WorldWideScience

Sample records for superplastic deformation behavior

  1. Superplastic Deformation of TC6 Alloy

    Directory of Open Access Journals (Sweden)

    DING Ling

    2016-12-01

    Full Text Available The superplastic tensile tests of TC6 alloy were conducted in the temperature range of 800-900℃ by using the maximum m value superplasticity deformation (Max m SPD method and the constant strain rate deformation method at the strain rate range of 0.0001-0.1 s-1. The stress-strain curve of the tensile tests was obtained and the microstructure near the fracture were analyzed by metallographic microscope. The result shows that the superplasticity of TC6 alloy is excellent, and the elongation increases first and then decreases with the increase of strain rate or temperature. When the temperature is 850℃ and strain rate is 0.001 s-1 at constant stain rate tensile tests, the elongation reaches up to 993%. However, the elongation using Max m SPD method at 850℃ is 1353%. It is shown that the material can achieve better superplasticity by using Max m SPD tensile compared to constant stain rate tensile under the same temperature. The superplastic deformation of TC6 alloy can enhance the dynamic recrystallization behavior significantly, the dynamic recrystallization behavior is promoted when strain rate and temperature are increased.

  2. A novel deformation mechanism for superplastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Muto, H.; Sakai, M. (Toyohashi Univ. of Technology (Japan). Dept. of Materials Science)

    1999-01-01

    Uniaxial compressive creep tests with strain value up to -0.1 for a [beta]-spodumene glass ceramic are conducted at 1060 C. From the observation of microstructural changes between before and after the creep deformations, it is shown that the grain-boundary sliding takes place via cooperative movement of groups of grains rather than individual grains under the large-scale-deformation. The deformation process and the surface technique used in this work are not only applicable to explain the deformation and flow of two-phase ceramics but also the superplastic deformation. (orig.) 12 refs.

  3. Constitutive Equation with Varying Parameters for Superplastic Flow Behavior

    Science.gov (United States)

    Guan, Zhiping; Ren, Mingwen; Jia, Hongjie; Zhao, Po; Ma, Pinkui

    2014-03-01

    In this study, constitutive equations for superplastic materials with an extra large elongation were investigated through mechanical analysis. From the view of phenomenology, firstly, some traditional empirical constitutive relations were standardized by restricting some strain paths and parameter conditions, and the coefficients in these relations were strictly given new mechanical definitions. Subsequently, a new, general constitutive equation with varying parameters was theoretically deduced based on the general mechanical equation of state. The superplastic tension test data of Zn-5%Al alloy at 340 °C under strain rates, velocities, and loads were employed for building a new constitutive equation and examining its validity. Analysis results indicated that the constitutive equation with varying parameters could characterize superplastic flow behavior in practical superplastic forming with high prediction accuracy and without any restriction of strain path or deformation condition, showing good industrial or scientific interest. On the contrary, those empirical equations have low prediction capabilities due to constant parameters and poor applicability because of the limit of special strain path or parameter conditions based on strict phenomenology.

  4. Deformation of superplastic alloys at relatively low strain rates

    International Nuclear Information System (INIS)

    Grivas, D.

    1978-02-01

    The superplastic and sub-superplastic creep properties of Pb-Sn eutectic and Al-Zn eutectoid alloys were studied. Various thermomechanical treatments we tested to check the possibilities of whether the subsuperplastic deformation mechanism is affected by these treatments. All thermomechanical histories were found to reveal the same stress exponent, which is believed to be indicative of the predominant mechanism. The mechanical data in the low stress region lead us to suggest that dislocation glide is the predominant mechanism in this region. At higher stresses extensive grain boundary sliding takes place and the dislocation movement is directed to relieve the stress concentration developed by the grain movement

  5. Mechanical and microstructural characteristics of an Al-Li-Cu-Zr alloy during superplastic deformation

    International Nuclear Information System (INIS)

    Ren, B.

    1991-01-01

    If the above alloys are heavily cold- or warm-worked prior to superplastic deformation, they are resistant to static recrystallization but dynamically recrystallize with a clear strain dependence, and are superplastic deformable at relative high strain rates in the approximate range of 10 -3 to 10 -1 s -1 . The microstructural source of superplasticity has been the subject of less-detailed study than the more classical fully recrystallized materials. In this study, an effort was made to provide a somewhat greater insight into the mechanical behavior during the dynamic recrystallization of an Al-Li-Cu-Zr alloy, and to relate the mechanical behavior to the microstructure and its evolution. As part of the study, internal stresses were measured by the strain dip test, and effective stresses and their development were determined over a range of temperatures and strain rates. mechanisms for the superplastic flow and the internal-stress development during the initial stage of deformation were suggested. A variable-strain-rate model was developed based on the understanding of the mechanical behavior of this material

  6. Microstructure Evolution and Mechanical Behavior of Ultrafine Ti-6Al-4V During Low Temperature Superplastic Deformation (Postprint)

    Science.gov (United States)

    2016-09-13

    J. Cui, L. Ma, A cavity nucleation model during high temperature creep deformation of metals, Acta Metall. Mater. 41 (1993) 539e542. [49] A.H. Chokshi...dislocation activity, and diffusional creep [2]. However, the contribution of these elease (PA): distribution unlimited. S.V. Zherebtsov et al. / Acta...interval 2 105 s1e2 103 s1 at 550 C. The strain rate sensitivity m was evaluated using the slope of log s log _ε curves or strain-rate-change

  7. Effects of superplastic deformations on thermophysical properties of tetragonal zirconia polycrystals

    International Nuclear Information System (INIS)

    Motohashi, Y.; Wan, C.; Sakuma, T.; Harjo, S.; Shibata, T.; Ishihara, M.; Baba, S.; Hoshiya, T.

    2004-01-01

    Neutron irradiation studies on superplastic zirconia-based ceramics are now in progress as an innovative basic project using the High-temperature Engineering Test Reactor (HTTR) in Japan. The characteristics of the zirconia-based engineering components, made through the formation of superplastic, may be strongly affected by their response to transient or steady-state heat flow. Reliable thermophysical properties such as the coefficients of thermal expansion and thermal conductivity are, therefore, needed to estimate and predict the influence of a high-temperature environment. Accordingly, one of this project's targets is to study the thermophysical properties of superplastic zirconia-based ceramics. The first stage of the research addresses the effects of superplastic deformations on the thermophysical properties of a typical superplastic ceramic, 3 mol% yttria-stabilised tetragonal zirconia polycrystals (3Y-TZP), in its un-irradiated state. First, superplastic tensile deformations were conducted on 3Y-TZP specimens under different conditions in order to obtain specimens with different microstructural characteristics. Afterwards, the following actions were taken: - Specific heat measurements were conducted on the specimens at temperatures ranging from 473 K to 1273 K. - The thermal diffusivity was measured using a laser flash method. The thermal conductivity was then calculated from the measured thermal diffusivity, specific heat and density. - The linear thermal expansion was measured by a push-rod type dilatometer from 300 K to 1473 K. The coefficient of linear thermal expansion (CTE) was estimated from the thermal expansion data. The results obtained from the above measurements are discussed, as is the microstructural evolution caused by the superplastic deformations. It was found that the specific heat was almost independent of microstructural evolution, whereas the thermal diffusivity, thermal conductivity and thermal expansion were quite sensitive to

  8. Superplasticity - A Fundamental Investigation on Deformation Mechanism and Cavitation Phenomena.

    Science.gov (United States)

    1988-02-15

    1984) 18, 773-776. 5. T.G. Nieh, C.A. Henshall and J. Wadsworth, Scripta Metall., (1984) 8, 1405-1408. 6. C. Carry and A. Mocellin , Superplasticity, B...Baudelet and M. Suery eds., Centre Nationale de la Recherche, Paris, 1985, pp. 16.1-16.19. e 7. C. Carry and A. Mocellin , J. Amer. Cer. Soc., (1986

  9. Superplastic behavior of coarse-grained aluminum alloys

    NARCIS (Netherlands)

    Chezan, AR; De Hosson, JTM

    2005-01-01

    In this paper we concentrate on the superplastic behavior and the microstructural evolution of two coarse-grained Al alloys: Al-4.4w/oMg and Al-4.4w/oMg-0.4w/oCu. The values for the strain rate sensitivity index and activation energy suggest that solute drag on dislocation motion is an important

  10. Superplastic ceramics and intermetallics and their potential applications

    International Nuclear Information System (INIS)

    Wadsworth, J.; Nieh, T.G.

    1994-11-01

    Recent advances in the basic understanding of superplasticity and superplastic forming of ceramics and intermetallics are reviewed. Fine-grained superplastic ceramics, including yttria-stabilized tetragonal zirconia polycrystal, Y- or MgO-doped Al 2 O 3 Hydroxyapatite, β-spodumene glass ceramics, Al 2 0 3 -YTZP two-phase composites, SiC-Si 3 N 4 and Fe-Fe 3 C composites, are discussed. Superplasticity in the nickel-base (e.g., Ni 3 Al and Ni 3 Si) and titanium-base intermetallics (TiAl and T1 3 Al), is described. Deformation mechanisms as well as microstructural requirements and effects such as grain size, grain growth, and grain-boundary phases, on the superplastic deformation behavior am addressed. Factors that control the superplastic tensile elongation of ceramics are discussed. Superplastic forming, and particularly biaxial gas-pressure forming, of several ceramics and intermetallics are presented with comments on the likelihood of commercial application

  11. A grain-boundary diffusion model of dynamic grain growth during superplastic deformation

    International Nuclear Information System (INIS)

    Kim, Byung-Nam; Hiraga, Keijiro; Sakka, Yoshio; Ahn, Byung-Wook

    1999-01-01

    Dynamic grain growth during superplastic deformation is modelled on the basis of a grain-boundary diffusion mechanism. On the grain boundary where a static and a dynamic potential difference coexist, matter transport along the boundary is assumed to contribute to dynamic grain growth through depositing the matter on the grain surface located opposite to the direction of grain-boundary migration. The amount of the diffusive matter during deformation is calculated for an aggregate of spherical grains and is converted to the increment of mean boundary migration velocity. The obtained relationship between the strain rate and the dynamic grain growth rate is shown to be independent of deformation mechanisms, provided that the grain growth is controlled by grain-boundary diffusion. The strain dependence, strain-rate dependence and temperature dependence of grain growth predicted from this model are consistent with those observed in superplastic ZrO 2 -dispersed Al 2 O 3

  12. Superplasticity-like deformation of a coarse-grained Al5052 alloy

    International Nuclear Information System (INIS)

    Chow, K.K.; Chan, K.C.

    2000-01-01

    In the present paper, hot forming properties of a commercially available coarse-grained Al5052 alloy under uniaxial and biaxial stress states were examined. In hot tensile tests, the alloy exhibits a superplastic-like behaviour with a maximum tensile elongation of 194% at a temperature of 873 K and at an initial strain rate of 2.08 x 10 -1 s -1 . Dislocation slip and grain boundary sliding were considered to be the deformation mechanisms. The alloy was also bulged at a constant polar strain-rate of 2.0 x 10 -1 s -1 and at an optimum temperature of 873 K using elliptical dies with aspect ratios of 1:1, 4:3, 2:1, 8:3 and 4:1. The strain distributions revealed that the strain gradient obtained in the minor axis was much greater than that in major axis. Moreover, it was shown that the deformation behavior of the alloy was basically isotropic and the volume strain of the alloy sheet did not equal to zero which was considered to relate to its cavitation behaviour. (orig.)

  13. The effect of the matrix superplastic deformation on interface reaction in fiber-reinforced composites

    International Nuclear Information System (INIS)

    Astanin, V.V.; Imayeva, L.A.

    1995-01-01

    It is known that superplastic deformation affects the processes o solid phases bonding. In particular, the effect of a character of matrix flow upon nucleation and growth of the reaction products at the fiber/matrix interface should be expected during consolidation of the fiber-reinforced composites under superplastic conditions. The matrix material flow in thin clearance (about 20μm) between strengthening fibers is a special feature of composite consolidation. In previous papers, it was shown that the character of the flow in thin specimens, when the specimen thickness is equal to several grain sizes, is very different from that in thick specimens. In this manner the question of the effect of the deformation on the fiber/matrix interface formation is complicated and one should consider the peculiarities of matrix deformation during the composite fabrication and the effect of localization of the deformation on the fiber/matrix interface reaction. In this paper, the authors shall focus on these two problems

  14. Anisotropic ionic conductivity observed in superplastically deformed yttria-stabilized zirconia/alumina composite

    International Nuclear Information System (INIS)

    Drennan, J.; Swain, M.V.; Badwal, S.P.S.

    1989-01-01

    Ionic conductivity measurements on a yttria-stabilized tetragonal zirconia polycrystal/alumina composite subjected to superplastic deformation demonstrate anisotropic character. Parallel to the pressing direction, the grain-boundary resistance to oxygen ion mobility is 25% to 30% higher than that measured perpendicular to the pressing direction. The same directional dependency on the volume conductivity is observed but is less pronounced, showing approximately a 9% difference. Microstructural evidence reveals an agglomeration and elongation of alumina particles perpendicular to the pressing direction, and it is suggested that this phenomenon restricts the passage of ions parallel to the compression direction, giving rise to the anisotropic nature of the conductivity measurements

  15. Random walk analysis of grain motion during superplastic deformation of TZP

    International Nuclear Information System (INIS)

    Okamoto, T; Yasuda, K; Shiota, T

    2009-01-01

    This study focuses on grain motion in TZP (Tetragonal Zirconia Polycrystal) ceramics during superplastic deformation. The specimen was 16 times elongated repeatedly at 1400 0 C in air. The increment of true plastic strain was set to be 2%, and the specimen was deformed up to 30.3% true plastic strain finally. After each deformation, displacement vectors of specified 748 grains were measured from their position vectors determined by FE-SEM micrographs. As a result, the grains move to the tensile loading direction in zigzag way. And also, the zigzag motion changes with plastic strain: The grains move randomly (random walk motion) by the first 15% true plastic strain, and then grain motion becomes spatially uniform gradually. It is related to changes of constraint of surrounding matrix.

  16. Theoretical studies of the stretching behavior of carbon nanowires and their superplasticity

    Energy Technology Data Exchange (ETDEWEB)

    Li, H. [Physics Department, Ocean University of China, Qingdao (China); Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, School of Material Science and Engineering, Shandong University (China)], E-mail: lihuilmy@hotmail.com; Sun, F.W.; Li, Y.F. [Physics Department, Ocean University of China, Qingdao (China); Liu, X.F. [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, School of Material Science and Engineering, Shandong University (China); Liew, K.M. [Department of Building and Construction, City University of Hong Kong, Kowloon (Hong Kong)

    2008-09-15

    The tensile deformation of carbon nanowire (CNW) is examined by molecular dynamics method. Results indicate that the carbon nanowire undergoes superplastic deformation. The maximum tensile strain of the carbon nanowire could increase to nearly 245% before tensile failure. The maximum stress for a CNW is 16.65 GPa which is lower than carbon nanotube. During the deformation, the carbon nanowire is found to be drawn a single atomic chain.

  17. Microstructure, mechanical behavior and low temperature superplasticity of ECAP processed ZM21 Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mostaed, Ehsan, E-mail: ehsan.mostaed@polimi.it [Department of Mechanical Engineering, Politecnico di Milano, Milan (Italy); Fabrizi, Alberto [Department of Management and Engineering, Università di Padova, Stradella S. Nicola 3, 36100 Vicenza (Italy); Dellasega, David [Department of Energy, Politecnico di Milano, Milan (Italy); Bonollo, Franco [Department of Management and Engineering, Università di Padova, Stradella S. Nicola 3, 36100 Vicenza (Italy); Vedani, Maurizio [Department of Mechanical Engineering, Politecnico di Milano, Milan (Italy)

    2015-07-25

    Highlights: • We studied the effects of texture and grain size on ZM21 alloy mechanical behavior. • Yielding asymmetry was alleviated by either texture weakening or grain refining. • At room temperature and 150 °C fracture elongation was strongly texture dependent. • Superplasticity at 200 °C was influenced by grain size, appearing only in UFG alloy. - Abstract: In this study, ultra-fine grained ZM21 Mg alloy was obtained through two-stage equal channel angular pressing process (ECAP) at temperatures of 200 and 150 °C. For each stage four passes were used. Plastic behavior, mechanical asymmetry and low temperature superplasticity of ultra-fine grained ZM21 alloy were investigated as a function of processing condition with particular attention to microstructural and texture evolution. Microstructural observations showed that after the first stage of ECAP an equiaxed ultra-fine grain (UFG) structure with average size of 700 nm was obtained. Additional stage did not cause any further grain refinement. However, Electron Backscattered Diffraction analysis showed that the original extrusion fiber texture evolved into a new one featuring a favorable alignment of the basal planes along ECAP shear planes. Such a preferential alignment provided a considerably higher Schmid factor value of 0.32, resulting in a remarkable loss in tensile yield stress, from 212 to 110 MPa and an improvement of the tensile fracture elongation, from 24% to 40%. Tensile and compression tests at room temperature revealed that yielding asymmetry could be alleviated by either weakening of basal plane fiber texture or by grain refinement. Tensile tests at 150 °C showed that texture supplies a significant contribution to plastic flow and elongation, making dislocation slip the dominant mechanism for deformation, while grain boundary sliding was not actively operated at this temperature. However, at 200 °C the effect of texture on fracture elongation of UFG alloys was subtle and the impact

  18. Forming of superplastic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.; Wadsworth, J.; Nieh, T.G.

    1994-05-01

    Superplasticity in ceramics has now advanced to the stage that technologically viable superplastic deformation processing can be performed. In this paper, examples of superplastic forming and diffusion bonding of ceramic components are given. Recent work in biaxial gas-pressure forming of several ceramics is provided. These include yttria-stabilized, tetragonal zirconia (YTZP), a 20% alumina/YTZP composite, and silicon. In addition, the concurrent superplastic forming and diffusion bonding of a hybrid ceramic-metal structure are presented. These forming processes offer technological advantages of greater dimensional control and increased variety and complexity of shapes than is possible with conventional ceramic shaping technology.

  19. Statistical analysis of the description accuracy of dependence of flow stresses upon the deformation rate in the state of superplasticity by phenomenological equations

    International Nuclear Information System (INIS)

    Bojtsov, V.V.; Tsepin, M.A.; Karpilyanskij, N.N.; Ershov, A.N.

    1982-01-01

    Results of statistical analysis of the description accuracy of superplasticity S-form curve by different analytic expressions, suggested on the basis of phenomenological and metallophysical concepts about the nature of superplastic deformation, are given. Experimental investigations into the dependence of flow stresses on the deformation rate were conducted on VT3-1 two-phase titanium alloy. Test samples were cut out of a rod, 30 mm in diameter, produced by lengthwise rolling in α+#betta#-region. Optimal temperature of superplasticity manifestation was determined by the method of stress relaxation from a relaxation time value to a given stress. It was established that the Smirnov phemonemological equation describes in the best way the rate dependence of flow stress of superplastic material. This equation can be used for solution of problems of studying mechanism, physical nature of superplastic deformation, analysing strain-stress state and the structure of deformation zone during the processes of pressure shaping of superplastic materials, when considerably wide range (in the limits of 7-8 orders) of deformation rate variation takes place

  20. Effect of Various SPD Techniques on Structure and Superplastic Deformation of Two Phase MgLiAl Alloy

    Science.gov (United States)

    Dutkiewicz, Jan; Bobrowski, Piotr; Rusz, Stanislav; Hilser, Ondrej; Tański, Tomasz A.; Borek, Wojciech; Łagoda, Marek; Ostachowski, Paweł; Pałka, Paweł; Boczkal, Grzegorz; Kuc, Dariusz; Mikuszewski, Tomasz

    2018-03-01

    MgLiAl alloy containing 9 wt% Li and 1.5% Al composed of hexagonal α and bcc β phases was cast under protecting atmosphere and hot extruded. Various methods of severe plastic deformation were applied to study their effect on structure and grain refinement. Rods were subjected to 1-3 passes of Twist Channel Angular Pressing TCAP (with helical component), cyclic compression to total strain ɛ = 5 using MAXStrain Gleeble equipment, both performed at temperature interval 160-200 °C and, as third SPD method, KOBO type extrusion at RT. The TCAP pass resulted in grain refinement of α phase from 30 μm down to about 2 μm and that of β phase from 12 to 5 μm. Maxstrain cycling 10 × up to ɛ = 5 led to much finer grain size of 300 nm. KOBO method performed at RT caused average grain size refinement of α and β phases down to about 1 μm. Hardness of alloy decreased slightly with increasing number of TCAP passes due to increase of small void density. It was higher after MAXStrain cycling and after KOBO extrusion. TEM studies after TCAP passes showed higher dislocation density in the β region than in the α phase. Crystallographic relationship (001) α|| (110) β indicated parallel positioning of slip planes of both phases. Electron diffraction technique confirmed increase of grain misorientation with number of TCAP passes. Stress/strain curves recorded at temperature 200 °C showed superplastic forming after 1st and 3rd TCAP passes with better superplastic properties due to higher elongation with increasing number of passes. Values of strain rate sensitivity coefficient m were calculated at 0.29 after 3rd TCAP pass for strain rate range 10-5 to 5 × 10-3 s-1. Deformation by MAXStrain cycling caused much more effective grain refinement with fine microtwins in α phase. Superplastic deformation was also observed in alloy deformed by KOBO method, however the value of m = 0.21 was obtained at lower temperature of deformation equal to 160 °C and deformation rate in the

  1. Superplastic deformation of P/M and I/M Al-Li based alloys

    International Nuclear Information System (INIS)

    Lederich, R.J.; Sastry, S.M.L.

    1984-01-01

    Incremental strain-rate and constant strain-rate cone-forming tests have been carried out at 450-550 C to investigate the superplastic forming characteristics of Al-Li-Cu-Mn, Al-Li-Cu-Mg-Zr, and Al-Li-Zn-Mg alloys processed by powder-metallurgy (P/M) and ingot-metallurgy (I/M) techniques. It is found that P/M Al-Li alloys containing 0.2 pct Zr are inherently superplastically formable without the need for extensive thermomechanical processing. I/M Al-Li alloys containing Zr are also superplastically formable. The mechanical properties of the superplastically formed and solution-treated-and-aged alloys are comparable to those of solution-treated-and-aged alloys before superplastic forming. 6 references

  2. Analysis of the Transition in Deformation Mechanisms in Superplastic 5083 Aluminum Alloys by Orientation Imaging Microscopy

    National Research Council Canada - National Science Library

    Harrell, James

    2001-01-01

    Recently developed Orientation Imaging Microscopy (OIM) methods have been applied to the analysis of microstructure and microtexture of 5083 aluminum alloy materials that have been processed to enable superplasticity...

  3. Excellent superplasticity and deformation mechanism of Al–Mg–Sc–Zr alloy processed via simple free forging

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Y.L. [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Xu, G.F., E-mail: csuxgf660302@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Nonferrous Materials Science and Engineering of Ministry of Education, Central South University, Changsha 410083, China. (China); Xiao, D.; Zhou, L.Q. [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Deng, Y.; Yin, Z.M. [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Nonferrous Materials Science and Engineering of Ministry of Education, Central South University, Changsha 410083, China. (China)

    2015-01-29

    A refined microstructure of Al–Mg–Sc–Zr alloy with an average grain size of ∼3.7 μm and a portion of high angle boundaries of 69.2% was produced by free forging. Excellent superplastic ductility of ≥500% was achieved at a wide temperature range of 450∼500 °C and relatively high strain rate range of 1×10{sup −3}∼5×10{sup −2} s{sup −1} in the Al–Mg–Sc–Zr alloy. A maximum elongation of 1593% was obtained at 475 °C and 1×10{sup −3} s{sup −1}. Moreover, the electron back scattered diffraction (EBSD) and the transmission electron microscopy (TEM) analyses showed that the excellent superplasticity can be attributed to the high fraction of high angle grain boundaries and the presence of Al{sub 3}(Sc,Zr) dispersoids in the Al–Mg–Sc–Zr alloy microstructure. The analyses on the superplastic data revealed the presence of threshold stress, the coefficient of strain rate sensitivity of 0.5, and an activation energy of 83.9 kJ/mol{sup –1}. It indicated that the dominant deformation mechanism was grain boundary sliding. Based on this notion, a constitutive equation for Al–Mg–Sc–Zr alloy has been developed.

  4. Superplasticity behaviors of Al-Zn-Mg-Zr cold-rolled alloy sheet with minor Sc addition

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, H. [School of Materials Science and Engineering, Central South University (Light Alloy Research Institute, Central South University), Changsha 410083 (China); Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center, Changsha 410083 (China); Pan, Q.L., E-mail: pql2016@126.com [School of Materials Science and Engineering, Central South University (Light Alloy Research Institute, Central South University), Changsha 410083 (China); Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center, Changsha 410083 (China); Yu, X.H.; Huang, X.; Sun, X.; Wang, X.D.; Li, M.J.; Yin, Z.M. [School of Materials Science and Engineering, Central South University (Light Alloy Research Institute, Central South University), Changsha 410083 (China); Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center, Changsha 410083 (China)

    2016-10-31

    A refined microstructure of Al-Zn-Mg-Sc-Zr alloy sheet was produced by simple hot and cold rolling to an average grain size of 3 µm. Experiments were completed in electro-fluid servo-fatigue tester and results were investigated by means of optical microscope (OM), scanning electron microscopy (SEM) and transmission electron microscope (TEM). Superplastic deformation was conducted and superplastic ductility of ≥200% was achieved at a testing temperature range from 425 ºC to 500 ºC and relative high strain rate range of 1×10{sup −3} s{sup −1}~1×10{sup −1} s{sup −1}. The maximum elongation of 539% was obtained at 500 ºC and 1×10{sup −2} s{sup −1}. In addition, the scanning electron microscopy (SEM) and transmission electron microscope (TEM) analyses showed that the presence of Al{sub 3} (Sc, Zr) particles in pinning grain boundaries and dislocations had a great influence on the superplastic deformation. The analyses of superplastic test data calculated out the coherent strain rates sensitivity parameter of 0.43 and the average activation energy of 143.762 kJ/mol. The data interpreted that the dominant deformation mechanism was grain boundary sliding controlled by lattice self-diffusion.

  5. Superplasticity in a lean Fe-Mn-Al steel.

    Science.gov (United States)

    Han, Jeongho; Kang, Seok-Hyeon; Lee, Seung-Joon; Kawasaki, Megumi; Lee, Han-Joo; Ponge, Dirk; Raabe, Dierk; Lee, Young-Kook

    2017-09-29

    Superplastic alloys exhibit extremely high ductility (>300%) without cracks when tensile-strained at temperatures above half of their melting point. Superplasticity, which resembles the flow behavior of honey, is caused by grain boundary sliding in metals. Although several non-ferrous and ferrous superplastic alloys are reported, their practical applications are limited due to high material cost, low strength after forming, high deformation temperature, and complicated fabrication process. Here we introduce a new compositionally lean (Fe-6.6Mn-2.3Al, wt.%) superplastic medium Mn steel that resolves these limitations. The medium Mn steel is characterized by ultrafine grains, low material costs, simple fabrication, i.e., conventional hot and cold rolling, low deformation temperature (ca. 650 °C) and superior ductility above 1300% at 850 °C. We suggest that this ultrafine-grained medium Mn steel may accelerate the commercialization of superplastic ferrous alloys.Research in new alloy compositions and treatments may allow the increased strength of mass-produced, intricately shaped parts. Here authors introduce a superplastic medium manganese steel which has an inexpensive lean chemical composition and which is suited for conventional manufacturing processes.

  6. Nucleation and growth characteristics of cavities during the early stages of tensile creep deformation in a superplastic zirconia-20 wt% alumina composite

    International Nuclear Information System (INIS)

    Owen, D.M.; Chokshi, A.H.; Nutt, S.R.

    1997-01-01

    Constant-stress tensile creep experiments on a superplastic 3-mol%-yttria-stabilized tetragonal zirconia composite with 20 wt% alumina revealed that cavities nucleate relatively early during tensile deformation. The number of cavities nucleated increases with increasing imposed stress. The cavities nucleate at triple points associated largely with an alumina grain, and then grow rapidly in a cracklike manner to attain dimensions on the order of the grain facet size. It is suggested that coarser-grained superplastic ceramics exhibit lower ductility due to the ease in formation of such grain boundary facet-cracks and their interlinkage to form a macroscopic crack of critical dimensions

  7. Control of superplastic cavitation by hydrostatic pressure

    International Nuclear Information System (INIS)

    Bampton, C.C.; Ghosh, A.K.; Hamilton, C.H.; Mahoney, M.W.; Raj, R.

    1983-01-01

    It has been shown that the application of hydrostatic gas pressures during superplastic deformation of fine grained 7475 Al can prevent the intergranular cavitation normally encountered at atmospheric pressure. A critical ratio of hydrostatic pressure to flow stress may be defined for each superplastic forming condition above which virtually no cavitation occurs. In deformation conditions where intergranular cavitation plays a significant part in final tensile rupture, superplastic ductility may be improved by the application of hydrostatic pressures. Similarly, detrimental effects of large superplastic strains on service properties may be reduced or eliminated by the application of suitable hydrostatic pressures during superplastic forming. In this case, superplastically formed material may have the same design allowables as conventional 7475 Al sheet

  8. Superplasticity of amorphous alloy

    International Nuclear Information System (INIS)

    Levin, Yu.B.; Likhachev, V.L.; Sen'kov, O.N.

    1988-01-01

    Results of mechanical tests of Co 57 Ni 10 Fe 5 Si 11 B 17 amorphous alloy are presented and the effect of crystallization, occurring during deformation process, on plastic low characteristics is investiagted. Superplasticity of amorphous tape is investigated. It is shown, that this effect occurs only when during deformation the crystallization takes place. Process model, based on the usage disclination concepts about glass nature, is suggested

  9. Microstructures and superplasticity in near-gamma titanium aluminide alloys

    International Nuclear Information System (INIS)

    Bampton, C.C.; Martin, P.L.

    1993-01-01

    Microstructure control by thermomechanical processing in near-gamma titanium aluminide alloys has recently progressed to a point where the authors are able to reliably produce a wide range of microstructures in a single alloy. The authors are now studying the basic superplastic deformation microstructures. Correlations are made between microstructural details and flow stress, strain hardening, strain-rate hardening, necking, cavitation and failure. Special emphasis is given to the cavitation behavior since this phenomenon may constitute a major limitation to the useful application of superplastic forming for gamma TiAl structures

  10. The role of strain rate during deposition of CAP on Ti6Al4V by superplastic deformation-like method using high-temperature compression test machine

    International Nuclear Information System (INIS)

    Ramdan, R.D.; Jauhari, I.; Hasan, R.; Masdek, N.R. Nik

    2008-01-01

    This paper describes an implementation of superplastic deformation method for the deposition of carbonated-apatite (CAP) on the well-know titanium alloy, Ti6Al4V. This deposition process was carried out using high-temperature compression test machine, at temperature of 775 deg. C, different strain rates, and conducted along the elastic region of the sample. Before the process, titanium substrate was cryogenically treated in order to approach superplastic characteristic during the process. After the process, thin film of CAP was created on the substrate with the thickness from 0.71 μm to 1.42 μm. The resulted film has a high density of CAP that covered completely the surface of the substrate. From the stress-strain relation chart, it can be observed that as the strain rate decreases, the area under stress-strain chart also decreases. This condition influences the density of CAP layer on the substrate that as this area decreases, the density of CAP layer also decreases as also confirmed by X-ray diffraction characterization. In addition, since the resulting layer of CAP is in the form of thin film, this layer did not alter the hardness of the substrate as measured by Vickers hardness test method. On the other hand, the resulting films also show a good bonding strength properties as the layer remain exist after friction test against polishing clothes for 1 h

  11. Microstructure and superplasticity of TA15 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Q.J., E-mail: cruzesun@nchu.edu.cn; Wang, G.C.

    2014-06-01

    Superplasticity of TA15 alloy was investigated by constant strain rate tensile method in this work. In order to enhance superplasticity, thermo-mechanical techniques were applied for refining the grains of the alloy first. The superplastic tensile tests were carried out on a SANS CMT4104 electronic tensile testing machine at temperatures ranging from 780 to 950 °C and strain rates from 3.3×10{sup −4} to 1.1×10{sup −2} s{sup −1}. The tensile elongation-to-failure values between 188% and 1074% were obtained. Microstructure evolution after superplastic deformation was also analyzed by optical microscope (OM) and transmission electron microscope (TEM). The micrographs show that the grains were coarsened after deformation, and α→β phase transformation took place at 950 °C, which resulted in the worst superplasticity. Extensive strain hardening stages were observed in the true stress–strain curves due to high dense dislocations in the thermo-mechanically processed alloy and dynamic grain growth during superplastic deformation. The strain rate sensitivity m and the activation energy values at various deformation conditions were calculated, respectively. Based on an analysis of the above studies, it may be inferred that grain boundary sliding (GBS) in TA15 alloy is accommodated by grain boundary diffusion at high temperatures and low strain rates, and the accommodation process involves dislocation glide creep at low temperatures and high strain rates.

  12. Wonderland of ceramics superplasticity; Ceramics chososei no sekai

    Energy Technology Data Exchange (ETDEWEB)

    Wakai, F. [National Industrial Research Inst. of Nagoya, Nagoya (Japan)

    1995-07-01

    It has been ten years since it was found that ceramics, which is strong and hard at room temperatures and does not deform at all, may exhibit a superplasticity phenomenon at high temperatures that it endlessly elongates when pulled as if it were chewing gum. This phenomenon is one of peculiar behaviours which nano-crystal ceramics, pulverized to an extent that the crystalline particle size is on the order of nanometers, show. The application of superplasticity made the material engineers`s old dream come true that hard ceramics are arbitrarily deformed and machined like metal. Using as models materials such as silicone nitride, alumina and zirconia, this paper describes the history and deformation mechanism of ceramics superplasticity, material design aiming at superplasticization and application of ceramics superplasticity to the machining technology. Furthermore, it describes the trend and future development of international joint researches on the basic surveys on ceramics superplasticity. 25 refs., 11 figs.

  13. Use of superplastic tin lead alloy to simulate the behavior of engineering materials in design of systems for occupant protection during car accident collision

    International Nuclear Information System (INIS)

    Zaid, A.I.O.; Abu-Mallouh, R.M.; Al-Habbali, S.M.

    2003-01-01

    In every collision, the collision energy and forces developed during an accident have to be absorbed by someway to protect car occupants and reduce car damage. Different systems and devices have been designed and used for this purpose. The aim is to dissipate the kinetic energy irreversibly rather than convert it and store it elastically. Devices used are usually one shot items i.e. once having been deformed, they are discarded and replaced. The development and detail design of these mechanical devices and systems for dissipating the collision energy in controlled and predetermined rate is a prerequisite. The literature on these devices is voluminous but most of it deals with the problem under quasi-static rate condition due to the unavailability of equipment and complication of the testing under dynamic or high strain rate conditions. It is now well-established that the behavior of materials under dynamic loading is somewhat different from their behavior under the quasi-static condition. Therefore, a material having a rate sensitivity in the quasi-static range will be very useful in simulating the behavior of engineering materials at the high strain rate condition. In this paper superplastic tin-lead alloy which is rate sensitive in the range from 10/sup -2/ to 10/sup -1/ Is was used to simulate the behavior of steel and other engineering materials, in absorbing the collision energy by allowing a cylindrical billet to be extruded through circular cross sectional die with a high extrusion ratio. The testing was carried out at three different strain rates, the force and energy consumed in the plastic work for the extrusion process were determined experimentally and compared with those predicted from the mechanical behavior of the alloy at the corresponding strain rate using Johnson formulae for forward extrusion. The experimental results were found in good agreement with the predicted values. (author)

  14. High temperature deformation behavior of gradually pressurized zircaloy-4 tubes

    International Nuclear Information System (INIS)

    Suzuki, Motoye

    1982-03-01

    In order to obtain preliminary perspectives on fuel cladding deformation behavior under changing temperature and pressure conditions in a hypothetical loss-of-coolant accident of PWR, a Zircaloy-4 tube burst test was conducted in both air and 99.97% Ar atomospheres. The tubes were directly heated by AC-current and maintained at various temperatures, and pressurized gradually until rupture occurred. Rupture circumferential strains were generally larger in Ar gas than in air and attained a maximum around 1100 K in both atmospheres. Some tube tested in air produced axially-extended long balloons, which proved not to be explained by such properties or ideas as effect of cooling on strain rate, superplasticity, geometrical plastic instability and stresses generated by surface oxide layer. A cause of the long balloon may be obtained in the anisotropy of the material structure. But even a qualitative analysis based on this property can not be made due to insufficient data of the anisotropy. (author)

  15. Creep study of mechanisms involved in low-temperature superplasticity of UFG Ti-6Al-4V processed by SPD

    Energy Technology Data Exchange (ETDEWEB)

    Kral, Petr, E-mail: pkral@ipm.cz [Institute of Physics of Materials, ASCR, Zizkova 22, CZ -61662 Brno (Czech Republic); CEITEC – IPM ASCR, v.v.i., Zizkova 22, CZ-61662 Brno (Czech Republic); Dvorak, Jiri [Institute of Physics of Materials, ASCR, Zizkova 22, CZ -61662 Brno (Czech Republic); CEITEC – IPM ASCR, v.v.i., Zizkova 22, CZ-61662 Brno (Czech Republic); Blum, Wolfgang [Inst. f. Werkstoffwissenschaften, University of Erlangen-Nürnberg, D-91058 Erlangen (Germany); Kudryavtsev, Egor; Zherebtsov, Sergey; Salishchev, Gennady [Belgorod State University, Laboratory of Bulk Nanostructured Materials, Pobeda Str. 85, 308015 Belgorod (Russian Federation); Kvapilova, Marie; Sklenicka, Vaclav [Institute of Physics of Materials, ASCR, Zizkova 22, CZ -61662 Brno (Czech Republic); CEITEC – IPM ASCR, v.v.i., Zizkova 22, CZ-61662 Brno (Czech Republic)

    2016-06-15

    The deformation kinetics of ultrafine-grained Ti-6Al-4V with mean (sub)grain size about 150 nm (produced by isothermal multiaxial forging) and superplastic properties at the relatively low temperature of 873 K was investigated in compression and tension over a large range of strain rates from 10{sup −7} to 10{sup −2} s{sup −1}. Electron microscopic observations showed that the grains coarsen during deformation towards the quasi-stationary spacing w{sub qs} of strain induced boundaries. In spite of the grain coarsening the grains were generally smaller than w{sub qs} allowing high-angle boundaries to dominate the quasi-stationary strength. Texture measurements indicate that dislocation glide plays a large role in deformation. Glide in this alloy is significantly influenced by solid solution strengthening leading to a stress sensitivity of strain rate of n = 3. The present ultrafine-grained Ti alloy displays a stress sensitivity exponent n = 2 over an extended stress range where its superplastic behavior is optimal. While the deformation kinetics of present ultrafine-grained Ti alloy can be roughly explained by the traditional formula for superplastic flow, the significant discrepancy to the measured values suggests that solid solution strengthening must be taken into account to get a complete insight. - Highlights: • The UFG Ti-6Al-4V alloy behaves superplastically at low temperature of 873 K. • Grain coarsening at low stresses limits superplasticity of UFG Ti alloy. • Solute strengthening plays an important role in low-temperature superplasticity. • Acceleration of creep in UFG Ti alloy is caused by processes related to hab.

  16. Superplasticity and Micro-arrayed Deep-Drawing Behavior of Ni-Co/GO Nanocomposite

    Science.gov (United States)

    Wang, Guofeng; Zhao, Shanshan; Li, You; Yang, Chao; Liu, Siyu

    2017-10-01

    In this article, Ni-Co/GO nanocomposite was fabricated by AC pulse electrodeposition method. The room temperature strength tests and the superplasticity of the nanocomposite were investigated by the tensile tests. A 5 × 5 micro-arrayed deep-drawing die was designed to explore the feasibility of micro-forming. The as-deposited material has a narrow grain size distribution with a mean grain size of 50 nm. The addition of GO as a reinforcing phase can effectively enhance the room temperature tensile strength of the nanocomposite, but reduce the plasticity. When adding GO to the plating bath, a maximum elongation of 467% was observed for the specimen with a GO content of 0.01 g/L at 773 K and a strain rate of 1.67 × 10-3 s-1 by tensile tests. Micro-arrayed deep-drawing tests were subsequently performed with male die diameter of 0.58 mm and female die diameter of 0.8 mm. The experimental relative drawing height values were measured and compared with the deep-drawing parts without GO additive. It is found that the micro-arrayed deep-drawing with rigid male die at high temperature was feasible and forming parts with good shape could be got. The thickness distribution analysis of the deep-drawing parts showed that wall thickness changed ranging from 53 to 95 μm, and the thickness reduction at the punch fillet is the most obvious.

  17. Stability analysis and finite element simulations of superplastic forming in the presence of hydrostatic pressure

    Science.gov (United States)

    Nazzal, M. A.

    2018-04-01

    It is established that some superplastic materials undergo significant cavitation during deformation. In this work, stability analysis for the superplastic copper based alloy Coronze-638 at 550 °C based on Hart's definition of stable plastic deformation and finite element simulations for the balanced biaxial loading case are carried out to study the effects of hydrostatic pressure on cavitation evolution during superplastic forming. The finite element results show that imposing hydrostatic pressure yields to a reduction in cavitation growth.

  18. Effect of composition on the superplasticity of aluminium scandium alloys

    International Nuclear Information System (INIS)

    Bradley, E.L. III; Morris, J.W. Jr.

    1992-01-01

    Several aluminum alloys have been shown to exhibit superplasticty in the as-rolled condition. Previous work has shown that aluminum-scandium alloys also exhibit this behavior, but only with the addition of ternary alloying elements such as lithium and magnesium. These additions raised the strain-rate sensitivity of these alloys to 0.4-0.5 for selected strain rates at temperatures above 400 degrees C. A systematic study was undertaken of five Al-Sc alloys with varying lithium and magnesium concentrations in order to fully characterize the high temperature deformation mechanism. Specimens were deformed at a constant strain rate to predetermined true strains for textural and microstructural characterization. In this paper work is presented that will elucidate the effect of these different ternary additives on the superplastic deformation mechanism in these alloys

  19. Superplasticity: basic character and industrial applications

    International Nuclear Information System (INIS)

    Suery, M.; Baudelet, B.

    1981-01-01

    This paper is concerned with the fundamental aspects and the industrial applications of superplasticity. Correlations between structure and mechanical properties are considered and it is shown that a material with fine grains may exhibit very large elongations as long as no structural evolution leads either to earlier failure or to a change in the deformation mechanism. This large plastic stability is the consequence of the high strain rate sensitivity resulting from particular deformation mechanisms which may operate in materials with a very fine structure. The advantages of superplastic materials for which forming operations derived from processes for thermoplastics have been applied, justify the industrial applications. Superplasticity is then mainly used for the production of low and intermediate series of pieces which are often complex in shape and difficult to form through an other technique. However, the disadvantages especially correlated to the low forming rates and the need of special metallurgical structures lead to the search of new processes synchronizing the elaboration of the alloy and the forming operation under superplastic conditions [fr

  20. High strain rate superplasticity in an Al–Mg–Sc–Zr alloy processed via simple rolling

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mengjia [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Pan, Qinglin, E-mail: csupql@163.com [Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center, Central South University, Changsha 410083 (China); Shi, Yunjia; Sun, Xue; Xiang, Hao [School of Materials Science and Engineering, Central South University, Changsha 410083 (China)

    2017-02-27

    The superplastic behavior of Al–Mg–Sc–Zr samples with standard gauge size (18 mm by 6 mm) were prepared using simple rolling and were tested in the temperature range from 450 °C to 525 °C at strain rates ranging from 1.67×10{sup –3} s{sup −1} to 1×10{sup –1} s{sup −1}. With proper deformation parameters, the Al–Mg–Sc–Zr alloy has an elongation to failure much higher than 300% and the maximum elongation is 740%. The Microstructure and dislocation substructure investigation using optical microscopy (OM) and transmission electron microscopy (TEM) revealed a dynamic recrystallization in it. The grain size and activation energy on the deformation mechanisms of superplastic is discussed. Results also show that these nano-scale Al{sub 3}(Sc{sub 1−x}Zr{sub x}) particles play an important role in the superplastic process. Al{sub 6}FeMn particles were found to induce the formation and growth of cavities, which can lead to the fracture of specimens.

  1. Superplastic forging nitride ceramics

    Science.gov (United States)

    Panda, P.C.; Seydel, E.R.; Raj, R.

    1988-03-22

    A process is disclosed for preparing silicon nitride ceramic parts which are relatively flaw free and which need little or no machining, said process comprising the steps of: (a) preparing a starting powder by wet or dry mixing ingredients comprising by weight from about 70% to about 99% silicon nitride, from about 1% to about 30% of liquid phase forming additive and from 1% to about 7% free silicon; (b) cold pressing to obtain a preform of green density ranging from about 30% to about 75% of theoretical density; (c) sintering at atmospheric pressure in a nitrogen atmosphere at a temperature ranging from about 1,400 C to about 2,200 C to obtain a density which ranges from about 50% to about 100% of theoretical density and which is higher than said preform green density, and (d) press forging workpiece resulting from step (c) by isothermally uniaxially pressing said workpiece in an open die without initial contact between said workpiece and die wall perpendicular to the direction of pressing and so that pressed workpiece does not contact die wall perpendicular to the direction of pressing, to substantially final shape in a nitrogen atmosphere utilizing a temperature within the range of from about 1,400 C to essentially 1,750 C and strain rate within the range of about 10[sup [minus]7] to about 10[sup [minus]1] seconds[sup [minus]1], the temperature and strain rate being such that surface cracks do not occur, said pressing being carried out to obtain a shear deformation greater than 30% whereby superplastic forging is effected.

  2. High-temperature extrusion behavior of a superplastic zirconia-based ceramic

    International Nuclear Information System (INIS)

    Kellett, B.J.; Carry, C.; Mocellin, A.

    1990-01-01

    Workability of 3-mol%-yttria-stabilized tetragonal ZrO 2 has been gauged through a series of extrusion experiments performed under vacuum with graphite dies at 1500 degrees C and 35 MPa piston stress. It is shown that dense and smooth extrustions can be obtained from solid billets when graphite paper is used as a lubricant. Sigmoidal dies and conical dies with cone angles of 18.4 degrees, 26.6 degrees, and 45 degrees and diameter ratios of 1.5, 2, and 3 were used to explore extrusion behavior. Observed piston velocities correspond to what may be predicted from the experimental uniaxial constitutive creep equation and a simple slab analysis. A precise analysis, however, is not attempted because of lack of steady-state behavior of the material itself

  3. Simulation of rock deformation behavior

    Directory of Open Access Journals (Sweden)

    Я. И. Рудаев

    2016-12-01

    Full Text Available A task of simulating the deformation behavior of geomaterials under compression with account of over-extreme branch has been addressed. The physical nature of rock properties variability as initially inhomogeneous material is explained by superposition of deformation and structural transformations of evolutionary type within open nonequilibrium systems. Due to this the description of deformation and failure of rock is related to hierarchy of instabilities within the system being far from thermodynamic equilibrium. It is generally recognized, that the energy function of the current stress-strain state is a superposition of potential component and disturbance, which includes the imperfection parameter accounting for defects not only existing in the initial state, but also appearing under load. The equation of state has been obtained by minimizing the energy function by the order parameter. The imperfection parameter is expressed through the strength deterioration, which is viewed as the internal parameter of state. The evolution of strength deterioration has been studied with the help of Fokker – Planck equation, which steady form corresponds to rock statical stressing. Here the diffusion coefficient is assumed to be constant, while the function reflecting internal sliding and loosening of the geomaterials is assumed as an antigradient of elementary integration catastrophe. Thus the equation of state is supplemented with a correlation establishing relationship between parameters of imperfection and strength deterioration. While deformation process is identified with the change of dissipative media, coupled with irreversible structural fluctuations. Theoretical studies are proven with experimental data obtained by subjecting certain rock specimens to compression.

  4. Micromechanical approach of the fatigue behavior in a superplastic single crystal

    International Nuclear Information System (INIS)

    Patoor, E.; Siredey, N.; Eberhardt, A.; Berveiller, M.

    1995-01-01

    Mechanical cycling of superelastic alloys leads to significant change in their observed behavior. Critical stress needed to induce the martensitic transformation is reduced while the tangent transformation modulus is increased. Microstructural observations have shown that a mechanical cycling produced a strongly oriented pattern of dislocations. This dislocation network is associated to an internal stress field. It seems reasonable to relate this internal stress field to the observed evolution of the mechanical response. This is phenomenologically performed in this work considering the thermodynamical potential associated to the martensitic transformation of a single crystal of parent phase in presence of a microstructure of defects. Evolutions of the microstructural state are defined using the volume fraction associated to the variant of martensite and additional volume fractions of defects related to the dislocation pattern. Results such obtained well-captured experimental observations. (orig.)

  5. Superplastic Creep of Metal Nanowires From Rate-Dependent Plasticity Transition.

    Science.gov (United States)

    Tao, Weiwei; Cao, Penghui; Park, Harold S

    2018-04-30

    Understanding the time-dependent mechanical behavior of nanomaterials such as nanowires is essential to predict their reliability in nanomechanical devices. This understanding is typically obtained using creep tests, which are the most fundamental loading mechanism by which the time-dependent deformation of materials is characterized. However, due to existing challenges facing both experimentalists and theorists, the time-dependent mechanical response of nanowires is not well-understood. Here, we use atomistic simulations that can access experimental time scales to examine the creep of single crystal FCC metal (Cu, Ag, Pt) nanowires. We report that both Cu and Ag nanowires show significantly increased ductility and superplasticity under low creep stresses, where the superplasticity is driven by a rate-dependent transition in defect nucleation from twinning to trailing partial dislocations at the micro or millisecond timescale. The transition in deformation mechanism also governs a corresponding transition in the stress-dependent creep time at the microsecond (Ag) and millisecond (Cu) timescales. Overall, this work demonstrates the necessity of accessing timescales that far exceed those seen in conventional atomistic modeling for accurate insights into the time-dependent mechanical behavior and properties of nanomaterials.

  6. The effect of inhomogeneity of microstructure on ducility in superplasticity

    International Nuclear Information System (INIS)

    Manonukul, A.; Dunne, F.P.E.

    1996-01-01

    Finite element cell models have been developed to represent inhomogeneous grain size fields that occur in commercial Ti-6Al-4V. The models are used to investigate the influence of microstructure on superplastic stress-strain behaviour, inhomogeneity of deformation, and on ductility in superplastic deformation. It is shown that increasing the level of initial microstructural inhomogeneity leads to increasing flow stress for given strain, and that the microstructural inhomogeneity leads to inhomogeneous deformation. As superplasticity proceeds, the level of microstructural inhomogeneity diminishes, but the inhomogeneity itself is preserved during the deformation. It is shown that the inhomogeneity of microstructure leads to strain localisation which increases in severity with deformation until material necking and failure occur. Increasing the initial microstructural inhomogeneity is shown to lead to a decrease in ductility, but the effect diminishes for grain size ranges in excess of 30 μm. An empirical relationship is presented that relates the ductility to the initial grain size range through a power law. (orig.)

  7. A two-step superplastic forging forming of semi-continuously cast AZ70 magnesium alloy

    Directory of Open Access Journals (Sweden)

    Pan Wang

    2015-03-01

    Full Text Available A two-step technology combined forging with superplastic forming has been developed to enhance the forgeability of semi-continuously cast AZ70 magnesium alloy and realize the application of the as-cast magnesium alloy in large deformation bullet shell. In the first step, fine-grained microstructure preforms that are suitable for superplastic forming were obtained by reasonably designing the size of the initial blanks with the specific height-to-diameter ratio, upsetting the blanks and subsequent annealing. In the second step, the heat treated preforms were forged into the end products at the superplastic conditions. The end products exhibit high quality surface and satisfied microstructure. Consequently, this forming technology that not only avoids complicating the material preparation but also utilizes higher strain rate superplastic provides a near net-shaped novel method on magnesium forging forming technology using as-cast billet.

  8. Integrated Manufacturing of Aerospace Components by Superplastic Forming Technology

    Directory of Open Access Journals (Sweden)

    Ju Min Kyung

    2015-01-01

    Full Text Available Aerospace vehicle requires lightweight structures to obtain weight saving and fuel efficiency. It is known that superplastic characteristics of some materials provide significant opportunity for forming complicated, lightweight components of aerospace structure. One of the most important advantages of using superplastic forming process is its simplicity to form integral parts and economy in tooling[1]. For instance, it can be applied to blow-forming, in which a metal sheet is deformed due to the pressure difference of hydrostatic gas on both sides of the sheet. Since the loading medium is gas pressure difference, this forming is different from conventional sheet metal forming technique in that this is stress-controlled rather than strain and strain rate controlled. This method is especially advantageous when several sheet metals are formed into complex shapes. In this study, it is demonstrated that superplastic forming process with titanium and steel alloy can be applied to manufacturing lightweight integral structures of aerospace structural parts and rocket propulsion components. The result shows that the technology to design and develop the forming process of superplastic forming can be applied for near net shape forming of a complex contour of a thrust chamber and a toroidal fuel tank.

  9. Cavity closure during compression between semi-closed die using superplastic tin-lead alloy

    International Nuclear Information System (INIS)

    Zaid, A. I. O.; Al-Tamimi, M. M.

    2013-01-01

    Superplasticity is a feature of a material or alloy, which allows the material to deform plastically to an extremely large strain at low values of stress under certain loading conditions of strain rate and temperature. Eutectic tin-lead alloy is a practical material for research investigations as it possesses a superplastic behavior at room temperature and low strain rate which makes it a useful tool in simulating the ordinary engineering materials at high strain rate and temperature, and has been extensively used as a model material. In this paper, superplastic tin-lead alloy was used at room temperature to simulate the closure of cavities in steels at high temperatures in the hot region under dynamic loading (high strain rate) under the effect of compressive loads using semi-closed dies (modified dies) with 45 degree inclination and compare the results from these dies with those of flat platens (open dies) published previously. Hollow specimens having different values of bore diameter (Db) to outer diameter (Dout), of the same height and volume were investigated under 40% height reduction. The cavity closure for each specimen was determined. Comparison is made between flat platens and semi-closed dies regarding cavity closure based on bore diameter, bore volume, reduction percentage in bore diameter and reduction percentage in bore volume, at the 40% reduction in height. It was found that modifying the platens (45 degree inclination) resulted in lower values of bore diameters and volume i.e. higher values of reduction in bore diameters and volumes percentages irrespective of the value of bore diameter and the ratio of Db/Dout. (author)

  10. Current assisted superplastic forming of titanium alloy

    Directory of Open Access Journals (Sweden)

    Wang Guofeng

    2015-01-01

    Full Text Available Current assisted superplastic forming combines electric heating technology and superplastic forming technology, and can overcome some shortcomings of traditional superplastic forming effectively, such as slow heating rate, large energy loss, low production efficiency, etc. Since formability of titanium alloy at room temperature is poor, current assisted superplastic forming is suitable for titanium alloy. This paper mainly introduces the application of current assisted superplastic forming in the field of titanium alloy, including forming technology of double-hemisphere structure and bellows.

  11. Large deformation behavior of fat crystal networks

    NARCIS (Netherlands)

    Kloek, W.; Vliet, van T.; Walstra, P.

    2005-01-01

    Compression and wire-cutting experiments on dispersions of fully hydrogenated palm oil in sunflower oil with varying fraction solid fat were carried out to establish which parameters are important for the large deformation behavior of fat crystal networks. Compression experiments showed that the

  12. Deformation behavior of sintered nanocrystalline silver layers

    International Nuclear Information System (INIS)

    Zabihzadeh, S.; Van Petegem, S.; Duarte, L.I.; Mokso, R.; Cervellino, A.; Van Swygenhoven, H.

    2015-01-01

    The microstructure of porous silver layers produced under different low temperature pressure-assisted sintering conditions is characterized and linked with the mechanical behavior studied in situ during X-ray diffraction. Peak profile analysis reveals important strain recovery and hardening mechanism during cyclic deformation. The competition between both mechanisms is discussed in terms of porosity and grain size

  13. Superplastic formability of Al-Cu-Li alloy Weldalite (TM) 049

    Science.gov (United States)

    Ma, Bao-Tong; Pickens, Joseph R.

    1991-01-01

    Extensive research during the past decade shows that several aluminum lithium alloys can be processed to attain a microstructure that enables superplasticity. The high tensile stress of Al-Cu-Li alloy Weldalite (TM) 049 in the T4 and T6 tempers offers tremendous potential for attaining exceptional post-SPF (superplastic formability) properties. The used SPF material is Weldalite, which was shown to induce SPF behavior in other Al-Cu-Li alloys. The superplastic behavior and resulting post-SPF mechanical properties of this alloy, which was designed to be the next major structural alloy for space applications, were evaluated. The results indicate that Weldalite alloy does indeed exhibit excellent superplasticity over a wide range of temperatures and strain rates and excellent post-SPF tensile strength at various potential service temperatures.

  14. Strain and strain-rate hardening characteristics of a superplastic Al-Li-Cu-Zr alloy

    International Nuclear Information System (INIS)

    Ash, B.A.; Hamilton, C.H.

    1988-01-01

    A number of alloys based on the composition of Al-Li-Zr have been shown to be superplastic under at least one of two different microstructural conditions: 1. fully recrystallized to a fine, stable grain size, and 2. warm- or cold-worked and unrecrystallized prior to superplastic deformation. For the latter case, static recrystallization was impaired by the presence of fine Al 3 Zr particles, and dynamic recrystallization was observed to occur during superplastic deformation in which the heavily worked microstructure evolved into a fine grained fully recrystallized microstructure. This process is observed in other Al alloys as well, such as the Al-Cu-Zr alloys (Supral alloys), Al-Zn-Mg-Zr alloys, Al-Mn-Zr alloys, and Al-Mg-Mn alloys where the dynamic recrystallization has been suggested to be a continuous reaction in which recrystallization occurs by a gradual and homogeneous process during deformation rather than by the more common nucleation and growth process. Experimental observations of continuous recrystallization show development of a subgrain structure which coarsens continuously while deformation proceeds, with a concurrent increase in the misorientation angle between adjacent subgrains which ultimately approaches that of a high-angle boundary, characteristic of a fully- recrystallized microstructure. During the first 50 to 300% deformation, the microstructure evolves from the heavily worked to a fully recrystallized microstructure after which the fully recrystallized microstructure apparently exhibits the typical micro-grain superplastic characteristics. Superplasticity under continuous dynamic recrystallization is of interest both from scientific and technological standpoints since the rates at which superplastic deformation can be obtained are often higher than those for the fully recrystallized microstructures

  15. Microstructural influence on low-temperature superplasticity of ultrafine-grained Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Ko, Young Gun; Kim, Woo Gyeom; Lee, Chong Soo; Shin, Dong Hyuk

    2005-01-01

    Microstructural influence on low-temperature superplastic behavior of ultrafine-grained Ti-6Al-4V alloy fabricated by equal channel angular pressing (ECAP) was investigated. The deformed structures were analyzed with the increment of strain by transmission electron microscopy. Also, a series of tensile tests were carried out on ultrafine-grained (UFG) samples to measure elongation at temperature of 973 K and at strain rates of 10 -4 to 10 -2 s -1 . The results indicated that elongation was significantly increased with increasing ECAP straining from 4 to 8 revealing more high-angle grain boundaries. Deformation mechanisms for UFG structure were analyzed in the context of inelastic deformation theory, which consisted of dislocation glide and grain boundary sliding

  16. Study of granulated nickel alloy superplasticity

    International Nuclear Information System (INIS)

    Anoshkin, N.F.; Fatkullin, O.Kh.; Ermanok, M.Z.; Sharshagin, N.A.

    1982-01-01

    Peculiarities of the structure and properties of compact material obtained from granules of the EhI 698 and ZhS6U alloys in the form of pressed rods are investigated. It is shown, that granule metallurgy is the most rational technology method, ensuring the receipt of stable fine-grained structure in the initial blank. After appropriate thermal treatment the products obtained by the method of granule metallyrgy have more high strength characteristics at the room temperature and heat resistance, than typical for the products produced by traditional technology. Creation of specialized vertical presses providing low rates of deformation as well as their equipment by vacuum mechanizms which permit to use a tool from molybdenum alloys is necessary for successful introduction into production of the processes of plastic metal working under conditions of superplasticity

  17. An investigation of neutron irradiation test on superplastic zirconia-ceramic materials

    International Nuclear Information System (INIS)

    Shibata, Taiju; Ishihara, Masahiro; Baba, Shinichi; Hayashi, Kimio

    2000-05-01

    A neutron irradiation test on superplastic ceramic materials at high temperature has been proposed as an innovative basic research on high-temperature engineering using the High Temperature Engineering Test Reactor (HTTR). For the effective execution of the test, we reviewed the superplastic deformation mechanism of ceramic materials and discussed neutron irradiation effects on the superplastic deformation process of stabilized Tetragonal Zirconia Polycrystal (TZP), which is a representative superplastic ceramic material. As a result, we pointed out that the decrease in the activation energy for superplastic deformation is expected by the radiation-enhanced diffusion. We selected a fast neutron fluence of 5x10 20 n/cm 2 and an irradiation temperature of about 600degC as test conditions for the first irradiation test on TZP and decided to perform a preliminary irradiation test by the Japan Materials Testing Reactor (JMTR). Moreover, we estimated the radioactivity of irradiated TZP and indicated that it is in the order of 10 10 Bq/g (about 0.3 Ci/g) immediately after irradiation to a thermal neutron fluence of 3x10 20 n/cm 2 and that it decays to about 1/100 in a year. (author)

  18. Effect of strain rate on cavity closure during compression between flat platens using superplastic tin-lead alloy

    International Nuclear Information System (INIS)

    Zaid, A.I.O.; Al-Tamimi, M.M.

    2011-01-01

    Superplasticity is a feature of a material or alloy which allows the material to deform plastically to an extremely large strain at low values of stress under certain loading conditions of strain rate and temperature. Eutectic tin-lead alloy is a practical material for research investigations as it possesses a superplastic behavior at room temperature and low strain rate which makes it a useful tool in simulating the ordinary engineering materials at high strain rate and temperature. This alloy has been extensively used as a model material to simulate behavior of engineering materials at high strain rates and temperatures. In this paper, superplastic tin-lead alloy was used at room temperature to simulate the closure of cavities in steels at high temperatures in the hot region under dynamic loading (high strain rate) under the effect of compressive loads using flat platens (open dies). Hollow specimens having different values of bore diameter (D/sub b/) to outer diameter (D/sub out/), of the same height and volume were investigated under different values of height reduction percentages ranging from 20% to 80% , and the percentage of cavity closure at each reduction percentage was determined. It was found that the cavity closure percentage increases or decreases at slow rate for reduction percentage in height less than 40% and increases more rapidly for reduction percentages in height above this value. Furthermore, specimens having smaller values of ratio (D/sub b//D/sub out/) resulted in higher percentage of cavity closure than specimens having higher ratios at the same value of reduction in height percentage. Complete cavity closure has occurred in specimens having the ratios of 0.1 and 0.2 at 75% reduction in height. (author)

  19. Superplastically foaming method to make closed pores inclusive porous ceramics

    International Nuclear Information System (INIS)

    Kishimoto, Akira; Hayashi, Hidetaka

    2011-01-01

    Porous ceramics incorporates pores to improve several properties including thermal insulation maintaining inherenet ceramic properties such as corrosion resistance and large mechanical strength. Conventional porous ceramics is usually fabricated through an insufficient sintering. Since the sintering accompanies the exclusion of pores, it must be terminated at the early stage to maintain the high porosity, leading to degraded strength and durability. Contrary to this, we have innovated superplastically foaming method to make ceramic foams only in the solid state. In this method, the previously inserted foam agent evaporates after the full densification of matrix at around the sintering temperature. Closed pores expand utilizing the superplastic deformation driven by the evolved gas pressure. The typical features of this superplastically foaming method are listed as follows, 1. The pores are introduced after sintering the solid polycrystal. 2. Only closed pores are introduced, improving the insulation of gas and sound in addition to heat. 3. The pore walls are fully densified expecting a large mechanical strength. 4. Compared with the melt foaming method, this method is practical because the fabrication temperature is far below the melting point and it does not need molds. 5. The size and the location pores can be controlled by the amount and position of the foam agent.

  20. Superplasticity of Inconel 718 after processing by high-pressure sliding (HPS)

    Czech Academy of Sciences Publication Activity Database

    Takizawa, Y.; Kajita, T.; Král, Petr; Masuda, T.; Watanabe, K.; Yumoto, M.; Otagiri, Y.; Sklenička, Václav; Horita, Z.

    2017-01-01

    Roč. 682, JAN (2017), s. 603-612 ISSN 0921-5093 Institutional support: RVO:68081723 Keywords : High-pressure sliding (HPS) * Severe plastic deformation (SPD) * Ni-based superalloy * Superplasticity * Grain boundary sliding * Lattice diffusion Subject RIV: JG - Metallurgy OBOR OECD: Materials engineering Impact factor: 3.094, year: 2016

  1. Superplasticity and grain boundary character distribution in overaged Al-Li-Cu-Mg-Zr alloy

    International Nuclear Information System (INIS)

    Avramovic-Cingara, G.; Aust, K.T.; Perovic, D.D.; McQueen, H.J.

    1995-01-01

    Samples of 8091 alloy were subjected to a thermomechanical processing (TMP) treatment that included the following stages: overaging before deformation, multistage deformation at 300 deg C and strain rate change tests for superplasticity. Torsional deformation was utilized both to develop the refined microstructure and to test for superplasticity. The strain rate sensitivity, m, of the material ranged between 0.30 and 0.45 at 450 deg C for strain rates between 8 x 10 -2 and 10 -3 s -1 . The grain boundary character distribution (GBCD) of thermomechanically processed Al-Li-Cu-Mg-Zr (8091) alloy, which develops good superplastic response, has been determined by an electron backscattering diffraction technique (EBSD). All grain boundaries have been classified into one of three categories in terms of Σ values : low angle, coincidence site lattice and random high angle boundaries. Quantitative studies of grain boundary character were done after various processing stages to obtain evidence about structure evolution and indicate an increase in Σ boundary frequency following TMP. Selected area electron diffraction examination (SAD) gave evidence about the refined structure, in which the grain boundary misorientation increased EBSD how the grain boundary character was changed to high Σ values. TEM analyses indicate that the T 2 phase is responsible for substructure stabilization. There is no evidence of cavity formation during superplastic deformation by torsion, which suggests that cavity nucleation is strongly influenced by the nature of stress. (author). 32 refs., 3 tabs., 9 figs

  2. Thermally assisted deformation of structural superplastics and ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    constant.) (xii) It has been suggested that the self and the solute diffusivities are enhanced and the .... In this paper, only a summary of the important experimental results that a viable theory of structural ..... Experimental verification. Mater. Sci.

  3. Hot deformation behavior of AA5383 alloy

    Science.gov (United States)

    Du, Rou; Giraud, Eliane; Mareau, Charles; Ayed, Yessine; Santo, Philippe Dal

    2018-05-01

    Hot forming processes are widely used in deep drawing applications due to the ability of metallic materials to sustain large deformations. The optimization of such forming processes often requires the mechanical behavior to be accurately described. In this study, the hot temperature behavior of a 5383 aluminum alloy is investigated. In this perspective, different uniaxial tension tests have been carried out on dog-bone shaped specimens using a specific experimental device. The temperature and strain rate ranges of interest are 623˜723 K and 0.0001˜0.1 s-1, respectively. An inverse method has been used to determine the flow curves from the experimental force-displacement data. The material exhibits a slight flow stress increase beyond the yield point for most configurations. Softening phenomenon exists at high strain rates and high temperatures. A new model based on the modification of a modified Zerilli-Armstrong model is proposed to describe the stress-strain responses. Genetic algorithm optimization method is used for the identification of parameters for the new model. It is found that the new model has a good predictability under the experimental conditions. The application of this model is validated by shear and notched tension tests.

  4. Superplastic boronizing of duplex stainless steel under dual compression method

    International Nuclear Information System (INIS)

    Jauhari, I.; Yusof, H.A.M.; Saidan, R.

    2011-01-01

    Highlights: → Superplastic boronizing. → Dual compression method has been developed. → Hard boride layer. → Bulk deformation was significantly thicker the boronized layer. → New data on boronizing could be expanded the application of DSS in industries. - Abstract: In this work, SPB of duplex stainless steel (DSS) under compression method is studied with the objective to produce ultra hard and thick boronized layer using minimal amount of boron powder and at a much faster boronizing time as compared to the conventional process. SPB is conducted under dual compression methods. In the first method DSS is boronized using a minimal amount of boron powder under a fix pre-strained compression condition throughout the process. The compression strain is controlled in such a way that plastic deformation is restricted at the surface asperities of the substrate in contact with the boron powder. In the second method, the boronized specimen taken from the first mode is compressed superplastically up to a certain compressive strain under a certain strain rate condition. The process in the second method is conducted without the present of boron powder. As compared with the conventional boronizing process, through this SPB under dual compression methods, a much harder and thicker boronized layer thickness is able to be produced using a minimal amount of boron powder.

  5. Superplastic boronizing of duplex stainless steel under dual compression method

    Energy Technology Data Exchange (ETDEWEB)

    Jauhari, I., E-mail: iswadi@um.edu.my [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Yusof, H.A.M.; Saidan, R. [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2011-10-25

    Highlights: {yields} Superplastic boronizing. {yields} Dual compression method has been developed. {yields} Hard boride layer. {yields} Bulk deformation was significantly thicker the boronized layer. {yields} New data on boronizing could be expanded the application of DSS in industries. - Abstract: In this work, SPB of duplex stainless steel (DSS) under compression method is studied with the objective to produce ultra hard and thick boronized layer using minimal amount of boron powder and at a much faster boronizing time as compared to the conventional process. SPB is conducted under dual compression methods. In the first method DSS is boronized using a minimal amount of boron powder under a fix pre-strained compression condition throughout the process. The compression strain is controlled in such a way that plastic deformation is restricted at the surface asperities of the substrate in contact with the boron powder. In the second method, the boronized specimen taken from the first mode is compressed superplastically up to a certain compressive strain under a certain strain rate condition. The process in the second method is conducted without the present of boron powder. As compared with the conventional boronizing process, through this SPB under dual compression methods, a much harder and thicker boronized layer thickness is able to be produced using a minimal amount of boron powder.

  6. The high temperature mechanical characteristics of superplastic 3 mol% yttria stabilized zirconia

    International Nuclear Information System (INIS)

    Owen, D.M.; Chokshi, A.H.

    1998-01-01

    A detailed study was undertaken to characterize the deformation behavior of a superplastic 3 mol% yttria-stabilized tetragonal zirconia (3YTZ) over a wide range of strain rates, temperatures and grain sizes. The experimental data were analyzed in terms of the following equation for high temperature deformation: SR ∝ FS n d -p exp(-Q/RT), where SR is the strain rate, FS is the flow stress, d is the grain size, Q is the activation energy, R is the gas constant, T is the absolute temperature, and n and p are constants termed the stress exponent and the inverse grain size exponent, respectively. The experimental data over a wide range of stresses revealed a transition in stress exponent. Deformation in the low and high stress regions was associated with n about 3 and p about 1, and n about 2 and p about 3, respectively. The transition stress between the two regions decreased with increasing grain size. The activation energy was similar for both regions with a value of about 550 kJ/mol. Microstructural measurements revealed that grains remained essentially equiaxed after the accumulation of large strains, and very limited concurrent grain growths occurred in most experiments. Assessment of possible rate controlling creep mechanisms and comparison with previous studied indicate that in the n=2 region, deformation occurs by a grain boundary sliding process whose rate is independent of impurity content. Deformation in the n=3 region is controlled by an interface reaction that is highly sensitive to impurity content. It is concluded that an increase in impurity content increases yttrium segregation to grain boundaries, which enhances the rate of the interface reaction, thereby decreasing the apparent transition stress between the n=2 and n=3 regions. This unified approach incorporating two sequential mechanisms can rationalize many of the apparently dissimilar results that have been reported previously for deformation of 3YTZ

  7. Ceramic research on transformational superplasticity and stoichiometry effects on fracture. Research progress report, June 1, 1975--May 31, 1976

    International Nuclear Information System (INIS)

    Bradt, R.C.; Hoke, J.H.

    1976-01-01

    The progress of the program is reviewed by treating each of the areas separately. In the superplasticity investigation, the results of the Bi 2 WO 6 and Bi 2 MoO 3 systems are discussed both in terms of the transformational deformation and also the thermal cycling growth phenomenon. The growth phenomenon on thermal cycling through the phase transition shows some interesting bulk and microstructural features in terms of specimen strain and highly anisotropic grain growth. The stoichiometry effects on the fracture (K/sub Ic/ and K-V behavior) of TiO/sub 2-x/ and Fe/sub 1-x/ are reviewed as that study has been completed. Progress on the MgO . X Al 2 O 3 system is discussed

  8. Improved formability of aluminum--germanium near eutectic compositions through the application of superplasticity principles

    International Nuclear Information System (INIS)

    Pech, G.J.

    1977-12-01

    The 80-20 and 70-30 atomic percent Al-Ge compositions, which are used in the Nb 3 (Al,Ge) superconducting material, were investigated. These alloys are brittle at room temperature, but have been deformed plastically in this study by simulating conditions that have produced superplasticity in similar materials. The microstructure of these Al-Ge compositions was controlled to produce an inherently ductile structure of Ge spheroids dispersed throughout an Al matrix. A very fast cooling rate followed by a short anneal of 7 minutes at 400 0 C has been found to produce a fine homogenous spheroidal structure in 0.5'' diameter castings. Vickers microhardness tests were performed on castings of lamellar and fibrous microstructures after anneals at temperatures from 300 to 400 0 C. The deformation behavior of castings subjected to various conditions is reported. Parameters such as microstructure, temperature, % reduction, and anneals were investigated, and the results were used to successfully reduce Al-Ge castings to wire

  9. Plastic deformation of YBa2Cu3O7-x superconductor compound

    International Nuclear Information System (INIS)

    Torres V, G.; Moreno, J.E.

    1988-01-01

    The high temperature superconductor YBa 2 Cu 3 O 7-x shown a brittle behavior when deformed under ambient conditions. If a hydrostatic state of stress is imposed with a metal matrix, it is possible to induce exttended plastic deformations as a great as 200% were achieved using this method without loosing the superconductivity in the ceramic. The observed deformations mechanisms are similar to those observed in the superplastic metals and the boundary ceramic metal matrix was found to be highly coherent. This method opens a new technique that can be apllied in the manufacture of superconductor wire. (author) [pt

  10. Thermal and thermomechanical effects on the Al-Ca-Zn superplastic alloy studied on the positrons annihilation

    International Nuclear Information System (INIS)

    Romero, R.; Somoza, A.; Silvetti, S.P.

    1990-01-01

    Superplastic metallic materials are characterized by the presence of an unusual plastic behaviour, within a certain temperature range, with high ductility and low flow stress. This makes them suitable for their shaping with compressed air, for instance. On the other hand they behave similarly to any other metallic alloy at room temperature. One of the main problems found in superplastic alloys during deformation is the formation of cavities that may deteriorate the properties of a piece which was manufactured with this method. As an attempt to understand the origin of the cavitation, the effect of thermal and thermo-mechanical treatments was studied on superplastic alloy Al-5%wtCa-5%wtZn using a measurement technique based on positron annihilation. (Author). 3 refs., 5 figs

  11. Orientation-related phenomena in Al-Li sheet during superplastic forming

    International Nuclear Information System (INIS)

    Randle, V.; Wilshire, B.

    1996-01-01

    The microtexture of superplastically deformed 8090 Al-Li sheet has been measured using electron back-scatter diffraction, for true strains of 0, 0.25, 0.75, 1.5 and 2.4. The data have been interpreted in terms of individual texture variants, grain boundary types (low angle or high angle) and grain junction types (I-lines or U -lines, as defined by an extension to the 0-lattice theory)

  12. Development of Weldable Superplastic Forming Aluminum Alloy Sheet Final Report CRADA No. TC-1086-95

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sun, T. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-01

    Numerous applications could exist for superplastic formable, weldable aluminum alloys in the automotive, aerospace, architectural, and construction industries. In this project, LLNL and Kaiser worked with the Institute for Metals Superplasticity Problems to develop and evaluate weldable superplastic alloys.

  13. Thermo-mechanical treatment for improvement of superplasticity of SUS304; SUS304 no chososei kyodo kaizen no tame no kako netsu shori

    Energy Technology Data Exchange (ETDEWEB)

    Kato, M.; Torisaka, Y. [Mechanical Engineering Lab., Tokyo (Japan)

    1998-01-25

    Thermo-mechanical treatment was given to improve further the superplastic behavior of SUS 304 stainless steel. In the SUS 304, martensite phase produced by the processing induced transformation may be reversely transformed to the primary austenite phase by high-temperature heating. Crystal grain size is micronized to 1 {mu} m by combining this reverse transformation and recrystallization of the austenite phase. However, the straining rate at that time is as extremely low as 1 times 10 {sup -4}/s or lower, which is insufficient for an industrial material. Therefore, the SUS 304 processed as described above was given again a series of thermo-mechanical treatment of the similar forced cold processing and annealing to ultra-micronize the crystalline particles. Majority of the crystalline particles have come to have a grain size of several hundred nm. This test piece showed a total elongation of 400% or more at a test temperature of 973 K and a straining rate of 1.8 times 10 {sup -3}/s or lower. In addition, the straining rate sensitivity index `m` at that time was 0.45 or higher. The superplastic deformation of the SUS 304 has a high possibility of being governed by dynamic recrystallization. 4 refs., 7 figs., 1 tab.

  14. Deformation behavior of curling strips on tearing tubes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ji Won; Kwon, Tae Soo; Jung, Hyun Seung; Kim, Jin Sung [Dept. of Robotics and Virtual Engineering, Korea University of Science and Technology, Seoul (Korea, Republic of)

    2015-10-15

    This paper discusses the analysis of the curl deformation behavior when a dynamic force is applied to a tearing tube installed on a flat die to predict the energy absorption capacity and deformation behavior. The deformation of the tips of the curling strips was obtained when the curl tips and tube body are in contact with each other, and a formula describing the energy dissipation rate caused by the deformation of the curl tips is proposed. To improve this formula, we focused on the variation of the curl radius and the reduced thickness of the tube. A formula describing the mean curl radius is proposed and verified using the curl radius measurement data of collision test specimens. These improved formulas are added to the theoretical model previously proposed by Huang et al. and verified from the collision test results of a tearing tube.

  15. Hot compression deformation behavior of AISI 321 austenitic stainless steel

    Science.gov (United States)

    Haj, Mehdi; Mansouri, Hojjatollah; Vafaei, Reza; Ebrahimi, Golam Reza; Kanani, Ali

    2013-06-01

    The hot compression behavior of AISI 321 austenitic stainless steel was studied at the temperatures of 950-1100°C and the strain rates of 0.01-1 s-1 using a Baehr DIL-805 deformation dilatometer. The hot deformation equations and the relationship between hot deformation parameters were obtained. It is found that strain rate and deformation temperature significantly influence the flow stress behavior of the steel. The work hardening rate and the peak value of flow stress increase with the decrease of deformation temperature and the increase of strain rate. In addition, the activation energy of deformation ( Q) is calculated as 433.343 kJ/mol. The microstructural evolution during deformation indicates that, at the temperature of 950°C and the strain rate of 0.01 s-1, small circle-like precipitates form along grain boundaries; but at the temperatures above 950°C, the dissolution of such precipitates occurs. Energy-dispersive X-ray analyses indicate that the precipitates are complex carbides of Cr, Fe, Mn, Ni, and Ti.

  16. Deformation Behavior of Human Dentin under Uniaxial Compression

    Directory of Open Access Journals (Sweden)

    Dmitry Zaytsev

    2012-01-01

    Full Text Available Deformation behavior of a human dentin under compression including size and rate effects is studied. No difference between mechanical properties of crown and root dentin is found. It is mechanically isotropic high elastic and strong hard tissue, which demonstrates considerable plasticity and ability to suppress a crack growth. Mechanical properties of dentin depend on a shape of samples and a deformation rate.

  17. Crack Tip Creep Deformation Behavior in Transversely Isotropic Materials

    International Nuclear Information System (INIS)

    Ma, Young Wha; Yoon, Kee Bong

    2009-01-01

    Theoretical mechanics analysis and finite element simulation were performed to investigate creep deformation behavior at the crack tip of transversely isotropic materials under small scale creep (SCC) conditions. Mechanical behavior of material was assumed as an elastic-2 nd creep, which elastic modulus ( E ), Poisson's ratio (v ) and creep stress exponent ( n ) were isotropic and creep coefficient was only transversely isotropic. Based on the mechanics analysis for material behavior, a constitutive equation for transversely isotropic creep behavior was formulated and an equivalent creep coefficient was proposed under plain strain conditions. Creep deformation behavior at the crack tip was investigated through the finite element analysis. The results of the finite element analysis showed that creep deformation in transversely isotropic materials is dominant at the rear of the crack-tip. This result was more obvious when a load was applied to principal axis of anisotropy. Based on the results of the mechanics analysis and the finite element simulation, a corrected estimation scheme of the creep zone size was proposed in order to evaluate the creep deformation behavior at the crack tip of transversely isotropic creeping materials

  18. Hot deformation behavior of delta-processed superalloy 718

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y., E-mail: wangyanhit@yahoo.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); School of Aeronautics and Astronautics, Central South University, Changsha 410083 (China); Shao, W.Z.; Zhen, L.; Zhang, B.Y. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2011-03-25

    Research highlights: {yields} The peak stress for hot deformation can be described by the Z parameter. {yields} The grain size of DRX was inversely proportional to the Z parameter. {yields} The dissolution of {delta} phases was greatly accelerated under hot deformation. {yields}The {delta} phase stimulated nucleation can serve as the main DRX mechanism. - Abstract: Flow stress behavior and microstructures during hot compression of delta-processed superalloy 718 at temperatures from 950 to 1100 deg. C with strain rates of 10{sup -3} to 1 s{sup -1} were investigated by optical microscopy (OM), electron backscatter diffraction (EBSD) technique and transmission electron microscopy (TEM). The relationship between the peak stress and the deformation conditions can be expressed by a hyperbolic-sine type equation. The activation energy for the delta-processed superalloy 718 is determined to be 467 kJ/mol. The change of the dominant deformation mechanisms leads to the decrease of stress exponent and the increase of activation energy with increasing temperature. The dynamically recrystallized grain size is inversely proportional to the Zener-Hollomon (Z) parameter. It is found that the dissolution rate of {delta} phases under hot deformation conditions is much faster than that under static conditions. Dislocation, vacancy and curvature play important roles in the dissolution of {delta} phases. The main nucleation mechanisms of dynamic recrystallization (DRX) for the delta-processed superalloy 718 include the bulging of original grain boundaries and the {delta} phase stimulated DRX nucleation, which is closely related to the dissolution behavior of {delta} phases under certain deformation conditions.

  19. Deformation behavior of large, high-pressure vessel flanges

    International Nuclear Information System (INIS)

    Spaas, H.A.C.M.; Latzko, D.G.H.

    1975-01-01

    The analysis of the deformation behavior of large high-pressure vessel flanges poses a much more difficult problem than for low-pressure flanges due to their particular geometry. For a particularly narrow flange geometry (typical of PWR flanges) a finite-element analysis (MARC-IBM-program, eight-node, isoparametric ring elements) was used to predict the behavior of the flange rings. The nonlinear elastic problem resulting from the local closing and/or opening of the partial gap between the gasket faces was solved by an incremental technique using gap elements. The resulting deformation behavior of the flange system has been compared to that obtained from an analysis using the refined rigid ring concept for both bolt-tightening and hydro-testing conditions. The elasto-plastic analysis was solved by the same finite element program system as mentioned above. The incremental steps describing the nonlinear material behavior are allowed to be larger than those for the gap-closure mechanism. Besides a comparison with the former elastic analyses an interpretation will be given of the local plasticity effects, which result in a shift in location of the gasket reaction. Experimental data on local gasket face deformation was obtained by a specially developed laser beam apparatus, with the leak detection channel of the flange serving as a beam hole. Additionally strain gauges were used on flanges and bolts, in combination with special sensing pins for the determination of relative flange rotations. Results obtained so far indicate that for high-pressure flanges of the narrow design investigated here the deformation behavior is best described by an elasto-plastic finite element analysis

  20. Ultrafine-grained magnesium–lithium alloy processed by high-pressure torsion: Low-temperature superplasticity and potential for hydroforming

    Energy Technology Data Exchange (ETDEWEB)

    Matsunoshita, Hirotaka [Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395 (Japan); Edalati, Kaveh, E-mail: kaveh.edalati@zaiko6.zaiko.kyushu-u.ac.jp [Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395 (Japan); WPI, International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395 (Japan); Furui, Mitsuaki [Graduate School of Science and Engineering for Research, University of Toyama, Toyama 930-8555 (Japan); Horita, Zenji [Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395 (Japan); WPI, International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395 (Japan)

    2015-07-29

    A Mg–Li alloy with 8 wt% Li was processed by severe plastic deformation (SPD) through the process of high-pressure torsion (HPT) to achieve ultrafine grains with an average grain size of ~500 nm. Tensile testing with an initial strain rate of 10{sup −3} s{sup −1} showed that the alloy exhibited superplasticity at a temperature of 323 K or higher. Tensile testing in boiling water confirmed that the specimens were elongated to 350–480% at 373 K under the initial strain rates of 10{sup −3} s{sup −1} to {sup 1}0{sup −2} s{sup −1} with a strain rate sensitivity of ~0.3. The current study suggests that not only superplastic forming but also superplastic hydroforming should be feasible after the grain refinement using the HPT method.

  1. Ultrafine-grained magnesium–lithium alloy processed by high-pressure torsion: Low-temperature superplasticity and potential for hydroforming

    International Nuclear Information System (INIS)

    Matsunoshita, Hirotaka; Edalati, Kaveh; Furui, Mitsuaki; Horita, Zenji

    2015-01-01

    A Mg–Li alloy with 8 wt% Li was processed by severe plastic deformation (SPD) through the process of high-pressure torsion (HPT) to achieve ultrafine grains with an average grain size of ~500 nm. Tensile testing with an initial strain rate of 10 −3 s −1 showed that the alloy exhibited superplasticity at a temperature of 323 K or higher. Tensile testing in boiling water confirmed that the specimens were elongated to 350–480% at 373 K under the initial strain rates of 10 −3 s −1 to 1 0 −2 s −1 with a strain rate sensitivity of ~0.3. The current study suggests that not only superplastic forming but also superplastic hydroforming should be feasible after the grain refinement using the HPT method

  2. Superplasticity in powder metallurgy aluminum alloys and composites

    International Nuclear Information System (INIS)

    Mishra, R.S.; Bieler, T.R.; Mukherjee, A.K.

    1995-01-01

    Superplasticity in powder metallurgy Al alloys and composites has been reviewed through a detailed analysis. The stress-strain curves can be put into 4 categories: classical well-behaved type, continuous strain hardening type, continuous strain softening type and complex type. The origin of these different types of is discussed. The microstructural features of the processed material and the role of strain have been reviewed. The role of increasing misorientation of low angle boundaries to high angle boundaries by lattice dislocation absorption is examined. Threshold stresses have been determined and analyzed. The parametric dependencies for superplastic flow in modified conventional aluminum alloys, mechanically alloyed alloys and Al alloy matrix composites is determined to elucidate the superplastic mechanism at high strain rates. The role of incipient melting has been analyzed. A stress exponent of 2, an activation energy equal to that for grain boundary diffusion and a grain size dependence of 2 generally describes superplastic flow in modified conventional Al alloys and mechanically alloyed alloys. The present results agree well with the predictions of grain boundary sliding models. This suggests that the mechanism of high strain rate superplasticity in the above-mentioned alloys is similar to conventional superplasticity. The shift of optimum superplastic strain rates to higher values is a consequence of microstructural refinement. The parametric dependencies for superplasticity in aluminum alloy matrix composites, however, is different. A true activation energy of superplasticity in aluminum alloy matrix composites, however, is different. A true activation energy of 313 kJ/mol best describes the composites having SiC reinforcements. The role of shape of the reinforcement (particle or whisker) and processing history is addressed. The analysis suggests that the mechanism for superplasticity in composites is interface diffusion controlled grain boundary sliding

  3. Phase state of a Bi-43 wt % Sn superplastic alloy and its changes under the effect of external mechanical stresses and aging

    Science.gov (United States)

    Korshak, V. F.; Chushkina, R. A.; Shapovalov, Yu. A.; Mateichenko, P. V.

    2011-07-01

    Samples of a Bi-43 wt % Sn superplastic alloy have been studied by X-ray diffraction in the ascast state, after compression of as-cast samples to ˜70% on a hydraulic press, after aging in the as-cast and preliminarily compressed state, and using samples deformed under superplastic conditions. The X-ray diffraction studies have been carried out using a DRON-2.0 diffractometer in Cu Kα radiation. The samples aged and deformed under superplasticity conditions have been studied using electron-microprobe analysis in a JSM-820 scanning electron microscope equipped with a LINK AN/85S EDX system. It has been found that the initial structural-phase state of the alloy was amorphous-crystalline. Causes that lead to a change in this state upon deformation and aging are discussed. A conclusion is made that the superplasticity effect manifests itself against the background of processes that are stipulated by the tendency of the initially metastable alloy to phase equilibrium similarly to what is observed in the Sn-38 wt % Pb eutectic alloy studied earlier.

  4. An atomistic study of the deformation behavior of tungsten nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shuozhi [University of California, California NanoSystems Institute, Santa Barbara, CA (United States); Su, Yanqing [University of California, Department of Mechanical Engineering, Santa Barbara, CA (United States); Chen, Dengke [Georgia Institute of Technology, GWW School of Mechanical Engineering, Atlanta, GA (United States); Li, Longlei [Georgia Institute of Technology, School of Earth and Atmospheric Sciences, Atlanta, GA (United States)

    2017-12-15

    Large-scale atomistic simulations are performed to study tensile and compressive left angle 112 right angle loading of single-crystalline nanowires in body-centered cubic tungsten (W). Effects of loading mode, wire cross-sectional shape, wire size, strain rate, and crystallographic orientations of the lateral surfaces are explored. Uniaxial deformation of a W bulk single crystal is also investigated for reference. Our results reveal a strong tension-compression asymmetry in both the stress-strain response and the deformation behavior due to different yielding/failure modes: while the nanowires fail by brittle fracture under tensile loading, they yield by nucleation of dislocations from the wire surface under compressive loading. It is found that (1) nanowires have a higher strength than the bulk single crystal; (2) with a cross-sectional size larger than 10 nm, there exists a weak dependence of strength on wire size; (3) when the wire size is equal to or smaller than 10 nm, nanowires buckle under compressive loading; (4) the cross-sectional shape, strain rate, and crystallographic orientations of the lateral surfaces affect the strength and the site of defect initiation but not the overall deformation behavior. (orig.)

  5. Cyclic deformation and fatigue behaviors of Hadfield manganese steel

    Energy Technology Data Exchange (ETDEWEB)

    Kang, J. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang, F.C., E-mail: zfc@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Long, X.Y. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Lv, B. [School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2014-01-03

    The cyclic deformation characteristics and fatigue behaviors of Hadfield manganese steel have been investigated by means of its ability to memorize strain and stress history. Detailed studies were performed on the strain-controlled low cycle fatigue (LCF) and stress-controlled high cycle fatigue (HCF). Initial cyclic hardening to saturation or peak stress followed by softening to fracture occurred in LCF. Internal stress made the dominant contribution to the fatigue crack propagation until failure. Effective stress evolution revealed the existence of C–Mn clusters with short-range ordering in Hadfield manganese steel and demonstrated that the interaction between C atoms in the C–Mn cluster and dislocation was essential for its cyclic hardening. The developing/developed dislocation cells and stacking faults were the main cyclic deformation microstructures on the fractured sample surface in LCF and HCF, which manifested that fatigue failure behavior of Hadfield manganese steel was induced by plastic deformation during strain-controlled or stress-controlled testing.

  6. Size-dependent deformation behavior of nanocrystalline graphene sheets

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhi [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Huang, Yuhong [College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062, Shaanxi (China); Ma, Fei, E-mail: mafei@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Sun, Yunjin [Faculty of Food Science and Engineering, Beijing University of Agriculture, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Beijing Laboratory of Food Quality and Safety, Beijing 102206 (China); Xu, Kewei, E-mail: kwxu@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Department of Physics and Opt-electronic Engineering, Xi’an University of Arts and Science, Xi’an 710065, Shaanxi (China); Chu, Paul K., E-mail: paul.chu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2015-08-15

    Highlights: • MD simulation is conducted to study the deformation of nanocrystalline graphene. • Unexpectedly, the elastic modulus decreases with the grain size considerably. • But the fracture stress and strain are nearly insensitive to the grain size. • A composite model with grain domains and GBs as two components is suggested. - Abstract: Molecular dynamics (MD) simulation is conducted to study the deformation behavior of nanocrystalline graphene sheets. It is found that the graphene sheets have almost constant fracture stress and strain, but decreased elastic modulus with grain size. The results are different from the size-dependent strength observed in nanocrystalline metals. Structurally, the grain boundaries (GBs) become a principal component in two-dimensional materials with nano-grains and the bond length in GBs tends to be homogeneously distributed. This is almost the same for all the samples. Hence, the fracture stress and strain are almost size independent. As a low-elastic-modulus component, the GBs increase with reducing grain size and the elastic modulus decreases accordingly. A composite model is proposed to elucidate the deformation behavior.

  7. Hot deformation behavior of TC18 titanium alloy

    Directory of Open Access Journals (Sweden)

    Jia Bao-Hua

    2013-01-01

    Full Text Available Isothermal compression tests of TC18 titanium alloy at the deformation temperatures ranging from 25°C to 800°C and strain rate ranging from 10-4 to 10-2 s-1 were conducted by using a WDW-300 electronic universal testing machine. The hot deformation behavior of TC18 was characterized based on an analysis of the true stress-true strain curves of TC18 titanium alloy. The curves show that the flow stress increases with increasing the strain rate and decreases with increasing the temperature, and the strain rate play an important role in the flow stress when increasing the temperatures. By taking the effect of strain into account, an improved constitutive relationship was proposed based on the Arrhenius equation. By comparison with the experimental results, the model prediction agreed well with the experimental data, which demonstrated the established constitutive relationship was reliable and can be used to predict the hot deformation behavior of TC18 titanium alloy.

  8. Anisotropic Deformation Behavior of Al2024T351 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    R Khan

    2013-06-01

    Full Text Available The objective of this work was to investigate the effects of material anisotropy on the yielding and hardening behavior of 2024T351 aluminum alloy using isotropic and anisotropic yield criteria. Anisotropy may be induced in a material during the manufacturing through processes like rolling or forging. This induced anisotropy gives rise to the concept of orientation-dependent material properties such as yield strength, ductility, strain hardening, fracture strength, or fatigue resistance. Inclusion of the effects of anisotropy is essential in correctly predicting the deformation behavior of a material. In this study, uniaxial tensile tests were first performed in all three rolling directions, L , T  and S , for smooth bar specimens made from hot rolled plate of Al2024 alloy. The experimental results showed that the L - and T -directions yielded higher yield strengths and a greater percentage of elongation before fracture than the S -direction. Subsequently, finite element analysis of tensile specimens was performed using isotropic (von Mises and anisotropic (Hill yield criteria to predict the onset of yielding and hardening behaviors during the course of deformation. Hill's criterion perfectly fitted with the test data in the S -direction, but slightly underestimated the yield strength in L -direction. The results indicated that the Hill yield criterion is the most suitable one to predict the onset of yielding and hardening behaviors for 2024T351 aluminum alloy in all directions.

  9. Understanding thermally activated plastic deformation behavior of Zircaloy-4

    Science.gov (United States)

    Kumar, N.; Alomari, A.; Murty, K. L.

    2018-06-01

    Understanding micromechanics of plastic deformation of existing materials is essential for improving their properties further and/or developing advanced materials for much more severe load bearing applications. The objective of the present work was to understand micromechanics of plastic deformation of Zircaloy-4, a zirconium-based alloy used as fuel cladding and channel (in BWRs) material in nuclear reactors. The Zircaloy-4 in recrystallized (at 973 K for 4 h) condition was subjected to uniaxial tensile testing at a constant cross-head velocity at temperatures in the range 293 K-1073 K and repeated stress relaxation tests at 293 K, 573 K, and 773 K. The minimum in the total elongation was indicative of dynamic strain aging phenomenon in this alloy in the intermediate temperature regime. The yield stress of the alloy was separated into effective and athermal components and the transition from thermally activated dislocation glide to athermal regime took place at around 673 K with the athermal stress estimated to be 115 MPa. The activation volume was found to be in the range of 40 b3 to 160 b3. The activation volume values and the data analyses using the solid-solution models in literature indicated dislocation-solute interaction to be a potential deformation mechanism in thermally activated regime. The activation energy calculated at 573 K was very close to that found for diffusivity of oxygen in α-Zr that was suggestive of dislocations-oxygen interaction during plastic deformation. This type of information may be helpful in alloy design in selecting different elements to control the deformation behavior of the material and impart desired mechanical properties in those materials for specific applications.

  10. Local cyclic deformation behavior and microstructure of railway wheel materials

    International Nuclear Information System (INIS)

    Walther, F.; Eifler, D.

    2004-01-01

    The current investigations concentrate on the relation between the loading and environmental conditions, the local microstructure and the fatigue behavior of highly stressed railway wheel and tire steels. Experiments under stress control and total strain control were performed at ambient temperature with servohydraulic testing systems. Superimposed mean loadings allow an evaluation of cyclic creep and mean stress relaxation effects. Strain, temperature and electrical measuring techniques were used to characterize the cyclic deformation behavior of specimens from different depth positions of the cross-sections of UIC-specified wheel components (UIC: International Railway Union). The measured values show a strong interrelation. The microstructural characterization of the different material conditions was done by light and scanning electron microscopy together with digital image processing

  11. Local deformation behavior of surface porous polyether-ether-ketone.

    Science.gov (United States)

    Evans, Nathan T; Torstrick, F Brennan; Safranski, David L; Guldberg, Robert E; Gall, Ken

    2017-01-01

    Surface porous polyether-ether-ketone has the ability to maintain the tensile monotonic and cyclic strength necessary for many load bearing orthopedic applications while providing a surface that facilitates bone ingrowth; however, the relevant deformation behavior of the pore architecture in response to various loading conditions is not yet fully characterized or understood. The focus of this study was to examine the compressive and wear behavior of the surface porous architecture using micro Computed Tomography (micro CT). Pore architectures of various depths (~0.5-2.5mm) and pore sizes (212-508µm) were manufactured using a melt extrusion and porogen leaching process. Compression testing revealed that the pore architecture deforms in the typical three staged linear elastic, plastic, and densification stages characteristic of porous materials. The experimental moduli and yield strengths decreased as the porosity increased but there was no difference in properties between pore sizes. The porous architecture maintained a high degree of porosity available for bone-ingrowth at all strains. Surface porous samples showed no increase in wear rate compared to injection molded samples, with slight pore densification accompanying wear. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Superplastic forming and diffusion bonding: Progress and trends

    Directory of Open Access Journals (Sweden)

    Zhiqiang Li

    2015-01-01

    Full Text Available This paper summarized recent progress in metal superplasticity and the application of Superplastic Forming/Diffusion Bonding (SPF/DB or SPF/Welding in typical structures. Various aerospace components such as three dimensional lattice structures made by SPF/DB have been demonstrated. In addition, some newly developed technologies, such as melt droplet spreading/thermo-mechanical forming (MDS/TMF, were also included. Finally, the future potential of SPF/DB technology was predicted.

  13. High strain rate superplasticity in a friction stir processed 7075 Al alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, R.S.; Mahoney, M.W.; McFaden, S.X.; Mara, N.A.; Mukherjee, A.K.

    1999-12-31

    In this paper, the authors report the first results using friction stir processing (FSP). In the last ten years, a new technique of Friction Stir Welding (FSW) has emerged as an exciting solid state joining technique for aluminum alloys. This technique, developed by The Welding Institute (TWI), involves traversing a rotating tool that produces intense plastic deformation through a stirring action. The localized heating is produced by friction between the tool shoulder and the sheet top surface, as well as plastic deformation of the material in contact with the tool. This results in a stirred zone with a very fine grain size in a single pass. Mahoney et al. observed a grain size of 3 {micro}m in a 7075 Al alloy. This process can be easily adopted as a processing technique to obtain fine grain size. FSP of a commercial 7075 Al alloy resulted in significant enhancement of superplastic properties. The optimum superplastic strain rate was 10{sup {minus}2}s{sup {minus}1} at 490 C in the FSP 7075 Al alloy, an improvement of more than an order of magnitude in strain rate. The present results suggest an exciting possibility to use a simple FSP technique to enhance grain size dependent properties.

  14. Stored energy and annealing behavior of heavily deformed aluminium

    DEFF Research Database (Denmark)

    Kamikawa, Naoya; Huang, Xiaoxu; Kondo, Yuka

    2012-01-01

    It has been demonstrated in previous work that a two-step annealing treatment, including a low-temperature, long-time annealing and a subsequent high-temperature annealing, is a promising route to control the microstructure of a heavily deformed metal. In the present study, structural parameters...... are quantified such as boundary spacing, misorientation angle and dislocation density for 99.99% aluminium deformed by accumulative roll-bonding to a strain of 4.8. Two different annealing processes have been applied; (i) one-step annealing for 0.5 h at 100-400°C and (ii) two-step annealing for 6 h at 175°C...... followed by 0.5 h annealing at 200-600°C, where the former treatment leads to discontinuous recrystallization and the latter to uniform structural coarsening. This behavior has been analyzed in terms of the relative change during annealing of energy stored as elastic energy in the dislocation structure...

  15. Cyclic deformation behavior of steels and light-metal alloys

    International Nuclear Information System (INIS)

    Walther, Frank; Eifler, Dietmar

    2007-01-01

    The detailed knowledge of the cyclic deformation behavior of metallic materials is an essential condition for the comprehensive understanding of fatigue mechanisms and a reliable lifetime calculation of cyclically loaded specimens and components. Various steels and light-metal alloys were investigated under stress and strain control on servohydraulic testing systems. In addition to mechanical stress-strain hysteresis measurements, the changes of the specimen temperature and the electrical resistance due to plastic deformation processes were measured. The plasticity-induced martensite formation in metastable austenitic steels was detected in situ with a ferritescope sensor. As advanced magnetic measuring technique giant-magneto-resistance sensors in combination with an universal eddy-current equipment were used for the on-line monitoring of fatigue processes. Due to their direct dependence on microstructural changes, all physical values show a clear interaction with the actual fatigue state. The results of the plastic strain, thermometric, electric and magnetic measuring techniques were presented versus the number of cycles as well as in Morrow and Coffin-Manson plots. The microstructures were characterized by scanning electron microscopy

  16. Cyclic deformation behavior of steels and light-metal alloys

    Energy Technology Data Exchange (ETDEWEB)

    Walther, Frank [University of Kaiserslautern, Institute of Materials Science and Engineering, P.O. Box 3049, D-67653 Kaiserslautern (Germany)], E-mail: walther@mv.uni-kl.de; Eifler, Dietmar [University of Kaiserslautern, Institute of Materials Science and Engineering, P.O. Box 3049, D-67653 Kaiserslautern (Germany)

    2007-11-15

    The detailed knowledge of the cyclic deformation behavior of metallic materials is an essential condition for the comprehensive understanding of fatigue mechanisms and a reliable lifetime calculation of cyclically loaded specimens and components. Various steels and light-metal alloys were investigated under stress and strain control on servohydraulic testing systems. In addition to mechanical stress-strain hysteresis measurements, the changes of the specimen temperature and the electrical resistance due to plastic deformation processes were measured. The plasticity-induced martensite formation in metastable austenitic steels was detected in situ with a ferritescope sensor. As advanced magnetic measuring technique giant-magneto-resistance sensors in combination with an universal eddy-current equipment were used for the on-line monitoring of fatigue processes. Due to their direct dependence on microstructural changes, all physical values show a clear interaction with the actual fatigue state. The results of the plastic strain, thermometric, electric and magnetic measuring techniques were presented versus the number of cycles as well as in Morrow and Coffin-Manson plots. The microstructures were characterized by scanning electron microscopy.

  17. Deformation behavior of UO2 at temperatures above 24000C

    International Nuclear Information System (INIS)

    Slagle, O.D.

    1978-08-01

    An experimental system was developed for measuring the high-temperature creep rates of ceramic nuclear fuels to temperatures near their melting points. The results of a series of experiments carried out on UO 2 at temperatures above 2400 0 C are reported. The strain rate was found to be proportional to the 5.7 power of the stress while activation energies ranged from 250 to 340 Kcal/mole. An expression for describing the primary creep was derived from the initial time dependence of the deformation after stress application. A technique for studying the hot pressing behavior at 2580 0 C was devised but no definitive results were obtained from the first series of experiments. An empirical relationship is proposed for calculating the creep rates at very high temperatures

  18. Postirradiation deformation behavior in ferritic Fe-Cr alloys

    International Nuclear Information System (INIS)

    Hamilton, M.L.; Gelles, D.S.; Gardner, P.L.

    1992-06-01

    It has been demonstrated that fast-neutron irradiation produces significant hardening in simple Fe-(3-18)Cr binary alloys irradiated to about 35 dpa in the temperature range 365 to 420 degrees C, whereas irradiation at 574 degrees C produces hardening only for 15% or more chromium. The irradiation-induced changes in tensile properties are discussed in terms of changes in the power law work-hardening exponent. The work-hardening exponent of the lower chromium alloys decreased significantly after low-temperature irradiation (≤ 420 degrees C) but increased after irradiation at 574 degrees C. The higher chromium alloys failed either in cleavage or in a mixed ductile/brittle fashion. Deformation microstructures are presented to support the tensile behavior

  19. Method of thermally processing superplastically formed aluminum-lithium alloys to obtain optimum strengthening

    Science.gov (United States)

    Anton, Claire E. (Inventor)

    1993-01-01

    Optimum strengthening of a superplastically formed aluminum-lithium alloy structure is achieved via a thermal processing technique which eliminates the conventional step of solution heat-treating immediately following the step of superplastic forming of the structure. The thermal processing technique involves quenching of the superplastically formed structure using static air, forced air or water quenching.

  20. Deformation behavior of cell spring of an irradiated spacer grid

    International Nuclear Information System (INIS)

    Jin, Y. G.; Baek, S. J.; Ryu, W. S.; Kim, G. S.; Yoo, B. O.; Kim, D. S.; Ahn, S. B.; Chun, Y. B.; Choo, Y. S.

    2012-01-01

    Mechanical properties of a space grid of a fuel assembly are of great importance for fuel operation reliability in extended fuel burnup and duration of fuel life. The spacer grid with inner and outer straps has cell spring and dimples, which are in contact with the fuel rod. The spacer grids supporting the fuel rods absorb vibration impacts due to the reactor coolant flow and also grid spring force is decreasing under irradiation. This reduction of contact force might cause the grid to rod fretting wear. The fretting failure of the fuel rod is one of the significant issues recently in the nuclear industry from an economical as well as a safety concern. Thus, it is important to understand the characteristics of cell spring behavior for an irradiated spacer grid. In the present study, the stiffness test and dimensional measurement of cell springs were conducted to investigate the deformation behavior of cell springs of an irradiated spacer grid in a hot cell at IMEF (irradiated materials examination facility) of KAERI

  1. Experimental study on uniaxial ratcheting deformation and failure behavior of 304 stainless steel

    International Nuclear Information System (INIS)

    Yang Xianjie; Gao Qing; Cai Lixun; Liu Yujie

    2004-01-01

    In the paper, the tests of cyclic strain ratcheting and low cycle fatigue for 304 stainless steel under uniaxial cyclic straining were carried out to systematically explore the deformation and failure behavior of the material. The experimental study shows that the cyclic strain ratcheting deformation behavior of the material is different from either the uniaxial monotonic tensile one or the cyclic deformation one under the symmetrical cyclic straining with the same strain amplitude, and the strain ratcheting deformation and failure behaviors depend on both the plastic strain amplitude and the strain increment at the cyclic maximum strain. Some significant results were observed

  2. Plastic flow instability and multiple necking of Ti-6Al-4V during superplastic flow

    International Nuclear Information System (INIS)

    Arieli, A.; Rosen, A.

    1976-01-01

    Stress-strain curves obtained at constant crosshead velocity tensile tests of Ti--6Al--4V sheets at different temperatures show different behavior. The flow stress does not decrease continuously, suggesting that necking occurs at various locations along the gauge length. Metallography showed regions of small, diffused necks. It is suggested that the superplasticity is related to the resistance to neck growth rather than the resistance to neck formation, and that neck formation/growth is controlled by the mutual action of strain hardening and strain rate sensitivity

  3. Superplastic Forming of Duplex Stainless Steel for Aerospace Part

    Science.gov (United States)

    Lee, Ho-Sung; Yoon, Jong-Hoon; Yoo, Joon-Tae; Yi, Young-Moo

    2011-08-01

    In this study, the high temperature forming behavior of duplex stainless steel has been characterized and the outer shell of a combustion chamber was fabricated with pressure difference of hot gas. It consists of two parts which are the outer skin made of stainless steel to sustain the internal pressure and the inner shell made of copper alloy for regenerative cooling channels. Two outer skins partitioned to half with respect to the symmetric axis was prepared by hot gas forming process with a maximum pressure of 7 MPa following to FEM analysis. For inner layer, copper alloy was machined for cooling channels and then placed in the gas pressure welding fixture. It is shown that the optimum condition of gas pressure welding is 7 MPa at 890 °C, for one hour. EDX analysis and scanning electron microscope micrograph confirm the atomic diffusion process is observed at the interface and copper atoms diffuse into steel, while iron and chrome atoms diffuse into copper. The result shows that the manufacturing method with superplastic forming and gas pressure welding of steel and copper alloy has been successful for near net shape manufacturing of scaled combustion chamber of launch vehicle.

  4. Positron annihilation studies of the Al-Ca-Zn superplastic alloy: thermal and thermomechanical contribution

    International Nuclear Information System (INIS)

    Ayciriex, M.D.; Romero, R.; Somoza, A.; Silvetti, S.P.; Villagra, O.

    1993-01-01

    Positron annihilation spectroscopy (PAS) is an established method for the study of electronic structure and defect properties in metals and alloys. The application of this technique to the study of positron trapping in grain boundaries and related phenomena, however, is relatively scarce. The physical basis for the application of PAS to the study of grain boundaries is the fact that grain boundaries are regions of low atomic density which result in attractive sites to the trap positions. The superplastic alloys are particularly suitable materials to be studied with PAS; they have a fine-grained structure, and therefore a high density of grain boundaries. Moreover, in the annealed condition, they have a low density of other types of defects capable of trapping positrons, such as dislocations. This type of polycrystalline material can undergo extremely high deformations (up to hundreds and thousands percent) in a certain temperature-strain rate range without macroscopic failure. This paper is part of a whole study of the thermal and thermomechanical effects on the positron lifetime parameters and their relation with microstructural changes and the phenomenon of structural superplasticity in a Al-Ca-Zn alloy

  5. Effect of anisotropy on mechanical properties of Ti-6Al-4V in superplastic region

    Science.gov (United States)

    Wahed, MA; Gupta, AK; Singh, SK; Kotkunde, N.

    2018-04-01

    This paper presents an experimental investigation on the flow stress behaviour of Ti-6Al-4V alloy at elevated temperatures and very low strain rate. Though Ti-6Al-4V alloy is very hard to deform at room temperature, having only about 16 % elongation, it exhibits super-plasticity at elevated temperatures. To investigate this, the tensile tests were conducted from 700°C to 900°C temperatures at an interval of 50°C and at a very low strain rate 0.0001/s along three different directions: rolling direction, 45° to rolling direction and transverse direction. The experimental study shows more than 50% elongation in all the cases and particularly more than 250% elongation at 0.0001 / s strain rate and at 750°C to 900°C temperature in all directions, which is an indication of super-plasticity in the material. This is also corroborated by the microstructural study of the fractured specimens.

  6. Mechanisms of Superplastic Deformation of Nanocrystalline Silicon Carbide Ceramics

    Science.gov (United States)

    2012-08-01

    0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing ...instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection information...NM 87110 1 INTERNATIONAL RSRCH ASSOCIATES INC D ORPHAL CAGE 06EXO 5274 BLACKBIRD DR PLEASANTON CA 94566 1 BOB SKAGGS

  7. Overview of superplastic forming research at ford motor company

    Science.gov (United States)

    Friedman, P. A.; Luckey, S. G.; Copple, W. B.; Allor, R.; Miller, C. E.; Young, C.

    2004-12-01

    In an effort to reduce vehicle weight, the automotive industry has switched to aluminum sheet for many closure panels. Although the application of aluminum is compatible with existing manufacturing processes and has attractive qualities such as low density, good mechanical properties, and high corrosion resistance, it has less room-temperature formability than steel. The expanded forming limits that are possible with superplastic forming can significantly improve the ability to manufacture complex shapes from materials with limited formability. Aluminum closure panels produced by superplastic forming have been used by Ford Motor Company for over a decade. However, applications have been limited to low-volume, specialty vehicles due to the relatively slow cycle time and the cost penalty associated with the specially processed sheet alloys. While there has been substantial research on the superplastic characteristics of aluminum alloys, the bulk of this work has focused on the development of aerospace alloys, which are often too costly and perhaps inappropriate for automotive applications. Additionally, there has been a limited amount of work done to develop the technologies required to support the higher production volumes of the automotive industry. This work presents an automotive perspective on superplastic forming and an overview of the research being performed at Ford Motor Company to increase the production volume so superplastic forming can be cost competitive with more traditional forming technologies.

  8. The deformation behavior of the cervical spine segment

    Science.gov (United States)

    Kolmakova, T. V.; Rikun, Yu. A.

    2017-09-01

    The paper describes the model of the cervical spine segment (C3-C4) and the calculation results of its deformation behavior at flexion. The segment model was built based on the experimental literature data taking into account the presence of the cortical and cancellous bone tissue of vertebral bodies. Degenerative changes of the intervertebral disk (IVD) were simulated through a reduction of the disc height and an increase of Young's modulus. The construction of the geometric model of the cervical spine segment and the calculations of the stress-strain state were carried out in the ANSYS software complex. The calculation results show that the biggest protrusion of the IVD in bending direction of segment is observed when IVD height is reduced. The disc protrusion is reduced with an increase of Young's modulus. The largest protrusion in the direction of flexion of the segment is the intervertebral disk with height of 4.3 mm and elastic modulus of 2.5 MPa. The results of the study can be useful to specialists in the field of biomechanics, medical materials science and prosthetics.

  9. Superplasticity and joining of zirconia-based ceramics

    International Nuclear Information System (INIS)

    Dominguez-Rodriguez, A.; Gutierrez-Mora, F.; Jimenez-Melendo, M.; Chaim, R.; Routbort, J. L.

    1999-01-01

    Steady-state creep and joining of alumina/zirconia composites containing alumina volume fractions of 20, 60, and 85% have been investigated between 1,250 and 1,350 C. Superplasticity of these compounds is controlled by grain-boundary sliding and the creep rate is a function of alumina volume fraction, not grain size. Using the principles of superplasticity, pieces of the composite have been joined by applying the stress required to achieve 5 to 10% strain to form a strong interface at temperatures as low as 1,200 C

  10. Superplasticity and joining of zirconia-based ceramics

    International Nuclear Information System (INIS)

    Gutierrez-Mora, F.; Dominguez-Rodriguez, A.; Jimenez-Melendo, M.; Chaim, R.; Ravi, G.B.; Routbort, J.L.

    2000-01-01

    Steady-state creep and joining of alumina/zirconia composites containing alumina volume fractions of 20, 60 and 85% have been investigated between 1,250 and 1,350 C. Superplasticity of these compounds is controlled by grain-boundary sliding and the creep rate is a function of alumina volume fraction, not grain size. Using the principles of superplasticity, pieces of the composite have been joined by applying the stress required to achieve 5 to 10% strain to form a strong interface at temperatures as low as 1,200 C

  11. Relationship between local deformation behavior and crystallographic features of as-quenched lath martensite during uniaxial tensile deformation

    International Nuclear Information System (INIS)

    Michiuchi, M.; Nambu, S.; Ishimoto, Y.; Inoue, J.; Koseki, T.

    2009-01-01

    Electron backscattering diffraction patterns were used to investigate the relationship between local deformation behavior and the crystallographic features of as-quenched lath martensite of low-carbon steel during uniform elongation in tensile tests. The slip system operating during the deformation up to a strain of 20% was estimated by comparing the crystal rotation of each martensite block after deformation of 20% strain with predictions by the Taylor and Sachs models. The results indicate that the in-lath-plane slip system was preferentially activated compared to the out-of-lath-plane system up to this strain level. Further detailed analysis of crystal rotation at intervals of approximately 5% strain confirmed that the constraint on the operative slip system by the lath structure begins at a strain of 8% and that the local strain hardening of the primary slip systems occurred at approximately 15% strain.

  12. Influence of thermally activated processes on the deformation behavior during low temperature ECAP

    Science.gov (United States)

    Fritsch, S.; Scholze, M.; F-X Wagner, M.

    2016-03-01

    High strength aluminum alloys are generally hard to deform. Therefore, the application of conventional severe plastic deformation methods to generate ultrafine-grained microstructures and to further increase strength is considerably limited. In this study, we consider low temperature deformation in a custom-built, cooled equal channel angular pressing (ECAP) tool (internal angle 90°) as an alternative approach to severely plastically deform a 7075 aluminum alloy. To document the maximum improvement of mechanical properties, these alloys are initially deformed from a solid solution heat-treated condition. We characterize the mechanical behavior and the microstructure of the coarse grained initial material at different low temperatures, and we analyze how a tendency for the PLC effect and the strain-hardening rate affect the formability during subsequent severe plastic deformation at low temperatures. We then discuss how the deformation temperature and velocity influence the occurrence of PLC effects and the homogeneity of the deformed ECAP billets. Besides the mechanical properties and these microstructural changes, we discuss technologically relevant processing parameters (such as pressing forces) and practical limitations, as well as changes in fracture behavior of the low temperature deformed materials as a function of deformation temperature.

  13. Characterizing volumetric deformation behavior of naturally occuring bituminous sand materials

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2009-05-01

    Full Text Available newly proposed hydrostatic compression test procedure. The test procedure applies field loading conditions of off-road construction and mining equipment to closely simulate the volumetric deformation and stiffness behaviour of oil sand materials. Based...

  14. Fracture behavior and deformation mechanisms under fast neutron irradiation

    International Nuclear Information System (INIS)

    Boutard, J.L.; Dupouy, J.M.

    1980-09-01

    We have established the out-of-pile and in-pile deformation mechanism maps of a 316 stainless steel irradiated in a fast reactor. The knowledge of the dominating deformation mechanism either in post irradiation creep experiments or during the in-pile steady state operating conditions allows to rationalize the apparent discrepancy between the very low out-of-pile ductility and the rather high plastic diametral strains which are obtained in the fast reactor environment without fracture

  15. Effect of compression deformation on the microstructure and corrosion behavior of magnesium alloys

    International Nuclear Information System (INIS)

    Snir, Y.; Ben-Hamu, G.; Eliezer, D.; Abramov, E.

    2012-01-01

    Highlights: ► Metallurgical features (mainly twinning, dislocation accumulation, and dynamic recrystallization). ► The thermo-mechanical state (amount of deformation and its temperature). ► The corrosion behavior of wrought Mg-alloys. This correlation was emphasized by the mechanical behavior measured through micro-hardness. ► Microstructural changes during deformation, and potentio-dynamic corrosion tests were correlated. - Abstract: The effect of deformation on the corrosion and mechanical behavior of wrought Mg-alloys AZ31, AM50, and ZK60 was investigated. The materials’ behavior was correlated to the changes in metallurgical features, during compression, into different amounts of deformation at three temperatures: 250° C, 280° C, and 350° C. The metallurgical features were monitored by optical microscope, scanning electron microscope (SEM), and transmission electron microscopy (TEM). It was observed that there is a very strong correlation between three features: 1. metallurgical features (mainly twinning, dislocation accumulation, and dynamic recrystallization); 2. The thermo-mechanical state (amount of deformation and its temperature); and 3. The corrosion behavior of wrought Mg-alloys. This correlation was emphasized by the mechanical behavior measured through micro-hardness. Microstructural changes during deformation, and potentio-dynamic corrosion tests were correlated. These results show that studies on the effect of thermo-mechanical state (related to the microstructure) on the corrosion behavior of wrought Mg-alloys are essential in order to optimize their applicability to plastic forming processes.

  16. Hot deformation behavior of austenite in HSLA-100 microalloyed steel

    International Nuclear Information System (INIS)

    Momeni, A.; Arabi, H.; Rezaei, A.; Badri, H.; Abbasi, S.M.

    2011-01-01

    Research highlights: → The flow stress is well fitted by the exponential constitutive equation. → The average value of apparent activation energy for hot deformation is 377 kJ mol -1 . → A yield point phenomenon is observed on flow curves at high temperatures. → The Avrami exponent is determined around unity for dynamic recrystallization. - Abstract: Dynamic recrystallization of austenite in the Cu-bearing HSLA-100 steel was investigated by hot compression testing at a temperature range of 850-1150 deg. C and a strain rate of 0.001-1 s -1 . The obtained flow curves at temperatures higher than 950 deg. C were typical of DRX while at lower temperatures the flow curves were associated with work hardening without any indication of DRX. At high temperatures, flow stress exhibited a linear relation with temperature while at temperatures below 950 deg. C the behavior changed to non-linear. Hence, the temperature of 950 deg. C was introduced as the T nr of the alloy. All the flow curves showed a yield point elongation like phenomenon which was attributed to the interaction of solute atoms, notably carbon, and moving dislocations. The maximum elongation associated with the yield point phenomenon was observed at about 950 deg. C. Since the maximum yield point elongation was observed about the calculated T nr , it was concluded that carbon atoms were responsible for it. It was also concluded that the temperature at which the yield point elongation reaches the maximum value increases as strain rate rises. The stress and strain of the characteristic points of DRX flow curves were successfully correlated to the Zener-Hollomon parameter, Z, by power-law equations. The constitutive exponential equation was found more precise than the hyperbolic sine equation for modeling the dependence of flow stress on Z. The apparent activation energy for DRX was determined as 377 kJ mol -1 . The kinetics of DRX was modeled by an Avrami-type equation and the Avrami's exponent was

  17. Shape effect related to crystallographic orientation of deformation behavior in copper crystals

    International Nuclear Information System (INIS)

    Kim, K.H.; Chang, C.H.; Koo, Y.M.; MacDowell, A.A.

    1999-01-01

    The deformation behavior of pure copper single crystals has been investigated by scanning electron microscopy and synchrotron radiation using the in situ reflection Laue method. Two types of samples with the same orientation of tensile axes, but with different crystallographic orientations in the directions of the width and thickness of the samples, have been studied. They showed different characteristics of deformation behavior, such as the activated slip systems, the movement of the tensile axis, and the mode of fracture

  18. Deformation behavior of austenitic stainless steel at deep cryogenic temperatures

    Science.gov (United States)

    Han, Wentuo; Liu, Yuchen; Wan, Farong; Liu, Pingping; Yi, Xiaoou; Zhan, Qian; Morrall, Daniel; Ohnuki, Somei

    2018-06-01

    The nonmagnetic austenite steels are the jacket materials for low-temperature superconductors of fusion reactors. The present work provides evidences that austenites transform to magnetic martensite when deformation with a high-strain is imposed at 77 K and 4.2 K. The 4.2 K test is characterized by serrated yielding that is related to the specific motion of dislocations and phase transformations. The in-situ transmission electron microscope (TEM) observations in nanoscale reveal that austenites achieve deformation by twinning under low-strain conditions at deep cryogenic temperatures. The generations of twins, martensitic transformations, and serrated yielding are in order of increasing difficulty.

  19. Ratchetting deformation behavior of modified 9Cr-1Mo steel and applicability of existing constitutive models

    International Nuclear Information System (INIS)

    Yaguchi, Masatsugu; Takahashi, Yukio

    2001-01-01

    A series of ratchetting deformation tests was conducted on modified 9Cr-1Mo steel at 550degC under uniaxial and multiaxial stress conditions. Ratchetting behavior depended on various parameters such as mean stress, stress/strain rate and those range, hold time and prior cyclic deformation. Under uniaxial conditions, untraditional ratchetting behavior was observed; the ratchetting deformation rate was the fastest when the stress ratio was equal to -1, while no ratchetting deformation was predicted by conventional constitutive models. In order to discuss the reason for this untraditional ratchetting behavior, a lot of monotonic compression tests were conducted and compared with tension data. The material showed a difference of deformation resistance of about 30 MPa between tension and compression at high strain rates. Furthermore, the authors' previous model and Ohno-Wang model were applied to the test conditions to evaluate their description capability for ratchetting behavior of the material. It was shown that the authors' model has a tendency to overestimate the ratchetting deformation and that the Ohno-Wang model has a tendency to underestimate the uniaxial ratchetting deformation at small stress rates. (author)

  20. Viscoelastic materials with anisotropic rigid particles: stress-deformation behavior

    NARCIS (Netherlands)

    Sagis, L.M.C.; Linden, van der E.

    2001-01-01

    In this paper we have derived constitutive equations for the stress tensor of a viscoelastic material with anisotropic rigid particles. We have assumed that the material has fading memory. The expressions are valid for slow and small deformations from equilibrium, and for systems that are nearly

  1. Tensile deformation behavior and deformation twinning of an equimolar CoCrFeMnNi high-entropy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Joo, S.-H.; Kato, H. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Jang, M.J.; Moon, J. [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of); Tsai, C.W.; Yeh, J.W. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Kim, H.S., E-mail: hskim@postech.ac.kr [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of); Center for High Entropy Alloys, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of)

    2017-03-24

    The tensile deformation and strain hardening behaviors of an equimolar CoCrFeMnNi high-entropy alloy (HEA) were investigated and compared with low and medium entropy equiatomic alloys (LEA and MEA). The HEA had a lower yield strength than the MEA because the addition of Mn weakens solid solution hardening in the HEA. However, deformation twinning induced the multiple stage strain hardening behavior of the HEA and enhanced strength and elongation. Using tensile-interrupted electron backscatter diffraction analysis, geometrically necessary dislocations were observed as plume-shaped features in grain interior, and a considerable texture was characterized, which is typical of face centered cubic metals. Moreover, the relationship between favorably oriented grains and twinning in the HEA bore a clear resemblance to the same tendency in TWIP steels. The thickness of the twin bundles was less than 100 nm. A high density of stacking defects was found in the nanotwins. Nano twinning and stacking faults were found to contribute to the remarkable mechanical properties. Deformation induced twinning not only demonstrated the dynamic Hall-Petch effect but also changed dislocation cell substructures into microband structures.

  2. Mechanical Deformation Behavior of Lean Duplex 329LA Steel

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Byung-Jun [Research Institute of Industrial Science and Technology, Pohang (Korea, Republic of); Choi, Jeom-Yong [POSCO Technical Research Lab., Pohang (Korea, Republic of); Park, Kyung-Tae [Hanvat National University, Daejeon (Korea, Republic of); Lee, Ho Seong [Kyungpook National University, Daegu (Korea, Republic of)

    2015-09-15

    The tensile response of Lean Duplex 329LA stainless steel was investigated over various strain rates. It was observed that the mechanical response, including in particular the total elongation of the tested alloy, was strongly affected by the strain rate. As the strain rate decreased from 10-1 s-1 to 10-4 s-1, the elongation increased. As the strain rate increased, the deformation mode in an austenite phase was dominated by dislocation glide, resulting in deterioration of the elongation. The substructure of the ferritic phase showed a dislocation cell structure, independent of the applied strain rate. The optimum mechanical properties of lean duplex stainless steel thus can be obtained by controlling the deformation mode in the austenitic phase.

  3. Mechanical Deformation Behavior of Lean Duplex 329LA Steel

    International Nuclear Information System (INIS)

    Yoon, Byung-Jun; Choi, Jeom-Yong; Park, Kyung-Tae; Lee, Ho Seong

    2015-01-01

    The tensile response of Lean Duplex 329LA stainless steel was investigated over various strain rates. It was observed that the mechanical response, including in particular the total elongation of the tested alloy, was strongly affected by the strain rate. As the strain rate decreased from 10-1 s-1 to 10-4 s-1, the elongation increased. As the strain rate increased, the deformation mode in an austenite phase was dominated by dislocation glide, resulting in deterioration of the elongation. The substructure of the ferritic phase showed a dislocation cell structure, independent of the applied strain rate. The optimum mechanical properties of lean duplex stainless steel thus can be obtained by controlling the deformation mode in the austenitic phase.

  4. High-temperature behavior of a deformed Fermi gas obeying interpolating statistics.

    Science.gov (United States)

    Algin, Abdullah; Senay, Mustafa

    2012-04-01

    An outstanding idea originally introduced by Greenberg is to investigate whether there is equivalence between intermediate statistics, which may be different from anyonic statistics, and q-deformed particle algebra. Also, a model to be studied for addressing such an idea could possibly provide us some new consequences about the interactions of particles as well as their internal structures. Motivated mainly by this idea, in this work, we consider a q-deformed Fermi gas model whose statistical properties enable us to effectively study interpolating statistics. Starting with a generalized Fermi-Dirac distribution function, we derive several thermostatistical functions of a gas of these deformed fermions in the thermodynamical limit. We study the high-temperature behavior of the system by analyzing the effects of q deformation on the most important thermostatistical characteristics of the system such as the entropy, specific heat, and equation of state. It is shown that such a deformed fermion model in two and three spatial dimensions exhibits the interpolating statistics in a specific interval of the model deformation parameter 0 < q < 1. In particular, for two and three spatial dimensions, it is found from the behavior of the third virial coefficient of the model that the deformation parameter q interpolates completely between attractive and repulsive systems, including the free boson and fermion cases. From the results obtained in this work, we conclude that such a model could provide much physical insight into some interacting theories of fermions, and could be useful to further study the particle systems with intermediate statistics.

  5. Hot Deformation Behavior of Hot-Extruded AA7175 Through Hot Torsion Tests.

    Science.gov (United States)

    Lee, Se-Yeon; Jung, Taek-Kyun; Son, Hyeon-Woo; Kim, Sang-Wook; Son, Kwang-Tae; Choi, Ho-Joon; Oh, Sang-Ho; Lee, Ji-Woon; Hyun, Soong-Keun

    2018-03-01

    The hot deformation behavior of hot-extruded AA7175 was investigated with flow curves and processing maps through hot torsion tests. The flow curves and the deformed microstructures revealed that dynamic recrystallization (DRX) occurred in the hot-extruded AA7175 during hot working. The failure strain was highest at medium temperature. This was mainly influenced by the dynamic precipitation of fine rod-shaped MgZn2. The processing map determined the optimal deformation condition for the alloy during hot working.

  6. Compressive Deformation Behavior of Closed-Cell Micro-Pore Magnesium Composite Foam

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2018-05-01

    Full Text Available The closed-cell micro-pore magnesium composite foam with hollow ceramic microspheres (CMs was fabricated by a modified melt foaming method. The effect of CMs on the compressive deformation behavior of CM-containing magnesium composite foam was investigated. Optical microscopy and scanning electron microscopy were used for observation of the microstructure. Finite element modeling of the magnesium composite foam was established to predict localized stress, fracture of CMs, and the compressive deformation behavior of the foam. The results showed that CMs and pores directly affected the compressive deformation behavior of the magnesium composite foam by sharing a part of load applied on the foam. Meanwhile, the presence of Mg2Si phase influenced the mechanical properties of the foam by acting as the crack source during the compression process.

  7. Compression deformation behaviors of sheet metals at various clearances and side forces

    Directory of Open Access Journals (Sweden)

    Zhan Mei

    2015-01-01

    Full Text Available Modeling sheet metal forming operations requires understanding of plastic behaviors of sheet metals along non-proportional strain paths. The plastic behavior under reversed uniaxial loading is of particular interest because of its simplicity of interpretation and its application to material elements drawn over a die radius and underwent repeated bending. However, the attainable strain is limited by failures, such as buckling and in-plane deformation, dependent on clearances and side forces. In this study, a finite element (FE model was established for the compression process of sheet specimens, to probe the deformation behavior. The results show that: With the decrease of the clearance from a very large value to a very small value, four defects modes, including plastic t-buckling, micro-bending, w-buckling, and in-plane compression deformation will occur. With the increase of the side force from a very small value to a very large value, plastic t-buckling, w-buckling, uniform deformation, and in-plane compression will occur. The difference in deformation behaviors under these two parameters indicates that the successful compression process without failures for sheet specimens only can be carried out under a reasonable side force.

  8. Multi-scale analysis of deformation behavior at SCC crack tip (2). (Contract research)

    International Nuclear Information System (INIS)

    Kaji, Yoshiyuki; Miwa, Yukio; Tsukada, Takashi; Hayakawa, Masao; Nagashima, Nobuo

    2007-03-01

    This report describes a result of the research conducted by the Japan Atomic Energy Agency and the National Institute for Materials Science under contract with Japan Nuclear Energy Safety Organization (JNES) that was concerned with a multi-scale analysis of plastic deformation behavior at the crack tip of stress corrosion cracking (SCC). The research was carried out to evaluate the validity of the SCC growth data acquired in the intergranular SCC (IGSCC) project based on a mechanistic understanding of SCC. For the purpose, in this research, analyses of the plastic deformation behavior and microstructure around the crack tip were performed in a nano-order scale. The hardness measured in nano, meso and macro scales was employed as a common index of the strength, and the essential data necessary to understand the SCC propagation behavior were acquired and analyzed that are mainly a size of plastic deformation region and a microstructural information in the region, e.g. data of crystallografy, microscopic deformation and dislocations at the inside of grains and grain boundaries. In this year, we analyzed the state of plastic deformation region at the crack tip of IGSCC under various conditions and investigated relationship between crack growth behavior and stress intensity factor. Especially, we investigated in detail about two different hardened specimens used in the SCC growth tests in the IGSCC project. (J.P.N.)

  9. Boronization and Carburization of Superplastic Stainless Steel and Titanium-Based Alloys

    Directory of Open Access Journals (Sweden)

    Masafumi Matsushita

    2011-07-01

    Full Text Available Bronization and carburization of fine-grain superplastic stainless steel is reviewed, and new experimental results for fine grain Ti88.5Al4.5V3Fe2Mo2 are reported. In superplastic duplex stainless steel, the diffusion of carbon and boron is faster than in non-superplastic duplex stainless steel. Further, diffusion is activated by uniaxial compressive stress. Moreover, non-superplastic duplex stainless steel shows typical grain boundary diffusion; however, inner grain diffusion is confirmed in superplastic stainless steel. The presence of Fe and Cr carbides or borides is confirmed by X-ray diffraction, which indicates that the diffused carbon and boron react with the Fe and Cr in superplastic stainless steel. The Vickers hardness of the carburized and boronized layers is similar to that achieved with other surface treatments such as electro-deposition. Diffusion of boron into the superplastic Ti88.5Al4.5V3Fe2Mo2 alloy was investigated. The hardness of the surface exposed to boron powder can be increased by annealing above the superplastic temperature. However, the Vickers hardness is lower than that of Ti boride.

  10. The deformation behavior of soil mass in the subsidence region of Beijing, China

    Directory of Open Access Journals (Sweden)

    F. Tian

    2015-11-01

    Full Text Available Land subsidence induced by excessive groundwater withdrawal has been a major environmental and geological problem in the Beijing plain area. The monitoring network of land subsidence in Beijing has been established since 2002 and has covered the entire plain area by the end of 2008. Based on data from extensometers and groundwater observation wells, this paper establishes curves of variations over time for both soil mass deformation and water levels and the relationship between soil mass deformation and water level. In addition, an analysis of deformation behavior is carried out for soil mass with various lithologies at different depths depending on the corresponding water level. Finally, the deformation behavior of soil mass is generalized into five categories. The conclusions include: (i the current rate of deformation of the shallow soil mass is slowing, and most of the mid-deep and deep soil mass continue to compress at a more rapid speed; (ii the sand strata behaves elastically, while the clay soil mass at different depths is usually characterized by elastic-plastic and creep deformation, which can be considered as visco-elastoplastic.

  11. Thermal image analysis of plastic deformation and fracture behavior by a thermo-video measurement system

    International Nuclear Information System (INIS)

    Ohbuchi, Yoshifumi; Sakamoto, Hidetoshi; Nagatomo, Nobuaki

    2016-01-01

    The visualization of the plastic region and the measurement of its size are necessary and indispensable to evaluate the deformation and fracture behavior of a material. In order to evaluate the plastic deformation and fracture behavior in a structural member with some flaws, the authors paid attention to the surface temperature which is generated by plastic strain energy. The visualization of the plastic deformation was developed by analyzing the relationship between the extension of the plastic deformation range and the surface temperature distribution, which was obtained by an infrared thermo-video system. Furthermore, FEM elasto-plastic analysis was carried out with the experiment, and the effectiveness of this non-contact measurement system of the plastic deformation and fracture process by a thermography system was discussed. The evaluation method using an infrared imaging device proposed in this research has a feature which does not exist in the current evaluation method, i.e. the heat distribution on the surface of the material has been measured widely by noncontact at 2D at high speed. The new measuring technique proposed here can measure the macroscopic plastic deformation distribution on the material surface widely and precisely as a 2D image, and at high speed, by calculation from the heat generation and the heat propagation distribution. (paper)

  12. Study on Hot Deformation Behavior of 7085 Aluminum Alloy during Backward Extrusion Process

    Directory of Open Access Journals (Sweden)

    R. B. Mei

    2015-01-01

    Full Text Available Compression test was carried out and the true stress-strain curves were obtained from the hot compression of 7085 alloy. A numerical simulation on the deformation behavior of 7085 aluminum alloy during the backward extrusion was also performed by finite element method. The results show that dynamic recrystallization occurs in the hot compression of 7085 alloy and the peak stress reaches higher values as the strain rate increases and deformation temperature decreases. The backward extrusion processes include contact deformation, initial deformation, and steady deformation. Severe plastic deformation of shear and compression occurs when the metal flowed into the channel between fillet of punch and wall of die so that the grain size can be refined by backward extrusion. The deformation in the region of top of wall is too small to meet the mechanical properties of requirements and the metal usually needs to be trimmed. The experiments with the same parameters as simulation had been carried out and the experimental cup after extrusion has better quality.

  13. Creep deformation behavior in eutectic Sn-Ag solder joints using a novel mapping technique

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, J.P.; Guo, F.; McDougall, J.; Bieler, T.R.; Subramanian, K.N.; Park, J.K.

    1999-11-01

    Creep deformation behavior was measured for 60--100 {micro}m thick solder joints. The solder joints investigated consisted of: (1) non-composite solder joints made with eutectic Sn-Ag solder, and (2) composite solder joints with eutectic Sn-Ag solder containing 20 vol.%, 5 {micro}m diameter in-situ Cu{sub 6}Sn{sub 5} intermetallic reinforcements. All creep testing in this study was carried out at room temperature. Qualitative and quantitative assessment of creep deformation was characterized on the solder joints. Creep deformation was analyzed using a novel mapping technique where a geometrical-regular line pattern was etched over the entire solder joint using excimer laser ablation. During creep, the laser-ablation (LA) pattern becomes distorted due to deformation in the solder joint. By imaging the distortion of laser-ablation patterns using the SEM, actual deformation mapping for the entire solder joint is revealed. The technique involves sequential optical/digital imaging of the deformation versus time history during creep. By tracing and recording the deformation of the LA patterns on the solder over intervals of time, local creep data are obtained in many locations in the joint. This analysis enables global and localized creep shear strains and strain rate to be determined.

  14. Alloy-dependent deformation behavior of highly ductile nanocrystalline AuCu thin films

    International Nuclear Information System (INIS)

    Lohmiller, Jochen; Spolenak, Ralph; Gruber, Patric A.

    2014-01-01

    Nanocrystalline thin films on compliant substrates become increasingly important for the development of flexible electronic devices. In this study, nanocrystalline AuCu thin films on polyimide substrate were tested in tension while using a synchrotron-based in situ testing technique. Analysis of X-ray diffraction profiles allowed identifying the underlying deformation mechanisms. Initially, elastic and microplastic deformation is observed, followed by dislocation-mediated shear band formation, and eventually macroscopic crack formation. Particularly the influence of alloy composition, heat-treatment, and test temperature were investigated. Generally, a highly ductile behavior is observed. However, high Cu concentrations, annealing, and/or large plastic strains lead to localized deformation and hence reduced ductility. On the other hand, enhanced test temperature allows for a delocalized deformation and extended ductility

  15. Alloy-dependent deformation behavior of highly ductile nanocrystalline AuCu thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lohmiller, Jochen [Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, 76021 Karlsruhe (Germany); Laboratory for Nanometallurgy, Department of Materials, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich (Switzerland); Spolenak, Ralph [Laboratory for Nanometallurgy, Department of Materials, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich (Switzerland); Gruber, Patric A., E-mail: patric.gruber@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2014-02-10

    Nanocrystalline thin films on compliant substrates become increasingly important for the development of flexible electronic devices. In this study, nanocrystalline AuCu thin films on polyimide substrate were tested in tension while using a synchrotron-based in situ testing technique. Analysis of X-ray diffraction profiles allowed identifying the underlying deformation mechanisms. Initially, elastic and microplastic deformation is observed, followed by dislocation-mediated shear band formation, and eventually macroscopic crack formation. Particularly the influence of alloy composition, heat-treatment, and test temperature were investigated. Generally, a highly ductile behavior is observed. However, high Cu concentrations, annealing, and/or large plastic strains lead to localized deformation and hence reduced ductility. On the other hand, enhanced test temperature allows for a delocalized deformation and extended ductility.

  16. Experimental and finite element analyses of plastic deformation behavior in vortex extrusion

    International Nuclear Information System (INIS)

    Shahbaz, M.; Pardis, N.; Kim, J.G.; Ebrahimi, R.; Kim, H.S.

    2016-01-01

    Vortex extrusion (VE) is a single pass severe plastic deformation (SPD) technique which can impose high strain values with almost uniform distribution within cross section of the processed material. This technique needs no additional facilities for installation on any conventional extrusion equipment. In this study the deformation behavior of material during VE is investigated and the results are compared with those of conventional extrusion (CE). These investigations include finite element analysis, visioplasticity, and microstructural characterization of the processed samples. The results indicate that the VE process can accumulate a higher strain value by applying an additional torsional deformation. The role of this additional deformation mode on the microstructural evolution of the VE sample is discussed and compared with the results obtained on the CE samples.

  17. The influence of hydrogen on the deformation behavior of zircaloy 4

    International Nuclear Information System (INIS)

    Flanagan, M. E.; Koss, D. A.; Motta, A. T.

    2008-01-01

    The deformation behavior of Zr based cladding forms a basis for fuel behavior codes and affects failure criteria; as such, it is critical to reactor safety. The present study examines the influence of hydrogen on the uniaxial deformation behavior of hydrided cold worked and stress relieved Zircaloy 4 plate material. Specimens of various orientations (i.e., stress axis aligned with the rolling direction, the transverse direction, or normal to the plate surface direction) were tested in compression at a range of temperatures (25 .deg. , 300 .deg. , and 400 .deg. C), and strain rates (from 10-4/s to 10-1/s). Contrasting the deformation behavior of the material containing ∼45 wt ppm H with that of the material containing ∼420 wt. ppm H shows that increasing H content (a) causes a small decrease in the 0.2% yield stress that is eliminated at 1.0% flow stress, (b) increases the strain hardening in the rolling direction but not in the other orientations, (c) has no effect on the temperature dependence of the strain hardening, and (d) does not affect the strain rate hardening behavior. Increasing H content also has no observable effect on the high degree of plastic anisotropy of this plate material which is manifested in difficult through thickness deformation, resulting in high flow stresses for specimens oriented in the normal to plate surface direction

  18. Deformation behavior of human enamel and dentin-enamel junction under compression.

    Science.gov (United States)

    Zaytsev, Dmitry; Panfilov, Peter

    2014-01-01

    Deformation behavior under uniaxial compression of human enamel and dentin-enamel junction (DEJ) is considered in comparison with human dentin. This deformation scheme allows estimating the total response from all levels of the hierarchical composite material in contrast with the indentation, which are limited by the mesoscopic and microscopic scales. It was shown for the first time that dental enamel is the strength (up to 1850MPa) hard tissue, which is able to consider some elastic (up to 8%) and plastic (up to 5%) deformation under compression. In so doing, it is almost undeformable substance under the creep condition. Mechanical properties of human enamel depend on the geometry of sample. Human dentin exhibits the similar deformation behavior under compression, but the values of its elasticity (up to 40%) and plasticity (up to 18%) are much more, while its strength (up to 800MPa) is less in two times. Despite the difference in mechanical properties, human enamel is able to suppress the cracking alike dentin. Deformation behavior under the compression of the samples contained DEJ as the same to dentin. This feature allows a tooth to be elastic-plastic (as dentin) and wear resistible (as enamel), simultaneously. © 2013 Elsevier B.V. All rights reserved.

  19. Healing behavior of preexisting hydrogen micropores in aluminum alloys during plastic deformation

    International Nuclear Information System (INIS)

    Toda, H.; Minami, K.; Koyama, K.; Ichitani, K.; Kobayashi, M.; Uesugi, K.; Suzuki, Y.

    2009-01-01

    Synchrotron X-ray microtomography was used to observe the shrinkage and annihilation behaviors of hydrogen micropores in three dimensions during hot and cold plastic deformation of an Al-Mg alloy. Whether complete healing of micropores is achieved after plastic deformation was examined by exposing the material to a high temperature after plastic deformation. Although micropores generally show a pattern of shrinking and closing, closer inspection of a single specimen revealed a variety of geometrically variable behaviors. It is noteworthy that some of the micropores are reinitiated in positions identical to those before their annihilation, even after an 8-22% macroscopic strain has been further applied after annihilation. We attribute local variations such as these to significant local strain variation, which we measured in a series of tomographic volumes by tracking the microstructural features.

  20. Large strain deformation behavior of polymeric gels in shear- and cavitation rheology

    Science.gov (United States)

    Hashemnejad, Seyed Meysam; Kundu, Santanu

    Polymeric gels are used in many applications including in biomedical and in food industries. Investigation of mechanical responses of swollen polymer gels and linking that to the polymer chain dynamics are of significant interest. Here, large strain deformation behavior of two different gel systems and with different network architecture will be presented. We consider biologically relevant polysaccharide hydrogels, formed through ionic and covalent crosslinking, and physically associating triblock copolymer gels in a midblock selective solvent. Gels with similar low-strain shear modulus display distinctly different non-linear rheological behavior in large strain shear deformation. Both these gels display strain-stiffening behavior in shear-deformation prior to macroscopic fracture of the network, however, only the alginate gels display negative normal stress. The cavitation rheology data show that the critical pressure for cavitation is higher for alginate gels than that observed for triblock gels. These distinctly different large-strain deformation behavior has been related to the gel network structure, as alginate chains are much stiffer than the triblock polymer chains.

  1. Compression deformation behaviors of sheet metals at various clearances and side forces

    OpenAIRE

    Zhan Mei; Wang Xianxian; Cao Jian; Yang He

    2015-01-01

    Modeling sheet metal forming operations requires understanding of plastic behaviors of sheet metals along non-proportional strain paths. The plastic behavior under reversed uniaxial loading is of particular interest because of its simplicity of interpretation and its application to material elements drawn over a die radius and underwent repeated bending. However, the attainable strain is limited by failures, such as buckling and in-plane deformation, dependent on clearances and side forces. I...

  2. Effect of strain and deformation route on grain boundary characteristics and recrystallization behavior of aluminum

    International Nuclear Information System (INIS)

    Sakai, Tetsuo; Takahashi, Yasuo; Utsunomiya, Hiroshi

    2014-01-01

    The effect of strain and deformation route on the recrystallization behavior of aluminum sheets has been investigated using well lubricated cold rolling and continuous equal channel angular extrusion. Three different deformation routes in plane strain corresponding to (1) simple shear, (2) compression, and (3) the combination of simple shear and compression were performed on 1100 aluminum sheet. Fixed amounts of the equivalent strain of 1.28 and 1.06 were accumulated in each route. In case of the combined deformation route, the ratio of shear strain to the total equivalent strain was varied. The recrystallized grain size was finer if the combined deformation route was employed instead of the monotonic route under the same amount of equivalent strain at either strain level. The density of high angle grain boundaries that act as nucleation sites for recrystallization was higher in materials deformed by the combined route. The orientation imaging micrographs revealed that the change in deformation route is effective for introducing a larger number of new high angle grain boundaries with relatively low misorientation angle

  3. Effect of strain and deformation route on grain boundary characteristics and recrystallization behavior of aluminum

    Science.gov (United States)

    Sakai, Tetsuo; Utsunomiya, Hiroshi; Takahashi, Yasuo

    2014-08-01

    The effect of strain and deformation route on the recrystallization behavior of aluminum sheets has been investigated using well lubricated cold rolling and continuous equal channel angular extrusion. Three different deformation routes in plane strain corresponding to (1) simple shear, (2) compression, and (3) the combination of simple shear and compression were performed on 1100 aluminum sheet. Fixed amounts of the equivalent strain of 1.28 and 1.06 were accumulated in each route. In case of the combined deformation route, the ratio of shear strain to the total equivalent strain was varied. The recrystallized grain size was finer if the combined deformation route was employed instead of the monotonic route under the same amount of equivalent strain at either strain level. The density of high angle grain boundaries that act as nucleation sites for recrystallization was higher in materials deformed by the combined route. The orientation imaging micrographs revealed that the change in deformation route is effective for introducing a larger number of new high angle grain boundaries with relatively low misorientation angle.

  4. Scratch deformation behavior of thermoplastic materials with significant differences in ductility

    International Nuclear Information System (INIS)

    Hadal, R.S.; Misra, R.D.K.

    2005-01-01

    A comparative study of the scratch deformation behavior of neat ethylene-propylene copolymers and polypropylene with significant differences in ductility is made by combining morphological examination by electron microscopy and scratch deformation parameters by atomic force microscopy. Also, the deformation behavior during scratch tests is examined for their respective long and short chain polymers. The ability of polymeric materials to resist scratch deformation under identical scratch test conditions follows the sequence (from maximum resistance to minimum resistance): short chain polypropylene > long chain polypropylene > short chain ethylene-propylene > long chain ethylene-propylene. The scratch tracks in ethylene-propylene copolymers were characterized by a consecutive parabolic pattern containing voids, while polypropylenes exhibited zig-zag periodic scratch tracks. The greater plastic flow in ethylene-propylene copolymers is encouraged by the high ductility of the copolymer and the ability to nucleate microvoids. The quasi-static periodic scratch tracks are a consequence of sequential accumulation and release of tangential force and represents the stick-slip process. The susceptibility to scratch deformation is discussed in terms of modulus, elastic recovery, scratch hardness, and entanglement density of polymeric materials. A higher effective entanglement density and percentage crystallinity of short chain polymers is helpful in enhancing scratch resistance as compared to their respective long chain polymers

  5. Use of multiscale zirconium alloy deformation models in nuclear fuel behavior analysis

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, Robert, E-mail: robert.montgomery@pnnl.gov [Pacific Northwest National Laboratory (United States); Tomé, Carlos, E-mail: tome@lanl.gov [Los Alamos National Laboratory (United States); Liu, Wenfeng, E-mail: wenfeng.liu@anatech.com [ANATECH Corporation (United States); Alankar, Alankar, E-mail: alankar.alankar@iitb.ac.in [Indian Institute of Technology Bombay (India); Subramanian, Gopinath, E-mail: gopinath.subramanian@usm.edu [University of Southern Mississippi (United States); Stanek, Christopher, E-mail: stanek@lanl.gov [Los Alamos National Laboratory (United States)

    2017-01-01

    Accurate prediction of cladding mechanical behavior is a key aspect of modeling nuclear fuel behavior, especially for conditions of pellet-cladding interaction (PCI), reactivity-initiated accidents (RIA), and loss of coolant accidents (LOCA). Current approaches to fuel performance modeling rely on empirical constitutive models for cladding creep, growth and plastic deformation, which are limited to the materials and conditions for which the models were developed. To improve upon this approach, a microstructurally-based zirconium alloy mechanical deformation analysis capability is being developed within the United States Department of Energy Consortium for Advanced Simulation of Light Water Reactors (CASL). Specifically, the viscoplastic self-consistent (VPSC) polycrystal plasticity modeling approach, developed by Lebensohn and Tomé [1], has been coupled with the BISON engineering scale fuel performance code to represent the mechanistic material processes controlling the deformation behavior of light water reactor (LWR) cladding. A critical component of VPSC is the representation of the crystallographic nature (defect and dislocation movement) and orientation of the grains within the matrix material and the ability to account for the role of texture on deformation. A future goal is for VPSC to obtain information on reaction rate kinetics from atomistic calculations to inform the defect and dislocation behavior models described in VPSC. The multiscale modeling of cladding deformation mechanisms allowed by VPSC far exceed the functionality of typical semi-empirical constitutive models employed in nuclear fuel behavior codes to model irradiation growth and creep, thermal creep, or plasticity. This paper describes the implementation of an interface between VPSC and BISON and provides initial results utilizing the coupled functionality.

  6. Acoustic emission behavior under bending deformation of YBCO bulk superconductor

    International Nuclear Information System (INIS)

    Yoneda, K.; Ye, J.; Tomita, M.

    2005-01-01

    Bending tests were conducted on U-notched specimens cut from a YBCO bulk superconductor. Acoustic emission (AE) signals obtained under loading parallel or perpendicular to the c-axis were analyzed to investigate the correlation between crack growth behavior and the AE signals. As a result of analyzing log-log plots of strength (σ B ) versus total AE energy (ΣE AE ), a linear relationship was found between ΣE AE and σ B n . Cracks could be broadly divided into two types based on the value of n as an index of crack growth behavior. One type consisted of microcracks originating from cleavage planes and gas holes; these crack propagated parallel to the c-axis and had an n index value of approximately 0.7. The other type was a main crack that originated from the U-notch and had an n index value of approximately 6.5. A sample (A) loaded parallel to the c-axis showed mean bending strength of 74.8MPa. Cracks displaying two different growth patterns of n=0.7 and 6.5 were presented in this sample. Microcracks parallel to the c-axis occurred in the vicinity of 5-10MPa. This sample was characterized by mixed crack growth of a main crack and microcracks. A sample (B) loaded perpendicular to the c-axis displayed mean bending strength of 43MPa. A main crack occurred in the vicinity of 20MPa and displayed a single growth pattern of n=6.5. By analyzing AE signals in this way in the process of conducting a strength evaluation, it was possible to evaluate the failure process of the bulk superconductor in relation to the strength level induced by the applied load

  7. Effect of Dislocation Density on Deformation Behavior of Super Strong Bainitic Steel

    Directory of Open Access Journals (Sweden)

    B. Avishan

    2017-02-01

    Full Text Available Presence of nanoscale bainitic ferrites and high carbon retained austenites that are stable at ambient temperature within the microstructures of super strong bainitic steels makes it possible to achieve exceptional strengths and ductility properties in these groups of nanostructured steels. This article aims to study the effect of the dislocation density variations during tensile testing in ambient temperature on deformation behavior of nanostructured low temperature bainitic steels. Results indicate that dislocation absorption from bainitic ferrite subunits by surrounding retained austenite reduces the work hardening and therefore increases the formability of bainitic ferrite during deformation, which in turn results in a suitable combination of strength and ductility.

  8. Quasi-superplasticity of a banded-grained Al-Mg-Y alloy processed by continuous casting-extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Furong, E-mail: cfr-lff@163.com [School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China); Zhu, Xiaotong [School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China); Huaian Dekema Semiconductor Co., Ltd., Huaian 223300 (China); Wang, Shuncheng [Institute of Materials Processing and Forming Technology, Guangdong General Research Institute of Industrial Technology, Guangzhou 510650 (China); Shi, Lu [School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China); Xu, Guangming [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Wen, Jinglin [School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China)

    2017-04-06

    The continuous casting-extrusion (CTE) process is a short-route technology for fabricating aluminum and aluminum alloy wires. A novel Al-1.44Mg-1.09Y alloy was prepared by CTE, and its mechanical properties and microstructure evolution were investigated at elevated temperatures to explore the hot tensile ductility of aluminum alloy wire. A true strain to failure of 1.159 was obtained at 773 K and 1.67×10{sup −2} s{sup −1}, and the present alloy exhibits high strain rate quasi-superplasticity. Microstructure observations reveal that it is difficult to realize the equiaxedness of elongated or textured grains through hot tensile deformation. A new deformation mechanism map (DMM) was constructed which predicts that dislocation climb at high stress dominates the high-temperature deformation process. This theoretical prediction using the DMM is in good agreement with experimental transmission-electron-microscopy results and with the estimated true stress exponent of 5 and the activation energy for deformation in the range 127.378―141.536 kJ mol{sup −1}. A new three-dimensional histogram containing a dynamic recovery (DRV) or dynamic recrystallization factor was constructed to demonstrate that the DRV mechanism dominates the deformation. Most experimental results are consistent with prediction using this histogram.

  9. Quasi-superplasticity of a banded-grained Al-Mg-Y alloy processed by continuous casting-extrusion

    International Nuclear Information System (INIS)

    Cao, Furong; Zhu, Xiaotong; Wang, Shuncheng; Shi, Lu; Xu, Guangming; Wen, Jinglin

    2017-01-01

    The continuous casting-extrusion (CTE) process is a short-route technology for fabricating aluminum and aluminum alloy wires. A novel Al-1.44Mg-1.09Y alloy was prepared by CTE, and its mechanical properties and microstructure evolution were investigated at elevated temperatures to explore the hot tensile ductility of aluminum alloy wire. A true strain to failure of 1.159 was obtained at 773 K and 1.67×10 −2 s −1 , and the present alloy exhibits high strain rate quasi-superplasticity. Microstructure observations reveal that it is difficult to realize the equiaxedness of elongated or textured grains through hot tensile deformation. A new deformation mechanism map (DMM) was constructed which predicts that dislocation climb at high stress dominates the high-temperature deformation process. This theoretical prediction using the DMM is in good agreement with experimental transmission-electron-microscopy results and with the estimated true stress exponent of 5 and the activation energy for deformation in the range 127.378―141.536 kJ mol −1 . A new three-dimensional histogram containing a dynamic recovery (DRV) or dynamic recrystallization factor was constructed to demonstrate that the DRV mechanism dominates the deformation. Most experimental results are consistent with prediction using this histogram.

  10. Theoretical analysis of deformation behavior of aluminum matrix composites in laser forming

    International Nuclear Information System (INIS)

    Liu, F.R.; Chan, K.C.; Tang, C.Y.

    2005-01-01

    In this paper, the deformation behavior of the SiC reinforced aluminum matrix composite in laser forming was investigated. A 2KW Nd:YAG laser was used to deform the composite at different laser powers, scanning speeds, numbers of irradiation passes and beam diameters. It was found that the bending angle increases with an increase in laser power, and a decrease in scanning speed and beam diameter. A relatively linear relationship between bending angle and number of irradiation passes was observed, and the effect of microstructural changes on the deformation behavior was discussed. An analytical model based on the Vollertsen's two-layer model was developed to predict the bending angle of the composite. The trends of the predictions are in good agreement with the experimental results. The effect of reinforcements on deformation behavior of the composite was further theoretically investigated. By modeling the changes of physical, thermal and mechanical properties including yield stress, elastic modulus, surface absorption coefficient and thermal conductivity of the material incorporated with SiC particles, the effect of reinforcement on laser bending angle was analyzed, and it was found that it would result in a larger bending angle. The significance of the findings will be discussed in the paper

  11. Emotional and behavioral reactions to facially deformed patients before and after craniofacial surgery.

    Science.gov (United States)

    Barden, R C; Ford, M E; Wilhelm, W M; Rogers-Salyer, M; Salyer, K E

    1988-09-01

    The present experiment investigated whether observers' emotional and behavioral reactions to facially deformed patients could be substantially improved by surgical procedures conducted by well-trained specialists in an experienced multidisciplinary team. Also investigated was the hypothesis that emotional states mediate the effects of physical attractiveness and facial deformity on social interaction. Twenty patients between the ages of 3 months and 17 years were randomly selected from over 2000 patients' files of Kenneth E. Salyer of Dallas, Texas. Patient diagnoses included facial clefts, hypertelorism, Treacher Collins syndrome, and craniofacial dysostoses (Crouzon's and Apert's syndromes). Rigorously standardized photographs of patients taken before and after surgery were shown to 22 "naive" raters ranging in age from 18 to 54 years. Raters were asked to predict their emotional and behavioral responses to the patients. These ratings indicated that observers' behavioral reactions to facially deformed children and adolescents would be more positive following craniofacial surgery. Similarly, the ratings indicated that observers' emotional reactions to these patients would be more positive following surgery. The results are discussed in terms of current sociopsychologic theoretical models for the effects of attractiveness on social interaction. A new model is presented that implicates induced emotional states as a mediating process in explaining the effects of attractiveness and facial deformity on the quality of social interactions. Limitations of the current investigation and directions for future research are also discussed.

  12. Deformation Behavior of Recycled Concrete Aggregate during Cyclic and Dynamic Loading Laboratory Tests

    Directory of Open Access Journals (Sweden)

    Wojciech Sas

    2016-09-01

    Full Text Available Recycled concrete aggregate (RCA is a relatively new construction material, whose applications can replace natural aggregates. To do so, extensive studies on its mechanical behavior and deformation characteristics are still necessary. RCA is currently used as a subbase material in the construction of roads, which are subject to high settlements due to traffic loading. The deformation characteristics of RCA must, therefore, be established to find the possible fatigue and damage behavior for this new material. In this article, a series of triaxial cyclic loading and resonant column tests is used to characterize fatigue in RCA as a function of applied deviator stress after long-term cyclic loading. A description of the shakedown phenomenon occurring in the RCA and calculations of its resilient modulus (Mr as a function of fatigue are also presented. Test result analysis with the stress-life method on the Wohler S-N diagram shows the RCA behavior in accordance with the Basquin law.

  13. Microstructures and recrystallization behavior of severely hot-deformed tungsten

    International Nuclear Information System (INIS)

    Mathaudhu, S.N.; De Rosset, A.J.; Hartwig, K.T.; Kecskes, L.J.

    2009-01-01

    When coarse-grained (CG) tungsten (W) is heavily worked by equal-channel angular extrusion (ECAE), the grain size is reduced to the ultrafine-grained/nanocrystalline regimes (UFG/NC) and the strength and ductility increase. Because of the brittle nature of CG W, the material must be hot-extruded, and, if the temperatures are near the recrystallization temperature (T rc ), gains in properties may not be maximized. In this study, the recrystallization behavior of ECAE-processed CG W is examined as a function of the imparted strain (i.e., number of extrusions) and the hot-working extrusion temperature. Up to four ECAE passes were performed in tooling with a 90 deg. channel intersection, and at temperatures of 1000 deg. C or 1200 deg. C. Subsequent 60 min annealing of the worked material to 1600 deg. C allowed for the determination of T rc . Vickers microhardness measurements and scanning electron microscopy, were used to characterize the microstructures in the as-worked and recrystallized states. The ECAE-processed W shows increased microstructural break-up and refinement with increasing strain and decreasing hot-working temperature in the fully worked state. T rc was determined to be ∼1400 deg. C, which is nearly independent of the number of extrusions and the working temperature. These results show that if ECAE is accomplished below 1400 deg. C (i.e., at 1000 deg. C or lower) the attractive properties of the UFG/NC-worked W may be retained. Specifically, below 1000 deg. C, with increasing strain imparted to the material, high hardness values with a concomitant grain size refinement (∼350 nm) could be expected

  14. Co-planar deformation and thermal propagation behavior in a bundle burst test

    International Nuclear Information System (INIS)

    Uetsuka, Hiroshi; Koizumi, Yasuo; Kawasaki, Satoru

    1980-07-01

    The probability of the suggested feedback mechanism which could lead to co-planar deformation in a bundle burst test was assessed by the data of test and the calculation based on simplified model. Following four points were evaluated. (1) The probability of local deformation during early heat up stage. (2) The relation between the characteristic of heater and the feedback mechanism. (3) Thermal propagation behavior between two adjacent rods during heat up stage. (4) The propagation of ballooning in a bundle. The probability of suggested feedback mechanism was denied in all the evaluation. The feedback mechanism suggested by Burman could not be a controlling mechanism in co-planar deformation in a bundle burst test. (author)

  15. Deformation behavior of human dentin in liquid nitrogen: a diametral compression test.

    Science.gov (United States)

    Zaytsev, Dmitry; Panfilov, Peter

    2014-09-01

    Contribution of the collagen fibers into the plasticity of human dentin is considered. Mechanical testing of dentin at low temperature allows excluding the plastic response of its organic matrix. Therefore, deformation and fracture behavior of the dentin samples under diametral compression at room temperature and liquid nitrogen temperature are compared. At 77K dentin behaves like almost brittle material: it is deformed exclusively in the elastic regime and it fails due to growth of the sole crack. On the contrary, dentin demonstrates the ductile response at 300K. There are both elastic and plastic contributions in the deformation of dentin samples. Multiple cracking and crack tip blunting precede the failure of samples. Organic phase plays an important role in fracture of dentin: plasticity of the collagen fibers could inhibit the crack growth. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Plastic deformation and fracture behavior of zircaloy-2 fuel cladding tubes under biaxial stress

    International Nuclear Information System (INIS)

    Maki, Hideo; Ooyama, Masatosi

    1975-01-01

    Various combinations of biaxial stress were applied on five batches of recrystallized zircaloy-2 fuel cladding tubes with different textures; elongation in both axial and circumferential directions of the specimen was measured continuously up to 5% plastic deformation. The anisotropic theory of plasticity proposed by Hill was applied to the resulting data, and anisotropy constants were obtained through the two media of plastic strain loci and plastic strain ratios. Comparison of the results obtained with the two methods proved that the plastic strain loci provide data that are more effective in predicting quantitatively the plastic deformation behavior of the zircaloy-2 tubes. The anisotropy constants change their value with progress of plastic deformation, and judicious application of the effective stress and effective strain obtained on anisotropic materials will permit the relationship between stress and strain under various biaxialities of stresses to be approximated by the work hardening law. The test specimens used in the plastic deformation experiments were then stressed to fracture under the same combination of biaxial stress as in the proceeding experiments, and the deformation in the fractured part was measured. The result proved that the tilt angle of the c-axis which serves as the index of texture is related to fracture ductility under biaxial stress. Based on this relationship, it was concluded that material with a tilt angle ranging from 10 0 to 15 0 is the most suitable for fuel cladding tubes, from the viewpoint of fracture ductility, at least in the case of unirradiated material. (auth.)

  17. Hot deformation behavior and microstructure evolution of TA15 titanium alloy with nonuniform microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Pengfei; Zhan, Mei, E-mail: zhanmei@nwpu.edu.cn; Fan, Xiaoguang; Lei, Zhenni; Cai, Yang

    2017-03-24

    The flow behavior and microstructure evolution of a near α titanium alloy with nonuniform microstructure during hot deformation were studied by isothermal compression test and electron backscatter diffraction technique. It is found that the nonuniform microstructure prior to deformation consists of equiaxed α, lamellar α in the colony form and β phase, and the α colony keeps the Burgers orientation relationship with β phase. The flow stress of nonuniform microstructure exhibits significant flow softening after reaching the peak stress at a low strain, which is similar to the lamellar microstructure. Nevertheless, the existence of equiaxed α in nonuniform microstructure makes its flow stress and softening rate be lower than the lamellar microstructure. During deformation, the lamellar α undertakes most of the deformation and turns to be rotated, bended and globularized. Moreover, these phenomena exhibit significant heterogeneity due to the orientation dependence of the deformation of lamellar α. The continuous dynamic recrystallization and bending of lamellar α lead to the “fragmentation” during globularization of lamellar α. The bending of lamellar α is speculated as a form of plastic buckling, because the bending of lamellar α almost proceed in the manner of “rigid rotation” and presents opposite bending directions for the adjacent colonies.

  18. Effect of Sn addition on the microstructure and deformation behavior of Mg-3Al alloy

    International Nuclear Information System (INIS)

    Suh, Byeong-Chan; Kim, Jae H.; Bae, Jun Ho; Hwang, Ji Hyun; Shim, Myeong-Shik; Kim, Nack J.

    2017-01-01

    Mg alloys generally suffer from their poor formability at low temperatures due to their strong basal texture and a lack of adequate deformation systems. In the present study, a small amount of Sn was added instead of Zn to Mg-3Al alloy to modify its deformation behavior and improve the stretch formability. Microstructural examinations of the deformed Mg-3Al-1Sn (AT31) alloy by electron backscatter diffraction and transmission electron microscopy show that prismatic slip is quite active during deformation, resulting in much lower r-values and planar anisotropy than the counterpart Mg-3Al-1Zn (AZ31) alloy. Polycrystal plasticity simulation based on visco-plasticity self-consistent (VPSC) model also shows that prismatic slip is the dominant deformation mode in AT31 alloy besides basal slip. As a consequence, AT31 alloy shows a much higher stretch formability than AZ31 alloy. On the other hand, AZ31 alloy shows the development of intense shear bands during stretch forming, and these shear bands act as crack propagating paths, limiting the stretch formability of AZ31 alloy.

  19. In-reactor deformation and fracture of austenitic stainless steels

    International Nuclear Information System (INIS)

    Bloom, E.E.; Wolfer, W.G.

    1978-01-01

    An experimental technique for determining in-reactor fracture strain was developed and demonstrated. Differential swelling between a sample holder and a test specimen with a lower swelling rate produced uniaxial deformation. In-reactor deformations of 0.7 to 2.1% were achieved in type 304 stainless steel previously irradiated to fluences up to 8.8 x 10 26 n/m 2 without fracture. These strains are significantly higher than found in postirradiation creep-rupture tests on similar samples. From the measured strain values and published irradiation creep data and correlations, the stress levels during the irradiation were calculated. On the basis of previous postirradiation creep-rupture results, many of the samples that did not fail would be predicted to fail. Thus we conclude that the in-reactor rupture life is longer than predicted by postirradiation tests. Strain in a fractured sample was estimated to be less than 3.8%, and the in-reactor fractures were intergranular--the same fracture mode as found in postirradiation tests. Irradiation creep may relax stresses at crack tips and sliding boundaries, thus retarding the initiation and/or growth of cracks and leading to longer rupture lives in-reactor. However, the very high ductility or superplastic behavior predicted by the strain rate sensitivity of irradiation creep is not achieved because of the eventual interruption of the deformation process by grain boundary fracture

  20. Hot Deformation Behavior of SiCP/A1-Cu Composite

    Directory of Open Access Journals (Sweden)

    CHENG Ming-yang

    2017-02-01

    Full Text Available Using the Gleeble-1500D simulator, the high temperature plastic deformation behavior of SiCp/Al-Cu composite were investigated at 350-500℃ with the strain rate of 0.01-10s-1. The true stress-strain curves were obtained in the tests. Constitutive equation and processing map were established. The results show that the softening mechanism of dynamic recrystallization is a feature of high-temperature flow stress-strain curves of SiCp/A1-Cu composite, and the peak stress increases with the decrease of deformation temperature or the increase of strain rate.The flow stress behavior of the composite during hot compression deformation can be represented by a Zener-Hollomon parameter in the hyperbolic sine form. Its activation energy for hot deformation Q is 320.79kJ/mol. The stable regions and the instability regions in the processing map were identified and the microstructures in different regions of processing map were studied.There are particle breakage and void in the instability regions.

  1. High Temperature Deformation of Twin-Roll Cast Al-Mn-Based Alloys after Equal Channel Angular Pressing.

    Science.gov (United States)

    Málek, Přemysl; Šlapáková Poková, Michaela; Cieslar, Miroslav

    2015-11-12

    Twin roll cast Al-Mn- and Al-Mn-Zr-based alloys were subjected to four passes of equal channel angular pressing. The resulting grain size of 400 nm contributes to a significant strengthening at room temperature. This microstructure is not fully stable at elevated temperatures and recrystallization and vast grain growth occur at temperatures between 350 and 450 °C. The onset of these microstructure changes depends on chemical and phase composition. Better stability is observed in the Al-Mn-Zr-based alloy. High temperature tensile tests reveal that equal channel angular pressing results in a softening of all studied materials at high temperatures. This can be explained by an active role of grain boundaries in the deformation process. The maximum values of ductility and strain rate sensitivity parameter m found in the Al-Mn-Zr-based alloy are below the bottom limit of superplasticity (155%, m = 0.25). However, some features typical for superplastic behavior were observed-the strain rate dependence of the parameter m , the strengthening with increasing grain size, and the fracture by diffuse necking. Grain boundary sliding is believed to contribute partially to the overall strain in specimens where the grain size remained in the microcrystalline range.

  2. Effect of Heating Rate on Grain Structure and Superplasticity of 7B04 Aluminum Alloy Sheets

    Directory of Open Access Journals (Sweden)

    CHEN Min

    2017-03-01

    Full Text Available Fine-grained 7B04 aluminum alloy sheets were manufactured through thermo-mechanical treatment. The effects of anneal heating rate on grain structure and superplasticity were investigated using electron back scattering diffraction(EBSD and high temperature tensile test. The results show that at the heating rate of 5.0×10-3K/s, the average grain sizes along the rolling direction(RD and normal direction(ND are 28.2μm and 13.9μm respectively, the nucleation rate is 1/1000. With the increase of heating rate, the average grain size decreases, and the nucleation rate increases. When the heating rate increases to 30.0K/s, the average grain sizes along the RD and ND decrease respectively to 9.9μm and 5.1μm, and the nucleation rate increases to 1/80. Besides, with the increase of heating rate, the elongation of sheets also increases. The elongation of the specimens increases from 100% to 730% under the deforming condition of 773K/8×10-4s-1.

  3. Roll-to-Roll Nanoforming of Metals Using Laser-Induced Superplasticity.

    Science.gov (United States)

    Goswami, Debkalpa; Munera, Juan C; Pal, Aniket; Sadri, Behnam; Scarpetti, Caio Lui P G; Martinez, Ramses V

    2018-05-24

    This Letter describes a low-cost, scalable nanomanufacturing process that enables the continuous forming of thin metallic layers with nanoscale accuracy using roll-to-roll, laser-induced superplasticity (R2RLIS). R2RLIS uses a laser shock to induce the ultrahigh-strain-rate deformation of metallic films at room temperature into low-cost polymeric nanomolds, independently of the original grain size of the metal. This simple and inexpensive nanoforming method does not require access to cleanrooms and associated facilities, and can be easily implemented on conventional CO 2 lasers, enabling laser systems commonly used for rapid prototyping or industrial cutting and engraving to fabricate uniform and three-dimensional crystalline metallic nanostructures over large areas. Tuning the laser power during the R2RLIS process enables the control of the aspect ratio and the mechanical and optical properties of the fabricated nanostructures. This roll-to-roll technique successfully fabricates mechanically strengthened gold plasmonic nanostructures with aspect ratios as high as 5 that exhibit high oxidation resistance and strong optical field enhancements. The CO 2 laser used in R2RLIS can also integrate the fabricated nanostructures on transparent flexible substrates with robust interfacial contact. The ability to fabricate ultrasmooth metallic nanostructures using roll-to-roll manufacturing enables the large scale production, at a relatively low-cost, of flexible plasmonic devices toward emerging applications.

  4. Dynamic grain growth in superplastic Y-TZP and Al2O3/YTZ

    International Nuclear Information System (INIS)

    Nieh, T.G.; Tomasello, C.M.; Wadsworth, J.

    1990-01-01

    This paper reports that both static and dynamic grain growth have been studied during superplastic deformation of fine-grained yttria-stabilized tetragonal zirconia (Y-TZP) and alumina reinforced yttria-stabilized tetragonal zirconia (Al 2 O 3 /YTZ). Grain growth was observed in both materials at temperatures above 1350 degrees C. In the case of Y-TZP, both static and dynamic grain growth were found to obey a similar equation of the form: D 3 -D 0 3 = kt where D is the instantaneous grain size, D 0 is the initial grain size, t is the time, and k is a kinetic constant which depends primarily on temperature and grain boundary energy. The activation energies for Y-TZP were approximately 580 and 520 kJ/mol, for static and dynamic grain growth, respectively. In the case of Al 2 O 3 /YTZ, it was found that the grain growth rate for the Al 2 O 3 phase was slower than that for the ZrO 2 phase. The growth rate of the ZrO 2 phase in Al 2 O 3 /YTZ is, however, similar to that in monolithic ZrO 2 i.e., Y-TZP

  5. Hot deformation behavior and hot working characteristic of Nickel-base electron beam weldments

    Energy Technology Data Exchange (ETDEWEB)

    Ning, Yongquan, E-mail: ningke521@163.com [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); Yao, Zekun; Guo, Hongzhen [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); Fu, M.W. [Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)

    2014-01-25

    Highlights: • The Hot deformation behavior of electron beam (EB) Nickel-base weldments was investigated. • The constitutive equation represented by temperature, strain rate and true strain was developed. • Processing map approach was adopted to optimize the hot forging process of EB weldments. • True strain has a great effect on the efficiency of power dissipation (η). -- Abstract: The electron beam welding (EBW) of Nickel-base superalloys was conducted, and the cylindrical compression specimens were machined from the central part of the electron beam (EB) weldments. The hot deformation behavior of EB weldments was investigated at the temperature of 960–1140 °C and the strain rate of 0.001–1.0 s{sup −1}. The apparent activation energy of deformation was calculated to be 400 kJ/mol, and the constitutive equation that describes the flow stress as a function of strain rate and deformation temperature was proposed for modeling of the hot deformation process of EB weldments. The processing map approach was adopted to investigate the deformation mechanisms during the hot plastic deformation and to optimize the processing parameters of EB weldments. It is found that the true strain has a significant effect on the efficiency of power dissipation (η). The η value in the safe processing domain (1140 °C, 1.0 s{sup −1}) increases from 0.32 to 0.55. In the unsafe processing domain (1080 °C, 0.001 s{sup −1}), however, the η value greatly decreases with the increase of strain. When the strain is 0.40, the efficiency of power dissipation becomes negative. The flow instability is predicted to occur since the instability parameter ξ(ε) becomes negative. The hot deformation of EB weldments can be carried out safely in the domain with the strain rate range of 0.1–1.0 s{sup −1} and the temperature range of 960–1140 °C. When the height reduction is about 50%, the optimum processing condition is (T{sub opi}: 1140 °C, ε{sub opi}: 1.0 s{sup −1}) with

  6. Hot deformation behavior and hot working characteristic of Nickel-base electron beam weldments

    International Nuclear Information System (INIS)

    Ning, Yongquan; Yao, Zekun; Guo, Hongzhen; Fu, M.W.

    2014-01-01

    Highlights: • The Hot deformation behavior of electron beam (EB) Nickel-base weldments was investigated. • The constitutive equation represented by temperature, strain rate and true strain was developed. • Processing map approach was adopted to optimize the hot forging process of EB weldments. • True strain has a great effect on the efficiency of power dissipation (η). -- Abstract: The electron beam welding (EBW) of Nickel-base superalloys was conducted, and the cylindrical compression specimens were machined from the central part of the electron beam (EB) weldments. The hot deformation behavior of EB weldments was investigated at the temperature of 960–1140 °C and the strain rate of 0.001–1.0 s −1 . The apparent activation energy of deformation was calculated to be 400 kJ/mol, and the constitutive equation that describes the flow stress as a function of strain rate and deformation temperature was proposed for modeling of the hot deformation process of EB weldments. The processing map approach was adopted to investigate the deformation mechanisms during the hot plastic deformation and to optimize the processing parameters of EB weldments. It is found that the true strain has a significant effect on the efficiency of power dissipation (η). The η value in the safe processing domain (1140 °C, 1.0 s −1 ) increases from 0.32 to 0.55. In the unsafe processing domain (1080 °C, 0.001 s −1 ), however, the η value greatly decreases with the increase of strain. When the strain is 0.40, the efficiency of power dissipation becomes negative. The flow instability is predicted to occur since the instability parameter ξ(ε) becomes negative. The hot deformation of EB weldments can be carried out safely in the domain with the strain rate range of 0.1–1.0 s −1 and the temperature range of 960–1140 °C. When the height reduction is about 50%, the optimum processing condition is (T opi : 1140 °C, ε opi : 1.0 s −1 ) with the peak efficiency of 0

  7. Constitutive Behavior and Processing Map of T2 Pure Copper Deformed from 293 to 1073 K

    Science.gov (United States)

    Liu, Ying; Xiong, Wei; Yang, Qing; Zeng, Ji-Wei; Zhu, Wen; Sunkulp, Goel

    2018-02-01

    The deformation behavior of T2 pure copper compressed from 293 to 1073 K with strain rates from 0.01 to 10 s-1 was investigated. The constitutive equations were established by the Arrhenius constitutive model, which can be expressed as a piecewise function of temperature with two sections, in the ranges 293-723 K and 723-1073 K. The processing maps were established according to the dynamic material model for strains of 0.2, 0.4, 0.6, and 0.8, and the optimal processing parameters of T2 copper were determined accordingly. In order to obtain a better understanding of the deformation behavior, the microstructures of the compressed samples were studied by electron back-scattered diffraction. The grains tend to be more refined with decreases in temperature and increases in strain rate.

  8. EXPERIMENTAL AND NUMERICAL INVESTIGATION OF FLEXIBLE BURIED PIPE DEFORMATION BEHAVIOR UNDER VARIOUS BACKFILL CONDITIONS

    Directory of Open Access Journals (Sweden)

    Niyazi Uğur TERZİ

    2009-01-01

    Full Text Available Deformation characteristics of polyethylene based flexible pipes are different than rigid pipes such as concrete and iron pipes. Deflection patterns and stress-strain behaviors of flexible pipes have strict relation between the engineering properties of backfill and its settlement method. In this study, deformation behavior of a 100 mm HDPE flexible pipe under vertical loads is investigated in laboratory conditions. Steel test box, pressurized membrane, raining system, linear position transducers and strain gauge rosettes are used in the laboratory tests. In order to analyze the buried pipe performance; Masada Derivation Formula which is mostly used by designers is employed. According to the test and mathematical studies, it is understood that relative density of backfill and its settlement method is a considerable effect on buried pipe performance and Masada Derivation method is very efficient for predicting the pipe performance.

  9. Effect of Strain Rate on Microscopic Deformation Behavior of High-density Polyethylene under Uniaxial Stretching

    Directory of Open Access Journals (Sweden)

    Kida Takumitsu

    2017-01-01

    Full Text Available The microscopic deformation behaviors such as the load sharing and the molecular orientation of high-density polyethylene under uniaxial stretching at various strain rates were investigated by using in-situ Raman spectroscopy. The chains within crystalline phase began to orient toward the stretching direction beyond the yielding region and the orientation behavior was not affected by the strain rate. While the stretching stress along the crystalline chains was also not affected by the strain rate, the peak shifts of the Raman bands at 1130, 1418, 1440 and 1460 cm-1, which are sensitive to the interchain interactions obviously, depended on the strain rate; the higher strain rates lead to the stronger stretching stress or negative pressure on the crystalline and amorphous chains. These effects of the strain rate on the microscopic deformation was associated with the cavitation and the void formation leading to the release of the internal pressure.

  10. Strength and deformation behaviors of veined marble specimens after vacuum heat treatment under conventional triaxial compression

    Science.gov (United States)

    Su, Haijian; Jing, Hongwen; Yin, Qian; Yu, Liyuan; Wang, Yingchao; Wu, Xingjie

    2017-10-01

    The mechanical behaviors of rocks affected by high temperature and stress are generally believed to be significant for the stability of certain projects involving rocks, such as nuclear waste storage and geothermal resource exploitation. In this paper, veined marble specimens were treated to high temperature treatment and then used in conventional triaxial compression tests to investigate the effect of temperature, confining pressure, and vein angle on strength and deformation behaviors. The results show that the strength and deformation parameters of the veined marble specimens changed with the temperature, presenting a critical temperature of 600 °C. The triaxial compression strength of a horizontal vein (β = 90°) is obviously larger than that of a vertical vein (β = 0°). The triaxial compression strength, elasticity modulus, and secant modulus have an approximately linear relation to the confining pressure. Finally, Mohr-Coulomb and Hoek-Brown criteria were respectively used to analyze the effect of confining pressure on triaxial compression strength.

  11. Creep deformation and rupture behavior of type 304/308 stainless steel structural weldments

    International Nuclear Information System (INIS)

    McAfee, W.J.; Richardson, M.; Sartory, W.K.

    1977-01-01

    The creep deformation and rupture of type 304/308 stainless steel structural weldments at 593 0 C (1100 0 F) was experimentally investigated to study the comparative behavior of the base metal and weld metal constituents. The tests were conducted in support of ORNL's program to develop high-temperature structural design methods applicable to liquid-metal fast breeder reactor (LMFBR) system components that operate in the creep range. The specimens used were thin-walled, right circular cylinders capped with either flat or hemispherical heads and tested under internal gas pressure. Circumferential welds were located in different regions of the cylinder or head and, with one exception, were geometrically duplicated by all base metal regions in companion specimens. Results are presented on the comparative deformation and rupture behavior of selected points in the base metal and weldment regions of the different specimens and on the overall surface strains for selected specimens

  12. Corrosion behavior of HPT-deformed TiNi alloys in cell culture medium

    Science.gov (United States)

    Shri, D. N. Awang; Tsuchiya, K.; Yamamoto, A.

    2017-09-01

    In recent years there are growing interest in fabrication of bulk nanostructured metals and alloys by using severe plastic deformation (SPD) techniques as new alternative in producing bulk nanocrystalline materials. These techniques allows for processing of bulk, fully dense workpiece with ultrafine grains. Metal undergoes SPD processing in certain techniques such as high pressure torsion (HPT), equal-channel angular pressing (ECAP) or multi-directional forging (MDF) are subjected to extensive hydrostatic pressure that may be used to impart a very high strain to the bulk solid without the introduction of any significant change in overall dimension of the sample. The change in the structure (small grain size and high-volume fraction of grain boundaries) of the material may result in the corrosion behavior different from that of the coarse-grained material. Electrochemical measurements were done to understand the corrosion behavior of TiNi alloys before and after HPT deformation. The experiment was carried out using standard three electrode setup (a sample as working electrode; a platinum wire as a counter electrode and a saturated calomel electrode in saturated KCl as a reference electrode) with the surface area of 26.42 mm2 exposed to the EMEM+10% FBS cell culture medium. The measurements were performed in an incubator with controlled environment at 37 °C and 5% CO2, simulating the cell culture condition. The potential of the specimen was monitored over 1 hour, and the stabilized potential was used as the open-circuit potential (EOCP). Potentiodynamic curves were scanned in the potential range from -0.5 V to 1.5 V relative to the EOCP, at a rate of 0.5 mV/s. The result of OCP-time measurement done in the cell culture medium shows that the OCP of HPT-deformed samples shifts towards to the more positive rather than that of BHPT samples. The OCP of deformed samples were ennobled to more than +70 mV for Ti-50mol%. The shift of OCP towards the nobler direction

  13. Forecasting of mechanical - and structural behavior of 316 austenitic stainless steels by deformation charts

    International Nuclear Information System (INIS)

    Monteiro, S.N.

    1980-01-01

    The utilization of deformation charts applied to AISI 316 austenitic stainless steel with the purpose of foreseeing its behavior associated with structural and mechanical phenomena, is evaluated. The ocurrence of phenomena such as dynamic aging, martensite transformation, static aging, failure at creep curve, cells, subgrains and boundary slips is discussed in the different regions of the chart. A practical example of the charts' utilization for components of fast reactors is finally presented. (Author) [pt

  14. Effect of thermal processing practices on the properties of superplastic Al-Li alloys

    Science.gov (United States)

    Hales, Stephen J.; Lippard, Henry E.

    1993-01-01

    The effect of thermal processing on the mechanical properties of superplastically formed structural components fabricated from three aluminum-lithium alloys was evaluated. The starting materials consisted of 8090, 2090, and X2095 (Weldalite(TM) 049), in the form of commercial-grade superplastic sheet. The experimental test matrix was designed to assess the impact on mechanical properties of eliminating solution heat treatment and/or cold water quenching from post-forming thermal processing. The extensive hardness and tensile property data compiled are presented as a function of aging temperature, superplastic strain and temper/quench rate for each alloy. The tensile properties of the materials following superplastic forming in two T5-type tempers are compared with the baseline T6 temper. The implications for simplifying thermal processing without degradation in properties are discussed on the basis of the results.

  15. Mechanical properties and deformation behavior of Al/Al7075, two-phase material

    International Nuclear Information System (INIS)

    Sherafat, Z.; Paydar, M.H.; Ebrahimi, R.; Sohrabi, S.

    2010-01-01

    In the present study, mechanical properties and deformation behavior of Al/Al7075, two-phase material were investigated. The two-phase materials were fabricated by mixing commercially pure Al powder with Al7075 chips and consolidating the mixture through hot extrusion process at 500 o C. Mechanical properties and deformation behavior of the fabricated samples were evaluated using tensile and compression tests. A scanning electron microscope was used to study the fracture surface of the samples including different amount of Al powder, after they were fractured in tensile test. The results of the tensile and compression tests showed that with decreasing the amount of Al powder, the strength increases and ductility decreases. Calculation of work hardening exponent (n) indicated that deformation behavior does not follow a regular trend. In a way that the n value was approved to be variable and a strong function of strain and Al powder wt% of the sample. The results of the fractography studies indicate that the type of fracture happened changes from completely ductile to nearly brittle by decreasing the wt% of Al powder from 90% to 40%.

  16. Deformation behavior of irradiated Zr-2.5Nb pressure tube material

    International Nuclear Information System (INIS)

    Himbeault, D.D.; Chow, C.K.; Puls, M.P.

    1994-01-01

    A study of the deformation behavior of irradiated highly textured Zr-2.5Nb pressure tube material in the temperature range of 30 degree C to 300 degree C was undertaken to understand better the mechanism for the deterioration of the fracture toughness with neutron irradiation. Strain localization behavior, believed to be a main contributor to reduced toughness, was observed in irradiated transverse tensile specimens at temperature greater than 100 degree C. The strain localization behavior was found to occur by the cooperative twinning of the highly textured grains of the material, resulting in a local softening of the material, where the flow than localizes. It is believed that the effect of the irradiation is to favor twinning at the expense of slip in the early stages of deformation. This effect becomes more pronounced at higher temperature, thus leading to the high-temperature strain localization behavior of the material. A limited amount of dislocation channeling was also observed; however, it is not considered to have a major role in the strain localization behavior of the material. Contrary to previous reports on irradiated zirconium alloys, static strain aging is observed in the irradiated material in the temperature range of 150 degree C to 300 degree C

  17. Deformation Behavior of Sub-micron and Micron Sized Alumina Particles in Compression.

    Energy Technology Data Exchange (ETDEWEB)

    Sarobol, Pylin; Chandross, Michael E.; Carroll, Jay; Mook, William; Boyce, Brad; Kotula, Paul Gabriel; McKenzie, Bonnie Beth; Bufford, Daniel Charles; Hall, Aaron Christopher.

    2014-09-01

    The ability to integrate ceramics with other materials has been limited due to high temperature (>800degC) ceramic processing. Recently, researchers demonstrated a novel process , aerosol deposition (AD), to fabricate ceramic films at room temperature (RT). In this process, sub - micro n sized ceramic particles are accelerated by pressurized gas, impacted on the substrate, plastically deformed, and form a dense film under vacuum. This AD process eliminates high temperature processing thereby enabling new coatings and device integration, in which ceramics can be deposited on metals, plastics, and glass. However, k nowledge in fundamental mechanisms for ceramic particle s to deform and form a dense ceramic film is still needed and is essential in advancing this novel RT technology. In this wo rk, a combination of experimentation and atomistic simulation was used to determine the deformation behavior of sub - micron sized ceramic particle s ; this is the first fundamental step needed to explain coating formation in the AD process . High purity, singl e crystal, alpha alumina particles with nominal size s of 0.3 um and 3.0 um were examined. Particle characterization, using transmission electron microscopy (TEM ), showed that the 0.3 u m particles were relatively defect - free single crystals whereas 3.0 u m p articles were highly defective single crystals or particles contained low angle grain boundaries. Sub - micron sized Al 2 O 3 particles exhibited ductile failure in compression. In situ compression experiments showed 0.3um particles deformed plastically, fractured, and became polycrystalline. Moreover, dislocation activit y was observed within the se particles during compression . These sub - micron sized Al 2 O 3 particles exhibited large accum ulated strain (2 - 3 times those of micron - sized particles) before first fracture. I n agreement with the findings from experimentation , a tomistic simulation s of nano - Al 2 O 3 particles showed dislocation slip and

  18. High temperature deformation behavior and microstructural evolutions of a high Zr containing WE magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Asqardoust, Sh.; Zarei-Hanzaki, A. [School of Metallurgical & Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Fatemi, S.M., E-mail: mfatemi@ut.ac.ir [Shahid Rajaee Teacher Training University, Tehran (Iran, Islamic Republic of); Moradjoy-Hamedani, M. [School of Metallurgical & Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2016-06-05

    Magnesium alloys containing RE elements (WE grade) are considered as potential materials for high temperature structural applications. To this end, it is crucial to study the flow behavior and the microstructural evolution of these alloys at high temperatures. In present work, the hot compression testing was employed to investigate the deformation behavior of a rolled WE54 magnesium alloy at elevated temperatures. The experimental material failed to deform to target strain of 0.6 at 250 and 300 °C, while the straining was successfully performed at 350 °C. A flow softening was observed at 350 °C, which was related to the depletion of RE strengthener elements, particularly Y atoms, from the solid solution and dynamic precipitation of β phases. It was suggested that the Zener pinning effect of the latter precipitates might retard the occurrence of dynamic recrystallization. As the temperature increased to 450 and 500 °C, the RE elements dissolved in the matrix and thus dynamic recrystallization could considerably progress in the microstructure. The comparative study of specimens cut along transverse ad normal direction (TD and ND specimens) implied that the presence of RE elements might effectively reduce the yield anisotropy in WE54 rolled alloy. Microstructural observations indicated a higher fraction of dynamically-recrystallized grains for the ND specimens. This was discussed relying on the different shares of deformation mechanism during compressing the TD and ND specimens. - Highlights: • Deformation behavior of a high Zr WE alloy was addressed at low strain rate. • Dynamic precipitation was realized at 350 °C. • The occurrence of DRX was retarded due to Zener pinning effect. • A higher DRX fraction was obtained in ND specimens comparing with TD ones.

  19. Superplastic characteristics and microstructure of neutron irradiated 3Y-TZP

    International Nuclear Information System (INIS)

    Shibata, Taiju; Motohashi, Yoshinobu; Ishihara, Masahiro; Baba, Shinichi; Sawa, Kazuhiro

    2006-01-01

    Fast neutrons (energy > 1.6 x 10 -13 J) were irradiated to 3Y-TZP specimens, typical superplastic ceramics, at the fluence of 2.5 x 10 24 and 4.3 x 10 24 m -2 at JMTR of JAEA. The Vickers hardness with indentation load of 4.9 and 9.8 N at room temperature was seemed to be slightly increased by the irradiation. Through the superplastic tensile tests in a temperature range from 1623 to 1773 K with initial strain rates of 5.0 x 10 -4 and 1.0 x 10 -3 s -1 , it was found that the superplastic flow stress is decreased with increasing the neutron fluence. The microstructural features of the fractured specimens were observed by a SEM. It implies that the grain boundary microstructure of the irradiated specimens would be changed by annealing in the superplastic tests are elevated temperatures. It is quite probable that the irradiation-induced vacancy clusters might play an important role to weaken the grain boundary cohesion which may be an important factor to determine the superplastic properties, and hence they would decrease the superplastic flow stress. (author)

  20. Anisotropic deformation behavior of as-extruded 6063-T4 alloy under dynamic impact loading

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Tuo [State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082 (China); Li, Luoxing, E-mail: luoxing_li@yahoo.com [State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082 (China); Joint Center for Intelligent New Energy Vehicle, Tongji University, Shanghai 200092 (China); Liu, Xiao; Liu, Wenhui [Key Laboratory of High Temperature Wear Resistant Materials Preparation Technology of Hunan Province, Hunan University of Science and Technology, Xiangtan 411201 (China); Guo, Pengcheng; Tang, Xu [State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082 (China)

    2016-06-01

    The deformation behavior of 6063-T4 aluminum alloy bar was investigated by compression tests conducted at a wide strain rate range of 10{sup −4} to 9×10{sup 3} s{sup −1} with loading directions at 0°, 45° and 90° to the axis of the extruded bar. It is found that the flow stresses of 0° specimens are always the highest and those of the 45° specimens are the lowest at the same conditions. The flow stress exhibits obvious strain rate sensitivity (SRS), which differs from static to dynamic deformation. The Schmid factors (SFs) for each type of texture components were calculated. For the {112}<111> texture component, the max Schmid factors are 0.27, 0.49 and 0.41 for 0°, 45° and 90° specimens. For the {110}<111> texture component, they are 0.27, 0.43 and 0.41 for the three directions. The initial texture changes significantly with increasing strain, the strain rate has slight influence on the texture evolution. The transmission electron microscope (TEM) observations indicate that as the strain rate increases, the density of the dislocation increases and its distribution becomes more homogeneous. It is necessary to consider the anisotropic deformation behavior and microstructure evolution in material selection and structure design for the impact components.

  1. Deformation Behavior of Press Formed Shell by Indentation and Its Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Minoru Yamashita

    2015-01-01

    Full Text Available Deformation behavior and energy absorbing performance of the press formed aluminum alloy A5052 shells were investigated to obtain the basic information regarding the mutual effect of the shell shape and the indentor. Flat top and hemispherical shells were indented by the flat- or hemispherical-headed indentor. Indentation force in the rising stage was sharper for both shell shapes when the flat indentor was used. Remarkable force increase due to high in-plane compressive stress arisen by the appropriate tool constraint was observed in the early indentation stage, where the hemispherical shell was deformed with the flat-headed indentor. This aspect is preferable for energy absorption performance per unit mass. Less fluctuation in indentation force was achieved in the combination of the hemispherical shell and similar shaped indentor. The consumed energy in the travel length of the indentor equal to the shell height was evaluated. The increase ratio of the energy is prominent when the hemispherical indentor is replaced by a flat-headed one in both shell shapes. Finite element simulation was also conducted. Deformation behaviors were successfully predicted when the kinematic hardening plasticity was introduced in the material model.

  2. Multi-scale analysis of deformation behavior at SCC crack tip (3) (Contract research)

    International Nuclear Information System (INIS)

    Kaji, Yoshiyuki; Miwa, Yukio; Tsukada, Takashi; Hayakawa, Masao; Nagashima, Nobuo

    2008-08-01

    In recent years, incidents of the stress corrosion cracking (SCC) were frequently reported that occurred to the various components of domestic boiling water reactors (BWR), and the cause investigation and measure become the present important issue. By the Japan nuclear energy safety organization (JNES), a research project on the intergranular SCC (IGSCC) in nuclear grade stainless steels (henceforth, IGSCC project) is under enforcement from a point of view to secure safety and reliability of BWR, and SCC growth data of low carbon stainless steels are being accumulated for the weld part or the work-hardened region adjacent to the weld metal. In the project, it has been an important subject to guarantee the validity of accumulated SCC data. At a crack tip of SCC in compact tension (CT) type specimen used for the SCC propagation test, a macroscopic plastic region is formed where heterogeneity of microstructure developed by microscopic sliding and dislocations is observed. However, there is little quantitative information on the plastic region, and therefore, to assess the data of macroscopic SCC growth rate and the validity of propagation test method, it is essentially required to investigate the plastic region at the crack tip in detail from a microscopic viewpoint. This report describes a result of the research conducted by the Japan Atomic Energy Agency and the National Institute for Materials Science under contract with JNES that was concerned with a multi-scale analysis of plastic deformation behavior at the crack tip of SCC. The research was carried out to evaluate the validity of the SCC growth data acquired in the IGSCC project based on a mechanistic understanding of SCC. For the purpose, in this research, analyses of the plastic deformation behavior and microstructure around the crack tip were performed in a nano-order scale. The hardness measured in nano, meso and macro scales was employed as a common index of the strength, and the essential data necessary

  3. Influence of deformation rate on plasticity of metals under pressure

    International Nuclear Information System (INIS)

    Churbaev, R.V.; Dobromyslov, A.V.; Kolmogorov, V.L.; Taluts, G.G.

    1990-01-01

    Change of polycrystalline molybdenum (BCC) and titanium (HCP) plasticity under pressure depeding on the deformation rate at the room temperature is studied. It is shown that the reduction of molybdenum and titanium deformation rate leads to a substantial growth of their plastic properties with the effect being increased with pressure growth. Production of several necks testifying to the transition to a superplastic state is observed at high pressures and low deformation rates. A functional dependence of plasticity change on the deformation rate under pressure is ascertained

  4. Hot compressive deformation behavior of the as-quenched A357 aluminum alloy

    International Nuclear Information System (INIS)

    Yang, X.W.; Lai, Z.H.; Zhu, J.C.; Liu, Y.; He, D.

    2012-01-01

    Highlights: ► We create a thermal history curve which was applied to carry out compression tests. ► We make an analysis of deformation performance for as-quenched A357 alloy. ► We create a constitutive equation which has good accuracy. - Abstract: The objective of the present work was to establish an accurate thermal-stress mathematical model of the quenching operation for A357 (Al–7Si–0.6Mg) alloy and to investigate the deformation behavior of this alloy. Isothermal compression tests of as-quenched A357 alloy were performed in the temperature range of 350–500 °C and at the strain rate range of 0.001–1 s −1 . Experimental results show that the flow stress of as-quenched A357 alloy decreases with the increase of temperature and the decrease of strain rate. Based on the hyperbolic sine equation, a constitutive equation is a relation between 0.2 pct yield stress and deformation conditions (strain rate and deformation temperature) was established. The corresponding hot deformation activation energy (Q) for as-quenched A357 alloy is 252.095 kJ/mol. Under the different small strains (≤0.01), the constitutive equation parameters of as-quenched A357 alloy were calculated. Values of flow stress calculated by constitutive equation were in a very good agreement with experimental results. Therefore, it can be used as an accurate thermal-stress model to solve the problems of quench distortion of parts.

  5. Effect of dynamic strain aging on cyclic stress response and deformation behavior of Zircaloy-2

    International Nuclear Information System (INIS)

    Sudhakar Rao, G.; Verma, Preeti; Mahobia, G.S.; Santhi Srinivasa, N.C.; Singh, Vakil; Chakravartty, J.K.; Nudurupatic, Saibaba

    2016-01-01

    The effect of strain rate and temperature was studied on cyclic stress response and deformation behavior of annealed Zircaloy-2. Dynamic strain aging was exhibited under some test conditions. The cyclic stress response was found to be dependent on temperature and strain rate. At 300 °C, with decrease in strain rate, there was decrease in the rate as well as the degree of cyclic hardening. However, at 400°C, there was opposite trend and with decrease in strain rate both the rate as well as the degree of hardening increased. The deformation substructure showed dislocation bands, dislocation vein structure, PSB wall structure at both the temperatures. Irrespective of the temperature, there was dislocation loop structure, known as corduroy structure, at both the test temperatures. Based on the dislocation structure, the initial linear hardening is attributed to development of veins and PSB wall structure and the secondary hardening to the Corduroy structure. (author)

  6. Dynamic Deformation Behavior of Soft Material Using Shpb Technique and Pulse Shaper

    Science.gov (United States)

    Lee, Ouk Sub; Cho, Kyu Sang; Kim, Sung Hyun; Han, Yong Hwan

    This paper presents a modified Split Hopkinson Pressure Bar (SHPB) technique to obtain compressive stress strain data for NBR rubber materials. An experimental technique with a modified the conventional SHPB has been developed for measuring the compressive stress strain responses of materials with low mechanical impedance and low compressive strengths, such as the rubber and the polymeric material. This paper uses an aluminum pressure bar to achieve a closer impedance match between the pressure bar and the specimen materials. In addition, a pulse shaper is utilized to lengthen the rising time of the incident pulse to ensure dynamic stress equilibrium and homogeneous deformation of NBR rubber materials. It is found that the modified technique can determine the dynamic deformation behavior of rubbers more accurately.

  7. Deformation behavior of Mg-alloy-based composites at different temperatures studied by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, Gergely [Department of Metal Physics, Charles University, Ke Karlovu, 5, CZ-121 16 Prague (Czech Republic); Nuclear Physics Institute, v. v. i., 250 68 Řež (Czech Republic); Máthis, Kristian [Department of Metal Physics, Charles University, Ke Karlovu, 5, CZ-121 16 Prague (Czech Republic); Pilch, Ján [Nuclear Physics Institute, v. v. i., 250 68 Řež (Czech Republic); Minárik, Peter [Department of Metal Physics, Charles University, Ke Karlovu, 5, CZ-121 16 Prague (Czech Republic); Lukáš, Petr [Nuclear Physics Institute, v. v. i., 250 68 Řež (Czech Republic); Vinogradov, Alexei, E-mail: alexei.vinogradov@ntnu.no [Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology - NTNU, Trondheim N-7491 (Norway); Institute of Advanced Technologies, Togliatti State University, 445020 (Russian Federation)

    2017-02-08

    The influence of the reinforcement short Saffil fibers on the deformation behavior of Mg-Al-Ca alloy-based composite with two different fiber plane orientations is investigated and clarified using in-situ neutron diffraction at room and elevated temperatures. The measured lattice strain evolution points to a more efficient reinforcing effect of fibers at parallel fiber plane orientation, which decreases at elevated temperature. A significant decrement of compressive lattice strain was incidentally observed in the matrix in the direction of load axis when deformation due to the elevated temperature occurred. Electron microscopy revealed the influence of the temperature and fiber orientation on fiber cracking. The EBSD observations corroborated neutron diffraction results highlighting significant twin growth at elevated testing temperatures.

  8. Modelling the viscoplastic behavior and the heterogeneous intracrystalline deformation of columnar ice polycrystals

    Energy Technology Data Exchange (ETDEWEB)

    Lebensohn, Ricardo A [Los Alamos National Laboratory; Montagnat, Maurine [LGGE (FRANCE); Mansuy, Philippe [MICHELIN (FRANCE); Duval, Paul [LGGE (FRANCE); Philip, A [LGGE (FRANCE)

    2008-01-01

    A full-field formulation based on Fast Fourier Transforms (FFT) has been adapted and used to predict the micromechanical fields that develop in columnar Ih ice polycrystals deforming in compression by dislocation creep. The predicted intragranular mechanical fields are in qualitative good agreement with experimental observations, in particular those involving the formation of shear and kink bands. These localization bands are associated with the large internal stresses that develop during creep in such anisotropic material, and their location, intensity, morphology and extension are found to depend strongly on the crystallographic orientation of the grains and on their interaction with neighbor crystals. The predictions of the model are also discussed in relation with the deformation of columnar sea and lake ice, and with the mechanical behavior of granular ice of glaciers and polar ice sheets, as well.

  9. Hot Deformation Behavior of SA508Gr.4N Steel for Reactor Pressure Vessels

    Directory of Open Access Journals (Sweden)

    YANG Zhi-qiang

    2017-08-01

    Full Text Available The high-temperature plastic deformation and dynamic recrystallization behavior of SA508Gr.4N steel were investigated through hot deformation tests in a Gleeble1500D thermal mechanical simulator. The compression tests were performed in the temperature range of 1050-1250℃ and the strain rate range of 0.001-0.1s-1 with true strain of 0.16. The results show that from the high-temperature true stress-strain curves of the SA508Gr.4N steel, the main feature is dynamic recrystallization,and the peak stress increases with the decrease of deformation temperature or the increase of strain rate, indicating the experimental steel is temperature and strain rate sensitive material. The constitutive equation for SA508Gr.4N steel is established on the basis of the true stress-strain curves, and exhibits the characteristics of the high-temperature flow behavior quite well, while the activation energy of the steel is determined to be 383.862kJ/mol. Furthermore, an inflection point is found in the θ-σ curve, while the -dθ/dσ-σ curve shows a minimum value. The critical strain increases with increasing strain rate and decreasing deformation temperature. A linear relationship between critical strain (εc and peak strain (εp is found and could be expressed as εc/εp=0.517. The predicted model of critical strain could be described as εc=8.57×10-4Z0.148.

  10. Understanding compressive deformation behavior of porous Ti using finite element analysis

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Sandipan; Khutia, Niloy [Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur (India); Das, Debdulal [Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur (India); Das, Mitun, E-mail: mitun@cgcri.res.in [Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India); Balla, Vamsi Krishna [Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India); Bandyopadhyay, Amit [W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 (United States); Chowdhury, Amit Roy, E-mail: arcbesu@gmail.com [Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur (India)

    2016-07-01

    In the present study, porous commercially pure (CP) Ti samples with different volume fraction of porosities were fabricated using a commercial additive manufacturing technique namely laser engineered net shaping (LENS™). Mechanical behavior of solid and porous samples was evaluated at room temperature under quasi-static compressive loading. Fracture surfaces of the failed samples were analyzed to determine the failure modes. Finite Element (FE) analysis using representative volume element (RVE) model and micro-computed tomography (CT) based model have been performed to understand the deformation behavior of laser deposited solid and porous CP-Ti samples. In vitro cell culture on laser processed porous CP-Ti surfaces showed normal cell proliferation with time, and confirmed non-toxic nature of these samples. - Highlights: • Porous CP-Ti samples fabricated using additive manufacturing technique • Compressive deformation behavior of porous samples closely matches with micro-CT and RVE based analysis • In vitro studies showed better cell proliferation with time on porous CP-Ti surfaces.

  11. The High Strain Rate Deformation Behavior of High Purity Magnesium and AZ31B Magnesium Alloy

    Science.gov (United States)

    Livescu, Veronica; Cady, Carl M.; Cerreta, Ellen K.; Henrie, Benjamin L.; Gray, George T.

    The deformation in compression of pure magnesium and AZ31B magnesium alloy, both with a strong basal pole texture, has been investigated as a function of temperature, strain rate, and specimen orientation. The mechanical response of both metals is highly dependent upon the orientation of loading direction with respect to the basal pole. Specimens compressed along the basal pole direction have a high sensitivity to strain rate and temperature and display a concave down work hardening behavior. Specimens loaded perpendicularly to the basal pole have a yield stress that is relatively insensitive to strain rate and temperature and a work hardening behavior that is parabolic and then linearly upwards. Both specimen orientations display a mechanical response that is sensitive to temperature and strain rate. Post mortem characterization of the pure magnesium was conducted on a subset of specimens to determine the microstructural and textural evolution during deformation and these results are correlated with the observed work hardening behavior and strain rate sensitivities were calculated.

  12. Understanding compressive deformation behavior of porous Ti using finite element analysis

    International Nuclear Information System (INIS)

    Roy, Sandipan; Khutia, Niloy; Das, Debdulal; Das, Mitun; Balla, Vamsi Krishna; Bandyopadhyay, Amit; Chowdhury, Amit Roy

    2016-01-01

    In the present study, porous commercially pure (CP) Ti samples with different volume fraction of porosities were fabricated using a commercial additive manufacturing technique namely laser engineered net shaping (LENS™). Mechanical behavior of solid and porous samples was evaluated at room temperature under quasi-static compressive loading. Fracture surfaces of the failed samples were analyzed to determine the failure modes. Finite Element (FE) analysis using representative volume element (RVE) model and micro-computed tomography (CT) based model have been performed to understand the deformation behavior of laser deposited solid and porous CP-Ti samples. In vitro cell culture on laser processed porous CP-Ti surfaces showed normal cell proliferation with time, and confirmed non-toxic nature of these samples. - Highlights: • Porous CP-Ti samples fabricated using additive manufacturing technique • Compressive deformation behavior of porous samples closely matches with micro-CT and RVE based analysis • In vitro studies showed better cell proliferation with time on porous CP-Ti surfaces

  13. Influence of cold working on deformation behavior and shape memory effect of Ti-Ni-Nb

    International Nuclear Information System (INIS)

    Okita, K.; Semba, H.; Okabe, N.; Sakuma, T.; Mihara, Y.

    2005-01-01

    In this study, the influence of cold working on the deformation behavior and the transformation characteristics was investigated on the Ti-Ni-Nb shape memory alloy (SMA). Both the tensile test and the shape recovery test were performed for the wire specimens of 1mm in the diameter with some different rates of cold working. The shape recovery tests were performed for the wire specimens of different cold working rates until the various levels of maximum applied strain, and the reverse-transformation characteristics on the process of heating after unloading were studied. It is clarified that the higher cold-working rate improves the shape memory properties of the alloy. (orig.)

  14. Precipitation behavior in a nitride-strengthened martensitic heat resistant steel during hot deformation

    Directory of Open Access Journals (Sweden)

    Wenfeng Zhang

    2015-09-01

    Full Text Available The stress relaxation curves for three different hot deformation processes in the temperature range of 750–1000 °C were studied to develop an understanding of the precipitation behavior in a nitride-strengthened martensitic heat resistant steel (Zhang et al., Mater. Sci. Eng. A, 2015 [1]. This data article provides supporting data and detailed information on how to accurately analysis the stress relaxation data. The statistical analysis of the stress peak curves, including the number of peaks, the intensity of the peaks and the integral value of the pumps, was carried out. Meanwhile, the XRD energy spectrum data was also calculated in terms of lattice distortion.

  15. Microstructure and Hot Deformation Behavior of Fe-20Cr-5Al Alloy

    OpenAIRE

    Jung-Ho Moon; Tae Kwon Ha

    2014-01-01

    High temperature deformation behavior of cast Fe-20Cr-5Al alloy has been investigated in this study by performing tensile and compression tests at temperatures from 1100 to 1200oC. Rectangular ingots of which the dimensions were 300×300×100 in millimeter were cast using vacuum induction melting. Phase equilibrium was calculated using the FactSage®, thermodynamic software and database. Tensile strength of cast Fe-20Cr-5Al alloy was 4 MPa at 1200oC. With temperature decreas...

  16. An Explicit Approach Toward Modeling Thermo-Coupled Deformation Behaviors of SMPs

    Directory of Open Access Journals (Sweden)

    Hao Li

    2017-03-01

    Full Text Available A new elastoplastic J 2 -flow models with thermal effects is proposed toward simulating thermo-coupled finite deformation behaviors of shape memory polymers. In this new model, an elastic potential evolving with development of plastic flow is incorporated to characterize the stress-softening effect at unloading and, moreover, thermo-induced plastic flow is introduced to represent the strain recovery effect at heating. It is shown that any given test data for both effects may be accurately simulated by means of direct and explicit procedures. Numerical examples for model predictions compare well with test data in literature.

  17. Deformation twins and related softening behavior in nanocrystalline Cu–30% Zn alloy

    International Nuclear Information System (INIS)

    Bahmanpour, Hamed; Youssef, Khaled M.; Horky, Jelena; Setman, Daria; Atwater, Mark A.; Zehetbauer, Michael J.; Scattergood, Ronald O.; Koch, Carl C.

    2012-01-01

    Nanocrystalline Cu–30% Zn samples were produced by high energy ball milling at 77 K and room temperature. Cryomilled flakes were further processed by ultrahigh strain high pressure torsion (HPT) or room temperature milling to produce bulk artifact-free samples. Deformation-induced grain growth and a reduction in twin probability were observed in HPT consolidated samples. Investigations of the mechanical properties by hardness measurements and tensile tests revealed that at small grain sizes of less than ∼35 nm Cu–30% Zn deviates from the classical Hall–Petch relation and the strength of nanocrsytalline Cu–30% Zn is comparable with that of nanocrystalline pure copper. High resolution transmission electron microscopy studies show a high density of finely spaced deformation nanotwins, formed due to the low stacking fault energy of 14 mJ m –2 and low temperature severe plastic deformation. Possible softening mechanisms proposed in the literature for nanotwin copper are addressed and the twin-related softening behavior in nanotwinned Cu is extended to the Cu–30% Zn alloy based on detwinning mechanisms.

  18. Hot Deformation Behavior of 1Cr12Ni3Mo2VN Martensitic Stainless Steel

    Science.gov (United States)

    He, Xiaomao; Jiang, Peng; Zhou, Leyu; Chen, Chao; Deng, Xiaochun

    2017-08-01

    1Cr12Ni3Mo2VN is a new type of martensitic stainless steel for the last-stage blades of large-capacity nuclear and thermal power turbines. The deformation behavior of this steel was studied by thermal compression experiments that performed on a Gleeble-3500 thermal simulator at a temperature range of 850°C to 1200°C and a strain rate of 0.01s-1 to 20s-1. When the deformation was performed at high temperature and low strain rate, a necklace type of microstructures was observed, the plastic deformation mechanism is grain boundary slip and migration, when at low temperature and lower strain rate, the slip bands were observed, the mechanism is intracrystalline slips, and when at strain rate of 20s-1, twins were observed, the mechanism are slips and twins. The Arrhenius equation was applied to describe the constitutive equation of the flow stress. The accuracy of the equation was verified by using the experimental data and the correlation coefficient R2 = 0.9786, and the equation can provide reasonable data for the design and numerical simulation of the forging process.

  19. Observation of Compressive Deformation Behavior of Nuclear Graphite by Digital Image Correlation

    International Nuclear Information System (INIS)

    Kim, Hyunju; Kim, Eungseon; Kim, Minhwan; Kim, Yongwan

    2014-01-01

    Polycrystalline nuclear graphite has been proposed as a fuel element, moderator and reflector blocks, and core support structures in a very high temperature gas-cooled reactor. During reactor operation, graphite core components and core support structures are subjected to various stresses. It is therefore important to understand the mechanism of deformation and fracture of nuclear graphites, and their significance to structural integrity assessment methods. Digital image correlation (DIC) is a powerful tool to measure the full field displacement distribution on the surface of the specimens. In this study, to gain an understanding of compressive deformation characteristic, the formation of strain field during a compression test was examined using a commercial DIC system. An examination was made to characterize the compressive deformation behavior of nuclear graphite by a digital image correlation. The non-linear load-displacement characteristic prior to the peak load was shown to be mainly dominated by the presence of localized strains, which resulted in a permanent displacement. Young's modulus was properly calculated from the measured strain

  20. Characterization of the failure behavior of zinc coating on dual phase steel under tensile deformation

    International Nuclear Information System (INIS)

    Song Guiming; Sloof, Willem G.

    2011-01-01

    Highlights: → The microcracks and voids at the zinc grain boundaries are the initial sites for the coating cracking. → The crack spacing of the fragmentally fractured zinc coating is mainly determined by the zinc grain size. → Small zinc grain size and the c-axis direction of zinc grain parallel to the zinc surface are beneficial to the mitigation of the zinc coating delamination. - Abstract: The failure behavior of hot-dip galvanized zinc coatings on dual phase steels under tensile deformation is characterized with in situ scanning electron microscopy (SEM). Under tension, the pre-existed microcracks and voids at the zinc grain boundaries propagate along the zinc grain boundaries to form crack nets within the coating, leading to a segmented fracture of the zinc coating with the crack spacing approximately equal to the zinc grain size. With further loading, the coating segments partially delaminated along the interface between the top zinc layer and the inhibition layer instead of the interface between the inhibition layer and steel substrate. As the c-axis of zinc grains trends to be normal to the tensile loading direction, the twinning deformation became more noticeable, and meanwhile the coating delamination was diminished. The transverse and incline tunneling cracks occurred in the inhibition layer with tensile deformation. The existence of the brittle FeZn 13 particles on top of the inhibition layer was unfavorable to the coating adhesion.

  1. Hot Ductility and Compression Deformation Behavior of TRIP980 at Elevated Temperatures

    Science.gov (United States)

    Zhang, Mei; Li, Haiyang; Gan, Bin; Zhao, Xue; Yao, Yi; Wang, Li

    2018-02-01

    The hot ductility tests of a kind of 980 MPa class Fe-0.31C (wt pct) TRIP steel (TRIP980) with the addition of Ti/V/Nb were conducted on a Gleeble-3500 thermomechanical simulator in the temperatures ranging from 873 K to 1573 K (600 °C to 1300 °C) at a constant strain rate of 0.001 s-1. It is found that the hot ductility trough ranges from 873 K to 1123 K (600 °C to 850 °C). The recommended straightening temperatures are from 1173 K to 1523 K (900 °C to 1250 °C). The isothermal hot compression deformation behavior was also studied by means of Gleeble-3500 in the temperatures ranging from 1173 K to 1373 K (900 °C to 1100 °C) at strain rates ranging from 0.01 s-1 to 10 s-1. The results show that the peak stress decreases with the increasing temperature and the decreasing strain rate. The deformation activation energy of the test steel is 436.7 kJ/mol. The hot deformation equation of the steel has been established, and the processing maps have been developed on the basis of experimental data and the principle of dynamic materials model (DMM). By analyzing the processing maps of strains of 0.5, 0.7, and 0.9, it is found that dynamic recrystallization occurs in the peak power dissipation efficiency domain, which is the optimal area of hot working. Finally, the factors influencing hot ductility and thermal activation energy of the test steel were investigated by means of microscopic analysis. It indicates that the additional microalloying elements play important roles both in the loss of hot ductility and in the enormous increase of deformation activation energy for the TRIP980 steel.

  2. Thermoplastic deformation of ferromagnetic CoFe-based bulk metallic glasses

    Science.gov (United States)

    Wu, Chenguang; Hu, Renchao; Man, Qikui; Chang, Chuntao; Wang, Xinmin

    2017-12-01

    The superplastic deformation behavior of the ferromagnetic Co31Fe31Nb8B30 bulk metallic glass (BMG) in the supercooled liquid region was investigated. At a given temperature, the BMG exhibits a Newtonian behavior at low strain rates but a non-Newtonian behavior at high strain rates. The high thermal stability of this glassy alloy system offers an enough processing window to thermoplastic forming (TPF), and the strong processing ability was examined by simple micro-replication experiments. It is demonstrated that the TPF formability on length scales ranging down to nanometers can be achieved in the selected experimental condition. Based on the analysis of deformation behavior, the nearly full density sample (i.e. nearly 100%), was produced from water-atomized glassy powders and consolidated by the hot-pressing technique. The sample exhibits good soft-magnetic and mechanical properties, i.e., low coercive force of 0.43 Oe, high initial permeability of 4100 and high Vickers hardness 1398. These results suggest that the hot-pressing process opens up possibilities for the commercial exploitation of BMGs in engineering applications.

  3. Strain-softening behavior of an Fe-6.5 wt%Si alloy during warm deformation and its applications

    International Nuclear Information System (INIS)

    Fu Huadong; Zhang Zhihao; Yang Qiang; Xie Jianxin

    2011-01-01

    Research highlights: → An Fe-6.5 wt%Si alloy exhibits strain-softening behavior after large deformation. → The decrease of the order degree is responsible for the strain-softening behavior. → The strain-softening behavior of Fe-6.5 wt%Si alloy can be applied in cold rolling. → An Fe-6.5 wt%Si thin strip with thickness of 0.20 mm is fabricated by cold rolling. - Abstract: An Fe-6.5 wt%Si alloy with columnar grains was compressed at a temperature below its recrystallization temperature. The Vickers hardness and structure of the alloy before and after deformation were investigated. The results showed that with an increase in the degree of deformation, Vickers hardness of the alloy initially increased rapidly and then decreased slowly, indicating that the alloy had a strain-softening behavior after a large deformation. Meanwhile, the work-hardening exponent of the alloy decreased significantly. Transmission electron microscopy confirmed that the decrease of the order degree was responsible for the strain-softening behavior of the deformed alloy. Applying its softening behavior, the Fe-6.5 wt%Si alloy with columnar grains was rolled at 400 deg. C and then at room temperature. An Fe-6.5 wt%Si thin strip with thickness of 0.20 mm was fabricated. The surface of the strip was bright and had no obvious edge cracks.

  4. Prediction of hot deformation behavior of high phosphorus steel using artificial neural network

    Science.gov (United States)

    Singh, Kanchan; Rajput, S. K.; Soota, T.; Verma, Vijay; Singh, Dharmendra

    2018-03-01

    To predict the hot deformation behavior of high phosphorus steel, the hot compression experiments were performed with the help of thermo-mechanical simulator Gleeble® 3800 in the temperatures ranging from 750 °C to 1050 °C and strain rates of 0.001 s-1, 0.01 s-1, 0.1 s-1, 0.5 s-1, 1.0 s-1 and 10 s-1. The experimental stress-strain data are employed to develop artificial neural network (ANN) model and their predictability. Using different combination of temperature, strain and strain rate as a input parameter and obtained experimental stress as a target, a multi-layer ANN model based on feed-forward back-propagation algorithm is trained, to predict the flow stress for a given processing condition. The relative error between predicted and experimental stress are in the range of ±3.5%, whereas the correlation coefficient (R2) of training and testing data are 0.99986 and 0.99999 respectively. This shows that a well-trained ANN model has excellent capability to predict the hot deformation behavior of materials. Comparative study shows quite good agreement of predicted and experimental values.

  5. Influence of Cyclic Straining on Fatigue, Deformation, and Fracture Behavior of High-Strength Alloy Steel

    Science.gov (United States)

    Manigandan, K.; Srivatsan, T. S.; Vasudevan, V. K.; Tammana, D.; Poorganji, B.

    2016-01-01

    In this paper, the results of a study on microstructural influences on mechanical behavior of the high-strength alloy steel Tenax™ 310 are presented and discussed. Under the influence of fully reversed strain cycling, the stress response of this alloy steel revealed softening from the onset of deformation. Cyclic strain resistance exhibited a linear trend for the variation of both elastic strain amplitude with reversals-to-failure, and plastic strain amplitude with reversals-to-failure. Fracture morphology was essentially the same at the macroscopic level over the entire range of cyclic strain amplitudes examined. However, at the fine microscopic level, this high-strength alloy steel revealed fracture to be mixed-mode with features reminiscent of "locally" ductile and brittle mechanisms. The macroscopic mechanisms governing stress response at the fine microscopic level, resultant fatigue life, and final fracture behavior are presented and discussed in light of the mutually interactive influences of intrinsic microstructural effects, deformation characteristics of the microstructural constituents during fully reversed strain cycling, cyclic strain amplitude, and resultant response stress.

  6. Effect of Plastic Deformation on the Corrosion Behavior of a Super-Duplex Stainless Steel

    Science.gov (United States)

    Renton, Neill C.; Elhoud, Abdu M.; Deans, William F.

    2011-04-01

    The role of plastic deformation on the corrosion behavior of a 25Cr-7Ni super-duplex stainless steel (SDSS) in a 3.5 wt.% sodium chloride solution at 90 °C was investigated. Different levels of plastic strain between 4 and 16% were applied to solution annealed tensile specimens and the effect on the pitting potential measured using potentiodynamic electrochemical techniques. A nonlinear relationship between the pitting potential and the plastic strain was recorded, with 8 and 16% causing a significant reduction in average E p, but 4 and 12% causing no significant change when compared with the solution-annealed specimens. The corrosion morphology revealed galvanic interaction between the anodic ferrite and the cathodic austenite causing preferential dissolution of the ferrite. Mixed potential theory and the changing surface areas of the two phases caused by the plastic deformation structures explain the reductions in pitting potential at certain critical plastic strain levels. End-users and manufacturers should evaluate the corrosion behavior of specific cold-worked duplex and SDSSs using their as-produced surface finishes assessing in-service corrosion performance.

  7. Evaluation of Dynamic Deformation Behaviors in Metallic Materials under High Strain-Rates Using Taylor Bar Impact Test

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Kyung Oh; Shin, Hyung Seop [Andong National Univ., Andong (Korea, Republic of)

    2016-09-15

    To ensure the reliability and safety of various mechanical systems in accordance with their high-speed usage, it is necessary to evaluate the dynamic deformation behavior of structural materials under impact load. However, it is not easy to understand the dynamic deformation behavior of the structural materials using experimental methods in the high strain-rate range exceeding 10{sup 4} s{sup -1}. In this study, the Taylor bar impact test was conducted to investigate the dynamic deformation behavior of metallic materials in the high strain-rate region, using a high-speed photography system. Numerical analysis of the Taylor bar impact test was performed using AUTODYN S/W. The results of the analysis were compared with the experimental results, and the material behavior in the high strain-rate region was discussed.

  8. Influence of hydrogen additions on high-temperature superplasticity of titanium alloys

    International Nuclear Information System (INIS)

    Lederich, R.J.; Sastry, S.M.L.

    1982-01-01

    The effects of the addition of up to 1.0 wt pct hydrogen as a transient alloying element on the superplastic formability (SPF) of fine-grained, equiaxed Ti-6Al-4V (Ti-64) and duplex-annealed Ti-6Al-2Sn-4Zr-2Mo (Ti-6242) were determined. Small amounts of internal hydrogen greatly improve the SPF of the alloys. Formability at 720-900 C was evaluated by an instrumented cone-forming test with continuous monitoring of strain with time. Argon/1 pct hydrogen and argon/4 pct hydrogen gas mixtures were used for charging the alloys with hydrogen as well as for superplastic forming. Hydrogen additions lower the beta-transus temperature of alpha-beta titanium alloys, and the proportions of the alpha and beta phases required for optimum superplasticity can thus be obtained at lower temperatures in hydrogen-modified alloys than in standard alloys. The increased amount of beta phase in the hydrogen-modified titanium alloys reduces the grain growth rates at forming temperature, thus reducing the time-dependent decrease in superplastic strain rate at constant stress or the increase in flow stress at constant strain rate. Process parameters for superplastic forming of Ti-64 and Ti-6242 using argon-hydrogen gas mixtures were determined. 8 references

  9. Investigation of crystallization kinetics and deformation behavior in supercooled liquid region of CuZr-based bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ke; Fan, Xinhui; Li, Bing; Li, Yanhong; Wang, Xin; Xu, Xuanxuan [Xi' an Technological Univ. (China). School of Material and Chemical Engineering

    2017-08-15

    In this paper, a systematic study of crystallization kinetics and deformation behavior is presented for (Cu{sub 50}Zr{sub 50}){sub 94}Al{sub 6} bulk metallic glass in the supercooled liquid region. Crystallization results showed that the activation energy for (Cu{sub 50}Zr{sub 50}){sub 94}Al{sub 6} was calculated using the Arrhenius equation in isothermal mode and the Kissinger-Akahira-Sunose method in non-isothermal mode. The activation energy was quite high compared with other bulk metallic glasses. Based on isothermal transformation kinetics described by the Johson-Mehl-Avrami model, the average Avrami exponent of about 3.05 implies a mainly diffusion controlled three-dimensional growth with an increasing nucleation rate during the crystallization. For warm deformation, the results showed that deformation behavior, composed of homogeneous and inhomogeneous deformation, is strongly dependent on strain rate and temperature. The homogeneous deformation transformed from non-Newtonian flow to Newtonian flow with a decrease in strain rate and an increase in temperature. It was found that the crystallization during high temperature deformation is induced by heating. The appropriate working temperature/strain rate combination for the alloy forming, without in-situ crystallization, was deduced by constructing an empirical deformation map. The optimum process condition for (Cu{sub 50}Zr{sub 50}){sub 94}Al{sub 6} can be expressed as T∝733 K and ∝ ε 10{sup -3} s{sup -1}.

  10. High Temperature Deformation Behavior and Microstructure Evolution of Ti-4Al-4Fe-0.25Si Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Won, Jong Woo; Lee, Yongmoon; Lee, Chong Soo [Pohang University of Science and Technology, Pohang (Korea, Republic of); Yeom, Jong-Taek [Korea Institute of Materials Science, Changwon (Korea, Republic of); Lee, Gi Yeong [KPCM Incorporated, Gyeongsan (Korea, Republic of)

    2016-05-15

    Hot deformation behavior of Ti-4Al-4Fe-0.25Si alloy with martensite microstructure was investigated by compression tests at temperatures of 1023 – 1173 K (α+β phase region) and strain rates of 10{sup -3} – 1 s{sup -1}. By analyzing the deformation behavior, plastic deformation instability parameters including strain rate sensitivity, deformation temperature sensitivity, efficiency of power dissipation, and Ziegler’s instability were evaluated as a function of deformation temperature and strain rate, and they were further examined by drawing deformation processing maps. The microstructure evolution was also studied to determine the deformation conditions under which equiaxed α phase was formed in the microstructure without remnants or kinked α phase platelets and shear bands, these last two of which cause severe cracks during post-forming process. Based on the combined results of the processing maps and the microstructure analysis, the optimum α+β forging conditions for Ti-4Al-4Fe-0.25Si alloy were determined.

  11. Understanding the different rotational behaviors of $^{252}$No and $^{254}$No in terms of high-order deformation

    CERN Document Server

    Liu, H L; Walker, P M

    2012-01-01

    Total Routhian surface calculations have been performed to investigate rapidly rotating transfermium nuclei, the heaviest nuclei accessible by detailed spectroscopy experiments. The observed fast alignment in $^{252}$No and slow alignment in $^{254}$No are well reproduced by the calculations incorporating high-order deformations. The different rotational behaviors of $^{252}$No and $^{254}$No can be understood for the first time in terms of $\\beta_6$ deformation that decreases the energies of the $\

  12. High-temperature creep of equiaxed Cd-26.5 at % Zn eutectic in the superplastic regime

    International Nuclear Information System (INIS)

    Tonejc, Anton; Poirier, J.-P.

    1976-01-01

    The temperature and stress dependence on the secondary creep rate of the Cd+26.5Zn eutectoid in the superplastic domain was studied in constant-stress compression creep. Experiments were performed in the following ranges of temperature, stress and grain size: 170C 2 , 1<10μm. In all cases secondary creep was established after a strain approximately equal to 4%. For temperatures higher than 200C all the techniques yielded the same value for m (m=0.49+-0.03) in the whole investigated range of stresses. For T=170C a lower value of m was found (m=0.33). The activation energy was determined and found equal to 25Kcal/mol. Micrographic examinations were performed on sectioned samples at several stages of deformation. The grain size was found to be identical for various conditions of temperature and stress and very stable with respect to deformation. The experimental results of the creep tests are discussed in relation with the microstructural aspects

  13. Superplastic flow of two-phase ceramics containing rigid inclusions-zirconia/mullite composites

    International Nuclear Information System (INIS)

    Yoon, C.K.; Chen, I.W.

    1990-01-01

    A continuum theory for non-newtonian flow of a two-phase composite containing rigid inclusions is presented. It predicts flow suppression by a factor of (1 - V) q , where V is the volume fraction of the rigid inclusion and q depends on the stress exponent and the inclusion shape. Stress concentrations in the rigid inclusion have also been evaluated. As the stress exponent increases, flow suppression is more pronounced even though stress concentration is less severe. To test this theory, superplastic flow of zirconia/mullite composites, in which zirconia is a soft, non-Newtonian super-plastic matrix and mullite is a rigid phase of various size, shape, and amount, is studied. The continuum theory is found to describe the two-phase superplastic flow reasonably well

  14. Superplastic forming of 7475 Al sheet after friction stir processing (FSP)

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, M.; Bingel, W.H.; Fuller, C. [Rockwell Scientific Co., Thousand Oaks, CA (United States); Barnes, A.J. [Superform USA, Riverside, CA (United States)

    2004-07-01

    Since the invention of friction stir welding (FSW) in 1991, an increasing number of successful applications have been found for this unique solid-state welding technique. More recently, attention has been given to utilizing the mechanics of friction stirring to thermo-mechanically modify the microstructure of aluminum alloys to create or enhance superplasticity. Until now, superplasticity induced by friction stir processing (FSP) has only been demonstrated in small samples and evaluated by hot tensile elongation testing. The present work describes what we believe to be the first biaxial testing and full size component superplastic forming of friction stir processed aluminum sheet. The remarkable formability demonstrated in these 'first time' trials is described in detail. (orig.)

  15. Characterization of strengthening mechanism and hot deformation behavior of powder metallurgy molybdenum

    International Nuclear Information System (INIS)

    Xiao, Meili; Li, Fuguo; Xie, Hangfang; Wang, Yufeng

    2012-01-01

    Highlights: → Dynamic recrystallization of powder metallurgy molybdenum occurs in the temperature region (1200-1450 o C). → The value of strain hardening index n decreases along with the temperature rising. → The value of strain-rate sensitivity exponent m increases slowly at first and achieves a peak value at 1350 o C. → Deformation strengthening is the main strengthening mechanism at low temperature. → Rheological strengthening becomes the primary strengthening mechanism at high temperature. -- Abstract: The high-temperature deformation behavior of powder metallurgy molybdenum has been investigated based on a series of isothermal hot compression tests, which were carried out on a Gleeble-1500 thermal mechanical simulator in a wide range of temperatures (900-1450 o C) and strain rates (0.01-10 s -1 ). Through the research on the experimental stress-strain curves, it reveals that dynamic recrystallization softening effect of powder metallurgy molybdenum occurs in the temperature range from 1200 o C to 1450 o C, in which the flow stress is significantly sensitive to temperature. In comparison with the value of strain hardening index n which decreases along with the temperature rising, the value of strain-rate sensitivity exponent m does not change obviously; however, it increases slowly with the increasing of temperature at first and achieves a peak value at 1350 o C. Furthermore, relying on the comparison of mean value of n and m, it is suggested that deformation strengthening is the main strengthening mechanism at low temperature while the rheological strengthening changes into the primary strengthening mechanism at high temperature.

  16. Hot Deformation Behavior and Processing Maps of Diamond/Cu Composites

    Science.gov (United States)

    Zhang, Hongdi; Liu, Yue; Zhang, Fan; Zhang, Di; Zhu, Hanxing; Fan, Tongxiang

    2018-06-01

    The hot deformation behaviors of 50 vol pct uncoated and Cr-coated diamond/Cu composites were investigated using hot isothermal compression tests under the temperature and strain rate ranging from 1073 K to 1273 K (800 °C to 1000 °C) and from 0.001 to 5 s-1, respectively. Dynamic recrystallization was determined to be the primary restoration mechanism during deformation. The Cr3C2 coating enhanced the interfacial bonding and resulted in a larger flow stress for the Cr-coated diamond/Cu composites. Moreover, the enhanced interfacial affinity led to a higher activation energy for the Cr-coated diamond/Cu composites (238 kJ/mol) than for their uncoated counterparts (205 kJ/mol). The strain-rate-dependent constitutive equations of the diamond/Cu composites were derived based on the Arrhenius model, and a high correlation ( R = 0.99) was observed between the calculated flow stresses and experimental data. With the help of processing maps, hot extrusions were realized at 1123 K/0.01 s-1 and 1153 K/0.01 s-1 (850 °C/0.01 s-1 and 880 °C/0.01 s-1) for the uncoated and coated diamond/Cu composites, respectively. The combination of interface optimization and hot extrusion led to increases of the density and thermal conductivity, thereby providing a promising route for the fabrication of diamond/Cu composites.

  17. Effect of Aluminum Alloying on the Hot Deformation Behavior of Nano-bainite Bearing Steel

    Science.gov (United States)

    Yang, Z. N.; Dai, L. Q.; Chu, C. H.; Zhang, F. C.; Wang, L. W.; Xiao, A. P.

    2017-12-01

    Interest in using aluminum in nano-bainite steel, especially for high-carbon bearing steel, is gradually growing. In this study, GCr15SiMo and GCr15SiMoAl steels are introduced to investigate the effect of Al alloying on the hot deformation behavior of bearing steel. Results show that the addition of Al not only notably increases the flow stress of steel due to the strong strengthening effect of Al on austenite phase, but also accelerates the strain-softening rates for its increasing effect on stacking fault energy. Al alloying also increases the activation energy of deformation. Two constitutive equations with an accuracy of higher than 0.99 are proposed. The constructed processing maps show the expanded instability regions for GCr15SiMoAl steel as compared with GCr15SiMo steel. This finding is consistent with the occurrence of cracking on the GCr15SiMoAl specimens, revealing that Al alloying reduces the high-temperature plasticity of the bearing steel. On the contrary, GCr15SiMoAl steel possesses smaller grain size than GCr15SiMo steel, manifesting the positive effect of Al on bearing steel. Attention should be focused on the hot working process of bearing steel with Al.

  18. Effect of laser shock on tensile deformation behavior of a single crystal nickel-base superalloy

    International Nuclear Information System (INIS)

    Lu, G.X.; Liu, J.D.; Qiao, H.C.; Zhou, Y.Z.; Jin, T.; Zhao, J.B.; Sun, X.F.; Hu, Z.Q.

    2017-01-01

    This investigation focused on the tensile deformation behavior of a single crystal nickel-base superalloy, both in virgin condition and after laser shock processing (LSP) with varied technology parameters. Nanoindention tests were carried out on the sectioned specimens after LSP treatment to characterize the surface strengthening effect. Stress strain curves of tensile specimens were analyzed, and microstructural observations of the fracture surface and the longitudinal cross-sections of ruptured specimens were performed via scanning electron microscope (SEM), in an effort to clarify the fracture mechanisms. The results show that a surface hardening layer with the thickness of about 0.3–0.6 mm was gained by the experimental alloys after LSP treatment, but the formation of surface hardening layer had not affected the yield strength. Furthermore, fundamental differences in the plastic responses at different temperatures due to LSP treatment had been discovered. At 700 °C, the slip deformation was held back when it extended to the surface hardening layer and the ensuing slip steps improved the plasticity; however, at 1000 °C, surface hardening layer hindered the macro necking, which resulted in the relatively lower plasticity.

  19. Effect of laser shock on tensile deformation behavior of a single crystal nickel-base superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Lu, G.X. [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049 (China); Liu, J.D., E-mail: jdliu@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Qiao, H.C. [Shenyang Institute of Automation, Chinese Academy of Sciences, 114 Nanta Road, Shenyang 110016 (China); Zhou, Y.Z. [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Jin, T., E-mail: tjin@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Zhao, J.B. [Shenyang Institute of Automation, Chinese Academy of Sciences, 114 Nanta Road, Shenyang 110016 (China); Sun, X.F.; Hu, Z.Q. [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2017-02-16

    This investigation focused on the tensile deformation behavior of a single crystal nickel-base superalloy, both in virgin condition and after laser shock processing (LSP) with varied technology parameters. Nanoindention tests were carried out on the sectioned specimens after LSP treatment to characterize the surface strengthening effect. Stress strain curves of tensile specimens were analyzed, and microstructural observations of the fracture surface and the longitudinal cross-sections of ruptured specimens were performed via scanning electron microscope (SEM), in an effort to clarify the fracture mechanisms. The results show that a surface hardening layer with the thickness of about 0.3–0.6 mm was gained by the experimental alloys after LSP treatment, but the formation of surface hardening layer had not affected the yield strength. Furthermore, fundamental differences in the plastic responses at different temperatures due to LSP treatment had been discovered. At 700 °C, the slip deformation was held back when it extended to the surface hardening layer and the ensuing slip steps improved the plasticity; however, at 1000 °C, surface hardening layer hindered the macro necking, which resulted in the relatively lower plasticity.

  20. Effect of grain boundary complexions on the deformation behavior of Ni bicrystal during bending creep.

    Science.gov (United States)

    Reddy, K Vijay; Pal, Snehanshu

    2018-03-07

    The dependence of creep deformation behavior of nickel bicrystal specimens on grain boundary (GB) complexion was investigated by performing a simulated bending creep test using molecular dynamics methods. Strain burst phenomena were observed during the low temperature [500 K, i.e., creep process. Atomic strain and dislocation analyses showed that the time of occurrence of strain burst depends on how easily GB migration happens in bicrystal specimens. Specimens with kite monolayer segregation GB complexion were found to be stable at low temperature (500 K), whereas specimens with split-kite GB complexion were stable at a comparatively higher temperature (900 K). In case of further elevated creep temperatures, e.g., 1100 K and 1300 K, split-kite GB complexion becomes unstable and leads to early failure of the specimen at those temperatures. Additionally, it was observed that split-kite bilayer segregation and normal kite GB complexions exhibit localized increases in elastic modulus during bending creep process, occurring at temperatures of 1100 K and 1300 K, respectively, due to the formation of interpenetrating icosahedral clusters. Graphical abstract Representative creep curves during bending creep deformation of various grain boundary complexions at 900 K.

  1. Analyses of Small Punch Creep Deformation Behavior of 316LN Stainless Steel Having Different Nitrogen Contents

    Science.gov (United States)

    Ganesh Kumar, J.; Laha, K.; Ganesan, V.; Prasad Reddy, G. V.

    2018-04-01

    The small punch creep (SPC) behavior of 316LN stainless steel (SS) containing 0.07, 0.11 and 0.14 wt.% nitrogen has been investigated at 923 K. The transient and tertiary SPC deformation of 316LN SS with various nitrogen contents have been analyzed according to the equation proposed for SPC deflection, δ = δ0 + δT (1 - e^{ - κ t} ) + \\dot{δ }s t + δ3 e^[ φ( t - tr ) ]. The relationships among the rate of exhaustion of transient creep (κ), steady-state deflection rate (\\dot{δ }s ) and the rate of acceleration of tertiary creep (φ) revealed the interrelationships among the three stages of SPC curve. The first-order reaction rate theory was found to be applicable to SPC deformation throughout the transient as well as tertiary region, in all the investigated steels. The initial and final creep deflection rates were decreased, whereas time to attain steady-state deflection rate increased with the increase in nitrogen content. By increasing the nitrogen content in 316LN SS from 0.07 to 0.14 wt.%, each stage of SPC was prolonged, and consequently, the values of κ, \\dot{δ }s and φ were lowered. Using the above parameters, the master curves for both transient and tertiary SPC deflections were constructed for 316LN SS containing different nitrogen contents.

  2. Experimental study of the deformation of Zircaloy PWR fuel rod cladding under mainly convective cooling

    International Nuclear Information System (INIS)

    Hindle, E.D.; Mann, C.A.

    1982-01-01

    Zircaloy-4 cladding specimens 450 mm long were filled with alumina pellets and tested at temperatures between 630 and 915 degree C in flowing steam at atmospheric pressure. Internal test pressures were in the range 0.69 to 11.0 MPa. The length of cladding strained 33 percent or more was greatest (about 20 times the original diameter) when the initial pressure was 1.38/plus or minus/0.17MPa. This results from oxidation strengthening of the surface layers acting as an additional mechanism for stabilizing the deformation or partial superplastic deformation, or both. For adjacent rods in a fuel assembly not to touch at any temperature, the pressure would have to be less than about 1 MPa. These results are compared with those form multirod tests elsewhere, and it is suggested that heat transfer has a dominant effect in determining deformation. The implications for the behavior of fuel elements in a loss-of-coolant accident are outlined. 37 refs

  3. Experimental study of the deformation of Zircaloy PWR fuel rod cladding under mainly convective cooling

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, E.D.; Mann, C.A.

    1982-01-01

    Zircaloy-4 cladding specimens 450 mm long were filled with alumina pellets and tested at temperatures between 630 and 915 degree C in flowing steam at atmospheric pressure. Internal test pressures were in the range 0.69 to 11.0 MPa. The length of cladding strained 33 percent or more was greatest (about 20 times the original diameter) when the initial pressure was 1.38/plus or minus/0.17MPa. This results from oxidation strengthening of the surface layers acting as an additional mechanism for stabilizing the deformation or partial superplastic deformation, or both. For adjacent rods in a fuel assembly not to touch at any temperature, the pressure would have to be less than about 1 MPa. These results are compared with those form multirod tests elsewhere, and it is suggested that heat transfer has a dominant effect in determining deformation. The implications for the behavior of fuel elements in a loss-of-coolant accident are outlined. 37 refs.

  4. Experimental and FE simulation validation of sheet thickness optimization in superplastic forming of Al alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kumaresan, G.; Jothilingam, A. [Anna University, Chennai (India)

    2016-07-15

    Superplasticity is the ability of a polycrystalline materials to exhibit very large elongations without necking prior to failure. In this paper, the superplastic forming potential of fine grained 7075 aluminium alloy was studied. The process parameters like pressure, forming time and initial sheet thickness were selected, using the design of experiments technique. The same condition of formation process was attempted in the finite element simulation using ABAQUS software. The deviation of the thickness distribution between the simulation and experiment was made and the variation lies within 8%.

  5. Connections: Superplasticity, Damascus Steels, Laminated Steels, and Carbon Dating

    Science.gov (United States)

    Wadsworth, Jeffrey

    2016-12-01

    In this paper, a description is given of the connections that evolved from the initial development of a family of superplastic plain carbon steels that came to be known as Ultra-High Carbon Steels (UHCS). It was observed that their very high carbon contents were similar, if not identical, to those of Damascus steels. There followed a series of attempts to rediscover how the famous patterns found on Damascus steels blades were formed. At the same time, in order to improve the toughness at room temperature of the newly-developed UHCS, laminated composites were made of alternating layers of UHCS and mild steel (and subsequently other steels and other metals). This led to a study of ancient laminated composites, the motives for their manufacture, and the plausibility of some of the claims relating to the number of layers in the final blades. One apparently ancient laminated composite, recovered in 1837 from the great pyramid of Giza which was constructed in about 2750 B.C., stimulated a carbon dating study of ancient steels. The modern interest in "Bladesmithing" has connections back to many of these ancient weapons.

  6. Tensile deformation behavior of AA5083-H111 at cold and warm temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ozturk, Fahrettin; Toros, Serkan; Kilic, Suleyman [Nidge Univ. (Turkey). Dept. of Mechanical Engineering

    2010-09-15

    The effects of strain rate and temperature on the deformation behavior of hardened 5083-H111 aluminum magnesium alloy sheet were investigated by performing uniaxial tensile tests at various strain rates from 0.0083 to 0.16 s{sup -1} and temperatures from -100 to 300 C. Results from the prescribed test ranges indicate that the formability of this material at cold and warm temperatures is better than at room temperature. The improvement in formability at cold temperatures is principally due to the strain hardening of the material. However, the improvement at warm temperature and low strain rate is specifically due to the high strain rate sensitivity characteristic of the material. Results indicate that this alloy should be formed at temperatures higher than 200 C and at low strain rates. (orig.)

  7. Deformation behavior of two continuously cooled vanadium microalloyed steels at liquid nitrogen temperature

    Directory of Open Access Journals (Sweden)

    Glišić Dragomir M.

    2013-01-01

    Full Text Available The aim of this work was to establish deformation behaviour of two vanadium microalloyed medium carbon steels with different contents of carbon and titanium by tensile testing at 77 K. Samples were reheated at 1250°C/30 min and continuously cooled at still air. Beside acicular ferrite as dominant morphology in both microstructures, the steel with lower content of carbon and negligible amount of titanium contains considerable fraction of grain boundary ferrite and pearlite. It was found that Ti-free steel exhibits higher strain hardening rate and significantly lower elongation at 77 K than the fully acicular ferrite steel. The difference in tensile behavior at 77 K of the two steels has been associated with the influence of the pearlite, together with higher dislocation density of acicular ferrite. [Projekat Ministarstva nauke Republike Srbije, br. OI174004

  8. Temperature dependence of the deformation behavior of 316 stainless steel after low temperature neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pawel-Robertson, J.E.; Rowcliffe, A.F.; Grossbeck, M.L. [Oak Ridge National Lab., TN (United States)] [and others

    1996-10-01

    The effects of low temperature neutron irradiation on the tensile behavior of 316 stainless steel have been investigated. A single heat of solution annealed 316 was irradiated to 7 and 18 dpa at 60, 200, 330, and 400{degrees}C. The tensile properties as a function of dose and as a function of temperature were examined. Large changes in yield strength, deformation mode, strain to necking, and strain hardening capacity were seen in this irradiation experiment. The magnitudes of the changes are dependent on both irradiation temperature and neutron dose. Irradiation can more than triple the yield strength over the unirradiated value and decrease the strain to necking (STN) to less than 0.5% under certain conditions. A maximum increase in yield strength and a minimum in the STN occur after irradiation at 330{degrees}C but the failure mode remains ductile.

  9. Deformation behavior of a 16-8-2 GTA weld as influenced by its solidification substructure

    International Nuclear Information System (INIS)

    Foulds, J.R.; Moteff, J.; Sikka, V.K.; McEnerney, J.W.

    1983-01-01

    Weldment sections from formed and welded type 316 stainless steel pipe are characterized with respect to some time-independent (tensile) and time-dependent (creep) mechanical properties at temperatures between 25 0 C and 649 0 C. The GTA weldment, welded with 16-8-2 filler metal, is sectioned from pipe in the formed + welded + solution annealed + straightened condition, as well as in the same condition with an additional re-solution treatment. Detailed room temperature microhardness measurements on these sections before and after reannealing enable a determination of the different recovery characteristics of weld and base metal. The observed stable weld metal solidification dislocation substructure in comparison with the base metal random dislocation structure, in fact, adequately explains weld/base metal elevated temperature mechanical behavior differences from this recovery characteristic standpoint. The weld metal substructure is the only parameter common to the variety of austenitic stainless steel welds exhibiting the consistent parent/weld metal deformation behavior differences described. As such, it must be considered the key to understanding weldment mechanical behavior

  10. Plastic deformation and fracture behaviors of nitrogen-alloyed austenitic stainless steels

    International Nuclear Information System (INIS)

    Wang Songtao; Yang Ke; Shan Yiyin; Li Laifeng

    2008-01-01

    The plastic deformation and fracture behaviors of two nitrogen-alloyed austenitic stainless steels, 316LN and a high nitrogen steel (Fe-Cr-Mn-0.66% N), were investigated by tensile test and Charpy impact test in a temperature range from 77 to 293 K. The Fe-Cr-Mn-N steel showed ductile-to-brittle transition (DBT) behavior, but not for the 316LN steel. X-ray diffraction (XRD) confirmed that the strain-induced martensite occurred in the 316LN steel, but no such transformation in the Fe-Cr-Mn-N steel. Tensile tests showed that the temperature dependences of the yield strength for the two steels were almost the same. The ultimate tensile strength of the Fe-Cr-Mn-N steel displayed less significant temperature dependence than that of the 316LN steel. The strain-hardening exponent increased for the 316LN steel, but decreased for the Fe-Cr-Mn-N steel, with decreasing temperature. Based on the experimental results and the analyses, a modified scheme was proposed to explain the fracture behaviors of austenitic stainless steels

  11. Strengthening mechanisms and deformation behavior of cryomilled Al–Cu–Mg–Ag alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kurmanaeva, Lilia, E-mail: lkurmanaeva@ucdavis.com [Department of Chemical Engineering & Materials Science, University of California, Davis, One Shields Avenue, Davis, CA 95616 (United States); Topping, Troy D. [Department of Chemical Engineering & Materials Science, University of California, Davis, One Shields Avenue, Davis, CA 95616 (United States); California State University, Sacramento, 6000 J Street, Sacramento, CA 95819 (United States); Wen, Haiming; Sugahara, Haruka; Yang, Hanry; Zhang, Dalong; Schoenung, Julie M.; Lavernia, Enrique J. [Department of Chemical Engineering & Materials Science, University of California, Davis, One Shields Avenue, Davis, CA 95616 (United States)

    2015-05-25

    Highlights: • Ultra-fine and coarse grained Al–Cu–Mg–Ag alloy samples were processed by methods of powder metallurgy. • Despite thermal exposure during consolidation,cryomilled materials retain an ultra-fine grained structure due to the presence of nano-dispersoids at grain boundaries. • Cryomilling results in a change in precipitation kinetics, due to the depletion of Mg atoms at the grain interiors and segregation of Mg, Cu and Ag atoms at grain boundaries. • Dominant deformation mechanisms in cryomilled samples were grain boundary strengthening and dispersion strengthening from oxides and nitrides. - Abstract: In the last decade, the commercially available heat-treatable aluminum alloy (AA) 2139 (Al–Cu–Mg–Ag) has generated interest within the aerospace and defense communities because of its high strength and damage tolerance as compared to those of other AA 2XXX alloys. In this work we investigate the possibility of enhancing the performance of AA 2139 via a nanostructuring approach involving the consolidation of cryomilled powders. For comparison purposes, two types of feedstock powders (cryomilled and unmilled, gas-atomized powder), were consolidated via dual mode dynamic forging. Our results show that, following heat treatment (HT), the strength of the cryomilled material increases in the range of ∼25% to ∼200% relative to that of the unmilled counterparts, depending on specific processing parameters. We present microstructural data, including grain size and precipitate chemistry, to provide insight into the underlying strengthening mechanisms. Vickers microhardess tests are used to evaluate peak heat treatments, and tensile testing is performed to characterize mechanical behavior. The kinetics of precipitation, strengthening mechanisms and deformation behavior are discussed. It is proposed that the combination of elemental segregation with the presence of oxides along grain boundaries, both facilitated by enhanced diffusion paths, are

  12. The creep deformation behavior of a single-crystal Co–Al–W-base superalloy at 900 °C

    International Nuclear Information System (INIS)

    Shi, L.; Yu, J.J.; Cui, C.Y.; Sun, X.F.

    2015-01-01

    The creep deformation behavior of a single-crystal Co–Al–W–Ni–Cr–Ta alloy with low tungsten content has been studied at stresses between 275 and 310 MPa at 900 °C. The alloy exhibits comparable creep strength with that of Co–Al–W-base alloys containing more tungsten. The creep deformation consists of three stages, the primary stage, the steady-state stage and the tertiary stage, when described by the creep strain rate versus time curve. At 900 °C, γ′ precipitates tend to raft along the direction of applied tensile stress in the steady-state creep stage and a topologically inverted and rafting γ/γ′ microstructure is formed in the tertiary stage. The main deformation mechanism in the primary creep stage is dislocation shearing of γ′ precipitates, and in the following creep stages, the dominant deformation mechanism is dislocations bypassing γ′ precipitates

  13. Structure of deformed metals. Struktura deformirovannykh metallov

    Energy Technology Data Exchange (ETDEWEB)

    Bernshtein, M L

    1977-01-01

    A teaching aid for students at metallurgical and machine-building institutions of higher learning. It can also be used by engineering-technical personnel and scientists. A presentation is made of physical concepts on the mechanism of plastic deformation and its effect on fine structure, structure and properties of metals and alloys. An examination is made of the processes of recovery, polygonization and recrystallization during the heating of cold-deformed metals. The influence of thermal deformation is described to account for the interaction between admixture atoms and dislocations, phase and structural transformations. An examination is made of the phenomenon of superplasticity. Special attention is given to the process of hot deformation. An analysis is made of phenomena at the basis of hardening steel as a result of thermo-mechanical processing, including controlled rolling.

  14. Cyclic Deformation and Fatigue Behaviors of Alloy 617 Base Metal and Weldments at 900℃ for VHTR Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Jin; Kim, Byung Tak; Dewa, Rando T.; Hwang, Jeong Jun; Kim, Tae Su [Pukyong National Univ., Busan (Korea, Republic of); Kim, Woo Gon; Kim, Eung Seon [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    An analysis of cyclic deformation can contribute to a deeper understanding of the fatigue fracture mechanisms as well as to improvements in the design and application of VHTR system. However, the studies associated with cyclic deformation and low cycle fatigue (LCF) properties of Alloy 617 have focused mainly on the base metal, with little attention given to the weldments. Totemeier studied on high-temperature creep-fatigue of Alloy 617 base metal and weldments. Current research activities at PKNU and KAERI focus on the study of cyclic deformation and LCF behaviors of Alloy 617 base metal (BM) and weldments (WM) specimens were machined from GTAW buttwelded plates at very high-temperature of 900℃. In this work, the cyclic deformation characteristics and fatigue behaviors of Alloy 617 BM and WM are studied and discussed with respect to LCF. In this paper, cyclic deformation and low cycle fatigue behaviors of Alloy 617 base metal and weldments was evaluated using strain-controlled LCF tests at 900℃for 0.6% total strain range. Results of the current experiments can be concluded; The WM specimen has shown a higher cyclic stress response than the BM specimen. The fatigue life of WM specimen was reduced relative to that of BM specimen.

  15. Influence of mechanically-induced dilatation on the shape memory behavior of amorphous polymers at large deformation

    Science.gov (United States)

    Hanzon, Drew W.; Lu, Haibao; Yakacki, Christopher M.; Yu, Kai

    2018-01-01

    In this study, we explore the influence of mechanically-induced dilatation on the thermomechanical and shape memory behavior of amorphous shape memory polymers (SMPs) at large deformation. The uniaxial tension, glass transition, stress relaxation and free recovery behaviors are examined with different strain levels (up to 340% engineering strain). A multi-branched constitutive model that incorporates dilatational effects on the polymer relaxation time is established and applied to assist in discussions and understand the nonlinear viscoelastic behaviors of SMPs. It is shown that the volumetric dilatation results in an SMP network with lower viscosity, faster relaxation, and lower Tg. The influence of the dilatational effect on the thermomechanical behaviors is significant when the polymers are subject to large deformation or in a high viscosity state. The dilation also increases the free recovery rate of SMP at a given recovery temperature. Even though the tested SMPs are far beyond their linear viscoelastic region when a large programming strain is applied, the free recovery behavior still follows the time-temperature superposition (TTSP) if the dilatational effect is considered during the transformation of time scales; however, if the programming strain is different, TTSP fails in predicting the recovery behavior of SMPs because the network has different entropy state and driving force during shape recovery. Since most soft active polymers are subject to large deformation in practice, this study provides a theoretical basis to better understand their nonlinear viscoelastic behaviors, and optimize their performance in engineering applications.

  16. Concurrent multiscale modeling of microstructural effects on localization behavior in finite deformation solid mechanics

    Science.gov (United States)

    Alleman, Coleman N.; Foulk, James W.; Mota, Alejandro; Lim, Hojun; Littlewood, David J.

    2018-02-01

    The heterogeneity in mechanical fields introduced by microstructure plays a critical role in the localization of deformation. To resolve this incipient stage of failure, it is therefore necessary to incorporate microstructure with sufficient resolution. On the other hand, computational limitations make it infeasible to represent the microstructure in the entire domain at the component scale. In this study, the authors demonstrate the use of concurrent multiscale modeling to incorporate explicit, finely resolved microstructure in a critical region while resolving the smoother mechanical fields outside this region with a coarser discretization to limit computational cost. The microstructural physics is modeled with a high-fidelity model that incorporates anisotropic crystal elasticity and rate-dependent crystal plasticity to simulate the behavior of a stainless steel alloy. The component-scale material behavior is treated with a lower fidelity model incorporating isotropic linear elasticity and rate-independent J2 plasticity. The microstructural and component scale subdomains are modeled concurrently, with coupling via the Schwarz alternating method, which solves boundary-value problems in each subdomain separately and transfers solution information between subdomains via Dirichlet boundary conditions. In this study, the framework is applied to model incipient localization in tensile specimens during necking.

  17. Modeling of surface stress effects on bending behavior of nanowires: Incremental deformation theory

    International Nuclear Information System (INIS)

    Song, F.; Huang, G.L.

    2009-01-01

    The surface stress effects on bending behavior of nanowires have recently attracted a lot of attention. In this letter, the incremental deformation theory is first applied to study the surface stress effects upon the bending behavior of the nanowires. Different from other linear continuum approaches, the local geometrical nonlinearity of the Lagrangian strain is considered, therefore, the contribution of the surface stresses is naturally derived by applying the Hamilton's principle, and influence of the surface stresses along all surfaces of the nanowires is captured. It is first shown that the surface stresses along all surfaces have contribution not only on the effective Young's modulus of the nanowires but also on the loading term in the governing equation. The predictions of the effective Young's modulus and the resonance shift of the nanowires from the current method are compared with those from the experimental measurement and other existing approaches. The difference with other models is discussed. Finally, based on the current theory, the resonant shift predictions by using both the modified Euler-Bernoulli beam and the modified Timoshenko beam theories of the nanowires are investigated and compared. It is noticed that the higher vibration modes are less sensitive to the surface stresses than the lower vibration modes.

  18. Constitutive Behavior and Deep Drawability of Three Aluminum Alloys Under Different Temperatures and Deformation Speeds

    Science.gov (United States)

    Panicker, Sudhy S.; Prasad, K. Sajun; Basak, Shamik; Panda, Sushanta Kumar

    2017-08-01

    In the present work, uniaxial tensile tests were carried out to evaluate the stress-strain response of AA2014, AA5052 and AA6082 aluminum alloys at four temperatures: 303, 423, 523 and 623 K, and three strain rates: 0.0022, 0.022 and 0.22 s-1. It was found that the Cowper-Symonds model was not a robust constitutive model, and it failed to predict the flow behavior, particularly the thermal softening at higher temperatures. Subsequently, a comparative study was made on the capability of Johnson-Cook (JC), modified Zerilli-Armstrong (m-ZA), modified Arrhenius (m-ARR) and artificial neural network (ANN) for modeling the constitutive behavior of all the three aluminum alloys under the mentioned strain rates and temperatures. Also, the improvement in formability of the materials was evaluated at an elevated temperature of 623 K in terms of cup height and maximum safe strains by conducting cylindrical cup deep drawing experiments under two different punch speeds of 4 and 400 mm/min. The cup heights increased during warm deep drawing due to thermal softening and increase in failure strains. Also, a small reduction in cup height was observed when the punch speed increased from 4 to 400 mm/min at 623 K. Hence, it was suggested to use high-speed deformation at elevated temperature to reduce both punch load and cycle time during the deep drawing process.

  19. The tensile deformation behavior of nuclear-grade isotropic graphite posterior to hydrostatic loading

    International Nuclear Information System (INIS)

    Yoda, S.; Eto, M.

    1983-01-01

    The effects of prehydrostatic loading on microstructural changes and tensile deformation behavior of nuclear-grade isotropic graphite have been examined. Scanning electron micrographs show that formation of microcracks associated with delamination between basal planes occurs under hydrostatic loading. Hydrostatic loading on specimens results in the decrease in tensile strength and increase in residual strain generated by the applied tensile stress at various levels, indicating that the graphite material is weakened by hydrostatic loading. A relationship between residual strain and applied tensile stress for graphite hydrostatically-loaded at several pressure levels can be approximately expressed as element of= (AP + B) sigmasup(n) over a wide range hydrostatic pressure, where element of, P and sigma denote residual strain, hydrostatic pressure and applied tensile stress, respectively; A, B and n are constant. The effects of prehydrostatic loading on the tensile stress-strain behavior of the graphite were examined in more detail. The ratio of stress after hydrostatic loading to that before hydrostatic loading on the stress-strain relationship remains almost unchanged irrespective of strain. (orig.)

  20. The role of crystal orientation and surface proximity in the self-similar behavior of deformed Cu single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Judy W.L., E-mail: pangj@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory, 1 Behtel Valley Road, Oak Ridge, TN 37831 (United States); Ice, Gene E. [Materials Science and Technology Division, Oak Ridge National Laboratory, 1 Behtel Valley Road, Oak Ridge, TN 37831 (United States); Liu Wenjun [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2010-11-25

    We report on novel 3D spatially resolved X-ray diffraction microscopy studies of self-affine behavior in deformed single crystals. This study extends surface profile measurements of self-affined morphology changes in single crystals during deformation to include local lattice rotations and sub-surface behavior. Investigations were made on the spatial correlation of the local lattice rotations in 8% tensile deformed Cu single crystals oriented with [1 2 3], [1 1 1] and [0 0 1] axes parallel to the tensile axis. The nondestructive depth-resolved measurements were made over a length scale of one to hundreds of micrometers. Self-affined correlation was found both at the surface and below the surface of the samples. A universal exponent for the power-law similar to that observed with surface profile methods is found at the surface of all samples but crystallographically sensitive changes are observed as a function of depth. Correlation lengths of the self-affine behavior vary with the [1 2 3] crystal exhibiting the longest self-affine length scale of 70 {mu}m with only 18 {mu}m for the [1 1 1] and [0 0 1] crystals. These measurements illuminate the transition from surface-like to bulk-like deformation behavior and provide new quantitative information to guide emerging models of self-organized structures in plasticity.

  1. Liquid Segregation Phenomenological Behaviors of Ti14 Alloy during Semisolid Deformation

    Directory of Open Access Journals (Sweden)

    Y. N. Chen

    2014-05-01

    Full Text Available The liquid segregation phenomenon and its effect on deformation mechanism of Ti14 alloy in semisolid metal processing were investigated by thermal simulation test. Microstructure of depth profile was determined by cross-section quantitative metallography, and liquid segregation phenomenon was described by Darcy's law. The results show that segregation phenomenon was affected by solid fraction, strain rate, and deformation rate. More liquid segregated from center to edge portion with high strain rate and/or deformation ratio as well as low solid fraction, which caused different distribution of dominating deformation mechanism. The relationship between liquid segregation and main deformation mechanism was also discussed by phenomenological model.

  2. Synergistic enhancing effect of N+C alloying on cyclic deformation behaviors in austenitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Kang, J. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang, F.C., E-mail: zfc@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Long, X.Y. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Yang, Z.N. [National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004 (China)

    2014-07-29

    Cyclic plastic and elastic strain controlled deformation behaviors of Mn18Cr7 austenitic steel with N0.6C0.3 synergistic enhancing alloying have been investigated using tension-compression low cycle fatigue and three-point bending high cycle fatigue testing. Results of cyclic deformation characteristic and fatigue damage mechanism have been compared to that in Mn12C1.2 steel. Mn18Cr7N0.6C0.3 steel always shows cyclic softening caused by enhanced planar sliding due to the interaction between N+C and the substitutional atoms as well as the dislocation, which is totally different from cyclic hardening in Mn12C1.2 steel caused by the interaction between C members of C–Mn couples with the dislocation. Enhanced effective stress is obtained due to the solid solution strengthening effect caused by the short range order at low strain amplitude while this effect does not work at high strain amplitude. Internal stress contributes most to the cyclic softening with the increase of strain amplitudes. Significant planar slip characteristic can be observed resulting from low stacking fault energy and high short range order effects in Mn18Cr7N0.6C0.3 steel and finally the parallel or intersecting thin sheets with dislocation tangles separated by dislocation free sheets are obtained with the prolonged cycles under cyclic elastic or plastic strain controlled fatigue testing. There exist amounts of small cracks on the surface of the Mn18Cr7N0.6C0.3 steel because fatigue crack initiation is promoted by the cyclic plastic strain localization. However, the zigzag configuration of the cracks reveals that the fatigue crack propagation is highly inhibited by the planar slip characteristic, which eventually improves the fatigue life.

  3. Superplastic Forming/Adhesive Bonding of Aluminum (SPF/AB) Multi-Sheet Structures

    Science.gov (United States)

    Wagner, John A. (Technical Monitor); Will, Jeff D.; Cotton, James D.

    2003-01-01

    A significant fraction of airframe structure consists of stiffened panels that are costly and difficult to fabricate. This program explored a potentially lower-cost processing route for producing such panels. The alternative process sought to apply concurrent superplastic forming and adhesive bonding of aluminum alloy sheets. Processing conditions were chosen to balance adequate superplasticity of the alloy with thermal stability of the adhesive. As a first objective, an air-quenchable, superplastic aluminum-lithium alloy and a low-volatile content, low-viscosity adhesive with compatible forming/curing cycles were identified. A four-sheet forming pack was assembled which consisted of a welded two-sheet core separated from the face sheets by a layer of adhesive. Despite some preliminary success, of over 30 forming trials none was completely successful. The main problem was inadequate superplasticity in the heat-affected zones of the rib welds, which generally fractured prior to completion of the forming cycle. The welds are a necessary component in producing internal ribs by the 'four-sheet' process. Other challenges, such as surface preparation and adhesive bonding, were adequately solved. But without the larger issue of tearing at the weld locations, complex panel fabrication by SPF/AB does not appear viable.

  4. Superplasticity in fine-grained ceramics. Final report, 1 July 1993--31 December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Nieh, T.G.

    1994-01-31

    Progress has been summarized in three papers: biaxial gas-pressure forming of a superplastic Al{sub 2}O{sub 3}/YTZP; mechanical properties of a 20 vol% SiC whisker-reinforced yttria-stabilized, tetragonal zirconia composite at elevated temperatures; and gas- pressure forming of ceramic sheet.

  5. A constitutive model for the superplastic material ALNOVI-1 including leak risk information

    NARCIS (Netherlands)

    Snippe, Corijn H.C.; Snippe, Q.H.C.; Meinders, Vincent T.; Pietzyk, M.; Kusiak, J.; Majta, J.; Hartley, P.; Lin, J.; Mori, K.

    2008-01-01

    For some applications, it is important that a formed sheet of material is completely gas tight, therefore it is beneficial to be able to predict whether a formed sheet will be leak tight for gases or not. Superplastic materials show the ability to attain very high plastic strains before failure.

  6. Role of hydrogen on the incipient crack tip deformation behavior in α-Fe: An atomistic perspective

    Science.gov (United States)

    Adlakha, I.; Solanki, K. N.

    2018-01-01

    A crack tip in α-Fe presents a preferential trap site for hydrogen, and sufficient concentration of hydrogen can change the incipient crack tip deformation response, causing a transition from a ductile to a brittle failure mechanism for inherently ductile alloys. In this work, the effect of hydrogen segregation around the crack tip on deformation in α-Fe was examined using atomistic simulations and the continuum based Rice-Thompson criterion for various modes of fracture (I, II, and III). The presence of a hydrogen rich region ahead of the crack tip was found to cause a decrease in the critical stress intensity factor required for incipient deformation for various crack orientations and modes of fracture examined here. Furthermore, the triaxial stress state ahead of the crack tip was found to play a crucial role in determining the effect of hydrogen on the deformation behavior. Overall, the segregation of hydrogen atoms around the crack tip enhanced both dislocation emission and cleavage behavior suggesting that hydrogen has a dual role during the deformation in α-Fe.

  7. A superplastic Al-Li-Cu-Mg-Zr powder alloy with high hardness and modulus

    International Nuclear Information System (INIS)

    Phillips, V.A.

    1986-01-01

    Structure/property studies were made on an experimental Al-3.18% Li-4.29% Cu-1.17% Mg-0.18% Zr powder alloy, which is of the low density/high modulus type. Alloy powder was made by the P and W/GPD rapid solidification rate (RSR) process, canned, and extruded to bar. The density was 2.458 x 10/sup 6/ g/m/sup 3/. The material was solution-treated, and aged at 149 0 C(300 0 F), 171 0 C(340 0 F), and 193 0 C(380 0 F), using hardness tests to determine the aging curves. Testpieces solution-treated at 516 0 C(961 0 F) showed an average yield strength (0.2% offset) of 43.3 ksi (299 MPa) and ultimate tensile strength of 50.0 ksi (345 MPa), with 1% elongation, which increased to 73.0 ksi (503 MPa) and 73.1 ksi (504 MPa), respectively, with only 0.2% elongation, on peak aging at 193 0 C(380 0 F), with a modulus of elasticity of 11.4 x 10/sup 6/ psi (78.3 GPa). Hardness values reached 90-92 R/sub B/ on aging at 149-193 0 C(300-380 0 F). The as-extruded alloy showed superplastic behavior at 400-500 0 C(752-932 0 F) with elongations of 80-185% on 25.6 mm, peaking at 450 0 C(842 0 F). An RSR Al-2.53% Li-2.82% Mn-0.02% Zr extruded allow showed only 18-23% elongation at 400-500 0 C(752-932 0 F)

  8. Multi-axial load application and DIC measurement of advanced composite beam deformation behavior

    Directory of Open Access Journals (Sweden)

    Berggreen C.

    2010-06-01

    Full Text Available For the validation of a new beam element formulation, a wide set of experimental data consisting of deformation patterns obtained for a number of specially designed composite beam elements, have been obtained. The composite materials applied in the beams consist of glass-fiber reinforced plastic with specially designed layup configurations promoting advanced coupling behavior. Furthermore, the beams are designed with different cross-section shapes. The data obtained from the experiments are also used in order to improve the general understanding related to practical implementation of mechanisms of elastic couplings due to anisotropic properties of composite materials. The knowledge gained from these experiments is therefore essential in order to facilitate an implementation of passive control in future large wind turbine blades. A test setup based on a four-column MTS servo-hydraulic testing machine with a maximum capacity of 100 kN was developed, see Figure 1. The setup allows installing and testing beams of different cross-sections applying load cases such as axial extension, shear force bending, pure bending in two principal directions as well as pure torsion, see Figure 2. In order to apply multi-axial loading, a load application system consisting of three hydraulic actuators were mounted in two planes using multi-axial servo-hydraulic control. The actuator setup consists of the main actuator on the servo-hydraulic test machine working in the vertical axis (depicted on Figure 1 placed at the testing machine crosshead and used for application of vertical forces to the specimens. Two extra actuators are placed in a horizontal plane on the T-slot table of the test machine in different positions in order to apply loading at the tip of the specimen in various configurations. In order to precisely characterize the global as well as surface deformations of the beam specimens tested, a combination of different measurement systems were used during

  9. Friction stir processing: a new grain refinement technique to achieve high strain rate superplasticity in commercial alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, R.S. [Missouri Univ., Rolla, MO (United States). Dept. of Metallurgical Engineering; Mahoney, M.W. [Rockwell International Corp., Thousand Oaks, CA (United States). Science Center

    2001-07-01

    Friction stir processing is a new thermo-mechanical processing technique that leads to a microstructure amenable for high strain rate superplasticity in commercial aluminum alloys. Friction stirring produces a combination of very fine grain size and high grain boundary misorientation angles. Preliminary results on a 7075 Al demonstrate high strain rate superplasticity in the temperature range of 430-510 C. For example, an elongation of >1000% was observed at 490 C and 1 x 10{sup -2} s{sup -1}. This demonstrates a new possibility to economically obtain a superplastic microstructure in commercial aluminum alloys. Based on these results, a three-step manufacturing process to fabricate complex shaped components can be envisaged: cast sheet or hot-pressed powder metallurgy sheet + friction stir processing + superplastic forging or forming. (orig.)

  10. Effect of zinc crystals size on galvanized steel deformation and electrochemical behavior

    Directory of Open Access Journals (Sweden)

    José Daniel Culcasi

    2009-09-01

    Full Text Available Hot-dip galvanized steel sheets with different spangle sizes were deformed by means of rolling and tension. The change of preferential crystallographic orientation and of superficial characteristics due to the deformation was analyzed by means of both X-rays diffraction and optical and scanning electronic microscopy. A correlation between such changes and the involving deformation modes was intended to be done and the spangle size influence on these modes was studied. Coating reactivity change due to the deformation was investigated by means of quasi-steady DC electrochemical tests. The results allow to infer that, in great spangle samples, the main deformation mechanism is twinning whereas in small spangle ones, pyramidal slip systems happen as well. The increase of the reactivity with the deformation is greater in tension than in rolling and it is more important in small than in great spangle samples.

  11. Deformation behavior of multilayered NiFe with bimodal grain size distribution at room and elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Fiebig, Jochen, E-mail: jmfiebig@ucdavis.edu [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95817 (United States); Jian, Jie [Department of Electrical and Computer Engineering, Texas A& M University, College Station, TX 77843-3128 (United States); Kurmanaeva, Lilia [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95817 (United States); McCrea, Jon [Integran Technologies Inc., Toronto (Canada); Wang, Haiyan [Department of Electrical and Computer Engineering, Texas A& M University, College Station, TX 77843-3128 (United States); Lavernia, Enrique [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95817 (United States); Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697 (United States); Mukherjee, Amiya [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95817 (United States)

    2016-02-22

    We describe a study of the temperature dependent deformation behavior of a multilayered NiFe-60 wt%Fe alloy with a layer thickness of 5 μm fabricated by electrodeposition. The structure of adjacent layers alternates between a nanocrystalline and a coarse grained. Uniaxial tensile tests at temperature between 20 °C and 400 °C and strain rate of 10{sup −4}–10{sup −2} were used to determine the mechanical behavior. Microstructure observations via transmission electron microscopy and fractography were performed to provide insight into the underlying deformation mechanism. The mechanical behavior is discussed in the context of the bimodal microstructure of multilayered samples and the contribution of each sub-layer to strength and ductility. The results reveal that even at higher temperatures the nanocrystalline layer determines the mechanical performance of multilayered materials.

  12. Analysis of recrystallization behavior of hot-deformed austenite reconstructed from electron backscattering diffraction orientation maps of lath martensite

    International Nuclear Information System (INIS)

    Kubota, Manabu; Ushioda, Kohsaku; Miyamoto, Goro; Furuhara, Tadashi

    2016-01-01

    The recrystallization behavior of hot-deformed austenite of a 0.55% C steel at 800 °C was investigated by a method of reconstructing the parent austenite orientation map from an electron backscattering diffraction orientation map of lath martensite. Recrystallized austenite grains were clearly distinguished from un-recrystallized austenite grains. Very good correlation was confirmed between the static recrystallization behavior investigated mechanically by double-hit compression tests and the change in austenite microstructure evaluated by the reconstruction method. The recrystallization behavior of hot-deformed 0.55% C steel at 800 °C is directly revealed and it was observed that by addition of 0.1% V the recrystallization was significantly retarded.

  13. Effect of orientation on deformation behavior of Fe nanowires: A molecular dynamics study

    Science.gov (United States)

    Sainath, G.; Srinivasan, V. S.; Choudhary, B. K.; Mathew, M. D.; Jayakumar, T.

    2014-04-01

    Molecular dynamics simulations have been carried out to study the effect of crystal orientation on tensile deformation behaviour of single crystal BCC Fe nanowires at 10 K. Two nanowires with an initial orientation of /{100} and /{111} have been chosen for this study. The simulation results show that the deformation mechanisms varied with crystal orientation. The nanowire with an initial orientation of /{100} deforms predominantly by twinning mechanism, whereas the nanowire oriented in /{111}, deforms by dislocation plasticity. In addition, the single crystal oriented in /{111} shows higher strength and elastic modulus than /{100} oriented nanowire.

  14. Coping behavior of women with breast cancer with visible postsurgery deformity

    Directory of Open Access Journals (Sweden)

    Sirota N. A.

    2013-01-01

    Full Text Available Research was carried out to explore coping strategies in cancer patients. In all, 70 women with breast cancer were studied: 35 of them had visible postsurgery deformity, and 35 did not have visible postsurgery deformity. The purpose of the research was to uncover their preferences for using various strategies and resources to cope with their illness. The results showed that both groups of women had a special set of strategies for coping with stress. The women with visible postsurgery deformity made significantly less use of resources for coping with their illness than did the subgroup of women without visible postsurgery deformity.

  15. Image-based numerical simulation of the local cyclic deformation behavior around cast pore in steel

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Lihe, E-mail: dlhqian@yahoo.com [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University (China); National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University (China); Cui, Xiaona; Liu, Shuai [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University (China); National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University (China); Chen, Minan [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University (China); Ma, Penghui [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University (China); National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University (China); Xie, Honglan [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics (China); Zhang, Fucheng [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University (China); National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University (China); Meng, Jiangying [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University (China)

    2016-12-15

    The local cyclic stress/strain responses around an actual, irregular pore in cast Hadfield steel under fatigue loading are investigated numerically, and compared with those around a spherical and an ellipsoidal pore. The actual pore-containing model takes into account the real shape of the pore imaged via high-resolution synchrotron X-ray computed tomography and combines both isotropic hardening and Bauschinger effects by using the Chaboche's material model, which enables to realistically simulate the cyclic deformation behaviors around actual pore. The results show that the stress and strain energy density concentration factors (K{sub σ} and K{sub E}) around either an actual irregular pore or an idealized pore increase while the strain concentration factor (K{sub ε}) decreases slightly with increasing the number of fatigue cycles. However, all the three parameters, K{sub σ}, K{sub ε} and K{sub E}, around an actual pore are always several times larger than those around an idealized pore, whatever the number of fatigue cycles. It is suggested that the fatigue properties of cast pore-containing materials cannot be realistically evaluated with any idealized pore models. The feasibility of the methodology presented highlights the potential of its application in the micromechanical understanding of fatigue damage phenomena in cast pore-containing materials.

  16. Hurst exponent: A Brownian approach to characterize the nonlinear behavior of red blood cells deformability

    Science.gov (United States)

    Mancilla Canales, M. A.; Leguto, A. J.; Riquelme, B. D.; León, P. Ponce de; Bortolato, S. A.; Korol, A. M.

    2017-12-01

    Ektacytometry techniques quantifies red blood cells (RBCs) deformability by measuring the elongation of suspended RBCs subjected to shear stress. Raw shear stress elongation plots are difficult to understand, thus most research papers apply data reduction methods characterizing the relationship between curve fitting. Our approach works with the naturally generated photometrically recorded time series of the diffraction pattern of several million of RBCs subjected to shear stress, and applies nonlinear quantifiers to study the fluctuations of these elongations. The development of new quantitative methods is crucial for restricting the subjectivity in the study of the cells behavior, mainly if they are capable of analyze at the same time biological and mechanical aspects of the cells in flowing conditions and compare their dynamics. A patented optical system called Erythrocyte Rheometer was used to evaluate viscoelastic properties of erythrocytes by Ektacytometry. To analyze cell dynamics we used the technique of Time Delay Coordinates, False Nearest Neighbors, the forecasting procedure proposed by Sugihara and May, and Hurst exponent. The results have expressive meaning on comparing healthy samples with parasite treated samples, suggesting that apparent noise associated with deterministic chaos can be used not only to distinguish but also to characterize biological and mechanical aspects of cells at the same time in flowing conditions.

  17. The Difference of Structural State and Deformation Behavior between Teenage and Mature Human Dentin

    Directory of Open Access Journals (Sweden)

    Peter Panfilov

    2016-01-01

    Full Text Available Objective. The cause of considerable elasticity and plasticity of human dentin is discussed in the relationship with its microstructure. Methods. Structural state of teenage and mature human dentin is examined by using XRD and TEM techniques, and their deformation behavior under compression is studied as well. Result. XRD study has shown that crystallographic type of calcium hydroxyapatite in human dentin (calcium hydrogen phosphate hydroxide Ca9HPO4(PO45OH; Space Group P63/m (176; a = 9,441 A; c = 6,881 A; c/a = 0,729; Crystallite (Scherrer 200 A is the same for these age groups. In both cases, dentin matrix is X-ray amorphous. According to TEM examination, there are amorphous and ultrafine grain phases in teenage and mature dentin. Mature dentin is stronger on about 20% than teenage dentin, while teenage dentin is more elastic on about 20% but is less plastic on about 15% than mature dentin. Conclusion. The amorphous phase is dominant in teenage dentin, whereas the ultrafine grain phase becomes dominant in mature dentin. Mechanical properties of human dentin under compression depend on its structural state, too.

  18. Measurement and correlation of high frequency behaviors of a very flexible beam undergoing large deformation

    International Nuclear Information System (INIS)

    Lee, Jae Wook; Kim, Hyun Woo; Ku, Hi Chun; Yoo, Wan Suk

    2009-01-01

    A correlation method of high frequency behaviors of a very flexible beam undergoing large displacement is presented. The suggested method based on the experimental modal analysis leads to more accurate correlation results because it directly uses the modal parameters of each mode achieved from experiment. First, the modal testing and the parameter identification method are suggested for flexible multibody dynamics. Due to the flexibility of a very thin beam, traditional testing methods such as impact hammer or contact type accelerometer are not working well. The suggested measurement with high speed camera, even though the test beam is very flexible, is working well. Using measurements with a high speed camera, modal properties until the 5th mode are measured. And After measuring each damping ratio until the 5th mode, a generic damping model is constructed using inverse modal transformation technique. It's very interesting that the modal transformation technique can be also applied even in the ANCF simulation which uses the global displacement and finite slope as the nodal coordinates. The results of experiment and simulation are compared until the 5th mode frequency, respectively, by using ANCF forced vibration analysis. Through comparison between numerical simulation and experiment, this study showed that the proposed generic damping matrix, modal testing and parameter identification method is very proper in flexible multibody dynamic problems undergoing large deformation

  19. Analysis of Deformation and Failure Behaviors of TIG Welded Dissimilar Metal Joints Using Miniature Tensile Specimens

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ji-Hwan; Jahanzeb, Nabeel; Kim, Min-Seong; Hwang, Ji-Hyun; Choi, Shi-Hoon [Sunchon National University, Suncheon (Korea, Republic of)

    2017-02-15

    The deformation and failure behaviors of dissimilar metal joints between SS400 steel and STS316L steel were investigated. The dissimilar metal joints were fabricated using the tungsten inert gas (TIG) welding process with STS309 steel as a filler metal. The microstructures of the dissimilar metal joints were investigated using an optical microscope and EBSD technique. The mechanical properties of the base metal (BM), heat affected zone (HAZ) and weld metal (WM) were measured using a micro-hardness and micro-tension tester combined with the digital image correlation (DIC) technique. The HAZ of the STS316L steel exhibited the highest micro-hardness value, and yield/tensile strengths, while the BM of the SS440 steel exhibited the lowest micro-hardness value and yield /tensile strengths. The grain size refinement in the HAZ of SS400 steel induced an enhancement of micro-hardness value and yield/tensile strengths compared to the BM of the SS400 steel. The WM, which consists of primary δ-ferrite and a matrix of austenite phase, exhibited relatively a high micro-hardness value, yield /tensile strengths and elongation compared to the BM and HAZ of the SS400 steel.

  20. Behaviors of Deformation, Recrystallization and Textures Evolution of Columnar Grains in 3%Si Electrical Steel Slabs

    Directory of Open Access Journals (Sweden)

    SHAO Yuan-yuan

    2017-11-01

    Full Text Available The behaviors of deformation and recrystallization and textures evolution of 3% (mass fraction Si columnar-grained electrical steel slabs were investigated by electron backscatter diffractometer technique and X-ray diffraction. The results indicate that the three columnar-grained samples have different initial textures with the long axes arranged along rolling, transverse and normal directions. Three shear orientations can be obtained in surface layer after hot rolling, of which Goss orientation is formed easily. The α and γ fibre rolling orientations are obtained in RD sample, while strong γ fibre orientations in TD sample and sharp {100} orientations in ND sample are developed respectively. In addition, cube orientation can be found in all the three samples. The characteristics of hot rolled orientations in center region reveal distinct dependence on initial columnar-grained orientations. Strong {111}〈112〉 orientation in RD and TD samples separately comes from Goss orientation of hot rolled sheets, and sharp rotated cube orientation in ND sample originates from the initial {100} orientation of hot rolled sheets after cold rolling. Influenced by initial deviated orientations and coarse grain size, large orientation gradient of rotated cube oriented grain can be observed in ND sample. The coarse {100} orientated grains of center region in the annealed sheets show the heredity of the initial columnar-grained orientations.

  1. Plastic deformation behavior of Fe–Co–B–Si–Nb–Cr bulk metallic glasses under nanoindentation

    International Nuclear Information System (INIS)

    Kim, J.T.; Hong, S.H.; Lee, C.H.; Park, J.M.; Kim, T.W.; Lee, W.H.; Yim, H.I.; Kim, K.B.

    2014-01-01

    Highlights: • Additional Cr modulation of atomic structure of Fe-Co-B-Si-Nb BMGs. • An amount of free volume characterized by a combination of nanoindentation and AFM. • Free volume determined by height measurement of AFM after nanoindentation. -- Abstract: In this work, we investigate the effect of Cr addition on thermal properties and indentation behavior of Fe 52 Co 20−x B 20 Si 4 Nb 4 Cr x alloys with x = 0, 1, 3 and 5 at.%, respectively. Among all studied alloys, the Fe 52 Co 17 B 20 Si 4 Nb 4 Cr 3 bulk metallic glass (BMG) exhibits the highest thermal stability with large supercooled liquid region of 40 K and the pronounced plastic deformation features which is serrated flow (pop-in event) and significant pile-up of materials around indents. This demonstrates that the appropriate addition of Cr in Fe-based BMG can induce the internal atomic structure modulation and promote the mechanical softening, which are discussed in terms of free volume concept

  2. Analysis of the overall structural behavior due to the impact of deformable missiles

    International Nuclear Information System (INIS)

    Ettouney, M.M.; Radini, R.R.; Hsueh, P.S.

    1979-01-01

    This paper presents a method of analysis to evaluate the overall behavior of reinforced concrete structures subjected to impact from deformable missiles. This method approaches the analysis in a very simple and practical way. The analysis is based on approximating the structure-missile system by a two-degree of freedom model. The two degrees of freedom model represents the missile and the structure, respectively. The hysteretic damping effects are considered implicitly through the nonlinearity of the two springs. Empirical formulas are presented for the evaluation of the dynamic properties of the nonlinear spring representing the concrete structure. The impact is simulated by applying an impulse on the two degrees of freedom system, then by the method of step by step numerical time integration (central difference formula is used) the time histories of the displacements and velocities of both the missile and structure are obtained. The numerical procedure is simple enough to be programmed by a hand or desk calculator which makes the method handy for most engineers and analysis. (orig.)

  3. Plastic deformation behavior of Fe–Co–B–Si–Nb–Cr bulk metallic glasses under nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.T.; Hong, S.H.; Lee, C.H. [HMC, Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Park, J.M., E-mail: jinman_park@hotmail.com [Materials Research Center, Samsung Advanced Institute of Technology (SAIT), San 14-1, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-712 (Korea, Republic of); Kim, T.W.; Lee, W.H. [HMC, Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Yim, H.I. [Department of Physics, Sookmyung Women’s University, Hyochangwongil 52, Yongsan-ku, Seoul 140-742 (Korea, Republic of); Kim, K.B., E-mail: kbkim@sejong.ac.kr [HMC, Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 143-747 (Korea, Republic of)

    2014-02-25

    Highlights: • Additional Cr modulation of atomic structure of Fe-Co-B-Si-Nb BMGs. • An amount of free volume characterized by a combination of nanoindentation and AFM. • Free volume determined by height measurement of AFM after nanoindentation. -- Abstract: In this work, we investigate the effect of Cr addition on thermal properties and indentation behavior of Fe{sub 52}Co{sub 20−x}B{sub 20}Si{sub 4}Nb{sub 4}Cr{sub x} alloys with x = 0, 1, 3 and 5 at.%, respectively. Among all studied alloys, the Fe{sub 52}Co{sub 17}B{sub 20}Si{sub 4}Nb{sub 4}Cr{sub 3} bulk metallic glass (BMG) exhibits the highest thermal stability with large supercooled liquid region of 40 K and the pronounced plastic deformation features which is serrated flow (pop-in event) and significant pile-up of materials around indents. This demonstrates that the appropriate addition of Cr in Fe-based BMG can induce the internal atomic structure modulation and promote the mechanical softening, which are discussed in terms of free volume concept.

  4. The influence of swarm deformation on the velocity behavior of falling swarms of particles

    Science.gov (United States)

    Mitchell, C. A.; Pyrak-Nolte, L. J.; Nitsche, L.

    2017-12-01

    Cohesive particle swarms have been shown to exhibit enhanced sedimentation in fractures for an optimal range of fracture apertures. Within this range, swarms travel farther and faster than a disperse (particulate) solution. This study aims to uncover the physics underlying the enhanced sedimentation. Swarm behavior at low Reynolds number in a quiescent unbounded fluid and between smooth rigid planar boundaries is investigated numerically using direct-summation, particle-mesh (PM) and particle-particle particle-mesh (P3M) methods - based upon mutually interacting viscous point forces (Stokeslet fields). Wall effects are treated with a least-squares boundary singularity method. Sub-structural effects beyond pseudo-liquid behavior (i.e., particle-scale interactions) are approximated by the P3M method much more efficiently than with direct summation. The model parameters are selected from particle swarm experiments to enable comparison. From the simulations, if the initial swarm geometry at release is unaffected by the fracture aperture, no enhanced transport occurs. The swarm velocity as a function of apertures increases monotonically until it asymptotes to the swarm velocity in an open tank. However, if the fracture aperture affects the initial swarm geometry, the swarm velocity no longer exhibits a monotonic behavior. When swarms are released between two parallel smooth walls with very small apertures, the swarm is forced to reorganize and quickly deform, which results in dramatically reduced swarm velocities. At large apertures, the swarm evolution is similar to that of a swarm in open tank and quickly flattens into a slow speed torus. In the optimal aperture range, the swarm maintains a cohesive unit behaving similarly to a falling sphere. Swarms falling in apertures less than or greater than the optimal aperture range, experience a level of anisotropy that considerably decreases velocities. Unraveling the physics that drives swarm behavior in fractured porous

  5. In-Situ Characterization of Deformation and Fracture Behavior of Hot-Rolled Medium Manganese Lightweight Steel

    Science.gov (United States)

    Zhao, Zheng-zhi; Cao, Rong-hua; Liang, Ju-hua; Li, Feng; Li, Cheng; Yang, Shu-feng

    2018-02-01

    The deformation and fracture behavior of hot-rolled medium manganese lightweight (0.32C-3.85Mn-4.18Al-1.53Si) steel was revealed by an in situ tensile test. Deformed δ-ferrite with plenty of cross-parallel deformation bands during in situ tensile tests provides δ-ferrite of good plasticity and ductility, although it is finally featured by the cleavage fracture. The soft and ductile δ-ferrite and high-volume fraction of austenite contribute to the superior mechanical properties of medium manganese lightweight steel heated at 800°C, with a tensile strength of 924 MPa, total elongation of 35.2% and product of the strength and elongation of 32.5 GPa %.

  6. High-pressure behavior of intermediate scapolite: compressibility, structure deformation and phase transition

    Science.gov (United States)

    Lotti, Paolo; Comboni, Davide; Merlini, Marco; Hanfland, Michael

    2018-05-01

    Scapolites are common volatile-bearing minerals in metamorphic rocks. In this study, the high-pressure behavior of an intermediate member of the scapolite solid solution series (Me47), chemical formula (Na1.86Ca1.86K0.23Fe0.01)(Al4.36Si7.64)O24[Cl0.48(CO3)0.48(SO4)0.01], has been investigated up to 17.79 GPa, by means of in situ single-crystal synchrotron X-ray diffraction. The isothermal elastic behavior of the studied scapolite has been described by a III-order Birch-Murnaghan equation of state, which provided the following refined parameters: V 0 = 1110.6(7) Å3, {K_{{V_0}}} = 70(2) GPa ({β _{{V_0}}} = 0.0143(4) GPa-1) and {K_{{V}}^' = 4.8(7). The refined bulk modulus is intermediate between those previously reported for Me17 and Me68 scapolite samples, confirming that the bulk compressibility among the solid solution increases with the Na content. A discussion on the P-induced structure deformation mechanisms of tetragonal scapolite at the atomic scale is provided, along with the implications of the reported results for the modeling of scapolite stability. In addition, a single-crystal to single-crystal phase transition, which is displacive in character, has been observed toward a triclinic polymorph at 9.87 GPa. The high-pressure triclinic polymorph was found to be stable up to the highest pressure investigated.

  7. Structural interpretations of deformation and fracture behavior of polypropylene/multi-walled carbon nanotube composites

    International Nuclear Information System (INIS)

    Ganss, Martin; Satapathy, Bhabani K.; Thunga, Mahendra; Weidisch, Roland; Poetschke, Petra; Jehnichen, Dieter

    2008-01-01

    The deformation and crack resistance behavior of polypropylene (PP) multi-walled carbon nanotube (MWNT) composites have been studied and their interrelation to the structural attributes studied by transmission electron microscopy (TEM), atomic force microscopy (AFM), scanning electron microscopy (SEM), wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC) and polarization light microscopy has been discussed. The composites were produced from industrial available MWNT by extrusion melt-mixing and injection-molding. In stress-strain measurements a strong increase in the yield stress and the Young's modulus at low MWNT contents has been observed, which was attributed to an efficient load transfer between the carbon nanotubes and polypropylene matrix through a good polymer-nanotube adhesion as indicated by SEM. The extent of enhancement in mechanical properties above 1.5 wt.% of MWNT decreased due to an apparently increased tendency of clustering of carbon nanotubes. Several theoretical models have been taken into account to explain the mechanical properties and to demonstrate the applicability of such models to the system under investigation. The crack resistance behavior has been studied with the essential work of fracture (EWF) approach based on post-yield fracture mechanics (PYFM) concept. A maximum in the non-essential work of fracture was observed at 0.5 wt.% MWNT demonstrating enhanced toughness compared to pure PP, followed by a sharp decline as the MWNT content was increased to 1.5 wt.% reveals a ductile-to-semi-ductile transition. Studies on the kinetics of crack propagation aspects have revealed a qualitative picture of the nature of such a transition in the fracture modes

  8. Deformation behavior, corrosion resistance, and cytotoxicity of Ni-free Zr-based bulk metallic glasses.

    Science.gov (United States)

    Liu, L; Qiu, C L; Chen, Q; Chan, K C; Zhang, S M

    2008-07-01

    Two Ni-free bulk metallic glasses (BMGs) of Zr(60)Nb(5)Cu(22.5)Pd(5)Al(7.5) and Zr(60)Nb(5)Cu(20)Fe(5)Al(10) were successfully prepared by arc-melting and copper mold casting. The thermal stability and crystallization were studied using differential scanning calorimetry. It demonstrates that the two BMGs exhibit very good glass forming ability with a wide supercooled liquid region. A multi-step process of crystallization with a preferential formation of quasicrystals occurred in both BMGs under continuous heating. The deformation behavior of the two BMGs was investigated using quasi-static compression testing. It reveals that the BMGs exhibit not only superior strength but also an extended plasticity. Corrosion behaviors of the BMGs were investigated in phosphate buffered solution by electrochemical polarization. The result shows that the two BMGs exhibit excellent corrosion resistance characterized by low corrosion current densities and wide passive regions. X-ray photoelectron spectroscopy analysis revealed that the passive film formed after anodic polarization was highly enriched in zirconium, niobium, and aluminum oxides. This is attributed to the excellent corrosion resistance. Additionally, the potential cytotoxicity of the two Ni-free BMGs was evaluated through cell culture for 1 week followed by 3-(4,5-Dimethylthiazol-2-yl-)-2,5-diphenyltetrazolium bromide assay and SEM observation. The results indicate that the two Ni-free BMGs exhibit as good biocompatibility as Ti-6Al-4V alloy, and thus show a promising potential for biomedical applications. (c) 2007 Wiley Periodicals, Inc.

  9. Predicting Hot Deformation of AA5182 Sheet

    Science.gov (United States)

    Lee, John T.; Carpenter, Alexander J.; Jodlowski, Jakub P.; Taleff, Eric M.

    Aluminum 5000-series alloy sheet materials exhibit substantial ductilities at hot and warm temperatures, even when grain size is not particularly fine. The relatively high strain-rate sensitivity exhibited by these non-superplastic materials, when deforming under solute-drag creep, is a primary contributor to large tensile ductilities. This active deformation mechanism influences both plastic flow and microstructure evolution across conditions of interest for hot- and warm-forming. Data are presented from uniaxial tensile and biaxial bulge tests of AA5182 sheet material at elevated temperatures. These data are used to construct a material constitutive model for plastic flow, which is applied in finite-element-method (FEM) simulations of plastic deformation under multiaxial stress states. Simulation results are directly compared against experimental data to explore the usefulness of this constitutive model. The effects of temperature and stress state on plastic response and microstructure evolution are discussed.

  10. Superplastic properties of an Al-2.4Mg-1.8Li-0.5Sc alloy

    International Nuclear Information System (INIS)

    Bradley, E.L. III; Morris, J.W. Jr.

    1991-01-01

    This paper reports that there is a need in the aerospace industry for structural, superplastic aluminum alloys that are formable at strain-rates greater than 10 -3 s -1 in order for the economic benefits of superplastic forming to be realized. The standard, structural, superplastic aluminum alloy in the aerospace industry is 7475, which has an optimum forming strain-rate near 10 -4 s -1 . Thus, research has been focused on modifying the microstructures of wrought Al-Li alloys such as 2090 and 8090 into superplastically formable (SPF) microstructures with improved properties, but the results have not been completely successful. Superplastic alloys with high strengths have been produced from the Al-Mg-Sc system. These alloys are strengthened by thermomechanical processing which precipitates small, coherent Al 3 Sc particles and increases the dislocation density of the material. The Mg is in solid solution and improves the work hardening capability of these alloys. Because superplastic forming is carried out at relatively high temperatures, recovery processes eliminate the dislocation strengthening resulting from the rolling and overage the precipitates. Lithium provides the most promising choice since it forms the ordered coherent precipitate δ (Al 3 Li), lowers the density, and increases the stiffness of aluminum alloys

  11. Effect of chain rigidity on network architecture and deformation behavior of glassy polymer networks

    Science.gov (United States)

    Knowles, Kyler Reser

    alter the physical, volumetric, and mechanical properties of the glassy networks. Chain rigidity was found to directly control deformation mechanisms, which were related to the yielding behavior of the epoxy network series. The unique benefit to our approach is the ability to separate the role of rigidity - an intramolecular parameter - from intermolecular phenomena which otherwise influence network properties.

  12. Temporal behavior of deep-seated gravitational slope deformations: A review

    Czech Academy of Sciences Publication Activity Database

    Pánek, T.; Klimeš, Jan

    2016-01-01

    Roč. 156, MAY (2016), s. 14-38 ISSN 0012-8252 Institutional support: RVO:67985891 Keywords : deep-seated gravitational slope deformations * catastrophic slope failures * deformation rates * dating * monitoring Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 7.051, year: 2016

  13. Evaluating the effects of hydroxyapatite coating on the corrosion behavior of severely deformed 316Ti SS for surgical implants

    International Nuclear Information System (INIS)

    Mhaede, Mansour; Ahmed, Aymen; Wollmann, Manfred; Wagner, Lothar

    2015-01-01

    The present work investigates the effects of severe plastic deformation by cold rolling on the microstructure, the mechanical properties and the corrosion behavior of austenitic stainless steel (SS) 316Ti. Hydroxyapatite coating (HA) was applied on the deformed material to improve their corrosion resistance. The martensitic transformation due to cold rolling was recorded by X-ray diffraction spectra. The effects of cold rolling on the corrosion behavior were studied using potentiodynamic polarization. The electrochemical tests were carried out in Ringer's solution at 37 ± 1 °C. Cold rolling markedly enhanced the mechanical properties while the electrochemical tests referred to a lower corrosion resistance of the deformed material. The best combination of both high strength and good corrosion resistance was achieved after applying hydroxyapatite coating. - Highlights: • Cold rolling markedly increases the hardness of SS 316Ti from 125 to 460 HV10. • Higher deformation degrees lead to lower corrosion resistance. • Application of HA-coating leads to significant improvement of the corrosion resistance

  14. Structural properties, deformation behavior and thermal stability of martensitic Ti-Nb alloys

    Energy Technology Data Exchange (ETDEWEB)

    Boenisch, Matthias

    2016-06-10

    Ti-Nb alloys are characterized by a diverse metallurgy which allows obtaining a wide palette of microstructural configurations and physical properties via careful selection of chemical composition, heat treatment and mechanical processing routes. The present work aims to expand the current state of knowledge about martensite forming Ti-Nb alloys by studying 15 binary Ti-c{sub Nb}Nb (9 wt.% ≤ c{sub Nb} ≤ 44.5 wt.%) alloy formulations in terms of their structural and mechanical properties, as well as their thermal stability. The crystal structures of the martensitic phases, α{sup '} and α'', and the influence of the Nb content on the lattice (Bain) strain and on the volume change related to the β → α{sup '}/α'' martensitic transformations are analyzed on the basis of Rietveld-refinements. The magnitude of the shuffle component of the β → α{sup '}/α'' martensitic transformations is quantified in relation to the chemical composition. The largest transformation lattice strains are operative in Nb-lean alloys. Depending on the composition, both a volume dilatation and contraction are encountered and the volume change may influence whether hexagonal martensite α{sup '} or orthorhombic martensite α'' forms from β upon quenching. The mechanical properties and the deformation behavior of martensitic Ti-Nb alloys are studied by complementary methods including monotonic and cyclic uniaxial compression, nanoindentation, microhardness and impulse excitation technique. The results show that the Nb content strongly influences the mechanical properties of martensitic Ti-Nb alloys. The elastic moduli, hardness and strength are minimal in the vicinity of the limiting compositions bounding the interval in which orthorhombic martensite α'' forms by quenching. Uniaxial cyclic compressive testing demonstrates that the elastic properties of strained samples are different than those of unstrained ones

  15. Propagation of the Stress Wave Through the Filled Joint with Linear Viscoelastic Deformation Behavior Using Time-Domain Recursive Method

    Science.gov (United States)

    Wang, Rui; Hu, Zhiping; Zhang, Dan; Wang, Qiyao

    2017-12-01

    The dynamic behavior of filled joints is mostly controlled by the filled medium. In addition to nonlinear elastic behavior, viscoelastic behavior of filled joints is also of great significance. Here, a theoretical study of stress wave propagation through a filled rock joint with linear viscoelastic deformation behavior has been carried out using a modified time-domain recursive method (TDRM). A displacement discontinuity model was extended to form a displacement and stress discontinuity model, and the differential constitutive relationship of viscoelastic model was adopted to introduce the mass and viscoelastic behavior of filled medium. A standard linear solid model, which can be degenerated into the Kelvin and Maxwell models, was adopted in deriving this method. Transmission and reflection coefficients were adopted to verify this method. Besides, the effects of some parameters on wave propagation across a filled rock joint with linear viscoelastic deformation behavior were discussed. Then, a comparison of the time-history curves calculated by the present method with those by frequency-domain method (FDM) was performed. The results indicated that change tendencies of the transmission and reflection coefficients for these viscoelastic models versus incident angle were the same as each other but not frequency. The mass and viscosity coupling of filled medium did not fundamentally change wave propagation. The modified TDRM was found to be more efficient than the FDM.

  16. Modeling and simulation of deformation and fracture behavior of components made of fully lamellar {gamma}TiAl alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, Mohammad Rizviul [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung

    2008-07-01

    The present work deals with the modeling and simulation of deformation and fracture behavior of fully lamellar {gamma}TiAl alloy; focusing on understanding the variability of local material properties and their influences on translamellar fracture. Afracture model has been presented that takes the inhomogeneity of the local deformation behavior of the lamellar colonies as well as the variability in fracture strength and toughness into consideration. To obtain the necessary model parameters, a hybrid methodology of experiments and simulations has been adopted. The experiments were performed at room temperature that demonstrates quasi-brittle response of the TiAl polycrystal. Aremarkable variation in stress-strain curves has been found in the tensile tests. Additional fracture tests showed significant variations in crack initiation and propagation during translamellar fracture. Analyzing the fracture surfaces, the micromechanical causes of these macroscopic scatter have been explained. The investigation shows that the global scatter in deformation and fracture response is highly influenced by the colony orientation and tilting angle with respect to the loading axis. The deformation and fracture behavior have been simulated by a finite element model including the material decohesion process described by a cohesive model. In order to capture the scatter of the macroscopic behavior, a stochastic approach is chosen. The local variability of stressstrain in the polycrystal and the variability of fracture parameters of the colonies are implemented in the stochastic approach of the cohesive model. It has been shown that the proposed approach is able to predict the stochastic nature of crack initiation and propagation as observed from the experiments. The global specimen failure with stable or unstable crack propagation can be explained in terms of the local variation of material properties. (orig.)

  17. Microstructural evolution and deformation behavior of twinning-induced plasticity (TWIP) steel during wire drawing

    International Nuclear Information System (INIS)

    Hwang, Joong-Ki; Yi, Il-Cheol; Son, Il-Heon; Yoo, Jang-Yong; Kim, Byoungkoo; Zargaran, A.; Kim, Nack J.

    2015-01-01

    The effect of wire drawing on the microstructural evolution and deformation behavior of Fe–Mn–Al–C twinning-induced plasticity (TWIP) steel has been investigated. The inhomogeneities of the stress state, texture, microstructure, and mechanical properties were clarified over the cross section of drawn wire with the aid of numerical simulation, Schmid factor analysis, and electron backscatter diffraction (EBSD) techniques. The analysis of texture in drawn wire shows that a mixture of <111> and <100> fiber texture was developed with strain; however, the distribution of <111> and <100> fibers was inhomogeneous along the radial direction of wire due to uneven strain distribution and different stress state along the radial direction. It has also been shown that the morphology, volume fraction, and variant system of twins as well as twinning rate were dependent on the imposed stress state. The surface area was subjected to larger strain and more complex stress state involving compression, shear, and tension than the center area, resulting in a larger twin volume fraction and more twin variants in the former than in the latter at all the strain levels. While the surface area was saturated with twins at an early stage of drawing, the center area was not saturated with twins even at fracture, implying that the fracture of wire were initiated at the surface area because of the exhaustion of ductility due to twinning. Based on these results, it is suggested that imposing a uniform strain distribution along the radial direction of wire by the control of processing conditions such as die angle and amount of reduction per pass is necessary to increase the drawing limit of TWIP steel

  18. How Deformation Behavior Controls Product Performance After Twin Screw Granulation With High Drug Loads and Crospovidone as Disintegrant.

    Science.gov (United States)

    Meier, Robin; Moll, Klaus-Peter; Krumme, Markus; Kleinebudde, Peter

    2017-01-01

    This study addresses the quantitative influence of 12 different materials (active pharmaceutical ingredients and excipients as surrogate active pharmaceutical ingredients) on the critical quality attributes of twin screw granulated products and subsequently produced tablets. Prestudies demonstrated the significant influence of the chosen model materials (in combination with crospovidone) on the disintegration behavior of the resulting tablets, despite comparable tablet porosities. This study elucidates possible reasons for the varying disintegration behavior by investigating raw material, granule, and tablet properties. An answer could be found in the mechanical properties of the raw materials and the produced granules. Through compressibility studies, the materials could be classified into materials with high compressibility, which deform rather plastically under compression stress, and low compressibility, which display breakages under compression stress. In general, and apart from (pseudo)-polymorphic transformations, brittle materials featured excellent disintegration performance, even at low resulting tablet porosities plastically deformable materials mostly did not reveal any disintegration. These findings must be considered in the development of simplified formulations with high drug loads, in which the active pharmaceutical ingredient predominantly defines the deformation behavior of the granule. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  19. Microstructure changes in superplastically deformed ultrafine-grained Al-3Mg-0.2Sc alloy

    Czech Academy of Sciences Publication Activity Database

    Král, Petr; Dvořák, Jiří; Kvapilová, Marie; Horita, Z.; Sklenička, Václav

    2015-01-01

    Roč. 5, č. 3 (2015), s. 306-312 ISSN 2218-5046 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : ultrafine-grained microstructure * aluminium alloy * equal-channel angular pressing * electron back scatter diffraction Subject RIV: JJ - Other Materials

  20. Modeling the Mechanical Behavior of Aluminum Laminated Metal Composites During High Temperature Deformation

    National Research Council Canada - National Science Library

    Grishber, R

    1997-01-01

    A constitutive model for deformation of a novel laminated metal composite (LMC) which is comprised of 21 alternating layers of Al 5182 alloy and Al 6090/SiC/25p metal matrix composite (MMC) has been proposed...

  1. Vacancy clustering behavior in hydrogen-charged martensitic steel AISI 410 under tensile deformation

    International Nuclear Information System (INIS)

    Sugita, K; Mutou, Y; Shirai, Y

    2016-01-01

    The formation and accumulation of defects under tensile deformation of hydrogen- charged AISI 410 martensitic steels were investigated by using positron lifetime spectroscopy. During the deformation process, dislocations and vacancy-clusters were introduced and increased with increasing strains. Between hydrogen-charged and uncharged samples with the same tensile strains there was no significant difference in the dislocation density and monovacancy equivalent vacancy density. (paper)

  2. The influence of deformation-induced martensite on the cryogenic behavior of 300-series stainless steels

    International Nuclear Information System (INIS)

    Morris, J.W. Jr.; Chan, J.W.; Mei, Z.

    1992-06-01

    The 300-series stainless steels that are commonly specified for the structures of high field superconducting magnets are metastable austenitic alloys that undergo martensitic transformations when deformed at low temperature. The martensitic tranformation is promoted by plastic deformation and by exposure to high magnetic fields. The transformation significantly influences the mechanical properties of the alloy. The mechanisms of this influence are reviewed, with emphasis on fatigue crack growth effects and magnetomechanical phenomena that have only recently been recognized

  3. Superplastic forming of rapid solidification processed Al-4Li-0.2Zr

    International Nuclear Information System (INIS)

    Meschter, P.J.; Lederich, R.J.; Sastry, S.M.L.

    1987-01-01

    Aluminum-4 wt pct lithium alloys are attractive as structural materials because they are 13 to 14 pct less dense and have 25 pct larger elastic moduli than high-strength 2XXX-and 7XXX-series aluminum alloys. These low-density alloys can be produced only by rapid solidification processing (RSP). Successful RSP of Al-4Li-0.2Zr, Al-4Li-1Mg-0.2Zr, and Al-4Li-1Cu-0.2Zr alloys with strengths similar to that of 7075-T76 has recently been demonstrated. Net-shaped processing techniques such as superplastic forming are capable of producing complex structural elements while minimizing usage of expensive material; thus, these techniques are particularly applicable to Al-Li alloys. The purpose of this study was to determine the conditions of strain rate and temperature under which RSP Al-4Li alloys could be superplastically formed

  4. Deformation behaviour of a new magnesium ternary alloy

    Science.gov (United States)

    Guglielmi, P.; Kaya, A. Arslan; Sorgente, D.; Palumbo, G.

    2018-05-01

    Magnesium based alloys are yet to fill a greater niche especially in the automotive and aeronautical industry. In fact, such alloys have a big weight saving potential, together with good damping characteristics. However, nowadays about 90% of Magnesium products are produced by casting, mainly using two alloy systems, namely Mg-Al-Zn (AZ91D) and Mg-Al (AM50, AM60). Now the emphasis, especially after having achieved considerable success in creep resistance and understanding of the deformation behaviour of Magnesium, has been shifted towards wrought alloys; AZ31, in this case, is the most popular. In this work a multi-element Magnesium alloy, developed to improve the deformation capacity of such a lightweight material, has been investigated and compared to a commercial AZ31B. The possibility of adopting such a multi-element Magnesium alloy for manufacturing components via unconventional sheet forming (such as superplastic forming, warm hydroforming, incremental forming) has been proved in the present work focusing the attention on the superplastic field. Free inflation tests were thus conducted at 450°C setting constant pressure to investigate the superplastic behaviour (in terms of dome height and strain rate sensitivity index) of both the multi-element Magnesium alloy (Mg-2Zn-Ce) and the commercial one (AZ31B). To enhance information on the thickness distribution and investigate the microstructure evolution, metallographic analyses on the samples used to carry out free inflation tests were also performed. The developed ternary alloy manifested quite a good deformation behaviour (high strain rate sensitivity index), even being tested in the as cast condition; in addition a limited grain coarsening was observed in the specimens after deformation.

  5. Deformation behaviors of three-dimensional graphene honeycombs under out-of-plane compression: Atomistic simulations and predictive modeling

    Science.gov (United States)

    Meng, Fanchao; Chen, Cheng; Hu, Dianyin; Song, Jun

    2017-12-01

    Combining atomistic simulations and continuum modeling, a comprehensive study of the out-of-plane compressive deformation behaviors of equilateral three-dimensional (3D) graphene honeycombs was performed. It was demonstrated that under out-of-plane compression, the honeycomb exhibits two critical deformation events, i.e., elastic mechanical instability (including elastic buckling and structural transformation) and inelastic structural collapse. The above events were shown to be strongly dependent on the honeycomb cell size and affected by the local atomic bonding at the cell junction. By treating the 3D graphene honeycomb as a continuum cellular solid, and accounting for the structural heterogeneity and constraint at the junction, a set of analytical models were developed to accurately predict the threshold stresses corresponding to the onset of those deformation events. The present study elucidates key structure-property relationships of 3D graphene honeycombs under out-of-plane compression, and provides a comprehensive theoretical framework to predictively analyze their deformation responses, and more generally, offers critical new knowledge for the rational bottom-up design of 3D networks of two-dimensional nanomaterials.

  6. Reprint of: Effects of cold deformation, electron irradiation and extrusion on deuterium desorption behavior in Zr-1%Nb alloy

    Science.gov (United States)

    Morozov, O.; Mats, O.; Mats, V.; Zhurba, V.; Khaimovich, P.

    2018-01-01

    The present article introduces the data of analysis of ranges of ion-implanted deuterium desorption from Zr-1% Nb alloy. The samples studied underwent plastic deformation, low temperature extrusion and electron irradiation. Plastic rolling of the samples at temperature ∼300 K resulted in plastic deformation with the degree of ε = 3.9 and the formation of nanostructural state with the average grain size of d = 61 nm. The high degree of defectiveness is shown in thermodesorption spectrum as an additional area of the deuterium desorption in the temperature ranges 650-850 K. The further processing of the sample (that had undergone plastic deformation by plastic rolling) with electron irradiation resulted in the reduction of the average grain size (58 nm) and an increase in borders concentration. As a result the amount of deuterium desorpted increased in the temperature ranges 650-900 K. In case of Zr-1% Nb samples deformed by extrusion the extension of desorption area is observed towards the temperature reduction down to 420 K. The formation of the phase state of deuterium solid solution in zirconium was not observed. The structural state behavior is a control factor in the process of deuterium thermodesorption spectrum structure formation with a fixed implanted deuterium dose (hydrogen diagnostics). It appears as additional temperature ranges of deuterium desorption depending on the type, character and defect content.

  7. The multi-objective genetic algorithm optimization, of a superplastic forming process, using ansys®

    Directory of Open Access Journals (Sweden)

    Grebenişan Gavril

    2017-01-01

    Full Text Available In the industrial practice, the product is intended to be flawless, with no technological difficulty in making the profile shapes. If this product results without defects, then any Finite Elements Method (FEM based simulation can support that technology. A technology engineer does not propose, very often to analyze the simulation of the design technology, but rather to try to optimize a solution that he feels feasible. Experiments used as the basis for numerical optimization analysis support their research in the field of superplastic forming. Determining the influence of input parameters on the output parameters, Determining the optimal shape of the product and the optimal initial geometry, the prediction of the cracks and possibly the fractures, the prediction of the final thickness of the sheet, these are the objectives of the research and optimization for this project. The results of the numerical simulations have been compared with the measurements made on parts and sections of the parts obtained by superplastic forming. Of course, the consistency of the results, costs, benefits, and times required to perform numerical simulations are evaluated, but they are not objectives for optimizing the superplastic forming process.

  8. Influences of silicon on the work hardening behavior and hot deformation behavior of Fe–25 wt%Mn–(Si, Al) TWIP steel

    International Nuclear Information System (INIS)

    Li, Dejun; Feng, Yaorong; Song, Shengyin; Liu, Qiang; Bai, Qiang; Ren, Fengzhang; Shangguan, Fengshou

    2015-01-01

    Highlights: • Influence of Si on work hardening behavior of Fe–25 wt%Mn TWIP steel was investigated. • Influence of Si on hot deformation behavior of Fe–25 wt%Mn TWIP steel was studied. • Si blocks dislocation glide and favors mechanical twinning in Fe–25 wt%Mn TWIP steel. • The addition of Si increases the hot deformation activation energy of Fe–25 wt%Mn TWIP steel. • The addition of Si retards the nucleation and growth of DRX grains of Fe–25 wt%Mn TWIP steel. - Abstract: The influence of silicon on mechanical properties and hot deformation behavior of austenitic Fe–25 wt%Mn TWIP steel was investigated by means of the comparison research between 25Mn3Al and 25Mn3Si3Al steel. The results show that the 25Mn3Si3Al steel has higher yield strength and higher hardness than that of 25Mn3Al steel because of the solution strengthening caused by Si atoms and possesses higher uniform deformation ability and tensile strength than that of 25Mn3Al steel due to the higher work hardening ability of 25Mn3Si3Al steel. 25Mn3Si3Al steel presents a clear four-stage curve of work hardening rate in course of cold compression. Quite the opposite, the 25Mn3Al steel presents a monotonic decline curve of work hardening rate. The difference of the work hardening behavior between 25Mn3Al and 25Mn3Si3Al steel can be attributed to the decline of stacking fault energy (SFE) caused by the addition of 3 wt% Si. The dislocation glide plays an important role in the plastic deformation of 25Mn3Al steel even though the mechanical twinning is still one of the main deformation mechanisms. The 3 wt% Si added into the 25Mn3Al steel blocks the dislocation glide and promotes the mechanical twinning, and then the dislocation glide characteristics cannot be observed in cold deformed microstructure of 25Mn3Si3Al steel. The hot compression tests reveal that the hot deformation resistance of the 25Mn3Si3Al steel is significantly higher than that of the 25Mn3Al steel due to the solid

  9. Influence of welding parameter on texture distribution and plastic deformation behavior of as-rolled AZ31 Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Renlong, E-mail: rlxin@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing (China); State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing (China); Liu, Dejia; Shu, Xiaogang; Li, Bo; Yang, Xiaofang; Liu, Qing [College of Materials Science and Engineering, Chongqing University, Chongqing (China)

    2016-06-15

    Friction stir welding (FSW) has promising application potential for Mg alloys. However, softening was frequently occurred in FSW Mg joints because of the presence of a β-type fiber texture. The present study aims to understand the influence of texture distribution in stir zone (SZ) on deformation behavior and joint strength of FSW Mg welds. AZ31 Mg alloy joints were obtained by FSW with two sets of welding speed and rotation rate. Detailed microstructure and texture evolutions were examined on Mg welds by electron backscatter diffraction (EBSD) techniques. It was found that the changes of welding parameters can affect texture distribution and the characteristic of texture in the transition region between SZ and thermal-mechanical affected zone (TMAZ). As a consequence, the activation ability of basal slip and extension twinning was changed, which therefore influenced joint strength, inhomogeneous plastic deformation and fracture behaviors. The present work provided some insights into understanding the texture–property relationship in FSW Mg welds and indicated that it is effective to tailor the joint performance by texture control. - Highlights: • Welding parameters largely affect the inclination angle of SZ/TMAZ boundary. • Fracture morphology is associated with the characteristic of SZ/TMAZ boundary. • The characteristic of plastic deformation is explained from the activation of basal slip.

  10. Effect of hydrogen on transformation characteristics and deformation behavior in a Ti-Ni shape memory alloy

    International Nuclear Information System (INIS)

    Hoshiya, Taiji; Ando, Hiroei; Den, Shoji; Katsuta, Hiroshi.

    1992-01-01

    Transformation characteristics and deformation behavior of hydrogenated Ti-50.5 at% Ni alloys, which were occluded in a low pressure range of hydrogen between 1.1 and 78.5 kPa, have been studied by electrical resistivity measurement, tensile test, X-ray diffraction analysis and microstructural observation. M S temperature of the Ti-Ni alloys decreased with an increase in hydrogen content. This corresponds to the stabilization of the parent phase during cooling, which was confirmed by X-ray diffraction: The suppression effect of hydrogen takes place on the martensitic transformation. Critical stress for slip deformation of hydrogenated Ti-Ni alloys changed with hydrogen content and thus hydrogen had a major influence on deformation behavior of those alloys. With hydrogen contents above 0.032 mol%, hardening was distinguished from softening which was pronounced in the contents from 0 to 0.032 mol% H. Hydrides were formed in hydrogen contents over 1.9 mol%. The hydride formation results in the reorientation in variants of the R phase and increase in the lattice strains of the parent phase. (author)

  11. Microstructure and deformation behavior of Ti-6Al-4V alloy by high-power laser solid forming

    International Nuclear Information System (INIS)

    Ren, Y.M.; Lin, X.; Fu, X.; Tan, H.; Chen, J.; Huang, W.D.

    2017-01-01

    This work investigated the microstructure and tensile deformation behavior of Ti-6Al-4V alloy fabricated using a high-power laser solid forming (LSF) additive manufacturing. The results show that the post-fabricated heat-treated microstructure consists of coarse columnar prior-β grains (630–1000 μm wide) and α-laths (5–9 μm) under different scanning velocities (900 and 1500 mm/min), which caused large elongation (∼18%) superior to the conventional laser additive manufacturing Ti-6Al-4V alloy. The deformation behavior of the LSF Ti-6Al-4V alloy was investigated using in situ tensile test scanning electron microscopy. The results show that shear-bands appeared along the α/β interface and slip-bands occurred within the α-laths, which lead to cracks decaying in a zigzag-pattern in the LSF Ti-6Al-4V alloy with basket-weave microstructure. These results demonstrate that the small columnar prior-β grains and fine basket-weave microstructure exhibiting more α/β interfaces and α-laths can disperse the load and resist the deformation in the LSF Ti-6Al-4V components. In addition, a modified microstructure selection map of the LSF Ti-6Al-4V alloy was established, which can reasonably predict the microstructure evolution and relative grain size in the LSF process.

  12. The effect of pre-existing defects on the strength and deformation behavior of α-Fe nanopillars

    International Nuclear Information System (INIS)

    Xie, Kelvin Y.; Shrestha, Sachin; Cao, Yang; Felfer, Peter J.; Wang Yanbo; Liao Xiaozhou; Cairney, Julie M.; Ringer, Simon P.

    2013-01-01

    The effects of two types of pre-existing defects, dislocations and clusters, on the strength and deformation behavior of body-centered cubic Fe nanopillars with a diameter of ∼150 nm were investigated using in situ nanocompression in a transmission electron microscope. The plastic deformation of nanopillars containing high initial dislocation densities was observed to be relatively continuous, proceeding via a series of small- and intermediate-scale strain bursts that were associated with the movement/escape of dislocations and the formation of slip bands. Mechanical annealing was observed in nanopillars with high dislocation densities. When the dislocation density was reduced by in situ heating, the nanopillars were much stronger and the plastic deformation behavior transformed to a more abrupt and explosive mode. The introduction of a dispersion of solute atom clusters into nanopillars caused further strengthening as a higher stress level is required for dislocations to pass the clusters. The strengthening effect of cluster dispersion in nanopillars is comparable to that observed in the bulk steel. These phenomena are universal for Fe nanopillars with different crystallographic orientations.

  13. Effect of deformation on densification and corrosion behavior of Al-ZrB2 composite

    Directory of Open Access Journals (Sweden)

    Sai Mahesh Yadav Kaku

    2017-03-01

    Full Text Available In the present investigation, aluminium based metal matrix composites (MMCs were produced through powder metallurgical route. Different composites were processed by adding different amount of ZrB2 (0, 2, 4 and 6 wt. % at three aspect ratios of 0.35, 0.5, and 0.65, respectively. The powder mixture was compacted and pressureless sintered at 550 °C for 1 h in controlled atmosphere (argon gas. The relative density of the sintered preforms was found to be 90%, approximately. Sintered preforms are used as workpiece materials for deformation study at different temperatures in order to find the effect of temperature on the densification behaviour. Potentio-dynamic polarization studies were performed on the deformed preforms to find the effect of mechanical working. The corrosion rate was found to decrease with increase in deformation.

  14. Nano-deformation behavior of silicon (100) film studied by depth sensing indentation and nanoscratch technique

    Science.gov (United States)

    Geetha, D.; Pratyank, R.; Kiran, P.

    2018-04-01

    Silicon being the most important material applied in microelectronic and photovoltaic technology, repeated investigation of the mechanical properties becomes essential. The nanoscale elastic-plastic deformation characteristics of Si (100) film were analyzed using nanoindentation and nanoscratch techniques. The hardness and elastic modulus values of the film obtained from nanoindentation tests were found to be consistent with the reported values. The load-displacement curves showed discontinuities and kinks which confirms the plastic behaviour of Si. The indentation induced plastic deformations were the consequences of the phase transformations. The critical shear stress, tensile strength and plastic zone size, of the Si film when subjected to nanoindentation were determined. The nanoscratch tests were performed to understand the tribological properties of the film. The SPM images of both the nanoindentation and nanoscratch profiles were useful in revealing the plastic character in terms of the piling up of matter in the vicinity of the dents. Conclusions were drawn in quantifying the plastic deformations and phase transformations.

  15. Effect of Temperature on the Deformation Behavior of B2 Austenite in a Polycrystalline Ni49.9Ti50.1 (at.Percent) Shape Memory Alloy

    Science.gov (United States)

    Garg, A.; Benafan, O.; Noebe, R. D.; Padula, S. A., II; Clausen, B.; Vogel, S.; Vaidyanathan, R.

    2013-01-01

    Superelasticity in austenitic B2-NiTi is of great technical interest and has been studied in the past by several researchers [1]. However, investigation of temperature dependent deformation in B2-NiTi is equally important since competing mechanisms of stress-induced martensite (SIM), retained martensite, plastic and deformation twinning can lead to unusual mechanical behaviors. Identification of the role of various mechanisms contributing to the overall deformation response of B2-NiTi is imperative to understanding and maturing SMA-enabled technologies. Thus, the objective of this work was to study the deformation of polycrystalline Ni49.9Ti50.1 (at. %) above A(sub f) (105 C) in the B2 state at temperatures between 165-440 C, and generate a B2 deformation map showing active deformation mechanisms in different temperature-stress regimes.

  16. Effect of cooling rate on microstructure and deformation behavior of Ti-based metallic glassy/crystalline powders

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.J. [State Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin 150001 (China); School of Mechanical and Mining Engineering, University of Queensland, Brisbane, QLD 4072 (Australia); Huang, Y.J. [State Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin 150001 (China); Shen, J., E-mail: junshen@hit.edu.cn [State Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin 150001 (China); Wu, Y.Q.; Huang, H. [School of Mechanical and Mining Engineering, University of Queensland, Brisbane, QLD 4072 (Australia); Zou, J., E-mail: j.zou@uq.edu.au [School of Mechanical and Mining Engineering, University of Queensland, Brisbane, QLD 4072 (Australia); Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD 4072 (Australia)

    2010-08-20

    The microstructures and deformation behavior of Ti-based metallic powders were comprehensively investigated. It has been found that, with increasing the powder size, the phase constituent alters from pure glassy to glassy with crystalline phases (face centered cubic structured NiSnZr and hexagonal structured Ti{sub 3}Sn phases). Our results suggest that the synergetic effect of the thermodynamics and kinetics determines the subsequent characteristics of the crystalline precipitations. Through comparative nanoindentation tests, it was found that the small powders exhibit more pop-in events and a larger pile-up ratio, suggesting that the plastic deformation of the metallic powders is governed by the combined effects of the free volume and the crystallization, which are determined by the cooling rate.

  17. Inelastic Cyclic Deformation Behaviors of Type 316H Stainless Steel for Reactor Pressure Vessel of Sodium-Cooled Fast Reactor at Elevated Temperatures

    International Nuclear Information System (INIS)

    Yoon, Ji-Hyun; Hong, Seokmin; Koo, Gyeong-Hoi; Lee, Bong-Sang; Kim, Young-Chun

    2015-01-01

    Type 316H stainless steel is a primary candidate material for a reactor pressure vessel of a sodium-cooled fast (SFR) reactor which is under development in Korea. The reactor pressure vessel for a SFR is subjected to inelastic deformation induced by cyclic thermal stress. Fully reversed cyclic testing and ratcheting testing at elevated temperatures were performed to characterize the inelastic cyclic deformation behaviors of Type 316H stainless steel at the SFR operating temperature. It was found that cyclic hardening of Type 316H stainless steel was enhanced, and the accumulation of ratcheting deformation of Type 316H stainless steel was retarded at around the SFR operating temperature. The results of the tensile testing and the microstructural investigation for dislocated structures after the inelastic deformation testing showed that dynamic strain aging affected the inelastic cyclic deformation behavior of Type 316 stainless steel at around the SFR operating temperature.

  18. Grain boundary engineering of highly deformable ceramics

    International Nuclear Information System (INIS)

    Mecartney, M.L.

    2000-01-01

    Highly deformable ceramics can be created with the addition of intergranular silicate phases. These amorphous intergranular phases can assist in superplastic deformation by relieving stress concentrations and minimizing grain growth if the appropriate intergranular compositions are selected. Examples from 3Y-TZP and 8Y-CSZ ceramics are discussed. The grain boundary chemistry is analyzed by high resolution analytical TEM is found to have a strong influence on the cohesion of the grains both at high temperature and at room temperature. Intergranular phases with a high ionic character and containing large ions with a relatively weak bond strength appear to cause premature failure. In contrast, intergranular phases with a high degree of covalent character and similar or smaller ions than the ceramic and a high ionic bond strength are the best for grain boundary adhesion and prevention of both cavitation at high temperatures and intergranular fracture at room temperature

  19. Statistical model for the mechanical behavior of the tissue engineering non-woven fibrous matrices under large deformation.

    Science.gov (United States)

    Rizvi, Mohd Suhail; Pal, Anupam

    2014-09-01

    The fibrous matrices are widely used as scaffolds for the regeneration of load-bearing tissues due to their structural and mechanical similarities with the fibrous components of the extracellular matrix. These scaffolds not only provide the appropriate microenvironment for the residing cells but also act as medium for the transmission of the mechanical stimuli, essential for the tissue regeneration, from macroscopic scale of the scaffolds to the microscopic scale of cells. The requirement of the mechanical loading for the tissue regeneration requires the fibrous scaffolds to be able to sustain the complex three-dimensional mechanical loading conditions. In order to gain insight into the mechanical behavior of the fibrous matrices under large amount of elongation as well as shear, a statistical model has been formulated to study the macroscopic mechanical behavior of the electrospun fibrous matrix and the transmission of the mechanical stimuli from scaffolds to the cells via the constituting fibers. The study establishes the load-deformation relationships for the fibrous matrices for different structural parameters. It also quantifies the changes in the fiber arrangement and tension generated in the fibers with the deformation of the matrix. The model reveals that the tension generated in the fibers on matrix deformation is not homogeneous and hence the cells located in different regions of the fibrous scaffold might experience different mechanical stimuli. The mechanical response of fibrous matrices was also found to be dependent on the aspect ratio of the matrix. Therefore, the model establishes a structure-mechanics interdependence of the fibrous matrices under large deformation, which can be utilized in identifying the appropriate structure and external mechanical loading conditions for the regeneration of load-bearing tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Hot deformation behaviors and processing maps of B{sub 4}C/Al6061 neutron absorber composites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yu-Li [School of Materials Science and Engineering, Taiyuan University Of Technology, Taiyuan 030024 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Wen-Xian, E-mail: Wangwenxian@tyut.edu.cn [School of Materials Science and Engineering, Taiyuan University Of Technology, Taiyuan 030024 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Zhou, Jun [School of Materials Science and Engineering, Taiyuan University Of Technology, Taiyuan 030024 (China); Department of Mechanical Engineering, Pennsylvania State University Erie, The Behrend College, Erie, PA 16563 (United States); Chen, Hong-Sheng [School of Materials Science and Engineering, Taiyuan University Of Technology, Taiyuan 030024 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China)

    2017-02-15

    In this study, the hot deformation behaviors of 30 wt.% B{sub 4}C/Al6061 neutron absorber composites (NACs) have been investigated by conducting isothermal compression tests at temperatures ranging from 653 K to 803 K and strain rates from 0.01 to 10 s{sup −1}. It was found that, during hot compression, the B{sub 4}C/Al6061 NACs exhibited a steady flow characteristic which can be expressed by the Zener-Hollomon parameter as a hyperbolic-sine function of flow stress. High average activation energy (185.62 kJ/mol) of B{sub 4}C/Al6061 NACs is noted in current study owing to the high content of B{sub 4}C particle. The optimum hot working conditions for B{sub 4}C/Al6061 NACs are found to be 760–803 K/0.01–0.05 s{sup −1} based on processing map and microstructure evolution. Typical material instabilities are thought to be attributed to void formation, adiabatic shear bands (ASB), particle debonding, and matrix cracking. Finally, the effect of the plastic deformation zones (PDZs) on the microstructure evolution in this 30 wt.% B{sub 4}C/Al6061 composite is found to be very important. - Highlights: •The hot deformation behavior of the 30 wt.% B{sub 4}C/Al6061 NACs was first analyzed. •The 3D efficiency map and the instability map are developed. •The optimum hot working conditions were identified and validated by SEM and TEM. •The hot deformation schematic diagram of 30 wt.% B{sub 4}C/Al6061 NACs is developed.

  1. Role of interstitial atoms in the microstructure and non-linear elastic deformation behavior of Ti–Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tahara, Masaki [Division of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Precision and Intelligence Laboratory, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Kim, Hee Young, E-mail: heeykim@ims.tsukuba.ac.jp [Division of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Inamura, Tomonari; Hosoda, Hideki [Precision and Intelligence Laboratory, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Miyazaki, Shuichi, E-mail: miyazaki@ims.tsukuba.ac.jp [Division of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); School of Materials Science and Engineering and ERI, Gyeongsang National University, 900 Gazwadong, Jinju, Gyeongnam 660-701 (Korea, Republic of)

    2013-11-15

    Highlights: ► {110}{sub β}〈11{sup ¯}0〉{sub β} transverse type lattice modulation is confirmed in β phase. ► Nanosized modulated region (nanodomain) distributes homogeneously and randomly. ► Nanodomains act as obstacles against the long-ranged martensitic transformation. ► The origin of non-linear elastic deformation behavior is the continuous increase in lattice distortion strain of the favorable nanodomain variant during tensile deformation. -- Abstract: In order to clarify the effect of interstitial atoms on the non-linear elastic deformation behavior of the Ti–Nb alloy, the microstructure of (Ti–26Nb)–1.0O alloy was closely investigated by transmission electron microscope (TEM) and in situ X-ray diffraction (XRD) measurements. The 〈1 1 0〉{sub β}* rel rods and {1 1 1}{sub β}* rel planes were observed in a reciprocal space for the (Ti–26Nb)–1.0O alloy. Their origin was {110}{sub β}〈11{sup ¯}0〉{sub β} transverse type lattice modulation generated by oxygen atoms. Nanosized modulated domain structure (nanodomain) distributed homogeneously and randomly in the β phase and acted as obstacles for the long-ranged martensitic transformation in the (Ti–26Nb)–1.0O alloy. The non-linear elastic strain of the (Ti–26Nb)–1.0O alloy was generated by the continuous increase in lattice distortion strain of the favorable nanodomain variant during tensile deformation.

  2. Role of interstitial atoms in the microstructure and non-linear elastic deformation behavior of Ti–Nb alloy

    International Nuclear Information System (INIS)

    Tahara, Masaki; Kim, Hee Young; Inamura, Tomonari; Hosoda, Hideki; Miyazaki, Shuichi

    2013-01-01

    Highlights: ► {110} β 〈11 ¯ 0〉 β transverse type lattice modulation is confirmed in β phase. ► Nanosized modulated region (nanodomain) distributes homogeneously and randomly. ► Nanodomains act as obstacles against the long-ranged martensitic transformation. ► The origin of non-linear elastic deformation behavior is the continuous increase in lattice distortion strain of the favorable nanodomain variant during tensile deformation. -- Abstract: In order to clarify the effect of interstitial atoms on the non-linear elastic deformation behavior of the Ti–Nb alloy, the microstructure of (Ti–26Nb)–1.0O alloy was closely investigated by transmission electron microscope (TEM) and in situ X-ray diffraction (XRD) measurements. The 〈1 1 0〉 β * rel rods and {1 1 1} β * rel planes were observed in a reciprocal space for the (Ti–26Nb)–1.0O alloy. Their origin was {110} β 〈11 ¯ 0〉 β transverse type lattice modulation generated by oxygen atoms. Nanosized modulated domain structure (nanodomain) distributed homogeneously and randomly in the β phase and acted as obstacles for the long-ranged martensitic transformation in the (Ti–26Nb)–1.0O alloy. The non-linear elastic strain of the (Ti–26Nb)–1.0O alloy was generated by the continuous increase in lattice distortion strain of the favorable nanodomain variant during tensile deformation

  3. Mechanical experiments on the superplastic material ALNOVI-1, including leak information

    International Nuclear Information System (INIS)

    Snippe, Q.H.C.; Meinders, T.

    2011-01-01

    Research highlights: → Mechanical testing of superplastic materials, in particular ALNOVI-1. → Uniaxial tests to show the one-dimensional stress-strain behaviour and the high amount of strain rate sensitivity. → Void volume fractions have been observed. → Free bulge experiments to show the dependence on the backpressure during the forming stage. → Measuring leak tightness of superplastically formed sheets. → Experiments are used in order to develop a constitutive model in a later stage. - Abstract: In subatomic particle physics, unstable particles can be detected with a so-called vertex detector, placed inside a particle accelerator. A detecting unit close to the accelerator bunch of charged particles must be separated from the accelerator vacuum. A thin sheet with a complex 3D shape prevents the detector vacuum from polluting the accelerator vacuum. Therefore, this sheet has to be completely leak tight. However, this can conflict with restrictions concerning maximum sheet thickness of the product. To produce such a complex thin sheet, superplastic forming can be very attractive in cases where a small number of products is needed. In order to predict gas permeability of these formed sheets, many mechanical experiments are necessary, where the gas leak has to be measured. To obtain insight in the mechanical behaviour of the used material, ALNOVI-1, tensile experiments were performed to describe the uniaxial stress-strain behaviour. From these experiments, a high strain rate sensitivity was measured. The flow stress of this material under superplastic conditions was low and the material behaved in an isotropic manner upon large plastic strains. The results of these experiments were used to predict the forming pressure as a function of time in a free bulge experiment, such that a predefined target strain rate will not be exceeded in the material. An extra parameter within these bulging experiments is the application of a hydrostatic pressure during the

  4. Effects of cooling rate, austenitizing temperature and austenite deformation on the transformation behavior of high-strength boron steel

    International Nuclear Information System (INIS)

    Mun, Dong Jun; Shin, Eun Joo; Choi, Young Won; Lee, Jae Sang; Koo, Yang Mo

    2012-01-01

    Highlights: ► Non-equilibrium segregation of B in steel depends strongly on the cooling rate. ► A higher austenitization temperature reduced the B hardenability effect. ► An increase in B concentration at γ grain boundaries accelerates the B precipitation. ► The loss of B hardenability effect is due to intragranular borocarbide precipitation. ► The controlled cooling after hot deformation increased the B hardenability effect. - Abstract: The phase transformation behavior of high-strength boron steel was studied considering the segregation and precipitation behavior of boron (B). The effects of cooling rate, austenitizing temperature and austenite deformation on the transformation behavior of B-bearing steel as compared with B-free steel were investigated by using dilatometry, microstructural observations and analysis of B distribution. The effects of these variables on hardenability were discussed in terms of non-equilibrium segregation mechanism and precipitation behavior of B. The retardation of austenite-to-ferrite transformation by B addition depends strongly on cooling rate (CR); this is mainly due to the phenomenon of non-equilibrium grain boundary segregation of B. The hardenability effect of B-bearing steel decreased at higher austenitizing temperature due to the precipitation of borocarbide along austenite grain boundaries. Analysis of B distribution by second ion mass spectroscopy confirmed that the grain boundary segregation of B occurred at low austenitizing temperature of 900 °C, whereas B precipitates were observed along austenite grain boundaries at high austenitizing temperature of 1200 °C. The significant increase in B concentration at austenite grain boundaries due to grain coarsening and a non-equilibrium segregation mechanism may lead to the B precipitation. In contrast, solute B segregated to austenite grain boundaries during cooling after heavy deformation became more stable because the increase in boundary area by grain

  5. Effect of Initial Backfill Temperature on the Deformation Behavior of Early Age Cemented Paste Backfill That Contains Sodium Silicate

    Directory of Open Access Journals (Sweden)

    Aixiang Wu

    2016-01-01

    Full Text Available Enhancing the knowledge on the deformation behavior of cemented paste backfill (CPB in terms of stress-strain relations and modulus of elasticity is significant for economic and safety reasons. In this paper, the effect of the initial backfill temperature on the CPB’s stress-strain behavior and modulus of elasticity is investigated. Results show that the stress-strain relationship and the modulus of elasticity behavior of CPB are significantly affected by the curing time and initial temperature of CPB. Additionally, the relationship between the modulus of elasticity and unconfined compressive strength (UCS and the degree of hydration was evaluated and discussed. The increase of UCS and hydration degree leads to an increase in the modulus of elasticity, which is not significantly affected by the initial temperature.

  6. Orientation dependence of deformation and penetration behavior of tungsten single crystal rods

    International Nuclear Information System (INIS)

    Bruchey, W.J. Jr.; Horwath, E.J.; Kingman, P.W.

    1991-01-01

    This paper reports on deformation and flow at a target/penetrator interface that occurs under conditions of high hydrostatic pressure and associated heat generation. To further elucidate the role of material structure in the penetration process, oriented single crystals of tungsten have been launched into steel targets and the residual penetrators recovered and analyzed. Both the penetration depth and the deformation characteristics were strongly influenced by the crystallographic orientation. Deformation modes for the left-angle 100 right-angle rod, which exhibited the best performance, appeared to involve considerable localized slip/cleavage and relatively less plastic working; the residual penetrator was extensively cracked and the eroded penetrator material was extruded in a smooth tube lined with an oriented array of discrete particle exhibiting cleavage fractures. Deformation appeared to be much less localized and to involve more extensive plastic working in the left-angle 011 right-angle rod, which exhibited the poorest penetration, while the left-angle 111 right-angle behaved in an intermediate fashion

  7. Behavior of LWR fuel elements under accident conditions

    International Nuclear Information System (INIS)

    Albrecht, H.; Bocek, M.; Erbacher, F.; Fiege, A.; Fischer, M.; Hagen, S.; Hofmann, P.; Holleck, H.; Karb, E.; Leistikow, S.; Melang, S.; Ondracek, G.; Thuemmler, F.; Wiehr, K.

    1977-01-01

    In the frame of the German reactor safety research program, the Kernforschungszentrum Karlsruhe is carrying out a comprehensive program on the behavior of LWR fuel elements under a variety of power cooling mismatch conditions in particular during loss-of-coolant accidents. The major objectives are to establish a detailed quantitative understanding of fuel rod failures mechanisms and their thresholds, to evaluate the safety margins of power reactor cores under accident conditions and to investigate the feedback of fuel rod failures on the efficiency of emergency core cooling systems. This detailed quantitative understanding is achieved through extensive basic and integral experiments and is incorporated in a fuel behavior code. On the basis of these results the design of power reactor fuel elements and of safety devices can be further improved. The results of investigations on the inelastic deformation (ballooning) behavior of Zircaloy 4 cladding at LOCA temperatures in oxidizing atmosphere are presented. Depending upon strain rate and temperature superplastic deformation behavior was observed. In the equation of state of Zry 4 the strain rate sensitivity index depends strongly upon strain and in the superplastic region upon sample anisotropy. Oxidation kinetics experiments with Zry-tubes at 900-1300 0 C showed that the Baker-Just correlation describes the reality quite conservative. Therefore a reduction of the amount of Zry oxidation can be assumed in the course of a LOCA. The external oxidation of Zry-cladding by steam as well as internal oxidation by the oxygen in oxide fuel and fission products (Cs, I, Te) have an influence on the strain and rupture behavior of Zry-cladding at LOCA temperatures. In out-of-pile and inpile experiments the mechanical and thermal behavior of fuel rods during the blowdown, the heatup and the reflood phases of a LOCA are investigated under representative and controlled thermohydraulic conditions. The task of the inpile experiments is

  8. X-ray Diffraction Investigation of Annealing Behavior of Peened Surface Deformation Layer on Precipitation Hardening Stainless Steel

    Science.gov (United States)

    Huang, Junjie; Wang, Zhou; Gan, Jin; Yang, Ying; Huang, Feng; Wu, Gang; Meng, Qingshuai

    2018-05-01

    In order to investigate the recrystallization behavior of peened surface deformation layer of precipitation hardening stainless steel, a classic x-ray diffraction line profile analysis, Voigt method, was carried out on peened 17-4PH with different isothermal annealing temperatures. The activation energy of domain boundary migration ( Q a) and the activation energy of microstrain relaxation ( Q b) were calculated by regression analysis in different annealing temperature conditions. The results show that the value of Q a decreases with annealing temperature increasing, which is due to the influence of precipitation (ɛ-Cu) size on the movements of grain and subgrain boundaries. The maximum growth rate of ɛ-Cu particles occurs during 400 to 500 °C interval. Compared with growth behavior of domain size, microstrain relaxation behavior is less sensitive to precipitation particle size. The effects of annealing temperature and time on dislocation density are both significant when annealing temperature is lower than 500 °C. However, the effect of annealing temperature on dislocation density becomes insignificant when annealing temperature is higher than 500 °C. 300 °C annealing temperature only leads to the microstrain relaxation but nearly cannot lead to the domain size growth even if prolonging annealing time. Microstructure enhancement effect still exists in plastic deformation layer when 300 °C annealing temperature lasts for 60 min but nearly disappears when 600 °C annealing temperature lasts for 20 min.

  9. X-ray Diffraction Investigation of Annealing Behavior of Peened Surface Deformation Layer on Precipitation Hardening Stainless Steel

    Science.gov (United States)

    Huang, Junjie; Wang, Zhou; Gan, Jin; Yang, Ying; Huang, Feng; Wu, Gang; Meng, Qingshuai

    2018-04-01

    In order to investigate the recrystallization behavior of peened surface deformation layer of precipitation hardening stainless steel, a classic x-ray diffraction line profile analysis, Voigt method, was carried out on peened 17-4PH with different isothermal annealing temperatures. The activation energy of domain boundary migration (Q a) and the activation energy of microstrain relaxation (Q b) were calculated by regression analysis in different annealing temperature conditions. The results show that the value of Q a decreases with annealing temperature increasing, which is due to the influence of precipitation (ɛ-Cu) size on the movements of grain and subgrain boundaries. The maximum growth rate of ɛ-Cu particles occurs during 400 to 500 °C interval. Compared with growth behavior of domain size, microstrain relaxation behavior is less sensitive to precipitation particle size. The effects of annealing temperature and time on dislocation density are both significant when annealing temperature is lower than 500 °C. However, the effect of annealing temperature on dislocation density becomes insignificant when annealing temperature is higher than 500 °C. 300 °C annealing temperature only leads to the microstrain relaxation but nearly cannot lead to the domain size growth even if prolonging annealing time. Microstructure enhancement effect still exists in plastic deformation layer when 300 °C annealing temperature lasts for 60 min but nearly disappears when 600 °C annealing temperature lasts for 20 min.

  10. Unified description of the softening behavior of beta-metastable and alpha+beta titanium alloys during hot deformation

    International Nuclear Information System (INIS)

    Poletti, Cecilia; Germain, Lionel; Warchomicka, Fernando; Dikovits, Martina; Mitsche, Stefan

    2016-01-01

    In this work, we propose a unified description of the softening behavior of a β metastable alloy and Ti6Al4V alloy. In the first part we provide sound evidence that the hot deformation of Ti6Al4V of the beta phase above and below the beta transus temperature takes place solely by dynamic recovery at moderate strains, similarly to the behavior of the Ti5Al5Mo5V3Cr1Zr near-beta alloy. This study was possible due to the combination of the fast cooling rates achieved after controlled hot deformation and the reconstruction of the parent beta phase from electron backscattered diffraction measurements of the frozen alpha phase by using an innovative developed algorithm. The dynamic recovery as a common dynamic restoration behavior for Ti6Al4V and Ti5Al5Mo5V3Cr1Zr is described mathematically with a Derby type relationship of the subgrain size and the stress of the beta phase. A rule of mixture allows the determination of the load partition between the two allotropic phases.

  11. Coupled deformation and fluid-flow behavior of a natural fracture in the CSM in situ test block

    International Nuclear Information System (INIS)

    Gertsch, L.S.

    1989-01-01

    The primary goal was the evaluation of an in situ block test as a data source for modeling the coupled flow and mechanical behavior of natural rock fractures. The experiments were conducted with the Colorado School of Mines in situ test block, an 8 m 3 (280 ft 3 ) gneiss cube which has been the focus of several previous studies. A single continuous fracture within the block was surrounded with instruments to measure stresses, deformations, and gas conductivity. The setup was subjected to combinations of normal and shear stress by pressurizing the block sides differentially with hydraulic flatjacks. The induced fracture deformation, as measured by two separate sensor systems, did not correlate closely with the fracture conductivity changes or with each other. The test fracture is more complicated physically than two parallel rock faces. Many joints which were not detected by mapping intersect the test fracture and strongly influence its behavior. These invisible joints create sub-blocks which react complexly to changes in applied load. The flow tests reflected the aggregate sub-block dislocations in the flow path. The deformation readings, however, were the movements of discrete points sparsely located among the sub-blocks. High-confidence extrapolation of block test results to large volumes, such as required for nuclear waste repository design, is not feasible currently. Present instrumentation does not sample rock mass behavior in situ at the proper scales. More basically, however, a fundamental gap exists between the nature of jointed rock and our conception of it. Therefore, the near-field rock mass must be discounted as an easily controllable barrier to groundwater flow, until radically different approaches to rock mass testing and modeling are developed

  12. Deformation behavior of commercial Mg-Al-Zn-Mn type alloys under a hydrostatic extrusion process at elevated temperatures

    International Nuclear Information System (INIS)

    Yoon, Duk Jae; Lee, Sang Mok; Lim, Seong Joo; Kim, Eung Zu

    2010-01-01

    This paper presents the deformation behavior of commercial Mg-Al-Zn-Mn type alloys during hydrostatic extrusion process at elevated temperatures. In the current study commercial Mg-Al-Zn-Mn type alloys with different Al contents were subjected to hydrostatic extrusion process at a range of temperatures and at ram speeds of 4.5, 10 and 17 mm/sec. Under the hydrostatic condition at 518K, the alloy with Al contents of 2.9 wt% was successfully extruded at all applied speeds. The alloys with Al content of 5.89 and 7.86 wt% were successful up to 10mm/sec, and finally extrusion of alloy with Al content 8.46wt% was successful only at 4.5 mm/sec. These results show that the deformation limit in the Mg alloys in terms of extrusion speed greatly extended to higher value in the proximity of lower Al content. It is presumed that deformation becomes harder as Al content increases because of strengthening mechanism by solute drag to increase of supersaturated Mg 17 Al 12 precipitates. Also, microstructures of cast and extruded Mg alloys were compared. Defect-wide microstructure of cast alloy completely evolved into dense and homogeneous microstructure with equiaxed grains

  13. Indentation-Induced Mechanical Deformation Behaviors of AlN Thin Films Deposited on c-Plane Sapphire

    International Nuclear Information System (INIS)

    Jian, Sh.R.; Juang, J.Y.

    2012-01-01

    The mechanical properties and deformation behaviors of AlN thin films deposited on c-plane sapphire substrates by helicon sputtering method were determined using the Berkovich nano indentation and cross-sectional transmission electron microscopy (XTEM). The load-displacement curves show the 'pop-ins' phenomena during nano indentation loading, indicative of the formation of slip bands caused by the propagation of dislocations. No evidence of nano indentation-induced phase transformation or cracking patterns was observed up to the maximum load of 80 mN, from either XTEM or atomic force microscopy (AFM) of the mechanically deformed regions. Instead, XTEM revealed that the primary deformation mechanism in AlN thin films is via propagation of dislocations on both basal and pyramidal planes. Furthermore, the hardness and Young's modulus of AlN thin films estimated using the continuous contact stiffness measurements (CSMs) mode provided with the nanoindenter are 16.2 GPa and 243.5 GPa, respectively.

  14. Theory of superplastic flow in two-phase materials: roles of interphase-boundary dislocations, ledges, and diffusion

    International Nuclear Information System (INIS)

    Gittus, J.H.

    1977-01-01

    A new theory is developed to explain superplastic flow in two-phase materials. It is postulated that boundary-dislocations, piled up in dislocation-Interphase-Boundaries (IPBs) climb away into disordered regions of the IPB. Sliding then occurs at an IPB as dislocations glide toward the head of the pile up to replace those which have climbed into disordered regions of the boundary. An energy barrier which would otherwise render sliding virtually impossible on dislocation-IPBs can, it is shown, be largely eliminated if the dislocations glide in pairs. The disorder (actually an antiphase domain boundary) which is created by the passage of the leading dislocation is then repaired by passage of its successor. The threshold stress for superplastic flow is provisionally identified with the stress which pins IPB dislocations to boundary ledges. The activation energy is theoretically that for IPB diffusion. Good agreement is obtained between the theoretical equation for superplastic flow and the results of published experiments

  15. Characterization of hot deformation behavior and processing map of FGH4096–GH4133B dual alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanhui; Ning, Yongquan, E-mail: ningke521@163.com; Nan, Yang; Liang, Houquan; Li, Yuzhi; Zhao, Zhanglong

    2015-06-05

    Highlights: • Hot deformation behavior of dual superalloys FGH4096–GH4133B was investigated. • Power dissipation maps built at different strains exhibit a continuous dynamic course. • Processing map approach was adopted to optimize hot forging process for dual superalloys. • Microstructure evolution at different deformation temperature and strain rate of dual superalloys was researched. - Abstract: The dual superalloys FGH4096–GH4133B were joined by the electron beam welding. Isothermal compression tests were carried out on electron beam weldments FGH4096–GH4133B alloys at the temperatures of 1020–1140 °C (the nominal γ′-transus temperature is about 1080 °C) and strain rates of 0.001–1.0 s{sup −1} with the height reduction of 50%. The results showed that the true stress–true strain curves are greatly affected by deformation temperature and strain rate. There is an intrinsic and necessary connection between the flow stress and thermal–dynamic behavior, which can be indicated by the true stress–true strain curves. The power dissipation maps at different strains exhibit that true strain has a great effect on processing maps. Processing maps under different strains were constructed for evaluation of the flow instability regime and optimization of processing parameters. When the true strain is 0.69, the optimum processing condition is around 1090−1130 °C/0.1−1.0 s{sup −1} with the peak efficiency of 0.58. The dynamic recrystallization mechanism and microstructure evolution in the welding seam of the studied dual-alloys have been discussed. High temperature and low strain rate are instrumental to dynamic recrystallization. The size of dynamically recrystallized grain decreased with the increase of strain rate and increased with the increase of deformation temperature. Based on the established combine processing map and microstructures, hot deformation process should be carried out under the condition of 1100−1120 °C/0.3−1.0 s

  16. Characterization of hot deformation behavior and processing map of FGH4096–GH4133B dual alloys

    International Nuclear Information System (INIS)

    Liu, Yanhui; Ning, Yongquan; Nan, Yang; Liang, Houquan; Li, Yuzhi; Zhao, Zhanglong

    2015-01-01

    Highlights: • Hot deformation behavior of dual superalloys FGH4096–GH4133B was investigated. • Power dissipation maps built at different strains exhibit a continuous dynamic course. • Processing map approach was adopted to optimize hot forging process for dual superalloys. • Microstructure evolution at different deformation temperature and strain rate of dual superalloys was researched. - Abstract: The dual superalloys FGH4096–GH4133B were joined by the electron beam welding. Isothermal compression tests were carried out on electron beam weldments FGH4096–GH4133B alloys at the temperatures of 1020–1140 °C (the nominal γ′-transus temperature is about 1080 °C) and strain rates of 0.001–1.0 s −1 with the height reduction of 50%. The results showed that the true stress–true strain curves are greatly affected by deformation temperature and strain rate. There is an intrinsic and necessary connection between the flow stress and thermal–dynamic behavior, which can be indicated by the true stress–true strain curves. The power dissipation maps at different strains exhibit that true strain has a great effect on processing maps. Processing maps under different strains were constructed for evaluation of the flow instability regime and optimization of processing parameters. When the true strain is 0.69, the optimum processing condition is around 1090−1130 °C/0.1−1.0 s −1 with the peak efficiency of 0.58. The dynamic recrystallization mechanism and microstructure evolution in the welding seam of the studied dual-alloys have been discussed. High temperature and low strain rate are instrumental to dynamic recrystallization. The size of dynamically recrystallized grain decreased with the increase of strain rate and increased with the increase of deformation temperature. Based on the established combine processing map and microstructures, hot deformation process should be carried out under the condition of 1100−1120 °C/0.3−1.0 s −1 with

  17. Repeated Load Permanent Deformation Behavior of Mixes With and Wihtout Modified Bituments

    Directory of Open Access Journals (Sweden)

    Imran Hafeez

    2011-01-01

    Full Text Available Premature rutting in flexible pavement structure is being observed on most of the road network of Pakistan. It initiates primarily due to uncontrolled axle loading and high ambient temperatures. NHA (National Highway Authority, Pakistan has continuously been modifying aggregate gradations and penetration grade of bitumen, without any prior investigation of the mix behaviour under the prevailing axle load and environmental conditions of the country. A comprehensive laboratory investigation was carried out on six mixes ranging from finer to coarser. Specimens were subjected to cyclic loading on UTM-5P (Universal Testing Machine to study the resistance against permanent deformation of the mixes at 25, 40 and 550C. At low temperatures and stress levels, both coarse and fine graded mixes showed less accumulated strain, whereas at higher temperatures and stress levels, coarse graded mix with PMB (Polymer Modified Bitumen showed good resistance to permanent deformation.

  18. Experimental and Numerical Investigations on Strength and Deformation Behavior of Cataclastic Sandstone

    Science.gov (United States)

    Zhang, Y.; Shao, J. F.; Xu, W. Y.; Zhao, H. B.; Wang, W.

    2015-05-01

    This work is devoted to characterization of the deformation and strength properties of cataclastic sandstones. Before conducting mechanical tests, the physical properties were first examined. These sandstones are characterized by a loose damaged microstructure and poorly cemented contacts. Then, a series of mechanical tests including hydrostatic, uniaxial, and triaxial compression tests were performed to study the mechanical strength and deformation of the sandstones. The results obtained show nonlinear stress-strain responses. The initial microcracks are closed at hydrostatic stress of 2.6 MPa, and the uniaxial compressive strength is about 0.98 MPa. Under triaxial compression, there is a clear transition from volumetric compressibility to dilatancy and a strong dependency on confining pressure. Based on the experimental evidence, an elastoplastic model is proposed using a linear yield function and a nonassociated plastic potential. There is good agreement between numerical results and experimental data.

  19. Deformation behavior of Mg-alloy-based composites at different temperatures studied by neutron diffraction

    Czech Academy of Sciences Publication Activity Database

    Farkas, Gergely; Máthis, K.; Pilch, Jan; Minárik, P.; Lukáš, Petr; Vinogradov, A.

    2017-01-01

    Roč. 685, FEB (2017), s. 284-293 ISSN 0921-5093 R&D Projects: GA ČR GB14-36566G; GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : magnesium alloy matrix composite s * neutron diffraction * deformation * twinning Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.094, year: 2016

  20. Impact of the Superpave hot mix asphalt properties on its permanent deformation behavior

    Directory of Open Access Journals (Sweden)

    Qasim Zahra

    2018-01-01

    Full Text Available In Iraq, the severity of rutting has increased in asphalt pavements possibly due to the increase in truck axle loads, tyre pressure, and high pavement temperature in summer. As of late, Superpave has been accounted as an enhanced system for performance based design, analysis of asphalt pavement performance prediction for asphalt concrete mixes. In this research the development of permanent deformation in asphalt concrete under repeated loadings was investigated, Wheel-Tracking apparatus has been used in a factorial testing program during which 44 slab samples were tested to simulate actual pavement. The objectives of the present research include; investigating the main factors affecting rutting in asphalt concrete mixture, quantifying the effect of SBS polymer and steel reinforcement on asphalt concrete mixtures in addition to studying the effect of variables on the asphalt concrete mixes against moisture sensitivity. It has been determined that that increasing of compaction temperature from 110 to 150°C will decrease the permanent deformation by 20.5 and 15.6 percent for coarse and fine gradation control asphalt mixtures, respectively. While the permanent deformation decreases by 21.3 percent when the compaction temperature is increased from 110 to 150°C for coarse gradation SBS modified asphalt mixtures.

  1. Numerical simulation and experimental validation of the large deformation bending and folding behavior of magneto-active elastomer composites

    International Nuclear Information System (INIS)

    Sheridan, Robert; VonLockette, Paris R; Roche, Juan; Lofland, Samuel E

    2014-01-01

    This work seeks to provide a framework for the numerical simulation of magneto-active elastomer (MAE) composite structures for use in origami engineering applications. The emerging field of origami engineering employs folding techniques, an array of crease patterns traditionally on a single flat sheet of paper, to produce structures and devices that perform useful engineering operations. Effective means of numerical simulation offer an efficient way to optimize the crease patterns while coupling to the performance and behavior of the active material. The MAE materials used herein are comprised of nominally 30% v/v, 325 mesh barium hexafarrite particles embedded in Dow HS II silicone elastomer compound. These particulate composites are cured in a magnetic field to produce magneto-elastic solids with anisotropic magnetization, e.g. they have a preferred magnetic axis parallel to the curing axis. The deformed shape and/or blocked force characteristics of these MAEs are examined in three geometries: a monolithic cantilever as well as two- and four-segment composite accordion structures. In the accordion structures, patches of MAE material are bonded to a Gelest OE41 unfilled silicone elastomer substrate. Two methods of simulation, one using the Maxwell stress tensor applied as a traction boundary condition and another employing a minimum energy kinematic (MEK) model, are investigated. Both methods capture actuation due to magnetic torque mechanisms that dominate MAE behavior. Comparison with experimental data show good agreement with only a single adjustable parameter, either an effective constant magnetization of the MAE material in the finite element models (at small and moderate deformations) or an effective modulus in the minimum energy model. The four-segment finite element model was prone to numerical locking at large deformation. The effective magnetization and modulus values required are a fraction of the actual experimentally measured values which suggests a

  2. On the effect of x-ray irradiation on the deformation and fracture behavior of human cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Holly D.; Launey, Maximilien E.; McDowell, Alastair A.; Ager III, Joel W.; Ritchie, Robert O.

    2010-01-10

    In situ mechanical testing coupled with imaging using high-energy synchrotron x-ray diffraction or tomography imaging is gaining in popularity as a technique to investigate micrometer and even sub-micrometer deformation and fracture mechanisms in mineralized tissues, such as bone and teeth. However, the role of the irradiation in affecting the nature and properties of the tissue is not always taken into account. Accordingly, we examine here the effect of x-ray synchrotron-source irradiation on the mechanistic aspects of deformation and fracture in human cortical bone. Specifically, the strength, ductility and fracture resistance (both work-of-fracture and resistance-curve fracture toughness) of human femoral bone in the transverse (breaking) orientation were evaluated following exposures to 0.05, 70, 210 and 630 kGy irradiation. Our results show that the radiation typically used in tomography imaging can have a major and deleterious impact on the strength, post-yield behavior and fracture toughness of cortical bone, with the severity of the effect progressively increasing with higher doses of radiation. Plasticity was essentially suppressed after as little as 70 kGy of radiation; the fracture toughness was decreased by a factor of five after 210 kGy of radiation. Mechanistically, the irradiation was found to alter the salient toughening mechanisms, manifest by the progressive elimination of the bone's capacity for plastic deformation which restricts the intrinsic toughening from the formation 'plastic zones' around crack-like defects. Deep-ultraviolet Raman spectroscopy indicated that this behavior could be related to degradation in the collagen integrity.

  3. The effect of various deformation processes on the corrosion behavior of casing and tubing carbon steels in sweet environment

    Science.gov (United States)

    Elramady, Alyaa Gamal

    The aim of this research project is to correlate the plastic deformation and mechanical instability of casing steel materials with corrosion behavior and surface change, in order to identify a tolerable degree of deformation for casing steel materials. While the corrosion of pipeline and casing steels has been investigated extensively, corrosion of these steels in sweet environments with respect to plastic deformation due to bending, rolling, autofrettage, or handling needs more investigation. Downhole tubular expansion of pipes (casings) is becoming standard practice in the petroleum industry to repair damaged casings, shutdown perforations, and ultimately achieve mono-diameter wells. Tubular expansion is a cold-drawing metal forming process, which consists of running conical mandrels through casings either mechanically using a piston or hydraulically by applying a back pressure. This mechanism subjects the pipes to large radial plastic deformations of up to 30 pct. of the inner diameter. It is known that cold-working is a way of strengthening materials such as low carbon steel, but given that this material will be subjected to corrosive environments, susceptibility to stress corrosion cracking (SCC) should be investigated. This research studies the effect of cold-work, in the form of cold-rolling and cold-expansion, on the surface behavior of API 5CT steels when it is exposed to a CO2-containing environment. Cold-work has a pronounced influence on the corrosion behavior of both API 5CT K55 and P110 grade steels. The lowest strength grade steel, API 5CT K55, performed poorly in a corrosive environment in the slow strain rate test. The ductile material exhibited the highest loss in strength and highest susceptibility to stress corrosion cracking in a CO 2-containing environment. The loss in strength declined with cold-rolling, which can be ascribed to the surface compressive stresses induced by cold-work. On the other hand, API 5CT P110 grade steels showed higher

  4. Behavior of the excited deformed band and search for shape isomerism in 184Hg

    International Nuclear Information System (INIS)

    Cole, J.D.; Hamilton, J.H.; Ramayya, A.V.; Nettles, W.G.; Kawakami, H.; Spejewski, E.H.; Ijaz, M.A.; Toth, K.S.; Robinson, E.L.; Sastry, K.S.R.; Lin, J.; Avignone, F.T.; Brantley, W.H.; Rao, P.V.G.

    1976-01-01

    The new isotope 184 Tl has been identified with T 1 / 2 =11 +- 1 sec and the levels in 184 Hg investigated from its decay. The 0 + band head of a deformed band was found to drop to 375 keV in agreement with theoretical predictions. The mean life of the 375-keV 0 + level was measured to be 0.9 +- 0.3 nsec which is a factor of 10 faster than theoretically predicted for a shape-isomeric E2 transition

  5. Effect of laser energy on the deformation behavior in microscale laser bulge forming

    International Nuclear Information System (INIS)

    Zheng Chao; Sun Sheng; Ji Zhong; Wang Wei

    2010-01-01

    Microscale laser bulge forming is a high strain rate microforming method using high-amplitude shock wave pressure induced by pulsed laser irradiation. The process can serve as a rapidly established and high precision technique to impress microfeatures on thin sheet metals and holds promise of manufacturing complex miniaturized devices. The present paper investigated the forming process using both numerical and experimental methods. The effect of laser energy on microformability of pure copper was discussed in detail. A 3D measuring laser microscope was adopted to measure deformed regions under different laser energy levels. The deformation measurements showed that the experimental and numerical results were in good agreement. With the verified simulation model, the residual stress distribution at different laser energy was predicted and analyzed. The springback was found as a key factor to determine the distribution and magnitude of the compressive residual stress. In addition, the absorbent coating and the surface morphology of the formed samples were observed through the scanning electron microscope. The observation confirmed that the shock forming process was non-thermal attributed to the protection of the absorbent coating.

  6. Deformation and fracture map methodology for predicting cladding behavior during dry storage

    International Nuclear Information System (INIS)

    Chin, B.A.; Khan, M.A.; Tarn, J.C.L.

    1986-09-01

    The licensing of interim dry storage of light-water reactor spent fuel requires assurance that release limits of radioactive materials are not exceeded. The extent to which Zircaloy cladding can be relied upon as a barrier to prevent release of radioactive spent fuel and fission products depends upon its integrity. The internal pressure from helium and fission gases could become a source of hoop stress for creep rupture if pressures and temperatures were sufficiently high. Consequently, it is of interest to predict the condition of spent fuel cladding during interim storage for periods up to 40 years. To develop this prediction, deformation and fracture theories were used to develop maps. Where available, experimental deformation and fracture data were used to test the validity of the maps. Predictive equations were then developed and cumulative damage methodology was used to take credit for the declining temperature of spent fuel during storage. This methodology was then used to predict storage temperatures below which creep rupture would not be expected to occur except in fuel rods with pre-existing flaws. Predictions were also made and compared with results from tests conducted under abnormal conditions

  7. Orientation dependence of deformation and penetration behavior of tungsten single-crystal rods

    International Nuclear Information System (INIS)

    Bruchey, W.J.; Horwath, E.J.; Kingman, P.W.

    1991-01-01

    This paper reports on the performance of tungsten single crystals as kinetic energy penetrator materials that was investigated in a high length-to-diameter (L/D) rod geometry at sub-scale (1/4 geometric scale). The [111]. [110], and [100] crystal orientations were tested in this 74-g LD = 15 geometry penetrator (6.90-mm diameter x 102.5-mm length). Several 93% tungsten alloy and uranium 3/4 titanium rod geometries were also tested to baseline expected performance of typical penetrator material/geometry combinations. Performance was determined for semi-infinite penetration into RHA steel and finite penetration into 76.20-mm RHA steel. Of the orientation tested, the [100] orientation provided the best ballistic results, with superior performance to mass and geometric equivalent 93% tungsten alloy rods. The [100] orientation also provided similar performance to geometric equivalent uranium 3/4 titanium rods. Favorable slip/cleavage during the compressive loading of the penetration process to allow penetrator material flow without large scale plastic deformation, and final shear localization at a favorable angle for easy material flow away from the penetration interface, contribute to the [100] orientation crystals' excellent performance. The net result was less energy expenditure during penetrator flow and, therefore, more energy for deformation of RHA

  8. Deformation Behavior of Ultra-Strong and Ductile Mg-Gd-Y-Zn-Zr Alloy with Bimodal Microstructure

    Science.gov (United States)

    Xu, C.; Fan, G. H.; Nakata, T.; Liang, X.; Chi, Y. Q.; Qiao, X. G.; Cao, G. J.; Zhang, T. T.; Huang, M.; Miao, K. S.; Zheng, M. Y.; Kamado, S.; Xie, H. L.

    2018-02-01

    An ultra-strong and ductile Mg-8.2Gd-3.8Y-1Zn-0.4Zr (wt pct) alloy was developed by using hot extrusion to modify the microstructure via forced-air cooling and an artificial aging treatment. A superior strength-ductility balance was obtained that had a tensile yield strength of 466 MPa and an elongation to failure of 14.5 pct. The local strain evolution during the in situ testing of the ultra-strong and ductile alloy was quantitatively analyzed with high-resolution electron backscattered diffraction and digital image correlation. The fracture behavior during the tensile test was characterized by synchrotron X-ray tomography along with SEM and STEM observations. The alloy showed a bimodal microstructure, consisting of dynamically recrystallized (DRXed) grains with random orientations and elongated hot-worked grains with parallel to the extrusion direction. The DRXed grains were deformed by the basal slip and the hot-worked grains were deformed by the prismatic slip dominantly. The strain evolution analysis indicated that the multilayered structure relaxed the strain localization via strain transfer from the DRXed to the hot-worked regions, which led to the high ductility of the alloy. Precipitation of the γ' on basal planes and the β' phases on the prismatic planes of the α-Mg generated closed volumes, which enhanced the strength by pinning dislocations effectively, and contributed to the high ductility by impeding the propagation of micro-cracks inside the grains. The deformation incompatibility between the hot-worked grains and the arched block-shaped long-period stacking ordered (LPSO) phases induced the crack initiation and propagation, which fractured the alloy.

  9. Deformation behaviors of Cu29Zr32Ti15Al5Ni19 high entropy bulk metallic glass during nanoindentation

    Science.gov (United States)

    Fang, Qihong; Yi, Ming; Li, Jia; Liu, Bin; Huang, Zaiwang

    2018-06-01

    The deformation behaviors of Cu29Zr32Ti15Al5Ni19 high entropy bulk metallic glass (HE-BMG) during the nanoindentation are presented via the large-scale molecular dynamics (MD) simulations. The indentation tests are carried out using spherical rigid indenter to investigate the microstructural evolution on the mechanical properties of HE-BMGs in terms of shear strain, indentation force, and surface morphology as well as radial distribution function (RDF). Based on the Hertzian fitting the load-displacement curve, HE-BMG Cu29Zr32Ti15Al5Ni19 has the Young's modulus of 93.1 GPa and hardness of 8.8 GPa. The indentation force requiring for the continual increasing contacted area between the indenter and the substrate goes up with the increasing of indentation depth. In addition, the symmetrical distribution of atomic displacement reveals the isotropic of HE-BMG after the indentation treatment. In the deformation region, the Al element would lead to the serious fluctuation in the first peak of RDF, which is much stronger than the other elements. The severe distortion from the atomic size difference maybe reduce the activation energy to the occurrence of shear deformation in HE-BMG, leading to the transition from brittle to ductile observed by the whole sliding of the local atom group. Through the indentation load-displacement curves at various temperatures, the softening of HE-BMG at high temperatures is in qualitative agreement with the experimental findings. Moreover, this effective strategy is used to accelerate the discovery of excellent mechanical properties of HE-BMGs by means of MD simulation, as well as understand the fundamental nanoindentation response of HE-BMGs.

  10. Creep Deformation and Rupture Behavior of Single- and Dual-Pass 316LN Stainless-Steel-Activated TIG Weld Joints

    Science.gov (United States)

    Vijayanand, V. D.; Vasudevan, M.; Ganesan, V.; Parameswaran, P.; Laha, K.; Bhaduri, A. K.

    2016-06-01

    Creep deformation and rupture behavior of single-pass and dual-pass 316LN stainless steel (SS) weld joints fabricated by an autogenous activated tungsten inert gas welding process have been assessed by performing metallography, hardness, and conventional and impression creep tests. The fusion zone of the single-pass joint consisted of columnar zones adjacent to base metals with a central equiaxed zone, which have been modified extensively by the thermal cycle of the second pass in the dual-pass joint. The equiaxed zone in the single-pass joint, as well as in the second pass of the dual-pass joint, displayed the lowest hardness in the joints. In the dual-pass joint, the equiaxed zone of the first pass had hardness comparable to the columnar zone. The hardness variations in the joints influenced the creep deformation. The equiaxed and columnar zone in the first pass of the dual-pass joint was more creep resistant than that of the second pass. Both joints possessed lower creep rupture life than the base metal. However, the creep rupture life of the dual-pass joint was about twofolds more than that of the single-pass joint. Creep failure in the single-pass joint occurred in the central equiaxed fusion zone, whereas creep cavitation that originated in the second pass was blocked at the weld pass interface. The additional interface and strength variation between two passes in the dual-pass joint provides more restraint to creep deformation and crack propagation in the fusion zone, resulting in an increase in the creep rupture life of the dual-pass joint over the single-pass joint. Furthermore, the differences in content, morphology, and distribution of delta ferrite in the fusion zone of the joints favors more creep cavitation resistance in the dual-pass joint over the single-pass joint with the enhancement of creep rupture life.

  11. Effect of borides on hot deformation behavior and microstructure evolution of powder metallurgy high borated stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xuan [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Wang, Mingjia, E-mail: mingjiawangysu@126.com [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Fu, Yifeng [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Wang, Zixi; Li, Yanmei [Yanming Alloy Roll Co. Ltd, Qinhuangdao 066004 (China); Yang, Shunkai; Zhao, Hongchang; Li, Hangbo [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2017-02-15

    To investigate borides effect on the hot deformation behavior and microstructure evolution of powder metallurgy high borated stainless steel, hot compression tests at the temperatures of 950– 1150 °C and the strain rates of 0.01– 10 s{sup −1} were performed. Flow stress curves indicated that borides increased the material's stress level at low temperature but the strength was sacrificed at temperatures above 1100 °C. A hyperbolic-sine equation was used to characterize the dependence of the flow stress on the deformation temperature and strain rate. The hot deformation activation energy and stress exponent were determined to be 355 kJ/mol and 3.2, respectively. The main factors leading to activation energy and stress exponent of studied steel lower than those of commercial 304 stainless steel were discussed. Processing maps at the strains of 0.1, 0.3, 0.5, and 0.7 showed that flow instability mainly concentrated at 950– 1150 °C and strain rate higher than 0.6 s{sup −1}. Results of microstructure illustrated that dynamic recrystallization was fully completed at both high temperature-low strain rate and low temperature-high strain rate. In the instability region cracks were generated in addition to cavities. Interestingly, borides maintained a preferential orientation resulting from particle rotation during compression. - Highlights: •The decrement of activation energy was affected by boride and boron solution. •The decrease of stress exponent was influenced by composition and Cottrell atmosphere. •Boride represented a preferential orientation caused by particle rotation.

  12. Influence of mid-crustal rheology on the deformation behavior of continental crust in the continental subduction zone

    Science.gov (United States)

    Li, Fucheng; Sun, Zhen; Zhang, Jiangyang

    2018-06-01

    Although the presence of low-viscosity middle crustal layer in the continental crust has been detected by both geophysical and geochemical studies, its influence on the deformation behavior of continental crust during subduction remains poorly investigated. To illustrate the crustal deformation associated with layered crust during continental subduction, we conducted a suite of 2-D thermo-mechanical numerical studies with visco-brittle/plastic rheology based on finite-differences and marker-in-cell techniques. In the experiments, we established a three-layer crustal model with a quartz-rich middle crustal layer embedded between the upper and lower continental crust. Results show that the middle crustal layer determines the amount of the accreted upper crust, maximum subduction depth, and exhumation path of the subducted upper crust. By varying the initial effective viscosity and thickness of the middle crustal layer, the further effects can be summarized as: (1) a rheologically weaker and/or thicker middle crustal layer results in a larger percentage of the upper crust detaching from the underlying slab and accreting at the trench zone, thereby leading to more serious crustal deformation. The rest of the upper crust only subducts into the depths of high pressure (HP) conditions, causing the absence of ultra-high pressure (UHP) metamorphic rocks; (2) a rheologically stronger and/or thinner middle crustal layer favors the stable subduction of the continental crust, dragging the upper crust to a maximum depth of ∼100 km and forming UHP rocks; (3) the middle crustal layer flows in a ductile way and acts as an exhumation channel for the HP-UHP rocks in both situations. In addition, the higher convergence velocity decreases the amount of subducted upper crust. A detailed comparison of our modeling results with the Himalayan collisional belt are conducted. Our work suggests that the presence of low-viscosity middle crustal layer may be another possible mechanism for

  13. A coupled analysis of fluid flow, heat transfer and deformation behavior of solidifying shell in continuously cast beam blank

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Eui; Yeo, Tae Jung; Oh, Kyu Hwan; Yoon, Jong Kyu [School of Materials Science and Engineering, Seoul Nat` l Univ., Seoul (Korea, Republic of); Han, Heung Nam [Oxford Center for Advanced Materials and Composites, Department of Materials, Univ. of Oxford (United Kingdom)

    1998-12-31

    A mathematical model for a coupled analysis of fluid flow, heat transfer and deformation behavior in the continuously cast beam blank has been developed. The fluid flow, heat transfer and solidification in the mold region were analyzed with 3-dimensional finite difference method (FDM) based on control volume method. A body fitted coordinate system was introduced for the complex geometry of the beam blank. The effects of turbulence and natural convection of molten steel were taken into account in determining the fluid flow in the strand. The thermo-elasto-plastic deformation behavior in the cast strand and the formation of air gap between the solidifying shell and the mold were analyzed by the finite element method (FEM) using the 2-dimensional slice temperature profile calculated by the FDM. The heat flow between the strand and the mold was evaluated by the coupled analysis between the fluid flow-heat transfer analysis and the thermo-elasto-plastic stress analysis. In order to determine the solid fraction in the mushy zone, the microsegregation of solute element was assessed. The effects of fluid flow on the heat transfer, the solidification of steel and the distribution of shell thickness during the casting of the beam blank were simulated. The deformation behavior of the solidifying shell and the possibility of cracking of the strand were also investigated. The recirculating flows were developed in the regions of the web and the flange tip. The impinging of the inlet flow from the nozzle retarded the growing of solidifying shell in the regions of the fillet and the flange. The air gap between the strand and the mold was formed near the region of the corner of the flange tip. At the initial stage of casting, the probability of the surface cracking was high in the regions of the fillet and the flange tip. After the middle stage of casting, the internal cracking was predicted in the regions of the flange tip, and between the fillet and the flange tip. (author) 38

  14. A coupled analysis of fluid flow, heat transfer and deformation behavior of solidifying shell in continuously cast beam blank

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Eui; Yeo, Tae Jung; Oh, Kyu Hwan; Yoon, Jong Kyu [School of Materials Science and Engineering, Seoul Nat`l Univ., Seoul (Korea, Republic of); Han, Heung Nam [Oxford Center for Advanced Materials and Composites, Department of Materials, Univ. of Oxford (United Kingdom)

    1997-12-31

    A mathematical model for a coupled analysis of fluid flow, heat transfer and deformation behavior in the continuously cast beam blank has been developed. The fluid flow, heat transfer and solidification in the mold region were analyzed with 3-dimensional finite difference method (FDM) based on control volume method. A body fitted coordinate system was introduced for the complex geometry of the beam blank. The effects of turbulence and natural convection of molten steel were taken into account in determining the fluid flow in the strand. The thermo-elasto-plastic deformation behavior in the cast strand and the formation of air gap between the solidifying shell and the mold were analyzed by the finite element method (FEM) using the 2-dimensional slice temperature profile calculated by the FDM. The heat flow between the strand and the mold was evaluated by the coupled analysis between the fluid flow-heat transfer analysis and the thermo-elasto-plastic stress analysis. In order to determine the solid fraction in the mushy zone, the microsegregation of solute element was assessed. The effects of fluid flow on the heat transfer, the solidification of steel and the distribution of shell thickness during the casting of the beam blank were simulated. The deformation behavior of the solidifying shell and the possibility of cracking of the strand were also investigated. The recirculating flows were developed in the regions of the web and the flange tip. The impinging of the inlet flow from the nozzle retarded the growing of solidifying shell in the regions of the fillet and the flange. The air gap between the strand and the mold was formed near the region of the corner of the flange tip. At the initial stage of casting, the probability of the surface cracking was high in the regions of the fillet and the flange tip. After the middle stage of casting, the internal cracking was predicted in the regions of the flange tip, and between the fillet and the flange tip. (author) 38

  15. A novel unified dislocation density-based model for hot deformation behavior of a nickel-based superalloy under dynamic recrystallization conditions

    International Nuclear Information System (INIS)

    Lin, Y.C.; Wen, Dong-Xu; Chen, Xiao-Min; Chen, Ming-Song

    2016-01-01

    In this study, a novel unified dislocation density-based model is presented for characterizing hot deformation behaviors in a nickel-based superalloy under dynamic recrystallization (DRX) conditions. In the Kocks-Mecking model, a new softening item is proposed to represent the impacts of DRX behavior on dislocation density evolution. The grain size evolution and DRX kinetics are incorporated into the developed model. Material parameters of the developed model are calibrated by a derivative-free method of MATLAB software. Comparisons between experimental and predicted results confirm that the developed unified dislocation density-based model can nicely reproduce hot deformation behavior, DRX kinetics, and grain size evolution in wide scope of initial grain size, strain rate, and deformation temperature. Moreover, the developed unified dislocation density-based model is well employed to analyze the time-variant forming processes of the studied superalloy. (orig.)

  16. A novel unified dislocation density-based model for hot deformation behavior of a nickel-based superalloy under dynamic recrystallization conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Y.C. [Central South University, School of Mechanical and Electrical Engineering, Changsha (China); Light Alloy Research Institute of Central South University, Changsha (China); State Key Laboratory of High Performance Complex Manufacturing, Changsha (China); Wen, Dong-Xu; Chen, Xiao-Min [Central South University, School of Mechanical and Electrical Engineering, Changsha (China); Chen, Ming-Song [Central South University, School of Mechanical and Electrical Engineering, Changsha (China); State Key Laboratory of High Performance Complex Manufacturing, Changsha (China)

    2016-09-15

    In this study, a novel unified dislocation density-based model is presented for characterizing hot deformation behaviors in a nickel-based superalloy under dynamic recrystallization (DRX) conditions. In the Kocks-Mecking model, a new softening item is proposed to represent the impacts of DRX behavior on dislocation density evolution. The grain size evolution and DRX kinetics are incorporated into the developed model. Material parameters of the developed model are calibrated by a derivative-free method of MATLAB software. Comparisons between experimental and predicted results confirm that the developed unified dislocation density-based model can nicely reproduce hot deformation behavior, DRX kinetics, and grain size evolution in wide scope of initial grain size, strain rate, and deformation temperature. Moreover, the developed unified dislocation density-based model is well employed to analyze the time-variant forming processes of the studied superalloy. (orig.)

  17. Swelling of uranium dioxide and deformation behavior of the fuel element at high temperature irradiation

    International Nuclear Information System (INIS)

    Gontar, A.S.; Gutnik, V.S.; Nelidov, M.V.; Nikolaev, Yu.V.

    1993-01-01

    As post-reactor investigations showed, significant difference of swelling rates is connected with the fact that swelling of UO 2 with the equiaxial structure is mainly the result of fission gas bubbles accumulation along grain boundaries, and, in the case of the column structure, with formation of fine bubbles inside grains. The data given testify to usefulness of such investigations to predict TFE lifetime. As proven in this study one can see rates of radial deformation of fuel element cladding of a multi-cell TFE as a result of UO 2 swelling. They were calculated using the code SDS. Typical sizes were taken for calculation: cladding diameter--20 mm, cladding temperature at the central section of the fuel element--1,900 K, energy generation rate--145 W/cm 3 . These parameters provide output electric power of the TFE 600 W at the active zone length--400 mm

  18. Deformation behavior of dragonfly-inspired nodus structured wing in gliding flight through experimental visualization approach.

    Science.gov (United States)

    Zhang, Sheng; Sunami, Yuta; Hashimoto, Hiromu

    2018-04-10

    Dragonfly has excellent flight performance and maneuverability due to the complex vein structure of wing. In this research, nodus as an important structural element of the dragonfly wing is investigated through an experimental visualization approach. Three vein structures were fabricated as, open-nodus structure, closed-nodus structure (with a flex-limiter) and rigid wing. The samples were conducted in a wind tunnel with a high speed camera to visualize the deformation of wing structure in order to study the function of nodus structured wing in gliding flight. According to the experimental results, nodus has a great influence on the flexibility of the wing structure. Moreover, the closed-nodus wing (with a flex-limiter) enables the vein structure to be flexible without losing the strength and rigidity of the joint. These findings enhance the knowledge of insect-inspired nodus structured wing and facilitate the application of Micro Air Vehicle (MAV) in gliding flight.

  19. Dynamic behavior of a rotating delaminated composite beam including rotary inertia and shear deformation effects

    Directory of Open Access Journals (Sweden)

    Ramazan-Ali Jafari-Talookolaei

    2015-09-01

    Full Text Available A finite element (FE model is developed to study the free vibration of a rotating laminated composite beam with a single delamination. The rotary inertia and shear deformation effects, as well as the bending–extension, bending–twist and extension–twist coupling terms are taken into account in the FE model. Comparison between the numerical results of the present model and the results published in the literature verifies the validity of the present model. Furthermore, the effects of various parameters, such as delamination size and location, fiber orientation, hub radius, material anisotropy and rotating speed, on the vibration of the beam are studied in detail. These results provide useful information in the study of the free vibration of rotating delaminated composite beams.

  20. Impact deformation behavior of duplex and superaustenitic stainless steels welds by split Hopkinson pressure bar

    Science.gov (United States)

    Wang, Shing-Hoa; Huang, Chih-Sheng; Lee, Woei-Shyan; Chen, Tao-Hsing; Wu, Chia-Chang; Lien, Charles; Tsai, Hung-Yin

    2009-12-01

    A considerable volume of γ phase increases in the fusion zone (weld metal) for two duplex stainless steels after a high-strain-rate impact. The strain-induced γ phase formation in the fusion zone results in local hardness variation depending on the strain rate. The α phase content in the fusion zone decreases as the impact strain rate increases for SAF 2205 DSS and SAF 2507 DSS. The results of the two-phase content measured by Ferritoscope correspond to that assessed by image analyses. In contrast, superaustenite stainless steel is unaffected by such an impact owing to its fully stable austenization. Impacted welds at a high strain rate of 5 × 103 s-1 reveal feather-like surface creases along the solidified curved columnar grain boundaries. The apparent surface creases are formed due to the presence of diffuse Lüders bands, which are caused by heavy plastic deformation in coarse-grain materials.

  1. The behavior of reinforced concrete barriers subjected to the impact of tornado generated deformable missiles

    International Nuclear Information System (INIS)

    McMahon, P.M.; Meyers, B.L.; Buchert, K.P.

    1977-01-01

    The paper presents a general model for the evaluation of local effects damage including, penetration and backface spalling, of reinforced concrete barriers subjected to the impact of deformable tornado generated missiles. The model is based on an approximte force time history which assumes: 1) the initial penetration of the missile occurs without significant deformation of the missile if the strength of the missile is greater than that of the barrier. This portion of the time history is represented by a linear and finite rise time; 2) wrinkling or collapse of the missile occurs when the critical stress of the missile is exceeded. This portion of the time histroy is represented by a constant force-time relationship, although a decreaseing force might be more accurate; 3) while the missile is penetrating and wrinkling both elastic and plastic stress waves are developed in the missile, and compressive and shear stress waves are generated in he target. When the shear waves reach the backface of the slab, doagonal cracks initiating at the end of the penetrating missile are formed. These cracks propagate to the backface reinforcing where splitting cracks are formed. Finally, yield hinge lines form in the plane of reinforcing; 4) repenetration of the missile occurs after the wrinkling has caused a change in missile cross section. This repenetration results from moving the failure cone described in three above, and is also represented by the costant force time history. Using the assumptions, relationships for the penetration depth of the missile the wrinkling length of the missile, the critical missile stress, the time history of the impact and the spalling of the target are developed. (Auth.)

  2. Evaluation of deformation behavior of in grains and grain boundaries of L-grade austenitic stainless steel 316L

    International Nuclear Information System (INIS)

    Nagashima, Nobuo; Hayakawa, Masao; Tsukada, Takashi; Kaji, Yoshiyuki; Miwa, Yukio; Ando, Masami; Nakata, Kiyotomo

    2009-01-01

    In this study, micro-hardness tests and AFM observations were performed on SUS 316L low-carbon austenitic stainless steel pre-strained by cold rolling to investigate its deformation behavior. The following results were obtained. Despite the fact that the same plastic strain was applied, post-tensile test AFM showed narrower slip-band spacing in a reduction in area of 30% cold-rolled specimen than the unrolled specimen. Concentrated slip bands were observed near grain boundaries. These were presumably due to slip blocking at grain boundaries. SCC sensitivity increased at a hardness of 300 or higher, the frequency occurrence of a hardness of 300 or higher in the micro-hardness measurements was compared. The micro-hardness did not exceed 300 both within grains and at grain boundaries in the unrolled and up to a reduction in area of 20% cold-rolled specimens of before and after the tensile tests. Micro-hardness exceeding 300 was found to occur frequently in after tensile test specimens with a reduction in area of 30% or more, particularly at grain boundaries. It is suggested that the nonuniformity of deformation at grain boundaries plays an important role of IGSCC crack propagation mechanism of low-carbon austenitic stainless steel. (author)

  3. Hot Roll Bonding of Aluminum to Twin-Roll Cast (TRC) Magnesium and Its Subsequent Deformation Behavior

    Science.gov (United States)

    Saleh, H.; Schmidtchen, M.; Kawalla, R.

    2018-02-01

    In an experiment in which twin-roll cast AZ31 magnesium alloy and commercial purity aluminum (AA 1050) sheets were bonded by hot rolling as Al/Mg/Al laminate composites, it was found that increasing the preheating temperatures up to 400 °C enhances the bonding strength of composites. Further increases in the preheating temperatures accelerate the magnesium oxide growth and thus reduce the bonding strength. The influence of the reduction ratio on the bonding properties was also studied, whereby it was observed that increasing the rolling reduction led to an increase in the bonding strength. The experimental results show that the optimum bonding strength can be obtained at rolling temperatures of 375-400 °C with a 50-60% reduction in thickness. On the other hand, the subsequent deformation behavior of composite was assessed using plane strain compression and deep drawing tests. We demonstrate that the composites produced using the optimum roll bonding conditions exhibited sufficient bonding during subsequent deformation and did not reveal any debonding at the bonding interface.

  4. Variation of strain rate sensitivity index of a superplastic aluminum alloy in different testing methods

    Science.gov (United States)

    Majidi, Omid; Jahazi, Mohammad; Bombardier, Nicolas; Samuel, Ehab

    2017-10-01

    The strain rate sensitivity index, m-value, is being applied as a common tool to evaluate the impact of the strain rate on the viscoplastic behaviour of materials. The m-value, as a constant number, has been frequently taken into consideration for modeling material behaviour in the numerical simulation of superplastic forming processes. However, the impact of the testing variables on the measured m-values has not been investigated comprehensively. In this study, the m-value for a superplastic grade of an aluminum alloy (i.e., AA5083) has been investigated. The conditions and the parameters that influence the strain rate sensitivity for the material are compared with three different testing methods, i.e., monotonic uniaxial tension test, strain rate jump test and stress relaxation test. All tests were conducted at elevated temperature (470°C) and at strain rates up to 0.1 s-1. The results show that the m-value is not constant and is highly dependent on the applied strain rate, strain level and testing method.

  5. Effect of regimes of equal-channel angular pressing on the superplasticity of aluminium alloy 1420

    International Nuclear Information System (INIS)

    Islamgaliev, R.K.; Yunusova, N.F.; Valiev, R.Z.

    2002-01-01

    Investigation results on the influence of conditions of equal-channel angular pressing (EAP) on structure and superplasticity of aluminium alloy 1420 (Al-5.5%Mg-2.2%Li-0.12%Zr) are reported. It is revealed that the superplasticity of alloy 1420 is determined not only by fine grains (less than 1 μm), but its structural and phase state as well. The structural phase state is shown to be greatly dependent on EAP conditions. In particular, the structure of specimens prepared using the optimal EAP conditions is characterized by a mean grain size (0.8 μm) of the matrix with predominantly high-angle disorientations as well as by presence of secondary phase Al 2 MgLi and AlLi particles with of 0.3 μm and 0.4 μm size respectively. It is shown that the rods with an optimal structural phase state exhibit record-breaking for the alloy elongation to fracture equal to 1620% at 400 Deg C and at strain rate of 10 -2 s -1 [ru

  6. A study of microstructure, quasi-static response, fatigue, deformation and fracture behavior of high strength alloy steels

    Science.gov (United States)

    Kannan, Manigandan

    The history of steel dates back to the 17th century and has been instrumental in the betterment of every aspect of our lives ever since, from the pin that holds the paper together to the Automobile that takes us to our destination steel touches everyone every day. Path breaking improvements in manufacturing techniques, access to advanced machinery and understanding of factors like heat treatment, corrosion resistance have aided in the advancement in the properties of steel in the last few years. In this dissertation document, the results of a study aimed at the influence of alloy chemistry, processing and influence of the quasi static and fatigue behavior of seven alloy steels is discussed. The microstructure of the as-received steel was examined and characterized for the nature and morphology of the grains and the presence of other intrinsic features in the microstructure. The tensile, cyclic fatigue and bending fatigue tests were done on a fully automated closed-loop servo-hydraulic test machine at room temperature. The failed samples of high strength steels were examined in a scanning electron microscope for understanding the fracture behavior, especially the nature of loading be it quasi static, cyclic fatigue or bending fatigue . The quasi static and cyclic fatigue fracture behavior of the steels examined coupled with various factors contributing to failure are briefly discussed in light of the conjoint and mutually interactive influences of intrinsic microstructural effects, nature of loading, and stress (load)-deformation-microstructural interactions.

  7. Microstructure, elastic deformation behavior and mechanical properties of biomedical β-type titanium alloy thin-tube used for stents.

    Science.gov (United States)

    Tian, Yuxing; Yu, Zhentao; Ong, Chun Yee Aaron; Kent, Damon; Wang, Gui

    2015-05-01

    Cold-deformability and mechanical compatibility of the biomedical β-type titanium alloy are the foremost considerations for their application in stents, because the lower ductility restricts the cold-forming of thin-tube and unsatisfactory mechanical performance causes a failed tissue repair. In this paper, β-type titanium alloy (Ti-25Nb-3Zr-3Mo-2Sn, wt%) thin-tube fabricated by routine cold rolling is reported for the first time, and its elastic behavior and mechanical properties are discussed for the various microstructures. The as cold-rolled tube exhibits nonlinear elastic behavior with large recoverable strain of 2.3%. After annealing and aging, a nonlinear elasticity, considered as the intermediate stage between "double yielding" and normal linear elasticity, is attributable to a moderate precipitation of α phase. Quantitive relationships are established between volume fraction of α phase (Vα) and elastic modulus, strength as well as maximal recoverable strain (εmax-R), where the εmax-R of above 2.0% corresponds to the Vα range of 3-10%. It is considered that the "mechanical" stabilization of the (α+β) microstructure is a possible elastic mechanism for explaining the nonlinear elastic behavior. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Mechanical Deformation Behavior of Sn-Ag-Cu Solders with Minor Addition of 0.05 wt.% Ni

    Science.gov (United States)

    Hammad, A. E.; El-Taher, A. M.

    2014-11-01

    The aim of the present work is to develop a comparative evaluation of the microstructural and mechanical deformation behavior of Sn-Ag-Cu (SAC) solders with the minor addition of 0.05 wt.% Ni. Test results showed that, by adding 0.05Ni element into SAC solders, generated mainly small rod-shaped (Cu,Ni)6Sn5 intermetallic compounds (IMCs) inside the β-Sn phase. Moreover, increasing the Ag content and adding Ni could result in the change of the shape and size of the IMC precipitate. Hence, a significant improvement is observed in the mechanical properties of SAC solders with increasing Ag content and Ni addition. On the other hand, the tensile results of Ni-doped SAC solders showed that both the yield stress and ultimate tensile strengths decrease with increasing temperature and with decreasing strain rate. This behavior was attributed to the competing effects of work hardening and dynamic recovery processes. The Sn-2.0Ag-0.5Cu-0.05Ni solder displayed the highest mechanical properties due to the formation of hard (Cu,Ni)6Sn5 IMCs. Based on the obtained stress exponents and activation energies, it is suggested that the dominant deformation mechanism in SAC (205)-, SAC (0505)- and SAC (0505)-0.05Ni solders is pipe diffusion, and lattice self-diffusion in SAC (205)-0.05Ni solder. In view of these results, the Sn-2.0Ag-0.5Cu-0.05Ni alloy is a more reliable solder alloy with improved properties compared with other solder alloys tested in the present work.

  9. Hot deformation behavior of 51.1Zr–40.2Ti–4.5Al–4.2V alloy in the single β phase field

    Directory of Open Access Journals (Sweden)

    Jingli Duan

    2015-02-01

    Full Text Available The hot deformation behavior of a newly developed 51.1Zr–40.2Ti–4.5Al–4.2 V alloy was investigated by compression tests in the deformation temperature range from 800 to 1050 °C and strain rate range from 10−3 to 100 s−1. At low temperatures and high strain rates, the flow curves exhibited a pronounced stress drop at the very beginning of deformation, followed by a slow decrease in flow stress with increasing strain. The magnitude of the stress drop increased with decreasing deformation temperature and increasing strain rate. At high temperatures and low strain rates, the flow curves exhibited typical characteristics of dynamic recrystallization. A hyperbolic-sine Arrhenius-type equation was used to characterize the dependences of the flow stress on deformation temperature and strain rate. The activation energy for hot deformation decreased slightly with increasing strain and then tended to be a constant value. A microstructural mechanism map was presented to help visualize the microstructure of this alloy under different deformation conditions.

  10. Processing and characterization of aluminium alloys or composites exhibiting low-temperature or high-rate superplasticity

    International Nuclear Information System (INIS)

    Huang, J. C.

    1997-01-01

    Wide applications of superplastic forming still face several problems, one is the high temperature that promotes grain growth, another is the low forming rate that makes economically inefficient. The current study is intended to develop a series of fabrication and thermomechanical processing, so as to result in materials possessing either low temperature superplasticity (LTSP) or high rate superplasticity (HRSP). The former has been achieved in the cast Al alloys, while the latter was accomplished in powder-metallurgy aluminium matrix composites. The aluminium alloys, after special thermomechanical processes, exhibited LTSP from 300 to 450 degree C with elongations varying from 300 to 700 %. The LTSP sheets after 700 % elongation at 350 degree C still possessed fine grains 3.7 μm size and narrow surface solute depletion zones 11 μm in with, resulting in a post-SP T6 strength of 500 MPa, significantly higher than that of the HTSP superplasticity alloys tested at 525 degree C or above. Meanwhile, it was found that LTSP materials may be transferred into HTSP materials simply by adding a preloading at 300-400 degree C for a small amount of work. As for the endeavor in making HRSP materials, 2024Al/SiC, 6061Al/SiC and Al/Al 3 Ti systems processed by powder metallurgy or mechanical alloying methods are under investigation. The average sizes of the reinforcing SiC or A13Ti particles, as well as the grain size are all around 1 μm. The aluminium composites have exhibited HRSP at 525-620 degree C and 10 -2 -10 -1 s -l , with elongations varying from 150 to 350 %. This ultimate goal is to produce an alloy or composite exhibiting low temperature and high strain rate superplasticity (LT and HRSP). (author)

  11. High temperature deformation behavior, thermal stability and irradiation performance in Grade 92 steel

    Science.gov (United States)

    Alsagabi, Sultan

    The 9Cr-2W ferritic-martensitic steel (i.e. Grade 92 steel) possesses excellent mechanical and thermophysical properties; therefore, it has been considered to suit more challenging applications where high temperature strength and creep-rupture properties are required. The high temperature deformation mechanism was investigated through a set of tensile testing at elevated temperatures. Hence, the threshold stress concept was applied to elucidate the operating high temperature deformation mechanism. It was identified as the high temperature climb of edge dislocations due to the particle-dislocation interactions and the appropriate constitutive equation was developed. In addition, the microstructural evolution at room and elevated temperatures was investigated. For instance, the microstructural evolution under loading was more pronounced and carbide precipitation showed more coarsening tendency. The growth of these carbide precipitates, by removing W and Mo from matrix, significantly deteriorates the solid solution strengthening. The MX type carbonitrides exhibited better coarsening resistance. To better understand the thermal microstructural stability, long tempering schedules up to 1000 hours was conducted at 560, 660 and 760°C after normalizing the steel. Still, the coarsening rate of M23C 6 carbides was higher than the MX-type particles. Moreover, the Laves phase particles were detected after tempering the steel for long periods before they dissolve back into the matrix at high temperature (i.e. 720°C). The influence of the tempering temperature and time was studied for Grade 92 steel via Hollomon-Jaffe parameter. Finally, the irradiation performance of Grade 92 steel was evaluated to examine the feasibility of its eventual reactor use. To that end, Grade 92 steel was irradiated with iron (Fe2+) ions to 10, 50 and 100 dpa at 30 and 500°C. Overall, the irradiated samples showed some irradiation-induced hardening which was more noticeable at 30°C. Additionally

  12. Strain rate dependent deformation and failure behavior of laser welded DP780 steel joint under dynamic tensile loading

    International Nuclear Information System (INIS)

    Liu, Yang; Dong, Danyang; Wang, Lei; Chu, Xi; Wang, Pengfei; Jin, Mengmeng

    2015-01-01

    Laser welded DP steel joints are used widely in the automotive industry for weight reduction. Understanding the deformation and fracture behavior of the base metal (BM) and its welded joint (WJ), especially at high strain rates, is critical for the design of vehicle structures. This paper is concerned with the effects of strain rate on the tensile properties, deformation and fracture behavior of the laser welded DP780 steel joint. Quasi-static and dynamic tensile tests were performed on the WJ and BM of the DP780 steel using an electromechanical universal testing machine and a high-speed tensile testing machine over a wide range of strain rate (0.0001–1142 s −1 ). The microstructure change and microhardness distribution of the DP780 steel after laser welding were examined. Digital image correlation (DIC) and high-speed photography were employed for the strain measurement of the DP780 WJ during dynamic tensile tests. The DP780 WJ is a heterogeneous structure with hardening in fusion zone (FZ) and inner heat-affected zone (HAZ), and softening in outer HAZ. The DP780 BM and WJ exhibit positive strain rate dependence on the YS and UTS, which is smaller at lower strain rates and becomes larger with increasing strain rate, while ductility in terms of total elongation (TE) tends to increase under dynamic loading. Laser welding leads to an overall reduction in the ductility of the DP780 steel. However, the WJ exhibits a similar changing trend of the ductility to that of the BM with respect to the strain rate over the whole strain rate range. As for the DP780 WJ, the distance of tensile failure location from the weld centerline decreases with increasing strain rate. The typical ductile failure characteristics of the DP780 BM and WJ do not change with increasing strain rate. DIC measurements reveal that the strain localization starts even before the maximum load is attained in the DP780 WJ and gradual transition from uniform strains to severely localized strains occurs

  13. Strain rate dependent deformation and failure behavior of laser welded DP780 steel joint under dynamic tensile loading

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang, E-mail: liuyang@mail.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); Dong, Danyang, E-mail: dongdanyang@mail.neu.edu.cn [College of Science, Northeastern University, Shenyang 110819 (China); Wang, Lei, E-mail: wanglei@mail.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); Chu, Xi, E-mail: chuxi.ok@163.com [College of Science, Northeastern University, Shenyang 110819 (China); Wang, Pengfei, E-mail: wpf1963871400@163.com [College of Science, Northeastern University, Shenyang 110819 (China); Jin, Mengmeng, E-mail: 24401878@163.com [College of Science, Northeastern University, Shenyang 110819 (China)

    2015-03-11

    Laser welded DP steel joints are used widely in the automotive industry for weight reduction. Understanding the deformation and fracture behavior of the base metal (BM) and its welded joint (WJ), especially at high strain rates, is critical for the design of vehicle structures. This paper is concerned with the effects of strain rate on the tensile properties, deformation and fracture behavior of the laser welded DP780 steel joint. Quasi-static and dynamic tensile tests were performed on the WJ and BM of the DP780 steel using an electromechanical universal testing machine and a high-speed tensile testing machine over a wide range of strain rate (0.0001–1142 s{sup −1}). The microstructure change and microhardness distribution of the DP780 steel after laser welding were examined. Digital image correlation (DIC) and high-speed photography were employed for the strain measurement of the DP780 WJ during dynamic tensile tests. The DP780 WJ is a heterogeneous structure with hardening in fusion zone (FZ) and inner heat-affected zone (HAZ), and softening in outer HAZ. The DP780 BM and WJ exhibit positive strain rate dependence on the YS and UTS, which is smaller at lower strain rates and becomes larger with increasing strain rate, while ductility in terms of total elongation (TE) tends to increase under dynamic loading. Laser welding leads to an overall reduction in the ductility of the DP780 steel. However, the WJ exhibits a similar changing trend of the ductility to that of the BM with respect to the strain rate over the whole strain rate range. As for the DP780 WJ, the distance of tensile failure location from the weld centerline decreases with increasing strain rate. The typical ductile failure characteristics of the DP780 BM and WJ do not change with increasing strain rate. DIC measurements reveal that the strain localization starts even before the maximum load is attained in the DP780 WJ and gradual transition from uniform strains to severely localized strains

  14. Deformation behavior of nano-porous polycrystalline silver. Part II: Simulations

    International Nuclear Information System (INIS)

    Zabihzadeh, S.; Cugnoni, J.; Duarte, L.I.; Van Petegem, S.; Van Swygenhoven, H.

    2017-01-01

    Three-dimensional finite element simulations of nano-porous silver structures are performed to understand the correlation between the porous morphology and the mechanical behavior. The nanostructures have been obtained from ptychographic X-ray computed tomography. The simulations allow distinguishing between the interplay and role of the ligament size, the pore morphology and the porosity, and therefore provide a better comprehension of the experimental observations. We show that the proposed model has a predictive character for mechanical behavior of nano-porous silver.

  15. Micro-deformation behavior in micro-compression with high-purity aluminum processed by ECAP

    Directory of Open Access Journals (Sweden)

    Xu Jie

    2015-01-01

    Full Text Available Ultrafine-grained (UFG materials have a potential for applications in micro-forming since grain size appears to be the dominant factor which determines the limiting size of the geometrical features. In this research, high-purity Al was processed by equal-channel angular pressing (ECAP at room temperature through 1–8 passes. Analysis shows that processing by ECAP produces a UFG structure with a grain size of ~1.3 μm and with microhardness and microstructural homogeneity. Micro-compression testing was carried out with different specimen dimensions using the annealed sample and after ECAP processing through 1–8 passes. The results show the flow stress increases significantly after ECAP processing by comparison with the annealed material. The flow stress generally reaches a maximum value after 2 passes which is consistent with the results of microhardness. The flow stress decreases with decreasing specimen diameter from 4 mm to 1 mm which demonstrates that size effects also exist in the ultrafine-grained materials. However, the deformation mechanism in ultrafine-grained pure Al changes from strain strengthening to softening by dynamic recovery by comparison with the annealed material.

  16. Deformation Behavior between Hydraulic and Natural Fractures Using Fully Coupled Hydromechanical Model with XFEM

    Directory of Open Access Journals (Sweden)

    Fei Liu

    2017-01-01

    Full Text Available There has been a growing consensus that preexisting natural fractures play an important role during stimulation. A novel fully coupled hydromechanical model using extended finite element method is proposed. This directly coupled scheme avoids the cumbersome process during calculating the fluid pressure in complicated fracture networks and translating into an equivalent nodal force. Numerical examples are presented to simulate the hydraulic fracture propagation paths for simultaneous multifracture treatments with properly using the stress shadow effects for horizontal wells and to reveal the deformation response and interaction mechanism between hydraulic induced fracture and nonintersected natural fractures at orthotropic and nonorthotropic angles. With the stress shadow effects, the induced hydraulic flexural fracture deflecting to wellbore rather than transverse fracture would be formed during the progress of simultaneous fracturing for a horizontal well. The coupled hydromechanical simulation reveals that the adjacent section to the intersection is opened and the others are closed for orthogonal natural fracture, while the nonorthogonal natural fracture is activated near the intersection firstly and along the whole section with increasing perturbed stresses. The results imply that the induced hydraulic fracture tends to cross orthotropic natural fracture, while it is prior to being arrested by the nonorthotropic natural fracture.

  17. Deformation Behavior of Reverse Deep Drawing of 5A06 Aluminum Alloy Plate

    Directory of Open Access Journals (Sweden)

    ZHANG Zhi-chao

    2017-09-01

    Full Text Available The limit drawing ratio is influenced by the bending and unbending effect during reverse deep drawing of plate. The 5A06 aluminum alloy plate widely applied in aerospace industry was used, and the reverse deep drawing of the 4.5mm thick plate was investigated experimentally and numerically. The stress and strain distributions of plate were analyzed, the deformation behaviour was discussed for three types of cross section of die during the reverse deep drawing process; moreover, the changing rule of strain paths with the die profile was also discussed. Results show that a maximum radial stress is induced by the bending effect at the transient region between the inside die radius and straight wall, where a radial stress and strain gradient along the thickness direction appears and the fracture is easy to occur. For the semi-circle profiled die structure, the limited punch stroke is 203mm which is increased by 40% than that for the die with a planar profile section. The semi-circle profiled die structure can reduce the bending effect, effectively reduce the stress gradient and the maximum stress value in the transient region, and is helpful to improve the limit drawing ratio of the 5A06 aluminum alloy plate.

  18. Study of inelastic deformation mechanisms in metal glass volume

    International Nuclear Information System (INIS)

    Bakaj, S.A.; Neklyudov, I.M.; Savchenko, V.I.; Ehkert, Yu.

    2001-01-01

    The results of investigations of the mechanical properties and internal friction of the bulk amorphous alloy Zr 53.5 Ti 5 Cu 17.5 Ni 14.6 Al 10.4 within the temperature range from the room temperature up to glass-transition temperature are reported. The yield stress and transition from homogeneous to inhomogeneous plastic deformation are investigated. The temperature dependence of low-frequency internal friction, Q -1 (T), in the amplitude-independent limit of oscillations is obtained. The temperature range within which the homogeneous plastic deformation is observed under compression stress is determined. The superplasticity of the amorphous alloy is revealed at the temperature which is 100K lower than the glass-transition temperature. The lowest temperature, at which the superplasticity is revealed, turns to be an edge of the temperature range where Q -1 (T) increases fast. The microscopic nature of the observed phenomena are interpreted on the base of the polycluster model of the metallic glasses

  19. Cracking and load-deformation behavior of fiber reinforced concrete: Influence of testing method

    DEFF Research Database (Denmark)

    Paegle, Ieva; Minelli, Fausto; Fischer, Gregor

    2016-01-01

    cementitious composites with strain hardening and strain softening behavior. Digital Image Correlation was utilized in the experimental program to detect and quantify the formation of cracks. Results show that the different test methodologies valuate specific aspects of material performance. The outcome...

  20. Thermal Microstructural Stability of AZ31 Magnesium after Severe Plastic Deformation

    Energy Technology Data Exchange (ETDEWEB)

    Young, John P.; Askari, Hesam A.; Hovanski, Yuri; Heiden, Michael J.; Field, David P.

    2015-03-01

    Both equal channel angular pressing and friction stir processing have the ability to refine the grain size of twin roll cast AZ31 magnesium and potentially improve its superplastic properties. This work used isochronal and isothermal heat treatments to investigate the microstructural stability of twin roll cast, equal channel angular pressed and friction stir processed AZ31 magnesium. For both heat treatment conditions, it was found that the twin roll casted and equal channel angular pressed materials were more stable than the friction stir processed material. Calculations of the grain growth kinetics showed that severe plastic deformation processing decreased the activation energy for grain boundary motion with the equal channel angular pressed material having the greatest Q value of the severely plastically deformed materials and that increasing the tool travel speed of the friction stir processed material improved microstructural stability. The Hollomon-Jaffe parameter was found to be an accurate means of identifying the annealing conditions that will result in substantial grain growth and loss of potential superplastic properties in the severely plastically deformed materials. In addition, Humphreys’s model of cellular microstructural stability accurately predicted the relative microstructural stability of the severely plastically deformed materials and with some modification, closely predicted the maximum grain size ratio achieved by the severely plastically deformed materials.

  1. Investigating the Mechanical Behavior and Deformation Mechanisms of Ultrafinegrained Metal Films Using Ex-situ and In-situ TEM Techniques

    Science.gov (United States)

    Izadi, Ehsan

    Nanocrystalline (NC) and Ultrafine-grained (UFG) metal films exhibit a wide range of enhanced mechanical properties compared to their coarse-grained counterparts. These properties, such as very high strength, primarily arise from the change in the underlying deformation mechanisms. Experimental and simulation studies have shown that because of the small grain size, conventional dislocation plasticity is curtailed in these materials and grain boundary mediated mechanisms become more important. Although the deformation behavior and the underlying mechanisms in these materials have been investigated in depth, relatively little attention has been focused on the inhomogeneous nature of their microstructure (particularly originating from the texture of the film) and its influence on their macroscopic response. Furthermore, the rate dependency of mechanical response in NC/UFG metal films with different textures has not been systematically investigated. The objectives of this dissertation are two-fold. The first objective is to carry out a systematic investigation of the mechanical behavior of NC/UFG thin films with different textures under different loading rates. This includes a novel approach to study the effect of texture-induced plastic anisotropy on mechanical behavior of the films. Efforts are made to correlate the behavior of UFG metal films and the underlying deformation mechanisms. The second objective is to understand the deformation mechanisms of UFG aluminum films using in-situ transmission electron microscopy (TEM) experiments with Automated Crystal Orientation Mapping. This technique enables us to investigate grain rotations in UFG Al films and to monitor the microstructural changes in these films during deformation, thereby revealing detailed information about the deformation mechanisms prevalent in UFG metal films.

  2. Study on deformation behavior and life evaluation method for SUS304 notched plate under bending creep fatigue loading

    International Nuclear Information System (INIS)

    Fukuda, Yoshio; Satoh, Yoshimi; Nakamura, Kazuhiro; Takahashi, Yukio; Kuwabara, Kazuo.

    1990-01-01

    Creep-fatigue tests were carried out on notched plates under cyclic bending loads out of plane at 550degC, and the local strain at the notch-root and micro crack propagation behavior were measured. Then, inelastic analysis was performed for the experiment by using three kinds of constitutive models, such as kinematic hardening, ORNL and Ohno models. From the comparison of the experiment with the results of analysis, the following conclusions were obtained. (1) Creep strain caused at the notch-root during load holding was negligibly small compared with plastic strain, so that the neighborhood of the notch-root is subjected to constrained strain type damage. (2) The strain range at the notch-root can be calculated from the results of elastic-plastic analysis for monotonic loading independent of the constitutive models used, where the cyclic stress-strain relationship was used as the material monotonic deformation property. (3) The mean strain calculated was consistent with the experimental value in case of kinematic hardening or ORNL model, while not in case of Ohno model. (4) A method for predicting the crack initiation life of a notched plate has been proposed on the basis of micro-crack propagation behavior obtained by a fundamental creep-fatigue test. (author)

  3. Comparison of the microstructure, deformation and crack initiation behavior of austenitic stainless steel irradiated in-reactor or with protons

    Science.gov (United States)

    Stephenson, Kale J.; Was, Gary S.

    2015-01-01

    The objective of this study was to compare the microstructures, microchemistry, hardening, susceptibility to IASCC initiation, and deformation behavior resulting from proton or reactor irradiation. Two commercial purity and six high purity austenitic stainless steels with various solute element additions were compared. Samples of each alloy were irradiated in the BOR-60 fast reactor at 320 °C to doses between approximately 4 and 12 dpa or by a 3.2 MeV proton beam at 360 °C to a dose of 5.5 dpa. Irradiated microstructures consisted mainly of dislocation loops, which were similar in size but lower in density after proton irradiation. Both irradiation types resulted in the formation of Ni-Si rich precipitates in a high purity alloy with added Si, but several other high purity neutron irradiated alloys showed precipitation that was not observed after proton irradiation, likely due to their higher irradiation dose. Low densities of small voids were observed in several high purity proton irradiated alloys, and even lower densities in neutron irradiated alloys, implying void nucleation was in process. Elemental segregation at grain boundaries was very similar after each irradiation type. Constant extension rate tensile experiments on the alloys in simulated light water reactor environments showed excellent agreement in terms of the relative amounts of intergranular cracking, and an analysis of localized deformation after straining showed a similar response of cracking to surface step height after both irradiation types. Overall, excellent agreement was observed after proton and reactor irradiation, providing additional evidence that proton irradiation is a useful tool for accelerated testing of irradiation effects in austenitic stainless steel.

  4. Comparison of the microstructure, deformation and crack initiation behavior of austenitic stainless steel irradiated in-reactor or with protons

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, Kale J., E-mail: kalejs@umich.edu; Was, Gary S.

    2015-01-15

    Highlights: • Dislocation loops were the prominent defect, but neutron irradiation caused higher loop density. • Grain boundaries had similar amounts of radiation-induced segregation. • The increment in hardness and yield stress due to irradiation were very similar. • Relative IASCC susceptibility was nearly identical. • The effect of dislocation channel step height on IASCC was similar. - Abstract: The objective of this study was to compare the microstructures, microchemistry, hardening, susceptibility to IASCC initiation, and deformation behavior resulting from proton or reactor irradiation. Two commercial purity and six high purity austenitic stainless steels with various solute element additions were compared. Samples of each alloy were irradiated in the BOR-60 fast reactor at 320 °C to doses between approximately 4 and 12 dpa or by a 3.2 MeV proton beam at 360 °C to a dose of 5.5 dpa. Irradiated microstructures consisted mainly of dislocation loops, which were similar in size but lower in density after proton irradiation. Both irradiation types resulted in the formation of Ni–Si rich precipitates in a high purity alloy with added Si, but several other high purity neutron irradiated alloys showed precipitation that was not observed after proton irradiation, likely due to their higher irradiation dose. Low densities of small voids were observed in several high purity proton irradiated alloys, and even lower densities in neutron irradiated alloys, implying void nucleation was in process. Elemental segregation at grain boundaries was very similar after each irradiation type. Constant extension rate tensile experiments on the alloys in simulated light water reactor environments showed excellent agreement in terms of the relative amounts of intergranular cracking, and an analysis of localized deformation after straining showed a similar response of cracking to surface step height after both irradiation types. Overall, excellent agreement was observed

  5. Mechanical behavior of 9Cr-1Mo-1V steel due to creep fatigue deformation

    International Nuclear Information System (INIS)

    Kim, Sang Tae; Kim, Jae Kyoung; Lee, Hak Sun; Oh, Sang Hyun; Kwun, Sook In; Kim, Chung Seok

    2005-01-01

    Creep-fatigue tests with trapezoid load wave were performed on a 9Cr-1Mo-1V steel at high temperature(550 .deg. C). Trapezoid load wave is considering about hold time for creep effects. we could find out some information in the relationship between number of cycles to failure and hold time. The number of cycles to failure depended on hold time. The cyclic behavior of 9Cr-1Mo-1V steel was characterized by cyclic softening with increasing number of cycles in high temperature. Also we could observe some cavity in the specimens. The size of cavity was different from each hold time

  6. Development of a structural model for the nonlinear shear deformation behavior of a seismic isolator

    International Nuclear Information System (INIS)

    Lee, Jae Han; Koo, Gyeong Hoi; Yoo, Bong

    2002-02-01

    The seismic excitation test results of an isolated test structure for artificial time history excitation are summarized for structure models of the isolated structure and isolation bearing. To simulate the response characteristic of isolated structure, shear hysteresis curves of isolators are analyzed. A simple analysis model is developed representing the actual dynamic behaviors of the test model, and the seismic responses using the simple model of the isolated structure and structure models, which are developed such as linear and bilinear models for isolators, are performed and compared with those of the seismic tests. The developed bilinear model is well applicable only to large shear strain area of LLRB

  7. Analysis of Flow Behavior of an Nb-Ti Microalloyed Steel During Hot Deformation

    Science.gov (United States)

    Mohebbi, Mohammad Sadegh; Parsa, Mohammad Habibi; Rezayat, Mohammad; Orovčík, L'ubomír

    2018-03-01

    The hot flow behavior of an Nb-Ti microalloyed steel is investigated through hot compression test at various strain rates and temperatures. By the combination of dynamic recovery (DRV) and dynamic recrystallization (DRX) models, a phenomenological constitutive model is developed to derive the flow stress. The predefined activation energy of Q = 270 kJ/mol and the exponent of n = 5 are successfully set to derive critical stress at the onset of DRX and saturation stress of DRV as functions of the Zener-Hollomon parameter by the classical hyperbolic sine equation. The remaining parameters of the constitutive model are determined by fitting them to the experiments. Through substitution of a normalized strain in the DRV model and considering the interconnections between dependent parameters, a new model is developed. It is shown that, despite its fewer parameters, this model is in good agreement with the experiments. Accurate analyses of flow data along with microstructural analyses indicate that the dissolution of NbC precipitates and its consequent solid solution strengthening and retardation of DRX are responsible for the distinguished behaviors in the two temperature ranges between T employed for the present steel in the whole tested temperature ranges.

  8. Deformation behaviors of aluminum alloys for automobile parts studied by neutron diffraction

    International Nuclear Information System (INIS)

    Katayanagi, Kazue; Morita, Kensuke; Tomota, Yo; Kamiyama, Takashi; Terakado, Katsuyoshi

    2008-01-01

    In situ time of flight neutron diffraction measurements during tension test were performed for three Al-Si alloys with different microstructures including hot-forged (AHS 2), T 6 heat-treated (AHS 2-T 6) and die-cast (ACD 12) specimens. Strength and work-hardening behaviors of these specimens are investigated by evaluating phase stresses, i.e., stress partitioning between Si and the Al matrix as well as intergranular stresses of [hkl] oriented family grains in the component phases. It is revealed that Si particles embedded in the Al matrix play a role of the hard second phase. The size and shape of the Si particles affect work hardening and fracture of the alloys. (author)

  9. Effect of texture on creep deformation behavior of Zr-2.5Nb alloy

    International Nuclear Information System (INIS)

    Guguloth, Krishna; Swaminathan, J.; Mitra, Rahul; Ghosh, R.N.; Singh, R.N.; Chakravartty, J.K.

    2016-01-01

    Zr-2.5%Nb alloys are extensively used as high temperature pressure tubes in nuclear reactor. Therefore creep behavior of this alloy is of considerable importance. The paper presents creep strain-time plots on two sets of specimens made from two as received pressure tubes having different diameters. These tubes were reported to have undergone different processing routes; both tubes were autoclaved at the same temperature in the steam atmosphere. A comparison of the creep strain-time plots of the two sets of specimen under identical test conditions showed a marked difference. The chemical composition and the microstructure of the two sets of samples were also found to be similar. Therefore X-ray diffraction patterns were taken from the two tubes. The ratio of intensity of two prominent reflections from 0002 and 1120 planes of alpha Zr in the case of 90mm tube was found to be 1.79; whereas that from the 110mm tube was 0.25. This suggests that in the case of 110mm tube most of the basal planes were less favorably oriented with respect to the loading axis. This is the reason why creep strength of 110mm tube was found to be higher. The paper also describes how the effect of texture can be incorporated in evaluating the creep behavior of Zr-Nb alloy. This suggests that a relatively larger volume of creep test data on Zr-2.5Nb pressure tube is necessary to account for the effect texture so that a reliable estimate of its creep life could be obtained. (author)

  10. Cryogenic mechanical properties of low density superplastically formable Al-Li alloys

    Science.gov (United States)

    Verzasconi, S. L.; Morris, J. W., Jr.

    1989-01-01

    The aerospace industry is considering the use of low density, superplastically formable (SPF) materials, such as Al-Li alloys in cryogenic tankage. SPF modifications of alloys 8090, 2090, and 2090+In were tested for strength and Kahn tear toughness. The results were compared to those of similar tests of 2219-T87, an alloy currently used in cryogenic tankage, and 2090-T81, a recently studied Al-Li alloy with exceptional cryogenic properties (1-9). With decreasing temperature, all materials showed an increase in strength, while most materials showed an increase in elongation and decrease in Kahn toughness. The indium addition to 2090 increased alloy strength, but did not improve the strength-toughness combination. The fracture mode was predominantly intergranular along small, recrystallized grains, with some transgranular fracture, some ductile rupture, and some delamination on large, unrecrystallized grains.

  11. Influence of dynamic strain aging on tensile deformation behavior of alloy 617

    Energy Technology Data Exchange (ETDEWEB)

    Ekaputra, I. M. W. [Pukyong National University, Busan (Korea, Republic of); Kim, Woo Gon; Park, Jae Young; Kim, Seon Jin; Kim, Eung Seon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    To investigate the dynamic strain aging (DSA) behavior of Alloy 617, high-temperature tensile tests were carried out with strain rates variations of 10{sup -}3{sup /}s, 10{sup -4}/s, and 10{sup -5}/s from 24°C to 950°C. Five flow relationships, Hollomon, Ludwik, Swift, Ludwigson, and Voce, were applied to describe the tensile true stress–strain curves, and the DSA region was defined. In describing the tensile curves, Ludwigson's equation was superior to the other equations, and the DSA region was adequately defined by this equation as plateaus at intermediate temperatures from 200°C to 700°C. It was identified that Alloy 617 is dominated by three types of serrations, known as Types D, A+B, and C. The activation energy values for each serration type were obtained by the Arrhenius equation. By using the obtained activation energy values, the serrated yielding map and the DSA mechanism were drawn and manifested. In addition, the relationship between the tensile strength and strain rate at higher temperatures above 700°C was found to be closely related to the amounts of slip lines. In the scanning electron microscope (SEM) fractographs, there was a significant difference at the low, intermediate, and high temperatures, but almost the same to the three strain rates.

  12. Creep deformation behavior at long-term in P23/T23 steels

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, K.; Tabuchi, M.; Kimura, K. [National Institute for Materials Science (Japan)

    2008-07-01

    Creep behavior of ASME P23/T23 steels was investigated and analyzed, focusing on creep strength degradation at long-term. Creep rupture strength at 625 C and 650 C dropped at long-term in both P23 and T23 steels. The stress exponent of minimum creep rate at 625 C and 650 C was 7.8-13 for higher stresses and 3.9-5.3 for lower stresses in the P23/T23 steels. The change of stress exponent with stress levels was consistent with the drop in creep rupture strength at long-term. The Monkman-Grant rule was confirmed in the range examined in P23 steel, while the data points deviated from the rule at long-term in the case of T23 steel. The creep ductility of P23 steel was high over a wide stress and temperature range. On the other hand, in T23 steel, creep ductility at 625 C and 650 C decreased as time to rupture increased. The change in ductility may cause the deviation from the Monkman-Grant rule. Fracture mode changed from transgranular to intergranular fracture in the long-term at 625 C and 650 C. (orig.)

  13. Influence of dynamic strain aging on tensile deformation behavior of alloy 617

    International Nuclear Information System (INIS)

    Ekaputra, I. M. W.; Kim, Woo Gon; Park, Jae Young; Kim, Seon Jin; Kim, Eung Seon

    2016-01-01

    To investigate the dynamic strain aging (DSA) behavior of Alloy 617, high-temperature tensile tests were carried out with strain rates variations of 10"-3"/s, 10"-"4/s, and 10"-"5/s from 24°C to 950°C. Five flow relationships, Hollomon, Ludwik, Swift, Ludwigson, and Voce, were applied to describe the tensile true stress–strain curves, and the DSA region was defined. In describing the tensile curves, Ludwigson's equation was superior to the other equations, and the DSA region was adequately defined by this equation as plateaus at intermediate temperatures from 200°C to 700°C. It was identified that Alloy 617 is dominated by three types of serrations, known as Types D, A+B, and C. The activation energy values for each serration type were obtained by the Arrhenius equation. By using the obtained activation energy values, the serrated yielding map and the DSA mechanism were drawn and manifested. In addition, the relationship between the tensile strength and strain rate at higher temperatures above 700°C was found to be closely related to the amounts of slip lines. In the scanning electron microscope (SEM) fractographs, there was a significant difference at the low, intermediate, and high temperatures, but almost the same to the three strain rates

  14. Hot Deformation Behavior and a Two-Stage Constitutive Model of 20Mn5 Solid Steel Ingot during Hot Compression

    Directory of Open Access Journals (Sweden)

    Min Liu

    2018-03-01

    Full Text Available 20Mn5 steel is widely used in the manufacture of heavy hydro-generator shaft forging due to its strength, toughness, and wear resistance. However, the hot deformation and recrystallization behaviors of 20Mn5 steel compressed under a high temperature were not studied. For this article, hot compression experiments under temperatures of 850–1200 °C and strain rates of 0.01 s−1–1 s−1 were conducted using a Gleeble-1500D thermo-mechanical simulator. Flow stress-strain curves and microstructure after hot compression were obtained. Effects of temperature and strain rate on microstructure are analyzed. Based on the classical stress-dislocation relationship and the kinetics of dynamic recrystallization, a two-stage constitutive model is developed to predict the flow stress of 20Mn5 steel. Comparisons between experimental flow stress and predicted flow stress show that the predicted flow stress values are in good agreement with the experimental flow stress values, which indicates that the proposed constitutive model is reliable and can be used for numerical simulation of hot forging of 20Mn5 solid steel ingot.

  15. Construction of cryogenic testing system and tensile deformation behavior of AISI 300 series stainless steels at cryogenic temperatures

    International Nuclear Information System (INIS)

    Lee, H.M.; Nahm, S.H.; Huh, Y.H.; Lee, J.J.; Bahng, G.W.

    1990-01-01

    For practical application of cryogenic engineering, development and characterization of structural materials for use at low temperatures are essential. For these purposes, a system for mechanical testing at liquid helium temperatures was developed and it was shown that the precision and accuracy of the system met the requirements of standards for materials testing machines. Using this system, tensile deformation behavior of AISI 304,316 and 310S austenitic stainless steels at cryogenic temperatures was investigated. Tests were conducted on round, tensile specimens having a 6.25mm diameter at 4,77, and 295 K and loading rate was 0.5mm/min. Serrations were observed in all alloys at 4 K. The stress-displacement curves at 77 and 4 K showed different tendency from those at 298 K. As the testing temperature decreased, ultimate strengths of 304 and 316 were largely increased compared to the increase of yield strengths, but the increase of ultimate strength of 310S was almost the same to that of yield strength. Type 310S had the highest yield strength and the lowest tensile strength at all temperatutes. These tensile characteristics were considered to be strongly affected by austenite stability.(Author)

  16. Evaluation of local deformation behavior accompanying fatigue damage in F82H welded joint specimens by using digital image correlation

    International Nuclear Information System (INIS)

    Nakata, Toshiya; Tanigawa, Hiroyasu

    2012-01-01

    Highlights: ► In tensile, the TIG welded joint material was concentrated in the THAZ. ► In tensile, fracture occurred at the point where the axial strain converged. ► In fatigue, fracture occurred at the point where the Max. shear strain converged. ► Many macrocracks and cavities formed in the FGHAZ and THAZ of the cross section. - Abstract: By using digital image correlation, the deformation behaviors of local domains of F82H joint specimens welded using tungsten inert gas (TIG) and electron beam (EB) welding were evaluated during tensile and fatigue testing. In the tensile test specimens, the tensile strength decreased in the TIG-welded joints, and ductility decreased in both the EB- and TIG-welded joints. Because axial strain increased in the tempered heat-affected zone (HAZ) and led to the fracture of the TIG-welded joint, the strength was considered to have decreased because of welding. In fatigue testing, the number of cycles to fracture for the welded joint decreased to less than 40–60% of that for the base metal. For both fracture specimens, the largest value of shear strain was observed in the region approximately between the fine-grained HAZ and tempered HAZ; this shear strain ultimately led to fracture. Cavities and macrocracks were observed in the fine-grained HAZ and tempered HAZ in the cross sections of the fracture specimens, and geometrical damage possibly resulted in the reduction of fatigue lifetime.

  17. Effect of oxygen content on deformation mode and corrosion behavior in β-type Ti-Mo alloy

    Energy Technology Data Exchange (ETDEWEB)

    Min, Xiaohua, E-mail: minxiaohua@dlut.edu.cn [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Bai, Pengfei [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Emura, Satoshi; Ji, Xin [Research Center for Structural Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Cheng, Congqian; Jiang, Beibei [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Tsuchiya, Koichi [Research Center for Structural Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2017-01-27

    This study examined microstructural characteristics and mechanical properties in a β-type Ti-15Mo alloy (mass%) with different oxygen contents, and their corrosion behavior in simulated physiological media. With increasing oxygen content from 0.1–0.5%, lattice parameter of parent β-phase increased from X-ray diffraction profiles, and spots of athermal ω-phase became weak and diffuse through transmission electron microscopy observations. {332}<113> twin density decreased with an increase in oxygen content from 0.1–0.3% based on electron backscattered diffraction analyses, and it became almost zero when further increased oxygen content up to 0.5%. The solute oxygen atoms led to both a transition of {332}<113> twinning to dislocation slip and a suppression of β-phase to ω-phase transformation. Room-temperature tensile testing of this alloy with oxygen content ranging from 0.1–0.5%, revealed that yield strength ranged from 420 MPa to 1180 MPa and that uniform elongation ranged from 47–0.2%. The oxygen-added alloys kept a low elastic modulus obtained from stress-strain curves, and exhibited good corrosion resistance in Ringer's solution from open-circuit potential and potentiodynamic polarization measurements. A desirable balance between mechanical properties and corrosion resistance is obtainable in this alloy as biomaterials through utilizing oxygen to control the deformation mode.

  18. Research on the hot deformation behavior of a Fe-Ni-Cr alloy (800H) at temperatures above 1000 °C

    Science.gov (United States)

    Cao, Yu; Di, Hongshuang

    2015-10-01

    Considering the pinning effect of fine carbides on grain boundaries, hot compression tests were performed above the dissolution temperature of Cr23C6 to investigate the hot deformation behavior of a Fe-Ni-Cr alloy (800H). The results show that the single peak stress associated with dynamic recrystalization (DRX) became more distinct at higher temperature and lower strain rate. The process of DRX was thoroughly stimulated when deformed above 1000 °C. Constitutive equations for hot deformation were established by regression analysis of conventional hyperbolic sine equation. The relationships between Zener-Hollomon parameter (Z) and the characteristic points of flow curves were established using the power law relation. Furthermore, kernel average misorientation (KAM) and grain orientation spread (GOS) were used to map the distribution of local misorientation and estimate the fraction of DRX, respectively. The critical strain and peak strain were used to predict the kinetics of DRX with the Avrami-type equation.

  19. The behavior of plastic deformation in a duplex Cu-Zn alloy, in the temperature range 24-3000C

    International Nuclear Information System (INIS)

    Andrade, A.H.P. de.

    1978-01-01

    The mechanical behavior of Muntz Metal (Cu-40%Zn) containing duplex microstructure with a coarse grain size approximately 40μm) has been investigated at the temperature range 2 0 -300 0 C, and at strain rat e of epsilon=2.6x10 -4 S -1 , as a function of the second phase volume fraction(v(subβ)). Whereas at room temperature yielding increases with v(subβ) for v(subβ)>0.35, it remains virtually independent of v(subβ in the range 0.26 0 C. At low temperature (RT) and strains (epsilon approximately 0.01 the work hardening rate increases strongly with v subβ up to v subβ approximately 0.45. At higher temperatures and strains work hardening rate decreases for all volume fractions due to the thermal and dynamic recovery respectively. Then ultimate tensile strength (UTS) at room temperature increases with v subβ up to v subβ = 0.45, thus resulting in overall increase in U.T.S. The Portevin - Le Chatelier Effect (PLE)in Muntz Metal, at the temperature range 24 0 -300 0 C manifests itself in essentially two different forms. At RT, irregular serrations are observed, where amplitude decreases with increases in v subβ. At higher temperatures (100 0 C), serrations become regular, with increase in amplitude. At 200 0 C or over the serrations amplitude decrease at almost disappearing completely. These observations have been explained on the basis of collective behavior of mobile dislocations, influenced by the internal stress fields created during deformation by the presence of phase β. The Voce equation fits well with the experimental stress-strain data for temperatures up to 200 0 C. The method of Hollomon requires the use of stages in sigma-epsilon curve, curve, which does not have a physical significance. (Author) [pt

  20. Superplastic forming of the Cd-17.4Zn alloy; Conformado superplastico de la aleacion Cd-17.4Zn

    Energy Technology Data Exchange (ETDEWEB)

    Llanes-Briceno, J. A.; Torres-Villasenor, G. [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)

    2000-06-01

    In the present work the necessary steps to carry on the superplastic forming of the Cd-17.4Zn alloy are defined. The use of either atmospheric pressure or gas pressure as forming tools is analyzed. The optimum values of the variable involved (temperature, maximum strain and sensitivity index) are determined while a method for the characterization of futures superplastic alloys is set forth. The experimental characterization of the superplastic forming is achieved with free bulging of circular membranes of 12, 16, 24, 32 and 40 mm in diameter and with three different membrane thicknesses (0.4, 0.6, 0.8 mm). [Spanish] Se definen los pasos necesarios para el conformado superplastico de la aleacion Cd-17.4 Zn. Se comparan la presion atmosferica y el gas a presion como herramientas de conformado. Se determinan los valores optimos de la variables involucradas (temperatura, deformacion maxima e indice de sensibilidad) y se plantea una metodologia para la caracterizacion de futuras aleaciones superplasticas. El conformado superplastico se caracteriza experimentalmente mediante el inflado libre de membranas circulares de 12, 16, 24, 32 y 40 mm de diametro y tres diferentes espesores (0.4, 0.6 y 0.8 mm). Se muestra la estructura perlitica (enfuiada al aive Cd-17.4Zn) y la estructura grano fino. Se muestra la profundidad de deformacion en tres espesores (0.4, 0.6, 0.8 mm) a P=200 Kpa y T = 200 y a T = 230.

  1. Microstructure and Strain Rate-Dependent Tensile Deformation Behavior of Fiber Laser-Welded Butt Joints of Dual-Phase Steels

    Science.gov (United States)

    Liu, Yang; Dong, Danyang; Han, Zhiqiang; Yang, Zhibin; Wang, Lu; Dong, Qingwei

    2018-05-01

    The microstructure and tensile deformation behavior of the fiber laser-welded similar and dissimilar dual-phase (DP) steel joints over a wide range of strain rates from 10-3 to 103 s-1 were investigated for the further applications on the lightweight design of vehicles. The high strain rate dynamic tensile deformation process and full-field strain distribution of the base metals and welded joints were examined using the digital image correlation method and high-speed photography. The strain rate effects on the stress-strain responses, tensile properties, deformation, and fracture behavior of the investigated materials were analyzed. The yield stress (YS) and ultimate tensile strength (UTS) of the dissimilar DP780/DP980 welded joints were lying in-between those of the DP780 and DP980 base metals, and all materials exhibited positive strain rate dependence on the YS and UTS. Owing to the microstructure heterogeneity, the welded joints showed relatively lower ductility in terms of total elongation (TE) than those of the corresponding base metals. The strain localization started before the maximum load was reached, and the strain localization occurred earlier during the whole deformation process with increasing strain rate. As for the dissimilar welded joint, the strain localization tended to occur in the vicinity of the lowest hardness value across the welded joint, which was in the subcritical HAZ at the DP780 side. As the strain rate increased, the typical ductile failure characteristic of the investigated materials did not change.

  2. Static tensile deformation behavior of a lean duplex stainless steel studied by in situ neutron diffraction and synchrotron radiation white x-rays

    International Nuclear Information System (INIS)

    Tsuchida, Noriyuki; Kawahata, Taiji; Ishimaru, Eiichiro; Takahashi, Akihiko; Suzuki, Hiroshi; Shobu, Takahisa

    2013-01-01

    To investigate the tensile deformation behavior of a lean duplex stainless steel (S32101) from the viewpoints of plastic deformability among phases or grains, we performed static tensile tests, in situ neutron diffraction, and white x-ray diffraction experiments at room temperature. In the static tensile tests, the S32101 steel displayed a larger uniform elongation and a better tensile strength-uniform elongation balance than a commercial SUS329J4L duplex stainless steel. A larger uniform elongation of S32101 is associated with the macroscopic work hardening behavior that a work hardening rate higher than the flow stress can maintain up until high true strains. From the experimental results of synchrotron radiation white x-ray diffraction experiments, the hard phase of S32101 was changed from the ferrite (α) phase to austenite (γ) one during tensile deformation. This led to a larger stress partitioning between the phases at the latter stage of deformation. From the experimental results of in situ neutron diffraction, it was found that the stress partitioning of the γ phase in the S32101 was the largest among the present results. Therefore, the larger work hardening rate of S32101 can be explained by the large stress partitioning of the γ phase, that between γ and α phases and γ volume fraction. (author)

  3. Microstructure and Strain Rate-Dependent Tensile Deformation Behavior of Fiber Laser-Welded Butt Joints of Dual-Phase Steels

    Science.gov (United States)

    Liu, Yang; Dong, Danyang; Han, Zhiqiang; Yang, Zhibin; Wang, Lu; Dong, Qingwei

    2018-04-01

    The microstructure and tensile deformation behavior of the fiber laser-welded similar and dissimilar dual-phase (DP) steel joints over a wide range of strain rates from 10-3 to 103 s-1 were investigated for the further applications on the lightweight design of vehicles. The high strain rate dynamic tensile deformation process and full-field strain distribution of the base metals and welded joints were examined using the digital image correlation method and high-speed photography. The strain rate effects on the stress-strain responses, tensile properties, deformation, and fracture behavior of the investigated materials were analyzed. The yield stress (YS) and ultimate tensile strength (UTS) of the dissimilar DP780/DP980 welded joints were lying in-between those of the DP780 and DP980 base metals, and all materials exhibited positive strain rate dependence on the YS and UTS. Owing to the microstructure heterogeneity, the welded joints showed relatively lower ductility in terms of total elongation (TE) than those of the corresponding base metals. The strain localization started before the maximum load was reached, and the strain localization occurred earlier during the whole deformation process with increasing strain rate. As for the dissimilar welded joint, the strain localization tended to occur in the vicinity of the lowest hardness value across the welded joint, which was in the subcritical HAZ at the DP780 side. As the strain rate increased, the typical ductile failure characteristic of the investigated materials did not change.

  4. Modeling the Effects of Cu Content and Deformation Variables on the High-Temperature Flow Behavior of Dilute Al-Fe-Si Alloys Using an Artificial Neural Network.

    Science.gov (United States)

    Shakiba, Mohammad; Parson, Nick; Chen, X-Grant

    2016-06-30

    The hot deformation behavior of Al-0.12Fe-0.1Si alloys with varied amounts of Cu (0.002-0.31 wt %) was investigated by uniaxial compression tests conducted at different temperatures (400 °C-550 °C) and strain rates (0.01-10 s -1 ). The results demonstrated that flow stress decreased with increasing deformation temperature and decreasing strain rate, while flow stress increased with increasing Cu content for all deformation conditions studied due to the solute drag effect. Based on the experimental data, an artificial neural network (ANN) model was developed to study the relationship between chemical composition, deformation variables and high-temperature flow behavior. A three-layer feed-forward back-propagation artificial neural network with 20 neurons in a hidden layer was established in this study. The input parameters were Cu content, temperature, strain rate and strain, while the flow stress was the output. The performance of the proposed model was evaluated using the K-fold cross-validation method. The results showed excellent generalization capability of the developed model. Sensitivity analysis indicated that the strain rate is the most important parameter, while the Cu content exhibited a modest but significant influence on the flow stress.

  5. Study on hot deformation behavior and microstructure evolution of cast-extruded AZ31B magnesium alloy and nanocomposite using processing map

    International Nuclear Information System (INIS)

    Srinivasan, M.; Loganathan, C.; Narayanasamy, R.; Senthilkumar, V.; Nguyen, Q.B.; Gupta, M.

    2013-01-01

    Highlights: ► Hot deformation behavior of AZ31B Mg alloy and nanocomposite were studied. ► Activation energy of AZ31B Mg alloy and nanocomposite were determined. ► Twining, shear bands and flow localization were observed. - Abstract: The hot deformation behavior and microstructural evolution of cast-extruded AZ31B magnesium alloy and nanocomposite have been studied using processing-maps. Compression tests were conducted in the temperature range of 250–400 °C and strain rate range of 0.01–1.0 s −1 . The three-dimensional (3D) processing maps developed in this work, describe the variations of the efficiency of power dissipation and flow instability domains in the strain rate (ε) and temperature (T) space. The deformation mechanisms namely dynamic recrystallization (DRX), dynamic recovery (DRY) and instability regions were identified using processing maps. The deformation mechanisms were also correlated with transmission electron microscopy (TEM) and optical microscopy (OM). The optimal region for hot working has been observed at a strain rate (ε) of 0.01 s −1 and the temperature (T) of 400 °C for both magnesium alloy and nanocomposite. Few instability regimes have been identified in this study at higher strain rate (ε) and temperature (T). The stability domains have been identified in the lower strain rate regimes

  6. Comparative study on deformation and mechanical behavior of corroded pipe: Part I–Numerical simulation and experimental investigation under impact load

    Directory of Open Access Journals (Sweden)

    Dong-Man Ryu

    2017-09-01

    Full Text Available Experiments and a numerical simulation were conducted to investigate the deformation and impact behavior of a corroded pipe, as corrosion, fatigue, and collision phenomena frequently occur in subsea pipelines. This study focuses on the deformation of the corrosion region and the variation of the geometry of the pipe under impact loading. The experiments for the impact behavior of the corroded pipe were performed using an impact test apparatus to validate the results of the simulation. In addition, during the simulation, material tests were performed, and the results were applied to the simulation. The ABAQUS explicit finite element analysis program was used to perform numerical simulations for the parametric study, as well as experiment scenarios, to investigate the effects of defects under impact loading. In addition, the modified ASME B31.8 code formula was proposed to define the damage range for the dented pipe.

  7. Dynamic behavior and microstructural evolution during moderate to high strain rate hot deformation of a Fe–Ni–Cr alloy (alloy 800H)

    International Nuclear Information System (INIS)

    Cao, Yu; Di, Hongshuang; Zhang, Jiecen; Yang, Yaohua

    2015-01-01

    The objective of the study is to fundamentally understand the dynamic behavior of alloy 800H at moderate to high strain rate using hot compression tests and propose nucleation mechanism associated with dynamic crystallization (DRX). We firstly investigated the dynamic behavior of alloy 800H with industrial scale strain rates using hot compression tests and adiabatic correction was performed to correct as-measured flow curves. Secondly, a Johnson–Cook model was established by using the corrected data and could give a precise prediction of elevated temperature flow stress for the studied alloy. Finally, the nucleation mechanism of DRX grains at high strain rates was studied. The results showed that the predominant nucleation mechanism for DRX is the formation of “bulge” at parent grain boundary. Additionally, the fragmentation of original grain at low deformation temperatures and the twinning near the bulged regions at high deformation temperatures also accelerate the DRX process

  8. Dynamic behavior and microstructural evolution during moderate to high strain rate hot deformation of a Fe-Ni-Cr alloy (alloy 800H)

    Science.gov (United States)

    Cao, Yu; Di, Hongshuang; Zhang, Jiecen; Yang, Yaohua

    2015-01-01

    The objective of the study is to fundamentally understand the dynamic behavior of alloy 800H at moderate to high strain rate using hot compression tests and propose nucleation mechanism associated with dynamic crystallization (DRX). We firstly investigated the dynamic behavior of alloy 800H with industrial scale strain rates using hot compression tests and adiabatic correction was performed to correct as-measured flow curves. Secondly, a Johnson-Cook model was established by using the corrected data and could give a precise prediction of elevated temperature flow stress for the studied alloy. Finally, the nucleation mechanism of DRX grains at high strain rates was studied. The results showed that the predominant nucleation mechanism for DRX is the formation of "bulge" at parent grain boundary. Additionally, the fragmentation of original grain at low deformation temperatures and the twinning near the bulged regions at high deformation temperatures also accelerate the DRX process.

  9. Investigation into diffusion induced plastic deformation behavior in hollow lithium ion battery electrode revealed by analytical model and atomistic simulation

    International Nuclear Information System (INIS)

    Li, Jia; Fang, Qihong; Wu, Hong; Liu, Youwen; Wen, Pihua

    2015-01-01

    Highlights: • Diffusion induced stress is established. • Yield stress is dependent upon concentration. • Plastic deformation induced stress lowers tensile stress. • Plastic deformation suppresses crack nucleation. • Plastic deformation occurs not only at lithiated phase but also at electrode interior. - Abstract: This paper is theoretically suggested to describe diffusion induced stress in the elastoplastic hollow spherical silicon electrode for plastic deformation using both analytical model and molecular simulation. Based on the plastic deformation and the yield criterion, we develop this model accounting for the lithium-ion diffusion effect in hollow electrode, focusing on the concentration and stress distributions undergoing lithium-ion insertion. The results show that the two ways, applied compressive stress to inner surface or limited inner surface with higher concentration using biological membranes maintaining concentration difference, lead to the compressive stress induced by the lithium-ion diffusion effect. Hollow spherical electrode reduces effectively diffusion induced stress through controlling and tuning electrode parameters to obtain the reasonably low yield strength. According to MD simulations, plastic deformation phenomenon not only occurs at interface layer of lithiated phase, but also penetrates at electrode interior owning to confinement imposed by lithiated phase. These criteria that radial and hoop stresses reduce dramatically when plastic deformation occurs near the end faces of hollow electrode, may help guide development of new materials for lithium-ion batteries with enhanced mechanical durability, by means of reasonable designing yield strength to maintain mechanical stress below fracture strength, thereby increasing battery life.

  10. Creep deformation behavior of weld metal and heat affected zone on 316FR steel thick plate welded joint

    International Nuclear Information System (INIS)

    Hongo, Hiromichi; Yamazaki, Masayoshi; Watanabe, Takashi; Kinugawa, Junichi; Tanabe, Tatsuhiko; Monma, Yoshio; Nakazawa, Takanori

    1999-01-01

    Using hot-rolled 316FR stainless plate (50 mm thick) and 16Cr-8Ni-2Mo filler wire, a narrow-gap welded joint was prepared by GTAW (gas tungsten arc welding) process. In addition to conventional round bar specimens of base metals and weld metal, full-thickness joint specimens were prepared for creep test. Creep tests were conducted at 550degC in order to examine creep deformation and rupture behavior in the weld metal of the welded joint. Creep strain distribution on the surface of the joint specimen was measured by moire interferometry. In the welded joint, creep strength of the weld metal zone apart from the surface was larger than that in the vicinity of the surface due to repeating heat cycles during welding. Creep strain and creep rate within the HAZ adjacent to the weld metal zone were smaller than those within the base metal zone. Creep rate of the weld metal zone in the welded joint was smaller than that of the weld metal specimen due to the restraint of the hardened HAZ adjacent to the zone. The full-thickness welded joint specimens showed longer lives than weld metal specimens, though the lives of the latter was shorter than those of the base metal (undermatching). In the full-thickness welded joint specimen, crack started from the last pass layer of the weld metal zone and fracture occurred at the zone. From the results mentioned above, in order to evaluate the creep properties of the welded joint correctly, it is necessary to conduct the creep test using the full-thickness welded joint specimen which includes the weakest zones of the weld metal, the front and back sides of the plate. (author)

  11. The nonlinear unloading behavior of a typical Ni-based superalloy during hot deformation. A unified elasto-viscoplastic constitutive model

    International Nuclear Information System (INIS)

    Chen, Ming-Song; Lin, Y.C.; Li, Kuo-Kuo; Chen, Jian

    2016-01-01

    In authors' previous work (Chen et al. in Appl Phys A. doi:10.1007/s00339-016-0371-6, 2016), the nonlinear unloading behavior of a typical Ni-based superalloy was investigated by hot compressive experiments with intermediate unloading-reloading cycles. The characters of unloading curves were discussed in detail, and a new elasto-viscoplastic constitutive model was proposed to describe the nonlinear unloading behavior of the studied Ni-based superalloy. Still, the functional relationships between the deformation temperature, strain rate, pre-strain and the parameters of the proposed constitutive model need to be established. In this study, the effects of deformation temperature, strain rate and pre-strain on the parameters of the new constitutive model proposed in authors' previous work (Chen et al. 2016) are analyzed, and a unified elasto-viscoplastic constitutive model is proposed to predict the unloading behavior at arbitrary deformation temperature, strain rate and pre-strain. (orig.)

  12. Microstructure and annealing behavior of a modified 9Cr-1Mo steel after dynamic plastic deformation to different strains

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Mishin, Oleg; Tao, N.R.

    2015-01-01

    The microstructure, hardness and tensile properties of a modified 9Cr-1Mo steel processed by dynamic plastic deformation (DPD) to different strains (0.5 and 2.3) have been investigated in the as-deformed and annealed conditions. It is found that significant structural refinement and a high level...... in a loss of strength with only a small gain in ductility, coarsening combined with pronounced partial recrystallization enables a combination of appreciably increased ductility and comparatively high strength....

  13. The hot deformation behavior and microstructure evolution of HA/Mg-3Zn-0.8Zr composites for biomedical application.

    Science.gov (United States)

    Liu, Debao; Liu, Yichi; Zhao, Yue; Huang, Y; Chen, Minfang

    2017-08-01

    The hot deformation behavior of nano-sized hydroxylapatite (HA) reinforced Mg-3Zn-0.8Zr composites were performed by means of Gleeble-1500D thermal simulation machine in a temperature range of 523-673K and a strain rate range of 0.001-1s -1 , and the microstructure evolution during hot compression deformation were also investigated. The results show that the flow stress increases increasing strain rates at a constant temperature, and decreases with increasing deforming temperatures at a constant strain rate. Under the same processing conditions, the flow stresses of the 1HA/Mg-3Zn-0.8Zr specimens are higher than those of the Mg-3Zn-0.8Zr alloy specimens, and the difference is getting closer with increasing deformation temperature. The hot deformation behaviors of Mg-3Zn-0.8Zr and 1HA/Mg-3Zn-0.8Zr can be described by constitutive equation of hyperbolic sine function with the hot deformation activation energy being 124.6kJ/mol and 125.3kJ/mol, respectively. Comparing with Mg-3Zn-0.8Zr alloy, the instability region in the process map of 1HA/Mg-3Zn-0.8Zr expanded to a bigger extent at the same conditions. The optimum process conditions of 1HA/Mg-3Zn-0.8Zr composite is concluded as between the temperature window of 573-623K with a strain rate range of 0.001-0.1s -1 . A higher volume fraction and smaller grain size of dynamic recrystallization (DRX) grains was observed in 1HA/Mg-3Zn-0.8Zr specimens after the hot compression deformation compared with Mg-3Zn-0.8Zr alloy, which was ascribed to the presence of the HA particles that play an important role in particle-stimulated nucleation (PSN) mechanism and can effectively hinder the migration of interfaces. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Quantitative research on microscopic deformation behavior of Ti-6Al-4V two-phase titanium alloy based on finite element method

    Science.gov (United States)

    Peng, Yan; Chen, Guoxing; Sun, Jianliang; Shi, Baodong

    2018-04-01

    The microscopic deformation of Ti-6Al-4V titanium alloy shows great inhomogeneity due to its duplex-microstructure that consists of two phases. In order to study the deformation behaviors of the constituent phases, the 2D FE model based on the realistic microstructure is established by MSC.Marc nonlinear FE software, and the tensile simulation is carried out. The simulated global stress-strain response is confirmed by the tensile testing result. Then the strain and stress distribution in the constituent phases and their evolution with the increase of the global strain are analyzed. The results show that the strain and stress partitioning between the two phases are considerable, most of the strain is concentrated in soft primary α phase, while hard transformed β matrix undertakes most of the stress. Under the global strain of 0.05, the deformation bands in the direction of 45° to the stretch direction and the local stress in primary α phase near to the interface between the two phases are observed, and they become more significant when the global strain increases to 0.1. The strain and stress concentration factors of the two phases are obviously different at different macroscopic deformation stages, but they almost tend to be stable finally.

  15. Microstructure and High Temperature Plastic Deformation Behavior of Al-12Si Based Alloy Fabricated by an Electromagnetic Casting and Stirring Process

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Kyung-Soo; Roh, Heung-Ryeol; Kim, Mok-Soon [Inha University, Incheon (Korea, Republic of); Kim, Jong-Ho; Park, Joon-Pyo [Research Institute of Industrial Science and Technology, Pohang (Korea, Republic of)

    2017-06-15

    An as-received EMC/S (electromagnetic casting and stirring)-processed Al-12Si based alloy billet was homogenized to examine its microstructure and high temperature plastic deformation behavior, using compressive tests over the temperature range from 623 to 743 K and a strain rate range from 1.0×10{sup -3} to 1.0×10{sup 0}s{sup -1}. The results were compared with samples processed by the direct chill casting (DC) method. The fraction of equiaxed structure for the as-received EMC/S billet(41%) was much higher than that of the as-received DC billet(6 %). All true stress – true strain curves acquired from the compressive tests exhibited a peak stress at the initial stage of plastic deformation. Flow stress showed a steady state region after the appearance of peak stress with increasing strain. The peak stress decreased with increasing temperature at a given strain rate and a decreasing strain rate at a given temperature. A constitutive equation was made for each alloy, which could be used to predict the peak stress. A recrystallized grain structure was observed in all the deformed specimens, indicating that dynamic recrystallization is the predominant mechanism during high temperature plastic deformation of both the homogenized EMC/S and DC-processed Al-12Si based alloys.

  16. Effects of aging and sheet thickness on the room temperature deformation behavior and in-plane anisotropy of cold rolled and solution treated Nimonic C-263 alloy sheet

    Energy Technology Data Exchange (ETDEWEB)

    Ankamma, Kandula; Chandra Mohan Reddy, Gangireddy [Mahatma Ghandi Institute of Technology, Hyderabad (India). Mechanical Engineering Dept.; Singh, Ashok Kumar; Prasad, Konduri Satya [Defence Research and Development Organisation (DRDO), Hyderabad (India). Defence Metallurgical Research Lab.; Komaraiah, Methuku [Malla Reddy College of Engineering and Technology, Secunderabad (India); Eswara Prasad, Namburi [Regional Centre for Military Airworthiness (Materials), Hyderabad (India)

    2011-10-15

    The deformation behavior under uni-axial tensile loading is investigated and reported in the case of cold rolled Nimonic C-263 alloy sheet products of different thicknesses (0.5 mm and 1 mm) in the solution treated and aged conditions. The studies conducted include (i) Microstructure, (ii) X-ray diffraction, (iii) Texture and (iv) Tensile properties and inplane anisotropy in the yield behavior (both tensile yield strength and ultimate tensile strength as well as ductility). The results of the present study showed that despite the presence of weak crystallographic texture in this crystal symmetric material, the degrees of in-plane anisotropy in strength as well as plastic deformation properties are found to be significant in both solution treated and aged conditions, thus having significant technological relevance for both further processing and design purposes. Further, the influence of aging and sheet thickness on the tensile deformation behaviour is also found to be considerable. A brief discussion on the technological implications of these results is also included. (orig.)

  17. Numerical investigation of room-temperature deformation behavior of a duplex type γTiAl alloy using a multi-scale modeling approach

    International Nuclear Information System (INIS)

    Kabir, M.R.; Chernova, L.; Bartsch, M.

    2010-01-01

    Room-temperature deformation of a niobium-rich TiAl alloy with duplex microstructure has been numerically investigated. The model links the microstructural features at micro- and meso-scale by the two-level (FE 2 ) multi-scale approach. The deformation mechanisms of the considered phases were described in the micro-mechanical crystal-plasticity model. Initial material parameters for the model were taken from the literature and validated using tensile experiments at macro-scale. For the niobium-rich TiAl alloy further adaptation of the crystal plasticity parameters is proposed. Based on these model parameters, the influences of the grain orientation, grain size, and texture on the global mechanical behavior have been investigated. The contributions of crystal deformation modes (slips and dislocations in the phases) to the mechanical response are also analyzed. The results enable a quantitative prediction of relationships between microstructure and mechanical behavior on global and local scale, including an assessment of possible crack initiation sites. The model can be used for microstructure optimization to obtain better material properties.

  18. How mechanical behavior of glassy polymers enables us to characterize melt deformation: elastic yielding in glassy state after melt stretching?

    Science.gov (United States)

    Wang, Shi-Qing; Zhao, Zhichen; Tsige, Mesfin; Zheng, Yexin

    Fast melt deformation well above the glass transition temperature Tg is known to produce elastic stress in an entangled polymer due to the chain entropy loss at the length scale of the network mesh size. Here chains of high molecular weight are assumed to form an entanglement network so that such a polymer behaves transiently like vulcanized rubber capable of affine deformation. We consider quenching a melt-deformed glassy polymer to well below Tg to preserve the elastic stress. Upon heating such a sample to Tg, the sample can return to the shape it took before melt deformation. This is the basic principle behind the design of all polymer-based shape-memory materials. This work presents intriguing evidence based on both experiment and computer simulation that the chain network, deformed well above Tg, can drive the glassy polymer to undergo elastic yielding. Our experimental systems include polystyrene, poly(methyl methacrylate) and polycarbonate; the molecular dynamics simulation is based on Kremer-Grest bead-spring model. National Science Foundation (DMR-1444859 and DMR-1609977).

  19. Three-dimensional printing and deformation behavior of low-density target structures by two-photon polymerization

    Science.gov (United States)

    Liu, Ying; Stein, Ori; Campbell, John H.; Jiang, Lijia; Petta, Nicole; Lu, Yongfeng

    2017-08-01

    Two-photon polymerization (2PP), a 3D nano to microscale additive manufacturing process, is being used for the first time to fabricate small custom experimental packages ("targets") to support laser-driven high-energy-density (HED) physics research. Of particular interest is the use of 2PP to deterministically print low-density, low atomic-number (CHO) polymer matrices ("foams") at millimeter scale with sub-micrometer resolution. Deformation during development and drying of the foam structures remains a challenge when using certain commercial photo-resins; here we compare use of acrylic resins IP-S and IP-Dip. The mechanical strength of polymeric beam and foam structures is examined particularly the degree of deformation that occurs during the development and drying processes. The magnitude of the shrinkage in the two resins in quantified by printing sample structures and by use of FEA to simulate the deformation. Capillary drying forces are shown to be small and likely below the elastic limit of the core foam structure. In contrast the substantial shrinkage in IP-Dip ( 5-10%) cause large shear stresses and associated plastic deformation particularly near constrained boundaries such as the substrate and locations with sharp density variation. The inherent weakness of stitching boundaries is also evident and in certain cases can lead to delamination. Use of IP-S shows marked reduction in deformation with a minor loss of print resolution

  20. The influence of a brittle Cr interlayer on the deformation behavior of thin Cu films on flexible substrates: Experiment and model

    International Nuclear Information System (INIS)

    Marx, Vera M.; Toth, Florian; Wiesinger, Andreas; Berger, Julia; Kirchlechner, Christoph; Cordill, Megan J.; Fischer, Franz D.; Rammerstorfer, Franz G.; Dehm, Gerhard

    2015-01-01

    Thin metal films deposited on polymer substrates are used in flexible electronic devices such as flexible displays or printed memories. They are often fabricated as complicated multilayer structures. Understanding the mechanical behavior of the interface between the metal film and the substrate as well as the process of crack formation under global tension is important for producing reliable devices. In the present work, the deformation behavior of copper films (50–200 nm thick), bonded to polyimide directly or via a 10 nm chromium interlayer, is investigated by experimental analysis and computational simulations. The influence of the various copper film thicknesses and the usage of a brittle interlayer on the crack density as well as on the stress magnitude in the copper after saturation of the cracking process are studied with in situ tensile tests in a synchrotron and under an atomic force microscope. From the computational point of view, the evolution of the crack pattern is modeled as a stochastic process via finite element based cohesive zone simulations. Both, experiments and simulations show that the chromium interlayer dominates the deformation behavior. The interlayer forms cracks that induce a stress concentration in the overlying copper film. This behavior is more pronounced in the 50 nm than in the 200 nm copper films

  1. The effect of inclination angle on the plastic deformation behavior of bicrystalline silver nanowires with Σ3 asymmetric tilt grain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Lin, E-mail: yuanlin@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); National Key Laboratory for Precision Hot Processing of Metals, Harbin 150001 (China); Jing, Peng; Shan, Debin; Guo, Bin [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); National Key Laboratory for Precision Hot Processing of Metals, Harbin 150001 (China)

    2017-01-15

    Atomistic simulations were used to investigate the plastic deformation behavior of bicrystalline silver nanowires with Σ3 asymmetric tilt grain boundaries at 0.1 K. The calculated grain boundary energies of Σ3 asymmetric tilt grain boundaries corresponded well with the energies measured in experiments and predicted by the theoretical description. The Σ3 asymmetric tilt grain boundaries with low inclination angles were composed of a replication of twin boundary segments separated by small ledges. The results demonstrated that the combination effect of Schmid factor and non-Schmid factors could explain dislocations emission into grain 1 only in models with low inclination angles (< 64.76°). At the latter stage of plastic deformation, free surfaces served as additional dislocation sources. Parallelly arranged operative slip systems were the fundamental features of plastic deformation. In addition, a number of stacking faults and multiple stacking faults were formed during plastic deformation. The hindrance of stacking faults to dislocation motion and the interactions between dislocations leaded to the observed strain hardening in nanowires with inclination angles at and above 29.50°. The low stacking fault energy of silver was responsible for the appearance of strain hardening. Dislocations emitted from grain 2 interacted with each other contributing to the observed strain hardening. Grain boundaries were completely eliminated by successive emission of dislocations from grain boundaries in nanowires with an inclination angle of 35.26° and 54.74°. A detailed understanding of the relationship between strength and grain boundary structures as well as specific plastic deformation would push forward the application of nanocrystalline materials and provide insights into the synthesis of nanocrystalline materials with superior strength and ductility.

  2. Indirect Versus Direct Heating of Sheet Materials: Superplastic Forming and Diffusion Bonding Using Lasers

    Science.gov (United States)

    Jocelyn, Alan; Kar, Aravinda; Fanourakis, Alexander; Flower, Terence; Ackerman, Mike; Keevil, Allen; Way, Jerome

    2010-06-01

    Many from within manufacturing industry consider superplastic forming (SPF) to be ‘high tech’, but it is often criticized as too complicated, expensive, slow and, in general, an unstable process when compared to other methods of manipulating sheet materials. Perhaps, the fundamental cause of this negative perception of SPF, and also of diffusion bonding (DB), is the fact that the current process of SPF/DB relies on indirect sources of heating to produce the conditions necessary for the material to be formed. Thus, heat is usually derived from the electrically heated platens of hydraulic presses, to a lesser extent from within furnaces and, sometimes, from heaters imbedded in ceramic moulds. Recent evaluations of these isothermal methods suggest they are slow, thermally inefficient and inappropriate for the process. In contrast, direct heating of only the material to be formed by modern, electrically efficient, lasers could transform SPF/DB into the first choice of designers in aerospace, automotive, marine, medical, architecture and leisure industries. Furthermore, ‘variable temperature’ direct heating which, in theory, is possible with a laser beam(s) may provide a means to control material thickness distribution, a goal of enormous importance as fuel efficient, lightweight structures for transportation systems are universally sought. This paper compares, and contrasts, the two systems and suggests how a change to laser heating might be achieved.

  3. In-situ white beam microdiffraction study of the deformation behavior in polycrystalline magnesium alloy during uniaxial loading

    International Nuclear Information System (INIS)

    Advanced Light Source; Tamura, Nobumichi; Lynch, P.A.; Stevenson, A.W.; Liang, D.; Parry, D.; Wilkins, S.; Madsen, I.C.; Bettles, C.; Tamura, N.; Geandier, G.

    2007-01-01

    Scanning white beam X-ray microdiffraction has been used to study the heterogeneous grain deformation in a polycrystalline Mg alloy (MgAZ31). The high spatial resolution achieved on beamline 7.3.3 at the Advanced Light Source provides a unique method to measure the elastic strain and orientation of single grains as a function of applied load. To carry out in-situ measurements a light weight (∼0.5kg) tensile stage, capable of providing uniaxial loads of up to 600kg, was designed to collect diffraction data on the loading and unloading cycle. In-situ observation of the deformation process provides insight about the crystallographic deformation mode via twinning and dislocation slip

  4. Modeling the influence of high dose irradiation on the deformation and damage behavior of RAFM steels under low cycle fatigue conditions

    Energy Technology Data Exchange (ETDEWEB)

    Aktaa, J. [Forschungszentrum Karlsruhe GmbH, Institute for Materials Research II, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)], E-mail: aktaa@imf.fzk.de; Petersen, C. [Forschungszentrum Karlsruhe GmbH, Institute for Materials Research II, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2009-06-01

    A viscoplastic deformation damage model developed for RAFM steels in the reference un-irradiated state was modified taking into account the irradiation influence. The modification mainly consisted in adding an irradiation hardening variable with an appropriate evolution equation including irradiation dose driven terms as well as inelastic deformation and thermal recovery terms. With this approach, the majority of the material and temperature dependent model parameters are no longer dependent on the irradiation dose and only few parameters need to be determined by applying the model to RAFM steels in the irradiated state. The modified model was then applied to describe the behavior of EUROFER 97 observed in the post irradiation examinations of the irradiation programs ARBOR 1, ARBOR 2 and SPICE. The application results will be presented and discussed in addition.

  5. In situ TEM investigation of microstructural behavior of superplastic Al-Mg-Sc alloy

    Czech Academy of Sciences Publication Activity Database

    Dám, Karel; Lejček, Pavel; Michalcová, A.

    2013-01-01

    Roč. 76, č. 2 (2013), s. 69-75 ISSN 1044-5803 R&D Projects: GA ČR GBP108/12/G043; GA MŠk LM2011026; GA AV ČR KAN300100801 Institutional research plan: CEZ:AV0Z10100520 Keywords : aluminium alloy s * ultrafine-grained alloy s * in situ TEM * equal-channel angular pressing Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.925, year: 2013

  6. Deformation behavior of carbon-fiber reinforced shape-memory-polymer composites used for deployable structures (Conference Presentation)

    Science.gov (United States)

    Lan, Xin; Liu, Liwu; Li, Fengfeng; Pan, Chengtong; Liu, Yanju; Leng, Jinsong

    2017-04-01

    Shape memory polymers (SMPs) are a new type of smart material, they perform large reversible deformation with a certain external stimulus (e.g., heat and electricity). The properties (e.g., stiffness, strength and other mechanically static or quasi-static load-bearing capacity) are primarily considered for conventional resin-based composite materials which are mainly used for structural materials. By contrast, the mechanical actuating performance with finite deformation is considered for the shape memory polymers and their composites which can be used for both structural materials and functional materials. For shape memory polymers and their composites, the performance of active deformation is expected to further promote the development in smart active deformation structures, such as deployable space structures and morphing wing aircraft. The shape memory polymer composites (SMPCs) are also one type of High Strain Composite (HSC). The space deployable structures based on carbon fiber reinforced shape memory polymer composites (SMPCs) show great prospects. Considering the problems that SMPCs are difficult to meet the practical applications in space deployable structures in the recent ten years, this paper aims to research the mechanics of deformation, actuation and failure of SMPCs. In the overall view of the shape memory polymer material's nonlinearity (nonlinearity and stress softening in the process of pre-deformation and recovery, relaxation in storage process, irreversible deformation), by the multiple verifications among theory, finite element and experiments, one obtains the deformation and actuation mechanism for the process of "pre-deformation, energy storage and actuation" and its non-fracture constraint domain. Then, the parameters of SMPCs will be optimized. Theoretical analysis is realized by the strain energy function, additionally considering the interaction strain energy between the fiber and the matrix. For the common resin-based or soft

  7. Effect of Strength Coefficient of Bainite on Micromechanical Deformation and Failure Behaviors of Hot-Rolled 590FB Steel during Uniaxial Tension

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Young; Choi, Shi-Hoon [Sunchon National University, Suncheon (Korea, Republic of); Kim, Sung Il [POSCO Technical Research Laboratories, Gwangyang (Korea, Republic of)

    2016-11-15

    The effect of the strength coefficient (K{sub B}) of bainite on micromechanical deformation and failure behaviors of a hot-rolled 590MPa steel (590FB) during uniaxial tension was simulated using the elasto-plastic finite element method (FEM). The spatial distribution of the constituent phases was obtained using a phase identification technique based on optical microstructure. Empirical equations which depend on chemical composition were used to determine the stress-strain relationship of the constituent phases of the 590FB steel. The stress-strain partitioning and failure behavior were analyzed by increasing the K{sub B} of bainite. The elasto-plastic FEM results revealed that effective strain in the ferrite-bainite boundaries, and maximum principal stress in fibrous bainite, were enhanced as the K{sub B} increased. The elasto-plastic FEM results also demonstrated that the K{sub B} significantly affects the micromechanical deformation and failure behaviors of the hot-rolled 590FB steel during uniaxial tension.

  8. Investigation of Mechanical Properties and Plastic Deformation Behavior of (Ti45Cu40Zr10Ni5100−xAlx Metallic Glasses by Nanoindentation

    Directory of Open Access Journals (Sweden)

    Lanping Huang

    2014-01-01

    Full Text Available The effect of Al addition on mechanical properties and plastic deformation behavior of (Ti45Cu40Zr10Ni5100−xAlx (x = 0, 2, 4, 6 and 8 amorphous alloy ribbons have been investigated by nanoindentation. The hardness and elastic modulus do not simply increase with the increase of Al content. The alloy with 8 at.% Al exhibits the highest hardness and elastic modulus. The serrations or pop-in events are strongly dependent on the loading rate and alloy composition.

  9. Constitutive Equation and Hot Compression Deformation Behavior of Homogenized Al–7.5Zn–1.5Mg–0.2Cu–0.2Zr Alloy

    Directory of Open Access Journals (Sweden)

    Jianliang He

    2017-10-01

    Full Text Available The deformation behavior of homogenized Al–7.5Zn–1.5Mg–0.2Cu–0.2Zr alloy has been studied by a set of isothermal hot compression tests, which were carried out over the temperature ranging from 350 °C to 450 °C and the strain rate ranging from 0.001 s−1 to 10 s−1 on Gleeble-3500 thermal simulation machine. The associated microstructure was studied using electron back scattered diffraction (EBSD and transmission electron microscopy (TEM. The results showed that the flow stress is sensitive to strain rate and deformation temperature. The shape of true stress-strain curves obtained at a low strain rate (≤0.1 s−1 conditions shows the characteristic of dynamic recrystallization (DRX. Two Arrhenius-typed constitutive equation without and with strain compensation were established based on the true stress-strain curves. Constitutive equation with strain compensation has more precise predictability. The main softening mechanism of the studied alloy is dynamic recovery (DRV accompanied with DRX, particularly at deformation conditions, with low Zener-Holloman parameters.

  10. Insights into the deformation behavior of the CrMnFeCoNi high-entropy alloy revealed by elevated temperature nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Maier-Kiener, Verena [Montanuniversitat Leoben, Leoben (Austria); Schuh, Benjamin [Austrian Academy of Sciences, Leoben (Austria); George, Easo P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Clemens, Helmut [Montanuniversitat Leoben, Leoben (Austria); Hohenwarter, Anton [Austrian Academy of Sciences, Leoben (Austria)

    2017-07-27

    A CrMnFeCoNi high-entropy alloy was investigated by nanoindentation from room temperature to 400 °C in the nanocrystalline state and cast plus homogenized coarse-grained state. In the latter case a < 100 >-orientated grain was selected by electron back scatter diffraction for nanoindentation. It was found that hardness decreases more strongly with increasing temperature than Young’s modulus, especially for the coarse-grained state. The modulus of the nanocrystalline state was slightly higher than that of the coarse-grained one. For the coarse-grained sample a strong thermally activated deformation behavior was found up to 100–150 °C, followed by a diminishing thermally activated contribution at higher testing temperatures. For the nanocrystalline state, different temperature dependent deformation mechanisms are proposed. At low temperatures, the governing processes appear to be similar to those in the coarse-grained sample, but with increasing temperature, dislocation-grain boundary interactions likely become more dominant. Finally, at 400 °C, decomposition of the nanocrystalline alloy causes a further reduction in thermal activation. Furthermore, this is rationalized by a reduction of the deformation controlling internal length scale by precipitate formation in conjunction with a diffusional contribution.

  11. Analytical modeling of the thermomechanical behavior of ASTM F-1586 high nitrogen austenitic stainless steel used as a biomaterial under multipass deformation.

    Science.gov (United States)

    Bernardes, Fabiano R; Rodrigues, Samuel F; Silva, Eden S; Reis, Gedeon S; Silva, Mariana B R; Junior, Alberto M J; Balancin, Oscar

    2015-06-01

    Precipitation-recrystallization interactions in ASTM F-1586 austenitic stainless steel were studied by means of hot torsion tests with multipass deformation under continuous cooling, simulating an industrial laminating process. Samples were deformed at 0.2 and 0.3 at a strain rate of 1.0s(-1), in a temperature range of 900 to 1200°C and interpass times varying from 5 to 80s. The tests indicate that the stress level depends on deformation temperature and the slope of the equivalent mean stress (EMS) vs. 1/T presents two distinct behaviors, with a transition at around 1100°C, the non-recrystallization temperature (Tnr). Below the Tnr, strain-induced precipitation of Z-phase (NbCrN) occurs in short interpass times (tpass<30s), inhibiting recrystallization and promoting stepwise stress build-up with strong recovery, which is responsible for increasing the Tnr. At interpass times longer than 30s, the coalescence and dissolution of precipitates promote a decrease in the Tnr and favor the formation of recrystallized grains. Based on this evidence, the physical simulation of controlled processing allows for a domain refined grain with better mechanical properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Analyzing the Mechanical Behavior of Polymer and Composite Materials by Means of Unique Method of Deformation Calorimetry

    Science.gov (United States)

    Bessonova, N. P.; Chvalun, S. N.

    2018-06-01

    Results are presented from long-term investigations of a wide range of polymer systems, varying from elastomers and thermoplastic elastomers to plastics and fibers. The thermophysical properties of both initial and modifying additive-containing polysiloxanes, block copolymers, and poleolefins that differ in chemical nature, structure, and composition are analyzed. It is shown that deformation calorimetry allows the simultaneous registration of mechanical (from 5 × 10-3 kg) and thermal effects (at a sensitivity of 2 × 10‒7 J/s), and the determination of changes in enthalpy, internal energy, and intra- and intermolecular contributions to the formation of the tensile stress response. In other words, it provides a unique opportunity to analyze the deformation mechanism of investigated systems and its dependence on the changing parameters.

  13. Deformation behavior of Zircaloy-4 cladding tubes under inert gas conditions in the temperature range from 600 to 12000C

    International Nuclear Information System (INIS)

    Hofmann, P.; Raff, S.; Gausmann, G.

    1981-07-01

    Within the temperature range from 600 0 to 1200 0 isothermal, isobaric creep rupture experiments were performed under inert gas with short Zircaloy-4 tube specimens in order to obtain experimental data supporting the development of the NORA cladding tube deformation model. The values of the tube inner pressure were so selected that the time-to-failure values varied between 2 and 2000 s. The corresponding creep rupture curves are indicated. Besides the temperature and the burst pressure the development of deformation over time of the tube specimens was measured. This allowed to draw diagrams of stress, strain rate and strain. On account of the type of specimen heating applied (radiation heating) the temperature difference at the cladding tube circumference is very small ( [de

  14. Microstructure and annealing behavior of a modified 9Cr−1Mo steel after dynamic plastic deformation to different strains

    International Nuclear Information System (INIS)

    Zhang, Z.B.; Mishin, O.V.; Tao, N.R.; Pantleon, W.

    2015-01-01

    The microstructure, hardness and tensile properties of a modified 9Cr−1Mo steel processed by dynamic plastic deformation (DPD) to different strains (0.5 and 2.3) have been investigated in the as-deformed and annealed conditions. It is found that significant structural refinement and a high level of strength can be achieved by DPD to a strain of 2.3, and that the microstructure at this strain contains a large fraction of high angle boundaries. The ductility of the DPD processed steel is however low. Considerable structural coarsening of the deformed microstructure without pronounced recrystallization takes place during annealing of the low-strain and high-strain samples for 1 h at 650 °C and 600 °C, respectively. Both coarsening and partial recrystallization occur in the high-strain sample during annealing at 650 °C for 1 h. For this sample, it is found that whereas coarsening alone results in a loss of strength with only a small gain in ductility, coarsening combined with pronounced partial recrystallization enables a combination of appreciably increased ductility and comparatively high strength

  15. Manufacture of a four-sheet complex component from different titanium alloys by superplastic forming

    Science.gov (United States)

    Allazadeh, M. R.; Zuelli, N.

    2017-10-01

    A superplastic forming (SPF) technology process was deployed to form a complex component with eight-pocket from a four-sheet sandwich panel sheetstock. Six sheetstock packs were composed of two core sheets made of Ti-6Al-4V or Ti-5Al-4Cr-4Mo-2Sn-2Zr titanium alloy and two skin sheets made of Ti-6Al-4V or Ti-6Al-2Sn-4Zr-2Mo titanium alloy in three different combinations. The sheets were welded with two subsequent welding patterns over the core and skin sheets to meet the required component's details. The applied welding methods were intermittent and continuous resistance seam welding for bonding the core sheets to each other and the skin sheets over the core panel, respectively. The final component configuration was predicted based on the die drawings and finite element method (FEM) simulations for the sandwich panels. An SPF system set-up with two inlet gas pipe feeding facilitated the trials to deliver two pressure-time load cycles acting simultaneously which were extracted from FEM analysis for specific forming temperature and strain rate. The SPF pressure-time cycles were optimized via GOM scanning and visually inspecting some sections of the packs in order to assess the levels of core panel formation during the inflation process of the sheetstock. Two sets of GOM scan results were compared via GOM software to inspect the surface and internal features of the inflated multisheet packs. The results highlighted the capability of the tested SPF process to form complex components from a flat multisheet pack made of different titanium alloys.

  16. A new and unusual deformation behavior observed in 12Cr18Ni10Ti stainless steel irradiated at 307 deg. C to 55 dpa in BN-350

    International Nuclear Information System (INIS)

    Gusev, M.; Maksimkin, O.; Osipov, I.S.; Garner, F.

    2007-01-01

    Full text of publication follows: It is currently accepted that neutron irradiation of stainless steels in general leads to increased strength, reduction of ductility and inevitably to embrittlement. The microstructural origins of such changes in mechanical behavior are well understood. Occasionally, however, a new phenomenon is observed at higher fluences. Void-induced embrittlement is an example whereby the ductility loss is strongly accelerated when new microstructural conditions develop from voids that cause stress concentration, removal of nickel from the matrix and thereby induce a martensitic transformation. This process occurs at moderately high temperatures where high void swelling can occur. It now appears that there is another, previously unobserved phenomenon that develops in austenitic steel irradiated to relatively high dose and relatively low temperature. In this case, however, the loss of plasticity commonly developed at lower dose is reversed and is replaced by an unusually high deformation. The plastic deformation was studied of miniature flat tensile specimens of 12Cr18Ni10Ti austenitic steel cut from a fuel assembly wrapper irradiated in the BN-350 reactor to 55 dpa at 580 K (307 deg. C). A new optical extensometry technique was employed that uses a video camera and multiple tiny markers painted on the specimen, allowing visualization and recording of the strain distribution as it develops along the specimen. The total deformation derived from the engineering diagrams for these specimens was 35-40%, while 3-7% was expected from previous studies conducted at lower dpa levels. The video record showed that the material resists necking and involves a moving deformation wave that initiates near one of the tensile grippers and spreads along ∼3/4 of the gauge length before failure occurs. Such behavior, often called a 'moving neck' has been observed previously in pure iron and Al-Mg alloys but has not been observed in irradiated stainless steels

  17. Influence of increasing convergence obliquity and shallow slab geometry onto tectonic deformation and seismogenic behavior along the Northern Lesser Antilles zone

    Science.gov (United States)

    Laurencin, M.; Graindorge, D.; Klingelhoefer, F.; Marcaillou, B.; Evain, M.

    2018-06-01

    In subduction zones, the 3D geometry of the plate interface is one of the key parameters that controls margin tectonic deformation, interplate coupling and seismogenic behavior. The North American plate subducts beneath the convex Northern Lesser Antilles margin. This convergent plate boundary, with a northward increasing convergence obliquity, turns into a sinistral strike-slip limit at the northwestern end of the system. This geodynamic context suggests a complex slab geometry, which has never been imaged before. Moreover, the seismic activity and particularly the number of events with thrust focal mechanism compatible with subduction earthquakes, increases northward from the Barbuda-Anguilla segment to the Anguilla-Virgin Islands segment. One of the major questions in this area is thus to analyze the influence of the increasing convergence obliquity and the slab geometry onto tectonic deformation and seismogenic behavior of the subduction zone. Based on wide-angle and multichannel reflection seismic data acquired during the Antithesis cruises (2013-2016), we decipher the deep structure of this subduction zone. Velocity models derived from wide-angle data acquired across the Anegada Passage are consistent with the presence of a crust of oceanic affinity thickened by hotspot magmatism and probably affected by the Upper Cretaceous-Eocene arc magmatism forming the 'Great Arc of the Caribbean'. The slab is shallower beneath the Anguilla-Virgin Islands margin segment than beneath the Anguilla-Barbuda segment which is likely to be directly related to the convex geometry of the upper plate. This shallower slab is located under the forearc where earthquakes and partitioning deformations increase locally. Thus, the shallowing slab might result in local greater interplate coupling and basal friction favoring seismic activity and tectonic partitioning beneath the Virgin Islands platform.

  18. Data related to cyclic deformation and fatigue behavior of direct laser deposited Ti–6Al–4V with and without heat treatment

    Directory of Open Access Journals (Sweden)

    Amanda J. Sterling

    2016-03-01

    Full Text Available Data is presented describing the strain-controlled, fully-reversed uniaxial cyclic deformation and fatigue behavior of Ti–6Al–4V specimens additively manufactured via Laser Engineered Net Shaping (LENS – a Direct Laser Deposition (DLD process. The data was collected by performing multiple fatigue tests on specimens with various microstructural states/conditions, i.e. in their ‘as-built’, annealed (below the beta transus temperature, or heat treated (above the beta transus temperature condition. Such data aids in characterizing the mechanical integrity and fatigue resistance of DLD parts. Data presented herein also allows for elucidating the strong microstructure coupling of the fatigue behavior of DLD Ti–6Al–4V, as the data trends were found to vary with material condition (i.e. as-built, annealed or heat treated [1]. This data is of interest to the additive manufacturing and fatigue scientific communities, as well as the aerospace and biomedical industries, since additively-manufactured parts cannot be reliably deployed for public use, until their mechanical properties are understood with high certainty. Keywords: Fatigue, Cyclic deformation, Additive manufacturing, Laser Engineered Net Shaping (LENS, Ti–6Al–4V, Titanium

  19. Flow behavior and microstructures of powder metallurgical CrFeCoNiMo0.2 high entropy alloy during high temperature deformation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiawen [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Liu, Yong, E-mail: yonliu@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Liu, Bin, E-mail: binliu@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Wang, Yan [School of Aeronautics and Astronautics, Central South University, Changsha 410083 (China); Cao, Yuankui; Li, Tianchen; Zhou, Rui [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China)

    2017-03-24

    Dynamic recrystallization (DRX) refine grains of high entropy alloys (HEAs) and significant improve the mechanical property of HEAs, but the effect of high melting point element molybdenum (Mo) on high temperature deformation behavior has not been fully understood. In the present study, flow behavior and microstructures of powder metallurgical CrFeCoNiMo{sub 0.2} HEA were investigated by hot compression tests performed at temperatures ranging from 700 to 1100 °C with strain rates from 10{sup −3} to 1 s{sup −1}. The Arrhenius constitutive equation with strain-dependent material constants was used for modeling and prediction of flow stress. It was found that at 700 °C, the dynamic recovery is the dominant softening mechanism, whilst with the increase in compression testing temperature, the DRX becomes the dominant mechanism of softening. In the present HEA, the addition of Mo results in the high activation energy (463 kJ mol{sup −1}) and the phase separation during hot deformation. The formation of Mo-rich σ phase particles pins grain boundary migration during DRX, and therefore refines the size of recrystallized grains.

  20. Acceleration of Fe2W precipitation and its effect on creep deformation behavior of 8.5Cr-2W-VNb steels with Si

    International Nuclear Information System (INIS)

    Fujitsuna, N.; Igarashi, M.; Abe, F.

    2000-01-01

    The effect of Si on the precipitation behavior of M 23 C 6 and Fe 2 W Laves phase during creep and on the creep deformation behavior was studied on 8.5Cr-2W-VNb steels at 650 C for up to 10000 h. During creep and aging, Fe 2 W Laves phase precipitated and then the amount and the mean particle size of Fe 2 W precipitates became larger with increasing Si concentration, while the amount and the mean size of M 23 C 6 was scarcely changed by the addition of Si. It was cleared that Si-addition influence more strongly on the precipitation of Fe 2 W than M 23 C 6 . The creep rupture strength of the steels increased with increasing Si concentration at high stresses and short rupture times less than 2000 h, while it had a maximum at 0.3% Si and then decreased with increasing Si concentration at low stresses and long rupture times longer than 2000 h. The decrease of creep rate in the acceleration creep region was more significant by Si-addition, and the minimum creep rate was decreased by Si-addition at all stress conditions. The change in creep deformation behavior by Si-addition resulted mainly from the change in precipitation behavior of Fe 2 W, such that the decrease of creep rate in transient creep region is more significant by acceleration of Fe 2 W precipitating on the lath boundary to suppress the recovery of the lath structure and that the extreme increase of creep rate after reaching a minimum creep rate and the decrease of duration of acceleration creep region occurred with coarsening of Fe 2 W. (orig.)

  1. Effect of nitrogen in austenitic stainless steel on deformation behavior and stress corrosion cracking susceptibility in BWR simulated environment

    International Nuclear Information System (INIS)

    Roychowdhury, S.; Kain, V.; Dey, G.K.

    2012-01-01

    Intergranular stress corrosion cracking (IGSCC) of austenitic stainless steel (SS) components in boiling water reactor (BWR has been a serious issue and is generic in nature. Initial cracking incidences were attributed to weld induced sensitisation and low temperature sensitisation which was mitigated by the use of low carbon grade of SS and molybdenum and nitrogen containing nuclear grade SS. However, IGSCC has occurred in these SS in the non-sensitised condition which was attributed to residual weld induced strain. Strain hardening in SS has been identified as a major cause for enhanced IGSCC susceptibility in BWR environment. Nitrogen in SS has a significant effect on the strain hardening characteristics and has potential to affect the IGSCC susceptibility in BWR environment. Type 304LN stainless steel is a candidate material for use in future reactors with long design life like the Advanced Heavy Water Reactor (AHWR), in which the operating conditions are similar to BWR. This study reports the effect of nitrogen in type 304LN stainless steel on the strain hardening behaviour and deformation characteristics and its effect on the IGSCC susceptibility in BWR/AHWR environment. Two heats of type 304LN stainless steel were used containing different levels of nitrogen, 0.08 and 0.16 wt % (SS alloys A and B, respectively). Both the SS was strain hardened by cross rolling at 200℃ to simulate the strain hardened regions having higher IGSCC susceptibility in BWRs. Tensile testing was done at both room temperature and 288℃(temperature simulating operating BWR conditions) and the effect of nitrogen on the tensile properties were established. Tensile testing was done at strain rates similar to the crack tip strain rates associated with a growing IGSCC in SS. Detailed transmission electron microscopic (TEM) studies were done to establish the effect of nitrogen on the deformation modes. Results indicated twinning was the major mode of deformation during cross rolling while

  2. Impact of Martensite Spatial Distribution on Quasi-Static and Dynamic Deformation Behavior of Dual-Phase Steel

    Science.gov (United States)

    Singh, Manpreet; Das, Anindya; Venugopalan, T.; Mukherjee, Krishnendu; Walunj, Mahesh; Nanda, Tarun; Kumar, B. Ravi

    2018-02-01

    The effects of microstructure parameters of dual-phase steels on tensile high strain dynamic deformation characteristic were examined in this study. Cold-rolled steel sheets were annealed using three different annealing process parameters to obtain three different dual-phase microstructures of varied ferrite and martensite phase fraction. The volume fraction of martensite obtained in two of the steels was near identical ( 19 pct) with a subtle difference in its spatial distribution. In the first microstructure variant, martensite was mostly found to be situated at ferrite grain boundaries and in the second variant, in addition to at grain boundaries, in-grain martensite was also observed. The third microstructure was very different from the above two with respect to martensite volume fraction ( 67 pct) and its morphology. In this case, martensite packets were surrounded by a three-dimensional ferrite network giving an appearance of core and shell type microstructure. All the three steels were tensile deformed at strain rates ranging from 2.7 × 10-4 (quasi-static) to 650 s-1 (dynamic range). Field-emission scanning electron microscope was used to characterize the starting as well as post-tensile deformed microstructures. Dual-phase steel consisting of small martensite volume fraction ( 19 pct), irrespective of its spatial distribution, demonstrated high strain rate sensitivity and on the other hand, steel with large martensite volume fraction ( 67 pct) displayed a very little strain rate sensitivity. Interestingly, total elongation was found to increase with increasing strain rate in the dynamic regime for steel with core-shell type of microstructure containing large martensite volume fraction. The observed enhancement in plasticity in dynamic regime was attributed to adiabatic heating of specimen. To understand the evolving damage mechanism, the fracture surface and the vicinity of fracture ends were studied in all the three dual-phase steels.

  3. Elasto-viscoplastic self consistent modeling of the ambient temperature plastic behavior of periclase deformed up to 5.4 GPa

    Science.gov (United States)

    Lin, F.; Hilairet, N.; Raterron, P.; Addad, A.; Immoor, J.; Marquardt, H.; Tomé, C. N.; Miyagi, L.; Merkel, S.

    2017-11-01

    Anisotropy has a crucial effect on the mechanical response of polycrystalline materials. Polycrystal anisotropy is a consequence of single crystal anisotropy and texture (crystallographic preferred orientation) development, which can result from plastic deformation by dislocation glide. The plastic behavior of polycrystals is different under varying hydrostatic pressure conditions, and understanding the effect of hydrostatic pressure on plasticity is of general interest. Moreover, in the case of geological materials, it is useful for understanding material behavior in the deep earth and for the interpretation of seismic data. Periclase is a good material to test because of its simple and stable crystal structure (B1), and it is of interest to geosciences, as (Mg,Fe)O is the second most abundant phase in Earth's lower mantle. In this study, a polycrystalline sintered sample of periclase is deformed at ˜5.4 GPa and ambient temperature, to a total strain of 37% at average strain rates of 2.26 × 10-5/s and 4.30 × 10-5/s. Lattice strains and textures in the polycrystalline sample are recorded using in-situ synchrotron x-ray diffraction and are modeled with Elasto-Viscoplastic Self Consistent (EVPSC) methods. Parameters such as critical resolved shear stress (CRSS) for the various slip systems, strain hardening, initial grain shape, and the strength of the grain-neighborhood interaction are tested in order to optimize the simulation. At the beginning of deformation, a transient maximum occurs in lattice strains, then lattice strains relax to a "steady-state" value, which, we believe, corresponds to the true flow strength of periclase. The "steady state" CRSS of the {" separators="| 110 } ⟨" separators="| 1 1 ¯ 0 ⟩ slip system is 1.2 GPa, while modeling the transient maximum requires a CRSS of 2.2 GPa. Interpretation of the overall experimental data via modeling indicates dominant {" separators="| 110 } ⟨" separators="| 1 1 ¯ 0 ⟩ slip with initial strain

  4. Plastic deformation

    NARCIS (Netherlands)

    Sitter, de L.U.

    1937-01-01

    § 1. Plastic deformation of solid matter under high confining pressures has been insufficiently studied. Jeffreys 1) devotes a few paragraphs to deformation of solid matter as a preface to his chapter on the isostasy problem. He distinguishes two properties of solid matter with regard to its

  5. Annealing behavior of a cast Mg-Gd-Y-Zr alloy with necklace fine grains developed under hot deformation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yi [Educational Key Laboratory of Nonferrous Metal Materials Science and Engineering, School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Yang, Xuyue, E-mail: yangxuyue@mail.csu.edu.cn [Educational Key Laboratory of Nonferrous Metal Materials Science and Engineering, School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center, Central South University, Changsha 410083 (China); Xiao, Zhenyu; Zhang, Duxiu [Educational Key Laboratory of Nonferrous Metal Materials Science and Engineering, School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Wang, Jun [Institute for Frontier Materials, Deakin University, Geelong, VIC 3216 (Australia); Sakai, Taku [UEC Tokyo (The University of Electro-Communications), Chofu, Tokyo 182-8585 (Japan)

    2017-03-14

    The microstructure and texture development of a cast Mg-Gd-Y-Zr alloy during hot deformation and subsequent annealing were investigated by optical microscopy (OM) and electron backscattered diffraction (EBSD) technology. Initial microstructures with partially and fully developed new fine grains (NFGs), separately attended by continuous or interrupted hot forging, were various mixed grain structures composed of NFGs in necklace and retained coarse grains. It is shown that, during annealing, the development of grain size can be divided into three stages: i.e. an incubation of grain growth, a rapid coarsening and a normal grain growth. After a long time annealing of over 10{sup 4} ks at 693 K, the average grain size for samples continuous compressed to ε=1.2 and those interrupted compressed to ε=1.6 were close. Moreover, orientations of such strain-induced fine grains were relatively randomly distributed, leading to a weakened basal texture, while the basal plane of retained coarse grains were perpendicular to the forging direction. Such texture even became weaker during subsequent annealing. The results show that the development of necklace NFGs during hot deformation can be effective for homogeneous grain refinement under subsequent annealing.

  6. Effect of hydrostatic pressure on the deformation behavior of maraging and HY-80 steels and its implications for plasticity theory

    International Nuclear Information System (INIS)

    Spitzig, W.A.; Sober, R.J.; Richmond, O.

    1976-01-01

    Earlier results showed that the difference between the tensile and compressive strengths of tempered martensites is primarily a manifestation of the general pressure dependence of flow stress in these materials. However, the same results also showed that the volume expansion after deformation was much smaller than that predicted by the normality flow rule of plasticity theory for materials with such pressure dependence. Additional results now obtained on maraging and HY-80 steels support these conclusions. The results for all these materials exhibit a strong, but not perfect, correlation between pressure dependence, yield stress, and volume expansion. The volume expansion, however, which is believed to result primarily from the generation of new dislocations, is very small and does not appear to be essential to the pressure dependence. Most of the pressure dependence, the portion responsible for the discrepancy with the normality flow rule, may be an effect on dislocation motion. The results suggest that an appropriate plasticity model would be one in which the octahedral shear yield stress is linearly dependent on the mean pressure, but the volume change is negligible in violation of the normality flow rule. Such a model has been proposed previously for the plastic deformation of soils. However, unlike that model, the present theory includes strain hardening. 17 fig

  7. Severe plastic deformation effect on structure and mechanical properties of Al-Mg-Li system alloys

    International Nuclear Information System (INIS)

    Kolobov, Yu.R.; Najdenkin, E.V.; Dudarev, E.F.; Bakach, G.P.; Pochivalov, Yu.I.; Girsova, N.V.; Ivanov, M.B.

    2002-01-01

    The study on the structural-phase states and mechanical properties of the industrial aluminium alloys Al - 5.5% Mg - 2.2% Li - 0.12% Zr, percent by weight and Al - 5% Mg - 2.2% Li -0.12% Zr - 0.2% Sc percent by weight, obtained by the impact of the intensive plastic deformation, is carried out in comparison with the initial polycrystalline state. It is established that the homogeneous ultrafine-grained structure with the second phase particles, located primarily by the grain boundaries, is formed in the studied samples by the above-mentioned treatment. Such a character of the structure leads to the shift of the temperature-velocity interval of the superplastic properties to the area of lower temperatures and higher deformation velocities [ru

  8. The nonlinear unloading behavior of a typical Ni-based superalloy during hot deformation. A new elasto-viscoplastic constitutive model

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ming-Song; Li, Kuo-Kuo [Central South University, School of Mechanical and Electrical Engineering, Changsha (China); State Key Laboratory of High Performance Complex Manufacturing, Changsha (China); Lin, Y.C. [Central South University, School of Mechanical and Electrical Engineering, Changsha (China); State Key Laboratory of High Performance Complex Manufacturing, Changsha (China); Central South University, Light Alloy Research Institute, Changsha (China); Chen, Jian [Changsha University of Science and Technology, School of Energy and Power Engineering, Key Laboratory of Efficient and Clean Energy Utilization, Changsha (China)

    2016-09-15

    The nonlinear unloading behavior of a typical Ni-based superalloy is investigated by hot compressive experiments with intermediate unloading-reloading cycles. The experimental results show that there are at least four types of unloading curves. However, it is found that there is no essential difference among four types of unloading curves. The variation curves of instantaneous Young's modulus with stress for all types of unloading curves include four segments, i.e., three linear elastic segments (segments I, II, and III) and one subsequent nonlinear elastic segment (segment IV). The instantaneous Young's modulus of segments I and III is approximately equal to that of reloading process, while smaller than that of segment II. In the nonlinear elastic segment, the instantaneous Young's modulus linearly decreases with the decrease in stress. In addition, the relationship between stress and strain rate can be accurately expressed by the hyperbolic sine function. This study includes two parts. In the present part, the characters of unloading curves are discussed in detail, and a new elasto-viscoplastic constitutive model is proposed to describe the nonlinear unloading behavior based on the experimental findings. While in the latter part (Chen et al. in Appl Phys A. doi:10.1007/s00339-016-0385-0, 2016), the effects of deformation temperature, strain rate, and pre-strain on the parameters of this new constitutive model are analyzed, and a unified elasto-viscoplastic constitutive model is proposed to predict the unloading behavior at arbitrary deformation temperature, strain rate, and pre-strain. (orig.)

  9. The nonlinear unloading behavior of a typical Ni-based superalloy during hot deformation. A new elasto-viscoplastic constitutive model

    International Nuclear Information System (INIS)

    Chen, Ming-Song; Li, Kuo-Kuo; Lin, Y.C.; Chen, Jian

    2016-01-01

    The nonlinear unloading behavior of a typical Ni-based superalloy is investigated by hot compressive experiments with intermediate unloading-reloading cycles. The experimental results show that there are at least four types of unloading curves. However, it is found that there is no essential difference among four types of unloading curves. The variation curves of instantaneous Young's modulus with stress for all types of unloading curves include four segments, i.e., three linear elastic segments (segments I, II, and III) and one subsequent nonlinear elastic segment (segment IV). The instantaneous Young's modulus of segments I and III is approximately equal to that of reloading process, while smaller than that of segment II. In the nonlinear elastic segment, the instantaneous Young's modulus linearly decreases with the decrease in stress. In addition, the relationship between stress and strain rate can be accurately expressed by the hyperbolic sine function. This study includes two parts. In the present part, the characters of unloading curves are discussed in detail, and a new elasto-viscoplastic constitutive model is proposed to describe the nonlinear unloading behavior based on the experimental findings. While in the latter part (Chen et al. in Appl Phys A. doi:10.1007/s00339-016-0385-0, 2016), the effects of deformation temperature, strain rate, and pre-strain on the parameters of this new constitutive model are analyzed, and a unified elasto-viscoplastic constitutive model is proposed to predict the unloading behavior at arbitrary deformation temperature, strain rate, and pre-strain. (orig.)

  10. Constitutive analysis to predict the hot deformation behavior of 34CrMo4 steel with an optimum solution method for stress multiplier

    International Nuclear Information System (INIS)

    Xu, Wujiao; Zou, Mingping; Zhang, Lei

    2014-01-01

    The hot deformation behaviors of steel 34CrMo4 is investigated by hot compression test with the temperature range of 1073–1373 K and the strain rate range of 0.01–10 s −1 . The flow behaviors of 34CrMo4 steel were characterized based on the true stress–true strain curves. The hyperbolic sine law in Arrhenius type is adopted in the constitutive modeling for 34CrMo4. Solving algorithm of the stress multiplier α in hyperbolic sine law is a key factor to guarantee the constitutive model accuracy. How to solve the stress multiplier α is investigated and an optimum solution method for α is proposed. Meanwhile, the influence of strain is incorporated in constitutive analysis by considering the effect of strain on material constants α, n, Q and A. With the optimum solution method for stress multiplier α proposed, the stress prediction is satisfactory with the higher correlation coefficient, R = 0.988 and the lower average absolute relative error, AARE = 3.44% for the entire strain rate-temperature domain. The optimum solution method for stress multiplier α can also be applied for other materials to predict the flow behavior more accurately. - Highlights: • Isothermal compression tests were conducted to study the flow behavior of 34CrMo4. • The influence of strain is incorporated in constitutive model. • An optimum solution method for stress multiplier α is proposed

  11. Strain hardening behavior and microstructural evolution during plastic deformation of dual phase, non-grain oriented electrical and AISI 304 steels

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Guilherme Corrêa; Gonzalez, Berenice Mendonça; Arruda Santos, Leandro de, E-mail: leandro.arruda@demet.ufmg.br

    2017-01-27

    Strain hardening behavior and microstructural evolution of non-grain oriented electrical, dual phase, and AISI 304 steels, subjected to uniaxial tensile tests, were investigated in this study. Tensile tests were performed at room temperature and the strain hardening behavior of the steels was characterized by three different parameters: modified Crussard–Jaoul stages, strain hardening rate and instantaneous strain hardening exponent. Optical microscopic analysis, X-ray diffraction measurements, phase quantification by Rietveld refinement and hardness tests were also carried out in order to correlate the microstructural and mechanical responses to plastic deformation. Distinct strain hardening stages were observed in the steels in terms of the instantaneous strain hardening exponent and the strain hardening rate. The dual phase and non-grain oriented steels exhibited a two-stage strain hardening behavior while the AISI 304 steel displayed multiple stages, resulting in a more complex strain hardening behavior. The dual phase steels showed a high work hardening capacity in stage 1, which was gradually reduced in stage 2. On the other hand, the AISI 304 steel showed high strain hardening capacity, which continued to increase up to the tensile strength. This is a consequence of its additional strain hardening mechanism, based on a strain-induced martensitic transformation, as shown by the X-ray diffraction and optical microscopic analyses.

  12. Deformation behavior and load limits of asphaltic concrete under the conditions of cores in embankment dams; Deformationsverhalten und Belastungsgrenzen des Asphaltbetons unter den Bedingungen von Staudammkerndichtungen

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, U.

    1998-12-31

    Based on the analysis of existing dams with asphaltic diaphragm and investigations in the three-phase-system of asphaltic concrete a recipe for the composition of asphaltic cores is recommended. For the construction, rest and operating period of an embankment dam the load and the reaction of the asphaltic concrete cores as well as the appearing stress and deformations are described. Extensive material testings have been performed and at 41 asphaltic concrete specimens triaxial stress controlled pressure and creeping tests have been carried out. The evaluation of the triaxial tests led to proportions of the main stress and deformation limits as criteria of breaking. Under application of the standard equation for nonlinear viscoelastic element-laws a rheonom element formulation was developed from the experiment data and transformed into its differential form. With this approach the stress and deformation behavior of watertight asphaltic diaphragm can be precalculated for a period up to 10 years. The applicability of this approach, which can be also used within FE-calculations as well, is illustrated in four examples. (orig.) [Deutsch] Nach der Analyse bestehender Staudaemme mit Asphaltbetonkerndichtung und Untersuchungen zum Dreiphasensystem Asphaltbeton wird eine Rezepturempfehlung fuer den Asphaltkerndichtungsbau aufgestellt. Fuer die Bau-, Ruhe- und Betriebsphase eines Staudammes werden die Beanspruchungen und Reaktionen der Asphaltbetonkerndichtung sowie die auftretenden Spannungen und Verformungen beschrieben. Nach umfangreichen Materialpruefungen sind an 41 Asphaltbetonpruefkoerpern triaxiale spannungsgesteuerte Druck-Kriechversuche durchgefuehrt worden. Die Auswertung der Triaxialversuche ergab ein Grenzhauptspannungsverhaeltnis und Deformationsgrenzen als Bruchkriterien. Unter Verwendung der Standarformulierung fuer nichtlineare viskoelastische Stoffgesetze wurde aus den Versuchsdaten ein rheonomer Stoffansatz entwickelt und in seine differentielle Form

  13. Acoustic Emission Behavior of Rock-Like Material Containing Two Flaws in the Process of Deformation Failure

    Directory of Open Access Journals (Sweden)

    Quan-Sheng Liu

    2015-01-01

    Full Text Available Many sudden disasters (such as rock burst by mining extraction originate in crack initiation and propagation. Meanwhile a large number of shock waves are produced by rock deformation and failure. With the purpose of investigating crack coalescence and failure mechanism in rock, experimental research of rock-like materials with two preexisting flaws was performed. Moreover, the AE technique and photographic monitoring were adopted to clarify further the procedure of the crack coalescence and failure. It reveals that AE location technique can record the moments of crack occurrences and follow the crack growth until final failure. Finally, the influence of different flaw geometries on crack initiation strength is analyzed in detail. This research provides increased understanding of the fracture mechanism of mining-induced disasters.

  14. Effect of temperature on cyclic deformation behavior and residual stress relaxation of deep rolled under-aged aluminium alloy AA6110

    International Nuclear Information System (INIS)

    Juijerm, P.; Altenberger, I.

    2007-01-01

    Mechanical surface treatment (deep rolling) was performed at room temperature on the under-aged aluminium wrought alloy AA6110 (Al-Mg-Si-Cu). Afterwards, specimens were cyclically deformed at room and elevated temperatures up to 250 deg. C. The cyclic deformation behavior and s/n-curves of deep rolled under-aged AA6110 were investigated by stress-controlled fatigue tests and compared to the as-polished condition as a reference. The stability of residual stresses as well as diffraction peak broadening under high-loading and/or elevated-temperature conditions was investigated by X-ray diffraction methods before and after fatigue tests. Depth profiles of near-surface residual stresses as well as full width at half maximum (FWHM) values before and after fatigue tests at elevated temperatures are presented. Thermal residual stress relaxation of deep rolled under-aged AA6110 was investigated and analyzed by applying a Zener-Wert-Avrami function. Thermomechanical residual stress relaxation was analyzed through thermal residual stress relaxation and depth profiles of residual stresses before and after fatigue tests. Finally, an effective border line for the deep rolling treatment due to instability of near-surface work hardening was found and established in a stress amplitude-temperature diagram

  15. Influence of Aging Products on Tensile Deformation Behavior of Al-0.62 mass%Mg-0.32 mass%Si Alloy

    DEFF Research Database (Denmark)

    Akiyoshi, Ryutaro; Ikeda, Ken-ichi; Hata, Satoshi

    2015-01-01

    mechanism, by estimating the Orowan stress and considering crystal structure of beta '' precipitates. In contrast, the aged alloys with Mg-Si clusters showed excellent performance of uniform elongation due to large work hardening compared to those of the alloy with beta '' precipitates. Dislocations......Tensile tests and microstructural observations were carried out to investigate the influence of aging products on tensile deformation behavior of Al-0.62 mass. Mg-0.32 mass-Si alloy. Solution-treated alloys were aged to form needle-like beta ''. precipitates or Mg-Si clusters. The aged alloy...... with beta '' precipitates showed higher yield stress than that with Mg-Si clusters. Transmission electron microscopy observations revealed that the beta '' precipitates pinned dislocations. It was suggested that the strengthening types of the alloy with beta '' precipitates were both Orowan and cutting...

  16. Deformation behavior of Re alloyed Mo thin films on flexible substrates: In situ fragmentation analysis supported by first-principles calculations.

    Science.gov (United States)

    Jörg, Tanja; Music, Denis; Hauser, Filipe; Cordill, Megan J; Franz, Robert; Köstenbauer, Harald; Winkler, Jörg; Schneider, Jochen M; Mitterer, Christian

    2017-08-07

    A major obstacle in the utilization of Mo thin films in flexible electronics is their brittle fracture behavior. Within this study, alloying with Re is explored as a potential strategy to improve the resistance to fracture. The sputter-deposited Mo 1-x Re x films (with 0 ≤ x ≤ 0.31) were characterized in terms of structural and mechanical properties, residual stresses as well as electrical resistivity. Their deformation behavior was assessed by straining 50 nm thin films on polyimide substrates in uniaxial tension, while monitoring crack initiation and propagation in situ by optical microscopy and electrical resistance measurements. A significant toughness enhancement occurs with increasing Re content for all body-centered cubic solid solution films (x ≤ 0.23). However, at higher Re concentrations (x > 0.23) the positive effect of Re is inhibited due to the formation of dual-phase films with the additional close packed A15 Mo 3 Re phase. The mechanisms responsible for the observed toughness behavior are discussed based on experimental observations and electronic structure calculations. Re gives rise to both increased plasticity and bond strengthening in these Mo-Re solid solutions.

  17. Hot Deformation Behavior and Processing Map of Mg-3Sn-2Ca-0.4Al-0.4Zn Alloy

    Directory of Open Access Journals (Sweden)

    Chalasani Dharmendra

    2018-03-01

    Full Text Available Among newly developed TX (Mg-Sn-Ca alloys, TX32 alloy strikes a good balance between ductility, corrosion, and creep properties. This study reports the influence of aluminum and zinc additions (0.4 wt % each to TX32 alloy on its strength and deformation behavior. Uniaxial compression tests were performed under various strain rates and temperature conditions in the ranges of 0.0003–10 s−1 and 300–500 °C, respectively. A processing map was developed for TXAZ3200 alloy, and it exhibits three domains that enable good hot workability in the ranges (1 300–340 °C/0.0003–0.001 s−1; (2 400–480 °C/0.01–1 s−1; and (3 350–500 °C/0.0003–0.01 s−1. The occurrence of dynamic recrystallization in these domains was confirmed from the microstructural observations. The estimated apparent activation energy in Domains 2 and 3 (219 and 245 kJ/mole is higher than the value of self-diffusion in magnesium. This is due to the formation of intermetallic phases in the matrix that generates back stress. The strength of TXAZ3200 alloy improved up to 150 °C as compared to TX32 alloy, suggesting solid solution strengthening due to Al and Zn. Also, the hot deformation behavior of TXAZ3200 alloy was compared in the form of processing maps with TX32, TX32-0.4Al, TX32-0.4Zn, and TX32-1Al-1Zn alloys.

  18. Effect of rare earth elements on deformation behavior of an extruded Mg–10Gd–3Y–0.5Zr alloy during compression

    International Nuclear Information System (INIS)

    Mirza, F.A.; Chen, D.L.; Li, D.J.; Zeng, X.Q.

    2013-01-01

    Highlights: ► The alloy studied has threefold higher compressive yield strength than AM30 alloy. ► Formation of twins is less extensive than that in the RE-free extruded Mg alloys. ► Deformation of the RE-containing Mg alloy is characterized by three distinct stages. ► Rare earth elements effectively increase the strain hardening rate in stage A. ► Fairly flat and linear strain hardening occurs in stage B over an extended range. - Abstract: The aim of this study was to identify the influence of rare-earth (RE) elements on the strain hardening behavior in an extruded Mg–10Gd–3Y–0.5Zr magnesium alloy via compression in the extrusion direction at room temperature. The plastic deformation behavior of this RE-containing alloy was characterized by a rapidly decreasing strain hardening rate up to a strain level of about 4% (stage A), followed by a fairly flat linear strain hardening rate over an extended strain range from ∼4% to ∼18% (stage B). Stage C was represented by a decreasing strain hardening rate just before failure. The extent of twinning in this alloy was observed to be considerably less extensive than that in the RE-free extruded Mg alloys. The weaker crystallographic texture, refined grain size, and second-phase particles arising from the addition of RE elements were responsible for the much higher strain hardening rate in stage A due to the increased difficulty on the formation of twins and the slip of dislocations at lower strains, and for the occurrence of quite flat linear strain hardening in stage B at higher strains which was likely related to the dislocation debris and twin debris (or residual twins) stemming from dislocation–twin interactions as well as the interactions between dislocations/twins and second-phase particles and grain boundaries

  19. 3D printed, bio-inspired prototypes and analytical models for structured suture interfaces with geometrically-tuned deformation and failure behavior

    Science.gov (United States)

    Lin, Erica; Li, Yaning; Ortiz, Christine; Boyce, Mary C.

    2014-12-01

    Geometrically structured interfaces in nature possess enhanced, and often surprising, mechanical properties, and provide inspiration for materials design. This paper investigates the mechanics of deformation and failure mechanisms of suture interface designs through analytical models and experiments on 3D printed polymer physical prototypes. Suture waveforms with generalized trapezoidal geometries (trapezoidal, rectangular, anti-trapezoidal, and triangular) are studied and characterized by several important geometric parameters: the presence or absence of a bonded tip region, the tip angle, and the geometry. It is shown that a wide range (in some cases as great as an order of magnitude) in stiffness, strength, and toughness is achievable dependent on tip bonding, tip angle, and geometry. Suture interfaces with a bonded tip region exhibit a higher initial stiffness due to the greater load bearing by the skeletal teeth, a double peak in the stress-strain curve corresponding to the failure of the bonded tip and the failure of the slanted interface region or tooth, respectively, and an additional failure and toughening mechanism due to the failure of the bonded tip. Anti-trapezoidal geometries promote the greatest amplification of properties for suture interfaces with a bonded tip due the large tip interface area. The tip angle and geometry govern the stress distributions in the teeth and the ratio of normal to shear stresses in the interfacial layers, which together determine the failure mechanism of the interface and/or the teeth. Rectangular suture interfaces fail by simple shearing of the interfaces. Trapezoidal and triangular suture interfaces fail by a combination of shear and tensile normal stresses in the interface, leading to plastic deformation, cavitation events, and subsequent stretching of interface ligaments with mostly elastic deformation in the teeth. Anti-trapezoidal suture interfaces with small tip angles have high stress concentrations in the teeth

  20. Hot Deformation Behavior and Pulse Current Auxiliary Isothermal Forging of Hot Pressing Sintering TiAl Based Alloys.

    Science.gov (United States)

    Shi, Chengcheng; Jiang, Shaosong; Zhang, Kaifeng

    2017-12-16

    This paper focuses on the fabrication of as-forged Ti46.5Al2Cr1.8Nb-(W, B) alloy via pulse current auxiliary isothermal forging (PCIF). The starting material composed of near gamma (NG) microstructure was fabricated by adopting pre-alloyed powders via hot pressing sintering (HPS) at 1300 °C. Isothermal compression tests were conducted at a strain rate range of 0.001-0.1 s -1 and a temperature range of 1125-1275 °C to establish the constitutive model and processing map. The optimal hot deformation parameters were successfully determined (in a strain rate range of 10 -3 -2.5 × 10 -3 s -1 and temperature range of 1130-1180 °C) based on the hot processing map and microstructure observation. Accordingly, an as-forged TiAl based alloy without cracks was successfully fabricated by PCIF processing at 1175 °C with a nominal strain rate of 10 -3 s -1 . Microstructure observation indicated that complete dynamic recrystallization (DRX) and phase transformation of γ→α₂ occurred during the PCIF process. The elongation of as-forged alloy was 136%, possessing a good secondary hot workability, while the sintered alloy was only 66% when tested at 900 °C with a strain rate of 2 × 10 -4 s -1 .

  1. Neutron halo in deformed nuclei

    International Nuclear Information System (INIS)

    Zhou Shangui; Meng Jie; Ring, P.; Zhao Enguang

    2010-01-01

    Halo phenomena in deformed nuclei are investigated within a deformed relativistic Hartree Bogoliubov (DRHB) theory. These weakly bound quantum systems present interesting examples for the study of the interdependence between the deformation of the core and the particles in the halo. Contributions of the halo, deformation effects, and large spatial extensions of these systems are described in a fully self-consistent way by the DRHB equations in a spherical Woods-Saxon basis with the proper asymptotic behavior at a large distance from the nuclear center. Magnesium and neon isotopes are studied and detailed results are presented for the deformed neutron-rich and weakly bound nucleus 44 Mg. The core of this nucleus is prolate, but the halo has a slightly oblate shape. This indicates a decoupling of the halo orbitals from the deformation of the core. The generic conditions for the occurrence of this decoupling effects are discussed.

  2. High-temperature deformation and rupture behavior of internally-pressurized Zircaloy-4 cladding in vacuum and steam enivronments

    International Nuclear Information System (INIS)

    Chung, H.M.; Garde, A.M.; Kassner, T.F.

    1977-01-01

    The high-temperature diametral expansion and rupture behavior of Zircaloy-4 fuel-cladding tubes have been investigated in vacuum and steam environments under transient-heating conditions that are of interest in hypothetical loss-of-coolant accident situations in light-water reactors. The effects of internal pressure, heating rate, axial constraint, and localized temperature nonuniformities in the cladding on the maximum circumferential strain have been determined for burst temperatures between approximately 650 and 1350 0 C

  3. Influence of aging treatment on deformation behavior of 96.5Sn3.5Ag lead-free solder alloy during in situ tensile tests

    International Nuclear Information System (INIS)

    Ding, Ying; Wang, Chunqing; Tian, Yanhong; Li, Mingyu

    2007-01-01

    This study investigates the influence of aging treatment on deformation behavior of 96.5Sn3.5Ag eutectic solder alloys with lower strain rate ( -3 s -1 ) during tensile tests under the scanning electron microscope. Results showed that because of the existence of Ag 3 Sn intermetallic particles and the special microstructure of β-Sn phases in Sn3.5Ag solder, grain boundary sliding was not the dominant mechanism any longer for this Pb-free solder. While the interaction of dislocations with the relatively rigid Ag 3 Sn particles began to dominate. For the as-cast specimen, accompanied by partial intragranular cracks, intergranular fracture along the grain boundaries in Sn-Ag eutectic structure or the interphase boundaries between Sn-rich dendrites and Sn-Ag eutectic phases occurred primarily in early tensile stage. However, the boundary behavior was limited by the large Ag 3 Sn particles presented along the Sn-rich dendrites boundaries after aging. Plastic flow was observed in large area, and cracks propagated in a transgranular manner across the Sn-dendrites and Sn-Ag eutectic structure

  4. Effects of Temperature and Strain Rate on Tensile Deformation Behavior of 9Cr-0.5Mo-1.8W-VNb Ferritic Heat-Resistant Steel

    Science.gov (United States)

    Guo, Xiaofeng; Weng, Xiaoxiang; Jiang, Yong; Gong, Jianming

    2017-09-01

    A series of uniaxial tensile tests were carried out at different strain rate and different temperatures to investigate the effects of temperature and strain rate on tensile deformation behavior of P92 steel. In the temperature range of 30-700 °C, the variations of flow stress, average work-hardening rate, tensile strength and ductility with temperature all show three temperature regimes. At intermediate temperature, the material exhibited the serrated flow behavior, the peak in flow stress, the maximum in average work-hardening rate, and the abnormal variations in tensile strength and ductility indicates the occurrence of DSA, whereas the sharp decrease in flow stress, average work-hardening rate as well as strength values, and the remarkable increase in ductility values with increasing temperature from 450 to 700 °C imply that dynamic recovery plays a dominant role in this regime. Additionally, for the temperature ranging from 550 to 650 °C, a significant decrease in flow stress values is observed with decreasing in strain rate. This phenomenon suggests the strain rate has a strong influence on flow stress. Based on the experimental results above, an Arrhenius-type constitutive equation is proposed to predict the flow stress.

  5. On the Specific Role of Microstructure in Governing Cyclic Fatigue, Deformation, and Fracture Behavior of a High-Strength Alloy Steel

    Science.gov (United States)

    Manigandan, K.; Srivatsan, T. S.

    2015-06-01

    In this paper, the results of an experimental study that focused on evaluating the conjoint influence of microstructure and test specimen orientation on fully reversed strain-controlled fatigue behavior of the high alloy steel X2M are presented and discussed. The cyclic stress response of this high-strength alloy steel revealed initial hardening during the first few cycles followed by gradual softening for most of fatigue life. Cyclic strain resistance exhibited a linear trend for the variation of elastic strain amplitude with reversals to failure, and plastic strain amplitude with reversals to failure. Fracture morphology was the same at the macroscopic level over the entire range of cyclic strain amplitudes examined. However, at the fine microscopic level, the alloy steel revealed fracture to be essentially ductile with features reminiscent of predominantly "locally" ductile and isolated brittle mechanisms. The mechanisms governing stress response at the fine microscopic level, fatigue life, and final fracture behavior are presented and discussed in light of the mutually interactive influences of intrinsic microstructural effects, deformation characteristics of the microstructural constituents during fully reversed strain cycling, cyclic strain amplitude, and resultant response stress.

  6. Development of a new ultrafine grained dual phase steel and examination of the effect of grain size on tensile deformation behavior

    Energy Technology Data Exchange (ETDEWEB)

    Saeidi, N., E-mail: navidsae@gmail.com; Ashrafizadeh, F.; Niroumand, B.

    2014-04-01

    Ultrafine grained dual phase (DP) steels are among the newest grades of DP steels that incorporate the uniform distribution of fine martensite particles (in the order of 1–2 μm) within a ferrite matrix. These new grades of steels have been developed in response to the world's demand for decreasing the fuel consumption in automobiles by increasing the strength to weight ratio. In the present research, a new kind of ultrafine grained DP (UFG-DP) steel with an average grain size of about 2 μm as well as a coarse grained DP (CG-DP) steel with an average grain size of about 5.4 μm was produced by consecutive intercritical annealing and cold rolling of low carbon AISI 8620 steel. The martensite volume fraction for both microstructures was the same and about 50 percent. Scanning electron microscopy (SEM) microstructural examination and room temperature tensile deformation analyses were performed on both UFG-DP and CG-DP steels and their deformation behavior in terms of strength, elongation and strain hardening was studied and compared. Room-temperature uniaxial tensile tests revealed that for a given martensite volume fraction, yield and tensile strengths were not very sensitive to martensite morphology. However, uniform and total elongation values were noticeably affected by refining martensite particles. The higher plasticity of fine martensite particles as well as the more uniform strain distribution within the UFG-DP microstructure resulted in higher strain hardenability and, finally, the higher ductility of the UFG-DP steel.

  7. Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering

    International Nuclear Information System (INIS)

    Fu, Zhiqiang; Chen, Weiping; Fang, Sicong; Zhang, Dayue; Xiao, Huaqiang; Zhu, Dezhi

    2013-01-01

    Highlights: ► CoNiFeCrAl 0.6 Ti 0.4 high entropy alloy has been synthesized via MA and SPS. ► Deformation twinning possibly occurred during MA or SPS. ► This alloy exhibits excellent mechanical properties. ► The fracture mechanism of this alloy is intergranular fracture and plastic fracture. -- Abstract: Inequi-atomic CoNiFeCrAl 0.6 Ti 0.4 high entropy alloy has been designed and fabricated by mechanical alloying (MA) and spark plasma sintering (SPS). Alloying behavior, microstructure, phase evolution and mechanical properties of CoNiFeCrAl 0.6 Ti 0.4 alloy were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM), as well as by an Instron testing system. During MA, a supersaturated solid solution consisting of a FCC phase and a metastable BCC phase was formed. Two FCC phases (named FCC1 and FCC2) and a new BCC phase were observed after SPS. During SPS, the metastable BCC phase transformed into the FCC2 phase and the new BCC phase. Meanwhile, the FCC1 phase was the initial FCC phase which was formed during MA. Moreover, nanoscale twins obviously presented only in partial FCC1 phase after SPS. Deformation twinning may be occurred during MA or SPS. The sintered alloy with a high relative density of 98.83% exhibits excellent comprehensive mechanical properties. The yield stress, compressive strength, compression ratio and Vickers hardness of the alloy are 2.08, 2.52 GPa, 11.5% and 573 H V , respectively. The fracture mechanism of CoNiFeCrAl 0.6 Ti 0.4 high entropy alloy is mainly performed at intergranular fracture and plastic fracture mode

  8. Deformation microstructures

    DEFF Research Database (Denmark)

    Hansen, N.; Huang, X.; Hughes, D.A.

    2004-01-01

    Microstructural characterization and modeling has shown that a variety of metals deformed by different thermomechanical processes follows a general path of grain subdivision, by dislocation boundaries and high angle boundaries. This subdivision has been observed to very small structural scales...... of the order of 10 nm, produced by deformation under large sliding loads. Limits to the evolution of microstructural parameters during monotonic loading have been investigated based on a characterization by transmission electron microscopy. Such limits have been observed at an equivalent strain of about 10...

  9. Low-cycle fatigue and cyclic deformation behavior of Type 16-8-2 weld metal at elevated temperature

    International Nuclear Information System (INIS)

    Raske, D.T.

    1977-01-01

    The low-cycle fatigue behavior of Type 16-8-2 stainless steel ASA weld metal at 593 0 C was investigated, and the results are compared with existing data for Type 316 stainless steel base metal. Tests were conducted under axial strain control and at a constant axial strain rate of 4 x 10 -3 s -1 for continuous cyclic loadings as well as hold times at peak tensile strain. Uniform-gauge specimens were machined longitudinally from the surface and root areas of 25.4-mm-thick welded plate and tested in the as-welded condition. Results indicate that the low-cycle fatigue resistance of this weld metal is somewhat better than that of the base metal for continuous-cycling conditions and significantly better for tension hold-time tests. This is attributed to the fine duplex delta ferrite-austenite microstructure in the weld metal. The initial monotonic tensile properties and the cyclic stress-strain behavior of this material were also determined. Because the cyclic changes in mechanical properties are strain-history dependent, a unique cyclic stress-strain curve does not exist for this material

  10. Deformation Behavior of Al0.25CoCrFeNi High-Entropy Alloy after Recrystallization

    Directory of Open Access Journals (Sweden)

    Jinxiong Hou

    2017-03-01

    Full Text Available Cold rolling with subsequent annealing can be used to produce the recrystallized structure in high entropy alloys (HEAs. The Al0.25CoCrFeNi HEAs rolled to different final thickness (230, 400, 540, 800, 1000, 1500 μm are prepared to investigate their microstructure evolutions and mechanical behaviors after annealing. Only the single face-centered cubic phase was obtained after cold rolling and recrystallization annealing at 1100 °C for 10 h. The average recrystallized grain size in this alloy after annealing ranges from 92 μm to 136 μm. The annealed thin sheets show obviously size effects on the flow stress and formability. The yield strength and tensile strength decrease as t/d (thickness/average grain diameter ratio decreases until the t/d approaches 2.23. In addition, the stretchability (formability decreases with the decrease of the t/d ratio especially when the t/d ratio is lower than about 6. According to the present results, yield strength can be expressed as a function of the t/d ratio.

  11. Deformation behavior of laser welds in high temperature oxidation resistant Fe–Cr–Al alloys for fuel cladding applications

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G., E-mail: fieldkg@ornl.gov; Gussev, Maxim N., E-mail: gussevmn@ornl.gov; Yamamoto, Yukinori, E-mail: yamamotoy@ornl.gov; Snead, Lance L., E-mail: sneadll@ornl.gov

    2014-11-15

    Ferritic-structured Fe–Cr–Al alloys are being developed and show promise as oxidation resistant accident tolerant light water reactor fuel cladding. This study focuses on investigating the weldability and post-weld mechanical behavior of three model alloys in a range of Fe–(13–17.5)Cr–(3–4.4)Al (wt.%) with a minor addition of yttrium using modern laser-welding techniques. A detailed study on the mechanical performance of bead-on-plate welds using sub-sized, flat dog-bone tensile specimens and digital image correlation (DIC) has been carried out to determine the performance of welds as a function of alloy composition. Results indicated a reduction in the yield strength within the fusion zone compared to the base metal. Yield strength reduction was found to be primarily constrained to the fusion zone due to grain coarsening with a less severe reduction in the heat affected zone. For all proposed alloys, laser welding resulted in a defect free weld devoid of cracking or inclusions.

  12. Notch Effect on Tensile Deformation Behavior of 304L and 316L Steels in Liquid Helium and Hydrogen

    International Nuclear Information System (INIS)

    Shibata, K.; Fujii, H.

    2004-01-01

    Tensile tests of type 304L and 316L steels were carried out using round bar specimens with a notch in liquid helium, hydrogen, liquid nitrogen and at ambient temperature. The obtained tensile strengths were compared with the tensile strengths of smooth specimens. For smooth specimens, tensile strength increased with a decrease in temperature and the strengths in liquid helium and hydrogen show similar values in both steels. For notched specimen of 304L steel, tensile strength (including fracture strength) increased noticeably from ambient to liquid nitrogen temperature but showed a large decrease in liquid helium and hydrogen. In liquid hydrogen and helium, the tensile strength is a little lower in liquid hydrogen than in liquid helium and both strengths are lower than tensile strengths of smooth specimens. For notched specimen of 316L steel, an increase in tensile strength from ambient to liquid nitrogen temperature was not so large and a decrease from liquid nitrogen to liquid hydrogen was small. The tensile strengths in liquid helium and hydrogen were nearly same and higher than those of smooth specimens. Different behavior of serration was observed between liquid helium and hydrogen, and between 304L and 316L steels. The reasons for these differences were discussed using computer simulation

  13. Deformation behavior of laser welds in high temperature oxidation resistant Fe-Cr-Al alloys for fuel cladding applications

    Science.gov (United States)

    Field, Kevin G.; Gussev, Maxim N.; Yamamoto, Yukinori; Snead, Lance L.

    2014-11-01

    Ferritic-structured Fe-Cr-Al alloys are being developed and show promise as oxidation resistant accident tolerant light water reactor fuel cladding. This study focuses on investigating the weldability and post-weld mechanical behavior of three model alloys in a range of Fe-(13-17.5)Cr-(3-4.4)Al (wt.%) with a minor addition of yttrium using modern laser-welding techniques. A detailed study on the mechanical performance of bead-on-plate welds using sub-sized, flat dog-bone tensile specimens and digital image correlation (DIC) has been carried out to determine the performance of welds as a function of alloy composition. Results indicated a reduction in the yield strength within the fusion zone compared to the base metal. Yield strength reduction was found to be primarily constrained to the fusion zone due to grain coarsening with a less severe reduction in the heat affected zone. For all proposed alloys, laser welding resulted in a defect free weld devoid of cracking or inclusions.

  14. Quasi-static and dynamic forced shear deformation behaviors of Ti-5Mo-5V-8Cr-3Al alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhiming; Chen, Zhiyong, E-mail: czysh@netease.com; Zhan, Congkun; Kuang, Lianjun; Shao, Jianbo; Wang, Renke; Liu, Chuming

    2017-04-13

    The mechanical behavior and microstructure characteristics of Ti-5Mo-5V-8Cr-3Al alloy were investigated with hat-shaped samples compressed under quasi-static and dynamic loading. Compared with the quasi-static loading, a higher shear stress peak and a shear instability stage were observed during the dynamic shear response. The results showed that an adiabatic shear band consisting of ultrafine equiaxed grains was only developed in the dynamic specimen, while a wider shear region was formed in the quasi-static specimen. The microhardness measurements revealed that shear region in the quasi-static specimen and adiabatic shear band in the dynamic specimen exhibited higher hardness than that of adjacent regions due to the strain hardening and grain refining, respectively. A stable orientation, in which the crystallographic {110} planes and <111> directions were respectively parallel to the shear plane and shear direction, developed in both specimens. And the microtexture of the adiabatic shear band was more well-defined than that of the shear region in the quasi-static specimen. Rotational dynamic recrystallization mechanism was suggested to explain the formation of ultrafine equiaxed grains within the adiabatic shear band by thermodynamic and kinetic calculations.

  15. Study of deformation behavior, structure and mechanical properties of the AlSiMnFe alloy during ECAP-PBP.

    Science.gov (United States)

    Naizabekov, A B; Andreyachshenko, V A; Kocich, Radim

    2013-01-01

    The presented article deals with the effects of equal channel angular pressing (ECAP) with a newly adjusted die geometry on the microstructure and mechanical properties of the Al-Si-Mn-Fe alloy. This alloy was subjected to two modes of heat treatment followed by the ECAP process, which led to partial back pressure (ECAP-PBP). Ultra-fine grained (UFG) structure formed through ECAP-PBP process has been studied by methods of optical as well as electron microscopy. The obtained results indicate that quenched alloys, in comparison to slowly cooled alloys, do not contain large brittle particles which subsequently initiate a premature creation of cracks. It was shown that the mechanical properties of these alloys after such processing depend first and foremost on the selected type of heat treatment and on the number of performed passes. The maximum of ultimate tensile strength (417 MPa) was obtained for quenched alloy after 3 passes. On the other hand, maximum ductility was found in slowly cooled alloy after second pass. Further passes reduced strength due to the brittle behavior of excluded particles. One of the partial findings is that there is only a small dependency of the resulting size of grains on previously applied thermal processing. The minimum grain sizes were obtained after 3 passages, where their size ranged between 0.4 and 0.8 μm. The application of quick cooling after heat processing due to the occurrence of finer precipitates in the matrix seems to produce better results. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Effect of initial grain size on inhomogeneous plastic deformation and twinning behavior in high manganese austenitic steel with a polycrystalline microstructure

    Science.gov (United States)

    Ueji, R.; Tsuchida, N.; Harada, K.; Takaki, K.; Fujii, H.

    2015-08-01

    The grain size effect on the deformation twinning in a high manganese austenitic steel which is so-called TWIP (twining induced plastic deformation) steel was studied in order to understand how to control deformation twinning. The 31wt%Mn-3%Al-3% Si steel was cold rolled and annealed at various temperatures to obtain fully recrystallized structures with different mean grain sizes. These annealed sheets were examined by room temperature tensile tests at a strain rate of 10-4/s. The coarse grained sample (grain size: 49.6μm) showed many deformation twins and the deformation twinning was preferentially found in the grains in which the tensile axis is parallel near to [111]. On the other hand, the sample with finer grains (1.8 μm) had few grains with twinning even after the tensile deformation. The electron back scattering diffraction (EB SD) measurements clarified the relationship between the anisotropy of deformation twinning and that of inhomogeneous plastic deformation. Based on the EBSD analysis, the mechanism of the suppression of deformation twinning by grain refinement was discussed with the concept of the slip pattern competition between the slip system governed by a grain boundary and that activated by the macroscopic load.

  17. High-temperature deformation behavior and mechanical properties of rapidly solidified Al-Li-Co and Al-Li-Zr alloys

    International Nuclear Information System (INIS)

    Sastry, S.M.L.; Oneal, J.E.

    1984-01-01

    The deformation behavior at 25-300 C of rapidly solidified Al-3Li-0.6Co and Al-3Li-0.3Zr alloys was studied by tensile property measurements and transmission electron microscopic examination of dislocation substructures. In binary Al-3Li and Al-3Li-Co alloys, the modulus normalized yield stress increases with an increase in temperature up to 150 C and then decreases. The yield stress at 25 C of Al-3Li-0.3Zr alloys is 180-200 MPa higher than that of Al-3Li alloys. However, the yield stress of the Zr-containing alloy decreases drastically with increasing temperatures above 75 C. The short-term yield stresses at 100-200 C of the Al-3Li-based alloys are higher than that of the conventional high-temperature Al alloys. The temperature dependences of the flow stresses of the alloys were analyzed in terms of the magnitudes and temperature dependences of the various strengthening contributions in the two alloys. The dislocation substructures at 25-300 C were correlated with mechanical properties. 19 references

  18. Apparatus for measuring the finite load-deformation behavior of a sheet of epithelial cells cultured on a mesoscopic freestanding elastomer membrane

    International Nuclear Information System (INIS)

    Selby, John C.; Shannon, Mark A.

    2007-01-01

    Details are given for the design, calibration, and operation of an apparatus for measuring the finite load-deformation behavior of a sheet of living epithelial cells cultured on a mesoscopic freestanding elastomer membrane, 10 μm thick and 5 mm in diameter. Although similar in concept to bulge tests used to investigate the mechanical properties of micromachined thin films, cell-elastomer composite diaphragm inflation tests pose a unique set of experimental challenges. Composite diaphragm (CD) specimens are extremely compliant (E MIN =0 μl, V MAX ≤40 μl) while simultaneously recording the inflation pressure acting at the fixed boundary of the specimen, p(r=a). Using a carefully prescribed six-cycle inflation test protocol, the apparatus is shown to be capable of measuring the [V,p(r=a)] inflation response of a cell-elastomer CD with random uncertainties estimated at ±0.45 μl and ±2.5 Pa, respectively

  19. Deformation behavior of Cu bicrystals with the Σ9(110)(221) symmetric tilt grain boundary under pure shear studied by atomistic simulation method

    International Nuclear Information System (INIS)

    Wan Liang; Wang Shaoqing

    2010-01-01

    The deformation behavior of Cu bicrystals with the symmetric tilt grain boundary (STGB) under pure shear has been studied by atomistic simulation method with the embedded atom method (EAM) interatomic potentials. By using an energy minimization method, it shows that there are two optimized structures of this grain boundary (GB) which correspond to two local energy minima on the potential energy surface of the GB. The structure with lower energy is the stable one while the other is a metastable structure. The pure shear process of the bicrystals at ambient temperature has been studied by molecular dynamics (MD) simulation method. The simulated results indicate that there are three structure transformation modes of this GB depending on the shear direction: (1) pure GB sliding; (2) GB atomic shuffling accompanied by dislocation emission from GB; (3) GB migration coupled GB sliding, namely, GB coupling motion. In addition, an analysis of the structure evolution of the GB shows that, there are two mechanisms for GB coupling motion depending on the shear direction. One is the collective motion of GB atoms and the other is structure transformation realized by uncorrelated atomic shuffling processes. The former mechanism can induce structure transition of GB between the stable one and the metastable one, while the latter introduces faceting of the GB. (authors)

  20. On superplasticity of corrosion resistant ferritic-austenitic chromium-nickel steels

    Energy Technology Data Exchange (ETDEWEB)

    Surovtsev, A P; Sukhanov, V E

    1988-01-01

    The deformability of corrosion resistant chromium-nickel ferritic austenitic steel type O8Kh22N6T under tension, upsetting and torsion in the 600-1200 deg C temperature range is studied. For the deformation rate of the order of 10/sup -3/ s/sup -1/ the effect of superelasticity reveals itself at 850 deg C in the process of ferrite dynamic polymerization, in the 925-950 deg C range, at initial stages of dynamic recrystallization - the dynamic polygonization controlled by chromium carbide dissolving in steel and maximum at 1050 deg C in the process of development of austenite dynamic recrystallization with grain refinement with F/A ratio equalling 1. After upsetting in the elasticity mode at 1050 deg C the impact strength of the above steel is maximum.

  1. Bunionette deformity.

    Science.gov (United States)

    Cohen, Bruce E; Nicholson, Christopher W

    2007-05-01

    The bunionette, or tailor's bunion, is a lateral prominence of the fifth metatarsal head. Most commonly, bunionettes are the result of a widened 4-5 intermetatarsal angle with associated varus of the metatarsophalangeal joint. When symptomatic, these deformities often respond to nonsurgical treatment methods, such as wider shoes and padding techniques. When these methods are unsuccessful, surgical treatment is based on preoperative radiographs and associated lesions, such as hyperkeratoses. In rare situations, a simple lateral eminence resection is appropriate; however, the risk of recurrence or overresection is high with this technique. Patients with a lateral bow to the fifth metatarsal are treated with a distal chevron-type osteotomy. A widened 4-5 intermetatarsal angle often requires a diaphyseal osteotomy for correction.

  2. Deformation of wrought uranium: Experiments and modeling

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, R.J., E-mail: rmccabe@lanl.gov [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Capolungo, L. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)] [UMI 2958 Georgia Tech - CNRS, 57070 Metz (France); Marshall, P.E.; Cady, C.M.; Tome, C.N. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2010-09-15

    The room temperature deformation behavior of wrought polycrystalline uranium is studied using a combination of experimental techniques and polycrystal modeling. Electron backscatter diffraction is used to analyze the primary deformation twinning modes for wrought alpha-uranium. The {l_brace}1 3 0{r_brace}<3 1 0> twinning mode is found to be the most prominent twinning mode, with minor contributions from the '{l_brace}1 7 2{r_brace}'<3 1 2> and {l_brace}1 1 2{r_brace}'<3 7 2>' twin modes. Because of the large number of deformation modes, each with limited deformation systems, a polycrystalline model is employed to identify and quantify the activity of each mode. Model predictions of the deformation behavior and texture development agree reasonably well with experimental measures and provide reliable information about deformation systems.

  3. Mechanical and microstructural behavior of oxide dispersion strengthened 8Cr-2W and 8Cr-1W steels during creep deformation

    Energy Technology Data Exchange (ETDEWEB)

    Shinozuka, K.; Tamura, M.; Esaka, H. [National Defense Academy, Dept. MS and E, Kanagawa (Japan); Shiba, K.; Nakamura, K. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan)

    2007-07-01

    Full text of publication follows: Oxide dispersion strengthened (ODS) steel is a promising candidate for fusion reactor material because of excellent mechanical properties. However, the ODS steel exhibits some defects, such as mechanical anisotropy and little elongation . To reveal details of these defects, we investigated correlations between mechanical and microstructural behavior of ODS ferritic steels during creep deformation at high temperature. The materials used in this study are two kinds of hot rolled ODS steels: Fe-8Cr-2W-0.2V-0.1Ta-0.2Ti-0.4Y{sub 2}O{sub 3} (J1) and Fe-8Cr-1W-0.2Ti-0.4Y{sub 2}O{sub 3} (J2). Creep tests was carried out on specimens sampling along both the rolling direction and the cross direction at 670, 700 and 730 deg. C. Microstructural analyses were made on the normalized and tempered condition by using OM, SEM, TEM and XRD. Creep ruptured and interrupted specimens were also investigated. Both J1 and J2 existed two phases, namely martensite and {delta}-ferrite which was elongated in the rolling direction. Y-Ti complex oxide particles were finely dispersed in martensite and {delta}- ferrite phases. Results of creep tests indicated that the time-to-rupture of specimens of J1 were much longer than J2, and the time-to-rupture of specimens sampling along the rolling direction were longer than cross direction. Accordingly, J1 sampling along hot rolling direction was the strongest, for instance, the time-to-rupture was 11400 h at 700 deg. C and 162 MPa. All specimens indicated that elongation was less than 1.3 % and the rupture occurred at steady state creep region from creep curves. Internal cracks were propagated in martensite phase along elongated {delta}-ferrite phase in the direction of hot rolling. On the other hand, {delta}-ferrite phases seemed to prevent combining cracks. These results suggest that elongated {delta}-ferrite and internal clacks in martensite strongly affect on the anisotropy and little elongation of creep. (authors)

  4. Analysis of weld-cracking and improvement of the weld-repair process of superplastic forming tools

    International Nuclear Information System (INIS)

    Duchosal, A.; Deschaux-Beaume, F.; Lours, P.; Haro, S.; Fras, G.

    2013-01-01

    Highlights: ► Characterisation of the microstructure of a heat-resistant austenitic cast steel. ► Failure analysis using in situ tensile tests and isothermal fatigue tests. ► Analyses of weld cracking mechanism during shielded metal arc welding process. ► Improvement of weld-repair method by re-melting of the base material surface with GTAW process. - Abstract: Superplastic forming (SPF) dies are generally made of using heat resistant cast steels, which are very sensitive to weld cracking. In order to improve the weld-repair process of such dies to prevent weld-cracking, the microstructure and the mechanical behaviour of a typical heat-resistant cast steel was first studied, using isothermal low-cycle fatigue tests and in situ tensile tests. The welding behaviour of such steel was also investigated, using a shielded metal arc welding (SMAW) process and welding conditions similar to those employed for weld repair industrial dies. The comparison of the aspect of weld-cracking with the fracture mechanisms observed at room temperature or during isothermal low-cycle fatigue tests suggests a similar brittle failure mechanism, due to the presence of large interdendritic carbides in the cast steel. The melting of the cast steel surface using a gas tungsten arc welding (GTAW) process allowed to refine the primary carbides, and then to reduce the weld-cracking sensitivity. The refining method with GTAW before welding has been successfully tested to weld-repair a sample representative of SPF dies, and is recommended for subsequent repairs of such dies

  5. CANSWEL-2: a computer model of the creep deformation of Zircaloy cladding under loss-of-coolant accident conditions

    International Nuclear Information System (INIS)

    Haste, T.J.

    1982-07-01

    The CANSWEL-2 code models cladding creep deformation under conditions relevant to a loss-of-coolant accident (LOCA) in a pressurised water reactor (PWR). It considers in detail the centre rod of a 3 x 3 nominally square array, taking into account azimuthal non-uniformities in cladding thickness and temperature, and the mechanical restraint imposed on contact with neighbouring rods. Any of the rods in the array may assume a non-circular shape. Models are included for primary and secondary creep, dynamic phase change and superplasticity when both alpha- and beta-phase Zircaloy are present. A simple treatment of oxidation strengthening is incorporated. Account is taken of the anisotropic creep behaviour of alpha-phase Zircaloy which leads to cladding bowing. The CANSWEL-2 model is used both as a stand-alone code and also as part of the LOCA analysis code MABEL-2. (author)

  6. Physics-based deformable organisms for medical image analysis

    Science.gov (United States)

    Hamarneh, Ghassan; McIntosh, Chris

    2005-04-01

    Previously, "Deformable organisms" were introduced as a novel paradigm for medical image analysis that uses artificial life modelling concepts. Deformable organisms were designed to complement the classical bottom-up deformable models methodologies (geometrical and physical layers), with top-down intelligent deformation control mechanisms (behavioral and cognitive layers). However, a true physical layer was absent and in order to complete medical image segmentation tasks, deformable organisms relied on pure geometry-based shape deformations guided by sensory data, prior structural knowledge, and expert-generated schedules of behaviors. In this paper we introduce the use of physics-based shape deformations within the deformable organisms framework yielding additional robustness by allowing intuitive real-time user guidance and interaction when necessary. We present the results of applying our physics-based deformable organisms, with an underlying dynamic spring-mass mesh model, to segmenting and labelling the corpus callosum in 2D midsagittal magnetic resonance images.

  7. Pixels Intensity Evolution to Describe the Plastic Films Deformation

    Directory of Open Access Journals (Sweden)

    Juan C. Briñez-De León

    2013-11-01

    Full Text Available This work proposes an approach for mechanical behavior description in the plastic film deformation using techniques for the images analysis, which are based on the intensities evolution of fixed pixels applied to an images sequence acquired through polarizing optical assembly implemented around the platform of the plastic film deformation. The pixels intensities evolution graphs, and mechanical behavior graphic of the deformation has dynamic behaviors zones which could be associated together.

  8. Microstructural evolution during tensile deformation of polypropylenes

    International Nuclear Information System (INIS)

    Dasari, A.; Rohrmann, J.; Misra, R.D.K.

    2003-01-01

    Tensile deformation processes occurring at varying strain rates in high and low crystallinity polypropylenes and ethylene-propylene di-block copolymers have been investigated by scanning electron microscopy. This is examined for both long and short chain polymeric materials. The deformation processes in different polymeric materials show striking dissimilarities in spite of the common propylene matrix. Additionally, the deformation behavior of long and their respective short chain polymers was different. Deformation mechanisms include crazing/tearing, wedging, ductile ploughing, fibrillation, and brittle fracture. The different modes of deformation are depicted in the form of strain rate-strain diagrams. At a constant strain rate, the strain to fracture follows the sequence: high crystallinity polypropylenes< low crystallinity polypropylenes< ethylene-propylene di-block copolymers, indicative of the trend in resistance to plastic deformation

  9. Thermal behavior of Ni (99.967% and 99.5% purity) deformed to an ultra-high strain by high pressure torsion

    DEFF Research Database (Denmark)

    Zhang, H.W.; Huang, Xiaoxu; Pippan, R.

    2010-01-01

    Polycrystalline Ni of two purities (99.967% (4N) and 99.5% (2N)) was deformed to an ultra-high strain of εvM = 100 (εvM, von Mises strain) by high pressure torsion at room temperature. The 4N and 2N samples at this strain are nanostructured with an average boundary spacing of 100 nm, a high density...

  10. The influence of stacking fault energy on the mechanical behavior of Cu and Cu-Al alloys: Deformation twinning, work hardening, and dynamic recovery

    Science.gov (United States)

    Rohatgi, Aashish; Vecchio, Kenneth S.; Gray, George T.

    2001-01-01

    The role of stacking fault energy (SFE) in deformation twinning and work hardening was systematically studied in Cu (SFE ˜78 ergs/cm2) and a series of Cu-Al solid-solution alloys (0.2, 2, 4, and 6 wt pct Al with SFE ˜75, 25, 13, and 6 ergs/cm2, respectively). The materials were deformed under quasi-static compression and at strain rates of ˜1000/s in a Split-Hopkinson pressure bar (SHPB). The quasi-static flow curves of annealed 0.2 and 2 wt pct Al alloys were found to be representative of solid-solution strengthening and well described by the Hall-Petch relation. The quasi-static flow curves of annealed 4 and 6 wt pct Al alloys showed additional strengthening at strains greater than 0.10. This additional strengthening was attributed to deformation twins and the presence of twins was confirmed by optical microscopy. The strengthening contribution of deformation twins was incorporated in a modified Hall-Petch equation (using intertwin spacing as the “effective” grain size), and the calculated strength was in agreement with the observed quasi-static flow stresses. While the work-hardening rate of the low SFE Cu-Al alloys was found to be independent of the strain rate, the work-hardening rate of Cu and the high SFE Cu-Al alloys (low Al content) increased with increasing strain rate. The different trends in the dependence of work-hardening rate on strain rate was attributed to the difference in the ease of cross-slip (and, hence, the ease of dynamic recovery) in Cu and Cu-Al alloys.

  11. Deformation Behavior of a Coarse-Grained Mg-8Al-1.5Ca-0.2Sr Magnesium Alloy at Elevated Temperatures

    Science.gov (United States)

    Lou, Yan; Liu, Xiao

    2018-02-01

    The compression tests were carried out on a coarse-grained Mg-8Al-1.5Ca-0.2Sr magnesium alloy samples at temperatures from 300 to 450 °C and strain rates from 0.001 to 10 s-1. The flow stress curves were analyzed using the double-differentiation method, and double minima were detected on the flow curves. The first set of minima is shown to identify the critical strain for twinning, while the second set indicates the critical strain for the initiation of dynamic recrystallization (DRX). Twin variant selection was numerically identified by comprehensive analysis of the Schmid factors for different deformation modes and the accommodation strains imposed on neighboring grains. It was found that twinning is initiated before DRX. Dynamic recrystallization volume increases with strain rate at a given deformation temperature. At high strain rate, various twin variants are activated to accommodate deformation, leading to the formation of twin intersections and high DRX volume. Fully dynamic recrystallized structure can be obtained at both high and low strain rates due to the high mobility of the grain and twin boundaries at the temperature of 400 °C.

  12. Joint model to simulate inelastic shear behavior of poorly detailed exterior and interior beam-column connections reinforced with deformed bars under seismic excitations

    International Nuclear Information System (INIS)

    Sharma, Akanshu; Reddy, G.R.; Vaze, K.K.; Ghosh, A.K.; Kushwaha, H.S.; Eligehausen, Rolf

    2009-12-01

    A model for predicting the nonlinear shear behaviour of reinforced concrete beam column joints based on principal stresses reaching limits is proposed. The joint model proposes shear springs for the column region and rotational spring for the beam region of the joint. This is based on the actual displacement behaviour of the shear buildings. The spring characteristics are calculated based on well-known principal of mechanics using the principal stresses as the failure criteria. The model reasonably accurately predicts the shear behaviour of the joint and also can consider the effect of axial loads on the column. The model does not need any special element or special program for implementation and can be used for nonlinear static pushover analysis of RC framed structures giving due consideration to joint deformations. The model is therefore extremely useful for practical displacement based analysis of old RC buildings where the joints were not designed and detailed as per current codal requirements, invariably making them the weakest link in the structure. The background theory, assumptions followed and the complete formulations for generating the joint characteristics are given in this report. The model is validated with experimental results of tests on exterior and interior beam-column connections given in the published literature having substandard detailing using deformed bars. (author)

  13. The deformation of Zircaloy PWR cladding with low internal pressures, under mainly convective cooling by steam

    International Nuclear Information System (INIS)

    Hindle, E.D.; Mann, C.A.; Reynolds, A.E.

    1981-08-01

    Simulated PWR fuel rods clad with Zircaloy-4 were tested under convective steam cooling conditions, by pressurising to 0.69-2.07MPa (100-300lb/in 2 ), then ramping at 10 0 C/s to various temperatures in the region 800-955 0 C and holding until either 600 s elapsed or rupture occurred. The length of cladding strained 33% or more was greatest (about 20 times the original diameter) when the initial internal pressure was 1.38+-0.17 PMa (200+-25lb/in 2 ), and the temperature 885 0 C. It is thought that this results from oxidation strengthening of the surface layers acting as an additional mechanism for stabilising the deformation and/or partial superplastic deformation. To avoid adjacent rods in a fuel assembly touching at any temperature, the pressure would have to be less than about 1MPa (145 1b/in 2 ). If the pressure was 1.38MPa (200lb/in 2 ) then the rods would not swell sufficiently to touch if the temperature did not exceed about 840 0 C. (author)

  14. Deformation mechanisms in cyclic creep and fatigue

    International Nuclear Information System (INIS)

    Laird, C.

    1979-01-01

    Service conditions in which static and cyclic loading occur in conjunction are numerous. It is argued that an understanding of cyclic creep and cyclic deformation are necessary both for design and for understanding creep-fatigue fracture. Accordingly a brief, and selective, review of cyclic creep and cyclic deformation at both low and high strain amplitudes is provided. Cyclic loading in conjunction with static loading can lead to creep retardation if cyclic hardening occurs, or creep acceleration if softening occurs. Low strain amplitude cyclic deformation is understood in terms of dislocation loop patch and persistent slip band behavior, high strain deformation in terms of dislocation cell-shuttling models. While interesting advances in these fields have been made in the last few years, the deformation mechanisms are generally poorly understood

  15. Uniaxial experimental study of the acoustic emission and deformation behavior of composite rock based on 3D digital image correlation (DIC)

    Science.gov (United States)

    Cheng, Jian-Long; Yang, Sheng-Qi; Chen, Kui; Ma, Dan; Li, Feng-Yuan; Wang, Li-Ming

    2017-12-01

    In this paper, uniaxial compression tests were carried out on a series of composite rock specimens with different dip angles, which were made from two types of rock-like material with different strength. The acoustic emission technique was used to monitor the acoustic signal characteristics of composite rock specimens during the entire loading process. At the same time, an optical non-contact 3D digital image correlation technique was used to study the evolution of axial strain field and the maximal strain field before and after the peak strength at different stress levels during the loading process. The effect of bedding plane inclination on the deformation and strength during uniaxial loading was analyzed. The methods of solving the elastic constants of hard and weak rock were described. The damage evolution process, deformation and failure mechanism, and failure mode during uniaxial loading were fully determined. The experimental results show that the θ = 0{°}-45{°} specimens had obvious plastic deformation during loading, and the brittleness of the θ = 60{°}-90{°} specimens gradually increased during the loading process. When the anisotropic angle θ increased from 0{°} to 90{°}, the peak strength, peak strain, and apparent elastic modulus all decreased initially and then increased. The failure mode of the composite rock specimen during uniaxial loading can be divided into three categories: tensile fracture across the discontinuities (θ = 0{°}-30{°}), sliding failure along the discontinuities (θ = 45{°}-75{°}), and tensile-split along the discontinuities (θ = 90{°}). The axial strain of the weak and hard rock layers in the composite rock specimen during the loading process was significantly different from that of the θ = 0{°}-45{°} specimens and was almost the same as that of the θ = 60{°}-90{°} specimens. As for the strain localization highlighted in the maximum principal strain field, the θ = 0{°}-30{°} specimens appeared in the rock

  16. Ti-O/TiN films synthesized by plasma immersion ion implantation and deposition on 316L: Study of deformation behavior and mechanical properties

    International Nuclear Information System (INIS)

    Wan, G.J.; Huang, N.; Yang, P.; Leng, Y.X.; Sun, H.; Chen, J.Y.; Wang, J.

    2005-01-01

    Ti-O/TiN gradient films have been synthesized on 316L stainless steel using plasma immersion ion implantation and deposition (PIII and D). The coated samples were subjected to tensile testing and observed in situ by scanning electron microscopy. No delamination, peeling or cracking was found on the film after plastic deformation of 0.16 mm residual displacement. Nanoindentation and nanoscratch tests revealed that the prepared films possess high nanohardness and good adhesion strength to the metal substrate. The mechanical properties of the synthesized Ti-O/TiN films are thought to be attributed to the good nanostructure, high density, smooth surface, slow transition from Ti-O to TiN and broad film/matrix interface achieved by the PIII-D process

  17. Plastic deformation behavior and bonding strength of an EBW joint between 9Cr-ODS and JLF-1 estimated by symmetric four-point bend tests combined with FEM analysis

    International Nuclear Information System (INIS)

    Fu, Haiying; Nagasaka, Takuya; Muroga, Takeo; Guan, Wenhai; Nogami, Shuhei; Serizawa, Hisashi; Geng, Shaofei; Yabuuchi, Kiyohiro; Kimura, Akihiko

    2016-01-01

    The joint between 9Cr-ODS and JLF-1 made by electron beam welding (EBW) fractured at the JLF-1 base metal (BM) during uniaxial tensile tests. Thus, the bonding strength of the joint was not determined and was estimated as more than the ultimate tensile strength of the BM in this case. Symmetric four-point bend tests which concentrate the stress inside the inner span including the weld metal (WM) were carried out at room temperature (RT) and 550 °C to investigate how the bonding strength is more than the ultimate tensile strength of the BM. The normal stress at the center of the weld bead can be calculated with elastic theory up to only 0.25% in strain, though the joint showed more than 10% in strain due to plastic deformation. Thus, finite element method (FEM) was utilized to simulate the plastic deformation behavior of the joint during bend tests. According to the fitting of the FEM output, such as load and displacement of the upper jig contacting the specimens, to the experimental results, the bonding strength of the joint at RT and 550 °C were estimated as 854 MPa and 505 MPa, respectively.

  18. Plastic deformation behavior and bonding strength of an EBW joint between 9Cr-ODS and JLF-1 estimated by symmetric four-point bend tests combined with FEM analysis

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Haiying [SOKENDAI (The Graduate University for Advanced Studies), 322-6 Oroshi-cho, Toki 509-5292 (Japan); Nagasaka, Takuya; Muroga, Takeo [SOKENDAI (The Graduate University for Advanced Studies), 322-6 Oroshi-cho, Toki 509-5292 (Japan); National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Guan, Wenhai; Nogami, Shuhei [Tohoku University, 6-6-01-2 Aramaki-aza-Aoba, Aoba-ku, Sendai 980-8578 (Japan); Serizawa, Hisashi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki 567-0047 (Japan); Geng, Shaofei [SOKENDAI (The Graduate University for Advanced Studies), 322-6 Oroshi-cho, Toki 509-5292 (Japan); Yabuuchi, Kiyohiro; Kimura, Akihiko [Institute of Advanced Energy, Kyoto University, Uji 611-0011 (Japan)

    2016-01-15

    The joint between 9Cr-ODS and JLF-1 made by electron beam welding (EBW) fractured at the JLF-1 base metal (BM) during uniaxial tensile tests. Thus, the bonding strength of the joint was not determined and was estimated as more than the ultimate tensile strength of the BM in this case. Symmetric four-point bend tests which concentrate the stress inside the inner span including the weld metal (WM) were carried out at room temperature (RT) and 550 °C to investigate how the bonding strength is more than the ultimate tensile strength of the BM. The normal stress at the center of the weld bead can be calculated with elastic theory up to only 0.25% in strain, though the joint showed more than 10% in strain due to plastic deformation. Thus, finite element method (FEM) was utilized to simulate the plastic deformation behavior of the joint during bend tests. According to the fitting of the FEM output, such as load and displacement of the upper jig contacting the specimens, to the experimental results, the bonding strength of the joint at RT and 550 °C were estimated as 854 MPa and 505 MPa, respectively.

  19. Deformation mechanisms of nanotwinned Al

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinghang [Texas A & M Univ., College Station, TX (United States)

    2016-11-10

    The objective of this project is to investigate the role of different types of layer interfaces on the formation of high density stacking fault (SF) in Al in Al/fcc multilayers, and understand the corresponding deformation mechanisms of the films. Stacking faults or twins can be intentionally introduced (via growth) into certain fcc metals with low stacking fault energy (such as Cu, Ag and 330 stainless steels) to achieve high strength, high ductility, superior thermal stability and good electrical conductivity. However it is still a major challenge to synthesize these types of defects into metals with high stacking fault energy, such as Al. Although deformation twins have been observed in some nanocrystalline Al powders by low temperature, high strain rate cryomilling or in Al at the edge of crack tip or indentation (with the assistance of high stress intensity factor), these deformation techniques typically introduce twins sporadically and the control of deformation twin density in Al is still not feasible. This project is designed to test the following hypotheses: (1) Certain type of layer interfaces may assist the formation of SF in Al, (2) Al with high density SF may have deformation mechanisms drastically different from those of coarse-grained Al and nanotwinned Cu. To test these hypotheses, we have performed the following tasks: (i) Investigate the influence of layer interfaces, stresses and deposition parameters on the formation and density of SF in Al. (ii) Understand the role of SF on the deformation behavior of Al. In situ nanoindentation experiments will be performed to probe deformation mechanisms in Al. The major findings related to the formation mechanism of twins and mechanical behavior of nanotwinned metals include the followings: 1) Our studies show that nanotwins can be introduced into metals with high stacking fault energy, in drastic contrast to the general anticipation. 2) We show two strategies that can effectively introduce growth twins in

  20. Deformation mechanisms of nanotwinned Al

    International Nuclear Information System (INIS)

    Zhang, Xinghang

    2016-01-01

    The objective of this project is to investigate the role of different types of layer interfaces on the formation of high density stacking fault (SF) in Al in Al/fcc multilayers, and understand the corresponding deformation mechanisms of the films. Stacking faults or twins can be intentionally introduced (via growth) into certain fcc metals with low stacking fault energy (such as Cu, Ag and 330 stainless steels) to achieve high strength, high ductility, superior thermal stability and good electrical conductivity. However it is still a major challenge to synthesize these types of defects into metals with high stacking fault energy, such as Al. Although deformation twins have been observed in some nanocrystalline Al powders by low temperature, high strain rate cryomilling or in Al at the edge of crack tip or indentation (with the assistance of high stress intensity factor), these deformation techniques typically introduce twins sporadically and the control of deformation twin density in Al is still not feasible. This project is designed to test the following hypotheses: (1) Certain type of layer interfaces may assist the formation of SF in Al, (2) Al with high density SF may have deformation mechanisms drastically different from those of coarse-grained Al and nanotwinned Cu. To test these hypotheses, we have performed the following tasks: (i) Investigate the influence of layer interfaces, stresses and deposition parameters on the formation and density of SF in Al. (ii) Understand the role of SF on the deformation behavior of Al. In situ nanoindentation experiments will be performed to probe deformation mechanisms in Al. The major findings related to the formation mechanism of twins and mechanical behavior of nanotwinned metals include the followings: 1) Our studies show that nanotwins can be introduced into metals with high stacking fault energy, in drastic contrast to the general anticipation. 2) We show two strategies that can effectively introduce growth twins in

  1. Deformation aspects of time dependent fracture

    International Nuclear Information System (INIS)

    Li, C.Y.; Turner, A.P.L.; Diercks, D.R.; Laird, C.; Langdon, T.G.; Nix, W.D.; Swindeman, R.; Wolfer, W.G.; Woodford, D.A.

    1979-01-01

    For all metallic materials, particularly at elevated temperatures, deformation plays an important role in fracture. On the macro-continuum level, the inelastic deformation behavior of the material determines how stress is distributed in the body and thus determines the driving force for fracture. At the micro-continuum level, inelastic deformation alters the elastic stress singularity at the crack tip and so determines the local environment in which crack advance takes place. At the microscopic and mechanistic level, there are many possibilities for the mechanisms of deformation to be related to those for crack initiation and growth. At elevated temperatures, inelastic deformation in metallic systems is time dependent so that the distribution of stress in a body will vary with time, affecting conditions for crack initiation and propagation. Creep deformation can reduce the tendency for fracture by relaxing the stresses at geometric stress concentrations. It can also, under suitable constraints, cause a concentration of stresses at specific loading points as a result of relaxation elsewhere in the body. A combination of deformation and unequal heating, as in welding, can generate large residual stress which cannot be predicted from the external loads on the body. Acceleration of deformation by raising the temperature can be an effective way to relieve such residual stresses

  2. Comportamento mecânico de frutos de café: módulo de deformidade Mechanical behavior of coffee fruits: modulus of deformity

    Directory of Open Access Journals (Sweden)

    Sandra M. Couto

    2002-01-01

    Full Text Available Determinaram-se, neste trabalho, os módulos de deformidade de frutos de café em diferentes estádios de maturação, identificados pela coloração "verde", "verdoengo" e "cereja", obtidos para o produto comprimido em diferentes velocidades, segundo três orientações. A velocidade de compressão tem influência nos valores dos módulos dos frutos, a variação do valor do módulo do fruto com a velocidade de compressão é diferenciada de acordo com o estádio de maturação do produto e a orientação do fruto de café durante a compressão parece afetar muito pouco os valores dos módulos de deformidade do produto "verde"; entretanto, para frutos nos outros estádios de maturação, a posição de compressão é um parâmetro relevante. Para todas as posições de compressão, os valores do módulo de deformidade do fruto "verde" foram superiores aos dos frutos "cereja" e aos do produto "verdoengo"; enfim, os módulos dos frutos "cereja" sempre foram menores que os do "verdoengo".Values for modulus of deformity of coffee fruit at different maturity stages, named by their coloration as "green", "verdoengo" and "cherry", were determined in this work. The values were obtained for the product compressed along three different directions and submitted to different compression speeds. The speed influenced the value of the fruit modulus. The variation of the value of the fruit modulus with the compression speed was differentiated according to the stage of maturity. The fruit orientation during the compression seems to have very little effect on the deformity modulus of the "green" product, however, for the fruits in the other maturity stages. The compression position was an important parameter. For all compression positions, the modulus values of the "green" fruit were higher than those for "cherry" and "verdoengo" fruits. The modulus values of the "cherry" fruits were always smaller than those for the "verdoengo".

  3. Compressive Deformation Behavior of Open-Cell Cu-Zn-Al Alloy Foam Made Through P/M Route Using Mechanically Alloyed Powder

    Science.gov (United States)

    Barnwal, Ajay Kumar; Mondal, D. P.; Kumar, Rajeev; Prasanth, N.; Dasgupta, R.

    2018-03-01

    Cu-Zn-Al foams of varying porosity fractions using mechanical alloyed powder have been made through powder metallurgy route. Here, NH4 (HCO3) was used as a space holder. Mechanically alloyed Cu-Zn-Al is made using a planetary ball mill taking the ratio of Cu/Zn/Al = 70:25:5 (by weight ratio). The ball/powder ratios were varied in the four ranges 10:1, 15:1, 20:1, and 25:1. Green compacts of milled powder and space holder samples were sintered at three stages at three different temperatures 350, 550, and 850 °C for 1 h at each stage. The crystalline size and particle size as a function of ball/powder ratios were examined. The compressive deformation responses of foams are varied with relative density and the ball/powder ratio. The plateau stress and energy absorption of these foams increase with an increase in relative density but decreases with increase in ball/powder ratio, even though crystalline size decreases. This has further been explained on the basis of particle morphology as a function of ball/powder ratio.

  4. Deformations of superconformal theories

    Energy Technology Data Exchange (ETDEWEB)

    Córdova, Clay [School of Natural Sciences, Institute for Advanced Study,1 Einstein Drive, Princeton, NJ 08540 (United States); Dumitrescu, Thomas T. [Department of Physics, Harvard University,17 Oxford Street, Cambridge, MA 02138 (United States