitro study.

    Science.gov (United States)

    Pellikaan, W F; Verstegen, M W A; Tamminga, S; Dijkstra, J; Hendriks, W H

    2013-05-01

    The aim of the current study was to explore the use of the tracer 13C as an internal marker to assess feed fraction-specific digesta passage kinetics through the digestive tract of dairy cows. Knowledge on feed-specific fractional passage rates is essential to improve estimations on the extent of rumen degradation and microbial protein efficiency; however, this information is largely lacking. An in vivo and in vitro experiment was conducted with grass silages (Lolium perenne L.) that were enriched with 13C by growing the grass under elevated 13CO2 conditions. In a crossover design, two dairy cows received pulse doses of two 13C-enriched grass silages and chromium-mordanted neutral detergent fibre (Cr-NDF) into the rumen. The two 13C-enriched grass silages used differed in digestibility and were grown under identical field conditions as the bulk silages fed to the animals. Faecal excretion patterns of 13C-enriched dry matter (13C-DM), neutral detergent fibre (13C-NDF) and Cr-NDF were established, and a nonlinear multicompartmental model was used to determine their rumen passage kinetics. In addition, the 13C-enriched silages were incubated in rumen liquid in an in vitro batch culture system at different time intervals to determine the effect of fermentation on 13C-enrichment in the residue. The in vitro study showed that the 13C : 12C ratios in DM and NDF residues remained stable from 24 h of incubation onwards. In addition, in vitro fractional degradation rates for 12C in the DM and NDF did not differ from those of 13C, indicating that fermentative degradation does not affect the 13C : 12C ratio in the DM nor in the NDF fraction of the residue. Model fits to the faecal excretion curves showed a significant difference in fractional rumen passage rates between Cr-NDF, 13C-DM and 13C-NDF (P ⩽ 0.025). Silage type had no clear effect on rumen passage kinetics (P ⩾ 0.081). Moreover, it showed that peak enrichments for 13C-DM and 13C-NDF in faeces were reached at 30

  11. Synthesis and Physicochemical Properties of [19,20-13C]-17α-Ethinylestradiol

    NARCIS (Netherlands)

    Kraan, G.P.B.; Drayer, N.M.; Kruizinga, W.H.; Vaalburg, W.; Hummelen, J.C.

    1989-01-01

    13C2-17α-ethinylestradiol (13C2-EE2) was synthesized from estrone and 13C2-C2H2-gas to measure the metabolic clearance rate and the plasma concentration of 17α-ethinylestradiol (EE2) in tall girls, who are treated with high dosages of this estrogen. Interesting characteristics determined by (i) MS:

  12. 40 CFR 721.6505 - Polymers of C13C15 oxoalcohol ethoxolates.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymers of C13C15 oxoalcohol... Specific Chemical Substances § 721.6505 Polymers of C13C15 oxoalcohol ethoxolates. (a) Chemical substance... polymers of C13C15 oxoalcohol ethoxolates (PMNs P-96-950/951) are subject to reporting under this...

  13. Espiritu Santo, Vanuatu Stable Isotope (delta 18O, delta 13C) Data for 1806 to 1979

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Site: Espiritu Santo Island, Vanuatu, 15S, 167E. 173 year record of d18O and d13C. Variable names: QSR Age, QSR 13C, QSR 18O, GRL Age, GRL Qtrly 13C, GRL Qtrly 18O,...

  14. High-field dissolution dynamic nuclear polarization of [1-13C]pyruvic acid

    DEFF Research Database (Denmark)

    Yoshihara, Hikari A. I.; Can, Emine; Karlsson, Magnus

    2016-01-01

    [1-13C]pyruvate is the most widely used hyperpolarized metabolic magnetic resonance imaging agent. Using a custom-built 7.0 T polarizer operating at 1.0 K and trityl radical-doped [1-13C]pyruvic acid, unextrapolated solution-state 13C polarization greater than 60% was measured after dissolution a...

  15. Using Position-Specific 13C and 14C Labeling and 13C-PLFA Analysis to Assess Microbial Transformations of Free Versus Sorbed Alanine

    Science.gov (United States)

    Apostel, C.; Herschbach, J.; Bore, E. K.; Kuzyakov, Y.; Dippold, M. A.

    2015-12-01

    Sorption of charged or partially charged low molecular weight organic substances (LMWOS) to soil mineral surfaces delays microbial uptake and therefore mineralization of LMWOS to CO2, as well as all other biochemical transformations. We used position-specific labeling, a tool of isotope applications novel to soil sciences, to compare the transformation mechanisms of sorbed and non-sorbed alanine in soil. Alanine as an amino acid links C- and N-cycles in soil and therefore is a model substance for the pool of LMWOS. To assess transformations of sorbed alanine, we added position-specific and uniformly 13C and 14C labeled alanine tracer to soil that had previously been sterilized by γ-radiation. The labeled soil was added to non-sterilized soil from the same site and incubated. Soil labeled with the same tracers without previous sorption was prepared and incubated as well. We captured the respired CO2 and determined its 14C-activity at increasing time intervals. The incorporation of 14C into microbial biomass was determined by chloroform fumigation extraction (CFE), and utilization of individual C positions by distinct microbial groups was evaluated by 13C-phospholipid fatty acid analysis (PLFA). A dual peak in the respired CO2 revealed two sorption mechanisms. To compare the fate of individual C atoms independent of their concentration and pool size in soil, we applied the divergence index (DI). The DI reveals the convergent or divergent behavior of C from individual molecule positions during microbial utilization. Alanine C-1 position was mainly oxidized to CO2, while its C-2 and C-3 were preferentially incorporated in microbial biomass and PLFA. This indicates that sorption by the COOH group does not protect this group from preferential oxidation. Microbial metabolism was determinative for the preferential oxidation of individual molecule positions. The use of position-specific labeling revealed mechanisms and kinetics of microbial utilization of sorbed and non

  16. High resolution 4D HPCH experiment for sequential assignment of {sup 13}C-labeled RNAs via phosphodiester backbone

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Saurabh; Stanek, Jan [University of Warsaw, Faculty of Chemistry, Biological and Chemical Research Centre (Poland); Cevec, Mirko; Plavec, Janez [National Institute of Chemistry, Slovenian NMR Centre (Slovenia); Koźmiński, Wiktor, E-mail: kozmin@chem.uw.edu.pl [University of Warsaw, Faculty of Chemistry, Biological and Chemical Research Centre (Poland)

    2015-11-15

    The three-dimensional structure determination of RNAs by NMR spectroscopy requires sequential resonance assignment, often hampered by assignment ambiguities and limited dispersion of {sup 1}H and {sup 13}C chemical shifts, especially of C4′/H4′. Here we present a novel through-bond 4D HPCH NMR experiment involving phosphate backbone where C4′–H4′ correlations are resolved along the {sup 1}H3′–{sup 31}P spectral planes. The experiment provides high peak resolution and effectively removes ambiguities encountered during assignments. Enhanced peak dispersion is provided by the inclusion of additional {sup 31}P and {sup 1}H3′ dimensions and constant-time evolution of chemical shifts. High spectral resolution is obtained by using non-uniform sampling in three indirect dimensions. The experiment fully utilizes the isotopic {sup 13}C-labeling with evolution of C4′ carbons. Band selective {sup 13}C inversion pulses are used to achieve selectivity and prevent signal dephasing due to the C4′–C3′ and C4′–C5′ homonuclear couplings. Multiple quantum line narrowing is employed to minimize sensitivity loses. The 4D HPCH experiment is verified and successfully applied to a non-coding 34-nt RNA consisting typical structure elements and a 14-nt RNA hairpin capped by cUUCGg tetraloop.

  17. Vitamin K absorption and kinetics in human subjects after consumption of 13C-labelled phylloquinone from kale.

    Science.gov (United States)

    Novotny, Janet A; Kurilich, Anne C; Britz, Steven J; Baer, David J; Clevidence, Beverly A

    2010-09-01

    The absorption and plasma disappearance of vitamin K were investigated by uniformly labelling phylloquinone in kale with carbon-13, and by feeding the kale to study subjects. Seven healthy volunteers ingested a single 400 g serving of kale with 30 g vegetable oil. The kale provided 156 nmol of phylloquinone. Serial plasma samples were collected and analysed for the appearance of 13C-phylloquinone by HPLC-MS. Six of the subjects showed significant amounts of labelled phylloquinone in plasma, though one subject's plasma was not consistently enriched above the detection limit, and this subject's baseline plasma phylloquinone level was the lowest in the group. After ingestion of the labelled kale, plasma 13C-phylloquinone concentration increased rapidly to a peak between 6 and 10 h, and then rapidly decreased. Average peak plasma concentration for the six subjects with detectable 13C-phylloquinone was 2.1 nmol/l. Plasma concentration-time data were analysed by compartmental modelling. Modelling results demonstrated a mean (n 6) bioavailability of phylloquinone from kale to be 4.7%. Plasma and tissue half-times for phylloquinone were found to be 8.8 and 215 h, respectively.

  18. Continuous atmospheric CO2 and its δ13C measurements (2012-2014) at Environment Research Station Schneefernerhaus, Germany

    Science.gov (United States)

    Ghasemifard, Homa; Yuan, Ye; Luepke, Marvin; Chen, Jia; Ries, Ludwig; Menzel, Annette

    2017-04-01

    This study presents continuous measurement of atmospheric CO2 and δ13C by PICARRO Wavelength-Scanned Cavity Ring Down Spectrometer (WS-CRDS, G1101- i) for a period of two and a half years at the remote Global Atmosphere Watch (GAW) site Environment Research Station Schneefernerhaus (UFS, Germany, 2650 m a.s.l). Both water vapor and methane concentration show spectroscopic interferences with CO2 and δ13C in this measuring device. Without analyzer upgrade to account automatically for these effects, we present approaches for corrections for δ13C and CO2 mixing ratio as well as test the precision and stability of the device. The mean annual cycle from May 2012 to November 2014 exhibited peak-to-peak amplitudes of 13.34 ppm for CO2 and 1.82 ‰ for δ13C. Regarding CO2 mean diurnal cycle, daily maxima occurred around noon and daily minima in the afternoon. However, clear seasonal differences can be observed. For δ13C, the minimum of diurnal cycle occurred in the morning and the maximum in the afternoon with peak-to peak amplitude of around 0.4 ‰ in summer, 0.2 ‰ both in spring and autumn and no diurnal cycle in winter. HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) was used to calculate 96 hours backward trajectories reaching at UFS with an altitude of 1500 m a.g.l to characterize the origin of air masses transported to the site. Trajectories clustering resulted in five major directions, which were from west (41.2 %), southwest (14.8 %), northwest (19.7 %), southeast (12.5 %) and northeast (11.8 %). Wind speed and wind direction showed clear influences on CO2 mixing ratio. Higher levels of CO2 mixing ratio were measured at wind speeds higher than 6 m s-1 from the northwest, northeast and southwest. The research is financed by the Bavarian State Ministry of the Environment and Consumer Protection.

  19. hNCOcanH pulse sequence and a robust protocol for rapid and unambiguous assignment of backbone ((1)H(N), (15)N and (13)C') resonances in (15)N/(13)C-labeled proteins.

    Science.gov (United States)

    Kumar, Dinesh; Hosur, Ramakrishna V

    2011-09-01

    A three-dimensional nuclear magnetic resonance (NMR) pulse sequence named as hNCOcanH has been described to aid rapid sequential assignment of backbone resonances in (15)N/(13)C-labeled proteins. The experiment has been derived by a simple modification of the previously described HN(C)N pulse sequence [Panchal et al., J. Biomol. NMR 20 (2001) 135-147]; t2 evolution is used to frequency label (13)C' rather than (15)N (similar trick has also been used in the design of hNCAnH pulse sequence from hNcaNH [Frueh et al., JACS, 131 (2009) 12880-12881]). The modification results in a spectrum equivalent to HNCO, but in addition to inter-residue correlation peaks (i.e. Hi , Ci-1), the spectrum also contains additional intra-residue correlation peaks (i.e. Hi-1 , Ci-1) in the direct proton dimension which has maximum resolution. This is the main strength of the experiment and thus, even a small difference in amide (1) H chemical shifts (5-6 Hz) can be used for establishing a sequential connectivity. This experiment in combination with the HNN experiment described previously [Panchal et al., J. Biomol. NMR 20 (2001) 135-147] leads to a more robust assignment protocol for backbone resonances ((1) H(N) , (15)N) than could be derived from the combination of HNN and HN(C)N experiments [Bhavesh et al., Biochemistry, 40 (2001) 14727-14735]. Further, this new protocol enables assignment of (13)C' resonances as well. We believe that the experiment and the protocol presented here will be of immense value for structural-and functional-proteomics research by NMR. Performance of this experiment has been demonstrated using (13)C/(15)N labeled ubiquitin.

  20. Analysis of {sup 13}C{sup {alpha}} and {sup 13}C{sup {beta}} chemical shifts of cysteine and cystine residues in proteins: a quantum chemical approach

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Osvaldo A.; Villegas, Myriam E.; Vila, Jorge A. [Universidad Nacional de San Luis, Instituto de Matematica Aplicada San Luis (Argentina); Scheraga, Harold A., E-mail: has5@cornell.ed [Cornell University, Baker Laboratory of Chemistry and Chemical Biology (United States)

    2010-03-15

    Cysteines possess a unique property among the 20 naturally occurring amino acids: it can be present in proteins in either the reduced or oxidized form, and can regulate the activity of some proteins. Consequently, to augment our previous treatment of the other types of residues, the {sup 13}C{sup {alpha}} and {sup 13}C{sup {beta}} chemical shifts of 837 cysteines in disulfide-bonded cystine from a set of seven non-redundant proteins, determined by X-ray crystallography and NMR spectroscopy, were computed at the DFT level of theory. Our results indicate that the errors between observed and computed {sup 13}C{sup {alpha}} chemical shifts of such oxidized cysteines can be attributed to several effects such as: (a) the quality of the NMR-determined models, as evaluated by the conformational-average (ca) rmsd value; (b) the existence of high B-factor or crystal-packing effects for the X-ray-determined structures; (c) the dynamics of the disulfide bonds in solution; and (d) the differences in the experimental conditions under which the observed {sup 13}C{sup {alpha}} chemical shifts and the protein models were determined by either X-ray crystallography or NMR-spectroscopy. These quantum-chemical-based calculations indicate the existence of two, almost non-overlapped, basins for the oxidized and reduced -SH {sup 13}C{sup {beta}}, but not for the {sup 13}C{sup {alpha}}, chemical shifts, in good agreement with the observation of 375 {sup 13}C{sup {alpha}} and 337 {sup 13}C{sup {beta}} resonances from 132 proteins by Sharma and Rajarathnam (2000). Overall, our results indicate that explicit consideration of the disulfide bonds is a necessary condition for an accurate prediction of {sup 13}C{sup {alpha}} and {sup 13}C{sup {beta}} chemical shifts of cysteines in cystines.

  1. Determination of fructose metabolic pathways in normal and fructose-intolerant children: A sup 13 C NMR study using (U- sup 13 C)fructose

    Energy Technology Data Exchange (ETDEWEB)

    Gopher, A.; Lapidot, A. (Weizmann Institute of Science, Rehovot (Israel)); Vaisman, N. (Kaplan Hospital, Rehovot (Israel)); Mandel, H. (Rambam Hospital, Haifa (Israel))

    1990-07-01

    An inborn deficiency in the ability of aldolase B to split fructose 1-phosphate is found in humans with hereditary fructose intolerance (HFI). A stable isotope procedure to elucidate the mechanism of conversion of fructose to glucose in normal children and in HFI children has been developed. A constant infusion of D-(U-{sup 13}C)fructose was given nasogastrically to control and to HFI children. Hepatic fructose conversion to glucose was estimated by examination of {sup 13}C NMR spectra of plasma glucose. Significantly lower values ({approx}3-fold) for fructose conversion to glucose were obtained for the HFI patients as compared to the controls. A quantitative determination of the metabolic pathways of fructose conversion to glucose was derived from {sup 13}C NMR measurement of plasma ({sup 13}C)glucose isotopomer populations. The finding of isotopomer populations of three adjacent {sup 13}C atoms at glucose C-4 ({sup 13}C{sub 3}-{sup 13}C{sub 4}-{sup 13}C{sub 5}) suggests that there is a direct pathway from fructose, by-passing fructose-1-phosphate aldolase, to fructose 1,6-bisphosphate. The metabolism of fructose by fructose-1-phosphate aldolase activity accounts for only {approx}50% of the total amount of hepatic fructose conversion to glucose. In view of the marked decline by 67% in synthesis of glucose from fructose in HFI subjects found in this study, the extent of ({sup 13}C)glucose formation from a trace amount of (U-{sup 13}C)fructose infused into the patient can be used as a safe and noninvasive diagnostic test for inherent faulty fructose metabolism.

  2. Effect of Casilan® on 13 C-caffeine metabolism in overnight-fasted healthy Nigerian children

    Directory of Open Access Journals (Sweden)

    Kazeem A Oshikoya

    2013-01-01

    Full Text Available Objective: To determine the effect of Casilan® on 13 C-caffeine metabolism in healthy Nigerian children. Materials and Methods: Twelve healthy Nigerian children (male: six, female: six aged 3-8 years were studied on three occasions. After an overnight fast, the children were studied after ingesting Casilan® only (Week 1. They were restudied after ingesting 3 mg/kg of labeled caffeine only (Week 2, and further re-studied after ingesting both Casilan® and labeled caffeine (Week 3. Breath samples were collected by blowing via a straw into an exentainer bottle. The cumulative percentage of 13 C-caffeine exhaled as 13 CO 2 was measured over 2 h. Results: The time courses of 13 C-enrichments in exhaled CO 2 for all the children, after they had ingested labeled caffeine only and after they had ingested both Casilan® and labeled caffeine, were identical. There was a gradual rise and peak of the enrichments at about 60-75 min, followed by a gradual fall (II or a plateau (III. Contrarily, the time course of 13 C-enrichments for all the children was consistently low and stable after they had ingested Casilan® only (I. The mean values of cumulative percent 13 C-doses recovered in the CO 2 exhaled over a 2-h period, after ingesting labeled caffeine only (8.59 ± 1.10 δ%/mg and after ingesting both Casilan® and labeled caffeine (8.58 ± 1.33 δ%/mg, were identical, with no statistically significant difference (P = 0.972. This suggests that Casilan® did not affect the CYP1A2 metabolic pathway. Conclusions: Casilan® is a safe, reliable and quantitative food supplement for overnight-fasted children undergoing caffeine breath test.

  3. Metabolite Characterization in Peritoneal Dialysis Effluent Using High-resolution 1H and 1H-13C NMR Spectroscopy

    CERN Document Server

    Guleria, Anupam; Rawat, Atul; Khetrapal, C L; Prasad, Narayan; Kumar, Dinesh

    2014-01-01

    Metabolite analysis of peritoneal dialysis (PD) effluent may provide information regarding onset and progression of complications associated with prolonged PD therapy. In this context, the NMR detectable small metabolites of PD effluent samples were characterized using high resolution 1H and 1H-13C NMR spectroscopy. The various spectra were recorded (at 800 MHz proton frequency) on PD effluent samples obtained after 4 hour (intraperitoneal) dwell time from patients with end stage renal failure (ESRF) and continuing normally on PD therapy. Inspite of devastating spectral feature of PD effluent due to the presence of intense resonances from glucose and lactate, we were able to identify about 53 small endogenous metabolites (including many complex coupled spin systems) and more than 90 % of the total CH cross peaks of 1H-13C HSQC spectrum were identified specific to various metabolites of PD effluent. We foresee that the characteristic fingerprints of various metabolites of control PD effluent samples will be us...

  4. Assessment of Hepatic Mitochondrial Oxidation and Pyruvate Cycling in NAFLD by (13)C Magnetic Resonance Spectroscopy

    DEFF Research Database (Denmark)

    Petersen, Kitt Mia Falck; Befroy, Douglas E; Dufour, Sylvie

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, and there is great interest in understanding the potential role of alterations in mitochondrial metabolism in its pathogenesis. To address this question, we assessed rates of hepatic mitochondrial oxidation...... in subjects with and without NAFLD by monitoring the rate of (13)C labeling in hepatic [5-(13)C]glutamate and [1-(13)C]glutamate by (13)C MRS during an infusion of [1-(13)C]acetate. We found that rates of hepatic mitochondrial oxidation were similar between NAFLD and control subjects. We also assessed rates...

  5. Conditions to obtain precise and true measurements of the intramolecular {sup 13}C distribution in organic molecules by isotopic {sup 13}C nuclear magnetic resonance spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bayle, Kevin [EBSI Team, Interdisciplinary Chemistry: Synthesis, Analysis, Modelling (CEISAM), University of Nantes-CNRS UMR 6230, 2 Rue de la Houssinière, BP 92208, F-44322, Nantes Cedex 3 (France); Gilbert, Alexis [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Earth–Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Julien, Maxime [EBSI Team, Interdisciplinary Chemistry: Synthesis, Analysis, Modelling (CEISAM), University of Nantes-CNRS UMR 6230, 2 Rue de la Houssinière, BP 92208, F-44322, Nantes Cedex 3 (France); Yamada, Keita [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Silvestre, Virginie; Robins, Richard J.; Akoka, Serge [EBSI Team, Interdisciplinary Chemistry: Synthesis, Analysis, Modelling (CEISAM), University of Nantes-CNRS UMR 6230, 2 Rue de la Houssinière, BP 92208, F-44322, Nantes Cedex 3 (France); Yoshida, Naohiro [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Earth–Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Remaud, Gérald S., E-mail: gerald.remaud@univ-nantes.fr [EBSI Team, Interdisciplinary Chemistry: Synthesis, Analysis, Modelling (CEISAM), University of Nantes-CNRS UMR 6230, 2 Rue de la Houssinière, BP 92208, F-44322, Nantes Cedex 3 (France)

    2014-10-10

    Highlights: • Evaluation of the trueness and precision criteria of isotopic {sup 13}C NMR spectrometry. • Use of bi-labelled [1,2-{sup 13}C{sub 2}]acetic acid to determine the performance of the instrumental response. • Inter-calibration of the {sup 13}C intramolecular composition of acetic acid using the technique GC-Py–irm-MS. - Abstract: Intramolecular {sup 13}C composition gives access to new information on the (bio) synthetic history of a given molecule. Isotopic {sup 13}C NMR spectrometry provides a general tool for measuring the position-specific {sup 13}C content. As an emerging technique, some aspects of its performance are not yet fully delineated. This paper reports on (i) the conditions required to obtain satisfactory trueness and precision for the determination of the internal {sup 13}C distribution, and (ii) an approach to determining the “absolute” position-specific {sup 13}C content. In relation to (i), a precision of <1% can be obtained whatever the molecule on any spectrometer, once quantitative conditions are met, in particular appropriate proton decoupling efficiency. This performance is a prerequisite to the measurement of isotope fractionation either on the transformed or residual compound when a chemical reaction or process is being studied. The study of the trueness has revealed that the response of the spectrometer depends on the {sup 13}C frequency range of the studied molecule, i.e. the chemical shift range. The “absolute value” and, therefore, the trueness of the {sup 13}C NMR measurements has been assessed on acetic acid and by comparison to the results obtained on the fragments from COOH and CH{sub 3} by isotopic mass spectrometry coupled to a pyrolysis device (GC-Py–irm-MS), this technique being the reference method for acetic acid. Of the two NMR spectrometers used in this work, one gave values that corresponded to those obtained by GC-Py–irm-MS (thus, the “true” value) while the other showed a bias, which was

  6. Determination of 13C/ 12C ratios with (d, p) nuclear reactions

    Science.gov (United States)

    Wang, Y. Q.; Zhang, J.; Tesmer, J. R.; Li, Y. H.; Greco, R.; Grim, G. P.; Obst, A. W.; Rundberg, R. S.; Wilhelmy, J. B.

    2010-06-01

    Stable isotope ratios such as 13C/ 12C play an important role in many applications including environment and energy research. Since many surface analysis techniques are plagued with unavoidable hydrocarbon contamination issues during analysis, it is highly desirable that 13C and 12C isotopes be measured simultaneously especially in specimens with a minute amount of 13C, in order to reliably determine 13C/ 12C ratios. In this paper, we report that deuterium induced proton particle reactions, 13C(d, p) 14C and 12C(d, p) 13C, provide a convenient and reliable approach for 13C/ 12C ratio determination. Optimizations on experimental considerations and potential interferences from other common light isotopes are discussed as well as results from the application of this technique to diagnose the performance of a target debris collection in an inertial confinement fusion (ICF) experiment.

  7. Adult-onset hypothyroidism and the cerebral metabolism of (1,2-13C2) acetate as detected by 13C nuclear magnetic resonance.

    Science.gov (United States)

    Chapa, F; Künnecke, B; Calvo, R; Escobar del Rey, F; Morreale de Escobar, G; Cerdán, S

    1995-01-01

    The effects of adult-onset hypothyroidism on the metabolic compartmentation of the cerebral tricarboxylic acid cycle and the gamma-aminobutyric acid (GABA) shunt have been investigated by 13C nuclear magnetic resonance spectroscopy. Rats thyroidectomized as adults and age-matched controls were infused in the right jugular vein with unlabeled or (1,2-13C2) acetate solutions for 60 min. At the end of the infusion, the brains were frozen in situ and perchloric acid extracts were prepared and analyzed by 13C nuclear magnetic resonance and reverse-phase HPLC. Thyroidectomized animals showed a decrease in the incorporation of 13C from (1,2-13C2) acetate in cerebral metabolites and an increase in the concentrations of unlabeled glutamate and GABA. Computer-assisted interpretation of the 13C multiplets observed for the carbons of glutamate, glutamine, and GABA indicated that adult-onset hypothyroidism produced 1) a decrease in the contribution of infused (1,2-13C2) acetate to the glial tricarboxylic acid cycle; 2) an increase in the contribution of unlabeled acetyl-CoA to the neuronal tricarboxylic acid cycle; and 3) impairments in the exchange of glutamate, glutamine, and GABA between the neuronal and glial compartments. Despite the fact that the adult brain has often been considered metabolically unresponsive to thyroid hormone status, present results show metabolic alterations in the neuronal and glial compartments that are reversible with substitution therapy.

  8. Propionate metabolism in the rat heart by 13C n.m.r. spectroscopy.

    Science.gov (United States)

    Sherry, A D; Malloy, C R; Roby, R E; Rajagopal, A; Jeffrey, F M

    1988-01-01

    High-resolution 13C n.m.r. spectroscopy has been used to examine propionate metabolism in the perfused rat heart. A number of tricarboxylic acid (TCA) cycle intermediates are observable by 13C n.m.r. in hearts perfused with mixtures of pyruvate and propionate. When the enriched 13C-labelled nucleus originates with pyruvate, the resonances of the intermediates appear as multiplets due to formation of multiply-enriched 13C-labelled isotopomers, whereas when the 13C-labelled nucleus originates with propionate, these same intermediates appear as singlets in the 13C spectrum since entry of propionate into the TCA cycle occurs via succinyl-CoA. An analysis of the isotopomer populations in hearts perfused with [3-13C]pyruvate plus unlabelled propionate indicates that about 27% of the total pyruvate pool available to the heart is derived directly from unlabelled propionate. This was substantiated by perfusing a heart for 2 h with [3-13C]propionate as the only available exogenous substrate. Under these conditions, all of the propionate consumed by the heart, as measured by conventional chemical analysis, ultimately entered the oxidative pathway as [2-13C] or [3-13C]pyruvate. This is consistent with entry of propionate into the TCA cycle intermediate pools as succinyl-CoA and concomitant disposal of malate to pyruvate via the malic enzyme. 13C resonances arising from enriched methylmalonate and propionylcarnitine are also detected in hearts perfused with [3-13C] or [1-13C]propionate which suggests that 13C n.m.r. may be useful as a non-invasive probe in vivo of metabolic abnormalities involving the propionate pathway, such as methylmalonic aciduria or propionic acidaemia. PMID:3178775

  9. Tree-ring cellulose exhibits several distinct intramolecular 13C signals

    Science.gov (United States)

    Wieloch, Thomas; Ehlers, Ina; Frank, David; Gessler, Arthur; Grabner, Michael; Yu, Jun; Schleucher, Jürgen

    2017-04-01

    Stable carbon isotopes are a key tool in biogeosciences. Present applications including compound-specific isotope analysis measure 13C/12C ratios (δ13C) of bulk material or of whole molecules. However, it is well known that primary metabolites also show large intramolecular 13C variation - also called isotopomer variation. This variation reflects 13C fractionation by enzyme reactions and therefore encodes metabolic information. Furthermore, δ13C must be considered an average of the intramolecular 13C distribution. Here we will present (1) methodology to analyse intramolecular 13C distributions of tree-ring cellulose by quantitative 13C NMR (Chaintreau et al., 2013, Anal Chim Acta, 788, 108-113); (2) intramolecular 13C distributions of an annually-resolved tree ring chronology (Pinus nigra, 1961-1995); (3) isotope parameters and terminology for analysis of intramolecular isotope time series; (4) a method for correcting for heterotrophic C redistribution. We will show that the intramolecular 13C distribution of tree-ring cellulose shows large variation, with differences between isotopomers exceeding 10‰Ṫhus, individual 13C isotopomers of cellulose constitute distinct 13C inputs into major global C pools such as wood and soil organic matter. When glucose units with the observed intramolecular 13C pattern are broken down along alternative catabolic pathways, it must be expected that respired CO2 with strongly differing δ13C will be released; indicating that intramolecular 13C variation affects isotope signals of atmosphere-biosphere C exchange fluxes. taking this variation into account will improve modelling of the global C cycle. Furthermore, cluster analysis shows that tree-ring glucose exhibits several independent intramolecular 13C signals, which constitute distinct ecophysiological information channels. Thus, whole-molecule 13C analysis likely misses a large part of the isotope information stored in tree rings. As we have shown for deuterium (Ehlers et al

  10. Site-specific {sup 13}C content by quantitative isotopic {sup 13}C Nuclear Magnetic Resonance spectrometry: A pilot inter-laboratory study

    Energy Technology Data Exchange (ETDEWEB)

    Chaintreau, Alain; Fieber, Wolfgang; Sommer, Horst [Firmenich SA, Corporate R and D Division, P.O. Box 239, 1211 Geneva 8 (Switzerland); Gilbert, Alexis; Yamada, Keita [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Yoshida, Naohiro [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Pagelot, Alain [Bruker Biospin SAS, 34 rue de l‘Industrie, 67166 Wissembourg Cedex (France); Moskau, Detlef; Moreno, Aitor [Bruker Biospin AG, Industriestrasse 26, 8117 Fällanden (Switzerland); Schleucher, Jürgen [Department of Medical Biochemistry and Biophysics, Umeå University, S-90187 Umeå (Sweden); Reniero, Fabiano; Holland, Margaret; Guillou, Claude [European Commission, Joint Research Centre – Institute for Health and Consumer Protection, via E. Fermi 2749, I-21027 Ispra (Italy); Silvestre, Virginie; Akoka, Serge [EBSI team, Interdisciplinary Chemistry: Synthesis, Analysis, Modelling (CEISAM), University of Nantes-CNRS UMR 6230, 2 rue de la Houssinière, BP 92208, F-44322 Nantes cedex 3 (France); Remaud, Gérald S., E-mail: gerald.remaud@univ-nantes.fr [EBSI team, Interdisciplinary Chemistry: Synthesis, Analysis, Modelling (CEISAM), University of Nantes-CNRS UMR 6230, 2 rue de la Houssinière, BP 92208, F-44322 Nantes cedex 3 (France)

    2013-07-25

    Graphical abstract: -- Highlights: •First ring test on isotopic {sup 13}C NMR spectrometry. •Evaluation of the intra- and inter-variability of the NMR spectrometers used. •Definition of a protocol for qualification of the performance of the spectrometer. -- Abstract: Isotopic {sup 13}C NMR spectrometry, which is able to measure intra-molecular {sup 13}C composition, is of emerging demand because of the new information provided by the {sup 13}C site-specific content of a given molecule. A systematic evaluation of instrumental behaviour is of importance to envisage isotopic {sup 13}C NMR as a routine tool. This paper describes the first collaborative study of intra-molecular {sup 13}C composition by NMR. The main goals of the ring test were to establish intra- and inter-variability of the spectrometer response. Eight instruments with different configuration were retained for the exercise on the basis of a qualification test. Reproducibility at the natural abundance of isotopic {sup 13}C NMR was then assessed on vanillin from three different origins associated with specific δ{sup 13}C{sub i} profiles. The standard deviation was, on average, between 0.9 and 1.2‰ for intra-variability. The highest standard deviation for inter-variability was 2.1‰. This is significantly higher than the internal precision but could be considered good in respect of a first ring test on a new analytical method. The standard deviation of δ{sup 13}C{sub i} in vanillin was not homogeneous over the eight carbons, with no trend either for the carbon position or for the configuration of the spectrometer. However, since the repeatability for each instrument was satisfactory, correction factors for each carbon in vanillin could be calculated to harmonize the results.

  11. 13C metabolic flux analysis at a genome-scale.

    Science.gov (United States)

    Gopalakrishnan, Saratram; Maranas, Costas D

    2015-11-01

    Metabolic models used in 13C metabolic flux analysis generally include a limited number of reactions primarily from central metabolism. They typically omit degradation pathways, complete cofactor balances, and atom transition contributions for reactions outside central metabolism. This study addresses the impact on prediction fidelity of scaling-up mapping models to a genome-scale. The core mapping model employed in this study accounts for (75 reactions and 65 metabolites) primarily from central metabolism. The genome-scale metabolic mapping model (GSMM) (697 reaction and 595 metabolites) is constructed using as a basis the iAF1260 model upon eliminating reactions guaranteed not to carry flux based on growth and fermentation data for a minimal glucose growth medium. Labeling data for 17 amino acid fragments obtained from cells fed with glucose labeled at the second carbon was used to obtain fluxes and ranges. Metabolic fluxes and confidence intervals are estimated, for both core and genome-scale mapping models, by minimizing the sum of square of differences between predicted and experimentally measured labeling patterns using the EMU decomposition algorithm. Overall, we find that both topology and estimated values of the metabolic fluxes remain largely consistent between core and GSM model. Stepping up to a genome-scale mapping model leads to wider flux inference ranges for 20 key reactions present in the core model. The glycolysis flux range doubles due to the possibility of active gluconeogenesis, the TCA flux range expanded by 80% due to the availability of a bypass through arginine consistent with labeling data, and the transhydrogenase reaction flux was essentially unresolved due to the presence of as many as five routes for the inter-conversion of NADPH to NADH afforded by the genome-scale model. By globally accounting for ATP demands in the GSMM model the unused ATP decreased drastically with the lower bound matching the maintenance ATP requirement. A non

  12. Coupling XRD, EXAFS, and 13C NMR to study the effect of the carbon stoichiometry on the local structure of UC(1±x).

    Science.gov (United States)

    Carvajal Nuñez, U; Martel, L; Prieur, D; Lopez Honorato, E; Eloirdi, R; Farnan, I; Vitova, T; Somers, J

    2013-10-07

    A series of uranium carbide samples, prepared by arc melting with a C/U ratio ranging from 0.96 to 1.04, has been studied by X-ray diffraction (XRD), (13)C nuclear magnetic resonance (NMR), and extended X-ray absorption fine structure (EXAFS). XRD determines phase uniqueness and the increase of the lattice parameter versus the carbon content. In contrast, (13)C NMR detects the different carbon environments in the lattice and in this study, clearly identifies the presence of discrete peaks for carbon in the octahedral lattice site in UC and an additional peak associated with excess carbon in hyperstoichiometric samples. Two peaks associated with different levels of carbon deficiency are detected for all hypostoichiometric compositions. More than one carbon environment is always detected by (13)C NMR. This exemplifies the difficulty in obtaining a perfect stoichiometric uranium monocarbide UC(1.00). The (13)C MAS spectra of uranium carbides exhibit the effects resulting from the carbon content on both the broadening of the peaks and on the Knight shift. An abrupt spectral change occurs between hypo- and hyperstoichiometric samples. The results obtained by EXAFS highlight subtle differences between the different stoichiometries, and in the hyperstoichiometric samples, the EXAFS results are consistent with the excess carbon atoms being in the tetrahedral interstitial position.

  13. Fluorescence Spectroscopy of tRNA[superscript Phe] Y Base in the Presence of Mg[superscript 2+] and Small Molecule Ligands

    Science.gov (United States)

    Kirk, Sarah R.; Silverstein, Todd P.; McFarlane Holman, Karen L.

    2008-01-01

    This laboratory project is one component of a semester-long advanced biochemistry laboratory course that uses several complementary techniques to study tRNA[superscript Phe] conformational changes induced by ligand binding. In this article we describe a set of experiments in which students use fluorescence spectroscopy to study tRNA[superscript…

  14. Incremental Validity of WISC-IV[superscript UK] Factor Index Scores with a Referred Irish Sample: Predicting Performance on the WIAT-II[superscript UK

    Science.gov (United States)

    Canivez, Gary L.; Watkins, Marley W.; James, Trevor; Good, Rebecca; James, Kate

    2014-01-01

    Background: Subtest and factor scores have typically provided little incremental predictive validity beyond the omnibus IQ score. Aims: This study examined the incremental validity of Wechsler Intelligence Scale for Children-Fourth UK Edition (WISC-IV[superscript UK]; Wechsler, 2004a, "Wechsler Intelligence Scale for Children-Fourth UK…

  15. Incremental Validity of WISC-IV[superscript UK] Factor Index Scores with a Referred Irish Sample: Predicting Performance on the WIAT-II[superscript UK

    Science.gov (United States)

    Canivez, Gary L.; Watkins, Marley W.; James, Trevor; Good, Rebecca; James, Kate

    2014-01-01

    Background: Subtest and factor scores have typically provided little incremental predictive validity beyond the omnibus IQ score. Aims: This study examined the incremental validity of Wechsler Intelligence Scale for Children-Fourth UK Edition (WISC-IV[superscript UK]; Wechsler, 2004a, "Wechsler Intelligence Scale for Children-Fourth UK…

  16. Hyperpolarized 13C Metabolic MRI of the Human Heart: Initial Experience.

    Science.gov (United States)

    Cunningham, Charles H; Lau, Justin Y C; Chen, Albert P; Geraghty, Benjamin J; Perks, William J; Roifman, Idan; Wright, Graham A; Connelly, Kim A

    2016-11-11

    Altered cardiac energetics is known to play an important role in the progression toward heart failure. A noninvasive method for imaging metabolic markers that could be used in longitudinal studies would be useful for understanding therapeutic approaches that target metabolism. To demonstrate the first hyperpolarized (13)C metabolic magnetic resonance imaging of the human heart. Four healthy subjects underwent conventional proton cardiac magnetic resonance imaging followed by (13)C imaging and spectroscopic acquisition immediately after intravenous administration of a 0.1 mmol/kg dose of hyperpolarized [1-(13)C]pyruvate. All subjects tolerated the procedure well with no adverse effects reported ≤1 month post procedure. The [1-(13)C]pyruvate signal appeared within the chambers but not within the muscle. Imaging of the downstream metabolites showed (13)C-bicarbonate signal mainly confined to the left ventricular myocardium, whereas the [1-(13)C]lactate signal appeared both within the chambers and in the myocardium. The mean (13)C image signal:noise ratio was 115 for [1-(13)C]pyruvate, 56 for (13)C-bicarbonate, and 53 for [1-(13)C]lactate. These results represent the first (13)C images of the human heart. The appearance of (13)C-bicarbonate signal after administration of hyperpolarized [1-(13)C]pyruvate was readily detected in this healthy cohort (n=4). This shows that assessment of pyruvate metabolism in vivo in humans is feasible using current technology. URL: https://www.clinicaltrials.gov. Unique identifier: NCT02648009. © 2016 The Authors.

  17. A global ocean climatology of preindustrial and modern ocean δ13C

    Science.gov (United States)

    Eide, Marie; Olsen, Are; Ninnemann, Ulysses S.; Johannessen, Truls

    2017-03-01

    We present a global ocean climatology of dissolved inorganic carbon δ13C (‰) corrected for the 13C-Suess effect, preindustrial δ13C. This was constructed by first using Olsen and Ninnemann's (2010) back-calculation method on data from 25 World Ocean Circulation Experiment cruises to reconstruct the preindustrial δ13C on sections spanning all major oceans. Next, we developed five multilinear regression equations, one for each major ocean basin, which were applied on the World Ocean Atlas data to construct the climatology. This reveals the natural δ13C distribution in the global ocean. Compared to the modern distribution, the preindustrial δ13C spans a larger range of values. The maxima, of up to 1.8‰, occurs in the subtropical gyres of all basins, in the upper and intermediate waters of the North Atlantic, as well as in mode waters with a Southern Ocean origin. Particularly strong gradients occur at intermediate depths, revealing a strong potential for using δ13C as a tracer for changes in water mass geometry at these levels. Further, we identify a much tighter relationship between δ13C and apparent oxygen utilization (AOU) than between δ13C and phosphate. This arises because, in contrast to phosphate, AOU and δ13C are both partly reset when waters are ventilated in the Southern Ocean and underscore that δ13C is a highly robust proxy for past changes in ocean oxygen content and ocean ventilation. Our global preindustrial δ13C climatology is openly accessible and can be used, for example, for improved model evaluation and interpretation of sediment δ13C records.

  18. Metabolic Characterization of Acutely Isolated Hippocampal and Cerebral Cortical Slices Using [U-(13)C]Glucose and [1,2-(13)C]Acetate as Substrates

    DEFF Research Database (Denmark)

    McNair, Laura F; Kornfelt, Rasmus; Walls, Anne B

    2017-01-01

    Brain slice preparations from rats, mice and guinea pigs have served as important tools for studies of neurotransmission and metabolism. While hippocampal slices routinely have been used for electrophysiology studies, metabolic processes have mostly been studied in cerebral cortical slices. Few...... to incubation, slices were extracted and extracts analyzed for (13)C-labeling (%) and total amino acid contents (µmol/mg protein) using gas chromatography-mass spectrometry and high performance liquid chromatography, respectively. Release of lactate from the slices was quantified by analysis of the incubation...... media. Based on the measured (13)C-labeling (%), total amino acid contents and relative activity of metabolic enzymes/pathways, we conclude that the slice preparations in the current incubation apparatus exhibited a high degree of metabolic integrity. Comparison of (13)C-labeling observed with [U-(13)C...

  19. 13C NMR Quantitative Study-Part 1: Relationships between the Conformation of Amino Acids, Peptide, Carboxylic Acids and Integration Intensity of 13C NMR

    Institute of Scientific and Technical Information of China (English)

    TIAN; JinPing

    2001-01-01

    In proton broad band decoupling 13C NMR, carbon atoms have different integration intensity because of NOE effects and their different relaxation time(T1), thus it makes a 13C NMR quantitative analyses very difficult. To acquire a 3C NMR quantitative analyses, a gated decoupling with suppressed NOE technology, i.e., an inversed gated decoupling pulse (IGDP), must be used. In IGDP relay time (tR) between two acquisition cycles must be more than 5T1, the time needed for a acquisition cycles is so long that makes the total 13C NMR quantitative analyses time much longer. For this reason, the 13C NMR quantitative analyses is paid less attention.  ……

  20. 13C NMR Quantitative Study-Part 1: Relationships between the Conformation of Amino Acids, Peptide, Carboxylic Acids and Integration Intensity of 13C NMR

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ In proton broad band decoupling 13C NMR, carbon atoms have different integration intensity because of NOE effects and their different relaxation time(T1), thus it makes a 13C NMR quantitative analyses very difficult. To acquire a 3C NMR quantitative analyses, a gated decoupling with suppressed NOE technology, i.e., an inversed gated decoupling pulse (IGDP), must be used. In IGDP relay time (tR) between two acquisition cycles must be more than 5T1, the time needed for a acquisition cycles is so long that makes the total 13C NMR quantitative analyses time much longer. For this reason, the 13C NMR quantitative analyses is paid less attention.

  1. Pentose cycling and the distribution of 13C in trehalose during glucogenesis from 13C-labelled substrates in an insect.

    Science.gov (United States)

    Thompson, S N; Scales, V M; Bochardt, D B

    1995-07-26

    Redistribution of 13C in trehalose (Tre) due to pentose cycling was observed in vivo in Manduca sexta during glucogenesis from [3-13C]alanine (Ala) and [2-13C]glycerol (Gly). The extent of cycling was affected by dietary composition. Larvae maintained on a low-carbohydrate diet (LCD) exhibited approximately 13% cycling, while those on a complete-balanced diet (CBD) or low-fat diet (LFD) displayed much higher rates of cycling. Significant incorporation of 13C via reversal of the non-oxidative phase was evident on all diets but was greatest on the CBD and LFD. In contrast to conclusions from previous studies with insects, the present results indicate that under normal conditions the pentose pathway is not the principal source of triose phosphates for oxidative catabolism during larval development.

  2. [sup 13]C NMR on C[sub 60] single-crystal. RMN du [sup 13]C sur un monocristal de C[sub 60

    Energy Technology Data Exchange (ETDEWEB)

    Kerkoud, R.; Auban-Senzier, P.; Godard, J.; Jerome, D. (Paris-11 Univ., 91 - Orsay (France). Lab. de Physique des Solides); Lambert, J.M.; Bernier, P. (Montpellier-1 Univ., 34 (France))

    1994-01-01

    The authors report a [sup 13]C NMR study performed on a C[sub 60] single crystal (8% enriched in [sup 13]C) grown by sublimation. Molecular motions are tested by spin-lattice relaxation data and spectral shapes below and above the structural transition at T[sub c] = 262 K. The sharpness of this transition and the long relaxation times at low temperature, compared to previous data on powdered samples, confirm the high purity of the crystal.

  3. Metabolic pathways for ketone body production. /sup 13/C NMR spectroscopy of rat liver in vivo using /sup 13/C-multilabeled fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Pahl-Wostl, C.; Seelig, J.

    1986-11-04

    The hormonal regulation of ketogenesis in the liver of living rat has been studied noninvasively with /sup 13/C nuclear magnetic resonance. The spatial selection for the liver was better than 90%, with extrahepatic adipose tissue contribution only a very small amount of signal. The metabolic activities of the liver were investigated by infusion of /sup 13/C-labeled butyrate in the jugular vein of the anesthetized rat. The rate of butyrate infusion was chosen to be close to the maximum oxidative capacity of the rat liver, and the /sup 13/C signal intensities were enhanced by using doubly labeled (1,3-/sup 13/C)butyrate as a substrate. Different /sup 13/C NMR spectra and hence different metabolites were observed depending on the hormonal state of the animal. The /sup 13/C NMR studies demonstrate that even when rate of acetyl-CoA production are high, the disposal of this compound is not identical in fasted and diabetic animals. This supports previous suggestions that the redox state of the mitochondrion represents the most important factor in regulation. For a given metabolic state of the animal, different signal intensities were obtained depending on whether butyrate was labeled at C-1, C-3, or C-1,3. From the ratios of incorporation of /sup 13/C label into the carbons of 3-hydroxybutyrate, it could be estimated that a large fraction of butyrate evaded ..beta..-oxidation to acetyl-CoA but was converted directly to acetoacetyl-CoA. /sup 13/C-labeled glucose could be detected in vivo in the liver of diabetic rats.

  4. 13C NMR studies of methylene and methine carbons of substrate bound to a 280,000-dalton protein, porphobilinogen synthase.

    Science.gov (United States)

    Jaffe, E K; Markham, G D

    1988-06-14

    13C NMR has been used to observe the equilibrium complex of [5,5-2H,5-13C]-5-aminolevulinate [( 5,5-2H,5-13C]ALA) bound to porphobilinogen (PBG) synthase (5-aminolevulinate dehydratase), a 280,000-dalton protein. [5,5-2H,5-13C]ALA (chemical shift 46.9 ppm in D2O) was prepared from [5-13C]ALA through enolization in deuteriated neutral potassium phosphate buffer. In the PBG synthase reaction [5,5-2H,5-13C]ALA forms [2,11,11-2H,2,11-13C]PBG (chemical shifts 116.2 ppm for C2 and 34.2 ppm for C11 in D2O). For the complex formed between [5,5-2H,5-13C]ALA and methyl methanethiosulfonate (MMTS) modified PBG synthase, which does not catalyze PBG formation but can form a Schiff base adduct, the chemical shift of 44.2 ppm (line width 92 Hz) identifies an imine structure as the predominant tautomeric form of the Schiff base. By comparison to model compounds, the stereochemistry of the imine has been deduced; however, the protonation state of the imine nitrogen remains unresolved. Reconstitution of the MMTS-modified enzyme-Schiff base complex with Zn(II) and 2-mercaptoethanol results in the holoenzyme-bound equilibrium complex; this complex contains predominantly enzyme-bound PBG, and spectra reveal two peaks from bound PBG and two from free PBG. For bound PBG, C2 is -2.8 ppm from the free signal and C11 is +2.6 ppm from the free signal; the line widths of the bound signals are 55 and 75 Hz, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Seasonal variation in nitrogen pools and 15N/13C natural abundances in different tissues of grassland plants

    Directory of Open Access Journals (Sweden)

    J. K. Schjoerring

    2011-12-01

    Full Text Available Seasonal changes in nitrogen (N pools, carbon (C content and natural abundance of 13C and 15N in different tissues of ryegrass plants were investigated in two intensively managed grassland fields in order to address their ammonia (NH3 exchange potential. Green leaves generally had the largest total N concentration followed by stems and inflorescences. Senescent leaves had the lowest N concentration, indicating N re-allocation. The seasonal pattern of the Γ value, i.e. the ratio between NH4+ and H+ concentrations, was similar for the various tissues of the ryegrass plants but the magnitude of Γ differed considerably among the different tissues. Green leaves and stems generally had substantially lower Γ values than senescent leaves and litter. Substantial peaks in Γ were observed during spring and summer in response to fertilization and grazing. These peaks were associated with high NH4+ rather than with low H+ concentrations. Peaks in Γ also appeared during the winter, coinciding with increasing δ15N values, indicating absorption of N derived from mineralization of soil organic matter. At the same time, δ13C values were declining, suggesting reduced photosynthesis and capacity for N assimilation. δ15N and δ13C values were more influenced by mean monthly temperature than by the accumulated monthly precipitation. In conclusion, ryegrass plants showed a clear seasonal pattern in N pools. Green leaves and stems of ryegrass plants generally seem to constitute a sink for NH3, while senescent leaves have a large potential for NH3 emission. However, management events such as fertilisation and grazing may create a high NH3 emission potential even in green plant parts. The obtained results provide input for future modelling of plant-atmosphere NH3 exchange.

  6. Opposing Actions of Chronic[Deta][superscript 9] Tetrahydrocannabinol and Cannabinoid Antagonists on Hippocampal Long-Term Potentiation

    Science.gov (United States)

    Hoffman, Alexander F.; Oz, Murat; Yang, Ruiqin; Lichtman, Aron H.; Lupica, Carl R.

    2007-01-01

    Memory deficits produced by marijuana arise partly via interaction of the psychoactive component, [Deta][superscript 9]-tetrahydrocannabinol ([Deta][superscript 9]-THC), with cannabinoid receptors in the hippocampus. Although cannabinoids acutely reduce glutamate release and block hippocampal long-term potentiation (LTP), a potential substrate for…

  7. Integrating the SOP[superscript 2] Model into the Flipped Classroom to Foster Cognitive Presence and Learning Achievements

    Science.gov (United States)

    Chen, Hsiu-Ling; Chang, Chiung-Yun

    2017-01-01

    This study explored student teachers' cognitive presence and learning achievements by integrating the SOP[superscript 2] Model in which self-study (S), online group discussion (O) and double-stage presentations (P[superscript 2]) were implemented in the flipped classroom. The research was conducted at a university in Taiwan with 31 student…

  8. LOW DOSE CAPSULE BASED 13C-UREA BREATH TEST COMPARED WITH THE CONVENTIONAL 13C-UREA BREATH TEST AND INVASIVE TESTS

    Directory of Open Access Journals (Sweden)

    Rejane MATTAR

    2014-04-01

    Full Text Available Context One of the limitations of 13C-urea breath test for Helicobacter pylori infection diagnosis in Brazil is the substrate acquisition in capsule presentation. Objectives The purpose of this study was to evaluate a capsule-based 13C-urea, manipulated by the Pharmacy Division, for the clinical practice. Methods Fifty patients underwent the conventional and the capsule breath test. Samples were collected at the baseline and after 10, 20 and 30 minutes of 13C-urea ingestion. Urease and histology were used as gold standard in 83 patients. Results In a total of 50 patients, 17 were positive with the conventional 13C-urea (75 mg breath test at 10, 20 and 30 minutes. When these patients repeated breath test with capsule (50 mg, 17 were positive at 20 minutes and 15 at 10 and 30 minutes. The relative sensitivity of 13C-urea with capsule was 100% at 20 minutes and 88.24% at 10 and at 30 minutes. The relative specificity was 100% at all time intervals. Among 83 patients that underwent capsule breath test and endoscopy the capsule breath test presented 100% of sensitivity and specificity. Conclusions Capsule based breath test with 50 mg 13C-urea at twenty minutes was found highly sensitive and specific for the clinical setting. HEADINGS- Helicobacter pylori. Breath Test. Urea, analysis.

  9. Biosynthesis of highly enriched 13C-lycopene for human metabolic studies using repeated batch tomato cell culturing with 13C-glucose.

    Science.gov (United States)

    Moran, Nancy Engelmann; Rogers, Randy B; Lu, Chi-Hua; Conlon, Lauren E; Lila, Mary Ann; Clinton, Steven K; Erdman, John W

    2013-08-15

    While putative disease-preventing lycopene metabolites are found in both tomato (Solanum lycopersicum) products and in their consumers, mammalian lycopene metabolism is poorly understood. Advances in tomato cell culturing techniques offer an economical tool for generation of highly-enriched (13)C-lycopene for human bioavailability and metabolism studies. To enhance the (13)C-enrichment and yields of labelled lycopene from the hp-1 tomato cell line, cultures were first grown in (13)C-glucose media for three serial batches and produced increasing proportions of uniformly labelled lycopene (14.3±1.2%, 39.6±0.5%, and 48.9±1.5%) with consistent yields (from 5.8 to 9 mg/L). An optimised 9-day-long (13)C-loading and 18-day-long labelling strategy developed based on glucose utilisation and lycopene yields, yielded (13)C-lycopene with 93% (13)C isotopic purity, and 55% of isotopomers were uniformly labelled. Furthermore, an optimised acetone and hexane extraction led to a fourfold increase in lycopene recovery from cultures compared to a standard extraction.

  10. Changes in vegetation phenology are not reflected in atmospheric CO2 and (13) C/(12) C seasonality.

    Science.gov (United States)

    Gonsamo, Alemu; D'Odorico, Petra; Chen, Jing M; Wu, Chaoyang; Buchmann, Nina

    2017-01-31

    Northern terrestrial ecosystems have shown global warming-induced advances in start, delays in end, and thus increased lengths of growing season and gross photosynthesis in recent decades. The tradeoffs between seasonal dynamics of two opposing fluxes, CO2 uptake through photosynthesis and release through respiration, determine the influence of the terrestrial ecosystem on the atmospheric CO2 and (13) C/(12) C seasonality. Here, we use four CO2 observation stations in the Northern Hemisphere, namely Alert, La Jolla, Point Barrow, and Mauna Loa Observatory, to determine how changes in vegetation productivity and phenology, respiration, and air temperature affect both the atmospheric CO2 and (13) C/(12) C seasonality. Since the 1960s, the only significant long-term trend of CO2 and (13) C/(12) C seasonality was observed at the northern most station, Alert, where the spring CO2 drawdown dates advanced by 0.65 ± 0.55 days yr(-1) , contributing to a nonsignificant increase in length of the CO2 uptake period (0.74 ± 0.67 days yr(-1) ). For Point Barrow station, vegetation phenology changes in well-watered ecosystems such as the Canadian and western Siberian wetlands contributed the most to (13) C/(12) C seasonality while the CO2 seasonality was primarily linked to nontree vegetation. Our results indicate significant increase in the Northern Hemisphere soil respiration. This means, increased respiration of (13) C depleted plant materials cancels out the (12) C gain from enhanced vegetation activities during the start and end of growing season. These findings suggest therefore that parallel warming-induced increases both in photosynthesis and respiration contribute to the long-term stability of CO2 and (13) C/(12) C seasonality under changing climate and vegetation activity. The summer photosynthesis and the soil respiration in the dormant seasons have become more vigorous which lead to increased peak-to-through CO2 amplitude. As the relative magnitude of the

  11. Biokinetics of (13)C in the human body after oral administration of (13)C-labeled glucose as an index for the biokinetics of (14)C.

    Science.gov (United States)

    Masuda, Tsuyoshi; Tako, Yasuhiro; Matsushita, Kensaku; Takeda, Hiroshi; Endo, Masahiro; Nakamura, Yuji; Hisamatsu, Shun'ichi

    2016-09-01

    The retention of (13)C in the human body after oral administration of (13)C-labeled glucose was studied in three healthy volunteer subjects to estimate the 50 year cumulative body burden for (13)C as an index of the committed dose of the radioisotope (14)C. After administration of (13)C-labeled glucose, the volunteers ingested controlled diets with a fixed number of calories for 112 d. Samples of breath and urine were collected up to 112 d after administration. Samples of feces were collected up to 14 d after administration. Hair samples were obtained at 119 d after administration and analyzed as a representative index of the rate of excretion of organic (13)C via pathways such as skin cell exfoliation and mucus secretion. All samples were analyzed for (13)C/(12)C atomic ratio to determine the rate of excretion via each pathway. We then constructed a metabolic model with a total of four pathways (breath, urine, feces, and other) comprising seven compartments. We determined the values of the biokinetic parameters in the model by using the obtained excretion data. From 74% to 94% of the (13)C administered was excreted in breath, whereas    0.1). In addition, the dataset for one of the three subjects was markedly different from those of the other two. When we estimated the 50 year cumulative body burden for (13)C by using our model and we included non-statistically significant parameters, a considerable cumulative body burden was found in the compartments excreting to the other pathway. Although our results on the cumulative body burden of (13)C from orally administered carbon as glucose were inconclusive, we found that the compartments excreting to the other pathway had a markedly long residence time and therefore should be studied further to clarify the fate of carbon in the human body. In addition to excreta, data for serum and blood cell samples were also collected from the subjects to examine the metabolism of (13)C in human body.

  12. Open-Source Automated Parahydrogen Hyperpolarizer for Molecular Imaging Using (13)C Metabolic Contrast Agents.

    Science.gov (United States)

    Coffey, Aaron M; Shchepin, Roman V; Truong, Milton L; Wilkens, Ken; Pham, Wellington; Chekmenev, Eduard Y

    2016-08-16

    An open-source hyperpolarizer producing (13)C hyperpolarized contrast agents using parahydrogen induced polarization (PHIP) for biomedical and other applications is presented. This PHIP hyperpolarizer utilizes an Arduino microcontroller in conjunction with a readily modified graphical user interface written in the open-source processing software environment to completely control the PHIP hyperpolarization process including remotely triggering an NMR spectrometer for efficient production of payloads of hyperpolarized contrast agent and in situ quality assurance of the produced hyperpolarization. Key advantages of this hyperpolarizer include: (i) use of open-source software and hardware seamlessly allowing for replication and further improvement as well as readily customizable integration with other NMR spectrometers or MRI scanners (i.e., this is a multiplatform design), (ii) relatively low cost and robustness, and (iii) in situ detection capability and complete automation. The device performance is demonstrated by production of a dose (∼2-3 mL) of hyperpolarized (13)C-succinate with %P13C ∼ 28% and 30 mM concentration and (13)C-phospholactate at %P13C ∼ 15% and 25 mM concentration in aqueous medium. These contrast agents are used for ultrafast molecular imaging and spectroscopy at 4.7 and 0.0475 T. In particular, the conversion of hyperpolarized (13)C-phospholactate to (13)C-lactate in vivo is used here to demonstrate the feasibility of ultrafast multislice (13)C MRI after tail vein injection of hyperpolarized (13)C-phospholactate in mice.

  13. Structure elucidation of uniformly 13C labeled small molecule natural products.

    Science.gov (United States)

    Reibarkh, Mikhail; Wyche, Thomas P; Saurí, Josep; Bugni, Tim S; Martin, Gary E; Williamson, R Thomas

    2015-12-01

    Utilization of isotopically labeled proteins and peptides is a routinely employed approach in biomolecular NMR investigations. The widespread availability of inexpensive, uniformly (13) C-enriched glucose now makes it possible to produce uniformly (13) C-labeled natural products by microbial fermentation. In this feature article, the authors describe an experimental approach for the rapid structural characterization of uniformly (13) C-labeled natural products based on the Constant-Time HSQC (CT-HSQC) experiment. Rigorous theoretical evaluation of the CT-HSQC experiment allowed the applicability of the experiment to be expanded from the traditional, narrow scope of labeled amino acids to encompass virtually any small molecule or U-(13) C labeled natural product. A suite of experiments including CT-HSQC, (13) C-(13) C COSY, and COSYLR experiments is sufficient for the structure elucidation of uniformly (13) C-labeled small molecules and natural products. Differences in NMR approaches for structure elucidation of natural abundance and uniformly (13) C-labeled molecules are also discussed. The present work provides a researcher working in this area of natural products chemistry with NMR structure elucidation tools for investigating (13) C-labeled small molecules and natural products.

  14. Quantitative importance of the pentose phosphate pathway determined by incorporation of 13C from [2-13C]- and [3-13C]glucose into TCA cycle intermediates and neurotransmitter amino acids in functionally intact neurons

    DEFF Research Database (Denmark)

    Brekke, Eva Marie; Walls, Anne Byriel; Schousboe, Arne

    2012-01-01

    of (13)C-labeled glucose via the PPP does not appear to contribute to the production of releasable lactate, it contributes to labeling of tricarboxylic acid (TCA) cycle intermediates and related amino acids. Based on glutamate isotopomers, it was calculated that PPP activity accounts for ~6% of glucose...... metabolism in cortical neurons and ~4% in cerebellar neurons. This is the first demonstration that pyruvate generated from glucose via the PPP contributes to the synthesis of acetyl CoA for oxidation in the TCA cycle. Moreover, the fact that (13)C labeling from glucose is incorporated into glutamate proves...

  15. A comparison of substrate oxidation during prolonged exercise in men at terrestrial altitude and normobaric normoxia following the coingestion of 13C glucose and 13C fructose.

    Science.gov (United States)

    O'Hara, John P; Woods, David R; Mellor, Adrian; Boos, Christopher; Gallagher, Liam; Tsakirides, Costas; Arjomandkhah, Nicola C; Holdsworth, David A; Cooke, Carlton B; Morrison, Douglas J; Preston, Thomas; King, Roderick Fgj

    2017-01-01

    This study compared the effects of coingesting glucose and fructose on exogenous and endogenous substrate oxidation during prolonged exercise at altitude and sea level, in men. Seven male British military personnel completed two bouts of cycling at the same relative workload (55% Wmax) for 120 min on acute exposure to altitude (3375 m) and at sea level (~113 m). In each trial, participants ingested 1.2 g·min(-1) of glucose (enriched with (13)C glucose) and 0.6 g·min(-1) of fructose (enriched with (13)C fructose) directly before and every 15 min during exercise. Indirect calorimetry and isotope ratio mass spectrometry were used to calculate fat oxidation, total and exogenous carbohydrate oxidation, plasma glucose oxidation, and endogenous glucose oxidation derived from liver and muscle glycogen. Total carbohydrate oxidation during the exercise period was lower at altitude (157.7 ± 56.3 g) than sea level (286.5 ± 56.2 g, P = 0.006, ES = 2.28), whereas fat oxidation was higher at altitude (75.5 ± 26.8 g) than sea level (42.5 ± 21.3 g, P = 0.024, ES = 1.23). Peak exogenous carbohydrate oxidation was lower at altitude (1.13 ± 0.2 g·min(-1)) than sea level (1.42 ± 0.16 g·min(-1), P = 0.034, ES = 1.33). There were no differences in rates, or absolute and relative contributions of plasma or liver glucose oxidation between conditions during the second hour of exercise. However, absolute and relative contributions of muscle glycogen during the second hour were lower at altitude (29.3 ± 28.9 g, 16.6 ± 15.2%) than sea level (78.7 ± 5.2 g (P = 0.008, ES = 1.71), 37.7 ± 13.0% (P = 0.016, ES = 1.45). Acute exposure to altitude reduces the reliance on muscle glycogen and increases fat oxidation during prolonged cycling in men compared with sea level. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  16. Coupling XRD, EXAFS and 13C NMR to study the effect of the carbon stoichiometry on the local structure of UC1±x

    OpenAIRE

    CARVAJAL NUNEZ URSULA; MARTEL LAURA; PRIEUR DAMIEN; Eloirdi, Rachel; FARNAN Ian; Vitova, Tonya; Somers, Joseph; LOPEZ HONORATO Eddie

    2012-01-01

    A series of uranium carbide samples, prepared by arc melting with a C/U ratio ranging from 0.96 to 1.04, has been studied by X-Ray Diffraction (XRD), 13C Nuclear Magnetic Resonance (NMR) and by Extended X-ray Absorption Fine Structure (EXAFS). XRD determines phase uniqueness and the increase of the lattice parameter versus the carbon content. In contrast, 13C NMR detects the different carbon environments in the lattice and in this study, clearly identifies the presence of discrete peaks for c...

  17. Photobioreactor design for isotopic non-stationary 13C-metabolic flux analysis (INST 13C-MFA) under photoautotrophic conditions.

    Science.gov (United States)

    Martzolff, Arnaud; Cahoreau, Edern; Cogne, Guillaume; Peyriga, Lindsay; Portais, Jean-Charles; Dechandol, Emmanuel; Le Grand, Fabienne; Massou, Stéphane; Gonçalves, Olivier; Pruvost, Jérémy; Legrand, Jack

    2012-12-01

    Adaptive metabolic behavior of photoautotrophic microorganisms toward genetic and environmental perturbations can be interpreted in a quantitative depiction of carbon flow through a biochemical reaction network using isotopic non-stationary (13) C-metabolic flux analysis (INST (13) C-MFA). To evaluate (13) C-metabolic flux maps for Chlamydomonas reinhardtii, an original experimental framework was designed allowing rapid, reliable collection of high-quality isotopomer data against time. It involved (i) a short-time (13) C labeling injection device based on mixing control in a torus-shaped photobioreactor with plug-flow hydrodynamics allowing a sudden step-change in the (13) C proportion in the substrate feed and (ii) a rapid sampling procedure using an automatic fast filtration method coupled to a manual rapid liquid nitrogen quenching step. (13) C-substrate labeling enrichment was controlled through the total dissolved inorganic carbon concentration in the pulsed solution. First results were obtained from steady-state continuous culture measurements allowing the characterization of the kinetics of label incorporation into light-limited growing cells cultivated in a photobioreactor operating at the maximal biomass productivity for an incident photon flux density of 200 µmol m(-2) s(-1). (13)C label incorporation was measured for 21 intracellular metabolites using IC-MS/MS in 58 samples collected across a labeling experiment duration of 7 min. The fastest labeling rate was observed for 2/3-phosphoglycerate with an apparent isotopic stationary state reached after 300 s. The labeling rate was consistent with the optimized mixing time of about 4.9 s inside the reactor and the shortest reliable sampling period assessed at 5 s.

  18. Robust hyperpolarized (13)C metabolic imaging with selective non-excitation of pyruvate (SNEP).

    Science.gov (United States)

    Chen, Way Cherng; Teo, Xing Qi; Lee, Man Ying; Radda, George K; Lee, Philip

    2015-08-01

    In vivo metabolic imaging using hyperpolarized [1-(13)C]pyruvate provides localized biochemical information and is particularly useful in detecting early disease changes, as well as monitoring disease progression and treatment response. However, a major limitation of hyperpolarized magnetization is its unrecoverable decay, due not only to T1 relaxation but also to radio-frequency (RF) excitation. RF excitation schemes used in metabolic imaging must therefore be able to utilize available hyperpolarized magnetization efficiently and robustly for the optimal detection of substrate and metabolite activities. In this work, a novel RF excitation scheme called selective non-excitation of pyruvate (SNEP) is presented. This excitation scheme involves the use of a spectral selective RF pulse to specifically exclude the excitation of [1-(13)C]pyruvate, while uniformly exciting the key metabolites of interest (namely [1-(13)C]lactate and [1-(13)C]alanine) and [1-(13)C]pyruvate-hydrate. By eliminating the loss of hyperpolarized [1-(13)C]pyruvate magnetization due to RF excitation, the signal from downstream metabolite pools is increased together with enhanced dynamic range. Simulation results, together with phantom measurements and in vivo experiments, demonstrated the improvement in signal-to-noise ratio (SNR) and the extension of the lifetime of the [1-(13)C]lactate and [1-(13)C]alanine pools when compared with conventional non-spectral selective (NS) excitation. SNEP has also been shown to perform comparably well with multi-band (MB) excitation, yet SNEP possesses distinct advantages, including ease of implementation, less stringent demands on gradient performance, increased robustness to frequency drifts and B0 inhomogeneity as well as easier quantification involving the use of [1-(13)C]pyruvate-hydrate as a proxy for the actual [1-(13)C] pyruvate signal. SNEP is therefore a promising alternative for robust hyperpolarized [1-(13)C]pyruvate metabolic imaging with high

  19. The Nature of Carbonate and Organic δ13C Covariance Through Geological Time

    Science.gov (United States)

    Oehlert, A. M.; Swart, P. K.

    2014-12-01

    Significant evolutionary, climatic, and oceanographic events in Earth history are often accompanied by excursions in the carbon isotope composition (δ13C) of marine carbonates and co-occurring sedimentary organic material. The observation of synchronous excursions in the δ13C values of marine carbonates and coeval organic matter is commonly thought to prove that the deposit has not been altered by diagenesis, and that the variations in the δ13C records are the result of a significant change in global carbon cycling. Furthermore, this model suggests that the covariance of carbonate and organic δ13C records is driven only by changes in the δ13C value of the dissolved inorganic carbon in the surface waters of the ocean. However, recent work suggests that there may be at least two alternate models for generating covariance between carbonate and organic δ13C values in the geologic record. One of the models invokes sea-level driven syndepositional mixing between isotopically distinct sources of carbonate and organic material to produce positive covariance between carbonate and organic δ13C values. The second model suggests that post-depositional alteration to the carbonate δ13C values during meteoric diagenesis, in concert with concurrent contributions of terrestrial organic material during subaerial exposure, can also produce co-occurring negative excursions with tightly covariant δ13C records. In contrast to earlier interpretations of covariant δ13C values, these models suggest that both syndepositional and post-depositional factors can significantly influence the relationship between carbonate and organic δ13C values in a variety of depositional environments. The implications for reconstructions of ancient global carbon cycle events will be explored within the context of these three models, and their relative importance throughout geologic time will be discussed.

  20. [Monitoring Atmospheric CO2 and delta(13)C (CO2) Background Levels at Shangdianzi Station in Beijing, China].

    Science.gov (United States)

    Xia, Ling-ju; Zhou, Ling-xi; Liu, Li-xin; Zhang, Gen

    2016-04-15

    The study presented time series of atmospheric CO2 concentrations from flask sampling at SDZ regional station in Beijing during 2007 and 2013, together with delta(13)CO2) values during 2009 and 2013. The "representative data" of CO2 and delta(13)C (CO2) were selected from the complete data for further analysis. Annual CO2 concentrations increased from 385.6 x 10(-6) in 2007 to 398.1 x 10(-6) in 2013, with an average growth rate of 2.0 x 10(-6) a(-1), while the delta(13)C values decreased from -8.38% per hundred in 2009 to -8.52% per hundred in 2013, with a mean growth rate of -0.03% per hundred x a(-1). The absolute increase of CO2 from 2007 to 2008 reached the lowest level during 2007 and 2013, possibly due to relatively less carbon emissions during the 2008 Olympic Games period. The peak-to-peak amplitudes of atmospheric CO2 and delta(13)C seasonal variations were 23. 9 x 10 -6 and 1. 03%o, respectively. The isotopic signatures of CO2 sources/sinks were also discussed in this study. The delta8 value for heating season I (Jan. 01-Mar. 14) was -21.30% per hundred, while -25.39% per hundred for heating season 11 (Nov. 15-Dec.31) , and for vegetative season (Mar. 15-Nov. 14) the delta(bio) value was estimated to be -21.28% per hundred, likely suggesting the significant impact of fossil fuel and corn straw combustions during winter heating season and biological activities during vegetative season.

  1. Positional enrichment by proton analysis (PEPA). A one-dimensional {sup 1}H-NMR approach for {sup 13}C stable isotope tracer studies in metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Vinaixa, Maria; Yanes, Oscar [Department of Electronic Engineering-Universitat Rovira i Virgili, Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus (Spain); Rodriguez, Miguel A.; Capellades, Jordi [Universitat Rovira i Virgili, Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus (Spain); Aivio, Suvi; Stracker, Travis H. [Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (Spain); Gomez, Josep; Canyellas, Nicolau [Department of Electronic Engineering-, Universitat Rovira i Virgili, Tarragona (Spain)

    2017-03-20

    A novel metabolomics approach for NMR-based stable isotope tracer studies called PEPA is presented, and its performance validated using human cancer cells. PEPA detects the position of carbon label in isotopically enriched metabolites and quantifies fractional enrichment by indirect determination of {sup 13}C-satellite peaks using 1D-{sup 1}H-NMR spectra. In comparison with {sup 13}C-NMR, TOCSY and HSQC, PEPA improves sensitivity, accelerates the elucidation of {sup 13}C positions in labeled metabolites and the quantification of the percentage of stable isotope enrichment. Altogether, PEPA provides a novel framework for extending the high-throughput of {sup 1}H-NMR metabolic profiling to stable isotope tracing in metabolomics, facilitating and complementing the information derived from 2D-NMR experiments and expanding the range of isotopically enriched metabolites detected in cellular extracts. (copyright 2017 The Authors. Published by Wiley-VCH Verlag GmbH and Co. KGaA.)

  2. Intracellular PHB conversion in a type II methanotroph studied by 13 C NMR

    NARCIS (Netherlands)

    Vecherskaya, M.; Dijkema, C.; Stams, A.J.M.

    2001-01-01

    Poly-g-hydroxybutyrate (PHB) formation under aerobic conditions via incorporation of [13C-2]acetate as a cosubstrate and its intracellular degradation under anaerobic conditions in a Type II methanotroph was studied by 13C NMR. During PHB synthesis in the presence of labelled acetate, low levels of

  3. Absence of hyperfine effects in 13C-graphene spin-valve devices

    NARCIS (Netherlands)

    Wojtaszek, M.; Vera-Marun, I.J.; Whiteway, E.; Hilke, M.; Wees, B.J. van

    2014-01-01

    The carbon isotope 13C, in contrast to 12C, possesses a nuclear magnetic moment and can induce electron spin dephasing in graphene. This effect is usually neglected due to the low abundance of 13C in natural carbon allotropes (~1%). Chemical vapor deposition (CVD) allows for artificial synthesis of

  4. Biosynthetic studies of the glycopeptide teicoplanin by 1H and 13C NMR

    DEFF Research Database (Denmark)

    Heydorn, Arne; Petersen, Bent O.; Duus, Jens Øllgaard;

    2000-01-01

    The biosynthesis of the glycopeptide antibiotic teicoplanin was studied by growing a teicoplanin producing strain of Actinoplanes teichomyceticus (ATCC 31121) on glucose containing either 34.0% [1-13C]glucose or 9.7% [U- 13C]glucose. The fractional enrichment pattern of teicoplanin produced in th...

  5. Sensitivity-enhanced 13C MR spectroscopy of the human brain at 3 Tesla.

    NARCIS (Netherlands)

    Klomp, D.W.J.; Renema, W.K.J.; Graaf, M. van der; Galan, B.E. de; Kentgens, A.P.M.; Heerschap, A.

    2006-01-01

    A new coil design for sensitivity-enhanced 13C MR spectroscopy (MRS) of the human brain is presented. The design includes a quadrature transmit/receive head coil optimized for 13C MR sensitivity. Loss-less blocking circuits inside the coil conductors allow this coil to be used inside a homogeneous c

  6. Absence of hyperfine effects in 13C-graphene spin-valve devices

    NARCIS (Netherlands)

    Wojtaszek, M.; Vera-Marun, I.J.; Whiteway, E.; Hilke, M.; Wees, B.J. van

    2014-01-01

    The carbon isotope 13C, in contrast to 12C, possesses a nuclear magnetic moment and can induce electron spin dephasing in graphene. This effect is usually neglected due to the low abundance of 13C in natural carbon allotropes (~1%). Chemical vapor deposition (CVD) allows for artificial synthesis of

  7. Natural (13) C distribution in oil palm (Elaeis guineensis Jacq.) and consequences for allocation pattern.

    Science.gov (United States)

    Lamade, Emmanuelle; Tcherkez, Guillaume; Darlan, Nuzul Hijri; Rodrigues, Rosario Lobato; Fresneau, Chantal; Mauve, Caroline; Lamothe-Sibold, Marlène; Sketriené, Diana; Ghashghaie, Jaleh

    2016-01-01

    Oil palm has now become one of the most important crops, palm oil representing nearly 25% of global plant oil consumption. Many studies have thus addressed oil palm ecophysiology and photosynthesis-based models of carbon allocation have been used. However, there is a lack of experimental data on carbon fixation and redistribution within palm trees, and important C-sinks have not been fully characterized yet. Here, we carried out extensive measurement of natural (13) C-abundance (δ(13) C) in oil palm tissues, including fruits at different maturation stages. We find a (13) C-enrichment in heterotrophic organs compared to mature leaves, with roots being the most (13) C-enriched. The δ(13) C in fruits decreased during maturation, reflecting the accumulation in (13) C-depleted lipids. We further used observed δ(13) C values to compute plausible carbon fluxes using a steady-state model of (13) C-distribution including metabolic isotope effects ((12) v/(13) v). The results suggest that fruits represent a major respiratory loss (≈39% of total tree respiration) and that sink organs such as fruits are fed by sucrose from leaves. That is, glucose appears to be a quantitatively important compound in palm tissues, but computations indicate that it is involved in dynamic starch metabolism rather that C-exchange between organs. © 2015 John Wiley & Sons Ltd.

  8. Economical synthesis of 13C-labeled opiates, cocaine derivatives and selected urinary metabolites by derivatization of the natural products.

    Science.gov (United States)

    Karlsen, Morten; Liu, Huiling; Johansen, Jon Eigill; Hoff, Bård Helge

    2015-03-25

    The illegal use of opiates and cocaine is a challenge world-wide, but some derivatives are also valuable pharmaceuticals. Reference samples of the active ingredients and their metabolites are needed both for controlling administration in the clinic and to detect drugs of abuse. Especially, (13)C-labeled compounds are useful for identification and quantification purposes by mass spectroscopic techniques, potentially increasing accuracy by minimizing ion alteration/suppression effects. Thus, the synthesis of [acetyl-(13)C4]heroin, [acetyl-(13)C4-methyl-(13)C]heroin, [acetyl-(13)C2-methyl-(13)C]6-acetylmorphine, [N-methyl-(13)C-O-metyl-(13)C]codeine and phenyl-(13)C6-labeled derivatives of cocaine, benzoylecgonine, norcocaine and cocaethylene was undertaken to provide such reference materials. The synthetic work has focused on identifying (13)C atom-efficient routes towards these derivatives. Therefore, the (13)C-labeled opiates and cocaine derivatives were made from the corresponding natural products.

  9. Respiration of 13C-labeled substrates added to soil in the field and subsequent 16S rRNA gene analysis of 13C-labeled soil DNA.

    Science.gov (United States)

    Padmanabhan, P; Padmanabhan, S; DeRito, C; Gray, A; Gannon, D; Snape, J R; Tsai, C S; Park, W; Jeon, C; Madsen, E L

    2003-03-01

    Our goal was to develop a field soil biodegradation assay using (13)C-labeled compounds and identify the active microorganisms by analyzing 16S rRNA genes in soil-derived (13)C-labeled DNA. Our biodegradation approach sought to minimize microbiological artifacts caused by physical and/or nutritional disturbance of soil associated with sampling and laboratory incubation. The new field-based assay involved the release of (13)C-labeled compounds (glucose, phenol, caffeine, and naphthalene) to soil plots, installation of open-bottom glass chambers that covered the soil, and analysis of samples of headspace gases for (13)CO(2) respiration by gas chromatography/mass spectrometry (GC/MS). We verified that the GC/MS procedure was capable of assessing respiration of the four substrates added (50 ppm) to 5 g of soil in sealed laboratory incubations. Next, we determined background levels of (13)CO(2) emitted from naturally occurring soil organic matter to chambers inserted into our field soil test plots. We found that the conservative tracer, SF(6), that was injected into the headspace rapidly diffused out of the soil chamber and thus would be of little value for computing the efficiency of retaining respired (13)CO(2). Field respiration assays using all four compounds were completed. Background respiration from soil organic matter interfered with the documentation of in situ respiration of the slowly metabolized (caffeine) and sparingly soluble (naphthalene) compounds. Nonetheless, transient peaks of (13)CO(2) released in excess of background were found in glucose- and phenol-treated soil within 8 h. Cesium-chloride separation of (13)C-labeled soil DNA was followed by PCR amplification and sequencing of 16S rRNA genes from microbial populations involved with (13)C-substrate metabolism. A total of 29 full sequences revealed that active populations included relatives of Arthrobacter, Pseudomonas, Acinetobacter, Massilia, Flavobacterium, and Pedobacter spp. for glucose

  10. Integrated 13C-metabolic flux analysis of 14 parallel labeling experiments in Escherichia coli.

    Science.gov (United States)

    Crown, Scott B; Long, Christopher P; Antoniewicz, Maciek R

    2015-03-01

    The use of parallel labeling experiments for (13)C metabolic flux analysis ((13)C-MFA) has emerged in recent years as the new gold standard in fluxomics. The methodology has been termed COMPLETE-MFA, short for complementary parallel labeling experiments technique for metabolic flux analysis. In this contribution, we have tested the limits of COMPLETE-MFA by demonstrating integrated analysis of 14 parallel labeling experiments with Escherichia coli. An effort on such a massive scale has never been attempted before. In addition to several widely used isotopic tracers such as [1,2-(13)C]glucose and mixtures of [1-(13)C]glucose and [U-(13)C]glucose, four novel tracers were applied in this study: [2,3-(13)C]glucose, [4,5,6-(13)C]glucose, [2,3,4,5,6-(13)C]glucose and a mixture of [1-(13)C]glucose and [4,5,6-(13)C]glucose. This allowed us for the first time to compare the performance of a large number of isotopic tracers. Overall, there was no single best tracer for the entire E. coli metabolic network model. Tracers that produced well-resolved fluxes in the upper part of metabolism (glycolysis and pentose phosphate pathways) showed poor performance for fluxes in the lower part of metabolism (TCA cycle and anaplerotic reactions), and vice versa. The best tracer for upper metabolism was 80% [1-(13)C]glucose+20% [U-(13)C]glucose, while [4,5,6-(13)C]glucose and [5-(13)C]glucose both produced optimal flux resolution in the lower part of metabolism. COMPLETE-MFA improved both flux precision and flux observability, i.e. more independent fluxes were resolved with smaller confidence intervals, especially exchange fluxes. Overall, this study demonstrates that COMPLETE-MFA is a powerful approach for improving flux measurements and that this methodology should be considered in future studies that require very high flux resolution.

  11. Effects of maize (Zea mays L.) growth and photosynthesis on δ13C in soil respiration

    Institute of Scientific and Technical Information of China (English)

    YANG Lanfang; CAI Zucong; QI Shihua

    2007-01-01

    As a safe,stable and practical labeling method,the natural abundance of 13C has been widely used in a carbon cycle in the soil-plant system.In order to understand the effects of maize growth and photosynthesis on the value of δ13C in soil respiration,the value of δ13C in soil respiration was determined by mass spectrum after being trapped in a NaOH solution under a closed static chamber and then turned into barium carbonate in a pot experiment.The results showed that maize growth and photosynthesis significantly affected the value of δ13C in the soil respiration.In maize-planted soil,the value of δ13C in soil respiration had a clear seasonal variation.It changed with maize growth in the range of-14.57‰ to -12.3‰ and decreased during the period of trumpeting>ripening>flowering stages.The difference of δ13C in soil respiration during various maize growth stages added up to about 2.3‰.However,in bare soil,δ13C in soil respiration ranged from -19.34‰ to -19.13‰ and did not change significantly over time.The δ13C in soil respiration in the maize-planted soil was the lowest at flowering stage.This was mainly due to the decline of the input in assimilates into soil and the decrease in root activity.However,the δ13C increased at ripening stage,due to the decomposition and ingestion of senescent and died roots by soil microorganisms.In the planted soil,δ13C in soil respiration was significantly higher during daytime than at nighttime at flowering and ripening stages.The difference of δ13C in soil respiration between day and night periods added up to about 1.4‰ and 2.1‰ at flowering and ripening stages,respectively.Shading maize plants at the trumpeting stage decreased the value of δ13C in soil respiration significantly.The difference of δ13C in soil respiration between the treatment of non-shading and shading plants added up to 2.85‰.It was concluded that δ13C in soil respiration was remarkably controlled by the maize growth and

  12. Reconstruction of δ 13C of chemocline CO 2 (aq) in past oceans and lakes using the δ 13C of fossil isorenieratene

    Science.gov (United States)

    van Breugel, Yvonne; Schouten, Stefan; Paetzel, Matthias; Ossebaar, Jort; Sinninghe Damsté, Jaap S.

    2005-06-01

    High abundances of the diaromatic carotenoid isorenieratene derived from photosynthetic green sulfur bacteria (Chlorobiaceae) were found just below the chemocline in an anoxic fjord in Norway, throughout the annual cycle. The stable carbon isotope composition of this carotenoid co-varied with the δ 13C of CO 2 (aq) and is independent of the CO 2 and isorenieratene concentration. This constant isotopic fractionation ɛp of isorenieratene versus CO 2, 4 ± 1‰, was subsequently used in the reconstruction of δ 13C of CO 2 at the chemocline in ancient oceans and lakes. These reconstructions indicate that δ 13C of CO 2 at the chemocline is often influenced by isotopically light CO 2, formed by remineralization of organic matter. This process can, depending on the depth and stability of the chemocline, also effect the isotopic composition of the phytoplankton and, thus, isotopic records of sedimentary inorganic and organic carbon.

  13. Enhancing the [13C]bicarbonate signal in cardiac hyperpolarized [1‐13C]pyruvate MRS studies by infusion of glucose, insulin and potassium

    DEFF Research Database (Denmark)

    Lauritzen, Mette Hauge; Laustsen, Christoffer; Butt, Sadia Asghar

    2013-01-01

    the myocardial glucose oxidation in the citric acid cycle, reflected as an increase in the [13C]bicarbonate signal in cardiac hyperpolarized [1‐13C]pyruvate MRS measurements in fasted rats. Two groups of rats were infused with two different doses of GIK and investigated by MRS after injection of hyperpolarized...... rats. The increased [13C]bicarbonate signal indicates an increased flux of pyruvate through the pyruvate dehydrogenase enzyme complex and an increase in myocardial glucose oxidation through the citric acid cycle. Copyright © 2013 John Wiley & Sons, Ltd....... fasting, the myocardial glucose oxidation is low and the fatty acid oxidation (β‐oxidation) is high, which complicates the interpretation of pyruvate metabolism with the technique. The aim of this study was to investigate whether the infusion of glucose, insulin and potassium (GIK) could increase...

  14. Multi-band frequency encoding method for metabolic imaging with hyperpolarized [1- 13C]pyruvate

    Science.gov (United States)

    von Morze, Cornelius; Reed, Galen; Shin, Peter; Larson, Peder E. Z.; Hu, Simon; Bok, Robert; Vigneron, Daniel B.

    2011-08-01

    A new method was developed for simultaneous spatial localization and spectral separation of multiple compounds based on a single echo, by designing the acquisition to place individual compounds in separate frequency encoding bands. This method was specially designed for rapid and robust metabolic imaging of hyperpolarized 13C substrates and their metabolic products, and was investigated in phantom studies and studies in normal mice and transgenic models of prostate cancer to provide rapid metabolic imaging of hyperpolarized [1- 13C]pyruvate and its metabolic products [1- 13C]lactate and [1- 13C]alanine at spatial resolutions up to 3 mm in-plane. Elevated pyruvate and lactate signals in the vicinity of prostatic tissues were observed in transgenic tumor mice. The multi-band frequency encoding technique enabled rapid metabolic imaging of hyperpolarized 13C compounds with important advantages over prior approaches, including less complicated acquisition and reconstruction methods.

  15. A 13C-NMR study of exopolysaccharide synthesis in Rhizobium meliloti Su47 strain

    Science.gov (United States)

    Tavernier, P.; Portais, J.-C.; Besson, I.; Courtois, J.; Courtois, B.; Barbotin, J.-N.

    1998-02-01

    Metabolic pathways implied in the synthesis of succinoglycan produced by the Su47 strain of R. meliloti were evaluated by 13C-NMR spectroscopy after incubation with [1{-}13C] or [2{-}13C] glucose. The biosynthesis of this polymer by R. meliloti from glucose occurred by a direct polymerisation of the introduced glucose and by the pentose phosphate pathway. Les voies métaboliques impliquées dans la synthèse du succinoglycane produit par la souche Su47 de R. meliloti ont été évaluées par la spectroscopie de RMN du carbone 13 après incubation des cellules avec du [1{-}13C] ou [2{-}13C] glucose. La biosynthèse de ce polymère à partir du glucose se produit par polymérisation directe du glucose et par la voie des pentoses phosphate.

  16. 13C magnetic resonance spectroscopy measurements with hyperpolarized [1‐13C] pyruvate can be used to detect the expression of transgenic pyruvate decarboxylase activity in vivo

    Science.gov (United States)

    Dzien, Piotr; Tee, Sui‐Seng; Kettunen, Mikko I.; Lyons, Scott K.; Larkin, Timothy J.; Timm, Kerstin N.; Hu, De‐En; Wright, Alan; Rodrigues, Tiago B.; Serrao, Eva M.; Marco‐Rius, Irene; Mannion, Elizabeth; D'Santos, Paula; Kennedy, Brett W. C.

    2015-01-01

    Purpose Dissolution dynamic nuclear polarization can increase the sensitivity of the 13C magnetic resonance spectroscopy experiment by at least four orders of magnitude and offers a novel approach to the development of MRI gene reporters based on enzymes that metabolize 13C‐labeled tracers. We describe here a gene reporter based on the enzyme pyruvate decarboxylase (EC 4.1.1.1), which catalyzes the decarboxylation of pyruvate to produce acetaldehyde and carbon dioxide. Methods Pyruvate decarboxylase from Zymomonas mobilis (zmPDC) and a mutant that lacked enzyme activity were expressed using an inducible promoter in human embryonic kidney (HEK293T) cells. Enzyme activity was measured in the cells and in xenografts derived from the cells using 13C MRS measurements of the conversion of hyperpolarized [1‐13C] pyruvate to H13 CO3–. Results Induction of zmPDC expression in the cells and in the xenografts derived from them resulted in an approximately two‐fold increase in the H13 CO3–/[1‐13C] pyruvate signal ratio following intravenous injection of hyperpolarized [1‐13C] pyruvate. Conclusion We have demonstrated the feasibility of using zmPDC as an in vivo reporter gene for use with hyperpolarized 13C MRS. Magn Reson Med 76:391–401, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:26388418

  17. Application of {sup 13}C isotopic analysis to the characterization of petroleum fractions; Application de l`analyse isotopique {sup 13}C a la caracterisation de coupes petrolieres

    Energy Technology Data Exchange (ETDEWEB)

    Fixari, B.; Le Perchec, P.; Bigois, M.; Casabianca, H.; Jame, P. [CNRS, 69 - Vernaison (France)

    1994-12-31

    As a {sup 12}C-{sup 12}C bond is thermally more fragile than a {sup 12}C-{sup 13}C bond, it is observed that, after thermolysis, aromatics are enriched with {sup 13}C while light aliphatics are depleted. Using an isotopic mass spectrometry technique combined with a thermal analysis (FRACTEL analyzer) or a gas chromatography method, detailed isotopic compositions of heavy oils produced in different geological deposits and their thermal conversion products, are derived. 3 figs., 2 tabs., 5 refs.

  18. Sensitive {sup 13}C-{sup 13}C correlation spectra of amyloid fibrils at very high spinning frequencies and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Weingarth, Markus [Utrecht University (Netherlands); Masuda, Yuichi; Takegoshi, K. [Kyoto University, Department of Chemistry, Graduate School of Science (Japan); Bodenhausen, Geoffrey; Tekely, Piotr, E-mail: piotr.tekely@ens.fr [Ecole Normale Superieure, Departement de Chimie (France)

    2011-06-15

    Sensitive 2D solid-state {sup 13}C-{sup 13}C correlation spectra of amyloid {beta} fibrils have been recorded at very fast spinning frequencies and very high magnetic fields. It is demonstrated that PARIS-xy recoupling using moderate rf amplitudes can provide structural information by promoting efficient magnetization transfer even under such challenging experimental conditions. Furthermore, it has been shown both experimentally and by numerical simulations that the method is not very sensitive to dipolar truncation effects and can reveal direct transfer across distances of about 3.5-4A.

  19. Does the time of the sampling matter in 13C pulse labeling and chasing experiments? A case study on beech seedlings

    Science.gov (United States)

    Gavrichkova, Olga; Thoms, Ronny; Muhr, Jan; Karlowsky, Stefan; Keitel, Claudia; Kayler, Zachary; Calfapietra, Carlo; Gessler, Arthur; Brugnoli, Enrico; Gleixner, Gerd

    2016-04-01

    13C pulse labeling and chasing is a valuable and very popular tool for determination of the fate and turnover rates of C in plant-soil systems. Continuous isoflux measurements became an accessible reality allowing to cover completely the diurnal variation in label assimilation and respiration fluxes. Label turnover in multiple pools, especially of those located belowground, is more often assessed instead by isolated day-time samplings. By increasing the sampling frequency of belowground compartments we aimed to catch the short-term diurnal variations in label allocation and to link these processes with label dynamics in the aboveground biomass. For these purposes we labeled 3-m height soil-grown European beech seedlings with 13C enriched CO2 and traced the flow of 13C within belowground plant-soil continuum. Continuous soil isoflux measurements were accompanied by a 3-h-frequency sampling of root and soil material during the first 48 h, followed by a daily sampling in the successive 5 days. The amount of label found in microbial biomass depended partially on the amount of roots in the sample. Microbial biomass C (MBC) and microbial respiration showed very strong correlation, suggesting the possibility to use one as a proxy of the other. MBC enrichment showed a clear diurnal pattern with night-time and early morning peaks. These peaks were similar in shape and shifted by one sampling when compared to root sugars enrichment. Soil respiration showed instead a single bell-shape peak in 13C, likely due to a sequence of peaks of root and microbial origin. 13C flow into soil microbial functional groups was assessed less frequently through phospholipid fatty acid analyses (PLFA). The microorganisms were separated into two distinct groups by the time of the appearance of the label in the single PLFAs. The first group was characterized by a fast appearance of the label and higher enrichment and was composed of Gram negative bacteria and saprotrophic fungi likely living in

  20. Diurnal variation of the delta 13C of pine needle respired CO2 evolved in darkness.

    Science.gov (United States)

    Prater, James L; Mortazavi, Behzad; Chanton, Jeffrey P

    2006-02-01

    The delta 13C of pine needle CO2 evolved in darkness (delta 13Cr) for slash pine trees (Pinus elliottii) was determined by placing recently collected pine needles in darkness and collecting respired CO2 over a short time period (13Cr measurements were made over several 24 h periods to test the hypothesis that significant variation in delta 13Cr would be observed during a diurnal cycle. The delta 13Cr measurements from the 24 h time series trials showed a consistent midday 13C-enrichment (5-10 per thousand) relative to bulk biomass. The delta 13Cr values became more 13C-depleted at night and following shading, and approached bulk-biomass delta 13C values by dawn. The effect of night-time respired 13C-enriched CO2 on the delta 13C value of the remaining assimilate is shown to be minimal (13C depleted by 0.22 per thousand) under field conditions for P. elliottii needles.

  1. Mapping Observations of DNC and HN^13C in Dark Cloud Cores

    CERN Document Server

    Hirota, T; Yamamoto, S

    2003-01-01

    We present results of mapping observations of the DNC, HN^13C, and H^13CO^+ lines (J=1-0) toward 4 nearby dark cloud cores, TMC-1, L1512, L1544, and L63, along with observations of the DNC and HN^13C lines (J=2-1) toward selected positions. By use of statistical equilibrium calculations based on the LVG model, the H_2 densities are derived to be (1.4-5.5)*10^5 cm^-3, and the [DNC]/[HN^13C] ratios are derived to be 1.25-5.44 with a typical uncertainty by a factor of 2. The observed [DNC]/[HNC] ratios range from 0.02 to 0.09, assuming the [^12C]/[^13C] ratio of 60. Distributions of DNC and HN^13C are generally similar to each other, whereas the distribution of H^13CO^+ is more extended than those of DNC and HN^13C, indicating that they reside in an inner part of the cores than HCO^+. The [DNC]/[HN^13C] ratio is rather constant within each core, although a small systematic gradients are observed in TMC-1 and L63. Particularly, no such systematic gradient is found in L1512 and L1544, where a significant effect of...

  2. Determination of {sup 13}C/{sup 12}C ratios with (d, p) nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.Q., E-mail: yqwang@lanl.go [Materials Science and Technology Division, Los Alamos National Laboratory, NM 87544 (United States); Zhang, J. [Materials Science and Technology Division, Los Alamos National Laboratory, NM 87544 (United States); School of Nuclear Science and Technology, Lanzhou University, Gansu 730000 (China); Tesmer, J.R. [Materials Science and Technology Division, Los Alamos National Laboratory, NM 87544 (United States); Li, Y.H. [Materials Science and Technology Division, Los Alamos National Laboratory, NM 87544 (United States); School of Nuclear Science and Technology, Lanzhou University, Gansu 730000 (China); Greco, R. [Materials Science and Technology Division, Los Alamos National Laboratory, NM 87544 (United States); Grim, G.P.; Obst, A.W. [Physics Division, Los Alamos National Laboratory, NM 87544 (United States); Rundberg, R.S.; Wilhelmy, J.B. [Chemistry Division, Los Alamos National Laboratory, NM 87544 (United States)

    2010-06-15

    Stable isotope ratios such as {sup 13}C/{sup 12}C play an important role in many applications including environment and energy research. Since many surface analysis techniques are plagued with unavoidable hydrocarbon contamination issues during analysis, it is highly desirable that {sup 13}C and {sup 12}C isotopes be measured simultaneously especially in specimens with a minute amount of {sup 13}C, in order to reliably determine {sup 13}C/{sup 12}C ratios. In this paper, we report that deuterium induced proton particle reactions, {sup 13}C(d, p){sup 14}C and {sup 12}C(d, p){sup 13}C, provide a convenient and reliable approach for {sup 13}C/{sup 12}C ratio determination. Optimizations on experimental considerations and potential interferences from other common light isotopes are discussed as well as results from the application of this technique to diagnose the performance of a target debris collection in an inertial confinement fusion (ICF) experiment.

  3. Kinetic study of littorine rearrangement in Datura innoxia hairy roots by (13)C NMR spectroscopy.

    Science.gov (United States)

    Lanoue, Arnaud; Boitel-Conti, Michèle; Portais, Jean-Charles; Laberche, Jean-Claude; Barbotin, Jean-Noël; Christen, Philippe; Sangwan-Norreel, Brigitte

    2002-08-01

    The kinetics of tropane alkaloid biosynthesis, particularly the isomerization of littorine into hyoscyamine, were studied by analyzing the kinetics of carbon-13 ((13)C) in metabolites of Datura innoxia hairy root cultures fed with labeled tropoyl moiety precursors. Both littorine and hyoscyamine were the major alkaloids accumulated, while scopolamine was never detected. Feeding root cultures with (RS)-phenyl[1,3-(13)C(2)]lactic acid led to (13)C spin-spin coupling detected on C-1' and C-2' of the hyoscyamine skeleton, which validated the intramolecular rearrangement of littorine into hyoscyamine. Label from phenyl[1-(13)C]alanine or (RS)-phenyl[1,3-(13)C(2)]lactic acid was incorporated at higher levels in littorine than in hyoscyamine. Initially, the apparent hyoscyamine biosynthesized rate (v(app)()hyo = 0.9 micromol (13)C.flask(-1).d(-1)) was lower than littorine formation (v(app)()litto = 1.8 micromol (13)C.flask(-1).d(-1)), suggesting that the isomerization reaction could be rate limiting. The results obtained for the kinetics of littorine biosynthesis were in agreement with the role of this compound as a direct precursor of hyoscyamine biosynthesis.

  4. Determination of the Orientation and Dynamics of Ergosterol in Model Membranes Using Uniform 13C Labeling and Dynamically Averaged 13C Chemical Shift Anisotropies as Experimental Restraints

    Science.gov (United States)

    Soubias, O.; Jolibois, F.; Massou, S.; Milon, A.; Réat, V.

    2005-01-01

    A new strategy was established to determine the average orientation and dynamics of ergosterol in dimyristoylphosphatidylcholine model membranes. It is based on the analysis of chemical shift anisotropies (CSAs) averaged by the molecular dynamics. Static 13C CSA tensors were computed by quantum chemistry, using the gauge-including atomic-orbital approach within Hartree-Fock theory. Uniformly 13C-labeled ergosterol was purified from Pichia pastoris cells grown on labeled methanol. After reconstitution into dimyristoylphosphatidylcholine lipids, the complete 1H and 13C assignment of ergosterol's resonances was performed using a combination of magic-angle spinning two-dimensional experiments. Dynamically averaged CSAs were determined by standard side-band intensity analysis for isolated 13C resonances (C3 and ethylenic carbons) and by off-magic-angle spinning experiments for other carbons. A set of 18 constraints was thus obtained, from which the sterol's molecular order parameter and average orientation could be precisely defined. The validity of using computed CSAs in this strategy was verified on cholesterol model systems. This new method allowed us to quantify ergosterol's dynamics at three molar ratios: 16 mol % (Ld phase), 30 mol % (Lo phase), and 23 mol % (mixed phases). Contrary to cholesterol, ergosterol's molecular diffusion axis makes an important angle (14°) with the inertial axis of the rigid four-ring system. PMID:15923221

  5. Synthesis of D-[U-{sup 13}C]Glucal, D-[U-{sup 13}C] Galactal, and L-[U-{sup 13}C]Fucose for NMR structure studies of oligosaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Wu, R.; Unkefer, C.J.; Silks, L.A. III [Los Alamos National Lab., NM (United States)

    1996-12-31

    The role of carbohydrates is well recognized in a variety of important biological phenomena such as cell surface recognition. Recent advances in carbohydrate chemistry, including the development of solid phase synthesis methods, have helped to provide significant quantities of material by offering general protocols for synthesis of well-defined, pure material. However, the study of the solution structure of oligosaccharides by nuclear magnetic resonance techniques have been hampered by the lack of enriched {sup 13}C material. In an effort to help alleviate this situation, we have been interested in the construction of the title compounds from a single economical carbon source, D-[U-{sup 13}C]glucose. Details of the syntheses will be provided.

  6. Training Scientific Thinking Skills: Evidence from an MCAT[superscript 2015]-Aligned Classroom Module

    Science.gov (United States)

    Stevens, Courtney; Witkow, Melissa R.

    2014-01-01

    The present study reports on the development and evaluation of a classroom module to train scientific thinking skills. The module was implemented in two of four parallel sections of introductory psychology. To assess learning, a passage-based question set from the medical college admissions test (MCAT[superscript 2015]) preview guide was included…

  7. An Analysis of Different Representations for Vectors and Planes in R[superscript 3]: Learning Challenges

    Science.gov (United States)

    Sandoval, Ivonne; Possani, Edgar

    2016-01-01

    The purpose of this paper is to present an analysis of the difficulties faced by students when working with different representations of vectors, planes and their intersections in R[superscript 3]. Duval's theoretical framework on semiotic representations is used to design a set of evaluating activities, and later to analyze student work. The…

  8. Aligning Cost Assessment with Community-Based Participatory Research: The Kin Keeper (superscript SM) Intervention

    Science.gov (United States)

    Meghea, Cristian Ioan; Williams, Karen Patricia

    2015-01-01

    The few existing economic evaluations of community-based health promotion interventions were reported retrospectively at the end of the trial. We report an evaluation of the costs of the Kin Keeper(superscript SM) Cancer Prevention Intervention, a female family-focused educational intervention for underserved women applied to increase breast and…

  9. Relativistic Momentum and Kinetic Energy, and E = mc[superscript 2

    Science.gov (United States)

    Hu, Ben Yu-Kuang

    2009-01-01

    Based on relativistic velocity addition and the conservation of momentum and energy, I present simple derivations of the expressions for the relativistic momentum and kinetic energy of a particle, and for the formula E = mc[superscript 2]. (Contains 5 footnotes and 2 figures.)

  10. LE[superscript 3]AD Academy Builds Professionalism in Vocational Students

    Science.gov (United States)

    Hall, Candace

    2012-01-01

    Principal David Wheeler of Southeastern Regional Vocational-Technical High School founded LE[superscript 3]AD Academy--an innovative program that gives students the opportunity to build and run their own town in teams and with guidance from teachers. The program started in the spring of 2011, and it is innovative in many ways. The students' main…

  11. Quantitative 13C traces of glucose fate in hepatitis B virus infected hepatocytes.

    Science.gov (United States)

    Wan, Qianfen; Wang, Yulan; Tang, Huiru

    2017-02-21

    Quantitative characterization of 13C-labeled metabolites is an important part of the stable isotope tracing method widely used in metabolic flux analysis. Due to long relaxation time and low sensitivity of 13C nuclei, direct measurement of 13C labeled metabolites using one dimensional 13C NMR often fails to meet the demand of metabolomics studies especially with large number of samples and metabolites having low abundance. Although HSQC-based 2D NMR methods have improved sensitivity with inversion detection, they are time-consuming thus unsuitable for high-throughput absolute quantification of 13C-labeled metabolites. In this study, we developed a method for absolute quantification of 13C labeled metabolites using naturally abundant TSP as a reference with the first increment of HMQC pulse sequence, taking polarization transfer efficiencies into consideration. We validated this method using a mixture of 13C-labeled alanine, methionine, glucose and formic acid together with a mixture of alanine, lactate, glycine, uridine, cytosine, and hypoxanthine having natural 13C abundance with known concentrations. We subsequently applied this method to analyze the flux of glucose in HepG2 cells infected with hepatitis B virus (HBV). The results showed that HBV infection increased the cellular uptake of glucose, stimulated glycolysis and enhanced the pentose phosphate and hexosamine pathways for biosynthesis of RNA and DNA and nucleotide sugars to facilitate HBV replication. This method saves experimental time and provides a possibility for absolute quantitative tracking of the 13C labeled metabolites for high throughput studies.

  12. 13C Incorporation into Signature Fatty Acids as an Assay for Carbon Allocation in Arbuscular Mycorrhiza

    Science.gov (United States)

    Olsson, Pål Axel; van Aarle, Ingrid M.; Gavito, Mayra E.; Bengtson, Per; Bengtsson, Göran

    2005-01-01

    The ubiquitous arbuscular mycorrhizal fungi consume significant amounts of plant assimilated C, but this C flow has been difficult to quantify. The neutral lipid fatty acid 16:1ω5 is a quantitative signature for most arbuscular mycorrhizal fungi in roots and soil. We measured carbon transfer from four plant species to the arbuscular mycorrhizal fungus Glomus intraradices by estimating 13C enrichment of 16:1ω5 and compared it with 13C enrichment of total root and mycelial C. Carbon allocation to mycelia was detected within 1 day in monoxenic arbuscular mycorrhizal root cultures labeled with [13C]glucose. The 13C enrichment of neutral lipid fatty acid 16:1ω5 extracted from roots increased from 0.14% 1 day after labeling to 2.2% 7 days after labeling. The colonized roots usually were more enriched for 13C in the arbuscular mycorrhizal fungal neutral lipid fatty acid 16:1ω5 than for the root specific neutral lipid fatty acid 18:2ω6,9. We labeled plant assimilates by using 13CO2 in whole-plant experiments. The extraradical mycelium often was more enriched for 13C than was the intraradical mycelium, suggesting rapid translocation of carbon to and more active growth by the extraradical mycelium. Since there was a good correlation between 13C enrichment in neutral lipid fatty acid 16:1ω5 and total 13C in extraradical mycelia in different systems (r2 = 0.94), we propose that the total amount of labeled C in intraradical and extraradical mycelium can be calculated from the 13C enrichment of 16:1ω5. The method described enables evaluation of C flow from plants to arbuscular mycorrhizal fungi to be made without extraction, purification and identification of fungal mycelia. PMID:15870350

  13. Clinical NOE 13C MRS for neuropsychiatric disorders of the frontal lobe

    Science.gov (United States)

    Sailasuta, Napapon; Robertson, Larry W.; Harris, Kent C.; Gropman, Andrea L.; Allen, Peter S.; Ross, Brian D.

    2008-12-01

    In this communication, a scheme is described whereby in vivo 13C MRS can safely be performed in the frontal lobe, a human brain region hitherto precluded on grounds of SAR, but important in being the seat of impaired cognitive function in many neuropsychiatric and developmental disorders. By combining two well known features of 13C NMR—the use of low power NOE and the focus on 13C carbon atoms which are only minimally coupled to protons, we are able to overcome the obstacle of SAR and develop means of monitoring the 13C fluxes of critically important metabolic pathways in frontal brain structures of normal volunteers and patients. Using a combination of low-power WALTZ decoupling, variants of random noise for nuclear overhauser effect enhancement it was possible to reduce power deposition to 20% of the advised maximum specific absorption rate (SAR). In model solutions 13C signal enhancement achieved with this scheme were comparable to that obtained with WALTZ-4. In human brain, the low power procedure effectively determined glutamine, glutamate and bicarbonate in the posterior parietal brain after [1- 13C] glucose infusion. The same 13C enriched metabolites were defined in frontal brain of human volunteers after administration of [1- 13C] acetate, a recognized probe of glial metabolism. Time courses of incorporation of 13C into cerebral glutamate, glutamine and bicarbonate were constructed. The results suggest efficacy for measurement of in vivo cerebral metabolic rates of the glutamate-glutamine and tricarboxylic acid cycles in 20 min MR scans in previously inaccessible brain regions in humans at 1.5T. We predict these will be clinically useful biomarkers in many human neuropsychiatric and genetic conditions.

  14. Measuring Long-Lived ^{13}C-Singlet State Lifetimes at Natural Abundance

    CERN Document Server

    Claytor, Kevin E; Feng, Yesu; Warren, Warren

    2013-01-01

    Long-lived singlet states hold the potential to drastically extend the lifetime of hyperpolarization in molecular tracers for in-vivo magnetic resonance imaging (MRI). Such long lived hyperpolarization can be used for elucidation of fundamental metabolic pathways, early diagnosis, and optimization of clinical tests for new medication. All previous measurements of 13C singlet state lifetimes rely on costly and time consuming syntheses of 13C labeled compounds. Here we show that it is possible to determine 13C singlet state lifetimes by detecting the naturally abundant doubly-labeled species. This approach allows for rapid and low cost screening of potential molecular biomarkers bearing long-lived singlet states.

  15. Isotopomer studies of gluconeogenesis and the Krebs cycle with 13C-labeled lactate.

    Science.gov (United States)

    Katz, J; Wals, P; Lee, W N

    1993-12-05

    Fasted rats were intragastrically infused with either [2,3-13C]lactate or [1,2,3-13C]lactate. The infusate also contained 14C-labeled lactate and [3-3H]glucose. Glucose, alanine, glutamate, and glutamine were isolated from liver and blood. There was near complete equilibration of lactate and alanine, and the relative specific activities and relative enrichments were the same in blood and liver. Glucose was cleaved enzymatically to lactate. The compounds were examined by gas chromatography-mass spectroscopy. From the mass isotopomer spectra of the lactate, glutamate, and glutamine and their cleavage fragments the positional isotopomer composition of these compounds was obtained. The enrichment and isotopomer pattern in the lactate from cleaved glucose represents that in phosphoenolpyruvate (PEP). When [1,2,3-13C]lactate was infused the mass isotopomer spectrum of glutamates consisted only of compounds containing either one, two, or three 13C carbons per molecule (m1, m2, and m3). There was little 13C in C-4 and C-5 of glutamate. The rate of pyruvate decarboxylation is low, and 3-4% of the acetyl-CoA flux in the Krebs cycle is contributed by lactate carbon. The major isotopomers in lactate, alanine, and PEP were m3 and m2 with 13C in C-2 and C-3. The predominant isotopomer in PEP from [2,3-13C]lactate was m2 with 13C in C-2 and C-3. There was much more of m1 isotopomer with 13C in C-3 and C-2 than the m1 isotopomer with 13C in C-1. There was very little m3, the isotopomer with 13C in all three carbons. Most of the 13C in C-3 and C-4 of glucose and C-1 of glutamate was introduced via 13CO2 fixation. From the isotopomer distribution and the rate of glucose turnover we deduced, applying the analysis described in the "Appendix," the absolute rates of gluconeogenic pathways, recycling of PEP and the Cori cycle, and flux in the Krebs cycle. The flux from oxaloacetate (OAA)-->PEP was seven times that of OAA-->citrate, and about half of PEP was recycled to pyruvate via

  16. Complete {sup 1}H and {sup 13}C NMR assignments of isojuripidine from Solanum asterophorum Mart

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Tania M.S.; Costa, Rodrigo A.; Oliveira, Eduardo J.; Barbosa-Filho, Jose M.; Agra, Maria F.; Camara, Celso A. [Universidade Federal da Paraiba, Joao Pessoa, PB (Brazil). Lab. de Tecnologia Farmaceutica]. E-mail: sarmento@ltf.ufpb.br

    2005-11-15

    Isojuripidine was isolated from the aerial parts of Solanum astherophorum Mart. Its structure was determined using a combination of homo- (1D {sup 1}H NMR, {sup 13}C NMR-HBBD and {sup 13}C NMRDEPT) and heteronuclear 2D NMR techniques ({sup 1}H-{sup 1}H-COSY, {sup 1}H-{sup 1}H-NOESY, HSQC, HMBC), and HREIMS. The unambiguous assignments of {sup 1}H and {sup 13}C NMR data of derivatives 3-N,6-Odiacetyl- isojuripidine and 3-N-cinnamoyl-isojuripidine are described. (author)

  17. Mapping Observations of DNC and HN^13C in Dark Cloud Cores

    OpenAIRE

    Hirota, T; M. Ikeda(Kyoto University); Yamamoto, S.

    2003-01-01

    We present results of mapping observations of the DNC, HN^13C, and H^13CO^+ lines (J=1-0) toward 4 nearby dark cloud cores, TMC-1, L1512, L1544, and L63, along with observations of the DNC and HN^13C lines (J=2-1) toward selected positions. By use of statistical equilibrium calculations based on the LVG model, the H_2 densities are derived to be (1.4-5.5)*10^5 cm^-3, and the [DNC]/[HN^13C] ratios are derived to be 1.25-5.44 with a typical uncertainty by a factor of 2. The observed [DNC]/[HNC]...

  18. Synthesis of {sup 14}C-labeled levamisole and {sup 13}C-labeled tetramisole

    Energy Technology Data Exchange (ETDEWEB)

    Feil, V.J. [US Department of Agriculture, Agricultural Research Service, Biosciences Research Lab., Fargo, ND (United States)

    1996-12-01

    The syntheses of {sup 14}C-ring labeled levamisole ([-]-2,3,5,6-tetrahydro-6-phenyl [{sup 14}C]-UL imidazo[2,1-b]thiazole) from acetophenone-ring-UL-{sup 14}C in 5 steps plus resolution with a 7.5% overall yield, and {sup 13}C{sub 6}-ring labeled tetramisole ([{+-}]-2,3,5,6-tetrahydro-6-phenyl [{sup 13}C{sub 6}]imidazo[2,1-b]thiazole) from benzene-{sup 13}C{sub 6} in 6 steps with a 9.0% overall yield are described. (author).

  19. Assessing Oxidative Stress in Tumors by Measuring the Rate of Hyperpolarized [1-13C]Dehydroascorbic Acid Reduction Using 13C Magnetic Resonance Spectroscopy*

    Science.gov (United States)

    Timm, Kerstin N.; Hu, De-En; Williams, Michael; Wright, Alan J.; Kettunen, Mikko I.; Kennedy, Brett W. C.; Larkin, Timothy J.; Dzien, Piotr; Marco-Rius, Irene; Bohndiek, Sarah E.; Brindle, Kevin M.

    2017-01-01

    Rapid cancer cell proliferation promotes the production of reducing equivalents, which counteract the effects of relatively high levels of reactive oxygen species. Reactive oxygen species levels increase in response to chemotherapy and cell death, whereas an increase in antioxidant capacity can confer resistance to chemotherapy and is associated with an aggressive tumor phenotype. The pentose phosphate pathway is a major site of NADPH production in the cell, which is used to maintain the main intracellular antioxidant, glutathione, in its reduced state. Previous studies have shown that the rate of hyperpolarized [1-13C]dehydroascorbic acid (DHA) reduction, which can be measured in vivo using non-invasive 13C magnetic resonance spectroscopic imaging, is increased in tumors and that this is correlated with the levels of reduced glutathione. We show here that the rate of hyperpolarized [1-13C]DHA reduction is increased in tumors that have been oxidatively prestressed by depleting the glutathione pool by buthionine sulfoximine treatment. This increase was associated with a corresponding increase in pentose phosphate pathway flux, assessed using 13C-labeled glucose, and an increase in glutaredoxin activity, which catalyzes the glutathione-dependent reduction of DHA. These results show that the rate of DHA reduction depends not only on the level of reduced glutathione, but also on the rate of NADPH production, contradicting the conclusions of some previous studies. Hyperpolarized [1-13C]DHA can be used, therefore, to assess the capacity of tumor cells to resist oxidative stress in vivo. However, DHA administration resulted in transient respiratory arrest and cardiac depression, which may prevent translation to the clinic. PMID:27994059

  20. Metabolism and transport studies of exogenous compounds thanks to {sup 13}C uniform isotopic enrichment; Etude du metabolisme et du transport de composes exogenes grace a l'enrichissement isotopique uniforme au {sup 13}C

    Energy Technology Data Exchange (ETDEWEB)

    Bravin, F.

    2008-12-15

    The study of many exogenous compounds does not raise difficulties when they are isolated, purified and in quantities sufficient for the usual detection methods used in biology (Chromatography, NMR, Mass Spectrometry, etc). When they are found in a biological fluid (blood, urines,..), they are often in infinitesimal amount such as the effect of their biological matrices or the background noise that make their detection and their quantification very delicate. The use of internal standards uniformly enriched with carbon 13 and/or nitrogen 15 makes it possible to obtain a signal more easily recognizable and identifiable thanks to the presence of the isotopes (peaks shifted in a mass spectrum for example). This is why, complementary to the analytical and biochemical studies of zearalenone (ZEN) metabolism, we were interested in building mass spectra of molecules enriched (rates between 0 and 1) by various isotopes ({sup 13}C, {sup 15}N, {sup 18}O and {sup 2}H). In parallel we studied the influence of the {sup 13}C enrichment on the reactivity of a given molecule, from a theoretical and an experimental point of view. (author)

  1. Insights into the metabolic response to traumatic brain injury as revealed by 13C NMR spectroscopy.

    Directory of Open Access Journals (Sweden)

    Brenda eBartnik-Olson

    2013-10-01

    Full Text Available The present review highlights critical issues related to cerebral metabolism following traumatic brain injury (TBI and the use of 13C labeled substrates and nuclear magnetic resonance (NMR spectroscopy to study these changes. First we address some pathophysiologic factors contributing to metabolic dysfunction following TBI. We then examine how 13C NMR spectroscopy strategies have been used to investigate energy metabolism, neurotransmission, the intracellular redox state, and neuroglial compartmentation following injury. 13C NMR spectroscopy studies of brain extracts from animal models of TBI have revealed enhanced glycolytic production of lactate, evidence of pentose phosphate pathway (PPP activation, and alterations in neuronal and astrocyte oxidative metabolism that are dependent on injury severity. Differential incorporation of label into glutamate and glutamine from 13C labeled glucose or acetate also suggest TBI-induced adaptations to the glutamate-glutamine cycle.

  2. Real-time assessment of Krebs cycle metabolism using hyperpolarized 13C magnetic resonance spectroscopy.

    Science.gov (United States)

    Schroeder, Marie A; Atherton, Helen J; Ball, Daniel R; Cole, Mark A; Heather, Lisa C; Griffin, Julian L; Clarke, Kieran; Radda, George K; Tyler, Damian J

    2009-08-01

    The Krebs cycle plays a fundamental role in cardiac energy production and is often implicated in the energetic imbalance characteristic of heart disease. In this study, we measured Krebs cycle flux in real time in perfused rat hearts using hyperpolarized magnetic resonance spectroscopy (MRS). [2-(13)C]Pyruvate was hyperpolarized and infused into isolated perfused hearts in both healthy and postischemic metabolic states. We followed the enzymatic conversion of pyruvate to lactate, acetylcarnitine, citrate, and glutamate with 1 s temporal resolution. The appearance of (13)C-labeled glutamate was delayed compared with that of other metabolites, indicating that Krebs cycle flux can be measured directly. The production of (13)C-labeled citrate and glutamate was decreased postischemia, as opposed to lactate, which was significantly elevated. These results showed that the control and fluxes of the Krebs cycle in heart disease can be studied using hyperpolarized [2-(13)C]pyruvate.

  3. Bicolumnar 90–90 plating of AO 13C type fractures

    National Research Council Canada - National Science Library

    Cemal Kural; Ersin Ercin; Mehmet Erkilinc; Evren Karaali; Mustafa Gokhan Bilgili; Suleyman Altun

    2017-01-01

    Objective: The aim of this study was to evaluate functional results and complication rate of patients who underwent medial-dorsolateral plating for intra-articular distal humeral fracture (Müller AO type 13C). Methods...

  4. Spectroscopic study and astronomical detection of doubly 13C-substituted ethyl cyanide

    Science.gov (United States)

    Margulès, L.; Belloche, A.; Müller, H. S. P.; Motiyenko, R. A.; Guillemin, J.-C.; Garrod, R. T.; Menten, K. M.

    2016-05-01

    Context. We have performed a spectral line survey called Exploring Molecular Complexity with ALMA (EMoCA) toward Sagittarius B2(N) between 84.1 and 114.4 GHz with the Atacama Large Millimeter/submillimeter Array (ALMA) in its Cycles 0 and 1. Line intensities of the main isotopic species of ethyl cyanide and its singly 13C-substituted isotopomers observed toward the hot molecular core Sagittarius B2(N2) suggest that the doubly 13C-substituted isotopomers should also be detectable. Aims: We want to determine the spectroscopic parameters of all three doubly 13C-substituted isotopologues of ethyl cyanide to search for them in our ALMA data. Methods: We investigated the laboratory rotational spectra of the three species between 150 GHz and 990 GHz. We searched for emission lines produced by these species in the ALMA spectrum of Sagittarius B2(N2). We modeled their emission and the emission of the 12C and singly 13C-substituted isotopologues assuming local thermodynamic equilibrium. Results: We identified more than 5000 rotational transitions, pertaining to more than 3500 different transition frequencies, in the laboratory for each of the three doubly 13C-substituted isotopomers. The quantum numbers reach J ≈ 115 and Ka ≈ 35, resulting in accurate spectroscopic parameters and accurate rest frequency calculations beyond 1000 GHz for strong to moderately weak transitions of either isotopomer. All three species are unambiguously detected in our ALMA data. The 12C/13C column density ratio of the isotopomers with one 13C atom to those with two 13C atoms is about 25. Conclusions: Ethyl cyanide is the second molecule after methyl cyanide for which isotopologues containing two 13C atoms have been securely detected in the interstellar medium. The model of our ethyl cyanide data suggests that we should be able to detect vibrational satellites of the main species up to at least ν19 = 1 at ~1130 K and up to ν13 + ν21 = 2 at ~600 K for the isotopologues with one 13C atom in

  5. Identification of Zinc-ligated Cysteine Residues Based on {sup 13}C{alpha} and {sup 13}C{beta} Chemical Shift Data

    Energy Technology Data Exchange (ETDEWEB)

    Kornhaber, Gregory J.; Snyder, David; Moseley, Hunter N. B.; Montelione, Gaetano T. [Rutgers University, Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry (United States)], E-mail: guy@cabm.rutgers.edu

    2006-04-15

    Although a significant number of proteins include bound metals as part of their structure, the identification of amino acid residues coordinated to non-paramagnetic metals by NMR remains a challenge. Metal ligands can stabilize the native structure and/or play critical catalytic roles in the underlying biochemistry. An atom's chemical shift is exquisitely sensitive to its electronic environment. Chemical shift data can provide valuable insights into structural features, including metal ligation. In this study, we demonstrate that overlapped {sup 13}C{beta} chemical shift distributions of Zn-ligated and non-metal-ligated cysteine residues are largely resolved by the inclusion of the corresponding {sup 13}C{alpha} chemical shift information, together with secondary structural information. We demonstrate this with a bivariate distribution plot, and statistically with a multivariate analysis of variance (MANOVA) and hierarchical logistic regression analysis. Using 287 {sup 13}C{alpha}/{sup 13}C{beta} shift pairs from 79 proteins with known three-dimensional structures, including 86 {sup 13}C{alpha} and{sup 13}C{beta} shifts for 43 Zn-ligated cysteine residues, along with corresponding oxidation state and secondary structure information, we have built a logistic regression model that distinguishes between oxidized cystines, reduced (non-metal ligated) cysteines, and Zn-ligated cysteines. Classifying cysteines/cystines with a statisical model incorporating all three phenomena resulted in a predictor of Zn ligation with a recall, precision and F-measure of 83.7%, and an accuracy of 95.1%. This model was applied in the analysis of Bacillus subtilis IscU, a protein involved in iron-sulfur cluster assembly. The model predicts that all three cysteines of IscU are metal ligands. We confirmed these results by (i) examining the effect of metal chelation on the NMR spectrum of IscU, and (ii) inductively coupled plasma mass spectrometry analysis. To gain further insight into

  6. Soil compaction effects on water status of ponderosa pine assessed through 13C/12C composition.

    Science.gov (United States)

    Gomez, G Armando; Singer, Michael J; Powers, Robert F; Horwath, William R

    2002-05-01

    Soil compaction is a side effect of forest reestablishment practices resulting from use of heavy equipment and site preparation. Soil compaction often alters soil properties resulting in changes in plant-available water. The use of pressure chamber methods to assess plant water stress has two drawbacks: (1) the measurements are not integrative; and (2) the method is difficult to apply extensively to establish seasonal soil water status. We evaluated leaf carbon isotopic composition (delta13C) as a means of assessing effects of soil compaction on water status and growth of young ponderosa pine (Pinus ponderosa var. ponderosa Dougl. ex Laws) stands across a range of soil textures. Leaf delta13C in cellulose and whole foliar tissue were highly correlated. Leaf delta13C in both whole tissue and cellulose (holocellulose) was up to 1.0 per thousand lower in trees growing in non-compacted (NC) loam or clay soils than in compacted (SC) loam or clay soils. Soil compaction had the opposite effect on leaf delta13C in trees growing on sandy loam soil, indicating that compaction increased water availability in this soil type. Tree growth response to compaction also varied with soil texture, with no effect, a negative effect and a positive effect as a result of compaction of loam, clay and sandy loam soils, respectively. There was a significant correlation between 13C signature and tree growth along the range of soil textures. Leaf delta13C trends were correlated with midday stem water potentials. We conclude that leaf delta13C can be used to measure retrospective water status and to assess the impact of site preparation on tree growth. The advantage of the leaf delta13C approach is that it provides an integrative assessment of past water status in different aged leaves.

  7. Multi-year estimates of plant and ecosystem 13C discrimination at AmeriFlux sites

    Science.gov (United States)

    Dang, X.; Lai, C.; Hollinger, D. Y.; Bush, S.; Randerson, J. T.; Law, B. E.; Schauer, A. J.; Ehleringer, J.

    2011-12-01

    We estimated plant and ecosystem 13C discrimination continuously at 8 AmeriFlux sites (Howland Forest, Harvard Forest, Wind River Forest, Rannells Prairie, Freeman Ranch, Chestnut Ridge, Metolius, and Marys River fir) over 8 years (2002-2009). We used an observation-based approach from weekly measurements of eddy covariance CO2 fluxes and their 13C/12C ratios to estimate photosynthetic 13C discrimination (△A) and respiration (δ13CR) on seasonal and interannual time scales. The coordinated, systematic flask sampling across the AmeriFlux subnetwork were used for cross-site synthesis of monthly flux estimates [Dang et al. Combining tower mixing ratio and community model data to estimate regional-scale net ecosystem carbon exchange by boundary layer inversion over 4 flux towers in the U.S.A., Journal of Geophysical Research-Biogeosciences, in press]. Here, we evaluated environmental factors that also influenced temporal variability in △A and δ13CR from daily to interannual time scales, comparing atmospheric 13C/12C measurements, leaf and needle organic matter, and tree ring cellulose. Across these major biomes that dominate the continent, we show differential ecophysiological responses to environmental stresses, among which water availability appeared to be a dominant factor. Our decadal measurement period provided robust estimates of atmospheric 13C discrimination by terrestrial ecosystems, but also suggest regions where enhanced monitoring efforts are required (e.g., 13C/12C emission from fire and urban metabolism; increased temporal resolution of 13C measurements in stress-sensitive ecosystems) to make atmospheric 13C/12C measurements an effective constraint for continental-scale assessments of the terrestrial carbon cycle.

  8. Parallel labeling experiments validate Clostridium acetobutylicum metabolic network model for (13)C metabolic flux analysis.

    Science.gov (United States)

    Au, Jennifer; Choi, Jungik; Jones, Shawn W; Venkataramanan, Keerthi P; Antoniewicz, Maciek R

    2014-11-01

    In this work, we provide new insights into the metabolism of Clostridium acetobutylicum ATCC 824 obtained using a systematic approach for quantifying fluxes based on parallel labeling experiments and (13)C-metabolic flux analysis ((13)C-MFA). Here, cells were grown in parallel cultures with [1-(13)C]glucose and [U-(13)C]glucose as tracers and (13)C-MFA was used to quantify intracellular metabolic fluxes. Several metabolic network models were compared: an initial model based on current knowledge, and extended network models that included additional reactions that improved the fits of experimental data. While the initial network model did not produce a statistically acceptable fit of (13)C-labeling data, an extended network model with five additional reactions was able to fit all data with 292 redundant measurements. The model was subsequently trimmed to produce a minimal network model of C. acetobutylicum for (13)C-MFA, which could still reproduce all of the experimental data. The flux results provided valuable new insights into the metabolism of C. acetobutylicum. First, we found that TCA cycle was effectively incomplete, as there was no measurable flux between α-ketoglutarate and succinyl-CoA, succinate and fumarate, and malate and oxaloacetate. Second, an active pathway was identified from pyruvate to fumarate via aspartate. Third, we found that isoleucine was produced exclusively through the citramalate synthase pathway in C. acetobutylicum and that CAC3174 was likely responsible for citramalate synthase activity. These model predictions were confirmed in several follow-up tracer experiments. The validated metabolic network model established in this study can be used in future investigations for unbiased (13)C-flux measurements in C. acetobutylicum. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  9. 13C-methacetin breath test parameter S for liver diseases diagnosis

    Institute of Scientific and Technical Information of China (English)

    曾文炳; 张维成; 许士元; 杨志忠; 刘纯; 朱德平; 文启彬; 申岐祥; 王先彬

    1996-01-01

    The mechanism of 13C-methacetin breath test is set forth clearly with the analysis of pharmacokinetics mode, and the measuring method of 13C-methacetin breath test and its clinical applications in the diagnosis of liver diseases are reported in detail. On the basis of comprehensive analysis of the clinical test data, the advanced diagnostic parameter S is of important significance for the application and development of breath test.

  10. Tracing the biosynthetic source of essential amino acids in marine turtles using delta13C fingerprints.

    Science.gov (United States)

    Arthur, Karen E; Kelez, Shaleyla; Larsen, Thomas; Choy, C Anela; Popp, Brian N

    2014-05-01

    Plants, bacteria, and fungi produce essential amino acids (EAAs) with distinctive patterns of delta13C values that can be used as naturally occurring fingerprints of biosynthetic origin of EAAs in a food web. Because animals cannot synthesize EAAs and must obtain them from food, their tissues reflect delta13C(EAA) patterns found in diet, but it is not known how microbes responsible for hindgut fermentation in some herbivores influence the delta13C values of EAAs in their hosts' tissues. We examined whether distinctive delta13C fingerprints of hindgut flora are evident in the tissues of green turtles (Chelonia mydas), which are known to be facultative hindgut fermenters. We determined delta13C(EAA) values in tissues of green turtles foraging herbivorously in neritic habitats of Hawaii and compared them with those from green, olive ridley, and loggerhead turtles foraging carnivorously in oceanic environments of the central and southeast Pacific Ocean. Results of multivariate statistical analysis revealed two distinct groups that could be distinguished based on unique delta13C(EAA) patterns. A three-end-member predictive linear discriminant model indicated that delta13C(EAA) fingerprints existed in the tissues of carnivorous turtles that resembled patterns found in microalgae, which form the base of an oceanic food web, whereas herbivorous turtles derive EAAs from a bacterial or seagrass source. This study demonstrates the capacity for delta13C fingerprinting to establish the biosynthetic origin of EAAs in higher consumers, and that marine turtles foraging on macroalgal diets appear to receive nutritional supplementation from bacterial symbionts in their digestive system.

  11. Water availability and branch length determine delta(13)C in foliage of Pinus pinaster.

    Science.gov (United States)

    Warren, Charles R.; Adams, Mark A.

    2000-05-01

    The stable carbon isotope composition (delta(13)C) of foliage integrates signals resulting from environmental and hydraulic constraints on water movement and photosynthesis. We used branch length as a simple predictor of hydraulic constraints to water fluxes and determined the response of delta(13)C to varying water availability. Foliage up to 6 years old was taken from Pinus pinaster Ait. trees growing at four sites differing in precipitation (P; 414-984 mm year(-1)) and potential evaporation (ET; 1091-1750 mm year(-1)). Branch length was the principal determinant of temporal trends in delta(13)C. The strong relationship between delta(13)C and branch length was a function of hydraulic conductance, which was negatively correlated with branch length (r(2) = 0.84). Variation in P and ET among sites was reflected in delta(13)C, which was negatively correlated with P/ET (r(2) = 0.66). However, this analysis was confounded by differences in branch length. If the effects of branch length on delta(13)C were first removed, then the 'residual' delta(13)C was more closely related to P/ET (r(2) = 0.99), highlighting the importance of accounting for variation in hydraulic constraints to water flux between sites and years. For plant species that exhibit considerable phenotypic plasticity in response to changes in environment (e.g., variation in leaf area, branch length and number, or stem form), the environmental effects on delta(13)C in foliage can only be reliably assessed if deconvoluted from hydraulic constraints.

  12. Use of naturally enriched mixed food in 13C breath tests applied in young suckling calves.

    Science.gov (United States)

    Metges, C C; Schmidt, H L; Eichinger, H

    1992-01-01

    Utilization of three milk diets including cream, casein or whey, each naturally labelled with 13C (1 mmol 13C excess) from C4 sources, by six young male calves of the Deutsche Fleckvieh breed was investigated in a Latin-square split-plot design. Each milk diet was examined under resting conditions and during a short period of physical exercise on a treadmill. Delta 13C values (/1000) in carbon dioxide in expired air were measured at intervals of about 1 h during 6.5 h after food intake. Expired air samples for CO2 isolation, subsequent isotopic analysis, measurement of CO2 production and respiratory quotient were taken at about hourly intervals and 13C recovery rates over 6.5 h were calculated. Feeding milk containing enriched milk casein, cream, or whey resulted in maximal significant 13C enrichments over background (delta 13C) in CO2 of +1, +2.4 and +2.2 /1000, and recovery rates of 3.6, 9.9 and 12.2% respectively. This comparison shows the different kinetic behaviour of the main nutrients during the oxidation in tissues. The short exercise period (5 min at 1 J/s per kg body-weight +5 min at 2 J/s per kg body-weight) did not influence the recovery rates significantly. However, after 10 min of muscular exercise there was a brief decrease in delta 13C value of expired air which disappeared within the first 5 min of rest. These experiments demonstrate for the first time the applicability of the 13C breath test with naturally enriched diets in animal nutrition research and that quantitative results may be obtained.

  13. Anomalous 13C Isotope Abundances in C3S and C4H Observed toward the Cold Interstellar Cloud, Taurus Molecular Cloud-1

    Science.gov (United States)

    Sakai, Nami; Takano, Shuro; Sakai, Takeshi; Shiba, Shoichi; Sumiyoshi, Yoshihiro; Endo, Yasuki; Yamamoto, Satoshi

    2013-10-01

    We have studied the abundances of the 13C isotopic species of C3S and C4H in the cold molecular cloud, Taurus Molecular Cloud-1 (Cyanopolyyne Peak), by radioastronomical observations of their rotational emission lines. The CCCS/13CCCS and CCCS/C13CCS ratios are determined to be >206 and 48 ± 15, respectively. The CC13CS line is identified with the aid of laboratory microwave spectroscopy, and the range of the CCCS/CC13CS ratio is found to be from 30 to 206. The abundances of at least two 13C isotopic species of C3S are thus found to be different. Similarly, it is found that the abundances of the four 13C isotopic species of C4H are not equivalent. The CCCCH/13CCCCH, CCCCH/C13CCCH, CCCCH/CC13CCH, and CCCCH/CCC13CH ratios are evaluated to be 141 ± 44, 97 ± 27, 82 ± 15, and 118 ± 23, respectively. Here the errors denote 3 times the standard deviation. These results will constrain the formation pathways of C3S and C4H, if the nonequivalence is caused during the formation processes of these molecules. The exchange reactions after the formation of these two molecules may also contribute to the nonequivalence. In addition, we have confirmed that the 12C/13C ratio of some species are significantly higher than the interstellar elemental 12C/13C ratio of 60-70. The observations of the 13C isotopic species provide us with rich information on chemical processes in cold interstellar clouds.

  14. A single-quantum methyl {sup 13}C-relaxation dispersion experiment with improved sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Lundstroem, Patrik; Vallurupalli, Pramodh [University of Toronto, Departments of Medical Genetics, Biochemistry and Chemistry (Canada); Religa, Tomasz L. [Medical Research Council Centre for Protein Engineering (United Kingdom); Dahlquist, Frederick W. [University of California at Santa Barbara, Department of Chemistry and Biochemistry (United States); Kay, Lewis E. [University of Toronto, Departments of Medical Genetics, Biochemistry and Chemistry (Canada)], E-mail: kay@pound.med.utoronto.ca

    2007-05-15

    A pulse sequence is described for recording single-quantum {sup 13}C-methyl relaxation dispersion profiles of {sup 13}C-selectively labeled methyl groups in proteins that offers significant improvements in sensitivity relative to existing approaches where initial magnetization derives from {sup 13}C polarization. Sensitivity gains in the new experiment are achieved by making use of polarization from {sup 1}H spins and {sup 1}H {sup {yields}} {sup 13}C {sup {yields}} {sup 1}H type magnetization transfers. Its utility has been established by applications involving three different protein systems ranging in molecular weight from 8 to 28 kDa, produced using a number of different selective labeling approaches. In all cases exchange parameters from both {sup 13}C{sup {yields}}{sup 1}H and {sup 1}H {sup {yields}} {sup 13}C {sup {yields}} {sup 1}H classes of experiment are in good agreement, with gains in sensitivity of between 1.7 and 4-fold realized using the new scheme.

  15. Tracing carbon monoxide uptake by Clostridium ljungdahlii during ethanol fermentation using (13)C-enrichment technique.

    Science.gov (United States)

    Yun, Seok-In; Gang, Seong-Joo; Ro, Hee-Myong; Lee, Min-Jin; Choi, Woo-Jung; Hong, Seong-Gu; Kang, Kwon-Kyoo

    2013-05-01

    Conversion of synthesis gas (CO and H2) to ethanol can be an alternative, promising technology to produce biofuels from renewable biomass. To distinguish microbial utilization of carbon source between fructose and synthesis gas CO and to evaluate biological production of ethanol from CO, we adopted the (13)C-enrichment of the CO substrate and hypothesized that the residual increase in δ(13)C of the cell biomass would reflect the increased contribution of (13)C-enriched CO. Addition of synthesis gas to live culture medium for ethanol fermentation by Clostridum ljungdahlii increased the microbial growth and ethanol production. Despite the high (13)C-enrichment in CO (99 atom % (13)C), however, microbial δ(13)C increased relatively small compared to the microbial growth. The uptake efficiency of CO estimated using the isotope mass balance equation was also very low: 0.0014 % for the low CO and 0.0016 % for the high CO treatment. Furthermore, the fast production of ethanol in the early stage indicated that the presence of sugar in fermentation medium would limit the utilization of CO as a carbon source by C. ljungdahlii.

  16. Seasonal Variation of δ13C of Four Tree Species: A Biological Integrator of Environmental Variables

    Institute of Scientific and Technical Information of China (English)

    Hai-Tao LI; Jun XIA; Le XIANG; Tao LIANG; Qi-Jing LIU

    2005-01-01

    Foliar δ13C values, an indicator of long-term intercellular carbon dioxide concentration and, thus,of long-term water use efficiency (WUE) in plants, were measured for Pinus massoniana Lamb., P. elliottii Engelm., Cunninghamia laceolata (Lamb.) Hook., and Schima superba Gardn. et Champ. in a restored forest ecosystem in the Jiazhu River Basin. Seasonal variation and the relationship between the foliar δ13Cvalues of the four species and environmental factors (monthly total precipitation, monthly average air temperature, relative humidity, atmospheric pressure, and monthly total solar radiation and evaporation)were investigated. The monthly δ13C values and WUE of the four species increased with increasing precipitation, air temperature, solar radiation, and evaporation, whereas δ13C values of the four species decreased with increasing relative humidity and atmospheric pressure. Despite significant differences in δ13C seasonal means for the four species, our results demonstrate a significant convergence in the responses of δ13C values and WUE to seasonal variations in environmental factors among the species investigated and that the δ13C signature for each species gives a strong indication of environmental variables.

  17. Indicators of δ13C and δ18O of gas hydrate-associated sediments

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The analyses of δ13C and δ18O of gas hydrate-associated sediments from two cores on Hydrate Ridge in Cascadia convergent margin offshore Oregon, eastern North Pacific show the values of d 13C from -29.81‰ to -48.28‰ (PDB) and d 18O from 2.56‰ to 4.28‰ (PDB), which could be plotted into a group called typical carbonate minerals influenced by the methane in cold venting. Moreover, the values of d 13C and d 18O show a consistent trend in both cores from top to bottom with increasing of d 13C and decreasing of d 18O. This trend could be explained as an effect caused by the anaerobic oxidation of methane (AOM) in depth and the oxygen fraction during the formation of gas hydrate in depth together. These characteristics of d 13C and d 18O indicate that the gas hydrate-associated sediments are significantly different from the normal marine carbonates, and they are deeply influenced by the formation and evolution of gas hydrate. So, the distinct characteristics of d 13C and d 18O of gas hydrate-associated sediments could be undoubtedly believed as one of parameters to determine the presence of gas hydrates in other unknown marine sediment cores.

  18. The retrogradation properties of glutinous rice and buckwheat starches as observed with FT-IR, 13C NMR and DSC.

    Science.gov (United States)

    Lian, Xijun; Wang, Changjun; Zhang, Kunsheng; Li, Lin

    2014-03-01

    The experiment was conducted to study the retrogradation properties of glutinous rice and buckwheat starch with wavelengths of maximum absorbance, FT-IR, (13)C NMR, and DSC. The results show that the starches in retrograded glutinous rice starch and glutinous rice amylopectin could not form double helix. The IR results show that protein inhabits in glutinous rice and maize starches in a different way and appearance of C-H symmetric stretching vibration at 2852 cm(-1) in starch might be appearance of protein. Retrogradation untied the protein in glutinous amylopectin. Enthalpies of sweet potato and maize granules are higher than those of their retrograded starches. The (13)C NMR results show that retrogradation of those two starches leads to presence of β-anomers and retrogradation might decompose lipids in glutinous rice amylopectin into small molecules. Glutinous rice starch was more inclined to retrogradation than buckwheat starch. The DSC results show that the second peak temperatures for retrograded glutinous rice and buckwheat starches should be assigned to protein. The SEM results show that an obvious layer structure exists in retrograded glutinous rice amylopectin.

  19. NMR study of the 1-{sup 13}C glucose colon bacterial metabolism; Etude du metabolisme bacterien colique du 1-{sup 13}C glucose par RMN

    Energy Technology Data Exchange (ETDEWEB)

    Briet, F.; Flourie, B.; Pochart, P.; Rambaud, J.C.; Desjeux, J.F. [Hopital Saint-Lazare, 75 - Paris (France); Dallery, L. [Conservatoire National des Arts et Metiers (CNAM), 75 - Paris (France); Grivet, J.P. [Centre National de la Recherche Scientifique (CNRS), 45 - Orleans-la-Source (France)

    1994-12-31

    The aim of the study is to examine in-vitro and by nuclear magnetic resonance the biological pathways for the fermentation of the 1-{sup 13}C labelled glucose (99 atoms percent) by human colon bacteria. The preparation of the bacterial suspension and the glucose degradation kinetics are presented; the NMR analysis sensitivity and quantification features are discussed and results are presented. 2 figs., 1 ref.

  20. Paleoclimate Reconstruction From the d13C Organic and d13C Carbonate Proxies in Triassic Paleosols and Sediments, Ischigualasto Basin Argentina

    Science.gov (United States)

    Moore, K. A.; Tabor, N. J.; Montañez, I. P.; Currie, B.; Shipman, T.

    2001-12-01

    Stable carbon isotopes of organic matter and paleosol carbonate from the Triassic Ischigualasto Formation, Argentina are used as a proxy of paleoatmospheric pCO2 and d13CO2. Carbon and Oxygen isotope values were determined for over 100 Triassic pedogenic carbonate nodules and associated organic matter. The d13C of carbonate ranges from -3.29 per mil to -10.56 per mil. The d13C of organic matter ranges from -21.07 per mil to -24.24 per mil. The Hydrogen and Oxygen indices and TOC values indicate that the best preserved organic matter samples yield the most negative d13C values. Reconstructed pCO2 levels were around 1000 ppm V in the early to mid- Triassic and increased to around 2000 ppm V later in the Triassic. This maximum is followed by a fall in pCO2 in the late Triassic. This previously undocumented rapid change in paleo-CO2 levels likely accompanied the evolution of mammal-like reptiles to true dinosaurs as well as rapid climate change.

  1. Rational design of 13C-labeling experiments for metabolic flux analysis in mammalian cells

    Directory of Open Access Journals (Sweden)

    Crown Scott B

    2012-05-01

    Full Text Available Abstract Background 13C-Metabolic flux analysis (13C-MFA is a standard technique to probe cellular metabolism and elucidate in vivo metabolic fluxes. 13C-Tracer selection is an important step in conducting 13C-MFA, however, current methods are restricted to trial-and-error approaches, which commonly focus on an arbitrary subset of the tracer design space. To systematically probe the complete tracer design space, especially for complex systems such as mammalian cells, there is a pressing need for new rational approaches to identify optimal tracers. Results Recently, we introduced a new framework for optimal 13C-tracer design based on elementary metabolite units (EMU decomposition, in which a measured metabolite is decomposed into a linear combination of so-called EMU basis vectors. In this contribution, we applied the EMU method to a realistic network model of mammalian metabolism with lactate as the measured metabolite. The method was used to select optimal tracers for two free fluxes in the system, the oxidative pentose phosphate pathway (oxPPP flux and anaplerosis by pyruvate carboxylase (PC. Our approach was based on sensitivity analysis of EMU basis vector coefficients with respect to free fluxes. Through efficient grouping of coefficient sensitivities, simple tracer selection rules were derived for high-resolution quantification of the fluxes in the mammalian network model. The approach resulted in a significant reduction of the number of possible tracers and the feasible tracers were evaluated using numerical simulations. Two optimal, novel tracers were identified that have not been previously considered for 13C-MFA of mammalian cells, specifically [2,3,4,5,6-13C]glucose for elucidating oxPPP flux and [3,4-13C]glucose for elucidating PC flux. We demonstrate that 13C-glutamine tracers perform poorly in this system in comparison to the optimal glucose tracers. Conclusions In this work, we have demonstrated that optimal tracer design does not

  2. 基于食醋中乙醇的δ13C 值对其真伪鉴别的应用初探%AppIication of the δ13C of EthanoI in Vinegar for Distinguishing the FaIse from the Genuine

    Institute of Scientific and Technical Information of China (English)

    李鑫; 陈小珍; 姜侃; 张东雷; 尚才人; 章舒祺

    2015-01-01

    The determination method of the δ13C of ethanol in vinegar is built by LC-IRMS;the operational process of the instruments is introduced, through the selection of chromatography column,the effect of other components (sugar,acid)on the δ13C of ethanol in vinegar is detected from the perspective of peak time.The δ13C of pure CO2 reference gas is calibrated via international standard substance-sugar and the determination accuracy and stability in the linear range are investigated.16 batches of representative samples are determined;the relationship of theδ13C among ethanol in vinegar,vinegar,vinegar sediment is analyzed.Theδ13C of ethanol in vinegar is -28‰~-31‰,it is different from others,less than theδ13C of vinegar,it is stated that the loss happens in the process of transformation ofδ13C.Use the analysis method to test theδ13C of a variety of alcohol which is common in market,the δ13C is-10‰ ~ -17‰ of industrial alcohol,corn edible alcohol, starch alcohol,theδ13C is -29.1‰±1.2‰ of rice alcohol,theδ13C is -17.6‰±1.3‰ of sorghum alcohol,only the rice alcohol intervals coincide with the δ13C of ethanol in vinegar,others can be easily distinguished,the determination of the δ13C of ethanol in vinegar can play the role in distinguishing the false from the genuine.%文章新建了液相色谱联用稳定同位素比率质谱(LC-IRMS)对食醋中乙醇δ13C 值进行测定的方法。简述了仪器的运行过程,通过对色谱柱的选择,从出峰时间的角度考察了其他组分(糖、酸)对乙醇δ13C 值测定的影响,使用蔗糖标准物质标定了高纯 CO2参考气的δ13C 值并考察了线性范围下的测定重复性。对16批次代表性样品进行测定,分析食醋、食醋沉淀物、食醋中乙醇三者间δ13C 值的关系,乙醇的δ13C 值基本在-28‰~-31‰,与其余二者的δ13C 值范围有所差别,低于食醋的δ13C 值,说明了在转化过程中发生了一部分的同

  3. The influence of thermochemical treatments on the lignocellulosic structure of wheat straw as studied by natural abundance 13C NMR

    Energy Technology Data Exchange (ETDEWEB)

    Habets, S.; Van Eck, E. [Solid-State NMR, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); De Wild, P.J.; Huijgen, W.J.J. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2013-10-15

    The effects of thermochemical treatments (aquathermolysis, pyrolysis, and combinations thereof) on the lignocellulosic structure and composition of wheat straw were studied with 13C and 1H solid state NMR spectroscopy and proton T{sub 1p} relaxation measurements. Results show that aquathermolysis removes hemicellulose, acetyl groups, and ash minerals. As a result, the susceptibility of lignocellulose to pyrolysis is reduced most likely due to the removal of catalytically active salts, although recondensation of lignin during aquathermolysis treatment can also play a role. In contrast to pyrolysis of wheat straw, pyrolysis of aquathermolysed wheat straw leaves traces of cellulose in the char as well as more intense lignin methoxy peaks. Finally, it was found that both pyrolysis chars contain aliphatic chains, which were attributed to the presence of cutin or cutin-like materials, a macromolecule that covers the aerial surface of plants, not soluble in water and seemingly stable under the pyrolysis conditions applied.

  4. Ecological processes dominate the 13C land disequilibrium in a Rocky Mountain subalpine forest

    Science.gov (United States)

    Bowling, D. R.; Ballantyne, A. P.; Miller, J. B.; Burns, S. P.; Conway, T. J.; Menzer, O.; Stephens, B. B.; Vaughn, B. H.

    2014-04-01

    Fossil fuel combustion has increased atmospheric CO2 by ≈ 115 µmol mol-1 since 1750 and decreased its carbon isotope composition (δ13C) by 1.7-2‰ (the 13C Suess effect). Because carbon is stored in the terrestrial biosphere for decades and longer, the δ13C of CO2 released by terrestrial ecosystems is expected to differ from the δ13C of CO2 assimilated by land plants during photosynthesis. This isotopic difference between land-atmosphere respiration (δR) and photosynthetic assimilation (δA) fluxes gives rise to the 13C land disequilibrium (D). Contemporary understanding suggests that over annual and longer time scales, D is determined primarily by the Suess effect, and thus, D is generally positive (δR > δA). A 7 year record of biosphere-atmosphere carbon exchange was used to evaluate the seasonality of δA and δR, and the 13C land disequilibrium, in a subalpine conifer forest. A novel isotopic mixing model was employed to determine the δ13C of net land-atmosphere exchange during day and night and combined with tower-based flux observations to assess δA and δR. The disequilibrium varied seasonally and when flux-weighted was opposite in sign than expected from the Suess effect (D = -0.75 ± 0.21‰ or -0.88 ± 0.10‰ depending on method). Seasonality in D appeared to be driven by photosynthetic discrimination (Δcanopy) responding to environmental factors. Possible explanations for negative D include (1) changes in Δcanopy over decades as CO2 and temperature have risen, and/or (2) post-photosynthetic fractionation processes leading to sequestration of isotopically enriched carbon in long-lived pools like wood and soil.

  5. Directly detected (55)Mn MRI: application to phantoms for human hyperpolarized (13)C MRI development.

    Science.gov (United States)

    von Morze, Cornelius; Carvajal, Lucas; Reed, Galen D; Swisher, Christine Leon; Tropp, James; Vigneron, Daniel B

    2014-12-01

    In this work we demonstrate for the first time directly detected manganese-55 ((55)Mn) magnetic resonance imaging (MRI) using a clinical 3T MRI scanner designed for human hyperpolarized (13)C clinical studies with no additional hardware modifications. Due to the similar frequency of the (55)Mn and (13)C resonances, the use of aqueous permanganate for large, signal-dense, and cost-effective "(13)C" MRI phantoms was investigated, addressing the clear need for new phantoms for these studies. Due to 100% natural abundance, higher intrinsic sensitivity, and favorable relaxation properties, (55)Mn MRI of aqueous permanganate demonstrates dramatically increased sensitivity over typical (13)C phantom MRI, at greatly reduced cost as compared with large (13)C-enriched phantoms. A large sensitivity advantage (22-fold) was demonstrated. A cylindrical phantom (d=8 cm) containing concentrated aqueous sodium permanganate (2.7 M) was scanned rapidly by (55)Mn MRI in a human head coil tuned for (13)C, using a balanced steady state free precession acquisition. The requisite penetration of radiofrequency magnetic fields into concentrated permanganate was investigated by experiments and high frequency electromagnetic simulations, and found to be sufficient for (55)Mn MRI with reasonably sized phantoms. A sub-second slice-selective acquisition yielded mean image signal-to-noise ratio of ~60 at 0.5 cm(3) spatial resolution, distributed with minimum central signal ~40% of the maximum edge signal. We anticipate that permanganate phantoms will be very useful for testing HP (13)C coils and methods designed for human studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. A 2D {sup 13}C-CEST experiment for studying slowly exchanging protein systems using methyl probes: an application to protein folding

    Energy Technology Data Exchange (ETDEWEB)

    Bouvignies, Guillaume; Kay, Lewis E., E-mail: kay@pound.med.utoronto.ca [University of Toronto, Departments of Molecular Genetics, Biochemistry and Chemistry (Canada)

    2012-08-15

    A 2D {sup 13}C Chemical Exchange Saturation Transfer (CEST) experiment is presented for studying slowly exchanging protein systems using methyl groups as probes. The utility of the method is first established through studies of protein L, a small protein, for which chemical exchange on the millisecond time-scale is not observed. Subsequently the approach is applied to a folding exchange reaction of a G48M mutant Fyn SH3 domain, for which only cross-peaks derived from the folded ('ground') state are present in spectra. Fits of {sup 15}N and methyl {sup 13}C CEST profiles of the Fyn SH3 domain establish that the exchange reaction involves an interchange between folded and unfolded conformers, although elevated methyl {sup 13}C transverse relaxation rates for some of the residues of the unfolded ('invisible, excited') state indicate that it likely exchanges with a third conformation as well. In addition to the kinetics of the exchange reaction, methyl carbon chemical shifts of the excited state are also obtained from analysis of the {sup 13}C CEST data.

  7. Structure of model peptides based on Nephila clavipes dragline silk spidroin (MaSp1) studied by 13C cross polarization/magic angle spinning NMR.

    Science.gov (United States)

    Yang, Mingying; Nakazawa, Yasumoto; Yamauchi, Kazuo; Knight, David; Asakura, Tetsuo

    2005-01-01

    To obtain detailed structural information for spider dragline spidroin (MaSp1), we prepared three versions of the consensus peptide GGLGGQGAGAAAAAAGGAGQGGYGGLGSQGAGR labeled with 13C at six different sites. The 13C CP/MAS NMR spectra were observed after treating the peptides with different reagents known to alter silk protein conformations. The conformation-dependent 13C NMR chemical shifts and peak deconvolution were used to determine the local structure and the fractional compositions of the conformations, respectively. After trifluoroacetic acid (solvent)/diethyl ether (coagulant) treatment, the N-terminal region of poly-Ala (PLA) sequence, Ala8 and Ala10, adopted predominantly the alpha-helix with a substantial amount of beta-sheet. The central region, Ala15, Ala18, and Leu26, and C-terminal region, Ala31, of the peptide were dominated by either 3(1)-helix or alpha-helix. There was no indication of beta-sheet, although peak broadening indicates that the torsion angle distribution is relatively large. After 9 M LiBr/dialysis treatment, three kinds of conformation, beta-sheet, random coil, and 3(1)-helix, appeared, in almost equal amounts of beta-sheet and random coil conformations for Ala8 and Ala10 residues and distorted 3(1)-helix at the central region of the peptide. In contrast, after formic acid/methanol and 8 M urea/acetonitrile treatments, all of the local structure tends to beta-sheet, although small amounts of random coil are also observed. The peak pattern of the Ala Cbeta carbon after 8 M urea/acetonitrile treatment is similar to the corresponding patterns of silk fiber from Bombyx mori and Samia cynthia ricini. We also synthesized a longer 13C-labeled peptide containing two PLA blocks and three Gly-rich blocks. After 8 M urea/acetonitrile treatment, the conformation pattern was closely similar to that of the shorter peptide.

  8. 13C Mrs Studies of the Control of Hepatic Glycogen Metabolism at High Magnetic Fields

    Science.gov (United States)

    Miller, Corin O.; Cao, Jin; Zhu, He; Chen, Li M.; Wilson, George; Kennan, Richard; Gore, John C.

    2017-06-01

    Introduction: Glycogen is the primary intracellular storage form of carbohydrates. In contrast to most tissues where stored glycogen can only supply the local tissue with energy, hepatic glycogen is mobilized and released into the blood to maintain appropriate circulating glucose levels, and is delivered to other tissues as glucose in response to energetic demands. Insulin and glucagon, two current targets of high interest in the pharmaceutical industry, are well known glucose-regulating hormones whose primary effect in liver is to modulate glycogen synthesis and breakdown. The purpose of these studies was to develop methods to measure glycogen metabolism in real time non-invasively both in isolated mouse livers, and in non-human primates (NHPs) using 13C MRS. Methods: Livers were harvested from C57/Bl6 mice and perfused with [1-13C] Glucose. To demonstrate the ability to measure acute changes in glycogen metabolism ex-vivo, fructose, glucagon, and insulin were administered to the liver ex-vivo. The C1 resonance of glycogen was measured in real time with 13C MRS using an 11.7T (500 MHz) NMR spectrometer. To demonstrate the translatability of this approach, NHPs (male rhesus monkeys) were studied in a 7 T Philips MRI using a partial volume 1H/13C imaging coil. NPHs were subjected to a variable IV infusion of [1-13C] glucose (to maintain blood glucose at 3-4x basal), along with a constant 1 mg/kg/min infusion of fructose. The C1 resonance of glycogen was again measured in real time with 13C MRS. To demonstrate the ability to measure changes in glycogen metabolism in vivo, animals received a glucagon infusion (1 μg/kg bolus followed by 40 ng/kg/min constant infusion) half way through the study on the second study session. Results: In both perfused mouse livers and in NHPs, hepatic 13C-glycogen synthesis (i.e. monotonic increases in the 13C-glycogen NMR signal) was readily detected. In both paradigms, addition of glucagon resulted in cessation of glycogen synthesis

  9. A synthesis of marine sediment core δ13C data over the last 150 000 years

    Directory of Open Access Journals (Sweden)

    R. E. M. Rickaby

    2010-10-01

    Full Text Available The isotopic composition of carbon, δ13C, in seawater is used in reconstructions of ocean circulation, marine productivity, air-sea gas exchange, and biosphere carbon storage. Here, a synthesis of δ13C measurements taken from foraminifera in marine sediment cores over the last 150 000 years is presented. The dataset comprises previously published and unpublished data from benthic and planktonic records throughout the global ocean. Data are placed on a common δ18O age scale suitable for examining orbital timescale variability but not millennial events, which are removed by a 10 ka filter. Error estimates account for the resolution and scatter of the original data, and uncertainty in the relationship between δ13C of calcite and of dissolved inorganic carbon (DIC in seawater. This will assist comparison with δ13C of DIC output from models, which can be further improved using model outputs such as temperature, DIC concentration, and alkalinity to improve estimates of fractionation during calcite formation. High global deep ocean δ13C, indicating isotopically heavy carbon, is obtained during Marine Isotope Stages (MIS 1, 3, 5a, c and e, and low δ13C during MIS 2, 4 and 6, which are temperature minima, with larger amplitude variability in the Atlantic Ocean than the Pacific Ocean. This is likely to result from changes in biosphere carbon storage, modulated by changes in ocean circulation, productivity, and air-sea gas exchange. The North Atlantic vertical δ13C gradient is greater during temperature minima than temperature maxima, attributed to changes in the spatial extent of Atlantic source waters. There are insufficient data from shallower than 2500 m to obtain a coherent pattern in other ocean basins. The data synthesis indicates that basin-scale δ13C during the last interglacial (MIS 5e is not clearly distinguishable from the Holocene (MIS 1 or from MIS 5a and 5c, despite significant differences in ice volume and atmospheric CO2

  10. Multi-objective experimental design for (13)C-based metabolic flux analysis.

    Science.gov (United States)

    Bouvin, Jeroen; Cajot, Simon; D'Huys, Pieter-Jan; Ampofo-Asiama, Jerry; Anné, Jozef; Van Impe, Jan; Geeraerd, Annemie; Bernaerts, Kristel

    2015-10-01

    (13)C-based metabolic flux analysis is an excellent technique to resolve fluxes in the central carbon metabolism but costs can be significant when using specialized tracers. This work presents a framework for cost-effective design of (13)C-tracer experiments, illustrated on two different networks. Linear and non-linear optimal input mixtures are computed for networks for Streptomyces lividans and a carcinoma cell line. If only glucose tracers are considered as labeled substrate for a carcinoma cell line or S. lividans, the best parameter estimation accuracy is obtained by mixtures containing high amounts of 1,2-(13)C2 glucose combined with uniformly labeled glucose. Experimental designs are evaluated based on a linear (D-criterion) and non-linear approach (S-criterion). Both approaches generate almost the same input mixture, however, the linear approach is favored due to its low computational effort. The high amount of 1,2-(13)C2 glucose in the optimal designs coincides with a high experimental cost, which is further enhanced when labeling is introduced in glutamine and aspartate tracers. Multi-objective optimization gives the possibility to assess experimental quality and cost at the same time and can reveal excellent compromise experiments. For example, the combination of 100% 1,2-(13)C2 glucose with 100% position one labeled glutamine and the combination of 100% 1,2-(13)C2 glucose with 100% uniformly labeled glutamine perform equally well for the carcinoma cell line, but the first mixture offers a decrease in cost of $ 120 per ml-scale cell culture experiment. We demonstrated the validity of a multi-objective linear approach to perform optimal experimental designs for the non-linear problem of (13)C-metabolic flux analysis. Tools and a workflow are provided to perform multi-objective design. The effortless calculation of the D-criterion can be exploited to perform high-throughput screening of possible (13)C-tracers, while the illustrated benefit of multi

  11. Monitoring electron donor metabolism under variable electron acceptor conditions using 13C-labeled lactate

    Science.gov (United States)

    Bill, M.; Conrad, M. E.; Yang, L.; Beller, H. R.; Brodie, E. L.

    2010-12-01

    Three sets of flow-through columns constructed with aquifer sediment from Hanford (WA) were used to study reduction of Cr(VI) to poorly soluble Cr(III) under denitrifying, sulfate-reducing/fermentative, and iron-reducing conditions with lactate as the electron donor. In order to understand the relationship between electron donors and biomarkers, and to determine the differences in carbon isotope fractionation resulting from different microbial metabolic processes, we monitored the variation in carbon isotopes in dissolved inorganic carbon (DIC), in total organic carbon (TOC), and in lactate, acetate and propionate. The greatest enrichment in 13C in columns was observed under denitrifying conditions. The δ13C of DIC increased by ~1750 to ~2000‰ fifteen days after supplementation of natural abundance lactate with a 13C-labeled lactate tracer (for an influent δ13C of ~2250‰ for the lactate) indicating almost complete oxidation of the electron donor. The denitrifying columns were among the most active columns and had the highest cell counts and the denitrification rate was highly correlated with Cr(VI) reduction rate. δ13C values of DIC ranged from ~540 to ~1170‰ for iron-reducing conditions. The lower enrichment in iron columns was related to the lower biological activity observed with lower yields of RNA and cell numbers in the column effluents. The carbon isotope shift in the sulfate-reducing ~198 to ~1960‰ for sulfate-reducing conditions reflecting the lower levels of the lactate in these columns. Additionally, in two of the sulfate columns, almost complete fermentation of the lactate occurred, producing acetate and propionate with the labeled carbon signature, but relatively smaller amounts of inorganic carbon. For all electron-accepting conditions, TOC yielded similar δ13C values as lactate stock solutions. Differences in C use efficiency, metabolic rate or metabolic pathway contributed to the differing TOC δ13C to DIC δ13C ratios between treatments

  12. To be certain about the uncertainty: Bayesian statistics for (13) C metabolic flux analysis.

    Science.gov (United States)

    Theorell, Axel; Leweke, Samuel; Wiechert, Wolfgang; Nöh, Katharina

    2017-07-11

    (13) C Metabolic Fluxes Analysis ((13) C MFA) remains to be the most powerful approach to determine intracellular metabolic reaction rates. Decisions on strain engineering and experimentation heavily rely upon the certainty with which these fluxes are estimated. For uncertainty quantification, the vast majority of (13) C MFA studies relies on confidence intervals from the paradigm of Frequentist statistics. However, it is well known that the confidence intervals for a given experimental outcome are not uniquely defined. As a result, confidence intervals produced by different methods can be different, but nevertheless equally valid. This is of high relevance to (13) C MFA, since practitioners regularly use three different approximate approaches for calculating confidence intervals. By means of a computational study with a realistic model of the central carbon metabolism of E. coli, we provide strong evidence that confidence intervals used in the field depend strongly on the technique with which they were calculated and, thus, their use leads to misinterpretation of the flux uncertainty. In order to provide a better alternative to confidence intervals in (13) C MFA, we demonstrate that credible intervals from the paradigm of Bayesian statistics give more reliable flux uncertainty quantifications which can be readily computed with high accuracy using Markov chain Monte Carlo. In addition, the widely applied chi-square test, as a means of testing whether the model reproduces the data, is examined closer. © 2017 Wiley Periodicals, Inc.

  13. Late Glacial and Holocene Paleoliminology of two temperate lakes inferred from sediment organic 13C chronology

    Indian Academy of Sciences (India)

    N A Lovan; R V Krishnamurthy

    2000-03-01

    The stable carbon isotope (13C) and elemental C/N ratios in Total Organic Carbon (TOC) extracted from radiometrically dated cores from two Midwestern USA lakes were determined to investigate the factors that control these values in temperate lakes. The range of 13C values ( -26 to -32%) and C/N ratios (mean value ∼ 10.8) are typical of values reported for other temperate lake organic matter in this region. In the core from Lake Winnebago, Wisconsin, a negative correlation was seen between the TOC and 13C, which can be interpreted in terms of a re-mixing and consumption of sedimented organic carbon along with rapid equilibration throughout the water column. No correlation was seen between the TOC and 13C in the record from Ladd Lake, Ohio, implying that in this latter lake productivity alone was not a singular process controlling the isotope ratio. Here, it is suggested that equilibrium conditions are maintained such that the DIC of the water is never depleted of aqueous CO2 during high organic production and the resulting 13C of the organic carbon lacks correlation with the TOC. Further, in this lake a fine resolution analysis was carried out which indicated a possible anthropogenic influence on the isotope ratio around times when human settlement (∼ 300 yrs ago) and enhanced agricultural practices ( ∼ 80 yrs ago) were significant. The study shows that carbon isotope studies are useful in paleolimnologic investigations.

  14. 13C-Metabolic Flux Analysis: An Accurate Approach to Demystify Microbial Metabolism for Biochemical Production

    Directory of Open Access Journals (Sweden)

    Weihua Guo

    2015-12-01

    Full Text Available Metabolic engineering of various industrial microorganisms to produce chemicals, fuels, and drugs has raised interest since it is environmentally friendly, sustainable, and independent of nonrenewable resources. However, microbial metabolism is so complex that only a few metabolic engineering efforts have been able to achieve a satisfactory yield, titer or productivity of the target chemicals for industrial commercialization. In order to overcome this challenge, 13C Metabolic Flux Analysis (13C-MFA has been continuously developed and widely applied to rigorously investigate cell metabolism and quantify the carbon flux distribution in central metabolic pathways. In the past decade, many 13C-MFA studies have been performed in academic labs and biotechnology industries to pinpoint key issues related to microbe-based chemical production. Insightful information about the metabolic rewiring has been provided to guide the development of the appropriate metabolic engineering strategies for improving the biochemical production. In this review, we will introduce the basics of 13C-MFA and illustrate how 13C-MFA has been applied via integration with metabolic engineering to identify and tackle the rate-limiting steps in biochemical production for various host microorganisms

  15. A Method to Constrain Genome-Scale Models with 13C Labeling Data.

    Directory of Open Access Journals (Sweden)

    Héctor García Martín

    2015-09-01

    Full Text Available Current limitations in quantitatively predicting biological behavior hinder our efforts to engineer biological systems to produce biofuels and other desired chemicals. Here, we present a new method for calculating metabolic fluxes, key targets in metabolic engineering, that incorporates data from 13C labeling experiments and genome-scale models. The data from 13C labeling experiments provide strong flux constraints that eliminate the need to assume an evolutionary optimization principle such as the growth rate optimization assumption used in Flux Balance Analysis (FBA. This effective constraining is achieved by making the simple but biologically relevant assumption that flux flows from core to peripheral metabolism and does not flow back. The new method is significantly more robust than FBA with respect to errors in genome-scale model reconstruction. Furthermore, it can provide a comprehensive picture of metabolite balancing and predictions for unmeasured extracellular fluxes as constrained by 13C labeling data. A comparison shows that the results of this new method are similar to those found through 13C Metabolic Flux Analysis (13C MFA for central carbon metabolism but, additionally, it provides flux estimates for peripheral metabolism. The extra validation gained by matching 48 relative labeling measurements is used to identify where and why several existing COnstraint Based Reconstruction and Analysis (COBRA flux prediction algorithms fail. We demonstrate how to use this knowledge to refine these methods and improve their predictive capabilities. This method provides a reliable base upon which to improve the design of biological systems.

  16. Synergizing (13)C Metabolic Flux Analysis and Metabolic Engineering for Biochemical Production.

    Science.gov (United States)

    Guo, Weihua; Sheng, Jiayuan; Feng, Xueyang

    2017-04-20

    Metabolic engineering of industrial microorganisms to produce chemicals, fuels, and drugs has attracted increasing interest as it provides an environment-friendly and renewable route that does not depend on depleting petroleum sources. However, the microbial metabolism is so complex that metabolic engineering efforts often have difficulty in achieving a satisfactory yield, titer, or productivity of the target chemical. To overcome this challenge, (13)C Metabolic Flux Analysis ((13)C-MFA) has been developed to investigate rigorously the cell metabolism and quantify the carbon flux distribution in central metabolic pathways. In the past decade, (13)C-MFA has been widely used in academic labs and the biotechnology industry to pinpoint the key issues related to microbial-based chemical production and to guide the development of the appropriate metabolic engineering strategies for improving the biochemical production. In this chapter we introduce the basics of (13)C-MFA and illustrate how (13)C-MFA has been applied to synergize with metabolic engineering to identify and tackle the rate-limiting steps in biochemical production.

  17. Global-mean marine δ13C and its uncertainty in a glacial state estimate

    Science.gov (United States)

    Gebbie, Geoffrey; Peterson, Carlye D.; Lisiecki, Lorraine E.; Spero, Howard J.

    2015-10-01

    A paleo-data compilation with 492 δ13C and δ18O observations provides the opportunity to better sample the Last Glacial Maximum (LGM) and infer its global properties, such as the mean δ13C of dissolved inorganic carbon. Here, the paleo-compilation is used to reconstruct a steady-state water-mass distribution for the LGM, that in turn is used to map the data onto a 3D global grid. A global-mean marine δ13C value and a self-consistent uncertainty estimate are derived using the framework of state estimation (i.e., combining a numerical model and observations). The LGM global-mean δ13C is estimated to be 0.14‰ ± 0.20‰ at the two standard error level, giving a glacial-to-modern change of 0.32‰ ± 0.20‰. The magnitude of the error bar is attributed to the uncertain glacial ocean circulation and the lack of observational constraints in the Pacific, Indian, and Southern Oceans. To halve the error bar, roughly four times more observations are needed, although strategic sampling may reduce this number. If dynamical constraints can be used to better characterize the LGM circulation, the error bar can also be reduced to 0.05 to 0.1‰, emphasizing that knowledge of the circulation is vital to accurately map δ13C in three dimensions.

  18. Histidine side-chain dynamics and protonation monitored by {sup 13}C CPMG NMR relaxation dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Hass, Mathias A. S. [Leiden University, Institute of Chemistry (Netherlands); Yilmaz, Ali [University of Copenhagen, Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences (Denmark); Christensen, Hans E. M. [Technical University of Denmark, Department of Chemistry (Denmark); Led, Jens J. [University of Copenhagen, Department of Chemistry (Denmark)], E-mail: led@kiku.dk

    2009-08-15

    The use of {sup 13}C NMR relaxation dispersion experiments to monitor micro-millisecond fluctuations in the protonation states of histidine residues in proteins is investigated. To illustrate the approach, measurements on three specifically {sup 13}C labeled histidine residues in plastocyanin (PCu) from Anabaena variabilis (A.v.) are presented. Significant Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion is observed for {sup 13}C{sup {epsilon}}{sup 1} nuclei in the histidine imidazole rings of A.v. PCu. The chemical shift changes obtained from the CPMG dispersion data are in good agreement with those obtained from the chemical shift titration experiments, and the CPMG derived exchange rates agree with those obtained previously from {sup 15}N backbone relaxation measurements. Compared to measurements of backbone nuclei, {sup 13}C{sup {epsilon}}{sup 1} dispersion provides a more direct method to monitor interchanging protonation states or other kinds of conformational changes of histidine side chains or their environment. Advantages and shortcomings of using the {sup 13}C{sup {epsilon}}{sup 1} dispersion experiments in combination with chemical shift titration experiments to obtain information on exchange dynamics of the histidine side chains are discussed.

  19. Mechanism of Thin Layers Graphite Formation by 13C Implantation and Annealing

    Directory of Open Access Journals (Sweden)

    Gaelle Gutierrez

    2014-04-01

    Full Text Available The mechanism of thin layers graphite (TLG synthesis on a polycrystalline nickel film deposited on SiO2 (300 nm thick/Si(100 has been investigated by 13C implantation of four equivalent graphene monolayers and annealing at moderate temperatures (450–600 °C. During this process, the implanted 13C segregates to the surface. Nuclear Reaction Analyses (NRA are used for the first time in the topic of graphene synthesis to separate the isotopes and to determine the 12C and 13C concentrations at each step. Indeed, a significant part of carbon in the TLG also comes from residual 12C carbon absorbed into the metallic matrix. Raman spectroscopy and imaging are used to determine the main location of each carbon isotope in the TLG. The Raman mappings especially emphasize the role of 12C previously present at the surface that first diffuses along grain boundaries. They play the role of nucleation precursors. Around them the implanted 13C or a mixture of bulk 12C–13C aggregate and further precipitate into graphene-like fragments. Graphenization is effective at around 600 °C. These results point out the importance of controlling carbon incorporation, as well as the importance of preparing a uniform nickel surface, in order to avoid heterogeneous nucleation.

  20. A broad deglacial δ13C minimum event in planktonic foraminiferal records in the Okinawa Trough

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The equatorial Pacific upwelling zone has been suspected of playing an important role in the global atmospheric CO2 changes associated with glacial-interglacial cycles.In order to assess the influencing scope of the surface water deglacial δ13C minimum in the tropical Iow-latitude Pacific,the core DGKS9603, collected from the middle Okinawa Trough, was examined for δ13C records of planktonic foraminifera N. dutertrei and G. ruber. The planktonic foraminiferal δ13C records show a clear decreasing event from 20 to 6 cal. kaBP., which is characterized by long duration of about 14 ka and amplitude shift of 0.4 × 10-3. Its minimum value occurred at 15.7 cai kaBP. The event shows fairly synchrony with the surface water deglacial δ13C minimum identiffed in the tropical Pacific and its marginal seas. Because there is no evidence in planktonic foraminiferal fauna and δ18O records for upwelling and river runoff enhancement,the broad deglacial δ13C minimum event in planktonic foraminiferal records revealed in core DGKS9603 might have been the direct influencing result of the deglacial surface water of the tropical Pacific. The identification for the event in the Okinawa Trough provides new evidence that the water evolution in the tropical low-latitude Pacific plays a key role in large regional, even global carbon cycle.

  1. Measurement of soil carbon oxidation state and oxidative ratio by 13C nuclear magnetic resonance

    Science.gov (United States)

    Hockaday, W.C.; Masiello, C.A.; Randerson, J.T.; Smernik, R.J.; Baldock, J.A.; Chadwick, O.A.; Harden, J.W.

    2009-01-01

    The oxidative ratio (OR) of the net ecosystem carbon balance is the ratio of net O2 and CO2 fluxes resulting from photosynthesis, respiration, decomposition, and other lateral and vertical carbon flows. The OR of the terrestrial biosphere must be well characterized to accurately estimate the terrestrial CO2 sink using atmospheric measurements of changing O2 and CO2 levels. To estimate the OR of the terrestrial biosphere, measurements are needed of changes in the OR of aboveground and belowground carbon pools associated with decadal timescale disturbances (e.g., land use change and fire). The OR of aboveground pools can be measured using conventional approaches including elemental analysis. However, measuring the OR of soil carbon pools is technically challenging, and few soil OR data are available. In this paper we test three solid-state nuclear magnetic resonance (NMR) techniques for measuring soil OR, all based on measurements of the closely related parameter, organic carbon oxidation state (Cox). Two of the three techniques make use of a molecular mixing model which converts NMR spectra into concentrations of a standard suite of biological molecules of known C ox. The third technique assigns Cox values to each peak in the NMR spectrum. We assess error associated with each technique using pure chemical compounds and plant biomass standards whose Cox and OR values can be directly measured by elemental analyses. The most accurate technique, direct polarization solid-state 13C NMR with the molecular mixing model, agrees with elemental analyses to ??0.036 Cox units (??0.009 OR units). Using this technique, we show a large natural variability in soil Cox and OR values. Soil Cox values have a mean of -0.26 and a range from -0.45 to 0.30, corresponding to OR values of 1.08 ?? 0.06 and a range from 0.96 to 1.22. We also estimate the OR of the carbon flux from a boreal forest fire. Analysis of soils from nearby intact soil profiles imply that soil carbon losses associated

  2. 13C NMR spectra of tectonic coals and the effects of stress on structural components

    Institute of Scientific and Technical Information of China (English)

    JU Yiwen; JIANG Bo; HOU Quanlin; WANG Guiliang; NI Shanqin

    2005-01-01

    High-resolution 13C Nuclear Magnetic Resonance (NMR) spectra of different kinds of tectonic coals were obtained using the NMR (CP/MAS+TOSS) method. On the basis of this, after simulation synthesis and division of spectra, the relative contents of carbon functional groups were calculated. Combined with results of Ro, max, XRD testing and element analysis, stress effects on the composition of macromolecular structures in tectonic coals were studied further. The results showed that Ro, max was not only the important index for describing coal rank, but was also effective for estimating the stress effect of tectonic coals. Under tectonic stress action, Ro, max was the most direct indicator of the coal structure and chemical components. Changes in the stacking Lc of the coal basic structure unit (BSU) and La/Lc parameters could distinguish the temperature and stress effects on metamorphic-deformed environments, and reflected the degree of structural deformation. Therefore, on the whole, Lc and La/Lc can be used to index of the degree of structural deformation of tectonic coals. In different metamorphic and deformed environments, different kinds of tectonic coals are formed under structural stress. The changes in characteristics of the macromolecular structure and chemical composition are such that as the increase in structural deformation becomes stronger, from the brittle deformation coal to ductile deformation coal, the ratio of width at the half height of the aromatic carbon and aliphatic carbon peaks (Hfa/Hfal ) was increased. As carbon aromaticity was raised further, carbon aliphaticity reduced obviously and different compositions of macromolecular structure appeared as a jump and wave pattern except for in wrinkle structure coal, which might result chiefly from stress effects on the macromolecular structure of different kinds of tectonic coals. The macromoecular changes of wrinkle structure coal are reflected mainly on physical structure. In the metamorphic and

  3. The $^{13}C$-pockets in AGB Stars and Their Fingerprints in Mainstream SiC Grains

    CERN Document Server

    Liu, Nan; Gallino, Roberto; Savina, Michael R; Bisterzo, Sara; Gyngard, Frank; Pellin, Michael J; Dauphas, Nicolas

    2015-01-01

    We identify three isotopic tracers that can be used to constrain the $^{13}C$-pocket and show the correlated isotopic ratios of Sr and Ba in single mainstream presolar SiC grains. These newly measured data can be explained by postprocess AGB model calculations with large $^{13}C$-pockets with a range of relatively low $^{13}C$ concentrations, which may suggest that multiple mixing processes contributed to the $^{13}C$-pocket formation in parent AGB stars.

  4. Anthropogenic and solar forcing in δ13C time pattern of coralline sponges.

    Science.gov (United States)

    Madonia, Paolo; Reitner, Joachim

    2014-01-01

    We present the results of a re-analysis of a previously published carbon isotope data-set related to coralline sponges in the Caribbean Sea. The original interpretation led to the discrimination between a pre-industrial period, with a signal controlled by solar-induced climatic variations, followed by the industrial era, characterized by a progressive δ(13)C negative shift due to the massive anthropogenic carbon emissions. Our re-analysis allowed to extract from the raw isotopic data evidence of a solar forcing still visible during the industrial era, with a particular reference to the 88-year Gleissberg periods. These signals are related to slope changes in both the δ(13)C versus time and the δ(13)C versus carbon emission curves.

  5. 13C-labeled D-ribose: chemi-enzymic synthesis of various isotopomers.

    Science.gov (United States)

    Serianni, A S; Bondo, P B

    1994-04-01

    Current interest in the use of heteronuclear multidimensional NMR methods to assess the structures, conformations and/or dynamics of oligonucleotides in solution has created an immediate need for nucleosides and their derivatives labeled in various ways with stable isotopes (13C, 2H, 15N and/or 17,18O). This short review focuses exclusively on chemienzymic methods to introduce one or more 13C labels into D-ribose, a precursor to ribo- and 2'-deoxyribonucleosides. It will be demonstrated that five convenient reactions, applied in specific sequences, provide access to 26 of the 32 13C-labeled isotopomers of D-ribose in acceptable yields. While not explicitly discussed herein, these same reactions, appropriately modified, can also be used to insert one or more 2H and/or 17,18O isotopes into this aldopentose.

  6. Measurement of marine productivity using 15N and 13C tracers: Some methodological aspects

    Indian Academy of Sciences (India)

    Naveen Gandhi; Sanjeev Kumar; S Prakash; R Ramesh; M S Sheshshayee

    2011-02-01

    Various experiments involving the measurement of new, regenerated and total productivity using 15N and 13C tracers were carried out in the Bay of Bengal (BOB) and in the Arabian Sea. Results from 15N tracer experiments indicate that nitrate uptake can be underestimated by experiments with incubation time > 4 hours. Indirect evidence suggests pico- and nano-phytoplankton, on their dominance over microphytoplankton, can also influence the f-ratios. Difference in energy requirement for assimilation of different nitrogen compounds decides the preferred nitrogen source during the early hours of incubation. Variation in light intensity during incubation also plays a significant role in the assimilation of nitrogen. Results from time course experiments with both 15N and 13C tracers suggest that photoinhibition appears significant in BOB and the Arabian Sea during noon. A significant correlation has been found in the productivity values obtained using 15N and 13C tracers.

  7. GFT projection NMR for efficient (1)H/ (13)C sugar spin system identification in nucleic acids.

    Science.gov (United States)

    Atreya, Hanudatta S; Sathyamoorthy, Bharathwaj; Jaipuria, Garima; Beaumont, Victor; Varani, Gabriele; Szyperski, Thomas

    2012-12-01

    A newly implemented G-matrix Fourier transform (GFT) (4,3)D HC(C)CH experiment is presented in conjunction with (4,3)D HCCH to efficiently identify (1)H/(13)C sugar spin systems in (13)C labeled nucleic acids. This experiment enables rapid collection of highly resolved relay 4D HC(C)CH spectral information, that is, shift correlations of (13)C-(1)H groups separated by two carbon bonds. For RNA, (4,3)D HC(C)CH takes advantage of the comparably favorable 1'- and 3'-CH signal dispersion for complete spin system identification including 5'-CH. The (4,3)D HC(C)CH/HCCH based strategy is exemplified for the 30-nucleotide 3'-untranslated region of the pre-mRNA of human U1A protein.

  8. Solid state {sup 13}C NMR analysis of Brazilian cretaceous ambers

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Ricardo; Azevedo, Debora A., E-mail: ricardopereira@iq.ufrj.b, E-mail: debora@iq.ufrj.b [Universidade Federal do Rio de Janeiro (IQ/UFRJ), Rio de Janeiro, RJ (Brazil). Inst. de Quimica. Lab. de Geoquimica Organica Molecular e Ambiental; San Gil, Rosane A.S. [Universidade Federal do Rio de Janeiro (IQ/UFRJ), RJ (Brazil). Inst. de Quimica. Lab. de RMN de Solidos; Carvalho, Ismar S. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Geociencias. Dept. de Geologia; Fernandes, Antonio Carlos S. [Museu Nacional (MN/UFRJ), RJ (Brazil). Dept. de Geologia e Paleontologia

    2011-07-01

    {sup 13}C cross polarization with magic angle spinning nuclear magnetic resonance ({sup 13}C CPMAS NMR) spectra have been obtained for the first time to three Cretaceous amber samples from South America. The samples were dated to Lower Cretaceous and collected in sediments from the Amazonas, Araripe and Reconcavo basins, Brazil. All samples have very similar spectra, consistent with a common paleobotanical source. Some aspects of the spectra suggest a relationship between Brazilian ambers and Araucariaceae family, such as intense resonances at 38-39 ppm. All samples are constituted by polylabdane structure associated to Class Ib resins, constituted by polymers of labdanoid diterpenes. Finally, information concerning some structural changes during maturation, such as isomerization of {Delta}{sup 8(17)} and {Delta}{sup 12(13)} unsaturations, were obtained by {sup 13}C NMR analyses. The results concerning botanical affinities are in accordance with previous results obtained by gas chromatography-mass spectrometry (GC-MS). (author)

  9. Probing crystal packing of uniformly (13)C-enriched powder samples using homonuclear dipolar coupling measurements.

    Science.gov (United States)

    Mollica, Giulia; Dekhil, Myriam; Ziarelli, Fabio; Thureau, Pierre; Viel, Stéphane

    2015-02-01

    The relationship between the crystal packing of powder samples and long-range (13)C-(13)C homonuclear dipolar couplings is presented and illustrated for the case of uniformly (13)C-enriched L-alanine and L-histidine·HCl·H2O. Dipolar coupling measurement is based on the partial reintroduction of dipolar interactions by spinning the sample slightly off-magic-angle, while the coupling of interest for a given spin pair is isolated with a frequency-selective pulse. A cost function is used to correlate the so-derived dipolar couplings to trial crystal structures of the samples under study. This procedure allowed for the investigation of the l-alanine space group and L-histidine·HCl·H2O space group and unit-cell parameters.

  10. 13C代谢通量分析%Advances in 13C Metabolic Flux Analysis

    Institute of Scientific and Technical Information of China (English)

    李晓静; 陈涛; 陈洵; 李祥高; 赵学明

    2006-01-01

    代谢通量分析(metabolic flux analysis,MFA)是通过确定代谢网络中代谢流分布来表征细胞代谢状态的强有力的工具.鉴于计量学代谢通量分析在处理复杂代谢网络时表现出的局限性,发展了以13C标记实验为基础的13C MFA.本文介绍了13C MFA的原理与方法,总结和评述了13C MFA在实验与数据分析方面的最新进展以及MFA在功能基因组研究中的重要地位,同时对代谢通量分析的发展前景进行了展望.

  11. Parallel labeling experiments for pathway elucidation and (13)C metabolic flux analysis.

    Science.gov (United States)

    Antoniewicz, Maciek R

    2015-12-01

    Metabolic pathway models provide the foundation for quantitative studies of cellular physiology through the measurement of intracellular metabolic fluxes. For model organisms metabolic models are well established, with many manually curated genome-scale model reconstructions, gene knockout studies and stable-isotope tracing studies. However, for non-model organisms a similar level of knowledge is often lacking. Compartmentation of cellular metabolism in eukaryotic systems also presents significant challenges for quantitative (13)C-metabolic flux analysis ((13)C-MFA). Recently, innovative (13)C-MFA approaches have been developed based on parallel labeling experiments, the use of multiple isotopic tracers and integrated data analysis, that allow more rigorous validation of pathway models and improved quantification of metabolic fluxes. Applications of these approaches open new research directions in metabolic engineering, biotechnology and medicine.

  12. Deuterium isotope effects on 13C chemical shifts of 10-Hydroxybenzo[h]quinolines

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Kamounah, Fadhil S.; Gryko, Daniel T.

    2013-01-01

    to be negative, indicating transmission via the hydrogen bond. In addition unusual long-range effects are seen. Structures, NMR chemical shifts and changes in nuclear shieldings upon deuteriation are calculated using DFT methods. Two-bond deuterium isotope effects on 13C chemical shifts are correlated......Deuterium isotope effects on 13C-NMR chemical shifts are investigated in a series of 10-hydroxybenzo[h]quinolines (HBQ’s) The OH proton is deuteriated. The isotope effects on 13C chemical shifts in these hydrogen bonded systems are rather unusual. The formal four-bond effects are found...... with calculated OH stretching frequencies. Isotope effects on chemical shifts are calculated for systems with OH exchanged by OD. Hydrogen bond potentials are discussed. New and more soluble nitro derivatives are synthesized....

  13. Synthesis of single wall carbon nanotubes with defined {sup 13}C content

    Energy Technology Data Exchange (ETDEWEB)

    Kramberger, C.; Loeffler, M.; Ruemmeli, M.; Grueneis, A.; Schoenfelder, R.; Gemming, T.; Pichler, T.; Buechner, B. [Leibniz Institute for Solid State Research, 01069 Dresden (Germany); Jost, O. [Technical University of Dresden, 01062 Dresden (Germany)

    2006-11-15

    The synthesis of high quality isotope engineered SWCNT by means of laser ablation and the use of Pt-Rh-Re catalyst mixtures has been established. Optical absorption and Raman spectroscopy as well as transmission electron microscopy are utilized to characterize the obtained SWCNTs with regard to purity and yield. The absence of any ferromagnetic materials, as well as the remarkably low abundance of amorphous carbon renders this material ideal for magnetic studies. The controlled augmentation of {sup 13}C is conveniently confirmed by phonon softening and broadening observed in Raman spectroscopy. Isotope labelling at constant sample quality was achieved in the whole range from 1% {sup 13}C up to 98% {sup 13}C. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Local and bulk 13C hyperpolarization in NV-centered diamonds at variable fields and orientations

    CERN Document Server

    Alvarez, Gonzalo A; Fischer, Ran; London, Paz; Kanda, Hisao; Onoda, Shinobu; Isoya, Junichi; Gershoni, David; Frydman, Lucio

    2014-01-01

    Polarizing nuclear spins is of fundamental importance in biology, chemistry and physics. Methods for hyperpolarizing 13C nuclei from free electrons in bulk, usually demand operation at cryogenic temperatures. Room-temperature approaches targeting diamonds with nitrogen-vacancy (NV) centers could alleviate this need, but hitherto proposed strategies lack generality as they demand stringent conditions on the strength and/or alignment of the magnetic field. We report here an approach for achieving efficient electron->13C spin alignment transfers, compatible with a broad range of magnetic field strengths and field orientations with respect to the diamond crystal. This versatility results from combining coherent microwave- and incoherent laser-induced transitions between selected energy states of the coupled electron-nuclear spin manifold. 13C-detected Nuclear Magnetic Resonance (NMR) experiments demonstrate that this hyperpolarization can be transferred via first-shell or via distant 13Cs, throughout the nuclear ...

  15. [The clinical application of 13C-breath tests in pancreatic diseases].

    Science.gov (United States)

    Cherniavskiĭ, V V

    2014-11-01

    Maldigestion persists in most patients with chronic pancreatitis (GP). The objective lipase and amylase insufficiency diagnosis is needed to achieve an adequate clinical response to oral pancreatic enzyme substitution therapy. The novel data is presented in the article about the role of 13C-mixed triglyceride and 13C-corn starch breath tests as a tools for exocrine pancreatic insufficiency diagnosis, for evaluating fat and starch malabsorbtion in CP patients. 135 patients were included in the investigation. It has been shown, that 13C-breath tests could be useful tools in clinical practice for CP diagnosis. They are well correlate with fecal elastase-1 level, has high sensitivity and specificity for diagnosis of lipase and amylase deficiency. Tests make it possible to choose the initial pancreatic enzyme dosage and are beneficial during the treatment for pancreatic enzyme dose correction.

  16. Investigation of α-cluster states in 13C via the (6Li,d) reaction

    CERN Document Server

    Rodrigues, M R D; Horodynski-Matsushigue, L B; Cunsolo, A; Cappuzzello, F; Duarte, J L M; Rodrigues, C L; Ukita, G M; Souza, M A; Miyake, H

    2010-01-01

    The 9Be(6Li,d)13C reaction was used to investigate possible α-cluster states in 13C. The reaction was measured at 25.5 MeV incident energy, employing the São Paulo Pelletron-Enge-Spectrograph facility and the nuclear emulsion detection technique. Ten out of sixteen known levels of 13C, up to 11 MeV of excitation, were observed and, due to the much improved energy resolution of 50 keV, at least three doublets could be resolved. This work presents a preliminary analysis of five of the most intensely populated states, also in comparison with the results of former transfer studies.

  17. Hyperpolarized 13C Urea Relaxation Mechanism Reveals Renal Changes in Diabetic Nephropathy

    DEFF Research Database (Denmark)

    Laustsen, Christoffer; Stokholm Nørlinger, Thomas; Christoffer Hansen, David

    2016-01-01

    Purpose: Our aim was to assess a novel 13C radial fast spin echo golden ratio single shot method for interrogating early renal changes in the diabetic kidney, using hyperpolarized (HP) [13C,15N2]urea as a T2 relaxation based contrast bio-probe. Methods: A novel HP 13C MR contrast experiment...... was conducted in a group of streptozotocin type-1 diabetic rat model and age matched controls. Results: A significantly different relaxation time (P=0.004) was found in the diabetic kidney (0.49±0.03 s) compared with the controls (0.64±0.02 s) and secondly, a strong correlation between the blood oxygen...

  18. The thermal desorption of CO2 from amine carbamate solutions for the 13C isotope enrichment

    Science.gov (United States)

    Dronca, S.; Varodi, C.; Gligan, M.; Stoia, V.; Baldea, A.; Hodor, I.

    2012-02-01

    The CO2 desorption from amine carbamate in non-aqueous solvents is of major importance for isotopic enrichment of 13C. A series of experiments were carried out in order to set up the conditions for the CO2 desorption. For this purpose, a laboratory- scale plant for 13C isotope separation by chemical exchange between CO2 and amine carbamate was designed and used. The decomposition of the carbamate solution was mostly produced in the desorber and completed in the boiler. Two different-length desorbers were used, at different temperatures and liquid flow rates of the amine-non-aqueous solvent solutions. The residual CO2 was determined by using volumetric and gaschromatographic methods. These results can be used for enrichment of 13C by chemical exchange between CO2 and amine carbamate in nonaqueous solvents.

  19. Dynamic nuclear polarization and optimal control spatial-selective 13C MRI and MRS

    DEFF Research Database (Denmark)

    Vinding, Mads Sloth; Laustsen, Christoffer; Maximov, Ivan I.

    2013-01-01

    Aimed at 13C metabolic magnetic resonance imaging (MRI) and spectroscopy (MRS) applications, we demonstrate that dynamic nuclear polarization (DNP) may be combined with optimal control 2D spatial selection to simultaneously obtain high sensitivity and well-defined spatial restriction. This is ach......Aimed at 13C metabolic magnetic resonance imaging (MRI) and spectroscopy (MRS) applications, we demonstrate that dynamic nuclear polarization (DNP) may be combined with optimal control 2D spatial selection to simultaneously obtain high sensitivity and well-defined spatial restriction....... This is achieved through the development of spatial-selective single-shot spiral-readout MRI and MRS experiments combined with dynamic nuclear polarization hyperpolarized [1-13C]pyruvate on a 4.7T pre-clinical MR scanner. The method stands out from related techniques by facilitating anatomic shaped region...

  20. FiatFlux--a software for metabolic flux analysis from 13C-glucose experiments.

    Science.gov (United States)

    Zamboni, Nicola; Fischer, Eliane; Sauer, Uwe

    2005-08-25

    Quantitative knowledge of intracellular fluxes is important for a comprehensive characterization of metabolic networks and their functional operation. In contrast to direct assessment of metabolite concentrations, in vivo metabolite fluxes must be inferred indirectly from measurable quantities in 13C experiments. The required experience, the complicated network models, large and heterogeneous data sets, and the time-consuming set-up of highly controlled experimental conditions largely restricted metabolic flux analysis to few expert groups. A conceptual simplification of flux analysis is the analytical determination of metabolic flux ratios exclusively from MS data, which can then be used in a second step to estimate absolute in vivo fluxes. Here we describe the user-friendly software package FiatFlux that supports flux analysis for non-expert users. In the first module, ratios of converging fluxes are automatically calculated from GC-MS-detected 13C-pattern in protein-bound amino acids. Predefined fragmentation patterns are automatically identified and appropriate statistical data treatment is based on the comparison of redundant information in the MS spectra. In the second module, absolute intracellular fluxes may be calculated by a 13C-constrained flux balancing procedure that combines experimentally determined fluxes in and out of the cell and the above flux ratios. The software is preconfigured to derive flux ratios and absolute in vivo fluxes from [1-13C] and [U-13C]glucose experiments and GC-MS analysis of amino acids for a variety of microorganisms. FiatFlux is an intuitive tool for quantitative investigations of intracellular metabolism by users that are not familiar with numerical methods or isotopic tracer experiments. The aim of this open source software is to enable non-specialists to adapt the software to their specific scientific interests, including other 13C-substrates, labeling mixtures, and organisms.

  1. FiatFlux – a software for metabolic flux analysis from 13C-glucose experiments

    Directory of Open Access Journals (Sweden)

    Fischer Eliane

    2005-08-01

    Full Text Available Abstract Background Quantitative knowledge of intracellular fluxes is important for a comprehensive characterization of metabolic networks and their functional operation. In contrast to direct assessment of metabolite concentrations, in vivo metabolite fluxes must be inferred indirectly from measurable quantities in 13C experiments. The required experience, the complicated network models, large and heterogeneous data sets, and the time-consuming set-up of highly controlled experimental conditions largely restricted metabolic flux analysis to few expert groups. A conceptual simplification of flux analysis is the analytical determination of metabolic flux ratios exclusively from MS data, which can then be used in a second step to estimate absolute in vivo fluxes. Results Here we describe the user-friendly software package FiatFlux that supports flux analysis for non-expert users. In the first module, ratios of converging fluxes are automatically calculated from GC-MS-detected 13C-pattern in protein-bound amino acids. Predefined fragmentation patterns are automatically identified and appropriate statistical data treatment is based on the comparison of redundant information in the MS spectra. In the second module, absolute intracellular fluxes may be calculated by a 13C-constrained flux balancing procedure that combines experimentally determined fluxes in and out of the cell and the above flux ratios. The software is preconfigured to derive flux ratios and absolute in vivo fluxes from [1-13C] and [U-13C]glucose experiments and GC-MS analysis of amino acids for a variety of microorganisms. Conclusion FiatFlux is an intuitive tool for quantitative investigations of intracellular metabolism by users that are not familiar with numerical methods or isotopic tracer experiments. The aim of this open source software is to enable non-specialists to adapt the software to their specific scientific interests, including other 13C-substrates, labeling mixtures

  2. Intrashell δ13C SIMS measurements in the cultured planktic foraminifer Orbulina universa

    Science.gov (United States)

    Vetter, L.; Kozdon, R.; Valley, J. W.; Mora, C. I.; Spero, H. J.

    2013-12-01

    In this study, we present experimental data from the planktic foraminifer Orbulina universa cultured in laboratory experiments. We demonstrate that the δ13C of calcite precipitated in 13C-labeled seawater for 24 h can be resolved and accurately measured using Secondary Ion Mass Spectrometry (SIMS). Specimens maintained at 20°C were transferred from ambient seawater (δ13CDIC = +1.3‰) into 13C-enriched seawater with δ13CDIC = +51.5‰ and elevated [Ba] for 24 h. Specimens were then transferred into ambient seawater with elevated [87Sr] for 6-9 h of calcification, followed by a transfer back into unlabeled ambient seawater until gametogenesis. This technique produced O. universa shells with calcite layers of distinct geochemical signatures. We quantify the spatial positions of trace element labels in the shells using laser ablation ICP-MS depth profiling. Using fragments from the same shells, we quantify intrashell δ13Ccalcite using SIMS with a 6 or 8 μm spot (×1.1‰ (2 SD)). Measured δ13Ccalcite values in ambient O. universa shell layers are within 2‰ of predicted δ13Ccalcite values. In 13C-labeled bands of calcite, 6 μm SIMS spot measurements are within 2‰ of predicted δ13Ccalcite values, whereas 8 μm SIMS spots yield values that are intermediate between predicted values for ambient and spiked calcite. The spatial agreement between trace element and carbon isotope data suggest that δ13C, Ba, and Sr tracers are incorporated synchronously into shell calcite, within the resolution of the two analytical techniques. These results demonstrate the ability of SIMS δ13C measurements to resolve 6 μm features in foraminifer shell calcite, and highlight the potential of this technique for addressing questions about foraminifer ecology, biomineralization, and paleoceanography.

  3. Habitat-specific differences in plasticity of foliar δ13C in temperate steppe grasses

    Science.gov (United States)

    Liu, Yanjie; Zhang, Lirong; Niu, Haishan; Sun, Yue; Xu, Xingliang

    2014-01-01

    A decrease in foliar δ13C with increasing precipitation is a common tendency in steppe plants. However, the rate of decrease has been reported to differ between different species or populations. We here hypothesized that plant populations in the same habitat of temperate steppes may not differ in foliar δ13C response patterns to precipitation, but could differ in the levels of plasticity of foliar δ13C across different habitats. In order to test this hypothesis, we conducted controlled watering experiments in northeast China at five sites along a west–east transect at latitude 44°N, which show substantial interannual fluctuations and intra-annual changes in precipitation among them. In 2001, watering treatment (six levels, three replicates) was assigned to 18 plots at each site. The responses of foliar δ13C to precipitation (i.e., the sum of watering and rainfall) were determined in populations of several grass species that were common across all sites. Although similar linear regression slopes were observed for populations of different species growing at the same site, significantly different slopes were obtained for populations of the same species growing at different sites. Further, the slope of the line progressively decreased from Site I to Site V for all species in this study. These results suggest habitat-specific differences in plasticity of foliar δ13C in temperate steppe grasses. This indicates that species' δ13C response to precipitation is conservative at the same site due to their long-term acclimation, but the mechanism responsible behind this needs further investigations. PMID:25035804

  4. Process Model for Studying Regional 13C Stable Isotope Exchange between Vegetation and Atmosphere

    Science.gov (United States)

    Chen, J. M.; Chen, B.; Huang, L.; Tans, P.; Worthy, D.; Ishizawa, M.; Chan, D.

    2007-12-01

    The variation of the stable isotope 13CO2 in the air in exchange with land ecosystems results from fractionation processes in both plants and soil during photosynthesis and respiration. Its diurnal and seasonal variations therefore contain information on the carbon cycle. We developed a model (BEPS-iso) to simulate its exchange between vegetation and the atmosphere. To be useful for regional carbon cycle studies, the model has the following characteristics: (i) it considers the turbulent mixing in the vertical profile from the soil surface to the top of the planetary boundary layer (PBL); (ii) it scales individual leaf photosynthetic discrimination to the whole canopy through the separation of sunlit and shaded leaf groups; (iii) through simulating leaf-level photosynthetic processes, it has the capacity to mechanistically examine isotope discrimination resulting from meteorological forcings, such as radiation, precipitation and humidity; and (iv) through complete modeling of radiation, energy and water fluxes, it also simulates soil moisture and temperature needed for estimating ecosystem respiration and the 13C signal from the soil. After validation using flask data acquired at 20 m level on a tower near Fraserdale, Ontario, Canada, during intensive campaigns (1998-2000), the model has been used for several purposes: (i) to investigate the diurnal and seasonal variations in the disequilibrium in 13C fractionation between ecosystem respiration and photosynthesis, which is an important step in using 13C measurements to separate these carbon cycle components; (ii) to quantify the 13C rectification in the PBL, which differs significantly from CO2 rectification because of the diurnal and seasonal disequilibriums; and (iii) to model the 13C spatial and temporal variations over the global land surface for the purpose of CO2 inversion using 13C as an additional constraint.

  5. Neuroprotective effects of caffeine in MPTP model of Parkinson's disease: A (13)C NMR study.

    Science.gov (United States)

    Bagga, Puneet; Chugani, Anup N; Patel, Anant B

    2016-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by degeneration of nigrostriatal dopaminergic neurons with an accompanying neuroinflammation leading to loss of dopamine in the basal ganglia. Caffeine, a well-known A2A receptor antagonist is reported to slow down the neuroinflammation caused by activated microglia and reduce the extracellular glutamate in the brain. In this study, we have evaluated the neuroprotective effect of caffeine in the MPTP model of PD by monitoring the region specific cerebral energy metabolism. Adult C57BL6 mice were treated with caffeine (30 mg/kg, i.p.) 30 min prior to MPTP (25 mg/kg, i.p.) administration for 8 days. The paw grip strength of mice was assessed in order to evaluate the motor function after various treatments. For metabolic studies, mice were infused with [1,6-(13)C2]glucose, and (13)C labeling of amino acids was monitored using ex vivo(1)H-[(13)C]-NMR spectroscopy. The paw grip strength was found to be reduced following the MPTP treatment. The caffeine pretreatment showed significant protection against the reduction of paw grip strength in MPTP treated mice. The levels of GABA and myo-inositol were found to be elevated in the striatum of MPTP treated mice. The (13)C labeling of GluC4, GABAC2 and GlnC4 from [1,6-(13)C2]glucose was decreased in the cerebral cortex, striatum, olfactory bulb, thalamus and cerebellum suggesting impaired glutamatergic and GABAergic neuronal activity and neurotransmission of the MPTP treated mice. Most interestingly, the pretreatment of caffeine maintained the (13)C labeling of amino acids to the control values in cortical, olfactory bulb and cerebellum regions while it partially retained in striatal and thalamic regions in MPTP treated mice. The pretreatment of caffeine provides a partial neuro-protection against severe striatal degeneration in the MPTP model of PD.

  6. 吉士脱酮的1H及13C NMR研究%1H NMR AND 13C NMR STUDY ON GESTODENE

    Institute of Scientific and Technical Information of China (English)

    盛宛云; 白秀梅

    1999-01-01

    Gestodene是避孕药物18甲基炔诺酮的衍生物,动物实验表明它的孕激素活性为18-甲基炔诺酮的3~5倍.本文采用各种2D NMR技术,包括:1H-1H COSY,1H-13C COSY和HMBC等,归属了它的1H和13C的谱线,并得到了有关质子间的偶合常数.

  7. Study on parameters of L-[1-13C]phenylalanine breath test for quantitative assessment of liver function in healthy subjects and patients with hepatitis B virus-related liver disease

    Institute of Scientific and Technical Information of China (English)

    YAN Wei-Li; LIN Xiang-Tong; JIANG Yi-Bin; SUN Su; SUN Da-Yu

    2005-01-01

    The aims of this study are to investigate the feasibility and validity of the L-[1-13C] phenylalanine breath test (13C-PheBT) which has been used to measure hepatocyte functional capacity in hepatitis B virus-related liver disease patients and to propose validity parameters of the test in 12 healthy volunteer, 8 chronic hepatitis and 26 liver cirrhotic patients. 100mg/body nonradiative L-[1-13C] phenylalanine (13C-Phe) was administered orally to all subjects.Breath samples were taken before and different intervals within 360 min after administration. The 13CO2/12CO2 enrichment was assessed by isotope ratio mass spectrometer. The parameter percentage 13C excretion rate 13CER, (%13C dose/h) all peaked within 10-30 min after oral 13C-Phe application. The parameters such as maximum value of 13C excretion rate, 13CERmax (% 13C dose/h) (controls: 18.0±3.3; Child A: 11.0±3.8; Child B: 5.0±0.5; Child C:3.6±1.2), 13C excretion rate at 30min, 13CER30 (% dose/h) (controls: 11.9±2.1; Child A: 8.1±0.4; Child B: 6.1±0.9;Child C: 3.2±1.2), 13C cumulative excretion of first 60 min, 13Ccum60 (% 13C dose) (controls: 9.3±1.4; Child A: 6.6±0.7;Child B: 4.1±0.3; Child C: 2.6±0.9) and half time of 13C excretion rate, T1/2 (minutes) (controls: 40.4±4.4; chronic hepatitis: 53.4±4.4; Child A: 59.8±4.5;Child B: 102.0±17.3;Child C: 212.1±87.9) were effective indexes which could be employed to stage hepatocyte impairment and liver functional reserve of advanced HBV-related cirrhotic patients (i.e. healthy subjects, Child A, B, C);T1/2 was also useful for distinguishing mild HBV-related liver injure.

  8. Applications of the Theorem of Pythagoras in R[superscript 3

    Science.gov (United States)

    Srinivasan, V. K.

    2010-01-01

    Three distinct points A = (a, 0, 0) B = (0, b, 0) and (c, 0, 0) with abc not equal to 0 are taken, respectively on the "x", "y" and the "z"-axes of a rectangular coordinate system in R[superscript 3]. Using the converse of the theorem of Pythagoras, it is shown that the triangle [delta]ABC can never be a right-angled triangle. The result seems to…

  9. Deuterium isotope effects on 13C chemical shifts of negatively charged NH.N systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Pietrzak, Mariusz; Grech, Eugeniusz

    2013-01-01

    Deuterium isotope effects on 13C chemical shifts are investigated in anions of 1,8-bis(4-toluenesulphonamido)naphthalenes together with N,N-(naphthalene-1,8-diyl)bis(2,2,2-trifluoracetamide) all with bis(1,8-dimethylamino)napthaleneH+ as counter ion. These compounds represent both “static......” and equilibrium cases. NMR assignments of the former have been revised. The NH proton is deuteriated. The isotope effects on 13C chemical shifts are rather unusual in these strongly hydrogen bonded systems between a NH and a negatively charged nitrogen atom. The formal four-bond effects are found to be negative...

  10. Relaxation and Dephasing in a Two-Electron 13C Nanotube Double Quantum Dot

    DEFF Research Database (Denmark)

    Churchill, H O H; Kuemmeth, Ferdinand; Harlow, J W

    2009-01-01

    We use charge sensing of Pauli blockade (including spin and isospin) in a two-electron 13C nanotube double quantum dot to measure relaxation and dephasing times. The relaxation time T1 first decreases with a parallel magnetic field and then goes through a minimum in a field of 1.4 T. We attribute...... both results to the spin-orbit-modified electronic spectrum of carbon nanotubes, which at high field enhances relaxation due to bending-mode phonons. The inhomogeneous dephasing time T2* is consistent with previous data on hyperfine coupling strength in 13C nanotubes....

  11. Practical aspects of 13C surface receive coils with active decoupling and tuning circuit

    DEFF Research Database (Denmark)

    Nilsson, Daniel; Mohr, Johan Jacob; Zhurbenko, Vitaliy

    2012-01-01

    Magnetic Resonance Imaging (MRI) of nuclei other than 1H (e.g. 13C) allows for characterisation of metabolic processes. Imaging of such nuclei, however, requires development of sensitive MRI coils. This paper describes the design of surface receive coils for 13C imaging in small animals. The design...... is based on application-specified coil profile and includes impedance matching and balancing circuits. Active decoupling is implemented in order to minimize the influence of the receiving coil on the homogeneity of the transmit-coil field. Measurement results for a coil prototype are presented, including...

  12. Coupling aboveground and belowground activities using short term fluctuations in 13C composition of soil respiration

    Science.gov (United States)

    Epron, D.; Parent, F.; Grossiord, C.; Plain, C.; Longdoz, B.; Granier, A.

    2011-12-01

    There is a growing amount of evidence that belowground processes in forest ecosystems are tightly coupled to aboveground activities. Soil CO2 efflux, the largest flux of CO2 to the atmosphere, is dominated by root respiration and by respiration of microorganisms that find the carbohydrates required to fulfil their energetic costs in the rhizosphere. A close coupling between aboveground photosynthetic activity and soil CO2 efflux is therefore expected. The isotopic signature of photosynthates varies with time because photosynthetic carbon isotope discrimination is dynamically controlled by environmental factors. This temporal variation of δ13C of photosynthate is thought to be transferred along the tree-soil continuum and it will be retrieved in soil CO2 efflux after a time lag that reflects the velocity of carbon transport from canopy to belowground. However, isotopic signature of soil CO2 efflux is not solely affected by photosynthetic carbon discrimination, bur also by post photosynthetic fractionation, and especially by fractionation processes affecting CO2 during the transport from soil layers to surface. Tunable diode laser spectrometry is a useful tool to quantify short-term variation in δ13C of soil CO2 efflux and of CO2 in the soil atmosphere. We set up hydrophobic tubes to measure the vertical profile of soil CO2 concentration and its δ13C composition in a temperate beech forest, and we monitored simultaneously δ13C of trunk and soil CO2 efflux, δ13C of phloem exudate and δ13C of leaf sugars. We evidenced that temporal changes in δ13C of soil CO2 and soil CO2 efflux reflected changes in environmental conditions that affect photosynthetic discrimination and that soil CO2 was 4.4% enriched compared to soil CO2 efflux according to diffusion fractionation. However, this close coupling can be disrupted when advective transport of CO2 took place. We also reported evidences that temporal variations in the isotopic composition of soil CO2 efflux reflect

  13. Analysis and theoretical modeling of 18O enriched carbon dioxide spectrum by CRDS near 1.35 μm: (II) 16O13C18O, 16O13C17O, 12C18O2, 17O12C18O, 12C17O2, 13C18O2 and 17O13C18O

    Science.gov (United States)

    Karlovets, E. V.; Campargue, A.; Kassi, S.; Tashkun, S. A.; Perevalov, V. I.

    2017-04-01

    This contribution is the second part of the analysis of the room temperature absorption spectrum of 18O enriched carbon dioxide by very high sensitivity Cavity Ring Down spectroscopy between 6977 and 7918 cm-1 (1.43-1.26 μm). Overall, more than 8600 lines belonging to 166 bands of eleven carbon dioxide isotopologues were rovibrationnally assigned. In a first part (Kassi et al. J Quant Spectrosc Radiat Transfer 187 (2017) 414-425, http://dx.doi.org/10.1016/j.jqsrt.2016.09.002), the results relative to mono-substituted isotopologues, 16O12C18O, 16O12C17O, 12C16O2 and 13C16O2, were presented. This second contribution is devoted to the multiply-substituted isotopologues or clumped isotopologues of particular importance in geochemistry: 16O13C18O, 16O13C17O, 12C18O2, 17O12C18O, 12C17O2, 13C18O2 and 17O13C18O. On the basis of the predictions of effective Hamiltonian models, a total of 3195 transitions belonging to 73 bands were rovibrationnally assigned for these seven species. Among the 73 observed bands, 55 are newly reported. All the identified bands correspond to ΔP=10 and 11 series of transitions, where P= 2V1+V2+3V3 is the polyad number (Vi are vibrational quantum numbers). The accurate spectroscopic parameters of 70 bands have been determined from the standard band-by-band analysis. Global fits of the measured line intensities of the ΔP=10 series of transitions of 17O12C18O and 16O13C18O and of the ΔP=11 series of transitions of 12C18O2, 17O12C18O, 16O13C18O and 13C18O2 were performed to determine the corresponding sets of the effective dipole moment parameters.

  14. Dynamics of amino acid redistribution in the carnivorous Venus flytrap (Dionaea muscipula) after digestion of (13) C/(15) N-labelled prey.

    Science.gov (United States)

    Kruse, J; Gao, P; Eibelmeier, M; Alfarraj, S; Rennenberg, H

    2017-07-20

    Amino acids represent an important component in the diet of the Venus flytrap (Dionaea muscipula), and supply plants with much needed nitrogen resources upon capture of insect prey. Little is known about the significance of prey-derived carbon backbones of amino acids for the success of Dionaea's carnivorous life-style. The present study aimed at characterizing the metabolic fate of (15) N and (13) C in amino acids acquired from double-labeled insect powder. We tracked changes in plant amino acid pools and their δ(13) C- and δ(15) N-signatures over a period of five weeks after feeding, as affected by contrasting feeding intensity and tissue type (i.e., fed and non-fed traps and attached petioles of Dionaea). Isotope signatures (i.e., δ(13) C and δ(15) N) of plant amino acid pools were strongly correlated, explaining 60% of observed variation. Residual variation was related to contrasting effects of tissue type, feeding intensity and elapsed time since feeding. Synthesis of nitrogen-rich transport compounds (i.e., amides) during peak time of prey digestion increased (15) N- relative to (13) C- abundances in amino acid pools. After completion of prey digestion, (13) C in amino acid pools was progressively exchanged for newly fixed (12) C. The latter process was most evident for non-fed traps and attached petioles of plants that had received ample insect powder. We argue that prey-derived amino acids contribute to respiratory energy gain and loss of (13) CO2 during conversion into transport compounds (i.e., 2 days after feeding), and that amino-nitrogen helps boost photosynthetic carbon gain later on (i.e., 5 weeks after feeding). © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. A 16 ka climate record deduced from δ13C and C/N ratio in Qinghai Lake sediments, northeastern Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    On the basis of multi-proxy analysis on TOC, TN, C/N, organic δ13C and grain size, sediment record from Qinghai Lake provides evidences of stepwise-patterned climatic change since 16 ka BP.Results show that Qinghai Lake underwent six environmental stages. From 16.2 to 14.3 ka BP and from 4.0 to 2.1 ka BP, the organic δ13C value was controlled by the concentration of atmospheric CO2. Relative higher organic δ13C values occurred between 14.3 to 10.4 ka BP indicative of water hardness decrease resulted from melting ice water, corresponding to two intervals of C/N peak values to the Bo1ing and Allerod warm periods in Europe respectively. From 10.4 ka BP, Qinghai Lake entered the Holocene and the climate was warm and a little dry. The Megathermal appeared at about 6.7 ka BP when the vegetation around the lake transformed into a forest. Between 6.3 ka BP and 4.0 ka BP, the temperature decreased and δ13C value was controlled by the expansion of C3 plants and the retreat of C4 plants in river catchment.Since 4.0 ka BP, the climate gradually became cold and dry. From 2.1 ka BP, the cold-dry climate and human activity resulted in an abrupt increase in C/N with deceased δ13C value; meanwhile, many coarse grains appeared in sediments.

  16. Multilinear relations between {sup 13} C NMR chemical shifts of aliphatic halides; Relacoes lineares multiplas entre deslocamentos quimicos em RMN {sup 13} C de haletos alifaticos

    Energy Technology Data Exchange (ETDEWEB)

    Doyama, Julio Toshimi [UNESP, Botucatu, SP (Brazil). Inst. de Biociencias. Dept. de Quimica e Bioquimica; Tornero, Maria Teresinha Trovarelli [UNESP, Botucatu, SP (Brazil). Inst. de Biociencias. Dept. de Bioestatistica; Yoshida, Massayoshi [UNESP, Araraquara, SP (Brazil). Inst. de Quimica. Dept. de Quimica Organica

    1999-07-01

    The {sup 13} C NMR chemical shifts of the {alpha}, {beta}, {gamma} and {delta} carbons of 17 sets of aliphatic halides (F, Cl, Br and I), including mono, bi and tricyclic compounds, can be reproduced by a linear equation composed with two constants and two variables: {delta}{sub RX} = A{sup *} {delta}{sub R-X2}, where A and B are constants derived from multilinear regression of {sup 13} C chemical shifts observed; {delta}{sub R-X}, the chemical shifts of aliphatic halide (R-X); and {delta}{sub R-X1}, {delta}{sub R-X2} the chemical shifts of other halides. It was observed a better correlation for aliphatic bromides (R-X) by using data of aliphatic fluorides (R-X 1) and aliphatic iodides (R-X 2), resulting R{sup 2} of 0.9989 and average absolute deviation (AVG) of 0.39 ppm. For the chlorides (R-X), the better correlation was observed by using data of bromides (R-X 1) was observed better correlation with data of bromides (R-X 1) and iodides (R-X 2), R{sup 2} of 0.997 and AVG of 1.10 ppm. For the iodides (R-X) was observed better correlation with data of fluorides (R-X 1) and bromides (R-X 2), R{sup 2} of 0.9972 and AVG of 0.60 ppm. (author)

  17. The Late Devonian Frasnian-Famennian (F/F) biotic crisis: Insights from δ13C carb, δ13C org and 87Sr / 86Sr isotopic systematics

    Science.gov (United States)

    Chen, Daizhao; Qing, Hairuo; Li, Renwei

    2005-06-01

    A severe biotic crisis occurred during the Late Devonian Frasnian-Famennian (F/F) transition (± 367 Myr). Here we present δ13C carb, δ13C org and 87Sr / 86Sr isotopic systematics, from identical samples of two sections across F/F boundary in South China, which directly demonstrate large and frequent climatic fluctuations (˜200 kyr) from warming to cooling during the F/F transition. These climate fluctuations are interpreted to have been induced initially by increased volcanic outgassing, and subsequent enhanced chemical weathering linked to the rapid expansion of vascular plants on land, which would have increased riverine delivery to oceans and primary bioproductivity, and subsequent burial of organic matter, thereby resulting in climate cooling. Such large and frequent climatic fluctuations, together with volcanic-induced increases in nutrient (e.g., biolimiting Fe), toxin (sulfide) and anoxic water supply, and subsequent enhanced riverine fluxes and microbial bloom, were likely responsible for the stepwise faunal demise of F/F biotic crisis.

  18. Effects of Ergot Alkaloids on Liver Function of Piglets as Evaluated by the 13C-Methacetin and 13C-α-Ketoisocaproic Acid Breath Test

    Directory of Open Access Journals (Sweden)

    Sonja Diers

    2013-01-01

    Full Text Available Ergot alkaloids (the sum of individual ergot alkaloids are termed as total alkaloids, TA are produced by the fungus Claviceps purpurea, which infests cereal grains commonly used as feedstuffs. Ergot alkaloids potentially modulate microsomal and mitochondrial hepatic enzymes. Thus, the aim of the present experiment was to assess their effects on microsomal and mitochondrial liver function using the 13C-Methacetin (MC and 13C-α-ketoisocaproic acid (KICA breath test, respectively. Two ergot batches were mixed into piglet diets, resulting in 11 and 22 mg (Ergot 5-low and Ergot 5-high, 9 and 14 mg TA/kg (Ergot 15-low and Ergot 15-high and compared to an ergot-free control group. Feed intake and live weight gain decreased significantly with the TA content (p < 0.001. Feeding the Ergot 5-high diet tended to decrease the 60-min-cumulative 13CO2 percentage of the dose recovery (cPDR60 by 26% and 28% in the MC and KICA breath test, respectively, compared to the control group (p = 0.065. Therefore, both microsomal and mitochondrial liver function was slightly affected by ergot alkaloids.

  19. Relaxation-compensated difference spin diffusion NMR for detecting {sup 13}C–{sup 13}C long-range correlations in proteins and polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tuo; Williams, Jonathan K. [Massachusetts Institute of Technology, Department of Chemistry (United States); Schmidt-Rohr, Klaus [Brandeis University, Department of Chemistry (United States); Hong, Mei, E-mail: meihong@mit.edu [Massachusetts Institute of Technology, Department of Chemistry (United States)

    2015-02-15

    The measurement of long-range distances remains a challenge in solid-state NMR structure determination of biological macromolecules. In 2D and 3D correlation spectra of uniformly {sup 13}C-labeled biomolecules, inter-residue, inter-segmental, and intermolecular {sup 13}C–{sup 13}C cross peaks that provide important long-range distance constraints for three-dimensional structures often overlap with short-range cross peaks that only reflect the covalent structure of the molecule. It is therefore desirable to develop new approaches to obtain spectra containing only long-range cross peaks. Here we show that a relaxation-compensated modification of the commonly used 2D {sup 1}H-driven spin diffusion (PDSD) experiment allows the clean detection of such long-range cross peaks. By adding a z-filter to keep the total z-period of the experiment constant, we compensate for {sup 13}C T{sub 1} relaxation. As a result, the difference spectrum between a long- and a scaled short-mixing time spectrum show only long-range correlation signals. We show that one- and two-bond cross peaks equalize within a few tens of milliseconds. Within ∼200 ms, the intensity equilibrates within an amino acid residue and a monosaccharide to a value that reflects the number of spins in the local network. With T{sub 1} relaxation compensation, at longer mixing times, inter-residue and inter-segmental cross peaks increase in intensity whereas intra-segmental cross-peak intensities remain unchanged relative to each other and can all be subtracted out. Without relaxation compensation, the difference 2D spectra exhibit both negative and positive intensities due to heterogeneous T{sub 1} relaxation in most biomolecules, which can cause peak cancellation. We demonstrate this relaxation-compensated difference PDSD approach on amino acids, monosaccharides, a crystalline model peptide, a membrane-bound peptide and a plant cell wall sample. The resulting difference spectra yield clean multi-bond, inter

  20. Simultaneous hyperpolarized (13)C-pyruvate MRI and (18)F-FDG-PET in cancer (hyperPET): feasibility of a new imaging concept using a clinical PET/MRI scanner.

    Science.gov (United States)

    Gutte, Henrik; Hansen, Adam E; Henriksen, Sarah T; Johannesen, Helle H; Ardenkjaer-Larsen, Jan; Vignaud, Alexandre; Hansen, Anders E; Børresen, Betina; Klausen, Thomas L; Wittekind, Anne-Mette N; Gillings, Nic; Kristensen, Annemarie T; Clemmensen, Andreas; Højgaard, Liselotte; Kjær, Andreas

    2015-01-01

    In this paper we demonstrate, for the first time, the feasibility of a new imaging concept - combined hyperpolarized (13)C-pyruvate magnetic resonance spectroscopic imaging (MRSI) and (18)F-FDG-PET imaging. This procedure was performed in a clinical PET/MRI scanner with a canine cancer patient. We have named this concept hyper PET. Intravenous injection of the hyperpolarized (13)C-pyruvate results in an increase of (13)C-lactate, (13)C-alanine and (13)C-CO2 ((13)C-HCO3) resonance peaks relative to the tissue, disease and the metabolic state probed. Accordingly, with dynamic nuclear polarization (DNP) and use of (13)C-pyruvate it is now possible to directly study the Warburg Effect through the rate of conversion of (13)C-pyruvate to (13)C-lactate. In this study, we combined it with (18)F-FDG-PET that studies uptake of glucose in the cells. A canine cancer patient with a histology verified local recurrence of a liposarcoma on the right forepaw was imaged using a combined PET/MR clinical scanner. PET was performed as a single-bed, 10 min acquisition, 107 min post injection of 310 MBq (18)F-FDG. (13)C-chemical shift imaging (CSI) was performed just after FDG-PET and 30 s post injection of 23 mL hyperpolarized (13)C-pyruvate. Peak heights of (13)C-pyruvate and (13)C-lactate were quantified using a general linear model. Anatomic (1)H-MRI included axial and coronal T1 vibe, coronal T2-tse and axial T1-tse with fat saturation following gadolinium injection. In the tumor we found clearly increased (13)C-lactate production, which also corresponded to high (18)F-FDG uptake on PET. This is in agreement with the fact that glycolysis and production of lactate are increased in tumor cells compared to normal cells. Yet, most interestingly, also in the muscle of the forepaw of the dog high (18)F-FDG uptake was observed. This was due to activity in these muscles prior to anesthesia, which was not accompanied by a similarly high (13)C-lactate production. Accordingly, this clearly

  1. Critical appraisal of 13C breath tests for microsomal liver function: aminopyrine revisited.

    Science.gov (United States)

    Pijls, Kirsten E; de Vries, Hanne; Nikkessen, Suzan; Bast, Aalt; Wodzig, Will K W H; Koek, Ger H

    2014-04-01

    As liver diseases are a major health problem and especially the incidence of metabolic liver diseases like non-alcoholic fatty liver disease (NAFLD) is rising, the demand for non-invasive tests is growing to replace liver biopsy. Non-invasive tests such as carbon-labelled breath tests can provide a valuable contribution to the evaluation of metabolic liver function. This review aims to critically appraise the value of the (13) C-labelled microsomal breath tests for the evaluation of metabolic liver function, and to discuss the role of cytochrome P450 enzymes in the metabolism of the different probe drugs, especially of aminopyrine. Although a number of different probe drugs have been used in breath tests, the perfect drug to assess the functional metabolic capacity of the liver has not been found. Data suggest that both the (13) C(2) -aminopyrine and the (13) C-methacetin breath test can play a role in assessing the capacity of the microsomal liver function and may be useful in the follow-up of patients with chronic liver diseases. Furthermore, CYP2C19 seems to be an important enzyme in the N-demethylation of aminopyrine, and polymorphisms in this gene may influence breath test values, which should be kept in mind when performing the (13) C(2) -aminopyrine breath test in clinical practice.

  2. The end-Triassic negative δ13C excursion : A lithologic test

    NARCIS (Netherlands)

    Bachan, Aviv; van de Schootbrugge, Bas; Payne, Jonathan L.

    2014-01-01

    The end-Triassic mass extinction is associated with a large negative carbon isotope excursion, which has been interpreted as reflecting the rapid injection of 13C depleted CO2 or methane associated with the emplacement of the Central Atlantic Magmatic Province. However, in a number of sections in ce

  3. 13C cpmas nmr and molecular modeling in the studies of new analogues of buspirone.

    Science.gov (United States)

    Pisklak, Maciej; Perliński, Mirosław; Kossakowski, Jerzy; Wawer, Iwona

    2002-01-01

    Three derivatives of 1,4 dichloro-dibenzo[e,h]-bicyclo[2.2.3]octane-2,3-dicarboximide were examined by 13C CPMAS NMR. Low energy conformations were found by a semi-empirical AM1 approach, NMR shielding constants were calculated using the GIAO RHF method.

  4. Carbon isotope ratio (delta13C) values of urinary steroids for doping control in sport.

    Science.gov (United States)

    Cawley, Adam T; Trout, Graham J; Kazlauskas, Rymantas; Howe, Christopher J; George, Adrian V

    2009-03-01

    The detection of steroids originating from synthetic precursors in relation to their chemically identical natural analogues has proven to be a significant challenge for doping control laboratories accredited by the World Anti-Doping Agency (WADA). Endogenous steroid abuse may be confirmed by utilising the atomic specificity of gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) that enables the precise measurement of differences in stable isotope ratios that arise as a result of fractionation patterns inherent in the source of steroids. A comprehensive carbon isotope ratio (delta(13)C) profiling study (n=1262) of urinary ketosteroids is reported that demonstrates the inter-individual variation that can be expected from factors such as diet, ethnicity, gender and age within and between different populations (13 countries). This delta(13)C distribution is shown by principal component analysis (PCA) to provide a statistical comparison to delta(13)C values observed following administration of testosterone enanthate. A limited collection of steroid diol data (n=100; consisting of three countries) is also presented with comparison to delta(13)C values of excreted testosterone to validate criteria for WADA accredited laboratories to prove doping offences.

  5. Glucose isotope, carbon recycling, and gluconeogenesis using [U-13C]glucose and mass isotopomer analysis.

    Science.gov (United States)

    Lee, W N; Sorou, S; Bergner, E A

    1991-06-01

    Experimental determinations of glucose carbon recycling using 14C or 13C glucose tracer often underestimate true Cori cycle activity because of dilution and exchange of isotope tracer through the tricarboxylic acid (TCA) cycle. The term glucose isotope recycling therefore is used to distinguish recycling of isotope from recycling of glucose carbon, the actual quantity of circulating glucose recycled. Recently, per-labeled glucose ([U-13C6]glucose) has been used to estimate glucose appearance rate and glucose isotope recycling. Chemical structural information determined by mass isotopomer analysis has been used to correct for dilution of isotope through the TCA cycle. In this report, we present experiments in the study of glucose turnover and recycling using [U-13C6]glucose. Methods of single injection and continuous infusion of [U-13C6]glucose are compared. A formula for the calculation of a dilution factor using TCA cycle parameters is derived. In this study of six rabbits, glucose turnover rate ranged from 3.4 to 8.8 mg/kg/min, and glucose m + 3 mass isotopomer recycling from 7 to 12%. The rate of pyruvate carboxylation (Y) was comparable to that of citrate synthetase, having an average relative flux of 0.89. Applying the correction factor for tracer dilution to the observed mass isotopomer recycling, we determined glucose carbon recycling (or Cori cycle activity) to be 22-35% of hepatic glucose output.

  6. 29 CFR 2580.412-36 - Application of 13(c) to “party in interest”.

    Science.gov (United States)

    2010-07-01

    ... ADMINISTRATION, DEPARTMENT OF LABOR TEMPORARY BONDING RULES UNDER THE EMPLOYEE RETIREMENT INCOME SECURITY ACT OF 1974 TEMPORARY BONDING RULES Prohibition Against Bonding by Parties Interested in the Plan § 2580.412... in 13(c) appears to indicate that in this connection the intent of Congress was to eliminate...

  7. Ethane's 12C/13C Ratio in Titan: Implications for Methane Replenishment

    Science.gov (United States)

    Jennings, Donald E.; Nixon, C. A.; Romani, P. N.; Bjoraker, G. L.; Sada, P. V.; Lunsford, A. W.; Boyle, R. J.; Hesman, B. E.; McCabe, G. H.

    2009-01-01

    As the .main destination of carbon in the destruction of methane in the atmosphere of Titan, ethane provides information about the carbon isotopic composition of the reservoir from which methane is replenished. If the amount of methane entering the atmosphere is presently equal to the amount converted to ethane, the 12C/13C ratio in ethane should be close to the ratio in the reservoir. We have measured the 12C/13C ratio in ethane both with Cassini CIRS(exp 1) and from the ground and find that it is very close to the telluric standard and outer planet values (89), consistent with a primordial origin for the methane reservoir. The lower 12C/13C ratio measured for methane by Huygens GCMS (82.3) can be explained if the conversion of CH4 to CH3 (and C2H6) favors 12C over 13C with a carbon kinetic isotope effect of 1.08. The time required for the atmospheric methane to reach equilibrium, i.e., for replenishment to equal destruction, is approximately 5 methane atmospheric lifetimes.

  8. Relaxation and Dephasing in a Two-Electron 13C Nanotube Double Quantum Dot

    DEFF Research Database (Denmark)

    Churchill, H O H; Kuemmeth, Ferdinand; Harlow, J W;

    2009-01-01

    We use charge sensing of Pauli blockade (including spin and isospin) in a two-electron 13C nanotube double quantum dot to measure relaxation and dephasing times. The relaxation time T1 first decreases with a parallel magnetic field and then goes through a minimum in a field of 1.4 T. We attribute...

  9. Stereochemical investigation of selegiline HCl with /sup 1/H and /sup 13/C NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Podanyi, B. (CHINOIN Gyogyszer- es Vegyeszeti Termekek Gyara, Budapest (Hungary))

    1982-12-01

    Selegiline HCl, the bioactive substance of the antiparkinsonic medicine, JUMEX was investigated by NMR spectroscopy. The dominant conformer was determined. Optically active shift-reagent was used for the determination of optical purity. The /sup 13/C spectrum was analyzed, and molecular dynamics was investigated at different temperatures.

  10. Conformational analysis of MBBA fluorinated analogues by 1H and 13C - NMR

    Science.gov (United States)

    Pivovarova, N. S.; Boldeskul, I. E.; Shelyagenko, S. V.; Fialkov, Yu. A.

    1988-05-01

    1H- 13C -chemical shifts correlation analysis for MBBA and a series of its fluorinated analogues have been carried out. The azomethine proton chemical shift is shown to be sensitive to the aniline ring torsion angle and can be used for its approximate estimation.

  11. 13C Tracking after 13CO2 Supply Revealed Diurnal Patterns of Wood Formation in Aspen.

    Science.gov (United States)

    Mahboubi, Amir; Linden, Pernilla; Hedenström, Mattias; Moritz, Thomas; Niittylä, Totte

    2015-06-01

    Wood of trees is formed from carbon assimilated in the photosynthetic tissues. Determining the temporal dynamics of carbon assimilation, subsequent transport into developing wood, and incorporation to cell walls would further our understanding of wood formation in particular and tree growth in general. To investigate these questions, we designed a (13)CO2 labeling system to study carbon transport and incorporation to developing wood of hybrid aspen (Populus tremula × tremuloides). Tracking of (13)C incorporation to wood over a time course using nuclear magnetic resonance spectroscopy revealed diurnal patterns in wood cell wall biosynthesis. The dark period had a differential effect on (13)C incorporation to lignin and cell wall carbohydrates. No (13)C was incorporated into aromatic amino acids of cell wall proteins in the dark, suggesting that cell wall protein biosynthesis ceased during the night. The results show previously unrecognized temporal patterns in wood cell wall biosynthesis, suggest diurnal cycle as a possible cue in the regulation of carbon incorporation to wood, and establish a unique (13)C labeling method for the analysis of wood formation and secondary growth in trees.

  12. Chain Length Effects of Linear Alkanes in Zeolite Ferrierite. 1. Sorption and 13C NMR Experiments

    NARCIS (Netherlands)

    Well, van Willy J.M.; Cottin, Xavier; Haan, vde Jan W.; Smit, Berend; Nivarthy, Gautam; Lercher, Johannes A.; Hooff, van Jan H.C.; Santen, van Rutger A.

    1998-01-01

    Temperature-programmed desorption, heat of adsorption, adsorption isotherm, and 13C NMR measurements are used to study the sorption properties of linear alkanes in ferrierite. Some remarkable chain length effects are found in these properties. While propane, n-butane, and n-pentane fill the ferrieri

  13. Stationary versus non-stationary (13)C-MFA: a comparison using a consistent dataset.

    Science.gov (United States)

    Noack, Stephan; Nöh, Katharina; Moch, Matthias; Oldiges, Marco; Wiechert, Wolfgang

    2011-07-10

    Besides the well-established (13)C-metabolic flux analysis ((13)C-MFA) which characterizes a cell's fluxome in a metabolic and isotopic stationary state a current area of research is isotopically non-stationary MFA. Non-stationary (13)C-MFA uses short-time isotopic transient data instead of long-time isotopic equilibrium data and thus is capable to resolve fluxes within much shorter labeling experiments. However, a comparison of both methods with data from one single experiment has not been made so far. In order to create a consistent database for directly comparing both methods a (13)C-labeling experiment in a fed-batch cultivation with a Corynebacterium glutamicum lysine producer was carried out. During the experiment the substrate glucose was switched from unlabeled to a specifically labeled glucose mixture which was immediately traced by fast sampling and metabolite quenching. The time course of labeling enrichments in intracellular metabolites until isotopic stationarity was monitored by LC-MS/MS. The resulting dataset was evaluated using the classical as well as the isotopic non-stationary MFA approach. The results show that not only the obtained relative data, i.e. intracellular flux distributions, but also the more informative quantitative fluxome data significantly depend on the combination of the measurements and the underlying modeling approach used for data integration. Taking further criteria on the experimental and computational part into consideration, the current limitations of both methods are demonstrated and possible pitfalls are concluded.

  14. Phenyl galactopyranosides – {sup 13}C CPMAS NMR and conformational analysis using genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Wałejko, Piotr, E-mail: pwalejko@uwb.edu.pl [University of Bialystok, Institute of Chemistry, Pilsudskiego 11/4, 15-443 Bialystok (Poland); Paradowska, Katarzyna, E-mail: katarzyna.paradowska@wum.edu.pl [Medical University of Warsaw, Faculty of Pharmacy, Department of Physical Chemistry, Banacha 1, 02-097 Warsaw (Poland); Bukowicki, Jarosław [Medical University of Warsaw, Faculty of Pharmacy, Department of Physical Chemistry, Banacha 1, 02-097 Warsaw (Poland); Witkowski, Stanisław [University of Bialystok, Institute of Chemistry, Pilsudskiego 11/4, 15-443 Bialystok (Poland); Wawer, Iwona [Medical University of Warsaw, Faculty of Pharmacy, Department of Physical Chemistry, Banacha 1, 02-097 Warsaw (Poland)

    2015-08-18

    Highlights: • The structures of phenyl galactosides were studied by {sup 13}C CPMAS NMR. • The GAAGS method was used in conformational analysis of phenyl galactosides. • The rotation of the aglycone was investigated. • {sup 13}C CPMAS NMR supported by GIAO DFT calculations was used as a verification method. - Abstract: Structural analyses of four compounds (phenyl 2,3,4,6-tetra-O-acetyl-β-D-galactopyranoside (1), phenyl β-D-galactopyranoside (2), phenyl 2,3,4,6-tetra-O-acetyl-α-D-galactopyranoside (3) and phenyl α-D-galactopyranoside (4)) have been performed using solid-state {sup 13}C MAS NMR spectroscopy and theoretical methods. Conformational analysis involved grid search and genetic algorithm (GAAGS). Low-energy conformers found by GAAGS were further optimized by DFT and chemical shifts were calculated using GIAO/DFT approach. {sup 13}C CPMAS NMR chemical shift of carbon C2 is indicative of the glycoside torsional angle. Separated or merged resonances of C2 and C6 suggest free rotation of phenyl ring in the solid phase.

  15. chain length effects of linear alkanes in zeolite ferrierite.1. sorption and 13C NMR experiments

    NARCIS (Netherlands)

    van Well, Willy J.M.; Cottin, Xavier; vde Haan, Jan W.; Smit, Berend; Nivarthy, G.S.; Lercher, J.A.; van Hooff, Jan H.C.; van Santen, Rutger A.

    1998-01-01

    Temperature-programmed desorption, heat of adsorption, adsorption isotherm, and 13C NMR measurements are used to study the sorption properties of linear alkanes in ferrierite. Some remarkable chain length effects are found in these properties. While propane, n-butane, and n-pentane fill the

  16. Oil stability prediction by high-resolution (13)C nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Hidalgo, Francisco J; Gómez, Gemma; Navarro, José L; Zamora, Rosario

    2002-10-09

    (13)C NMR spectra of oil fractions obtained chromatographically from 66 vegetable oils were obtained and analyzed to evaluate the potential use of those fractions in predicting oil stabilities and to compare those results with oil stability prediction by using chemical determinations. The oils included the following: virgin olive oils from different cultivars and regions of Europe and north Africa; "lampante" olive, refined olive, refined olive pomace, low-erucic rapeseed, high-oleic sunflower, corn, grapeseed, soybean, and sunflower oils. Oils were analyzed for fatty acid and triacylglycerol composition, as well as for phenol and tocopherol contents. By using stepwise linear regression analysis (SLRA), the chemical determinations and the (13)C NMR data that better explained the oil stability determined by the Rancimat were selected. These selected variables were related to both the susceptibility of the oil to be oxidized and the content of minor components that most contributed to oil stability. Because (13)C NMR considered many more variables than those determined by chemical analysis, the predicted stabilities calculated by using NMR data were always better than those obtained by using chemical determinations. All these results suggest that (13)C NMR may be a powerful tool to predict oil stabilities when applied to chromatographically enriched oil fractions.

  17. Electron-nuclear interaction in 13C nanotube double quantum dots

    Science.gov (United States)

    Churchill, H. O. H.; Bestwick, A. J.; Harlow, J. W.; Kuemmeth, F.; Marcos, D.; Stwertka, C. H.; Watson, S. K.; Marcus, C. M.

    2009-05-01

    For coherent electron spins, hyperfine coupling to nuclei in the host material can either be a dominant source of unwanted spin decoherence or, if controlled effectively, a resource enabling storage and retrieval of quantum information. To investigate the effect of a controllable nuclear environment on the evolution of confined electron spins, we have fabricated and measured gate-defined double quantum dots with integrated charge sensors made from single-walled carbon nanotubes with a variable concentration of 13C (nuclear spin I=1/2) among the majority zero-nuclear-spin 12C atoms. We observe strong isotope effects in spin-blockaded transport, and from the magnetic field dependence estimate the hyperfine coupling in 13C nanotubes to be of the order of 100μeV, two orders of magnitude larger than anticipated. 13C-enhanced nanotubes are an interesting system for spin-based quantum information processing and memory: the 13C nuclei differ from those in the substrate, are naturally confined to one dimension, lack quadrupolar coupling and have a readily controllable concentration from less than one to 105 per electron.

  18. Soil carbon inventories and d 13C along a moisture gradient in Botswana

    NARCIS (Netherlands)

    Bird, M.I.; Veenendaal, E.M.; Lloyd, J.

    2004-01-01

    We present a study of soil organic carbon (SOC) inventories and d 13C values for 625 soil cores collected from well-drained, coarse-textured soils in eight areas along a 1000 km moisture gradient from Southern Botswana, north into southern Zambia. The spatial distribution of trees and grass in the d

  19. Strength and limits using 13C phospholipid fatty acid analysis in soil ecology

    Science.gov (United States)

    Watzinger, Andrea

    2016-04-01

    This presentation on microbial phospholipid biomarkers, their isotope analysis and their ability to reveal soil functions summarizes experiences gained by the author for more than 10 years. The amount and composition of phospholipid fatty acids (PLFAs) measured in environmental samples strongly depend on the methodology. To achieve comparable results the extraction, separation and methylation method must be kept constant. PLFAs patterns are sensitive to microbial community shifts even though the taxonomic resolution of PLFAs is low. The possibility to easily link lipid biomarkers with stable isotope techniques is identified as a major advantage when addressing soil functions. Measurement of PLFA isotopic ratios is sensitive and enables detecting isotopic fractionation. The difference between the carbon isotopic ratio of single PLFAs and their substrate (δ13C) can vary between -6 and +11‰. This difference derives from the fractionation during biosynthesis and from substrate inhomogeneity. Consequently, natural abundance studies are restricted to quantifying substrate uptake of the total microbial biomass. In contrast, artificial labelling enables quantifying carbon uptake into single PLFAs, but labelling success depends on homogeneous and undisturbed label application. Current developments in microbial ecology (e.g. 13C and 15N proteomics) and isotope techniques (online monitoring of CO2 isotope ratios) will likely improve soil functional interpretations in the future. 13C PLFA analysis will continue to contribute because it is affordable, sensitive and allows frequent sampling combined with the use of small amounts of 13C label.

  20. Methylation patterns of aquatic humic substances determined by 13C NMR spectroscopy

    Science.gov (United States)

    Thorn, K.A.; Steelink, C.; Wershaw, R. L.

    1987-01-01

    13C NMR spectroscopy is used to examine the hydroxyl group functionality of a series of humic and fulvic acids from different aquatic environments. Samples first are methylated with 13C-labeled diazomethane. The NMR spectra of the diazomethylated samples allow one to distinguish between methyl esters of carboxylic acids, methyl ethers of phenolic hydroxyls, and methyl ethers of phenolic hydroxyls adjacent to two substituents. Samples are then permethylated with 13C-labeled methyl iodide/NaH. 13C NMR spectra of permethylated samples show that a significant fraction of the hydroxyl groups is not methylated with diazomethane alone. In these spectra methyl ethers of carbohydrate and aliphatic hydroxyls overlap with methyl ethers of phenolic hydroxyls. Side reactions of the methyltion procedure including carbon methylation in the CH3I/NaH procedure, are also examined. Humic and fulvic acids from bog, swamp, groundwater, and lake waters showssome differences in their distribution of hydroxyl groups, mainly in the concentrations of phenolic hydroxyls, which may be attributed to their different biogeochemical origins. ?? 1987.

  1. Loggerhead turtle movements reconstructed from 18O and 13C profiles from commensal barnacle shells

    Science.gov (United States)

    Killingley, John S.; Lutcavage, Molly

    1983-03-01

    Commensal barnacles, Chelonibia testudinaria, from logger-head turtles have 18O and 13C variations in their calcitic shells that record the environments in which the turtles live. Isotopic profiles from the barnacle shells can thus be interpreted to reconstruct movements of the host turtle between open ocean and brackish-water regimes.

  2. Diagnostic Limitations of 13C-Mixed Triglyceride Breath Test in Patients after Cholecystectomy

    Directory of Open Access Journals (Sweden)

    V.I. Rusyn

    2014-09-01

    Full Text Available The results of a comprehensive examination of 136 patients after cholecystectomy are provided. High efficiency and informativeness of the 13C-mixed triglyceride breath test for determining exocrine pancreatic insufficiency at its early stages was noted in patients after cholecystectomy.

  3. Spectroscopic study and astronomical detection of doubly 13C-substituted ethyl cyanide

    CERN Document Server

    Margulès, L; Müller, H S P; Motiyenko, R A; Guillemin, J -C; Garrod, R T; Menten, K M

    2016-01-01

    We have performed a spectral line survey called EMoCA toward Sagittarius B2(N) between 84 and 114 GHz with ALMA. Line intensities of the main isotopic species of ethyl cyanide and its singly 13C-substituted isotopomers observed toward the hot molecular core Sgr B2(N2) suggest that the doubly 13C-substituted isotopomers should be detectable also. We want to determine the spectroscopic parameters of all three doubly 13C-substituted isotopologues of ethyl cyanide to search for them in our ALMA data. We investigated the laboratory rotational spectra of the three species between 150 and 990 GHz. We searched for emission lines produced by these species in the ALMA spectrum of Sgr B2(N2). We modeled their emission as well as the emission of the 12C and singly 13C-substituted isotopologues assuming local thermodynamic equilibrium. We identified more than 5000 rotational transitions, pertaining to more than 3500 different transition frequencies, in the laboratory for each of the three isotopomers. The quantum numbers ...

  4. The effect of the reversed tricarboxylic acid cycle on the (13)C contents of bacterial lipids

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Meer, M.T.J. van der; Schouten, S.

    1998-01-01

    Free and esterified lipids of a green sulfur bacterium, Chlorobium limicola, and a purple sulfur bacterium, Thiocapsa roseopersicina, were investigated to examine the effect of the reversed tricarboxylic acid cycle on the 13C contents of their lipids. The lipids of C. limicola are 2 to 16 enriched

  5. Variation of δ13C in karst soil in Yaji Karst Experiment Site,Guilin

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This study deals with δ13C variation in karst soil system of Yaji Karst Experiment Site, Guilin, a typical region of humid subtropical karst formations. Samples of near ground air, plant tissue, soil and water (soil solution and karst spring) were respectively collected on site in different seasons during 1996-1999. Considerable variation of δ13C values are not only found with different carbon pools of soil organic carbon, soil air CO2 and soil water HCO-3, but also with the soil depths and with different seasons during a year.The δ13C values of CO2 both of near ground air and soil air are lower in July than those in April by 1%-4‰ PDB. Our results indicate that the δ13C values of carbon in the water and air are essentially dependent on interface carbon interaction of air-plant--soil-rock--water governed by soil organic carbon and soil CO2 in the system.

  6. Apparent rate constant mapping using hyperpolarized [1-(13) C]pyruvate

    DEFF Research Database (Denmark)

    Khegai, O.; Schulte, R. F.; Janich, M. A.

    2014-01-01

    Hyperpolarization of [1-13C]pyruvate in solution allows real-time measurement of uptake and metabolism using MR spectroscopic methods. After injection and perfusion, pyruvate is taken up by the cells and enzymatically metabolized into downstream metabolites such as lactate, alanine, and bicarbona...

  7. Direct 13C-detection for carbonyl relaxation studies of protein dynamics

    Science.gov (United States)

    Pasat, Gabriela; Zintsmaster, John S.; Peng, Jeffrey W.

    2008-08-01

    We describe a method that uses direct 13C-detection for measuring rotating-frame carbonyl ( 13CO) relaxation rates to describe protein functional dynamics. Key advantages of method include the following: (i) unique access to 13CO groups that lack a scalar-coupled 15N- 1H group; (ii) insensitivity to 15N/ 1H exchange-broadening that can derail 1H-detected 15N and HNCO methods; (iii) avoidance of artifacts caused by incomplete water suppression. We demonstrate the approach for both backbone and side-chain 13CO groups. Accuracy of the 13C-detected results is supported by their agreement with those obtained from established HNCO-based approaches. Critically, we show that the 13C-detection approach provides access to the 13CO groups of functionally important residues that are invisible via 1H-detected HNCO methods because of exchange-broadening. Hence, the 13C-based method fills gaps inherent in canonical 1H-detected relaxation experiments, and thus provides a novel complementary tool for NMR studies of biomolecular flexibility.

  8. OpenMebius: An Open Source Software for Isotopically Nonstationary 13C-Based Metabolic Flux Analysis

    Directory of Open Access Journals (Sweden)

    Shuichi Kajihata

    2014-01-01

    Full Text Available The in vivo measurement of metabolic flux by 13C-based metabolic flux analysis (13C-MFA provides valuable information regarding cell physiology. Bioinformatics tools have been developed to estimate metabolic flux distributions from the results of tracer isotopic labeling experiments using a 13C-labeled carbon source. Metabolic flux is determined by nonlinear fitting of a metabolic model to the isotopic labeling enrichment of intracellular metabolites measured by mass spectrometry. Whereas 13C-MFA is conventionally performed under isotopically constant conditions, isotopically nonstationary 13C metabolic flux analysis (INST-13C-MFA has recently been developed for flux analysis of cells with photosynthetic activity and cells at a quasi-steady metabolic state (e.g., primary cells or microorganisms under stationary phase. Here, the development of a novel open source software for INST-13C-MFA on the Windows platform is reported. OpenMebius (Open source software for Metabolic flux analysis provides the function of autogenerating metabolic models for simulating isotopic labeling enrichment from a user-defined configuration worksheet. Analysis using simulated data demonstrated the applicability of OpenMebius for INST-13C-MFA. Confidence intervals determined by INST-13C-MFA were less than those determined by conventional methods, indicating the potential of INST-13C-MFA for precise metabolic flux analysis. OpenMebius is the open source software for the general application of INST-13C-MFA.

  9. OpenMebius: an open source software for isotopically nonstationary 13C-based metabolic flux analysis.

    Science.gov (United States)

    Kajihata, Shuichi; Furusawa, Chikara; Matsuda, Fumio; Shimizu, Hiroshi

    2014-01-01

    The in vivo measurement of metabolic flux by (13)C-based metabolic flux analysis ((13)C-MFA) provides valuable information regarding cell physiology. Bioinformatics tools have been developed to estimate metabolic flux distributions from the results of tracer isotopic labeling experiments using a (13)C-labeled carbon source. Metabolic flux is determined by nonlinear fitting of a metabolic model to the isotopic labeling enrichment of intracellular metabolites measured by mass spectrometry. Whereas (13)C-MFA is conventionally performed under isotopically constant conditions, isotopically nonstationary (13)C metabolic flux analysis (INST-(13)C-MFA) has recently been developed for flux analysis of cells with photosynthetic activity and cells at a quasi-steady metabolic state (e.g., primary cells or microorganisms under stationary phase). Here, the development of a novel open source software for INST-(13)C-MFA on the Windows platform is reported. OpenMebius (Open source software for Metabolic flux analysis) provides the function of autogenerating metabolic models for simulating isotopic labeling enrichment from a user-defined configuration worksheet. Analysis using simulated data demonstrated the applicability of OpenMebius for INST-(13)C-MFA. Confidence intervals determined by INST-(13)C-MFA were less than those determined by conventional methods, indicating the potential of INST-(13)C-MFA for precise metabolic flux analysis. OpenMebius is the open source software for the general application of INST-(13)C-MFA.

  10. Turnover of microbial groups and cell components in soil: 13C analysis of cellular biomarkers

    Science.gov (United States)

    Gunina, Anna; Dippold, Michaela; Glaser, Bruno; Kuzyakov, Yakov

    2017-01-01

    Microorganisms regulate the carbon (C) cycle in soil, controlling the utilization and recycling of organic substances. To reveal the contribution of particular microbial groups to C utilization and turnover within the microbial cells, the fate of 13C-labelled glucose was studied under field conditions. Glucose-derived 13C was traced in cytosol, amino sugars and phospholipid fatty acid (PLFA) pools at intervals of 3, 10 and 50 days after glucose addition into the soil. 13C enrichment in PLFAs ( ˜ 1.5 % of PLFA C at day 3) was an order of magnitude greater than in cytosol, showing the importance of cell membranes for initial C utilization. The 13C enrichment in amino sugars of living microorganisms at day 3 accounted for 0.57 % of total C pool; as a result, we infer that the replacement of C in cell wall components is 3 times slower than that of cell membranes. The C turnover time in the cytosol (150 days) was 3 times longer than in PLFAs (47 days). Consequently, even though the cytosol pool has the fastest processing rates compared to other cellular compartments, intensive recycling of components here leads to a long C turnover time. Both PLFA and amino-sugar profiles indicated that bacteria dominated in glucose utilization. 13C enrichment decreased with time for bacterial cell membrane components, but it remained constant or even increased for filamentous microorganisms. 13C enrichment of muramic acid was the 3.5 times greater than for galactosamine, showing a more rapid turnover of bacterial cell wall components compared to fungal. Thus, bacteria utilize a greater proportion of low-molecular-weight organic substances, whereas filamentous microorganisms are responsible for further C transformations. Thus, tracing 13C in cellular compounds with contrasting turnover rates elucidated the role of microbial groups and their cellular compartments in C utilization and recycling in soil. The results also reflect that microbial C turnover is not restricted to the death or

  11. Control of Mercury Accumulation And Mobility in a Forest Soil as Indicated by δ13C

    Science.gov (United States)

    Bajracharya, U.; Jackson, B.; Feng, X.

    2015-12-01

    Mobility and cycling of mercury (Hg) in soils is important. Hg leaching results in its transport to wetlands, where Hg methylates and bioaccumulates through aquatic food webs. It has been shown that Hg cycle in soil is controlled by organic matter (OM) quantity as well as quality. The latter is indicated by increase of Hg/C ratio as C/N decreases by decomposition. Here we investigate the Hg-C relationship in a temperate forest soil in Hanover, NH, with a focus of examining the control of OM quality on soil Hg accumulation and mobility. We use δ13C as an indicator of carbon quality. The soil samples from A, B and C horizons were separated into six particle size fractionations from <25 µm to 1 mm. Both the bulk soil and particle size separates were analyzed for Hg concentrations, carbon content (C%), δ13C, and Hg partition coefficient (Kd =mg gSoil-1/mg Lsolution-1). We found that the bulk Hg concentration decreases significantly with increasing δ13C (R2=0.90, p <0.0001), but Hg/C increases with δ13C (R2=0.59, p =0.009). Both Hg/C and δ13C increase with soil depth, and at a given horizon, they both increase with decreasing particle size. These results indicate that high Hg/C ratios are associated with aged, decomposed, and low quality OM. Mostly likely, this accumulation of Hg in older OM is a result of retention of Hg upon carbon loss during soil respiration. However, the relationship between particle size and Hg/C is significantly different among different horizons; the most prominent relationship occurs at the deepest C horizon. This cross effect of horizon and particle size cannot be explained by normal aging of the OM through decomposition, pointing to mechanisms of changing in Hg bonding characteristics with OM aging or particle aggregation. The measured Kd value decreased with increasing δ13C (R2=0.43, p =0.0031), indicating that Hg associated with older OM is more subject to leaching compared to younger, fresher OM. This association can also be

  12. Long-term steady state 13C labelling to investigate carbon turnover in plant soil systems

    Directory of Open Access Journals (Sweden)

    R. Falcimagne

    2007-03-01

    Full Text Available We have set up a facility allowing steady state 13CO2 labeling of short stature vegetation (12 m2 for several years. 13C labelling is obtained by scrubbing the CO2 from outdoors air with a self-regenerating molecular sieve and by replacing it with 13C depleted (−34.7±0.03‰ fossil-fuel derived CO2 The facility, which comprises 16 replicate mesocosms, allows tracing the fate of photosynthetic carbon in plant-soil systems in natural light and at outdoors temperature. This method was applied during 2 yrs to temperate grassland monoliths (0.5×0.5×0.4 m sampled in a long term grazing experiment. During daytime, the canopy enclosure in each mesocosm was supplied in an open flow (0.67–0.88 volume per minute with modified air (43% scrubbed air and 57% cooled and humidified ambient air at mean CO2 concentration of 425 µmol mol−1 and δ13C of −21.5±0.27‰. Above and belowground CO2 fluxes were continuously monitored. The difference in δ13C between the CO2 at the outlet and at the inlet of each canopy enclosure was not significant (−0.35±0.39‰. Due to mixing with outdoors air, the CO2 concentration at enclosure inlet followed a seasonal cycle, often found in urban areas, where δ13C of CO2 is lower in winter than in summer. Mature C3 grass leaves were sampled monthly in each mesocosm, as well as leave from pot-grown control C4 (Paspalum dilatatum. The mean δ13C of fully labelled C3 and C4 leaves reached −41.4±0.67 and −28.7±0.39‰ respectively. On average, the labelling reduced by 12.7‰ the δ13C of C3 grass leaves. The isotope mass balance technique was used to calculate the fraction of "new" C in the soil organic matter (SOM above 0.2 mm. A first order exponential decay model fitted to "old" C data showed that reducing aboveground disturbance by cutting increased from 22 to 31 months the mean residence time of belowground organic C (>0.2 mm in the top soil.

  13. Analysis of 14C and 13C in teeth provides precise birth dating and clues to geographical origin

    Science.gov (United States)

    K, Alkass; BA, Buchholz; H, Druid; KL, Spalding

    2011-01-01

    The identification of human bodies in situations when there are no clues as to the person’s identity from circumstantial data, poses a difficult problem to investigators. The determination of age and sex of the body can be crucial in order to limit the search to individuals that are a possible match. We analyzed the proportion of bomb pulse derived carbon-14 (14C) incorporated in the enamel of teeth from individuals from different geographical locations. The ‘bomb pulse’ refers to a significant increase in 14C levels in the atmosphere caused by above ground test detonations of nuclear weapons during the cold war (1955-1963). By comparing 14C levels in enamel with 14C atmospheric levels systematically recorded over time, high precision birth dating of modern biological material is possible. Above ground nuclear bomb testing was largely restricted to a couple of locations in the northern hemisphere, producing differences in atmospheric 14C levels at various geographical regions, particularly in the early phase. Therefore, we examined the precision of 14C birth dating of enamel as a function of time of formation and geographical location. We also investigated the use of the stable isotope 13C as an indicator of geographical origin of an individual. Dental enamel was isolated from 95 teeth extracted from 84 individuals to study the precision of the 14C method along the bomb spike. For teeth formed before 1955 (N = 17), all but one tooth showed negative Δ14C values. Analysis of enamel from teeth formed during the rising part of the bomb-spike (1955-1963, N = 12) and after the peak (>1963, N = 66) resulted in an average absolute date of birth estimation error of 1.9 ±1.4 and 1.3 ± 1.0 years, respectively. Geographical location of an individual had no adverse effect on the precision of year of birth estimation using radiocarbon dating. In 46 teeth, measurement of 13C was also performed. Scandinavian teeth showed a substantially greater depression in average δ13C

  14. Congener-specific concentrations and carbon stable isotope ratios (delta13C) of two technical toxaphene products (Toxaphene and Melipax).

    Science.gov (United States)

    Vetter, Walter; Gleixner, Gerd; Armbruster, Wolfgang; Ruppe, Steffen; Stern, Gary A; Braekevelt, Eric

    2005-01-01

    In this study we compared the contribution of individual congeners and the ratios of stable carbon isotopes of two technical toxaphene products. The former US-American product Toxaphene was from 1978 and the East-German product Melipax from 1979. Both technical products showed the known complexity in GC/ECD measurements. Contributions of 24 peaks to each of the technical products were determined by gas chromatography in combination high resolution electron capture negative ion mass spectrometry (GC/ECNI-HRMS). The percentages of the compounds studied in the technical mixtures ranged from approximately 0.05% to approximately 2.5% but showed some individual differences. 2,2,5,5,8,9,9,10,10-nonachlorobornane (B9-1025 or P-62) was identified as a major congener in both mixtures. 2-Endo,3-exo,5-endo,6-exo,8,8,10,10-octachlorobornane (B8-1413 or P26) and 2-endo,3-exo,5-endo,6-exo,8,8,9,10,10-nonachlorobornane (B9-1679 or P-50) were found at similar concentration in both technical products. Identical amounts of Melipax or Toxaphene were combusted to CO2 in an element analyzer and their delta13C values were determined relative to the international standard Vienna PeeDee belemnite (VPDB). The mean delta13C values of both products varied by 2.8% (determined at two different locations) which is roughly one order of magnitude more than the precision obtained in repetitive analyses of the individual products. Thus, both investigated products could be unequivocally distinguished by stable isotope ratio mass spectrometry (IRMS). IRMS analyses may thus be a suitable tool for tracing back toxaphene residues in environmental and food samples to the one or both of the products.

  15. GLUCOSE AND LACTATE METABOLISM IN THE AWAKE AND STIMULATED RAT: A 13C-NMR STUDY.

    Directory of Open Access Journals (Sweden)

    Denys eSampol

    2013-05-01

    Full Text Available Glucose is the major energetic substrate for the brain but evidence has accumulated during the last 20 years that lactate produced by astrocytes could be an additional substrate for neurons. However, little information exists about this lactate shuttle in vivo in activated and awake animals. We designed an experiment in which the cortical barrel field (S1BF was unilaterally activated during infusion of both glucose and lactate (alternatively labeled with 13C in rats. At the end of stimulation (1h, both S1BF areas were removed and analyzed by HR-MAS NMR spectroscopy to compare glucose and lactate metabolism in the activated area versus the non-activated one. In combination with microwave irradiation, HR-MAS spectroscopy is a powerful technical approach to study brain lactate metabolism in vivo.Using in vivo 14C-2-deoxyglucose and autoradiography, we confirmed that whisker stimulation was effective since we observed a 40% increase in glucose uptake in the activated S1BF area compared to the ipsilateral one.We first determined that lactate observed on spectra of biopsies did not arise from post-mortem metabolism. 1H-NMR data indicated that during brain activation, there was an average 2.4-fold increase in lactate content in the activated area. When [1-13C]glucose+lactate were infused, 13C-NMR data showed an increase in 13C-labeled lactate during brain activation, as well as an increase in lactate C3-specific enrichment. This result demonstrates that the increase in lactate observed on 1H-NMR spectra originates from newly synthesized lactate from the labeled precursor ([1-13C]glucose. It also shows that this additional lactate does not arise from an increase in blood lactate uptake since it would otherwise be unlabeled. These results are in favor of intracerebral lactate production during brain activation in vivo, which could be a supplementary fuel for neurons.

  16. SIMS measurements of intrashell δ13C in the cultured planktic foraminifer Orbulina universa

    Science.gov (United States)

    Vetter, Lael; Kozdon, Reinhard; Valley, John W.; Mora, Claudia I.; Spero, Howard J.

    2014-08-01

    In this study, we present experimental results from the planktic foraminifer Orbulina universa, cultured in the laboratory. We demonstrate that the δ13C of shell calcite precipitated in 13C-labeled seawater for 24 h can be resolved and accurately measured using Secondary Ion Mass Spectrometry (SIMS). Specimens maintained at 20 °C were transferred from ambient seawater (δ13CDIC = +1.3‰) into seawater with δ13CDIC = +51.5‰ and enriched [Ba2+] for 24 h. Specimens were then transferred into ambient seawater with elevated [87Sr] for 6-9 h of calcification, followed by a transfer back into unlabeled ambient seawater until gametogenesis. This technique produced O. universa shells with calcite layers of distinct geochemical signatures. We quantify the spatial positions of trace element labels in the shells using laser ablation ICP-MS depth profiling. Using fragments from the same shells, we quantify intrashell δ13Ccalcite using SIMS with a 6 or 8 μm spot (2 SD range ±0.5‰ to 1.7‰). Measured δ13Ccalcite values in O. universa shell layers precipitated in ambient seawater are within 2‰ of predicted δ13Ccalcite values. In 13C-labeled bands of calcite, 6 μm SIMS spot measurements are within 2‰ of predicted δ13Ccalcite values, whereas 8 μm SIMS spots yield intermediate, mixed values. The spatial agreement between trace element and carbon isotope data suggests that 13C and cation tracers are synchronously incorporated into shell calcite. These results demonstrate the ability of SIMS δ13C measurements to resolve ∼10 μm features in foraminifer shell calcite using a 6 μm spot, and highlight the potential of this technique for addressing questions about ecology, biomineralization, and paleoceanography.

  17. An optimized 13C-urea breath test for the diagnosis of H pylori infection

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To validate an optimized 13C-urea breath test (13C-UBT) protocol for the diagnosis of-H pylori infection that is cost-efficient and maintains excellent diagnostic accuracy.METHODS: 70 healthy volunteers were tested with two simplified 13C-UBT protocols, with test meal (Protocol 2)and without test meal (Protocol 1). Breath samples were collected at 10, 20 and 30 min after ingestion of 50 mg 13C-urea dissolved in 10 mL of water, taken as a single swallow, followed by 200 mL of water (pH 6.0) and a circular motion around the waistline to homogenize the urea solution. Performance of both protocols was analyzed at various cut-off values. Results were validated against the European protocol.RESULTS: According to the reference protocol, 65.7% individuals were positive for H pylori infection and 34.3% were negative. There were no significant differences in the ability of both protocols to correctly identify positive and negative H pylori individuals. However, only Protocol 1 with no test meal achieved accuracy, sensitivity,specificity, positive and negative predictive values of 100%. The highest values achieved by Protocol 2 were 98.57%, 97.83%, 100%, 100% and 100%, respectively.CONCLUSION: A 10 min, 50 mg 13C-UBT with no test meal using a cut-off value of 2-2.5 is a highly accurate test for the diagnosis of H pylori infection at a reduced cost.

  18. Quantitative analysis of deuterium using the isotopic effect on quaternary {sup 13}C NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, Tamim A., E-mail: tamim.darwish@ansto.gov.au [National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Locked Bag 21, Kirrawee DC, NSW 2232 (Australia); Yepuri, Nageshwar Rao; Holden, Peter J. [National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Locked Bag 21, Kirrawee DC, NSW 2232 (Australia); James, Michael [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia)

    2016-07-13

    Quantitative analysis of specifically deuterated compounds can be achieved by a number of conventional methods, such as mass spectroscopy, or by quantifying the residual {sup 1}H NMR signals compared to signals from internal standards. However, site specific quantification using these methods becomes challenging when dealing with non-specifically or randomly deuterated compounds that are produced by metal catalyzed hydrothermal reactions in D{sub 2}O, one of the most convenient deuteration methods. In this study, deuterium-induced NMR isotope shifts of quaternary {sup 13}C resonances neighboring deuterated sites have been utilized to quantify the degree of isotope labeling of molecular sites in non-specifically deuterated molecules. By probing {sup 13}C NMR signals while decoupling both proton and deuterium nuclei, it is possible to resolve {sup 13}C resonances of the different isotopologues based on the isotopic shifts and the degree of deuteration of the carbon atoms. We demonstrate that in different isotopologues, the same quaternary carbon, neighboring partially deuterated carbon atoms, are affected to an equal extent by relaxation. Decoupling both nuclei ({sup 1}H, {sup 2}H) resolves closely separated quaternary {sup 13}C signals of the different isotopologues, and allows their accurate integration and quantification under short relaxation delays (D1 = 1 s) and hence fast accumulative spectral acquisition. We have performed a number of approaches to quantify the deuterium content at different specific sites to demonstrate a convenient and generic analysis method for use in randomly deuterated molecules, or in cases of specifically deuterated molecules where back-exchange processes may take place during work up. - Graphical abstract: The relative intensities of quaternary {sup 13}C {"1H,"2H} resonances are equal despite the different relaxation delays, allowing the relative abundance of the different deuterated isotopologues to be calculated using NMR fast

  19. Terrestrial biosphere changes over the last 120 kyr and their impact on ocean δ 13C

    Directory of Open Access Journals (Sweden)

    B. A. A. Hoogakker

    2015-03-01

    Full Text Available A new global synthesis and biomization of long (>40 kyr pollen-data records is presented, and used with simulations from the HadCM3 and FAMOUS climate models to analyse the dynamics of the global terrestrial biosphere and carbon storage over the last glacial–interglacial cycle. Global modelled (BIOME4 biome distributions over time generally agree well with those inferred from pollen data. The two climate models show good agreement in global net primary productivity (NPP. NPP is strongly influenced by atmospheric carbon dioxide (CO2 concentrations through CO2 fertilization. The combined effects of modelled changes in vegetation and (via a simple model soil carbon result in a global terrestrial carbon storage at the Last Glacial Maximum that is 210–470 Pg C less than in pre-industrial time. Without the contribution from exposed glacial continental shelves the reduction would be larger, 330–960 Pg C. Other intervals of low terrestrial carbon storage include stadial intervals at 108 and 85 ka BP, and between 60 and 65 ka BP during Marine Isotope Stage 4. Terrestrial carbon storage, determined by the balance of global NPP and decomposition, influences the stable carbon isotope composition (δ13C of seawater because terrestrial organic carbon is depleted in 13C. Using a simple carbon-isotope mass balance equation we find agreement in trends between modelled ocean δ13C based on modelled land carbon storage, and palaeo-archives of ocean δ13C, confirming that terrestrial carbon storage variations may be important drivers of ocean δ13C changes.

  20. Microbial metabolism in soil at low temperatures: Mechanisms unraveled by position-specific 13C labeling

    Science.gov (United States)

    Bore, Ezekiel

    2016-04-01

    Microbial transformation of organic substances in soil is the most important process of the C cycle. Most of the current studies base their information about transformation of organic substances on incubation studies under laboratory conditions and thus, we have a profound knowledge on SOM transformations at ambient temperatures. However, metabolic pathway activities at low temperature are not well understood, despite the fact that the processes are relevant for many soils globally and seasonally. To analyze microbial metabolism at low soil temperatures, isotopomeres of position-specifically 13C labeled glucose were incubated at three temperature; 5, -5 -20 oC. Soils were sampled after 1, 3 and 10 days and additionally after 30 days for samples at -20 °C. The 13C from individual molecule position was quantifed in respired CO2, bulk soil, extractable organic C and extractable microbial biomass by chloroform fumigation extraction (CFE) and cell membranes of microbial communities classified by 13C phospholipid fatty acid (PLFA) analysis. 13CO2 released showed a dominance of the flux from C-1 position at 5 °C. Consequently, at 5 °C, pentose phosphate pathway activity is a dominant metabolic pathway of glucose metabolization. In contrast to -5 °C and -20 oC, metabolic behaviors completely switched towards a preferential respiration of the glucose C-4 position. With decreasing temperature, microorganism strongly shifted towards metabolization of glucose via glycolysis which indicates a switch to cellular maintenance. High recoveries of 13C in extractable microbial biomass at -5 °C indicates optimal growth condition for the microorganisms. PLFA analysis showed high incorporation of 13C into Gram negative bacteria at 5 °C but decreased with temperature. Gram positive bacteria out-competed Gram negatives with decreasing temperature. This study revealed a remarkable microbial activity at temperatures below 0 °C, differing significantly from that at ambient

  1. Microsolvation of methylmercury: structures, energies, bonding and NMR constants ((199)Hg, (13)C and (17)O).

    Science.gov (United States)

    Flórez, Edison; Maldonado, Alejandro F; Aucar, Gustavo A; David, Jorge; Restrepo, Albeiro

    2016-01-21

    Hartree-Fock (HF) and second order perturbation theory (MP2) calculations within the scalar and full relativistic frames were carried out in order to determine the equilibrium geometries and interaction energies between cationic methylmercury (CH3Hg(+)) and up to three water molecules. A total of nine structures were obtained. Bonding properties were analyzed using the Quantum Theory of Atoms In Molecules (QTAIM). The analyses of the topology of electron densities reveal that all structures exhibit a partially covalent HgO interaction between methylmercury and one water molecule. Consideration of additional water molecules suggests that they solvate the (CH3HgOH2)(+) unit. Nuclear magnetic shielding constants σ((199)Hg), σ((13)C) and σ((17)O), as well as indirect spin-spin coupling constants J((199)Hg-(13)C), J((199)Hg-(17)O) and J((13)C-(17)O), were calculated for each one of the geometries. Thermodynamic stability and the values of NMR constants correlate with the ability of the system to directly coordinate oxygen atoms of water molecules to the mercury atom in methylmercury and with the formation of hydrogen bonds among solvating water molecules. Relativistic effects account for 11% on σ((13)C) and 14% on σ((17)O), which is due to the presence of Hg (heavy atom on light atom, HALA effect), while the relativistic effects on σ((199)Hg) are close to 50% (heavy atom on heavy atom itself, HAHA effect). J-coupling constants are highly influenced by relativity when mercury is involved as in J((199)Hg-(13)C) and J((199)Hg-(17)O). On the other hand, our results show that the values of NMR constants for carbon and oxygen, atoms which are connected through mercury (C-HgO), are highly correlated and are greatly influenced by the presence of water molecules. Water molecules introduce additional electronic effects to the relativistic effects due to the mercury atom.

  2. Response of δ13C in plant and soil respiration to a water pulse

    Science.gov (United States)

    Salmon, Y.; Buchmann, N.; Barnard, R. L.

    2011-05-01

    Stable carbon isotopes have been used to assess the coupling between changes in environmental conditions and the response of soil or ecosystem respiration, usually by studying the time-lagged response of δ13C of respired CO2 (δ13CR) to changes in photosynthetic carbon isotope discrimination (Δi). However, the lack of a systematic response of δ13CR to environmental changes in field studies stresses the need to better understand the mechanisms to this response. We experimentally created a wide range of carbon allocation and respiration conditions in Fagus sylvatica mesocosms, by growing saplings under different temperatures and girdling combinations. After a period of drought, a water pulse was applied and the short-term responses of δ13C in soil CO2 efflux (δ13CRsoil) and δ13C in aboveground plant respiration (δ13CRabove) were measured, as well as leaf gas exchange rates and soil microbial biomass δ13C responses. Both δ13CRsoil and δ 13CRabove values of all the trees decreased immediately after the water pulse. These responses were not driven by changes in Δi, but rather by a fast release of C stored in roots and shoots. Changes in δ13CRsoil associated with the water pulse were significantly positively correlated with changes in stomatal conductance, showing a strong impact of the plant component on δ13CRsoil. However, three days after the water pulse in girdled trees, changes in δ13CRsoil were related to changes in microbial biomass δ13C, suggesting that changes in the carbon source respired by soil microorganisms also contributed to the response of δ13CRsoil. Our study shows that improving our mechanistic understanding of the responses of δ13CR to changes in environmental conditions requires the understanding of not only the plant's physiological responses, but also the responses of soil microorganisms and of plant-microbial interactions.

  3. Optimal tracers for parallel labeling experiments and (13)C metabolic flux analysis: A new precision and synergy scoring system.

    Science.gov (United States)

    Crown, Scott B; Long, Christopher P; Antoniewicz, Maciek R

    2016-11-01

    (13)C-Metabolic flux analysis ((13)C-MFA) is a widely used approach in metabolic engineering for quantifying intracellular metabolic fluxes. The precision of fluxes determined by (13)C-MFA depends largely on the choice of isotopic tracers and the specific set of labeling measurements. A recent advance in the field is the use of parallel labeling experiments for improved flux precision and accuracy. However, as of today, no systemic methods exist for identifying optimal tracers for parallel labeling experiments. In this contribution, we have addressed this problem by introducing a new scoring system and evaluating thousands of different isotopic tracer schemes. Based on this extensive analysis we have identified optimal tracers for (13)C-MFA. The best single tracers were doubly (13)C-labeled glucose tracers, including [1,6-(13)C]glucose, [5,6-(13)C]glucose and [1,2-(13)C]glucose, which consistently produced the highest flux precision independent of the metabolic flux map (here, 100 random flux maps were evaluated). Moreover, we demonstrate that pure glucose tracers perform better overall than mixtures of glucose tracers. For parallel labeling experiments the optimal isotopic tracers were [1,6-(13)C]glucose and [1,2-(13)C]glucose. Combined analysis of [1,6-(13)C]glucose and [1,2-(13)C]glucose labeling data improved the flux precision score by nearly 20-fold compared to widely use tracer mixture 80% [1-(13)C]glucose +20% [U-(13)C]glucose.

  4. NMR Kinetics of the S[subscript N]2 Reaction between BuBr and I[superscript -]: An Introductory Organic Chemistry Laboratory Exercise

    Science.gov (United States)

    Mobley, T. Andrew

    2015-01-01

    A simple organic chemistry experiment is described that investigates the kinetics of the reaction between 1-bromobutane (BuBr) and iodide (I[superscript -]) as followed by observing the disappearance of BuBr and the appearance of 1-iodobutane (BuI) using [superscript 1]H NMR spectroscopy. In small groups of three to four, students acquire data to…

  5. NMR Kinetics of the S[subscript N]2 Reaction between BuBr and I[superscript -]: An Introductory Organic Chemistry Laboratory Exercise

    Science.gov (United States)

    Mobley, T. Andrew

    2015-01-01

    A simple organic chemistry experiment is described that investigates the kinetics of the reaction between 1-bromobutane (BuBr) and iodide (I[superscript -]) as followed by observing the disappearance of BuBr and the appearance of 1-iodobutane (BuI) using [superscript 1]H NMR spectroscopy. In small groups of three to four, students acquire data to…

  6. Test Review: Wechsler, D. (2014),"Wechsler Intelligence Scale for Children, Fifth Edition: Canadian 322 (WISC-V[superscript CDN])." Toronto, Ontario: Pearson Canada Assessment.

    Science.gov (United States)

    Cormier, Damien C.; Kennedy, Kathleen E.; Aquilina, Alexandra M.

    2016-01-01

    The Wechsler Intelligence Scale for Children, Fifth Edition: Canadian (WISC-V[superscript CDN]; Wechsler, 2014) is published by Pearson Canada Assessment. The WISC-V[superscript CDN] is a norm-referenced, individually administered intelligence battery that provides a comprehensive diagnostic profile of the cognitive strengths and weaknesses of…

  7. Short-term d13C changes in cultivated soils from Mexico

    Science.gov (United States)

    Lounejeva, E.; Etchevers, J.; Morales Puente, P.; Cienfuegos Alvarado, E.; Sedov, S.; Solleiro, E.; Hidalgo, C.

    2007-05-01

    The soils of the Mexican Volcanic Belt are part of ecosystems subjected to strong human impact during the last six centuries. One measurable characteristic of the soil is the stable carbon isotopic relation of the soil organic matter (SOM) or d13C. The d13C SOM parameter is a genetic characteristic of soil reflecting the relative proportion of C3 and C4 that comes from colonizing plants having different photosynthetic C pathway and is used as a high-spatial resolution tool to infer paleoenvironmental changes.The d13C mean signatures of C3 and C4 plants are -27 and -13 %o, respectively. This work focuses on short-term changes in d13C on soils subjected to controlled agricultural practices during 2002-2005 in two sites of Mexico with similar annual precipitation and temperature. The tepetate was broken up 20y ago and ameliorated with fertilizers and organic matter. In both sites three experimental treatments consisting of traditional soil management and two variations of this one were evaluated. Traditional treatment implies low fertilizer and any chemical input, sowing annual crops during the rainy season and, in general, using low energy input. The crops planted were: legumes C3, oat C3, and a mixture of maizeC4 and beanC3, and wheatC3. The Improved and Organic treatments, had higher input of N and P as chemical fertilizers, and of organic manure (manure or compost), respectively. Soil samples were collected from the plow layer in Tlaxcala and in Michoacán, before C4 maize was planted. An Andisol from a pine-oak (C3 species) forest close to the Atecuaro site was also sampled up to 40 cm. This soil was considered a reference site not recently influenced by human activity. To analyze the d13C ratios of the SOM carbonate free samples, a routine combustion method and mass spectrometry (Finnigan MAT250) were used. In both agricultural sites a general excess of C3 species over C4 was evidenced through a mass balance equation derived from experimental d13C values

  8. A polymer-based magnetic resonance tracer for visualization of solid tumors by 13C spectroscopic imaging.

    Directory of Open Access Journals (Sweden)

    Yoshikazu Suzuki

    Full Text Available Morphological imaging precedes lesion-specific visualization in magnetic resonance imaging (MRI because of the superior ability of this technique to depict tissue morphology with excellent spatial and temporal resolutions. To achieve lesion-specific visualization of tumors by MRI, we investigated the availability of a novel polymer-based tracer. Although the 13C nucleus is a candidate for a detection nucleus because of its low background signal in the body, the low magnetic resonance sensitivity of the nucleus needs to be resolved before developing a 13C-based tracer. In order to overcome this problem, we enriched polyethylene glycol (PEG, a biocompatible polymer, with 13C atoms. 13C-PEG40,000 (13C-PEG with an average molecular weight of 40 kDa emitted a single 13C signal with a high signal-to-noise ratio due to its ability to maintain signal sharpness, as was confirmed by in vivo investigation, and displayed a chemical shift sufficiently distinct from that of endogenous fat. 13C-PEG40,000 intravenously injected into mice showed long retention in circulation, leading to its effective accumulation in tumors reflecting the well-known phenomenon that macromolecules accumulate in tumors because of leaky tumor capillaries. These properties of 13C-PEG40,000 allowed visualization of tumors in mice by 13C spectroscopic imaging. These findings suggest that a technique based on 13C-PEG is a promising strategy for tumor detection.

  9. Transfer of (13) C between paired Douglas-fir seedlings reveals plant kinship effects and uptake of exudates by ectomycorrhizas.

    Science.gov (United States)

    Pickles, Brian J; Wilhelm, Roland; Asay, Amanda K; Hahn, Aria S; Simard, Suzanne W; Mohn, William W

    2017-04-01

    Processes governing the fixation, partitioning, and mineralization of carbon in soils are under increasing scrutiny as we develop a more comprehensive understanding of global carbon cycling. Here we examined fixation by Douglas-fir seedlings and transfer to associated ectomycorrhizal fungi, soil microbes, and full-sibling or nonsibling neighbouring seedlings. Stable isotope probing with 99% (13) C-CO2 was applied to trace (13) C-labelled photosynthate throughout plants, fungi, and soil microbes in an experiment designed to assess the effect of relatedness on (13) C transfer between plant pairs. The fixation and transfer of the (13) C label to plant, fungal, and soil microbial tissue was examined in biomass and phospholipid fatty acids. After a 6 d chase period, c. 26.8% of the (13) C remaining in the system was translocated below ground. Enrichment was proportionally greatest in ectomycorrhizal biomass. The presence of mesh barriers (0.5 or 35 μm) between seedlings did not restrict (13) C transfer. Fungi were the primary recipients of (13) C-labelled photosynthate throughout the system, representing 60-70% of total (13) C-enriched phospholipids. Full-sibling pairs exhibited significantly greater (13) C transfer to recipient roots in two of four Douglas-fir families, representing three- and fourfold increases (+ c. 4 μg excess (13) C) compared with nonsibling pairs. The existence of a root/mycorrhizal exudation-hyphal uptake pathway was supported.

  10. Synthesis and applications of selectively {sup 13}C-labeled RNA

    Energy Technology Data Exchange (ETDEWEB)

    SantaLucia, J. Jr.; Shen, L.X.; Lewis, H.; Cai, Z.; Tinoci, I. Jr. [Univ. of California, Berkeley, CA (United States)

    1994-12-01

    Spectral overlap is a substantial problem in NMR studies of RNA molecules >30 nucleotides. To overcome this difficulty, we synthesized selectively {sup 13}C-labeled RNAs and adapted several isotope-edited two- and three-dimensional NMR experiments originally developed for protein studies. We optimized protocols for synthesis of multi-gram quantities of CTP, UTp, ATP, and GTP using a combination of synthetic organic and enzymatic methods. Uracil is prepared in 40 to 50% yield from {sup 13}C-cyanide in two steps. Using acetyl- tribenzoyl-ribose and standard chemistry uracil is then attached to the sugar (90% yield). The tribenzoyl-uridine intermediate is converted into uridine or cytidine quantitatively, depending on the deblocking protocol. Labeled purines are synthesized using simple pyrimidine precursors and reacting with {sup 13}C-formic acid (80% yield). Purine nucleosides are then synthesized using uridine phosphorylase and purine nucleoside phosphorylase. The nucleosides were converted to NMPs by treatment with POC1{sub 3} in triethylphosphate. We converted NMPs to NTPs by standard enzymatic methods. Selectively labeled RNAs were synthesized by run-off transcription using {sup 13}C-labeled NTPs. Several different strategies help solve over-lap problems in larger RNAs. Isotope-edited two-dimensional NMR experiments such as {omega}1-1/2 X-filtered NOESY simplify NMR spectra by dividing the normal NOESY spectrum into two subspectra-one involving NOEs from protons bound to {sup 12}C and one from protons bound to {sup 13}C. For example, we labeled A and U residues of a 34-nucleotide pseudoknot, and the {sup 12}C subspectrum of the 1/2 X-filtered NOESY contained NOEs only from G and C residues (along with adenine 2H); the {sup 13}C subspectrum contained NOEs only from A and U residues. Each subspectrum has less overlap than the NOESY of an unlabeled sample; the editing strategy allows each resonance to be identified by residue type (A, C, G, or U).

  11. Diploptene δ13C values from contemporary thermokarst lake sediments show complex spatial variation

    Science.gov (United States)

    Davies, Kimberley L.; Pancost, Richard D.; Edwards, Mary E.; Anthony, Katey M. Walter; Langdon, Peter G.; Chaves Torres, Lidia

    2016-05-01

    Cryospheric changes in northern high latitudes are linked to significant greenhouse gas flux to the atmosphere, for example, methane that originates from organic matter decomposition in thermokarst lakes. The set of pathways that link methane production in sediments, via oxidation in the lake system, to the flux of residual methane to the atmosphere is complex and exhibits temporal and spatial variation. The isotopic signal of bacterial biomarkers (hopanoids, e.g. diploptene) in sediments has been used to identify contemporary ocean-floor methane seeps and, in the geological record, periods of enhanced methane production (e.g. the PETM). The biomarker approach could potentially be used to assess temporal changes in lake emissions through the Holocene via the sedimentary biomarker record. However, there are no data on the consistency of the signal of isotopic depletion in relation to source or on the amount of noise (unexplained variation) in biomarker values from modern lake sediments. We assessed methane oxidation as represented by the isotopic signal of biomarkers from methane oxidising bacteria (MOB) in multiple surface sediment samples in three distinct areas known to emit varying levels of methane in two shallow Alaskan thermokarst lakes. Diploptene was present and had δ13C values lower than -38 ‰ in all sediments analysed, suggesting methane oxidation was widespread. However, there was considerable variation in δ13C values within each area. The most 13C-depleted diploptene was found in an area of high methane ebullition in Ace Lake (diploptene δ13C values between -68.2 and -50.1 ‰). In contrast, significantly higher diploptene δ13C values (between -42.9 and -38.8 ‰) were found in an area of methane ebullition in Smith Lake. δ13C values of diploptene between -56.8 and -46.9 ‰ were found in the centre of Smith Lake, where ebullition rates are low but diffusive methane efflux occurs. The small-scale heterogeneity of the samples may reflect patchy

  12. sup 13 C and sup 31 P NMR studies of myocardial metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Laughlin, M.R.

    1988-01-01

    The fluxes through two enzyme systems have been measured in perfused or in in vivo heart using NMR: phosphocreatine kinase, and glycogen synthase and phosphorylase. The rates of synthesis and degradation of glycogen were monitored in vivo in fed, fasted, and diabetic rat heart during infusions of {sup 13}C-1-glucose and insulin using proton-decoupled {sup 13}C-NMR at 1.9 and 4.7 tesla. The enzyme activities of glycogen synthase and glycogen phosphorylase were also measured in this tissue which had been freeze clamped at the end of the experiment, for comparison with the synthetic rates. For normal fed, fasted, and diabetic animals, synthesis rates were 0.28, 0.16, and 0.15 {mu}mol/min.gww respectively. Glycogen synthase i activity was 0.23, 0.14, and 0.14 {mu}mol/min.gww in these hearts at the end of the experiment, when measured at appropriate substrate and activator concentrations, and follow activation time courses that are consistent with being the main rate determinant for net synthesis in all cases. Turnover of glycogen was studied by observing the preformed {sup 13}C-1-glycogen signal during infusion of {sup 12}C-glucose and insulin, and was found to be close to zero. Extracted phosphorylase a activity was approximately ten times that of synthase i under these circumstances. In order to fully interpret the turnover studies, glycogenolysis of preformed {sup 13}C-glycogen was observed after a bolus of glucagon. The glycogen had either been synthesized from {sup 13}C-1-glucose for a single hour, or during an hour of {sup 13}C-glucose and a subsequent hour of {sup 12}C-glucose infusion. The author observed that breakdown follows an exponential time course related to the phosphorylase a activation state and that the last synthesized glycogen breaks down at the rate of 2.5 {mu}mol/min.gww, five times faster than that synthesized an hour earlier.

  13. Decoupling of coral skeletal δ13C and solar irradiance over the past millennium caused by the oceanic Suess effect

    Science.gov (United States)

    Deng, Wenfeng; Chen, Xuefei; Wei, Gangjian; Zeng, Ti; Zhao, Jian-xin

    2017-02-01

    Many factors influence the seasonal changes in δ13C levels in coral skeletons; consequently, the climatic and environmental significance of such changes is complicated and controversial. However, it is widely accepted that the secular declining trend of coral δ13C over the past 200 years reflects the changes in the additional flux of anthropogenic CO2 from the atmosphere into the surface oceans. Even so, the centennial-scale variations, and their significance, of coral δ13C before the Industrial Revolution remain unclear. Based on an annually resolved coral δ13C record from the northern South China Sea, the centennial-scale variations of coral δ13C over the past millennium were studied. The coral δ13C and total solar irradiance (TSI) have a significant positive Pearson correlation and coupled variation during the Medieval Warm Period and Little Ice Age, when natural forcing controlled the climate and environment. This covariation suggests that TSI controls coral δ13C by affecting the photosynthetic activity of the endosymbiotic zooxanthellae over centennial timescales. However, there was a decoupling of the coral skeletal δ13C and TSI during the Current Warm Period, the period in which the climate and environment became linked to anthropogenic factors. Instead, coral δ13C levels have a significant Pearson correlation with both the atmospheric CO2 concentration and δ13C levels in atmospheric CO2. The correlation between coral δ13C and atmospheric CO2 suggests that the oceanic 13C Suess effect, caused by the addition of increasing amounts of anthropogenic 12CO2 to the surface ocean, has led to the decoupling of coral δ13C and TSI at the centennial scale.

  14. In vivo proton observed carbon edited (POCE) (13) C magnetic resonance spectroscopy of the rat brain using a volumetric transmitter and receive-only surface coil on the proton channel.

    Science.gov (United States)

    Kumaragamage, Chathura; Madularu, Dan; Mathieu, Axel P; De Feyter, Henk; Rajah, M Natasha; Near, Jamie

    2017-05-12

    In vivo carbon-13 ((13) C) MR spectroscopy (MRS) is capable of measuring energy metabolism and neuroenergetics, noninvasively in the brain. Indirect ((1) H-[(13) C]) MRS provides sensitivity benefits compared with direct (13) C methods, and normally includes a (1) H surface coil for both localization and signal reception. The aim was to develop a coil platform with homogenous B1+ and use short conventional pulses for short echo time proton observed carbon edited (POCE) MRS. A (1) H-[(13) C] MRS coil platform was designed with a volumetric resonator for (1) H transmit, and surface coils for (1) H reception and (13) C transmission. The Rx-only (1) H surface coil nullifies the requirement for a T/R switch before the (1) H preamplifier; the highpass filter and preamplifier can be placed proximal to the coil, thus minimizing sensitivity losses inherent with POCE-MRS systems described in the literature. The coil platform was evaluated with a PRESS-POCE sequence (TE = 12.6 ms) on a rat model. The coil provided excellent localization, uniform spin nutation, and sensitivity. (13) C labeling of Glu-H4 and Glx-H3 peaks, and the Glx-H2 peaks were observed approximately 13 and 21 min following the infusion of 1-(13) C glucose, respectively. A convenient and sensitive platform to study energy metabolism and neurotransmitter cycling is presented. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  15. Stereoselective synthesis of stable isotope labeled L-[alpha]-amino acids: synthesis of L-[4-[sup 13]C] and L-[3,4,-[sup 13]C[sub 2

    Energy Technology Data Exchange (ETDEWEB)

    Lodwig, S.N. (Centralia College, WA (United States). Science Div.); Unkefer, C.J. (Los Alamos National Lab., NM (United States))

    1992-02-01

    We have developed a stereoselective route to isotopically labeled L-aspartic acid using L-serine as a chiral precursor. Labeled serine, prepared biosynthetically was N-protected by conversion to the N-t-Boc derivative. (N-t-Boc)-[3-[sup 13]C]Serine is cyclized to its [beta]-lactone which was treated with potassium [[sup 13]C]cyanide to yield L-[beta]-[3,4-[sup 13]C[sub 2

  16. Relayed 13C magnetization transfer: Detection of malate dehydrogenase reaction in vivo

    Science.gov (United States)

    Yang, Jehoon; Shen, Jun

    2007-02-01

    Malate dehydrogenase catalyzes rapid interconversion between dilute metabolites oxaloacetate and malate. Both oxaloacetate and malate are below the detection threshold of in vivo MRS. Oxaloacetate is also in rapid exchange with aspartate catalyzed by aspartate aminotransferase, the latter metabolite is observable in vivo using 13C MRS. We hypothesized that the rapid turnover of oxaloacetate can effectively relay perturbation of magnetization between malate and aspartate. Here, we report indirect observation of the malate dehydrogenase reaction by saturating malate C2 resonance at 71.2 ppm and detecting a reduced aspartate C2 signal at 53.2 ppm due to relayed magnetization transfer via oxaloacetate C2 at 201.3 ppm. Using this strategy the rate of the cerebral malate dehydrogenase reaction was determined to be 9 ± 2 μmol/g wet weight/min (means ± SD, n = 5) at 11.7 Tesla in anesthetized adult rats infused with [1,6- 13C 2]glucose.

  17. ParaHydrogen Induced Polarization of 13C carboxylate resonance in acetate and pyruvate.

    Science.gov (United States)

    Reineri, Francesca; Boi, Tommaso; Aime, Silvio

    2015-01-05

    The advent of nuclear spins hyperpolarization techniques represents a breakthrough in the field of medical diagnoses by magnetic resonance imaging. Dynamic nuclear polarization (DNP) is the most widely used method, and hyperpolarized metabolites such as [1-(13)C]-pyruvate are shown to report on status of tumours. Parahydrogen-induced polarization (PHIP) is a chemistry-based technique, easier to handle and much less expensive in respect to DNP, with significantly shorter polarization times. Its main limitation is the availability of unsaturated precursors for the target substrates; for instance, acetate and pyruvate cannot be obtained by direct incorporation of the parahydrogen molecule. Herein we report a method that allows us to achieve hyperpolarization in this kind of molecule by means of a tailored precursor containing a hydrogenable functionality that, after polarization transfer to the target (13)C moiety, is cleaved to obtain the metabolite of interest. The reported procedure can be extended to a number of other biologically relevant substrates.

  18. Design of a quadrature surface coil for hyperpolarized 13C MRS cardiac metabolism studies in pigs

    DEFF Research Database (Denmark)

    Giovannetti, G.; Frijia, F.; Hartwig, V.;

    2013-01-01

    This work describes the design of a quadrature surface coil constituted by a circular loop and a butterfly coil, employed in transmit/receive (TX/RX) mode for hyperpolarized 13C studies of pig heart with a clinical 3T scanner. The coil characterization is performed by developing an SNR model...... for coil performance evaluation in terms of coil resistance, sample-induced resistance and magnetic field pattern. Experimental SNR-vs.-depth profiles, extracted from the [1-13C]acetate phantom chemical shift image (CSI), showed good agreement with the theoretical SNR-vs.-depth profiles. Moreover......, the performance of the quadrature coil was compared with the single TX/RX circular and TX/RX butterfly coil, in order to verify the advantage of the proposed configuration over the single coils throughout the volume of interest for cardiac imaging in pig. Finally, the quadrature surface coil was tested...

  19. Size dependence of 13C nuclear spin-lattice relaxation in micro- and nanodiamonds

    Science.gov (United States)

    Panich, A. M.; Sergeev, N. A.; Shames, A. I.; Osipov, V. Yu; Boudou, J.-P.; Goren, S. D.

    2015-02-01

    Size dependence of physical properties of nanodiamond particles is of crucial importance for various applications in which defect density and location as well as relaxation processes play a significant role. In this work, the impact of defects induced by milling of micron-sized synthetic diamonds was studied by magnetic resonance techniques as a function of the particle size. EPR and 13C NMR studies of highly purified commercial synthetic micro- and nanodiamonds were done for various fractions separated by sizes. Noticeable acceleration of 13C nuclear spin-lattice relaxation with decreasing particle size was found. We showed that this effect is caused by the contribution to relaxation coming from the surface paramagnetic centers induced by sample milling. The developed theory of the spin-lattice relaxation for such a case shows good compliance with the experiment.

  20. Size dependence of 13C nuclear spin-lattice relaxation in micro- and nanodiamonds.

    Science.gov (United States)

    Panich, A M; Sergeev, N A; Shames, A I; Osipov, V Yu; Boudou, J-P; Goren, S D

    2015-02-25

    Size dependence of physical properties of nanodiamond particles is of crucial importance for various applications in which defect density and location as well as relaxation processes play a significant role. In this work, the impact of defects induced by milling of micron-sized synthetic diamonds was studied by magnetic resonance techniques as a function of the particle size. EPR and (13)C NMR studies of highly purified commercial synthetic micro- and nanodiamonds were done for various fractions separated by sizes. Noticeable acceleration of (13)C nuclear spin-lattice relaxation with decreasing particle size was found. We showed that this effect is caused by the contribution to relaxation coming from the surface paramagnetic centers induced by sample milling. The developed theory of the spin-lattice relaxation for such a case shows good compliance with the experiment.

  1. Near real-time field measurements of δ13C in CO2 from volcanoes

    Science.gov (United States)

    Stix, John; Lucic, Gregor; Malowany, Kalina

    2017-08-01

    This paper describes the operation and application of a portable cavity ring-down spectrometer (CRDS) designed to measure the isotopic composition of carbon dioxide. The instrument is capable of measuring δ13C for CO2 concentrations ranging from atmospheric (400 ppm) to 100%, at precisions and accuracies that are comparable to laboratory-based gas source mass spectrometers. This flexibility and portability are ideal for applications on active volcanoes, and it is now possible to obtain isotopic measurements on a near real-time basis. We show applications of the CRDS for soil gases on volcanoes and in calderas, for characterizing the isotopic composition of a volcanic plume, and for measuring the temporal variability of δ13C in the atmosphere. Future directions hold the potential to use volcanic gas isotopes for monitoring purposes, and to combine different isotopic systems to reveal the source or sources of gas.

  2. Microphase structures and 13C NMR relaxation parameters in ultrahigh molecular weight polyethylene

    Institute of Scientific and Technical Information of China (English)

    朱清仁; 洪昆仑; 鲁非; 戚嵘嵘; 庞文民; 周贵恩; 宋名实

    1995-01-01

    The phase transformations in ultrahigh molecular weight polyethylene(UHMWPE)gel-filmsupon superdrawing have been studied by X-ray diffraction and high resolution solid state 13C NMR.Themorphological change and molecular motions in the crystalline phase,amorphous phase and interphase are dis-cussed according to the 13C nuclear relaxation time(T1c,T2cresults.A brief interpretation to the three orfour T1cvalues in the crystalline phase is presented.It is found that the component with the highest T1c(T1cα)plays a key role in the forming of ’Shish-Kebab’ microfibril which determines the sample strength andmodulus,namely,the greater the T1cα,the higher the modulus and strength of the drawn UHMWPEgel-film.These results support the ’Shish-Kebabs’ model in crystalline polymers.

  3. Assignments of 1H and 13C NMR Signals of Mogroside IVa

    Institute of Scientific and Technical Information of China (English)

    ZHANGJian-ye; YANGXiu-wei

    2003-01-01

    Aim To investigate the structure of mogroside IVa isolated from traditional Chinese medicine fructus momordicae [fruits of Siraitia grosvenori (Swingle) C. Jeffery] and summarize the NMR characteristics of the structure. Methods Cormnon extraction, separafion and purification methods were used. Various NMR techniques including 1H NMR,13C NMR, DEPT, 1H-1H COSY, HSQC, HMBC, NOESY and molecular model simulated by comtmter were used to elucidate the structure. Results 1H and 13C NMR signals of mogroside IVa were assigned, and spectroscopic basis was obtained for identification of such type of compounds. Conclusion 1D and 2D NMR techniques including 1H-1H COSY, HSQC, HMBC, NOESY spectra are powerful tools for structure analysis. The structure determined by NMR methods is identical with energy minimized conformation simulated by computer.

  4. Simulation and comparison of coils for Hyperpolarized 13C MRS cardiac metabolism studies in pigs

    DEFF Research Database (Denmark)

    Giovannetti, G.; Hartwig, V.; Frijia, Francesca

    2015-01-01

    -Difference Time-Domain (FDTD) algorithm. Theoretical SNR-vs-depth profiles were calculated for each coil configuration. We believe the paper could be interesting for graduate students and researchers in the field of magnetic resonance coil design and development, especially for 13C studies.......Hyperpolarized 13C Magnetic Resonance represents a promising modality for in vivo spectroscopy since it provides a unique opportunity for the non-invasive assessment of regional cardiac metabolism. Although it represents a powerful tool for the study of the heart physiology in pig models...... with experimental results, for coils performance evaluation in terms of coil resistance, sampleinduced resistance and magnetic field pattern. In particular, coil resistances were calculated from Ohm’s law, while magnetic field patterns and sample induced resistances were calculated using a numerical Finite...

  5. Reconstructing past climate using a multi-specific 13C-approach

    Science.gov (United States)

    Ferrio, Juan Pedro; Aguilera, Mónica; Voltas, Jordi

    2010-05-01

    Carbon isotope composition (δ13C) in tree-rings has become routinely used in palaeoclimatic research for the assessment of changes in water availability in seasonally dry climates. Long tree-ring chronologies, however, are relatively scarce, whereas the original climate signal of wood δ13C is usually well preserved in fossil charcoal [1, 4] Accordingly, charcoal δ13C records are an alternative to classic dendroclimatology to characterize past changes in water availability (e.g. precipitation). In this work, we explore the potential for palaeoenvironmental research of two co-occuring Mediterranean species with contrasting strategies to cope with drought [2]: Aleppo pine (Pinus halepensis Mill.) and holm oak (Quercus ilex L.). We hypothesize that the differential sensitivity of pine and oak to climate variables can be exploited to refine palaeoclimate reconstructions based on δ13C in wood or charcoal. For this purpose, we put together published tree-core-δ13C data from 40 sites across Spain [2, 3] and new δ13C data from 15 sites where both species co-existed in mixed stands. The sites were selected to represent the range of variation in thermal and precipitation regimes for these species, while avoiding any correlation between precipitation and temperature across sites. Five dominant or codominant trees were selected per site, and microcores including the most recently formed tree rings were obtained with a Trephor tool [5]. Fragments were oven-dried at 60 ° C for 48 h and milled separately to a fine powder using a ball mill (Retsch MM301, Haan, Germany) for δ13C analysis. Current meteorological data (monthly estimates of air mean temperature (minimum, mean and maximum), precipitation and solar radiation) was obtained from the Digital Climatic Atlas of the Iberian Peninsula (http://opengis.uab.es/wms/iberia/index.htm) (spatial resolution of 200 m). A family of models (either linear or exponential) best predicting monthly and annual precipitation from δ13C

  6. (1)H-(13)C NMR-Based Profiling of Biotechnological Starch Utilization.

    Science.gov (United States)

    Sundekilde, Ulrik K; Meier, Sebastian

    2016-10-04

    Starch is used in food- and nonfood applications as a renewable and degradable source of carbon and energy. Insight into the chemical detail of starch degradation remains challenging as the starch constituents amylose and amylopectin are homopolymers. We show that considerable molecular detail of starch fragmentation can be obtained from multivariate analysis of spectral features in optimized (1)H-(13)C NMR spectroscopy of starch fragments to identify relevant features that distinguish processes in starch utilization. As a case study, we compare the profiles of starch fragments in commercial beer samples. Spectroscopic profiles of homooligomeric starch fragments can be excellent indicators of process conditions. In addition, differences in the structure and composition of starch fragments have predictive value for downstream process output such as ethanol production from starch. Thus, high-resolution (1)H-(13)C NMR spectroscopic profiles of homooligomeric fragment mixtures in conjunction with chemometric methods provide a useful addition to the analytical chemistry toolbox of biotechnological starch utilization.

  7. Hyperpolarized 13C pyruvate mouse brain metabolism with absorptive-mode EPSI at 1 T

    Science.gov (United States)

    Miloushev, Vesselin Z.; Di Gialleonardo, Valentina; Salamanca-Cardona, Lucia; Correa, Fabian; Granlund, Kristin L.; Keshari, Kayvan R.

    2017-02-01

    The expected signal in echo-planar spectroscopic imaging experiments was explicitly modeled jointly in spatial and spectral dimensions. Using this as a basis, absorptive-mode type detection can be achieved by appropriate choice of spectral delays and post-processing techniques. We discuss the effects of gradient imperfections and demonstrate the implementation of this sequence at low field (1.05 T), with application to hyperpolarized [1-13C] pyruvate imaging of the mouse brain. The sequence achieves sufficient signal-to-noise to monitor the conversion of hyperpolarized [1-13C] pyruvate to lactate in the mouse brain. Hyperpolarized pyruvate imaging of mouse brain metabolism using an absorptive-mode EPSI sequence can be applied to more sophisticated murine disease and treatment models. The simple modifications presented in this work, which permit absorptive-mode detection, are directly translatable to human clinical imaging and generate improved absorptive-mode spectra without the need for refocusing pulses.

  8. Phenotypic analysis of individuals with Costello syndrome due to HRAS p.G13C.

    Science.gov (United States)

    Gripp, Karen W; Hopkins, Elizabeth; Sol-Church, Katia; Stabley, Deborah L; Axelrad, Marni E; Doyle, Daniel; Dobyns, William B; Hudson, Cindy; Johnson, John; Tenconi, Romano; Graham, Gail E; Sousa, Ana Berta; Heller, Raoul; Piccione, Maria; Corsello, Giovanni; Herman, Gail E; Tartaglia, Marco; Lin, Angela E

    2011-04-01

    Costello syndrome is characterized by severe failure-to-thrive, short stature, cardiac abnormalities (heart defects, tachyarrhythmia, and hypertrophic cardiomyopathy (HCM)), distinctive facial features, a predisposition to papillomata and malignant tumors, postnatal cerebellar overgrowth resulting in Chiari 1 malformation, and cognitive disabilities. De novo germline mutations in the proto-oncogene HRAS cause Costello syndrome. Most mutations affect the glycine residues in position 12 or 13, and more than 80% of patients share p.G12S. To test the hypothesis that subtle genotype-phenotype differences exist, we report the first cohort comparison between 12 Costello syndrome individuals with p.G13C and individuals with p.G12S. The individuals with p.G13C had many typical findings including polyhydramnios, failure-to-thrive, HCM, macrocephaly with posterior fossa crowding, and developmental delay. Subjectively, their facial features were less coarse. Statistically significant differences included the absence of multifocal atrial tachycardia (P-value = 0.033), ulnar deviation of the wrist (P < 0.001) and papillomata (P = 0.003), and fewer neurosurgical procedures (P = 0.024). Fewer individuals with p.G13C had short stature (height below -2 SD) without use of growth hormone (P < 0.001). The noteworthy absence of malignant tumors did not reach statistical significance. Novel ectodermal findings were noted in individuals with p.G13C, including loose anagen hair resulting in easily pluckable hair with a matted appearance, different from the tight curls typical for most Costello syndrome individuals. Unusually long eye lashes requiring trimming are a novel finding we termed dolichocilia. These distinctive ectodermal findings suggest a cell type specific effect of this particular mutation. Additional patients are needed to validate these findings.

  9. Tracing solid waste leachate in groundwater using δ13 C from dissolved inorganic carbon.

    Science.gov (United States)

    Haarstad, Ketil; Mæhlum, Trond

    2013-01-01

    Tracers can be used to monitor emissions of leachate from landfills in order to detect hydrological pathways and to evaluate environmental pollution. We investigated the stable carbon isotope ratio (δ(13)C-Σ CO (2)) in dissolved inorganic carbon and tritium ((3)H) in water, in addition to the tracers of pollution commonly found in relatively high concentrations in leachate, such as chloride (Cl), organic matter (COD), nitrogen (total and NH(4)-N), iron (Fe), electrical conductivity (EC) and pH. The sampling was performed at seven landfills in the south-eastern part of Norway during a period of 5 years. The objective was to evaluate the potential for tracing leachate in the environment with emphasis on groundwater pollution. By measuring the δ(13)C-Σ CO (2) in leachates, groundwaters and surface waters, the influence of leachate can be identified. The value of δ(13)C-Σ CO (2) varied from-5.5 to 25.9 ‰ in leachate, from-25.4 to 14.7 ‰ in groundwater and from-19.7 to-13.1 ‰ in creeks. A comparison of the carbon isotope ratio with COD, EC and the concentrations of total and NH (4)-N, Cl and Fe showed that δ(13)C-Σ CO (2) is a good tracer for leachate due to higher sensitivity compared to other parameters. The mean concentrations of all the studied parameters were higher in the leachate samples; however, only the carbon isotope ratio showed significant differences between all the groups with strong and middle pollution and samples with low pollution, showing that it can be used as a convenient tracer for leachate in groundwater and surface water. The carbon isotope ratio showed strong correlation between nitrogen, EC and bicarbonate, but not with pH. Tritium was only sporadically found in measureable concentrations and is not considered as a suitable tracer at the sampled locations.

  10. Imaging cerebral 2-ketoisocaproate metabolism with hyperpolarized (13)C Magnetic Resonance Spectroscopic Imaging

    DEFF Research Database (Denmark)

    Butt, Sadia Asghar; Søgaard, Lise Vejby-Christensen; Magnusson, Peter O.

    2012-01-01

    The branched chain amino acid transaminase (BCAT) has an important role in nitrogen shuttling and glutamate metabolism in the brain. The purpose of this study was to describe the cerebral distribution and metabolism of hyperpolarized 2-keto[1-(13)C]isocaproate (KIC) in the normal rat using magnet...... & Metabolism advance online publication, 28 March 2012; doi:10.1038/jcbfm.2012.34....

  11. Substituent Effects in the 13C-NMR Spectra of Six-Membered Nitrogen Heteroaromatic Compounds

    Directory of Open Access Journals (Sweden)

    Janusz Oszczapowicz

    2005-01-01

    Full Text Available Abstract: It is shown that the 13C-NMR chemical shifts of carbon atoms in substituted sixmembered heteroaromatic compounds correlate with the correponding "additivity parameters" for substituted benzene derivatives. Thus, for precalculation of chemical shifts in such compounds, just one set of parameters can be used. The differences between experimental chemical shifts and those calculated from correlation with the common set may provide insights into intramolecular interactions not reported in the literature.

  12. 13C-18O isotope signatures and ‘clumped isotope’ thermometry in foraminifera and coccoliths

    Science.gov (United States)

    Tripati, Aradhna K.; Eagle, Robert A.; Thiagarajan, Nivedita; Gagnon, Alexander C.; Bauch, Henning; Halloran, Paul R.; Eiler, John M.

    2010-10-01

    Accurate constraints on past ocean temperatures and compositions are critical for documenting climate change and resolving its causes. Most proxies for temperature are not thermodynamically based, appear to be subject to biological processes, require regional calibrations, and/or are influenced by fluid composition. As a result, their interpretation becomes uncertain when they are applied in settings not necessarily resembling those in which they were empirically calibrated. Independent proxies for past temperature could provide an important means of testing and/or expanding on existing reconstructions. Here we report measurements of abundances of stable isotopologues of calcitic and aragonitic benthic and planktic foraminifera and coccoliths, relate those abundances to independently estimated growth temperatures, and discuss the possible scope of equilibrium and kinetic isotope effects. The proportions of 13C- 18O bonds in these samples exhibits a temperature dependence that is generally similar to that previously been reported for inorganic calcite and other biologically precipitated carbonate-containing minerals (apatite from fish, reptile, and mammal teeth; calcitic brachiopods and molluscs; aragonitic coral and mollusks). Most species that exhibit non-equilibrium 18O/ 16O (δ 18O) and 13C/ 12C (δ 13C) ratios are characterized by 13C- 18O bond abundances that are similar to inorganic calcite and are generally indistinguishable from apparent equilibrium, with possible exceptions among benthic foraminiferal samples from the Arctic Ocean where temperatures are near-freezing. Observed isotope ratios in biogenic carbonates can be explained if carbonate minerals generally preserve a state of ordering that reflects the extent of isotopic equilibration of the dissolved inorganic carbon species.

  13. OpenFLUX: efficient modelling software for 13C-based metabolic flux analysis

    Directory of Open Access Journals (Sweden)

    Nielsen Lars K

    2009-05-01

    Full Text Available Abstract Background The quantitative analysis of metabolic fluxes, i.e., in vivo activities of intracellular enzymes and pathways, provides key information on biological systems in systems biology and metabolic engineering. It is based on a comprehensive approach combining (i tracer cultivation on 13C substrates, (ii 13C labelling analysis by mass spectrometry and (iii mathematical modelling for experimental design, data processing, flux calculation and statistics. Whereas the cultivation and the analytical part is fairly advanced, a lack of appropriate modelling software solutions for all modelling aspects in flux studies is limiting the application of metabolic flux analysis. Results We have developed OpenFLUX as a user friendly, yet flexible software application for small and large scale 13C metabolic flux analysis. The application is based on the new Elementary Metabolite Unit (EMU framework, significantly enhancing computation speed for flux calculation. From simple notation of metabolic reaction networks defined in a spreadsheet, the OpenFLUX parser automatically generates MATLAB-readable metabolite and isotopomer balances, thus strongly facilitating model creation. The model can be used to perform experimental design, parameter estimation and sensitivity analysis either using the built-in gradient-based search or Monte Carlo algorithms or in user-defined algorithms. Exemplified for a microbial flux study with 71 reactions, 8 free flux parameters and mass isotopomer distribution of 10 metabolites, OpenFLUX allowed to automatically compile the EMU-based model from an Excel file containing metabolic reactions and carbon transfer mechanisms, showing it's user-friendliness. It reliably reproduced the published data and optimum flux distributions for the network under study were found quickly ( Conclusion We have developed a fast, accurate application to perform steady-state 13C metabolic flux analysis. OpenFLUX will strongly facilitate and

  14. Design, total synthesis, and evaluation of C13-C14 cyclopropane analogues of (+)-discodermolide.

    Science.gov (United States)

    Smith, Amos B; Xian, Ming; Liu, Fenghua

    2005-10-13

    [structure: see text] The design, total synthesis, and biological evaluation of two C13-C14-cyclopropyl analogues [(+)-1 and (+)-2] of (+)-discodermolide have been achieved. Key features of the syntheses include highly stereoselective, hydroxyl-directed cyclopropanations of vinyl iodides and higher order cuprate-mediated cross-coupling reactions between cyclopropyl iodides and alkyl iodides. Biological evaluation revealed that neither orientation of the cyclopropyl methylene completely substitutes for the C14 methyl found in (+)-discodermolide (3).

  15. SUMOFLUX: A Generalized Method for Targeted 13C Metabolic Flux Ratio Analysis

    OpenAIRE

    Kogadeeva, Maria; Zamboni, Nicola

    2016-01-01

    Author Summary Living cells adapt to ever-changing environments by regulating metabolic fluxes, the rates of nutrient flow through the metabolic network, to produce metabolites that are currently in demand. 13C-labeling techniques coupled with metabolic flux analyses are widely used to estimate metabolic fluxes and provide insights into cellular physiology and adaptation relevant in biological, biomedical and biotechnological applications. However, the existing methods are either computationa...

  16. Chemienzymatic synthesis of Uridine. Nucleotides labeled with [15N] and [13C

    DEFF Research Database (Denmark)

    Gilles, Anne-Marie; Cristea, Ioan; Palibroda, Nicolae

    1995-01-01

    +necessary for the oxidation of glucose 6-phosphate and 6-phosphogluconate was recycled by glutamate dehydrogenase and excess of ammonia and a-oxoglutarate. Despite the number and complexity of the enzymatic steps, the synthesis of [15N,13C]UTP is straightforward with an overall yield exceeding 60%. This method, extended...... and diversified to the synthesis of all natural ribonucleotides, is a more economical alternative for obtaining nucleic acids for structural analysis by heteronuclear NMR spectroscopy....

  17. 13C-Metabolic Flux Analysis: An Accurate Approach to Demystify Microbial Metabolism for Biochemical Production

    OpenAIRE

    Weihua Guo; Jiayuan Sheng; Xueyang Feng

    2015-01-01

    Metabolic engineering of various industrial microorganisms to produce chemicals, fuels, and drugs has raised interest since it is environmentally friendly, sustainable, and independent of nonrenewable resources. However, microbial metabolism is so complex that only a few metabolic engineering efforts have been able to achieve a satisfactory yield, titer or productivity of the target chemicals for industrial commercialization. In order to overcome this challenge, 13C Metabolic Flux Analysis (1...

  18. 13C high resolution solid state NMR spectra of Chinese coals

    Institute of Scientific and Technical Information of China (English)

    陈德玉; 胡建治; 叶朝辉

    1997-01-01

    Several typical exinites in China including alginite, cultinite, suberinite and bituminite are analysed by means of 13C high solution solid state CP MAS TOSS NMR spectra to determine their chemical structures and hydrocarbon potential. Thermal simulation solid products (TSSP) of hydrogen-rich coals arc studied to discuss the generation and expulsion mechanism of coal-generating hydrocarbon. The preliminary results are quite encouraging, containing useful information about genesis of coal-generating oil and gases.

  19. 13C-NMR Data of Three Important Diterpenes Isolated from Euphorbia Species

    Directory of Open Access Journals (Sweden)

    Fen-Qiang You

    2009-11-01

    Full Text Available Euphorbia species are widely distributed plants, many of which are used in folk medicine. Over the past twenty years, they have received considerable phytochemical and biological attention. Their diterpenoid constituents, especially those with abietane, tigliane, ingenane skeletons, are thought to be the main toxicant and bioactive factors. In this work, the utility of 13C-NMR spectroscopy for the structural elucidation of these compounds is briefly discussed.

  20. The millimeter and sub-millimeter rotational spectrum of triple 13C-substituted ethyl cyanide

    Science.gov (United States)

    Pienkina, A. O.; Margulès, L.; Motiyenko, R. A.; Müller, H. S. P.; Guillemin, J.-C.

    2017-05-01

    Context. A recently published astronomical detection of all three doubly 13C-substituted ethyl cyanides toward Sgr B2(N2) motivated us to investigate triple 13C isotopic species that are expected to be also present in the ISM. Aims: We aim to present an experimental study of the rotational spectrum of triple 13C-substituted ethyl cyanide, 13CH313CH213CN, in the frequency range 150-990 GHz. We want to use the determined spectroscopic parameters for searching for 13CH313CH213CN in ALMA data. The main objective of this work is to provide accurate frequency predictions to search for this molecule in the Galactic center source Sagittarius B2(N) and to facilitate its detection in space. Methods: The laboratory rotational spectrum of 13CH313CH213CN has been recorded with the Lille's fast DDS solid-state spectrometer between 150 GHz and 990 GHz. Results: More than 4000 rotational transitions were identified in the laboratory. The quantum numbers reach J = 115 and Ka = 39. Watson's Hamiltonian in the A and S reductions were used to analyze the spectra. Accurate spectroscopic parameters were determined. The rotational spectra of the 13C containing species CH3CH2CN have been assigned, thus allowing the determination of the rotational and centrifugal distortion constants Full Table 3 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A2

  1. Real-time assessment of Krebs cycle metabolism using hyperpolarized 13C magnetic resonance spectroscopy

    OpenAIRE

    Schroeder, Marie A.; Atherton, Helen J; Ball, Daniel R.; Cole, Mark A.; Heather, Lisa C.; Griffin, Julian L; Clarke, Kieran; Radda, George K.; Tyler, Damian J

    2009-01-01

    The Krebs cycle plays a fundamental role in cardiac energy production and is often implicated in the energetic imbalance characteristic of heart disease. In this study, we measured Krebs cycle flux in real time in perfused rat hearts using hyperpolarized magnetic resonance spectroscopy (MRS). [2-13C]Pyruvate was hyperpolarized and infused into isolated perfused hearts in both healthy and postischemic metabolic states. We followed the enzymatic conversion of pyruvate to lactate, acetylcarnitin...

  2. Real-time assessment of Krebs cycle metabolism using hyperpolarized 13C magnetic resonance spectroscopy

    OpenAIRE

    Schroeder, Marie A; Atherton, Helen J.; Ball, Daniel R.; Cole, Mark A; Heather, Lisa C.; Griffin, Julian L.; Clarke, Kieran; Radda, George K; Tyler, Damian J.

    2009-01-01

    The Krebs cycle plays a fundamental role in cardiac energy production and is often implicated in the energetic imbalance characteristic of heart disease. In this study, we measured Krebs cycle flux in real time in perfused rat hearts using hyperpolarized magnetic resonance spectroscopy (MRS). [2-13C]Pyruvate was hyperpolarized and infused into isolated perfused hearts in both healthy and postischemic metabolic states. We followed the enzymatic conversion of pyruvate to lactate, acetylcarnitin...

  3. 1H-13C NMR-based profiling of biotechnological starch utilization

    DEFF Research Database (Denmark)

    Sundekilde, Ulrik K.; Meier, Sebastian

    2016-01-01

    Starch is used in food-and non-food applications as a renewable and degradable source of carbon and energy. Insight into the chemical detail of starch degradation remains challenging as the starch constituents amylose and amylopectin are homopolymers. We show that considerable molecular detail......-resolution 1H-13C NMR spectroscopic profiles of homooligomeric fragment mixtures in conjunction with chemometric methods provide a useful addition to the analytical chemistry toolbox of biotechnologi-cal starch utilization....

  4. Climatic significance of D/H and 13C/12C ratios in Irish oak cellulose

    Indian Academy of Sciences (India)

    M G L Baillie; J R Pilcher; A M Pollard; R Ramesh

    2000-03-01

    D and 13C analyses of cellulose nitrate from two modern Irish oak trees that form part of the 7400 year long chronology were carried out, covering a period of 123 years (1861-1983 A.D.) with a 5 year resolution so as to assess the potential of this long chronology for retrieval of palaeoenvironmental data. One of the trees (Q5293) showed significant correlations of D, 13C and ring width with mean annual temperatures as recorded at the Armagh weather station nearby and the mean fall temperatures of Central England. The other tree (Q5296) did not exhibit any significant climatic correlations either because it grew utilizing a nearby permanent source of ground water or because the intra-ring isotopic variations in Irish oak are significant enough to mask the climatic signal. Whilst our results have given a positive indication of the usefulness of these trees for palaeoenvironmental information, more trees need to be analysed to confirm our findings. Even though one of the trees did not exhibit climatic correlations, both trees show a significant positive correlation of 13C and a negative correlation of D with ring width variations. Furthermore, two tree samples that grew during the 1620s B.C., when a volcano is thought to have erupted on the Aegean island of Santorini, show increased D and decreased 13C for one to two decades following the eruption, though the magnitudes of change seem to vary with site and trees. We have proposed a possible mechanism based on tree phenology to explain both the above effects.

  5. Reflections on the application of 13C-MRS to research on brain metabolism.

    Science.gov (United States)

    Morris, Peter; Bachelard, Herman

    2003-01-01

    The power of (13)C-MRS lies in its unique chemical specificity, enabling detection and quantification of metabolic intermediates which would not be so readily monitored using conventional radiochemical techniques. Examples from animal studies, by examination of tissue extracts from the whole brain, brain slices and cultured cells, include observation of intermediates such as citrate and triose phosphates which have yielded novel information on neuronal/glial relationships. The use of (13)C-labelled acetate as a specific precursor for glial metabolism provided evidence in support of the view that some of the GABA produced in the brain is derived from glial glutamine. Such studies have also provided direct evidence on the contribution of anaplerotic pathways to intermediary metabolism. Analogous studies are now being performed on the human brain, where (13)C-acetate is used to quantitate the overall contribution of glial cells to intermediary metabolism, and use of (13)C-glucose enables direct calculation of rates of flux through the TCA (F(TCA)) and of the glutamate-glutamine cycle (F(CYC)), leading to the conclusion that the rate of glial recycling of glutamate accounts for some 50% of F(TCA). The rate of 0.74 micromol min(-1) g(-1) for F(TCA) is compatible with PET rates of CMRglc of 0.3-0.4 micromol min(-1) g(-1) (since each glucose molecule yields two molecules of pyruvate entering the TCA). Our brain activation studies showed a 60% increase in F(TCA), which is very similar to the increases in CBF and in CMRglc observed in PET activation studies.

  6. Precise observations of the 12C/13C ratios of HC3N in the low-mass star-forming region L1527

    CERN Document Server

    Araki, Mitsunori; Sakai, Nami; Yamamoto, Satoshi; Oyama, Takahiro; Kuze, Nobuhiko; Tsukiyama, Koichi

    2016-01-01

    Using the Green Bank 100 m telescope and the Nobeyama 45 m telescope, we have observed the rotational emission lines of the three 13C isotopic species of HC3N in the 3 and 7 mm bands toward the low-mass star-forming region L1527 in order to explore their anomalous 12C/13C ratios. The column densities of the 13C isotopic species are derived from the intensities of the J = 5-4 lines observed at high signal-to-noise ratios. The abundance ratios are determined to be 1.00:1.01 +- 0.02:1.35 +- 0.03:86.4 +- 1.6 for [H13CCCN]:[HC13CCN]:[HCC13CN]:[HCCCN], where the errors represent one standard deviation. The ratios are very similar to those reported for the starless cloud, Taurus Molecular Cloud-1 Cyanopolyyne Peak (TMC-1 CP). These ratios cannot be explained by thermal equilibrium, but likely reflect the production pathways of this molecule. We have shown the equality of the abundances of H13CCCN and HC13CCN at a high-confidence level, which supports the production pathways of HC3N via C2H2 and C2H2+. The average 12...

  7. Real-time cardiac metabolism assessed with hyperpolarized [1-13C]acetate in a large-animal model

    DEFF Research Database (Denmark)

    Flori, Alessandra; Liserani, Matteo; Frijia, Francesca

    2015-01-01

    to 3 mmol. The Na[1-13C]acetate formulation was characterized by a liquid-state polarization of 14.2% and a T1Eff in vivo of 17.6 ± 1.7 s. In vivo Na[1-13C]acetate kinetics displayed a bimodal shape: [1-13C]acetyl carnitine (AcC) was detected in a slice covering the cardiac volume, and the signal of 13...... relaxation rate (r1). Our study proved the feasibility and the limitations of administration of large doses of hyperpolarized [1-13C]acetate to study the myocardial conversion of [1-13C]acetate in [1-13C]acetyl-carnitine generated by acetyltransferase in healthy pigs...

  8. STUDY ON THE SEQUENCE STRUCTURE OF BUTADIENE-STYRENE RUBBER BY 13C-NMR METHOD Ⅲ. QUANTITATIVE CHARACTERIZATION OF SEQUENCE STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiaonong; HU Liping; YAN Baozhen; JIAO Shuke

    1990-01-01

    The quantitative description of the sequence structure of emulsion-processed SBR and solution-processed SBR (by lithium catalyst)was carried out based on their spectral data of 13C-NMR.The calculating formulae which could be used to obtain diad concentration from the peak intensities of carbon spectra, average block length, average number of block, and the microstructure composition of the molecular chain were derived. The quantitative result showed that on the molecular chain styrene unit had the tendency to attach to trans-1,4 butadiene unit. The calculated result of the microstructure was in good agreement with that obtained through IR measurement.

  9. Field dependence of T1 for hyperpolarized [1-13C]pyruvate

    DEFF Research Database (Denmark)

    Chattergoon, N.; Martnez-Santiesteban, F.; Handler, W. B.

    2013-01-01

    conformation and properties of the dissolution media such as buffer composition, solution pH, temperature and magnetic field. We have measured the magnetic field dependence of the spin–lattice relaxation time of hyperpolarized [1-13C]pyruvate using field-cycled relaxometry. [1-13C]pyruvate was hyperpolarized...... using dynamic nuclear polarization and then rapidly thawed and dissolved in a buffered solution to a concentration of 80 mmol l−1 and a pH of ~7.8. The hyperpolarized liquid was transferred within 8 s to a fast field-cycling relaxometer with a probe tuned for detection of 13C at a field strength of ~0...... of pyruvate. Using similar methods, we also determined the relaxivity of the triarylmethyl radical (OX063; used for dynamic nuclear polarization) on the C-1 of pyruvate at field strengths of 0.001, 0.01, 0.1 and 0.5 T using 0.075, 1.0 and 2.0 mmol l−1 concentrations of OX063 in the hyperpolarized pyruvate...

  10. {sup 13}C NMR and EPR spectroscopic evaluation of oil shale mined soil recuperation

    Energy Technology Data Exchange (ETDEWEB)

    Santos, J.V. dos, E-mail: mangrich@ufpr.br [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil); Mangrich, A.S. [Instituto Nacional de Ciencia e Tecnologia: Energia e Ambiente, Salvador, BA (Brazil); Pereira, B.F. [EMBRAPA Clima Temperado, Pelotas, RS (Brazil); Pillon, C.N. [EMBRAPA Clima Temperado, Pelotas, RS (Brazil). Estacao Experimental Cascata; Novotny, E.H. [EMBRAPA Solos, Rio de Janeiro, RJ (Brazil); Bonagamba, T.J. [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Instituto de Fisica; Abbt-Braun, G.; Frimmel, F.H. [Engler-Bunte-Institut, Universitaet Karlsruhe, TH (Germany)

    2013-02-15

    In this work, native forest soil (NFS) organic matter (SOM) sample and SOM samples from a neighboring forest soil area of an oil shale mine which is being rehabilitated for thirty years (RFS) were analyzed. X-band electron paramagnetic resonance (EPR) and solid-state {sup 13}C nuclear magnetic resonance (NMR) spectroscopies were used to evaluate the soil reclamation of the Brazilian oil shale mining process. Two-dimensional heterospectral correlation studies of the results obtained from EPRand {sup 13}C NMR were used to obtain information about SOM structures and their interactions with residual paramagnetic metal ion. The signal of the residual metallic oxycation, VO{sup 2+} correlated positively with uronic acid-type hydrophilic organic structures, determined from the {sup 13}C NMR spectra, and correlated negatively with the organic free radical (OFR) signal associated with oxygen atoms (g = 2.0042). The hydrophobic aromatic structures correlate positively with the EPR OFR signal associated with carbon atoms (g = 2.0022). The data from the two spectroscopic magnetic techniques show that the used recuperation process is effective. (author)

  11. Analysis of hydrocarbon chain conformation using double quantum coherence /sup 13/C NMR

    Energy Technology Data Exchange (ETDEWEB)

    Phillippi, M.A. (Clorox Technical Center, Pleasanton, CA); Wiersema, R.J.; Brainard, J.R.; London, R.E.

    1982-12-15

    The recent development of a double quantum coherence method for the observation of /sup 13/C-/sup 13/C scalar coupling constants without the need for isotopic labeling provides an alternative approach to the hydrocarbon chain conformation problem. The method is particularly suitable for this application since one-, two-, and three-bond carbon-carbon coupling constant values in hydrocarbons are typically of significantly different magnitudes, and observation of coupling constants of selected magnitude may be enhanced by the appropriate choice of pulse intervals. Consequently, J/sub CC/ values, which are dependent on the subtended dihedral angle, can be selectively observed. In order to evaluate the potential of this approach, studies on a 90% octanol-10% benzene-d/sub 6/ solution, with the latter serving for the deuterium lock were carried out. A representative /sup 13/C double quantum coherence spectrum of the region containing the octanol C-7 resonances with pulse intervals chosen to optimize couplings with magnitude close to 4.0 Hz is illustrated.

  12. Temperature-mediated changes in microbial carbon use efficiency and 13C discrimination

    Science.gov (United States)

    Lehmeier, Christoph A.; Ballantyne, Ford, IV; Min, Kyungjin; Billings, Sharon A.

    2016-06-01

    Understanding how carbon dioxide (CO2) flux from ecosystems feeds back to climate warming depends in part on our ability to quantify the efficiency with which microorganisms convert organic carbon (C) into either biomass or CO2. Quantifying ecosystem-level respiratory CO2 losses often also requires assumptions about stable C isotope fractionations associated with the microbial transformation of organic substrates. However, the diversity of organic substrates' δ13C and the challenges of measuring microbial C use efficiency (CUE) in their natural environment fundamentally limit our ability to project ecosystem C budgets in a warming climate. Here, we quantify the effect of temperature on C fluxes during metabolic transformations of cellobiose, a common microbial substrate, by a cosmopolitan microorganism growing at a constant rate. Biomass C specific respiration rate increased by 250 % between 13 and 26.5 °C, decreasing CUE from 77 to 56 %. Biomass C specific respiration rate was positively correlated with an increase in respiratory 13C discrimination from 4.4 to 6.7 ‰ across the same temperature range. This first demonstration of a direct link between temperature, microbial CUE, and associated isotope fluxes provides a critical step towards understanding δ13C of respired CO2 at multiple scales, and towards a framework for predicting future ecosystem C fluxes.

  13. (13) C-metabolic flux analysis of human adenovirus infection: Implications for viral vector production.

    Science.gov (United States)

    Carinhas, Nuno; Koshkin, Alexey; Pais, Daniel A M; Alves, Paula M; Teixeira, Ana P

    2017-01-01

    Adenoviruses are human pathogens increasingly used as gene therapy and vaccination vectors. However, their impact on cell metabolism is poorly characterized. We performed carbon labeling experiments with [1,2-(13) C]glucose or [U-(13) C]glutamine to evaluate metabolic alterations in the amniocyte-derived, E1-transformed 1G3 cell line during production of a human adenovirus type 5 vector (AdV5). Nonstationary (13) C-metabolic flux analysis revealed increased fluxes of glycolysis (17%) and markedly PPP (over fourfold) and cytosolic AcCoA formation (nearly twofold) following infection of growing cells. Interestingly, infection of growth-arrested cells increased overall carbon flow even more, including glutamine anaplerosis and TCA cycle activity (both over 1.5-fold), but was unable to stimulate the PPP and was associated with a steep drop in AdV5 replication (almost 80%). Our results underscore the importance of nucleic and fatty acid biosynthesis for adenovirus replication. Overall, we portray a metabolic blueprint of human adenovirus infection, highlighting similarities with other viruses and cancer, and suggest strategies to improve AdV5 production. Biotechnol. Bioeng. 2017;114: 195-207. © 2016 Wiley Periodicals, Inc.

  14. (13)C-metabolic flux analysis of co-cultures: A novel approach.

    Science.gov (United States)

    Gebreselassie, Nikodimos A; Antoniewicz, Maciek R

    2015-09-01

    In this work, we present a novel approach for performing (13)C metabolic flux analysis ((13)C-MFA) of co-culture systems. We demonstrate for the first time that it is possible to determine metabolic flux distributions in multiple species simultaneously without the need for physical separation of cells or proteins, or overexpression of species-specific products. Instead, metabolic fluxes for each species in a co-culture are estimated directly from isotopic labeling of total biomass obtained using conventional mass spectrometry approaches such as GC-MS. In addition to determining metabolic fluxes, this approach estimates the relative population size of each species in a mixed culture and inter-species metabolite exchange. As such, it enables detailed studies of microbial communities including species dynamics and interactions between community members. The methodology is experimentally validated here using a co-culture of two E. coli knockout strains. Taken together, this work greatly extends the scope of (13)C-MFA to a large number of multi-cellular systems that are of significant importance in biotechnology and medicine.

  15. SUMOFLUX: A Generalized Method for Targeted 13C Metabolic Flux Ratio Analysis.

    Science.gov (United States)

    Kogadeeva, Maria; Zamboni, Nicola

    2016-09-01

    Metabolic fluxes are a cornerstone of cellular physiology that emerge from a complex interplay of enzymes, carriers, and nutrients. The experimental assessment of in vivo intracellular fluxes using stable isotopic tracers is essential if we are to understand metabolic function and regulation. Flux estimation based on 13C or 2H labeling relies on complex simulation and iterative fitting; processes that necessitate a level of expertise that ordinarily preclude the non-expert user. To overcome this, we have developed SUMOFLUX, a methodology that is broadly applicable to the targeted analysis of 13C-metabolic fluxes. By combining surrogate modeling and machine learning, we trained a predictor to specialize in estimating flux ratios from measurable 13C-data. SUMOFLUX targets specific flux features individually, which makes it fast, user-friendly, applicable to experimental design and robust in terms of experimental noise and exchange flux magnitude. Collectively, we predict that SUMOFLUX's properties realistically pave the way to high-throughput flux analyses.

  16. (13)C-metabolic flux analysis in S-adenosyl-L-methionine production by Saccharomyces cerevisiae.

    Science.gov (United States)

    Hayakawa, Kenshi; Kajihata, Shuichi; Matsuda, Fumio; Shimizu, Hiroshi

    2015-11-01

    S-Adenosyl-L-methionine (SAM) is a major biological methyl group donor, and is used as a nutritional supplement and prescription drug. Yeast is used for the industrial production of SAM owing to its high intracellular SAM concentrations. To determine the regulation mechanisms responsible for such high SAM production, (13)C-metabolic flux analysis ((13)C-MFA) was conducted to compare the flux distributions in the central metabolism between Kyokai no. 6 (high SAM-producing) and S288C (control) strains. (13)C-MFA showed that the levels of tricarboxylic acid (TCA) cycle flux in SAM-overproducing strain were considerably increased compared to those in the S228C strain. Analysis of ATP balance also showed that a larger amount of excess ATP was produced in the Kyokai 6 strain because of increased oxidative phosphorylation. These results suggest that high SAM production in Kyokai 6 strains could be attributed to enhanced ATP regeneration with high TCA cycle fluxes and respiration activity. Thus, maintaining high respiration efficiency during cultivation is important for improving SAM production.

  17. 14N + 13C fusion cross sections and compound nucleus limitation in 27Al

    Science.gov (United States)

    Digregorio, D. E.; Gomez del Campo, J.; Chan, Y. D.; Ford, J. L. C., Jr.; Shapira, D.; Ortiz, M. E.

    1982-10-01

    Fusion cross sections for the 14N + 13C system have been measured by detecting the evaporation residues at five bombarding energies which correspond to high excitation energies in the compound nucleus: E*(27Al)=64-110 MeV. The 27Al nucleus can be populated by four different heavy-ion entrance channels-15N + 12C, 16O + 11B, 14N + 13C, and 17O + 10B-which are accessible to experimental measurements. Comparing the present data with those already existing for the above channels, it is found that for E*>60 MeV the curves E* vs Jcr for each system converge, which may be indicative of a limitation imposed by the compound nucleus. The data are discussed in terms of existing models for entrance channel and statistical yrast line limitations. The highest energy point also suggests the existence of a maximum absolute angular momentum limit of ~28ℏ. NUCLEAR REACTIONS 14N + 13C E(14N)=86.0, 103.8, 149.0, 161.3, and 180.0 MeV; measured d2σdΩdE for reaction products from Z=5 to 12. Extracted σfus, σD, σR.

  18. [Characterization of biochar by X-ray photoelectron spectroscopy and 13C nuclear magnetic resonance].

    Science.gov (United States)

    Xu, Dong-yu; Jin, Jie; Yan, Yu; Han, Lan-fang; Kang, Ming-jie; Wang, Zi-ying; Zhao, Ye; Sun, Ke

    2014-12-01

    The wood (willow branch) and grass (rice straw) materials were pyrolyzed at different temperatures (300, 450 and 600 °C) to obtain the biochars used in the present study. The biochars were characterized using elementary analysis, X-ray photoelectron spectroscopy (XPS) and solid state 13C cross-polarization and magic angle spinning nuclear magnetic resonance spectroscopy (13C NMR) to illuminate the structure and composition of the biochars which were derived from the different thermal temperatures and biomass. The results showed that the H/C, O/C and (O+N)/C ratios of the biochars decreased with the increase in the pyrolysis temperatures. The surface polarity and ash content of the grass-derived biochars were higher than those of the wood-derived biochars. The minerals of the wood-derived biochars were mainly covered by the organic matter; in contrast, parts of the mineral surfaces of the grass-derived biochars were not covered by organic matter? The 13C NMR of the low temperature-derived biochars revealed a large contribution of aromatic carbon, aliphatic carbon, carboxyl and carbonyl carbon, while the high temperature-derived biochars contained a large amount of aromatic carbon. Moreover, the wood-derived biochars produced at low heat treatment temperatures contained more lignin residues than grass-derived ones, probably due to the existence of high lignin content in the feedstock soures of wood-derived biochars. The results of the study would be useful for environmental application of biochars.

  19. Metabolism of [U-13C]glucose in Human Brain Tumors In Vivo

    Science.gov (United States)

    Maher, Elizabeth A.; Marin-Valencia, Isaac; Bachoo, Robert M.; Mashimo, Tomoyuki; Raisanen, Jack; Hatanpaa, Kimmo J.; Jindal, Ashish; Jeffrey, F. Mark; Choi, Changho; Madden, Christopher; Mathews, Dana; Pascual, Juan M.; Mickey, Bruce E.; Malloy, Craig R.; DeBerardinis, Ralph J.

    2012-01-01

    Glioblastomas (GBMs) and brain metastases demonstrate avid uptake of 18fluoro-2-deoxyglucose (FDG) by positron emission tomography (PET) and display perturbations of intracellular metabolite pools by 1H magnetic resonance spectroscopy (MRS). These observations suggest that metabolic reprogramming contributes to brain tumor growth in vivo. The Warburg effect, excess metabolism of glucose to lactate in the presence of oxygen, is a hallmark of cancer cells in culture. FDG-positive tumors are assumed to metabolize glucose in a similar manner, with high rates of lactate formation compared to mitochondrial glucose oxidation, but few studies have specifically examined the metabolic fates of glucose in vivo. In particular, the capacity of human brain malignancies to oxidize glucose in the tricarboxylic acid cycle is unknown. Here we studied the metabolism of human brain tumors in situ. [U-13C]glucose was infused during surgical resection, and tumor samples were subsequently subjected to 13C NMR spectroscopy. Analysis of tumor metabolites revealed lactate production, as expected. We also determined that pyruvate dehydrogenase, turnover of the TCA cycle, anaplerosis and de novo glutamine and glycine synthesis contributed significantly to the ultimate disposition of glucose carbon. Surprisingly, less than 50% of the acetyl-CoA pool was derived from blood-borne glucose, suggesting that additional substrates contribute to tumor bioenergetics. This study illustrates a convenient approach that capitalizes on the high information content of 13C NMR spectroscopy and enables the analysis of intermediary metabolism in diverse malignancies growing in their native microenvironment. PMID:22419606

  20. 13C Tracers for Glucose Degrading Pathway Discrimination in Gluconobacter oxydans 621H

    Directory of Open Access Journals (Sweden)

    Steffen Ostermann

    2015-09-01

    Full Text Available Gluconobacter oxydans 621H is used as an industrial production organism due to its exceptional ability to incompletely oxidize a great variety of carbohydrates in the periplasm. With glucose as the carbon source, up to 90% of the initial concentration is oxidized periplasmatically to gluconate and ketogluconates. Growth on glucose is biphasic and intracellular sugar catabolism proceeds via the Entner–Doudoroff pathway (EDP and the pentose phosphate pathway (PPP. Here we studied the in vivo contributions of the two pathways to glucose catabolism on a microtiter scale. In our approach we applied specifically 13C labeled glucose, whereby a labeling pattern in alanine was generated intracellularly. This method revealed a dynamic growth phase-dependent pathway activity with increased activity of EDP in the first and PPP in the second growth phase, respectively. Evidence for a growth phase-independent decarboxylation-carboxylation cycle around the pyruvate node was obtained from 13C fragmentation patterns of alanine. For the first time, down-scaled microtiter plate cultivation together with 13C-labeled substrate was applied for G. oxydans to elucidate pathway operation, exhibiting reasonable labeling costs and allowing for sufficient replicate experiments.

  1. Further evidence for a dynamically generated secondary bow in $^{13}$C+$^{12}$C rainbow scattering

    CERN Document Server

    Ohkubo, S; Ogloblin, A A

    2015-01-01

    The existence of a secondary bow is confirmed for 13C+12C nuclear rainbow scattering in addition to the 16O+12C system. This is found by studying the experimental angular distribution of 13C+12C scattering at the incident 13C energy $E_L$=250 MeV with an extended double folding (EDF) model that describes all the diagonal and off-diagonal coupling potentials derived from the microscopic wave functions for 12C using a density-dependent nucleon-nucleon force. The Airy minimum at \\theta$ $\\approx$70$^\\circ$, which is not reproduced by a conventional folding potential, is revealed to be a secondary bow generated dynamically by a coupling to the excited state 2+ (4.44 MeV) of 12C. The essential importance of the quadruple {\\it Y2} term (reorientation term) of potential of the excited state 2+ of 12C for the emergence of a secondary bow is found. The mechanism of the secondary bow is intuitively explained by showing how the trajectories are refracted dynamically into the classically forbidden angular region beyond t...

  2. delta(13)C and delta(2)H isotope ratios in amphetamine synthesized from benzaldehyde and nitroethane.

    Science.gov (United States)

    Collins, Michael; Salouros, Helen; Cawley, Adam T; Robertson, James; Heagney, Aaron C; Arenas-Queralt, Andrea

    2010-06-15

    Previous work in these laboratories and by Butzenlechner et al. and Culp et al. has demonstrated that the delta(2)H isotope value of industrial benzaldehyde produced by the catalytic oxidation of toluene is profoundly positive, usually in the range +300 per thousand to +500 per thousand. Synthetic routes leading to amphetamine, methylamphetamine or their precursors and commencing with such benzaldehyde may be expected to exhibit unusually positive delta(2)H values. Results are presented for delta(13)C and delta(2)H isotope values of 1-phenyl-2-nitropropene synthesized from an industrial source of benzaldehyde, having a positive delta(2)H isotope value, by a Knoevenagel condensation with nitroethane. Results are also presented for delta(13)C and delta(2)H isotope values for amphetamine prepared from the resulting 1-phenyl-2-nitropropene. The values obtained were compared with delta(13)C and delta(2)H isotope values obtained for an amphetamine sample prepared using a synthetic route that did not involve benzaldehyde. Finally, results are presented for samples of benzaldehyde, 1-phenyl-2-nitropropene and amphetamine that had been seized at a clandestine amphetamine laboratory.

  3. Assessing microbial utilization of free versus sorbed Alanine by using position-specific 13C labeling and 13C-PLFA analysis

    Science.gov (United States)

    Herschbach, Jennifer; Apostel, Carolin; Spielvogel, Sandra; Kuzyakov, Yakov; Dippold, Michaela

    2016-04-01

    Microbial utilization is a key transformation process of soil organic matter (SOM). Sorption of low molecular weight organic substances (LMWOS) to soil mineral surfaces blocks or delays microbial uptake and therefore mineralization of LMWOS to CO2, as well as all other biochemical transformations. We used position-specific labeling, a tool of isotope applications novel to soil science, combined with 13C-phospholipid fatty acid (PLFA) analysis, to assess microbial utilization of sorbed and non-sorbed Alanine in soil. Alanine has various functional groups enabling different sorption mechanisms via its positive charge (e.g. to clay minerals by cation exchange), as well as via its negative charge (e.g. to iron oxides by ligand exchange). To assess changes in the transformation pathways caused by sorption, we added uniformly and position-specifically 13C and 14C labeled Alanine to the Ap of a loamy Luvisol in a short-term (10 days) incubation experiment. To allow for sorption of the tracer solution to an aliquot of this soil, microbial activity was minimized in this subsample by sterilizing the soil by γ-radiation. After shaking, the remaining solutions were filtered and the non-sorbed Alanine was removed with Millipore water and then added to non-sterilized soil. For the free Alanine treatment, solutions with Alanine of similar amount and isotopic composition were prepared, added to the soil and incubated as well. The respired CO2 was trapped in NaOH and its 14C-activity was determined at increasing times intervals. Microbial utilization of Alanine's individual C positions was evaluated in distinct microbial groups classified by 13C-PLFA analysis. Sorption to soil minerals delayed respiration to CO2 and reduced initial respiration rate by 80%. Irrespective of sorption, the highest amount was respired from the carboxylic position (C-1), whereas the amino-bound (C-2) and the methylic position (C-3) were preferentially incorporated into PLFA of microorganisms due to the

  4. OpenMebius: An Open Source Software for Isotopically Nonstationary 13C-Based Metabolic Flux Analysis

    OpenAIRE

    Shuichi Kajihata; Chikara Furusawa; Fumio Matsuda; Hiroshi Shimizu

    2014-01-01

    The in vivo measurement of metabolic flux by 13C-based metabolic flux analysis (13C-MFA) provides valuable information regarding cell physiology. Bioinformatics tools have been developed to estimate metabolic flux distributions from the results of tracer isotopic labeling experiments using a 13C-labeled carbon source. Metabolic flux is determined by nonlinear fitting of a metabolic model to the isotopic labeling enrichment of intracellular metabolites measured by mass spectrometry. Whereas 13...

  5. Methylamine metabolism in Hansenula polymorpha: an in vivo 13C and 31P nuclear magnetic resonance study.

    OpenAIRE

    Jones, J G; Bellion, E

    1991-01-01

    Methylamine uptake, oxidation, and assimilation were studied in Hansenula polymorpha, a methylotrophic yeast. The constitutive ammonia transport system was shown to be effective at accumulating methylamine within cells cultured with methylamine or ammonia as a nitrogen source. [13C]methylamine oxidation rates were measured in vivo in methylamine-adapted cells by 13C nuclear magnetic resonance and were found to be lower than its uptake rate into the cells. The 13C label of methylamine was foun...

  6. PeakWorks

    Energy Technology Data Exchange (ETDEWEB)

    2016-11-30

    The PeakWorks software is designed to assist in the quantitative analysis of atom probe tomography (APT) generated mass spectra. Specifically, through an interactive user interface, mass peaks can be identified automatically (defined by a threshold) and/or identified manually. The software then provides a means to assign specific elemental isotopes (including more than one) to each peak. The software also provides a means for the user to choose background subtraction of each peak based on background fitting functions, the choice of which is left to the users discretion. Peak ranging (the mass range over which peaks are integrated) is also automated allowing the user to chose a quantitative range (e.g. full-widthhalf- maximum). The software then integrates all identified peaks, providing a background-subtracted composition, which also includes the deconvolution of peaks (i.e. those peaks that happen to have overlapping isotopic masses). The software is also able to output a 'range file' that can be used in other software packages, such as within IVAS. A range file lists the peak identities, the mass range of each identified peak, and a color code for the peak. The software is also able to generate 'dummy' peak ranges within an outputted range file that can be used within IVAS to provide a means for background subtracted proximity histogram analysis.

  7. 13C-detected NMR experiments for measuring chemical shifts and coupling constants in nucleic acid bases.

    Science.gov (United States)

    Fiala, Radovan; Sklenár, Vladimír

    2007-10-01

    The paper presents a set of two-dimensional experiments that utilize direct (13)C detection to provide proton-carbon, carbon-carbon and carbon-nitrogen correlations in the bases of nucleic acids. The set includes a (13)C-detected proton-carbon correlation experiment for the measurement of (13)C-(13)C couplings, the CaCb experiment for correlating two quaternary carbons, the HCaCb experiment for the (13)C-(13)C correlations in cases where one of the carbons has a proton attached, the HCC-TOCSY experiment for correlating a proton with a network of coupled carbons, and a (13)C-detected (13)C-(15)N correlation experiment for detecting the nitrogen nuclei that cannot be detected via protons. The IPAP procedure is used for extracting the carbon-carbon couplings and/or carbon decoupling in the direct dimension, while the S(3)E procedure is preferred in the indirect dimension of the carbon-nitrogen experiment to obtain the value of the coupling constant. The experiments supply accurate values of (13)C and (15)N chemical shifts and carbon-carbon and carbon-nitrogen coupling constants. These values can help to reveal structural features of nucleic acids either directly or via induced changes when the sample is dissolved in oriented media.

  8. Temperature signal instability of tree-ring δ13C chronology in the northeastern Qinghai-Tibetan Plateau

    Science.gov (United States)

    Wang, Wenzhi; Liu, Xiaohong; Xu, Guobao; Zeng, Xiaomin; Wu, Guoju; Zhang, Xuanwen; Qin, Dahe

    2016-04-01

    Tree ring δ13C as a climate proxy is widely used for palaeoclimate research, however, its temporal stability response to the climate change remains unclear under more than one limited factors on tree growth. Here, we used a millennium tree-ring δ13C chronology combining two annual-resolution δ13C chronologies since 1800 from long-lived Qilian juniper (Sabina przewalskii) to assess its instability of the climate signal in the northeastern Qinghai-Tibetan Plateau. Tree-ring δ13C chronologies were strongly correlated with the regional mean April to August temperature from 1956 to 2008, but the associations were absent within the period 1901 to 1955 values in the CRU TS dataset. Comparison of the millennium-long δ13C series with reconstructed Asian temperatures also demonstrated that the δ13C chronology exhibited climate signal temporal instability. Substantial oscillations were revealed using a frequency-dependent analysis and 51-year running correlation analysis from the millennium-long tree-ring δ13C and δ18O series. Dual-isotope approach indicated that stomatal limitations created a statistical significant positive correlation between tree-ring δ13C and δ18O, but photosynthetic rate may be dominant when the correlations were not significant. Our results suggest that tree-ring δ13C series in the northeastern Qinghai-Tibetan Plateau is responded instability to temperature variations in the past 1000 years.

  9. T1 nuclear magnetic relaxation dispersion of hyperpolarized sodium and cesium hydrogencarbonate-(13) C.

    Science.gov (United States)

    Martínez-Santiesteban, Francisco M; Dang, Thien Phuoc; Lim, Heeseung; Chen, Albert P; Scholl, Timothy J

    2017-09-01

    In vivo pH mapping in tissue using hyperpolarized hydrogencarbonate-(13) C has been proposed as a method to study tumor growth and treatment and other pathological conditions related to pH changes. The finite spin-lattice relaxation times (T1 ) of hyperpolarized media are a significant limiting factor for in vivo imaging. Relaxation times can be measured at standard magnetic fields (1.5 T, 3.0 T etc.), but no such data are available at low fields, where T1 values can be significantly shorter. This information is required to determine the potential loss of polarization as the agent is dispensed and transported from the polarizer to the MRI scanner. The purpose of this study is to measure T1 dispersion from low to clinical magnetic fields (0.4 mT to 3.0 T) of different hyperpolarized hydrogencarbonate formulations previously proposed in the literature for in vivo pH measurements. (13) C-enriched cesium and sodium hydrogencarbonate preparations were hyperpolarized using dynamic nuclear polarization, and the T1 values of different samples were measured at different magnetic field strengths using a fast field-cycling relaxometer and a 3.0 T clinical MRI system. The effects of deuterium oxide as a dissolution medium for sodium hydrogencarbonate were also analyzed. This study finds that the cesium formulation has slightly shorter T1 values compared with the sodium preparation. However, the higher solubility of cesium hydrogencarbonate-(13) C means it can be polarized at greater concentration, using less trityl radical than sodium hydrogencarbonate-(13) C. This study also establishes that the preparation and handling of sodium hydrogencarbonate formulations in relation to cesium hydrogencarbonate is more difficult, due to the higher viscosity and lower achievable concentrations, and that deuterium oxide significantly increases the T1 of sodium hydrogencarbonate solutions. Finally, this work also investigates the influence of pH on the spin-lattice relaxation of cesium

  10. How Energy Metabolism Supports Cerebral Function: Insights from (13)C Magnetic Resonance Studies In vivo.

    Science.gov (United States)

    Sonnay, Sarah; Gruetter, Rolf; Duarte, João M N

    2017-01-01

    Cerebral function is associated with exceptionally high metabolic activity, and requires continuous supply of oxygen and nutrients from the blood stream. Since the mid-twentieth century the idea that brain energy metabolism is coupled to neuronal activity has emerged, and a number of studies supported this hypothesis. Moreover, brain energy metabolism was demonstrated to be compartmentalized in neurons and astrocytes, and astrocytic glycolysis was proposed to serve the energetic demands of glutamatergic activity. Shedding light on the role of astrocytes in brain metabolism, the earlier picture of astrocytes being restricted to a scaffold-associated function in the brain is now out of date. With the development and optimization of non-invasive techniques, such as nuclear magnetic resonance spectroscopy (MRS), several groups have worked on assessing cerebral metabolism in vivo. In this context, (1)H MRS has allowed the measurements of energy metabolism-related compounds, whose concentrations can vary under different brain activation states. (1)H-[(13)C] MRS, i.e., indirect detection of signals from (13)C-coupled (1)H, together with infusion of (13)C-enriched glucose has provided insights into the coupling between neurotransmission and glucose oxidation. Although these techniques tackle the coupling between neuronal activity and metabolism, they lack chemical specificity and fail in providing information on neuronal and glial metabolic pathways underlying those processes. Currently, the improvement of detection modalities (i.e., direct detection of (13)C isotopomers), the progress in building adequate mathematical models along with the increase in magnetic field strength now available render possible detailed compartmentalized metabolic flux characterization. In particular, direct (13)C MRS offers more detailed dataset acquisitions and provides information on metabolic interactions between neurons and astrocytes, and their role in supporting neurotransmission. Here

  11. How Energy Metabolism Supports Cerebral Function: Insights from 13C Magnetic Resonance Studies In vivo

    Directory of Open Access Journals (Sweden)

    Sarah Sonnay

    2017-05-01

    Full Text Available Cerebral function is associated with exceptionally high metabolic activity, and requires continuous supply of oxygen and nutrients from the blood stream. Since the mid-twentieth century the idea that brain energy metabolism is coupled to neuronal activity has emerged, and a number of studies supported this hypothesis. Moreover, brain energy metabolism was demonstrated to be compartmentalized in neurons and astrocytes, and astrocytic glycolysis was proposed to serve the energetic demands of glutamatergic activity. Shedding light on the role of astrocytes in brain metabolism, the earlier picture of astrocytes being restricted to a scaffold-associated function in the brain is now out of date. With the development and optimization of non-invasive techniques, such as nuclear magnetic resonance spectroscopy (MRS, several groups have worked on assessing cerebral metabolism in vivo. In this context, 1H MRS has allowed the measurements of energy metabolism-related compounds, whose concentrations can vary under different brain activation states. 1H-[13C] MRS, i.e., indirect detection of signals from 13C-coupled 1H, together with infusion of 13C-enriched glucose has provided insights into the coupling between neurotransmission and glucose oxidation. Although these techniques tackle the coupling between neuronal activity and metabolism, they lack chemical specificity and fail in providing information on neuronal and glial metabolic pathways underlying those processes. Currently, the improvement of detection modalities (i.e., direct detection of 13C isotopomers, the progress in building adequate mathematical models along with the increase in magnetic field strength now available render possible detailed compartmentalized metabolic flux characterization. In particular, direct 13C MRS offers more detailed dataset acquisitions and provides information on metabolic interactions between neurons and astrocytes, and their role in supporting neurotransmission. Here

  12. Multidimensional solid-state NMR studies of the structure and dynamics of pectic polysaccharides in uniformly 13C-labeled Arabidopsis primary cell walls

    Energy Technology Data Exchange (ETDEWEB)

    Dick-Perez, Marilu; Wang, Tuo; Salazar, Andre; Zabotina, Olga A.; Hong, Mei

    2012-07-08

    Plant cell wall (CW) polysaccharides are responsible for the mechanical strength and growth of plant cells; however, the high-resolution structure and dynamics of the CW polysaccharides are still poorly understood because of the insoluble nature of these molecules. Here, we use 2D and 3D magic-angle-spinning (MAS) solid-state NMR (SSNMR) to investigate the structural role of pectins in the plant CW. Intact and partially depectinated primary CWs of Arabidopsis thaliana were uniformly labeled with 13C and their NMR spectra were compared. Recent 13C resonance assignment of the major polysaccharides in Arabidopsis thaliana CWs allowed us to determine the effects of depectination on the intermolecular packing and dynamics of the remaining wall polysaccharides. 2D and 3D correlation spectra show the suppression of pectin signals, confirming partial pectin removal by chelating agents and sodium carbonate. Importantly, higher cross peaks are observed in 2D and 3D 13C spectra of the depectinated CW, suggesting higher rigidity and denser packing of the remaining wall polysaccharides compared with the intact CW. 13C spin–lattice relaxation times and 1H rotating-frame spin–lattice relaxation times indicate that the polysaccharides are more rigid on both the nanosecond and microsecond timescales in the depectinated CW. Taken together, these results indicate that pectic polysaccharides are highly dynamic and endow the polysaccharide network of the primary CW with mobility and flexibility, which may be important for pectin functions. This study demonstrates the capability of multidimensional SSNMR to determine the intermolecular interactions and dynamic structures of complex plant materials under near-native conditions. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Interpretation of non-invasive breath tests using 13C-labeled substrates - a preliminary report with 13C-methacetin

    Directory of Open Access Journals (Sweden)

    Lock JF

    2009-12-01

    Full Text Available Abstract Non-invasive breath tests can serve as valuable diagnostic tools in medicine as they can determine particular enzymatic and metabolic functions in vivo. However, methodological pitfalls have limited the actual clinical application of those tests till today. A major challenge of non-invasive breath tests has remained the provision of individually reliable test results. To overcome these limitations, a better understanding of breath kinetics during non-invasive breaths tests is essential. This analysis compares the breath recovery of a 13C-methacetin breath test with the actual serum kinetics of the substrate. It is shown, that breath and serum kinetics of the same test are significantly different over a period of 60 minutes. The recovery of the tracer 13CO2 in breath seems to be significantly delayed due to intermediate storage in the bicarbonate pool. This has to be taken into account for the application of non-invasive breath test protocols. Otherwise, breath tests might display bicarbonate kinetics despite the metabolic capacity of the particular target enzyme.

  14. Analysis of the terahertz rotational spectrum of the three mono-13C ethyl cyanides (13C-CH3CH2CN)

    Science.gov (United States)

    Richard, C.; Margulès, L.; Motiyenko, R. A.; Guillemin, J.-C.

    2012-07-01

    Context. Millimeter- and submillimeter-wave spectra of regions such as the Orion molecular cloud show many rotational-torsional lines that are caused by the emission of complex organic molecules (COM). Previous laboratory investigations have been conducted for three isotopologues of ethyl cyanide up to 360 GHz, and subsequently, several hundred lines of the three isotopologues have been detected in Orion IRc2 using the IRAM 30 m radiotelescope. Aims: In this survey we present the analysis based on a Watson Hamiltonian for an asymmetric one-top rotor of the 13C-substituted ethyl cyanide 13CH3CH2CN, CH313CH2CN and CH3CH213CN in the frequency range 480-650 GHz and 780-990 GHz. Methods: The rotational spectra of the three species were measured with a submillimeter spectrometer (50-990 GHz) using solid-state sources. Results: A new set of spectroscopic parameters was determined from a least-squares fit procedure for each isotopologue. These parameters permit a new accurate prediction of rotational lines suitable for an astrophysical detection in the submillimeter wave range. Full Tables B.1-B.3 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/543/A135

  15. 1H to 13C Energy Transfer in Solid State NMR Spectroscopy of Natural Organic Systems

    Science.gov (United States)

    Berns, Anne E.; Conte, Pellegrino

    2010-05-01

    Cross polarization (CP) magic angle spinning (MAS) 13C-NMR spectroscopy is a solid state NMR technique widely used to study chemical composition of organic materials with low or no solubility in the common deuterated solvents used to run liquid state NMR experiments. Based on the magnetization transfer from abundant nuclei (with spin of 1 -2) having a high gyromagnetic ratio (γ), such as protons, to the less abundant 13C nuclei with low γ values, 13C-CPMAS NMR spectroscopy is often applied in environmental chemistry to obtain quantitative information on the chemical composition of natural organic matter (NOM) (Conte et al., 2004), although its quantitative assessment is still matter of heavy debates. Many authors (Baldock et al., 1997; Conte et al., 1997, 2002; Dria et al., 2002; Kiem et al., 2000; Kögel-Knabner, 2000; Preston, 2001), reported that the application of appropriate instrument setup as well as the use of special pulse sequences and correct spectra elaboration may provide signal intensities that are directly proportional to the amount of nuclei creating a NMR signal. However, many other papers dealt with the quantitative unsuitability of 13C-CPMAS NMR spectroscopy. Among those, Mao et al. (2000), Smernik and Oades (2000 a,b), and Preston (2001) reported that cross-polarized NMR techniques may fail in a complete excitation of the 13C nuclei. In fact, the amount of observable carbons via 13C-CPMAS NMR spectroscopy appeared, in many cases, lower than that measured by a direct observation of the 13C nuclei. As a consequence, cross-polarized NMR techniques may provide spectra where signal distribution may not be representative of the quantitative distribution of the different natural organic matter components. Cross-polarization is obtained after application of an initial 90° x pulse on protons and a further spin lock pulse (along the y axis) having a fixed length (contact time) for both nuclei (1H and 13C) once the Hartmann-Hahn condition is matched

  16. Paniek over Peak Food

    NARCIS (Netherlands)

    Koning, N.B.J.

    2015-01-01

    Het kon niet uitblijven. De groei van de voedselproductie stagneert en na Peak Oil dreigt nu Peak Food. Onzin, vindt Niek Koning, die zogenaamde peak is een van de toppen in een langjarige golfbeweging op de landbouwmarkten. Toch zijn er genoeg redenen om je zorgen te maken over de wereldvoedselvoor

  17. Synthesis of (5,6-/sup 13/C/sub 2/, 1-/sup 14/C)olivetolic acid, methyl (1'-/sup 13/C)olivetolate and (5,6-/sup 13/C/sub 2/, 1-/sup 14/C)cannabigerolic acid

    Energy Technology Data Exchange (ETDEWEB)

    Porwoll, J.P.; Leete, E. (Minnesota Univ., Minneapolis (USA). Dept. of Chemistry)

    1985-03-01

    Potential advanced intermediates in the biosynthesis of delta/sup 9/-tetrahydrocannabinol, the major psychoactive principle of marijuana, have been synthesized labeled with two contiguous /sup 13/C atoms and /sup 14/C. Methyl (5,6-/sup 13/C/sub 2/, 1-/sup 14/C)olivetolate was prepared from lithium (/sup 13/C/sub 2/)acetylide and dimethyl (2-/sup 14/C)malonate. Reaction with geranyl bromide afforded methyl (5,6-/sup 13/C/sub 2/, 1-/sup 14/C)cannabigerolate, and hydrolysis of these methyl esters with lithium propyl mercaptide yielded the corresponding labeled acids. The /sup 13/C-/sup 13/C couplings observable in the /sup 13/C NMR spectra of these /sup 13/C-enriched compounds and their synthetic precursors are recorded. Methyl (1'-/sup 14/C)olivetolate was prepared from /sup 13/CO/sub 2/ to confirm assignments of the /sup 13/C chemical shifts in the pentyl side chain of these compounds.

  18. Direct uptake of organic carbon by grass roots and allocation in leaves and phytoliths: 13C labeling evidence

    Science.gov (United States)

    Alexandre, A.; Balesdent, J.; Cazevieille, P.; Chevassus-Rosset, C.; Signoret, P.; Mazur, J.-C.; Harutyunyan, A.; Doelsch, E.; Basile-Doelsch, I.; Miche, H.; Santos, G. M.

    2015-12-01

    In the rhizosphere, the uptake of low molecular weight carbon (C) and nitrogen (N) by plant roots has been well documented. While organic N uptake relatively to total uptake is important, organic C uptake is supposed to be low relatively to the plant's C budget. Recently, radiocarbon analyses demonstrated that a fraction of C from the soil was occluded in amorphous silica micrometric particles that precipitate in plant cells (phytoliths). Here, we investigated whether and in which extent organic C absorbed by grass roots, under the form of either intact amino acids (AAs) or microbial metabolites, can feed the organic C occluded in phytoliths. For this purpose we added 13C- and 15N-labeled AAs to the silicon-rich hydroponic solution of the grass Festuca arundinacea. The experiment was designed to prevent C leakage from the labeled nutritive solution to the chamber atmosphere. After 14 days of growth, the 13C and 15N enrichments (13C-excess and 15N-excess) in the roots, stems and leaves, and phytoliths, as well as the 13C-excess in AAs extracted from roots and stems and leaves, were quantified relatively to a control experiment in which no labelled AAs were added. The net uptake of 13C derived from the labeled AAs supplied to the nutritive solution (AA-13C) by Festuca arundinacea represented 4.5 % of the total AA-13C supply. AA-13C fixed in the plant represented only 0.13 % of total C. However, the experimental conditions may have underestimated the extent of the process under natural and field conditions. Previous studies showed that 15N and 13C can be absorbed by the roots in several organic and inorganic forms. In the present experiment, the fact that phenylalanine and methionine, that were supplied in high amount to the nutritive solution, were more 13C-enriched than other AAs in the roots and stems and leaves strongly suggested that part of AA-13C was absorbed and translocated in its original AA form. The concentration of AA-13C represented only 0.15 % of the

  19. Physical and biogeochemical correlates of spatio-temporal variation in the δ13C of marine macroalgae

    Science.gov (United States)

    Mackey, Andrew P.; Hyndes, Glenn A.; Carvalho, Matheus C.; Eyre, Bradley D.

    2015-05-01

    Carbon isotope ratios (13C/12C) can be used to trace sources of production supporting food chains, as δ13C undergoes relatively small and predictable increases (∼0.5‰) through each trophic level. However, for this technique to be precise, variation in δ13C signatures of different sources of production (baseline sources) must be clearly defined and distinct from each other. Despite this, δ13C in the primary producers of marine systems are highly variable over space and time, due to the complexity of physical and biogeochemical processes that drive δ13C variation at the base of these foodwebs. We measured spatial and temporal variation in the δ13C of two species of macroalgae that are important dietary components of grazers over temperate reefs: the small kelp Ecklonia radiata, and the red alga Plocamium preissianum, and related any variation to a suite of physical and biogeochemical variables. Patterns in δ13C variation, over different spatial (10 s m to 100 km) and temporal scales (weeks to seasons), differed greatly between taxa, but these were partly explained by the δ13C of dissolved inorganic carbon (DIC) and light. However, while the δ13C in E. radiata was not related to water temperature, a highly significant proportion of the spatio-temporal variation in δ13C of P. preissianum was explained by temperature alone. Accordingly, we applied this relationship to project (across temperate Australasia) and forecast (in time, south-western Australia) patterns in P. preissianum δ13C. The mean projected δ13C for P. preissianum in the study region varied by only ∼1‰ over a 12-month period, compared to ∼3‰ over 2000 km. This illustrates the potential scale in the shift of δ13C in baseline food sources over broad scales, and its implications to food web studies. While we show that those relationships differ across taxonomic groups, we recommend developing models to explain variability in δ13C of other baseline sources to facilitate the

  20. Stable carbon isotope analysis ({delta}{sup 13}C values) of polybrominated diphenyl ethers and their UV-transformation products

    Energy Technology Data Exchange (ETDEWEB)

    Rosenfelder, Natalie; Bendig, Paul [University of Hohenheim, Institute of Food Chemistry (170b), Garbenstr. 28, D-70599 Stuttgart (Germany); Vetter, Walter, E-mail: walter.vetter@uni-hohenheim.de [University of Hohenheim, Institute of Food Chemistry (170b), Garbenstr. 28, D-70599 Stuttgart (Germany)

    2011-10-15

    Polybrominated diphenyl ethers (PBDEs) are frequently detected in food and environmental samples. We used compound specific isotope analysis to determine the {delta}{sup 13}C values of individual PBDEs in two technical mixtures. Within the same technical product (DE-71 or DE-79), BDE congeners were the more depleted in {sup 13}C the higher brominated they were. In contrast, the products of light-induced hydrodebromination of BDE 47 and technical DE-79 were more enriched in {sup 13}C because of more stable bonds between {sup 13}C and bromine. As a result, the {delta}{sup 13}C values of the irradiated solution progressed diametrically compared to those of the technical synthesis. The ratio of the {delta}{sup 13}C values of BDE 47 to BDE 99 and of BDE 99 to BDE 153 are thus suggested as indicators to distinguish native technical products from transformation products. Ratios <1 are typical for native congeners (e.g. in DE-71) while the reversed ratio (>1) is typical of transformation products. - Highlights: > {delta}{sup 13}C values of PBDEs were determined by means of compound specific isotope analysis. > PBDEs in technical mixtures were the more depleted in {sup 13}C the higher they were brominated. > Solutions of individual PBDEs and technical PBDE mixtures were irradiated by UV light. > {delta}{sup 13}C values of irradiated PBDEs and technical PBDEs progressed diametrically. > Ratios of the {delta}{sup 13}C values were used to distinguish native from transformed PBDEs. - Diametrically progressing {delta}{sup 13}C values in technical mixtures and UV-transformation products of DE-79 may be useful for source appointment of PBDEs in environmental samples

  1. Selective 'unlabeling' of amino acids in fractionally 13C labeled proteins: An approach for stereospecific NMR assignments of CH3 groups in Val and Leu residues

    Energy Technology Data Exchange (ETDEWEB)

    Atreya, H.S.; Chary, K.V.R. [Tata Institute of Fundamental Research, Department of Chemical Sciences (India)

    2001-03-15

    A novel methodology for stereospecific NMR assignments of methyl (CH{sub 3}) groups of Val and Leu residues in fractionally {sup 13}C-labeled proteins is presented. The approach is based on selective 'unlabeling' of specific amino acids in proteins while fractionally {sup 13}C-labeling the rest. A 2D [{sup 13}C-{sup 1}H] HSQC spectrum recorded on such a sample is devoid of peaks belonging to the 'unlabeled' amino acid residues. Such spectral simplification aids in unambiguous stereospecific assignment of diastereotopic CH{sub 3} groups in Val and Leu residues in large proteins. This methodology has been demonstrated on a 15 kDa calcium binding protein from Entamoeba histolytica (Eh-CaBP)

  2. Purity analysis of hydrogen cyanide, cyanogen chloride and phosgene by quantitative (13)C NMR spectroscopy.

    Science.gov (United States)

    Henderson, Terry J; Cullinan, David B

    2007-11-01

    Hydrogen cyanide, cyanogen chloride and phosgene are produced in tremendously large quantities today by the chemical industry. The compounds are also particularly attractive to foreign states and terrorists seeking an inexpensive mass-destruction capability. Along with contemporary warfare agents, therefore, the US Army evaluates protective equipment used by warfighters and domestic emergency responders against the compounds, and requires their certification at > or = 95 carbon atom % before use. We have investigated the (13)C spin-lattice relaxation behavior of the compounds to develop a quantitative NMR method for characterizing chemical lots supplied to the Army. Behavior was assessed at 75 and 126 MHz for temperatures between 5 and 15 degrees C to hold the compounds in their liquid states, dramatically improving detection sensitivity. T(1) values for cyanogen chloride and phosgene were somewhat comparable, ranging between 20 and 31 s. Hydrogen cyanide values were significantly shorter at 10-18 s, most likely because of a (1)H--(13)C dipolar contribution to relaxation not possible for the other compounds. The T(1) measurements were used to derive relaxation delays for collecting the quantitative (13)C data sets. At 126 MHz, only a single data acquisition with a cryogenic probehead gave a signal-to-noise ratio exceeding that necessary for certifying the compounds at > or = 95 carbon atom % and 99% confidence. Data acquired at 75 MHz with a conventional probehead, however, required > or = 5 acquisitions to reach this certifying signal-to-noise ratio for phosgene, and >/= 12 acquisitions were required for the other compounds under these same conditions. In terms of accuracy and execution time, the NMR method rivals typical chromatographic methods.

  3. Characteristics of 14C and 13C of carbonate aerosols in dust storm events in China

    Science.gov (United States)

    Chen, Bing; Jie, Dongmei; Shi, Meinan; Gao, Pan; Shen, Zhenxing; Uchida, Masao; Zhou, Liping; Liu, Kexin; Hu, Ke; Kitagawa, Hiroyuki

    2015-10-01

    In contrast with its decrease in western China deserts, the dust storm event in eastern China, Korea, and Japan shows an increase in frequency. Although the drylands in northeastern China have been recognized as an important dust source, the relative contributions of dust transport from the drylands and deserts are inconclusive, thus the quantification of dust storm sources in downwind area remains a challenge. We measured the 14C and 13C contents in carbonates of dust samples from six sites in China, which were collected for the duration of dust storm events in drylands, deserts, and urban areas. The δ13C of the dryland dust samples considerably varied in a range of - 9.7 to - 5.0‰, which partly overlapped the desert dust carbonate δ13C ranges. The 14C content of the dryland dust carbonates showed a narrow range of 60.9 ± 4.0 (as an average and 1 SD of five samples) percent modern carbon (pMC), indicating the enrichment of modern carbonate. Dust samples in desert regions contained relatively aged carbonates with the depleting 14C showing of 28.8 ± 3.3 pMC. After the long-range transport of the western China desert dust plume, the carbonates collected at the southern China remained the depletion of 14C (33.5 ± 5.3 pMC) as in the desert regions. On the other hand, the samples of dust storm events at the urban areas of eastern China showed an enrichment of 14C contents (46.2 ± 5.0 pMC, n = 7), which might be explained by the stronger contribution of modern-carbonate-rich dryland dust.

  4. Acetate and bicarbonate assimilation and metabolite formation in Chlamydomonas reinhardtii: a 13C-NMR study.

    Directory of Open Access Journals (Sweden)

    Himanshu Singh

    Full Text Available Cellular metabolite analyses by (13C-NMR showed that C. reinhardtii cells assimilate acetate at a faster rate in heterotrophy than in mixotrophy. While heterotrophic cells produced bicarbonate and CO2aq, mixotrophy cells produced bicarbonate alone as predominant metabolite. Experiments with singly (13C-labelled acetate ((13CH(3-COOH or CH(3-(13COOH supported that both the (13C nuclei give rise to bicarbonate and CO2(aq. The observed metabolite(s upon further incubation led to the production of starch and triacylglycerol (TAG in mixotrophy, whereas in heterotrophy the TAG production was minimal with substantial accumulation of glycerol and starch. Prolonged incubation up to eight days, without the addition of fresh acetate, led to an increased TAG production at the expense of bicarbonate, akin to that of nitrogen-starvation. However, such TAG production was substantially high in mixotrophy as compared to that in heterotrophy. Addition of mitochondrial un-coupler blocked the formation of bicarbonate and CO2(aq in heterotrophic cells, even though acetate uptake ensued. Addition of PSII-inhibitor to mixotrophic cells resulted in partial conversion of bicarbonate into CO2(aq, which were found to be in equilibrium. In an independent experiment, we have monitored assimilation of bicarbonate via photoautotrophy and found that the cells indeed produce starch and TAG at a much faster rate as compared to that in mixotrophy and heterotrophy. Further, we noticed that the accumulation of starch is relatively more as compared to TAG. Based on these observations, we suggest that acetate assimilation in C. reinhardtii does not directly lead to TAG formation but via bicarbonate/CO2(aq pathways. Photoautotrophic mode is found to be the best growth condition for the production of starch and TAG and starch in C. reinhardtii.

  5. Aspects regarding at 13C isotope separation column control using Petri nets system

    Science.gov (United States)

    Boca, M. L.; Ciortea, M. E.

    2015-11-01

    This paper is intended to show that Petri nets can be also applicable in the chemical industry. It used linear programming, modeling underlying Petri nets, especially discrete event systems for isotopic separation, the purpose of considering and control events in real-time through graphical representations. In this paper it is simulate the control of 13C Isotope Separation column using Petri nets. The major problem with 13C comes from the difficulty of obtaining it and raising its natural fraction. Carbon isotopes can be obtained using many methods, one of them being the cryogenic distillation of carbon monoxide. Some few aspects regarding operating conditions and the construction of such cryogenic plants are known today, and even less information are available as far as the separation process modeling and control are concerned. In fact, the efficient control of the carbon monoxide distillation process represents a necessity for large-scale 13C production. Referring to a classic distillation process, some models for carbon isotope separation have been proposed, some based on mass, component and energy balance equations, some on the nonlinear wave theory or the Cohen equations. For modeling the system it was used Petri nets because in this case it is deal with discrete event systems. In use of the non-timed and with auxiliary times Petri model, the transport stream was divided into sections and these sections will be analyzed successively. Because of the complexity of the system and the large amount of calculations required it was not possible to analyze the system as a unitary whole. A first attempt to model the system as a unitary whole led to the blocking of the model during simulation, because of the large processing times.

  6. Conformational dependence of {sup 13}C shielding and coupling constants for methionine methyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Butterfoss, Glenn L. [New York University, Courant Institute of Mathematical Sciences and the Center for Genomics and Systems Biology (United States); DeRose, Eugene F.; Gabel, Scott A.; Perera, Lalith; Krahn, Joseph M.; Mueller, Geoffrey A.; Zheng Xunhai; London, Robert E., E-mail: London@niehs.nih.go [National Institute of Environmental Health Sciences (NIEHS), NIH, Laboratory of Structural Biology (United States)

    2010-09-15

    Methionine residues fulfill a broad range of roles in protein function related to conformational plasticity, ligand binding, and sensing/mediating the effects of oxidative stress. A high degree of internal mobility, intrinsic detection sensitivity of the methyl group, and low copy number have made methionine labeling a popular approach for NMR investigation of selectively labeled protein macromolecules. However, selective labeling approaches are subject to more limited information content. In order to optimize the information available from such studies, we have performed DFT calculations on model systems to evaluate the conformational dependence of {sup 3}J{sub CSCC}, {sup 3}J{sub CSCH}, and the isotropic shielding, {sigma}{sub iso}. Results have been compared with experimental data reported in the literature, as well as data obtained on [methyl-{sup 13}C]methionine and on model compounds. These studies indicate that relative to oxygen, the presence of the sulfur atom in the coupling pathway results in a significantly smaller coupling constant, {sup 3}J{sub CSCC}/{sup 3}J{sub COCC} {approx} 0.7. It is further demonstrated that the {sup 3}J{sub CSCH} coupling constant depends primarily on the subtended CSCH dihedral angle, and secondarily on the CSCC dihedral angle. Comparison of theoretical shielding calculations with the experimental shift range of the methyl group for methionine residues in proteins supports the conclusion that the intra-residue conformationally-dependent shift perturbation is the dominant determinant of {delta}{sup 13}C{epsilon}. Analysis of calmodulin data based on these calculations indicates that several residues adopt non-standard rotamers characterized by very large {approx}100{sup o} {chi}{sup 3} values. The utility of the {delta}{sup 13}C{epsilon} as a basis for estimating the gauche/trans ratio for {chi}{sup 3} is evaluated, and physical and technical factors that limit the accuracy of both the NMR and crystallographic analyses are

  7. Relativistic Force Field: Parametrization of (13)C-(1)H Nuclear Spin-Spin Coupling Constants.

    Science.gov (United States)

    Kutateladze, Andrei G; Mukhina, Olga A

    2015-11-01

    Previously, we reported a reliable DU8 method for natural bond orbital (NBO)-aided parametric scaling of Fermi contacts to achieve fast and accurate prediction of proton-proton spin-spin coupling constants (SSCC) in (1)H NMR. As sophisticated NMR experiments for precise measurements of carbon-proton SSCCs are becoming more user-friendly and broadly utilized by the organic chemistry community to guide and inform the process of structure determination of complex organic compounds, we have now developed a fast and accurate method for computing (13)C-(1)H SSCCs. Fermi contacts computed with the DU8 basis set are scaled using selected NBO parameters in conjunction with empirical scaling coefficients. The method is optimized for inexpensive B3LYP/6-31G(d) geometries. The parametric scaling is based on a carefully selected training set of 274 ((3)J), 193 ((2)J), and 143 ((1)J) experimental (13)C-(1)H spin-spin coupling constants reported in the literature. The DU8 basis set, optimized for computing Fermi contacts, which by design had evolved from optimization of a collection of inexpensive 3-21G*, 4-21G, and 6-31G(d) bases, offers very short computational (wall) times even for relatively large organic molecules containing 15-20 carbon atoms. The most informative SSCCs for structure determination, i.e., (3)J, were computed with an accuracy of 0.41 Hz (rmsd). The new unified approach for computing (1)H-(1)H and (13)C-(1)H SSCCs is termed "DU8c".

  8. Galactose oxidation using {sup 13}C in healthy and galactosemic children

    Energy Technology Data Exchange (ETDEWEB)

    Resende-Campanholi, D.R. [Departamento de Puericultura e Pediatria, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Porta, G. [Unidade de Hepatologia Pediátrica, Instituto da Criança Prof. Pedro de Alcântara, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Ferrioli, E.; Pfrimer, K. [Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Ciampo, L.A. Del; Junior, J.S. Camelo [Departamento de Puericultura e Pediatria, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2015-01-20

    Galactosemia is an inborn error of galactose metabolism that occurs mainly as the outcome of galactose-1-phosphate uridyltransferase (GALT) deficiency. The ability to assess galactose oxidation following administration of a galactose-labeled isotope (1-{sup 13}C-galactose) allows the determination of galactose metabolism in a practical manner. We aimed to assess the level of galactose oxidation in both healthy and galactosemic Brazilian children. Twenty-one healthy children and seven children with galactosemia ranging from 1 to 7 years of age were studied. A breath test was used to quantitate {sup 13}CO{sub 2} enrichment in exhaled air before and at 30, 60, and 120 min after the oral administration of 7 mg/kg of an aqueous solution of 1-{sup 13}C-galactose to all children. The molar ratios of {sup 13}CO{sub 2} and {sup 12}CO{sub 2} were quantified by the mass/charge ratio (m/z) of stable isotopes in each air sample by gas-isotope-ratio mass spectrometry. In sick children, the cumulative percentage of {sup 13}C from labeled galactose (CUMPCD) in the exhaled air ranged from 0.03% at 30 min to 1.67% at 120 min. In contrast, healthy subjects showed a much broader range in CUMPCD, with values from 0.4% at 30 min to 5.58% at 120 min. The study found a significant difference in galactose oxidation between children with and without galactosemia, demonstrating that the breath test is useful in discriminating children with GALT deficiencies.

  9. Statistical signal analysis of the Phanerozoic ð13C curve: implications for Earth system evolution

    Science.gov (United States)

    Bachan, A.; Kump, L. R.; Payne, J.; Saltzman, M.; Thomas, E.

    2014-12-01

    In recent years, vast amounts of carbon isotopic data have been collected allowing the construction of the Phanerozoic δ13C curve in unprecedented detail. Our dataset comprises 8143 points spanning the last 541 m.y., with a mean spacing of 66 k.y. The average δ13C of Phanerozoic carbonate is 1 ‰ ± 2 ‰, in accordance with the canonical values measured in the past. However, the record also shows numerous, highly resolved, large (± 6 ‰) excursions whose magnitude declines through time, especially going into the late Mesozoic and Cenozoic. When the magnitude - distribution of the excursions is tabulated we find that it follows a power law: plotting the min-max differences vs. number of bins in which a particular value occurs reveals that the data fall on a semilogarithmic line with a slope of -0.23 and R2 = 0.99. The result is insensitive to outliers: smoothing the data with lowess, spline, Savitzky-Golay, and Butterworth filters yields similar results. The continuity from small variation to large perturbations, both positive and negative, suggests that, despite the numerous proposed causes for individual carbon isotopic evens, there is likely an underlying mechanism which governs the magnitude of δ13C response to perturbations. We suggest that a mechanism acting to amplify carbon cycle perturbations is the key to explaining the power-law distribution, and identify the anoxia-productivity feedback as the most likely candidate. Establishment of sulfidic conditions is accompanied by increased release of phosphate to the water column, which allows for further productivity, and thus acts as a destabilizing, positive, feedback. This feedback would act to increase carbon cycle swings irrespective of their proximal trigger. The decline in frequency of anoxic-sulfidic bottom waters in the world's oceans, and potential disappearance in the Late Mesozoic-Cenozoic, may account for a reduction in the Earth system's gain and increase in its resilience.

  10. 13C CP/MAS NMR and DFT studies of thiazides

    Science.gov (United States)

    Latosińska, J. N.

    2003-02-01

    The 13C MAS solid state NMR spectra of four sulphonamide derivatives of 1,2,4-benzothiadiazine-1,1-dioxides, commonly known as thiazides, were recorded and the chemical shifts and chemical shift anisotropy (CSA) were measured. Analysis of the experimental 13C shielding parameters was supported by DFT theoretical calculations carried out within the gauge-including atomic orbital (GIAO), semiempirical Typed Neglect of Differential Overlap (TNDO/2) approach and by the spectra estimations performed by ChemNMR Pro 6.0, ACD-I/LAB, SpecInfo and gNMR. It was found that the chemical shifts obtained with ChemNMR Pro 6.0, ACD-I/LAB, SpecInfo and gNMR were insensitive to the substitution effects, whereas the semiempirical TNDO/2 and density functional theory (DFT) B3LYP/6-311+G(2d,p) methods allowed estimation of the influence of substituents on the chemical shielding and consequently, the chemical shift. The influence of the substituents at C3 position of the ring on the chemical shifts was analysed on the basis of the experimental data and results of the DFT calculations. The values of the chemical shifts and the low values of the anisotropy parameter for the C3 atom in HCTZ, TCTZ and ATZ, strongly indicated that three thiazides HCTZ, TCTZ and ATZ occurred in the form of HCTZ type with the C3 carbon atom participating in a single bond. The following ordering of the substituents according to the increasing electron accepting properties was found: -H<-CH 2SCH 2CHCH 2<-CHCl 2. A detailed analysis of the inductive and coupling effects was made on the basis of 13C chemical shifts and chemical shielding tensor asymmetry parameters on the C3 and C6 carbon atoms.

  11. Synthesis of the [beta]-D-glucosyl ester of [carbonyl-[sup 13]C]-indole-3-acetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Jakas, A.; Magnus, V. (Rudjer Boskovic Inst., Zagreb (Croatia)); Horvat, S.; Sandberg, G. (Swedish Univ. of Agricultural Sciences, Uppsala (Sweden))

    1993-10-01

    An efficient, operationally simple synthetic approach to 1-O-([carbonyl-[sup 13]C]-indole-3'-ylacetyl)-[beta]-D-glucopyranose is described. The synthesis was carried out by fusing a fully benzylated 1-O-glucosylpseudourea intermediate with [carbonyl-[sup 13]C]-indole-3-acetic acid, followed by hydrogenolytic removal of the protective groups. (Author).

  12. Hyperpolarized (13) C,(15) N2 -Urea MRI for assessment of the urea gradient in the porcine kidney

    DEFF Research Database (Denmark)

    Hansen, Esben S S; Stewart, Neil J; Wild, Jim M;

    2016-01-01

    function in healthy porcine kidneys resembling the human physiology. METHODS: Five healthy female Danish domestic pigs (weight 30 kg) were scanned at 3 Tesla (T) using a (13) C 3D balanced steady-state MR pulse sequence following injection of hyperpolarized (13) C,(15) N2 -urea via a femoral vein catheter...

  13. Annual variation in δ13C values of maize and wheat: Effect on estimates of decadal scale soil carbon turnover

    DEFF Research Database (Denmark)

    Christensen, Bent Tolstrup; Olesen, Jørgen E; Hansen, Elly Møller

    2011-01-01

    to centuries, the subtle but consistent changes in plant and soil δ13C need to be accounted for. The variability in δ13C in wheat grains suggest that the use of any fixed δ13C value for C3-residues in estimates of C turnover in soils on which C4-plants have been replaced by C3-plants can be associated......On sites where C4-plants have replaced C3-plants, changes in soil δ13C allow the turnover of C3- and C4-derived C to be separated. Studies of decadal scale turnover of soil C following conversion to C4-plants generally lack δ13C values for previous C4-residue inputs and assume that estimates of C4......-derived soil C to be based on a fixed δ13C value. Further assumptions are that changes in the initial (time-zero) soil δ13C values are insignificant following conversion to C4-plants. We tested these assumptions by measuring: 1) the δ13C of annual samples of silage maize biomass (C4-plant) and winter...

  14. 13C-NMR chemical shift databases as a quick tool to evaluate structural models of humic substances

    DEFF Research Database (Denmark)

    Nyrop Albers, Christian; Hansen, Poul Erik

    2010-01-01

    Models for humic and fulvic acids are discussed based on 13C liquid state NMR spectra combined with results from elemental analysis and titration studies. The analysis of NMR spectra is based on a full reconstruction of the NMR spectrum done with help of 13C-NMR data bases by adding up chemical s...

  15. Evolution of E. coli on [U-13C] Glucose Reveals a Negligible Isotopic Influence on Metabolism and Physiology

    DEFF Research Database (Denmark)

    Sandberg, Troy E.; Long, Christopher P.; Gonzalez, Jacqueline E.

    2016-01-01

    13C-Metabolic flux analysis (13C-MFA) traditionally assumes that kinetic isotope effects from isotopically labeled compounds do not appreciably alter cellular growth or metabolism, despite indications that some biochemical reactions can be non-negligibly impacted. Here, populations of Escherichia...

  16. Validation of dentine deposition rates in beluga whales by interspecies cross dating of temporal δ13C trends in teeth

    Directory of Open Access Journals (Sweden)

    Cory JD Matthews

    2014-11-01

    Full Text Available Isotopic time series from sequentially sampled growth layer groups (GLGs in marine mammal teeth can be combined to build chronologies allowing assessment of isotopic variation in marine ecosystems. Synchronous recording of baseline isotopic variation across dentinal GLGs of species with temporal and spatial overlap in foraging offers a unique opportunity for validation of marine mammal age estimation procedures through calibration of GLG deposition rates in one species against another whose GLG deposition has been independently determined. In this study, we compare trends in stable carbon isotope ratios (d13C across dentinal GLGs of three eastern Canadian Arctic (ECA beluga (Delphinapterus leucas populations through the 1960s-2000s with a d13C time series measured across dentinal GLGs of ECA/Northwest Atlantic killer whales (Orcinus orca from 1944-1999. We use confirmed annual GLG deposition in killer whales as a means to assess beluga GLG deposition, and show linear d13C declines across chronologies of both species were statistically indistinguishable when based on annual GLG deposition in beluga whales, but differed when based on biannual deposition. We suggest d13C declines reflect the oceanic 13C Suess effect, and provide additional support for annual GLG deposition in beluga whales by comparing rates of d13C declines across beluga GLGs with published annual d13C declines attributed to the oceanic 13C Suess effect in the North Atlantic.

  17. Occurrence, biological activities and 13C NMR data of amides from Piper (Piperaceae

    Directory of Open Access Journals (Sweden)

    Jeferson C. do Nascimento

    2012-01-01

    Full Text Available This manuscript describes an update review with up to 285 references concerning the occurrence of amides from a variety of species of the genus Piper (Piperaceae. Besides addressing occurrence, this review also describes the biological activities attributed to extracts and pure compounds, a compiled 13C NMR data set, the main correlations between structural and NMR spectroscopic data of these compounds, and employment of hyphened techniques such as LC-MS, GC-MS and NMR for analysis of amides from biological samples and crude Piper extracts.

  18. MNDO/GIAO perturbation calculation of 13C and 19F magnetic shielding constants

    Institute of Scientific and Technical Information of China (English)

    游效曾; 吴伟雄; 方维海

    1995-01-01

    The basic approximation of the MNDO method is applied to the SCF-MO theory of nu-clear magnetic shielding constants.Gauge-invariant atomic orbitais(GIAO)and derived equations are used to cal-culate NMR chemical shifts.A more simple and effective calculation of integration for operators 1/rM,LM andLM/rM described in our previous paper is used.By proper selection of MNDO parameters together with thetwo-center approximation,a satisfactory agreement between computational and experimental 13C and 19F chemi-cal shifts is obtained for a representative set of fluorides.

  19. Study of entangled network formation in concentrated solutions of polymer by 13C NMR

    Institute of Scientific and Technical Information of China (English)

    毛诗珍; 倪少儒; 杜有如; 沈联芳

    1996-01-01

    Information about the exact location of topological and cohesional entanglements at molecular level has been obtained by 13C NMR relaxation analysis. The results show that about 20% of the carbon atoms in the main chain are entangled in the 25% (by weight) solution, which is independent of the content of the 1,2-segment in polybutadiene and of the kind of solvent. However, the entanglement of the carbon atone on the end group of the side chain is very weak, they behave as slipping freely at the junctions.

  20. Structural characteristics of marine sedimentary humic acids by CP/MAS sup(13)C NMR spectroscopy

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.; Wahidullah, S.

    stream_size 34319 stream_content_type text/plain stream_name Oceanol_Acta_21_543.pdf.txt stream_source_info Oceanol_Acta_21_543.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8 OCEANOLOGICA ACTA... components of the: hydrolysate. 545 S. SARDESSAI, S. WAHlDULLAH 3.3 Nuclear magnetic resonance ~pe~t~Q~cQQy The cross-polarization technique with magic angle spin- ning (CP/MAS) was used to obtain 13C NMR spectra. Samples were thoroughly freeze...

  1. 14C and 13C characteristics of higher plant biomarkers in Washington margin surface sediments

    Science.gov (United States)

    Feng, Xiaojuan; Benitez-Nelson, Bryan C.; Montluçon, Daniel B.; Prahl, Fredrick G.; McNichol, Ann P.; Xu, Li; Repeta, Daniel J.; Eglinton, Timothy I.

    2013-03-01

    Plant wax lipids and lignin phenols are the two most common classes of molecular markers that are used to trace vascular plant-derived OM in the marine environment. However, their 13C and 14C compositions have not been directly compared, which can be used to constrain the flux and attenuation of terrestrial carbon in marine environment. In this study, we describe a revised method of isolating individual lignin phenols from complex sedimentary matrices for 14C analysis using high pressure liquid chromatography (HPLC) and compare this approach to a method utilizing preparative capillary gas chromatography (PCGC). We then examine in detail the 13C and 14C compositions of plant wax lipids and lignin phenols in sediments from the inner and mid shelf of the Washington margin that are influenced by discharge of the Columbia River. Plant wax lipids (including n-alkanes, n-alkanoic (fatty) acids, n-alkanols, and n-aldehydes) displayed significant variability in both δ13C (-28.3‰ to -37.5‰) and Δ14C values (-204‰ to +2‰), suggesting varied inputs and/or continental storage and transport histories. In contrast, lignin phenols exhibited similar δ13C values (between -30‰ and -34‰) and a relatively narrow range of Δ14C values (-45‰ to -150‰; HPLC-based measurement) that were similar to, or younger than, bulk OM (-195‰ to -137‰). Moreover, lignin phenol 14C age correlated with the degradation characteristics of this terrestrial biopolymer in that vanillyl phenols were on average ˜500 years older than syringyl and cinnamyl phenols that degrade faster in soils and sediments. The isotopic characteristics, abundance, and distribution of lignin phenols in sediments suggest that they serve as promising tracers of recently biosynthesized terrestrial OM during supply to, and dispersal within the marine environment. Lignin phenol 14C measurements may also provide useful constraints on the vascular plant end member in isotopic mixing models for carbon source

  2. Occurrence, biological activities and {sup 13}C NMR data of amides from Piper (Piperaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Jeferson C. do; Paula, Vanderlucia F. de [Universidade Estadual do Sudoeste da Bahia, Jequie, BA (Brazil). Dept. de Quimica e Exatas; David, Jorge M. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica; David, Juceni P., E-mail: jmdavid@ufba.br [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Fac. de Farmacia

    2012-07-01

    This manuscript describes an update review with up to 285 references concerning the occurrence of amides from a variety of species of the genus Piper (Piperaceae). Besides addressing occurrence, this review also describes the biological activities attributed to extracts and pure compounds, a compiled {sup 13}C NMR data set, the main correlations between structural and NMR spectroscopic data of these compounds, and employment of hyphened techniques such as LC-MS, GC-MS and NMR for analysis of amides from biological samples and crude Piper extracts. (author)

  3. (13)C and (15)N solid-state NMR studies on albendazole and cyclodextrin albendazole complexes.

    Science.gov (United States)

    Ferreira, M João G; García, A; Leonardi, D; Salomon, Claudio J; Lamas, M Celina; Nunes, Teresa G

    2015-06-05

    (13)C and (15)N solid-state nuclear magnetic resonance (NMR) spectra were recorded from albendazole (ABZ) and from ABZ:β-cyclodextrin, ABZ:methyl-β-cyclodextrin, ABZ:hydroxypropyl-β-cyclodextrin and ABZ:citrate-β-cyclodextrin, which were prepared by the spray-drying technique. ABZ signals were typical of a crystalline solid for the pure drug and of an amorphous compound obtained from ABZ:cyclodextrin samples. Relevant spectral differences were correlated with chemical interaction between ABZ and cyclodextrins. The number and type of complexes revealed a strong dependence on the cyclodextrin group substituent. Solid-state NMR data were consistent with the presence of stable inclusion complexes.

  4. STUDY ON SEQUENCE STRUCTURE OF ACRYLAMIDE-ACRYLATE COPOLYMERS BY 13C-NMR METHOD

    Institute of Scientific and Technical Information of China (English)

    YUAN Dongwu; ZHU Shannong; YANG Xiaozhen

    1987-01-01

    Triad sequence distributions in a series of P(AM/AA) with different AA% were calculated from copolymerization reactivity ratio r1 and r2 based on first order Markov statistic model, and the calculated data compared with observed ones from 13C-NMR spectra showed good agreement with each other, The sequence distribution in P(AM/AA) obtained under our experimental conditions fits in with first order Markov statistic model. A significant sequence structure difference was observed between P(AM/AA) and alkaline hydrolyzed polyacrylamide, ABA triad (acrylate unit center), AAA and AAB triads (acrylamide unit center) dominated in hydrolyzed ones.

  5. The use of isotope ratios (13C/12C) for vegetable oils authentication

    Science.gov (United States)

    Cristea, G.; Magdas, D. A.; Mirel, V.

    2012-02-01

    Stable isotopes are now increasingly used for the control of the geographical origin or authenticity of food products. The falsification may be more or less sophisticated and its sophistication as well as its costs increases with the improvement of analytical methods. In this study 22 vegetable oils (olive, sunflower, palm, maize) commercialized on Romanian market were investigated by mean of δ13C in bulk oil and the obtained results were compared with those reported in literature in order to check the labeling of these natural products. The obtained results were in the range of the mean values found in the literature for these types of oils, thus providing their accurate labeling.

  6. Improved Decoupling for 13C coil Arrays Using Non-Conventional Matching and Preamplifier Impedance

    DEFF Research Database (Denmark)

    Sanchez, Juan Diego; Johansen, Daniel Højrup; Hansen, Rie Beck

    In this study, we describe a method to obtain improved preamplifier decoupling for receive-only coils. The method relies on the better decoupling obtained when coils are matched to an impedance higher than 50 . Preamplifiers with inductive imaginary impedance and low real impedance, increase...... the effectiveness of the decoupling. A 2-channel 13C array of 50 mm loop coils show an increase of Q-factor of the coils from 247 to 365. The measured SNR, using two small phantoms, demonstrated a similar improvement....

  7. (1) H and (13) C NMR characterization of new cycloartane triterpenes from Mangifera indica.

    Science.gov (United States)

    Escobedo-Martínez, Carolina; Concepción Lozada, M; Hernández-Ortega, Simón; Villarreal, María Luisa; Gnecco, Dino; Enríquez, Raúl G; Reynolds, William

    2012-01-01

    From the stem bark of Mangifera indica, seven cycloartane-type secondary metabolites were isolated. Compound 1 has been isolated for the first time from M. indica, whereas compounds 2 (2a and 2b, as an epimeric mixture), 3, and 4 are new triterpenoid-type cycloartanes. Unambiguous (13) C and (1) H NMR assignments for these compounds and the known compounds mangiferonic acid (compound 5), isomangiferolic acid (compound 6), ambolic acid (compound 7), and friedelin (compound 8) are reported; the latter because full NMR data for these compounds are not available in the literature.

  8. Ursodeoxycholic acid treatment of hepatic steatosis: a (13)C NMR metabolic study.

    Science.gov (United States)

    Nunes, Patrícia M; Jones, John G; Rolo, Anabela P; Palmeira, Carlos M M; Carvalho, Rui A

    2011-11-01

    Ursodeoxycholic acid (UDCA) is commonly used for the treatment of hepatobiliary disorders. In this study, we tested whether a 4-week treatment with this bile acid (12-15 mg/kg/day) could improve hepatic fatty acid oxidation in obese Zucker rats - a model for nonalcoholic fatty liver disease and steatosis. After 24 h of fasting, livers were perfused with physiological concentrations of [U-(13) C]nonesterified fatty acids and [3-(13) C]lactate/[3-(13) C]pyruvate. Steatosis was associated with abundant intracellular glucose, lactate, alanine and methionine, and low concentrations of choline and betaine. Steatotic livers also showed the highest output of glucose and lactate. Glucose and glycolytic products were mostly unlabeled, indicating active glycogenolysis and glycolysis after 24 h of fasting. UDCA treatment resulted in a general amelioration of liver metabolic abnormalities with a decrease in intracellular glucose and lactate, as well as their output. Hepatic betaine and methionine were also normalized after UDCA treatment, suggesting the amelioration of anti-oxidative defenses. Choline levels were not affected by the bile acid, which may indicate a deficient synthesis of very-low-density lipoproteins. The percentage contribution of [U-(13) C]nonesterified fatty acids to acetyl-coenzyme A entering the tricarboxylic acid (TCA) cycle was significantly lower in livers from Zucker obese rats relative to control rats: 23.1 ± 4.9% versus 44.1 ± 2.7% (p  0.05), comparable with control group values. The TCA cycle activity subsequent to fatty acid oxidation was reduced in steatotic livers and improved when UDCA was administered (0.24 ± 0.04 versus 0.37 ± 0.05, p = 0.05). We further suggest that the mechanism of action of UDCA is either related to the activity of the farnesoid receptor, or to the amelioration of the anti-oxidative defenses and cell nicotinamide adenine dinucleotide (NAD(+) /NADH) ratio, favoring TCA cycle activity and β-oxidation.

  9. Quantitative reconstruction of summer precipitation using a mid-Holocene δ13C common millet record from Guanzhong Basin, northern China

    Science.gov (United States)

    Yang, Qing; Li, Xiaoqiang; Zhou, Xinying; Zhao, Keliang; Sun, Nan

    2016-12-01

    To quantitatively reconstruct Holocene precipitation for particular geographical areas, suitable proxies and faithful dating controls are required. The fossilized seeds of common millet (Panicum miliaceum) are found throughout the sedimentary strata of northern China and are suited to the production of quantitative Holocene precipitation reconstructions: their isotopic carbon composition (δ13C) gives a measure of the precipitation required during the growing season of summer (here the interval from mid-June to September) and allows these seeds to be dated. We therefore used a regression function, as part of a systematic study of the δ13C of common millet, to produce a quantitative reconstruction of mid-Holocene summer precipitation in the Guanzhong Basin (107°40'-107°49' E, 33°39'-34°45' N). Our results showed that mean summer precipitation at 7.7-3.4 ka BP was 353 mm, ˜ 50 mm or 17 % higher than present levels, and the variability increased, especially after 5.2 ka BP. Maximum mean summer precipitation peaked at 414 mm during the period 6.1-5.5 ka BP, ˜ 109 mm (or 36 %) higher than today, indicating that the East Asian summer monsoon (EASM) peaked at this time. This work can provide a new proxy for further research into continuous paleoprecipitation sequences and the variability of summer precipitation, which will promote the further research into the relation between early human activity and environmental change.

  10. Synthesis, GC-EIMS, ~1H NMR, ~(13)C NMR, Mechanistic and Thermal Studies of o-Xylylene-α,α'-bis(triphenylphosphinebromide)

    Institute of Scientific and Technical Information of China (English)

    Muddasir Hanif; LU Ping; XU Hai; TIAN Zhi-cheng; YANG Bing; WANG Zhi-ming; TIAN Lei-lei; XU Yuan-ze; XIE Zeng-qi; MA Yu-guang

    2009-01-01

    Organophosphorous compounds containing phosphorus as an integral part have been widely used in industry, organic synthesis and optoelectronics. o-Xylylene-α,α'-bis(triphenylphosphinebromide)(OXBTPPB) is a facile reagent to convert o-quinones(e.g., 9,10-phenanthrenequinone) into polycyclic aromatic hydrocarbons(PAHs). Herein lies an improved synthetic route to OXBTPPB. The resultant was carefully characterized with GC-EIMS, ~1H NMR, ~(13)C NMR, spectroscopic techniques. The EIMS shows characteristic peaks at m/z=262.4, 183.3, 108.2, 77.1 attributed to the [C_(18)H_(15)P]~+, [C_(18)H_8P]~+, [C_6H_5P]~+, [C_6H_5]~+ ions, respectively. The 1H and ~(13)C NMR spectrum shows well resolved peaks and all the hydrogens and carbons were well-assigned via a combined study of ~1H-~1H COSY, HMBC, and HMQC experiments. The mechanism for the formation of OXBTPPB was proposed based on literature and obtained experimental data. Meanwhile, the thermal stability of OXBTPPB was evaluated with TGA analysis, and an onset decomposition temperature(T_d) was recorded at 323.6℃.

  11. Testing compound-specific δ13C of amino acids in mussels as a new approach to determine the average 13C values of primary production in littoral ecosystems

    Science.gov (United States)

    Vokhshoori, N. L.; Larsen, T.; McCarthy, M.

    2012-12-01

    Compound-specific isotope analysis of amino acids (CSI-AA) is a technique used to decouple trophic enrichment patterns from source changes at the base of the food web. With this new emerging tool, it is possible to precisely determine both trophic position and δ15N or δ13C source values in higher feeding organisms. While most work to date has focused on nitrogen (N) isotopic values, early work has suggested that δ13C CSI-AA has great potential as a new tracer both to a record δ13C values of primary production (unaltered by trophic transfers), and also to "fingerprint" specific carbon source organisms. Since essential amino acids (EAA) cannot be made de novo in metazoans but must be obtained from diet, the δ13C value of the primary producer is preserved through the food web. Therefore, the δ13C values of EAAs act as a unique signature of different primary producers and can be used to fingerprint the dominant carbon (C) source driving primary production at the base of the food web. In littoral ecosystems, such as the California Upwelling System (CUS), the likely dominant C sources of suspended particulate organic matter (POM) pool are kelp, upwelling phytoplankton or estuarine phytoplankton. While bulk isotopes of C and N are used extensively to resolve relative consumer hierarchy or shifting diet in a food web, we found that the δ13C bulk values in mussels cannot distinguish exact source in littoral ecosystems. Here we show 15 sites within the CUS, between Cape Blanco, OR and La Jolla, CA where mussels were sampled and analyzed for both bulk δ13C and CSI-AA. We found no latitudinal trends, but rather average bulk δ13C values for the entire coastal record were highly consistent (-15.7 ± 0.9‰). The bulk record would suggest either nutrient provisioning from kelp or upwelled phytoplankton, but 13C-AA fingerprinting confines these two sources to upwelling. This suggests that mussels are recording integrated coastal phytoplankton values, with the enriched

  12. Conditions for 13C NMR Detection of 2-Hydroxyglutarate in Tissue Extracts from IDH-Mutated Gliomas

    Science.gov (United States)

    Pichumani, Kumar; Mashimo, Tomoyuki; Baek, Hyeon-Man; Ratnakar, James; Mickey, Bruce; DeBerardinis, Ralph J.; Maher, Elizabeth A.; Bachoo, Robert M.; Malloy, Craig R.; Kovacs, Zoltan

    2015-01-01

    13C NMR spectroscopy of extracts from patient tumor samples provides rich information about metabolism. However, in IDH-mutant gliomas 13C labeling is obscured in glutamate and glutamine by the oncometabolite, 2-hydroxyglutaric acid (2HG), prompting development of a simple method to resolve the metabolites. J-coupled multiplets in 2HG were similar to glutamate and glutamine and could be clearly resolved at pH 6. A cryogenically-cooled 13C probe but not J-resolved heteronuclear single quantum coherence spectroscopy significantly improved detection of 2HG. These methods enable the monitoring of 13C-13C spin-spin couplings in 2HG expressing IDH mutant gliomas. PMID:25908561

  13. Hydrolysis Studies and Quantitative Determination of Aluminum Ions Using [superscript 27]Al NMR: An Undergraduate Analytical Chemistry Experiment

    Science.gov (United States)

    Curtin, Maria A.; Ingalls, Laura R.; Campbell, Andrew; James-Pederson, Magdalena

    2008-01-01

    This article describes a novel experiment focused on metal ion hydrolysis and the equilibria related to metal ions in aqueous systems. Using [superscript 27]Al NMR, the students become familiar with NMR spectroscopy as a quantitative analytical tool for the determination of aluminum by preparing a standard calibration curve using standard aluminum…

  14. Extraction and [superscript 1]H NMR Analysis of Fats from Convenience Foods: A Laboratory Experiment for Organic Chemistry

    Science.gov (United States)

    Hartel, Aaron M.; Moore, Amy C.

    2014-01-01

    The extraction and analysis of fats from convenience foods (crackers, cookies, chips, candies) has been developed as an experiment for a second-year undergraduate organic chemistry laboratory course. Students gravimetrically determine the fat content per serving and then perform a [superscript 1]H NMR analysis of the recovered fat to determine the…

  15. Extraction and [superscript 1]H NMR Analysis of Fats from Convenience Foods: A Laboratory Experiment for Organic Chemistry

    Science.gov (United States)

    Hartel, Aaron M.; Moore, Amy C.

    2014-01-01

    The extraction and analysis of fats from convenience foods (crackers, cookies, chips, candies) has been developed as an experiment for a second-year undergraduate organic chemistry laboratory course. Students gravimetrically determine the fat content per serving and then perform a [superscript 1]H NMR analysis of the recovered fat to determine the…

  16. Photochemical Synthesis and Ligand Exchange Reactions of Ru(CO)[subscript 4] (Eta[superscript 2]-Alkene) Compounds

    Science.gov (United States)

    Cooke, Jason; Berry, David E.; Fawkes, Kelli L.

    2007-01-01

    The photochemical synthesis and subsequent ligand exchange reactions of Ru(CO)[subscript 4] (eta[superscript2]-alkene) compounds has provided a novel experiment for upper-level inorganic chemistry laboratory courses. The experiment is designed to provide a system in which the changing electronic properties of the alkene ligands could be easily…

  17. [[superscript 3]H]-Flunitrazepam-Labeled Benzodiazepine Binding Sites in the Hippocampal Formation in Autism: A Multiple Concentration Autoradiographic Study

    Science.gov (United States)

    Guptill, Jeffrey T.; Booker, Anne B.; Gibbs, Terrell T.; Kemper, Thomas L.; Bauman, Margaret L.; Blatt, Gene J.

    2007-01-01

    Increasing evidence indicates that the GABAergic system in cerebellar and limbic structures is affected in autism. We extended our previous study that found reduced [[superscript 3]H] flunitrazepam-labeled benzodiazepine sites in the autistic hippocampus to determine whether this reduction was due to a decrease in binding site number (B [subscript…

  18. Role of L-Type Ca[superscript 2+] Channel Isoforms in the Extinction of Conditioned Fear

    Science.gov (United States)

    Busquet, Perrine; Hetzenauer, Alfred; Sinnegger-Brauns, Martina J.; Striessnig, Jorg; Singewald, Nicolas

    2008-01-01

    Dihydropyridine (DHP) L-type Ca[superscript 2+] channel (LTCC) antagonists, such as nifedipine, have been reported to impair the extinction of conditioned fear without interfering with its acquisition. Identification of the LTCC isoforms mediating this DHP effect is an essential basis to reveal their role as potential drug targets for the…

  19. Plasma incorporation, apparent retroconversion and β-oxidation of 13C-docosahexaenoic acid in the elderly

    Directory of Open Access Journals (Sweden)

    Brenna J Thomas

    2011-01-01

    Full Text Available Abstract Background Higher fish or higher docosahexaenoic acid (DHA intake normally correlates positively with higher plasma DHA level, but recent evidence suggests that the positive relationship between intake and plasma levels of DHA is less clear in the elderly. Methods We compared the metabolism of 13C-DHA in six healthy elderly (mean - 77 y old and six young adults (mean - 27 y old. All participants were given a single oral dose of 50 mg of uniformly labelled 13C-DHA. Tracer incorporation into fatty acids of plasma triglycerides, free fatty acids, cholesteryl esters and phospholipids, as well as apparent retroconversion and β-oxidation of 13C-DHA were evaluated 4 h, 24 h, 7d and 28d later. Results Plasma incorporation and β-oxidation of 13C-DHA reached a maximum within 4 h in both groups, but 13C-DHA was transiently higher in all plasma lipids of the elderly 4 h to 28d later. At 4 h post-dose, 13C-DHA β-oxidation was 1.9 times higher in the elderly, but over 7d, cumulative β-oxidation of 13C-DHA was not different in the two groups (35% in the elderly and 38% in the young. Apparent retroconversion of 13C-DHA was well below 10% of 13C-DHA recovered in plasma at all time points, and was 2.1 times higher in the elderly 24 h and 7d after tracer intake. Conclusions We conclude that 13C-DHA metabolism changes significantly during healthy aging. Since DHA is a potentially important molecule in neuro-protection, these changes may be relevant to the higher vulnerability of the elderly to cognitive decline.

  20. Are Bragg Peaks Gaussian?

    Science.gov (United States)

    Hammouda, Boualem

    2014-01-01

    It is common practice to assume that Bragg scattering peaks have Gaussian shape. The Gaussian shape function is used to perform most instrumental smearing corrections. Using Monte Carlo ray tracing simulation, the resolution of a realistic small-angle neutron scattering (SANS) instrument is generated reliably. Including a single-crystal sample with large d-spacing, Bragg peaks are produced. Bragg peaks contain contributions from the resolution function and from spread in the sample structure. Results show that Bragg peaks are Gaussian in the resolution-limited condition (with negligible sample spread) while this is not the case when spread in the sample structure is non-negligible. When sample spread contributes, the exponentially modified Gaussian function is a better account of the Bragg peak shape. This function is characterized by a non-zero third moment (skewness) which makes Bragg peaks asymmetric for broad neutron wavelength spreads. PMID:26601025

  1. Understanding of δ13C behavior and its significance in the Furong Cave system through a 10-year cave monitoring study

    Science.gov (United States)

    Li, J.; Li, H. C.; Li, T.; Li, X.; Yuan, N.; Zhang, T.

    2015-12-01

    The debate about how speleothem δ13C to reflect paleoclimate and paleovegetation changes calls for understanding of δ13C behavior in a cave system. We have conducted a monitoring study in Furong Cave, Chongqing, China since 2005 involving multiple sites in the overlying soil and inside the cave. The measured proxies include pCO2 of the atmosphere, soil and cave air; dripping rate, pH, electronic conductivity, Ca2+, HCO3-, d13CDIC of the dripwaters; and deposition rate, d13C of seasonally selected carbonate deposits. The many observations from this study are: (1) Soil pCO2 is close to the atmospheric pCO2 in winter and reaches >10000 ppm during the summer due to high productivity under warm and wet climates. (2) The pCO2 in cave air is slightly higher than Soil pCO2 and atmospheric pCO2 in winter (400~900 ppm), but elevates up to ~2000 ppm around October due to seepage of soil CO2 into the cave. The cave air pCO2 exhibits double peaks following the seasonal rainfall (1st peak in April-June controlled by Indian monsoon and 2nd peak in July-September influenced by the North Western Pacific monsoon). The cave air pCO2 has about 2-3 month lag to the soil pCO2. (3) Under the influence of soil CO2 and rainfall, the d13CDIC of drpiwaters are depleted in the summer and enriched during the winter. During 2009-2011, southwestern China experienced extremely drought due to summer monsoon failure. The d13CDIC of dripwater in Furong Cave was strongly enriched because of low soil CO2 productivity, less transportation of soil CO2 into the cave, and high CO2 ratio from bedrock input. Dripping rate does not affect the d13CDIC significantly. (4) The d13C of speleothems is controlled by the open/closed system of the seepage pathway on the first order. Monitoring site MP1 owns a relatively open system shown by fast dripping rates, low Ca and HCO3- contents, and low carbonate deposition rate. The d13C of modern deposits from this site not only shows the seasonal variation following

  2. Watching tumours gasp and die with MRI: the promise of hyperpolarised 13C MR spectroscopic imaging.

    Science.gov (United States)

    Brindle, K

    2012-06-01

    A better understanding of tumour biology has led to the development of "targeted therapies", in which a drug is designed to disrupt a specific biochemical pathway important for tumour cell survival or proliferation. The introduction of these drugs into the clinic has shown that patients can vary widely in their responses. Molecular imaging is likely to play an increasingly important role in predicting and detecting these responses and thus in guiding treatment in individual patients: so-called "personalised medicine". The aim of this review is to discuss how hyperpolarised (13)C MR spectroscopic imaging might be used for treatment response monitoring. This technique, which increases the sensitivity of detection of injected (13)C-labelled molecules by >10,000-fold, has allowed a new approach to metabolic imaging. The basic principles of the technique and its potential advantages over other imaging methods for detecting early evidence of treatment response will be discussed. Given that the technique is poised to translate to the clinic, I will also speculate on its likely applications.

  3. Coherent control of a {sup 13}C NV{sup -} center

    Energy Technology Data Exchange (ETDEWEB)

    Scharfenberger, Burkhard; Nemoto, Kae [National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430 (Japan); Munro, William J. [NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198 (Japan)

    2013-07-01

    We investigate the theoretically achievable fidelity for coherently controlling an effective three qubit system consisting of a negatively charged NV center in diamond coupling via an hyperfine interaction to one nearby {sup 13}C nuclear spin using only micro- and radio wave pulses. With its long coherence times and comparatively simple optical accessibility, already the 'bare' NV{sup -} center has an interesting potential in quantum computing related applications. Although a number of experiments have already been conducted using NV centers with one or more {sup 13}C nearby, fidelity achieved are limited not only by experimental inaccuracies but a lack of theoretical understanding of the system dynamics. We seek to redress this by fully modelling the NVC systems behaviour in the ground state manifold, including all hyperfine interactions (between N and V as well as C and V) and dissipation where parameters are taken from previous experimental work as well as theoretical ab-initio studies. We show that for close-by carbons, the strong hyperfine interaction leads to unwanted mixing of levels which ultimately limits fidelity in single-qubit driving and entanglement generation to less than 99% in the experimentally interesting weak magnetic fields regime.

  4. Imaging of branched chain amino acid metabolism in tumors with hyperpolarized 13C ketoisocaproate.

    Science.gov (United States)

    Karlsson, Magnus; Jensen, Pernille R; in 't Zandt, René; Gisselsson, Anna; Hansson, Georg; Duus, Jens Ø; Meier, Sebastian; Lerche, Mathilde H

    2010-08-01

    Powerful analytical tools are vital for characterizing the complex molecular changes underlying oncogenesis and cancer treatment. This is particularly true, if information is to be collected in vivo by noninvasive approaches. In the recent past, hyperpolarized (13)C magnetic resonance (MR) spectroscopy has been employed to quickly collect detailed spectral information on the chemical fate of tracer molecules in different tissues at high sensitivity. Here, we report a preclinical study showing that alpha-ketoisocaproic acid (KIC) can be used to assess molecular signatures of tumors with hyperpolarized MR spectroscopy. KIC is metabolized to leucine by the enzyme branched chain amino acid transferase (BCAT), which is found upregulated in some tumors. BCAT is a putative marker for metastasis and a target of the proto-oncogene c-myc. Very different fluxes through the BCAT-catalyzed reaction can be detected for murine lymphoma (EL4) and rat mammary adenocarcinoma (R3230AC) tumors in vivo. EL4 tumors show a more than 7-fold higher hyperpolarized (13)C leucine signal relative to the surrounding healthy tissue. In R3230AC tumor on the other hand branched chain amino acid metabolism is not enhanced relative to surrounding tissues. The distinct molecular signatures of branched chain amino acid metabolism in EL4 and R3230AC tumors correlate well with ex vivo assays of BCAT activity.

  5. Conformational analysis of capsaicin using 13C, 15N MAS NMR, GIAO DFT and GA calculations

    Science.gov (United States)

    Siudem, Paweł; Paradowska, Katarzyna; Bukowicki, Jarosław

    2017-10-01

    Capsaicin produced by plants from genus Capsicum exerts multiple pharmacological effects and has found applications in food and pharmaceutical industry. The alkaloid was studied by a combined approach: solid-state NMR, GA conformational search and GIAO DFT methods. The 13C CPMAS NMR spectra were recorded using variable contact time and dipolar dephasing experiments. The results of cross-polarization (CP) kinetics, such as TCP values and long T1ρH (100-200 ms), indicated that the capsaicin molecule is fairly mobile, especially at the end of the aliphatic chain. The15N MAS NMR spectrum showed one narrow signal at -255 ppm. Genetic algorithm (GA) search with multi modal optimization was used to find low-energy conformations of capsaicin. Theoretical GIAO DFT calculations were performed using different basis sets to characterize five selected conformations. 13C CPMAS NMR was used as a validation method and the experimental chemical shifts were compared with those calculated for selected stable conformers. Conformational analysis suggests that the side chain can be bent or extended. A comparison of the experimental and the calculated chemical shifts indicates that solid capsaicin does not have the same structure as those established by PWXRD.

  6. Computer-Aided (13)C NMR Chemical Profiling of Crude Natural Extracts without Fractionation.

    Science.gov (United States)

    Bakiri, Ali; Hubert, Jane; Reynaud, Romain; Lanthony, Sylvie; Harakat, Dominique; Renault, Jean-Hugues; Nuzillard, Jean-Marc

    2017-05-26

    A computer-aided, (13)C NMR-based dereplication method is presented for the chemical profiling of natural extracts without any fractionation. An algorithm was developed in order to compare the (13)C NMR chemical shifts obtained from a single routine spectrum with a set of predicted NMR data stored in a natural metabolite database. The algorithm evaluates the quality of the matching between experimental and predicted data by calculating a score function and returns the list of metabolites that are most likely to be present in the studied extract. The proof of principle of the method is demonstrated on a crude alkaloid extract obtained from the leaves of Peumus boldus, resulting in the identification of eight alkaloids, including isocorydine, rogersine, boldine, reticuline, coclaurine, laurotetanine, N-methylcoclaurine, and norisocorydine, as well as three monoterpenes, namely, p-cymene, eucalyptol, and α-terpinene. The results were compared to those obtained with other methods, either involving a fractionation step before the chemical profiling process or using mass spectrometry detection in the infusion mode or coupled to gas chromatography.

  7. (13)C-metabolic flux analysis of lipid accumulation in the oleaginous fungus Mucor circinelloides.

    Science.gov (United States)

    Zhao, Lina; Zhang, Huaiyuan; Wang, Liping; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Song, Yuanda

    2015-12-01

    The oleaginous fungus Mucor circinelloides is of industrial interest because it can produce high levels of polyunsaturated fatty acid γ-linolenic acid. M. circinelloides CBS 277.49 is able to accumulate less than 15% of cell dry weight as lipids, while M. circinelloides WJ11 can accumulate lipid up to 36%. In order to better understand the mechanisms behind the differential lipid accumulation in these two strains, tracer experiments with (13)C-glucose were performed with the growth of M. circinelloides and subsequent gas chromatography-mass spectrometric detection of (13)C-patterns in proteinogenic amino acids was carried out to identify the metabolic network topology and estimate intracellular fluxes. Our results showed that the high oleaginous strain WJ11 had higher flux of pentose phosphate pathway and malic enzyme, lower flux in tricarboxylic acid cycle, higher flux in glyoxylate cycle and ATP: citrate lyase, together, it might provide more NADPH and substrate acetyl-CoA for fatty acid synthesis.

  8. Elucidating the role of copper in CHO cell energy metabolism using (13)C metabolic flux analysis.

    Science.gov (United States)

    Nargund, Shilpa; Qiu, Jinshu; Goudar, Chetan T

    2015-01-01

    (13)C-metabolic flux analysis was used to understand copper deficiency-related restructuring of energy metabolism, which leads to excessive lactate production in recombinant protein-producing CHO cells. Stationary-phase labeling experiments with U-(13)C glucose were conducted on CHO cells grown under high and limiting copper in 3 L fed-batch bioreactors. The resultant labeling patterns of soluble metabolites were measured by GC-MS and used to estimate metabolic fluxes in the central carbon metabolism pathways using OpenFlux. Fluxes were evaluated 300 times from stoichiometrically feasible random guess values and their confidence intervals calculated by Monte Carlo simulations. Results from metabolic flux analysis exhibited significant carbon redistribution throughout the metabolic network in cells under Cu deficiency. Specifically, glycolytic fluxes increased (25%-79% relative to glucose uptake) whereas fluxes through the TCA and pentose phosphate pathway (PPP) were lower (15%-23% and 74%, respectively) compared with the Cu-containing condition. Furthermore, under Cu deficiency, 33% of the flux entering TCA via the pyruvate node was redirected to lactate and malate production. Based on these results, we hypothesize that Cu deficiency disrupts the electron transport chain causing ATP deficiency, redox imbalance, and oxidative stress, which in turn drive copper-deficient CHO cells to produce energy via aerobic glycolysis, which is associated with excessive lactate production, rather than the more efficient route of oxidative phosphorylation.

  9. Bleached Porites compressa and Montipora capitata corals catabolize δ13C-enriched lipids

    Science.gov (United States)

    Grottoli, Andréa G.; Rodrigues, Lisa J.

    2011-09-01

    Corals rely on stored energy reserves (i.e., lipids, carbohydrates, and protein) to survive bleaching events. To better understand the physiological implications of coral bleaching on lipid catabolism and/or synthesis, we measured the δ13C of coral total lipids (δ13CTL) in experimentally bleached (treatment) and non-bleached (control) Porites compressa and Montipora capitata corals immediately after bleaching and after 1.5 and 4 months of recovery on the reef. Overall δ13CTL values in treatment corals were significantly lower than in control corals because of a 1.9 and 3.4‰ decrease in δ13CTL immediately after bleaching in P. compressa and M. capitata, respectively. The decrease in δ13CTL coincided with decreases in total lipid concentration, indicating that corals catabolized δ13C-enriched lipids. Since storage lipids are primarily depleted during bleaching, we hypothesize that they are isotopically enriched relative to other lipid classes. This work further helps clarify our understanding of changes to coral metabolism and biogeochemistry when bleached and helps elucidate how lipid classes may influence recovery from bleaching and ultimately coral survival.

  10. Application of (13)C-stable isotope probing to identify RDX-degrading microorganisms in groundwater.

    Science.gov (United States)

    Cho, Kun-Ching; Lee, Do Gyun; Roh, Hyungkeun; Fuller, Mark E; Hatzinger, Paul B; Chu, Kung-Hui

    2013-07-01

    We employed stable isotope probing (SIP) with (13)C-labeled hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to identify active microorganisms responsible for RDX biodegradation in groundwater microcosms. Sixteen different 16S rRNA gene sequences were derived from microcosms receiving (13)C-labeled RDX, suggesting the presence of microorganisms able to incorporate carbon from RDX or its breakdown products. The clones, residing in Bacteroidia, Clostridia, α-, β- and δ-Proteobacteria, and Spirochaetes, were different from previously described RDX degraders. A parallel set of microcosms was amended with cheese whey and RDX to evaluate the influence of this co-substrate on the RDX-degrading microbial community. Cheese whey stimulated RDX biotransformation, altered the types of RDX-degrading bacteria, and decreased microbial community diversity. Results of this study suggest that RDX-degrading microorganisms in groundwater are more phylogenetically diverse than what has been inferred from studies with RDX-degrading isolates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Hyperpolarized [2-13C]-fructose: a hemiketal DNP substrate for in vivo metabolic imaging.

    Science.gov (United States)

    Keshari, Kayvan R; Wilson, David M; Chen, Albert P; Bok, Robert; Larson, Peder E Z; Hu, Simon; Van Criekinge, Mark; Macdonald, Jeffrey M; Vigneron, Daniel B; Kurhanewicz, John

    2009-12-09

    Hyperpolarized (13)C labeled molecular probes have been used to investigate metabolic pathways of interest as well as facilitate in vivo spectroscopic imaging by taking advantage of the dramatic signal enhancement provided by DNP. Due to the limited lifetime of the hyperpolarized nucleus, with signal decay dependent on T(1) relaxation, carboxylate carbons have been the primary targets for development of hyperpolarized metabolic probes. The use of these carbon nuclei makes it difficult to investigate upstream glycolytic processes, which have been related to both cancer metabolism as well as other metabolic abnormalities, such as fatty liver disease and diabetes. Glucose carbons have very short T(1)s (metabolic probe of glycolysis. However, the pentose analogue fructose can also enter glycolysis through its phosphorylation by hexokinase and yield complementary information. The C(2) of fructose is a hemiketal that has a relatively longer relaxation time (approximately 16 s at 37 degrees C) and high solution state polarization (approximately 12%). Hyperpolarized [2-(13)C]-fructose was also injected into a transgenic model of prostate cancer (TRAMP) and demonstrated difference in uptake and metabolism in regions of tumor relative to surrounding tissue. Thus, this study demonstrates the first hyperpolarization of a carbohydrate carbon with a sufficient T(1) and solution state polarization for ex vivo spectroscopy and in vivo spectroscopic imaging studies.

  12. HepatoDyn: A Dynamic Model of Hepatocyte Metabolism That Integrates 13C Isotopomer Data.

    Directory of Open Access Journals (Sweden)

    Carles Foguet

    2016-04-01

    Full Text Available The liver performs many essential metabolic functions, which can be studied using computational models of hepatocytes. Here we present HepatoDyn, a highly detailed dynamic model of hepatocyte metabolism. HepatoDyn includes a large metabolic network, highly detailed kinetic laws, and is capable of dynamically simulating the redox and energy metabolism of hepatocytes. Furthermore, the model was coupled to the module for isotopic label propagation of the software package IsoDyn, allowing HepatoDyn to integrate data derived from 13C based experiments. As an example of dynamical simulations applied to hepatocytes, we studied the effects of high fructose concentrations on hepatocyte metabolism by integrating data from experiments in which rat hepatocytes were incubated with 20 mM glucose supplemented with either 3 mM or 20 mM fructose. These experiments showed that glycogen accumulation was significantly lower in hepatocytes incubated with medium supplemented with 20 mM fructose than in hepatocytes incubated with medium supplemented with 3 mM fructose. Through the integration of extracellular fluxes and 13C enrichment measurements, HepatoDyn predicted that this phenomenon can be attributed to a depletion of cytosolic ATP and phosphate induced by high fructose concentrations in the medium.

  13. 12C/13C in atmospheres of red giants and peculiar stars

    CERN Document Server

    Pavlenko, Ya V

    2005-01-01

    We determine the carbon isotopic ratios in the atmospheres of some evolved stars in both globular clusters and the disk of our Galaxy. Analysis of 12CO and 13CO bands at 2.3 micron was carried out using fits to observed spectra of red giants and Sakurai's object (V4334 Sgr). The dependence of theoretical spectra on the various input parameters was studied in detail. The computation of model atmospheres and a detailed abundance analysis was performed in a self-consistent fashion. A special procedure for determining the best fits to observed spectra was used. We show, that globular cluster giants with [Fe/H] < -1.3 have a low 12C/13C = 4 +/- 1 abundance ration. In the spectra of Sakurai's object (V4334 Sgr) taken between 1997-98, the 2.3 micron spectral region is veiled by hot dust emission. By fitting UKIRT spectra we determined 12C/13C = 4 +/- 1 for the July, 1998 spectrum. CO bands in the spectra of ultracool dwarfs are modelled as well.

  14. Measurement of position-specific 13C isotopic composition of propane at the nanomole level

    Science.gov (United States)

    Gilbert, Alexis; Yamada, Keita; Suda, Konomi; Ueno, Yuichiro; Yoshida, Naohiro

    2016-03-01

    We have developed a novel method for analyzing intramolecular carbon isotopic distribution of propane as a potential new tracer of its origin. The method is based on on-line pyrolysis of propane followed by analysis of carbon isotope ratios of the pyrolytic products methane, ethylene and ethane. Using propane samples spiked with 13C at the terminal methyl carbon, we characterize the origin of the pyrolytic fragments. We show that the exchange between C-atoms during the pyrolytic process is negligible, and thus that relative intramolecular isotope composition can be calculated. Preliminary data from 3 samples show that site-preference (SP) values, defined as the difference of δ13C values between terminal and sub-terminal C-atom positions of propane, range from -1.8‰ to -12.9‰. In addition, SP value obtained using our method for a thermogenic natural gas sample is consistent with that expected from theoretical models of thermal cracking, suggesting that the isotope fractionation associated with propane pyrolysis is negligible. The method will provide novel insights into the characterization of the origin of propane and will help better understand the biogeochemistry of natural gas deposits.

  15. Kinetic analysis of glycogen turnover: relevance to human brain 13C-NMR spectroscopy.

    Science.gov (United States)

    DiNuzzo, Mauro

    2013-10-01

    A biophysical model of the glycogen molecule is developed, which takes into account the points of attack of synthase and phosphorylase at the level of the individual glucose chain. Under the sole assumption of steric effects governing enzyme accessibility to glucosyl residues, the model reproduces the known equilibrium structure of cellular glycogen at steady state. In particular, experimental data are reproduced assuming that synthase (1) operates preferentially on inner chains of the molecule and (2) exhibits a faster mobility than phosphorylase in translocating from an attacked chain to another. The model is then used to examine the turnover of outer versus inner tiers during the labeling process of isotopic enrichment (IE) experiments. Simulated data are fitted to in vivo (13)C nuclear magnetic resonance spectroscopy measurements obtained in the human brain under resting conditions. Within this experimental set-up, analysis of simulated label incorporation and retention shows that 7% to 35% of labeled glucose is lost from the rapidly turning-over surface of the glycogen molecule when stimulation onset is delayed by 7 to 11.5 hours after the end of [1-(13)C]glucose infusion as done in actual procedures. The substantial label washout before stimulation suggests that much of the subsequent activation-induced glycogenolysis could remain undetected. Overall, these results show that the molecular structure significantly affects the patterns of synthesis and degradation of glycogen, which is relevant for appropriate design of labeling experiments aiming at investigating the functional roles of this glucose reserve.

  16. RMN 13C de chalcones protonées: Factorisation des interactions intramoléculaires

    Science.gov (United States)

    Membrey, François; Doucet, Jean-Pierre

    13C study of protonated para, para' disubstituted chalcones XC 6H 4CHCHC(OH) +C 6H 4Y, shows for the chemical shift of the carbenium center important deviations from a strict additivity of Substituent Induced Shifts observed in the corresponding monosubstituted ions. By collecting the experimental data into sub-populations where only one substituent (X or Y) varies—the other remaining fixed—a network of linear homogeneous correlations (δ/δ) is obtained. Their largely variable slopes indicate that the susceptibility of the carbenium site to the perturbations induced by one of the substituent groups depends on the nature of the other substituent group. The definition of 'Intrinsic Substituent Parameters' (derived from the SCS observed, in these ions, on the aromatic para positions) allows to separate the action of a substituent group on the electronic interaction mechanism and the global perturbation detected on the observation site. For a quantitative evaluation of these interactions, a Factorization Model is proposed, where deviations to additivity of the SCS are expressed as a product of the intrinsic parameters of X and Y groups. This model is successfully applied to 13C spectra of protonated chalcones and benzophenones. The parallelism between these intrinsic group effects and the SCS observed in monosubstituted benzenes points out the prime importance in these cationic systems, of π polarisation effects modulating the electron transfer toward the carbenium center within a concerted π-inductive mesomeric action.

  17. Neoproterozoic diamictite-cap carbonate succession and δ13C chemostratigraphy from eastern Sonora, Mexico

    Science.gov (United States)

    Corsetti, Frank A.; Stewart, John H.; Hagadorn, James W.

    2007-01-01

    Despite the occurrence of Neoproterozoic strata throughout the southwestern U.S. and Sonora, Mexico, glacial units overlain by enigmatic cap carbonates have not been well-documented south of Death Valley, California. Here, we describe in detail the first glaciogenic diamictite and cap carbonate succession from Mexico, found in the Cerro Las Bolas Group. The diamictite is exposed near Sahuaripa, Sonora, and is overlain by a 5 m thick very finely-laminated dolostone with soft sediment folds. Carbon isotopic chemostratigraphy of the finely-laminated dolostone reveals a negative δ13C anomaly (down to − 3.2‰ PDB) characteristic of cap carbonates worldwide. Carbon isotopic values rise to + 10‰ across ∼ 400 m of section in overlying carbonates of the Mina el Mezquite and Monteso Formations. The pattern recorded here is mostly characteristic of post-Sturtian (ca. ≤ 700 Ma), but pre-Marinoan (ca. ≥ 635 Ma) time. However, the Cerro Las Bolas Group shares ambiguity common to most Neoproterozoic successions: it lacks useful radiometric age constraints and biostratigraphically useful fossils, and its δ13C signature is oscillatory and therefore somewhat equivocal.

  18. CO2 and 12C:13C Isotopic Ratios on Phoebe and Iapetus

    Science.gov (United States)

    Clark, R. N.; Brown, R. H.; Cruikshank, D. P.

    2016-12-01

    Cassini VIMS has obtained spatially resolved 0.35 to 5.1 micron reflectance spectra of Saturn's satellites beginning with the Phoebe fly-by in 2004 and a close fly-by of Iapetus in 2007. Both surfaces contain relatively abundant CO2. The new (2016 RC19) calibration of VIMS has provided a significant increase in the data quality, such that isotopic absorption bands in CO2 are now well defined. CO2 on Saturn's icy satellites is trapped (Cruikshank et al., 2010, Icarus v206 p561; Pinilla-Alonso et al. 2011, Icarus v211, p75i), predominantly in the dark material (Clark et al. 2012, Icarus v218 p831). Clark et al. modeled the CO2 abundance as 2.8% on Iapetus and 3.7% on Phoebe. The main 12CO2 band in VIMS spectra on Iapetus occurs at 4.253 microns and Phoebe at 4.266 microns. The 13CO2 absorption is strong on Phoebe at 4.367 microns and weak on Iapetus at 4.387 microns. Converting the Phoebe, Iapetus, and a lab reflectance spectrum (of trace H2O-CO2 mixture on a diffuse substrate), we derive preliminary values for the ratio of the equivalent widths of the 12C and 13C absorptions as 19±2 on Phoebe, 82±8 on Iapetus, and 98±10 for the laboratory spectrum. These ratios are related to the 12C/13C ratio, but there may be effects due to intra-molecular and inter-molecular coupling that will contribute to systematic errors in the isotopic abundances derived using equivalent-width measurements that we've yet to quantify. We Believe the effects are small, and will be attempting to quantify them in the future. For comparison, the terrestrial value of the 12C/13C ratio is 90.17, and vibrational coupling may explain the slightly high lab mixture result. The local interstellar medium is 69±15 (Boogert et al., 2000, A&A). Because the CO2 bands on Phoebe and Iapetus dark material have different positions, and because the observed 13C absorption strengths are so different, the surface evolutions must be different. The large enrichment in 13C on Phoebe argues for significant

  19. Does low dose13C-urea breath test maintain a satisfactory accuracy in diagnosing Helicobacter pylori infection?

    Directory of Open Access Journals (Sweden)

    Luiz Gonzaga Vaz Coelho

    2011-06-01

    Full Text Available CONTEXT: The standard doses of 13C-urea in 13C-urea breath test is 75 mg. OBJECTIVE: To assess the diagnostic accuracy of 13C-urea breath test containing 25 mg of 13C-urea comparing with the standard doses of 75 mg in the diagnosis of Helicobacter pylori infection. METHODS: Two hundred seventy adult patients (96 males, 174 females, median age 41 years performed the standard 13C-urea breath test (75 mg 13C-urea and repeated the 13C-urea breath test using only 25 mg of 13C-urea within a 2 week interval. The test was performed using an infrared isotope analyzer. Patients were considered positive if delta over baseline was >4.0‰ at the gold standard test. RESULTS: One hundred sixty-one (59.6% patients were H. pylori negative and 109 (40.4% were positive by the gold standard test. Using receiver operating characteristic analysis we established a cut-off value of 3.4% as the best value of 25 mg <