WorldWideScience

Sample records for superparamagnetic ironoxide particles

  1. Visualization of antigen-specific human cytotoxic T lymphocytes labeled with superparamagnetic iron-oxide particles

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Ambros J. [Technical University of Munich (TUM), Department of Nuclear Medicine, Klinikum rechts der Isar, Munich (Germany); Holzapfel, Konstantin; Settles, Marcus; Rummeny, Ernst J. [Technical University of Munich, Department of Radiology, Klinikum rechts der Isar, Munich (Germany); Neudorfer, Juliana; Kroenig, Holger; Peschel, Christian; Bernhard, Helga [TUM, Munich, Department of Hematology/Oncology, Klinikum rechts der Isar, Munich (Germany); Piontek, Guido; Schlegel, Juergen [TUM, Munich, Division of Neuropathology, Institute of Pathology, Klinikum rechts der Isar, Munich (Germany)

    2008-06-15

    New technologies are needed to characterize the migration and survival of antigen-specific T cells in vivo. In this study, we developed a novel technique for the labeling of human cytotoxic T lymphocytes with superparamagnetic iron-oxide particles and the subsequent depiction with a conventional 1.5-T magnetic resonance scanner. Antigen-specific CD8{sup +} T lymphocytes were labeled with ferucarbotran by lipofection. The uptake of ferucarbotran was confirmed by immunofluorescence microscopy using a dextran-specific antibody, and the intracellular enrichment of iron was measured by atomic absorption spectrometry. The imaging of T cells was performed by magnetic resonance on day 0, 2, 7 and 14 after the labeling procedure. On day 0 and 2 post labeling, a pronounced shortening of T2*-relaxation times was observed, which diminished after 7 days and was not detectable anymore after 14 days, probably due to the retained mitotic activity of the labeled T cells. Of importance, the antigen-specific cytolytic activity of the T cells was preserved following ferucarbotran labeling. Efficient ferucarbotran labeling of functionally active T lymphocytes and their detection by magnetic resonance imaging allows the in vivo monitoring of T cells and, subsequently, will impact the further development of T cell-based therapies. (orig.)

  2. Visualization of antigen-specific human cytotoxic T lymphocytes labeled with superparamagnetic iron-oxide particles

    International Nuclear Information System (INIS)

    Beer, Ambros J.; Holzapfel, Konstantin; Settles, Marcus; Rummeny, Ernst J.; Neudorfer, Juliana; Kroenig, Holger; Peschel, Christian; Bernhard, Helga; Piontek, Guido; Schlegel, Juergen

    2008-01-01

    New technologies are needed to characterize the migration and survival of antigen-specific T cells in vivo. In this study, we developed a novel technique for the labeling of human cytotoxic T lymphocytes with superparamagnetic iron-oxide particles and the subsequent depiction with a conventional 1.5-T magnetic resonance scanner. Antigen-specific CD8 + T lymphocytes were labeled with ferucarbotran by lipofection. The uptake of ferucarbotran was confirmed by immunofluorescence microscopy using a dextran-specific antibody, and the intracellular enrichment of iron was measured by atomic absorption spectrometry. The imaging of T cells was performed by magnetic resonance on day 0, 2, 7 and 14 after the labeling procedure. On day 0 and 2 post labeling, a pronounced shortening of T2*-relaxation times was observed, which diminished after 7 days and was not detectable anymore after 14 days, probably due to the retained mitotic activity of the labeled T cells. Of importance, the antigen-specific cytolytic activity of the T cells was preserved following ferucarbotran labeling. Efficient ferucarbotran labeling of functionally active T lymphocytes and their detection by magnetic resonance imaging allows the in vivo monitoring of T cells and, subsequently, will impact the further development of T cell-based therapies. (orig.)

  3. Superparamagnetic relaxation of weakly interacting particles

    DEFF Research Database (Denmark)

    Mørup, Steen; Tronc, Elisabeth

    1994-01-01

    The influence of particle interactions on the superparamagnetic relaxation time has been studied by Mossbauer spectroscopy in samples of maghemite (gamma-Fe2O3) particles with different particle sizes and particle separations. It is found that the relaxation time decreases with decreasing particl...

  4. Ultra-small superparamagnetic particles of iron oxide in magnetic resonance imaging of cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Stirrat CG

    2014-10-01

    Full Text Available Colin G Stirrat,1 Alex T Vesey,1 Olivia MB McBride,1 Jennifer MJ Robson,1 Shirjel R Alam,1 William A Wallace,2 Scott I Semple,1,3 Peter A Henriksen,1 David E Newby1 1British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK; 2Department of Pathology, University of Edinburgh, Edinburgh, UK; 3Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, UK Abstract: Ultra-small superparamagnetic particles of iron oxide (USPIO are iron-oxide based contrast agents that enhance and complement in vivo magnetic resonance imaging (MRI by shortening T1, T2, and T2* relaxation times. USPIO can be employed to provide immediate blood pool contrast, or to act as subsequent markers of cellular inflammation through uptake by inflammatory cells. They can also be targeted to specific cell-surface markers using antibody or ligand labeling. This review will discuss the application of USPIO contrast in MRI studies of cardiovascular disease. Keywords: cardiac, aortic, MRI, USPIO, carotid, vascular, molecular imaging

  5. Multifunctional pH-sensitive superparamagnetic iron-oxide nanocomposites for targeted drug delivery and MR imaging.

    Science.gov (United States)

    Zhu, Lijuan; Wang, Dali; Wei, Xuan; Zhu, Xinyuan; Li, Jianqi; Tu, Chunlai; Su, Yue; Wu, Jieli; Zhu, Bangshang; Yan, Deyue

    2013-08-10

    A multifunctional pH-sensitive superparamagnetic iron-oxide (SPIO) nanocomposite system was developed for simultaneous tumor magnetic resonance imaging (MRI) and therapy. Small-size SPIO nanoparticles were chemically bonded with antitumor drug doxorubicin (DOX) and biocompatible poly(ethylene glycol) (PEG) through pH-sensitive acylhydrazone linkages, resulting in the formation of SPIO nanocomposites with magnetic targeting and pH-sensitive properties. These DOX-conjugated SPIO nanocomposites exhibited not only good stability in aqueous solution but also high saturation magnetizations. Under an acidic environment, the DOX was quickly released from the SPIO nanocomposites due to the cleavage of pH-sensitive acylhydrazone linkages. With the help of magnetic field, the DOX-conjugated SPIO nanocomposites showed high cellular uptake, indicating their magnetic targeting property. Comparing to free DOX, the DOX-conjugated SPIO nanocomposites showed better antitumor effect under magnetic field. At the same time, the relaxivity value of these SPIO nanocomposites was higher than 146s(-1)mM(-1) Fe, leading to ~4 times enhancement compared to that of free SPIO nanoparticles. As a negative contrast agent, these SPIO nanocomposites illustrated high resolution in MRI diagnosis of tumor-bearing mice. All of these results confirm that these pH-sensitive SPIO nanocomposites are promising hybrid materials for synergistic MRI diagnosis and tumor therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Superparamagnetic relaxation in alpha-Fe particles

    DEFF Research Database (Denmark)

    Bødker, Franz; Mørup, Steen; Pedersen, Michael Stanley

    1998-01-01

    The superparamagnetic relaxation time of carbon-supported alpha-Fe particles with an average size of 3.0 Mm has been studied over a large temperature range by the use of Mossbauer spectroscopy combined with AC and DC magnetization measurements. It is found that the relaxation time varies...

  7. Permanent magnet system to guide superparamagnetic particles

    Science.gov (United States)

    Baun, Olga; Blümler, Peter

    2017-10-01

    A new concept of using permanent magnet systems for guiding superparamagnetic nano-particles on arbitrary trajectories over a large volume is proposed. The basic idea is to use one magnet system which provides a strong, homogeneous, dipolar magnetic field to magnetize and orient the particles, and a second constantly graded, quadrupolar field, superimposed on the first, to generate a force on the oriented particles. In this configuration the motion of the particles is driven predominantly by the component of the gradient field which is parallel to the direction of the homogeneous field. As a result, particles are guided with constant force and in a single direction over the entire volume. The direction is simply adjusted by varying the angle between quadrupole and dipole. Since a single gradient is impossible due to Gauß' law, the other gradient component of the quadrupole determines the angular deviation of the force. However, the latter can be neglected if the homogeneous field is stronger than the local contribution of the quadrupole field. A possible realization of this idea is a coaxial arrangement of two Halbach cylinders. A dipole to evenly magnetize and orient the particles, and a quadrupole to generate the force. The local force was calculated analytically for this particular geometry and the directional limits were analyzed and discussed. A simple prototype was constructed to demonstrate the principle in two dimensions on several nano-particles of different size, which were moved along a rough square by manual adjustment of the force angle. The observed velocities of superparamagnetic particles in this prototype were always several orders of magnitude higher than the theoretically expected value. This discrepancy is attributed to the observed formation of long particle chains as a result of their polarization by the homogeneous field. The magnetic moment of such a chain is then the combination of that of its constituents, while its hydrodynamic radius

  8. Design of Superparamagnetic Nanoparticles for Magnetic Particle Imaging (MPI

    Directory of Open Access Journals (Sweden)

    Philip W. T. Pong

    2013-09-01

    Full Text Available Magnetic particle imaging (MPI is a promising medical imaging technique producing quantitative images of the distribution of tracer materials (superparamagnetic nanoparticles without interference from the anatomical background of the imaging objects (either phantoms or lab animals. Theoretically, the MPI platform can image with relatively high temporal and spatial resolution and sensitivity. In practice, the quality of the MPI images hinges on both the applied magnetic field and the properties of the tracer nanoparticles. Langevin theory can model the performance of superparamagnetic nanoparticles and predict the crucial influence of nanoparticle core size on the MPI signal. In addition, the core size distribution, anisotropy of the magnetic core and surface modification of the superparamagnetic nanoparticles also determine the spatial resolution and sensitivity of the MPI images. As a result, through rational design of superparamagnetic nanoparticles, the performance of MPI could be effectively optimized. In this review, the performance of superparamagnetic nanoparticles in MPI is investigated. Rational synthesis and modification of superparamagnetic nanoparticles are discussed and summarized. The potential medical application areas for MPI, including cardiovascular system, oncology, stem cell tracking and immune related imaging are also analyzed and forecasted.

  9. SEPARATION OF CELL POPULATIONS BY SUPER-PARAMAGNETIC PARTICLES WITH CONTROLLED SURFACE FUNCTIONALITY

    Directory of Open Access Journals (Sweden)

    Lootsik M. D.

    2014-02-01

    Full Text Available The recognition and isolation of specific mammalian cells by the biocompatible polymer coated super-paramagnetic particles with determined surface functionality were studied. The method of synthesis of nanoscaled particles on a core of iron III oxide (Fe2O3, magemit coated with a polymer shell containing reactive oligoperoxide groups for attachment of ligands is described. By using the developed superparamagnetic particles functionalized with peanut agglutinin (PNA we have separated the sub-populations of PNA+ and PNA– cells from ascites of murine Nemeth-Kellner lymphoma. In another type of experiment, the particles were opsonized with proteins of the fetal calf serum that improved biocompatibility of the particles and their ingestion by cultivated murine macrophages J774.2. Macrophages loaded with the particles were effeciently separated from the particles free cells by using the magnet. Thus, the developed surface functionalized superparamagnetic particles showed to be a versatile tool for cell separation independent on the mode of particles’ binding with cell surface or their engulfment by the targeted cells.

  10. Activity of an enzyme immobilized on superparamagnetic particles in a rotational magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Mizuki, Toru; Watanabe, Noriyuki; Nagaoka, Yutaka [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan); Fukushima, Tadamasa [Shimadzu GLC Ltd., Phenomenex Support Centre, Tokyo 110-0016 (Japan); Morimoto, Hisao; Usami, Ron [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan); Maekawa, Toru, E-mail: maekawa@toyonet.toyo.ac.jp [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan)

    2010-03-19

    We immobilize {alpha}-amylase extracted from Bacillus Iicheniformis on the surfaces of superparamagnetic particles and investigate the effect of a rotational magnetic field on the enzyme's activity. We find that the activity of the enzyme molecules immobilized on superparamagnetic particles increases in the rotational magnetic field and reaches maximum at a certain frequency. We clarify the effect of the cluster structures formed by the superparamagnetic particles on the activity. Enzyme reactions are enhanced even in a tiny volume of solution using the present method, which is very important for the development of efficient micro reactors and micro total analysis systems ({mu}-TAS).

  11. Enhanced pulsed magneto-motive ultrasound imaging using superparamagnetic nanoclusters

    International Nuclear Information System (INIS)

    Mehrmohammadi, M; Qu, M; Emelianov, S Y; Yoon, K Y; Johnston, K P

    2011-01-01

    Recently, pulsed magneto-motive ultrasound (pMMUS) imaging augmented with ultra-small magnetic nanoparticles has been introduced as a tool capable of imaging events at molecular and cellular levels. The sensitivity of a pMMUS system depends on several parameters, including the size, geometry and magnetic properties of the nanoparticles. Under the same magnetic field, larger magnetic nanostructures experience a stronger magnetic force and produce larger displacement, thus improving the sensitivity and signal-to-noise ratio (SNR) of pMMUS imaging. Unfortunately, large magnetic iron-oxide nanoparticles are typically ferromagnetic and thus are very difficult to stabilize against colloidal aggregation. In the current study we demonstrate improvement of pMMUS image quality by using large size superparamagnetic nanoclusters characterized by strong magnetization per particle. Water-soluble magnetic nanoclusters of two sizes (15 and 55 nm average size) were synthesized from 3 nm iron precursors in the presence of citrate capping ligand. The size distribution of synthesized nanoclusters and individual nanoparticles was characterized using dynamic light scattering (DLS) analysis and transmission electron microscopy (TEM). Tissue mimicking phantoms containing single nanoparticles and two sizes of nanoclusters were imaged using a custom-built pMMUS imaging system. While the magnetic properties of citrate-coated nanoclusters are identical to those of superparamagnetic nanoparticles, the magneto-motive signal detected from nanoclusters is larger, i.e. the same magnetic field produced larger magnetically induced displacement. Therefore, our study demonstrates that clusters of superparamagnetic nanoparticles result in pMMUS images with higher contrast and SNR.

  12. Ultrastructural characterization of mesenchymal stromal cells labeled with ultrasmall superparamagnetic iron-oxide nanoparticles for clinical tracking studies

    DEFF Research Database (Denmark)

    Hansen, Louise; Hansen, Alastair B; Mathiasen, Anders B

    2014-01-01

    INTRODUCTION: To evaluate survival and engraftment of mesenchymal stromal cells (MSCs) in vivo, it is necessary to track implanted cells non-invasively with a method, which does not influence cellular ultrastructure and functional characteristics. Iron-oxide particles have been applied for cell...... sequence of trans-activator of transcription (TAT) (IODEX-TAT) and evaluate the effect of labeling on ultrastructure, viability, phenotype and proliferative capacity of the cells. MATERIALS AND METHODS: MSCs were labeled with 5 and 10 μg IODEX-TAT/10(5) cells for 2, 6 and 21 hours. IODEX-TAT uptake...... and cellular ultrastructure were determined by electron microscopy. Cell viability was determined by propidium iodide staining and cell proliferation capacity by 5-bromo-2-deoxyuridine (BrdU) incorporation. Maintenance of stem cell surface markers was determined by flow cytometry. Results. IODEX-TAT labeling...

  13. Magnetic properties of magnetic liquids with iron-oxide particles - the influence of anisotropy and interactions

    DEFF Research Database (Denmark)

    Johansson, C.; Hanson, M.; Pedersen, Michael Stanley

    1997-01-01

    Magnetic liquids containing iron-oxide particles were investigated by magnetization and Mossbauer measurements. The particles were shown to be maghemite with a spontanious saturation magentization Ms = 320 kA m-1 at 200 K and a normalized high-field susceptibility x/M0 = 5.1x10-6 mkA-1, practically...... independent of temperature. Ms increases with decreasing temperature according to an effective Bloch law with an exponent larger than 1.5, as expected for fine magnetic particles. The model of magnetic particles with uniaxial anisotropy and the actual size distribution gives a consistent description...... of independent measurements of the temperature dependence of the hyperfine field and the isothermal magnetization versus field. From this an effective anisotropy constant of about 4.5x10 4 J m-3 is estimated for a particle with diameter 7.5 nm. The magnetic relaxation, as observed in zero...

  14. Effects of Iron-Oxide Nanoparticle Surface Chemistry on Uptake Kinetics and Cytotoxicity in CHO-K1 Cells

    Directory of Open Access Journals (Sweden)

    Camille C. Hanot

    2015-12-01

    Full Text Available Superparamagnetic iron-oxide nanoparticles (SPIONs show great promise for multiple applications in biomedicine. While a number of studies have examined their safety profile, the toxicity of these particles on reproductive organs remains uncertain. The goal of this study was to evaluate the cytotoxicity of starch-coated, aminated, and PEGylated SPIONs on a cell line derived from Chinese Hamster ovaries (CHO-K1 cells. We evaluated the effect of particle diameter (50 and 100 nm and polyethylene glycol (PEG chain length (2k, 5k and 20k Da on the cytotoxicity of SPIONs by investigating cell viability using the tetrazolium dye 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT and sulforhodamine B (SRB assays. The kinetics and extent of SPION uptake by CHO-K1 cells was also studied, as well as the resulting generation of intracellular reactive oxygen species (ROS. Cell toxicity profiles of SPIONs correlated strongly with their cellular uptake kinetics, which was strongly dependent on surface properties of the particles. PEGylation caused a decrease in both uptake and cytotoxicity compared to aminated SPIONs. Interestingly, 2k Da PEG-modifed SPIONs displayed the lowest cellular uptake and cytotoxicity among all studied particles. These results emphasize the importance of surface coatings when engineering nanoparticles for biomedical applications.

  15. Imaging pathobiology of carotid atherosclerosis with ultrasmall superparamagnetic particles of iron oxide: an update.

    Science.gov (United States)

    Sadat, Umar; Usman, Ammara; Gillard, Jonathan H

    2017-07-01

    To provide brief overview of the developments regarding use of ultrasmall superparamagnetic particles of iron oxide in imaging pathobiology of carotid atherosclerosis. MRI is a promising technique capable of providing morphological and functional information about atheromatous plaques. MRI using iron oxide particles, called ultrasmall superparamagnetic iron oxide (USPIO) particles, allows detection of macrophages in atherosclerotic tissue. Ferumoxytol has emerged as a new USPIO agent, which has an excellent safety profile. Based on the macrophage-selective properties of ferumoxytol, there is increasing number of recent reports suggesting its effectiveness to detect pathological inflammation. USPIO particles allow magnetic resonance detection of macrophages in atherosclerotic tissue. Ferumoxytol has emerged as a new USPIO agent, with an excellent safety profile. This has the potential to be used for MRI of the pathobiology of atherosclerosis.

  16. Spin-lock MR enhances the detection sensitivity of superparamagnetic iron oxide particles

    NARCIS (Netherlands)

    Moonen, R.P.M.; van der Tol, P.; Hectors, S.J.C.G.; Starmans, L.W.E.; Nicolaij, K.; Strijkers, G.J.

    2015-01-01

    Purpose To evaluate spin-lock MR for detecting superparamagnetic iron oxides and compare the detection sensitivity of quantitative T1ρ with T2 imaging. Methods In vitro experiments were performed to investigate the influence of iron oxide particle size and composition on T1ρ. These comprise T1ρ and

  17. Spin-lock MR enhances the detection sensitivity of superparamagnetic iron oxide particles

    NARCIS (Netherlands)

    Moonen, Rik P. M.; van der Tol, Pieternel; Hectors, Stefanie J. C. G.; Starmans, Lucas W. E.; Nicolay, Klaas; Strijkers, Gustav J.

    2015-01-01

    To evaluate spin-lock MR for detecting superparamagnetic iron oxides and compare the detection sensitivity of quantitative T1ρ with T2 imaging. In vitro experiments were performed to investigate the influence of iron oxide particle size and composition on T1ρ . These comprise T1ρ and T2 measurements

  18. Superparamagnetic photocurable nanocomposite for the fabrication of microcantilevers

    DEFF Research Database (Denmark)

    Suter, M; Ergeneman, O; Zürcher, J

    2011-01-01

    We present a photocurable polymer composite with superparamagnetic characteristics for the fabrication of microcantilevers. Uniform distribution and low particle agglomeration (......We present a photocurable polymer composite with superparamagnetic characteristics for the fabrication of microcantilevers. Uniform distribution and low particle agglomeration (...

  19. Deviation from the superparamagnetic behaviour of fine-particle systems

    CERN Document Server

    Malaescu, I

    2000-01-01

    Studies concerning superparamagnetic behaviour of fine magnetic particle systems were performed using static and radiofrequency measurements, in the range 1-60 MHz. The samples were: a ferrofluid with magnetite particles dispersed in kerosene (sample A), magnetite powder (sample B) and the same magnetite powder dispersed in a polymer (sample C). Radiofrequency measurements indicated a maximum in the imaginary part of the complex magnetic susceptibility, for each of the samples, at frequencies with the magnitude order of tens of MHz, the origin of which was assigned to Neel-type relaxation processes. The static measurements showed a Langevin-type dependence of magnetisation M and of susceptibility chi, on the magnetic field for sample A. For samples B and C deviations from this type of dependence were found. These deviations were analysed qualitatively and explained in terms of the interparticle interactions, dispersion medium influence and surface effects.

  20. Advanced cell therapies: targeting, tracking and actuation of cells with magnetic particles.

    Science.gov (United States)

    Connell, John J; Patrick, P Stephen; Yu, Yichao; Lythgoe, Mark F; Kalber, Tammy L

    2015-01-01

    Regenerative medicine would greatly benefit from a new platform technology that enabled measurable, controllable and targeting of stem cells to a site of disease or injury in the body. Superparamagnetic iron-oxide nanoparticles offer attractive possibilities in biomedicine and can be incorporated into cells, affording a safe and reliable means of tagging. This review describes three current and emerging methods to enhance regenerative medicine using magnetic particles to guide therapeutic cells to a target organ; track the cells using MRI and assess their spatial localization with high precision and influence the behavior of the cell using magnetic actuation. This approach is complementary to the systemic injection of cell therapies, thus expanding the horizon of stem cell therapeutics.

  1. Superparamagnetism and spin-glass like state for the MnFe2O4 nano-particles synthesized by the thermal decomposition method

    International Nuclear Information System (INIS)

    Gao Ruorui; Zhang Yue; Yu Wei; Xiong Rui; Shi Jing

    2012-01-01

    MnFe 2 O 4 nano-particles with an average size of about 7 nm were synthesized by the thermal decomposition method. Based on the magnetic hysteresis loops measured at different temperatures the temperature-dependent saturation magnetization (M S ) and coercivity (H C ) are determined. It is shown that above 20 K the temperature-dependence of the M S and H C indicates the magnetic behaviors in the single-domain nano-particles, while below 20 K, the change of the M S and H C indicates the freezing of the spin-glass like state on the surfaces. By measuring the magnetization–temperature (M–T) curves under the zero-field-cooling (ZFC) and field-cooling procedures at different applied fields, superparamagnetism behavior is also studied. Even though in the ZFC M–T curves peaks can be observed below 160 K, superparamagnetism does not appear until the temperature goes above 300 K, which is related with the strong inter-particle interaction. - Highlights: ► MnFe 2 O 4 nano-particles with size of 7 nm were prepared. ► The surface spin-glass like state is frozen below 20 K. ► The peaks in ZFC magnetization–temperature curves are observed below 160 K. ► The inter-particle interaction inhibits the superparamagnetism at room temperature.

  2. Characterizing and quantifying superparamagnetic magnetite particles in serpentinized mantle peridotite observed in continental ophiolite complexes.

    Science.gov (United States)

    Ortiz, E.; Vento, N. F. R.; Tominaga, M.; Beinlich, A.; Einsle, J. F.; Buisman, I.; Ringe, E.; Schrenk, M. O.; Cardace, D.

    2017-12-01

    Serpentinization of mantle peridotite has been recognized as one of the most important energy factories for the deep biosphere. To better evaluate the habitability of the deep biosphere, it is crucial to understand the link between in situ peridotite serpentinization processes and associated magnetite and hydrogen production. Previous efforts in correlating magnetite and hydrogen production during serpentinization processes are based primarily on laboratory experiments and numerical modeling, being challenged to include the contribution of superparamagnetic-sized magnetites (i.e., extremely fine-grained magnetite, petrographically observed as a "pepper flake" like texture in many natural serpentinized rock samples). To better estimate the abundance of superparamagnetic grains, we conducted frequency-dependent susceptibility magnetic measurements at the Institute of Rock Magnetism on naturally serpentinized rock samples from the Coast Range Ophiolite Microbial Observatory (CROMO) in California, USA and the Atlin Ophiolite (British Columbia). In addition, we conducted multiscale EDS phase mapping, BackScattered Electron (BSE) scanning, FIB-nanotomography and STEM-EELS to identify and quantify the superparamagnetic minerals that contribute to the measured magnetic susceptibility signals in our rock samples. Utilizing a multidisciplinary approach, we aim to improve the estimation of hydrogen production based on the abundance of magnetite, that includes the contribution of superparamagnetic particle size magnetite, to ultimately provide a more accurate estimation of bulk deep-biomass hosted by in situ serpentinization processes.

  3. Acceleration of superparamagnetic particles with magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Stange, R., E-mail: Robert.stange@tu-dresden.de; Lenk, F.; Bley, T.; Boschke, E.

    2017-04-01

    High magnetic capture efficiency in the context of Biomagnetic Separation (BMS) using superparamagnetic particles (SMPs) requires efficient mixing and high relative velocities between cellular and other targets and SMPs. For this purpose, batch processes or microfluidic systems are commonly used. Here, we analyze the characteristics of an in-house developed batch process experimental setup, the Electromagnetic Sample Mixer (ESM) described earlier. This device uses three electromagnets to increase the relative velocity between SMPs and targets. We carry out simulations of the magnetic field in the ESM and in a simpler paradigmatic setup, and thus were able to calculate the force field acting on the SMPs and to simulate their relative velocities and fluid dynamics due to SMP movement. In this way we were able to show that alternate charging of the magnets induces a double circular stream of SMPs in the ESM, resulting in high relative velocities of SMPs to the targets. Consequently, due to the conservation of momentum, the fluid experiences an acceleration induced by the SMPs. We validated our simulations by microscopic observation of the SMPs in the magnetic field, using a homemade apparatus designed to accommodate a long working-distance lens. By comparing the results of modeling this paradigmatic setup with the experimental observations, we determined that the velocities of the SMPs corresponded to the results of our simulations. - Highlights: • Investigation of a batch process setup for complex forming at Biomagnetic Separation. • Simulation of fluid flow characteristics in this Electro Magnetic Samplemixer. • Simulation of relative velocities between magnetic particles and fluid in the setup. • Simulation of fluid flow induced by the acceleration of magnet particles. • Validation of magnetic fields and flow characteristics in paradigmatic setups. • Reached relative velocity is higher than the sedimentation velocity of the particles • Alternating

  4. Equilibrium magnetization and microstructure of the system of superparamagnetic interacting particles: numerical simulation

    CERN Document Server

    Pshenichnikov, A F

    2000-01-01

    The Monte Carlo method is used to study the equilibrium magnetization of a 3D system of superparamagnetic particles taking into account the steric and dipole-dipole interparticle interactions. Two types of systems are considered: magnetic fluids and solidified ferrocolloids containing randomly spatially distributed particles with negligible energy of magnetic anisotropy. The results of numerical simulations confirm the universality of Langevin susceptibility as a main dimensionless parameter determining the influence of interparticle interactions on the magnetization of the system for moderate values of the aggregation parameter. The obtained results are in good agreement with theoretical and experimental data. At large values of the aggregation parameter, the clustering of particles in magnetic fluids is observed resulting in a reduction of their magnetization as compared to solidified systems. It is shown that the magnetization of solidified systems can be well described by the modified effective field appr...

  5. Superparamagnetism and spin-glass like state for the MnFe{sub 2}O{sub 4} nano-particles synthesized by the thermal decomposition method

    Energy Technology Data Exchange (ETDEWEB)

    Gao Ruorui [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Zhang Yue, E-mail: yue-zhang@mail.hust.edu.cn [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Department of Electric Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Yu Wei [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Xiong Rui [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, Hubei University, Wuhan 430062 (China); Shi Jing [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, Hubei University, Wuhan 430062 (China); International Center for Material Physics, Shen Yang 110015 (China)

    2012-08-15

    MnFe{sub 2}O{sub 4} nano-particles with an average size of about 7 nm were synthesized by the thermal decomposition method. Based on the magnetic hysteresis loops measured at different temperatures the temperature-dependent saturation magnetization (M{sub S}) and coercivity (H{sub C}) are determined. It is shown that above 20 K the temperature-dependence of the M{sub S} and H{sub C} indicates the magnetic behaviors in the single-domain nano-particles, while below 20 K, the change of the M{sub S} and H{sub C} indicates the freezing of the spin-glass like state on the surfaces. By measuring the magnetization-temperature (M-T) curves under the zero-field-cooling (ZFC) and field-cooling procedures at different applied fields, superparamagnetism behavior is also studied. Even though in the ZFC M-T curves peaks can be observed below 160 K, superparamagnetism does not appear until the temperature goes above 300 K, which is related with the strong inter-particle interaction. - Highlights: Black-Right-Pointing-Pointer MnFe{sub 2}O{sub 4} nano-particles with size of 7 nm were prepared. Black-Right-Pointing-Pointer The surface spin-glass like state is frozen below 20 K. Black-Right-Pointing-Pointer The peaks in ZFC magnetization-temperature curves are observed below 160 K. Black-Right-Pointing-Pointer The inter-particle interaction inhibits the superparamagnetism at room temperature.

  6. Superparamagnetic response of zinc ferrite incrusted nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Maldonado, K.L., E-mail: liliana.lopez.maldonado@gmail.com [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Av. Del Charro 450 norte, 32310 Ciudad Juárez (Mexico); Presa, P. de la, E-mail: pmpresa@ucm.es [Instituto de Magnetismo Aplicado (UCM-ADIF-CSIC), PO Box 155, 28230 Las Rozas (Spain); Dpto. Física de Materiales, Univ. Complutense de Madrid, Madrid (Spain); Betancourt, I., E-mail: israelb@unam.mx [Departamento de Materiales Metálicos y Cerámicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México, D.F. 04510 (Mexico); Farias Mancilla, J.R., E-mail: rurik.farias@uacj.mx [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Av. Del Charro 450 norte, 32310 Ciudad Juárez (Mexico); Matutes Aquino, J.A., E-mail: jose.matutes@cimav.edu.mx [Centro de Investigación en Materiales Avanzados, Miguel de Cervantes 120, 31109 Chihuahua (Mexico); Hernando, A., E-mail: antonio.hernando@externos.adif.es [Instituto de Magnetismo Aplicado (UCM-ADIF-CSIC), PO Box 155, 28230 Las Rozas (Spain); Dpto. Física de Materiales, Univ. Complutense de Madrid, Madrid (Spain); and others

    2015-07-15

    Highlights: • Incrusted nanoparticles are found at the surface of ZnFe{sub 2}O{sub 4} microparticles. • Magnetic contribution of nano and microparticles are analyzed by different models. • Langevin model is used to calculate the nanoparticles-superparamagnetic diameter. • Susceptibility and Langevin analysis and calculations agree with experimental data. - Abstract: Zinc ferrite is synthesized via mechano-activation, followed by thermal treatment. Spinel ZnFe{sub 2}O{sub 4} single phase is confirmed by X-ray diffraction. SEM micrographs show large particles with average particle size 〈D{sub part}〉 = 1 μm, with particles in intimate contact. However, TEM micrographs show incrusted nanocrystallites at the particles surface, with average nanocrystallite size calculated as 〈D{sub inc}〉 ≈ 5 nm. The blocking temperature at 118 K in the ZFC–FC curves indicates the presence of a superparamagnetic response which is attributable to the incrusted nanocrystallites. Moreover, the hysteresis loops show the coexistence of superpara- and paramagnetic responses. The former is observable at the low field region; meanwhile, the second one is responsible of the lack of saturation at high field region. This last behavior is related to a paramagnetic contribution coming from well-ordered crystalline microdomains. The hysteresis loops are analyzed by means of two different models. The first one is the susceptibility model used to examine separately the para- and superparamagnetic contributions. The fittings with the theoretical model confirm the presence of the above mentioned magnetic contributions. Finally, using the Langevin-based model, the average superparamagnetic diameter 〈D{sub SPM}〉 is calculated. The obtained value 〈D{sub SPM}〉 = 4.7 nm (∼5 nm) is consistent with the average nanocrystallite size observed by TEM.

  7. Equilibrium magnetization and microstructure of the system of superparamagnetic interacting particles: numerical simulation

    International Nuclear Information System (INIS)

    Pshenichnikov, A.F.; Mekhonoshin, V.V.

    2000-01-01

    The Monte Carlo method is used to study the equilibrium magnetization of a 3D system of superparamagnetic particles taking into account the steric and dipole-dipole interparticle interactions. Two types of systems are considered: magnetic fluids and solidified ferrocolloids containing randomly spatially distributed particles with negligible energy of magnetic anisotropy. The results of numerical simulations confirm the universality of Langevin susceptibility as a main dimensionless parameter determining the influence of interparticle interactions on the magnetization of the system for moderate values of the aggregation parameter. The obtained results are in good agreement with theoretical and experimental data. At large values of the aggregation parameter, the clustering of particles in magnetic fluids is observed resulting in a reduction of their magnetization as compared to solidified systems. It is shown that the magnetization of solidified systems can be well described by the modified effective field approximation within the whole investigated range of parameters

  8. Relaxation enhancement of the dog liver and spleen by biodegradable superparamagnetic particles in proton magnetic resonance imaging

    International Nuclear Information System (INIS)

    Hemmingsson, A; Carlsten, J.; Ericsson, A.; Klaveness, J.; Sperber, G.O.; Thuomas, K.A.

    1987-01-01

    Bio-degradable superparamagnetic particles of about 0.5 μm diameter were investigated in 2 dogs as potential intravenous contrast enhancing agents for the reticuloendothelial system. The particles lowered the MRI signal of the liver for all investigated sequences, while the signal of the spleen was lowered only in T2 weighted sequences. No clear effect was seen on signals of fat and muscle. There was a pronounced effect in T2 in both liver and spleen but relatively little effect on T1. Diminishing contrast effect with time indicates that the particles degrade. The particles did not have any adverse effects on the general state of the dogs or on routine liver and kidney function tests. (orig.)

  9. Formation of magnetite nanoparticles at low temperature: from superparamagnetic to stable single domain particles.

    Directory of Open Access Journals (Sweden)

    Jens Baumgartner

    Full Text Available The room temperature co-precipitation of ferrous and ferric iron under alkaline conditions typically yields superparamagnetic magnetite nanoparticles below a size of 20 nm. We show that at pH  =  9 this method can be tuned to grow larger particles with single stable domain magnetic (> 20-30 nm or even multi-domain behavior (> 80 nm. The crystal growth kinetics resembles surprisingly observations of magnetite crystal formation in magnetotactic bacteria. The physicochemical parameters required for mineralization in these organisms are unknown, therefore this study provides insight into which conditions could possibly prevail in the biomineralizing vesicle compartments (magnetosomes of these bacteria.

  10. Effects of Superparamagnetic Nanoparticle Clusters on the Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Toshiaki Higashi

    2012-04-01

    Full Text Available The polymerase chain reaction (PCR method is widely used for the reproduction and amplification of specific DNA segments, and a novel PCR method using nanomaterials such as gold nanoparticles has recently been reported. This paper reports on the effects of superparamagnetic nanoparticles on PCR amplification without an external magnetic field, and clarifies the mechanism behind the effects of superparamagnetic particle clusters on PCR efficiency by estimating the structures of such clusters in PCR. It was found that superparamagnetic nanoparticles tend to inhibit PCR amplification depending on the structure of the magnetic nanoparticle clusters. The paper also clarifies that Taq polymerase is captured in the spaces formed among magnetic nanoparticle clusters, and that it is captured more efficiently as a result of their motion from heat treatment in PCR thermal cycles. Consequently, Taq polymerase that should be used in PCR is reduced in the PCR solution. These outcomes will be applied to novel PCR techniques using magnetic particles in an external magnetic field.

  11. Phosphate recovery from wastewater using engineered superparamagnetic particles modified with layered double hydroxide ion exchangers.

    Science.gov (United States)

    Drenkova-Tuhtan, Asya; Mandel, Karl; Paulus, Anja; Meyer, Carsten; Hutter, Frank; Gellermann, Carsten; Sextl, Gerhard; Franzreb, Matthias; Steinmetz, Heidrun

    2013-10-01

    An innovative nanocomposite material is proposed for phosphate recovery from wastewater using magnetic assistance. Superparamagnetic microparticles modified with layered double hydroxide (LDH) ion exchangers of various compositions act as phosphate adsorbers. Magnetic separation and chemical regeneration of the particles allows their reuse, leading to the successful recovery of phosphate. Based upon the preliminary screening of different LDH ion exchanger modifications for phosphate selectivity and uptake capacity, MgFe-Zr LDH coated magnetic particles were chosen for further characterization and application. The adsorption kinetics of phosphate from municipal wastewater was studied in dependence with particle concentration, contact time and pH. Adsorption isotherms were then determined for the selected particle system. Recovery of phosphate and regeneration of the particles was examined via testing a variety of desorption solutions. Reusability of the particles was demonstrated for 15 adsorption/desorption cycles. Adsorption in the range of 75-97% was achieved in each cycle after 1 h contact time. Phosphate recovery and enrichment was possible through repetitive application of the desorption solution. Finally, a pilot scale experiment was carried out by treating 125 L of wastewater with the particles in five subsequent 25 L batches. Solid-liquid separation on this scale was carried out with a high-gradient magnetic filter (HGMF). Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Visualization and quantification of four steps in magnetic field induced two-dimensional ordering of superparamagnetic submicron particles

    DEFF Research Database (Denmark)

    Gajula, Gnana Prakash; Neves Petersen, Teresa; Petersen, Steffen B.

    2010-01-01

    , resolved growth steps (condensation, polarization, co-linearity and concatenation), the average chain growth rate, and inter-particle interaction length were calculated in the presence of a 120 G external magnetic field using optical microscopy and ‘in-house' developed image analysis software......We hereby report a methodology that permits a quantitative investigation of the temporal self-organization of superparamagnetic nanoparticles in the presence of an external magnetic field. The kinetics of field-induced self-organization into linear chains, time-dependent chain-size distribution...

  13. Effect of patterned micro-magnets on superparamagnetic beads in microchannels

    International Nuclear Information System (INIS)

    Guo, S S; Deng, Y L; Zhao, L B; Zhao, X-Z; Chan, H L W

    2008-01-01

    The trapping response of patterned micro-magnets (PMMs) was studied based on the parameters affecting superparamagnetic beads in microfluidic channels. Using replica moulding and electroplating technologies, the PMMs were fabricated on the microchannel bottom, which generated sufficient magnetic forces to bias the moments of magnetic particles in a flowing stream. A simplified physical principle was used to analyse the relative velocity of the magnetic particle in the confined space of a microchannel. The results revealed that the magnetic force contributed to the fluidic flow rate as well as to the hydrodynamic drag force. The relative velocity of magnetic particles was dependent on the frequency under an external magnetic field driven by an alternate current (ac) source. It showed that the magnetic gradient induced hysteresis characteristics of the transmission spectrum, associated with the interaction of superparamagnetic beads and magnetic field

  14. Measuring and modeling the magnetic settling of superparamagnetic nanoparticle dispersions.

    Science.gov (United States)

    Prigiobbe, Valentina; Ko, Saebom; Huh, Chun; Bryant, Steven L

    2015-06-01

    In this paper, we present settling experiments and mathematical modeling to study the magnetic separation of superparamagnetic iron-oxide nanoparticles (SPIONs) from a brine. The experiments were performed using SPIONs suspensions of concentration between 3 and 202g/L dispersed in water and separated from the liquid under the effect of a permanent magnet. A 1D model was developed in the framework of the sedimentation theory with a conservation law for SPIONs and a mass flux function based on the Newton's law for motion in a magnetic field. The model describes both the hindering effect of suspension concentration (n) during settling due to particle collisions and the increase in settling rate due to the attraction of the SPIONs towards the magnet. The flux function was derived from the settling experiments and the numerical model validated against the analytical solution and the experimental data. Suspensions of SPIONs were of 2.8cm initial height, placed on a magnet, and monitored continuously with a digital camera. Applying a magnetic field of 0.5T of polarization, the SPION's velocity was of approximately 3·10(-5)m/s close to the magnet and decreases of two orders of magnitude across the domain. The process was characterized initially by a classical sedimentation behavior, i.e., an upper interface between the clear water and the suspension slowly moving towards the magnet and a lower interface between the sediment layer and the suspension moving away from the magnet. Subsequently, a rapid separation of nanoparticle occured suggesting a non-classical settling phenomenon induced by magnetic forces which favor particle aggregation and therefore faster settling. The rate of settling decreased with n and an optimal condition for fast separation was found for an initial n of 120g/L. The model agrees well with the measurements in the early stage of the settling, but it fails to describe the upper interface movement during the later stage, probably because of particle

  15. Spectroscopic and magnetic studies of highly dispersible superparamagnetic silica coated magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tadyszak, Krzysztof [NanoBioMedical Centre, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań (Poland); Institute of Molecular Physics Polish Academy of Sciences, ul. Mariana Smo.luchowskiego 17, 60-179 Poznań (Poland); Kertmen, Ahmet, E-mail: ahmet.kertmen@pg.gda.pl [Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk (Poland); Coy, Emerson [NanoBioMedical Centre, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań (Poland); Andruszkiewicz, Ryszard; Milewski, Sławomir [Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk (Poland); Kardava, Irakli; Scheibe, Błażej; Jurga, Stefan [NanoBioMedical Centre, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań (Poland); Chybczyńska, Katarzyna, E-mail: katarzyna.chybczynska@ifmpan.poznan.pl [Institute of Molecular Physics Polish Academy of Sciences, ul. Mariana Smo.luchowskiego 17, 60-179 Poznań (Poland)

    2017-07-01

    Highlights: • Superparamagnetic core-shell nanoparticles of Fe{sub 2}O{sub 3}@Silica were obtained. • Magnetic response was studied by DC, AC magnetometry and EPR spectroscopy. • Nanoparticles show magnetite structure with a well-defined Verwey transition. • Samples show no inter particle magnetic interactions or agglomeration. - Abstract: Superparamagnetic behavior in aqueously well dispersible magnetite core-shell Fe{sub 3}O{sub 4}@SiO{sub 2} nanoparticles is presented. The magnetic properties of core-shell nanoparticles were measured with use of the DC, AC magnetometry and EPR spectroscopy. Particles where characterized by HR-TEM and Raman spectroscopy, showing a crystalline magnetic core of 11.5 ± 0.12 nm and an amorphous silica shell of 22 ± 1.5 nm in thickness. The DC, AC magnetic measurements confirmed the superparamagnetic nature of nanoparticles, additionally the EPR studies performed at much higher frequency than DC, AC magnetometry (9 GHz) have confirmed the paramagnetic nature of the nanoparticles. Our results show the excellent magnetic behavior of the particles with a clear magnetite structure, which are desirable properties for environmental remediation and biomedical applications.

  16. A stochastic model simulating the capture of pathogenic micro-organisms by superparamagnetic particles in an isodynamic magnetic field

    International Nuclear Information System (INIS)

    Rotariu, O; Strachan, N J C; Badescu, V

    2004-01-01

    The method of immunomagnetic separation (IMS) has become an established technique to concentrate and separate animal cells, biologically active compounds and pathogenic micro-organisms from clinical, food and environmental matrices. One drawback of this technique is that the analysis is only possible for small sample volumes. We have developed a stochastic model that involves numerical simulations to optimize the process of concentration of pathogenic micro-organisms onto superparamagnetic carrier particles (SCPs) in a gradient magnetic field. Within the range of the system parameters varied in the simulations, optimal conditions favour larger particles with higher magnetite concentrations. The dependence on magnetic field intensity and gradient together with concentration of particles and micro-organisms was found to be less important for larger SCPs but these parameters can influence the values of the collision time for small particles. These results will be useful in aiding the design of apparatus for immunomagnetic separation from large volume samples

  17. Development and characterization of superparamagnetic coatings

    Directory of Open Access Journals (Sweden)

    Kuschnerus I.

    2015-09-01

    Full Text Available Since 2005, Magnetic Particle Imaging (MPI is handled as a key technology with great potential in medical applications as an imaging method [1]. The superparamagnetic iron oxide nanoparticles (SPIONs which are already used as a tracer in MPI, combined with various polymers, are being investigated in order to enhance this potential. A combination of polymers such as polyethylene (PE and polyurethane (PU and SPIONs could be used as a coating for medical devices, or added to semi-rigid polyurethane for the production of surgical instruments [2]. This would be of great interest, since the method provides high sensitivity with simultaneous high spatial resolution and three-dimensional imaging in real time. Therefore various superparamagnetic coatings were developed, tested and characterized. Finally SPIONs and various polymers were combined directly and used for MPI-compatible models.

  18. MRI-Monitored Intra-Tumoral Injection of Iron-Oxide Labeled Clostridium novyi-NT Anaerobes in Pancreatic Carcinoma Mouse Model

    Science.gov (United States)

    Zheng, Linfeng; Zhang, Zhuoli; Khazaie, Khashayarsha; Saha, Saurabh; Lewandowski, Robert J.; Zhang, Guixiang; Larson, Andrew C.

    2014-01-01

    Objectives To validate the feasibility of labeling Clostridium novyi-NT (C.novyi-NT) anaerobes with iron-oxide nanoparticles for magnetic resonance imaging (MRI) and demonstrate the potential to use MRI to visualize intra-tumoral delivery of these iron-oxide labeled C.novyi-NT during percutaneous injection procedures. Materials and Methods All studies were approved by IACUC. C.novyi-NT were labeled with hybrid iron-oxide Texas red nanoparticles. Growth of labeled and control samples were evaluated with optical density. Labeling was confirmed with confocal fluorescence and transmission electron microscopy (TEM). MRI were performed using a 7 Tesla scanner with T2*-weighted (T2*W) sequence. Contrast-to-noise ratio (CNR) measurements were performed for phantoms and signal-to-noise ratio (SNR) measurements performed in C57BL/6 mice (n = 12) with Panc02 xenografts before and after percutaneous injection of iron-oxide labeled C.novyi-NT. MRI was repeated 3 and 7 days post-injection. Hematoxylin-eosin (HE), Prussian blue and Gram staining of tumor specimens were performed for confirmation of intra-tumoral delivery. Results Iron-oxide labeling had no influence upon C.novyi-NT growth. The signal intensity (SI) within T2*W images was significantly decreased for iron-oxide labeled C.novyi-NT phantoms compared to unlabeled controls. Under confocal fluorescence microscopy, the iron-oxide labeled C.novyi-NT exhibited a uniform red fluorescence consistent with observed regions of DAPI staining and overall labeling efficiency was 100% (all DAPI stained C.novyi-NT exhibited red fluorescence). Within TEM images, a large number iron granules were observed within the iron-oxide labeled C.novyi-NT; these were not observed within unlabeled controls. Intra-procedural MRI measurements permitted in vivo visualization of the intra-tumoral distribution of iron-oxide labeled C.novyi-NT following percutaneous injection (depicted as punctate regions of SI reductions within T2*-weighted

  19. Mesoscopic Iron-Oxide Nanorod Polymer Nanocomposite Films

    Science.gov (United States)

    Ferrier, Robert; Ohno, Kohji; Composto, Russell

    2012-02-01

    Dispersion of nanostructures in polymer matrices is required in order to take advantage of the unique properties of the nano-sized filler. This work investigates the dispersion of mesoscopic (200 nm long) iron-oxide rods (FeNRs) grafted with poly(methyl methacrylate) (PMMA) brushes having molecular weights (MWs) of 3.7K, 32K and 160K. These rods were then dispersed in either a poly(methyl methacrylate) or poly(oxyethylene) (PEO) matrix film so that the matrix/brush interaction is either entropic (PMMA matrix) or enthalpic and entropic (PEO matrix). Transmission electron microscopy (TEM) was used to determine the dispersion of the FeNRs in the polymer matrix. The results show that the FeNRs with the largest brush were always dispersed in the matrix, whereas the rods with the shorter brushes always aggregated in the matrix. This suggests that the brush MW is a critical parameter to achieve dispersion of these mesoscopic materials. This work can be extended to understand the dispersion of other types of mesocopic particles

  20. MRI in acute cerebral ischaemia: perfusion imaging with superparamagnetic iron oxide in a rat model

    International Nuclear Information System (INIS)

    Forsting, M.; Reith, W.; Doerfler, A.; Kummer, R. von; Hacke, W.; Sartor, K.

    1994-01-01

    An imaging technique capable of detecting ischaemic cerebral injury at an early stage could improve diagnosis in acute or transient cerebral ischaemia. We compared the ability of superparamagnetically contrast-enhanced MRI and conventional T2-weighted MRI to detect ischaemic injury early after unilateral occlusion of the middle cerebral artery in 12 male Wistar rats. Permanent vessel occlusion was achieved by a transvascular approach, which has the advantage of not requiring a craniectom. At 45-60 min after the procedure, the animals had conventional T2-weighted MRI before and after administration of a superparamagnetic contrast agent (iron oxide particles). Unenhanced images were normal in all animals. After administration of iron oxide particles, the presumed ischaemic area was clearly visible, as relatively increased signal, in all animals; this high signal area corresponded to the area of ischaemic brain infarction seen on histological studies. Our results suggest that superparamagnetic iron particles may significantly reduce the interval between an ischaemic insult and the appearance of parenchymal changes on MRI. (orig./UWA)

  1. Evaluation of tumoral enhancement by superparamagnetic iron oxide particles: comparative studies with ferumoxtran and anionic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Brillet, P-Y.; Gazeau, F.; Luciani, A.; Bessoud, B.; Cuenod, C.-A.; Siauve, N.; Pons, J.-N.; Poupon, J.; Clement, O.

    2005-01-01

    This study was designed to compare tumor enhancement by superparamagnetic iron oxide particles, using anionic iron oxide nanoparticles (AP) and ferumoxtran. In vitro, relaxometry and media with increasing complexity were used to assess the changes in r2 relaxivity due to cellular internalization. In vivo, 26 mice with subcutaneously implanted tumors were imaged for 24 h after injection of particles to describe kinetics of enhancement using T1 spin echo, T2 spin echo, and T2 fast spin echo sequences. In vitro, the r2 relaxivity decreased over time (0-4 h) when AP were uptaken by cells. The loss of r2 relaxivity was less pronounced with long (Hahn Echo) than short (Carr-Purcell-Meiboom-Gill) echo time sequences. In vivo, our results with ferumoxtran showed an early T2 peak (1 h), suggesting intravascular particles and a second peak in T1 (12 h), suggesting intrainterstitial accumulation of particles. With AP, the late peak (24 h) suggested an intracellular accumulation of particles. In vitro, anionic iron oxide nanoparticles are suitable for cellular labeling due to a high cellular uptake. Conversely, in vivo, ferumoxtran is suitable for passive targeting of tumors due to a favorable biodistribution. (orig.)

  2. Development and characterization of superparamagnetic coatings

    OpenAIRE

    Kuschnerus I.; Lüdtke-Buzug K.

    2015-01-01

    Since 2005, Magnetic Particle Imaging (MPI) is handled as a key technology with great potential in medical applications as an imaging method [1]. The superparamagnetic iron oxide nanoparticles (SPIONs) which are already used as a tracer in MPI, combined with various polymers, are being investigated in order to enhance this potential. A combination of polymers such as polyethylene (PE) and polyurethane (PU) and SPIONs could be used as a coating for medical devices, or added to semi-rigid polyu...

  3. Local recurrence of rectal cancer: MR imaging before and after oral superparamagnetic particles vs contrast-enhanced computed tomography

    International Nuclear Information System (INIS)

    Blomqvist, L.; Ohlsen, H.; Holm, T.

    2000-01-01

    The aim of this study was to compare three imaging strategies for the diagnosis of local recurrence of rectal cancer: (a) MR imaging; (b) MR imaging after administration of enteral superparamagnetic particles (Ferristene); and (c) contrast-enhanced CT. Seventeen patients with previous surgery for rectal cancer were examined, 12 patients with local tumour recurrence in the pelvis and 5 patients with postoperative changes. Pelvic multi-coil MR imaging before and after oral administration of superparamagnetic contrast medium [Abdoscan (Ferristene USAN), Nycomed-Amersham, Lidingoe, Sweden] as well as abdominal and pelvic CT was performed in all patients. The examinations were independently evaluated by three different radiologists. The general effect of the oral MR contrast medium, the delineation of normal and pathological structures as well as confidence in the diagnosis were registered on a visual analog scale (VAS). The diagnosis according to MR before and after oral contrast medium, and CT, was compared, in 16 patients, with the final diagnosis which was verified by biopsy (n = 3), surgery (n = 6), clinical follow-up (n = 4) and by follow-up with MR or CT (n = 3). No significant improvement in MR image quality was found after enteral contrast medium. The post-contrast MR diagnosis was not changed in any of the patients. The diagnosis on MR correlated with the final diagnosis in 12 of 16 patients (sensitivity 91 %, accuracy 62 %) and the diagnosis on CT in 11 of 16 patients (sensitivity 82 %, accuracy 56 %). The radiologists' ''confidence'' in the diagnosis and the degree of accordance with the final diagnosis did not score higher on MR after than before oral contrast administration; however, the accordance with the final diagnosis scored better on MR than on CT. No advantages of orally administered superparamagnetic contrast medium were observed in the examined patient group. Magnetic resonance is preferable to CT in diagnosing local tumour recurrence. (orig.)

  4. Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria

    DEFF Research Database (Denmark)

    Miot, Jennyfer; Benzerara, Karim; Morin, Guillaume

    2009-01-01

    Minerals formed by bio-oxidation of ferrous iron (Fe(II)) at neutral pH, their association with bacterial ultrastructures as well as their impact on the metabolism of iron-oxidizing bacteria remain poorly understood. Here, we investigated iron biomineralization by the anaerobic nitrate-dependent ......Minerals formed by bio-oxidation of ferrous iron (Fe(II)) at neutral pH, their association with bacterial ultrastructures as well as their impact on the metabolism of iron-oxidizing bacteria remain poorly understood. Here, we investigated iron biomineralization by the anaerobic nitrate...... precipitation in the periplasm (in a few tens of minutes), followed by the formation of surface-bound globules. Moreover, we frequently observed an asymmetric mineral thickening at the cell poles. In parallel, the evolution of iron oxidation was quantified by STXM: iron both contained in the bacteria...... and in the extracellular precipitates reached complete oxidation within 6 days. While a progressive oxidation of Fe in the bacteria and in the medium could be observed, spatial redox (oxido-reduction state) heterogeneities were detected at the cell poles and in the extracellular precipitates after 1 day. All...

  5. Thermal treatment to enhance saturation magnetization of superparamagnetic Ni nanoparticles while maintaining low coercive force

    Science.gov (United States)

    Ishizaki, Toshitaka; Yatsugi, Kenichi; Akedo, Kunio

    2018-05-01

    Superparamagnetic nanoparticles capped by insulators have the potential to decrease eddy current and hysteresis losses. However, the saturation magnetization ( M s) decreases significantly with decreasing the particle size. In this study, superparamagnetic Ni nanoparticles having the mean size of 11.6 ± 1.8 nm were synthesized from the reduction of Ni(II) acetylacetonate in oleylamine with the addition of trioctylphosphine, indicating the coercive force ( H c) less than 1 Oe. Thermal treatments of the Ni nanoparticles were investigated as a method to enhance the M s. The results indicated that the M s was enhanced by an increase of the Ni mass ratio with increasing thermal treatment temperature. However, the decomposition behavior of the capping layers indicated that their alkyl chains actively decomposed at temperatures above 523 K to form Ni3P via reaction between Ni and P, resulting in particle growth with a significant increase in the H c. Therefore, the optimal temperature was determined to be 473 K, which increased the Ni ratio without formation of Ni3P while maintaining particle sizes with superparamagnetic properties. Further, the M s could be improved by 22% (relative to the as-synthesized Ni nanoparticles) after thermal treatment at 473 K while maintaining the H c to be less than 1 Oe.

  6. The formation of magnetic carboxymethyl-dextrane-coated iron-oxide nanoparticles using precipitation from an aqueous solution

    International Nuclear Information System (INIS)

    Makovec, Darko; Gyergyek, Sašo; Primc, Darinka; Plantan, Ivan

    2015-01-01

    The formation of spinel iron-oxide nanoparticles during the co-precipitation of Fe 3+ /Fe 2+ ions from an aqueous solution in the presence of carboxymethyldextrane (CMD) was studied. To follow the formation of the nanoparticles, a mixture of the Fe ions, CMD and ammonia was heated to different temperatures, while the samples were taken, quenched in liquid nitrogen, freeze-dried and characterized using transmission electron microscopy (TEM), X-ray diffractometry (XRD) and magnetometry. The CMD plays a role in the reactions of the Fe ions' precipitation by partially immobilizing the Fe 3+ ions into a complex. At room temperature, the amorphous material is precipitated. Then, above approximately 30 °C, the spinel nanoparticles form inside the amorphous matrix, and at approximately 40 °C the matrix decomposes into the suspension of carboxymethyl-dextrane-coated iron-oxide nanoparticles. The CMD bonded to the nanoparticles' surfaces hinders the mass transport and thus prevents their growth. - Highlights: • The carboxymethyl-dextrane coated iron-oxide nanoparticles were synthesized. • The carboxymethyl-dextrane significantly modifies formation of the spinel nanoparticles. • The spinel nanoparticles are formed inside the amorphous matrix. • At approximately 40 °C the matrix decomposes into the suspension of carboxymethyl-dextrane-coated iron-oxide nanoparticles

  7. The formation of magnetic carboxymethyl-dextrane-coated iron-oxide nanoparticles using precipitation from an aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Makovec, Darko [Department for Materials Synthesis, Jožef Stefan Institute, Jamova ulica 39, SI-1000 Ljubljana (Slovenia); Gyergyek, Sašo, E-mail: saso.gyergyek@ijs.si [Department for Materials Synthesis, Jožef Stefan Institute, Jamova ulica 39, SI-1000 Ljubljana (Slovenia); Primc, Darinka [Department for Materials Synthesis, Jožef Stefan Institute, Jamova ulica 39, SI-1000 Ljubljana (Slovenia); Plantan, Ivan [Lek Pharmaceuticals d.d., Mengeš (Slovenia)

    2015-03-01

    The formation of spinel iron-oxide nanoparticles during the co-precipitation of Fe{sup 3+}/Fe{sup 2+} ions from an aqueous solution in the presence of carboxymethyldextrane (CMD) was studied. To follow the formation of the nanoparticles, a mixture of the Fe ions, CMD and ammonia was heated to different temperatures, while the samples were taken, quenched in liquid nitrogen, freeze-dried and characterized using transmission electron microscopy (TEM), X-ray diffractometry (XRD) and magnetometry. The CMD plays a role in the reactions of the Fe ions' precipitation by partially immobilizing the Fe{sup 3+} ions into a complex. At room temperature, the amorphous material is precipitated. Then, above approximately 30 °C, the spinel nanoparticles form inside the amorphous matrix, and at approximately 40 °C the matrix decomposes into the suspension of carboxymethyl-dextrane-coated iron-oxide nanoparticles. The CMD bonded to the nanoparticles' surfaces hinders the mass transport and thus prevents their growth. - Highlights: • The carboxymethyl-dextrane coated iron-oxide nanoparticles were synthesized. • The carboxymethyl-dextrane significantly modifies formation of the spinel nanoparticles. • The spinel nanoparticles are formed inside the amorphous matrix. • At approximately 40 °C the matrix decomposes into the suspension of carboxymethyl-dextrane-coated iron-oxide nanoparticles.

  8. Biological Properties of Iron Oxide Nanoparticles for Cellular and Molecular Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Claus-Christian Glüer

    2010-12-01

    Full Text Available Superparamagnetic iron-oxide particles (SPIO are used in different ways as contrast agents for magnetic resonance imaging (MRI: Particles with high nonspecific uptake are required for unspecific labeling of phagocytic cells whereas those that target specific molecules need to have very low unspecific cellular uptake. We compared iron-oxide particles with different core materials (magnetite, maghemite, different coatings (none, dextran, carboxydextran, polystyrene and different hydrodynamic diameters (20–850 nm for internalization kinetics, release of internalized particles, toxicity, localization of particles and ability to generate contrast in MRI. Particle uptake was investigated with U118 glioma cells und human umbilical vein endothelial cells (HUVEC, which exhibit different phagocytic properties. In both cell types, the contrast agents Resovist, B102, non-coated Fe3O4 particles and microspheres were better internalized than dextran-coated Nanomag particles. SPIO uptake into the cells increased with particle/iron concentrations. Maximum intracellular accumulation of iron particles was observed between 24 h to 36 h of exposure. Most particles were retained in the cells for at least two weeks, were deeply internalized, and only few remained adsorbed at the cell surface. Internalized particles clustered in the cytosol of the cells. Furthermore, all particles showed a low toxicity. By MRI, monolayers consisting of 5000 Resovist-labeled cells could easily be visualized. Thus, for unspecific cell labeling, Resovist and microspheres show the highest potential, whereas Nanomag particles are promising contrast agents for target-specific labeling.

  9. Efficient synthesis of superparamagnetic magnetite nanoparticles under air for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Namita, E-mail: saxenanamita@yahoo.com [School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030 (India); Singh, Man, E-mail: mansingh50@hotmail.com [School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030 (India)

    2017-05-01

    The facile co-precipitation process of synthesising Superparamagnetic Iron Oxide Nanoparticles (SPIONs) especially magnetite was investigated and simplified, to develop a reproducible and scaled up synthesis process under air, for producing particles with enhanced percentage of magnetite, thus eliminating the crucial and complicated need of using the inert atmosphere. Presence of magnetite was confirmed by XRD, TEM, and Raman spectroscopy. Efficiency of synthesising magnetite was increased up to approx. ∼58 wt%, under air with no other phases but maghemite present. Alkali concentration was optimised, and particles with better magnetisation values were synthesised. The approximate weight percentage of magnetite was calculated using the simple and rapid XRD peak deconvolution method. Higher pH values from 13 to14 were investigated in the study while alkali concentration was varied from 0.5 to 4 M. 1Molar NaOH with a final pH of 13.4 was found to be optimum. Well crystallised particles with approx. 6–12 nm size, narrow size distribution and cubo-spheroidal shape were synthesised. Particles were Superparamagnetic with high values of saturation magnetisation of up to 68 emu/g and negligible values of remanence and coercivity. A reaction yield of up to 62% was obtained. Hydrophilic coated particles were produced in a single, one step facile process for biomedical applications, using optimised parameters of pH and alkali concentration obtained in the study. Single domain particles with good magnetisation formed stable aqueous dispersions. FTIR, UV-Visible and DLS were used to confirm the coating and dispersion stabilities of the particles. These particles have the requisite properties required for application in different biomedical fields.

  10. Magnetic Properties of Nanometer-sized Crystalline and Amorphous Particles

    DEFF Research Database (Denmark)

    Mørup, Steen; Bødker, Franz; Hansen, Mikkel Fougt

    1997-01-01

    Amorphous transition metal-metalloid alloy particles can be prepared by chemical preparation techniques. We discuss the preparation of transition metal-boron and iron-carbon particles and their magnetic properties. Nanometer-sized particles of both crystalline and amorphous magnetic materials...... are superparamagnetic at finite temperatures. The temperature dependence of the superparamagnetic relaxation time and the influence of inter-particle interactions is discussed. Finally, some examples of studies of surface magnetization of alpha-Fe particles are presented....

  11. Characterization and uranium bioleaching performance of mixed iron- and sulfur-oxidizers versus iron-oxidizers

    International Nuclear Information System (INIS)

    Qian Li; Jing Sun; Dexin Ding; Qingliang Wang; Wenge Shi; Eming Hu; Xiaoyu Jiang; University of South China, Hengyang; Xingxing Wang

    2017-01-01

    In order to develop and apply mixed iron- and sulfur-oxidizers in uranium bioleaching, the characteristics of a mixed iron- and sulfur-oxidizing consortium (Consortium ISO) were comparatively investigated versus an iron-oxidizing consortium (Consortium IO). The results showed, the Consortium ISO exerted stronger oxidative ability and acid-producing ability than Consortium IO did. The synergy of sulfur-oxidizers and iron-oxidizers could change the structure and properties of the passivation substance, and work positively for eliminating the accumulation of passivation substance. In the bioleaching process, the uranium bioleaching experiments showed the recovery percentage of uranium reached 99.5% with Consortium ISO, 6.3% more than that of Consortium IO. (author)

  12. Electrical control of superparamagnetism

    Science.gov (United States)

    Yamada, Kihiro T.; Koyama, Tomohiro; Kakizakai, Haruka; Miwa, Kazumoto; Ando, Fuyuki; Ishibashi, Mio; Kim, Kab-Jin; Moriyama, Takahiro; Ono, Shimpei; Chiba, Daichi; Ono, Teruo

    2017-01-01

    The electric field control of superparamagnetism is realized using a Cu/Ni system, in which the deposited Ni shows superparamagnetic behavior above the blocking temperature. An electric double-layer capacitor (EDLC) with the Cu/Ni electrode and a nonmagnetic counter electrode is fabricated to examine the electric field effect on magnetism in the magnetic electrode. By changing the voltage applied to the EDLC, the blocking temperature of the system is clearly modulated.

  13. Magnetic separation of encapsulated islet cells labeled with superparamagnetic iron oxide nano particles.

    Science.gov (United States)

    Mettler, Esther; Trenkler, Anja; Feilen, Peter J; Wiegand, Frederik; Fottner, Christian; Ehrhart, Friederike; Zimmermann, Heiko; Hwang, Yong Hwa; Lee, Dong Yun; Fischer, Stefan; Schreiber, Laura M; Weber, Matthias M

    2013-01-01

    Islet cell transplantation is a promising option for the restoration of normal glucose homeostasis in patients with type 1 diabetes. Because graft volume is a crucial issue in islet transplantations for patients with diabetes, we evaluated a new method for increasing functional tissue yield in xenogeneic grafts of encapsulated islets. Islets were labeled with three different superparamagnetic iron oxide nano particles (SPIONs; dextran-coated SPION, siloxane-coated SPION, and heparin-coated SPION). Magnetic separation was performed to separate encapsulated islets from the empty capsules, and cell viability and function were tested. Islets labeled with 1000 μg Fe/ml dextran-coated SPIONs experienced a 69.9% reduction in graft volume, with a 33.2% loss of islet-containing capsules. Islets labeled with 100 μg Fe/ml heparin-coated SPIONs showed a 46.4% reduction in graft volume, with a 4.5% loss of capsules containing islets. No purification could be achieved using siloxane-coated SPIONs due to its toxicity to the primary islets. SPION labeling of islets is useful for transplant purification during islet separation as well as in vivo imaging after transplantation. Furthermore, purification of encapsulated islets can also reduce the volume of the encapsulated islets without impairing their function by removing empty capsules. © 2013 John Wiley & Sons A/S.

  14. Targeting experimental orthotopic glioblastoma with chitosan-based superparamagnetic iron oxide nanoparticles (CS-DX-SPIONs).

    Science.gov (United States)

    Shevtsov, Maxim; Nikolaev, Boris; Marchenko, Yaroslav; Yakovleva, Ludmila; Skvortsov, Nikita; Mazur, Anton; Tolstoy, Peter; Ryzhov, Vyacheslav; Multhoff, Gabriele

    2018-01-01

    Glioblastoma is the most devastating primary brain tumor of the central nervous system in adults. Magnetic nanocarriers may help not only for a targeted delivery of chemotherapeutic agents into the tumor site but also provide contrast enhancing properties for diagnostics using magnetic resonance imaging (MRI). Synthesized hybrid chitosan-dextran superparamagnetic nanoparticles (CS-DX-SPIONs) were characterized using transmission electron microscopy (TEM) and relaxometry studies. Nonlinear magnetic response measurements were employed for confirming the superparamagnetic state of particles. Following in vitro analysis of nanoparticles cellular uptake tumor targeting was assessed in the model of the orthotopic glioma in rodents. CS-DX-SPIONs nanoparticles showed a uniform diameter of 55 nm under TEM and superparamagentic characteristics as determined by T 1 (spin-lattice relaxation time) and T 2 (spin-spin relaxation time) proton relaxation times. Application of the chitosan increased the charge from +8.9 to +19.3 mV of the dextran-based SPIONs. The nonlinear magnetic response at second harmonic of CS-DX-SPIONs following the slow change of stationary magnetic fields with very low hysteresis evidenced superparamagnetic state of particles at ambient temperatures. Confocal microscopy and flow cytometry studies showed an enhanced internalization of the chitosan-based nanoparticles in U87, C6 glioma and HeLa cells as compared to dextran-coated particles. Cytotoxicity assay demonstrated acceptable toxicity profile of the synthesized nanoparticles up to a concentration of 10 μg/ml. Intravenously administered CS-DX-SPIONs in orthotopic C6 gliomas in rats accumulated in the tumor site as shown by high-resolution MRI (11.0 T). Retention of nanoparticles resulted in a significant contrast enhancement of the tumor image that was accompanied with a dramatic drop in T 2 values ( P chitosan-dextran magnetic particles demonstrated high MR contrast enhancing properties for the

  15. Magnetic properties study of iron-oxide nanoparticles/PVA ferrogels with potential biomedical applications

    International Nuclear Information System (INIS)

    Mendoza Zélis, P.; Muraca, D.; Gonzalez, J. S.; Pasquevich, G. A.; Alvarez, V. A.; Pirota, K. R.; Sánchez, F. H.

    2013-01-01

    A study of the magnetic behavior of maghemite nanoparticles (NPs) in polyvinyl alcohol (PVA) polymer matrices prepared by physical cross-linking is reported. The magnetic nanocomposites (ferrogels) were obtained by the in situ co-precipitation of iron salts in the presence of PVA polymer, and subsequently subjected to freezing–thawing cycles. The magnetic behavior of these ferrogels was compared with that of similar systems synthesized using the glutaraldehyde. This type of chemical cross-linking agents presents several disadvantages due to the presence of residual toxic molecules in the gel, which are undesirable for biological applications. Characteristic particle size determined by several techniques are in the range 7.9–9.3 nm. The iron oxidation state in the NPs was studied by X-ray absorption spectroscopy. Mössbauer measurements showed that the NP magnetic moments present collective magnetic excitations and superparamagnetic relaxations. The blocking and irreversibility temperatures of the NPs in the ferrogels, and the magnetic anisotropy constant, were obtained from magnetic measurements. An empirical model including two magnetic contributions (large NPs slightly departed from thermodynamic equilibrium below 200 K, and small NPs at thermodynamic equilibrium) was used to fit the experimental magnetization curves. A deviation from the superparamagnetic regime was observed. This deviation was explained on the basis of an interacting superparamagnetic model. From this model, relevant magnetic and structural properties were obtained, such as the magnitude order of the dipolar interaction energy, the NPs magnetic moment, and the number of NPs per ferrogel mass unit. This study contributes to the understanding of the basic physics of a new class of materials that could emerge from the PVA-based magnetic ferrogels.

  16. Microbial iron mats at the Mid-Atlantic Ridge and evidence that Zetaproteobacteria may be restricted to iron-oxidizing marine systems.

    Directory of Open Access Journals (Sweden)

    Jarrod J Scott

    Full Text Available Chemolithoautotrophic iron-oxidizing bacteria play an essential role in the global iron cycle. Thus far, the majority of marine iron-oxidizing bacteria have been identified as Zetaproteobacteria, a novel class within the phylum Proteobacteria. Marine iron-oxidizing microbial communities have been found associated with volcanically active seamounts, crustal spreading centers, and coastal waters. However, little is known about the presence and diversity of iron-oxidizing communities at hydrothermal systems along the slow crustal spreading center of the Mid-Atlantic Ridge. From October to November 2012, samples were collected from rust-colored mats at three well-known hydrothermal vent systems on the Mid-Atlantic Ridge (Rainbow, Trans-Atlantic Geotraverse, and Snake Pit using the ROV Jason II. The goal of these efforts was to determine if iron-oxidizing Zetaproteobacteria were present at sites proximal to black smoker vent fields. Small, diffuse flow venting areas with high iron(II concentrations and rust-colored microbial mats were observed at all three sites proximal to black smoker chimneys. A novel, syringe-based precision sampler was used to collect discrete microbial iron mat samples at the three sites. The presence of Zetaproteobacteria was confirmed using a combination of 16S rRNA pyrosequencing and single-cell sorting, while light micros-copy revealed a variety of iron-oxyhydroxide structures, indicating that active iron-oxidizing communities exist along the Mid-Atlantic Ridge. Sequencing analysis suggests that these iron mats contain cosmopolitan representatives of Zetaproteobacteria, but also exhibit diversity that may be uncommon at other iron-rich marine sites studied to date. A meta-analysis of publically available data encompassing a variety of aquatic habitats indicates that Zetaproteobacteria are rare if an iron source is not readily available. This work adds to the growing understanding of Zetaproteobacteria ecology and suggests

  17. Detection of superparamagnetic particles in soils developed on basalts using frequency- and amplitude-dependent magnetic susceptibility

    Science.gov (United States)

    Grison, H.; Petrovsky, E.; Kapicka, A.

    2016-12-01

    In rock, soil and environmental studies dealing with magnetic methods, the frequency-dependent magnetic susceptibility (κFD%) is parameter generally accepted as a tool for identification of ultrafine superparamagnetic (SP) particles. This parameter became an indicator of pedogenic magnetic fraction (increased pedogenesis). Despite the number of studies using this parameter, knowledge about threshold values of κFD% is not clear enough and this parameter may be misinterpreted. Moreover, in strongly magnetic soils, magnetic signal of the SP (mostly pedogenic) minerals may be masked by dominant lithological signal, carried by coarse-grain mineral fraction; therefore, influence of pedogenesis is hard to detect. The aim of this contribution is to compare results in determination of ultrafine SP magnetic particles in soils determined using different instruments: (a) Bartington MS2B dual-frequency meter, and (b) more sensitive AGICO Kappameter MFK1-FA. The values of the κFD % obtained by the Bartington MS2B varied from 0.9 to 5.8% (mass-specific magnetic susceptibility from 119 to 1533 × 10-8 m3/kg) while the AGICO MFK1-FA varied from 3.7 to 8.2% (mass-specific magnetic susceptibility from 295 to 1843 × 10-8 m3/kg). Although both instruments suggest significant portion of SP magnetic particles, the results can't be interpreted using the generally accepted threshold values based on Bartington data. However, our results suggest that relation between the mass-specific magnetic susceptibility and κFD% along whole soil profile may serve as suitable tool in discriminating between lithogenic and pedogenic control of magnetic fraction in the soil profile. Moreover, we propose new concept of identification of SP particles, based on field-dependent magnetic susceptibility. Its behaviour shows distinct features with significant change at amplitudes of about 100 A/m. Below this value, susceptibility decreases with increasing amplitude, reflecting saturation of magnetization due

  18. Cellular uptake of folate-conjugated lipophilic superparamagnetic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Woo, Kyoungja; Moon, Jihyung; Choi, Kyu-Sil; Seong, Tae-Yeon; Yoon, Kwon-Ha

    2009-01-01

    We prepared five folate-conjugated lipophilic superparamagnetic iron oxide nanoparticles (F 5 -Liposuperparamagnetic iron oxide nanoparticles(SPIONs), 5.5 and 11 nm) and investigated their cellular uptake with KB cells, which is one of the representative folate-receptor over-expressing human epidermoid carcinoma cells, using MRI. The cellular uptake tests with the respective 5.5 and 11 nm F 5 -LipoSPIONs at a fixed particle concentration showed appreciable amount of receptor-mediated uptakes and the specificity was higher in 5.5 nm SPIONs, due to its higher folic acid (FA) density, without inhibition. However, the numbers of the particles taken up under FA inhibition were similar, irrespective of their sizes.

  19. Synthesis and characterization of superparamagnetic polymeric nanocapsules

    Energy Technology Data Exchange (ETDEWEB)

    Grillo, Renato; Fraceto, Leonardo Fernandes, E-mail: renato.grillo@ymail.com [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sorocaba, SP (Brazil); Gallo, Juan; Grando Stroppa, Daniel; Carbo-Argibay, Enrique; Banõbre-Lopez, Manuel [International Iberian Nanotechnology Laboratory, Braga (Portugal); Lima, Renata de [Universidade de Sorocaba (UNISO), SP (Brazil)

    2016-07-01

    Full text: A wide variety of applications have been considered for superparamagnetic iron oxide nanoparticles (SPIONs), such as magnetic resonance imaging, cancer therapy and remediation of contaminants [1].Polymeric nanostructures (PNS) have also received great interest as suitable encapsulating agents and carriers due to their ability to influence the delivery profile. Hybrid nanosystems have been explored as a synergic approach that combines the modified active release induced by the polymer encapsulation and the intrinsic properties from the inorganic nanoparticles [2]. In this context, poly-ε-caprolactone nanocapsules containing different concentration of ∼8 nm superparamagnetic oleic acid coated magnetite (Fe{sub 3}O{sub 4}@OA) nanoparticles were developed. Successful incorporation of the magnetic nanoparticles was confirmed by transmission electron microscopy coupled with energy dispersive X-ray (TEM-EDX). Results showed that they accumulate preferentially in the outer organic membrane of the PNS. On the other hand, scanning electron microscopy and dynamic light scattering measurements showed a significant increase in particle size from ca. 400 to 800 nm. Magnetic measurements as a function of the applied magnetic field and temperature were performed in both vibrant sample (VSM) and superconducting quantum interference device magnetometers (SQUID). Hysteresis loops showed a superparamagnetic behavior with increasing saturation magnetization as magnetite concentration was progressively incorporated into the PNS. Zero-field cooled and field-cooled (ZFC-FC) magnetic curves showed a shift of the blocking temperature to higher temperatures as the content of magnetite increases in the capsules. These results are promising and contribute to a better understanding of the interaction between magnetic nanoparticles and PNS. References: [1] L. Zhang, W. Dong, H. Sun. Nanoscale 5, 7664-7684 (2013) [2] K.T. Nguyen and Y.L. Zhao. Acc. Chem. Res. 48, 3016-3025 (2015

  20. In situ hybridization of superparamagnetic iron-biomolecule nanoparticles.

    Science.gov (United States)

    Moghimi, Nafiseh; Donkor, Apraku David; Mohapatra, Mamata; Thomas, Joseph Palathinkal; Su, Zhengding; Tang, Xiaowu Shirley; Leung, Kam Tong

    2014-07-23

    The increase in interest in the integration of organic-inorganic nanostructures in recent years has promoted the use of hybrid nanoparticles (HNPs) in medicine, energy conversion, and other applications. Conventional hybridization methods are, however, often long, complicated, and multistepped, and they involve biomolecules and discrete nanostructures as separate entities, all of which hinder the practical use of the resulting HNPs. Here, we present a novel, in situ approach to synthesizing size-specific HNPs using Fe-biomolecule complexes as the building blocks. We choose an anticancer peptide (p53p, MW 1.8 kDa) and an enzyme (GOx, MW 160 kDa) as model molecules to demonstrate the versatility of the method toward different types of molecules over a large size range. We show that electrostatic interaction for complex formation of metal hydroxide ion with the partially charged side of biomolecule in the solution is the key to hybridization of metal-biomolecule materials. Electrochemical deposition is then used to produce hybrid NPs from these complexes. These HNPs with controllable sizes ranging from 30 nm to 3.5 μm are found to exhibit superparamagnetic behavior, which is a big challenge for particles in this size regime. As an example of greatly improved properties and functionality of the new hybrid material, in vitro toxicity assessment of Fe-GOx HNPs shows no adverse effect, and the Fe-p53p HNPs are found to selectively bind to cancer cells. The superparamagnetic nature of these HNPs (superparamagnetic even above the size regime of 15-20 nm!), their biocompatibility, and the direct integration approach are fundamentally important to biomineralization and general synthesis strategy for bioinspired functional materials.

  1. Cellular uptake of folate-conjugated lipophilic superparamagnetic iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Kyoungja [Nano-Materials Research Center, Korea Institute of Science and Technology, P. O. Box 131, Cheongryang, Seoul 130-650 (Korea, Republic of)], E-mail: kjwoo@kist.re.kr; Moon, Jihyung [Nano-Materials Research Center, Korea Institute of Science and Technology, P. O. Box 131, Cheongryang, Seoul 130-650 (Korea, Republic of); Department of Materials Science and Engineering, Korea University, 5-1, Anam-Dong, Sungbook-Ku, Seoul, 136-713 (Korea, Republic of); Choi, Kyu-Sil [Division of Molecular Imaging, Samsung Biomedical Research Institute, Samsung Medical Center, 50 Ilwon-Dong, Kangnam-Ku, Seoul 135-710 (Korea, Republic of); Seong, Tae-Yeon [Department of Materials Science and Engineering, Korea University, 5-1, Anam-Dong, Sungbook-Ku, Seoul, 136-713 (Korea, Republic of); Yoon, Kwon-Ha [Institute for Radiological Imaging Science, Wonkwang University School of Medicine, 344-2, Shinyong, Iksan, Jeonbuk 570-749 (Korea, Republic of)

    2009-05-15

    We prepared five folate-conjugated lipophilic superparamagnetic iron oxide nanoparticles (F{sub 5}-Liposuperparamagnetic iron oxide nanoparticles(SPIONs), 5.5 and 11 nm) and investigated their cellular uptake with KB cells, which is one of the representative folate-receptor over-expressing human epidermoid carcinoma cells, using MRI. The cellular uptake tests with the respective 5.5 and 11 nm F{sub 5}-LipoSPIONs at a fixed particle concentration showed appreciable amount of receptor-mediated uptakes and the specificity was higher in 5.5 nm SPIONs, due to its higher folic acid (FA) density, without inhibition. However, the numbers of the particles taken up under FA inhibition were similar, irrespective of their sizes.

  2. Novel environmentally friendly synthesis of superparamagnetic magnetite nanoparticles using mechanochemical effect

    International Nuclear Information System (INIS)

    Iwasaki, Tomohiro; Kosaka, Kazunori; Watano, Satoru; Yanagida, Takeshi; Kawai, Tomoji

    2010-01-01

    A novel method for synthesizing superparamagnetic magnetite nanoparticles in water system via coprecipitation under an environmentally friendly condition has been developed. In this method, an almost neutral suspension containing ferrous hydroxide and goethite is used as the starting suspension and subjected to a ball-milling treatment. The product was characterized by transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, dynamic light scattering, superconducting quantum interference device magnetometry, and Moessbauer spectroscopy. The mechanochemical effect generated by the ball-milling treatment promoted the reaction between ferrous hydroxide and goethite even at room temperature, resulting in the formation of homogeneous magnetite nanoparticles. Simultaneously, it also contributed to crystallize the formed magnetite nanoparticles while inhibiting the particle growth. This resulted in the formation of ultrafine magnetite nanoparticles of about 10 nm having a single crystal structure. This method could provide ferromagnetic magnetite nanoparticles with superparamagnetism under the moderate condition without neither heating nor any additives such as surfactant and organic solvent.

  3. Population dynamics of iron-oxidizing communities in pilot plants for the treatment of acid mine waters.

    Science.gov (United States)

    Heinzel, Elke; Janneck, Eberhard; Glombitza, Franz; Schlömann, Michael; Seifert, Jana

    2009-08-15

    The iron-oxidizing microbial community in two pilot plants for the treatment of acid mine water was monitored to investigate the influence of different process parameters such as pH, iron concentration, and retention time on the stability of the system to evaluate the applicability of this treatment technology on an industrial scale. The dynamics of the microbial populations were followed using T-RFLP (terminal restriction fragment length polymorphism) over a period of several months. For a more precise quantification, two TaqMan assays specific for the two prominent groups were developed and the relative abundance of these taxa in the iron-oxidizing community was verified by real-time PCR. The investigations revealed that the iron-oxidizing community was clearly dominated by two groups of Betaproteobacteria affiliated with the poorly known and not yet recognized species "Ferrovum myxofaciens" and with strains related to Gallionella ferruginea, respectively. These taxa dominated the microbial community during the whole investigation period and accelerated the oxidation of ferrous iron despite the changing characteristics of mine waters flowing into the plants. Thus, it is assumed that the treatment technology can also be applied to other mine sites and that these organisms play a crucial role in such treatment systems.

  4. A detailed study on the transition from the blocked to the superparamagnetic state of reduction-precipitated iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Witte, K.; Bodnar, W.; Mix, T.; Schell, N.; Fulda, G.; Woodcock, T.G.; Burkel, E.

    2016-01-01

    Magnetic iron oxide nanoparticles were prepared by salt-assisted solid-state chemical precipitation method with alternating fractions of the ferric iron content. The physical properties of the precipitated nanoparticles mainly consisting of magnetite were investigated by means of transmission electron microscopy, high energy X-ray diffraction, vibrating sample magnetometry and Mössbauer spectroscopy. With particle sizes ranging from 16.3 nm to 2.1 nm, a gradual transition from the blocked state to the superparamagnetic state was observed. The transition was described as a dependence of the ferric iron content used during the precipitation. Composition, mean particle size, coercivity, saturation polarisation, as well as hyperfine interaction parameters and their evolution were studied systematically over the whole series of iron oxide nanoparticles. - Highlights: • Study of superparamagnetic transition of magnetite varying ferric iron content. • Coercivity is mainly influenced by the particle size. • Saturation polarisation influenced by the goethite content and the particle size. • Number of vacancies tend to increase with increasing ferric iron content. • Fe 3 O 4 B-sites are stronger effected by the reduction of particle size than A-sites.

  5. Studying the effect of particle size and coating type on the blood kinetics of superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Roohi, Farnoosh; Lohrke, Jessica; Ide, Andreas; Schütz, Gunnar; Dassler, Katrin

    2012-01-01

    Magnetic resonance imaging (MRI), one of the most powerful imaging techniques available, usually requires the use of an on-demand designed contrast agent to fully exploit its potential. The blood kinetics of the contrast agent represent an important factor that needs to be considered depending on the objective of the medical examination. For particulate contrast agents, such as superparamagnetic iron oxide nanoparticles (SPIOs), the key parameters are particle size and characteristics of the coating material. In this study we analyzed the effect of these two properties independently and systematically on the magnetic behavior and blood half-life of SPIOs. Eleven different SPIOs were synthesized for this study. In the first set (a), seven carboxydextran (CDX)-coated SPIOs of different sizes (19-86 nm) were obtained by fractionating a broadly size-distributed CDX-SPIO. The second set (b) contained three SPIOs of identical size (50 nm) that were stabilized with different coating materials, polyacrylic acid (PAA), poly-ethylene glycol, and starch. Furthermore, small PAA-SPIOs (20 nm) were synthesized to gain a global insight into the effects of particle size vs coating characteristics. Saturation magnetization and proton relaxivity were determined to represent the magnetic and imaging properties. The blood half-life was analyzed in rats using MRI, time-domain nuclear magnetic resonance, and inductively coupled plasma optical emission spectrometry. By changing the particle size without modifying any other parameters, the relaxivity r(2) increased with increasing mean particle diameter. However, the blood half-life was shorter for larger particles. The effect of the coating material on magnetic properties was less pronounced, but it had a strong influence on blood kinetics depending on the ionic character of the coating material. In this report we systematically demonstrated that both particle size and coating material influence blood kinetics and magnetic properties of

  6. Atherosclerotic imaging using 4 types of superparamagnetic iron oxides: New possibilities for mannan-coated particles

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Keiko, E-mail: keikot@belle.shiga-medac.jp [Department of Radiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Nitta, Norihisa, E-mail: r34nitta@yahoo.co.jp [Department of Radiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Sonoda, Akinaga, E-mail: akinagasonoda@yahoo.co.jp [Department of Radiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Otani, Hideji, E-mail: otani@belle.shiga-med.ac.jp [Department of Radiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Takahashi, Masashi, E-mail: masashi@belle.shiga-med.ac.jp [Department of Radiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Murata, Kiyoshi, E-mail: murata@belle.shiga-med.ac.jp [Department of Radiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Shiomi, Masashi, E-mail: ieakusm@med.kobe-u.ac.jp [Institute for Experimental Animals, Kobe University School of Medicine, 7-5-1 Kusunoki-cho, Tyuoku, Kobe, Hyogo 650-0017 (Japan); Tabata, Yasuhiko, E-mail: yasuhiko@frontier.kyoto-u.ac.jp [Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, 53 Syogoin-Kawahara-cho, Sakyoku, Kyoto 606-8507 (Japan); Nohara, Satoshi, E-mail: s-nohara@meito-sangyo.co.jp [The Nagoya Research Laboratory, Meito Sangyo Co., Ltd., 25-5 Nishibiwajima-cho, Kiyosu, Aichi 452-0067 (Japan)

    2013-11-01

    Purpose: We used magnetic resonance imaging (MRI) and histologic techniques to compare the uptake by the rabbit atherosclerotic wall of 4 types of superparamagnetic iron oxide (SPIO) particles, i.e. SPIO, mannan-coated SPIO (M-SPIO), ultrasmall SPIO (USPIO), and mannan-coated USPIO (M-USPIO). Materials and methods: All experimental protocols were approved by our institutional animal experimentation committee. We intravenously injected 12 Watanabe heritable hyperlipidemic rabbits with one of the 4 types of SPIO (0.8 mmol Fe/kg). Two other rabbits served as the control. The rabbits underwent in vivo contrast-enhanced magnetic resonance angiography (MRA) before- and 5 days after these injections; excised aortae were subjected to in vitro MRI. In the in vivo and in vitro studies we assessed the signal intensity of the vessels at identical regions of interest (ROI) and calculated the signal-to-noise ratio (SNR). For histologic assessment we evaluated the iron-positive regions in Prussian blue-stained specimens. Results: There were significant differences in iron-positive regions where M-USPIO > USPIO, M-SPIO > SPIO, USPIO > SPIO (p < 0.05) but not between M-USPIO and M-SPIO. The difference between the pre- and post-injection SNR was significantly greater in rabbits treated with M-USPIO than USPIO and in rabbits injected with M-SPIO than SPIO (p < 0.05). On in vitro MRI scans SNR tended to be lower in M-USPIO- and M-SPIO- than USPIO- and SPIO-treated rabbits (p < 0.1). Conclusion: Histologic and imaging analysis showed that mannan-coated SPIO and USPIO particles were taken up more readily by the atherosclerotic rabbit wall than uncoated SPIO and USPIO.

  7. Structural peculiarities in magnetic small particles

    International Nuclear Information System (INIS)

    Haneda, K.; Morrish, A.H.

    1993-01-01

    Nanostructured magnetic materials, consisting of nanometer-sized crystallites, are currently a developing subject. Evidence has been accumulating that they possess properties that can differ substantially from those of bulk materials. This paper illustrates how Moessbauer spectroscopy can yield useful information on the structural peculiarities associated with these small particles. As illustrations, metallic iron and iron-oxide systems are considered in detail. The subjects discussed include: (1) Phase stabilities in small particles, (2) deformed or nonsymmetric atomic arrangements in small particles, and (3) peculiar magnetic structures or non-collinear spin arrangements in small magnetic oxide particles that are correlated with lower specific magnetizations as compared to the bulk values. (orig.)

  8. Superparamagnetic bimetallic iron-palladium nanoalloy: synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Nazir, Rabia; Mazhar, Muhammad [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Akhtar, M Javed; Nadeem, M; Siddique, Muhammad [Physics Division, PINSTECH, PO Nilore, Islamabad 44000 (Pakistan); Shah, M Raza [HEJ Research Institute of Chemistry, University of Karachi, Karachi 75270 (Pakistan); Khan, Nawazish A [Material Science Laboratory, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Mehmood, Mazhar [National Centre for Nanotechnology, PIEAS, Islamabad 45650 (Pakistan); Butt, N M [Pakistan Science Foundation, Islamabad 44000 (Pakistan)], E-mail: mazhar42pk@yahoo.com

    2008-05-07

    Iron-palladium nanoalloy in the particle size range of 15-30 nm is synthesized by the relatively low temperature thermal decomposition of coprecipitated [Fe(Bipy){sub 3}]Cl{sub 2} and [Pd(Bipy){sub 3}]Cl{sub 2} in an inert ambient of dry argon gas. The silvery black Fe-Pd alloy nanoparticles are air-stable and have been characterized by EDX-RF, XRD, AFM, TEM, magnetometry, {sup 57}Fe Moessbauer and impedance spectroscopy. This Fe-Pd nanoalloy is in single phase and contains iron sites having up to 11 nearest-neighboring atoms. It is superparamagnetic in nature with high magnetic susceptibility, low coercivity and hyperfine field.

  9. Water dispersible superparamagnetic Cobalt iron oxide nanoparticles for magnetic fluid hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Salunkhe, Ashwini B. [Centre for advanced materials research, Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Soft matter and molecular biophysics group, Department of Applied Physics, University of Santiago de Compostela, Santiago de Compostela (Spain); Khot, Vishwajeet M. [Department of Physics and Astronomy, University College London (United Kingdom); Ruso, Juan M. [Soft matter and molecular biophysics group, Department of Applied Physics, University of Santiago de Compostela, Santiago de Compostela (Spain); Patil, S.I., E-mail: patil@physics.unipune.ac.in [Centre for advanced materials research, Department of Physics, Savitribai Phule Pune University, Pune 411007 (India)

    2016-12-01

    Superparamagnetic nanoparticles of Cobalt iron oxide (CoFe{sub 2}O{sub 4}) are synthesized chemically, and dispersed in an aqueous suspension for hyperthermia therapy application. Different parameters such as magnetic field intensity, particle concentration which regulates the competence of CoFe{sub 2}O{sub 4} nanoparticle as a heating agents in hyperthermia are investigated. Specific absorption rate (SAR) decreases with increase in the particle concentration and increases with increase in applied magnetic field intensity. Highest value of SAR is found to be 91.84 W g{sup −1} for 5 mg. mL{sup −1} concentration. Oleic acid conjugated polyethylene glycol (OA-PEG) coated CoFe{sub 2}O{sub 4} nanoparticles have shown superior cyto-compatibility over uncoated nanoparticles to L929 mice fibroblast cell lines for concentrations below 2 mg. mL{sup −1}. Present work provides the underpinning for the use of CoFe{sub 2}O{sub 4} nanoparticles as a potential heating mediator for magnetic fluid hyperthermia. - Highlights: • Superparamagnetic, water dispersible CoFe{sub 2}O{sub 4} NPs were synthesized by simple and cost effective Co precipitation route. • Effect of coating on various physical and chemical properties of CoFe{sub 2}O{sub 4} NPs were studied. • The effect of coating on induction heating as well as biocompatibility of NPs were studied.

  10. The force analysis for superparamagnetic nanoparticles-based gene delivery in an oscillating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jiajia [State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an, Shaanxi Province 710049 (China); Shi, Zongqian, E-mail: zqshi@mail.xjtu.edu.cn [State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an, Shaanxi Province 710049 (China); Jia, Shenli [State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an, Shaanxi Province 710049 (China); Zhang, Pengbo [Department of Anesthesiology, Second Affiliated Hospital of Xi’an Jiaotong University School of Medicine, No.157 West 5 Road, Xi’an, Shaanxi Province 710004 (China)

    2017-04-01

    Due to the peculiar magnetic properties and the ability to function in cell-level biological interaction, superparamagnetic nanoparticles (SMNP) have been being the attractive carrier for gene delivery. The superparamagnetic nanoparticles with surface-bound gene vector can be attracted to the surface of cells by the Kelvin force provided by external magnetic field. In this article, the influence of the oscillating magnetic field on the characteristics of magnetofection is studied in terms of the magnetophoretic velocity. The magnetic field of a cylindrical permanent magnet is calculated by equivalent current source (ECS) method, and the Kelvin force is derived by using the effective moment method. The results show that the static magnetic field accelerates the sedimentation of the particles, and drives the particles inward towards the axis of the magnet. Based on the investigation of the magnetophoretic velocity of the particle under horizontally oscillating magnetic field, an oscillating velocity within the amplitude of the magnet oscillation is observed. Furthermore, simulation results indicate that the oscillating amplitude plays an important role in regulating the active region, where the particles may present oscillating motion. The analysis of the magnetophoretic velocity gives us an insight into the physical mechanism of the magnetofection. It's also helpful to the optimal design of the magnetofection system. - Highlights: • We compare the results of the ECS method and FEA method with the commercial software, Ansys. • We analyze the physic mechanism of the oscillating motion of the particles in the presence of an oscillating magnet. • We discuss the influence of the oscillating amplitude of the magnet on the behavior of the particle.

  11. Tissue Plasminogen Activator Binding to Superparamagnetic Iron Oxide Nanoparticle—Covalent Versus Adsorptive Approach

    Science.gov (United States)

    Friedrich, Ralf P.; Zaloga, Jan; Schreiber, Eveline; Tóth, Ildikó Y.; Tombácz, Etelka; Lyer, Stefan; Alexiou, Christoph

    2016-06-01

    Functionalized superparamagnetic iron oxide nanoparticles are frequently used to develop vehicles for drug delivery, hyperthermia, and photodynamic therapy and as tools used for magnetic separation and purification of proteins or for biomolecular imaging. Depending on the application, there are various possible covalent and non-covalent approaches for the functionalization of particles, each of them shows different advantages and disadvantages for drug release and activity at the desired location.

  12. A magnetic particle micro-trap for large trapping surfaces

    KAUST Repository

    Gooneratne, Chinthaka P.

    2012-01-08

    Manipulation of micron-size magnetic particles of the superparamagnetic type contributes significantly in many applications like controlling the antibody/antigen binding process in immunoassays. Specifically, more target biomolecules can be attached/tagged and analyzed since the three dimensional structure of the magnetic particles increases the surface to volume ratio. Additionally, such biomolecular-tagged magnetic particles can be easily manipulated by an external magnetic field due to their superparamagnetic behavior. Therefore, magnetic particle- based immunoassays are extensively applied in micro-flow cytometry. The design of a square-loop micro-trap as a magnetic particle manipulator as well as numerical and experimental analysis is presented. Experimental results showed that the micro-trap could successfully trap and concentrate magnetic particles from a large to a small area with a high spatial range.

  13. A magnetic particle micro-trap for large trapping surfaces

    KAUST Repository

    Gooneratne, Chinthaka P.; Liang, Cai; Giouroudi, Ioanna; Kosel, Jü rgen

    2012-01-01

    Manipulation of micron-size magnetic particles of the superparamagnetic type contributes significantly in many applications like controlling the antibody/antigen binding process in immunoassays. Specifically, more target biomolecules can be attached/tagged and analyzed since the three dimensional structure of the magnetic particles increases the surface to volume ratio. Additionally, such biomolecular-tagged magnetic particles can be easily manipulated by an external magnetic field due to their superparamagnetic behavior. Therefore, magnetic particle- based immunoassays are extensively applied in micro-flow cytometry. The design of a square-loop micro-trap as a magnetic particle manipulator as well as numerical and experimental analysis is presented. Experimental results showed that the micro-trap could successfully trap and concentrate magnetic particles from a large to a small area with a high spatial range.

  14. Studying the effect of particle size and coating type on the blood kinetics of superparamagnetic iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Roohi F

    2012-08-01

    Full Text Available Farnoosh Roohi, Jessica Lohrke, Andreas Ide, Gunnar Schütz, Katrin DasslerMR and CT Contrast Media Research, Bayer Pharma AG, Berlin, GermanyPurpose: Magnetic resonance imaging (MRI, one of the most powerful imaging techniques available, usually requires the use of an on-demand designed contrast agent to fully exploit its potential. The blood kinetics of the contrast agent represent an important factor that needs to be considered depending on the objective of the medical examination. For particulate contrast agents, such as superparamagnetic iron oxide nanoparticles (SPIOs, the key parameters are particle size and characteristics of the coating material. In this study we analyzed the effect of these two properties independently and systematically on the magnetic behavior and blood half-life of SPIOs.Methods: Eleven different SPIOs were synthesized for this study. In the first set (a, seven carboxydextran (CDX-coated SPIOs of different sizes (19–86 nm were obtained by fractionating a broadly size-distributed CDX–SPIO. The second set (b contained three SPIOs of identical size (50 nm that were stabilized with different coating materials, polyacrylic acid (PAA, polyethylene glycol, and starch. Furthermore, small PAA–SPIOs (20 nm were synthesized to gain a global insight into the effects of particle size vs coating characteristics. Saturation magnetization and proton relaxivity were determined to represent the magnetic and imaging properties. The blood half-life was analyzed in rats using MRI, time-domain nuclear magnetic resonance, and inductively coupled plasma optical emission spectrometry.Results: By changing the particle size without modifying any other parameters, the relaxivity r2 increased with increasing mean particle diameter. However, the blood half-life was shorter for larger particles. The effect of the coating material on magnetic properties was less pronounced, but it had a strong influence on blood kinetics depending on the

  15. Hydrodynamic Torques and Rotations of Superparamagnetic Bead Dimers

    Science.gov (United States)

    Pease, Christopher; Etheridge, J.; Wijesinghe, H. S.; Pierce, C. J.; Prikockis, M. V.; Sooryakumar, R.

    Chains of micro-magnetic particles are often rotated with external magnetic fields for many lab-on-a-chip technologies such as transporting beads or mixing fluids. These applications benefit from faster responses of the actuated particles. In a rotating magnetic field, the magnetization of superparamagnetic beads, created from embedded magnetic nano-particles within a polymer matrix, is largely characterized by induced dipoles mip along the direction of the field. In addition there is often a weak dipole mop that orients out-of-phase with the external rotating field. On a two-bead dimer, the simplest chain of beads, mop contributes a torque Γm in addition to the torque from mip. For dimers with beads unbound to each other, mop rotates individual beads which generate an additional hydrodynamic torque on the dimer. Whereas, mop directly torques bound dimers. Our results show that Γm significantly alters the average frequency-dependent dimer rotation rate for both bound and unbound monomers and, when mop exceeds a critical value, increases the maximum dimer rotation frequency. Models that include magnetic and hydrodynamics torques provide good agreement with the experimental findings over a range of field frequencies.

  16. Encapsulation of VEGF165 into magnetic PLGA nanocapsules for potential local delivery and bioactivity in human brain endothelial cells

    Czech Academy of Sciences Publication Activity Database

    Carenza, E.; Jordan, O.; Martinez-San Segundo, P.; Jiřík, Radovan; Starčuk jr., Zenon; Borchard, G.; Rosell, A.; Roig, A.

    2015-01-01

    Roč. 3, č. 12 (2015), s. 2538-2544 ISSN 2050-750X R&D Projects: GA ČR GAP102/12/2380; GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : superparamagnetic iron-oxide * human serum-albumin * VEGF Subject RIV: FS - Medical Facilities ; Equipment Impact factor: 4.872, year: 2015

  17. Magnetic composites based on hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides

    International Nuclear Information System (INIS)

    Braga, Tiago P.; Vasconcelos, Igor F.; Sasaki, Jose M.; Fabris, J.D.; Oliveira, Diana Q.L. de; Valentini, Antoninho

    2010-01-01

    Materials containing hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides were obtained from a chemical precursor prepared by admixing chitosan and iron and aluminum hydroxides. The oxides were first characterized with scanning electron microscopy, X-ray diffraction, and Moessbauer spectroscopy. Scanning electron microscopy micrographs showed the size distribution of the resulting spheres to be highly homogeneous. The occurrence of nano-composites containing aluminum oxides and iron oxides was confirmed from powder X-ray diffraction patterns; except for the sample with no aluminum, the superparamagnetic relaxation due to iron oxide particles were observed from Moessbauer spectra obtained at 298 and 110 K; the onset six line-spectrum collected at 20 K indicates a magnetic ordering related to the blocking relaxation effect for significant portion of small spheres in the sample with a molar ratio Al:Fe of 2:1.

  18. Self-assembly of a superparamagnetic raspberry-like silica/iron oxide nanocomposite using epoxy-amine coupling chemistry.

    Science.gov (United States)

    Cano, Manuel; de la Cueva-Méndez, Guillermo

    2015-02-28

    The fabrication of colloidal nanocomposites would benefit from controlled hetero-assembly of ready-made particles through covalent bonding. Here we used epoxy-amine coupling chemistry to promote the self-assembly of superparamagnetic raspberry-like nanocomposites. This adaptable method induced the covalent attachment of iron oxide nanoparticles sparsely coated with amine groups onto epoxylated silica cores in the absence of other reactants.

  19. Magnetic and relaxometric properties of polyethylenimine-coated superparamagnetic MRI contrast agents

    International Nuclear Information System (INIS)

    Corti, M.; Lascialfari, A.; Marinone, M.; Masotti, A.; Micotti, E.; Orsini, F.; Ortaggi, G.; Poletti, G.; Innocenti, C.; Sangregorio, C.

    2008-01-01

    Novel systems to be employed as superparamagnetic contrast agents (CA) for magnetic resonance imaging (MRI) have been synthesized. These compounds are composed of an iron oxide magnetic core coated by polyethylenimine (PEI) or carboxylated polyethylenimine (PEI-COOH). The aim of the present work was to prepare and study new nanostructured systems (with better or at least comparable relaxivities, R 1 and R 2 , with respect to the commercial ones) with controlled, almost monodisperse average dimensions and shape, as candidates for molecular targeting. By means of atomic force microscopy (AFM) measurements we determined the average diameter, of the order of 200 nm, and the shape of the particles. The superparamagnetic behavior was assessed by SQUID measurements. From X-ray data the estimated average diameters of the magnetic cores were found to be ∼5.8 nm for PEI-COOH60 and ∼20 nm for the compound named PEI25. By NMR-dispersion (NMRD), we found that PEI-COOH60 presents R 1 and R 2 relaxivities slightly lower than Endorem. The experimental results suggest that these novel compounds can be used as MRI CA

  20. Relaxometry imaging of superparamagnetic magnetite nanoparticles at ambient conditions

    Science.gov (United States)

    Finkler, Amit; Schmid-Lorch, Dominik; Häberle, Thomas; Reinhard, Friedemann; Zappe, Andrea; Slota, Michael; Bogani, Lapo; Wrachtrup, Jörg

    We present a novel technique to image superparamagnetic iron oxide nanoparticles via their fluctuating magnetic fields. The detection is based on the nitrogen-vacancy (NV) color center in diamond, which allows optically detected magnetic resonance (ODMR) measurements on its electron spin structure. In combination with an atomic-force-microscope, this atomic-sized color center maps ambient magnetic fields in a wide frequency range from DC up to several GHz, while retaining a high spatial resolution in the sub-nanometer range. We demonstrate imaging of single 10 nm sized magnetite nanoparticles using this spin noise detection technique. By fitting simulations (Ornstein-Uhlenbeck process) to the data, we are able to infer additional information on such a particle and its dynamics, like the attempt frequency and the anisotropy constant. This is of high interest to the proposed application of magnetite nanoparticles as an alternative MRI contrast agent or to the field of particle-aided tumor hyperthermia.

  1. Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica

    Energy Technology Data Exchange (ETDEWEB)

    Sodipo, Bashiru Kayode, E-mail: bashirsodipo@gmail.com [School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia); Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia); Aziz, Azlan Abdul [School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia); Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia)

    2016-10-15

    Research on synthesis of superparamagnetic iron oxide nanoparticles (SPION) and its surface modification for biomedical applications is of intense interest. Due to superparamagnetic property of SPION, the nanoparticles have large magnetic susceptibility, single magnetic domain and controllable magnetic behaviour. However, owing to easy agglomeration of SPION, surface modification of the magnetic particles with biocompatible materials such as silica nanoparticle has gained much attention in the last decade. In this review, we present recent advances in synthesis of SPION and various routes of producing silica coated SPION. - Highlights: • We present recent advances in synthesis of SPION and various routes of producing silica coated SPION • The synthetic routes of producing SPION can be classified into three: physical, chemical and biological methods. • The chemical method is the most cited method of producing SPION and it sub-classified into liquid and gas phase. • The techniques of producing silica coated SPION is grouped into seeded and non-seeded methods.

  2. Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica

    International Nuclear Information System (INIS)

    Sodipo, Bashiru Kayode; Aziz, Azlan Abdul

    2016-01-01

    Research on synthesis of superparamagnetic iron oxide nanoparticles (SPION) and its surface modification for biomedical applications is of intense interest. Due to superparamagnetic property of SPION, the nanoparticles have large magnetic susceptibility, single magnetic domain and controllable magnetic behaviour. However, owing to easy agglomeration of SPION, surface modification of the magnetic particles with biocompatible materials such as silica nanoparticle has gained much attention in the last decade. In this review, we present recent advances in synthesis of SPION and various routes of producing silica coated SPION. - Highlights: • We present recent advances in synthesis of SPION and various routes of producing silica coated SPION • The synthetic routes of producing SPION can be classified into three: physical, chemical and biological methods. • The chemical method is the most cited method of producing SPION and it sub-classified into liquid and gas phase. • The techniques of producing silica coated SPION is grouped into seeded and non-seeded methods.

  3. Synthesis of superparamagnetic δ-FeOOH nanoparticles by a chemical method

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Naoki, E-mail: nnishida@rs.tus.ac.jp [Department of Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Amagasa, Shota [Department of Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Kobayashi, Yoshio [Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Yamada, Yasuhiro [Department of Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan)

    2016-11-30

    Highlights: • The spherical δ-FeOOH nanoparticles were synthesized by a chemical reaction of FeCl{sub 2}. • The δ-FeOOH nanoparticles showed superparamagnetic behavior. • A mixture of Fe{sub 3}O{sub 4} and Fe(OH){sub 2} were rapidly oxidized into δ-FeOOH nanoparticles. - Abstract: δ-FeOOH nanoparticles were synthesized via the oxidation of precipitates obtained from the reaction of FeCl{sub 2} and N{sub 2}H{sub 4} in the presence of sodium tartrate and gelatin in an alkaline condition. These δ-FeOOH particles were subsequently examined using transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), powder X-ray diffraction (XRD), Mössbauer spectroscopy, and superconducting quantum interference device (SQUID) assessment. The average size of the δ-FeOOH nanoparticles was below 10 nm, and these particles exhibited superparamagnetic behavior as a result of this small size. The precursors of the δ-FeOOH nanoparticles were also characterized as a means of elucidating the reaction mechanism. Precipitates prior to oxidation upon rinsing with water and ethanol were analyzed by obtaining XRD patterns and Mössbauer spectra of wet and frozen samples, respectively. The precipitates obtained by the reaction of FeCl{sub 2} and N{sub 2}H{sub 4} were found to consist of a mixture of Fe{sub 3}O{sub 4} and Fe(OH){sub 2}, and it is believed that these species then rapidly oxidized into δ-FeOOH nanoparticles.

  4. Environmentally Compatible Synthesis of Superparamagnetic Magnetite (Fe3O4 Nanoparticles with Prehydrolysate from Corn Stover

    Directory of Open Access Journals (Sweden)

    Chunming Zheng

    2013-12-01

    Full Text Available An environmentally compatible and size-controlled method has been employed for synthesis of superparamagnetic magnetite nanoparticles with prehydrolysate from corn stover. Various characterizations involving X-ray diffraction (XRD, standard and high-resolution transmission electron microscopy (TEM and HRTEM, selected area electron diffraction (SAED, and thermogravimetric analysis (TGA have integrally confirmed the formation of magnetite nanoparticles with homogeneous morphology and the formation mechanism of magnetite only from ferric precursor. Organic materials in the prehydrolysate act as a bifunctional agent: (1 a reducing agent to reduce ferric ions to prepare magnetite with the coexistence of ferric and ferrous ions; and (2 a coating agent to prevent particle growth and agglomeration and to promote the formation of nanoscale and superparamagnetic magnetite. The size of the magnetite nanoparticles can be easily controlled by tailoring the reducing sugar concentration, reaction time, or hydrothermal temperature.

  5. Magnetic properties of iron-oxide and (iron, cobalt)-oxide nanoparticles synthesized in polystyrene resin matrix

    International Nuclear Information System (INIS)

    Naik, R.; Kroll, E.; Rodak, D.; Tsoi, G.M.; McCullen, E.; Wenger, L.E.; Suryanarayanan, R.; Naik, V.M.; Vaishnava, P.P.; Tao, Qu; Boolchand, P.

    2004-01-01

    A sulfonated polystyrene resin matrix was ion exchanged with aqueous solutions of (1) FeCl 2 , (2) FeCl 3 , (3) 2FeCl 2 :FeCl 3 , (4) 9FeCl 2 :CoCl 2 , and (5) 4FeCl 2 :CoCl 2 to prepare magnetic nanoparticles of varying size. The samples were characterized by X-ray diffraction (XRD), 57 Fe Mossbauer spectroscopy, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM), and identify two major phases: γ-Fe 2 O 3 , CoFe 2 O 4 , and perhaps a minor Fe 3 O 4 phase. SQUID magnetometry measurements indicate superparamagnetic particles with blocking temperatures (T B ) ranging from 20 K to room temperature

  6. Magnetic properties of iron-oxide and (iron, cobalt)-oxide nanoparticles synthesized in polystyrene resin matrix

    Science.gov (United States)

    Naik, R.; Kroll, E.; Rodak, D.; Tsoi, G. M.; McCullen, E.; Wenger, L. E.; Suryanarayanan, R.; Naik, V. M.; Vaishnava, P. P.; Tao, Qu; Boolchand, P.

    2004-05-01

    A sulfonated polystyrene resin matrix was ion exchanged with aqueous solutions of (1) FeCl2, (2) FeCl3, (3) 2FeCl2:FeCl3, (4) 9FeCl2:CoCl2, and (5) 4FeCl2:CoCl2 to prepare magnetic nanoparticles of varying size. The samples were characterized by X-ray diffraction (XRD), 57Fe Mossbauer spectroscopy, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM), and identify two major phases: γ-Fe2O3, CoFe2O4, and perhaps a minor Fe3O4 phase. SQUID magnetometry measurements indicate superparamagnetic particles with blocking temperatures (TB) ranging from 20K to room temperature.

  7. Electron uptake by iron-oxidizing phototrophic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Bose, A; Gardel, EJ; Vidoudez, C; Parra, EA; Girguis, PR

    2014-02-26

    Oxidation-reduction reactions underlie energy generation in nearly all life forms. Although most organisms use soluble oxidants and reductants, some microbes can access solid-phase materials as electron-acceptors or -donors via extracellular electron transfer. Many studies have focused on the reduction of solid-phase oxidants. Far less is known about electron uptake via microbial extracellular electron transfer, and almost nothing is known about the associated mechanisms. Here we show that the iron-oxidizing photoautotroph Rhodopseudomonas palustris TIE-1 accepts electrons from a poised electrode, with carbon dioxide as the sole carbon source/electron acceptor. Both electron uptake and ruBisCo form I expression are stimulated by light. Electron uptake also occurs in the dark, uncoupled from photosynthesis. Notably, the pioABC operon, which encodes a protein system essential for photoautotrophic growth by ferrous iron oxidation, influences electron uptake. These data reveal a previously unknown metabolic versatility of photoferrotrophs to use extracellular electron transfer for electron uptake.

  8. The Effect of pH and Time on The Stability of Superparamagnetic Maghemite Nanoparticle Suspensions

    Directory of Open Access Journals (Sweden)

    Nurdin Irwan

    2016-01-01

    Full Text Available Maghemite (γ-Fe2O3 nanoparticles have been synthesized using a chemical co-precipitation method. The morphology and particle size is characterized using Transmission Electron Microscopy (TEM, and magnetic characterization using Alternating Gradient Magnetometry (AGM. The stability of the maghemite nanoparticles suspension were studied at different pH and time of storage. Dynamic Light Scattering (DLS and Zeta Potential were conducted to determine the stability of the suspensions. TEM observation showed that the particles size is 9.6 nm and have spherical morphology. The particles showed superparamagnetic behavior with saturation magnetization 25.5 emu/g. The suspensions are stable in the acidic condition at pH 4 and alkaline condition at pH 10. The suspensions remain stable after 4 weeks of storage.

  9. Synthesis and characterization of the superparamagnetic iron oxide nanoparticles modified with cationic chitosan and coated with silica shell

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowska-Łańcucka, Joanna, E-mail: lewandow@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Staszewska, Magdalena; Szuwarzyński, Michał; Kępczyński, Mariusz [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Romek, Marek [Department of Cytology and Histology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow (Poland); Tokarz, Waldemar [Department of Solid State Physics, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow (Poland); Szpak, Agnieszka; Kania, Gabriela; Nowakowska, Maria [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland)

    2014-02-15

    Highlights: • The new, facile methodology for synthesis of silica covered SPIONs is proposed. • The SPIONs was modified with cationic chitosan and coated with silica shell. • Negatively charged, rounded in shape particles of ca. 330 nm were obtained. • The product exhibits the superparamagnetic properties. • The product properties imply its potential applications in biomedicine areas. -- Abstract: Novel method for synthesis of superparamagnetic iron oxide nanoparticles (SPION) modified with a cationic chitosan (CCh) and coated with a silica shell, SPION-CCh-SiO{sub 2} was developed. The process was carried out in two steps. In the first step the chitosan coated SPIONs were obtained by co-precipitation of Fe{sup 2+} and Fe{sup 3+} with ammonium hydroxide in aqueous solution of CCh. In the second one, the silica shell is formed on their surfaces. The formation of SPION-CCh-SiO{sub 2} was achieved by direct decomposition of tetraethoxysilane (TEOS) adsorbed on a surface of SPION-CCh dispersed in aqueous phase under sonication and mechanical stirring at room temperature. The chemical composition and physicochemical properties of the materials were determined using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Dynamic Light Scattering (DLS) and zeta potential measurements. The morphology of the particles was evaluated by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). Magnetic properties were confirmed using Atomic Force Microscopy/Magnetic Force Microscopy (AFM/MFM) and magnetization measurements. The resulting products are negatively charged, rounded in shape and exhibit the superparamagnetic properties what implies their potential applications in engineering and biomedicine areas.

  10. Synthesis and characterization of the superparamagnetic iron oxide nanoparticles modified with cationic chitosan and coated with silica shell

    International Nuclear Information System (INIS)

    Lewandowska-Łańcucka, Joanna; Staszewska, Magdalena; Szuwarzyński, Michał; Kępczyński, Mariusz; Romek, Marek; Tokarz, Waldemar; Szpak, Agnieszka; Kania, Gabriela; Nowakowska, Maria

    2014-01-01

    Highlights: • The new, facile methodology for synthesis of silica covered SPIONs is proposed. • The SPIONs was modified with cationic chitosan and coated with silica shell. • Negatively charged, rounded in shape particles of ca. 330 nm were obtained. • The product exhibits the superparamagnetic properties. • The product properties imply its potential applications in biomedicine areas. -- Abstract: Novel method for synthesis of superparamagnetic iron oxide nanoparticles (SPION) modified with a cationic chitosan (CCh) and coated with a silica shell, SPION-CCh-SiO 2 was developed. The process was carried out in two steps. In the first step the chitosan coated SPIONs were obtained by co-precipitation of Fe 2+ and Fe 3+ with ammonium hydroxide in aqueous solution of CCh. In the second one, the silica shell is formed on their surfaces. The formation of SPION-CCh-SiO 2 was achieved by direct decomposition of tetraethoxysilane (TEOS) adsorbed on a surface of SPION-CCh dispersed in aqueous phase under sonication and mechanical stirring at room temperature. The chemical composition and physicochemical properties of the materials were determined using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Dynamic Light Scattering (DLS) and zeta potential measurements. The morphology of the particles was evaluated by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). Magnetic properties were confirmed using Atomic Force Microscopy/Magnetic Force Microscopy (AFM/MFM) and magnetization measurements. The resulting products are negatively charged, rounded in shape and exhibit the superparamagnetic properties what implies their potential applications in engineering and biomedicine areas

  11. Electrically and magnetically dual-driven Janus particles for handwriting-enabled electronic paper

    Energy Technology Data Exchange (ETDEWEB)

    Komazaki, Y., E-mail: komazaki@dt.k.u-tokyo.ac.jp; Hirama, H.; Torii, T. [Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8563 (Japan)

    2015-04-21

    In this work, we describe the synthesis of novel electrically and magnetically dual-driven Janus particles for a handwriting-enabled twisting ball display via the microfluidic technique. One hemisphere of the Janus particles contains a charge control agent, which allows the display color to be controlled by applying a voltage and superparamagnetic nanoparticles, allows handwriting by applying a magnetic field to the display. We fabricated a twisting ball display utilizing these Janus particles and tested the electric color control and handwriting using a magnet. As a result, the display was capable of permitting handwriting with a small magnet in addition to conventional color control using an applied voltage (80 V). Handwriting performance was improved by increasing the concentration of superparamagnetic nanoparticles and was determined to be possible even when 80 V was applied across the electrodes for 4 wt. % superparamagnetic nanoparticles in one hemisphere. This improvement was impossible when the concentration was reduced to 2 wt. % superparamagnetic nanoparticles. The technology presented in our work can be applied to low-cost, lightweight, highly visible, and energy-saving electronic message boards and large whiteboards because the large-size display can be fabricated easily due to its simple structure.

  12. Electrically and magnetically dual-driven Janus particles for handwriting-enabled electronic paper

    International Nuclear Information System (INIS)

    Komazaki, Y.; Hirama, H.; Torii, T.

    2015-01-01

    In this work, we describe the synthesis of novel electrically and magnetically dual-driven Janus particles for a handwriting-enabled twisting ball display via the microfluidic technique. One hemisphere of the Janus particles contains a charge control agent, which allows the display color to be controlled by applying a voltage and superparamagnetic nanoparticles, allows handwriting by applying a magnetic field to the display. We fabricated a twisting ball display utilizing these Janus particles and tested the electric color control and handwriting using a magnet. As a result, the display was capable of permitting handwriting with a small magnet in addition to conventional color control using an applied voltage (80 V). Handwriting performance was improved by increasing the concentration of superparamagnetic nanoparticles and was determined to be possible even when 80 V was applied across the electrodes for 4 wt. % superparamagnetic nanoparticles in one hemisphere. This improvement was impossible when the concentration was reduced to 2 wt. % superparamagnetic nanoparticles. The technology presented in our work can be applied to low-cost, lightweight, highly visible, and energy-saving electronic message boards and large whiteboards because the large-size display can be fabricated easily due to its simple structure

  13. Investigation properties of superparamagnetic nanoparticles and magnetic field-dependent hyperthermia therapy

    Science.gov (United States)

    Hedayatnasab, Z.; Abnisa, F.; Daud, W. M. A. Wan

    2018-03-01

    The application of superparamagnetic nanoparticles as heating agents in hyperthermia therapy has made a therapeutic breakthrough in cancer treatment. The high efficiency of this magnetic hyperthermia therapy has derived from a great capability of superparamagnetic nanoparticles to generate focused heat in inaccessible tumors being effectively inactivated. The main challenges of this therapy are the improvement of the induction heating power of superparamagnetic nanoparticles and the control of the hyperthermia temperature in a secure range of 42 °C to 47 °C, at targeted area. The variation of these hyperthermia properties is principally dependent on the magnetic nanoparticles as well as the magnetic field leading to enhance the efficiency of magnetic hyperthermia therapy at targeted area and also avoid undue heating to healthy cells. The present study evaluates the magnetic hyperthermia therapy through the determination of superparamagnetic nanoparticles properties and magnetic field’ parameters.

  14. Magnetic properties of iron-oxide and (iron, cobalt)-oxide nanoparticles synthesized in polystyrene resin matrix

    Energy Technology Data Exchange (ETDEWEB)

    Naik, R. E-mail: naik@physics.wayne.edu; Kroll, E.; Rodak, D.; Tsoi, G.M.; McCullen, E.; Wenger, L.E.; Suryanarayanan, R.; Naik, V.M.; Vaishnava, P.P.; Tao, Qu; Boolchand, P

    2004-05-01

    A sulfonated polystyrene resin matrix was ion exchanged with aqueous solutions of (1) FeCl{sub 2}, (2) FeCl{sub 3}, (3) 2FeCl{sub 2}:FeCl{sub 3}, (4) 9FeCl{sub 2}:CoCl{sub 2}, and (5) 4FeCl{sub 2}:CoCl{sub 2} to prepare magnetic nanoparticles of varying size. The samples were characterized by X-ray diffraction (XRD), {sup 57}Fe Mossbauer spectroscopy, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM), and identify two major phases: {gamma}-Fe{sub 2}O{sub 3}, CoFe{sub 2}O{sub 4}, and perhaps a minor Fe{sub 3}O{sub 4} phase. SQUID magnetometry measurements indicate superparamagnetic particles with blocking temperatures (T{sub B}) ranging from 20 K to room temperature.

  15. Contrast enhanced susceptibility weighted imaging (CE-SWI) of the mouse brain using ultrasmall superparamagnetic ironoxide particles (USPIO)

    International Nuclear Information System (INIS)

    Hamans, B.C.; Heerschap, A.; Barth, M.; Leenders, W.P.

    2006-01-01

    Susceptibility weighted imaging (SWI) has been introduced as a novel approach to visualize the venous vasculature in the human brain. With SWI, small veins in the brain are depicted based on the susceptibility difference between deoxyhaemoglobin in the veins and surrounding tissue, which is further enhanced by the use of MR phase information. In this study we applied SWI in the mouse brain using an exogenous iron-based blood-pool contrast agent, with the aims of further enhancing the susceptibility effect and allowing the visualization of individual veins and arteries. Contrast enhanced (CE-) SWI of the brain was performed on healthy mice and mice carrying intracerebral glioma xenografts. This study demonstrates that detailed vascular information in the mouse brain can be obtained by using CE-SWI and is substantially enhanced compared to native SWI (i.e. without contrast agent). CE-SWI images of tumour-bearing mice were directly compared to histology, confirming that CE-SWI depicts the vessels supplying and draining the tumour. We propose that CE-SWI is a very promising tool for the characterization of tumour vasculature. (orig.)

  16. Experimental study of the biological properties of 188Re-Hepama-1 biologic superparamagnetic nanoparticles

    International Nuclear Information System (INIS)

    Feng Yanlin; Tan Jiaju; Sun Jing; Wen Guanghua; Wu Xiaolian; Liang Sheng; Xia Jiaoyun

    2007-01-01

    Objective: To investigate a new biologic-superparamagnetic nanoparticles's characteristics of immunological activity, biological distributing in vivo, targeting and inhibiting tumor effect. Methods: The experimental group 188 Re-Hepama-l-superparamagnetic nanoparticles, and control groups, including 188 ReO 4 - , 188 Re-Hepama-1, and 188 Re-superparamagnetic nanoparticles, were set up. The distributions were measured after injection 4 h and 24 h by caudal vein of Kuming mice. The magnetic targeting experiments in vivo were clone with and without magnetic field in liver after injection in New Zealand rabbit. The inhibiting tumor effect on hepatic cancer cell lines SMMC-7721 of the above four 188 Re labeled products were measured by mono nuclear cell direct cytotoxicity assay method. Results: After injection 4 h and 24 h by vein, the liver taking was highest in group 188 Re-Hepama-l-superparamagnetic nanoparticles. The radiative activity in liver in magnetism zoo was higher than in non magnetism zoo in 188 Re- Hepama-1-superparamagnetic nanoparticles after applying magnetic field in left lobe of liver, and the ratio of in magnetism zoo to non magnetism zoo was 1.87. And the half effective inhibition radioactive concentrations (IC 50 ) in 188 Re-Hepama-l-superparamagnetic nanoparticles was one forth of 188 ReO 4 - . Conclusion: 188 Re- Hepama-l-superparamagnetic nanoparticles showed its fine stability in intro, good immunological activity and significant liver target. (authors)

  17. Cotunneling enhancement of magnetoresistance in double magnetic tunnel junctions with embedded superparamagnetic NiFe nanoparticles

    International Nuclear Information System (INIS)

    Dempsey, K.J.; Arena, D.; Hindmarch, A.T.; Wei, H.X.; Qin, Q.H.; Wen, Z.C.; Wang, W.X.; Vallejo-Fernandez, G.; Han, X.F.; Marrows, C.H.

    2010-01-01

    Temperature and bias voltage-dependent transport characteristics are presented for double magnetic tunnel junctions (DMTJs) with self-assembled NiFe nanoparticles embedded between insulating alumina barriers. The junctions with embedded nanoparticles are compared to junctions with a single barrier of comparable size and growth conditions. The embedded particles are characterized using x-ray absorption spectroscopy, transmission electron microscopy, and magnetometry techniques, showing that they are unoxidized and remain superparamagnetic to liquid helium temperatures. The tunneling magnetoresistance (TMR) for the DMTJs is lower than the control samples, however, for the DMTJs an enhancement in TMR is seen in the Coulomb blockade region. Fitting the transport data in this region supports the theory that cotunneling is the dominant electron transport process within the Coulomb blockade region, sequential tunneling being suppressed. We therefore see an enhanced TMR attributed to the change in the tunneling process due to the interplay of the Coulomb blockade and spin-dependent tunneling through superparamagnetic nanoparticles, and develop a simple model to quantify the effect, based on the fact that our nanoparticles will appear blocked when measured on femtosecond tunneling time scales.

  18. Neutrophilic iron-oxidizing bacteria: occurrence and relevance in biological drinking water treatment

    DEFF Research Database (Denmark)

    Gülay, Arda; Musovic, Sanin; Albrechtsen, Hans-Jørgen

    2013-01-01

    Rapid sand filtration (RSF) is an economical way to treat anoxic groundwater around the world. It consists of groundwater aeration followed by passage through a sand filter. The oxidation and removal of ferrous iron, which is commonly found in anoxic groundwaters, is often believed to be a fully...... role of FeOB in iron removal at waterworks using RSF technologies....... physicochemical process. However, persistently low temperatures in RSF across Denmark may negatively affect the kinetics of chemical oxidation. The slower chemical oxidation of ferrous iron may increase the chances for iron bioconversion by neutrophilic iron-oxidizing bacteria (FeOB), which are found naturally...

  19. NMR-based metabonomic analyses of the effects of ultrasmall superparamagnetic particles of iron oxide (USPIO) on macrophage metabolism

    Science.gov (United States)

    Feng, Jianghua; Zhao, Jing; Hao, Fuhua; Chen, Chang; Bhakoo, Kishore; Tang, Huiru

    2011-05-01

    The metabonomic changes in murine RAW264.7 macrophage-like cell line induced by ultrasmall superparamagnetic particles of iron oxides (USPIO) have been investigated, by analyzing both the cells and culture media, using high-resolution NMR in conjunction with multivariate statistical methods. Upon treatment with USPIO, macrophage cells showed a significant decrease in the levels of triglycerides, essential amino acids such as valine, isoleucine, and choline metabolites together with an increase of glycerophospholipids, tyrosine, phenylalanine, lysine, glycine, and glutamate. Such cellular responses to USPIO were also detectable in compositional changes of cell media, showing an obvious depletion of the primary nutrition molecules, such as glucose and amino acids and the production of end-products of glycolysis, such as pyruvate, acetate, and lactate and intermediates of TCA cycle such as succinate and citrate. At 48 h treatment, there was a differential response to incubation with USPIO in both cell metabonome and medium components, indicating that USPIO are phagocytosed and released by macrophages. Furthermore, information on cell membrane modification can be derived from the changes in choline-like metabolites. These results not only suggest that NMR-based metabonomic methods have sufficient sensitivity to identify the metabolic consequences of murine RAW264.7 macrophage-like cell line response to USPIO in vitro, but also provide useful information on the effects of USPIO on cellular metabolism.

  20. NMR-based metabonomic analyses of the effects of ultrasmall superparamagnetic particles of iron oxide (USPIO) on macrophage metabolism

    International Nuclear Information System (INIS)

    Feng Jianghua; Zhao Jing; Hao Fuhua; Chen Chang; Bhakoo, Kishore; Tang, Huiru

    2011-01-01

    The metabonomic changes in murine RAW264.7 macrophage-like cell line induced by ultrasmall superparamagnetic particles of iron oxides (USPIO) have been investigated, by analyzing both the cells and culture media, using high-resolution NMR in conjunction with multivariate statistical methods. Upon treatment with USPIO, macrophage cells showed a significant decrease in the levels of triglycerides, essential amino acids such as valine, isoleucine, and choline metabolites together with an increase of glycerophospholipids, tyrosine, phenylalanine, lysine, glycine, and glutamate. Such cellular responses to USPIO were also detectable in compositional changes of cell media, showing an obvious depletion of the primary nutrition molecules, such as glucose and amino acids and the production of end-products of glycolysis, such as pyruvate, acetate, and lactate and intermediates of TCA cycle such as succinate and citrate. At 48 h treatment, there was a differential response to incubation with USPIO in both cell metabonome and medium components, indicating that USPIO are phagocytosed and released by macrophages. Furthermore, information on cell membrane modification can be derived from the changes in choline-like metabolites. These results not only suggest that NMR-based metabonomic methods have sufficient sensitivity to identify the metabolic consequences of murine RAW264.7 macrophage-like cell line response to USPIO in vitro, but also provide useful information on the effects of USPIO on cellular metabolism.

  1. Methodology description for detection of cellular uptake of PVA coated superparamagnetic iron oxide nanoparticles (SPION) in synovial cells of sheep

    International Nuclear Information System (INIS)

    Schoepf, Bernhard; Neuberger, Tobias; Schulze, Katja; Petri, Alke; Chastellain, Matthieu; Hofmann, Margarete; Hofmann, Heinrich; Rechenberg, Brigitte von

    2005-01-01

    The detection of superparamagnetic iron oxide nanoparticles (SPION) in synoviocytes is reported. Synoviocytes were incubated for 2, 12, 24 and 48 h with 1.5 mg/ml of PVA coated SPION under the influence of magnets (12 h). Particles were well tolerated by the synoviocytes, were easily detected using the Turnbulls and Prussian blue reactions between 12 and 24 h

  2. Methodology description for detection of cellular uptake of PVA coated superparamagnetic iron oxide nanoparticles (SPION) in synovial cells of sheep

    Energy Technology Data Exchange (ETDEWEB)

    Schoepf, Bernhard [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty Zurich, University of Zurich, Winterthurerstr. 260, 8057 Zurich (Switzerland); Neuberger, Tobias [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty Zurich, University of Zurich, Winterthurerstr. 260, 8057 Zurich (Switzerland); Schulze, Katja [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty Zurich, University of Zurich, Winterthurerstr. 260, 8057 Zurich (Switzerland); Petri, Alke [Powder Technology Laboratory, Institute of Materials, Swiss Federal Institute of Technology Lausanne, EPFL, MX-D Ecublens, 1015 Lausanne (Switzerland); Chastellain, Matthieu [Powder Technology Laboratory, Institute of Materials, Swiss Federal Institute of Technology Lausanne, EPFL, MX-D Ecublens, 1015 Lausanne (Switzerland); Hofmann, Margarete [MatSearch, Ch. Jean Pavillard 14, 1009 Pully (Switzerland); Hofmann, Heinrich [Powder Technology Laboratory, Institute of Materials, Swiss Federal Institute of Technology Lausanne, EPFL, MX-D Ecublens, 1015 Lausanne (Switzerland); Rechenberg, Brigitte von [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty Zurich, University of Zurich, Winterthurerstr. 260, 8057 Zurich (Switzerland)]. E-mail: bvonrechenberg@vetclinics.unizh.ch

    2005-05-15

    The detection of superparamagnetic iron oxide nanoparticles (SPION) in synoviocytes is reported. Synoviocytes were incubated for 2, 12, 24 and 48 h with 1.5 mg/ml of PVA coated SPION under the influence of magnets (12 h). Particles were well tolerated by the synoviocytes, were easily detected using the Turnbulls and Prussian blue reactions between 12 and 24 h.

  3. Dynamics of individual magnetic particles near a biosensor surface

    NARCIS (Netherlands)

    van Ommering, K.

    2010-01-01

    The use of magnetic particles in biosensing is advantageous for transport of target molecules in the device, for assay integration, and for labeled detection. The particles generally have a size between 100 nm and 3 ¿m and are of a superparamagnetic nature, being composed of thousands of iron oxide

  4. Ferroferric oxide/polystyrene (Fe3O4/PS superparamagnetic nanocomposite via facile in situ bulk radical polymerization

    Directory of Open Access Journals (Sweden)

    2010-03-01

    Full Text Available Organo-modified ferroferric oxide superparamagnetic nanoparticles, synthesized by the coprecipitation of superparamagnetic nanoparticles in presence of oleic acid (OA, were incorporated in polystyrene (PS by the facile in situ bulk radical polymerization by using 2,2-azobisisobutyronitrile (AIBN as initiator. The transmission electron microscopy (TEM analysis of the resultant uniform ferroferric oxide/polystyrene superparamagnetic nanocomposite (Fe3O4/PS showed that the superparamagnetic nanoparticles had been dispersed homogeneously in the polymer matrix due to the surface grafted polystyrene, confirmed by Fourier transform infrared (FT-IR spectroscopy and thermogravimetric analysis (TGA. The superparamagnetic property of the Fe3O4/PS nanocomposite was testified by the vibrating sample magnetometer (VSM analysis. The strategy developed is expected to be applied for the large-scale industrial manufacturing of the superparamagnetic polymer nanocomposite.

  5. Facile synthesis of polymer-enveloped ultrasmall superparamagnetic iron oxide for magnetic resonance imaging

    International Nuclear Information System (INIS)

    Hong Jun; Xu Dongmei; Yu Jiahui; Gong Peijun; Ma Hongjuan; Yao Side

    2007-01-01

    Ultrasmall superparamagnetic iron oxide (USPIO) with synthetic polymer, based on magnetite core, was synthesized via facile photochemical in situ polymerization. A possible mechanism of photochemical in situ polymerization was proposed. The obtained polymer-enveloped UPSIO was characterized by transmission electron microscopy (TEM), photo-correlation spectroscopy (PCS), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric (TG) analysis and vibrating sampling magnetometer (VSM) measurement. Properties such as ultrasmall particle size, hydrophilicity, strong magnetization and surface characteristics, which are desirable for magnetic resonance imaging (MRI) contrast agents, were evaluated in detail. The resultant USPIO-based MRI contrast agent holds considerable promise in molecular MR tracking, MR immune imaging, cell tracking and targeted intracellular hyperthermia, etc

  6. Intracellular Delivery of siRNA by Polycationic Superparamagnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Betzaida Castillo

    2012-01-01

    Full Text Available The siRNA transfection efficiency of nanoparticles (NPs, composed of a superparamagnetic iron oxide core modified with polycationic polymers (poly(hexamethylene biguanide or branched polyethyleneimine, were studied in CHO-K1 and HeLa cell lines. Both NPs demonstrated to be good siRNA transfection vehicles, but unmodified branched polyethyleneimine (25 kD was superior on both cell lines. However, application of an external magnetic field during transfection (magnetofection increased the efficiency of the superparamagnetic NPs. Furthermore, our results reveal that these NPs are less toxic towards CHO-K1 cell lines than the unmodified polycationic-branched polyethyleneimine (PEI. In general, the external magnetic field did not alter the cell’s viability nor it disrupted the cell membranes, except for the poly(hexamethylene biguanide-modified NP, where it was observed that in CHO-K1 cells application of the external magnetic field promoted membrane damage. This paper presents new polycationic superparamagnetic NPs as promising transfection vehicles for siRNA and demonstrates the advantages of magnetofection.

  7. Superparamagnetic iron oxide nanoparticles (SPIONs) for targeted drug delivery

    Science.gov (United States)

    Garg, Vijayendra K.; Kuzmann, Erno; Sharma, Virender K.; Kumar, Arun; Oliveira, Aderbal C.

    2016-10-01

    Studies of superparamagnetic iron oxide nanoparticles (SPIONs) have been extensively carried out. Since the earlier work on Mössbauer studies on SPIONs in 1970s, many biomedical applications and their uses in innovative methods to produce new materials with improved performance have appeared. Applications of SPIONs in environmental remediation are also forthcoming. Several different methods of synthesis and coating of the magnetic particles have been described in the literature, and Mössbauer spectroscopy has been an important tool in the characterization of these materials. It is quite possible that the interpretation of the Mössbauer spectra might not be entirely correct because the possible presence of maghemite in the end product of SPIONs might not have been taken into consideration. Nanotechnology is an emerging field that covers a wide range of new technologies under development in nanoscale (1 to 100 nano meters) to produce new products and methodology.

  8. Structure and superparamagnetic behaviour of magnetite nanoparticles in cellulose beads

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Jose R., E-mail: correa@fq.uh.cu [Department of General Chemistry, Faculty of Chemistry, University of Havana, Zapata and G, Havana City 10400 (Cuba); Bordallo, Eduardo [Sugar Cane-Cellulose Research Center, Cuba-9, Quivican (Cuba); Canetti, Dora [Department of Inorganic Chemistry, Faculty of Chemistry, University of Havana, Zapata and G, Havana City 10400 (Cuba); Leon, Vivian [Sugar Cane-Cellulose Research Center, Cuba-9, Quivican (Cuba); Otero-Diaz, Luis C. [Department of Inorganic Chemistry-1, Complutense University of Madrid, Madrid 28040 (Spain); Electron Microscopy Center, Complutense University of Madrid, Madrid 28040 (Spain); Negro, Carlos [Chemical Engineering Department, Complutense University of Madrid, Madrid 28040 (Spain); Gomez, Adrian [Electron Microscopy Center, Complutense University of Madrid, Madrid 28040 (Spain); Saez-Puche, Regino [Department of Inorganic Chemistry-1, Complutense University of Madrid, Madrid 28040 (Spain)

    2010-08-15

    Superparamagnetic magnetite nanoparticles were obtained starting from a mixture of iron(II) and iron(III) solutions in a preset total iron concentration from 0.04 to 0.8 mol l{sup -1} with ammonia at 25 and 70 {sup o}C. The regeneration of cellulose from viscose produces micrometrical spherical cellulose beads in which synthetic magnetite were embedded. The characterization of cellulose-magnetite beads by X-ray diffraction, Scanning and Transmission Electron Microscopy and magnetic measurement is reported. X-ray diffraction patterns indicate that the higher is the total iron concentration and temperature the higher is the crystal size of the magnetite obtained. Transmission Electron Microscopy studies of cellulose-magnetite beads revealed the distribution of magnetite nanoparticles inside pores of hundred nanometers. Magnetite as well as the cellulose-magnetite composites exhibit superparamagnetic characteristics. Field cooling and zero field cooling magnetic susceptibility measurements confirm the superparamagnetic behaviour and the blocking temperature for the magnetite with a mean size of 12.5 nm, which is 200 K.

  9. Near-infrared-responsive, superparamagnetic Au@Co nanochains

    Directory of Open Access Journals (Sweden)

    Varadee Vittur

    2017-08-01

    Full Text Available This manuscript describes a new type of nanomaterial, namely superparamagnetic Au@Co nanochains with optical extinctions in the near infrared (NIR. The Au@Co nanochains were synthesized via a one-pot galvanic replacement route involving a redox-transmetalation process in aqueous medium, where Au salt was reduced to form Au shells on Co seed templates, affording hollow Au@Co nanochains. The Au shells serve not only as a protective coating for the Co nanochain cores, but also to give rise to the optical properties of these unique nanostructures. Importantly, these bifunctional, magneto-optical Au@Co nanochains combine the advantages of nanophotonics (extinction at ca. 900 nm and nanomagnetism (superparamagnetism and provide a potentially useful new nanoarchitecture for biomedical or catalytic applications that can benefit from both activation by light and manipulation using an external magnetic field.

  10. Chondroitin sulfate-capped super-paramagnetic iron oxide nanoparticles as potential carriers of doxorubicin hydrochloride.

    Science.gov (United States)

    Mallick, Neha; Anwar, Mohammed; Asfer, Mohammed; Mehdi, Syed Hassan; Rizvi, Mohammed Moshahid Alam; Panda, Amulya Kumar; Talegaonkar, Sushama; Ahmad, Farhan Jalees

    2016-10-20

    Chondroitin-4-sulfate (CS), a glycosaminoglycan, was used to prepare CS-capped super-paramagnetic iron oxide nanoparticles, which were further employed for loading a water-soluble chemotherapeutic agent (doxorubicin hydrochloride, DOX). CS-capped SPIONs have potential biomedical application in cancer targeting. The optimized formulation had a hydrodynamic size of 91.2±0.8nm (PDI; 0.228±0.004) and zeta potential of -49.1±1.66mV. DOX was loaded onto the formulation up to 2% (w/w) by physical interaction with CS. TEM showed nano-sized particles having a core-shell structure. XRD confirmed crystal phase of iron oxide. FT-IR conceived the interaction of iron oxide with CS as bidentate chelation and also confirmed DOX loading. Vibration sample magnetometry confirmed super-paramagnetic nature of nanoparticles, with saturation magnetization of 0.238emug(-1). In vitro release profile at pH 7.4 showed that 96.67% of DOX was released within 24h (first order kinetics). MTT assay in MCF7 cells showed significantly higher (p<0.0001) cytotoxicity for DOX in SPIONs than DOX solution (IC50 values 6.294±0.4169 and 11.316±0.1102μgmL(-1), respectively). Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Stabilisation effects of superparamagnetic nanoparticles on clustering in nanocomposite microparticles and on magnetic behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Mandel, K., E-mail: karl-sebastian.mandel@isc.fraunhofer.de [Fraunhofer Institute for Silicate Research, ISC, Neunerplatz 2, 97082 Würzburg (Germany); University Würzburg, Chair of Chemical Technology of Materials Synthesis, Röntgenring 11, 97070 Würzburg (Germany); Hutter, F., E-mail: frank.hutter@isc.fraunhofer.de [Fraunhofer Institute for Silicate Research, ISC, Neunerplatz 2, 97082 Würzburg (Germany); Gellermann, C., E-mail: carsten.gellermann@isc.fraunhofer.de [Fraunhofer Institute for Silicate Research, ISC, Neunerplatz 2, 97082 Würzburg (Germany); Sextl, G., E-mail: gerhard.sextl@isc.fraunhofer.de [Fraunhofer Institute for Silicate Research, ISC, Neunerplatz 2, 97082 Würzburg (Germany); University Würzburg, Chair of Chemical Technology of Materials Synthesis, Röntgenring 11, 97070 Würzburg (Germany)

    2013-04-15

    Superparamagnetic nanoparticles of magnetite were coprecipitated from iron salts, dispersed with nitric acid and stabilised either by lactic acid (LA) or by a polycarboxylate-ether polymer (MELPERS4343, MP). The differently stabilised nanoparticles were incorporated into a silica matrix to form nanocomposite microparticles. The silica matrix was prepared either from tetraethylorthosilicate (TEOS) or from an aqueous sodium silicate (water glass) solution. Stabilisation of nanoparticles had a crucial influence on microparticle texture and nanoparticle distribution in the silica matrix. Magnetic measurements in combination with transmission electron microscopy (TEM) investigations suggest a uniform magnetic interaction of nanoparticles in case of LA stabilisation and magnetically interacting nanoparticle clusters of different sizes in case of MP stabilisation. Splitting of blocking temperature (T{sub B}) and irreversible temperature (T{sub ir}) in zero field cooled (ZFC) and field cooled (FC) measurements is discussed in terms of nanoparticle clustering. -- Highlights: ► Superparamagnetic nanoparticles were synthesised, dispersed and stabilised. ► Stabilisation is either via a polycarboxylate ether polymer or lactic acid. ► Stabilised nanoparticles were incorporated into silica to form composite particles. ► Depending on the stabilisation, nanoparticle clustering in the composites differed. ► Clustering influences zero field cooled/field cooled magnetic measurements.

  12. In vitro and in vivo lung deposition of coated magnetic aerosol particles.

    Science.gov (United States)

    Xie, Yuanyuan; Longest, P Worth; Xu, Yun Hao; Wang, Jian Ping; Wiedmann, Timothy Scott

    2010-11-01

    The magnetic induced deposition of polydispersed aerosols composed of agglomerated superparamagnetic particles was measured with an in vitro model system and in the mouse trachea and deep lung for the purpose of investigating the potential of site specific respiratory drug delivery. Oleic acid coated superparamagnetic particles were prepared and characterized by TEM, induced magnetic moment, and iron content. The particles were dispersed in cyclohexane, aerosolized with an ultrasonic atomizer and dried by sequential reflux and charcoal columns. The fraction of iron deposited on glass tubes increased with particle size and decreasing flow rate. High deposition occurred with a small diameter tube, but the deposition fraction was largely independent of tube size at larger diameters. Results from computational fluid dynamics qualitatively agreed with the experimental results. Enhanced deposition was observed in the mouse lung but not in the trachea consistent with the analysis of the aerodynamic time allowed for deposition and required magnetic deposition time. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  13. Crystal structure of superparamagnetic Mg0.2Ca0.8Fe2O4 nanoparticles synthesized by sol–gel method

    International Nuclear Information System (INIS)

    Escamilla-Pérez, A.M.; Cortés-Hernández, D.A.; Almanza-Robles, J.M.; Mantovani, D.; Chevallier, P.

    2015-01-01

    Powders of magnetic iron oxide nanoparticles (Mg 0.2 Ca 0.8 Fe 2 O 4 ) were prepared by a sol–gel method using ethylene glycol and nitrates of Fe, Ca and Mg as starting materials. Those powders were heat treated at different temperatures (573, 673, 773 and 873 K). In order to evaluate the effect of the heat treatment temperature on the nanoferrites properties, X-ray diffraction (XRD), vibrating sample magnetometry (VSM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) techniques were used. It was found that the reaction products exhibit nanometric sizes and superparamagnetic behavior. It is also demonstrated that, as the heat treatment temperature increases, the particle size and the saturation magnetization of the nanoferrites are increased. - Highlights: • Mg 0.2 Ca 0.8 Fe 2 O 4 superparamagnetic nanoparticles were successfully synthesized. • Particle average sizes of Ca–Mg ferrites were within the range of 8–25 nm. • The nanoferrite treated at 873 K showed a stoichiometry close to Mg 0.2 Ca 0.8 Fe 2 O 4 . • The heat treatment temperature has a strong effect on the crystal structure. • These nanoparticles are potential materials for magnetic hyperthermia

  14. Magnetic characterization of superparamagnetic nanoparticles pulled through model membranes.

    Science.gov (United States)

    Barnes, Allison L; Wassel, Ronald A; Mondalek, Fadee; Chen, Kejian; Dormer, Kenneth J; Kopke, Richard D

    2007-01-04

    To quantitatively compare in-vitro and in vivo membrane transport studies of targeted delivery, one needs characterization of the magnetically-induced mobility of superparamagnetic iron oxide nanoparticles (SPION). Flux densities, gradients, and nanoparticle properties were measured in order to quantify the magnetic force on the SPION in both an artificial cochlear round window membrane (RWM) model and the guinea pig RWM. Three-dimensional maps were created for flux density and magnetic gradient produced by a 24-well casing of 4.1 kilo-Gauss neodymium-iron-boron (NdFeB) disc magnets. The casing was used to pull SPION through a three-layer cell culture RWM model. Similar maps were created for a 4 inch (10.16 cm) cube 48 MGOe NdFeB magnet used to pull polymeric-nanoparticles through the RWM of anesthetized guinea pigs. Other parameters needed to compute magnetic force were nanoparticle and polymer properties, including average radius, density, magnetic susceptibility, and volume fraction of magnetite. A minimum force of 5.04 x 10(-16) N was determined to adequately pull nanoparticles through the in-vitro model. For the guinea pig RWM, the magnetic force on the polymeric nanoparticles was 9.69 x 10-20 N. Electron microscopy confirmed the movement of the particles through both RWM models. As prospective carriers of therapeutic substances, polymers containing superparamagnetic iron oxide nanoparticles were succesfully pulled through the live RWM. The force required to achieve in vivo transport was significantly lower than that required to pull nanoparticles through the in-vitro RWM model. Indeed very little force was required to accomplish measurable delivery of polymeric-SPION composite nanoparticles across the RWM, suggesting that therapeutic delivery to the inner ear by SPION is feasible.

  15. Relaxometry and Dephasing Imaging of Superparamagnetic Magnetite Nanoparticles Using a Single Qubit

    Science.gov (United States)

    Schmid-Lorch, Dominik; Häberle, Thomas; Reinhard, Friedemann; Zappe, Andrea; Slota, Michael; Bogani, Lapo; Finkler, Amit; Wrachtrup, Jörg

    2015-08-01

    To study the magnetic dynamics of superparamagnetic nanoparticles we use scanning probe relaxometry and dephasing of the nitrogen-vacancy (NV) center in diamond, characterizing the spin-noise of a single 10-nm magnetite particle. Additionally, we show the anisotropy of the NV sensitivity's dependence on the applied decoherence measurement method. By comparing the change in relaxation (T 1 ) and dephasing (T 2 ) time in the NV center when scanning a nanoparticle over it, we are able to extract the nanoparticle's diameter and distance from the NV center using an Ornstein-Uhlenbeck model for the nanoparticle's fluctuations. This scanning-probe technique can be used in the future to characterize different spin label substitutes for both medical applications and basic magnetic nanoparticle behavior.

  16. Optimization of Iron Oxide Tracer Synthesis for Magnetic Particle Imaging

    Directory of Open Access Journals (Sweden)

    Sabina Ziemian

    2018-03-01

    Full Text Available The optimization of iron oxide nanoparticles as tracers for magnetic particle imaging (MPI alongside the development of data acquisition equipment and image reconstruction techniques is crucial for the required improvements in image resolution and sensitivity of MPI scanners. We present a large-scale water-based synthesis of multicore superparamagnetic iron oxide nanoparticles stabilized with dextran (MC-SPIONs. We also demonstrate the preparation of single core superparamagnetic iron oxide nanoparticles in organic media, subsequently coated with a poly(ethylene glycol gallic acid polymer and phase transferred to water (SC-SPIONs. Our aim was to obtain long-term stable particles in aqueous media with high MPI performance. We found that the amplitude of the third harmonic measured by magnetic particle spectroscopy (MPS at 10 mT is 2.3- and 5.8-fold higher than Resovist for the MC-SPIONs and SC-SPIONs, respectively, revealing excellent MPI potential as compared to other reported MPI tracer particle preparations. We show that the reconstructed MPI images of phantoms using optimized multicore and specifically single-core particles are superior to that of commercially available Resovist, which we utilize as a reference standard, as predicted by MPS.

  17. Matrix-Matched Iron-Oxide Laser Ablation ICP-MS U–Pb Geochronology Using Mixed Solution Standards

    Directory of Open Access Journals (Sweden)

    Liam Courtney-Davies

    2016-08-01

    Full Text Available U–Pb dating of the common iron-oxide hematite (α-Fe2O3, using laser-ablation inductively-coupled-plasma mass-spectrometry (LA-ICP-MS, provides unparalleled insight into the timing and processes of mineral deposit formation. Until now, the full potential of this method has been negatively impacted by the lack of suitable matrix-matched standards. To achieve matrix-matching, we report an approach in which a U–Pb solution and ablated material from 99.99% synthetic hematite are simultaneously mixed in a nebulizer chamber and introduced to the ICP-MS. The standard solution contains fixed U- and Pb-isotope ratios, calibrated independently, and aspiration of the isotopically homogeneous solution negates the need for a matrix-matched, isotopically homogenous natural iron-oxide standard. An additional advantage of using the solution is that the individual U–Pb concentrations and isotope ratios can be adjusted to approximate that in the unknown, making the method efficient for dating hematite containing low (~10 ppm to high (>1 wt % U concentrations. The above-mentioned advantage to this solution method results in reliable datasets, with arguably-better accuracy in measuring U–Pb ratios than using GJ-1 Zircon as the primary standard, which cannot be employed for such low U concentrations. Statistical overlaps between 207Pb/206Pb weighted average ages (using GJ-1 Zircon and U–Pb upper intercept ages (using the U–Pb mixed solution method of two samples from iron-oxide copper-gold (IOCG deposits in South Australia demonstrate that, although fractionation associated with a non-matrix matched standard does occur when using GJ-1 Zircon as the primary standard, it does not impact the 207Pb/206Pb or upper intercept age. Thus, GJ-1 Zircon can be considered reliable for dating hematite using LA-ICP-MS. Downhole fractionation of 206Pb/238U is observed to occur in spot analyses of hematite. The use of rasters in future studies will hopefully minimize

  18. The rheological responds of the superparamagnetic fluid based on Fe{sub 3}O{sub 4} hollow nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, Xiaohui; Pei, Lei; Xuan, Shouhu, E-mail: xuansh@ustc.edu.cn; Yan, Qifan; Gong, Xinglong, E-mail: gongxl@ustc.edu.cn

    2017-05-01

    In this work, a superparamagnetic fluid based on Fe{sub 3}O{sub 4} hollow nanospheres was developed and the influence of the particle structure on the rheological properties was investigated. The Fe{sub 3}O{sub 4} hollow nanospheres which were prepared by using the hydrothermal method presented the superparamagnetic characteristic, and the magnetic fluid thereof showed well magnetorheological (MR) effect. The stable magnetic fluid had a high yield stress even at low shear rate and its maximal yield stress was dramatically influenced by the measurement gap. In comparison to the Fe{sub 3}O{sub 4} nanoparticles based magnetic fluid (MF), the Fe{sub 3}O{sub 4} hollow nanospheres based MF exhibited better MR effect and higher stability since the unique hollow nanostructure. The shear stress of the hollow nanospheres is about 1.85 times larger than the nanoparticles based MF because it formed stronger chains structure under applying a magnetic field. To further investigate the enhancing mechanism, a molecule dynamic simulation was conducted to analyze the shear stress and the structure evolution of the Fe{sub 3}O{sub 4} hollow nanospheres based MF and the simulation matched well with the experimental results. - Highlights: • A superparamagnetic fluid based on Fe{sub 3}O{sub 4} hollow nanospheres was investigated. • The stable magnetic fluid had a high yield stress even at low shear rate. • The shear stress of the hollow nanospheres is large. • A molecule dynamic simulation was conducted to analyze the shear stress.

  19. A mathematical model of superparamagnetic iron oxide nanoparticle magnetic behavior to guide the design of novel nanomaterials

    International Nuclear Information System (INIS)

    Ortega, Ryan A.; Giorgio, Todd D.

    2012-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) exhibit unique magnetic properties that make them highly efficacious as MR imaging contrast agents and laboratory diagnostic tools. The complexity of SPION magnetic behavior and the multiple parameters affecting this behavior complicate attempts at fabricating particles suited for a particular purpose. A mathematical model of SPION magnetic properties derived from experimental relationships and first principles can be an effective design tool for predicting particle behavior before materials are fabricated. Here, a novel model of SPION magnetic properties is described, using particle size and applied magnetic field as the primary variable inputs. The model is capable of predicting particle susceptibility and non-linear particle magnetization as well as describing the vector magnetic field produced by a single particle in an applied field. Magnetization values produced by the model agree with recent experimental measurements of particle magnetizations. The model is used to predict the complex magnetic behavior of clustered magnetic particles in simulated in vivo environment; specifically, interactions between the clusters and water molecules. The model shows that larger particles exhibit more linear magnetic behavior and stronger magnetization and that clusters of smaller particles allow for more numerous SPION–water molecule interactions and more uniform cluster magnetizations.

  20. Atomic layer deposition of superparamagnetic and ferrimagnetic magnetite thin films

    International Nuclear Information System (INIS)

    Zhang, Yijun; Liu, Ming; Ren, Wei; Zhang, Yuepeng; Chen, Xing; Ye, Zuo-Guang

    2015-01-01

    One of the key challenges in realizing superparamagnetism in magnetic thin films lies in finding a low-energy growth way to create sufficiently small grains and magnetic domains which allow the magnetization to randomly and rapidly reverse. In this work, well-defined superparamagnetic and ferrimagnetic Fe 3 O 4 thin films are successfully prepared using atomic layer deposition technique by finely controlling the growth condition and post-annealing process. As-grown Fe 3 O 4 thin films exhibit a conformal surface and poly-crystalline nature with an average grain size of 7 nm, resulting in a superparamagnetic behavior with a blocking temperature of 210 K. After post-annealing in H 2 /Ar at 400 °C, the as-grown α−Fe 2 O 3 sample is reduced to Fe 3 O 4 phase, exhibiting a ferrimagnetic ordering and distinct magnetic shape anisotropy. Atomic layer deposition of magnetite thin films with well-controlled morphology and magnetic properties provides great opportunities for integrating with other order parameters to realize magnetic nano-devices with potential applications in spintronics, electronics, and bio-applications

  1. Facile synthesis of radial-like macroporous superparamagnetic chitosan spheres with in-situ co-precipitation and gelation of ferro-gels.

    Directory of Open Access Journals (Sweden)

    Chih-Hui Yang

    Full Text Available Macroporous chitosan spheres encapsulating superparamagnetic iron oxide nanoparticles were synthesized by a facile and effective one-step fabrication process. Ferro-gels containing ferrous cations, ferric cations and chitosan were dropped into a sodium hydroxide solution through a syringe pump. In addition, a sodium hydroxide solution was employed for both gelation (chitosan and co-precipitation (ferrous cations and ferric cations of the ferro-gels. The results showed that the in-situ co-precipitation of ferro-ions gave rise to a radial morphology with non-spheroid macro pores (large cavities inside the chitosan spheres. The particle size of iron oxide can be adjusted from 2.5 nm to 5.4 nm by tuning the concentration of the sodium hydroxide solution. Using Fourier Transform Infrared Spectroscopy and X-ray diffraction spectra, the synthesized nanoparticles were illustrated as Fe(3O(4 nanoparticles. In addition, the prepared macroporous chitosan spheres presented a super-paramagnetic behaviour at room temperature with a saturation magnetization value as high as ca. 18 emu/g. The cytotoxicity was estimated using cell viability by incubating doses (0∼1000 µg/mL of the macroporous chitosan spheres. The result showed good viability (above 80% with alginate chitosan particles below 1000 µg/mL, indicating that macroporous chitosan spheres were potentially useful for biomedical applications in the future.

  2. Increased cellular uptake of lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles due to surface modification with folic acid.

    Science.gov (United States)

    Feuser, Paulo Emilio; Arévalo, Juan Marcelo Carpio; Junior, Enio Lima; Rossi, Gustavo Rodrigues; da Silva Trindade, Edvaldo; Rocha, Maria Eliane Merlin; Jacques, Amanda Virtuoso; Ricci-Júnior, Eduardo; Santos-Silva, Maria Claudia; Sayer, Claudia; de Araújo, Pedro H Hermes

    2016-12-01

    Lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid were synthesized by miniemulsion polymerization in just one step. In vitro biocompatibility and cytotoxicity assays on L929 (murine fibroblast), human red blood, and HeLa (uterine colon cancer) cells were performed. The effect of folic acid at the nanoparticles surface was evaluated through cellular uptake assays in HeLa cells. Results showed that the presence of folic acid did not affect substantially the polymer particle size (~120 nm), the superparamagnetic behavior, the encapsulation efficiency of lauryl gallate (~87 %), the Zeta potential (~38 mV) of the polymeric nanoparticles or the release profile of lauryl gallate. The release profile of lauryl gallate from superparamagnetic poly(methyl methacrylate) nanoparticles presented an initial burst effect (0-1 h) followed by a slow and sustained release, indicating a biphasic release system. Lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles with folic acid did not present cytotoxicity effects on L929 and human red blood cells. However, free lauryl gallate presented significant cytotoxic effects on L929 and human red blood cells at all tested concentrations. The presence of folic acid increased the cytotoxicity of lauryl gallate loaded in nanoparticles on HeLa cells due to a higher cellular uptake when HeLa cells were incubated at 37 °C. On the other hand, when the nanoparticles were incubated at low temperature (4 °C) cellular uptake was not observed, suggesting that the uptake occurred by folate receptor mediated energy-dependent endocytosis. Based on presented results our work suggests that this carrier system can be an excellent alternative in targeted drug delivery by folate receptor.

  3. Evaluation of superparamagnetic and biocompatible properties of mesoporous silica coated cobalt ferrite nanoparticles synthesized via microwave modified Pechini method

    Energy Technology Data Exchange (ETDEWEB)

    Gharibshahian, M. [Faculty of New Sciences and Technologies, Semnan University, Semnan (Iran, Islamic Republic of); Mirzaee, O., E-mail: O_mirzaee@semnan.ac.ir [Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Nourbakhsh, M.S. [Faculty of New Sciences and Technologies, Semnan University, Semnan (Iran, Islamic Republic of)

    2017-03-01

    Cobalt ferrite nano particles were synthesized by Pechini sol-gel method and calcined at 700 °C in electrical and microwave furnace. The microwave calcined sample was coated with mesoporous silica by hydrothermal method. Characterization was performed by XRD, FESEM, TEM, VSM, BET and FTIR analysis. The cytotoxicity was evaluated by MTT assay with 3T3 fibroblast cells. The XRD and FTIR results confirmed spinal formation in both cases and verified the formation of silica coating on the nanoparticles. For microwave calcination, The XRD and SEM results demonstrated smaller and flat adhesion forms of nanoparticles with the average size of 15 nm. The VSM results demonstrated nearly superparamagnetic nanoparticles with significant saturation magnetization equal to 64 emu/g. By coating, saturation magnetization was decreased to 36 emu/g. Moreover, the BET results confirmed the formation of mesoporous coating with the average pore diameters of 2.8 nm and average pore volume of 0.82 cm{sup 3} g{sup −1}. Microwave calcined nanoparticles had the best structural and magnetic properties. - Highlights: • CoFe{sub 2}O{sub 4} nanoparticles were synthesized using the microwave modified Pechini method. • The Effect of calcination route and silica coating on NPs properties was studied. • The nearly superparamagnetic nanoparticles were achieved by microwave calcination. • MFC NPs had the best magnetic properties and MTT assay showed no toxicity for MFC-MSC NPs. • A useful scheme was designed to achieve biological superparamagnetic core/shell NPs.

  4. Harmonic decomposition of magneto-optical signal from suspensions of superparamagnetic nanoparticles

    Science.gov (United States)

    Patterson, Cody; Syed, Maarij; Takemura, Yasushi

    2018-04-01

    Magnetic nanoparticles (MNPs) are widely used in biomedical applications. Characterizing dilute suspensions of superparamagnetic iron oxide nanoparticles (SPIONs) in bio-relevant media is particularly valuable for magnetic particle imaging, hyperthermia, drug delivery, etc. Here, we study dilute aqueous suspensions of single-domain magnetite nanoparticles using an AC Faraday rotation (FR) setup. The setup uses an oscillating magnetic field (800 Hz) which generates a multi-harmonic response. Each harmonic is collected and analyzed using the Fourier components of the theoretical signal determined by a Langevin-like magnetization. With this procedure, we determine the average magnetic moment per particle μ , particle number density n, and Verdet constant of the sample. The fitted values of μ and n are shown to be consistent across each harmonic. Additionally, we present the results of these parameters as n is varied. The large values of μ reveal the possibility of clustering as reported in other literature. This suggests that μ is representative of the average magnetic moment per cluster of nanoparticles. Multiple factors, including the external magnetic field, surfactant degradation, and laser absorption, can contribute to dynamic and long-term aggregation leading to FR signals that represent space- and time-averaged sample parameters. Using this powerful analysis procedure, future studies are aimed at determining the clustering mechanisms in this AC system and characterizing SPION suspensions at different frequencies and viscosities.

  5. Colloidal stability of superparamagnetic iron oxide nanoparticles in the central nervous system: a review.

    Science.gov (United States)

    Champagne, Pierre-Olivier; Westwick, Harrison; Bouthillier, Alain; Sawan, Mohamad

    2018-06-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) consist of nanosized metallic-based particles with unique magnetic properties. Their potential in both diagnostic and therapeutic applications in the CNS is at the source of an expanding body of the literature in recent years. Colloidal stability of nanoparticles represents their ability to resist aggregation and is a central aspect for the use of SPION in biological environment such as the CNS. This review gives a comprehensive update of the recent developments and knowledge on the determinants of colloidal stability of SPIONs in the CNS. Factors leading to aggregate formation and the repercussions of colloidal instability of SPION are reviewed in detail pertaining to their use in the CNS.

  6. Degeneration of biogenic superparamagnetic magnetite.

    Science.gov (United States)

    Li, Y-L; Pfiffner, S M; Dyar, M D; Vali, H; Konhauser, K; Cole, D R; Rondinone, A J; Phelps, T J

    2009-01-01

    Magnetite crystals precipitated as a consequence of Fe(III) reduction by Shewanella algae BrY after 265 h incubation and 5-year anaerobic storage were investigated with transmission electron microscopy, Mössbauer spectroscopy and X-ray diffraction. The magnetite crystals were typically superparamagnetic with an approximate size of 13 nm. The lattice constants of the 265 h and 5-year crystals are 8.4164A and 8.3774A, respectively. The Mössbauer spectra indicated that the 265 h magnetite had excess Fe(II) in its crystal-chemistry (Fe(3+) (1.990)Fe(2+) (1.015)O(4)) but the 5-year magnetite was Fe(II)-deficient in stoichiometry (Fe(3+) (2.388)Fe(2+) (0.419)O(4)). Such crystal-chemical changes may be indicative of the degeneration of superparamagnetic magnetite through the aqueous oxidization of Fe(II) anaerobically, and the concomitant oxidation of the organic phases (fatty acid methyl esters) that were present during the initial formation of the magnetite. The observation of a corona structure on the aged magnetite corroborates the anaerobic oxidation of Fe(II) on the outer layers of magnetite crystals. These results suggest that there may be a possible link between the enzymatic activity of the bacteria and the stability of Fe(II)-excess magnetite, which may help explain why stable nano-magnetite grains are seldom preserved in natural environments.

  7. Degeneration of Biogenic Superparamagnetic Magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dr. Yi-Liang [University of Tennessee, Knoxville (UTK); Pfiffner, Susan M. [University of Tennessee, Knoxville (UTK); Dyar, Dr. M Darby [Mount Holyoke College; Vali, Dr. Hojatolah [McGill University, Montreal, Quebec; Konhauser, Dr, Kurt [University of Alberta; Cole, David R [ORNL; Rondinone, Adam Justin [ORNL; Phelps, Tommy Joe [ORNL

    2009-01-01

    ABSTRACT. Magnetite crystals precipitated as a consequence of Fe(III) reduction by Shewanella algae BrY after 265 hours incubation and 5-year storage were investigated with transmission electron microscopy, M ssbauer spectroscopy and X-ray diffraction. The magnetite crystals were typically superparamagnetic with an approximate size of 13 nm. The lattice constants of the 265 hour and 5-year crystals are 8.4164 and 8.3774 , respectively. The M ssbauer spectra indicated that the 265 hour magnetite had excess Fe(II) in its crystal-chemistry (Fe3+1.9901Fe2+ 1.0149O4) but the 5-year magnetite was Fe(II)-deficient in stoichiometry (Fe3+2.3875Fe2+0.4188O4). Such crystal-hemical changes may be indicative of the degeneration of superparamagnetic magnetite through the aqueous oxidization of Fe(II) anaerobically, and the concomitant oxidation of the organic phases(fatty acid methyl esters) that were present during the initial formation of the magnetite. The observation of a corona structure on the aged magnetite corroborates the oxidation of Fe(II) on the outer layers of magnetite crystals. These results suggest that there may be a possible link between the enzymatic activity of the bacteria and the stability of Fe(II)-excess magnetite, which may help explain why stable nano-magnetite grains are seldom preserved in natural environments.

  8. Magnetic separation from superparamagnetic particle suspensions

    International Nuclear Information System (INIS)

    Sinha, Ashok; Ganguly, Ranjan; Puri, Ishwar K.

    2009-01-01

    We investigate the magnetophoretic separation of magnetic microparticles from a non-dilute flow in a microfluidic channel and their subsequent field-induced aggregation under the influence of an externally applied magnetic force. This force induces dipolar interactions between the particles that aid in their separation from the flow. Existing analytical models for dilute suspensions cannot be extended to non-dilute suspensions in which interparticle magnetic interactions play an important role. We therefore conduct a parametric investigation of the mechanics of this problem in a microcapillary flow through simulations and experimental visualization. When a magnetic field is applied, the magnetic microparticles form an aggregate on the channel wall that is influenced by the competition between the holding magnetic force and the aggregate-depleting flow shear force. Microparticle collection in the aggregate increases linearly with increasing magnetic field strength and is characterized by distinct buildup and washaway phases. The collected microparticle volume fraction in an aggregate is found to depend on a single dimensional group that depends upon characteristic system parameters.

  9. Increased transverse relaxivity in ultrasmall superparamagnetic iron oxide nanoparticles used as MRI contrast agent for biomedical imaging.

    Science.gov (United States)

    Mishra, Sushanta Kumar; Kumar, B S Hemanth; Khushu, Subash; Tripathi, Rajendra P; Gangenahalli, Gurudutta

    2016-09-01

    Synthesis of a contrast agent for biomedical imaging is of great interest where magnetic nanoparticles are concerned, because of the strong influence of particle size on transverse relaxivity. In the present study, biocompatible magnetic iron oxide nanoparticles were synthesized by co-precipitation of Fe 2+ and Fe 3+ salts, followed by surface adsorption with reduced dextran. The synthesized nanoparticles were spherical in shape, and 12 ± 2 nm in size as measured using transmission electron microscopy; this was corroborated with results from X-ray diffraction and dynamic light scattering studies. The nanoparticles exhibited superparamagnetic behavior, superior T 2 relaxation rate and high relaxivities (r 1  = 18.4 ± 0.3, r 2  = 90.5 ± 0.8 s -1 mM -1 , at 7 T). MR image analysis of animals before and after magnetic nanoparticle administration revealed that the signal intensity of tumor imaging, specific organ imaging and whole body imaging can be clearly distinguished, due to the strong relaxation properties of these nanoparticles. Very low concentrations (3.0 mg Fe/kg body weight) of iron oxides are sufficient for early detection of tumors, and also have a clear distinction in pre- and post-enhancement of contrast in organs and body imaging. Many investigators have demonstrated high relaxivities of magnetic nanoparticles at superparamagnetic iron oxide level above 50 nm, but this investigation presents a satisfactory, ultrasmall, superparamagnetic and high transverse relaxivity negative contrast agent for diagnosis in pre-clinical studies. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Investigation of superparamagnetism in pure and chromium substituted cobalt nanoferrite

    Energy Technology Data Exchange (ETDEWEB)

    Raghasudha, M., E-mail: raghasudha_m@yahoo.co.in [Department of Chemistry, University College of Science, Osmania University, Hyderabad 500007, Telangana (India); Ravinder, D. [Department of Physics, University College of Science, Osmania University, Hyderabad 500007, Telangana (India); Veerasomaiah, P. [Department of Chemistry, University College of Science, Osmania University, Hyderabad 500007, Telangana (India)

    2016-12-15

    Nanostructured magnetic materials with the chemical composition CoFe{sub 2}O{sub 4} and CoCr{sub 0.9}Fe{sub 1.1}O{sub 4} were synthesized through Citrate-gel chemical synthesis with a crystallite size of 6.5 nm and 10.7 nm respectively. Structural characterization of the samples was performed by X-ray diffraction analysis and magnetic properties were studied using Vibrating Sample Magnetometer (VSM). Magnetization measurements as a function of applied magnetic field ±10 T at various temperatures 5 K, 25 K, 310 K and 355 K were carried out. Field cooled (FC) and Zero field cooled (ZFC) magnetization measurements under a magnetic field of 100 Oe for temperature ranging from 5–400 K were studied. The blocking temperature (T{sub b}) for both the ferrites was observed to be around 355 K. Below blocking temperature they showed ferromagnetic behavior and above which they are superparamagnetic in nature that favors their application in the biomedical field. The substitution of paramagnetic Cr{sup 3+} ions for magnetic Fe{sup 3+} ion in cobalt ferrite has resulted in a decrease in magnetization and the coercivity of the samples. CoCr{sub 0.9}Fe{sub 1.1}O{sub 4} nanoferrites with observed low coercivity of 338 Oe make them desirable in high frequency transformers due to their very soft magnetic behavior. - Highlights: • Particle size of CoFe{sub 2}O{sub 4} and CoCr{sub 0.9}Fe{sub 1.1}O{sub 4} is 6.5 nm and 10.7 nm respectively. • At 5 K and 25 K the materials were ferromagnetic in nature with high coercivity. • Materials show superparamagnetic behavior above room temperature. • Blocking temperature is at around 355 K where coercivity and remanence are zero. • Materials are suitable for hyperthermia cancer therapy.

  11. Multifunctional superparamagnetic nanoparticles for enhanced drug transport in cystic fibrosis

    Science.gov (United States)

    Armijo, Leisha M.; Brandt, Yekaterina I.; Rivera, Antonio C.; Cook, Nathaniel C.; Plumley, John B.; Withers, Nathan J.; Kopciuch, Michael; Smolyakov, Gennady A.; Huber, Dale L.; Smyth, Hugh D.; Osinski, Marek

    2012-10-01

    Iron oxide colloidal nanoparticles (ferrofluids) are investigated for application in the treatment of cystic fibrosis lung infections, the leading cause of mortality in cystic fibrosis patients. We investigate the use of iron oxide nanoparticles to increase the effectiveness of administering antibiotics through aerosol inhalation using two mechanisms: directed particle movement in the presence of an inhomogeneous static external magnetic field and magnetic hyperthermia. Magnetic hyperthermia is an effective method for decreasing the viscosity of the mucus and biofilm, thereby enhancing drug, immune cell, and antibody penetration to the affected area. Iron oxide nanoparticles of various sizes and morphologies were synthesized and tested for specific losses (heating power). Nanoparticles in the superparamagnetic to ferromagnetic size range exhibited excellent heating power. Additionally, iron oxide / zinc selenide core/shell nanoparticles were prepared, in order to enable imaging of the iron oxide nanoparticles. We also report on synthesis and characterization of MnSe/ZnSeS alloyed quantum dots.

  12. MR tomography of focal liver lesions using the superparamagnetic contrast agent AMI-25 at 1.5 tesla

    International Nuclear Information System (INIS)

    Duda, S.H.; Laniado, M.; Kopp, A.F.; Groenewaeller, E.; Aicher, K.P.; Pavone, P.; Jehle, E.; Claussen, C.D.

    1994-01-01

    Superparamagnetic iron oxide particles (AMI-25) were evaluated as a liver contrast agent in high-field MR imaging (1.5 T). 16 patients with up to 5 presumed focal liver lesions (liver metastases n=8, HCC n=5, Klatskin tumours n=2, FNH n=1) received 15 μmol Fe/kg BW intravenously and were examined via standard T 1 - and T 2 -weighted spin-echo sequences. Quantitative image analysis showed a post-contrast increase of the contrast-to-noise ratio (C/N) from 1.6 to 7.4 on SE 2,500/15 images (p [de

  13. Gd3+ doped Mn-Zn soft ferrite nanoparticles: Superparamagnetism and its correlation with other physical properties

    International Nuclear Information System (INIS)

    Thakur, Prashant; Sharma, Rohit; Sharma, Vineet; Barman, P.B.; Kumar, Manoj; Barman, Dipto; Katyal, S.C.; Sharma, Pankaj

    2017-01-01

    Highlights: • Superparamagnetic nanoparticles of Gd doped Mn-Zn spinel ferrites synthesized by co-precipitation. • XRD and FTIR studies justify the formation of cubical spinel structure. • Maximum saturation magnetization and magnetic moment at x = 0.025. • PL spectra shows blue shift for x = 0.025, 0.075 and may be attributed to quantum confinement. - Abstract: Superparamagnetic nanoparticles are very important in biomedicine due to their various applications like drug delivery, gene delivery in the body and also used for hyperthermia. In the present work, superparamagnetic nanoparticles of Mn 0.5 Zn 0.5 Gd x Fe 2-x O 4 (x = 0, 0.025, 0.050, 0.075, 0.1) ferrites have been prepared by co-precipitation method. Thorough characterizations (XRD, FTIR, FE-SEM, EDS, VSM and fluorescence spectroscopy) have proved the formation of cubical spinel superparamagnetic nanoparticles of soft ferrites. A cation distribution has been proposed for the determination of various important theoretical parameters for these samples. With the addition of Gd 3+ nanoparticles have shown the superparamagnetism at room temperature confirmed by VSM analysis. Photoluminescence (PL) spectra shows a blue shift (for x = 0.025, 0.075) which may be due to quantum confinement.

  14. Gd3+ doped Mn-Zn soft ferrite nanoparticles: Superparamagnetism and its correlation with other physical properties

    Science.gov (United States)

    Thakur, Prashant; Sharma, Rohit; Sharma, Vineet; Barman, P. B.; Kumar, Manoj; Barman, Dipto; Katyal, S. C.; Sharma, Pankaj

    2017-06-01

    Superparamagnetic nanoparticles are very important in biomedicine due to their various applications like drug delivery, gene delivery in the body and also used for hyperthermia. In the present work, superparamagnetic nanoparticles of Mn0.5Zn0.5GdxFe2-xO4 (x = 0, 0.025, 0.050, 0.075, 0.1) ferrites have been prepared by co-precipitation method. Thorough characterizations (XRD, FTIR, FE-SEM, EDS, VSM and fluorescence spectroscopy) have proved the formation of cubical spinel superparamagnetic nanoparticles of soft ferrites. A cation distribution has been proposed for the determination of various important theoretical parameters for these samples. With the addition of Gd3+ nanoparticles have shown the superparamagnetism at room temperature confirmed by VSM analysis. Photoluminescence (PL) spectra shows a blue shift (for x = 0.025, 0.075) which may be due to quantum confinement.

  15. Evaluation of umbilical cord mesenchymal stem cells labeling with superparamagnetic iron oxide nanoparticles coated with dextran and complexed with Poly-L-Lysine

    International Nuclear Information System (INIS)

    Sibov, Tatiana Tais; Mamani, Javier Bustamante; Pavon, Lorena Favaro; Cardenas, Walter Humberto; Gamarra, Lionel Fernel; Miyaki, Liza Aya Mabuchi; Marti, Luciana Cavalheiro; Sardinha, Luiz Roberto; Oliveira, Daniela Mara de

    2012-01-01

    Objective: The objective of this study was to evaluate the effect of the labeling of umbilical cord vein derived mesenchymal stem cells with superparamagnetic iron oxide nanoparticles coated with dextran and complexed to a non-viral transfector agent transfector poly-L-lysine. Methods: The labeling of mesenchymal stem cells was performed using the superparamagnetic iron oxide nanoparticles/dextran complexed and not complexed to poly-L-lysine. Superparamagnetic iron oxide nanoparticles/dextran was incubated with poly-L-lysine in an ultrasonic sonicator at 37 deg C for 10 minutes for complex formation superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine by electrostatic interaction. Then, the mesenchymal stem cells were incubated overnight with the complex superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine and superparamagnetic iron oxide nanoparticles/dextran. After the incubation period the mesenchymal stem cells were evaluated by internalization of the complex superparamagnetic iron oxide nanoparticles/dextran/polyL-lysine and superparamagnetic iron oxide nanoparticles/dextran by Prussian Blue stain. Cellular viability of labeled mesenchymal stem cells was evaluated by cellular proliferation assay using 5,6-carboxyfluorescein-succinimidyl ester method and apoptosis detection by Annexin V- Propidium Iodide assay. Results: mesenchymal stem cells labeled with superparamagnetic iron oxide nanoparticles/ dextran without poly-L-lysine not internalized efficiently the superparamagnetic iron oxide nanoparticles due to its low presence detected within cells. Mesenchymal stem cells labeled with the complex superparamagnetic iron oxide nanoparticles/dextran/polyL-lysine efficiently internalized the superparamagnetic iron oxide nanoparticles due to greater presence in the cells interior. The viability and apoptosis assays demonstrated that the mesenchymal stem cells labeled and not labeled respectively with the superparamagnetic iron oxide

  16. Superparamagnetic beads in rotating magnetic fields: microfluidic experiments

    NARCIS (Netherlands)

    Den Toonder, J.M.J.; Bokdam, M.

    2008-01-01

    The effect of the Mason number, ratio of viscous and magnetic force, on suspended superparamagnetic micro sized beads was investigated experimentally. Microfluidic experiments were performed in a set-up that generates a rotating homogeneous magnetic field. In the presence of a magnetic field, the

  17. Bio-inspired synthesis and characterization of superparamagnetic particles; Sintese e caracterizacao bioinspirada de particulas superparamagneticas

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Vinicius F., E-mail: vfc_mg@yahoo.com.br [Universidade Federal de Itajuba (UNIFEI), MG (Brazil); Queiroz, Alvaro A.A. [Universidade Federal de Itajuba (UNIFEI), MG (Brazil). Centro de Estudos e Inovacao em Materiais Biofuncionais Avancados

    2012-08-15

    This paper discusses the bio-inspired synthesis of type YFeAl ferrites encapsulated into polyglycerol dendrimers (PGLD) generation 3. The structure and morphological properties of the system YFeAl/PGLD was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The magnetic properties were studied through the techniques of Moessbauer spectroscopy and magnetization. The cytotoxicity of the nanoparticles encapsulated in dendrimers PGLD G3 at the cell membrane was studied against mammalian cell line CHO.K1 measuring the amount of lactate dehydrogenase (LDH) released by the cell damage. Microscopy TEM and XRD analysis indicate that spherical nanoparticles were obtained highly crystalline and monodisperse with size 20 nmsuperparamagnetic behavior of the system YFeAl/PGLD. The cytotoxicity results indicated that YFeAl / PGLD nano system is suitable for use in nano medicine. (author)

  18. Ultrasmall iron particles prepared by use of sodium amalgam

    DEFF Research Database (Denmark)

    Linderoth, Søren; Mørup, Steen

    1990-01-01

    Ultrasmall magnetic particles containing iron have been prepared by reduction of iron ions by the use of sodium in mercury. Mössbauer studies at 12 K show that the magnetic hyperfine field is significantly larger than in bulk alpha-Fe, suggesting that an iron mercury alloy rather than alpha-Fe has...... been formed. The particles exhibit superparamagnetic relaxation above 120 K. Journal of Applied Physics is copyrighted by The American Institute of Physics....

  19. Controlled torque on superparamagnetic beads for functional biosensors

    NARCIS (Netherlands)

    Janssen, X.J.A.; Schellekens, A.J.; van Ommering, K.; IJzendoorn, van L.J.; Prins, M.W.J.

    2009-01-01

    We demonstrate that a rotating magnetic field can be used to apply a controlled torque on superparamagnetic beads which leads to a tunable bead rotation frequency in fluid. Smooth rotation is obtained for field rotation frequencies many orders of magnitude higher than the bead rotation frequency. A

  20. Superparamagnetic adsorbents for high-gradient magnetic fishing of lectins out of legume extracts

    DEFF Research Database (Denmark)

    Heebøll-Nielsen, Anders; Dalkiær, M.; Hubbuch, Jürgen

    2004-01-01

    This work presents the development, testing, and application in high-gradient magnetic fishing of superparamagnetic supports for adsorption of lectins. Various approaches were examined to produce affinity, mixed mode, and hydrophobic charge induction type adsorbents. In clean monocomponent systems...... affinity supports created by direct attachment of glucose or maltose to amine-terminated iron oxide particles could bind concanavalin A at levels of up to approximate to 280 mg g(-1) support with high affinity (approximate to 1 muM dissociation constants). However, the best performance was delivered......-linked adsorbents supplied sufficient competition to dissolved sugars to selectively bind concanavalin A in an extract of jack beans. The dextran-linked supports were employed in a high-gradient magnetic fishing experiment, in which concanavalin A was purified to near homogeneity from a crude, unclarified extract...

  1. Current status of superparamagnetic iron oxide contrast agents for liver magnetic resonance imaging.

    Science.gov (United States)

    Wang, Yi-Xiang J

    2015-12-21

    Five types of superparamagnetic iron oxide (SPIO), i.e. Ferumoxides (Feridex(®) IV, Berlex Laboratories), Ferucarbotran (Resovist(®), Bayer Healthcare), Ferumoxtran-10 (AMI-227 or Code-7227, Combidex(®), AMAG Pharma; Sinerem(®), Guerbet), NC100150 (Clariscan(®), Nycomed,) and (VSOP C184, Ferropharm) have been designed and clinically tested as magnetic resonance contrast agents. However, until now Resovist(®) is current available in only a few countries. The other four agents have been stopped for further development or withdrawn from the market. Another SPIO agent Ferumoxytol (Feraheme(®)) is approved for the treatment of iron deficiency in adult chronic kidney disease patients. Ferumoxytol is comprised of iron oxide particles surrounded by a carbohydrate coat, and it is being explored as a potential imaging approach for evaluating lymph nodes and certain liver tumors.

  2. A novel approach for rapidly and cost-effectively assessing toxicity of toxic metals in acidic water using an acidophilic iron-oxidizing biosensor.

    Science.gov (United States)

    Yang, Shih-Hung; Cheng, Kuo-Chih; Liao, Vivian Hsiu-Chuan

    2017-11-01

    Contamination by heavy metals and metalloids is a serious environmental and health concern. Acidic wastewaters are often associated with toxic metals which may enter and spread into agricultural soils. Several biological assays have been developed to detect toxic metals; however, most of them can only detect toxic metals in a neutral pH, not in an acidic environment. In this study, an acidophilic iron-oxidizing bacterium (IOB) Strain Y10 was isolated, characterized, and used to detect toxic metals toxicity in acidic water at pH 2.5. The colorimetric acidophilic IOB biosensor was based on the inhibition of the iron oxidizing ability of Strain Y10, an acidophilic iron-oxidizing bacterium, by metals toxicity. Our results showed that Strain Y10 is acidophilic iron-oxidizing bacterium. Thiobacillus caldus medium (TCM) (pH 2.5) supplied with both S 4 O 6 2- and glucose was the optimum growth medium for Strain Y10. The optimum temperature and pH for the growth of Strain Y10 was 45 °C and pH 2.5, respectively. Our study demonstrates that the color-based acidophilic IOB biosensor can be semi-quantitatively observed by eye or quantitatively measured by spectrometer to detect toxicity from multiple toxic metals at pH 2.5 within 45 min. Our study shows that monitoring toxic metals in acidic water is possible by using the acidophilic IOB biosensor. Our study thus provides a novel approach for rapid and cost-effective detection of toxic metals in acidic conditions that can otherwise compromise current methods of chemical analysis. This method also allows for increased efficiency when screening large numbers of environmental samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A superparamagnetic Fe{sub 3}O{sub 4}-graphene oxide nanocomposite for enrichment of nuciferine in the extract of Nelumbinis Folium (Lotus leaf)

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Jie-Ping, E-mail: jasperfan@163.com [Key Laboratory of Poyang Lake Ecology and Bio-Resource Utilization of Ministry of Education, Department of Chemical Engineering, Nanchang University, Nanchang 330031 (China); Zheng, Bing; Qin, Yu; Yang, Dan; Liao, Dan-Dan; Xu, Xiao-Kang [Key Laboratory of Poyang Lake Ecology and Bio-Resource Utilization of Ministry of Education, Department of Chemical Engineering, Nanchang University, Nanchang 330031 (China); Zhang, Xue-Hong [School of Foreign Language, Nanchang University, Nanchang 330031 (China); Zhu, Jian-Hang [Key Laboratory of Poyang Lake Ecology and Bio-Resource Utilization of Ministry of Education, Department of Chemical Engineering, Nanchang University, Nanchang 330031 (China)

    2016-02-28

    Graphical abstract: - Highlights: • A superparamagnetic Fe3O4-graphene oxide (MGO) nanocomposite was prepared. • It is characterized by TEM, XPS, VSM, XRD and Raman spectroscopy. • The adsorption kinetics, isotherms and reusability of MGO were also investigated. • MGO was applied to enrich nuciferine in the extract of Nelumbinis Folium. - Abstract: In this work, a superparamagnetic Fe{sub 3}O{sub 4}-graphene oxide (MGO) nanocomposite was prepared by one-step chemical co-precipitation method, and characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM), powder X-ray diffraction (PXRD), Raman spectroscopy and nitrogen adsorption–desorption curve. The as-prepared MGO was used to adsorb nuciferine, and the adsorption kinetic, isotherm and reusability of MGO were also investigated. The results showed that the adsorption of nuciferine on MGO reached its equilibrium very quickly (within 10 min) due to the two-dimensional carbon nanostructure of GO. In comparison with MGO, five conventional sorbents, i.e., macroporous resin D-101, silica gel, reverse phase silica gel (RP-C18) and cation exchange resin and polyamide, were also used to evaluate their adsorption capabilities. Therefore, MGO combined the advantages of both superparamagnetic particle and GO, i.e., easy separation and high absorption capacity. Finally, MGO was successfully applied to enrichment and separation of nuciferine in the extract of Nelumbinis Folium (Lotus leaf).

  4. Selective manipulation of superparamagnetic beads by a magnetic microchip

    KAUST Repository

    Gooneratne, Chinthaka Pasan; Yassine, Omar; Giouroudi, Ioanna; Kosel, Jü rgen

    2013-01-01

    In this paper, a magnetic microchip (MMC) is presented, to first trap and then selectively manipulate individual, superparamagnetic beads (SPBs) to another trapping site. Trapping sites are realized through soft magnetic micro disks made of Ni80Fe20

  5. Crystal structure of superparamagnetic Mg{sub 0.2}Ca{sub 0.8}Fe{sub 2}O{sub 4} nanoparticles synthesized by sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Escamilla-Pérez, A.M., E-mail: angel.mep@gmail.com [Cinvestav-Unidad Saltillo, Industria Metalúrgica No. 1062, Parque Industrial Saltillo-Ramos Arizpe, C.P. 25900, Ramos Arizpe, Coahuila (Mexico); Cortés-Hernández, D.A., E-mail: dora.cortes@cinvestav.edu.mx [Cinvestav-Unidad Saltillo, Industria Metalúrgica No. 1062, Parque Industrial Saltillo-Ramos Arizpe, C.P. 25900, Ramos Arizpe, Coahuila (Mexico); Almanza-Robles, J.M. [Cinvestav-Unidad Saltillo, Industria Metalúrgica No. 1062, Parque Industrial Saltillo-Ramos Arizpe, C.P. 25900, Ramos Arizpe, Coahuila (Mexico); Mantovani, D.; Chevallier, P. [Laboratory for Biomaterials and Bioengineering, Department of Materials Engineering and University Hospital Research Center, Laval University, Quebec City, QC (Canada)

    2015-01-15

    Powders of magnetic iron oxide nanoparticles (Mg{sub 0.2}Ca{sub 0.8}Fe{sub 2}O{sub 4}) were prepared by a sol–gel method using ethylene glycol and nitrates of Fe, Ca and Mg as starting materials. Those powders were heat treated at different temperatures (573, 673, 773 and 873 K). In order to evaluate the effect of the heat treatment temperature on the nanoferrites properties, X-ray diffraction (XRD), vibrating sample magnetometry (VSM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) techniques were used. It was found that the reaction products exhibit nanometric sizes and superparamagnetic behavior. It is also demonstrated that, as the heat treatment temperature increases, the particle size and the saturation magnetization of the nanoferrites are increased. - Highlights: • Mg{sub 0.2}Ca{sub 0.8}Fe{sub 2}O{sub 4} superparamagnetic nanoparticles were successfully synthesized. • Particle average sizes of Ca–Mg ferrites were within the range of 8–25 nm. • The nanoferrite treated at 873 K showed a stoichiometry close to Mg{sub 0.2}Ca{sub 0.8}Fe{sub 2}O{sub 4}. • The heat treatment temperature has a strong effect on the crystal structure. • These nanoparticles are potential materials for magnetic hyperthermia.

  6. Synthesis of Superparamagnetic Iron Oxide Nanoparticles Modified with MPEG-PEI via Photochemistry as New MRI Contrast Agent

    Directory of Open Access Journals (Sweden)

    Yancong Zhang

    2015-01-01

    Full Text Available Novel method for synthesis of superparamagnetic iron oxide nanoparticles (SPIONs coated with polyethylenimine (PEI and modified with poly(ethylene glycol methyl ether (MPEG, MPEG-PEI-SPIONs, was developed. PEI-SPIONs were successfully prepared in aqueous system via photochemistry, and their surface was modified with poly(ethylene glycol methyl ether (MPEG. The so-obtained MPEG-PEI-SPIONs had a uniform hydrodynamic particle size of 34 nm. The successful coating of MPEG-PEI on the SPIONs was ascertained from FT-IR analysis, and the PEI and MPEG fractions in MPEG-PEI-SPIONs were calculated to account for 31% and 12%, respectively. Magnetic measurement revealed that the saturated magnetization of MPEG-PEI-SPIONs reached 46 emu/g and the nanoparticles showed the characteristic of being superparamagnetic. The stability experiment revealed that the MPEG-PEI modification improved the nanoparticles stability greatly. T2 relaxation measurements showed that MPEG-PEI-SPIONs show similar R2 value to the PEI-SPIONs. The T2-weighted magnetic resonance imaging (MRI of MPEG-PEI-SPIONs showed that the magnetic resonance signal was enhanced significantly with increasing nanoparticle concentration in water. These results indicated that the MPEG-PEI-SPIONs had great potential for application in MRI.

  7. Characterization of PEI-coated superparamagnetic iron oxide nanoparticles for transfection: Size distribution, colloidal properties and DNA interaction

    Energy Technology Data Exchange (ETDEWEB)

    Steitz, Benedikt [Laboratory of Powder Technology, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne (Switzerland); Hofmann, Heinrich [Laboratory of Powder Technology, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne (Switzerland); Kamau, Sarah W. [Institute of Veterinary Biochemistry and Molecular Biology, University of Zuerich, Zurich (Switzerland); Hassa, Paul O. [Institute of Veterinary Biochemistry and Molecular Biology, University of Zuerich, Zurich (Switzerland); Hottiger, Michael O. [Institute of Veterinary Biochemistry and Molecular Biology, University of Zuerich, Zurich (Switzerland); Rechenberg, Brigitte von [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty Zurich, University of Zurich, Winterthurerstr. 260, 8057 Zurich (Switzerland); Hofmann-Amtenbrink, Magarethe [MatSearch, Chemin Jean Pavillard 14, 1009 Pully (Switzerland); Petri-Fink, Alke [Laboratory of Powder Technology, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne (Switzerland)]. E-mail: alke.fink@epfl.ch

    2007-04-15

    Superparamagnetic iron oxide nanoparticles (SPIONs) were coated with polyethylenimine. Here, we briefly describe the synthesis as well as DNA:PEI:SPION complexes and the characterization of the compounds according to their particle size, {zeta}-potential, morphology, DNA complexing ability, magnetic sedimentation, and colloidal stability. PEI coating of SPIONs led to colloidally stable beads even in high salt concentrations over a wide pH range. DNA plasmids and PCR products encoding for green fluorescent protein were associated with the described beads. The complexes were added to cells and exposed to permanent and pulsating magnetic fields. Presence of these magnetic fields significantly increased the transfection efficiency.

  8. Characterization of PEI-coated superparamagnetic iron oxide nanoparticles for transfection: Size distribution, colloidal properties and DNA interaction

    International Nuclear Information System (INIS)

    Steitz, Benedikt; Hofmann, Heinrich; Kamau, Sarah W.; Hassa, Paul O.; Hottiger, Michael O.; Rechenberg, Brigitte von; Hofmann-Amtenbrink, Magarethe; Petri-Fink, Alke

    2007-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) were coated with polyethylenimine. Here, we briefly describe the synthesis as well as DNA:PEI:SPION complexes and the characterization of the compounds according to their particle size, ζ-potential, morphology, DNA complexing ability, magnetic sedimentation, and colloidal stability. PEI coating of SPIONs led to colloidally stable beads even in high salt concentrations over a wide pH range. DNA plasmids and PCR products encoding for green fluorescent protein were associated with the described beads. The complexes were added to cells and exposed to permanent and pulsating magnetic fields. Presence of these magnetic fields significantly increased the transfection efficiency

  9. Magnetic poly(lactide-co-glycolide) (PLGA) and cellulose particles for MRI-based cell tracking

    Science.gov (United States)

    Nkansah, Michael K.; Thakral, Durga; Shapiro, Erik M.

    2010-01-01

    Biodegradable, superparamagnetic micro- and nanoparticles of poly(lactide-co-glycolide) (PLGA) and cellulose were designed, fabricated and characterized for magnetic cell labeling. Monodisperse nanocrystals of magnetite were incorporated into micro- and nanoparticles of PLGA and cellulose with high efficiency using an oil-in-water single emulsion technique. Superparamagnetic cores had high magnetization (72.1 emu/g). The resulting polymeric particles had smooth surface morphology and high magnetite content (43.3 wt% for PLGA and 69.6 wt% for cellulose). While PLGA and cellulose nanoparticles displayed highest r2* values per millimole of iron (399 s-1mM-1 for cellulose and 505 s-1mM-1 for PLGA), micron-sized PLGA particles had a much higher r2* per particle than either. After incubation for a month in citrate buffer (pH 5.5), magnetic PLGA particles lost close to 50% of their initial r2* molar relaxivity, while magnetic cellulose particles remained intact, preserving over 85% of their initial r2* molar relaxivity. Lastly, mesenchymal stem cells and human breast adenocarcinoma cells were magnetically labeled using these particles with no detectable cytotoxicity. These particles are ideally suited for non-invasive cell tracking in vivo via MRI and due to their vastly different degradation properties, offer unique potential for dedicated use for either short (PLGA-based particles) or long term (cellulose-based particles) experiments. PMID:21404328

  10. Iron-oxidation processes in an electroflocculation (electrocoagulation) cell

    Energy Technology Data Exchange (ETDEWEB)

    Sasson, Moshe Ben, E-mail: mosheinspain@hotmail.com [Department of Soil and Water Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100 (Israel); Calmano, Wolfgang [Institute of Environmental Technology and Energy Economics, Technical University of Hamburg-Harburg, 21073 Hamburg (Germany); Adin, Avner [Department of Soil and Water Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100 (Israel)

    2009-11-15

    The processes of iron oxidation in an electroflocculation cell were investigated for a pH range of 5-9 and electric currents of 0.05-0.4 A (equivalent current densities of 8.6-69 A/m{sup 2}). At all pH values and electric currents investigated, it was demonstrated and proven that for all practical purposes, the form of iron that dissolves from the anode is Fe{sup 2+} (ferrous). The difference between the amount of theoretical dissolution as calculated by Faraday's law and the amount of observed dissolved iron ions may indicate two phenomena in electrochemical cells. The first is possible dissolution of the anode even without the operation of an electric current; this led to higher theoretical dissolution rates at lower pH. The second is the participation of some of the electrons of the electric current in reactions other than anode dissolution which led to lower theoretical dissolution rates at higher pH. Those other reactions did not lead to an increase in the local oxidation saturation level near the anode and did not affect iron-oxidation rates in the electroflocculation processes. The oxidation rates of the dissolved Fe{sup 2+} (ferrous) to Fe{sup 3+} (ferric) ions in electroflocculation processes were strongly dependent on the pH and were similar to the known oxidation rates of iron in non-electrochemical cells.

  11. Iron-oxidation processes in an electroflocculation (electrocoagulation) cell

    International Nuclear Information System (INIS)

    Sasson, Moshe Ben; Calmano, Wolfgang; Adin, Avner

    2009-01-01

    The processes of iron oxidation in an electroflocculation cell were investigated for a pH range of 5-9 and electric currents of 0.05-0.4 A (equivalent current densities of 8.6-69 A/m 2 ). At all pH values and electric currents investigated, it was demonstrated and proven that for all practical purposes, the form of iron that dissolves from the anode is Fe 2+ (ferrous). The difference between the amount of theoretical dissolution as calculated by Faraday's law and the amount of observed dissolved iron ions may indicate two phenomena in electrochemical cells. The first is possible dissolution of the anode even without the operation of an electric current; this led to higher theoretical dissolution rates at lower pH. The second is the participation of some of the electrons of the electric current in reactions other than anode dissolution which led to lower theoretical dissolution rates at higher pH. Those other reactions did not lead to an increase in the local oxidation saturation level near the anode and did not affect iron-oxidation rates in the electroflocculation processes. The oxidation rates of the dissolved Fe 2+ (ferrous) to Fe 3+ (ferric) ions in electroflocculation processes were strongly dependent on the pH and were similar to the known oxidation rates of iron in non-electrochemical cells.

  12. Magnetic Particles as Multifunctional Transport Carriers and Fluid Drivers in Micro Systems

    NARCIS (Netherlands)

    Derks, R.J.S.; Frijns, A.J.H.; Prins, M.W.J.; Dietzel, A.H.

    2008-01-01

    Magnetic actuation principles using superparamagnetic particles suspended in a fluid are studied in this paper. Two experimental setups for different magnetic field settings are designed and fabricated. On the basis of optical velocity measurements, the induced behavior of single and ordered chains

  13. Geologic field notes and geochemical analyses of outcrop and drill core from Mesoproterozoic rocks and iron-oxide deposits and prospects of southeast Missouri

    Science.gov (United States)

    Day, Warren C.; Granitto, Matthew

    2014-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources/Missouri Geological Survey, undertook a study from 1988 to 1994 on the iron-oxide deposits and their host Mesoproterozoic igneous rocks in southeastern Missouri. The project resulted in an improvement of our understanding of the geologic setting, mode of formation, and the composition of many of the known deposits and prospects and the associated rocks of the St. Francois terrane in Missouri. The goal for this earlier work was to allow the comparison of Missouri iron-oxide deposits in context with other iron oxide-copper ± uranium (IOCG) types of mineral deposits observed globally. The raw geochemical analyses were released originally through the USGS National Geochemical Database (NGDB, http://mrdata.usgs.gov). The data presented herein offers all of the field notes, locations, rock descriptions, and geochemical analyses in a coherent package to facilitate new research efforts in IOCG deposit types. The data are provided in both Microsoft Excel (Version Office 2010) spreadsheet format (*.xlsx) and MS-DOS text formats (*.txt) for ease of use by numerous computer programs.

  14. Intrinsically superparamagnetic Fe-hydroxyapatite nanoparticles positively influence osteoblast-like cell behaviour

    Science.gov (United States)

    2012-01-01

    Background Superparamagnetic nanoparticles (MNPs) have been progressively explored for their potential in biomedical applications and in particular as a contrast agent for diagnostic imaging, for magnetic drug delivery and more recently for tissue engineering applications. Considering the importance of having safe MNPs for such applications, and the essential role of iron in bone remodelling, this study developed and analysed novel biocompatible and bioreabsorbable superparamagnetic nanoparticles, that avoid the use of poorly tolerated magnetite based nanoparticles, for bone tissue engineering applications. Results MNPs were obtained by doping hydroxyapatite (HA) with Fe ions, by directly substituting Fe2+ and Fe3+ into the HA structure yielding superparamagnetic bioactive phase. In the current study, we have investigated the effects of increasing concentrations (2000 μg/ml; 1000 μg/ml; 500 μg/ml; 200 μg/ml) of FeHA MNPs in vitro using Saos-2 human osteoblast-like cells cultured for 1, 3 and 7 days with and without the exposure to a static magnetic field of 320 mT. Results demonstrated not only a comparable osteoblast viability and morphology, but increased in cell proliferation, when compared to a commercially available Ha nanoparticles, even with the highest dose used. Furthermore, FeHA MNPs exposure to the static magnetic field resulted in a significant increase in cell proliferation throughout the experimental period, and higher osteoblast activity. In vivo preliminary results demonstrated good biocompatibility of FeHA superparamagnetic material four weeks after implantation into a critical size lesion of the rabbit condyle. Conclusions The results of the current study suggest that these novel FeHA MNPs may be particularly relevant for strategies of bone tissue regeneration and open new perspectives for the application of a static magnetic field in a clinical setting of bone replacement, either for diagnostic imaging or magnetic drug delivery

  15. Synthesis and characterization of superparamagnetic nanoparticles obtained by precipitation in inverse microemulsion for biomedical applications

    International Nuclear Information System (INIS)

    Puca Pacheco, Mercedes; Guerrero Aquino, Marco; Tacuri Calanchi, Enrique; Lopez Campos, Raul G.

    2013-01-01

    In this work the preparation of nanoparticles of magnetite by methods of precipitation in inverse microemulsions and the conventional method 'Chemical Co-precipitation' is reported. Magnetite nanoparticles were characterized by X-ray diffraction, Moessbauer spectroscopy and vibrating sample magnetometer (VSM). The results showed that the nanoparticles obtained by the method of precipitation in inverse microemulsion showed a superparamagnetic behavior and had a particle average diameter of 9 nm, while by the conventional method 'Chemical Co-precipitation' were 17 nm. In addition, other benefits observed in the application of the method of precipitation in inverse microemulsion with regard to the conventional method is that it allowed obtaining spheroidal magnetite nanoparticles, monodisperse and with magnetic and chemical properties which might have better results in medical applications. (author)

  16. Superparamagnetic and ferrimagnetic behavior of nanocrystalline ZnO(MnO)

    Science.gov (United States)

    Kuryliszyn-Kudelska, I.; Dobrowolski, W.; Arciszewska, M.; Romčević, N.; Romčević, M.; Hadžić, B.; Sibera, D.; Narkiewicz, U.

    2018-04-01

    We have studied the magnetic properties of nanocrystals of ZnO:MnO prepared by traditional wet chemistry method. The detailed structural and morphological characterization was performed. The results of systematic measurements of AC magnetic susceptibility as a function of temperature and frequency as well as DC magnetization are reported. We observed two different types of magnetic behavior depending on the concentration doping. For samples with low nominal content (up to 30 wt% of MnO), superparamagnetic behavior was observed. We attribute the observed superparamagnetism to the presence of nanosized ZnMnO3 phase. For nanocrystals doped above nominal 60 wt% of MnO ferrimagnetism was detected with TC at around 42 K. This magnetic behavior we assign to the presence of nanosized Mn3O4 phase.

  17. Gd{sup 3+} doped Mn-Zn soft ferrite nanoparticles: Superparamagnetism and its correlation with other physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Prashant; Sharma, Rohit; Sharma, Vineet; Barman, P.B. [Department of Physics & Materials Science, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173234 (India); Kumar, Manoj [Department of Physics & Materials Science, Jaypee Institute of Information Technology, Noida 201307 (India); Barman, Dipto [Gwangju Institute of Science & Technology, Gwangju (Korea, Republic of); Department of Computer Science & Engineering, Jaypee University of Information Technology, Waknaghat, Solan, Himachap Pradesh 173234 (India); Katyal, S.C. [Department of Physics & Materials Science, Jaypee Institute of Information Technology, Noida 201307 (India); Sharma, Pankaj, E-mail: pankaj.sharma@juit.ac.in [Department of Physics & Materials Science, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173234 (India)

    2017-06-15

    Highlights: • Superparamagnetic nanoparticles of Gd doped Mn-Zn spinel ferrites synthesized by co-precipitation. • XRD and FTIR studies justify the formation of cubical spinel structure. • Maximum saturation magnetization and magnetic moment at x = 0.025. • PL spectra shows blue shift for x = 0.025, 0.075 and may be attributed to quantum confinement. - Abstract: Superparamagnetic nanoparticles are very important in biomedicine due to their various applications like drug delivery, gene delivery in the body and also used for hyperthermia. In the present work, superparamagnetic nanoparticles of Mn{sub 0.5}Zn{sub 0.5}Gd{sub x}Fe{sub 2-x}O{sub 4} (x = 0, 0.025, 0.050, 0.075, 0.1) ferrites have been prepared by co-precipitation method. Thorough characterizations (XRD, FTIR, FE-SEM, EDS, VSM and fluorescence spectroscopy) have proved the formation of cubical spinel superparamagnetic nanoparticles of soft ferrites. A cation distribution has been proposed for the determination of various important theoretical parameters for these samples. With the addition of Gd{sup 3+} nanoparticles have shown the superparamagnetism at room temperature confirmed by VSM analysis. Photoluminescence (PL) spectra shows a blue shift (for x = 0.025, 0.075) which may be due to quantum confinement.

  18. Prussian blue nanocubes: multi-functional nanoparticles for multimodal imaging and image-guided therapy (Conference Presentation)

    Science.gov (United States)

    Cook, Jason R.; Dumani, Diego S.; Kubelick, Kelsey P.; Luci, Jeffrey; Emelianov, Stanislav Y.

    2017-03-01

    Imaging modalities utilize contrast agents to improve morphological visualization and to assess functional and molecular/cellular information. Here we present a new type of nanometer scale multi-functional particle that can be used for multi-modal imaging and therapeutic applications. Specifically, we synthesized monodisperse 20 nm Prussian Blue Nanocubes (PBNCs) with desired optical absorption in the near-infrared region and superparamagnetic properties. PBNCs showed excellent contrast in photoacoustic (700 nm wavelength) and MR (3T) imaging. Furthermore, photostability was assessed by exposing the PBNCs to nearly 1,000 laser pulses (5 ns pulse width) with up to 30 mJ/cm2 laser fluences. The PBNCs exhibited insignificant changes in photoacoustic signal, demonstrating enhanced robustness compared to the commonly used gold nanorods (substantial photodegradation with fluences greater than 5 mJ/cm2). Furthermore, the PBNCs exhibited superparamagnetism with a magnetic saturation of 105 emu/g, a 5x improvement over superparamagnetic iron-oxide (SPIO) nanoparticles. PBNCs exhibited enhanced T2 contrast measured using 3T clinical MRI. Because of the excellent optical absorption and magnetism, PBNCs have potential uses in other imaging modalities including optical tomography, microscopy, magneto-motive OCT/ultrasound, etc. In addition to multi-modal imaging, the PBNCs are multi-functional and, for example, can be used to enhance magnetic delivery and as therapeutic agents. Our initial studies show that stem cells can be labeled with PBNCs to perform image-guided magnetic delivery. Overall, PBNCs can act as imaging/therapeutic agents in diverse applications including cancer, cardiovascular disease, ophthalmology, and tissue engineering. Furthermore, PBNCs are based on FDA approved Prussian Blue thus potentially easing clinical translation of PBNCs.

  19. Renal hemodynamics and oxygenation in transient renal artery occluded rats evaluated with iron-oxide particles and oxygenation-sensitive imaging

    International Nuclear Information System (INIS)

    Pedersen, Michael; Aarhus Univ.; Univ. Victor Segalen Bordeaux 2; Laustsen, Christoffer; Perot, Vincent; Grenier, Nicolas; Basseau, Fabrice; Moonen, Chrit

    2010-01-01

    Mild or severe renal arterial occlusion is a phenomenon occasionally observed in daily clinical practice, potentially leading to renal ischemia and a general impairment of renal function. Secondly, closing the blood flow to the kidneys can also occur during kidney transplantation procedures. However, the exact physiological effects of these conditions on renal blood perfusion as well as the renal oxygen handling are poorly understood. The objectives of this study were therefore to measure the lateral changes of renal blood perfusion in rats subjected to transient unilateral arterial occlusion (RAS), and in addition, to measure the consequences on the intrarenal oxygenation. Experimental studies were performed using sixteen adolescent rats. The left renal artery was exposed through a flank incision and acute RAS for 45 min was achieved by placing a ligature around the renal artery. MRI was performed 3 days after the surgical procedure, where a blood oxygenation sensitive sequence (BOLD MRI) was performed, followed by a perfusion-weighted imaging sequence using a single bolus of the iron-oxide nanoparticle Sinerem. The renal oxygenation of blood was indirectly measured by the BOLD-parameter R2 * , and perfusion measures include relative renal blood flow, relative renal blood volume and mean transit time. Histopathologic changes through the outer stripe of the outer medulla showing typical histopathologic findings of ischemia. This study demonstrated that rats with transient renal arterial stenosis (for 45 min) showed a reduction in intrarenal oxygenation and intrarenal blood flow three days after the surgical procedure. A decreased R2 * was measured within the ipsilateral medulla in parallel with a decreased medullary blood flow, is probably related to a lower reabsorption load within the ipsilateral kidney. MRI may therefore be a promising tool in long-term evaluation of RAS. (orig.)

  20. Renal hemodynamics and oxygenation in transient renal artery occluded rats evaluated with iron-oxide particles and oxygenation-sensitive imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Michael [Aarhus Univ. Hospital (Denmark). MR Research Centre; Aarhus Univ. (Denmark). Inst. of Experimental Clinical Medicine; Univ. Victor Segalen Bordeaux 2 (France). Lab. Imagerie Moleculaire et Fonctionnelle: de la physiologie a la therapie CNRS UMR 5231; Laustsen, Christoffer [Aarhus Univ. Hospital (Denmark). MR Research Centre; Perot, Vincent; Grenier, Nicolas [Hopital Pellegrin, CHU Bordeaux (France). Service d' Imagerie Diagnostique et Therapeutique de l' Adulte; Basseau, Fabrice; Moonen, Chrit [Univ. Victor Segalen Bordeaux 2 (France). Lab. Imagerie Moleculaire et Fonctionnelle: de la physiologie a la therapie CNRS UMR 5231

    2010-07-01

    Mild or severe renal arterial occlusion is a phenomenon occasionally observed in daily clinical practice, potentially leading to renal ischemia and a general impairment of renal function. Secondly, closing the blood flow to the kidneys can also occur during kidney transplantation procedures. However, the exact physiological effects of these conditions on renal blood perfusion as well as the renal oxygen handling are poorly understood. The objectives of this study were therefore to measure the lateral changes of renal blood perfusion in rats subjected to transient unilateral arterial occlusion (RAS), and in addition, to measure the consequences on the intrarenal oxygenation. Experimental studies were performed using sixteen adolescent rats. The left renal artery was exposed through a flank incision and acute RAS for 45 min was achieved by placing a ligature around the renal artery. MRI was performed 3 days after the surgical procedure, where a blood oxygenation sensitive sequence (BOLD MRI) was performed, followed by a perfusion-weighted imaging sequence using a single bolus of the iron-oxide nanoparticle Sinerem. The renal oxygenation of blood was indirectly measured by the BOLD-parameter R2{sup *}, and perfusion measures include relative renal blood flow, relative renal blood volume and mean transit time. Histopathologic changes through the outer stripe of the outer medulla showing typical histopathologic findings of ischemia. This study demonstrated that rats with transient renal arterial stenosis (for 45 min) showed a reduction in intrarenal oxygenation and intrarenal blood flow three days after the surgical procedure. A decreased R2{sup *} was measured within the ipsilateral medulla in parallel with a decreased medullary blood flow, is probably related to a lower reabsorption load within the ipsilateral kidney. MRI may therefore be a promising tool in long-term evaluation of RAS. (orig.)

  1. Growth characteristics of a strain of iron-oxidizing bacterium and its application in bioleaching of uranium ores

    International Nuclear Information System (INIS)

    Zhang Rui; Liu Yajie; Gao Feng; Xu Lingling

    2008-01-01

    05B is a strain of iron-oxidizing bacterium which separated from a uranium ore. The effect of temperature, initial pH, inoculation amount and initial total iron concentration on the strain's growth and activities in bioleaching of uranium ores are studied. The results show that the optimum growth temperature is 40-45 degree C, the optimum inoculation pH value being 1.5-1.7, the optimum initial inoculation amount being 10%-20%, and the initial total iron concentration being not more than 5 g/L. 05B is fit for leaching of low grade uranium ores. (authors)

  2. An insight into the metabolic responses of ultra-small superparamagnetic particles of iron oxide using metabonomic analysis of biofluids

    International Nuclear Information System (INIS)

    Feng Jianghua; Liu Huili; Zhang Limin; Bhakoo, Kishore; Lu Lehui

    2010-01-01

    Ultra-small superparamagnetic particles of iron oxides (USPIO) have been developed as intravenous organ/tissue-targeted contrast agents to improve magnetic resonance imaging (MRI) in vivo. However, their potential toxicity and effects on metabolism have attracted particular attention. In the present study, uncoated and dextran-coated USPIO were investigated by analyzing both rat urine and plasma metabonomes using high-resolution NMR-based metabonomic analysis in combination with multivariate statistical analysis. The wealth of information gathered on the metabolic profiles from rat urine and plasma has revealed subtle metabolic changes in response to USPIO administration. The metabolic changes include the elevation of urinary α-hydroxy-n-valerate, o- and p-HPA, PAG, nicotinate and hippurate accompanied by decreases in the levels of urinary α-ketoglutarate, succinate, citrate, N-methylnicotinamide, NAG, DMA, allantoin and acetate following USPIO administration. The changes associated with USPIO administration included a gradual increase in plasma glucose, N-acetyl glycoprotein, saturated fatty acid, citrate, succinate, acetate, GPC, ketone bodies (β-hydroxybutyrate, acetone and acetoacetate) and individual amino acids, such as phenylalanine, lysine, isoleucine, glycine, glutamine and glutamate and a gradual decrease of myo-inositol, unsaturated fatty acid and triacylglycerol. Hence USPIO administration effects are reflected in changes in a number of metabolic pathways including energy, lipid, glucose and amino acid metabolism. The size- and surface chemistry-dependent metabolic responses and possible toxicity were observed using NMR analysis of biofluids. These changes may be attributed to the disturbances of hepatic, renal and cardiac functions following USPIO administrations. The potential biotoxicity can be derived from metabonomic analysis and serum biochemistry analysis. Metabonomic strategy offers a promising approach for the detection of subtle

  3. An insight into the metabolic responses of ultra-small superparamagnetic particles of iron oxide using metabonomic analysis of biofluids

    Science.gov (United States)

    Feng, Jianghua; Liu, Huili; Zhang, Limin; Bhakoo, Kishore; Lu, Lehui

    2010-10-01

    Ultra-small superparamagnetic particles of iron oxides (USPIO) have been developed as intravenous organ/tissue-targeted contrast agents to improve magnetic resonance imaging (MRI) in vivo. However, their potential toxicity and effects on metabolism have attracted particular attention. In the present study, uncoated and dextran-coated USPIO were investigated by analyzing both rat urine and plasma metabonomes using high-resolution NMR-based metabonomic analysis in combination with multivariate statistical analysis. The wealth of information gathered on the metabolic profiles from rat urine and plasma has revealed subtle metabolic changes in response to USPIO administration. The metabolic changes include the elevation of urinary α-hydroxy-n-valerate, o- and p-HPA, PAG, nicotinate and hippurate accompanied by decreases in the levels of urinary α-ketoglutarate, succinate, citrate, N-methylnicotinamide, NAG, DMA, allantoin and acetate following USPIO administration. The changes associated with USPIO administration included a gradual increase in plasma glucose, N-acetyl glycoprotein, saturated fatty acid, citrate, succinate, acetate, GPC, ketone bodies (β-hydroxybutyrate, acetone and acetoacetate) and individual amino acids, such as phenylalanine, lysine, isoleucine, glycine, glutamine and glutamate and a gradual decrease of myo-inositol, unsaturated fatty acid and triacylglycerol. Hence USPIO administration effects are reflected in changes in a number of metabolic pathways including energy, lipid, glucose and amino acid metabolism. The size- and surface chemistry-dependent metabolic responses and possible toxicity were observed using NMR analysis of biofluids. These changes may be attributed to the disturbances of hepatic, renal and cardiac functions following USPIO administrations. The potential biotoxicity can be derived from metabonomic analysis and serum biochemistry analysis. Metabonomic strategy offers a promising approach for the detection of subtle

  4. An insight into the metabolic responses of ultra-small superparamagnetic particles of iron oxide using metabonomic analysis of biofluids

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jianghua [Department of Physics, Fujian Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005 (China); Liu Huili; Zhang Limin [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Bhakoo, Kishore [Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A-STAR) 138667 (Singapore); Lu Lehui, E-mail: jianghua.feng@hotmail.com, E-mail: jianghua.feng@wipm.ac.cn [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China)

    2010-10-01

    Ultra-small superparamagnetic particles of iron oxides (USPIO) have been developed as intravenous organ/tissue-targeted contrast agents to improve magnetic resonance imaging (MRI) in vivo. However, their potential toxicity and effects on metabolism have attracted particular attention. In the present study, uncoated and dextran-coated USPIO were investigated by analyzing both rat urine and plasma metabonomes using high-resolution NMR-based metabonomic analysis in combination with multivariate statistical analysis. The wealth of information gathered on the metabolic profiles from rat urine and plasma has revealed subtle metabolic changes in response to USPIO administration. The metabolic changes include the elevation of urinary {alpha}-hydroxy-n-valerate, o- and p-HPA, PAG, nicotinate and hippurate accompanied by decreases in the levels of urinary {alpha}-ketoglutarate, succinate, citrate, N-methylnicotinamide, NAG, DMA, allantoin and acetate following USPIO administration. The changes associated with USPIO administration included a gradual increase in plasma glucose, N-acetyl glycoprotein, saturated fatty acid, citrate, succinate, acetate, GPC, ketone bodies ({beta}-hydroxybutyrate, acetone and acetoacetate) and individual amino acids, such as phenylalanine, lysine, isoleucine, glycine, glutamine and glutamate and a gradual decrease of myo-inositol, unsaturated fatty acid and triacylglycerol. Hence USPIO administration effects are reflected in changes in a number of metabolic pathways including energy, lipid, glucose and amino acid metabolism. The size- and surface chemistry-dependent metabolic responses and possible toxicity were observed using NMR analysis of biofluids. These changes may be attributed to the disturbances of hepatic, renal and cardiac functions following USPIO administrations. The potential biotoxicity can be derived from metabonomic analysis and serum biochemistry analysis. Metabonomic strategy offers a promising approach for the detection of

  5. Tunable room-temperature ferromagnet using an iron-oxide and graphene oxide nanocomposite

    KAUST Repository

    Lin, Aigu L.

    2015-06-23

    Magnetic materials have found wide application ranging from electronics and memories to medicine. Essential to these advances is the control of the magnetic order. To date, most room-temperature applications have a fixed magnetic moment whose orientation is manipulated for functionality. Here we demonstrate an iron-oxide and graphene oxide nanocomposite based device that acts as a tunable ferromagnet at room temperature. Not only can we tune its transition temperature in a wide range of temperatures around room temperature, but the magnetization can also be tuned from zero to 0.011 A m2/kg through an initialization process with two readily accessible knobs (magnetic field and electric current), after which the system retains its magnetic properties semi-permanently until the next initialization process. We construct a theoretical model to illustrate that this tunability originates from an indirect exchange interaction mediated by spin-imbalanced electrons inside the nanocomposite. © 2015 Scientific Reports.

  6. Tunable room-temperature ferromagnet using an iron-oxide and graphene oxide nanocomposite

    KAUST Repository

    Lin, Aigu L.; Rodrigues, J. N B; Su, Chenliang; Milletari, M.; Loh, Kian Ping; Wu, Tao; Chen, Wei; Neto, A. H Castro; Adam, Shaffique; Wee, Andrew T S

    2015-01-01

    Magnetic materials have found wide application ranging from electronics and memories to medicine. Essential to these advances is the control of the magnetic order. To date, most room-temperature applications have a fixed magnetic moment whose orientation is manipulated for functionality. Here we demonstrate an iron-oxide and graphene oxide nanocomposite based device that acts as a tunable ferromagnet at room temperature. Not only can we tune its transition temperature in a wide range of temperatures around room temperature, but the magnetization can also be tuned from zero to 0.011 A m2/kg through an initialization process with two readily accessible knobs (magnetic field and electric current), after which the system retains its magnetic properties semi-permanently until the next initialization process. We construct a theoretical model to illustrate that this tunability originates from an indirect exchange interaction mediated by spin-imbalanced electrons inside the nanocomposite. © 2015 Scientific Reports.

  7. Magnetic anisotropy considerations in magnetic force microscopy studies of single superparamagnetic nanoparticles

    International Nuclear Information System (INIS)

    Nocera, Tanya M; Agarwal, Gunjan; Chen Jun; Murray, Christopher B

    2012-01-01

    In recent years, superparamagnetic nanoparticles (SPNs) have become increasingly important in applications ranging from solid state memory devices to biomedical diagnostic and therapeutic tools. However, detection and characterization of the small and unstable magnetic moment of an SPN at the single particle level remains a challenge. Further, depending on their physical shape, crystalline structure or orientation, SPNs may also possess magnetic anisotropy, which can govern the extent to which their magnetic moments can align with an externally applied magnetic field. Here, we demonstrate how we can exploit the magnetic anisotropy of SPNs to enable uniform, highly-sensitive detection of single SPNs using magnetic force microscopy (MFM) in ambient air. Superconducting quantum interference device magnetometry and analytical transmission electron microscopy techniques are utilized to characterize the collective magnetic behavior, morphology and composition of the SPNs. Our results show how the consideration of magnetic anisotropy can enhance the ability of MFM to detect single SPNs at ambient room temperature with high force sensitivity and spatial resolution. (paper)

  8. Binding assays with streptavidin-functionalized superparamagnetic nanoparticles and biotinylated analytes using fluxgate magnetorelaxometry

    International Nuclear Information System (INIS)

    Heim, Erik; Ludwig, Frank; Schilling, Meinhard

    2009-01-01

    Binding assays based on the magnetorelaxation of superparamagnetic nanoparticles as markers are presented utilizing a differential fluxgate system. As ligand and receptor, streptavidin and biotin, respectively, are used. Superparamagnetic nanoparticles are functionalized with streptavidin and bound to two types of biotinylated analytes: agarose beads and bovine serum (BSA) proteins. The size difference of the two analytes causes a different progress of the reaction. As a consequence, the analysis of the relaxation signal is carried out dissimilarly for the two analytes. In addition, we studied the reaction kinetics of the two kinds of analytes with the fluxgate system.

  9. Assessments of proliferation capacity and viability of New Zealand rabbit peripheral blood endothelial progenitor cells labeled with superparamagnetic particles.

    Science.gov (United States)

    Mai, Xiao-Li; Ma, Zhan-Long; Sun, Jun-Hui; Ju, Sheng-Hong; Ma, Ming; Teng, Gao-Jun

    2009-01-01

    Magnetic resonance imaging (MRI) has proven to be effective in tracking the distribution of transplanted stem cells to target organs by way of labeling cells with superparamagnetic iron oxide particles (SPIO). However, the effect of SPIO upon labeled cells is still unclear on a cellular level. With this study, the proliferation and viability of New Zealand rabbit peripheral blood endothelial progenitor cells (EPCs) labeled with SPIO were evaluated and in vitro images were obtained using a 1.5 T MR scanner. Mononuclear cells (MNCs) were isolated from peripheral blood of the adult New Zealand rabbit and cultured in fibronectin-coated culture flasks, in which EPCs were identified from cell morphology, outgrowth characteristics, and internalization of DiI-Ac-LDL and binding to FITC-UEA I. EPCs were incubated with the self-synthesized poly-L-lysine-conjugated SPIO (PLL-SPIO) particles in a range of concentrations. The prevalence of iron-containing vesicles or endosomes in the cytoplasm of labeled cells was confirmed with Prussian blue staining and transmission electron microscopy. Tetrazolium salt (MTT) assay, cell apoptosis, and cycle detection were assessed to evaluate proliferation and function of various concentrations, magnetically labeled EPCs. The quantity of iron per cell was determined by atomic absorption spectrometry. The cells underwent MRI with different sequences. The result showed that rabbit EPCs were efficiently labeled with the home synthesized PLL-SPIO. There was found to be no statistically significant difference in the MTT values of light absorption measured on the third and fifth days. Between labeled and unlabeled cells, there were also no aberrations found in the cell cycles, apoptosis, or growth curves. The atomic absorption spectrophotometer showed that the intracellular content of Fe decreased as more time elapsed after labeling. The labeled EPCs demonstrated a loss of MRI signal intensity (SI) when compared with the SI of unlabeled cells

  10. Surface modified superparamagnetic nanoparticles: Interaction with fibroblasts in primary cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Chapa Gonzalez, Christian; Roacho Pérez, Jorge A.; Martínez Pérez, Carlos A.; Olivas Armendáriz, Imelda [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro #610 norte, Col. Partido Romero, C.P. 32320 Cd. Juárez, Chihuahua, México (Mexico); Jimenez Vega, Florinda [Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo envolvente del PRONAF y Estocolmo, C.P. 32320 Cd. Juárez, Chihuahua, México (Mexico); Castrejon Parga, Karen Y. [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro #610 norte, Col. Partido Romero, C.P. 32320 Cd. Juárez, Chihuahua, México (Mexico); Garcia Casillas, Perla E., E-mail: pegarcia@uacj.mx [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro #610 norte, Col. Partido Romero, C.P. 32320 Cd. Juárez, Chihuahua, México (Mexico)

    2014-12-05

    Highlights: • An inorganic layer before an organic material shell onto MNPs improves cell viability. • The coating type and the concentration of nanoparticles directly affect cell viability. • Modified magnetite nanoparticles with organic and inorganic materials was developed. - Abstract: The development of a variety of medical applications such as drug delivery, cell labeling, and medical imaging have been possible owing to the unique features exhibited by magnetic nanoparticles. Nanoparticle–cell interaction is related to the surface aspects of nanoparticle, which may be described based on their chemistry or inorganic/organic characteristics. The coating on particle surface reduces the inter-particle interactions and provides properties such as biocompatibility. Among the coating materials used for nanoparticles employed in biomedical applications, oleic acid is one of the most utilized due to its biocompatibility. However, a major drawback with this naturally occurring fatty acid is that it is easily oxidized by cells and this reduces their performance in biomedical applications. In order to avoid the direct contact of the cell with the magnetite particle, coating with an inorganic material prior to the oleic acid shell would be effective. This would retard the magnetite dissociation thereby improve the cell viability. Here we report our investigation on the effect of surface modified magnetite nanoparticles (MNPs) on the cell viability using primary cultures incubated with those particles. We prepared magnetite nanoparticles by chemical co-precipitation method; nanoparticle surface was first modified by silanol condensation followed by chemisorption of oleic acid. All nanostructures have a particle size less than 100 nm, depending on the material coating and superparamagnetic behavior. The saturated magnetizations (M{sub s}) of the magnetite samples coated with oleic acid (MAO; 49.15 emu/g) and double shell silica-oleic acid (MSAO; 46.16 emu/g) are

  11. Moessbauer studies of superparamagnetic ferrite nanoparticles for functional application

    Energy Technology Data Exchange (ETDEWEB)

    Mazeika, K., E-mail: kestas@ar.fi.lt; Jagminas, A.; Kurtinaitiene, M. [SSRI Center for Physical Sciences and Technology (Lithuania)

    2013-04-15

    Nanoparticles of CoFe{sub 2}O{sub 4} and MnFe{sub 2}O{sub 4} prepared for functional applications in nanomedicine were studied using Moessbauer spectrometry. Superparamagnetic properties of nanoparticles of different size and composition were compared applying collective excitations and multilevel models for the description of the Moessbauer spectra.

  12. Splenic red pulp macrophages are intrinsically superparamagnetic and contaminate magnetic cell isolates.

    Science.gov (United States)

    Franken, Lars; Klein, Marika; Spasova, Marina; Elsukova, Anna; Wiedwald, Ulf; Welz, Meike; Knolle, Percy; Farle, Michael; Limmer, Andreas; Kurts, Christian

    2015-08-11

    A main function of splenic red pulp macrophages is the degradation of damaged or aged erythrocytes. Here we show that these macrophages accumulate ferrimagnetic iron oxides that render them intrinsically superparamagnetic. Consequently, these cells routinely contaminate splenic cell isolates obtained with the use of MCS, a technique that has been widely used in immunological research for decades. These contaminations can profoundly alter experimental results. In mice deficient for the transcription factor SpiC, which lack red pulp macrophages, liver Kupffer cells take over the task of erythrocyte degradation and become superparamagnetic. We describe a simple additional magnetic separation step that avoids this problem and substantially improves purity of magnetic cell isolates from the spleen.

  13. Iron-Oxidizing Bacteria Found at Slow-Spreading Ridge: a Case Study of Capelinhos Hydrothermal Vent (Lucky Strike, MAR 37°N)

    Science.gov (United States)

    Henri, P. A.; Rommevaux, C.; Lesongeur, F.; Emerson, D.; Leleu, T.; Chavagnac, V.

    2015-12-01

    Iron-oxidizing bacteria becomes increasingly described in different geological settings from volcanically active seamounts, coastal waters, to diffuse hydrothermal vents near seafloor spreading centers [Emerson et al., 2010]. They have been mostly identified and described in Pacific Ocean, and have been only recently found in hydrothermal systems associated to slow spreading center of the Mid-Atlantic Ridge (MAR) [Scott et al., 2015]. During the MoMARSAT'13 cruise at Lucky Strike hydrothermal field (MAR), a new hydrothermal site was discovered at about 1.5 km eastward from the lava lake and from the main hydrothermal vents. This active venting site, named Capelinhos, is therefore the most distant from the volcano, features many chimneys, both focused and diffuses. The hydrothermal end-member fluids from Capelinhos are different from those of the other sites of Lucky Strike, showing the highest content of iron (Fe/Mn≈3.96) and the lowest chlorinity (270 mmol/l) [Leleu et al., 2015]. Most of the chimneys exhibit rust-color surfaces and bacterial mats near diffuse flows. During the MoMARSAT'15 cruise, an active chimney, a small inactive one, and rust-color bacterial mat near diffuse flow were sampled at Capelinhos. Observations by SEM of the hydrothermal samples revealed the presence of iron oxides in an assemblage of tubular "sheaths", assembled "stalks", helical "stalks" and amorphous aggregates. These features are similar to those described from the Loihi iron-mats deposits and argue for the occurrence of iron-oxidizing bacteria. Cultures under micro-aerobic and neutral pH conditions allowed us to isolate strains from the small inactive chimney. Pyrosequencing of the 16S rRNA gene of the isolates and environmental samples will soon be performed, which should confirm the presence of iron-oxidizing bacteria and reveal the organization of bacterial communities in this original and newly discovered hydrothermal site of the slow spreading Mid-Atlantic Ridge. Emerson

  14. Inter-particle Interactions in Composites of Antiferromagnetic Nanoparticles

    DEFF Research Database (Denmark)

    Frandsen, Cathrine; Mørup, Steen

    2003-01-01

    -Fe2O3 and Fe-57-doped NiO particles. The effect of NiO particles on alpha-FeA particles was a shorter relaxation time and an induced Morin transition, which usually is absent in alpha-Fe2O3 nanoparticles. Spectra of alpha-Fe2O3 particles, prepared by drying suspensions with added Co2+ and Ni2+ ions......We have prepared mixtures of alpha-Fe2O3, CoO, and NiO nanoparticles by drying aqueous suspensions of the particles. The magnetic properties were studied by Mossbauer spectroscopy. The measurements showed that interactions with CoO particles suppress the superparamagnetic relaxation of both alpha......, showed that the suspension medium can affect the magnetic properties of the alpha-FeA particles significantly, but not in the same way as the CoO or NiO nanoparticles. Therefore, a strong inter-particle exchange interaction between particles of different materials seems to be responsible for the magnetic...

  15. Pluriformity of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement

    NARCIS (Netherlands)

    Vellinga, M.M.; Oude Engberink, R.D.; Seewann, A.; Pouwels, P.J.W.; Wattjes, M.P.; van der Pol, S.M.A.; Pering, C.; Polman, C.H.; de Vries, H.E.; Geurts, J.J.G.; Barkhof, F.

    2008-01-01

    Gadolinium-DTPA (Gd-DTPA) is routinely used as a marker for inflammation in MRI to visualize breakdown of the blood-brain barrier (BBB) in multiple sclerosis. Recent data suggest that ultra-small superparamagnetic particles of iron oxide (USPIO) can be used to visualize cellular infiltration,

  16. Quantification of the internalization patterns of superparamagnetic iron oxide nanoparticles with opposite charge

    Directory of Open Access Journals (Sweden)

    Schweiger Christoph

    2012-07-01

    Full Text Available Abstract Time-resolved quantitative colocalization analysis is a method based on confocal fluorescence microscopy allowing for a sophisticated characterization of nanomaterials with respect to their intracellular trafficking. This technique was applied to relate the internalization patterns of nanoparticles i.e. superparamagnetic iron oxide nanoparticles with distinct physicochemical characteristics with their uptake mechanism, rate and intracellular fate. The physicochemical characterization of the nanoparticles showed particles of approximately the same size and shape as well as similar magnetic properties, only differing in charge due to different surface coatings. Incubation of the cells with both nanoparticles resulted in strong differences in the internalization rate and in the intracellular localization depending on the charge. Quantitative and qualitative analysis of nanoparticles-organelle colocalization experiments revealed that positively charged particles were found to enter the cells faster using different endocytotic pathways than their negative counterparts. Nevertheless, both nanoparticles species were finally enriched inside lysosomal structures and their efficiency in agarose phantom relaxometry experiments was very similar. This quantitative analysis demonstrates that charge is a key factor influencing the nanoparticle-cell interactions, specially their intracellular accumulation. Despite differences in their physicochemical properties and intracellular distribution, the efficiencies of both nanoparticles as MRI agents were not significantly different.

  17. Characterization of physicochemical and colloidal properties of hydrogel chitosan-coated iron-oxide nanoparticles for cancer therapy

    International Nuclear Information System (INIS)

    Catalano, E; Di Benedetto, A

    2017-01-01

    Superparamagnetic iron oxide nanoparticles have recently been investigated for their potential to kill cancer cells with promising results, owing to their ability to be targeted and heated by magnetic fields. In this study, novel hydrogel, chitosan Fe 3 O 4 magnetic nanoparticles were synthesized to induce magnetic hyperthermia, and targeted delivering of chemotherapeutics in the cancer microenvironment. The characteristic properties of synthesized bare and CS-MNPs were analyzed by various analytical methods: X-ray diffraction, Fourier transformed infrared spectroscopy, Scanning electron microscopy and Thermo-gravimetric analysis/differential thermal analysis. Magnetic nanoparticles were successfully synthesized using the co-precipitation method. This synthesis technique resulted in nanoparticles with an average particle size of 16 nm. The pure obtained nanoparticles were then successfully encapsulated with 4-nm-thick chitosan coating. The formation of chitosan on the surface of nanoparticles was confirmed by physicochemical analyses. Heating experiments at safe magnetic field (f = 100 kHz, H =10-20 kA m -1 ) revealed that the maximum achieved temperature of water stable chitosan-coated nanoparticles (50 mg ml -1 ) is fully in agreement with cancer therapy and biomedical applications. (paper)

  18. Characterization of physicochemical and colloidal properties of hydrogel chitosan-coated iron-oxide nanoparticles for cancer therapy

    Science.gov (United States)

    Catalano, E.; Di Benedetto, A.

    2017-05-01

    Superparamagnetic iron oxide nanoparticles have recently been investigated for their potential to kill cancer cells with promising results, owing to their ability to be targeted and heated by magnetic fields. In this study, novel hydrogel, chitosan Fe3O4 magnetic nanoparticles were synthesized to induce magnetic hyperthermia, and targeted delivering of chemotherapeutics in the cancer microenvironment. The characteristic properties of synthesized bare and CS-MNPs were analyzed by various analytical methods: X-ray diffraction, Fourier transformed infrared spectroscopy, Scanning electron microscopy and Thermo-gravimetric analysis/differential thermal analysis. Magnetic nanoparticles were successfully synthesized using the co-precipitation method. This synthesis technique resulted in nanoparticles with an average particle size of 16 nm. The pure obtained nanoparticles were then successfully encapsulated with 4-nm-thick chitosan coating. The formation of chitosan on the surface of nanoparticles was confirmed by physicochemical analyses. Heating experiments at safe magnetic field (f = 100 kHz, H =10-20 kA m-1) revealed that the maximum achieved temperature of water stable chitosan-coated nanoparticles (50 mg ml-1) is fully in agreement with cancer therapy and biomedical applications.

  19. Magnetic properties of iron catalyst particles in HiPco single wall carbon nanotubes

    Czech Academy of Sciences Publication Activity Database

    Bittová, Barbara; Poltierová Vejpravová, Jana; Kalbáč, Martin; Burianová, Simona; Mantlíková, A.; Daniš, S.; Doyle, S.

    2011-01-01

    Roč. 115, č. 35 (2011), s. 17303-17309 ISSN 1932-7447 R&D Projects: GA ČR GAP204/10/1677 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z40400503 Keywords : metal catalyst particles * carbon nanotubes * superparamagnet * core - shell model * inter-particle interactions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.805, year: 2011 http://pubs.acs.org/doi/abs/10.1021/jp203365g

  20. Multiple functionalities of Ni nanoparticles embedded in carboxymethyl guar gum polymer: catalytic activity and superparamagnetism

    International Nuclear Information System (INIS)

    Sardar, Debasmita; Sengupta, Manideepa; Bordoloi, Ankur; Ahmed, Md. A.; Neogi, S.K.; Bandyopadhyay, Sudipta; Jain, Ruchi; Gopinath, Chinnakonda S.; Bala, Tanushree

    2017-01-01

    Highlights: • Ni nanoparticles were synthesized in polymer to form Ni-Polymer composite. • Ni nanoparticles retain their superparamagnetism in the composite. • Ni-Polymer composites showed catalytic activity. - Abstract: Composites comprising of metallic nanoparticles in polymer matrices have allured significant importance due to multifunctionalities. Here a simple protocol has been described to embed Ni nanoparticles in carboxymethyl guar gum (CMGG) polymer. The composite formation helps in the stabilization of Ni nanoparticles which are otherwise prone towards aerial oxidation. Further the nanoparticles retain their superparamagnetic nature and catalytic capacity. Ni-Polymer composite catalyses the reduction of 4-Nitrophenol to 4-Aminophenol very efficiently in presence of NaBH_4, attaining a complete conversion under some experimental conditions. Ni-Polymer composite is well characterized using UV–vis spectroscopy, FTIR, XPS, powder XRD, TGA, SEM and TEM. A detailed magnetic measurement using superconducting quantum interference device-vibrating sample magnetometer (SQUID-VSM) reveals superparamagnetic behaviour of the composite.

  1. Multiple functionalities of Ni nanoparticles embedded in carboxymethyl guar gum polymer: catalytic activity and superparamagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Sardar, Debasmita [Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India); Sengupta, Manideepa; Bordoloi, Ankur [Nano Catalysis, Catalytic Conversion and Process Division, CSIR—Indian Institute of Petroleum (IIP), Mohkampur, Dehradun 248005 (India); Ahmed, Md. A.; Neogi, S.K.; Bandyopadhyay, Sudipta [Department of Physics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India); Jain, Ruchi; Gopinath, Chinnakonda S. [Catalysis Division and Center of Excellence on Surface Science, CSIR—National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008 (India); Bala, Tanushree, E-mail: tanushreebala@gmail.com [Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India)

    2017-05-31

    Highlights: • Ni nanoparticles were synthesized in polymer to form Ni-Polymer composite. • Ni nanoparticles retain their superparamagnetism in the composite. • Ni-Polymer composites showed catalytic activity. - Abstract: Composites comprising of metallic nanoparticles in polymer matrices have allured significant importance due to multifunctionalities. Here a simple protocol has been described to embed Ni nanoparticles in carboxymethyl guar gum (CMGG) polymer. The composite formation helps in the stabilization of Ni nanoparticles which are otherwise prone towards aerial oxidation. Further the nanoparticles retain their superparamagnetic nature and catalytic capacity. Ni-Polymer composite catalyses the reduction of 4-Nitrophenol to 4-Aminophenol very efficiently in presence of NaBH{sub 4}, attaining a complete conversion under some experimental conditions. Ni-Polymer composite is well characterized using UV–vis spectroscopy, FTIR, XPS, powder XRD, TGA, SEM and TEM. A detailed magnetic measurement using superconducting quantum interference device-vibrating sample magnetometer (SQUID-VSM) reveals superparamagnetic behaviour of the composite.

  2. Super-paramagnetic core-shell material with tunable magnetic behavior by regulating electron transfer efficiency and structure stability of the shell

    Directory of Open Access Journals (Sweden)

    Wenyan Zhang

    Full Text Available In this work, a spherical nano core-shell material was constructed by encapsulating Fe3O4 microsphere into conductive polymer-metal composite shell. The Fe3O4 microspheres were fabricated by assembling large amounts of Fe3O4 nano-crystals, which endowed the microspheres with super-paramagnetic property and high saturation magnetization. The polymer-metal composite shell was constructed by inserting Pt nano-particles (NPs into the conductive polymer polypyrrole (PPy. As size and dispersion of the Pt NPs has an important influence on their surface area and surface energy, it was effective to enlarge the interface area between PPy and Pt NPs, enhance the electron transfer efficiency of PPy/Pt composite shell, and reinforced the shell’s structural stability just by tuning the size and dispersion of Pt NPs. Moreover, core-shell structure of the materials made it convenient to investigate the PPy/Pt shell’s shielding effect on the Fe3O4 core’s magnetic response to external magnetic fields. It was found that the saturation magnetization of Fe3O4/PPy/Pt core-shell material could be reduced by 20.5% by regulating the conductivity of the PPy/Pt shell. Keywords: Super-paramagnetic, Conductivity, Magnetic shielding, Structural stability

  3. NMR relaxation induced by iron oxide particles: testing theoretical models.

    Science.gov (United States)

    Gossuin, Y; Orlando, T; Basini, M; Henrard, D; Lascialfari, A; Mattea, C; Stapf, S; Vuong, Q L

    2016-04-15

    Superparamagnetic iron oxide particles find their main application as contrast agents for cellular and molecular magnetic resonance imaging. The contrast they bring is due to the shortening of the transverse relaxation time T 2 of water protons. In order to understand their influence on proton relaxation, different theoretical relaxation models have been developed, each of them presenting a certain validity domain, which depends on the particle characteristics and proton dynamics. The validation of these models is crucial since they allow for predicting the ideal particle characteristics for obtaining the best contrast but also because the fitting of T 1 experimental data by the theory constitutes an interesting tool for the characterization of the nanoparticles. In this work, T 2 of suspensions of iron oxide particles in different solvents and at different temperatures, corresponding to different proton diffusion properties, were measured and were compared to the three main theoretical models (the motional averaging regime, the static dephasing regime, and the partial refocusing model) with good qualitative agreement. However, a real quantitative agreement was not observed, probably because of the complexity of these nanoparticulate systems. The Roch theory, developed in the motional averaging regime (MAR), was also successfully used to fit T 1 nuclear magnetic relaxation dispersion (NMRD) profiles, even outside the MAR validity range, and provided a good estimate of the particle size. On the other hand, the simultaneous fitting of T 1 and T 2 NMRD profiles by the theory was impossible, and this occurrence constitutes a clear limitation of the Roch model. Finally, the theory was shown to satisfactorily fit the deuterium T 1 NMRD profile of superparamagnetic particle suspensions in heavy water.

  4. Mössbauer studies of superparamagnetic ferrite nanoparticles for functional application

    International Nuclear Information System (INIS)

    Mažeika, K.; Jagminas, A.; Kurtinaitienė, M.

    2013-01-01

    Nanoparticles of CoFe 2 O 4 and MnFe 2 O 4 prepared for functional applications in nanomedicine were studied using Mössbauer spectrometry. Superparamagnetic properties of nanoparticles of different size and composition were compared applying collective excitations and multilevel models for the description of the Mössbauer spectra.

  5. ONE STEP SYNTHESIS OF MAGNETIC PARTICLES COVERED WITH CASEIN SURFACTANT

    Directory of Open Access Journals (Sweden)

    Jeaneth Patricia Urquijo Morales

    Full Text Available The one-step coprecipitation method is used to obtain magnetic nanoparticles controlling the pH (10 and 12, and casein surfactant (CS concentrations (1 % and 3 % (m/m. CS has not been used so far for stabilizing magnetic iron oxide ferrofluids. The magnetic nanoparticles have a magnetite core with maghemite in surface, and a shell of polymer. The transmission electron images confirm the crystallinity, particle size distribution in the range of 5-10 nm, and the spinel structure of the nanoparticles. Mössbauer results at 80 K showed line shapes dominated by magnetic relaxation effects with sextets and combinations of sextets and doublets. The interactions of the surfactant with the nanoparticle surface are strong showing at least two surfactant layers. The magnetic behavior was evaluated by moment versus temperature and magnetic field measurements. The nanoparticles showed superparamagnetic behavior at room temperature and blocked (irreversible behavior at 5 K. The saturation magnetization presented lower values than reported bulk systems due to the presence of a large layer of maghemite. The FC/ZFC magnetization vs. temperature curves confirmed the superparamagnetic nature of the iron oxide particles and the strong interactions for pH 12 samples and weak interactions for pH 10 samples. The particle growth was dominated by the surface properties of the nanoparticles.

  6. Synthesis and super-paramagnetic properties of neodymium ferrites nanorods

    Energy Technology Data Exchange (ETDEWEB)

    El moussaoui, H. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Laboratoire of Magnetism and the Physics of the High Energies, URAC 12, Departement of Physique, Faculty of Science, Mohammed V- Agdal University, BP 1014, Rabat (Morocco); Mounkachi, O., E-mail: o.mounkachi@mascir.com [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Masrour, R. [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, Route Sidi Bouzid, BP 63, 46000 Safi (Morocco); Hamedoun, M., E-mail: hamedoun@hotmail.com [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hlil, E.K. [Institut Néel, CNRS-UJF, B.P. 166, 38042 Grenoble Cedex (France); Benyoussef, A. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Laboratoire of Magnetism and the Physics of the High Energies, URAC 12, Departement of Physique, Faculty of Science, Mohammed V- Agdal University, BP 1014, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco)

    2013-12-25

    Highlights: •Magnetic properties of Neodymium nanorods depend on calcination temperature. •The as-synthesized Nd ferrite nanorods are superparamagnetic at room temperature. •The blocking temperature is higher than room temperature. -- Abstract: In this work we report the microstructural characterization and the magnetic properties of neodymium ferrites (NdFe{sub 2}O{sub 4}) nanorods prepared by well controlled co-precipitation method. The effect of annealing temperature on the structure, morphology and magnetic properties of NdFe{sub 2}O{sub 4} has been investigated. The transmission electron microscopy (TEM) observations revealed that the as-prepared nanoparticles have rods-like shape with the average diameter ranging from 5 to 14 nm and uniform length. The magnetic measurements show that the as-synthesized nanorods have a superparamagnetic behavior at room temperature, with a blocking temperature of 360 K and magnetic anisotropy constant of 2.8 × 10{sup 5} ergs/cm{sup 3}. The magnetization and coercitivity at room temperature are increased from 26 to 34 emu/g and from 151 to 171 Oe with increasing annealing temperature from 400 to 600 °C, respectively.

  7. Theory, simulation and experimental results of the acoustic detection of magnetization changes in superparamagnetic iron oxide

    Directory of Open Access Journals (Sweden)

    Borgert Jörn

    2011-06-01

    Full Text Available Abstract Background Magnetic Particle Imaging is a novel method for medical imaging. It can be used to measure the local concentration of a tracer material based on iron oxide nanoparticles. While the resulting images show the distribution of the tracer material in phantoms or anatomic structures of subjects under examination, no information about the tissue is being acquired. To expand Magnetic Particle Imaging into the detection of soft tissue properties, a new method is proposed, which detects acoustic emissions caused by magnetization changes in superparamagnetic iron oxide. Methods Starting from an introduction to the theory of acoustically detected Magnetic Particle Imaging, a comparison to magnetically detected Magnetic Particle Imaging is presented. Furthermore, an experimental setup for the detection of acoustic emissions is described, which consists of the necessary field generating components, i.e. coils and permanent magnets, as well as a calibrated microphone to perform the detection. Results The estimated detection limit of acoustic Magnetic Particle Imaging is comparable to the detection limit of magnetic resonance imaging for iron oxide nanoparticles, whereas both are inferior to the theoretical detection limit for magnetically detected Magnetic Particle Imaging. Sufficient data was acquired to perform a comparison to the simulated data. The experimental results are in agreement with the simulations. The remaining differences can be well explained. Conclusions It was possible to demonstrate the detection of acoustic emissions of magnetic tracer materials in Magnetic Particle Imaging. The processing of acoustic emission in addition to the tracer distribution acquired by magnetic detection might allow for the extraction of mechanical tissue parameters. Such parameters, like for example the velocity of sound and the attenuation caused by the tissue, might also be used to support and improve ultrasound imaging. However, the method

  8. Magnetic particle imaging: current developments and future directions

    Directory of Open Access Journals (Sweden)

    Panagiotopoulos N

    2015-04-01

    Full Text Available Nikolaos Panagiotopoulos,1 Robert L Duschka,1 Mandy Ahlborg,2 Gael Bringout,2 Christina Debbeler,2 Matthias Graeser,2 Christian Kaethner,2 Kerstin Lüdtke-Buzug,2 Hanne Medimagh,2 Jan Stelzner,2 Thorsten M Buzug,2 Jörg Barkhausen,1 Florian M Vogt,1 Julian Haegele1 1Clinic for Radiology and Nuclear Medicine, University Hospital Schleswig Holstein, Campus Lübeck, 2Institute of Medical Engineering, University of Lübeck, Lübeck, Germany Abstract: Magnetic particle imaging (MPI is a novel imaging method that was first proposed by Gleich and Weizenecker in 2005. Applying static and dynamic magnetic fields, MPI exploits the unique characteristics of superparamagnetic iron oxide nanoparticles (SPIONs. The SPIONs’ response allows a three-dimensional visualization of their distribution in space with a superb contrast, a very high temporal and good spatial resolution. Essentially, it is the SPIONs’ superparamagnetic characteristics, the fact that they are magnetically saturable, and the harmonic composition of the SPIONs’ response that make MPI possible at all. As SPIONs are the essential element of MPI, the development of customized nanoparticles is pursued with the greatest effort by many groups. Their objective is the creation of a SPION or a conglomerate of particles that will feature a much higher MPI performance than nanoparticles currently available commercially. A particle’s MPI performance and suitability is characterized by parameters such as the strength of its MPI signal, its biocompatibility, or its pharmacokinetics. Some of the most important adjuster bolts to tune them are the particles’ iron core and hydrodynamic diameter, their anisotropy, the composition of the particles’ suspension, and their coating. As a three-dimensional, real-time imaging modality that is free of ionizing radiation, MPI appears ideally suited for applications such as vascular imaging and interventions as well as cellular and targeted imaging. A number

  9. Superparamagnetic microbead transport induced by a magnetic field on large-area magnetic antidot arrays

    Science.gov (United States)

    Ouk, Minae; Beach, Geoffrey S. D.

    2017-12-01

    A method is presented for directed transport of superparamagnetic microbeads (SPBs) on magnetic antidot patterned substrates by applying a rotating elliptical magnetic field. We find a critical frequency for transport, beyond which the bead dynamics transitions from stepwise locomotion to local oscillation. We also find that the out-of-plane (HOOP) and in-plane (HIP) field magnitudes play crucial roles in triggering bead motion. Namely, we find threshold values in HOOP and HIP that depend on bead size, which can be used to independently and remotely address specific bead populations in a multi-bead mixture. These behaviors are explained in terms of the dynamic potential energy lansdscapes computed from micromagnetic simulations of the substrate magnetization configuration. Finally, we show that large-area magnetic patterns suitable for particle transport and sorting can be fabricated through a self-assembly lithography technique, which provides a simple, cost-effective means to integrate magnetic actuation into microfluidic systems.

  10. Treatment of Aqueous Bromate by Superparamagnetic BiOCl-Mediated Advanced Reduction Process

    Directory of Open Access Journals (Sweden)

    Xiaowei Liu

    2017-05-01

    Full Text Available Bromate ( BrO 3 − contamination in drinking water is a growing concern. Advanced reduction processes (ARPs are reportedly promising in relieving this concern. In this work, UV/superparamagnetic BiOCl (BiOCl loaded onto superparamagnetic hydroxyapatite assisted with small molecule carboxylic acid (formate, citrate, and acetate, a carboxyl anion radical ( CO 2 • − -based ARP, was proposed to eliminate aqueous BrO 3 − . Formate and citrate were found to be ideal CO 2 • − precursor, and the latter was found to be safe for practical use. BrO 3 − (10 μg·L−1, WHO guideline for drinking water can be completely degraded within 3 min under oxygen-free conditions. In this process, BrO 3 − degradation was realized by the reduction of CO 2 • − (major role and formyloxyl radical (minor role in bulk solution. The formation mechanism of radicals and the transformation pathway of BrO 3 − were proposed based on data on electron paramagnetic resonance monitoring, competitive kinetics, and degradation product analysis. The process provided a sustainable decontamination performance (<5% deterioration for 10 cycles and appeared to be more resistant to common electron acceptors (O2, NO 3 − , and Fe3+ than hydrated electron based-ARPs. Phosphate based-superparamagnetic hydroxyapatite, used to support BiOCl in this work, was believed to be applicable for resolving the recycling problem of other metal-containing catalyst.

  11. Highly fluorescent and superparamagnetic nanosystem for biomedical applications

    Science.gov (United States)

    Cabrera, Mariana P.; E Cabral Filho, Paulo; Silva, Camila M. C. M.; Oliveira, Rita M.; Geraldes, Carlos F. G. C.; Castro, M. Margarida C. A.; Costa, Benilde F. O.; Henriques, Marta S. C.; Paixão, José A.; Carvalho, Luiz B., Jr.; Santos, Beate S.; Hallwass, Fernando; Fontes, Adriana; Pereira, Giovannia A. L.

    2017-07-01

    This work reports on highly fluorescent and superparamagnetic bimodal nanoparticles (BNPs) obtained by a simple and efficient method as probes for fluorescence analysis and/or contrast agents for MRI. These promising BNPs with small dimensions (ca. 17 nm) consist of superparamagnetic iron oxide nanoparticles (SPIONs) covalently bound with CdTe quantum dots (ca. 3 nm). The chemical structure of the magnetic part of BNPs is predominantly magnetite, with minor goethite and maghemite contributions, as shown by Mössbauer spectroscopy, which is compatible with the x-ray diffraction data. Their size evaluation by different techniques showed that the SPION derivatization process, in order to produce the BNPs, does not lead to a large size increase. The BNPs saturation magnetization, when corrected for the organic content of the sample, is ca. 68 emu g-1, which is only slightly reduced relative to the bare nanoparticles. This indicates that the SPION surface functionalization does not change considerably the magnetic properties. The BNP aqueous suspensions presented stability, high fluorescence, high relaxivity ratio (r 2/r 1 equal to 25) and labeled efficiently HeLa cells as can be seen by fluorescence analysis. These BNP properties point to their applications as fluorescent probes as well as negative T 2-weighted MRI contrast agents. Moreover, their potential magnetic response could also be used for fast bioseparation applications.

  12. Multifunctional PEG-carboxylate copolymer coated superparamagnetic iron oxide nanoparticles for biomedical application

    Science.gov (United States)

    Illés, Erzsébet; Szekeres, Márta; Tóth, Ildikó Y.; Szabó, Ákos; Iván, Béla; Turcu, Rodica; Vékás, Ladislau; Zupkó, István; Jaics, György; Tombácz, Etelka

    2018-04-01

    Biocompatible magnetite nanoparticles (MNPs) were prepared by post-coating the magnetic nanocores with a synthetic polymer designed specifically to shield the particles from non-specific interaction with cells. Poly(ethylene glycol) methyl ether methacrylate (PEGMA) macromonomers and acrylic acid (AA) small molecular monomers were chemically coupled by quasi-living atom transfer radical polymerization (ATRP) to a comb-like copolymer, P(PEGMA-co-AA) designated here as P(PEGMA-AA). The polymer contains pendant carboxylate moieties near the backbone and PEG side chains. It is able to bind spontaneously to MNPs; stabilize the particles electrostatically via the carboxylate moieties and sterically via the PEG moieties; provide high protein repellency via the structured PEG layer; and anchor bioactive proteins via peptide bond formation with the free carboxylate groups. The presence of the P(PEGMA-AA) coating was verified in XPS experiments. The electrosteric (i.e., combined electrostatic and steric) stabilization is efficient down to pH 4 (at 10 mM ionic strength). Static magnetization and AC susceptibility measurements showed that the P(PEGMA-AA)@MNPs are superparamagnetic with a saturation magnetization value of 55 emu/g and that both single core nanoparticles and multicore structures are present in the samples. The multicore components make our product well suited for magnetic hyperthermia applications (SAR values up to 17.44 W/g). In vitro biocompatibility, cell internalization, and magnetic hyperthermia studies demonstrate the excellent theranostic potential of our product.

  13. Superparamagnetic behavior of Fe-doped SnO2 nanoparticles

    International Nuclear Information System (INIS)

    Hachisu, M.; Onuma, K.; Kondo, T.; Miike, K.; Miyasaka, T.; Mori, K.; Ichiyanagi, Y.

    2014-01-01

    SnO 2 is an n-type semiconductor with a wide band gap of 3.62 eV, and SnO 2 nanoparticles doped with magnetic ions are expected to realized new diluted magnetic semiconductors (DMSs). Realizing ferromagnetism at room temperature is important for spintronics device applications, and it is interesting that the magnetic properties of these DMS systems can be varied significantly by modifying the preparation methods or conditions. In this study, the magnetic properties of Fe-doped (3% and 5%) SnO 2 nanoparticles, prepared using our novel chemical preparation method and encapsulated in amorphous SiO 2 , were investigated. The particle size (1.8–16.9 nm) and crystal phase were controlled by the annealing temperature. X-ray diffraction confirmed a rutile SnO 2 single-phase structure for samples annealed at 1073–1373 K, and the composition was confirmed using X-ray fluorescence analysis. SQUID magnetometer measurements revealed superparamagnetic behavior of the 5%-Fe-doped sample at room temperature, although SnO 2 is known to be diamagnetic. Magnetization curves at 5 K indicated that the 3%-Fe-doped has a larger magnetization than that of the 5%-Fe-doped sample. We conclude that the magnetization of the 5%-Fe-doped sample decreased at 5 K due to the superexchange interaction between the antiferromagnetic coupling in the nanoparticle system

  14. Superparamagnetic behavior of Fe-doped SnO2 nanoparticles

    Science.gov (United States)

    Hachisu, M.; Onuma, K.; Kondo, T.; Miike, K.; Miyasaka, T.; Mori, K.; Ichiyanagi, Y.

    2014-02-01

    SnO2 is an n-type semiconductor with a wide band gap of 3.62 eV, and SnO2 nanoparticles doped with magnetic ions are expected to realized new diluted magnetic semiconductors (DMSs). Realizing ferromagnetism at room temperature is important for spintronics device applications, and it is interesting that the magnetic properties of these DMS systems can be varied significantly by modifying the preparation methods or conditions. In this study, the magnetic properties of Fe-doped (3% and 5%) SnO2 nanoparticles, prepared using our novel chemical preparation method and encapsulated in amorphous SiO2, were investigated. The particle size (1.8-16.9 nm) and crystal phase were controlled by the annealing temperature. X-ray diffraction confirmed a rutile SnO2 single-phase structure for samples annealed at 1073-1373 K, and the composition was confirmed using X-ray fluorescence analysis. SQUID magnetometer measurements revealed superparamagnetic behavior of the 5%-Fe-doped sample at room temperature, although SnO2 is known to be diamagnetic. Magnetization curves at 5 K indicated that the 3%-Fe-doped has a larger magnetization than that of the 5%-Fe-doped sample. We conclude that the magnetization of the 5%-Fe-doped sample decreased at 5 K due to the superexchange interaction between the antiferromagnetic coupling in the nanoparticle system.

  15. Mössbauer spectroscopic studies of Al{sup 3+} ions substitution effects in superparamagnetic Mg{sub 0.2}Mn{sub 0.5}Ni{sub 0.3}Al{sub y}Fe{sub 2−y}O{sub 4} compositions

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Satish, E-mail: satishapurva@gmail.com [Department of Physics, Govt. P.G. College, Solan (India); Chand, Jagdish; Singh, M. [Department of Physics, Himachal Pradesh University, Summer-Hill, Shimla, 171005 (India)

    2016-09-15

    Nanoparticles of Al{sup 3+} ions substituted Mg−Mn−Ni materials with compositions Mg{sub 0.2}Mn{sub 0.5}Ni{sub 0.3}Al{sub y}Fe{sub 2−y}O{sub 4} (y = 0.15–0.25) were synthesized by citrate precursor technique. Samples were characterized by X-ray diffraction, transmission electron microscopy, vibrating sample magnetometer and room temperature {sup 57}Fe Mössbauer spectroscopy. Saturation magnetization decreases with increasing Al{sup 3+} ions concentration because replacement of Fe{sup 3+} ions by Al{sup 3+} ions at octahedral B-site weaken sublattice interaction and lowers magnetic moments. Mössbauer spectral studies show that as-prepared nano-sized samples are superparamagnetic at room temperature. Superparamagnetic relaxation was observed for small crystallite in samples with higher Al content, which is attributed to weakening of A–B exchange interaction. Mössbauer spectra at 300 K show a gradual collapse of magnetic hyperfine splitting typical for superparamagnetic relaxation. An increase in inversion parameter is observed with increasing Al{sup 3+} ions substitution, which is attributed to decrease in crystallite size. - Highlights: • Single phase nanocrystalline samples were synthesized by citrate precursor method. • Particle size decreases as non-magnetic Al{sup 3+} ions concentration increase. • Presence of doublet in Mössbauer spectra was due to superparamagnetic relaxation. • Study shows collapse of long range magnetic order and quenching of magnetic moment.

  16. Switchable cell trapping using superparamagnetic beads

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, M. T.; Smith, K. H.; Real, M. E.; Bashir, M. A.; Fry, P. W.; Fischer, P.; Im, M.-Y.; Schrefl, T.; Allwood, D. A.; Haycock, J. W.

    2010-04-30

    Ni{sub 81}Fe{sub 19} microwires are investigated as the basis of a switchable template for positioning magnetically-labeled neural Schwann cells. Magnetic transmission X-ray microscopy and micromagnetic modeling show that magnetic domain walls can be created or removed in zigzagged structures by an applied magnetic field. Schwann cells containing superparamagnetic beads are trapped by the field emanating from the domain walls. The design allows Schwann cells to be organized on a surface to form a connected network and then released from the surface if required. As aligned Schwann cells can guide nerve regeneration, this technique is of value for developing glial-neuronal co-culture models in the future treatment of peripheral nerve injuries.

  17. Presence, distribution, and diversity of iron-oxidizing bacteria at a landfill leachate-impacted groundwater surface water interface

    DEFF Research Database (Denmark)

    Yu, R.; Gan, P.; Mackay, A.A.

    2010-01-01

    ) were dominated by members of the Bradyrhizobiaceae and Comamonadaceae; clones from the deeper sediments were phylogenetically more diverse, dominated by members of the Rhodocyclaceae. The iron deposition profiles indicated that active iron oxidation occurred only within the near-to-surface GSI......We examined the presence of iron-oxidizing bacteria (IOB) at a groundwater surface water interface (GSI) impacted by reduced groundwater originating as leachate from an upgradient landfill. IOB enrichments and quantifications were obtained, at high vertical resolution, by an iron/oxygen opposing...... site mirrored the IOB distribution. Clone libraries from two separate IOB enrichments indicated a stratified IOB community with clear differences at short vertical distances. Alpha- and Betaproteobacteria were the dominant phylotypes. Clones from the near-surface sediment (1-2 cm below ground surface...

  18. Iron-oxide colloidal nanoclusters: from fundamental physical properties to diagnosis and therapy

    Science.gov (United States)

    Kostopoulou, Athanasia; Brintakis, Konstantinos; Lascialfari, Alessandro; Angelakeris, Mavroeidis; Vasilakaki, Marianna; Trohidou, Kalliopi; Douvalis, Alexios P.; Psycharakis, Stylianos; Ranella, Anthi; Manna, Liberato; Lappas, Alexandros

    2014-03-01

    Research on magnetic nanocrystals attracts wide-spread interest because of their challenging fundamental properties, but it is also driven by problems of practical importance to the society, ranging from electronics (e.g. magnetic recording) to biomedicine. In that respect, iron oxides are model functional materials as they adopt a variety of oxidation states and coordinations that facilitate their use. We show that a promising way to engineer further their technological potential in diagnosis and therapy is the assembly of primary nanocrystals into larger colloidal entities, possibly with increased structural complexity. In this context, elevated-temperature nanochemistry (c.f. based on a polyol approach) permitted us to develop size-tunable, low-cytotoxicity iron-oxide nanoclusters, entailing iso-oriented nanocrystals, with enhanced magnetization. Experimental (magnetometry, electron microscopy, Mössbauer and NMR spectroscopies) results supported by Monte Carlo simulations are reviewed to show that such assemblies of surface-functionalized iron oxide nanocrystals have a strong potential for innovation. The clusters' optimized magnetic anisotropy (including microscopic surface spin disorder) and weak ferrimagnetism at room temperature, while they do not undermine colloidal stability, endow them a profound advantage as efficient MRI contrast agents and hyperthermic mediators with important biomedical potential.

  19. Selective in vitro anticancer effect of superparamagnetic iron oxide nanoparticles loaded in hyaluronan polymeric micelles.

    Science.gov (United States)

    Smejkalová, Daniela; Nešporová, Kristina; Huerta-Angeles, Gloria; Syrovátka, Jakub; Jirák, Daniel; Gálisová, Andrea; Velebný, Vladimír

    2014-11-10

    Due to its native origin, excellent biocompatibility and biodegradability, hyaluronan (HA) represents an attractive polymer for superparamagnetic iron oxide nanoparticles (SPION) coating. Herein, we report HA polymeric micelles encapsulating oleic acid coated SPIONs, having a hydrodynamic size of about 100 nm and SPION loading capacity of 1-2 wt %. The HA-SPION polymeric micelles were found to be selectively cytotoxic toward a number of human cancer cell lines, mainly those of colon adenocarcinoma (HT-29). The selective inhibition of cell growth was even observed when the SPION loaded HA polymeric micelles were incubated with a mixture of control and cancer cells. The selective in vitro inhibition could not be connected with an enhanced CD44 uptake or radical oxygen species formation and was rather connected with a different way of SPION intracellular release. While aggregated iron particles were visualized in control cells, nonaggregated solubilized iron oxide particles were detected in cancer cells. In vivo SPION accumulation in intramuscular tumor following an intravenous micelle administration was confirmed by magnetic resonance (MR) imaging and histological analysis. Having a suitable hydrodynamic size, high magnetic relaxivity, and being cancer specific and able to accumulate in vivo in tumors, SPION-loaded HA micelles represent a promising platform for theranostic applications.

  20. Superparamagnetic iron oxide nanoparticles (SPIONs)-loaded Trojan microparticles for targeted aerosol delivery to the lung.

    Science.gov (United States)

    Tewes, Frederic; Ehrhardt, Carsten; Healy, Anne Marie

    2014-01-01

    Targeted aerosol delivery to specific regions of the lung may improve therapeutic efficiency and minimise unwanted side effects. Targeted delivery could potentially be achieved with porous microparticles loaded with superparamagnetic iron oxide nanoparticles (SPIONs)-in combination with a target-directed magnetic gradient field. The aim of this study was to formulate and evaluate the aerodynamic properties of SPIONs-loaded Trojan microparticles after delivery from a dry powder inhaler. Microparticles made of SPIONs, PEG and hydroxypropyl-β-cyclodextrin (HPβCD) were formulated by spray drying and characterised by various physicochemical methods. Aerodynamic properties were evaluated using a next generation cascade impactor (NGI), with or without a magnet positioned at stage 2. Mixing appropriate proportions of SPIONs, PEG and HPβCD allowed Trojan microparticle to be formulated. These particles had a median geometric diameter of 2.8±0.3μm and were shown to be sensitive to the magnetic field induced by a magnet having a maximum energy product of 413.8kJ/m(3). However, these particles, characterised by a mass median aerodynamic diameter (MMAD) of 10.2±2.0μm, were considered to be not inhalable. The poor aerodynamic properties resulted from aggregation of the particles. The addition of (NH4)2CO3 and magnesium stearate (MgST) to the formulation improved the aerodynamic properties of the Trojan particles and resulted in a MMAD of 2.2±0.8μm. In the presence of a magnetic field on stage 2 of the NGI, the amount of particles deposited at this stage increased 4-fold from 4.8±0.7% to 19.5±3.3%. These Trojan particles appeared highly sensitive to the magnetic field and their deposition on most of the stages of the NGI was changed in the presence compared to the absence of the magnet. If loaded with a pharmaceutical active ingredient, these particles may be useful for treating localised lung disease such as cancer nodules or bacterial infectious foci. Copyright

  1. Effect of particle size on degree of inversion in ferrites

    International Nuclear Information System (INIS)

    Siddique, M.; Butt, N.M.

    2012-01-01

    Ferrites with the spinel structure are important materials because of their structural, magnetic and electrical properties. The suitability of these materials depends on both the intrinsic behavior of the material and the effects of the grain size. Moessbauer spectroscopy was employed to investigate the cation distribution and degree of inversion in bulk and nano sized particles of CuFe/sub 2/O/sub 4/, MnFe/sub 2/O/sub 4/ and NiFe/sub 2/O/sub 4/ ferrites. The Moessbauer spectra of all bulk ferrites showed complete magnetic behavior, whereas nanoparticle ferrites showed combination of ferromagnetic and superparamagnetic components. Moreover, the cation distribution in nanoparticle materials was also found to be different to that of their bulk counterparts indicating the particle size dependency. The inversion of Cu and Ni ions in bulk sample was greater than that of nanoparticles; whereas the inversion of Mn ions was less in bulk material as compared to the nanoparticles. Hence the degree of inversion decreased in CuFe/sub 2/O/sub 4/ and NiFe/sub 2/O/sub 4/ samples whereas, it increased in MnFe/sub 2/O/sub 4/ as the particle size decreased and thus showed the anomalous behavior in this case. The nanoparticle samples also showed paramagnetic behaviour due to superparamagnetism and this effect is more prominent in MnFe/sub 2/O/sub 4/. Moessbauer spectra of bulk and nanoparticles CuFe/sub 2/O/sub 4/ is shown. (Orig./A.B.)

  2. Assembly Modulated by Particle Position and Shape: A New Concept in Self-Assembly

    DEFF Research Database (Denmark)

    Tavacoli, Joe W; Heuvingh, Julien; Du Roure, Olivia

    2017-01-01

    In this communication we outline how the bespoke arrangements and design of micron-sized superparamagnetic shapes provide levers to modulate their assembly under homogeneous magnetic fields. We label this new approach, 'assembly modulated by particle position and shape' (APPS). Specifically, using...... rectangular lattices of superparamagnetic micron-sized cuboids, we construct distinct microstructures by adjusting lattice pitch and angle of array with respect to a magnetic field. Broadly, we find two modes of assembly: (1) immediate 2D jamming of the cuboids as they rotate to align with the applied field...... (rotation-induced jamming) and (2) aggregation via translation after their full alignment (dipole-dipole assembly). The boundary between these two assembly pathways is independent on field strength being solely a function of the cuboid's dimensions, lattice pitch, and array angle with respect to field...

  3. Different approaches to analyze the dipolar interaction effects on diluted and concentrated granular superparamagnetic systems

    Energy Technology Data Exchange (ETDEWEB)

    Moscoso-Londoño, O., E-mail: omoscoso@ifi.unicamp.br [Instituto de Física ‘Gleb Wataghin’, Universidade Estadual de Campinas (UNICAMP), CEP13083-859 Campinas, São Paulo (Brazil); Tancredi, P. [Laboratorio de Sólidos Amorfos, INTECIN, Facultad de Ingeniería, Universidad de Buenos Aires (UBA), CONICET, C1063ACV Buenos Aires (Argentina); Muraca, D. [Instituto de Física ‘Gleb Wataghin’, Universidade Estadual de Campinas (UNICAMP), CEP13083-859 Campinas, São Paulo (Brazil); Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC (UFABC), Av. Dos Estados, 5001, Santo André, SP (Brazil); Mendoza Zélis, P.; Coral, D.; Fernández van Raap, M.B. [Instituto de Física, Universidad Nacional de La Plata (UNLP), CONICET, CC.67, 1900 La Plata, Buenos Aires (Argentina); Wolff, U.; Neu, V.; Damm, C. [IFW Dresden, Leibniz Institute for Solid State and Materials Research, Dresden, Helmholtzstrasse 20, 01069 Dresden (Germany); Oliveira, C.L.P. de [Instituto de Física, Universidade de São Paulo, São Paulo 05314970 (Brazil); Pirota, K.R. [Instituto de Física ‘Gleb Wataghin’, Universidade Estadual de Campinas (UNICAMP), CEP13083-859 Campinas, São Paulo (Brazil); and others

    2017-04-15

    Controlled magnetic granular materials with different concentrations of magnetite nanoparticles immersed in a non-conducting polymer matrix were synthesized and, their macroscopic magnetic observables analyzed in order to advance towards a better understanding of the magnetic dipolar interactions and its effects on the obtained magnetic parameters. First, by means of X-ray diffraction, transmission electron microscopy, small angle X-ray scattering and X-ray absorption fine structure an accurate study of the structural properties was carried out. Then, the magnetic properties were analyzed by means of different models, including those that consider the magnetic interactions through long-range dipolar forces as: the Interacting Superparamagnetic Model (ISP) and the Vogel-Fulcher law (V-F). In systems with larger nanoparticle concentrations, magnetic results clearly indicate that the role played by the dipolar interactions affects the magnetic properties, giving rise to obtaining magnetic and structural parameters without physical meaning. Magnetic parameters as the effective anisotropic constant, magnetic moment relaxation time and mean blocking temperature, extracted from the application of the ISP model and V-F Law, were used to simulate the zero-field-cooling (ZFC) and field-cooling curves (FC). A comparative analysis of the simulated, fitted and experimental ZFC/FC curves suggests that the current models depict indeed our dilute granular systems. Notwithstanding, for concentrated samples, the ISP model infers that clustered nanoparticles are being interpreted as single entities of larger magnetic moment and volume, effect that is apparently related to a collective and complex magnetic moment dynamics within the cluster. - Highlights: • Nanoparticle architecture into matrices determines the composite magnetic response. • Magnetically diluted or compacted systems are useful to study magnetism at nanoscale. • Particle aggregation into the matrices was examined

  4. Smooth and rapid microwave synthesis of MIL-53(Fe) including superparamagnetic γ-Fe2O3 nanoparticles

    Science.gov (United States)

    Wengert, Simon; Albrecht, Joachim; Ruoss, Stephen; Stahl, Claudia; Schütz, Gisela; Schäfer, Ronald

    2017-12-01

    MIL-53(Fe) linked to superparamagnetic γ-Fe2O3 nanoparticles was created using time-efficient microwave synthesis. Intermediates as well as the final product have been characterized by Dynamic Light Scattering (DLS), Infrared Spectroscopy (FTIR) and Thermal Gravimetric Analysis (TGA). It is found that this route allows the production of Fe nanoparticles with typical sizes of about 80 nm that are embedded inside the metal-organic structures. Detailed magnetization measurements using SQUID magnetometry revealed a nearly reversible magnetization loop indicating essentially superparamagnetic behavior.

  5. Magnetic manipulation of superparamagnetic nanoparticles in a microfluidic system for drug delivery applications

    International Nuclear Information System (INIS)

    Agiotis, L.; Theodorakos, I.; Samothrakitis, S.; Papazoglou, S.; Zergioti, I.; Raptis, Y.S.

    2016-01-01

    Magnetic nanoparticles (MNPs), such as superparamagnetic iron oxide nanoparticles (SPIONS), have attracted major interest, due to their small size and unique magnetic properties, for drug delivery applications. In this context, iron oxide nanoparticles of magnetite (Fe 3 O 4 ) (150 nm magnetic core diameter), were used as drug carriers, aiming to form a magnetically controlled nano-platform. The navigation capabilities of the iron oxide nanoparticles in a microfluidic channel were investigated by simulating the magnetic field and the magnetic force applied on the magnetic nanoparticles inside a microfluidic chip. The simulations have been performed using finite element method (ANSY’S software). The optimum setup which intends to simulate the magnetic navigation of the nanoparticles, by the use of MRI-type fields, in the human circulatory system, consists of two parallel permanent magnets to produce a homogeneous magnetic field, in order to ensure the maximum magnetization of the magnetic nanoparticles, an electromagnet for the induction of the magnetic gradients and the creation of the magnetic force and a microfluidic setup so as to simulate the blood flow inside the human blood vessels. The magnetization of the superparamagnetic nanoparticles and the consequent magnetic torque developed by the two permanent magnets, together with the mutual interactions between the magnetized nanoparticles lead to the creation of rhabdoid aggregates in the direction of the homogeneous field. Additionally, the magnetic gradients introduced by the operation of the electromagnet are capable of directing the aggregates, as a whole, to the desired direction. By removing the magnetic fields, the aggregates are disrupted, due to the super paramagnetic nature of the nanoparticles, avoiding thus the formation of undesired thrombosis. - Highlights: • Homogeneous field yields an aggregation of particles along the lines of the field. • Additional electromagnet field rotates the

  6. Magnetic manipulation of superparamagnetic nanoparticles in a microfluidic system for drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Agiotis, L.; Theodorakos, I.; Samothrakitis, S.; Papazoglou, S.; Zergioti, I.; Raptis, Y.S.

    2016-03-01

    Magnetic nanoparticles (MNPs), such as superparamagnetic iron oxide nanoparticles (SPIONS), have attracted major interest, due to their small size and unique magnetic properties, for drug delivery applications. In this context, iron oxide nanoparticles of magnetite (Fe{sub 3}O{sub 4}) (150 nm magnetic core diameter), were used as drug carriers, aiming to form a magnetically controlled nano-platform. The navigation capabilities of the iron oxide nanoparticles in a microfluidic channel were investigated by simulating the magnetic field and the magnetic force applied on the magnetic nanoparticles inside a microfluidic chip. The simulations have been performed using finite element method (ANSY’S software). The optimum setup which intends to simulate the magnetic navigation of the nanoparticles, by the use of MRI-type fields, in the human circulatory system, consists of two parallel permanent magnets to produce a homogeneous magnetic field, in order to ensure the maximum magnetization of the magnetic nanoparticles, an electromagnet for the induction of the magnetic gradients and the creation of the magnetic force and a microfluidic setup so as to simulate the blood flow inside the human blood vessels. The magnetization of the superparamagnetic nanoparticles and the consequent magnetic torque developed by the two permanent magnets, together with the mutual interactions between the magnetized nanoparticles lead to the creation of rhabdoid aggregates in the direction of the homogeneous field. Additionally, the magnetic gradients introduced by the operation of the electromagnet are capable of directing the aggregates, as a whole, to the desired direction. By removing the magnetic fields, the aggregates are disrupted, due to the super paramagnetic nature of the nanoparticles, avoiding thus the formation of undesired thrombosis. - Highlights: • Homogeneous field yields an aggregation of particles along the lines of the field. • Additional electromagnet field rotates the

  7. Mechanisms of complement activation by dextran-coated superparamagnetic iron oxide (SPIO) nanoworms in mouse versus human serum

    DEFF Research Database (Denmark)

    Banda, Nirmal K; Mehta, Gaurav; Chao, Ying

    2014-01-01

    BACKGROUND: The complement system is a key component of innate immunity implicated in the neutralization and clearance of invading pathogens. Dextran coated superparamagnetic iron oxide (SPIO) nanoparticle is a promising magnetic resonance imaging (MRI) contrast agent. However, dextran SPIO has...... the mechanisms of human complement activation. Mouse data were analyzed by non-paired t-test, human data were analyzed by ANOVA followed by multiple comparisons with Student-Newman-Keuls test. RESULTS: In mouse sera, SPIO NW triggered the complement activation via the LP, whereas the AP contributes via...... the CP, but that did not affect the total level of C3 deposition on the particles. CONCLUSIONS: There were important differences and similarities in the complement activation by SPIO NW in mouse versus human sera. Understanding the mechanisms of immune recognition of nanoparticles in mouse and human...

  8. Synthesis of superparamagnetic nanoparticles dispersed in spherically shaped carbon nanoballs

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, E.M.M., E-mail: e.ibrahim@science.sohag.edu.eg; Hampel, Silke; Thomas, Juergen; Haase, Diana; Wolter, A. U. B.; Khavrus, Vyacheslav O.; Taeschner, Christine; Leonhardt, Albrecht; Buechner, Bernd [Leibniz Institute of Solid State and Material Research (Germany)

    2012-09-15

    In this work, carbon nanoballs in spherical shape with diameter 70 {+-} 2 nm containing well-dispersed superparamagnetic magnetite/maghemite Fe{sub 3}O{sub 4}/{gamma}-Fe{sub 2}O{sub 3} nanoparticles of 5-10 nm in size were synthesised by a facile route using the radio frequency (rf) plasma in order to assist the pyrolysis of ferrocene. Ferrocene was placed in an inductively coupled rf plasma field without additional thermal heating to activate simultaneous sublimation and pre-pyrolysis processes. During this plasma activation, the resultant derivatives were carried by an argon gas stream into the hot zone of a resistance furnace (600 Degree-Sign C) for complete thermal decomposition. The deposition of the nanoballs could be observed in the hot zone of the furnace at a temperature of 600 Degree-Sign C. The synthesised nanoballs are highly dispersible in solvents that make them particularly suitable for different applications. Their morphology, composition and structure were characterized by high-resolution scanning and transmission electron microscopy, including selected area electron diffraction, electron energy loss spectroscopy and X-ray diffraction. Magnetic measurements demonstrated that the nanoballs possess superparamagnetic characteristics.

  9. New magnetic nanobiocomposite based in galactomannan/glycerol and superparamagnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Souza, N.D.G.; Freire, R.M.; Cunha, A.P. [Grupo de Química de Materiais Avançados (GQMAT), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará – UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza, CE (Brazil); Silva, M.A.S. da [LOCEM – Laboratório de Telecomunicações e Ciência e Engenharia de Materiais, Departamento de Física, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Mazzetto, S.E. [Grupo de Química de Materiais Avançados (GQMAT), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará – UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza, CE (Brazil); Sombra, A.S.B. [LOCEM – Laboratório de Telecomunicações e Ciência e Engenharia de Materiais, Departamento de Física, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Denardin, J.C. [Departamento de Física, Universidad de Santiago de Chile, USACH, Av. Ecuador 3493, Santiago (Chile); and others

    2015-04-15

    In this study, magnetic nanobiocomposites were prepared in different proportions and produced with galactomannan (GM), magnetic nanoparticles of NiZn and glycerol (GL). The microstructure and morphology of the samples were characterized by Scanning Electron Microscopy (SEM), X-ray powder diffraction, Fourier transform infrared (FTIR) spectroscopy, Thermal analysis (TG) and Differential scanning calorimetry (DSC). The magnetic and dielectric behavior of the films was studied by Vibrating sample magnetometer (VSM) and Impedance spectroscopy. The results showed efficient incorporation of NiZn in the polymer matrix. The degradation profiles presented thermal events that were confirmed by endothermic and exothermic processes from DSC measurements. Films presented saturation magnetization (M{sub s}) range from 6 to 17 emu/g and superparamagnetic behavior. It was observed that the values of dielectric constant increased as a function of the nanoparticles concentration in the bionacomposite. Thus, this kind of biocomposite could be used as a versatile magnetic-dielectric in microwave devices. - Highlights: • Incorporation of inorganic nanoparticles in the galactomannan/glycerol polymer matrix. • All nanobiocomposites presented superparamagnetic behavior. • It can be employed as a versatile material, due to their flexible and dielectric-magnetic features.

  10. Mapping stain distribution in pathology slides using whole slide imaging

    Directory of Open Access Journals (Sweden)

    Fang-Cheng Yeh

    2014-01-01

    Full Text Available Background: Whole slide imaging (WSI offers a novel approach to digitize and review pathology slides, but the voluminous data generated by this technology demand new computational methods for image analysis. Materials and Methods: In this study, we report a method that recognizes stains in WSI data and uses kernel density estimator to calculate the stain density across the digitized pathology slides. The validation study was conducted using a rat model of acute cardiac allograft rejection and another rat model of heart ischemia/reperfusion injury. Immunohistochemistry (IHC was conducted to label ED1 + macrophages in the tissue sections and the stained slides were digitized by a whole slide scanner. The whole slide images were tessellated to enable parallel processing. Pixel-wise stain classification was conducted to classify the IHC stains from those of the background and the density distribution of the identified IHC stains was then calculated by the kernel density estimator. Results: The regression analysis showed a correlation coefficient of 0.8961 between the number of IHC stains counted by our stain recognition algorithm and that by the manual counting, suggesting that our stain recognition algorithm was in good agreement with the manual counting. The density distribution of the IHC stains showed a consistent pattern with those of the cellular magnetic resonance (MR images that detected macrophages labeled by ultrasmall superparamagnetic iron-oxide or micron-sized iron-oxide particles. Conclusions: Our method provides a new imaging modality to facilitate clinical diagnosis. It also provides a way to validate/correlate cellular MRI data used for tracking immune-cell infiltration in cardiac transplant rejection and cardiac ischemic injury.

  11. Second International Workshop on Magnetic Particle Imaging

    CERN Document Server

    Borgert, Jörn; Magnetic Particle Imaging : A Novel SPIO Nanoparticle Imaging Technique

    2012-01-01

    Magnetic Particle Imaging (MPI) is a novel imaging modality. In MPI superparamagnetic iron oxide nanoparticles are used as tracer materials. The volume is the proceeding of the 2nd international workshop on magnetic particle imaging (IWMPI). The workshop aims at covering the status and recent developments of both, the instrumentation and the tracer material, as each of them is equally important in designing a well performing MPI. For instance, the current state of the art in magnetic coil design for MPI is discussed. With a new symmetrical arrangement of coils, a field-free line (FFL) can be produced that promises a significantly higher sensitivity compared with the standard arrangement for a FFP. Furthermore, the workshop aims at presenting results from phantom and pre-clinical studies.

  12. Conjugating folate on superparamagnetic Fe3O4@Au nanoparticles using click chemistry

    International Nuclear Information System (INIS)

    Shen, Xiaofang; Ge, Zhaoqiang; Pang, Yuehong

    2015-01-01

    Gold-coated magnetic core@shell nanoparticles, which exhibit magneto-optical properties, not only enhance the chemical stability of core and biocompatibility of surface, but also provide a combination of multimodal imaging and therapeutics. The conjugation of these tiny nanoparticles with specific biomolecules allows researchers to target the desired location. In this paper, superparamagnetic Fe 3 O 4 @Au nanoparticles were synthesized and functionalized with the azide group on the surface by formation of self-assembled monolayers. Folate (FA) molecules, non-immunogenic target ligands for cancer cells, are conjugated with alkyne and then immobilized on the azide-terminated Fe 3 O 4 @Au nanoparticles through copper(I)-catalyzed azide-alkyne cycloaddition (click reaction). Myelogenous leukemia K562 cells were used as a folate receptor (FR) model, which can be targeted and extracted by magnetic field after interaction with the Fe 3 O 4 @Au–FA nanoparticles. - Graphical abstract: Self-assembled azide-terminated group on superparamagnetic Fe 3 O 4 @Au nanoparticles followed by click reaction with alkyne-functionalized folate, allowing the nanoparticles target folate receptor of cancer cells. - Highlights: • Azidoundecanethiol was coated on the superparamagnetic Fe 3 O 4 @Au nanoparticles by forming self-assembled monolayers. • Alkyne-terminated folate was synthesized from a reaction between the amine and the carboxylic acid. • Conjugation of Fe 3 O 4 @Au nanoparticles with folate was made by copper-catalyzed azide-alkyne cycloaddition click chemistry

  13. Fluxgate magnetorelaxometry of superparamagnetic nanoparticles for hydrogel characterization

    International Nuclear Information System (INIS)

    Heim, Erik; Harling, Steffen; Poehlig, Kai; Ludwig, Frank; Menzel, Henning; Schilling, Meinhard

    2007-01-01

    A new characterization method for hydrogels based on the relaxation behavior of superparamagnetic nanoparticles (MNPs) is proposed. MNPs are incorporated in the hydrogel to examine its network properties. By analyzing their relaxation behavior, incorporated and mobile nanoparticles can be studied. In the case of mobile nanoparticles, the microviscosity of the hydrogel can be determined. Thus, this method allows the studying of gelation as well as the degradation process of hydrogels. Furthermore, the hydrogel can have any shape (e.g. microspheres or larger blocks) and no sample preparation is needed, avoiding artefacts

  14. Comparative study of magnetic properties and the anticancer effect of superparamagnetic and ferromagnetic iron oxide nanoparticles in the nanocomplex with doxorubicin

    International Nuclear Information System (INIS)

    Orel, V.E.; Shevchenko, A.D.; Rikhal's'kij, O.Yu.; Romanov, A.V.; Orel, Yi.V.; Lukyin, S.M.; Burlaka, A.P.; Venger, Je.F.

    2015-01-01

    Mechano-magneto-chemically synthesized magnetic nanocomplex (MNC) of superparamagnetic iron oxide Fe 3 O 4 nanoparticles (NP) and anticancer drug doxorubicin (DR) had significantly lower saturation magnetic moment and magnetic hysteresis loop area as compared to the MNC of ferro- magnetic NP. However, the last was characterized by lower coercivity. MNC of superparamagnetic NP and DR had g-factors of 2.00, 2.30, and 4.00. MNC of ferromagnetic NP and DR had the g-factor of 2.50, and the integrated intensity of electron spin resonance signals was by 61% greater. Superparamagnetic iron oxide Fe 3 O 4 NP in MNC with DR initiated a greater antitumor effect during magnetic nanotherapy of animals with carcinosarcoma Walker-256 as compared to the MNC composed of ferromagnetic NP and DR. In the future, superparamagnetic iron oxide Fe 3 O 4 NP as a part of the nanocomplex with DR can be used in theranostics - a methodology that combines magnetic resonance diagnostics and magnetic nanotherapy using MNC both as therapeutic and diagnostic agents

  15. A functionalized superparamagnetic iron oxide colloid as a receptor directed MR contrast agent

    International Nuclear Information System (INIS)

    Josephson, L.; Groman, E.V.; Menz, E.; Lewis, J.M.; Bengele, H.

    1990-01-01

    We have synthesized a surface functionalized superparamagnetic iron oxide colloid whose clearance from the vascular compartment was inhibited by asialofetuin but not fetuin. Unlike other particulate or colloidal magnetic resonance (MR) contrast agents, the agent of the current communication is not withdrawn from the vascular compartment by cells of the macrophage-monocyte phagocytic system, as indicated by its selective increase in hepatic relaxation rates. Because of this we refer to this colloid as a hepatic selective (HS) MR contrast agent. At 20 mumol Fe/kg the HS MR agent darkened MR images of liver. The HS MR agent exhibited no acute toxicity when injected into rats at 1800 mumol Fe/kg. Based on these observations, surface functionalized superparamagnetic iron oxide colloids may be the basis of MR contrast agents internalized by receptor mediated endocytosis generally, and by the asialoglycoprotein receptor in particular

  16. Magnetic particle hyperthermia—a promising tumour therapy?

    International Nuclear Information System (INIS)

    Dutz, Silvio; Hergt, Rudolf

    2014-01-01

    We present a critical review of the state of the art of magnetic particle hyperthermia (MPH) as a minimal invasive tumour therapy. Magnetic principles of heating mechanisms are discussed with respect to the optimum choice of nanoparticle properties. In particular, the relation between superparamagnetic and ferrimagnetic single domain nanoparticles is clarified in order to choose the appropriate particle size distribution and the role of particle mobility for the relaxation path is discussed. Knowledge of the effect of particle properties for achieving high specific heating power provides necessary guidelines for development of nanoparticles tailored for tumour therapy. Nanoscale heat transfer processes are discussed with respect to the achievable temperature increase in cancer cells. The need to realize a well-controlled temperature distribution in tumour tissue represents the most serious problem of MPH, at present. Visionary concepts of particle administration, in particular by means of antibody targeting, are far from clinical practice, yet. On the basis of current knowledge of treating cancer by thermal damaging, this article elucidates possibilities, prospects, and challenges for establishment of MPH as a standard medical procedure. (topical review)

  17. Selective manipulation of superparamagnetic beads by a magnetic microchip

    KAUST Repository

    Gooneratne, Chinthaka Pasan

    2013-07-01

    In this paper, a magnetic microchip (MMC) is presented, to first trap and then selectively manipulate individual, superparamagnetic beads (SPBs) to another trapping site. Trapping sites are realized through soft magnetic micro disks made of Ni80Fe20, and SPB motion is controlled by current-carrying, tapered, conducting lines made of Au. The MMC was realized using standard microfabrication techniques and provides a cheap and versatile platform for microfluidic systems for cell manipulation. © 2013 IEEE.

  18. Processing of superparamagnetic iron contrast agent ferucarbotran in transplanted pancreatic islets

    Czech Academy of Sciences Publication Activity Database

    Zacharovová, K.; Berková, Z.; Jirák, D.; Herynek, V.; Vancová, Marie; Dovolilová, E.; Saudek, F.

    2012-01-01

    Roč. 7, č. 6 (2012), s. 485-493 ISSN 1555-4309 Institutional research plan: CEZ:AV0Z60220518 Keywords : magnetic resonance imaging * pancreatic islets * transplantation * superparamagnetic iron oxide nanoparticles * ferucarbotran * β cells * diabetes * immunohistochemistry * transmission electron microscopy Subject RIV: CE - Biochemistry Impact factor: 2.872, year: 2012 http://onlinelibrary.wiley.com/doi/10.1002/cmmi.1477/full

  19. Surface functionalization of superparamagnetic nanoparticles encapsulated by chitosan for protein immobilization

    International Nuclear Information System (INIS)

    Sousa, Jose Silva de

    2010-01-01

    Nanoscience and nanotechnology have opened up numerous developments of devices and systems on the nanometer scale, with new molecular organization, properties and functions. In this context, the polymeric magnetic nanoparticles are composites formed by magnetic materials with a particle size between 1 and 100 nm combined with functional polymers. They are well-known and have been widely studied because of its applications in various technology areas. Applications on the biological and medical areas include separation and immobilization of enzymes and proteins, improved techniques of magnetic resonance imaging and diagnostic systems for controlled drug delivery. In this work, proteins were immobilized on the surface of a biopolymer combined with superparamagnetic particles of magnetite. The biopolymer chitosan was used, cross-linked and functionalized with glutaraldehyde, applicable to the biological assays. Three types of magnetic composites were obtained, which were called QM1Glu, QM2NaGlu and QM3Glu. They were characterized by X-ray diffraction, scanning electron microscopy, vibrating sample magnetometry, differential scanning calorimetry, thermogravimetry and infrared spectroscopy. They were evaluated concerning the immobilization of the proteins bovine serum albumin (BSA), collagen and trypsin. The study showed that the immobilization of proteins on the biopolymer occurred in 30 min of incubation. The magnetic composite of non functionalized chitosan (QM3) was also evaluated. For trypsin, it was found that the immobilization potential of QM3 was higher than that observed for QM3Glu. After 30 days, the trypsin of the QM3-Trip and QM3Glu-Trip was still with activity. The activity and the enzyme kinetics of the QM3Glu-Trip with the substrate BApNA were demonstrated. (author)

  20. Investigation on the toxic interaction of superparamagnetic iron oxide nanoparticles with catalase

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zehua [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, China–America CRC for Environment and Health, Shandong Province, Shandong University, 27# Shanda South Road, Jinan 250100 (China); Liu, Hongwei [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, China–America CRC for Environment and Health, Shandong Province, Shandong University, 27# Shanda South Road, Jinan 250100 (China); Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Hu, Xinxin; Song, Wei [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, China–America CRC for Environment and Health, Shandong Province, Shandong University, 27# Shanda South Road, Jinan 250100 (China); Liu, Rutao, E-mail: rutaoliu@sdu.edu.cn [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, China–America CRC for Environment and Health, Shandong Province, Shandong University, 27# Shanda South Road, Jinan 250100 (China)

    2015-03-15

    Superparamagnetic iron oxide nanoparticles (SPIONs) have been investigated for various applications in targeted drug delivery and magnetic resonance imaging. Given their clinical relevance, there is a need to understand these particles' potential cytotoxic effects and possible mechanisms of cytotoxicity. Using a variety of spectroscopic techniques, we investigated the interaction of SPIONs with catalase (CAT) in an aqueous environment. Catalase is an important enzyme that protects cells and tissues from oxidative damage by reactive oxygen species (ROS). Therefore, in this work, CAT served as a model protein for examining the physiological effects of SPIONs due to is function in eliminating H{sub 2}O{sub 2}. Synchronous fluorescence spectroscopy results showed that SPIONs have little effect on tryptophan residues in CAT. Data from circular dichroism (CD) and UV–vis spectroscopies showed that CAT α-helical content decreased from 32.4% to 29.1% in the presence of SPIONs. Moreover, a ca. 10% decrease in CAT activity was observed in the presence of SPIONs at a 20:1 particle:protein ratio. These results show that SPIONs can interact with proteins to alter both their structure and function. Further studies with CAT or other toxicologically relevant enzymes may be used for elucidating the mechanisms of SPION cytotoxicity. - Highlights: • This work established the binding mode of SPIONs with CAT on molecular level. • The interaction mechanism was explored by multiple spectroscopic techniques. • SPIONs can loosen the skeleton of protein and increase the exposure of amide moieties in the hydrophobic pocket. • SPIONs can inhibit CAT activity and trigger conformational changes in CAT.

  1. Investigation on the toxic interaction of superparamagnetic iron oxide nanoparticles with catalase

    International Nuclear Information System (INIS)

    Yu, Zehua; Liu, Hongwei; Hu, Xinxin; Song, Wei; Liu, Rutao

    2015-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) have been investigated for various applications in targeted drug delivery and magnetic resonance imaging. Given their clinical relevance, there is a need to understand these particles' potential cytotoxic effects and possible mechanisms of cytotoxicity. Using a variety of spectroscopic techniques, we investigated the interaction of SPIONs with catalase (CAT) in an aqueous environment. Catalase is an important enzyme that protects cells and tissues from oxidative damage by reactive oxygen species (ROS). Therefore, in this work, CAT served as a model protein for examining the physiological effects of SPIONs due to is function in eliminating H 2 O 2 . Synchronous fluorescence spectroscopy results showed that SPIONs have little effect on tryptophan residues in CAT. Data from circular dichroism (CD) and UV–vis spectroscopies showed that CAT α-helical content decreased from 32.4% to 29.1% in the presence of SPIONs. Moreover, a ca. 10% decrease in CAT activity was observed in the presence of SPIONs at a 20:1 particle:protein ratio. These results show that SPIONs can interact with proteins to alter both their structure and function. Further studies with CAT or other toxicologically relevant enzymes may be used for elucidating the mechanisms of SPION cytotoxicity. - Highlights: • This work established the binding mode of SPIONs with CAT on molecular level. • The interaction mechanism was explored by multiple spectroscopic techniques. • SPIONs can loosen the skeleton of protein and increase the exposure of amide moieties in the hydrophobic pocket. • SPIONs can inhibit CAT activity and trigger conformational changes in CAT

  2. Synthesis of micro-sized polystyrene magnetic particles

    International Nuclear Information System (INIS)

    Neves, Juliete S.; Suarez, Paulo A.Z.; Umpierre, Alexandre P.; Machado, Fabricio; Souza Junior, Fernando G. de

    2011-01-01

    The present work illustrates the synthesis of spherical and micro-sized polystyrene magnetic particles by using a water-based suspension polymerization process to incorporate in situ surface modified superparamagnetic Fe 3 O 4 nanoparticles. The crystallite size of Fe 3 O 4 was determined to be equal to 7.7 nm, based on Scherrer's equation and XRD measurement. According to EDX analyses, Fe 3 O 4 / polystyrene nanocomposites particles show strong characteristic peaks Kα and Kβ of iron at the interval from 6.38 KeV to 7.04 KeV with an amount of iron in the samples equal to 98 %, indicating that the inorganic material dispersed in the polystyrene matrix is essentially Fe in the form of iron oxide (Fe 3 O 4 ). The obtained polymeric materials presented good magnetic behavior, indicating that the modified Fe 3 O 4 nanoparticles were successfully dispersed in the polystyrene particles. (author)

  3. Photoluminescence and magnetic properties of Fe-doped ZnS nano-particles synthesized by chemical co-precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Nie Eryong; Liu Donglai; Zhang Yunsen; Bai Xue; Yi Liang; Jin Yong; Jiao Zhifeng [School of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan (China); Sun Xiaosong, E-mail: sunxs@scu.edu.cn [School of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan (China)

    2011-08-15

    This paper is focusing on the synthesis of Zn{sub 1-x}Fe{sub x}S nano-particles with x = 0, 0.1 and 0.2 by chemical co-precipitation method, the prepared of which are characterized by XRD, EDS, TEM, PL, magnetization versus field behavior and M-T curve. In the XRD patterns, Zn{sub 1-x}Fe{sub x}S nano-particles are shown of cubic zinc blende structure, and the broadening diffraction peaks consistent with the small-size characteristic of nano-materials. The diameter of nano-particles is between 3.3 and 5.5 nm according to the HR-TEM images. The EDS data confirm the existence of Fe ions in Fe-doped ZnS nanoparticles. There we found that Fe-doping did not import new energy bands or defect states, but reduced the intensity of PL peaks. The magnetization versus field behaviors were illustrated by the M-H curves at both 5 K and 300 K, respectively, where no remanence or coercive force was observed. This phenomenon indicates that the Zn{sub 1-x}Fe{sub x}S (x = 0.1) nano-particles are superparamagnetic. The zero-field-cooled (ZFC) and field-cooled (FC) magnetization curves further reveal that the blocking temperature (T{sub B}) of the superparamagnetic behavior might be below 5 K.

  4. Superparamagnetic behavior of Fe-doped SnO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hachisu, M.; Onuma, K.; Kondo, T.; Miike, K.; Miyasaka, T.; Mori, K.; Ichiyanagi, Y. [Department of Physics, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama, Kanagawa 240-8501 (Japan)

    2014-02-20

    SnO{sub 2} is an n-type semiconductor with a wide band gap of 3.62 eV, and SnO{sub 2} nanoparticles doped with magnetic ions are expected to realized new diluted magnetic semiconductors (DMSs). Realizing ferromagnetism at room temperature is important for spintronics device applications, and it is interesting that the magnetic properties of these DMS systems can be varied significantly by modifying the preparation methods or conditions. In this study, the magnetic properties of Fe-doped (3% and 5%) SnO{sub 2} nanoparticles, prepared using our novel chemical preparation method and encapsulated in amorphous SiO{sub 2}, were investigated. The particle size (1.8–16.9 nm) and crystal phase were controlled by the annealing temperature. X-ray diffraction confirmed a rutile SnO{sub 2} single-phase structure for samples annealed at 1073–1373 K, and the composition was confirmed using X-ray fluorescence analysis. SQUID magnetometer measurements revealed superparamagnetic behavior of the 5%-Fe-doped sample at room temperature, although SnO{sub 2} is known to be diamagnetic. Magnetization curves at 5 K indicated that the 3%-Fe-doped has a larger magnetization than that of the 5%-Fe-doped sample. We conclude that the magnetization of the 5%-Fe-doped sample decreased at 5 K due to the superexchange interaction between the antiferromagnetic coupling in the nanoparticle system.

  5. Mossbauer, Raman and X-ray diffraction studies of superparamagnetic NiFe2O4 nanoparticles prepared by sol-gel auto-combustion method

    International Nuclear Information System (INIS)

    Ahlawat, Anju; Sathe, V.G.; Reddy, V.R.; Gupta, Ajay

    2011-01-01

    Superparamagnetic nickel ferrite single phase nanoparticles with the average crystallite size of ∼9 nm have been synthesized at a low temperature (220 o C) by the sol-gel auto-combustion method. In the present study the as prepared powder was further calcined at different temperatures for 4 h, resulting in nanoparticles of larger size. The nanoparticles exhibited superparamagnetic behavior and changes in cation distribution as revealed by the Mossbauer, Raman and X-ray diffraction studies. The Mossbauer spectra collected at 5 K and under 5 T applied magnetic field showed mixed spinel structure and canted spin order for the nanoparticles, whereas there is collinear spin order with inverse spinel structure for larger particles. The vibrational spectra of the nanoparticles showed a redshift and broadening in the Raman line shape due to confinement effects. - Highlights: → Mossbauer spectra show a canting angle of 48 o for the nanoparticle samples measured at 5 K and 5 T applied magnetic field, the highest canting angle obtained so far in NiFe 2 O 4 nanoparticles. Site inversion in nanoparticles, thus converting it from inverse spinel to mixed spinel structure. → X-ray diffraction results showed a change in sign for the strain of the nanoparticle sample that showed mixed spinel structure. → Our Raman measurements showed a redshift and broadening for nanoparticle samples that is generally interpreted as a signature of quantum confinement.

  6. Functionalization of magnetic nanoparticles with 3-aminopropyl silane

    International Nuclear Information System (INIS)

    Campelj, Stanislav; Makovec, Darko; Drofenik, Miha

    2009-01-01

    Superparamagnetic maghemite nanoparticles were functionalized with 3-aminopropyl triethoxy silane (APS). The influence of the different experimental parameters (temperature, pH, and reactant concentration) on the efficiency of the APS bonding directly to the maghemite nanoparticles or after their coating with a thin layer of silica was systematically studied. The functionalization was followed with measurements of the ζ-potential and direct measurements of the surface APS concentration on the nanoparticles. The surface concentration of the APS was much higher in the case when the APS was bonded to the silica-coated nanoparticles compared to bonding directly to the surfaces of the iron-oxide nanoparticles.

  7. Superparamagnetic iron oxide nanoparticles incorporated into silica nanoparticles by inelastic collision via ultrasonic field: Role of colloidal stability

    Energy Technology Data Exchange (ETDEWEB)

    Sodipo, Bashiru Kayode; Azlan, Abdul Aziz [Nano-Optoelectronics Research and Technology (NOR) Lab, School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia Nano-Biotechnology Research (Malaysia); Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia)

    2015-04-24

    Superparamagnetic iron oxide nanoparticles (SPION)/Silica composite nanoparticles were prepared by ultrasonically irradiating colloidal suspension of silica and SPION mixture. Both silica and SPION were synthesized independently via co-precipitation and sol-gel method, respectively. Their mixtures were sonicated at different pH between 3 and 5. Electrophoresis measurement and other physicochemical analyses of the products demonstrate that at lower pH SPION was found incorporated into the silica. However, at pH greater than 4, SPION was unstable and unable to withstand the turbulence flow and shock wave from the ultrasonic field. Results suggest that the formation of the SPION/silica composite nanoparticles is strongly related to the inelastic collision induced by ultrasonic irradiation. More so, the formation the composite nanoparticles via the ultrasonic field are dependent on the zeta potential and colloidal stability of the particles.

  8. Superparamagnetism in carbon-coated Co particles produced by the Kratschmer carbon arc process

    Science.gov (United States)

    McHenry, M. E.; Majetich, S. A.; Artman, J. O.; Degraef, M.; Staley, S. W.

    1994-04-01

    A process based on the Kratschmer-Huffman carbon arc method of preparing fullerenes has been used to generate carbon-coated cobalt and cobalt carbide nanocrystallites. Magnetic nanocrystallites are extracted from the soot with a gradient field technique. For Co/C composites, structural characterization by x-ray diffraction and high-resolution transmission electron microscopy reveals the presence of a fcc Co phase, graphite, and a minority Co2C phase. The majority of Co nanocrystals exists as nominally spherical particles, 0.5-5 nm in radius. Hysteretic and temperature-dependent magnetic response, in randomly and magnetically aligned powder samples frozen in epoxy reveals fine-particle magnetism associated with monodomain Co particles. The magnetization exhibits a unique functional dependence on H/T, and hysteresis below a blocking temperature, TB~=160 K. Below TB, the temperature dependence of the coercivity is given by Hc=Hci[1-(T/TB)1/2], with Hci~=450 Oe.

  9. Facilitated monocyte-macrophage uptake and tissue distribution of superparmagnetic iron-oxide nanoparticles.

    Directory of Open Access Journals (Sweden)

    Arnaud Beduneau

    Full Text Available BACKGROUND: We posit that the same mononuclear phagocytes (MP that serve as target cells and vehicles for a host of microbial infections can be used to improve diagnostics and drug delivery. We also theorize that physical and biological processes such as particle shape, size, coating and opsonization that affect MP clearance of debris and microbes can be harnessed to facilitate uptake of nanoparticles (NP and tissue delivery. METHODS: Monocytes and monocyte-derived macrophages (MDM were used as vehicles of superparamagnetic iron oxide (SPIO NP and immunoglobulin (IgG or albumin coated SPIO for studies of uptake and distribution. IgG coated SPIO was synthesized by covalent linkage and uptake into monocytes and MDM investigated related to size, time, temperature, concentration, and coatings. SPIO and IgG SPIO were infused intravenously into naïve mice. T(2 measures using magnetic resonance imaging (MRI were used to monitor tissue distribution in animals. RESULTS: Oxidation of dextran on the SPIO surface generated reactive aldehyde groups and permitted covalent linkage to amino groups of murine and human IgG and F(ab'(2 fragments and for Alexa Fluor(R 488 hydroxylamine to form a Schiff base. This labile intermediate was immediately reduced with sodium cyanoborohydride in order to stabilize the NP conjugate. Optical density measurements of the oxidized IgG, F(ab'(2, and/or Alexa Fluor(R 488 SPIO demonstrated approximately 50% coupling yield. IgG-SPIO was found stable at 4 degrees C for a period of 1 month during which size and polydispersity index varied little from 175 nm and 200 nm, respectively. In vitro, NP accumulated readily within monocyte and MDM cytoplasm after IgG-SPIO exposure; whereas, the uptake of native SPIO in monocytes and MDM was 10-fold less. No changes in cell viability were noted for the SPIO-containing monocytes and MDM. Cell morphology was not changed as observed by transmission electron microscopy. Compared to unconjugated

  10. A sonochemical approach to the direct surface functionalization of superparamagnetic iron oxide nanoparticles with (3-aminopropyl)triethoxysilane.

    Science.gov (United States)

    Sodipo, Bashiru Kayode; Aziz, Azlan Abdul

    2014-01-01

    We report a sonochemical method of functionalizing superparamagnetic iron oxide nanoparticles (SPION) with (3-aminopropyl)triethoxysilane (APTES). Mechanical stirring, localized hot spots and other unique conditions generated by an acoustic cavitation (sonochemical) process were found to induce a rapid silanization reaction between SPION and APTES. FTIR, XPS and XRD measurements were used to demonstrate the grafting of APTES on SPION. Compared to what was reported in literature, the results showed that the silanization reaction time was greatly minimized. More importantly, the product displayed superparamagnetic behaviour at room temperature with a more than 20% higher saturation magnetization.

  11. Multiple functionalities of Ni nanoparticles embedded in carboxymethyl guar gum polymer: catalytic activity and superparamagnetism

    Science.gov (United States)

    Sardar, Debasmita; Sengupta, Manideepa; Bordoloi, Ankur; Ahmed, Md. A.; Neogi, S. K.; Bandyopadhyay, Sudipta; Jain, Ruchi; Gopinath, Chinnakonda S.; Bala, Tanushree

    2017-05-01

    Composites comprising of metallic nanoparticles in polymer matrices have allured significant importance due to multifunctionalities. Here a simple protocol has been described to embed Ni nanoparticles in carboxymethyl guar gum (CMGG) polymer. The composite formation helps in the stabilization of Ni nanoparticles which are otherwise prone towards aerial oxidation. Further the nanoparticles retain their superparamagnetic nature and catalytic capacity. Ni-Polymer composite catalyses the reduction of 4-Nitrophenol to 4-Aminophenol very efficiently in presence of NaBH4, attaining a complete conversion under some experimental conditions. Ni-Polymer composite is well characterized using UV-vis spectroscopy, FTIR, XPS, powder XRD, TGA, SEM and TEM. A detailed magnetic measurement using superconducting quantum interference device-vibrating sample magnetometer (SQUID-VSM) reveals superparamagnetic behaviour of the composite.

  12. MnBi particles with high energy density made by spark erosion

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Phi-Khanh, E-mail: phi@ucsd.edu; Jin, Sungho [Materials Science and Engineering, University of California, San Diego, La Jolla, California 92093 (United States); Center for Magnetic Recording Research, University of California, San Diego, La Jolla, California 92093 (United States); Berkowitz, Ami E. [Physics Department, University of California, San Diego, La Jolla, California 92093 (United States); Center for Magnetic Recording Research, University of California, San Diego, La Jolla, California 92093 (United States)

    2014-05-07

    We report on the properties of low-temperature phase (LTP)-MnBi particles produced by the rapid-quenching technique of spark-erosion. The as-prepared powder consists of amorphous, crystalline, and superparamagnetic particles, mostly as porous aggregates. The major fraction of the powder consists of 20–30 nm particles. A short anneal crystallizes the amorphous particles producing a high moment, >90% of theoretical M{sub S}, albeit with H{sub C} of a few kOe. If lightly milled, the agglomerates are broken up to yield H{sub C} of 1 T. These findings are supported by the x-ray diffraction pattern showing broadened peaks of the predominant LTP-MnBi phase. The combination of spark erosion, milling, and annealing has produced randomly oriented particles with (BH){sub MAX} ∼ 3.0 MGOe. The particles are expected to show record energy product when aligned along their crystallographic easy axes.

  13. Electronic phase separation in insulating (Ga, Mn) As with low compensation: super-paramagnetism and hopping conduction

    Science.gov (United States)

    Yuan, Ye; Wang, Mao; Xu, Chi; Hübner, René; Böttger, Roman; Jakiela, Rafal; Helm, Manfred; Sawicki, Maciej; Zhou, Shengqiang

    2018-03-01

    In the present work, low compensated insulating (Ga,Mn)As with 0.7% Mn is obtained by ion implantation combined with pulsed laser melting. The sample shows variable-range hopping transport behavior with a Coulomb gap in the vicinity of the Fermi energy, and the activation energy is reduced by an external magnetic field. A blocking super-paramagnetism is observed rather than ferromagnetism. Below the blocking temperature, the sample exhibits a colossal negative magnetoresistance. Our studies confirm that the disorder-induced electronic phase separation occurs in (Ga,Mn)As samples with a Mn concentration in the insulator-metal transition regime, and it can account for the observed superparamagnetism and the colossal magnetoresistance.

  14. Size-controlled synthesis of superparamagnetic iron oxide nanoparticles and their surface coating by gold for biomedical applications

    Science.gov (United States)

    Maleki, H.; Simchi, A.; Imani, M.; Costa, B. F. O.

    2012-11-01

    The size mono-dispersity, saturation magnetization, and surface chemistry of magnetic nanoparticles (NPs) are recognized as critical factors for efficient biomedical applications. Here, we performed modified water-in-oil inverse nano-emulsion procedure for preparation of stable colloidal superparamagnetic iron oxide NPs (SPIONs) with high saturation magnetization. To achieve mono-dispersed SPIONs, optimization process was probed on several important factors including molar ratio of iron salts [Fe3+ and Fe2+], the concentration of ammonium hydroxide as reducing agent, and molar ratio of water to surfactant. The biocompatibility of the obtained NPs, at various concentrations, was evaluated via MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay and the results showed that the NPs were non-toxic at concentrations gold (˜4 nm) through chemical reduction of attached gold salts at the surface of the SPIONs. The Fe3O4 core/Au shell particles demonstrate strong plasmon resonance absorption and can be separated from solution using an external magnetic field. Experimental data from both physical and chemical determinations of the changes in particle size, surface plasmon resonance optical band, phase components, core-shell surface composition, and magnetic properties have confirmed the formation of the mono-dispersed core-shell nanostructure.

  15. Kinetics of (3-aminopropyl)triethoxylsilane (APTES) silanization of superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Liu, Yue; Li, Yueming; Li, Xue-Mei; He, Tao

    2013-12-10

    Silanization of magnetic ironoxide nanoparticles with (3-aminopropyl)triethoxylsilane (APTES) is reported. The kinetics of silanization toward saturation was investigated using different solvents including water, water/ethanol (1/1), and toluene/methanol (1/1) at different reaction temperature with different APTES loading. The nanoparticles were characterized by Fourier transform infrared spectroscopy, vibrating sample magnetometry, transmission electron microscopy, and thermal gravimetric analysis (TGA). Grafting density data based on TGA were used for the kinetic modeling. It is shown that initial silanization takes place very fast but the progress toward saturation is very slow, and the mechanism may involve adsorption, chemical sorption, and chemical diffusion processes. The highest equilibrium grafting density of 301 mg/g was yielded when using toluene/methanol mixture as the solvent at a reaction temperature of 70 °C.

  16. Removal of dissolved heavy metals from pre-settled stormwater runoff by iron-oxide coated sand (IOCS)

    DEFF Research Database (Denmark)

    Møller, J.; Ledin, Anna; Mikkelsen, Peter Steen

    2002-01-01

    (Pb=20, Cu=40, Zn=110, and Cr=15 ppb). Column experiments were conducted to test the influence of the infiltration rate (1 or 3 m/h) and the type of iron(hydr)oxide mineral (amorphous ferrihydrite and goethite coated sand). The results show that at least 90% of lead, copper and zinc can be removed......Sorption to iron-oxide coated sand (IOCS) is a promosing technology for removal of the dissolved heavy metal fraction in stormwater runoff. The development of a new technology is necessary since studies of stormwater runoff from traffic areas indicate that an oil separator and detention pond may...... by IOCS after 480 pore volumes. Control columns with uncoated filter sand show that lead, copper and zinc were removed with >95%, 35% and 5%, respectively. The removal of the negative metaloxy-ion, CrO4-3 was insignificant in both IOCS and sand columns at pH=7.7. Destruction of the columns after...

  17. Chemical modification of magnetite nanoparticles and preparation of acrylic-base magnetic nanocomposite particles via miniemulsion polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Mahdieh, Athar; Mahdavian, Ali Reza, E-mail: a.mahdavian@ippi.ac.ir; Salehi-Mobarakeh, Hamid

    2017-03-15

    Nowadays, magnetic nanocomposite particles have attracted many interests because of their versatile applications. A new method for chemical modification of Fe{sub 3}O{sub 4} nanoparticles with polymerizable groups is presented here. After synthesis of Fe{sub 3}O{sub 4} nanoparticles by co-precipitation method, they were modified sequentially with 3-aminopropyl triethoxysilane (APTES), acryloyl chloride (AC) and benzoyl chloride (BC) and all were characterized by FTIR, XRD, SEM and TGA analyses. Then the modified magnetite nanoparticles with unsaturated acrylic groups were copolymerized with methyl methacrylate (MMA), butyl acrylate (BA) and acrylic acid (AA) through miniemulsion polymerization. Although several reports exist on preparation of magnetite-base polymer particles, but the efficiency of magnetite encapsulationwith reasonable content and obtaining final stable latexes with limited aggregation ofFe{sub 3}O{sub 4} are still important issues. These were considered here by controlling reaction parameters. Hence, a seriesofmagneticnanocomposites latex particlescontaining different amounts of Fe{sub 3}O{sub 4} nanoparticles (0–10 wt%) were prepared with core-shell morphology and diameter below 200 nm and were characterized by FT-IR, DSC and TGA analyses. Their morphology and size distribution were studied by SEM, TEM and DLS analyses too. Magnetic properties of all products were also measuredby VSM analysis and the results revealed almost superparamagnetic properties for the obtained nanocomposite particles. - Highlights: • Chemical modification of magnetite nanoparticles. • Encapsulation of modified magnetite with acrylic copolymer. • Superparamagnetic Fe3O4/polyacrylic nanocomposite particles.

  18. Magnetoviscoelastic characteristics of superparamagnetic oxides (Fe, Ni) based ferrofluids

    Science.gov (United States)

    Katiyar, Ajay; Dhar, Purbarun; Nandi, Tandra; Das, Sarit K.

    2017-08-01

    Ferrofluids have been popular among the academic and scientific communities owing to their intelligent physical characteristics under external stimuli and are in fact among the first nanotechnology products to be employed in real world applications. However, studies on the magnetoviscoelastic behavior of concentrated ferrofluids, especially of superparamagnetic oxides of iron and nickel are rare. The present article comprises the formulation of magneto-colloids utilizing the three various metal oxides nanoparticles viz. Iron (II, III) oxide (Fe3O4), Iron (III) oxide (Fe2O3) and Nickel oxide (NiO) in oil. Iron (II, III) oxide based colloids demonstrate high magnetoviscous characteristics over the other oxides based colloids under external magnetic fields. The maximum magnitude of yield stress and viscosity is found to be 3.0 kPa and 2.9 kPa.s, respectively for iron (II, III) oxide based colloids at 2.6 vol% particle concentration and 1.2 T magnetic field. Experimental investigations reveal that the formulated magneto-nanocolloids are stable, even in high magnetic fields and almost reversible when exposed to rising and drop of magnetic fields of the same magnitude. Observations also reveal that the elastic behavior dominates over the viscous behavior with enhanced relaxation and creep characteristics under the magnetic field. The effect of temperature on viscosity and yield stress of magneto-nanocolloids under magnetic fields has also been discussed. Thus, the present findings have potential applications in various fields such as electromagnetic clutch and brakes of automotive, damping, sealing, optics, nanofinishing etc.

  19. Optimal size for heating efficiency of superparamagnetic dextran-coated magnetite nanoparticles for application in magnetic fluid hyperthermia

    Science.gov (United States)

    Shaterabadi, Zhila; Nabiyouni, Gholamreza; Soleymani, Meysam

    2018-06-01

    Dextran-coated magnetite (Fe3O4) nanoparticles with average particle sizes of 4 and 19 nm were synthesized through in situ and semi-two-step co-precipitation methods, respectively. The experimental results confirm the formation of pure phase of magnetite as well as the presence of dextran layer on the surface of modified magnetite nanoparticles. The results also reveal that both samples have the superparamagnetic behavior. Furthermore, calorimetric measurements show that the dextran-coated Fe3O4 nanoparticles with an average size of 4 nm cannot produce any appreciable heat under a biologically safe alternating magnetic field used in hyperthermia therapy; whereas, the larger ones (average size of 19 nm) are able to increase the temperature of their surrounding medium up to above therapeutic range. In addition, measured specific absorption rate (SAR) values confirm that magnetite nanoparticles with an average size of 19 nm are very excellent candidates for application in magnetic hyperthermia therapy.

  20. Enhanced bio-compatibility of ferrofluids of self-assembled superparamagnetic iron oxide-silica core-shell nanoparticles

    Digital Repository Service at National Institute of Oceanography (India)

    Narayanan, T.N.; Mary, A.P.R.; Swalih, P.K.A.; Kumar, D.S.; Makarov, D.; Albrecht, M.; Puthumana, J.; Anas, A.; Anantharaman, A.

    -interacting, monodispersed and hence the synthesis of such nanostructures has great relevance in the realm of nanoscience. Silica-coated superparamagnetic iron oxide nanoparticles based ferrofluids were prepared using polyethylene glycol as carrier fluid by employing a...

  1. Magnetic particles as powerful purification tool for high sensitive mass spectrometric screening procedures.

    Science.gov (United States)

    Peter, Jochen F; Otto, Angela M

    2010-02-01

    The effective isolation and purification of proteins from biological fluids is the most crucial step for a successful protein analysis when only minute amounts are available. While conventional purification methods such as dialysis, ultrafiltration or protein precipitation often lead to a marked loss of protein, SPE with small-sized particles is a powerful alternative. The implementation of particles with superparamagnetic cores facilitates the handling of those particles and allows the application of particles in the nanometer to low micrometer range. Due to the small diameters, magnetic particles are advantageous for increasing sensitivity when using subsequent MS analysis or gel electrophoresis. In the last years, different types of magnetic particles were developed for specific protein purification purposes followed by analysis or screening procedures using MS or SDS gel electrophoresis. In this review, the use of magnetic particles for different applications, such as, the extraction and analysis of DNA/RNA, peptides and proteins, is described.

  2. X-ray diffraction and Moessbauer studies on superparamagnetic nickel ferrite (NiFe{sub 2}O{sub 4}) obtained by the proteic sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, N.A.S. [Departamento de Engenharia Metalúrgica e de Materiais, Centro de Tecnologia, Campus do Pici, Universidade Federal do Ceará – UFC, 60455-760 Fortaleza, CE (Brazil); Utuni, V.H.S.; Silva, Y.C. [Departamento de Física, Universidade Federal do Ceará – UFC, Campus do Pici, 60440-970 Fortaleza, CE (Brazil); Kiyohara, P.K. [Instituto de Física, Universidade de São Paulo – USP, 05315-970 São Paulo, SP (Brazil); Vasconcelos, I.F. [Departamento de Engenharia Metalúrgica e de Materiais, Centro de Tecnologia, Campus do Pici, Universidade Federal do Ceará – UFC, 60455-760 Fortaleza, CE (Brazil); Miranda, M.A.R., E-mail: marcus.a.r.miranda@gmail.com [Departamento de Física, Universidade Federal do Ceará – UFC, Campus do Pici, 60440-970 Fortaleza, CE (Brazil); Sasaki, J.M. [Departamento de Física, Universidade Federal do Ceará – UFC, Campus do Pici, 60440-970 Fortaleza, CE (Brazil)

    2015-08-01

    Nickel ferrite (NiFe{sub 2}O{sub 4}) nanoparticles were synthesized by the proteic sol–gel method at synthesis temperature of 250 °C, 300 °C and 400 °C, with the objective of obtaining superparamagnetic nanoparticles. Thermogravimetric analysis (TGA) and temperature-programed oxidation (TPO) presented peaks around 290 °C indicating that nickel ferrite was forming at this temperature. X-ray powder diffraction (XRPD) confirmed that the polycrystalline sample was single phased NiFe{sub 2}O{sub 4} with space group Fd3m. Scherrer equation applied to the diffraction patterns and transmission electron microscopy (TEM) images showed that the size of the nanoparticles ranged from 9 nm to 13 nm. TEM images also revealed that the nanoparticles were agglomerated, which was supported by the low values of surface area provided by the Brunauer-Emmet-Teller (BET) method. Moessbauer spectroscopy presented spectra composed of a superposition of three components: a sextet, a doublet and a broad singlet pattern. The sample synthetized at 300 °C had the most pronounced doublet pattern characteristic of superparamagnetic nanoparticles. In conclusion, this method was partially successful in obtaining superparamagnetic nickel ferrite nanoparticles, in which the synthetized samples were a mixture of nanoparticles with blocking temperature above and below room temperature. Magnetization curves revealed a small hysteresis, supporting the Moessbauer results. The sample with the higher concentration of superparamagnetic nanoparticles being the one synthetized at 300 °C. - Highlights: • Superparamagnetic nickel ferrite nanoparticles were grown by the proteic sol–gel method. • The proteic sol–gel method provided superparamagnetic nickel ferrite nanoparticles with sizes in the range of 9–13 nm. • Nickel ferrite nanoparticles were prepared at temperatures as low as 250 °C. • The nickel ferrite nanoparticles were studied by x-ray diffraction and Moessbauer.

  3. Magnetic-luminescent spherical particles synthesized by ultrasonic spray pyrolysis

    International Nuclear Information System (INIS)

    Michel, Norma L; Hirata, Gustavo A; Flores, Dora L

    2015-01-01

    The combination of magnetic and luminescent properties in a single particle system, opens-up a wide range of potential applications in biotechnology and biomedicine. In this work, we performed the synthesis of magnetic-luminescent Gd 2 O 3 :Eu 3+ @Fe 2 O 3 particles by ultrasonic spray pyrolysis performed in a tubular furnace. In order to achieve the composite formation, commercial superparamagnetic Fe 3 O 4 nanoparticles were coated with a luminescent Eu 3+ -doped Gd 2 O 3 shell in a low-cost one-step process. The spray pyrolysis method yields deagglomerated spherical shape magneto/luminescent particles. The photoluminescence spectra under UV excitation (λ Exc = 265 nm) of the magnetic Gd 2 O 3 :Eu 3+ @Fe 2 O 3 compound showed the characteristic red emission of Eu 3+ (λ Em = 612 nm). This magneto/luminescent system will find applications in biomedicine and biotechnology. (paper)

  4. Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria.

    Science.gov (United States)

    Miot, J; Benzerara, K; Morin, G; Bernard, S; Beyssac, O; Larquet, E; Kappler, A; Guyot, F

    2009-06-01

    In phosphate-rich environments, vivianite (Fe(II)(3)(PO(4))(2), 8H(2)O) is an important sink for dissolved Fe(II) and is considered as a very stable mineral due to its low solubility at neutral pH. In the present study, we report the mineralogical transformation of vivianite in cultures of the nitrate-reducing iron-oxidizing bacterial strain BoFeN1 in the presence of dissolved Fe(II). Vivianite was first transformed into a greenish phase consisting mostly of an amorphous mixed valence Fe-phosphate. This precipitate became progressively orange and the final product of iron oxidation consisted of an amorphous Fe(III)-phosphate. The sub-micrometer analysis by scanning transmission X-ray microscopy of the iron redox state in samples collected at different stages of the culture indicated that iron was progressively oxidized at the contact of the bacteria and at a distance from the cells in extracellular minerals. Iron oxidation in the extracellular minerals was delayed by a few days compared with cell-associated Fe-minerals. This led to strong differences of Fe redox in between these two types of minerals and finally to local heterogeneities of redox within the sample. In the absence of dissolved Fe(II), vivianite was not significantly transformed by BoFeN1. Whereas Fe(II) oxidation at the cell contact is most probably directly catalyzed by the bacteria, vivianite transformation at a distance from the cells might result from oxidation by nitrite. In addition, processes leading to the export of Fe(III) from bacterial oxidation sites to extracellular minerals are discussed including some involving colloids observed by cryo-transmission electron microscopy in the culture medium.

  5. Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Pongrac, I. M.; Pavičić, I.; Milić, M.; Brkić Ahmed, L.; Babič, Michal; Horák, Daniel; Vinković Vrček, I.; Gajović, S.

    2016-01-01

    Roč. 11, 26 April (2016), s. 1701-1715 ISSN 1176-9114 R&D Projects: GA ČR(CZ) GC16-01128J EU Projects: European Commission(XE) 316120 - GLOWBRAIN Institutional support: RVO:61389013 Keywords : superparamagnetic iron oxide nanoparticles * biocompatibility * oxidative stress Subject RIV: CD - Macromolecular Chemistry

  6. Green synthesis of soya bean sprouts-mediated superparamagnetic Fe3O4 nanoparticles

    International Nuclear Information System (INIS)

    Cai Yan; Shen Yuhua; Xie Anjian; Li Shikuo; Wang Xiufang

    2010-01-01

    Superparamagnetic Fe 3 O 4 nanoparticles were first synthesized via soya bean sprouts (SBS) templates under ambient temperature and normal atmosphere. The reaction process was simple, eco-friendly, and convenient to handle. The morphology and crystalline phase of the nanoparticles were determined from scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD) spectra. The effect of SBS template on the formation of Fe 3 O 4 nanoparticles was investigated using X-ray photoemission spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). The results indicate that spherical Fe 3 O 4 nanoparticles with an average diameter of 8 nm simultaneously formed on the epidermal surface and the interior stem wall of SBS. The SBS are responsible for size and morphology control during the whole formation of Fe 3 O 4 nanoparticles. In addition, the superconducting quantum interference device (SQUID) results indicate the products are superparamagnetic at room temperature, with blocking temperature (T B ) of 150 K and saturation magnetization of 37.1 emu/g.

  7. Green synthesis of soya bean sprouts-mediated superparamagnetic Fe 3O 4 nanoparticles

    Science.gov (United States)

    Cai, Yan; Shen, Yuhua; Xie, Anjian; Li, Shikuo; Wang, Xiufang

    2010-10-01

    Superparamagnetic Fe 3O 4 nanoparticles were first synthesized via soya bean sprouts (SBS) templates under ambient temperature and normal atmosphere. The reaction process was simple, eco-friendly, and convenient to handle. The morphology and crystalline phase of the nanoparticles were determined from scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD) spectra. The effect of SBS template on the formation of Fe 3O 4 nanoparticles was investigated using X-ray photoemission spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). The results indicate that spherical Fe 3O 4 nanoparticles with an average diameter of 8 nm simultaneously formed on the epidermal surface and the interior stem wall of SBS. The SBS are responsible for size and morphology control during the whole formation of Fe 3O 4 nanoparticles. In addition, the superconducting quantum interference device (SQUID) results indicate the products are superparamagnetic at room temperature, with blocking temperature ( TB) of 150 K and saturation magnetization of 37.1 emu/g.

  8. Controllable 5-sulfosalicylic acid assisted solvothermal synthesis of monodispersed superparamagnetic Fe{sub 3}O{sub 4} nanoclusters with tunable size

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wentao [State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Tang, Bingtao, E-mail: tangbt@dlut.edu.cn [State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Wu, Suli; Gao, Zhanming; Ju, Benzhi [State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Teng, Xiaoxu [School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100 (China); Zhang, Shufen [State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)

    2017-02-01

    Monodispersed Fe{sub 3}O{sub 4} nanoclusters were synthesized in a one-pot solvothermal route with 5-sulfosalicylic acid (SSA) as the functional ligand in a mixed-solvent system of diethylene glycol/ethylene glycol (DEG/EG). Nucleation and aggregation growth model was responsible for the formation of secondary structure of the clusters. In the process, the size of the clusters can be effectively controlled by varying the amounts of SSA and the volume ratio of DEG/EG. The nanoclusters exhibited superparamagnetic properties with high saturation magnetization value of about 68.7 emu g{sup −1} at room temperature. The water-soluble small-molecule SSA grafted on the surface of Fe{sub 3}O{sub 4} nanocrystals rendered the superparamagnetic clusters dispersible in water, which is crucial for potential applications in biomedical fields. - Graphical abstract: 5-sulfosalicylic acid assisted solvothermal synthesis of monodispersed superparamagnetic Fe{sub 3}O{sub 4} nanoclusters with tunable size by a mixed-solvent system of DEG/EG. - Highlights: • Monodispersed Fe{sub 3}O{sub 4} nanoclusters were synthesized in a one-pot 5-sulfosalicylic acid assisted solvothermal route. • The size of the clusters are tunable by varying the amounts of 5-sulfosalicylic acid and the volume ratio of DEG/EG. • The nanoclusters exhibited superparamagnetic properties with high saturation magnetization value. • The 5-sulfosalicylic acid grafted Fe{sub 3}O{sub 4} nanoclusters can be dispersed in water.

  9. Washing effect on superparamagnetic iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Laura-Karina Mireles

    2016-06-01

    Full Text Available Much recent research on nanoparticles has occurred in the biomedical area, particularly in the area of superparamagnetic iron oxide nanoparticles (SPIONs; one such area of research is in their use as magnetically directed prodrugs. It has been reported that nanoscale materials exhibit properties different from those of materials in bulk or on a macro scale [1]. Further, an understanding of the batch-to-batch reproducibility and uniformity of the SPION surface is essential to ensure safe biological applications, as noted in the accompanying article [2], because the surface is the first layer that affects the biological response of the human body. Here, we consider a comparison of the surface chemistries of a batch of SPIONs, before and after the supposedly gentle process of dialysis in water.

  10. Novel Pelagic Iron-Oxidizing Zetaproteobacteria from the Chesapeake Bay Oxic–Anoxic Transition Zone

    Science.gov (United States)

    Chiu, Beverly K.; Kato, Shingo; McAllister, Sean M.; Field, Erin K.; Chan, Clara S.

    2017-01-01

    Chemolithotrophic iron-oxidizing bacteria (FeOB) could theoretically inhabit any environment where Fe(II) and O2 (or nitrate) coexist. Until recently, marine Fe-oxidizing Zetaproteobacteria had primarily been observed in benthic and subsurface settings, but not redox-stratified water columns. This may be due to the challenges that a pelagic lifestyle would pose for Zetaproteobacteria, given low Fe(II) concentrations in modern marine waters and the possibility that Fe oxyhydroxide biominerals could cause cells to sink. However, we recently cultivated Zetaproteobacteria from the Chesapeake Bay oxic–anoxic transition zone, suggesting that they can survive and contribute to biogeochemical cycling in a stratified estuary. Here we describe the isolation, characterization, and genomes of two new species, Mariprofundus aestuarium CP-5 and Mariprofundus ferrinatatus CP-8, which are the first Zetaproteobacteria isolates from a pelagic environment. We looked for adaptations enabling strains CP-5 and CP-8 to overcome the challenges of living in a low Fe redoxcline with frequent O2 fluctuations due to tidal mixing. We found that the CP strains produce distinctive dreadlock-like Fe oxyhydroxide structures that are easily shed, which would help cells maintain suspension in the water column. These oxides are by-products of Fe(II) oxidation, likely catalyzed by the putative Fe(II) oxidase encoded by the cyc2 gene, present in both CP-5 and CP-8 genomes; the consistent presence of cyc2 in all microaerophilic FeOB and other FeOB genomes supports its putative role in Fe(II) oxidation. The CP strains also have two gene clusters associated with biofilm formation (Wsp system and the Widespread Colonization Island) that are absent or rare in other Zetaproteobacteria. We propose that biofilm formation enables the CP strains to attach to FeS particles and form flocs, an advantageous strategy for scavenging Fe(II) and developing low [O2] microenvironments within more oxygenated waters

  11. Proton T2 relaxation effect of superparamagnetic iron oxide. Comparison between fast spin echo and conventional spin echo sequence

    International Nuclear Information System (INIS)

    Tanimoto, Akihiro; Satoh, Yoshinori; Higuchi, Nobuya; Izutsu, Mutsumu; Yuasa, Yuji; Hiramatsu, Kyoichi

    1995-01-01

    Superparamagnetic iron oxide (SPIO) particles have been known to show a great T 2 relaxation effect in the liver, which contributes to significant liver signal decrease and detection of hepatic neoplasms. Recently, fast spin echo (FSE) sequence with less scanning time than conventional spin echo (SE) sequence has been rapidly introduced in clinical MR imaging. To investigate whether SPIO would show decreased T 2 relaxation effect on FSE, we obtained T 2 relaxivity (R2) of SPIO in vitro and liver signal decrease caused by SPIO in vivo. SPIO showed 20% less R2 on Carr-Purcell-Meiboom-Gill (CPMG) sequence than on SE. Relative liver signal-to-noise ratio (SNR) decrease caused by SPIO was significantly smaller (p 2 relaxation effect on FSE than on SE. However, further studies will be required to assess the diagnostic capability of SPIO on FSE, in the detection of hepatic neoplasms. (author)

  12. Monodisperse superparamagnetic nanoparticles by thermolysis of Fe(III) oleate and mandelate complexes

    Czech Academy of Sciences Publication Activity Database

    Patsula, Vitalii; Petrovský, Eduard; Kovářová, Jana; Konefal, Rafal; Horák, Daniel

    2014-01-01

    Roč. 292, č. 9 (2014), s. 2097-2110 ISSN 0303-402X R&D Projects: GA ČR GAP206/12/0381; GA MŠk 7E12053 EU Projects: European Commission(XE) 246513 - NADINE Institutional support: RVO:61389013 ; RVO:67985530 Keywords : superparamagnetic * nanoparticles * iron oxide Subject RIV: CD - Macromolecular Chemistry; DE - Earth Magnetism, Geodesy, Geography (GFU-E) Impact factor: 1.865, year: 2014

  13. Core–shell composite particles composed of biodegradable polymer particles and magnetic iron oxide nanoparticles for targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Chiemi; Ushimaru, Kazunori [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Horiishi, Nanao [Bengala Techno Laboratory, 9-5-1006, 1-1 Kodai, Miyamae-ku, Kawasaki 216-0007 (Japan); Tsuge, Takeharu [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Kitamoto, Yoshitaka, E-mail: kitamoto.y.aa@m.titech.ac.jp [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan)

    2015-05-01

    Core–shell composite particles with biodegradability and superparamagnetic behavior were prepared using a Pickering emulsion for targeted drug delivery based on magnetic guidance. The composite particles were composed of a core of biodegradable polymer and a shell of assembled magnetic iron oxide nanoparticles. It was found that the dispersibility of the nanoparticles is crucial for controlling the core–shell structure. The addition of a small amount of dispersant into the nanoparticle's suspension could improve the dispersibility and led to the formation of composite particles with a thin magnetic shell covering a polymeric core. The composite particles were also fabricated with a model drug loaded into the core, which was released via hydrolysis of the core under strong alkaline conditions. Because the core can also be biodegraded by lipase, this result suggests that the slow release of the drug from the composite particles should occur inside the body. - Highlights: • Core−shell composites with biodegradability and magnetism are prepared. • O/W emulsion stabilized by iron oxide nanoparticles is utilized for the preparation. • The nanoparticle's dispersibility is crucial for controlling the composite structure. • Composites loading a model drug are also prepared. • The model drug is released with decomposition of the composites.

  14. The Effect of Superparamagnetic Iron Oxide Nanoparticle Surface Charge on Antigen Cross-Presentation

    Science.gov (United States)

    Mou, Yongbin; Xing, Yun; Ren, Hongyan; Cui, Zhihua; Zhang, Yu; Yu, Guangjie; Urba, Walter J.; Hu, Qingang; Hu, Hongming

    2017-01-01

    Magnetic nanoparticles (NPs) of superparamagnetic iron oxide (SPIO) have been explored for different kinds of applications in biomedicine, mechanics, and information. Here, we explored the synthetic SPIO NPs as an adjuvant on antigen cross-presentation ability by enhancing the intracellular delivery of antigens into antigen presenting cells (APCs). Particles with different chemical modifications and surface charges were used to study the mechanism of action of antigen delivery. Specifically, two types of magnetic NPs, γFe2O3/APTS (3-aminopropyltrimethoxysilane) NPs and γFe2O3/DMSA (meso-2, 3-Dimercaptosuccinic acid) NPs, with the same crystal structure, magnetic properties, and size distribution were prepared. Then, the promotion of T-cell activation via dendritic cells (DCs) was compared among different charged antigen coated NPs. Moreover, the activation of the autophagy, cytosolic delivery of the antigens, and antigen degradation mediated by the proteasome and lysosome were measured. Our results indicated that positive charged γFe2O3/APTS NPs, but not negative charged γFe2O3/DMSA NPs, enhanced the cross-presentation ability of DCs. Increased cross-presentation ability induced by γFe2O3/APTS NPs was associated with increased cytosolic antigen delivery. On the contrary, γFe2O3/DMSA NPs was associated with rapid autophagy. Overall, our results suggest that antigen delivered in cytoplasm induced by positive charged particles is beneficial for antigen cross-presentation and T-cell activation. NPs modified with different chemistries exhibit diverse biological properties and differ greatly in their adjuvant potentials. Thus, it should be carefully considered many different effects of NPs to design effective and safe adjuvants.

  15. Superparamagnetic iron oxide coated on the surface of cellulose nanospheres for the rapid removal of textile dye under mild condition

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Yunfeng [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, and College of Material Science and Engineering, Donghua University, Shanghai 201620 (China); Qin, Zongyi, E-mail: phqin@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, and College of Material Science and Engineering, Donghua University, Shanghai 201620 (China); Liu, Yannan; Cheng, Miao; Qian, Pengfei [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, and College of Material Science and Engineering, Donghua University, Shanghai 201620 (China); Wang, Qian, E-mail: drwangqian23@163.com [Department of Orthopaedics, Shanghai First People' s Hospital, Shanghai Jiaotong University, 100 Haining Road, Hongkou District, Shanghai 200080 (China); Zhu, Meifang [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, and College of Material Science and Engineering, Donghua University, Shanghai 201620 (China)

    2015-12-01

    Graphical abstract: - Highlights: • Anchoring superparamagnetic iron oxide on the surface of cellulose nanospheres as magnetically recyclable nanocatalys. • Achieving highly efficient Fenton-like reaction on the surface of composite nanospheres for rapid removal of textile dye. • Reaching nearly 98.0% degradation of Navy blue within 5 min under mild condition. - Abstract: Magnetic composite nanoparticles (MNPs) were prepared by anchoring iron oxide (Fe{sub 3}O{sub 4}) on the surface of carboxyl cellulose nanospheres through a facile chemical co-precipitation method. The as-prepared MNPs were characterized by atomic force microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, wide-angle X-ray diffraction measurement, thermal gravity analysis and vibrating sample magnetometry. These MNPs were of a generally spherical shape with a narrow size distribution, and exhibited superparamagnetic behaviors with high saturation magnetization. High efficient removal of Navy blue in aqueous solution was demonstrated at room temperature in a Fenton-like system containing the MNPs and H{sub 2}O{sub 2}, which benefited from small particle size, large surface area, high chemical activity, and good dispersibility of the MNPs. The removal efficiency of Navy blue induced by the MNPs prepared at a weight ratio of cellulose to iron of 1:2 were 90.6% at the first minute of the degradation reaction, and 98.0% for 5 min. Furthermore, these MNPs could be efficiently recycled and reused by using an external magnetic field. The approach presented in this paper promotes the use of renewable natural resources as templates for the preparation and stabilization of various inorganic nanomaterials for the purpose of catalysis, magnetic resonance imaging, biomedical and other potential applications.

  16. Superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Feuser, Paulo Emilio [Federal University of Santa Catarina, Department of Chemical Engineering and Food Engineering (Brazil); Jacques, Amanda Virtuoso [Federal University of Santa Catarina, Department of Clinical Analyses (Brazil); Arévalo, Juan Marcelo Carpio; Rocha, Maria Eliane Merlin [Federal University of Paraná, Department of Biochemistry and Molecular Biology (Brazil); Santos-Silva, Maria Claudia dos [Federal University of Santa Catarina, Department of Clinical Analyses (Brazil); Sayer, Claudia; Araújo, Pedro H. Hermes de, E-mail: pedro.h.araujo@ufsc.br [Federal University of Santa Catarina, Department of Chemical Engineering and Food Engineering (Brazil)

    2016-04-15

    The encapsulation of superparamagnetic nanoparticles (MNPs) in polymeric nanoparticles (NPs) with modified surfaces can improve targeted delivery and induce cell death by hyperthermia. The goals of this study were to synthesize and characterize surface modified superparamagnetic poly(methyl methacrylate) with folic acid (FA) prepared by miniemulsion polymerization (MNPsPMMA-FA) and to evaluate their in vitro cytotoxicity and cellular uptake in non-tumor cells, murine fibroblast (L929) cells and tumor cells that overexpressed folate receptor (FR) β, and chronic myeloid leukemia cells in blast crisis (K562). Lastly, hemolysis assays were performed on human red blood cells. MNPsPMMA-FA presented an average mean diameter of 135 nm and a saturation magnetization (Ms) value of 37 emu/g of iron oxide, as well as superparamagnetic behavior. The MNPsPMMA-FA did not present cytotoxicity in L929 and K562 cells. Cellular uptake assays showed a higher uptake of MNPsPMMA-FA than MNPsPMMA in K562 cells when incubated at 37 °C. On the other hand, MNPsPMMA-FA showed a low uptake when endocytosis mechanisms were blocked at low temperature (4 °C), suggesting that the MNPsPMMA-FA uptake was mediated by endocytosis. High concentrations of MNPsPMMA-FA showed hemocompatibility when incubated for 24 h in human red blood cells. Therefore, our results suggest that these carrier systems can be an excellent alternative in targeted drug delivery via FR.

  17. Superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis

    International Nuclear Information System (INIS)

    Feuser, Paulo Emilio; Jacques, Amanda Virtuoso; Arévalo, Juan Marcelo Carpio; Rocha, Maria Eliane Merlin; Santos-Silva, Maria Claudia dos; Sayer, Claudia; Araújo, Pedro H. Hermes de

    2016-01-01

    The encapsulation of superparamagnetic nanoparticles (MNPs) in polymeric nanoparticles (NPs) with modified surfaces can improve targeted delivery and induce cell death by hyperthermia. The goals of this study were to synthesize and characterize surface modified superparamagnetic poly(methyl methacrylate) with folic acid (FA) prepared by miniemulsion polymerization (MNPsPMMA-FA) and to evaluate their in vitro cytotoxicity and cellular uptake in non-tumor cells, murine fibroblast (L929) cells and tumor cells that overexpressed folate receptor (FR) β, and chronic myeloid leukemia cells in blast crisis (K562). Lastly, hemolysis assays were performed on human red blood cells. MNPsPMMA-FA presented an average mean diameter of 135 nm and a saturation magnetization (Ms) value of 37 emu/g of iron oxide, as well as superparamagnetic behavior. The MNPsPMMA-FA did not present cytotoxicity in L929 and K562 cells. Cellular uptake assays showed a higher uptake of MNPsPMMA-FA than MNPsPMMA in K562 cells when incubated at 37 °C. On the other hand, MNPsPMMA-FA showed a low uptake when endocytosis mechanisms were blocked at low temperature (4 °C), suggesting that the MNPsPMMA-FA uptake was mediated by endocytosis. High concentrations of MNPsPMMA-FA showed hemocompatibility when incubated for 24 h in human red blood cells. Therefore, our results suggest that these carrier systems can be an excellent alternative in targeted drug delivery via FR.

  18. Superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis

    Science.gov (United States)

    Feuser, Paulo Emilio; Jacques, Amanda Virtuoso; Arévalo, Juan Marcelo Carpio; Rocha, Maria Eliane Merlin; dos Santos-Silva, Maria Claudia; Sayer, Claudia; de Araújo, Pedro H. Hermes

    2016-04-01

    The encapsulation of superparamagnetic nanoparticles (MNPs) in polymeric nanoparticles (NPs) with modified surfaces can improve targeted delivery and induce cell death by hyperthermia. The goals of this study were to synthesize and characterize surface modified superparamagnetic poly(methyl methacrylate) with folic acid (FA) prepared by miniemulsion polymerization (MNPsPMMA-FA) and to evaluate their in vitro cytotoxicity and cellular uptake in non-tumor cells, murine fibroblast (L929) cells and tumor cells that overexpressed folate receptor (FR) β, and chronic myeloid leukemia cells in blast crisis (K562). Lastly, hemolysis assays were performed on human red blood cells. MNPsPMMA-FA presented an average mean diameter of 135 nm and a saturation magnetization (Ms) value of 37 emu/g of iron oxide, as well as superparamagnetic behavior. The MNPsPMMA-FA did not present cytotoxicity in L929 and K562 cells. Cellular uptake assays showed a higher uptake of MNPsPMMA-FA than MNPsPMMA in K562 cells when incubated at 37 °C. On the other hand, MNPsPMMA-FA showed a low uptake when endocytosis mechanisms were blocked at low temperature (4 °C), suggesting that the MNPsPMMA-FA uptake was mediated by endocytosis. High concentrations of MNPsPMMA-FA showed hemocompatibility when incubated for 24 h in human red blood cells. Therefore, our results suggest that these carrier systems can be an excellent alternative in targeted drug delivery via FR.

  19. Convection-enhanced delivery of cetuximab conjugated iron-oxide nanoparticles for treatment of spontaneous canine intracranial gliomas.

    Science.gov (United States)

    Freeman, A Courtenay; Platt, Simon R; Holmes, Shannon; Kent, M; Robinson, Kelsey; Howerth, Elizabeth; Eagleson, Joe; Bouras, Alexandros; Kaluzova, Milota; Hadjipanayis, Constantinos G

    2018-05-01

    Cetuximab conjugated iron-oxide nanoparticles (cetuximab-IONPs) have shown both in-vitro and in-vivo anti-tumor efficacy against gliomas. The purpose of this pilot study was to evaluate the safety and potential efficacy of cetuximab-IONPs for treatment of spontaneously occurring intracranial gliomas in canines after convection-enhanced delivery (CED). The use of CED allowed for direct infusion of the cetuximab-IONPs both intratumorally and peritumorally avoiding the blood brain barrier (BBB) and limiting systemic effects. A total of eight dogs participated in the study and only two developed mild post-operative complications, which resolved with medical therapy. All canines underwent a single CED treatment of the cetuximab-IONPs over 3 days and did not receive any further adjuvant treatments. Volumetric analysis showed a median reduction in tumor size of 54.9% by MRI at 1-month (4-6 weeks) follow-up. Five dogs were euthanized due to recurrence of neurological signs other than seizures, two due to recurrent seizures, and one dog died in his sleep. Median survival time after surgery was 248 days (mean 367 days).

  20. Ultrasmall cationic superparamagnetic iron oxide nanoparticles as nontoxic and efficient MRI contrast agent and magnetic-targeting tool

    Science.gov (United States)

    Uchiyama, Mayara Klimuk; Toma, Sergio Hiroshi; Rodrigues, Stephen Fernandes; Shimada, Ana Lucia Borges; Loiola, Rodrigo Azevedo; Cervantes Rodríguez, Hernán Joel; Oliveira, Pedro Vitoriano; Luz, Maciel Santos; Rabbani, Said Rahnamaye; Toma, Henrique Eisi; Poliselli Farsky, Sandra Helena; Araki, Koiti

    2015-01-01

    Fully dispersible, cationic ultrasmall (7 nm diameter) superparamagnetic iron oxide nanoparticles, exhibiting high relaxivity (178 mM−1s−1 in 0.47 T) and no acute or subchronic toxicity in Wistar rats, were studied and their suitability as contrast agents for magnetic resonance imaging and material for development of new diagnostic and treatment tools demonstrated. After intravenous injection (10 mg/kg body weight), they circulated throughout the vascular system causing no microhemorrhage or thrombus, neither inflammatory processes at the mesentery vascular bed and hepatic sinusoids (leukocyte rolling, adhesion, or migration as evaluated by intravital microscopy), but having been spontaneously concentrated in the liver, spleen, and kidneys, they caused strong negative contrast. The nanoparticles are cleared from kidneys and bladder in few days, whereas the complete elimination from liver and spleen occurred only after 4 weeks. Ex vivo studies demonstrated that cationic ultrasmall superparamagnetic iron oxide nanoparticles caused no effects on hepatic and renal enzymes dosage as well as on leukocyte count. In addition, they were readily concentrated in rat thigh by a magnet showing its potential as magnetically targeted carriers of therapeutic and diagnostic agents. Summarizing, cationic ultrasmall superparamagnetic iron oxide nanoparticles are nontoxic and efficient magnetic resonance imaging contrast agents useful as platform for the development of new materials for application in theranostics. PMID:26251595

  1. Cubic superparamagnetic nanoparticles of NiFe{sub 2}O{sub 4} via fast microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Galvão, W. S.; Freire, R. M. [Universidade Federal do Ceará–UFC, Grupo de Química de Materiais Avançados (GQMAT), Departamento de Química Analítica e Físico-Química (Brazil); Ribeiro, T. S.; Vasconcelos, I. F. [Universidade Federal do Ceará, Departamento de Engenharia Metalúrgica e de Materiais (Brazil); Costa, L. S. [State University of Campinas–UNICAMP, Department of Inorganic Chemistry, Institute of Chemistry (Brazil); Freire, V. N.; Sales, F. A. M. [Universidade Federal do Ceará, Departamento de Física, Centro de Ciências (Brazil); Denardin, J. C. [Universidad de Santiago de Chile, USACH, Departamento de Física (Chile); Fechine, P. B. A., E-mail: fechine@ufc.br [Universidade Federal do Ceará–UFC, Grupo de Química de Materiais Avançados (GQMAT), Departamento de Química Analítica e Físico-Química (Brazil)

    2014-12-15

    This study demonstrated the possibility of using microwave heating as a fast and cheap method for synthesizing superparamagnetic nanoparticles. In this sense, NiFe{sub 2}O{sub 4} samples were subjected to microwave heating at various temperatures to determine the lowest temperature at which the crystalline phase of the nanoparticles occurs. X-Ray powder diffraction, {sup 57}Fe Mössbauer spectroscopy, and transmission electron microscopy of the samples were performed to confirm the formed nanoparticles. It was observed a cubic structure of inverse spinel type with good crystallinity. The magnetic properties of the samples were studied using a vibrating sample magnetometer and was found to zero values to remanent magnetization and coercivity field. This behavior suggests superparamagnetic features for all samples. The crystallite size (9, 10, and 12 nm) and saturation magnetization (31–45 emu/g) were used as a function of the increase of the temperature treatment time. Blocking temperature was found by tracing remanent magnetization versus temperature.

  2. Biosensing based on magnetically induced self-assembly of particles in magnetic colloids.

    Science.gov (United States)

    Yang, Ye; Morimoto, Yoshitaka; Takamura, Tsukasa; Sandhu, Adarsh

    2012-03-01

    Superparamagnetic beads and nonmagnetic beads of different sizes were assembled to form a "ring-structure" in a magnetorheological (MR) fluid solution by the application of external magnetic fields. For superparamagnetic beads and non-magnetic beads functionalized with probe and target molecules, respectively, the ring-structure was maintained even after removing the external magnetic field due to biomolecular bonding. Several experiments are described, including the formation process of ring-structures with and without molecular interactions, the accelerating effect of external magnetic fields, and the effect of biotin concentration on the structures of the rings. We define the small nonmagnetic particles as "petals" because the whole structure looks like a flower. The number of remnant ring petals was a function of the concentration of target molecules in the concentration range of 0.0768 ng/ml-3.8419 ng/ml which makes this protocol a promising method for biosensing. Not only was the formation process rapid, but the resulting two-dimensional colloidal system also offers a simple method for reducing reagent consumption and waste generation.

  3. Lab-on-a-Chip Magneto-Immunoassays: How to Ensure Contact between Superparamagnetic Beads and the Sensor Surface

    Directory of Open Access Journals (Sweden)

    Andreas Hütten

    2013-09-01

    Full Text Available Lab-on-a-chip immuno assays utilizing superparamagnetic beads as labels suffer from the fact that the majority of beads pass the sensing area without contacting the sensor surface. Different solutions, employing magnetic forces, ultrasonic standing waves, or hydrodynamic effects have been found over the past decades. The first category uses magnetic forces, created by on-chip conducting lines to attract beads towards the sensor surface. Modifications of the magnetic landscape allow for additional transport and separation of different bead species. The hydrodynamic approach uses changes in the channel geometry to enhance the capture volume. In acoustofluidics, ultrasonic standing waves force µm-sized particles onto a surface through radiation forces. As these approaches have their disadvantages, a new sensor concept that circumvents these problems is suggested. This concept is based on the granular giant magnetoresistance (GMR effect that can be found in gels containing magnetic nanoparticles. The proposed design could be realized in the shape of paper-based test strips printed with gel-based GMR sensors.

  4. Nonlinear Parametric Excitation Effect Induces Stability Transitions in Swimming Direction of Flexible Superparamagnetic Microswimmers.

    Science.gov (United States)

    Harduf, Yuval; Jin, Dongdong; Or, Yizhar; Zhang, Li

    2018-04-05

    Microscopic artificial swimmers have recently become highly attractive due to their promising potential for biomedical microrobotic applications. Previous pioneering work has demonstrated the motion of a robotic microswimmer with a flexible chain of superparamagnetic beads, which is actuated by applying an oscillating external magnetic field. Interestingly, they have shown that the microswimmer's orientation undergoes a 90°-transition when the magnetic field's oscillation amplitude is increased above a critical value. This unexpected transition can cause severe problems in steering and manipulation of flexible magnetic microrobotic swimmers. Thus, theoretical understanding and analysis of the physical origins of this effect are of crucial importance. In this work, we investigate this transition both theoretically and experimentally by using numerical simulations and presenting a novel flexible microswimmer with an anisotropic superparamagnetic head. We prove that this effect depends on both frequency and amplitude of the oscillating magnetic field, and demonstrate existence of an optimal amplitude achieving maximal swimming speed. Asymptotic analysis of a minimal two-link model reveals that the changes in the swimmer's direction represent stability transitions, which are induced by a nonlinear parametric excitation.

  5. Effect of particle size and alloying with different metals on {sup 57}Fe Moessbauer spectra

    Energy Technology Data Exchange (ETDEWEB)

    Nazir, Rabia; Mazhar, Muhammad, E-mail: mazhar42pk@yahoo.com [Quaid-i-Azam University, Department of Chemistry (Pakistan); Siddique, Muhammad [PINSTECH, Physics Division (Pakistan); Hussain, S. Tajammul [Quaid-i-Azam University, Department of Chemistry (Pakistan)

    2009-02-15

    Iron nanoparticles of various sizes have been synthesized using the chemical route which involves the preparation of iron bipyridine complexes in presence of different capping agents followed by thermal decomposition at 450 deg. C in inert atmosphere. The bimetallic nanoalloys of Fe with Mg and Pd have also been prepared by following the same route. The resulting nanoparticles have been characterized by EDX-RF, XRD, AFM and {sup 57}Fe Moessbauer spectroscopy. The appearance of quadrupole doublets in the Moessbauer spectra of Fe nanoparticles indicates the absence of magnetic interaction and variation in parameters is due to the varying particle size. The Moessbauer spectrum of Fe-Mg{sub 2} bimetallic nanoalloy shows two doublets indicating the presence of superparamagnetism. The two doublets can be attributed to change in s-electron density of iron resulting from its two neighboring magnesium atoms. Fe-Pd nanoalloy Moessbauer spectrum is characterized by having a superparamagnetic doublet and a ferromagnetic sextet.

  6. Superparamagnetic perpendicular magnetic tunnel junctions for true random number generators

    Science.gov (United States)

    Parks, Bradley; Bapna, Mukund; Igbokwe, Julianne; Almasi, Hamid; Wang, Weigang; Majetich, Sara A.

    2018-05-01

    Superparamagnetic perpendicular magnetic tunnel junctions are fabricated and analyzed for use in random number generators. Time-resolved resistance measurements are used as streams of bits in statistical tests for randomness. Voltage control of the thermal stability enables tuning the average speed of random bit generation up to 70 kHz in a 60 nm diameter device. In its most efficient operating mode, the device generates random bits at an energy cost of 600 fJ/bit. A narrow range of magnetic field tunes the probability of a given state from 0 to 1, offering a means of probabilistic computing.

  7. Magnet polepiece design for uniform magnetic force on superparamagnetic beads

    OpenAIRE

    Fallesen, Todd; Hill, David B.; Steen, Matthew; Macosko, Jed C.; Bonin, Keith; Holzwarth, George

    2010-01-01

    Here we report construction of a simple electromagnet with novel polepieces which apply a spatially uniform force to superparamagnetic beads in an optical microscope. The wedge-shaped gap was designed to keep ∂Bx∕∂y constant and B large enough to saturate the bead. We achieved fields of 300–600 mT and constant gradients of 67 T∕m over a sample space of 0.5×4 mm2 in the focal plane of the microscope and 0.05 mm along the microscope optic axis. Within this space the maximum force on a 2.8 μm di...

  8. Distribution of magnetic particulates in a roadside snowpack based on magnetic, microstructural and mineralogical analyses

    Science.gov (United States)

    Bućko, Michał S.; Mattila, Olli-Pekka; Chrobak, Artur; Ziółkowski, Grzegorz; Johanson, Bo; Čuda, Jan; Filip, Jan; Zbořil, Radek; Pesonen, Lauri J.; Leppäranta, Matti

    2013-10-01

    Vehicle traffic is at present one of the major sources of environmental pollution in urban areas. Magnetic parameters are successfully applied in environmental studies to obtain detailed information about concentrations and quality of iron-bearing minerals. A general aim of this research was to investigate the magnetic, microstructural and mineralogical properties of dust extracted from the roadside snowpack accumulated on the side of an urban highway, northern Helsinki. Vertical snow profiles were taken at different distances (5, 10 and 15 m) from the road edge, during winter season 2010-2011. The temporal distribution of mass magnetic susceptibility (χ) of the road dust shows that the concentration of magnetic particles increases in the snowpack during winter. Roadside snowpack preserves a large fraction of the magnetic particulate until the late stages of melting and this could be considered as one of the main factors responsible for the resuspension phenomenon observed in Nordic countries. The vertical distribution of χ and SIRM (saturation isothermal remanent magnetization)/χ ratio may indicate the migration of magnetic particles down in the snowpack during melting conditions. Ultrafine to coarse-grained (superparamagnetic to multidomain) magnetite was identified as the primary magnetic mineral in all the studied road dust samples. The examined road dust contains significant amount of dia/paramagnetic minerals (e.g. quartz, albite, biotite) and the content of magnetite is relatively low (below 1 weight percent, wt%). The roadside snowpack is enriched in anthropogenic particles such as angular and spherical iron-oxides, tungsten-rich particles and sodium chloride. This study demonstrates the suitability of snow as an efficient collecting medium of magnetic particulates generated by anthropogenic activities.

  9. Synthesis and magnetic properties of superparamagnetic CoAs nanostructures

    Science.gov (United States)

    Desai, P.; Ashokaan, N.; Masud, J.; Pariti, A.; Nath, M.

    2015-03-01

    This article provides a comprehensive guide on the synthesis and characterization of superparamagnetic CoAs nanoparticles and elongated nanostructures with high blocking temperature, (TB), via hot-injection precipitation and solvothermal methods. Cobalt arsenides constitute an important family of magnetically active solids that find a variety of applications ranging from magnetic semiconductors to biomedical imaging. While the higher temperature hot-injection precipitation technique (300 °C) yields pure CoAs nanostructures, the lower temperature solvothermal method (200 °C) yields a mixture of CoAs nanoparticles along with other Co-based impurity phases. The synthesis in all these cases involved usage of triphenylarsine ((C6H5)3As) as the As precursor which reacts with solid Co2(CO)8 by ligand displacement to yield a single source precursor. The surfactant, hexadecylamine (HDA) further assists in controlling the morphology of the nanostructures. HDA also provides a basic medium and molten flux-like conditions for the redox chemistry to occur between Co and As at elevated temperatures. The influence of the length of reaction time was investigated by studying the evolution of product morphology over time. It was observed that while spontaneous nucleation at higher temperature followed by controlled growth led to the predominant formation of short nanorods, with longer reaction time, the nanorods were further converted to nanoparticles. The size of the nanoparticles obtained, was mostly in the range of 10-15 nm. The key finding of this work is exceptionally high coercivity in CoAs nanostructures for the first time. Coercivity observed was as high as 0.1 T (1000 Oe) at 2 K. These kinds of magnetic nanostructures find multiple applications in spintronics, whereas the superparamagnetic nanoparticles are viable for use in magnetic storage, ferrofluids and as contrast enhancing agents in MRI.

  10. Influence of PVP in magnetic properties of NiSn nanoparticles prepared by polyol method

    Energy Technology Data Exchange (ETDEWEB)

    Bobadilla, L.F., E-mail: lbobadilla@iciq.es [Departamento de Quimica Inorganica e Instituto de Ciencia de Materiales, Centro mixto Universidad de Sevilla-CSIC, Av. Americo Vespucio, 41092 Sevilla (Spain); Garcia, C. [Physics Department, Bogazici University, North Campus KB 331-O, Bebek/Istambul (Turkey); Delgado, J.J. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, E-11510 Puerto Real, Cadiz (Spain); Sanz, O. [Grupo de Ingenieria Quimica, Departamento de Quimica Aplicada, Facultad de Ciencias Quimicas, UPV/EHU, Paseo Manuel de Lardizabal, 3, 20018 San Sebastian (Spain); Romero-Sarria, F.; Centeno, M.A.; Odriozola, J.A. [Departamento de Quimica Inorganica e Instituto de Ciencia de Materiales, Centro mixto Universidad de Sevilla-CSIC, Av. Americo Vespucio, 41092 Sevilla (Spain)

    2012-11-15

    The influence of PVP on the magnetic properties of NiSn nanoparticles prepared by polyol method has been studied. NiSn nanoparticles exhibit superparamagnetic behavior although there is a ferromagnetic contribution due to particles agglomerated below the blocking temperature. The particle size is controlled by the addiction of PVP in varying amounts. The addition of PVP also favours the particles isolation, narrow the particle size distribution and decrease the interparticle interaction strength increasing the superparamagnetic contribution. - Highlights: Black-Right-Pointing-Pointer Ni{sub x}Sn{sub y} alloys nanoparticles have been prepared by polyol method. Black-Right-Pointing-Pointer NiSn nanoparticles exhibit superparamagnetic behavior. Black-Right-Pointing-Pointer The PVP addition favours the particles isolation.

  11. Preparation and Characterization of Super-paramagnetic Nano-beads for DNA Isolation

    Institute of Scientific and Technical Information of China (English)

    Xin XIE; Xu ZHANG; Bing Bin YU; wei Yang FE

    2004-01-01

    Unique coupling reagent, bis-(2-hydroxyethyl methacrylate) phosphate was used to prepare coated and functionalized superparamagnetic nanobeads, leading to a simple, effective method for coating the nanobeads. With this method, the thickness of the coating layer and the functional group contents on the nano-beads could be controlled by changing the quantity of the coated monomers. The nanobeads were characterized by means of transmission electron microscopy (TEM) and Fourier transformation infrared spectroscopy (FTIR). The carboxyl-modified magnetic nano-beads were employed to streamline the protocol of isolation of genomic DNA from the human whole blood.

  12. Rapid, highly sensitive detection of herpes simplex virus-1 using multiple antigenic peptide-coated superparamagnetic beads.

    Science.gov (United States)

    Ran, Ying-Fen; Fields, Conor; Muzard, Julien; Liauchuk, Viktoryia; Carr, Michael; Hall, William; Lee, Gil U

    2014-12-07

    A sensitive, rapid, and label free magnetic bead aggregation (MBA) assay has been developed that employs superparamagnetic (SPM) beads to capture, purify, and detect model proteins and the herpes simplex virus (HSV). The MBA assay is based on monitoring the aggregation state of a population of SPM beads using light scattering of individual aggregates. A biotin-streptavidin MBA assay had a femtomolar (fM) level sensitivity for analysis times less than 10 minutes, but the response of the assay becomes nonlinear at high analyte concentrations. A MBA assay for the detection of HSV-1 based on a novel peptide probe resulted in the selective detection of the virus at concentrations as low as 200 viral particles (vp) per mL in less than 30 min. We define the parameters that determine the sensitivity and response of the MBA assay, and the mechanism of enhanced sensitivity of the assay for HSV. The speed, relatively low cost, and ease of application of the MBA assay promise to make it useful for the identification of viral load in resource-limited and point-of-care settings where molecular diagnostics cannot be easily implemented.

  13. Dextran-coated superparamagnetic amorphous Fe–Co nanoalloy for magnetic resonance imaging applications

    International Nuclear Information System (INIS)

    An, Lu; Yu, Yanrong; Li, Xuejian; Liu, Wei; Yang, Hong; Wu, Dongmei; Yang, Shiping

    2014-01-01

    Graphical abstract: A dextran-coated Fe–Co nanoalloy was developed serving as a sensitive contrast agent for magnetic resonance imaging applications. - Highlights: • Amorphous Fe–Co nanoalloy was prepared via wet chemical reduction approach. • The Fe–Co nanoalloy is water-soluble, stable, and biocompatible. • The Fe–Co nanoalloy is superparamagnetic. • The Fe–Co nanoalloy exhibits T 2 -weighted MR enhancement both in vitro and in vivo. - Abstract: For magnetic resonance imaging applications, a facile approach for water-soluble dextran coated amorphous Fe–Co nanoalloy was developed. The as-synthesized nanoalloy had a diameter of 9 nm with a narrow size distribution and showed superparamagnetic property with a saturated magnetization (Ms) of 25 emu/g. In vitro cytotoxicity test revealed that it was biocompatible at a concentration below 120 μg/mL. It can be uptaken by HeLa cells effectively and resulted in the obvious T 2 effect after internalization. Biodistribution studies in conjunction with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) confirmed that Fe–Co nanoalloy was preferentially accumulated in lung and spleen after intravenous injection for 4 h. In vivo MRI, dextran-coated Fe–Co nanoalloy can serve as a sensitive contrast agent for MR imaging, especially in the spleen, so we believe that it maybe hold great promise for diagnosis of splenic disease by appropriately functionalizing their surface

  14. Dextran-coated superparamagnetic amorphous Fe–Co nanoalloy for magnetic resonance imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    An, Lu; Yu, Yanrong; Li, Xuejian; Liu, Wei [The Key Laboratory of Resource Chemistry of Ministry of Education and Shanghai Key Laboratory of Rare Earth Functional Materials, Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China); Yang, Hong, E-mail: yanghong@shnu.edu.cn [The Key Laboratory of Resource Chemistry of Ministry of Education and Shanghai Key Laboratory of Rare Earth Functional Materials, Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China); Wu, Dongmei [Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062 (China); Yang, Shiping, E-mail: shipingy@shnu.edu.cn [The Key Laboratory of Resource Chemistry of Ministry of Education and Shanghai Key Laboratory of Rare Earth Functional Materials, Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China)

    2014-01-01

    Graphical abstract: A dextran-coated Fe–Co nanoalloy was developed serving as a sensitive contrast agent for magnetic resonance imaging applications. - Highlights: • Amorphous Fe–Co nanoalloy was prepared via wet chemical reduction approach. • The Fe–Co nanoalloy is water-soluble, stable, and biocompatible. • The Fe–Co nanoalloy is superparamagnetic. • The Fe–Co nanoalloy exhibits T{sub 2}-weighted MR enhancement both in vitro and in vivo. - Abstract: For magnetic resonance imaging applications, a facile approach for water-soluble dextran coated amorphous Fe–Co nanoalloy was developed. The as-synthesized nanoalloy had a diameter of 9 nm with a narrow size distribution and showed superparamagnetic property with a saturated magnetization (Ms) of 25 emu/g. In vitro cytotoxicity test revealed that it was biocompatible at a concentration below 120 μg/mL. It can be uptaken by HeLa cells effectively and resulted in the obvious T{sub 2} effect after internalization. Biodistribution studies in conjunction with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) confirmed that Fe–Co nanoalloy was preferentially accumulated in lung and spleen after intravenous injection for 4 h. In vivo MRI, dextran-coated Fe–Co nanoalloy can serve as a sensitive contrast agent for MR imaging, especially in the spleen, so we believe that it maybe hold great promise for diagnosis of splenic disease by appropriately functionalizing their surface.

  15. Biodistribution of ultra small superparamagnetic iron oxide nanoparticles in BALB mice

    International Nuclear Information System (INIS)

    Saeed Shanehsazzadeh; Mohammad Ali Oghabian; Tehran University of Medical Science, Tehran; Fariba Johari Daha; Massoud Amanlou; Allen, B.J.

    2013-01-01

    Recently ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles (NPs) have been widely used for medical applications. One of their important applications is using these particles as MRI contrast agent. While various research works have been done about MRI application of USPIOs, there is limited research about their uptakes in various organs. The aim of this study was to evaluate the biodistribution of dextran coated iron oxide NPs labelled with 99m Tc in various organs via intravenous injection in Balb/c mice. The magnetite NPs were dispersed in phosphate buffered saline and SnCl 2 which was used as a reduction reagent. Subsequently, the radioisotope 99m Tc was mixed directly into the reaction solution. The labeling efficiency of USPIOs labeled with 99m Tc, was above 99 %. Sixty mice were sacrificed at 12 different time points (From 1 min to 48 h post injections; five mice at each time). The percentage of injected dose per gram of each organ was measured by direct counting for 19 harvested organs of the mice. The biodistribution of 99m Tc-USPIO in Balb/c mice showed dramatic uptake in reticuloendothelial system. Accordingly, about 75 percent of injected dose was found in spleen and liver at 15 min post injection. More than 24 % of the NPs remain in liver after 48 h post-injection and their clearance is so fast in other organs. The results suggest that USPIOs as characterized in our study can be potentially used as contrast agent in MR Imaging, distributing reticuloendothelial system specially spleen and liver. (author)

  16. A facile method to prepare superparamagnetic iron oxide and hydrophobic drug-encapsulated biodegradable polyurethane nanoparticles

    Directory of Open Access Journals (Sweden)

    Cheng K

    2017-03-01

    Full Text Available Kuo-Wei Cheng, Shan-hui Hsu Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University, Taipei, Taiwan, Republic of China Abstract: Superparamagnetic iron oxide nanoparticles (SPIO NPs have a wide range of biomedical applications such as in magnetic resonance imaging, targeting, and hyperthermia therapy. Aggregation of SPIO NPs can occur because of the hydrophobic surface and high surface energy of SPIO NPs. Here, we developed a facile method to encapsulate SPIO NPs in amphiphilic biodegradable polymer. Anionic biodegradable polyurethane nanoparticles (PU NPs with ~35 nm size and different chemistry were prepared by waterborne processes. SPIO NPs were synthesized by chemical co-precipitation. SPIO NPs were then added to the aqueous dispersion of PU NPs, followed by application of high-frequency (~20 kHz ultrasonic vibration for 3 min. This method rendered SPIO-PU hybrid NPs (size ~110 nm suspended in water. SPIO-PU hybrid NPs contained ~50–60 wt% SPIO and retained the superparamagnetic property (evaluated by a magnetometer as well as high contrast in magnetic resonance imaging. SPIO-PU NPs also showed the ability to provide cell hyperthermic treatment. Using the same ultrasonic method, hydrophobic drug (Vitamin K3 [VK3] or (9-(methylaminomethylanthracene [MAMA] could also be encapsulated in PU NPs. The VK3-PU or MAMA-PU hybrid NPs had ~35 nm size and different release profiles for PUs with different chemistry. The encapsulation efficiency for VK3 and MAMA was high (~95% without burst release. The encapsulation mechanism may be attributed to the low glass transition temperature (Tg and good mechanical compliance of PU NPs. The new encapsulation method involving waterborne biodegradable PU NPs is simple, rapid, and effective to produce multimodular NP carriers. Keywords: superparamagnetic iron oxide, polyurethane, drug release, hybrid nanoparticles

  17. Green synthesis of soya bean sprouts-mediated superparamagnetic Fe{sub 3}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Cai Yan [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Shen Yuhua, E-mail: s_yuhua@163.co [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China) and State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093 (China); Xie Anjian, E-mail: anjx@163.co [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China) and State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093 (China); Li Shikuo; Wang Xiufang [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China)

    2010-10-15

    Superparamagnetic Fe{sub 3}O{sub 4} nanoparticles were first synthesized via soya bean sprouts (SBS) templates under ambient temperature and normal atmosphere. The reaction process was simple, eco-friendly, and convenient to handle. The morphology and crystalline phase of the nanoparticles were determined from scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD) spectra. The effect of SBS template on the formation of Fe{sub 3}O{sub 4} nanoparticles was investigated using X-ray photoemission spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). The results indicate that spherical Fe{sub 3}O{sub 4} nanoparticles with an average diameter of 8 nm simultaneously formed on the epidermal surface and the interior stem wall of SBS. The SBS are responsible for size and morphology control during the whole formation of Fe{sub 3}O{sub 4} nanoparticles. In addition, the superconducting quantum interference device (SQUID) results indicate the products are superparamagnetic at room temperature, with blocking temperature (T{sub B}) of 150 K and saturation magnetization of 37.1 emu/g.

  18. Blue shift in optical absorption, magnetism and light-induced superparamagnetism in γ-Fe{sub 2}O{sub 3} nanoparticles formed in dendrimer

    Energy Technology Data Exchange (ETDEWEB)

    Domracheva, Natalia E., E-mail: ndomracheva@gmail.com; Vorobeva, Valerya E. [Zavoisky Kazan Physical-Technical Institute (Russian Federation); Gruzdev, Matvey S. [Institute of Solution Chemistry (Russian Federation); Pyataev, Andrew V. [Kazan Federal University (Russian Federation)

    2015-02-15

    We are presenting the investigation of the optical, magnetic, and photoinduced superparamagnetic properties of single-domain γ-Fe{sub 2}O{sub 3} nanoparticles (NPs) with diameters of about 2.5 nm formed in second-generation poly(propylene imine) dendrimer. The optical absorption studies indicated direct allowed transition with the band gap (4.5 eV), which is blue shift with respect to the value of the bulk material. Low-temperature blocking of the NPs magnetic moments at 18 K is determined by SQUID measurements. The influence of pulsed laser irradiation on the superparamagnetic properties of γ-Fe{sub 2}O{sub 3} NPs was studied by EPR spectroscopy. It has been shown that irradiation of the sample held in vacuo and cooled in zero magnetic field to 6.9 K leads to the appearance of a new EPR signal, which decays immediately after the irradiation is stopped. The appearance and disappearance of this new signal can be repeated many times at 6.9 K when we turn on/turn off the laser. We suppose that the generation of conduction band electrons by irradiation into the band gap of the γ-Fe{sub 2}O{sub 3} changes the superparamagnetic properties of NPs. Graphical Abstract: Features of the behavior of single-domain γ-Fe{sub 2}O{sub 3} nanoparticles formed in dendrimer were found by UV-Vis and EPR spectroscopy: “blue” shift in optical absorption, a significant increase in the band gap width and variation of superparamagnetic properties under light irradiation.

  19. Combined chemical-biological treatment for prevention/rehabilitation of clogged wells by an iron-oxidizing bacterium.

    Science.gov (United States)

    Gino, Efrat; Starosvetsky, Jeanna; Kurzbaum, Eyal; Armon, Robert

    2010-04-15

    Groundwater wells containing large concentrations of ferrous iron face serious clogging problems as a result of biotic iron oxidation. Following a short time after their start off, wells get clogged, and their production efficiency drop significantly up to a total obstruction, making cleanup and rehabilitation an economic burden. The present study was undertaken to test an experimental combined treatment (chemical and biological) for future prevention or rehabilitation of clogged wells. Sphaerotilus natans (an iron-oxidizing bacterium) freshly isolated from a deep well was grown to form biofilms on two systems: coupons and sand buried miniature wedge wire screen baskets. A combined chemical-biological treatment, applied at laboratory scale by use of glycolic acid (2%) and isolated bacteriophages against Sphaerotilus natans (SN1 and ER1-a newly isolated phage) at low multiplicity of infection (MOI), showed inhibition of biofilm formation and inactivation of the contaminant bacteria. In addition to complete inactivation of S. natans planktonic bacteria by the respective phages, earlier biofilm treatment with reduced glycolic acid concentration revealed efficient exopolysaccharide (EPS) digestion allowing phages to be increasingly efficient against biofilm matrix bacteria. Utilization of this combined treatment revealed clean surfaces of a model stainless steel wedge wire screen baskets (commonly used in wells) for up to 60 days.

  20. Effect of Particle Size on the Magnetic Properties of Ni Nanoparticles Synthesized with Trioctylphosphine as the Capping Agent

    Directory of Open Access Journals (Sweden)

    Toshitaka Ishizaki

    2016-09-01

    Full Text Available Magnetic cores of passive components are required to have low hysteresis loss, which is dependent on the coercive force. Since it is well known that the coercive force becomes zero at the superparamagnetic regime below a certain critical size, we attempted to synthesize Ni nanoparticles in a size-controlled fashion and investigated the effect of particle size on the magnetic properties. Ni nanoparticles were synthesized by the reduction of Ni acetylacetonate in oleylamine at 220 °C with trioctylphosphine (TOP as the capping agent. An increase in the TOP/Ni ratio resulted in the size decrease. We succeeded in synthesizing superparamagnetic Ni nanoparticles with almost zero coercive force at particle size below 20 nm by the TOP/Ni ratio of 0.8. However, the saturation magnetization values became smaller with decrease in the size. The saturation magnetizations of the Ni nanoparticles without capping layers were calculated based on the assumption that the interior atoms of the nanoparticles were magnetic, whereas the surface-oxidized atoms were non-magnetic. The measured and calculated saturation magnetization values decreased in approximately the same fashion as the TOP/Ni ratio increased, indicating that the decrease could be mainly attributed to increases in the amounts of capping layer and oxidized surface atoms.

  1. Quantum interference oscillations of the superparamagnetic blocking in an Fe8 molecular nanomagnet

    OpenAIRE

    Burzurí, E.; Luis, F.; Montero, O.; Barbara, B.; Ballou, R.; Maegawa, S.

    2013-01-01

    We show that the dynamic magnetic susceptibility and the superparamagnetic blocking temperature of an Fe8 single molecule magnet oscillate as a function of the magnetic field Hx applied along its hard magnetic axis. These oscillations are associated with quantum interferences, tuned by Hx, between different spin tunneling paths linking two excited magnetic states. The oscillation period is determined by the quantum mixing between the ground S=10 and excited multiplets. These experiments enabl...

  2. Directed Magnetic Particle Transport above Artificial Magnetic Domains Due to Dynamic Magnetic Potential Energy Landscape Transformation.

    Science.gov (United States)

    Holzinger, Dennis; Koch, Iris; Burgard, Stefan; Ehresmann, Arno

    2015-07-28

    An approach for a remotely controllable transport of magnetic micro- and/or nanoparticles above a topographically flat exchange-bias (EB) thin film system, magnetically patterned into parallel stripe domains, is presented where the particle manipulation is achieved by sub-mT external magnetic field pulses. Superparamagnetic core-shell particles are moved stepwise by the dynamic transformation of the particles' magnetic potential energy landscape due to the external magnetic field pulses without affecting the magnetic state of the thin film system. The magnetic particle velocity is adjustable in the range of 1-100 μm/s by the design of the substrate's magnetic field landscape (MFL), the particle-substrate distance, and the magnitude of the applied external magnetic field pulses. The agglomeration of magnetic particles is avoided by the intrinsic magnetostatic repulsion of particles due to the parallel alignment of the particles' magnetic moments perpendicular to the transport direction and parallel to the surface normal of the substrate during the particle motion. The transport mechanism is modeled by a quantitative theory based on the precise knowledge of the sample's MFL and the particle-substrate distance.

  3. Magnetic particle translation as a surrogate measure for synovial fluid mechanics.

    Science.gov (United States)

    Shah, Yash Y; Maldonado-Camargo, Lorena; Patel, Neal S; Biedrzycki, Adam H; Yarmola, Elena G; Dobson, Jon; Rinaldi, Carlos; Allen, Kyle D

    2017-07-26

    The mechanics of synovial fluid vary with disease progression, but are difficult to quantify quickly in a clinical setting due to small sample volumes. In this study, a novel technique to measure synovial fluid mechanics using magnetic nanoparticles is introduced. Briefly, microspheres embedded with superparamagnetic iron oxide nanoparticles, termed magnetic particles, are distributed through a 100μL synovial fluid sample. Then, a permanent magnet inside a protective sheath is inserted into the synovial fluid sample. Magnetic particles translate toward the permanent magnet and the percentage of magnetic particles collected by the magnet in a given time can be related to synovial fluid viscosity. To validate this relationship, magnetic particle translation was demonstrated in three phases. First, magnetic particle translation was assessed in glycerol solutions with known viscosities, demonstrating that as fluid viscosity increased, magnetic particle translation decreased. Next, the relationship between magnetic particle translation and synovial fluid viscosity was assessed using bovine synovial fluid that was progressively degenerated via ultrasonication. Here, particle collection in a given amount of time increased as fluid degenerated, demonstrating that the relationship between particle collection and fluid mechanics holds in non-Newtonian synovial fluid. Finally, magnetic particle translation was used to assess differences between healthy and OA affected joints in equine synovial fluid. Here, particle collection in a given time was higher in OA joints relative to healthy horses (pfluid mechanics in limited volumes of synovial fluid sample. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Superparamagnetic nanoparticle-inclusion microbubbles for ultrasound contrast agents

    International Nuclear Information System (INIS)

    Yang Fang; Li Yixin; Chen Zhongping; Gu Ning; Li Ling; Wu Junru

    2008-01-01

    We have developed a new type of ultrasound (US) contrast agent, consisting of a gas core, a layer of superparamagnetic iron oxide Fe 3 O 4 nanoparticles (SPIO) and an oil in water outermost layer. The newly developed US contrast agent microbubbles have a mean diameter of 760 nm with a polydisperity index (PI) of 0.699. Our in vitro and in vivo experiments have shown that they have the following advantages compared to gas-encapsulated microbbubbles without SPIO inclusion: (1) they provide better contrast for US images; (2) the SPIO-inclusion microbubbles generate a higher backscattering signal; the mean grey scale is 97.9, which is 38.6 higher than that of microbubbles without SPIO; and (3) since SPIO can also serve as a contrast agent of magnetic resonance images (MRI) in vitro, they can be potentially used as contrast agents for double-modality (MRI and US) clinical studies.

  5. Low temperature synthesis, magnetic and electrical properties of iron-magnesium superparamagnetic nanoalloy

    Energy Technology Data Exchange (ETDEWEB)

    Nazir, Rabia [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Mazhar, Muhammad [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan)], E-mail: mazhar42pk@yahoo.com; Akhtar, Muhammad Javed; Nadeem, Muhammad; Siddique, Muhammad [Physics Division, Pinstech, P.O. Nilore, Islamabad (Pakistan); Shah, Raza [HEJ Research Institute of Chemistry, University of Karachi, Karachi 75270 (Pakistan); Hasanain, S. Khurshid [Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2009-06-24

    A low temperature chemical approach which beats the miscibility barrier of Fe and Mg has been designed to synthesize Fe-Mg{sub 2} nanoalloy and tested to result nanoparticles of average 30 nm size. The nanoalloy is amorphous in nature and characterized by XPRD, AFM, magnetometery, Moessbauer and impedance spectroscopies. The result of magnetic measurement suggests the sample to be superparamagnetic as evidenced by the {sup 57}Fe Moessbauer spectroscopy. The two Mg atoms occupy different positions around iron resulting in two phase system as shown by Moessbauer and impedance spectroscopies.

  6. Low temperature synthesis, magnetic and electrical properties of iron-magnesium superparamagnetic nanoalloy

    International Nuclear Information System (INIS)

    Nazir, Rabia; Mazhar, Muhammad; Akhtar, Muhammad Javed; Nadeem, Muhammad; Siddique, Muhammad; Shah, Raza; Hasanain, S. Khurshid

    2009-01-01

    A low temperature chemical approach which beats the miscibility barrier of Fe and Mg has been designed to synthesize Fe-Mg 2 nanoalloy and tested to result nanoparticles of average 30 nm size. The nanoalloy is amorphous in nature and characterized by XPRD, AFM, magnetometery, Moessbauer and impedance spectroscopies. The result of magnetic measurement suggests the sample to be superparamagnetic as evidenced by the 57 Fe Moessbauer spectroscopy. The two Mg atoms occupy different positions around iron resulting in two phase system as shown by Moessbauer and impedance spectroscopies.

  7. Integrity of 111In-radiolabeled superparamagnetic iron oxide nanoparticles in the mouse

    International Nuclear Information System (INIS)

    Wang, Haotian; Kumar, Rajiv; Nagesha, Dattatri; Duclos, Richard I.; Sridhar, Srinivas; Gatley, Samuel J.

    2015-01-01

    Introduction: Iron-oxide nanoparticles can act as contrast agents in magnetic resonance imaging (MRI), while radiolabeling the same platform with nuclear medicine isotopes allows imaging with positron emission tomography (PET) or single-photon emission computed tomography (SPECT), modalities that offer better quantification. For successful translation of these multifunctional imaging platforms to clinical use, it is imperative to evaluate the degree to which the association between radioactive label and iron oxide core remains intact in vivo. Methods: We prepared iron oxide nanoparticles stabilized by oleic acid and phospholipids which were further radiolabeled with 59 Fe, 14 C-oleic acid, and 111 In. Results: Mouse biodistributions showed 111 In preferentially localized in reticuloendothelial organs, liver, spleen and bone. However, there were greater levels of 59 Fe than 111 In in liver and spleen, but lower levels of 14 C. Conclusions: While there is some degree of dissociation between the 111 In labeled component of the nanoparticle and the iron oxide core, there is extensive dissociation of the oleic acid component

  8. Evaluation of umbilical cord mesenchymal stem cells labeling with superparamagnetic iron oxide nanoparticles coated with dextran and complexed with Poly-L-Lysine; Avaliacao da marcacao de celulas-tronco mesenquimais de cordao umbilical com nanoparticulas superparamagneticas de oxido de ferro recobertas com Dextran e complexadas a Poli-L-Lisina

    Energy Technology Data Exchange (ETDEWEB)

    Sibov, Tatiana Tais; Mamani, Javier Bustamante; Pavon, Lorena Favaro; Cardenas, Walter Humberto; Gamarra, Lionel Fernel, E-mail: tatianats@einstein.br [Instituto do Cerebro - InCe, Hospital Israelita Albert Einstein - HIAE, Sao Paulo, SP (Brazil); Miyaki, Liza Aya Mabuchi [Faculdade de Enfermagem, Hospital Israelita Albert Einstein - HIAE, Sao Paulo, SP (Brazil); Marti, Luciana Cavalheiro; Sardinha, Luiz Roberto [Centro de Pesquisa Experimental, Hospital Israelita Albert Einstein - HIAE, Sao Paulo, SP (Brazil); Oliveira, Daniela Mara de [Universidade de Brasilia - UnB, Brasilia, DF (Brazil)

    2012-04-15

    Objective: The objective of this study was to evaluate the effect of the labeling of umbilical cord vein derived mesenchymal stem cells with superparamagnetic iron oxide nanoparticles coated with dextran and complexed to a non-viral transfector agent transfector poly-L-lysine. Methods: The labeling of mesenchymal stem cells was performed using the superparamagnetic iron oxide nanoparticles/dextran complexed and not complexed to poly-L-lysine. Superparamagnetic iron oxide nanoparticles/dextran was incubated with poly-L-lysine in an ultrasonic sonicator at 37 deg C for 10 minutes for complex formation superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine by electrostatic interaction. Then, the mesenchymal stem cells were incubated overnight with the complex superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine and superparamagnetic iron oxide nanoparticles/dextran. After the incubation period the mesenchymal stem cells were evaluated by internalization of the complex superparamagnetic iron oxide nanoparticles/dextran/polyL-lysine and superparamagnetic iron oxide nanoparticles/dextran by Prussian Blue stain. Cellular viability of labeled mesenchymal stem cells was evaluated by cellular proliferation assay using 5,6-carboxyfluorescein-succinimidyl ester method and apoptosis detection by Annexin V- Propidium Iodide assay. Results: mesenchymal stem cells labeled with superparamagnetic iron oxide nanoparticles/ dextran without poly-L-lysine not internalized efficiently the superparamagnetic iron oxide nanoparticles due to its low presence detected within cells. Mesenchymal stem cells labeled with the complex superparamagnetic iron oxide nanoparticles/dextran/polyL-lysine efficiently internalized the superparamagnetic iron oxide nanoparticles due to greater presence in the cells interior. The viability and apoptosis assays demonstrated that the mesenchymal stem cells labeled and not labeled respectively with the superparamagnetic iron oxide

  9. In vitro removal of toxic heavy metals by poly(γ-glutamic acid-coated superparamagnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Inbaraj BS

    2012-08-01

    Full Text Available Baskaran Stephen Inbaraj,1 Bing-Huei Chen1,21Department of Food Science, 2Graduate Institute of Medicine, Fu Jen University, Taipei, TaiwanBackground: Chelation therapy involving organic chelators for treatment of heavy metal intoxication can cause cardiac arrest, kidney overload, mineral deficiency, and anemia.Methods: In this study, superparamagnetic iron oxide nanoparticles (SPIONs modified with an edible biopolymer poly(γ-glutamic acid (PGA were synthesized by coprecipitation method, characterized and evaluated for their removal efficiency of heavy metals from a metal solution, and simulated gastrointestinal fluid (SGIF.Results: Instrumental characterization of bare- and PGA-SPIONs revealed 7% coating of PGA on SPIONs with a spherical shape and an iron oxide spinel structure belonging to magnetite. The particle sizes as determined from transmission electron microscopy images were 8.5 and 11.7 nm for bare- and PGA-SPIONs, respectively, while the magnetization values were 70.3 and 61.5 emu/g. Upon coating with PGA, the zeta potentials were shifted from positive to negative at most of the environmental pH (3–8 and biological pH (1–8, implying good dispersion in aqueous suspension and favorable conditions for heavy metal removal. Batch studies showed rapid removal of lead and cadmium with the kinetic rates estimated by pseudo-second-order model being 0.212 and 0.424 g/mg•min, respectively. A maximum removal occurred in the pH range 4–8 in deionized water and 5–8 in SGIF corresponding to most gastrointestinal pH except for the stomach. Addition of different ionic strengths (0.001–1 M sodium acetate and essential metals (Cu, Fe, Zn, Mg, Ca, and K did not show any marked influence on lead removal by PGA-SPIONs, but significantly reduced the binding of cadmium. Compared to deionized water, the lead removal from SGIF was high at all pH with the Langmuir monolayer removal capacity being 98.70 mg/g for the former and 147.71 mg/g for the

  10. Subtle cytotoxicity and genotoxicity differences in superparamagnetic iron oxide nanoparticles coated with various functional groups

    Directory of Open Access Journals (Sweden)

    Hong SC

    2011-12-01

    Full Text Available Seong Cheol Hong1,*, Jong Ho Lee1,*, Jaewook Lee1, Hyeon Yong Kim1, Jung Youn Park2, Johann Cho3, Jaebeom Lee1, Dong-Wook Han11Department of Nanomedical Engineering, BK21 Nano Fusion Technology Division, College of Nanoscience and Nanotechnology, Pusan National University, 2Department of Biotechnology Research, National Fisheries Research and Development Institute, Busan, 3Electronic Materials Lab, Samsung Corning Precision Materials Co, Ltd, Gumi City, Gyeongsangbukdo, Korea*These authors contributed equally to this workAbstract: Superparamagnetic iron oxide nanoparticles (SPIONs have been widely utilized for the diagnosis and therapy of specific diseases, as magnetic resonance imaging (MRI contrast agents and drug-delivery carriers, due to their easy transportation to targeted areas by an external magnetic field. For such biomedical applications, SPIONs must have multifunctional characteristics, including optimized size and modified surface. However, the biofunctionality and biocompatibility of SPIONs with various surface functional groups of different sizes have yet to be elucidated clearly. Therefore, it is important to carefully monitor the cytotoxicity and genotoxicity of SPIONs that are surfaced-modified with various functional groups of different sizes. In this study, we evaluated SPIONs with diameters of approximately 10 nm and 100~150 nm, containing different surface functional groups. SPIONs were covered with –O-groups, so-called bare SPIONs. Following this, they were modified with three different functional groups – hydroxyl (–OH, carboxylic (–COOH, and amine (–NH2 groups – by coating their surfaces with tetraethyl orthosilicate (TEOS, (3-aminopropyltrimethoxysilane (APTMS, TEOS-APTMS, or citrate, which imparted different surface charges and sizes to the particles. The effects of SPIONs coated with these functional groups on mitochondrial activity, intracellular accumulation of reactive oxygen species, membrane integrity

  11. Influence of particle sizes on the electronic behavior of Zn{sub x}Co{sub 1−x}Fe{sub 2}O{sub 4} spinels (x = 0.2, 0.3)

    Energy Technology Data Exchange (ETDEWEB)

    Viñas, R. [Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain); Álvarez-Serrano, I., E-mail: ias@quim.ucm.es [Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain); López, M.L.; Pico, C.; Veiga, M.L. [Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain); Mompeán, F.; García-Hernández, M. [Instituto de Ciencia de Materiales, CSIC, Sor Juana Inés de la Cruz, 3, 28049 Madrid (Spain)

    2014-07-15

    Graphical abstract: Relaxor ferroelectric behavior and superparamagnetism in nanoparticles of Zn{sub x}Co{sub 1−x}Fe{sub 2}O{sub 4} obtained in supercritical water. - Highlights: • Title ferrites were prepared by hydrothermal techniques (sub and supercritical). • In supercritical (SCW) conditions highly monodispersive samples were obtained. • All samples are semiconductors; n-type or p-type response depends on the composition. • Superparamagnetic and relaxor ferroelectric response coexist in SCW samples. - Abstract: The effect of composition and particle size on the electrical and magnetic behavior of Zn{sub x}Co{sub 1−x}Fe{sub 2}O{sub 4} spinels (x = 0.2 and 0.3) has been studied. Powdered samples of these ferrites have been synthetized by the liquid mix technique and hydrothermal method (in sub and supercritical conditions), leading to average particle sizes of ca. 50 and 10 nm, respectively. They have been characterized by means of X-ray diffraction, Thermogravimetric analysis, Energy-Dispersive X-ray Spectroscopy and impedance and magnetic measurements. Permittivity values up to ca. 500 were registered at 375 K, which remained almost constant at moderate frequencies, between 10{sup 3} and 10{sup 6} Hz. Stabilization of polarization phenomena is very sensitive to grain size and composition. Dielectric behavior evolves to a relaxor ferroelectric response when grain size becomes nanometric and, particularly, when the sample shows high monodispersion. The conduction mechanism and type of majority charge carriers have been established from Seebeck measurements. The x = 0.3 sample, prepared in supercritical water for the first time, exhibits homogeneous particle size distribution, superparamagnetic behavior and Curie temperature lower than those corresponding to similar microsized samples. The electronic response of the ferrites obtained in supercritical conditions is interpreted considering the possible short scale polarization of nanodomains.

  12. Intracellular trafficking of superparamagnetic iron oxide nanoparticles conjugated with TAT peptide: 3-dimensional electron tomography analysis

    International Nuclear Information System (INIS)

    Nair, Baiju G.; Fukuda, Takahiro; Mizuki, Toru; Hanajiri, Tatsuro; Maekawa, Toru

    2012-01-01

    Highlights: ► We study the intracellular localisation of TAT-SPIONs using 3-D electron tomography. ► 3-D images of TAT-SPIONs in a cell are clearly shown. ► Release of TAT-SPIONs from endocytic vesicles into the cytoplasm is clearly shown. -- Abstract: Internalisation of nanoparticles conjugated with cell penetrating peptides is a promising approach to various drug delivery applications. Cell penetrating peptides such as transactivating transcriptional activator (TAT) peptides derived from HIV-1 proteins are effective intracellular delivery vectors for a wide range of nanoparticles and pharmaceutical agents thanks to their amicable ability to enter cells and minimum cytotoxicity. Although different mechanisms of intracellular uptake and localisation have been proposed for TAT conjugated nanoparticles, it is necessary to visualise the particles on a 3-D plane in order to investigate the actual intracellular uptake and localisation. Here, we study the intracellular localisation and trafficking of TAT peptide conjugated superparamagnetic ion oxide nanoparticles (TAT-SPIONs) using 3-D electron tomography. 3-D tomograms clearly show the location of TAT-SPIONs in a cell and their slow release from the endocytic vesicles into the cytoplasm. The present methodology may well be utilised for further investigations of the behaviours of nanoparticles in cells and eventually for the development of nano drug delivery systems.

  13. Incorporation and release of drug into/from superparamagnetic iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Maver, Uros; Bele, Marjan [National Institute of Chemistry Slovenia, Hajdrihova 19, 1000 Ljubljana (Slovenia); Makovec, Darko; Campelj, Stanislav [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Jamnik, Janko [National Institute of Chemistry Slovenia, Hajdrihova 19, 1000 Ljubljana (Slovenia); Gaberscek, Miran [National Institute of Chemistry Slovenia, Hajdrihova 19, 1000 Ljubljana (Slovenia)], E-mail: miran.gaberscek@ki.si

    2009-10-15

    The aim of this study was to attach a model drug (naproxen) onto superparamagnetic iron oxide nanoparticles (SPION). First, SPION were coated with thin layer of silica that contained micropores. We demonstrated that such surface functionalization could be optimized by the use of citric acid which prevented SPION agglomeration during the procedure. HRTEM investigation showed a uniform 1-2-nm-thick silica coating around SPION. This coating did not affect significantly the magnetic properties of the SPION. Into the coated SPION we successfully incorporated about 30 wt% of naproxen. The latter was readily released after immersion into a testing solution. The composites could be interesting for potential use in diagnostics.

  14. Incorporation and release of drug into/from superparamagnetic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Maver, Uros; Bele, Marjan; Makovec, Darko; Campelj, Stanislav; Jamnik, Janko; Gaberscek, Miran

    2009-01-01

    The aim of this study was to attach a model drug (naproxen) onto superparamagnetic iron oxide nanoparticles (SPION). First, SPION were coated with thin layer of silica that contained micropores. We demonstrated that such surface functionalization could be optimized by the use of citric acid which prevented SPION agglomeration during the procedure. HRTEM investigation showed a uniform 1-2-nm-thick silica coating around SPION. This coating did not affect significantly the magnetic properties of the SPION. Into the coated SPION we successfully incorporated about 30 wt% of naproxen. The latter was readily released after immersion into a testing solution. The composites could be interesting for potential use in diagnostics.

  15. Fine particle magnetic mineralogy of archaeological ceramics

    International Nuclear Information System (INIS)

    Atkinson, D; King, J A

    2005-01-01

    This study investigated the magnetic mineralogy of a worldwide collection of archaeological pottery. The mineral types, the mass fractions and the domain states of the constituent magnetic fine particles were elucidated from a range of measurements including magnetic hysteresis behaviour, the acquisition of isothermal remanence, low field susceptibility and thermomagnetic curves. The magnetic mineralogy of most samples was dominated by magnetite. Titanomagnetites with limited titanium substitution and cation deficient magnetites (indicative of low temperature oxidation) were dominant in some samples. Haematite was detected in 53% of the samples, but seldom contributed much to the saturation magnetization. Magnetic particle sizes are skewed to smaller sizes, with sherds mostly having a large superparamagnetic or a stable single domain fraction. Low temperature susceptibility data suggest that 30% of samples had some multidomain component. The percentage by mass of magnetic material in the ancient pottery studied was less than 0.8% for all but one of the samples and the majority of samples contain less than 0.3% by weight of magnetic fine particles. The presence of low temperature oxidation in many samples and the occurrence of a multidomain component in a third of the collection suggest that ancient pottery may not always be suitable for determining the intensity of the ancient geomagnetic field

  16. Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method

    Directory of Open Access Journals (Sweden)

    Nejati Kamellia

    2012-03-01

    Full Text Available Abstract Background Nickel ferrite, a kind of soft magnetic materials is one of the most attracting class of materials due to its interesting and important properties and has many technical applications, such as in catalysis, sensors and so on. In this paper the synthesis of NiFe2O4 nanoparticles by the hydrothermal method is reported and the inhibition of surfactant (Glycerol or Sodium dodecyl sulfate on the particles growth is investigated. Methods For investigation of the inhibition effect of surfactant on NiFe2O4 particles growth, the samples were prepared in presence of Glycerol and Sodium dodecyl sulfate. The X-ray powder diffraction (XRD, transmission electron microscopy (TEM, Fourier transform infrared spectroscopy (FT-IR, vibrating sample magnetometer (VSM and inductively coupled plasma atomic emission spectrometer (ICP-AES techniques were used to characterize the samples. Results The results of XRD and ICP-AES show that the products were pure NiFe2O4 and also nanoparticles grow with increasing the temperature, while surfactant prevents the particle growth under the same condition. The average particle size was determined from the Scherrer's equation and TEM micrographs and found to be in the range of 50-60 nm that decreased up to 10-15 nm in presence of surfactant. The FT-IR results show two absorption bands near to 603 and 490 cm-1 for the tetrahedral and octahedral sites respectively. Furthermore, the saturated magnetization and coercivity of NiFe2O4 nanoparticles were in the range of 39.60 emu/g and 15.67 Qe that decreased for samples prepared in presence of surfactant. As well as, the nanoparticles exhibited a superparamagnetic behavior at room temperature. Conclusions Nanosized nickel ferrite particles were synthesized with and without surfactant assisted hydrothermal methods. The results show that with increasing of temperature, the crystallinity of nanoparticles is increased. In the presence of surfactants, the crystallinity of

  17. Magnetite (Fe{sub 3}O{sub 4})-filled carbon nanofibers as electro-conducting/superparamagnetic nanohybrids and their multifunctional polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Das, Arindam; Raffi, Muhammad; Megaridis, Constantine, E-mail: cmm@uic.edu [University of Illinois at Chicago, Department of Mechanical and Industrial Engineering (United States); Fragouli, Despina [Istituto Italiano di Tecnologia, Smart Materials, Nanophysics (Italy); Innocenti, Claudia [Universita di Firenze, INSTM Research Unit and Department of Chemistry (Italy); Athanassiou, Athanassia [Istituto Italiano di Tecnologia, Smart Materials, Nanophysics (Italy)

    2015-01-15

    A mild-temperature, nonchemical technique is used to produce a nanohybrid multifunctional (electro-conducting and magnetic) powder material by intercalating iron oxide nanoparticles in large aspect ratio, open-ended, hollow-core carbon nanofibers (CNFs). Single-crystal, superparamagnetic Fe{sub 3}O{sub 4} nanoparticles (10 nm average diameter) filled the CNF internal cavity (diameter <100 nm) after successive steps starting with dispersion of CNFs and magnetite nanoparticles in aqueous or organic solvents, sequencing or combining sonication-assisted capillary imbibition and concentration-driven diffusion, and finally drying at mild temperatures. The influence of several process parameters—such as sonication type and duration, concentration of solids dispersed in solvent, CNF-to-nanoparticle mass ratio, and drying temperature—on intercalation efficiency (evaluated in terms of particle packing in the CNF cavity) was studied using electron microscopy. The magnetic CNF powder was used as a low-concentration filler in poly(methyl methacrylate) to demonstrate thin free-standing polymer films with simultaneous magnetic and electro-conducting properties. Such films could be implemented in sensors, optoelectromagnetic devices, or electromagnetic interference shields.

  18. Magnetoviscoelastic characteristics of superparamagnetic oxides (Fe, Ni) based ferrofluids

    Energy Technology Data Exchange (ETDEWEB)

    Katiyar, Ajay, E-mail: ajay_k@ric.drdo.in [Research and Innovation Centre (DRDO), IIT Madras Research Park, Chennai 600113 (India); Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Dhar, Purbarun [Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001 (India); Nandi, Tandra [Defence Materials and Stores Research and Development Establishment (DRDO), G.T. Road, Kanpur 208013 (India); Das, Sarit K. [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001 (India)

    2017-08-15

    Highlights: • The magnetoviscous effect in ferrofluids in the presence of magnetic field is investigated. • Oxides of Fe and Ni are dispersed in oil to formulate the ferrofluids. • Drastic enhancement in the yield stress and viscosity under the magnetic field is observed for Fe{sub 3}O{sub 4}-based ferrofluids. • Viscoelastic properties of the formulated ferrofluids demonstrate the strong function of magnetic field. • The increase in temperature reduces the magneto-viscous effect in ferrofluids under the magnetic field. - Abstract: Ferrofluids have been popular among the academic and scientific communities owing to their intelligent physical characteristics under external stimuli and are in fact among the first nanotechnology products to be employed in real world applications. However, studies on the magnetoviscoelastic behavior of concentrated ferrofluids, especially of superparamagnetic oxides of iron and nickel are rare. The present article comprises the formulation of magneto-colloids utilizing the three various metal oxides nanoparticles viz. Iron (II, III) oxide (Fe{sub 3}O{sub 4}), Iron (III) oxide (Fe{sub 2}O{sub 3}) and Nickel oxide (NiO) in oil. Iron (II, III) oxide based colloids demonstrate high magnetoviscous characteristics over the other oxides based colloids under external magnetic fields. The maximum magnitude of yield stress and viscosity is found to be 3.0 kPa and 2.9 kPa.s, respectively for iron (II, III) oxide based colloids at 2.6 vol% particle concentration and 1.2 T magnetic field. Experimental investigations reveal that the formulated magneto-nanocolloids are stable, even in high magnetic fields and almost reversible when exposed to rising and drop of magnetic fields of the same magnitude. Observations also reveal that the elastic behavior dominates over the viscous behavior with enhanced relaxation and creep characteristics under the magnetic field. The effect of temperature on viscosity and yield stress of magneto

  19. Proton T2 Relaxation effect of superparamagnetic iron oxide on fast spin echo sequence. Influence of echo number (even or odd) of effective TE

    International Nuclear Information System (INIS)

    Tsuchihashi, Toshio; Maki, Toshio; Kitagawa, Matsuo; Suzuki, Takeshi; Fujita, Isao

    1999-01-01

    The T 2 relaxation effect of the fast spin echo sequence (FSE) was investigated using superparamagnetic iron oxide (SPIO) particles. When even echoes were used as the effective TE of FSE, the signal intensity ratio [signal intensity of FSE/signal intensity of conventional spin echo sequence (CSE)] of FSE and CSE increased, whereas the T 2 relaxation effect of SPIO with FSE was reduced. However, when odd echoes were used, neither signal intensity changed, and weakening of the T 2 relaxation effect, considered a problem with FSE, was reduced. This phenomenon was not observed when the refocusing flip angle was changed to 30 and 60 degrees. However, it was observed when the refocusing flip angle was 120 and 150 degrees. Thus, this phenomenon can be considered to be related to oscillation in longitudinal magnetization when using the Carr-Purcell-Meiboom-Gill (CPMG) technique. (author)

  20. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION

    Directory of Open Access Journals (Sweden)

    Neenu Singh

    2010-09-01

    Full Text Available Superparamagnetic iron oxide nanoparticles (SPION are being widely used for various biomedical applications, for example, magnetic resonance imaging, targeted delivery of drugs or genes, and in hyperthermia. Although, the potential benefits of SPION are considerable, there is a distinct need to identify any potential cellular damage associated with these nanoparticles. Besides focussing on cytotoxicity, the most commonly used determinant of toxicity as a result of exposure to SPION, this review also mentions the importance of studying the subtle cellular alterations in the form of DNA damage and oxidative stress. We review current studies and discuss how SPION, with or without different surface coating, may cause cellular perturbations including modulation of actin cytoskeleton, alteration in gene expression profiles, disturbance in iron homeostasis and altered cellular responses such as activation of signalling pathways and impairment of cell cycle regulation. The importance of protein–SPION interaction and various safety considerations relating to SPION exposure are also addressed.

  1. Modeling and optimization of effective parameters on the size of synthesized Fe{sub 3}O{sub 4} superparamagnetic nanoparticles by coprecipitation technique using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Ghazanfari, Mohammad Reza, E-mail: Ghazanfari.mr@gmail.com [Department of Materials Science and Engineering, Ferdowsi University of Mashhad, 9177948974 Mashhad (Iran, Islamic Republic of); Kashefi, Mehrdad, E-mail: m-kashefi@um.ac.ir [Department of Materials Science and Engineering, Ferdowsi University of Mashhad, 9177948974 Mashhad (Iran, Islamic Republic of); Jaafari, Mahmoud Reza [Biotechnology Research Center, Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of)

    2016-05-01

    Generally, the statistical methods are defined as appropriate techniques to study the processes trends. In current research, the Fe{sub 3}O{sub 4} superparamagnetic nanoparticles were synthesized by coprecipitation method. In order to investigate the size properties of synthesized particles, the experimental design was done using central composite method (CCD) of response surface methodology (RSM) while the temperature, pH, and cation ratio of reaction were selected as influential factors. After particles synthesis based on designed runs, the different responses such as hydrodynamic size of particles (both freeze dried and air dried), size distribution, crystallite size, magnetic size, and zeta potential were evaluated by different techniques i.e. dynamic light scattering (DLS), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). Based on these results, the quadratic polynomial model was fitted for each response that could predict the response amounts. In following, the study of factors effects was carried out that showed the temperature, pH, and their interactions had higher effectiveness. Finally, by optimizing, it was clear that the minimum amounts of particle size (10.15 nm) and size distribution (13.01 nm) were reached in the minimum temperature (70 °C) and cation ratio (0.5) amounts and maximum pH amount (10.5). Moreover, the characterizations showed the particles size was about 10 nm while the amounts of M{sub s}, H{sub c}, and M{sub r} were equal to 60 (emu/g), 0.2 (Oe) and 0.22 (emu/g), respectively. - Highlights: • The Fe{sub 3}O{sub 4} nanoparticles were successfully synthesized by coprecipitation method. • By RSM technique, some predicted models were presented for particles size. • Temperature, pH and their interactions had most effectiveness on the particles size. • The drying techniques can effect on the size properties.

  2. Assessing the efficacy of nano- and micro-sized magnetic particles as contrast agents for MRI cell tracking.

    Directory of Open Access Journals (Sweden)

    Arthur Taylor

    Full Text Available Iron-oxide based contrast agents play an important role in magnetic resonance imaging (MRI of labelled cells in vivo. Currently, a wide range of such contrast agents is available with sizes varying from several nanometers up to a few micrometers and consisting of single or multiple magnetic cores. Here, we evaluate the effectiveness of these different particles for labelling and imaging stem cells, using a mouse mesenchymal stem cell line to investigate intracellular uptake, retention and processing of nano- and microsized contrast agents. The effect of intracellular confinement on transverse relaxivity was measured by MRI at 7 T and in compliance with the principles of the '3Rs', the suitability of the contrast agents for MR-based cell tracking in vivo was tested using a chick embryo model. We show that for all particles tested, relaxivity was markedly reduced following cellular internalisation, indicating that contrast agent relaxivity in colloidal suspension does not accurately predict performance in MR-based cell tracking studies. Using a bimodal imaging approach comprising fluorescence and MRI, we demonstrate that labelled MSC remain viable following in vivo transplantation and can be tracked effectively using MRI. Importantly, our data suggest that larger particles might confer advantages for longer-term imaging.

  3. Magnetic properties of iron oxide photolytically produced from Fe(CO)5 impregnated porous glass

    Science.gov (United States)

    Borelli, N. F.; Morse, D. L.; Schreurs, J. W. H.

    1983-06-01

    This article discusses the magnetic properties observed in porous glasses impregnated with metal carbonyls after exposure to light. In the photolyzed and consolidated glasses both superparamagnetic and single domain ferrimagnetic particles were found to be present, with the single domain particles having an exceedingly high coercive force. The concentration ratio between superparamagnetic and single domain particles depends strongly on temperature. An analysis of the observed phenomena is given.

  4. Mitoxantrone Loaded Superparamagnetic Nanoparticles for Drug Targeting: A Versatile and Sensitive Method for Quantification of Drug Enrichment in Rabbit Tissues Using HPLC-UV

    Directory of Open Access Journals (Sweden)

    Rainer Tietze

    2010-01-01

    Full Text Available In medicine, superparamagnetic nanoparticles bound to chemotherapeutics are currently investigated for their feasibility in local tumor therapy. After intraarterial application, these particles can be accumulated in the targeted area by an external magnetic field to increase the drug concentration in the region of interest (Magnetic-Drug-Targeting. We here present an analytical method (HPLC-UV, to detect pure or ferrofluid-bound mitoxantrone in a complex matrix even in trace amounts in order to perform biodistribution studies. Mitoxantrone could be extracted in high yields from different tissues. Recovery of mitoxantrone in liver tissue (5000 ng/g was 76±2%. The limit of quantification of mitoxantrone standard was 10 ng/mL ±12%. Validation criteria such as linearity, precision, and stability were evaluated in ranges achieving the FDA requirements. As shown for pilot samples, biodistribution studies can easily be performed after application of pure or ferrofluid-bound mitoxantrone.

  5. Morphology and orientational behavior of silica-coated spindle-type hematite particles in a magnetic field probed by small-angle X-ray scattering.

    Science.gov (United States)

    Reufer, Mathias; Dietsch, Hervé; Gasser, Urs; Hirt, Ann; Menzel, Andreas; Schurtenberger, Peter

    2010-04-15

    Form factor and magnetic properties of silica-coated spindle-type hematite nanoparticles are determined from SAXS measurements with applied magnetic field and magnetometry measurements. The particle size, polydispersity and porosity are determined using a core-shell model for the form factor. The particles are found to align with their long axis perpendicular to the applied field. The orientational order is determined from the SAXS data and compared to the orientational order obtained from magnetometry. The direct access to both, the orientational order of the particles, and the magnetic moments allow one to determine the magnetic properties of the individual spindle-type hematite particles. We study the influence of the silica coating on the magnetic properties and find a fundamentally different behavior of silica-coated particles. The silica coating reduces the effective magnetic moment of the particles. This effect is enhanced with field strength and can be explained by superparamagnetic relaxation in the highly porous particles.

  6. Synthesis, characterization and theranostic evaluation of Indium-111 labeled multifunctional superparamagnetic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Zolata, Hamidreza; Abbasi Davani, Fereydoun; Afarideh, Hossein

    2015-01-01

    Indium-111 labeled, Trastuzumab-Doxorubicin Conjugated, and APTES-PEG coated magnetic nanoparticles were designed for tumor targeting, drug delivery, controlled drug release, and dual-modal tumor imaging. Superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized by thermal decomposition method to obtain narrow size particles. To increase SPIONs circulation time in blood and decrease its cytotoxicity in healthy tissues, SPIONs surface was modified with 3-Aminopropyltriethoxy Silane (APTES) and then were functionalized with N-Hydroxysuccinimide (NHS) ester of Polyethylene Glycol Maleimide (NHS-PEG-Mal) to conjugate with thiolated 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-3,6, 9,-triacetic acid (PCTA) bifunctional chelator (BFC) and Trastuzumab antibody. In order to tumor SPECT/MR imaging, SPIONs were labeled with Indium-111 (T 1/2 = 2.80d). NHS ester of monoethyl malonate (MEM-NHS) was used for conjugation of Doxorubicin (DOX) chemotherapeutic agent onto SPIONs surface. Mono-Ethyl Malonate allows DOX molecules to be attached to SPIONs via pH-sensitive hydrazone bonds which lead to controlled drug release in tumor region. Active and passive tumor targeting were achieved through incorporated anti-HER2 (Trastuzumab) antibody and EPR effect of solid tumors for nanoparticles respectively. In addition to in vitro assessments of modified SPIONs in SKBR3 cell lines, their theranostic effects were evaluated in HER2 + breast tumor bearing BALB/c mice via biodistribution study, dual-modal molecular imaging and tumor diameter measurements

  7. Particle size, spin wave and surface effects on magnetic properties of MgFe{sub 2}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Aslibeiki, B., E-mail: b.aslibeiki@tabrizu.ac.ir [Department of Physics, University of Tabriz, Tabriz 51666-16471 (Iran, Islamic Republic of); Varvaro, G.; Peddis, D. [Istituto di Struttura della Materia, National Research Council, Monterotondo Scalo, Roma 00015 (Italy); Kameli, P. [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2017-01-15

    Magnesium ferrite, MgFe{sub 2}O{sub 4}, nanoparticles with a mean diameter varying from ∼6 to ∼17 nm were successfully synthesized using a simple thermal decomposition method at different annealing temperatures ranging in between 400 and 600 °C. Pure spinel ferrite nanoparticles were obtained at temperatures lower than 500 °C, while the presence of hematite (α-Fe{sub 2}O{sub 3}) impurities was observed at higher temperatures. Single-phase samples show a superparamagnetic behavior at 300 K, the saturation magnetization (M{sub s}) becoming larger with the increase of particles size. The temperature dependence of M{sub s} was explained in terms of surface spin-canting as well as spin wave excitations in the core. Using a modified Bloch law, [M{sub s}(T)=M{sub s}(0)(1−βT{sup α})], we observed a size dependent behavior of the Bloch constant β and the exponent α, whose values increase and decrease, respectively, as the particle size reduces. - Highlights: • MgFe{sub 2}O{sub 4} nanoparticles were synthesized using a thermal decomposition method. • Pure ferrite nanoparticles were obtained at temperatures lower than 500 °C. • Samples show a superparamagnetic behavior at room temperatures. • Spin wave excitations were studied using a modified Bloch law.

  8. Non-immunogenic dextran-coated superparamagnetic iron oxide nanoparticles: a biocompatible, size-tunable contrast agent for magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Unterweger H

    2017-07-01

    the effects of size reduction on their biocompatibility were investigated. In vitro, SPIONdex did not induce hemolysis, complement or platelet activation, plasma coagulation, or leukocyte procoagulant activity, and had no relevant effect on endothelial cell viability or endothelial–monocytic cell interactions. Furthermore, SPIONdex did not induce CARPA even upon intravenous administration of 5 mg Fe/kg in pigs. Upon SPIONdex administration in mice, decreased liver signal intensity was observed after 15 minutes and was still detectable 24 h later. In addition, by changing synthesis parameters, a reduction in particle size <30 nm was achieved, without affecting their hemo- and biocompatibility. Our findings suggest that due to their excellent biocompatibility, safety upon intravenous administration and size-tunability, SPIONdex particles may represent a suitable candidate for a new-generation MRI contrast agent. Keywords: superparamagnetic iron oxide nanoparticles, MRI, hypersensitivity reaction, SPION uptake, hemocompatibility

  9. A method for synthesis and functionalization of ultrasmall superparamagnetic covalent carriers based on maghemite and dextran

    International Nuclear Information System (INIS)

    Mornet, Stephane; Portier, Josik; Duguet, Etienne

    2005-01-01

    A new generation of susceptibility contrast agents for MRI and based on maghemite cores covalently bonded to dextran stabilizing macromolecules was investigated. The multistep preparation of these versatile ultrasmall superparamagnetic iron oxides (VUSPIO) consisted of colloidal maghemite synthesis, surface modification by aminopropylsilane groups, and coupling of partially oxidized dextran via Schiff's bases and secondary amine bonds. The dextran corona might be easily derivatized, e.g. by PEGylation

  10. A facile method to prepare superparamagnetic iron oxide and hydrophobic drug-encapsulated biodegradable polyurethane nanoparticles

    OpenAIRE

    Cheng,Kuo-Wei; Hsu,Shan-hui

    2017-01-01

    Kuo-Wei Cheng, Shan-hui Hsu Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University, Taipei, Taiwan, Republic of China Abstract: Superparamagnetic iron oxide nanoparticles (SPIO NPs) have a wide range of biomedical applications such as in magnetic resonance imaging, targeting, and hyperthermia therapy. Aggregation of SPIO NPs can occur because of the hydrophobic surface and high surface energy of SPIO NPs. Here, we developed a facile method to encaps...

  11. Cobalamin Protection against Oxidative Stress in the Acidophilic Iron-oxidizing Bacterium Leptospirillum group II CF-1

    Directory of Open Access Journals (Sweden)

    Gloria Paz Levicán

    2016-05-01

    Full Text Available Members of the genus Leptospirillum are aerobic iron-oxidizing bacteria belonging to the phylum Nitrospira. They are important members of microbial communities that catalyze the biomining of sulfidic ores, thereby solubilizing metal ions. These microorganisms live under extremely acidic and metal-loaded environments and thus must tolerate high concentrations of reactive oxygen species. Cobalamin (vitamin B12 is a cobalt-containing tetrapyrrole cofactor involved in intramolecular rearrangement reactions and has recently been suggested to be an intracellular antioxidant. In this work, we investigated the effect of the exogenous addition of cobalamin on oxidative stress parameters in Leptospirillum group II strain CF-1. Our results revealed that the external supplementation of cobalamin reduces the levels of intracellular reactive oxygen species and the damage to biomolecules, and also stimulates the growth and survival of cells exposed to oxidative stress exerted by ferric ion, hydrogen peroxide, chromate and diamide. Furthermore, exposure of strain CF-1 to oxidative stress elicitors resulted in the transcriptional activation of the cbiA gene encoding CbiA of the cobalamin biosynthetic pathway. Altogether, these data suggest that cobalamin plays an important role in redox protection of Leptospirillum strain CF-1, supporting survival of this microorganism under extremely oxidative environmental conditions. Understanding the mechanisms underlying the protective effect of cobalamin against oxidative stress may help to develop strategies to make biomining processes more effective.

  12. Alignment of SWNTs by protein-ligand interaction of functionalized magnetic particles under low magnetic fields.

    Science.gov (United States)

    Park, Tae Jung; Park, Jong Pil; Lee, Seok Jae; Jung, Dae-Hwan; Ko, Young Koan; Jung, Hee-Tae; Lee, Sang Yup

    2011-05-01

    Carbon nanotubes (CNTs) have attracted considerable attention for applications using their superior mechanical, thermal and electrical properties. A simple method to controllably align single-walled CNTs (SWNTs) by using magnetic particles embedded with superparamagnetic iron oxide as an accelerator under the magnetic field was developed. The functionalization of SWNTs using biotin, interacted with streptavidin-coupled magnetic particles (micro-to-nano in diameter), and layer-by-layer assembly were performed for the alignment of a particular direction onto the clean silicon and the gold substrate at very low magnetic forces (0.02-0.89 T) at room temperature. The successful alignment of the SWNTs with multi-layer film was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). By changing the orientation and location of the substrates, crossed-networks of SWNTs-magnetic particle complex could easily be fabricated. We suggest that this approach, which consists of a combination of biological interaction among streptavidin-biotin and magnetite particles, should be useful for lateral orientation of individual SWNTs with controllable direction.

  13. Metallorganic routes to nanoscale iron and titanium oxide particles encapsulated in mesoporous alumina: formation, physical properties, and chemical reactivity.

    Science.gov (United States)

    Schneider, J J; Czap, N; Hagen, J; Engstler, J; Ensling, J; Gütlich, P; Reinoehl, U; Bertagnolli, H; Luis, F; de Jongh, L J; Wark, M; Grubert, G; Hornyak, G L; Zanoni, R

    2000-12-01

    Iron and titanium oxide nanoparticles have been synthesized in parallel mesopores of alumina by a novel organometallic "chimie douce" approach that uses bis(toluene)iron(0) (1) and bis(toluene)titanium(0) (2) as precursors. These complexes are molecular sources of iron and titanium in a zerovalent atomic state. In the case of 1, core shell iron/iron oxide particles with a strong magnetic coupling between both components, as revealed by magnetic measurements, are formed. Mössbauer data reveal superparamagnetic particle behavior with a distinct particle size distribution that confirms the magnetic measurements. The dependence of the Mössbauer spectra on temperature and particle size is explained by the influence of superparamagnetic relaxation effects. The coexistence of a paramagnetic doublet and a magnetically split component in the spectra is further explained by a distribution in particle size. From Mössbauer parameters the oxide phase can be identified as low-crystallinity ferrihydrite oxide. In agreement with quantum size effects observed in UV-visible studies, TEM measurements determine the size of the particles in the range 5-8 nm. The particles are mainly arranged alongside the pore walls of the alumina template. TiO2 nanoparticles are formed by depositing 2 in mesoporous alumina template. This produces metallic Ti, which is subsequently oxidized to TiO2 (anatase) within the alumina pores. UV-visible studies show a strong quantum confinement effect for these particles. From UV-visible investigations the particle size is determined to be around 2 nm. XPS analysis of the iron- and titania- embedded nanoparticles reveal the presence of Fe2O3 and TiO2 according to experimental binding energies and the experimental line shapes. Ti4+ and Fe3+ are the only oxidation states of the particles which can be determined by this technique. Hydrogen reduction of the iron/iron-oxide nanoparticles at 500 degrees C under flowing H2/N2 produces a catalyst, which is active

  14. Toxicity of superparamagnetic iron oxide nanoparticles: Research strategies and implications for nanomedicine

    International Nuclear Information System (INIS)

    Li Lei; Jiang Ling-Ling; Zeng Yun; Liu Gang

    2013-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are one of the most versatile and safe nanoparticles in a wide variety of biomedical applications. In the past decades, considerable efforts have been made to investigate the potential adverse biological effects and safety issues associated with SPIONs, which is essential for the development of next-generation SPIONs and for continued progress in translational research. In this mini review, we summarize recent developments in toxicity studies on SPIONs, focusing on the relationship between the physicochemical properties of SPIONs and their induced toxic biological responses for a better toxicological understanding of SPIONs. (topical review - magnetism, magnetic materials, and interdisciplinary research)

  15. Intracellular trafficking of superparamagnetic iron oxide nanoparticles conjugated with TAT peptide: 3-dimensional electron tomography analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Baiju G.; Fukuda, Takahiro; Mizuki, Toru; Hanajiri, Tatsuro [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan); Maekawa, Toru, E-mail: maekawa@toyo.jp [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan)

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer We study the intracellular localisation of TAT-SPIONs using 3-D electron tomography. Black-Right-Pointing-Pointer 3-D images of TAT-SPIONs in a cell are clearly shown. Black-Right-Pointing-Pointer Release of TAT-SPIONs from endocytic vesicles into the cytoplasm is clearly shown. -- Abstract: Internalisation of nanoparticles conjugated with cell penetrating peptides is a promising approach to various drug delivery applications. Cell penetrating peptides such as transactivating transcriptional activator (TAT) peptides derived from HIV-1 proteins are effective intracellular delivery vectors for a wide range of nanoparticles and pharmaceutical agents thanks to their amicable ability to enter cells and minimum cytotoxicity. Although different mechanisms of intracellular uptake and localisation have been proposed for TAT conjugated nanoparticles, it is necessary to visualise the particles on a 3-D plane in order to investigate the actual intracellular uptake and localisation. Here, we study the intracellular localisation and trafficking of TAT peptide conjugated superparamagnetic ion oxide nanoparticles (TAT-SPIONs) using 3-D electron tomography. 3-D tomograms clearly show the location of TAT-SPIONs in a cell and their slow release from the endocytic vesicles into the cytoplasm. The present methodology may well be utilised for further investigations of the behaviours of nanoparticles in cells and eventually for the development of nano drug delivery systems.

  16. Preparation, Characterization and Tests of Incorporation in Stem Cells of Superparamagnetic Iron Oxide

    International Nuclear Information System (INIS)

    Haddad, P S; Britos, T N; Li, L M; Li, L D S

    2015-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) have been produced and used as contrast-enhancing agents in magnetic resonance imaging (MRI) for diagnostic use in a wide range of maladies including cardiovascular, neurological disorders, and cancer. The reasons why these SPIONs are attractive for medical purposes are based on their important and unique features. The large surface area of the nanoparticles and their manipulation through an external magnetic field are features that allow their use for carrying a large number of molecules such as biomolecules or drugs. In this scenario, the present work reports on the synthesis and characterization of SPIONs and in vitro MRI experiments to increase their capacity as probes for MRI applications on stem cells therapy. Initially, the SPIONs were prepared through the co-precipitation method using ferrous and ferric chlorides in acidic solution. The SPIONs were coated with two thiolmolecules such as mercaptosuccinic acid (MSA) and cysteine (Cys) (molar ratio SPIONs:ligand = 1:20), leading to the formation of a stable aqueous dispersion of thiolated nanoparticles (SH-SPIONs). The SH-SPIONs were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and vibrating sample magnetometry (VSM). The results showed that the SH-SPIONs have a mean diameter of 14 nm and display superparamagnetic behavior at room temperature. Preliminary tests of incorporation of SH-SPIONs were evaluated stem cells. The results showed that the thiolated nanoparticles have no toxic effects for stem cells and successfully internalized and enhance the contrast in MRI. (paper)

  17. Detection of fine magnetic particles coated on a thread using an HTS-SQUID

    International Nuclear Information System (INIS)

    Kawagishi, K.; Itozaki, H.; Kondo, T.; Komori, K.; Koetitz, R.

    2004-01-01

    Polymer-coated magnetic particles, which contain superparamagnetic ferrite nanoparticles, were attached to a nylon thread of 0.35 mm in diameter and were detected by an HTS-SQUID. The length of the sample attached into the thread was within 3 mm and its interval was 30 mm. The particles were magnetized by a coil applied dc field or by a magnet of 1.4 T. The thread ran 2 mm under the SQUID with 20-100 mm/s of the rate. Signals of magnetic beads were detected and the peak-to-peak amplitude of the signals was directly proportional to the applied field and the weight of the magnetic particles. Obtained peak-to-peak amplitude for 20 ng of magnetite particles was 350 pT at 0.25 mT of applied dc field with noise of 18 pT, and estimated detection limit was 10 ng. S/N ratio was improved by the remanence measurement using the magnet and 5.8 ng of detection limit was obtained. This measurement has been proved to be promising for the continuous analysis of ultra dilute DNA solution

  18. Quantum Interference Oscillations of the Superparamagnetic Blocking in an Fe8 Molecular Nanomagnet

    Science.gov (United States)

    Burzurí, E.; Luis, F.; Montero, O.; Barbara, B.; Ballou, R.; Maegawa, S.

    2013-08-01

    We show that the dynamic magnetic susceptibility and the superparamagnetic blocking temperature of an Fe8 single molecule magnet oscillate as a function of the magnetic field Hx applied along its hard magnetic axis. These oscillations are associated with quantum interferences, tuned by Hx, between different spin tunneling paths linking two excited magnetic states. The oscillation period is determined by the quantum mixing between the ground S=10 and excited multiplets. These experiments enable us to quantify such mixing. We find that the weight of excited multiplets in the magnetic ground state of Fe8 amounts to approximately 11.6%.

  19. Genotoxicity of Superparamagnetic Iron Oxide Nanoparticles in Granulosa Cells

    Directory of Open Access Journals (Sweden)

    Marina Pöttler

    2015-11-01

    Full Text Available Nanoparticles that are aimed at targeting cancer cells, but sparing healthy tissue provide an attractive platform of implementation for hyperthermia or as carriers of chemotherapeutics. According to the literature, diverse effects of nanoparticles relating to mammalian reproductive tissue are described. To address the impact of nanoparticles on cyto- and genotoxicity concerning the reproductive system, we examined the effect of superparamagnetic iron oxide nanoparticles (SPIONs on granulosa cells, which are very important for ovarian function and female fertility. Human granulosa cells (HLG-5 were treated with SPIONs, either coated with lauric acid (SEONLA only, or additionally with a protein corona of bovine serum albumin (BSA; SEONLA-BSA, or with dextran (SEONDEX. Both micronuclei testing and the detection of γH2A.X revealed no genotoxic effects of SEONLA-BSA, SEONDEX or SEONLA. Thus, it was demonstrated that different coatings of SPIONs improve biocompatibility, especially in terms of genotoxicity towards cells of the reproductive system.

  20. Magnetic properties of iron nanoparticle

    International Nuclear Information System (INIS)

    Carvell, J.; Ayieta, E.; Gavrin, A.; Cheng, Ruihua; Shah, V. R.; Sokol, P.

    2010-01-01

    Magnetic properties of Fe nanoparticles with different sizes synthesized by a physical deposition technique have been investigated experimentally. We have used a high pressure sputtering technique to deposit iron nanoparticles on a silicon substrate. The nanoparticles are then analyzed using atomic force microscopy (AFM), transmission electron microscopy (TEM), and superconducting quantum interference device techniques. TEM and AFM data show that the particle size could be tuned by adjusting the deposition conditions. The magnetic properties have been investigated from temperature dependent magnetization M(T) and field dependent magnetization M(H) measurements. The results show that two phases including both ferromagnetic and superparamagnetic particles are present in our system. From these data we extracted the superparamagnetic critical size to be 9 nm for our samples. Ferromagnetic particles are single magnetic domain particles and the magnetic properties can be explained by the Stoner and Wohlfarth model. For the superparamagnetic phase, the effective anisotropy constant, K eff , decreases as the particle size increases.

  1. Detection of Bacillus anthracis spores by super-paramagnetic lateral-flow immunoassays based on "Road Closure".

    Science.gov (United States)

    Wang, Dian-Bing; Tian, Bo; Zhang, Zhi-Ping; Wang, Xu-Ying; Fleming, Joy; Bi, Li-Jun; Yang, Rui-Fu; Zhang, Xian-En

    2015-05-15

    Detection of Bacillus anthracis in the field, whether as a natural infection or as a biothreat remains challenging. Here we have developed a new lateral-flow immunochromatographic assay (LFIA) for B. anthracis spore detection based on the fact that conjugates of B. anthracis spores and super-paramagnetic particles labeled with antibodies will block the pores of chromatographic strips and form retention lines on the strips, instead of the conventionally reported test lines and control lines in classic LFIA. As a result, this new LFIA can simultaneously realize optical, magnetic and naked-eye detection by analyzing signals from the retention lines. As few as 500-700 pure B. anthracis spores can be recognized with CV values less than 8.31% within 5 min of chromatography and a total time of 20 min. For powdery sample tests, this LFIA can endure interference from 25% (w/v) milk, 10% (w/v) baking soda and 10% (w/v) starch without any sample pre-treatment, and has a corresponding detection limit of 6×10(4) spores/g milk powder, 2×10(5) spores/g starch and 5×10(5) spores/g baking soda. Compared with existing methods, this new approach is very competitive in terms of sensitivity, specificity, cost and ease of operation. This proof-of-concept study can also be extended for detection of many other large-sized analytes. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Influence of crystallite size on the magnetic properties of Fe{sub 3}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Sneha [Dept of Applied Science, Symbiosis Institute of Technology, SIU, Lavale, Mulshi, Pune 412 115 (India); Parekh, Kinnari [K C Patel R & D Center, Charotar University of Science & Technology, Changa 388421 (India); Pandey, Brajesh, E-mail: bpandey@gmail.com [Dept of Applied Science, Symbiosis Institute of Technology, SIU, Lavale, Mulshi, Pune 412 115 (India)

    2016-09-05

    Structural and magnetic properties of chemically synthesized magnetite nanoparticles have been studied using X-ray diffraction, Transmission Electron Microscopy and Vibrating Sample Magnetometer. Magnetically the synthesized nanoparticles are ranging from superparamagnetic to multi domain state. Average crystallite size of the synthesized magnetite nanoparticles were determined using X-ray line broadening and are found to be in the range of 9–53 nm. On the other hand, the TEM images show that the size is ranging between 7.9 and 200 nm with the transition from spherical superparamagnetic particles to faceted cubic multi domain particles. Magnetic parameters of the samples show a strong dependence on average crystallite size. The ratio of coercive field at 20 K to that at 300 K (H{sub c} (20 K)/H{sub c} (300 K)) increased sharply with decrease in crystallite size. A critical crystallite diameter of order 36 nm may be inferred as boundary between single domain to multi domain transition. Zero-field-cooled (ZFC) and field-cooled (FC) measurements at 10 Oe field validate the same for smallest and largest size samples, confirming that the anisotropy energy is greater than thermal energy upto 300 K temperature. For 9 nm sample broad ZFC curve with overlapping of FC curve is observed just at 300 K, indicating the effect of strong dipolar field in superparamagnetic system. - Graphical abstract: We present our study on magnetite nanoparticles. We observed that the synthesized nanoparticles behave like single domain particles in the range of 14 nm–36 nm. They show superparamagnetic properties if particles are smaller than 14 nm and multi-domain properties when the particles are bigger than 36 nm. - Highlights: • Magnetite nanoparticles have been synthesized using chemical precipitation method. • Smaller magnetite particles below 14 nm in size are in super-paramagnetic state. • Bigger particles show multi-domain character. • Magnetite in the size range 14–36 is

  3. Physical and Chemical Characterization of Therapeutic Iron Containing Materials: A Study of Several Superparamagnetic Drug Formulations with the β-FeOOH or Ferrihydrite Structure

    International Nuclear Information System (INIS)

    Funk, Felix; Long, Gary J.; Hautot, Dimitri; Buechi, Ruth; Christl, Iso; Weidler, Peter G.

    2001-01-01

    The effectiveness of therapeutically used iron compounds is related to their physical and chemical properties. Four different iron compounds used in oral, intravenous, and intramuscular therapy have been examined by X-ray powder diffraction, iron-57 Moessbauer spectroscopy, transmission electron microscopy, BET surface area measurement, potentiometric titration and studied through dissolution kinetics determinations using acid, reducing and chelating agents. All compounds are nanosized with particle diameters, as determined by X-ray diffraction, ranging from 1 to 4.1 nm. The superparamagnetic blocking temperatures, as determined by Moessbauer spectroscopy, indicate that the relative diameters of the aggregates range from 2.5 to 4.1 nm. Three of the iron compounds have an akaganeite-like structure, whereas one has a ferrihydrite-like structure. As powders the particles form large and dense aggregates which have a very low surface area on the order of 1 m 2 g -1 . There is evidence, however, that in a colloidal solution the surface area is increased by two to three orders of magnitude, presumably as a result of the break up of the aggregates. Iron release kinetics by acid, chelating and reducing agents reflect the high surface area, the size and crystallinity of the particles, and the presence of the protective carbohydrate layer coating the iron compound. Within a physiologically relevant time period, the iron release produced by acid or large chelating ligands is small. In contrast, iron is rapidly mobilized by small organic chelating agents, such as oxalate, or by chelate-forming reductants, such as thioglycolate

  4. Physical and Chemical Characterization of Therapeutic Iron Containing Materials: A Study of Several Superparamagnetic Drug Formulations with the β-FeOOH or Ferrihydrite Structure

    Science.gov (United States)

    Funk, Felix; Long, Gary J.; Hautot, Dimitri; Büchi, Ruth; Christl, Iso; Weidler, Peter G.

    2001-03-01

    The effectiveness of therapeutically used iron compounds is related to their physical and chemical properties. Four different iron compounds used in oral, intravenous, and intramuscular therapy have been examined by X-ray powder diffraction, iron-57 Mössbauer spectroscopy, transmission electron microscopy, BET surface area measurement, potentiometric titration and studied through dissolution kinetics determinations using acid, reducing and chelating agents. All compounds are nanosized with particle diameters, as determined by X-ray diffraction, ranging from 1 to 4.1 nm. The superparamagnetic blocking temperatures, as determined by Mössbauer spectroscopy, indicate that the relative diameters of the aggregates range from 2.5 to 4.1 nm. Three of the iron compounds have an akaganeite-like structure, whereas one has a ferrihydrite-like structure. As powders the particles form large and dense aggregates which have a very low surface area on the order of 1 m2 g-1. There is evidence, however, that in a colloidal solution the surface area is increased by two to three orders of magnitude, presumably as a result of the break up of the aggregates. Iron release kinetics by acid, chelating and reducing agents reflect the high surface area, the size and crystallinity of the particles, and the presence of the protective carbohydrate layer coating the iron compound. Within a physiologically relevant time period, the iron release produced by acid or large chelating ligands is small. In contrast, iron is rapidly mobilized by small organic chelating agents, such as oxalate, or by chelate-forming reductants, such as thioglycolate.

  5. Whole tissue AC susceptibility after superparamagnetic iron oxide contrast agent administration in a rat model

    International Nuclear Information System (INIS)

    Lazaro, Francisco Jose; Gutierrez, Lucia; Rosa Abadia, Ana; Soledad Romero, Maria; Lopez, Antonio; Jesus Munoz, Maria

    2007-01-01

    A magnetic AC susceptibility characterisation of rat tissues after intravenous administration of superparamagnetic iron oxide (Endorem ( R)), at the same dose as established for Magnetic Resonance Imaging (MRI) contrast enhancement in humans, has been carried out. The measurements reveal the presence of the contrast agent as well as that of physiological ferritin in liver and spleen while no traces have been magnetically detected in heart and kidney. This preliminary work opens suggestive possibilities for future biodistribution studies of any type of magnetic carriers

  6. Magnetic Nano- and Micro- Particles in Living Cells: Kinetics and Fluctuations

    Science.gov (United States)

    Pease, C.; Chiang, N.; Pierce, C.; Muthusamy, N.; Sooryakumar, R.

    2015-03-01

    Functional nano and micro materials have recently been used not only as diagnostic tools for extracellular studies but also as intracellular drug delivery vehicles and as internal probes of the cell. To realize proper cellular applications, it is important not only to achieve efficient delivery of these materials to targeted cells, but also to control their movement and activity within the confines of the cell. In this presentation, superparamagnetic nano and micro particles are utilized as probes, with their responses to weak external magnetic fields enabling them to be maneuvered within a cell. In order to generate the required local magnetic fields needed for manipulation, the fields emanating from microscopic domain walls stabilized on patterned surface profiles are used in conjunction with weak external magnetic fields to create mobile traps that can localize and transport the internalized particle. Preliminary findings on creating the mobile traps suitable for applications to probe the interior of cells, and the responses, both Brownian fluctuations and directed motion, of particles ranging in size from 200 nm to 1 micron within HS-5 cells will be presented. Future applications to probe cellular behavior within the framework of emerging biomaterials will be discussed.

  7. Intraarticular application of superparamagnetic nanoparticles and their uptake by synovial membrane-an experimental study in sheep

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Katja [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich (Switzerland); Koch, Annette [Department of Chemistry and Applied BioSciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Winterthurerstrasse 190, 8057 Zurich (Switzerland); Schoepf, Bernhard [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich (Switzerland); Petri, Alke [Laboratory of Powder Technology, Swiss Federal Institute of Technology (EPFL), Lausanne (Switzerland); Steitz, Benedikt [Laboratory of Powder Technology, Swiss Federal Institute of Technology (EPFL), Lausanne (Switzerland); Chastellain, Mathieu [Laboratory of Powder Technology, Swiss Federal Institute of Technology (EPFL), Lausanne (Switzerland); Hofmann, Margarethe [MatSearch, Chemin Jean Pavillard 14, 1009 Pully (Switzerland); Hofmann, Heinrich [Laboratory of Powder Technology, Swiss Federal Institute of Technology (EPFL), Lausanne (Switzerland); Rechenberg, Brigitte von [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich (Switzerland)]. E-mail: bvonrechenberg@vetclinics.unizh.ch

    2005-05-15

    A superparamagnetic iron oxide nanoparticle, coated with polyvinyl alcohol (PVA-SPION) and its fluorescently functionalized analogue (amino-PVA-Cy3.5-SPION) were compared in vivo as proof of principle for future use in magnetic drug targeting in inflammatory joint diseases. They were injected either intraarticularly or periarticularly and their uptake by cells of the synovial membrane was evaluated. Uptake was completed in 48 h and was enforced by an extracorporally applied magnet.

  8. Intraarticular application of superparamagnetic nanoparticles and their uptake by synovial membrane-an experimental study in sheep

    International Nuclear Information System (INIS)

    Schulze, Katja; Koch, Annette; Schoepf, Bernhard; Petri, Alke; Steitz, Benedikt; Chastellain, Mathieu; Hofmann, Margarethe; Hofmann, Heinrich; Rechenberg, Brigitte von

    2005-01-01

    A superparamagnetic iron oxide nanoparticle, coated with polyvinyl alcohol (PVA-SPION) and its fluorescently functionalized analogue (amino-PVA-Cy3.5-SPION) were compared in vivo as proof of principle for future use in magnetic drug targeting in inflammatory joint diseases. They were injected either intraarticularly or periarticularly and their uptake by cells of the synovial membrane was evaluated. Uptake was completed in 48 h and was enforced by an extracorporally applied magnet

  9. Magnetic and in vitro heating properties of implants formed in situ from injectable formulations and containing superparamagnetic iron oxide nanoparticles (SPIONs) embedded in silica microparticles for magnetically induced local hyperthermia

    International Nuclear Information System (INIS)

    Le Renard, Pol-Edern; Lortz, Rolf; Senatore, Carmine; Rapin, Jean-Philippe; Buchegger, Franz; Petri-Fink, Alke; Hofmann, Heinrich; Doelker, Eric; Jordan, Olivier

    2011-01-01

    The biological and therapeutic responses to hyperthermia, when it is envisaged as an anti-tumor treatment modality, are complex and variable. Heat delivery plays a critical role and is counteracted by more or less efficient body cooling, which is largely mediated by blood flow. In the case of magnetically mediated modality, the delivery of the magnetic particles, most often superparamagnetic iron oxide nanoparticles (SPIONs), is also critically involved. We focus here on the magnetic characterization of two injectable formulations able to gel in situ and entrap silica microparticles embedding SPIONs. These formulations have previously shown suitable syringeability and intratumoral distribution in vivo. The first formulation is based on alginate, and the second on a poly(ethylene-co-vinyl alcohol) (EVAL). Here we investigated the magnetic properties and heating capacities in an alternating magnetic field (141 kHz, 12 mT) for implants with increasing concentrations of magnetic microparticles. We found that the magnetic properties of the magnetic microparticles were preserved using the formulation and in the wet implant at 37 o C, as in vivo. Using two orthogonal methods, a common SLP (20 W g -1 ) was found after weighting by magnetic microparticle fraction, suggesting that both formulations are able to properly carry the magnetic microparticles in situ while preserving their magnetic properties and heating capacities. - Research highlights: → Magnetic formulations that form implants on injection into tissues are proposed for hyperthermia. → Superparamagnetic properties of the SPION-silica composite microparticles are preserved in the wet implants. → Heat-dissipating properties (SLP of 20 W/g of implant) support in vivo use.

  10. Magnetic field strength requirements to capture superparamagnetic nanoparticles within capillary flow

    International Nuclear Information System (INIS)

    Hallmark, B.; Darton, N. J.; James, T.; Agrawal, P.; Slater, N. K. H.

    2010-01-01

    This article reports the development of a model, with supporting experimental data, which can predict the magnitude of the magnetic flux required to capture superparamagnetic nanoparticles flowing through a plastic capillary micro array. The model takes into account the shape of the magnetic field, the magnetically induced aggregation of the nanoparticles and a criterion to determine whether nanoparticles are held at the capillary wall or not. It was found that the model gave a semi-quantitative match to experimental data showing that, once steered out of the core of the fluid flow, nanoparticles could be held at a capillary wall within a weaker region of magnetic field. This result may have implications for the design of magnets for use in magnetic directed therapy in addition to having implications concerning the design of nanoparticle dosage regimes.

  11. Facile synthesis of monodisperse superparamagnetic Fe{sub 3}O{sub 4}/PMMA composite nanospheres with high magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Lan Fang; Liu Kexia; Jiang Wen; Zeng Xiaobo; Wu Yao; Gu Zhongwei, E-mail: Yaowu_amanda@126.com, E-mail: zwgu@scu.edu.cn [National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064 (China)

    2011-06-03

    Monodisperse superparamagnetic Fe{sub 3}O{sub 4}/polymethyl methacrylate (PMMA) composite nanospheres with high saturation magnetization were successfully prepared by a facile novel miniemulsion polymerization method. The ferrofluid, MMA monomer and surfactants were co-sonicated and emulsified to form stable miniemulsion for polymerization. The samples were characterized by DLS, TEM, FTIR, XRD, TGA and VSM. The diameter of the Fe{sub 3}O{sub 4}/PMMA composite nanospheres by DLS was close to 90 nm with corresponding polydispersity index (PDI) as small as 0.099, which indicated that the nanospheres have excellent homogeneity in aqueous medium. The TEM results implied that the Fe{sub 3}O{sub 4}/PMMA composite nanospheres had a perfect core-shell structure with about 3 nm thin PMMA shells, and the core was composed of many homogeneous and closely packed Fe{sub 3}O{sub 4} nanoparticles. VSM and TGA showed that the Fe{sub 3}O{sub 4}/PMMA composite nanospheres with at least 65% high magnetite content were superparamagnetic, and the saturation magnetization was as high as around 39 emu g{sup -1} (total mass), which was only decreased by 17% compared with the initial bare Fe{sub 3}O{sub 4} nanoparticles.

  12. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Neuberger, Tobias [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty Zurich, University of Zurich, Winterthurerstr. 260, 8057 Zurich (Switzerland); Schoepf, Bernhard [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty Zurich, University of Zurich, Winterthurerstr. 260, 8057 Zurich (Switzerland); Hofmann, Heinrich [Laboratory of Powder Technology, Institute of Materials, Swiss Federal Institute of Technology, EPFL, 1015 Lausanne (Switzerland); Hofmann, Margarete [MatSearch Pully, Chemin Jean Pavillard, 14, CH-1009 Pully (Switzerland); Rechenberg, Brigitte von [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty Zurich, University of Zurich, Winterthurerstr. 260, 8057 Zurich (Switzerland)]. E-mail: bvonrechenberg@vetclinics.unizh.ch

    2005-05-15

    Nanoparticles can be used in biomedical applications, where they facilitate laboratory diagnostics, or in medical drug targeting. They are used for in vivo applications such as contrast agent for magnetic resonance imaging (MRI), for tumor therapy or cardiovascular disease. Very promising nanoparticles for these applications are superparamagnetic nanoparticles based on a core consisting of iron oxides (SPION) that can be targeted through external magnets. SPION are coated with biocompatible materials and can be functionalized with drugs, proteins or plasmids. In this review, the characteristics and applications of SPION in the biomedical sector are introduced and discussed.

  13. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system

    International Nuclear Information System (INIS)

    Neuberger, Tobias; Schoepf, Bernhard; Hofmann, Heinrich; Hofmann, Margarete; Rechenberg, Brigitte von

    2005-01-01

    Nanoparticles can be used in biomedical applications, where they facilitate laboratory diagnostics, or in medical drug targeting. They are used for in vivo applications such as contrast agent for magnetic resonance imaging (MRI), for tumor therapy or cardiovascular disease. Very promising nanoparticles for these applications are superparamagnetic nanoparticles based on a core consisting of iron oxides (SPION) that can be targeted through external magnets. SPION are coated with biocompatible materials and can be functionalized with drugs, proteins or plasmids. In this review, the characteristics and applications of SPION in the biomedical sector are introduced and discussed

  14. Parametric characterizations in superparamagnetic latex

    Indian Academy of Sciences (India)

    Administrator

    polymer particles in such polymerization systems and ... consequently, more uniform distribution of magnetic nano- particles ... ing voltage of 300 kV and a scanning transmission elec- ... prepared by placing a drop of very dilute magnetic poly-.

  15. Temperature dependence of GMR and effect of annealing on electrodeposited Co-Ag granular films

    International Nuclear Information System (INIS)

    Garcia-Torres, Jose; Valles, Elisa; Gomez, Elvira

    2010-01-01

    The magnetoresistance of Co-Ag granular films composed of superparamagnetic and ferromagnetic particles was studied at different temperatures. The increase in the GMR values while decreasing temperature down to 20 K was quantified. The non-saturating behaviour of the MR(H) curves was retained even at the lowest measurement temperature, which was mainly attributed to the dipolar interaction among the superparamagnetic particles. The influence of the annealing conditions on the magnetoresistance was also studied. In all conditions, a decrease in the GMR values was measured being attributed to an increase in the particle size.

  16. Introducing Environmental and Sustainable Chemistry Topics Using a Nanotechnology Approach: Removing Hazardous Metal Ions by Means of Humic-Acid-Modified Superparamagnetic Nanoparticles

    Science.gov (United States)

    Gomes da Silva, Delmarcio; Menegatti de Melo, Fernando; Silveira, Alceu Totti, Jr.; Constancio da Cruz, Bruno; Prado, Caio Cesar Pestana; Pereira de Vasconcelos, Luana Cristina; Lucas, Vitor Amaral Sanches; Toma, Henrique Eisi

    2016-01-01

    A laboratory experiment has been developed to illustrate environmental and sustainability aspects, focusing on the wastewater treatment by means of superparamagnetic nanoparticles functionalized with humic acid. The experiment, conducted by a group of high school students, involves nanoparticle synthesis and minor characterization, followed by…

  17. Self-assembled superparamagnetic nanoparticles as MRI contrast agents— A review

    International Nuclear Information System (INIS)

    Su Hong-Ying; Wu Chang-Qiang; Ai Hua; Li Dan-Yang

    2015-01-01

    Recent progress of the preparation and applications of superparamagnetic iron oxide (SPIO) clusters as magnetic resonance imaging (MRI) probes is reviewed with regard to their applications in labeling and tracking cells in vivo, in diagnosis of cardiovascular diseases and tumors, and in drug delivery systems. Magnetic nanoparticles (NPs), especially SPIO nanoparticles, have long been used as MRI contrast agents and as an advantageous nanoplatform for drug delivery, taking advantage of their unique magnetic properties and ability to function at the molecular and cellular levels. Due to advances in nanotechnology, various means to control SPIO NPs’ size, composition, magnetization and relaxivity have been developed, as well as ways to usefully modify their surface. Recently, self-assembly of SPIO NP clusters in particulate carriers—such as polymeric micelles, vesicles, liposomes, and layer-by-layer (LbL) capsules—have been widely studied for application as ultrasensitive MRI probes, owing to their remarkably high spin–spin (T 2 ) relaxivity and convenience for further functionalization. (topical review)

  18. Non-immunogenic dextran-coated superparamagnetic iron oxide nanoparticles: a biocompatible, size-tunable contrast agent for magnetic resonance imaging.

    Science.gov (United States)

    Unterweger, Harald; Janko, Christina; Schwarz, Marc; Dézsi, László; Urbanics, Rudolf; Matuszak, Jasmin; Őrfi, Erik; Fülöp, Tamás; Bäuerle, Tobias; Szebeni, János; Journé, Clément; Boccaccini, Aldo R; Alexiou, Christoph; Lyer, Stefan; Cicha, Iwona

    2017-01-01

    Iron oxide-based contrast agents have been in clinical use for magnetic resonance imaging (MRI) of lymph nodes, liver, intestines, and the cardiovascular system. Superparamagnetic iron oxide nanoparticles (SPIONs) have high potential as a contrast agent for MRI, but no intravenous iron oxide-containing agents are currently approved for clinical imaging. The aim of our work was to analyze the hemocompatibility and immuno-safety of a new type of dextran-coated SPIONs (SPIONdex) and to characterize these nanoparticles with ultra-high-field MRI. Key parameters related to nanoparticle hemocompatibility and immuno-safety were investigated in vitro and ex vivo. To address concerns associated with hypersensitivity reactions to injectable nanoparticulate agents, we analyzed complement activation-related pseudoallergy (CARPA) upon intravenous administration of SPIONdex in a pig model. Furthermore, the size-tunability of SPIONdex and the effects of size reduction on their biocompatibility were investigated. In vitro, SPIONdex did not induce hemolysis, complement or platelet activation, plasma coagulation, or leukocyte procoagulant activity, and had no relevant effect on endothelial cell viability or endothelial-monocytic cell interactions. Furthermore, SPIONdex did not induce CARPA even upon intravenous administration of 5 mg Fe/kg in pigs. Upon SPIONdex administration in mice, decreased liver signal intensity was observed after 15 minutes and was still detectable 24 h later. In addition, by changing synthesis parameters, a reduction in particle size contrast agent.

  19. Synthesis and in vitro experiments of carcinoma vascular endothelial targeting polymeric nano-micelles combining small particle size and supermagnetic sensitivity.

    Science.gov (United States)

    Zhang, Yi; Pan, Jielin; Xu, Qilan; Li, Hao; Wang, Jianhao; Zhang, Chao; Hong, Guobin

    2018-01-01

    Objective: To construct carcinoma vascular endothelial-targeted polymeric nanomicelles with high magnetic resonance imaging (MRI) sensitivity and to evaluate their biological safety and in vitro tumor-targeting effect, and to monitor their feasibility using clinical MRI scanner. Method: Amphiphilic block copolymer, poly(ethylene glycol)- b -poly(ε-caprolactone) (PEG-PCL) was synthesized via the ring-opening polymerization of ε-caprolactone (CL) initiated by poly(ethylene glycol) (PEG), in which cyclic pentapeptide Arg-Gly-Asp (cRGD) was conjugated with the terminal of hydrophilic PEG block. During the self-assembly of PEG-PCL micelles, superparamagnetic γ-Fe 2 O 3 nanoparticles (11 nm) was loaded into the hydrophobic core. The cRGD-terminated γ-Fe 2 O 3 -loaded polymeric micelles targeting to carcinoma vascular endothelial cells, were characterized in particle size, morphology, loading efficiency and so on, especially high MRI sensitivity in vitro. Normal hepatic vascular endothelial cells (ED25) were incubated with the resulting micelles for assessing their safety. Human hepatic carcinoma vascular endothelial cells (T3A) were cultured with the resulting micelles to assess the micelle uptake using Prussian blue staining and the cell signal intensity using MRI. Results: All the polymeric micelles exhibited ultra-small particle sizes with approximately 50 nm, high relaxation rate, and low toxicity even at high iron concentrations. More blue-stained iron particles were present in the targeting group than the non-targeting and competitive inhibition groups. In vitro MRI showed T 2 WI and T 2 relaxation times were significantly lower in the targeting group than in the other two groups. Conclusion: γ-Fe 2 O 3 -loaded PEG-PCL micelles not only possess ultra-small size and high superparamagnetic sensitivity, also can be actively targeted to carcinoma vascular endothelial cells by tumor-targeted cRGD. It appears to be a promising contrast agent for tumor

  20. Ultrasmall cationic superparamagnetic iron oxide nanoparticles as nontoxic and efficient MRI contrast agent and magnetic-targeting tool

    Directory of Open Access Journals (Sweden)

    Uchiyama MK

    2015-07-01

    Full Text Available Mayara Klimuk Uchiyama,1 Sergio Hiroshi Toma,1 Stephen Fernandes de Paula Rodrigues,2 Ana Lucia Borges Shimada,2 Rodrigo Azevedo Loiola,2 Hernán Joel Cervantes Rodríguez,3 Pedro Vitoriano Oliveira,4 Maciel Santos Luz,4 Said Rahnamaye Rabbani,3 Henrique Eisi Toma,1 Sandra Helena Poliselli Farsky,2 Koiti Araki11Laboratory of Supramolecular Chemistry and Nanotechnology, Department of Fundamental Chemistry, Institute of Chemistry, 2Laboratory of Experimental Toxicology, Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, 3Magnetic Resonance Laboratory, Department of General Physics, Institute of Physics, 4Analysis and Research Group in Spectrometry, Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP, BrazilAbstract: Fully dispersible, cationic ultrasmall (7 nm diameter superparamagnetic iron oxide nanoparticles, exhibiting high relaxivity (178 mM-1s-1 in 0.47 T and no acute or subchronic toxicity in Wistar rats, were studied and their suitability as contrast agents for magnetic resonance imaging and material for development of new diagnostic and treatment tools demonstrated. After intravenous injection (10 mg/kg body weight, they circulated throughout the vascular system causing no microhemorrhage or thrombus, neither inflammatory processes at the mesentery vascular bed and hepatic sinusoids (leukocyte rolling, adhesion, or migration as evaluated by intravital microscopy, but having been spontaneously concentrated in the liver, spleen, and kidneys, they caused strong negative contrast. The nanoparticles are cleared from kidneys and bladder in few days, whereas the complete elimination from liver and spleen occurred only after 4 weeks. Ex vivo studies demonstrated that cationic ultrasmall superparamagnetic iron oxide nanoparticles caused no effects on hepatic and renal enzymes dosage as well as on leukocyte count. In addition, they were readily concentrated in rat

  1. In vitro molecular magnetic resonance imaging detection and measurement of apoptosis using superparamagnetic iron oxide + antibody as ligands for nucleosomes

    Science.gov (United States)

    Rapley, P. L.; Witiw, C.; Rich, K.; Niccoli, S.; Tassotto, M. L.; Th'ng, J.

    2012-11-01

    Recent research in cell biology as well as oncology research has focused on apoptosis or programmed cell death as a means of quantifying the induced effects of treatment. A hallmark of late-stage apoptosis is nuclear fragmentation in which DNA is degraded to release nucleosomes with their associated histones. In this work, a method was developed for detecting and measuring nucleosome concentration in vitro with magnetic resonance imaging (MRI). The indirect procedure used a commercially available secondary antibody-superparamagnetic iron oxide (SPIO) particle complex as a contrast agent that bound to primary antibodies against nucleosomal histones H4, H2A and H2B. Using a multiple-echo spin-echo sequence on a 1.5 T clinical MRI scanner, significant T2 relaxation enhancement as a function of in vitro nucleosomal concentration was measured. In addition, clustering or aggregation of the contrast agent was demonstrated with its associated enhancement in T2 effects. The T2 clustering enhancement showed a complex dependence on relative concentrations of nucleosomes, primary antibody and secondary antibody + SPIO. The technique supports the feasibility of using MRI measurements of nucleosome concentration in blood as a diagnostic, prognostic and predictive tool in the management of cancer.

  2. High blocking temperature in SnO{sub 2} based super-paramagnetic diluted magnetic semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Mounkachi, O., E-mail: o.mounkachi@mascir.com [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble cedex 9 (France); Salmani, E. [LMPHE, associé au CNRST (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); El Moussaoui, H. [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); Masrour, R. [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, Safi (Morocco); Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble cedex 9 (France); Hamedoun, M. [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); Ez-Zahraouy, H. [LMPHE, associé au CNRST (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); Hlil, E.K. [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble cedex 9 (France); Benyoussef, A. [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); LMPHE, associé au CNRST (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco)

    2014-11-25

    Highlights: • Simple doping, (Sn,Fe)O{sub 2} exhibits a soft ferromagnetism at low temperature. • High blocking temperature was observed for Cu doped (Sn,Fe)O{sub 2} nanocrystalline. • Experimental results are confirmed by ab initio calculations. - Abstract: (Fe,Cu)-doped SnO{sub 2} nanocrystals was synthesized using the co-precipitation method. Magnetic Properties Measurement System (MPMS) revealed that for simple doping, Fe-doped SnO{sub 2} soft ferromagnetism at low temperature appears, while the ferromagnetic phase is stable at temperature higher than room temperature for Cu co-doping element. The ferromagnetism is significantly enhanced by the Cu addition to Fe-doped SnO{sub 2}, according to the ZFC and FC magnetizations and the hysteresis loops. The evidences for the existence of superparamagnetism are characterized and high blocking temperature super-paramagnetism in (Fe,Cu)-doped SnO{sub 2} nanocrystals was observed. Based on first-principles calculations, we have investigated electronic structures and magnetic properties of Fe-doped SnO{sub 2} and (Fe,Cu)-doped SnO{sub 2} with and without defect with LDA and LDA-SIC approximations. The results suggest that the oxygen vacancies (V{sub O}) play a critical role in the activation of ferromagnetism in Fe doped SnO{sub 2}. For (Fe,Cu)-doped SnO{sub 2} the results exhibit that Cu strongly influences on the magnetic properties of these doped systems which are in good agreement with the experimental observations. Electronic structure show that the presence of Cu promote the ferromagnetic bound magnetic polaron interaction through the carriers introduce by d (Cu)

  3. A facile method to prepare superparamagnetic iron oxide and hydrophobic drug-encapsulated biodegradable polyurethane nanoparticles.

    Science.gov (United States)

    Cheng, Kuo-Wei; Hsu, Shan-Hui

    2017-01-01

    Superparamagnetic iron oxide nanoparticles (SPIO NPs) have a wide range of biomedical applications such as in magnetic resonance imaging, targeting, and hyperthermia therapy. Aggregation of SPIO NPs can occur because of the hydrophobic surface and high surface energy of SPIO NPs. Here, we developed a facile method to encapsulate SPIO NPs in amphiphilic biodegradable polymer. Anionic biodegradable polyurethane nanoparticles (PU NPs) with ~35 nm size and different chemistry were prepared by waterborne processes. SPIO NPs were synthesized by chemical co-precipitation. SPIO NPs were then added to the aqueous dispersion of PU NPs, followed by application of high-frequency (~20 kHz) ultrasonic vibration for 3 min. This method rendered SPIO-PU hybrid NPs (size ~110 nm) suspended in water. SPIO-PU hybrid NPs contained ~50-60 wt% SPIO and retained the superparamagnetic property (evaluated by a magnetometer) as well as high contrast in magnetic resonance imaging. SPIO-PU NPs also showed the ability to provide cell hyperthermic treatment. Using the same ultrasonic method, hydrophobic drug (Vitamin K3 [VK3]) or (9-(methylaminomethyl) anthracene [MAMA]) could also be encapsulated in PU NPs. The VK3-PU or MAMA-PU hybrid NPs had ~35 nm size and different release profiles for PUs with different chemistry. The encapsulation efficiency for VK3 and MAMA was high (~95%) without burst release. The encapsulation mechanism may be attributed to the low glass transition temperature (Tg) and good mechanical compliance of PU NPs. The new encapsulation method involving waterborne biodegradable PU NPs is simple, rapid, and effective to produce multimodular NP carriers.

  4. Frequency Mixing Magnetic Detection Scanner for Imaging Magnetic Particles in Planar Samples.

    Science.gov (United States)

    Hong, Hyobong; Lim, Eul-Gyoon; Jeong, Jae-Chan; Chang, Jiho; Shin, Sung-Woong; Krause, Hans-Joachim

    2016-06-09

    The setup of a planar Frequency Mixing Magnetic Detection (p-FMMD) scanner for performing Magnetic Particles Imaging (MPI) of flat samples is presented. It consists of two magnetic measurement heads on both sides of the sample mounted on the legs of a u-shaped support. The sample is locally exposed to a magnetic excitation field consisting of two distinct frequencies, a stronger component at about 77 kHz and a weaker field at 61 Hz. The nonlinear magnetization characteristics of superparamagnetic particles give rise to the generation of intermodulation products. A selected sum-frequency component of the high and low frequency magnetic field incident on the magnetically nonlinear particles is recorded by a demodulation electronics. In contrast to a conventional MPI scanner, p-FMMD does not require the application of a strong magnetic field to the whole sample because mixing of the two frequencies occurs locally. Thus, the lateral dimensions of the sample are just limited by the scanning range and the supports. However, the sample height determines the spatial resolution. In the current setup it is limited to 2 mm. As examples, we present two 20 mm × 25 mm p-FMMD images acquired from samples with 1 µm diameter maghemite particles in silanol matrix and with 50 nm magnetite particles in aminosilane matrix. The results show that the novel MPI scanner can be applied for analysis of thin biological samples and for medical diagnostic purposes.

  5. Combined in situ zymography, immunofluorescence, and staining of iron oxide particles in paraffin-embedded, zinc-fixed tissue sections.

    Science.gov (United States)

    Haeckel, Akvile; Schoenzart, Lena; Appler, Franziska; Schnorr, Joerg; Taupitz, Matthias; Hamm, Bernd; Schellenberger, Eyk

    2012-01-01

    Superparamagnetic iron oxide particles are used as potent contrast agents in magnetic resonance imaging. In histology, these particles are frequently visualized by Prussian blue iron staining of aldehyde-fixed, paraffin-embedded tissues. Recently, zinc salt-based fixative was shown to preserve enzyme activity in paraffin-embedded tissues. In this study, we demonstrate that zinc fixation allows combining in situ zymography with fluorescence immunohistochemistry (IHC) and iron staining for advanced biologic investigation of iron oxide particle accumulation. Very small iron oxide particles, developed for magnetic resonance angiography, were applied intravenously to BALB/c nude mice. After 3 hours, spleens were explanted and subjected to zinc fixation and paraffin embedding. Cut tissue sections were further processed to in situ zymography, IHC, and Prussian blue staining procedures. The combination of in situ zymography as well as IHC with subsequent Prussian blue iron staining on zinc-fixed paraffin-embedded tissues resulted in excellent histologic images of enzyme activity, protease distribution, and iron oxide particle accumulation. The combination of all three stains on a single section allowed direct comparison with only moderate degradation of fluorescein isothiocyanate-labeled substrate. This protocol is useful for investigating the biologic environment of accumulating iron oxide particles, with excellent preservation of morphology.

  6. Development of a reduced-graphene-oxide based superparamagnetic nanocomposite for the removal of nickel (II) from an aqueous medium via a fluorescence sensor platform

    CSIR Research Space (South Africa)

    Nandi, D

    2015-09-01

    Full Text Available Reduced-graphene-oxide based superparamagnetic nanocomposite (GC) was fabricated and applied for the remediation of Ni(II) from an aqueous medium. The as-prepared GC was extensively characterized by Raman, TEM, AFM, SEM–EDX, SQUID, and BET analyses...

  7. Adsorption of superparamagnetic iron oxide nanoparticles on silica and calcium carbonate sand.

    Science.gov (United States)

    Park, Yoonjee C; Paulsen, Jeffrey; Nap, Rikkert J; Whitaker, Ragnhild D; Mathiyazhagan, Vidhya; Song, Yi-Qiao; Hürlimann, Martin; Szleifer, Igal; Wong, Joyce Y

    2014-01-28

    Superparamagnetic iron oxide (SPIO) nanoparticles have the potential to be used in the characterization of porous rock formations in oil fields as a contrast agent for NMR logging because they are small enough to traverse through nanopores and enhance contrast by shortening NMR T2 relaxation time. However, successful development and application require detailed knowledge of particle stability and mobility in reservoir rocks. Because nanoparticle adsorption to sand (SiO2) and rock (often CaCO3) affects their mobility, we investigated the thermodynamic equilibrium adsorption behavior of citric acid-coated SPIO nanoparticles (CA SPIO NPs) and poly(ethylene glycol)-grafted SPIO nanoparticles (PEG SPIO NPs) on SiO2 (silica) and CaCO3 (calcium carbonate). Adsorption behavior was determined at various pH and salt conditions via chemical analysis and NMR, and the results were compared with molecular theory predictions. Most of the NPs were recovered from silica, whereas far fewer NPs were recovered from calcium carbonate because of differences in the mineral surface properties. NP adsorption increased with increasing salt concentration: this trend was qualitatively explained by molecular theory, as was the role of the PEG grafting in preventing NPs adsorption. Quantitative disagreement between the theoretical predictions and the data was due to NP aggregation, especially at high salt concentration and in the presence of calcium carbonate. Upon aggregation, NP concentrations as determined by NMR T2 were initially overestimated and subsequently corrected using the relaxation rate 1/T2, which is a function of aggregate size and fractal dimension of the aggregate. Our experimental validation of the theoretical predictions of NP adsorption to minerals in the absence of aggregation at various pH and salt conditions demonstrates that molecular theory can be used to determine interactions between NPs and relevant reservoir surfaces. Importantly, this integrated experimental and

  8. High frequency lateral flow affinity assay using superparamagnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lago-Cachón, D., E-mail: dlagocachon@gmail.com [Dpto. de Física, Universidad de Oviedo, Edificio Departamental Este, Campus de Viesques, 33204 Gijón (Spain); Rivas, M., E-mail: rivas@uniovi.es [Dpto. de Física, Universidad de Oviedo, Edificio Departamental Este, Campus de Viesques, 33204 Gijón (Spain); Martínez-García, J.C., E-mail: jcmg@uniovi.es [Dpto. de Física, Universidad de Oviedo, Edificio Departamental Este, Campus de Viesques, 33204 Gijón (Spain); Oliveira-Rodríguez, M., E-mail: oliveiramyriam@uniovi.es [Dpto. de Química Física y Analítica, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo (Spain); Blanco-López, M.C., E-mail: cblanco@uniovi.es [Dpto. de Química Física y Analítica, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo (Spain); García, J.A., E-mail: joseagd@uniovi.es [Dpto. de Física, Universidad de Oviedo, Escuela de Marina, Campus de Viesques, 33204 Gijón (Spain)

    2017-02-01

    Lateral flow assay is one of the simplest and most extended techniques in medical diagnosis for point-of-care testing. Although it has been traditionally a positive/negative test, some work has been lately done to add quantitative abilities to lateral flow assay. One of the most successful strategies involves magnetic beads and magnetic sensors. Recently, a new technique of superparamagnetic nanoparticle detection has been reported, based on the increase of the impedance induced by the nanoparticles on a RF-current carrying copper conductor. This method requires no external magnetic field, which reduces the system complexity. In this work, nitrocellulose membranes have been installed on the sensor, and impedance measurements have been carried out during the sample diffusion by capillarity along the membrane. The impedance of the sensor changes because of the presence of magnetic nanoparticles. The results prove the potentiality of the method for point-of-care testing of biochemical substances and nanoparticle capillarity flow studies. - Highlights: • A method for quantification of Lateral Flow Assays is proposed. • MNP induce an increase of the impedance on a RF-current carrying copper sensor. • Magnetic nanoparticles (MNP) can be detected flowing over the sensing element.

  9. High frequency lateral flow affinity assay using superparamagnetic nanoparticles

    International Nuclear Information System (INIS)

    Lago-Cachón, D.; Rivas, M.; Martínez-García, J.C.; Oliveira-Rodríguez, M.; Blanco-López, M.C.; García, J.A.

    2017-01-01

    Lateral flow assay is one of the simplest and most extended techniques in medical diagnosis for point-of-care testing. Although it has been traditionally a positive/negative test, some work has been lately done to add quantitative abilities to lateral flow assay. One of the most successful strategies involves magnetic beads and magnetic sensors. Recently, a new technique of superparamagnetic nanoparticle detection has been reported, based on the increase of the impedance induced by the nanoparticles on a RF-current carrying copper conductor. This method requires no external magnetic field, which reduces the system complexity. In this work, nitrocellulose membranes have been installed on the sensor, and impedance measurements have been carried out during the sample diffusion by capillarity along the membrane. The impedance of the sensor changes because of the presence of magnetic nanoparticles. The results prove the potentiality of the method for point-of-care testing of biochemical substances and nanoparticle capillarity flow studies. - Highlights: • A method for quantification of Lateral Flow Assays is proposed. • MNP induce an increase of the impedance on a RF-current carrying copper sensor. • Magnetic nanoparticles (MNP) can be detected flowing over the sensing element.

  10. Quantitative effects of cell internalization of two types of ultrasmall superparamagnetic iron oxide nanoparticles at 4.7 T and 7 T

    International Nuclear Information System (INIS)

    Brisset, J.C.; Desestret, V.; Chauveau, F.; Nighoghossian, N.; Berthezene, Y.; Wiart, M.; Marcellino, S.; Lagarde, F.; Devillard, E.; Nataf, S.

    2010-01-01

    MRI coupled with the intravenous injection of ultrasmall superparamagnetic particles of iron oxides (USPIOs) is a promising tool for the study of neuroinflammation. Quantification of the approximate number of magnetically labelled macrophages may provide an effective and efficient method for monitoring inflammatory cells. The purpose of the present study was to characterise the relaxation properties of macrophages labelled with two types of USPIOs, at 4.7 T and 7 T. USPIO-labelled bone-marrow-derived macrophage phantoms were compared with phantoms of free dispersed USPIOs with the same global iron concentration, using multi-parametric (T1, T2 and T2*) quantitative MRI. The same protocol was then evaluated in living mice after intracerebral injection of iron-labelled macrophages vs free iron oxide. A linear relationship was observed among R1, R2 and R2* values and iron concentration in vitro at 4.7 T and at 7 T. At a given field, T1 and T2 relaxivities of both types of USPIOs decreased following internalisation into macrophages, while T2* relaxivities increased. There was fair overall agreement between the theoretical number of injected cells and the number estimated from T2 quantification and in vitro calibration curves, supporting the validity of the present in vitro calibration curves for in vivo investigation. (orig.)

  11. RGD-conjugated iron oxide magnetic nanoparticles for magnetic resonance imaging contrast enhancement and hyperthermia.

    Science.gov (United States)

    Zheng, S W; Huang, M; Hong, R Y; Deng, S M; Cheng, L F; Gao, B; Badami, D

    2014-03-01

    The purpose of this study was to develop a specific targeting magnetic nanoparticle probe for magnetic resonance imaging and therapy in the form of local hyperthermia. Carboxymethyl dextran-coated ultrasmall superparamagnetic iron oxide nanoparticles with carboxyl groups were coupled to cyclic arginine-glycine-aspartic peptides for integrin α(v)β₃ targeting. The particle size, magnetic properties, heating effect, and stability of the arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide were measured. The arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide demonstrates excellent stability and fast magneto-temperature response. Magnetic resonance imaging signal intensity of Bcap37 cells incubated with arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide was significantly decreased compared with that incubated with plain ultrasmall superparamagnetic iron oxide. The preferential uptake of arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide by target cells was further confirmed by Prussian blue staining and confocal laser scanning microscopy.

  12. Hepatocellular carcinoma. Comparison between gadolinium and ironoxide enhanced MR imaging

    International Nuclear Information System (INIS)

    Castoldi, M.C.; Fauda, V.; Scaramuzza, D.; Vergnaghi, D.

    2000-01-01

    Purpose of this work is to compare prospectively dynamic gadolinium (Gd)-enhanced with superparamagnetic iron oxide (SPIO)-enhanced MRI for the detection of hepatocellular carcinoma (HCC). Twenty-five patients with histologically proven HCC and liver cirrhosis (28% of them in B or C Child class) underwent dynamic Gd-enhanced MRI and, a few days later, (mean interval: three days) SPIO-enhanced MRI. Only patients with availability of clinical and imaging follow-up for at least seven months were enrolled in this prospective study. MR images were reviewed by two independent radiologists. The readers scored each lesion for the presence of HCC and assigned confidence levels based on a five-grade scale: 1, definitely or almost definitely absent; 2, possibly present; 3, probably present; 4, definitely present; 5, definitely present with optimal liver/lesion contrast or good liver/lesion contrast and morphological signs (intact capsule, intranodular septa, extracapsular infiltration), useful for locoregional treatment planning. A positive diagnostic value was assessed for scores of 3 or higher. Gd-enhanced and SPIO-enhanced MRI found 44 lesions. Eight of twelve lesions visible with a single contrast agent measured less than 1 cm in diameter. HCC detectability was 75% with Gd-enhanced MRI and 97.7% with SPIO-enhanced MRI. SPIO-enhanced T2-weighted TSE images showed significantly higher diagnostic value than SPIO-enhanced T1-T2*GRE images only in three cases, while nodule morphological characteristics (capsule, septa, different cell differentiation components) were better depicted by TSE images. In thi study the combined use of SPIO-enhanced T2-weighted TSE and T1-T2*-weighted GRE sequences showed higher sensitivity than gadolinium-enhanced GRE dynamic imaging (97.7% versus 75%). These results are at least partly related to our study conditions, that is: 1)MRI was performed with a 1T system, 2) both axial and sagittal SPIO-enhanced imaging were performed with respiratory

  13. Superparamagnetic Fe3O4 nanoparticles: synthesis by thermal decomposition of iron(III) glucuronate and application in magnetic resonance imaging

    Czech Academy of Sciences Publication Activity Database

    Patsula, Vitalii; Kosinová, L.; Lovrić, M.; Ferhatovic Hamzic, L.; Rabyk, Mariia; Konefal, Rafal; Paruzel, Aleksandra; Šlouf, Miroslav; Herynek, V.; Gajović, S.; Horák, Daniel

    2016-01-01

    Roč. 8, č. 11 (2016), s. 7238-7247 ISSN 1944-8244 R&D Projects: GA MŠk(CZ) LH14318; GA MŠk(CZ) LO1507; GA MŠk(CZ) ED1.1.00/02.0109 EU Projects: European Commission(XE) 316120 - GLOWBRAIN Institutional support: RVO:61389013 Keywords : superparamagnetic * nanoparticles * iron oxide Subject RIV: CD - Macromolecular Chemistry Impact factor: 7.504, year: 2016

  14. The correlation between superparamagnetic blocking temperatures and peak temperatures obtained from ac magnetization measurements

    International Nuclear Information System (INIS)

    Madsen, Daniel Esmarch; Moerup, Steen; Hansen, Mikkel Fougt

    2008-01-01

    We study the correlation between the superparamagnetic blocking temperature T B and the peak positions T p observed in ac magnetization measurements for nanoparticles of different classes of magnetic materials. In general, T p = α+βT B . The parameters α and β are different for the in-phase (χ') and out-of-phase (χ'') components and depend on the width σ V of the log-normal volume distribution and the class of magnetic material (ferromagnetic/antiferromagnetic). Consequently, knowledge of both α and β is required if the anisotropy energy barrier KV and the attempt time τ 0 are to be reliably obtained from an analysis based solely on the peak positions

  15. Combined preclinical magnetic particle imaging and magnetic resonance imaging. Initial results in mice

    International Nuclear Information System (INIS)

    Kaul, M.G.; Mummert, T.; Jung, C.; Raabe, N.; Ittrich, H.; Adam, G.; Heinen, U.; Reitmeier, A.

    2015-01-01

    Magnetic particle imaging (MPI) is a new radiologic imaging modality. For the first time, a commercial preclinical scanner is installed. The goal of this study was to establish a workflow between MPI and magnetic resonance imaging (MRI) scanners for a complete in vivo examination of a mouse and to generate the first co-registered in vivo MR-MP images. The in vivo examination of five mice were performed on a preclinical MPI scanner and a 7 Tesla preclinical MRI system. MRI measurements were used for anatomical referencing and validation of the injection of superparamagnetic iron oxide (SPIO) particles during a dynamic MPI scan. We extracted MPI data of the injection phase and co-registered it with MRI data. A workflow process for a combined in vivo MRI and MPI examination was established. A successful injection of ferucarbotran was proven in MPI and MRI. MR-MPI co-registration allocated the SPIOs in the inferior vena cava and the heart during and shortly after the injection. The acquisition of preclinical MPI and MRI data is feasible and allows the combined analysis of MR-MPI information.

  16. Combined preclinical magnetic particle imaging and magnetic resonance imaging. Initial results in mice

    Energy Technology Data Exchange (ETDEWEB)

    Kaul, M.G.; Mummert, T.; Jung, C.; Raabe, N.; Ittrich, H.; Adam, G. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Dept. of Diagnostic and Interventional Radiology; Weber, O. [Philips Medical Systems DMC GmbH, Hamburg (Germany); Heinen, U. [Bruker BioSpin MRI GmbH, Ettlingen (Germany); Reitmeier, A. [Medical Center Hamburg-Eppendorf, Hamburg (Germany). Animal Facility; Knopp, T. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Dept. of Diagnostic and Interventional Radiology; Hamburg University of Technology, Hamburg (Germany)

    2015-05-15

    Magnetic particle imaging (MPI) is a new radiologic imaging modality. For the first time, a commercial preclinical scanner is installed. The goal of this study was to establish a workflow between MPI and magnetic resonance imaging (MRI) scanners for a complete in vivo examination of a mouse and to generate the first co-registered in vivo MR-MP images. The in vivo examination of five mice were performed on a preclinical MPI scanner and a 7 Tesla preclinical MRI system. MRI measurements were used for anatomical referencing and validation of the injection of superparamagnetic iron oxide (SPIO) particles during a dynamic MPI scan. We extracted MPI data of the injection phase and co-registered it with MRI data. A workflow process for a combined in vivo MRI and MPI examination was established. A successful injection of ferucarbotran was proven in MPI and MRI. MR-MPI co-registration allocated the SPIOs in the inferior vena cava and the heart during and shortly after the injection. The acquisition of preclinical MPI and MRI data is feasible and allows the combined analysis of MR-MPI information.

  17. Synthesis of magnetic Fe sub 3 O sub 4 particles covered with a modifiable phospholipid coat

    CERN Document Server

    Cuyper, M D; Lueken, H; Hodenius, M

    2003-01-01

    This work reports the synthesis of iron oxide cores by coprecipitation of Fe sup 2 sup + and Fe sup 3 sup + ions with NaHCO sub 3 or NH sub 3. Depending on the experimental conditions, particles of two different sizes (13 or 130 nm diameter) were produced. X-ray diffractometry revealed Fe sub 3 O sub 4 (magnetite) to be the main constituent. The smaller particles, which, in contrast to the larger ones, are superparamagnetic, were stabilized with a phospholipid bilayer consisting of a 9:1 molar ratio of dimyristoylphosphatidylcholine and dimyristoylphosphatidylglycerol, thereby creating so-called magnetoliposomes. In a subsequent step, poly(ethylene glycol)-(PEG-) derivatized dipalmitoylphosphatidylethanolamine was introduced into the lipid envelope by incubating the magnetoliposomes with pre-formed sonicated vesicles containing the PEGylated lipid. The mechanism by which lipid transfer occurred was determined from the kinetic profiles. The relevance of these observations to a wide range of biomedical applicat...

  18. Magnetic resonances spectroscopy of nanosize particles La0.7Sr0.3MnO3

    International Nuclear Information System (INIS)

    Krivoruchko, Vladimir; Konstantinova, Tat'yana; Mazur, Anton; Prokhorov, Andrey; Varyukhin, Victor

    2006-01-01

    Using a co-precipitation method, perovskite-type manganese oxide La 0.7 Sr 0.3 MnO 3 nanoparticles (NPs) with particle size 12 nm were prepared. Detailed studies of both 55 Mn nuclear magnetic resonance and superparamagnetic resonance spectrum, completed by magnetic measurements, have been performed to obtain microscopic information on the local magnetic structure of the NP. Our results on nuclear dynamics provide direct evidence of formation of a magnetically dead layer, of the thickness ∼2 nm, at the particle surface. Temperature dependences of the magnetic resonance spectra have been measured to obtain information about complex magnetic properties of La 0.7 Sr 0.3 MnO 3 fine-particle ensembles. In particular, electron paramagnetic resonance spectrum at 300 K shows a relatively narrow sharp line, but as the temperature decreases to 5 K, the apparent resonance field decreases and the line width considerably increases. The low-temperature blocking of the NPs magnetic moments has been clearly observed in the electron paramagnetic resonances. The blocking temperature depends on the measuring frequency and for the ensemble of 12 nm NPs at 9.244 GHz has been evaluated as 110 K

  19. Synthesis and characterization of Bombesin-superparamagnetic iron oxide nanoparticles as a targeted contrast agent for imaging of breast cancer using MRI

    International Nuclear Information System (INIS)

    Jafari, Atefeh; Shayesteh, Saber Farjami; Salouti, Mojtaba; Heidari, Zahra; Rajabi, Ahmad Bitarafan; Boustani, Komail; Nahardani, Ali

    2015-01-01

    The targeted delivery of superparamagnetic iron oxide nanoparticles (SPIONs) as a contrast agent may facilitate their accumulation in cancer cells and enhance the sensitivity of MR imaging. In this study, SPIONs coated with dextran (DSPIONs) were conjugated with bombesin (BBN) to produce a targeting contrast agent for detection of breast cancer using MRI. X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer analyses indicated the formation of dextran-coated superparamagnetic iron oxide nanoparticles with an average size of 6.0 ± 0.5 nm. Fourier transform infrared spectroscopy confirmed the conjugation of the BBN with the DSPIONs. A stability study proved the high optical stability of DSPION–BBN in human blood serum. DSPION–BBN biocompatibility was confirmed by cytotoxicity evaluation. A binding study showed the targeting ability of DSPION–BBN to bind to T47D breast cancer cells overexpressing gastrin-releasing peptide (GRP) receptors. T 2 -weighted and T 2 *-weighted color map MR images were acquired. The MRI study indicated that the DSPION–BBN possessed good diagnostic ability as a GRP-specific contrast agent, with appropriate signal reduction in T 2 *-weighted color map MR images in mice with breast tumors. (paper)

  20. High-resolution analytical imaging and electron holography of magnetite particles in amyloid cores of Alzheimer’s disease

    Science.gov (United States)

    Plascencia-Villa, Germán; Ponce, Arturo; Collingwood, Joanna F.; Arellano-Jiménez, M. Josefina; Zhu, Xiongwei; Rogers, Jack T.; Betancourt, Israel; José-Yacamán, Miguel; Perry, George

    2016-01-01

    Abnormal accumulation of brain metals is a key feature of Alzheimer’s disease (AD). Formation of amyloid-β plaque cores (APC) is related to interactions with biometals, especially Fe, Cu and Zn, but their particular structural associations and roles remain unclear. Using an integrative set of advanced transmission electron microscopy (TEM) techniques, including spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM), nano-beam electron diffraction, electron holography and analytical spectroscopy techniques (EDX and EELS), we demonstrate that Fe in APC is present as iron oxide (Fe3O4) magnetite nanoparticles. Here we show that Fe was accumulated primarily as nanostructured particles within APC, whereas Cu and Zn were distributed through the amyloid fibers. Remarkably, these highly organized crystalline magnetite nanostructures directly bound into fibrillar Aβ showed characteristic superparamagnetic responses with saturated magnetization with circular contours, as observed for the first time by off-axis electron holography of nanometer scale particles. PMID:27121137

  1. Quantitative Renal Cortical Perfusion in Human Subjects with Magnetic Resonance Imaging Using Iron-Oxide Nanoparticles: Influence of T1 Shortening

    Energy Technology Data Exchange (ETDEWEB)

    Morell, A.; Ahlstrom, H.; Schoenberg, S.O.; Abildgaard, A.; Bock, M.; Bjoernerud, A. (Dept. of Diagnostic Radiology, Uppsala Univ. Hospital, Uppsala (Sweden))

    2008-10-15

    Background: Using conventional contrast agents, the technique of quantitative perfusion by observing the transport of a bolus with magnetic resonance imaging (MRI) is limited to the brain due to extravascular leakage. Purpose: To perform quantitative perfusion measurements in humans with an intravascular contrast agent, and to estimate the influence of the T1 relaxivity of the contrast agent on the first-pass response. Material and Methods: Renal cortical perfusion was measured quantitatively in six patients with unilateral renal artery stenosis using a rapid gradient double-echo sequence in combination with an intravenous bolus injection of NC100150 Injection, an intravascular contrast agent based on iron-oxide nanoparticles. The influence of T1 relaxivity was measured by comparing perfusion results based on single- and double-echo data. Results: The mean values of cortical blood flow, cortical blood volume, and mean transit time in the normal kidneys were measured to 339+-60 ml/min/100 g, 41+-8 ml/100 g, and 7.3+-1.0 s, respectively, based on double-echo data. The corresponding results based on single-echo data, which are not compensated for the T1 relaxivity, were 254+-47 ml/min/100 g, 27+-3 ml/100 g, and 6+-1.2 s, respectively. Conclusion: The use of a double-echo sequence enabled elimination of confounding T1 effects and consequent systematic underestimation of the perfusion.

  2. Superparamagnetic gamma-Fe2O3-SiO2 Nanocomposites from Fe2O3-SiO2-PVA Hybrid Xerogels: Characterization and MRI Preliminary Testing

    Czech Academy of Sciences Publication Activity Database

    Ianasi, C.; Costisor, O.; Putz, A.-M.; Plocek, Jiří; Sacarescu, L.; Nižňanský, Daniel; Savii, C.

    2017-01-01

    Roč. 21, č. 27 (2017), s. 2783-2791 ISSN 1385-2728 Institutional support: RVO:61388980 Keywords : nanocomposite * oxides * magnetic properties * saturation magnetization * superparamagnetic behaviour Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 1.924, year: 2016

  3. Preparation of magnetic nanoparticles embedded in polystyrene microspheres

    International Nuclear Information System (INIS)

    Nguyen Hoang Hai; Nguyen Hoang Luong; Nguyen Chau; Ngo Quy Tai

    2009-01-01

    Superparamagnetic particles are widely used for biological applications such as cell separation. The size of the particles is normally in the range of 10 - 20 nm which is much smaller than the size of a cell. Therefore small particles create small force which is not strong enough to separate the cells from solution. Superparamagnetic nanoparticles embedded in Polystyrene microspheres (magnetic beads) are very useful for cell separation. Magnetic beads have been prepared by solvent evaporation of an emulsion. The beads with size of 0.2 μm - 1.0 μm have a saturation magnetization of 10 - 25 emu/g. The change of the amount of surfactants, volatile solvent, magnetic particles resulted to the change of size, magnetic properties of the magnetic beads.

  4. Op-amp based low noise amplifier for magnetic particle spectroscopy

    Directory of Open Access Journals (Sweden)

    Malhotra Ankit

    2017-09-01

    Full Text Available Magnetic particle spectrometry (MPS is a novel technique used to measure the magnetization response of superparamagnetic iron oxide nanoparticles (SPIONs. Therefore, it is one of the most important tools for the characterization of the SPIONs for imaging modalities such as magnetic particle imaging (MPI and Magnetic Resonance Imaging (MRI. In MPS, change in the particle magnetization induces a voltage in a dedicated receive coil. The amplitude of the signal can be very low (ranging from a few nV to 100 μV depending upon the concentration of the nanoparticles. Hence, the received signal needs to be amplified with a low noise amplifier (LNA. LNA’s paramount task is to amplify the received signal while keeping the noise induced by its own circuitry minimum. In the current research, we purpose modeling, design, and development of a prototyped LNA for MPS. The designed prototype LNA is based on the parallelization technique of Op-amps. The prototyped LNA consists of 16 Op-amps in parallel and is manufactured on a printed circuit board (PCB, with a size of 110.38 mm × 59.46 mm and 234 components. The input noise of the amplifier is approx. 546 pV/√Hz with a noise figure (NF of approx. 1.4 dB with a receive coil termination. Furthermore, a comparison between the prototyped LNA and a commercially available amplifier is shown.

  5. Mechanism of Dimercaptosuccinic Acid Coated Superparamagnetic Iron Oxide Nanoparticles with Human Serum Albumin.

    Science.gov (United States)

    Zhao, Lining; Song, Wei; Wang, Jing; Yan, Yunxing; Chen, Jiangwei; Liu, Rutao

    2015-12-01

    To research the mechanism of dimercaptosuccinic acid coated-superparamagnetic iron oxide nanoparticles (SPION) with human serum albumin (HSA), the methods of spectroscopy, molecular modeling calculation, and calorimetry were used in this paper. The inner filter effect of the fluorescence intensity was corrected to obtain the accurate results. Ultraviolet-visible absorption and circular dichroism spectra reflect that SPION changed the secondary structure with a loss of α-helix and loosened the protein skeleton of HSA; the activity of the protein was also affected by the increasing exposure of SPION. Fluorescence lifetime measurement indicates that the quenching mechanism type of this system was static quenching. The isothermal titration calorimetry measurement and molecular docking calculations prove that the predominant force of this system was the combination of Van der Waals' force and hydrogen bonds. © 2015 Wiley Periodicals, Inc.

  6. Porous silicon platform for optical detection of functionalized magnetic particles biosensing.

    Science.gov (United States)

    Ko, Pil Ju; Ishikawa, Ryousuke; Sohn, Honglae; Sandhu, Adarsh

    2013-04-01

    The physical properties of porous materials are being exploited for a wide range of applications including optical biosensors, waveguides, gas sensors, micro capacitors, and solar cells. Here, we review the fast, easy and inexpensive electrochemical anodization based fabrication porous silicon (PSi) for optical biosensing using functionalized magnetic particles. Combining magnetically labeled biomolecules with PSi offers a rapid and one-step immunoassay and real-time detection by magnetic manipulation of superparamagnetic beads (SPBs) functionalized with target molecules onto corresponding probe molecules immobilized inside nano-pores of PSi. We first give an introduction to electrochemical and chemical etching procedures used to fabricate a wide range of PSi structures. Next, we describe the basic properties of PSi and underlying optical scattering mechanisms that govern their unique optical properties. Finally, we give examples of our experiments that demonstrate the potential of combining PSi and magnetic beads for real-time point of care diagnostics.

  7. Hydrogen Treatment for Superparamagnetic VO2 Nanowires with Large Room-Temperature Magnetoresistance.

    Science.gov (United States)

    Li, Zejun; Guo, Yuqiao; Hu, Zhenpeng; Su, Jihu; Zhao, Jiyin; Wu, Junchi; Wu, Jiajing; Zhao, Yingcheng; Wu, Changzheng; Xie, Yi

    2016-07-04

    One-dimensional (1D) transition metal oxide (TMO) nanostructures are actively pursued in spintronic devices owing to their nontrivial d electron magnetism and confined electron transport pathways. However, for TMOs, the realization of 1D structures with long-range magnetic order to achieve a sensitive magnetoelectric response near room temperature has been a longstanding challenge. Herein, we exploit a chemical hydric effect to regulate the spin structure of 1D V-V atomic chains in monoclinic VO2 nanowires. Hydrogen treatment introduced V(3+) (3d(2) ) ions into the 1D zigzag V-V chains, triggering the formation of ferromagnetically coupled V(3+) -V(4+) dimers to produce 1D superparamagnetic chains and achieve large room-temperature negative magnetoresistance (-23.9 %, 300 K, 0.5 T). This approach offers new opportunities to regulate the spin structure of 1D nanostructures to control the intrinsic magnetoelectric properties of spintronic materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Superparamagnetic nickel colloidal nanocrystal clusters with antibacterial activity and bacteria binding ability

    Science.gov (United States)

    Peng, Bo; Zhang, Xinglin; Aarts, Dirk G. A. L.; Dullens, Roel P. A.

    2018-06-01

    Recent progress in synthetic nanotechnology and the ancient use of metals in food preservation and the antibacterial treatment of wounds have prompted the development of nanometallic materials for antimicrobial applications1-4. However, the materials designed so far do not simultaneously display antimicrobial activity and the capability of binding and capturing bacteria and spores. Here, we develop a one-step pyrolysis procedure to synthesize monodisperse superparamagnetic nickel colloidal nanocrystal clusters (SNCNCs), which show both antibacterial activity and the ability to bind Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria, as well as bacterial spores. The SNCNCs are formed from a rapid burst of nickel nanoparticles, which self-assemble slowly into clusters. The clusters can magnetically extract 99.99% of bacteria and spores and provide a promising approach for the removal of microbes, including hard-to-treat microorganisms. We believe that our work illustrates the exciting opportunities that nanotechnology offers for alternative antimicrobial strategies and other applications in microbiology.

  9. Cellulase immobilization on superparamagnetic nanoparticles for reuse in cellulosic biomass conversion

    Directory of Open Access Journals (Sweden)

    Fernando Segato

    2016-07-01

    Full Text Available Current cellulosic biomass hydrolysis is based on the one-time use of cellulases. Cellulases immobilized on magnetic nanocarriers offer the advantages of magnetic separation and repeated use for continuous hydrolysis. Most immobilization methods focus on only one type of cellulase. Here, we report co-immobilization of two types of cellulases, β-glucosidase A (BglA and cellobiohydrolase D (CelD, on sub-20 nm superparamagnetic nanoparticles. The nanoparticles demonstrated 100% immobilization efficiency for both BglA and CelD. The total enzyme activities of immobilized BglA and CelD were up to 67.1% and 41.5% of that of the free cellulases, respectively. The immobilized BglA and CelD each retained about 85% and 43% of the initial immobilized enzyme activities after being recycled 3 and 10 times, respectively. The effects of pH and temperature on the immobilized cellulases were also investigated. Co-immobilization of BglA and CelD on MNPs is a promising strategy to promote synergistic action of cellulases while lowering enzyme consumption.

  10. Application of superparamagnetic microspheres for affinity adsorption and purification of glutathione

    International Nuclear Information System (INIS)

    Wang Qiang; Guan Yueping; Yang Mingzhu

    2012-01-01

    The superparamagnetic poly-(MA–DVB) microspheres with micron size were synthesized by the modified suspension polymerization method. Adsorption of glutathione by magnetic poly-(MA–DVB) microspheres with IDA-copper was investigated. The effect of solution pH value, affinity adsorption and desorption of glutathione was studied. The results showed that the optimum pH value for glutathione adsorption was found at pH=3.5, the maximum capacity for glutathione of magnetic poly-(MA–DVB) microspheres was estimated at 42.4 mg/g by fitting the experimental data to the Langmuir equation. The adsorption equilibrium of glutathione was obtained in about 10 min and the adsorbed glutathione was desorbed from the magnetic microspheres in about 30 min using NaCl buffer solution. The magnetic microspheres could be repeatedly utilized for the affinity adsorption of glutathione. - Highlights: ► The magnetic microsphere with surface IDA–Cu groups was synthesized. ► The magnetic microspheres were applied for adsorption of GSH. ► The adsorption–desorption of glutathione was investigated. ► The maximum adsorption capacity of GSH was fitted at 42.4 mg/g.

  11. Effect of labeling with iron oxide particles or nanodiamonds on the functionality of adipose-derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Sinead P Blaber

    Full Text Available Stem cells are increasingly the focus of translational research as well as having emerging roles in human cellular therapy. To support these uses there is a need for improved methods for in vivo cell localization and tracking. In this study, we examined the effects of cell labeling on the in vitro functionality of human adipose-derived mesenchymal stem cells. Our results provide a basis for future in vivo studies investigating implanted cell fate and longevity. In particular, we investigated the effects of two different particles: micron-sized (~0.9 µm fluorescently labeled (Dragon Green superparamagnetic iron oxide particles (M-SPIO particles; and, carboxylated nanodiamonds of ~0.25 µm in size. The effects of labeling on the functionality of adipose-derived MSCs were assessed by in vitro morphology, osteogenic and adipogenic differentiation potential, CD marker expression, cytokine secretion profiling and quantitative proteomics of the intra-cellular proteome. The differentiation and CD marker assays for stem-like functionality were not altered upon label incorporation and no secreted or intra-cellular protein changes indicative of stress or toxicity were detected. These in vitro results indicate that the M-SPIO particles and nanodiamonds investigated in this study are biocompatible with MSCs and therefore would be suitable labels for cell localization and tracking in vivo.

  12. Facile fabrication of superparamagnetic graphene/polyaniline/Fe3O4 nanocomposites for fast magnetic separation and efficient removal of dye

    OpenAIRE

    Mu, Bin; Tang, Jie; Zhang, Long; Wang, Aiqin

    2017-01-01

    Using graphene as adsorbent for removal of pollutants from polluted water is commonly recognized to be costly because the graphene is usually produced by a very complex process. Herein, a simple and eco-friendly method was employed to fabricate efficient superparamagnetic graphene/polyaniline/Fe3O4 nanocomposites for removal of dyes. The exfoliation of graphite as nanosheets and the functionalization of nanosheets with polyaniline and Fe3O4 nanoparticles were simultaneously achieved via a one...

  13. Magnetic behavior of iron-modified MCM-41 correlated with clustering processes from the wet impregnation method

    Energy Technology Data Exchange (ETDEWEB)

    Cuello, Natalia I.; Elías, Verónica R. [Centro de Investigación y Tecnología Química (CITeQ) (UTN-CONICET), Facultad Regional Córdoba. Maestro López y Cruz Roja Argentina, Ciudad Universitaria, Córdoba 5016 (Argentina); Winkler, Elin [Centro Atómico Bariloche, Comisión Nacional de Energía Atómica – CONICET, Avenue Bustillo 9500, San Carlos de Bariloche 8400 (Argentina); Pozo-López, Gabriela; Oliva, Marcos I. [Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba – IFEG, CONICET, Ciudad Universitaria, Córdoba 5000 (Argentina); Eimer, Griselda A., E-mail: geimer@frc.utn.edu.ar [Centro de Investigación y Tecnología Química (CITeQ) (UTN-CONICET), Facultad Regional Córdoba. Maestro López y Cruz Roja Argentina, Ciudad Universitaria, Córdoba 5016 (Argentina)

    2016-06-01

    Magnetic MCM-41 type mesoporous silica materials were synthetized and modified with different iron loadings by the wet impregnation method. The evolution of iron speciation, depending on the metal loading and associated with a particular magnetic behavior was investigated by M vs. H curves, FC–ZFC curves, EPR spectroscopy and other complementary techniques such as SEM, TEM, and chemisorption of pyridine followed by FT-IR studies. A superparamagnetic contribution was larger for the lower loadings suggesting the high dispersion of very small sized iron nanospecies. However, this contribution decreased with increasing metal loading due to the growth of magnetically blocked nanoparticles (hematite) on the outer surface. Finally, a bimodal size distribution for the superparamagnetic nanospecies could be inferred; then the anisotropy constant for this phase and the corresponding nanospecies sizes were estimated. - Highlights: • All samples showed a main superparamagnetic contribution. • The oxide particles grow at expense of superparamagnetic nanospecies. • Bimodal distribution of nanospecies in superparamagnetic regime was determined. • The anisotropy constant for superparamagnetic nanospecies was calculated.

  14. Biomedical applications of magneto-plasmonic nanoclusters (Conference Presentation)

    Science.gov (United States)

    Sokolov, Konstantin V.; Wu, Chun-Hsien; Cook, Jason; Zal, Tomasz; Emelianov, Stanislav

    2016-03-01

    Perhaps one of the most intriguing aspects of nanotechnology is the ability to create multimodal and multifunctional nanostructures that can open new venues in solving challenging biomedical problems. Here, we present multimodal magneto-plasmonic nanoparticles (MPNs) with a strong red-NIR absorbance, superparamagnetic properties and a high magnetic moment in an external magnetic field. Our design is based on self-assembly of 6 nm primary particles which consist of 5 nm diameter iron-oxide cores coated with a very thin ca. 0.5 nm gold shell. The assembly results in spherical highly uniform MPNs. We developed antibody targeted MPNs to address two highly challenging applications: (i) development of real-time assays for capture, enumeration and characterization of circulating tumor cells (CTCs), and (ii) enhancement of adoptive cell immunotherapy (ACT). Our results showed that MPNs can be used for simultaneous magnetic capture and photoacoustic (PA) detection of cancer cells in whole blood with no laborious processing steps. Furthermore, we demonstrated that MPNs conjugated with anti-CD8 antibodies, which are specific for cytotoxic T cells used in ATC, label CD8+ T cells with high specificity ex vivo and in vivo. Labeled T cells can be easily manipulated by a small magnet in suspension and under flow conditions. In addition, MPNs generate high contrast in MRI and PA imaging with the potential to detect just few cells per imaging voxel. These results show that immunotargeted MPNs can be explored for simultaneous visualization and magnetic guidance of T cell subsets in vivo for cancer treatment.

  15. Superparamagnetic iron oxide nanoparticle attachment on array of micro test tubes and microbeakers formed on p-type silicon substrate for biosensor applications

    Directory of Open Access Journals (Sweden)

    Raja Sufi

    2011-01-01

    Full Text Available Abstract A uniformly distributed array of micro test tubes and microbeakers is formed on a p-type silicon substrate with tunable cross-section and distance of separation by anodic etching of the silicon wafer in N, N-dimethylformamide and hydrofluoric acid, which essentially leads to the formation of macroporous silicon templates. A reasonable control over the dimensions of the structures could be achieved by tailoring the formation parameters, primarily the wafer resistivity. For a micro test tube, the cross-section (i.e., the pore size as well as the distance of separation between two adjacent test tubes (i.e., inter-pore distance is typically approximately 1 μm, whereas, for a microbeaker the pore size exceeds 1.5 μm and the inter-pore distance could be less than 100 nm. We successfully synthesized superparamagnetic iron oxide nanoparticles (SPIONs, with average particle size approximately 20 nm and attached them on the porous silicon chip surface as well as on the pore walls. Such SPION-coated arrays of micro test tubes and microbeakers are potential candidates for biosensors because of the biocompatibility of both silicon and SPIONs. As acquisition of data via microarray is an essential attribute of high throughput bio-sensing, the proposed nanostructured array may be a promising step in this direction.

  16. Encapsulation of anticancer drug and magnetic particles in biodegradable polymer nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Koneracka, M; Zavisova, V; Tomasovicova, N; Kopcansky, P; Timko, M; JurIkova, A; Csach, K; Kavecansky, V; Lancz, G [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Kosice (Slovakia); Muckova, M [Hameln rds a.s., Horna 36, Modra (Slovakia)], E-mail: konerack@saske.sk

    2008-05-21

    In this study, we have prepared PLGA (poly-D,L-lactide-co-glycolide) nanospheres loaded with biocompatible magnetic fluid and anticancer drug taxol by a modified nanoprecipitation technique and investigated their magnetic properties. A magnetic fluid, MF-PEG, with a biocompatible layer of polyethylene glycol (PEG), was chosen as a magnetic carrier. The PLGA, whose copolymer ratio of D,L-lactide to glycolide is 85:15, was utilized as a capsulation material. Taxol, as an important anticancer drug, was chosen for its significant role against a wide range of tumours. The morphology and particle size distributions of the prepared nanospheres were investigated by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) and showed a spherical shape of prepared nanospheres with size 250 nm. Infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermogravimetry (TGA) analysis confirmed incorporation of magnetic particles and taxol into the PLGA polymer. The results showed good encapsulation with magnetite content 21.5 wt% and taxol 0.5 wt%. Magnetic properties of magnetic fluids and taxol within the PLGA polymer matrix were investigated by SQUID magnetometry from 4.2 to 300 K. The SQUID measurements showed superparamagnetism of prepared nanospheres with a blocking temperature of 160 K and saturation magnetization 1.4 mT.

  17. Effect of ball milling and dynamic compaction on magnetic properties of Al{sub 2}O{sub 3}/Co(P) composite particles

    Energy Technology Data Exchange (ETDEWEB)

    Denisova, E. A. [Kirensky Institute of Physics SB RAS, Krasnoyarsk (Russian Federation); Krasnoyarsk Institute of Railways Transport, Krasnoyarsk (Russian Federation); Kuzovnikova, L. A. [Krasnoyarsk Institute of Railways Transport, Krasnoyarsk (Russian Federation); Iskhakov, R. S., E-mail: rauf@iph.krasn.ru; Eremin, E. V. [Kirensky Institute of Physics SB RAS, Krasnoyarsk (Russian Federation); Bukaemskiy, A. A. [Institut fur Sicherheitsforschung und Reaktortechnik, D-52425 Juelich (Germany); Nemtsev, I. V. [Krasnoyarsk Scientific Center SB RAS, Krasnoyarsk (Russian Federation)

    2014-05-07

    The evolution of the magnetic properties of composite Al{sub 2}O{sub 3}/Co(P) particles during ball milling and dynamic compaction is investigated. To prepare starting composite particles, the Al{sub 2}O{sub 3} granules were coated with a Co{sub 95}P{sub 5} shell by electroless plating. The magnetic and structural properties of the composite particles are characterized by scanning electron microscopy, X-ray diffraction, and the use of the Physical Property Measurement System. The use of composite core-shell particles as starting powder for mechanoactivation allows to decrease treatment duration to 1 h and to produce a more homogeneous bulk sample than in the case of the mixture of Co and Al{sub 2}O{sub 3} powders. The magnetic properties of the milled composite particles are correlated with changes in the microstructure. Reduction in grain size of Co during milling leads to an increase of the volume fraction of superparamagnetic particles and to a decrease of the saturation magnetization. The local magnetic anisotropy field depends on the amount of hcp-Co phase in sample. The anisotropy field value decreases from 8.4 kOe to 3.8 kOe with an increase in milling duration up to 75 min. The regimes of dynamic compaction were selected so that the magnetic characteristics—saturation magnetization and coercive field—remained unchanged.

  18. PEGylated superparamagnetic iron oxide nanoparticles labeled with 68Ga as a PET/MRI contrast agent. A biodistribution study

    International Nuclear Information System (INIS)

    Afsaneh Lahooti; Gruttner, Cordula; Parham Geramifar; Hassan Yousefnia

    2017-01-01

    The purpose of this study is to evaluate the biodistribution of polyethylene glycol (PEG) coated superparamagnetic iron oxide nanoparticles radiolabeled with 68 Ga in normal mice after intravenous administration of this probe. Three mice were sacrificed at specific time intervals. The biodistribution data revealed high uptake by liver and spleen (60.62 and 12.65 %ID/g at 120 min post injection for liver and spleen, respectively). The clearance of other organs was fast. These results suggest that 68 Ga-PEG-SPIONs has magnificent capabilities for applying in (PET-MRI) as a theranostic agent for detection of liver and spleen malignancies. (author)

  19. Mathematical analysis of the 1D model and reconstruction schemes for magnetic particle imaging

    Science.gov (United States)

    Erb, W.; Weinmann, A.; Ahlborg, M.; Brandt, C.; Bringout, G.; Buzug, T. M.; Frikel, J.; Kaethner, C.; Knopp, T.; März, T.; Möddel, M.; Storath, M.; Weber, A.

    2018-05-01

    Magnetic particle imaging (MPI) is a promising new in vivo medical imaging modality in which distributions of super-paramagnetic nanoparticles are tracked based on their response in an applied magnetic field. In this paper we provide a mathematical analysis of the modeled MPI operator in the univariate situation. We provide a Hilbert space setup, in which the MPI operator is decomposed into simple building blocks and in which these building blocks are analyzed with respect to their mathematical properties. In turn, we obtain an analysis of the MPI forward operator and, in particular, of its ill-posedness properties. We further get that the singular values of the MPI core operator decrease exponentially. We complement our analytic results by some numerical studies which, in particular, suggest a rapid decay of the singular values of the MPI operator.

  20. Magnetic and microstructural properties of Fe{sub 3}O{sub 4}-coated Fe powder soft magnetic composites

    Energy Technology Data Exchange (ETDEWEB)

    Jo Sunday, Katie [Department of Materials Science and Engineering, Drexel University, Philadelphia, PA19104 (United States); Hanejko, Francis G. [Hoeganaes Corporation, Cinnaminson, NJ08077 (United States); Taheri, Mitra L., E-mail: mtaheri@coe.drexel.edu [Department of Materials Science and Engineering, Drexel University, Philadelphia, PA19104 (United States)

    2017-02-01

    Soft magnetic composites (SMCs) comprised of ferrite-coated ferrous powder permit isotropic magnetic flux capabilities, lower core losses, and complex designs through the use of traditional powder metallurgy techniques. Current coating materials and methods are vastly limited by the nonmagnetic properties of organic and some inorganic coatings and their inability to withstand high heat treatments for proper stress relief of core powder after compaction. Ferrite-based coatings are ferrimagnetic, highly resistive, and possess high melting temperatures, thus providing adequate electrical barriers between metallic particles. In this work, iron powder was coated with Fe{sub 3}O{sub 4} particles via mechanical milling, then compacted and cured in an inert gas environment. We find density and coercivity to improve with increasing temperatures; however, core loss greatly increases, which is attributed to the formation of a more conductive iron-oxide phase and less resistive Fe volume. Our work begins to exemplify the unique qualities and potential for ferrite-based coatings using traditional powder metallurgy techniques and higher curing temperatures for electromagnetic devices. - Highlights: • Fe{sub 3}O{sub 4}-coated Fe powder was produced via mechanical milling, then compacted and cured into composite form. • SEM/EDS confirm Fe particles are individually isolated with iron-oxide coating material. • Larger particle sizes show improved core loss and coercivity measurements. • We report good magnetic properties for compaction at 800 MPa and a curing temperature of 700 °C.

  1. Relaxation in x-space magnetic particle imaging.

    Science.gov (United States)

    Croft, Laura R; Goodwill, Patrick W; Conolly, Steven M

    2012-12-01

    Magnetic particle imaging (MPI) is a new imaging modality that noninvasively images the spatial distribution of superparamagnetic iron oxide nanoparticles (SPIOs). MPI has demonstrated high contrast and zero attenuation with depth, and MPI promises superior safety compared to current angiography methods, X-ray, computed tomography, and magnetic resonance imaging angiography. Nanoparticle relaxation can delay the SPIO magnetization, and in this work we investigate the open problem of the role relaxation plays in MPI scanning and its effect on the image. We begin by amending the x-space theory of MPI to include nanoparticle relaxation effects. We then validate the amended theory with experiments from a Berkeley x-space relaxometer and a Berkeley x-space projection MPI scanner. Our theory and experimental data indicate that relaxation reduces SNR and asymmetrically blurs the image in the scanning direction. While relaxation effects can have deleterious effects on the MPI scan, we show theoretically and experimentally that x-space reconstruction remains robust in the presence of relaxation. Furthermore, the role of relaxation in x-space theory provides guidance as we develop methods to minimize relaxation-induced blurring. This will be an important future area of research for the MPI community.

  2. Surface functionalization of superparamagnetic nanoparticles encapsulated by chitosan for protein immobilization; Funcionalizacao da superficie de nanoparticulas superparamagneticas encapsuladas por quitosana para a imobilizacao de proteinas

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Jose Silva de

    2010-07-01

    Nanoscience and nanotechnology have opened up numerous developments of devices and systems on the nanometer scale, with new molecular organization, properties and functions. In this context, the polymeric magnetic nanoparticles are composites formed by magnetic materials with a particle size between 1 and 100 nm combined with functional polymers. They are well-known and have been widely studied because of its applications in various technology areas. Applications on the biological and medical areas include separation and immobilization of enzymes and proteins, improved techniques of magnetic resonance imaging and diagnostic systems for controlled drug delivery. In this work, proteins were immobilized on the surface of a biopolymer combined with superparamagnetic particles of magnetite. The biopolymer chitosan was used, cross-linked and functionalized with glutaraldehyde, applicable to the biological assays. Three types of magnetic composites were obtained, which were called QM1Glu, QM2NaGlu and QM3Glu. They were characterized by X-ray diffraction, scanning electron microscopy, vibrating sample magnetometry, differential scanning calorimetry, thermogravimetry and infrared spectroscopy. They were evaluated concerning the immobilization of the proteins bovine serum albumin (BSA), collagen and trypsin. The study showed that the immobilization of proteins on the biopolymer occurred in 30 min of incubation. The magnetic composite of non functionalized chitosan (QM3) was also evaluated. For trypsin, it was found that the immobilization potential of QM3 was higher than that observed for QM3Glu. After 30 days, the trypsin of the QM3-Trip and QM3Glu-Trip was still with activity. The activity and the enzyme kinetics of the QM3Glu-Trip with the substrate BApNA were demonstrated. (author)

  3. 188Re labeled MPEG-modified superparamagnetic nanogels: preparation and preliminary application in mice

    International Nuclear Information System (INIS)

    Sun Hanwen; Gong Peijun; Liu Xiuqing; Hong Jun; Xu Dongmei; Zhang Chunfu; Wang Yongxian; Yao Side

    2005-01-01

    Superparamagnetic poly(acrylamide) magnetic nanogels produced via photochemical method have been developed. After Hoffmann degradation of carbonyl, the nanogels with amino groups, or poly(acrylamide-vinyl amine) magnetic nanogels, were also obtained. And the magnetic nanogels were further modified by methoxy poly(ethylene glycol) (MPEG) for higher dispersibility and stability. The MPEG-modified magnetic nanogels were characterized by X-ray diffraction (XRD), photo correlation spectroscopy (PCS) and scanning electron microscopy (SEM), respectively. The MPEG-modified magnetic nanogels were labeled by 188 Re radiopharmaceuticals and intravenously injected into tails of mice in the presence and absence of a 0.5 T external magnetic field targeted on the bellies. The radioactivity distribution was monitored in vivo. In the absence of magnetic field, the radioactivity was mainly distributed in liver, spleen, kidney, stomach and lung. In the presence of the magnetic field, the radioactivity was mainly accumulated on the targeted point, verifying the magnetically targeted character. (authors)

  4. Porphyrin synthesized from cashew nut shell liquid as part of a novel superparamagnetic fluorescence nanosystem

    Energy Technology Data Exchange (ETDEWEB)

    Clemente, C. S.; Ribeiro, V. G. P.; Sousa, J. E. A.; Maia, F. J. N.; Barreto, A. C. H. [Universidade Federal do Ceara, Laboratorio de Produtos e Tecnologia em Processos (LPT) (Brazil); Andrade, N. F. [Universidade Federal do Ceara, Departamento de Fisica (Brazil); Denardin, J. C. [Universidad de Santiago de Chile (USACH), Departamento de Fisica (Chile); Mele, G. [Universita del Salento, Dipartimento di Ingegneria dell' Innovazione (Italy); Carbone, L. [NNL, Istituto Nanoscienze UOS Lecce (Italy); Mazzetto, S. E. [Universidade Federal do Ceara, Laboratorio de Produtos e Tecnologia em Processos (LPT) (Brazil); Fechine, P. B. A., E-mail: fechine@ufc.br [Universidade Federal do Ceara (UFC), Grupo de Quimica de Materiais Avancados (GQMAT), Departamento de Quimica Analitica e Fisico-Quimica (Brazil)

    2013-06-15

    Magnetic Fe{sub 3}O{sub 4} nanoparticles with average size approximately 11 nm were first oleic acid coated to interact with the meso-porphyrin derivative from CNSL. This procedure produced a novel superparamagnetic fluorescent nanosystem (SFN) linked by van der Waals interactions. This system was characterized by transmission electron microscope, infrared spectroscopy, thermogravimetric analysis, magnetic measurements, UV-Vis absorption, and fluorescence emission measurements. These results showed that SFN has good thermal stability, excellent magnetization, and nanosized dimensions ({approx}13 nm). It exhibited emission peaks at 668 and 725 nm with a maximum emission at 467 nm of excitation wavelength. The type of interaction between porphyrin and magnetic nanoparticles allowed to obtain a material with interesting optical properties which might be used as an imaging agent for contrast in cells as well as heterogeneous photocatalysis.

  5. Synthesis of carboxyl superparamagnetic ultrasmall iron oxide (USPIO) nanoparticles by a novel flocculation-redispersion process

    International Nuclear Information System (INIS)

    Cheng Changming; Kou Geng; Wang Xiaoliang; Wang Shuhui; Gu Hongchen; Guo Yajun

    2009-01-01

    We report a novel flocculation-redispersion method to synthesize and purify the biocompatible superparamagnetic ultrasmall iron oxide (USPIO) nanoparticles coated with carboxyl dextran derivative. First, USPIO nanoparticles were synthesized and flocculated to form the large clusters through bridging effect of polyvinyl alcohol (PVA) during coprecipitation process. Then the flocculated USPIO was separated and purified from the solution conveniently through magnetic sedimentation. Finally, USPIO in the clusters were released again and well dispersed through electrostatic repelling effect of citric acid with the aid of ultrasonic. The dispersed carboxyl-functionalized USPIO was conjugated with the monoclonal antibodies. And it has been proved that the antibodies anchored on USPIO still retained their bioactivity after the conjugation. These results implied that the USPIO synthesized have good potential as active targeting molecular probe in biomedical application.

  6. Macrophage functions measured by magnetic microparticles in vivo and in vitro

    International Nuclear Information System (INIS)

    Moeller, Winfried; Kreyling, Wolfgang G.; Kohlhaeufl, Martin; Haeussinger, Karl; Heyder, Joachim

    2001-01-01

    Monodisperse ferrimagnetic iron-oxide particles of 1.4 μm geometric diameter were used to study alveolar macrophage functions (phagocytosis, phagosome transport) and cytoskeletal integrity in healthy subjects and in patients with idiopathic pulmonary fibrosis as well as in cultured macrophages. Dysfunctions in phagocytosis, in phagosome transport and cytoskeletal integrity correlated with an impaired alveolar clearance and could be induced in vitro by cytoskeletal drugs

  7. Macrophage functions measured by magnetic microparticles in vivo and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Winfried E-mail: moeller@gsf.de; Kreyling, Wolfgang G.; Kohlhaeufl, Martin; Haeussinger, Karl; Heyder, Joachim

    2001-07-01

    Monodisperse ferrimagnetic iron-oxide particles of 1.4 {mu}m geometric diameter were used to study alveolar macrophage functions (phagocytosis, phagosome transport) and cytoskeletal integrity in healthy subjects and in patients with idiopathic pulmonary fibrosis as well as in cultured macrophages. Dysfunctions in phagocytosis, in phagosome transport and cytoskeletal integrity correlated with an impaired alveolar clearance and could be induced in vitro by cytoskeletal drugs.

  8. Ethylene glycol assisted preparation of Ti(4+)-modified polydopamine coated magnetic particles with rough surface for capture of phosphorylated proteins.

    Science.gov (United States)

    Ma, Xiangdong; Ding, Chun; Yao, Xin; Jia, Li

    2016-07-27

    The reversible protein phosphorylation is very important in regulating almost all aspects of cell life, while the enrichment of phosphorylated proteins still remains a technical challenge. In this work, polydopamine (PDA) modified magnetic particles with rough surface (rPDA@Fe3O4) were synthesized by introduction of ethylene glycol in aqueous solution. The PDA coating possessing a wealth of catechol hydroxyl groups could serve as an active medium to immobilize titanium ions through the metal-catechol chelation, which makes the fabrication of titanium ions modified rPDA@Fe3O4 particles (Ti(4+)-rPDA@Fe3O4) simple and very convenient. The spherical Ti(4+)-rPDA@Fe3O4 particles have a surface area of 37.7 m(2) g(-1) and superparamagnetism with a saturation magnetization value of 38.4 emu g(-1). The amount of Ti element in the particle was measured to be 3.93%. And the particles demonstrated good water dispersibility. The particles were used as adsorbents for capture of phosphorylated proteins and they demonstrated affinity and specificity for phosphorylated proteins due to the specific binding sites (Ti(4+)). Factors affecting the adsorption of phosphorylated proteins on Ti(4+)-rPDA@Fe3O4 particles were investigated. The adsorption capacity of Ti(4+)-rPDA@Fe3O4 particles for κ-casein was 1105.6 mg g(-1). Furthermore, the particles were successfully applied to isolate phosphorylated proteins in milk samples, which demonstrated that Ti(4+)-rPDA@Fe3O4 particles had potential application in selective separation of phosphorylated proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Single-cell nanotoxicity assays of superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Eustaquio, Trisha; Leary, James F

    2012-01-01

    Properly evaluating the nanotoxicity of nanoparticles involves much more than bulk-cell assays of cell death by necrosis. Cells exposed to nanoparticles may undergo repairable oxidative stress and DNA damage or be induced into apoptosis. Exposure to nanoparticles may cause the cells to alter their proliferation or differentiation or their cell-cell signaling with neighboring cells in a tissue. Nanoparticles are usually more toxic to some cell subpopulations than others, and toxicity often varies with cell cycle. All of these facts dictate that any nanotoxicity assay must be at the single-cell level and must try whenever feasible and reasonable to include many of these other factors. Focusing on one type of quantitative measure of nanotoxicity, we describe flow and scanning image cytometry approaches to measuring nanotoxicity at the single-cell level by using a commonly used assay for distinguishing between necrotic and apoptotic causes of cell death by one type of nanoparticle. Flow cytometry is fast and quantitative, provided that the cells can be prepared into a single-cell suspension for analysis. But when cells cannot be put into suspension without altering nanotoxicity results, or if morphology, attachment, and stain location are important, a scanning image cytometry approach must be used. Both methods are described with application to a particular type of nanoparticle, a superparamagnetic iron oxide nanoparticle (SPION), as an example of how these assays may be applied to the more general problem of determining the effects of nanomaterial exposure to living cells.

  10. Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Pongrac IM

    2016-04-01

    Full Text Available Igor M Pongrac,1 Ivan Pavičić,2 Mirta Milić,2 Lada Brkič Ahmed,1 Michal Babič,3 Daniel Horák,3 Ivana Vinković Vrček,2 Srećko Gajović1 1School of Medicine, Croatian Institute for Brain Research, University of Zagreb, 2Institute for Medical Research and Occupational Health, Zagreb, Croatia; 3Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic Abstract: Biocompatibility, safety, and risk assessments of superparamagnetic iron oxide nanoparticles (SPIONs are of the highest priority in researching their application in biomedicine. One improvement in the biological properties of SPIONs may be achieved by different functionalization and surface modifications. This study aims to investigate how a different surface functionalization of SPIONs – uncoated, coated with D-mannose, or coated with poly-L-lysine – affects biocompatibility. We sought to investigate murine neural stem cells (NSCs as important model system for regenerative medicine. To reveal the possible mechanism of toxicity of SPIONs on NSCs, levels of reactive oxygen species, intracellular glutathione, mitochondrial membrane potential, cell-membrane potential, DNA damage, and activities of SOD and GPx were examined. Even in cases where reactive oxygen species levels were significantly lowered in NSCs exposed to SPIONs, we found depleted intracellular glutathione levels, altered activities of SOD and GPx, hyperpolarization of the mitochondrial membrane, dissipated cell-membrane potential, and increased DNA damage, irrespective of the surface coating applied for SPION stabilization. Although surface coating should prevent the toxic effects of SPIONs, our results showed that all of the tested SPION types affected the NSCs similarly, indicating that mitochondrial homeostasis is their major cellular target. Despite the claimed biomedical benefits of SPIONs, the refined determination of their effects on various cellular functions

  11. High molecular weight chitosan derivative polymeric micelles encapsulating superparamagnetic iron oxide for tumor-targeted magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Xiao Y

    2015-02-01

    Full Text Available Yunbin Xiao,1,* Zuan Tao Lin,2,* Yanmei Chen,1 He Wang,1 Ya Li Deng,2 D Elizabeth Le,3 Jianguo Bin,1 Meiyu Li,1 Yulin Liao,1 Yili Liu,1 Gangbiao Jiang,2 Jianping Bin1 1State Key Laboratory of Organ Failure Research, Division of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China; 2Department of Pharmaceutical Engineering, South China Agricultural University, Guangzhou, People’s Republic of China; 3Cardiovascular Division, Oregon Health and Science University, Portland, OR, USA *These authors contributed equally to this work Abstract: Magnetic resonance imaging (MRI contrast agents based on chitosan derivatives have great potential for diagnosing diseases. However, stable tumor-targeted MRI contrast agents using micelles prepared from high molecular weight chitosan derivatives are seldom reported. In this study, we developed a novel tumor-targeted MRI vehicle via superparamagnetic iron oxide nanoparticles (SPIONs encapsulated in self-aggregating polymeric folate-conjugated N-palmitoyl chitosan (FAPLCS micelles. The tumor-targeting ability of FAPLCS/SPIONs was demonstrated in vitro and in vivo. The results of dynamic light scattering experiments showed that the micelles had a relatively narrow size distribution (136.60±3.90 nm and excellent stability. FAPLCS/SPIONs showed low cytotoxicity and excellent biocompatibility in cellular toxicity tests. Both in vitro and in vivo studies demonstrated that FAPLCS/SPIONs bound specifically to folate receptor-positive HeLa cells, and that FAPLCS/SPIONs accumulated predominantly in established HeLa-derived tumors in mice. The signal intensities of T2-weighted images in established HeLa-derived tumors were reduced dramatically after intravenous micelle administration. Our study indicates that FAPLCS/SPION micelles can potentially serve as safe and effective MRI contrast agents for detecting tumors that overexpress folate receptors. Keywords: superparamagnetic

  12. Superparamagnetic Bifunctional Bisphosphonates Nanoparticles: A Potential MRI Contrast Agent for Osteoporosis Therapy and Diagnostic

    Directory of Open Access Journals (Sweden)

    Y. Lalatonne

    2010-01-01

    Full Text Available A bone targeting nanosystem is reported here which combined magnetic contrast agent for Magnetic Resonance Imaging (MRI and a therapeutic agent (bisphosphonates into one drug delivery system. This new targeting nanoplatform consists of superparamagnetic γFe2O3 nanoparticles conjugated to 1,5-dihydroxy-1,5,5-tris-phosphono-pentyl-phosphonic acid (di-HMBPs molecules with a bisphosphonate function at the outer of the nanoparticle surface for bone targeting. The as-synthesized nanoparticles were evaluated as a specific MRI contrast agent by adsorption study onto hydroxyapatite and MRI measurment. The strong adsorption of the bisphosphonates nanoparticles to hydroxyapatite and their use as MRI T2∗ contrast agent were demonstrated. Cellular tests performed on human osteosarcoma cells (MG63 show that γFe2O3@di-HMBP hybrid nanomaterial has no citoxity effect in cell viability and may act as a diagnostic and therapeutic system.

  13. Induced Mesocrystal-Formation, Hydrothermal Growth and Magnetic Properties of α-Fe2O3 Nanoparticles in Salt-Rich Aqueous Solutions

    DEFF Research Database (Denmark)

    Brok, Erik; Larsen, Jacob; Varón, Miriam

    2017-01-01

    and in close proximity. With hydrothermal treatment, the magnetic properties of the particles transform from those characteristic of small (aggregated) hematite nanoparticles to those of particles with more bulk-like properties such as Morin transition and suppression of superparamagnetic relaxation...

  14. Synthesis of Superparamagnetic Core-Shell Structure Supported Pd Nanocatalysts for Catalytic Nitrite Reduction with Enhanced Activity, No Detection of Undesirable Product of Ammonium, and Easy Magnetic Separation Capability.

    Science.gov (United States)

    Sun, Wuzhu; Yang, Weiyi; Xu, Zhengchao; Li, Qi; Shang, Jian Ku

    2016-01-27

    Superparamagnetic nanocatalysts could minimize both the external and internal mass transport limitations and neutralize OH(-) produced in the reaction more effectively to enhance the catalytic nitrite reduction efficiency with the depressed product selectivity to undesirable ammonium, while possess an easy magnetic separation capability. However, commonly used qusi-monodispersed superparamagnetic Fe3O4 nanosphere is not suitable as catalyst support for nitrite reduction because it could reduce the catalytic reaction efficiency and the product selectivity to N2, and the iron leakage could bring secondary contamination to the treated water. In this study, protective shells of SiO2, polymethylacrylic acid, and carbon were introduced to synthesize Fe3O4@SiO2/Pd, Fe3O4@PMAA/Pd, and Fe3O4@C/Pd catalysts for catalytic nitrite reduction. It was found that SiO2 shell could provide the complete protection to Fe3O4 nanosphere core among these shells. Because of its good dispersion, dense structure, and complete protection to Fe3O4, the Fe3O4@SiO2/Pd catalyst demonstrated the highest catalytic nitrite reduction activity without the detection of NH4(+) produced. Due to this unique structure, the activity of Fe3O4@SiO2/Pd catalysts for nitrite reduction was found to be independent of the Pd nanoparticle size or shape, and their product selectivity was independent of the Pd nanoparticle size, shape, and content. Furthermore, their superparamagnetic nature and high saturation magnetization allowed their easy magnetic separation from treated water, and they also demonstrated a good stability during the subsequent recycling experiment.

  15. Quantification of Superparamagnetic Iron Oxide (SPIO)-labeled Cells Using MRI

    Science.gov (United States)

    Rad, Ali M; Arbab, Ali S; Iskander, ASM; Jiang, Quan; Soltanian-Zadeh, Hamid

    2015-01-01

    Purpose To show the feasibility of using magnetic resonance imaging (MRI) to quantify superparamagnetic iron oxide (SPIO)-labeled cells. Materials and Methods Lymphocytes and 9L rat gliosarcoma cells were labeled with Ferumoxides-Protamine Sulfate complex (FE-PRO). Cells were labeled efficiently (more than 95%) and iron concentration inside each cell was measured by spectrophotometry (4.77-30.21 picograms). Phantom tubes containing different number of labeled or unlabeled cells as well as different concentrations of FE-PRO were made. In addition, labeled and unlabeled cells were injected into fresh and fixed rat brains. Results Cellular viability and proliferation of labeled and unlabeled cells were shown to be similar. T2-weighted images were acquired using 7 T and 3 T MRI systems and R2 maps of the tubes containing cells, free FE-PRO, and brains were made. There was a strong linear correlation between R2 values and labeled cell numbers but the regression lines were different for the lymphocytes and gliosarcoma cells. Similarly, there was strong correlation between R2 values and free iron. However, free iron had higher R2 values than the labeled cells for the same concentration of iron. Conclusion Our data indicated that in vivo quantification of labeled cells can be done by careful consideration of different factors and specific control groups. PMID:17623892

  16. Increasing the sensitivity for stem cell monitoring in system-function based magnetic particle imaging

    International Nuclear Information System (INIS)

    Them, Kolja; Szwargulski, P; Knopp, Tobias; Salamon, J; Kaul, M G; Ittrich, H; Sequeira, S; Lange, C

    2016-01-01

    The use of superparamagnetic iron oxide nanoparticles (SPIONs) has provided new possibilities in biophysics and biomedical imaging technologies. The magnetization dynamics of SPIONs, which can be influenced by the environment, are of central interest. In this work, different biological SPION environments are used to investigate three different calibration methods for stem cell monitoring in magnetic particle imaging. It is shown that calibrating using SPIONs immobilized via agarose gel or intracellular uptake results in superior stem cell image quality compared to mobile SPIONs in saline. This superior image quality enables more sensitive localization and identification of a significantly smaller number of magnetically labeled stem cells. The results are important for cell tracking and monitoring of future SPION based therapies such as hyperthermia based cancer therapies, targeted drug delivery, or tissue regeneration approaches where it is crucial to image a sufficiently small number of SPIONs interacting with biological matter. (paper)

  17. Size-controlled synthesis of superparamagnetic iron oxide nanoparticles and their surface coating by gold for biomedical applications

    International Nuclear Information System (INIS)

    Maleki, H.; Simchi, A.; Imani, M.; Costa, B.F.O.

    2012-01-01

    The size mono-dispersity, saturation magnetization, and surface chemistry of magnetic nanoparticles (NPs) are recognized as critical factors for efficient biomedical applications. Here, we performed modified water-in-oil inverse nano-emulsion procedure for preparation of stable colloidal superparamagnetic iron oxide NPs (SPIONs) with high saturation magnetization. To achieve mono-dispersed SPIONs, optimization process was probed on several important factors including molar ratio of iron salts [Fe 3+ and Fe 2+ ], the concentration of ammonium hydroxide as reducing agent, and molar ratio of water to surfactant. The biocompatibility of the obtained NPs, at various concentrations, was evaluated via MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay and the results showed that the NPs were non-toxic at concentrations 3 O 4 core/Au shell particles demonstrate strong plasmon resonance absorption and can be separated from solution using an external magnetic field. Experimental data from both physical and chemical determinations of the changes in particle size, surface plasmon resonance optical band, phase components, core–shell surface composition, and magnetic properties have confirmed the formation of the mono-dispersed core–shell nanostructure. - Highlights: ► Increasing the concentration of iron salts, cubic-shape SPION NPs were formed. The magnetic saturation of the SPIONs was also increased. ► The concentration of reducing agent exhibited marginal effect on the size of SPIONs but influenced the crystallinity of the NPs. A lower magnetic saturation was obtained at higher NH 4 OH concentrations. ► Mono-dispersed SPIONs can be prepared by nano-emulsion procedure at w=23, [Fe]=2.12 M, and [NH 4 OH]=30%. Under this condition, NPs with dimension of 9±3 nm and magnetic saturation of 54 emu/g are obtained. The synthesized SPIONs exhibited acceptable biocompatibility, >80% viability after 24 h incubation in L929 cells at concentrations <0

  18. Influence of magnetic anisotropy on the superferromagnetic ordering in nanocomposites

    DEFF Research Database (Denmark)

    Mørup, Steen; Christiansen, Gunnar Dan

    1993-01-01

    Magnetic interaction between ultrafine particles may result in superferromagnetism, i.e., ordering of the magnetic moments of particles which would be superparamagnetic if they were noninteracting. In this article we discuss the influence of the magnetic anisotropy on the temperature dependence o...

  19. Biologicky aktivní látky imobilizované na magnetických nosičích a jejich využití v biochemii a biotechnologii

    Czech Academy of Sciences Publication Activity Database

    Pečová, M.; Zajoncová, L.; Poláková, K.; Cuda, J.; Šafaříková, Miroslava; Šebela, M.; Šafařík, Ivo

    2011-01-01

    Roč. 105, č. 7 (2011), s. 524-530 ISSN 0009-2770 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA MPO 2A-1TP1/094 Institutional research plan: CEZ:AV0Z60870520 Keywords : saccharomyces-cerevisiae cells * iron-oxide nanoparticles * alginate microparticles * fluidized-bed * purification * trypsin * microspheres * particles * separations * adsorptions Subject RIV: CE - Biochemistry Impact factor: 0.529, year: 2011

  20. Evolution of magnetism by rolling up hexagonal boron nitride nanosheets tailored with superparamagnetic nanoparticles.

    Science.gov (United States)

    Hwang, Da Young; Choi, Kyoung Hwan; Park, Jeong Eon; Suh, Dong Hack

    2017-02-01

    Controlling tunable properties by rolling up two dimensional nanomaterials is an exciting avenue for tailoring the electronic and magnetic properties of materials at the nanoscale. We demonstrate the tailoring of a magnetic nanocomposite through hybridization with magnetic nanomaterials using hexagonal boron nitride (h-BN) templates as an effective way to evolve magnetism for the first time. Boron nitride nanosheets exhibited their typical diamagnetism, but rolled-up boron nitride sheets (called nanoscrolls) clearly have para-magnetism in the case of magnetic susceptibility. Additionally, the Fe 3 O 4 NP sample shows a maximum ZFC curve at about 103 K, which indicates well dispersed superparamagnetic nanoparticles. The ZFC curve for the h-BN-Fe 3 O 4 NP scrolls exhibited an apparent rounded maximum blocking temperature at 192 K compared to the Fe 3 O 4 NPs, leading to a dramatic increase in T B . These magnetic nanoscroll derivatives are remarkable materials and should be suitable for high-performance composites and nano-, medical- and electromechanical-devices.

  1. Giant magnetoresistance in cluster-assembled nanostructures: on the influence of inter-particle interactions

    International Nuclear Information System (INIS)

    Oyarzún, Simón; Domingues Tavares de Sa, Artur; Tuaillon-Combes, Juliette; Tamion, Alexandre; Hillion, Arnaud; Boisron, Olivier; Mosset, Alexis; Pellarin, Michel; Dupuis, Véronique; Hillenkamp, Matthias

    2013-01-01

    The giant magnetoresistance response of granular systems has since its discovery been described by a simple model based on the geometric orientation of the magnetic moments of adjacent nanoparticles. This model has been proven quite successful in many cases but its being based on decoupled neighboring grains has never been verified as all available studies rely on samples with too high concentration. Here we report on magnetic and magnetotransport measurements of cluster-assembled nanostructures with cobalt clusters around 2.3 nm diameter embedded in copper matrices at different concentrations. The thorough magnetic characterization based on the recently developed “triple fit” method allows the detection of measurable inter-particle interactions and thus assures true superparamagnetic behavior in the most dilute sample. The spintronic response is compared to theory and we show that only at low concentration (0.5 at.% Co) all experiments are consistent and the common theoretical description is appropriate. Increasing the concentration to 2.5 and 5 at.% implies deviations between magnetometry and magnetotransport

  2. Synthesis, characterization and antibacterial activity of superparamagnetic nanoparticles modified with glycol chitosan

    International Nuclear Information System (INIS)

    Stephen Inbaraj, Baskaran; Tsai, Tsung-Yu; Chen, Bing-Huei

    2012-01-01

    Iron oxide nanoparticles (IONPs) were synthesized by coprecipitation of iron salts in alkali media followed by coating with glycol chitosan (GC-coated IONPs). Both bare and GC-coated IONPs were subsequently characterized and evaluated for their antibacterial activity. Comparison of Fourier transform infrared spectra and thermogravimetric data of bare and GC-coated IONPs confirmed the presence of GC coating on IONPs. Magnetization curves showed that both bare and GC-coated IONPs are superparamagnetic and have saturation magnetizations of 70.3 and 59.8 emu g −1 , respectively. The IONP size was measured as ∼8–9 nm by transmission electron microscopy, and their crystal structure was assigned to magnetite from x-ray diffraction patterns. Both bare and GC-coated IONPs inhibited the growths of Escherichia coli ATCC 8739 and Salmonella enteritidis SE 01 bacteria better than the antibiotics linezolid and cefaclor, as evaluated by the agar dilution assay. GC-coated IONPs showed higher potency against E. coli O157:H7 and Staphylococcus aureus ATCC 10832 than bare IONPs. Given their biocompatibility and antibacterial properties, GC-coated IONPs are a potential nanomaterial for in vivo applications.

  3. Role of Chinese wind-blown dust in enhancing environmental pollution in Metropolitan Seoul

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Wonnyon [Department of Earth and Environmental Sciences, Korea University, Seoul 136-713 (Korea, Republic of); Doh, Seong-Jae [Department of Earth and Environmental Sciences, Korea University, Seoul 136-713 (Korea, Republic of)], E-mail: sjdoh@korea.ac.kr; Yu, Yongjae; Lee, Meehye [Department of Earth and Environmental Sciences, Korea University, Seoul 136-713 (Korea, Republic of)

    2008-05-15

    A suite of rock magnetic experiments and intensive microscopic observations were carried out on Asian dust deposits in Seoul, Korea, collected on 19 and 23 March 2002, 9 April 2002 and 12 April 2003. Desert-sand and loess from the dust source regions in China were also analyzed as a comparison. Asian dust showed a higher magnetic concentration than the source region samples, indicating a significant influx of magnetic particles into Asian dust had occurred during its transportation. Electron microscopy identified carbon-bearing iron-oxides as the added material. These iron-oxides were likely to have been produced by anthropogenic pollution (fossil fuel combustion) while the wind-blown dusts passing across the industrial areas of eastern China and western Korea. Such wind-paths were confirmed by a simulation of the air-mass trajectories. The magnetic technique appears to be useful for determining the anthropogenic pollution of Asian dust. - Magnetic quantification of anthropogenic pollution of Asian dust.

  4. Role of Chinese wind-blown dust in enhancing environmental pollution in Metropolitan Seoul

    International Nuclear Information System (INIS)

    Kim, Wonnyon; Doh, Seong-Jae; Yu, Yongjae; Lee, Meehye

    2008-01-01

    A suite of rock magnetic experiments and intensive microscopic observations were carried out on Asian dust deposits in Seoul, Korea, collected on 19 and 23 March 2002, 9 April 2002 and 12 April 2003. Desert-sand and loess from the dust source regions in China were also analyzed as a comparison. Asian dust showed a higher magnetic concentration than the source region samples, indicating a significant influx of magnetic particles into Asian dust had occurred during its transportation. Electron microscopy identified carbon-bearing iron-oxides as the added material. These iron-oxides were likely to have been produced by anthropogenic pollution (fossil fuel combustion) while the wind-blown dusts passing across the industrial areas of eastern China and western Korea. Such wind-paths were confirmed by a simulation of the air-mass trajectories. The magnetic technique appears to be useful for determining the anthropogenic pollution of Asian dust. - Magnetic quantification of anthropogenic pollution of Asian dust

  5. Superparamagnetic iron oxide nanoparticles function as a long-term, multi-modal imaging label for non-invasive tracking of implanted progenitor cells.

    Directory of Open Access Journals (Sweden)

    Christina A Pacak

    Full Text Available The purpose of this study was to determine the ability of superparamagnetic iron oxide (SPIO nanoparticles to function as a long-term tracking label for multi-modal imaging of implanted engineered tissues containing muscle-derived progenitor cells using magnetic resonance imaging (MRI and X-ray micro-computed tomography (μCT. SPIO-labeled primary myoblasts were embedded in fibrin sealant and imaged to obtain intensity data by MRI or radio-opacity information by μCT. Each imaging modality displayed a detection gradient that matched increasing SPIO concentrations. Labeled cells were then incorporated in fibrin sealant, injected into the atrioventricular groove of rat hearts, and imaged in vivo and ex vivo for up to 1 year. Transplanted cells were identified in intact animals and isolated hearts using both imaging modalities. MRI was better able to detect minuscule amounts of SPIO nanoparticles, while μCT more precisely identified the location of heavily-labeled cells. Histological analyses confirmed that iron oxide particles were confined to viable, skeletal muscle-derived cells in the implant at the expected location based on MRI and μCT. These analyses showed no evidence of phagocytosis of labeled cells by macrophages or release of nanoparticles from transplanted cells. In conclusion, we established that SPIO nanoparticles function as a sensitive and specific long-term label for MRI and μCT, respectively. Our findings will enable investigators interested in regenerative therapies to non-invasively and serially acquire complementary, high-resolution images of transplanted cells for one year using a single label.

  6. Preparation, characterization and application of superparamagnetic iron oxide nanoparticles modified with natural polymers for removal of {sup 60}Co-radionuclides from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Sharaf El-Deen, Gehan E. [Atomic Energy Authority, Cairo (Egypt). Radioactive Waste Management Dept.; Imam, Neama G. [Atomic Energy Authority, Cairo (Egypt). Experimental Physics Dept.; Elettra, Sincrotrone, Trieste (Italy); Ayoub, Refaat R. [Atomic Energy Authority, Cairo (Egypt). Nuclear Chemistry Dept.

    2017-04-01

    Superparamagnetic iron oxide nanoparticles (IO-MNPs) coated with natural polymers, starch (IO-S MNPs) and dextrin (IO-D MNPs), were synthesized by modified co-precipitation method. IO and hybrid-IO-MNPs were characterized by XRD, SEM, HRTEM, FT-IR spectroscopy, vibrating sample magnetometer (VSM) and zeta potential (ZP). IO-S MNPs and IO-D MNPs have IO core-shell structure with core of 10.8 nm and 13.8 nm and shell of 7.5 nm and 5.9 nm, respectively. The efficiency of the hybrid IO-MNPs for sorption of {sup 60}Co(II)-radionuclides from aqueous solution was investigated under varying experimental conditions. Kinetic data were described well by pseudo-second-order mode, sorption isotherms were fitted quite with Freundlich model with maximum adsorption capacity 36.89 (mmol.g{sup -1})/(L.mmol{sup -1}){sup n} for IO-S MNPs and 24.9 (mmol.g{sup -1})/(L.mmol{sup -1}){sup n} for IO-D MNPs. Sorption of {sup 60}Co-radionuclides by IO-S MNPs was suppressed with salinity and most of the adsorbed {sup 60}Co onto IO-S MNPs could be remove with 0.1 M HCl solution. IO-S MNPs exhibits superparamagnetic properties, easier separation according to higher saturation magnetization (47 emu/g) and better adsorption for {sup 60}CO-radionuclides than IO-D MNPs.

  7. Plasma Antenna Based on Superparamagnetic Nanoparticles

    Science.gov (United States)

    Papadopoulos, K.

    2017-12-01

    A novel plasma antenna for space or ground based generation and injection of whistler and Alfven waves is presented. The new antenna concept is based on recently manufactured, small (10-60 nm radius), single domain, non-interacting magnetic grains with uniaxial magnetic anisotropy, known as superparamagnetic nanoparticles (SPN), dispersed in low viscosity, non-conducting media. SPNs can be described as ensembles of non-interacting magnetic moments μ with energy E=-μB when driven by a magnetic field B, similar to ordinary paramagnets, with exception that SPNs are composed by many thousands of magnetic atoms and as result have susceptibilities comparable to ferromagnets but with zero coercivity. The Langevin function accurately describes the dynamic behavior of the magnetization in the presence of low frequency AC fields since the characteristic mechanical (Brownian) and magnetic (Neel) relaxation times are shorter than 10msecs. For ground-based applications the grains are suspended in low viscosity carrier liquids, such as water or benzne and are known as ferrofluids. For space based applications, such as wave injection from CubeSats they can be dispersed as dust in vacuum containers. Agglomeration is avoided by coating the grains by coating their surface by an appropriate surfactant molecule. The ensemble of magnetic grains is driven to rotation at the desired VLF or ELF frequency by a pair of Helmholtz like coils surrounding the grain container. The near field electric field associated with rotating magnetic field then drives currents such as were observed in Rotating Magnetic Field experiments at the UCLA/LAPD chamber [Gigliotti et al., Phys. of Plasmas 16:092106; Karavaev et al., Phys. of Plasmas 17(1):012102,2010]. The magnetic moment of the AC coil is amplified by the susceptibility χ of the SPN ensemble that depending on the grain size and material can reach values of 104-105. Preliminary estimates indicate that less than 1 kg of SPN grains and power of

  8. Partitioning of magnetic particles in PM10, PM2.5 and PM1 aerosols in the urban atmosphere of Barcelona (Spain)

    International Nuclear Information System (INIS)

    Revuelta, María Aránzazu; McIntosh, Gregg; Pey, Jorge; Pérez, Noemi; Querol, Xavier; Alastuey, Andrés

    2014-01-01

    A combined magnetic-chemical study of 15 daily, simultaneous PM 10 –PM 2.5 –PM 1 urban background aerosol samples has been carried out. The magnetic properties are dominated by non-stoichiometric magnetite, with highest concentrations seen in PM 10 . Low temperature magnetic analyses showed that the superparamagnetic fraction is more abundant when coarse, multidomain particles are present, confirming that they may occur as an oxidized outer shell around coarser grains. A strong association of the magnetic parameters with a vehicular PM 10 source has been identified. Strong correlations found with Cu and Sb suggests that this association is related to brake abrasion emissions rather than exhaust emissions. For PM 1 the magnetic remanence parameters are more strongly associated with crustal sources. Two crustal sources are identified in PM 1 , one of which is of North African origin. The magnetic particles are related to this source and so may be used to distinguish North African dust from other sources in PM 1 . - Highlights: • Magnetic properties of PM 10 , PM 2.5 and PM 1 defined for a Mediterranean urban site. • Vehicular source of magnetic particles dominates in PM 10 . • Crustal source of magnetic particles dominates in PM 1 . • Magnetic remanence may distinguish between North African and regional dust in PM 1 . - Capsule abstract two sources of magnetic atmospheric particles have been identified in Barcelona, a vehicular source which dominates in PM 10 and a crustal source that dominates in PM 1

  9. Magnetic resonance cell-tracking studies: spectrophotometry-based method for the quantification of cellular iron content after loading with superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Böhm, Ingrid

    2011-08-01

    The purpose of this article is to present a user-friendly tool for quantifying the iron content of superparamagnetic labeled cells before cell tracking by magnetic resonance imaging (MRI). Iron quantification was evaluated by using Prussian blue staining and spectrophotometry. White blood cells were labeled with superparamagnetic iron oxide (SPIO) nanoparticles. Labeling was confirmed by light microscopy. Subsequently, the cells were embedded in a phantom and scanned on a 3 T magnetic resonance tomography (MRT) whole-body system. Mean peak wavelengths λ(peak) was determined at A(720 nm) (range 719-722 nm). Linearity was proven for the measuring range 0.5 to 10 μg Fe/mL (r  =  .9958; p  =  2.2 × 10(-12)). The limit of detection was 0.01 μg Fe/mL (0.1785 mM), and the limit of quantification was 0.04 μg Fe/mL (0.714 mM). Accuracy was demonstrated by comparison with atomic absorption spectrometry. Precision and robustness were also proven. On T(2)-weighted images, signal intensity varied according to the iron concentration of SPIO-labeled cells. Absorption spectrophotometry is both a highly sensitive and user-friendly technique that is feasible for quantifying the iron content of magnetically labeled cells. The presented data suggest that spectrophotometry is a promising tool for promoting the implementation of magnetic resonance-based cell tracking in routine clinical applications (from bench to bedside).

  10. Magnetic Resonance Cell-Tracking Studies: Spectrophotometry-Based Method for the Quantification of Cellular Iron Content after Loading with Superparamagnetic Iron Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ingrid Böhm

    2011-07-01

    Full Text Available The purpose of this article is to present a user-friendly tool for quantifying the iron content of superparamagnetic labeled cells before cell tracking by magnetic resonance imaging (MRI. Iron quantification was evaluated by using Prussian blue staining and spectrophotometry. White blood cells were labeled with superparamagnetic iron oxide (SPIO nanoparticles. Labeling was confirmed by light microscopy. Subsequently, the cells were embedded in a phantom and scanned on a 3 T magnetic resonance tomography (MRT whole-body system. Mean peak wavelengths Λpeak was determined at A720nm (range 719–722 nm. Linearity was proven for the measuring range 0.5 to 10 μg Fe/mL (r = .9958; p = 2.2 × 10−12. The limit of detection was 0.01 μg Fe/mL (0.1785 mM, and the limit of quantification was 0.04 μg Fe/mL (0.714 mM. Accuracy was demonstrated by comparison with atomic absorption spectrometry. Precision and robustness were also proven. On T2-weighted images, signal intensity varied according to the iron concentration of SPIO-labeled cells. Absorption spectrophotometry is both a highly sensitive and user-friendly technique that is feasible for quantifying the iron content of magnetically labeled cells. The presented data suggest that spectrophotometry is a promising tool for promoting the implementation of magnetic resonance-based cell tracking in routine clinical applications (from bench to bedside.

  11. TEA controllable preparation of magnetite nanoparticles (Fe{sub 3}O{sub 4} NPs) with excellent magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Han, Chengliang, E-mail: clhan@issp.ac.cn [Department of Chemical and Material Engineering, Hefei University, Hefei 230601 (China); Zhu, Dejie [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China); Wu, Hanzhao; Li, Yao; Cheng, Lu; Hu, Kunhong [Department of Chemical and Material Engineering, Hefei University, Hefei 230601 (China)

    2016-06-15

    A fast and controllable synthesis method for superparamagnetic magnetite nanoparticles (Fe{sub 3}O{sub 4} NPs) was developed in Fe(III)-triethanolamine (TEA) solution. The phase structure, morphology and particle size of the as-synthesized samples were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results showed that the magnetic particles were pure Fe{sub 3}O{sub 4} with mean sizes of approximately 10 nm. The used TEA has key effects on the formation of well dispersing Fe{sub 3}O{sub 4} NPs. Vibrating sample magnetometer (VSM) result indicated that the as-obtained Fe{sub 3}O{sub 4} NPs exhibited superparamagnetic behavior and the saturation magnetization (M{sub s}) was about 70 emu/g, which had potential applications in magnetic science and technology. - Highlights: • The Fe{sub 3}O{sub 4} NPs are synthesized by a simple and low-cost hydrothermal approach. • The triethanolamine (TEA) played vital roles in the formation of Fe{sub 3}O{sub 4} NPs. • Our samples exhibited superparamagnetic and excellent dispersing properties in water.

  12. Superparamagnetism in CuFeInTe{sub 3} and CuFeGaTe{sub 3} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Grima-Gallardo, P.; Alvarado, F.; Munoz, M.; Duran, S.; Quintero, M.; Nieves, L.; Quintero, E.; Tovar, R.; Morocoima, M. [Centro de Estudios en Semiconductores (CES), Fac. Ciencias, Dpto. Fisica, Universidad de Los Andes, Merida (Venezuela); Ramos, M.A. [Laboratorio de Difraccion y Fluorescencia de Rayos-X, Instituto Zuliano de Investigaciones Tecnologicas (INZIT), La Canada de Urdaneta, Estado Zulia (Venezuela)

    2012-06-15

    The temperature dependencies of DC magnetic susceptibilities, {chi}(T), of CuFeInTe{sub 3} and CuFeGaTe{sub 3} alloys were measured in a SQUID apparatus using the protocol of field cooling (FC) and zero FC (ZFC). The FC curves of both samples reflect a weak ferromagnetic (or ferrimagnetic) behavior with a nearly constant value of {chi}(T) in the measured temperature range (2-300 K) indicating that the critical temperatures (T{sub c}) are >300 K. The ZFC curves diverges from FC, showing irreversibility temperatures (T{sub irr}) of {proportional_to}250 K for CuFeInTe{sub 3} and >300 K for CuFeGaTe{sub 3}, suggesting that we are dealing with cluster-glass systems in a superparamagnetic state. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Magnetic force nanotherapy: feasibility and tolerance in a trial with residual tumors

    International Nuclear Information System (INIS)

    Gneveckow, U.; Scholz, R.; Jordan, A.; Cho, C.H.; Feussner, A.; Eckelt, L.; Wust, P.

    2005-01-01

    Full text: In February 2004 a clinical trial on the feasibility and tolerability of the magnetic force nanotherapy was started. Magnetic force nanotherapy is a new treatment concept for local tumors. The energy deposited by a homogeneous AC magnetic field is transformed into heat by a transducer. This transducer, nanosized superparamagnetic particles dispersed in water (magnetic fluid), is infiltrated into a selected target by minimal invasive intervention. Due to their subdomain size, these particles show no hysteresis behavior. Therefore, the behavior is independent on any previous exposures to magnetic fields. In contrast to hysteresis heating with multidomain-particles, the energy of the magnetic field is transformed to heat by both Brownian rotation and Neel relaxation. In addition, a special 'tumorphil' coating of the ironoxide cores increases the cellular uptake of the particles into tumor cells, which binds the particles in the tumor region. Thus a particular high power density can be achieved in the tumor and directly regulated by the magnetic field amplitude, whereas the normal tissue lacking magnetic fluid is only slightly affected. Both, deep seated and superficial tumors are accessible with a minimum of invasion and a selectable target temperature. To heat the magnetic fluid under clinical conditions, an applicator system has been built to generate a magnetic field in any desired body region. The first results of the feasibility of the magnetic force nanotherapy on different tumor entities are shown here. Until now 18 of 25 patients of the trial were recruited. 4 in the group of CT-guided instillation, 8 with intraoperative instillation of the magnetic nanoparticles and 6 patients with prostate carcinoma under TRUS control. Except of two cases the instillation was successful and at least one thermotherapy could be performed. Temperatures between 40 and 46 o C could be measured whereas calculated temperatures ranged between 42 and 52 o C. Field

  14. Partitioning of magnetic particles in PM10, PM2.5 and PM1 aerosols in the urban atmosphere of Barcelona (Spain).

    Science.gov (United States)

    Revuelta, María Aránzazu; McIntosh, Gregg; Pey, Jorge; Pérez, Noemi; Querol, Xavier; Alastuey, Andrés

    2014-05-01

    A combined magnetic-chemical study of 15 daily, simultaneous PM10-PM2.5-PM1 urban background aerosol samples has been carried out. The magnetic properties are dominated by non-stoichiometric magnetite, with highest concentrations seen in PM10. Low temperature magnetic analyses showed that the superparamagnetic fraction is more abundant when coarse, multidomain particles are present, confirming that they may occur as an oxidized outer shell around coarser grains. A strong association of the magnetic parameters with a vehicular PM10 source has been identified. Strong correlations found with Cu and Sb suggests that this association is related to brake abrasion emissions rather than exhaust emissions. For PM1 the magnetic remanence parameters are more strongly associated with crustal sources. Two crustal sources are identified in PM1, one of which is of North African origin. The magnetic particles are related to this source and so may be used to distinguish North African dust from other sources in PM1. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Magnetic and Mössbauer studies of pure and Ti-doped YFeO _3 nanocrystalline particles prepared by mechanical milling and subsequent sintering

    International Nuclear Information System (INIS)

    Khalifa, N. O.; Widatallah, H. M.; Gismelseed, A. M.; Al-Mabsali, F. N.; Sofin, R. G. S.; Pekala, M.

    2016-01-01

    Single-phased nanocrystalline particles of pure and 10 % Ti "4"+-doped perovskite-related YFeO _3were prepared via mechanosynthesis at 450"∘C. This temperature is ∼150–350 "∘C lower than those at which the materials, in bulk form, are normally prepared. Rietveld refinements of the X-ray diffraction patterns reveal that the dopant Ti "4"+ ions prefer interstitial octahedral sites in the orthorhombic crystal lattice rather than those originally occupied by the expelled Fe "3"+ ions. Magnetic measurements show canted antiferromagnetism in both types of nanoparticles. Doping with Ti "4"+ lowers the Néel temperature of the YFeO _3 nanoparticles from ∼ 586 K to ∼ 521 K. The Ti "4"+-doped YFeO _3 nanoparticles exhibit enhanced magnetization and coercivity but less magnetic hyperfine fields relative to the un-doped nanoparticles. The "5"7Fe Mössbauer spectra show ∼ 15 % of the YFeO _3 nanoparticles and ∼22 of Ti "4"+-doped YFeO _3 ones to be superparamagnetic with blocking temperatures < 78 K. The broadened magnetic components in the "5"7Fe Mössbauer spectra suggest size-dependent hyperfine magnetic fields at the "5"7Fe nuclear sites and were associated with collective magnetic excitations. The "5"7Fe Mössbauer spectra show the local environments of the Fe "3"+ ions in the superparamagnetic nanoparticles to be more sensitive to the presence of the Ti "4"+ ions relative to those in the larger magnetic nanoparticles.

  16. Spectroscopic and photoacoustic characterization of encapsulated iron oxide super-paramagnetic nanoparticles as a new multiplatform contrast agent

    Science.gov (United States)

    Armanetti, Paolo; Flori, Alessandra; Avigo, Cinzia; Conti, Luca; Valtancoli, Barbara; Petroni, Debora; Doumett, Saer; Cappiello, Laura; Ravagli, Costanza; Baldi, Giovanni; Bencini, Andrea; Menichetti, Luca

    2018-06-01

    Recently, a number of photoacoustic (PA) agents with increased tissue penetration and fine spatial resolution have been developed for molecular imaging and mapping of pathophysiological features at the molecular level. Here, we present bio-conjugated near-infrared light-absorbing magnetic nanoparticles as a new agent for PA imaging. These nanoparticles exhibit suitable absorption in the near-infrared region, with good photoacoustic signal generation efficiency and high photo-stability. Furthermore, these encapsulated iron oxide nanoparticles exhibit strong super-paramagnetic behavior and nuclear relaxivities that make them useful as magnetic resonance imaging (MRI) contrast media as well. Their simple bio-conjugation strategy, optical and chemical stability, and straightforward manipulation could enable the development of a PA probe with magnetic and spectroscopic properties suitable for in vitro and in vivo real-time imaging of relevant biological targets.

  17. Nanoparticle encapsulation in red blood cells enables blood-pool magnetic particle imaging hours after injection

    International Nuclear Information System (INIS)

    Rahmer, J; Gleich, B; Borgert, J; Antonelli, A; Sfara, C; Magnani, M; Tiemann, B; Weizenecker, J

    2013-01-01

    Magnetic particle imaging (MPI) is a new medical imaging approach that is based on the nonlinear magnetization response of super-paramagnetic iron oxide nanoparticles (SPIOs) injected into the blood stream. To date, real-time MPI of the bolus passage of an approved MRI SPIO contrast agent injected into the tail vein of living mice has been demonstrated. However, nanoparticles are rapidly removed from the blood stream by the mononuclear phagocyte system. Therefore, imaging applications for long-term monitoring require the repeated administration of bolus injections, which complicates quantitative comparisons due to the temporal variations in concentration. Encapsulation of SPIOs into red blood cells (RBCs) has been suggested to increase the blood circulation time of nanoparticles. This work presents first evidence that SPIO-loaded RBCs can be imaged in the blood pool of mice several hours after injection using MPI. This finding is supported by magnetic particle spectroscopy performed to quantify the iron concentration in blood samples extracted from the mice 3 and 24 h after injection of SPIO-loaded RBCs. Based on these results, new MPI applications can be envisioned, such as permanent 3D real-time visualization of the vessel tree during interventional procedures, bleeding monitoring after stroke, or long-term monitoring and treatment control of cardiovascular diseases. (paper)

  18. Slew-rate dependence of tracer magnetization response in magnetic particle imaging

    Science.gov (United States)

    Shah, Saqlain A.; Ferguson, R. M.; Krishnan, K. M.

    2014-10-01

    Magnetic Particle Imaging (MPI) is a new biomedical imaging technique that produces real-time, high-resolution tomographic images of superparamagnetic iron oxide nanoparticle tracers. Currently, 25 kHz and 20 mT/μ0 excitation fields are common in MPI, but lower field amplitudes may be necessary for patient safety in future designs. Here, we address fundamental questions about MPI tracer magnetization dynamics and predict tracer performance in future scanners that employ new combinations of excitation field amplitude (Ho) and frequency (ω). Using an optimized, monodisperse MPI tracer, we studied how several combinations of drive field frequencies and amplitudes affect the tracer's response, using Magnetic Particle Spectrometry and AC hysteresis, for drive field conditions at 15.5, 26, and 40.2 kHz, with field amplitudes ranging from 7 to 52 mT/μ0. For both fluid and immobilized nanoparticle samples, we determined that magnetic response was dominated by Néel reversal. Furthermore, we observed that the peak slew-rate (ωHo) determined the tracer magnetic response. Smaller amplitudes provided correspondingly smaller field of view, sometimes resulting in excitation of minor hysteresis loops. Changing the drive field conditions but keeping the peak slew-rate constant kept the tracer response almost the same. Higher peak slew-rates led to reduced maximum signal intensity and greater coercivity in the tracer response. Our experimental results were in reasonable agreement with Stoner-Wohlfarth model based theories.

  19. Assembling and properties of the polymer-particle nanostructured materials

    Science.gov (United States)

    Sheparovych, Roman

    Complementary properties of the soft and hard matter explain its common encounter in many natural and manmade applications. A combination of flexible organic macromolecules and hard mineral clusters results in new materials far advantageous than its constituents alone. In this work we study assembling of colloidal nanocrystals and polymers into complex nanostructures. Magnetism, surface wettability and adhesion comprise properties of interest for the obtained nanocomposites. Applying a magnetic field induces a reversible 1D ordering of the magnetically susceptible particles. This property was employed in the fabrication of the permanent chains of magnetite nanocrystals (d=15nm). In the assembling process the aligned particles were bound together using polyelectrolyte macromolecules. The basics of the binding process involved an electrostatic interaction between the positively charged polyelectrolyte and the negative surface of the particles (aqueous environment). Adsorption of the polymer molecules onto several adjacent particles in the aligned 1D aggregate results in the formation of the permanent particulate chains. Positive charges of the adsorbed polyelectrolyte molecules stabilize the dispersion of the obtained nanostructures in water. Magnetization measurements revealed that superparamagnetic nanoparticles, being assembled into 1D ordered structures, attain magnetic coercivity. This effect originates from the magnetostatic interaction between the neighboring magnetite nanocrystals. The preferable dipole alignment of the assembled nanoparticles is directed along the chain axis. Another system studied in this project includes polymer-particle responsive surface coatings. Tethered polymer chains and particles bearing different functionalities change surface properties upon restructuring of the composite layer. When the environment favors polymer swelling (good solvent), the polymer chains segregate to the surface and cover the particles. In the opposite case

  20. Harmonic decomposition of magneto-optical signal from superparamagnetic Fe3O4 nanoparticles

    Science.gov (United States)

    Syed, Maarij; Patterson, Cody; Takemura, Yasushi

    Superparamagnetic nanoparticles (SPNPs) are expected to play an increasingly important role in bio-imaging and therapy. These applications rely on understanding SPNPs magnetic properties which have been successfully characterized by AC Faraday rotation (FR). AC FR is used here to build on results presented earlier by measuring solutions of surfactant-coated magnetite nanoparticles. The setup employs a He-Ne laser, polarizing components, a sinusoidal B-field, and a lock-in detection scheme to measure the SPNPs FR. Such a setup provides a novel, economical way of determining important magnetic properties of SPNPs. The main intensity signal (1f) along with higher harmonics are collected and analyzed to calculate quantities such as the Verdet constant and the magnetic moment. We hope further analysis can also reveal details of size distribution and relaxation times of SPNPs. We will present results from samples with various concentrations as well as a particular concentration subjected to a range of B-field frequencies (between 800 Hz and 14 kHz). Findings are compared to results from more traditional techniques like magnetic susceptibility measurements, magnetic force microscopy, etc. We will also address the comparative advantages of this technique and its limitations.

  1. Size-controlled synthesis of superparamagnetic iron oxide nanoparticles and their surface coating by gold for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Maleki, H. [Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Simchi, A., E-mail: simchi@sharif.edu [Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Department of Material Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Imani, M. [Novel Drug Delivery Systems Department, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of); Costa, B.F.O. [CEMDRX, Department of Physics, University of Coimbra, P-3004-516 Coimbra (Portugal)

    2012-11-15

    The size mono-dispersity, saturation magnetization, and surface chemistry of magnetic nanoparticles (NPs) are recognized as critical factors for efficient biomedical applications. Here, we performed modified water-in-oil inverse nano-emulsion procedure for preparation of stable colloidal superparamagnetic iron oxide NPs (SPIONs) with high saturation magnetization. To achieve mono-dispersed SPIONs, optimization process was probed on several important factors including molar ratio of iron salts [Fe{sup 3+} and Fe{sup 2+}], the concentration of ammonium hydroxide as reducing agent, and molar ratio of water to surfactant. The biocompatibility of the obtained NPs, at various concentrations, was evaluated via MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay and the results showed that the NPs were non-toxic at concentrations <0.1 mg/mL. Surface functionalization was performed by conformal coating of the NPs with a thin shell of gold ({approx}4 nm) through chemical reduction of attached gold salts at the surface of the SPIONs. The Fe{sub 3}O{sub 4} core/Au shell particles demonstrate strong plasmon resonance absorption and can be separated from solution using an external magnetic field. Experimental data from both physical and chemical determinations of the changes in particle size, surface plasmon resonance optical band, phase components, core-shell surface composition, and magnetic properties have confirmed the formation of the mono-dispersed core-shell nanostructure. - Highlights: Black-Right-Pointing-Pointer Increasing the concentration of iron salts, cubic-shape SPION NPs were formed. The magnetic saturation of the SPIONs was also increased. Black-Right-Pointing-Pointer The concentration of reducing agent exhibited marginal effect on the size of SPIONs but influenced the crystallinity of the NPs. A lower magnetic saturation was obtained at higher NH{sub 4}OH concentrations. Black-Right-Pointing-Pointer Mono-dispersed SPIONs can be prepared

  2. Superparamagnetic magnetite nanocrystals-graphene oxide nanocomposites: facile synthesis and their enhanced electric double-layer capacitor performance.

    Science.gov (United States)

    Wang, Qihua; Wang, Dewei; Li, Yuqi; Wang, Tingmei

    2012-06-01

    Superparamagnetic magnetite nanocrystals-graphene oxide (FGO) nanocomposites were successfully synthesized through a simple yet versatile one-step solution-processed approach at ambient conditions. Magnetite (Fe3O4) nanocrystals (NCs) with a size of 10-50 nm were uniformly deposited on the surfaces of graphene oxide (GO) sheets, which were confirmed by transmission electron microscopy (TEM) and high-angle annular dark field scanning transmission election microscopy (HAADF-STEM) studies. FGO with different Fe3O4 loadings could be controlled by simply manipulating the initial weight ratio of the precursors. The M-H measurements suggested that the as-prepared FGO nanocomposites have a large saturation magnetizations that made them can move regularly under an external magnetic field. Significantly, FGO nanocomposites also exhibit enhanced electric double-layer capacitor (EDLC) activity compared with pure Fe3O4 NCs and GO in terms of specific capacitance and high-rate charge-discharge.

  3. Drug-Carrying Magnetic Nanocomposite Particles for Potential Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    R. Asmatulu

    2009-01-01

    nanoparticles and poly (D,L-lactide-co-glycolide (PLGA for the purpose of magnetic targeted drug delivery. Magnetic nanoparticles (∼13 nm on average of magnetite were prepared by a chemical coprecipitation of ferric and ferrous chloride salts in the presence of a strong basic solution (ammonium hydroxide. An oil-in-oil emulsion/solvent evaporation technique was conducted at 7000 rpm and 1.5–2 hours agitation for the synthesis of nanocomposite spheres. Specifically, PLGA and drug were first dissolved in acetonitrile (oily phase I and combined with magnetic nanoparticles, then added dropwise into viscous paraffin oil combined with Span 80 (oily phase II. With different contents (0%, 10%, 20%, and 25% of magnetite, the nanocomposite spheres were evaluated in terms of particle size, morphology, and magnetic properties by using dynamic laser light scattering (DLLS, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and a superconducting quantum interference device (SQUID. The results indicate that nanocomposite spheres (200 nm to 1.1 μm in diameter are superparamagnetic above the blocking temperature near 40 K and their magnetization saturates above 5 000 Oe at room temperature.

  4. TEA controllable preparation of magnetite nanoparticles (Fe3O4 NPs) with excellent magnetic properties

    Science.gov (United States)

    Han, Chengliang; Zhu, Dejie; Wu, Hanzhao; Li, Yao; Cheng, Lu; Hu, Kunhong

    2016-06-01

    A fast and controllable synthesis method for superparamagnetic magnetite nanoparticles (Fe3O4 NPs) was developed in Fe(III)-triethanolamine (TEA) solution. The phase structure, morphology and particle size of the as-synthesized samples were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results showed that the magnetic particles were pure Fe3O4 with mean sizes of approximately 10 nm. The used TEA has key effects on the formation of well dispersing Fe3O4 NPs. Vibrating sample magnetometer (VSM) result indicated that the as-obtained Fe3O4 NPs exhibited superparamagnetic behavior and the saturation magnetization (Ms) was about 70 emu/g, which had potential applications in magnetic science and technology.

  5. Low coercive field and conducting nanocomposite formed by Fe3O4 and poly(thiophene)

    International Nuclear Information System (INIS)

    Silva, R.A.; Santos, M.J.L.; Rinaldi, A.W.; Zarbin, A.J.G.; Oliveira, M.M.; Santos, I.A.; Cotica, L.F.; Coellho, A.A.; Rubira, A.F.; Girotto, E.M.

    2007-01-01

    Magnetite and poly(thiophene) composites have been produced by in situ monomer oxidation. Fourier transform infrared (FTIR) and X-ray diffraction (XRD) confirmed the presence of Fe 3 O 4 as particle agglomerates ranging from 15 to ca. 54 nm in size. Transmission electron micrographs (TEMs) revealed a face-to-face structure in both the pure magnetite and the nanocomposite. Typical superparamagnetic (ferrimagnetic) curves have been observed, whereas the relatively weak magnetic field employed in measurement, 200 Oe, was sufficient to split the curves completely. Zero field cooling (ZFC) and field cooling (FC) curves coincide only above room temperature, indicating that the characteristic blocking temperature (T B ) for superparamagnetic particles in this assembly is above room temperature. - Graphical abstract: TEM image of magnetite/poly(thiophene) nanocomposite

  6. Magnetic interactions between nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Hansen, Mikkel Fougt; Frandsen, Cathrine

    2010-01-01

    We present a short overview of the influence of inter-particle interactions on the properties of magnetic nanoparticles. Strong magnetic dipole interactions between ferromagnetic or ferrimagnetic particles, that would be superparamagnetic if isolated, can result in a collective state...... of nanoparticles. This collective state has many similarities to spin-glasses. In samples of aggregated magnetic nanoparticles, exchange interactions are often important and this can also lead to a strong suppression of superparamagnetic relaxation. The temperature dependence of the order parameter in samples...... of strongly interacting hematite nanoparticles or goethite grains is well described by a simple mean field model. Exchange interactions between nanoparticles with different orientations of the easy axes can also result in a rotation of the sub-lattice magnetization directions....

  7. High Photocatalytic Activity of Fe3O4-SiO2-TiO2 Functional Particles with Core-Shell Structure

    Directory of Open Access Journals (Sweden)

    Chenyang Xue

    2013-01-01

    Full Text Available This paper describes a novel method of synthesizing Fe3O4-SiO2-TiO2 functional nanoparticles with the core-shell structure. The Fe3O4 cores which were mainly superparamagnetic were synthesized through a novel carbon reduction method. The Fe3O4 cores were then modified with SiO2 and finally encapsulated with TiO2 by the sol-gel method. The results of characterizations showed that the encapsulated 700 nm Fe3O4-SiO2-TiO2 particles have a relatively uniform size distribution, an anatase TiO2 shell, and suitable magnetic properties for allowing collection in a magnetic field. These magnetic properties, large area, relative high saturation intensity, and low retentive magnetism make the particles have high dispersibility in suspension and yet enable them to be recovered well using magnetic fields. The functionality of these particles was tested by measuring the photocatalytic activity of the decolouring of methyl orange (MO and methylene blue (MB under ultraviolet light and sunlight. The results showed that the introduction of the Fe3O4-SiO2-TiO2 functional nanoparticles significantly increased the decoloration rate so that an MO solution at a concentration of 10 mg/L could be decoloured completely within 180 minutes. The particles were recovered after utilization, washing, and drying and the primary recovery ratio was 87.5%.

  8. Two-step preparation of nano-scaled magnetic chitosan particles using Triton X-100 reversed-phase water-in-oil microemulsion system

    International Nuclear Information System (INIS)

    Zhou, Zhengkun; Jiang, Feihong; Lee, Tung-Ching; Yue, Tianli

    2013-01-01

    Highlights: •A new two-step route for nano-scaled magnetic chitosan particles preparation. •Triton X-100 reversed-phase microemulsion system was used for chitosan coating. •Narrow size distribution of magnetic chitosan nanoparticles was achieved. •Quantitative evaluation of recoverability for the magnetic chitosan nanoparticles. -- Abstract: A new two-step route for the preparation of nano-scaled magnetic chitosan particles has been developed, different from reported one-step in situ preparation and two-step preparation method of reversed-phase suspension, Triton X-100 reversed-phase water-in-oil microemulsion encapsulation method was employed in coating the pre-prepared Fe 3 O 4 nanoparticles with chitosan. The resultant magnetic chitosan particles owned a narrow size distribution ranging from 50 to 92 nm. X-ray diffraction patterns (XRD) indicated that the chitosan coating procedure did not change the spinal structure of Fe 3 O 4 magnetic nanoparticles. The results of Fourier transform infrared (FTIR) analysis and thermogravimetric analysis (TGA) demonstrated that the chitosan was coated on Fe 3 O 4 nanoparticles and its average mass content was ∼50%. The saturated magnetization of the magnetic Fe 3 O 4 /chitosan nanoparticles reached 18.62 emu/g, meanwhile, the nanoparticles showed the characteristics of superparamagnetism. The magnetic chitosan nanoparticles showed a high recoverability of 99.99% in 10 min when pH exceeded 4. The results suggested that the as-prepared magnetic chitosan particles were nano-scaled with a narrow size distribution and a high recoverability

  9. Electron beam irradiation effect on nanostructured molecular sieve catalysts

    International Nuclear Information System (INIS)

    Yuan Zhongyong; Zhou Wuzong; Parvulescu, Viorica; Su Baolian

    2003-01-01

    Electron impact can induce chemical changes on particle surfaces of zeolites and molecular sieve catalysts. Some experimental observations of electron irradiation effect on molecular sieve catalysts are presented, e.g., electron-beam-induced growth of bare silver nanowires from zeolite crystallites, formation of vesicles in calcium phosphate, migration of microdomains in iron-oxide doped mesoporous silicas, structural transformation from mesostructured MCM-41 to microporous ZSM-5, etc. The formation mechanisms of the surface structures are discussed

  10. Surface spin tunneling and heat dissipation in magnetic nanoparticles

    Science.gov (United States)

    Palakkal, Jasnamol P.; Obula Reddy, Chinna; Paulose, Ajeesh P.; Sankar, Cheriyedath Raj

    2018-03-01

    Quantum superparamagnetic state is observed in ultra-fine magnetic particles, which is often experimentally identified by a significant hike in magnetization towards low temperatures much below the superparamagnetic blocking temperature. Here, we report experimentally observed surface spin relaxation at low temperatures in hydrated magnesium ferrite nanoparticles of size range of about 5 nm. We observed time dependent oscillatory magnetization of the sample below 2.5 K, which is attributed to surface spin tunneling. Interestingly, we observed heat dissipation during the process by using an external thermometer.

  11. Double-Layer Magnetic Nanoparticle-Embedded Silica Particles for Efficient Bio-Separation.

    Directory of Open Access Journals (Sweden)

    San Kyeong

    Full Text Available Superparamagnetic Fe3O4 nanoparticles (NPs based nanomaterials have been exploited in various biotechnology fields including biomolecule separation. However, slow accumulation of Fe3O4 NPs by magnets may limit broad applications of Fe3O4 NP-based nanomaterials. In this study, we report fabrication of Fe3O4 NPs double-layered silica nanoparticles (DL MNPs with a silica core and highly packed Fe3O4 NPs layers. The DL MNPs had a superparamagnetic property and efficient accumulation kinetics under an external magnetic field. Moreover, the magnetic field-exposed DL MNPs show quantitative accumulation, whereas Fe3O4 NPs single-layered silica nanoparticles (SL MNPs and silica-coated Fe3O4 NPs produced a saturated plateau under full recovery of the NPs. DL MNPs are promising nanomaterials with great potential to separate and analyze biomolecules.

  12. The influence of ligand charge and length on the assembly of Brome mosaic virus derived virus-like particles with magnetic core

    Science.gov (United States)

    Mieloch, Adam A.; Krecisz, Monika; Rybka, Jakub D.; Strugała, Aleksander; Krupiński, Michał; Urbanowicz, Anna; Kozak, Maciej; Skalski, Bohdan; Figlerowicz, Marek; Giersig, Michael

    2018-03-01

    Virus-like particles (VLPs) have sparked a great interest in the field of nanobiotechnology and nanomedicine. The introduction of superparamagnetic nanoparticles (SPIONs) as a core, provides potential use of VLPs in the hyperthermia therapy, MRI contrast agents and magnetically-powered delivery agents. Magnetite NPs also provide a significant improvement in terms of VLPs stability. Moreover employing viral structural proteins as self-assembling units has opened a new paths for targeted therapy, drug delivery systems, vaccines design, and many more. In many cases, the self-assembly of a virus strongly depends on electrostatic interactions between positively charged groups of the capsid proteins and negatively charged nucleic acid. This phenomenon imposes the negative net charge as a key requirement for the core nanoparticle. In our experiments, Brome mosaic virus (BMV) capsid proteins isolated from infected plants Hordeum vulgare were used. Superparamagnetic iron oxide nanoparticles (Fe3O4) with 15 nm in diameter were synthesized by thermal decomposition and functionalized with COOH-PEG-PL polymer or dihexadecylphosphate (DHP) in order to provide water solubility and negative charge required for the assembly. Nanoparticles were characterized by Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS), Zeta Potential, Fourier Transformed Infrared Spectroscopy (FTIR) and Superconducting Quantum Interference Device (SQUID) magnetometry. TEM and DLS study were conducted to verify VLPs creation. This study demonstrates that the increase of negative surface charge is not a sufficient factor determining successful assembly. Additional steric interactions provided by longer ligands are crucial for the assembly of BMV SPION VLPs and may enhance the colloidal stability.

  13. The influence of ligand charge and length on the assembly of Brome mosaic virus derived virus-like particles with magnetic core

    Directory of Open Access Journals (Sweden)

    Adam A. Mieloch

    2018-03-01

    Full Text Available Virus-like particles (VLPs have sparked a great interest in the field of nanobiotechnology and nanomedicine. The introduction of superparamagnetic nanoparticles (SPIONs as a core, provides potential use of VLPs in the hyperthermia therapy, MRI contrast agents and magnetically-powered delivery agents. Magnetite NPs also provide a significant improvement in terms of VLPs stability. Moreover employing viral structural proteins as self-assembling units has opened a new paths for targeted therapy, drug delivery systems, vaccines design, and many more. In many cases, the self-assembly of a virus strongly depends on electrostatic interactions between positively charged groups of the capsid proteins and negatively charged nucleic acid. This phenomenon imposes the negative net charge as a key requirement for the core nanoparticle. In our experiments, Brome mosaic virus (BMV capsid proteins isolated from infected plants Hordeum vulgare were used. Superparamagnetic iron oxide nanoparticles (Fe3O4 with 15 nm in diameter were synthesized by thermal decomposition and functionalized with COOH-PEG-PL polymer or dihexadecylphosphate (DHP in order to provide water solubility and negative charge required for the assembly. Nanoparticles were characterized by Transmission Electron Microscopy (TEM, Dynamic Light Scattering (DLS, Zeta Potential, Fourier Transformed Infrared Spectroscopy (FTIR and Superconducting Quantum Interference Device (SQUID magnetometry. TEM and DLS study were conducted to verify VLPs creation. This study demonstrates that the increase of negative surface charge is not a sufficient factor determining successful assembly. Additional steric interactions provided by longer ligands are crucial for the assembly of BMV SPION VLPs and may enhance the colloidal stability.

  14. [Blood detoxification using superparamagnetic nanoparticles (magnetic hemodialysis)].

    Science.gov (United States)

    Ciochină, Al D; Untu, Alina; Iacob, Gh

    2010-01-01

    The authors present an experimental study realized in order to simulate blood detoxification with the help of supermagnetic nanoparticles. The particles used are red oxide nanoparticles which are considered to be equivalent from a magnetic susceptibility and dynamic diameter point of view to the complex structures of magnetite nanoparticles. Two types of custom HGMS matrices have been used--a threaded one and a micro-spheres one. For testing red oxide particles have been purposefully created to have a lower magnetic susceptibility than magnetite or iron-carbon particles used in other experimental studies. Different concentrations of iron oxide, glycerine and water have been prepared, creating a 3.5 cP viscosity (equivalent to the one of the blood); the concentrations of the prepared solutions varied between 0.16 mg/mL and 2 mg/mL, with the background magnetic field value ranging from 0.25 T to 0.9 T, in order to observer the effectiveness of filtering at different intensities. The efficiency of HGMS filtering in experimental conditions was almost completely successful (99.99%) in all experimental conditions, both with the threaded and micro-spheres matrices. The high gradient magnetic separation system of nanoparticles has maximum efficiency and has the potential of being implemented in a medical blood detoxification device.

  15. Tangential Flow Ultrafiltration Allows Purification and Concentration of Lauric Acid-/Albumin-Coated Particles for Improved Magnetic Treatment.

    Science.gov (United States)

    Zaloga, Jan; Stapf, Marcus; Nowak, Johannes; Pöttler, Marina; Friedrich, Ralf P; Tietze, Rainer; Lyer, Stefan; Lee, Geoffrey; Odenbach, Stefan; Hilger, Ingrid; Alexiou, Christoph

    2015-08-14

    Superparamagnetic iron oxide nanoparticles (SPIONs) are frequently used for drug targeting, hyperthermia and other biomedical purposes. Recently, we have reported the synthesis of lauric acid-/albumin-coated iron oxide nanoparticles SEON(LA-BSA), which were synthesized using excess albumin. For optimization of magnetic treatment applications, SPION suspensions need to be purified of excess surfactant and concentrated. Conventional methods for the purification and concentration of such ferrofluids often involve high shear stress and low purification rates for macromolecules, like albumin. In this work, removal of albumin by low shear stress tangential ultrafiltration and its influence on SEON(LA-BSA) particles was studied. Hydrodynamic size, surface properties and, consequently, colloidal stability of the nanoparticles remained unchanged by filtration or concentration up to four-fold (v/v). Thereby, the saturation magnetization of the suspension can be increased from 446.5 A/m up to 1667.9 A/m. In vitro analysis revealed that cellular uptake of SEON(LA-BSA) changed only marginally. The specific absorption rate (SAR) was not greatly affected by concentration. In contrast, the maximum temperature Tmax in magnetic hyperthermia is greatly enhanced from 44.4 °C up to 64.9 °C by the concentration of the particles up to 16.9 mg/mL total iron. Taken together, tangential ultrafiltration is feasible for purifying and concentrating complex hybrid coated SPION suspensions without negatively influencing specific particle characteristics. This enhances their potential for magnetic treatment.

  16. New Detection Modality for Label-Free Quantification of DNA in Biological Samples via Superparamagnetic Bead Aggregation

    Science.gov (United States)

    Leslie, Daniel C.; Li, Jingyi; Strachan, Briony C.; Begley, Matthew R.; Finkler, David; Bazydlo, Lindsay L.; Barker, N. Scott; Haverstick, Doris; Utz, Marcel; Landers, James P.

    2012-01-01

    Combining DNA and superparamagnetic beads in a rotating magnetic field produces multiparticle aggregates that are visually striking, and enables label-free optical detection and quantification of DNA at levels in the picogram per microliter range. DNA in biological samples can be quantified directly by simple analysis of optical images of microfluidic wells placed on a magnetic stirrer without DNA purification. Aggregation results from DNA/bead interactions driven either by the presence of a chaotrope (a nonspecific trigger for aggregation) or by hybridization with oligonucleotides on functionalized beads (sequence-specific). This paper demonstrates quantification of DNA with sensitivity comparable to that of the best currently available fluorometric assays. The robustness and sensitivity of the method enable a wide range of applications, illustrated here by counting eukaryotic cells. Using widely available and inexpensive benchtop hardware, the approach provides a highly accessible low-tech microscale alternative to more expensive DNA detection and cell counting techniques. PMID:22423674

  17. Effect of substrate interface on the magnetism of supported iron nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Balan, A. [Swiss Light Source, Paul Scherrer Institut (PSI), Villigen CH-5232 (Switzerland); Fraile Rodríguez, A. [Departament de Física Fonamental and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, E-08028 Barcelona (Spain); Vaz, C.A.F.; Kleibert, A.; Nolting, F. [Swiss Light Source, Paul Scherrer Institut (PSI), Villigen CH-5232 (Switzerland)

    2015-12-15

    In situ X-ray photo-emission electron microscopy is used to investigate the magnetic properties of iron nanoparticles deposited on different single crystalline substrates, including Si(001), Cu(001), W(110), and NiO(001). We find that, in our room temperature experiments, Fe nanoparticles deposited on Si(001) and Cu(001) show both superparamagnetic and magnetically stable (blocked) ferromagnetic states, while Fe nanoparticles deposited on W(110) and NiO(001) show only superparamagnetic behaviour. The dependence of the magnetic behaviour of the Fe nanoparticles on the contact surface is ascribed to the different interfacial bonding energies, higher for W and NiO, and to a possible relaxation of point defects within the core of the nanoparticles on these substrates, that have been suggested to stabilise the ferromagnetic state at room temperature when deposited on more inert surfaces such as Si and Cu. - Highlights: • In situ X-ray photo-emission electron microscopy study on iron nanoparticles. • Magnetically blocked particles are found on Si(001) and Cu(001). • Superparamagnetic particles are found on W(110) and Ni0(001). • The substrate dependent behavior is ascribed to the different bonding energies.

  18. Manipulation of Schwann cell migration across the astrocyte boundary by polysialyltransferase-loaded superparamagnetic nanoparticles under magnetic field

    Directory of Open Access Journals (Sweden)

    Xia B

    2016-12-01

    Full Text Available Bing Xia,* Liangliang Huang,* Lei Zhu, Zhongyang Liu, Teng Ma, Shu Zhu, Jinghui Huang, Zhuojing Luo Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China *These authors contributed equally to this work Abstract: Schwann cell (SC transplantation is an attractive strategy for spinal cord injury (SCI. However, the efficacy of SC transplantation has been limited by the poor migratory ability of SCs in the astrocyte-rich central nervous system (CNS environment and the inability to intermingle with the host astrocyte. In this study, we first magnetofected SCs by polysialyltransferase-functionalized superparamagnetic iron oxide nanoparticles (PST/SPIONs to induce overexpression of polysialylation of neural cell adhesion molecule (PSA-NCAM to enhance SC migration ability, before manipulating the direction of SC migration with the assistance of an applied magnetic field (MF. It was found that magnetofection with PST/SPIONs significantly upregulated the expression of PSA-NCAM in SCs, which significantly enhanced the migration ability of SCs, but without preferential direction in the absence of MF. The number and averaged maximum distance of SCs with PST/SPIONs migrating into the astrocyte domain were significantly enhanced by an applied MF. In a 300 µm row along the astrocyte boundary, the number of SCs with PST/SPIONs migrating into the astrocyte domain under an MF was 2.95 and 6.71 times higher than that in the absence of MF and the intact control SCs, respectively. More interestingly, a confrontation assay demonstrated that SCs with PST/SPIONs were in close contact with astrocytes and no longer formed boundaries in the presence of MF. In conclusion, SCs with PST/SPIONs showed enhanced preferential migration along the axis of a magnetic force, which might be beneficial for the formation of Büngner bands in the CNS. These findings raise the possibilities of enhancing the

  19. Evidence of magnetic dipolar interaction in micrometric powders of the Fe50Mn10Al40 system: Melted alloys

    International Nuclear Information System (INIS)

    Pérez Alcázar, G.A.; Zamora, L.E.; Tabares, J.A.; Piamba, J.F.; González, J.M.; Greneche, J.M.; Martinez, A.; Romero, J.J.; Marco, J.F.

    2013-01-01

    Powders of melted disordered Fe 50 Mn 10 Al 40 alloy were separated at different mean particle sizes as well as magnetically and structurally characterized. All the samples are BCC and show the same nanostructure. Particles larger than 250 μm showed a lamellar shape compared to smaller particles, which exhibited a more regular form. All the samples are ferromagnetic at room temperature and showed reentrant spin-glass (RSG) and superparamagnetic (SP)-like behaviors between 30 and 60 K and 265 and > 280 K, respectively, as a function of frequency and particle size. The freezing temperature increases with increasing particle size while the blocking one decreases with particle size. The origin of these magnetic phenomena relies in the internal disordered character of samples and the competitive interaction of Fe and Mn atoms. The increase of their critical freezing temperature with increasing mean particle size is due to the increase of the magnetic dipolar interaction between the magnetic moment of each particle with the field produced by the other magnetic moments of their surrounding particles. - Highlights: ► The effect of particle size in microsized powders of Fe 50 Mn 10 Al 40 melted disordered alloy is studied. ► Dipolar magnetic interaction between particles exists and this changes with the particle size. ► For all the particle sizes the reentrant spin- glass and the superparamagnetic-like phases exist. ► RSG and SP critical temperatures increase with increasing the dipolar magnetic interaction (the mean particle size).

  20. MZnFe{sub 2}O{sub 4} (M = Ni, Mn) cubic superparamagnetic nanoparticles obtained by hydrothermal synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Freire, R. M. [Universidade Federal do Ceara-UFC, Grupo de Quimica de Materiais Avancados (GQMAT)- Departamento de Quimica Analitica e Fisico-Quimica (Brazil); Ribeiro, T. S.; Vasconcelos, I. F. [Universidade Federal do Ceara, Departamento de Engenharia Metalurgica e de Materiais (Brazil); Denardin, J. C. [Universidad de Santiago de Chile, USACH, Departamento de Fisica (Chile); Barros, E. B. [Universidade Federal do Ceara-UFC, Departamento de Fisica (Brazil); Mele, Giuseppe [Universita del Salento, Dipartimento di Ingegneria dell' Innovazione (Italy); Carbone, L. [IPCF-CNR, UOS Pisa (Italy); Mazzetto, S. E.; Fechine, P. B. A., E-mail: fechine@ufc.br [Universidade Federal do Ceara-UFC, Grupo de Quimica de Materiais Avancados (GQMAT)- Departamento de Quimica Analitica e Fisico-Quimica (Brazil)

    2013-05-15

    MZnFe{sub 2}O{sub 4} (M = Ni or Mn) cubic nanoparticles have been prepared by hydrothermal synthesis in mild conditions and short time without any procedure of calcinations. The structural and magnetic properties of the mixed ferrites were investigated by X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Moessbauer spectroscopy, vibrating sample magnetometer, and Transmission electron microscopy (TEM). X-ray analysis showed peaks characteristics of the spinel phase. The average diameter of the nanoparticles observed by TEM measurements was approximately between 4 and 10 nm. Spectroscopy study of the spinel structure was performed based on Group Theory. The predicted bands were observed in FTIR and Raman spectrum. The magnetic parameters and Moessbauer spectroscopy were measured at room temperature and superparamagnetic behavior was observed for mixed ferrites. This kind of nanoparticles can be used as precursor in drug delivery systems, magnetic hyperthermia, ferrofluids, or magnetic imaging contrast agents.

  1. Cellular Imaging at 1.5 T: Detecting Cells in Neuroinflammation using Active Labeling with Superparamagnetic Iron Oxide

    Directory of Open Access Journals (Sweden)

    Ayman J. Oweida

    2004-04-01

    Full Text Available The ability to visualize cell infiltration in experimental autoimmune encephalomyelitis (EAE, a well-known animal model for multiple sclerosis in humans, was investigated using a clinical 1.5-T magnetic resonance imaging (MRI scanner, a custom-built, high-strength gradient coil insert, a 3-D fast imaging employing steady-state acquisition (FIESTA imaging sequence and a superparamagnetic iron oxide (SPIO contrast agent. An “active labeling” approach was used with SPIO administered intravenously during inflammation in EAE. Our results show that small, discrete regions of signal void corresponding to iron accumulation in EAE brain can be detected using FIESTA at 1.5 T. This work provides early evidence that cellular abnormalities that are the basis of diseases can be probed using cellular MRI and supports our earlier work which indicates that tracking of iron-labeled cells will be possible using clinical MR scanners.

  2. Influence of annealing temperature on structural and magnetic properties of MnFe2O4 nanoparticles

    Directory of Open Access Journals (Sweden)

    Surowiec Zbigniew

    2015-03-01

    Full Text Available Nanoparticles of manganese ferrite were obtained by the impregnation of highly ordered mesoporous MCM-41 silica support. The investigated sample contained 20% wt. Fe. The obtained nanocrystallites were strongly dispersed in silica matrix and their size was about 2 nm. The sample annealing at 500°C led to increase of particle size to about 5 nm. The Mössbauer spectroscopy investigations performed at room temperature show on occurrence of MnFe2O4 nanoparticle in superparamagnetic state for the sample annealed in all temperatures. The coexistence of superparamagnetic and ferromagnetic phase was observed at liquid nitrogen temperature. The sample annealed at 400°C and 500°C has bigger manganese ferrite particle and better crystallized structure. One can assign them the discrete hyperfine magnetic field components.

  3. Rock Magnetic Characterization of fine Particles from car Engines, Break pads and Tobacco: An Environmental Pilot Study

    Science.gov (United States)

    Herrero-Bervera, E.; Lopez, V. A.; Gerstnecker, K.; Swilley, B.

    2017-12-01

    Today, it is very well known that small magnetic particles are very harmful to the health of humans. For the first time we have conducted an environmental pilot study of fine magnetic particles on the island of Oahu, Hawaii, of particulate matter (pm) 60, pm=10, and pm= 2.5. In order to do a rock magnetic characterization we have preformed low field susceptibility versus temperature (k-T) experiments to determine the Curie points of small particles collected from exhaust pipes, as well as from brake pads of 4 different types of car engines using octane ratings of 85, 87 and 92. The Curie point determinations are very well defined and range from 292 °C through 393 °C to 660 °C. In addition, we have conducted magnetic granulometry experiments on raw tobacco, burnt ashes as well as on car engines and brake pads in question. The results of the experiments show ferro- and ferrimagnetic hysteresis loops with magnetic grain sizes ranging from superparamagnetic-multidomain (SP_MD), multi-domain (MD) and pseudo-single domain (PSD) shown on the modified Day et al. diagram of Dunlop (2002). Thus far, the results we have obtained from this pilot study are in agreement with other studies conducted from cigarette ashes from Bulgaria (Jordanova et al., 2005). Our results could be correlated to the traffic-related PM in Rome, Italy where the SP fraction mainly occurs as coating of MD particles that originated by localized stress in the oxidized outer shell surrounding the unoxidized core of magnetite like grains as published by Sagnotti and Winkler (2012).

  4. Synthesis of flower-like BaTiO3/Fe3O4 hierarchically structured particles and their electrorheological and magnetic properties.

    Science.gov (United States)

    Wang, Baoxiang; Yin, Yichao; Liu, Chenjie; Yu, Shoushan; Chen, Kezheng

    2013-07-21

    Flower-like BaTiO3/Fe3O4 hierarchically structured particles composed of nano-scale structures on micro-scale materials were synthesized by a simple solvothermal approach and characterized by the means of X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), magnetic testing and rotary viscometer. The influences on the morphology and structure of solvothermal times, type and amount of surfactant, EG : H2O ratio, etc. were studied. Magnetic testing results show that the samples have strong magnetism and they exhibit superparamagnetic behavior, as evidenced by no coercivity and the remanence at room temperature, due to their very small sizes, observed on the M-H loop. The saturation magnetization (M(s)) value can achieve 18.3 emu g(-1). The electrorheological (ER) effect was investigated using a suspension of the flower-like BaTiO3/Fe3O4 hierarchically structured particles dispersed in silicone oil. We can observe a slight shear-thinning behavior of shear viscosity at a low shear rate region even at zero applied electric field and a Newtonian fluid behavior at high shear rate regions.

  5. Magnetic hyperthermia with hard-magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kashevsky, Bronislav E., E-mail: bekas@itmo.by [A.V Luikov Heat and Mass Transfer Institute, Belarus Academy of Sciences, P. Brovka str. 15, Minsk 220072 (Belarus); Kashevsky, Sergey B.; Korenkov, Victor S. [A.V Luikov Heat and Mass Transfer Institute, Belarus Academy of Sciences, P. Brovka str. 15, Minsk 220072 (Belarus); Istomin, Yuri P. [N. N. Alexandrov National Cancer Center of Belarus, Lesnoy-2, Minsk 223040 (Belarus); Terpinskaya, Tatyana I.; Ulashchik, Vladimir S. [Institute of Physiology, Belarus Academy of Sciences, Akademicheskaya str. 28, Minsk 220072 (Belarus)

    2015-04-15

    Recent clinical trials of magnetic hyperthermia have proved, and even hardened, the Ankinson-Brezovich restriction as upon magnetic field conditions applicable to any site of human body. Subject to this restriction, which is harshly violated in numerous laboratory and small animal studies, magnetic hyperthermia can relay on rather moderate heat source, so that optimization of the whole hyperthermia system remains, after all, the basic problem predetermining its clinical perspectives. We present short account of our complex (theoretical, laboratory and small animal) studies to demonstrate that such perspectives should be related with the hyperthermia system based on hard-magnetic (Stoner–Wohlfarth type) nanoparticles and strong low-frequency fields rather than with superparamagnetic (Brownian or Neél) nanoparticles and weak high-frequency fields. This conclusion is backed by an analytical evaluation of the maximum absorption rates possible under the field restriction in the ideal hard-magnetic (Stoner–Wohlarth) and the ideal superparamagnetic (single relaxation time) systems, by theoretical and experimental studies of the dynamic magnetic hysteresis in suspensions of movable hard-magnetic particles, by producing nanoparticles with adjusted coercivity and suspensions of such particles capable of effective energy absorption and intratumoral penetration, and finally, by successful treatment of a mice model tumor under field conditions acceptable for whole human body. - Highlights: • Hard-magnetic nanoparticles are shown superior for hyperthetmia to superparamagnetic. • Optimal system parameters are found from magnetic reversal model in movable particle. • Penetrating suspension of HM particles with aggregation-independent SAR is developed. • For the first time, mice with tumors are healed in AC field acceptable for human body.

  6. Inkjet Printing of High Aspect Ratio Superparamagnetic SU-8 Microstructures with Preferential Magnetic Directions

    Directory of Open Access Journals (Sweden)

    Loïc Jacot-Descombes

    2014-08-01

    Full Text Available Structuring SU-8 based superparamagnetic polymer composite (SPMPC containing Fe3O4 nanoparticles by photolithography is limited in thickness due to light absorption by the nanoparticles. Hence, obtaining thicker structures requires alternative processing techniques. This paper presents a method based on inkjet printing and thermal curing for the fabrication of much thicker hemispherical microstructures of SPMPC. The microstructures are fabricated by inkjet printing the nanoparticle-doped SU-8 onto flat substrates functionalized to reduce the surface energy and thus the wetting. The thickness and the aspect ratio of the printed structures are further increased by printing the composite onto substrates with confinement pedestals. Fully crosslinked microstructures with a thickness up to 88.8 μm and edge angle of 112° ± 4° are obtained. Manipulation of the microstructures by an external field is enabled by creating lines of densely aggregated nanoparticles inside the composite. To this end, the printed microstructures are placed within an external magnetic field directly before crosslinking inducing the aggregation of dense Fe3O4 nanoparticle lines with in-plane and out-of-plane directions.

  7. Towards MRI microarrays.

    Science.gov (United States)

    Hall, Andrew; Mundell, Victoria J; Blanco-Andujar, Cristina; Bencsik, Martin; McHale, Glen; Newton, Michael I; Cave, Gareth W V

    2010-04-14

    Superparamagnetic iron oxide nanometre scale particles have been utilised as contrast agents to image staked target binding oligonucleotide arrays using MRI to correlate the signal intensity and T(2)* relaxation times in different NMR fluids.

  8. Magnetic and Mössbauer studies of pure and Ti-doped YFeO {sub 3} nanocrystalline particles prepared by mechanical milling and subsequent sintering

    Energy Technology Data Exchange (ETDEWEB)

    Khalifa, N. O. [University of Khartoum, Physics Department, Faculty of Science (Sudan); Widatallah, H. M., E-mail: hishammw@squ.edu.om; Gismelseed, A. M.; Al-Mabsali, F. N.; Sofin, R. G. S. [Sultan Qaboos University, Physics Department, College of Science (Oman); Pekala, M. [University of Warsaw, Chemistry Department (Poland)

    2016-12-15

    Single-phased nanocrystalline particles of pure and 10 % Ti {sup 4+}-doped perovskite-related YFeO {sub 3}were prepared via mechanosynthesis at 450{sup ∘}C. This temperature is ∼150–350 {sup ∘}C lower than those at which the materials, in bulk form, are normally prepared. Rietveld refinements of the X-ray diffraction patterns reveal that the dopant Ti {sup 4+} ions prefer interstitial octahedral sites in the orthorhombic crystal lattice rather than those originally occupied by the expelled Fe {sup 3+} ions. Magnetic measurements show canted antiferromagnetism in both types of nanoparticles. Doping with Ti {sup 4+} lowers the Néel temperature of the YFeO {sub 3} nanoparticles from ∼ 586 K to ∼ 521 K. The Ti {sup 4+}-doped YFeO {sub 3} nanoparticles exhibit enhanced magnetization and coercivity but less magnetic hyperfine fields relative to the un-doped nanoparticles. The {sup 57}Fe Mössbauer spectra show ∼ 15 % of the YFeO {sub 3} nanoparticles and ∼22 of Ti {sup 4+}-doped YFeO {sub 3} ones to be superparamagnetic with blocking temperatures < 78 K. The broadened magnetic components in the {sup 57}Fe Mössbauer spectra suggest size-dependent hyperfine magnetic fields at the {sup 57}Fe nuclear sites and were associated with collective magnetic excitations. The {sup 57}Fe Mössbauer spectra show the local environments of the Fe {sup 3+} ions in the superparamagnetic nanoparticles to be more sensitive to the presence of the Ti {sup 4+} ions relative to those in the larger magnetic nanoparticles.

  9. Molecular magnetic resonance imaging of activated hepatic stellate cells with ultrasmall superparamagnetic iron oxide targeting integrin αvβ3 for staging liver fibrosis in rat model

    Directory of Open Access Journals (Sweden)

    Zhang C

    2016-03-01

    Full Text Available Caiyuan Zhang,1,* Huanhuan Liu,1,* Yanfen Cui,1,* Xiaoming Li,1 Zhongyang Zhang,1 Yong Zhang,2 Dengbin Wang1 1Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 2MR Advanced Application and Research Center, GE Healthcare China, Shanghai, People’s Republic of China *These authors contributed equally to this work Purpose: To evaluate the expression level of integrin αvβ3 on activated hepatic stellate cells (HSCs at different stages of liver fibrosis induced by carbon tetrachloride (CCl4 in rat model and the feasibility to stage liver fibrosis by using molecular magnetic resonance imaging (MRI with arginine-glycine-aspartic acid (RGD peptide modified ultrasmall superparamagnetic iron oxide nanoparticle (USPIO specifically targeting integrin αvβ3.Materials and methods: All experiments received approval from our Institutional Animal Care and Use Committee. Thirty-six rats were randomly divided into three groups of 12 subjects each, and intraperitoneally injected with CCl4 for either 3, 6, or 9 weeks. Controls (n=10 received pure olive oil. The change in T2* relaxation rate (ΔR2* pre- and postintravenous administration of RGD-USPIO or naked USPIO was measured by 3.0T clinical MRI and compared by one-way analysis of variance or the Student’s t-test. The relationship between expression level of integrin αvβ3 and liver fibrotic degree was evaluated by Spearman’s ranked correlation.Results: Activated HSCs were confirmed to be the main cell types expressing integrin αvβ3 during liver fibrogenesis. The protein level of integrin αv and β3 subunit expressed on activated HSCs was upregulated and correlated well with the progression of liver fibrosis (r=0.954, P<0.001; r=0.931, P<0.001, respectively. After injection of RGD-USPIO, there is significant difference in ΔR2* among rats treated with 0, 3, 6, and 9 weeks of CCl4 (P<0.001. The accumulation of iron particles in fibrotic liver specimen is

  10. Pramana – Journal of Physics | News

    Indian Academy of Sciences (India)

    Mn0.5Zn0.5Fe2O4 ferrite nanoparticles with tunable Curie temperature and saturation magnetization are synthesized using hydrothermal co-precipitation method. Particle size is controlled in the range of 54 to 135 Å by pH and incubation time of the reaction. All the particles exhibit super-paramagnetic behaviour at room ...

  11. Amendment of saturation magnetization, blocking temperature and particle size homogeneity in Mn-ferrite nanoparticles using Co-Zn substitution

    Energy Technology Data Exchange (ETDEWEB)

    Eltabey, M.M. [Basic Engineering Science Department, Faculty of Engineering, Menoufiya University (Egypt); Physics Department, Faculty of Science, Jazan University, Jazan (Saudi Arabia); Massoud, A.M., E-mail: Amassouda1@yahoo.com [Physics Department, Faculty of Science, Ain Shams University, Abbassia 11566, Cairo (Egypt); Radu, Cosmin [Lake Shore Cryotronics, Inc., Westerville, OH (United States)

    2017-01-15

    Nanocrystalline particles of compositions (CoZn){sub x}Mn{sub 1−x}Fe{sub 2}O{sub 4} were prepared by the coprecipitation method from stoichiometric aqueous solutions, where x varies from 0 to 0.3 in steps of 0.05. The synthesized powders were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and Fourier transform infrared spectroscopy (FT-IR). A vibrating sample magnetometer (VSM) was used to measure the hysteresis parameters at 300 and 6 K. Zero field cooling (ZFC) and field cooling (FC) curves were obtained at the temperature range 6–400 K and the blocking temperature values were determined. XRD analysis confirmed the formation of the obtained powder in a single cubic spinel phase and it showed also that the lattice parameter is decreasing with the increase of (Co-Zn) content. FT-IR measurements between 160 and 650 cm{sup −1} also confirmed the intrinsic cation vibrations of the spinel structure. The magnetic measurements showed that the saturation magnetization, coercivity and the values of blocking temperatures were increased with the (Co-Zn) content. TEM micrographs declared the improvement of particle size homogeneity with the increase of (Co-Zn) content without remarkable change in the average particle size. The obtained results were discussed in view of A-B sublattices interaction and superparamagnetic phenomenon. - Highlights: • Nanocrystalline particles of compositions (CoZn){sub x}Mn{sub 1-x}Fe{sub 2}O{sub 4} were prepared by the coprecipitation method. • XRD analysis showed that the lattice parameter is decreased with the increase of (Co,Zn) content. • The saturation magnetization is improved with the (Co,Zn) content. • Particle size homogeneity is enhanced with (Co,Zn) content. • The values of blocking temperatures are enhanced with increasing (Co,Zn) content.

  12. Chondroitin sulfate-polyethylenimine copolymer-coated superparamagnetic iron oxide nanoparticles as an efficient magneto-gene carrier for microRNA-encoding plasmid DNA delivery

    Science.gov (United States)

    Lo, Yu-Lun; Chou, Han-Lin; Liao, Zi-Xian; Huang, Shih-Jer; Ke, Jyun-Han; Liu, Yu-Sheng; Chiu, Chien-Chih; Wang, Li-Fang

    2015-04-01

    MicroRNA-128 (miR-128) is an attractive therapeutic molecule with powerful glioblastoma regulation properties. However, miR-128 lacks biological stability and leads to poor delivery efficacy in clinical applications. In our previous study, we demonstrated two effective transgene carriers, including polyethylenimine (PEI)-decorated superparamagnetic iron oxide nanoparticles (SPIONs) as well as chemically-conjugated chondroitin sulfate-PEI copolymers (CPs). In this contribution, we report optimized conditions for coating CPs onto the surfaces of SPIONs, forming CPIOs, for magneto-gene delivery systems. The optimized weight ratio of the CPs and SPIONs is 2 : 1, which resulted in the formation of a stable particle as a good transgene carrier. The hydrodynamic diameter of the CPIOs is ~136 nm. The gel electrophoresis results demonstrate that the weight ratio of CPIO/DNA required to completely encapsulate pDNA is >=3. The in vitro tests of CPIO/DNA were done in 293 T, CRL5802, and U87-MG cells in the presence and absence of an external magnetic field. The magnetofection efficiency of CPIO/DNA was measured in the three cell lines with or without fetal bovine serum (FBS). CPIO/DNA exhibited remarkably improved gene expression in the presence of the magnetic field and 10% FBS as compared with a gold non-viral standard, PEI/DNA, and a commercial magnetofection reagent, PolyMag/DNA. In addition, CPIO/DNA showed less cytotoxicity than PEI/DNA and PolyMag/DNA against the three cell lines. The transfection efficiency of the magnetoplex improved significantly with an assisted magnetic field. In miR-128 delivery, a microRNA plate array and fluorescence in situ hybridization were used to demonstrate that CPIO/pMIRNA-128 indeed expresses more miR-128 with the assisted magnetic field than without. In a biodistribution test, CPIO/Cy5-DNA showed higher accumulation at the tumor site where an external magnet is placed nearby.MicroRNA-128 (miR-128) is an attractive therapeutic molecule

  13. Two-step preparation of nano-scaled magnetic chitosan particles using Triton X-100 reversed-phase water-in-oil microemulsion system

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhengkun; Jiang, Feihong [College of Food Science and Engineering, Northwest A and F University, Yangling, Shaanxi 712100 (China); Lee, Tung-Ching, E-mail: lee@aesop.rutgers.edu [Department of Food Science, Rutgers, the State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901 (United States); Yue, Tianli, E-mail: yuetl305@nwsuaf.edu.cn [College of Food Science and Engineering, Northwest A and F University, Yangling, Shaanxi 712100 (China)

    2013-12-25

    Highlights: •A new two-step route for nano-scaled magnetic chitosan particles preparation. •Triton X-100 reversed-phase microemulsion system was used for chitosan coating. •Narrow size distribution of magnetic chitosan nanoparticles was achieved. •Quantitative evaluation of recoverability for the magnetic chitosan nanoparticles. -- Abstract: A new two-step route for the preparation of nano-scaled magnetic chitosan particles has been developed, different from reported one-step in situ preparation and two-step preparation method of reversed-phase suspension, Triton X-100 reversed-phase water-in-oil microemulsion encapsulation method was employed in coating the pre-prepared Fe{sub 3}O{sub 4} nanoparticles with chitosan. The resultant magnetic chitosan particles owned a narrow size distribution ranging from 50 to 92 nm. X-ray diffraction patterns (XRD) indicated that the chitosan coating procedure did not change the spinal structure of Fe{sub 3}O{sub 4} magnetic nanoparticles. The results of Fourier transform infrared (FTIR) analysis and thermogravimetric analysis (TGA) demonstrated that the chitosan was coated on Fe{sub 3}O{sub 4} nanoparticles and its average mass content was ∼50%. The saturated magnetization of the magnetic Fe{sub 3}O{sub 4}/chitosan nanoparticles reached 18.62 emu/g, meanwhile, the nanoparticles showed the characteristics of superparamagnetism. The magnetic chitosan nanoparticles showed a high recoverability of 99.99% in 10 min when pH exceeded 4. The results suggested that the as-prepared magnetic chitosan particles were nano-scaled with a narrow size distribution and a high recoverability.

  14. Preparation of molecularly imprinted nanoparticles with superparamagnetic susceptibility through atom transfer radical emulsion polymerization for the selective recognition of tetracycline from aqueous medium

    International Nuclear Information System (INIS)

    Dai, Jiangdong; Pan, Jianming; Xu, Longcheng; Li, Xiuxiu; Zhou, Zhiping; Zhang, Rongxian; Yan, Yongsheng

    2012-01-01

    Highlights: ► Atom transfer radical emulsion polymerization is a “living” and green technique. ► Nanoparticles can overcome mass transfer limitations and improve accessibility. ► Molecular imprinted nanoparticles with magnetic property for fast separation. ► The performance of imprinted nanoparticles was investigated in detail. ► Nanoparticles were used to selective recognize Tetracycline from water medium. - Abstract: In the work, we reported an effective method for the preparation of molecularly imprinted nanoparticles with superparamagnetic susceptibility through atom transfer radical emulsion polymerization (ATREP), and then as-prepared magnetic molecularly imprinted nanoparticles (MMINs) were evaluated as adsorbents for selective recognition of tetracycline (TC) molecules from aqueous medium. The resulting nanoparticles were characterized by FT-IR, TGA, VSM, SEM and TEM. The results demonstrated MMINs with a narrow diameter distribution were cross-linked with modified Fe 3 O 4 particles, composed of imprinted layer and exhibited good magnetic sensitivity, magnetic and thermal stability. Batch rebinding studies were carried out to determine the specific adsorption equilibrium, kinetics, and selective recognition. The estimated adsorption capacity of MMINs towards TC by the Langmuir isotherm model was 12.10 mg g −1 at 298 K, which was 6.33 times higher than that of magnetic non-molecularly imprinted nanoparticles (MNINs). The kinetic property of MMINs was well-described by the pseudo-second-order rate equation. The results of selective recognition experiments demonstrated outstanding affinity and selectivity towards TC over competitive antibiotics. The reusability of MMINs showed no obviously deterioration at least five repeated cycles in performance. In addition, the MMINs prepared were successfully applied to the extraction of TC from the spiked pork sample.

  15. A quantitative study of particle size effects in the magnetorelaxometry of magnetic nanoparticles using atomic magnetometry

    Energy Technology Data Exchange (ETDEWEB)

    Dolgovskiy, V. [Physics Department, University of Fribourg, CH-1700 Fribourg (Switzerland); Lebedev, V., E-mail: victor.lebedev@unifr.ch [Physics Department, University of Fribourg, CH-1700 Fribourg (Switzerland); Colombo, S.; Weis, A. [Physics Department, University of Fribourg, CH-1700 Fribourg (Switzerland); Michen, B.; Ackermann-Hirschi, L. [Adolphe Merkle Institute, University of Fribourg, CH-1700 Fribourg (Switzerland); Petri-Fink, A. [Adolphe Merkle Institute, University of Fribourg, CH-1700 Fribourg (Switzerland); Chemistry Department, University of Fribourg, CH-1700 Fribourg (Switzerland)

    2015-04-01

    The discrimination of immobilised superparamagnetic iron oxide nanoparticles (SPIONs) against SPIONs in fluid environments via their magnetic relaxation behaviour is a powerful tool for bio-medical imaging. Here we demonstrate that a gradiometer of laser-pumped atomic magnetometers can be used to record accurate time series of the relaxing magnetic field produced by pre-polarised SPIONs. We have investigated dry in vitro maghemite nanoparticle samples with different size distributions (average radii ranging from 14 to 21 nm) and analysed their relaxation using the Néel–Brown formalism. Fitting our model function to the magnetorelaxation (MRX) data allows us to extract the anisotropy constant K and the saturation magnetisation M{sub S} of each sample. While the latter was found not to depend on the particle size, we observe that K is inversely proportional to the (time- and size-) averaged volume of the magnetised particle fraction. We have identified the range of SPION sizes that are best suited for MRX detection considering our specific experimental conditions and sample preparation technique. - Highlights: • We studied magnetorelaxation of magnetic nanoparticles using atomic magnetometers. • We show that atomic magnetometers yield high precision MRX data. • The observed magnetorelaxation is well described by the moment superposition model. • Model fits allow extraction of nanoparticle material parameters of six samples. • All samples exhibit an unexpected size-dependent anisotropy constant.

  16. Enhanced nonlinear optical absorption and optical limiting properties of superparamagnetic spinel zinc ferrite decorated reduced graphene oxide nanostructures

    International Nuclear Information System (INIS)

    Saravanan, M.; Sabari Girisun, T.C.

    2017-01-01

    Highlights: • Nanospindle and nanosphere ZnFe_2O_4 were decorated upon GO by hydrothermal method. • All the samples show superparamagnetism with almost zero coercivity and remanence. • The observed nonlinearity arises due to effective two photon absorption process. • Tuning of NLO behavior with variation in amount of ZnFe_2O_4 upon GO were achieved. • ZnFe_2O_4-(15 wt%)GO show higher NLO coefficients and superior limiting actions. - Abstract: Nonlinear absorption and optical limiting properties of ZnFe_2O_4-rGO magnetic nanostructures was investigated by the Z-scan technique using Q-switched Nd:YAG laser (5 ns, 532 nm, 10 Hz) as an excitation source. Excited state absorption was the dominant process responsible for the observed nonlinearity in ZnFe_2O_4 decorated rGO which arises due to photo-generated charge carriers in the conduction band of zinc ferrite and increases in defects at the surface of rGO due to the incorporation of ZnFe_2O_4. The magnitude of the nonlinear absorption co-efficient was found to be in the order of 10"−"1"0 m/W. A noteworthy enhancement in the third-order NLO properties in ZnFe_2O_4-(15 wt%) rGO with those of individual counter parts and well known graphene composites was reported. Role of induced defects states (sp"3) arising from the functionalization of rGO in the enhancement of NLO response was explained through Raman studies. Earlier incorporation and distribution of ZnFe_2O_4 upon GO through one-step hydrothermal method was analyzed by XRD and FTIR. Formation of (nanospheres/nanospindles) ZnFe_2O_4 along with reduction of graphene oxide was confirmed through TEM analysis. VSM studies showed zinc ferrite decorated rGO posseses superparamagnetic behavior. The tuning of nonlinear optical and magnetic behavior with variation in the content of spinel ferrites upon reduced graphene oxide provides an easy way to attain tunable properties which are exceedingly required in both optoelectronics and photothermal therapy

  17. Enhanced nonlinear optical absorption and optical limiting properties of superparamagnetic spinel zinc ferrite decorated reduced graphene oxide nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, M.; Sabari Girisun, T.C., E-mail: sabarigirisun@bdu.ac.in

    2017-01-15

    Highlights: • Nanospindle and nanosphere ZnFe{sub 2}O{sub 4} were decorated upon GO by hydrothermal method. • All the samples show superparamagnetism with almost zero coercivity and remanence. • The observed nonlinearity arises due to effective two photon absorption process. • Tuning of NLO behavior with variation in amount of ZnFe{sub 2}O{sub 4} upon GO were achieved. • ZnFe{sub 2}O{sub 4}-(15 wt%)GO show higher NLO coefficients and superior limiting actions. - Abstract: Nonlinear absorption and optical limiting properties of ZnFe{sub 2}O{sub 4}-rGO magnetic nanostructures was investigated by the Z-scan technique using Q-switched Nd:YAG laser (5 ns, 532 nm, 10 Hz) as an excitation source. Excited state absorption was the dominant process responsible for the observed nonlinearity in ZnFe{sub 2}O{sub 4} decorated rGO which arises due to photo-generated charge carriers in the conduction band of zinc ferrite and increases in defects at the surface of rGO due to the incorporation of ZnFe{sub 2}O{sub 4}. The magnitude of the nonlinear absorption co-efficient was found to be in the order of 10{sup −10} m/W. A noteworthy enhancement in the third-order NLO properties in ZnFe{sub 2}O{sub 4}-(15 wt%) rGO with those of individual counter parts and well known graphene composites was reported. Role of induced defects states (sp{sup 3}) arising from the functionalization of rGO in the enhancement of NLO response was explained through Raman studies. Earlier incorporation and distribution of ZnFe{sub 2}O{sub 4} upon GO through one-step hydrothermal method was analyzed by XRD and FTIR. Formation of (nanospheres/nanospindles) ZnFe{sub 2}O{sub 4} along with reduction of graphene oxide was confirmed through TEM analysis. VSM studies showed zinc ferrite decorated rGO posseses superparamagnetic behavior. The tuning of nonlinear optical and magnetic behavior with variation in the content of spinel ferrites upon reduced graphene oxide provides an easy way to attain tunable

  18. In situ one-pot preparation of superparamagnetic hydrophilic porous microspheres for covalently immobilizing penicillin G acylase to synthesize amoxicillin

    Science.gov (United States)

    Xue, Ping; Gu, Yaohua; Su, Weiguang; Shuai, Huihui; Wang, Julan

    2016-01-01

    Magnetic hydrophilic porous microspheres were successfully one-pot synthesized for the first time via in situ inverse suspension polymerization of glycidyl methacrylate, N,N‧-methylene bisacrylamide and 2-hydroxyethyl methacrylate in the presence of Fe3+ and Fe2+ dispersed in formamide, which were denoted as magnetic Fe3O4-GMH microspheres. The morphology and properties of magnetic Fe3O4-GMH microspheres were characterized by SEM, VSM, XRD, FTIR, and so on. The formamide content had an important influence on the morphology of Fe3O4-GMH, and nearly perfectly spherical Fe3O4-GMH particles were formed when the amount of formamide was 15 ml. The diameters of the microspheres were in the range of 100-200 μm and Fe3O4-GMH exhibited superparamagnetic behavior with the saturation magnetization of 5.44 emu/g. The specific surface area of microspheres was 138.7 m2/g, the average pore diameter and pore volume were 15.1 nm and 0.60 cm3/g, respectively. The content of oxirane groups on Fe3O4-GMH was 0.40 mmol/g. After penicillin G acylase (PGA) was covalently immobilized on Fe3O4-GMH microspheres, the catalytic performance for amoxicillin synthesis by 6-aminopenicillanic acid and D-hydroxyphenylglycine methyl ester was largely improved. As a result, 90.1% amoxicillin yield and 1.18 of the synthesis/hydrolysis (S/H) ratio were achieved on PGA/Fe3O4-GMH with ethylene glycol as solvent, but only 62.6% amoxicillin yield and 0.37 of the S/H ratio were obtained on free PGA under the same reaction conditions. Furthermore, the amoxicillin yield and S/H ratio were still kept at 88.2% and 1.06, respectively after the immobilized PGA was magnetically separated and recycled for 10 times, indicating that PGA/Fe3O4-GMH had a very good reusability.

  19. Synthesis and functionalization of magnetite nanoparticles with different amino-functional alkoxysilanes

    International Nuclear Information System (INIS)

    Bini, Rafael A.; Marques, Rodrigo Fernando C.; Santos, Francisco J.; Chaker, Juliano A.; Jafelicci, Miguel

    2012-01-01

    Superparamagnetic iron oxide (SPIO) nanoparticles show great promise for many biotechnological applications. This paper addresses the synthesis and characterization of SPIO nanoparticles grafted with three different alkoxysilanes: 3-aminopropyl-triethoxysilane (APTES), 3-aminopropyl-ethyl-diethoxysilane (APDES) and 3-aminopropyl-diethy-ethoxysilane (APES). SPIO nanoparticles with an average particle diameter of 10 nm were prepared by chemical sonoprecipitation. As confirmed by Fourier transform infrared (FTIR) spectroscopy, silylation of these nanoparticles occurs through a two-step process. Decreasing the number of alkoxide groups reduced the concentration of free amino groups on the SPIO surface ([SPIO-NH 2 ]-APTES>APDES>APES). This phenomenon results from steric contributions and the formation of H-bonded amines provided by the ethyl groups present in the APDES and APES molecules. A simulation of SPIO nanoparticles in a saline physiologic solution shows that the ethyl groups impart larger steric stability onto the ferrofluids, which reduces aggregation. The magnetization (M) versus magnetic field (H) curves show that the synthesized iron oxide nanoparticles display superparamagnetic behavior. The zero-field cooling (ZFC) and field cooling (FC) curves show that the changes in the blocking temperature depend on the alkoxysilane-functionalized particle surface. - Highlights: → Superparamagnetic iron oxide nanoparticles were grafted with different alkoxysilanes. → The decrease of alkoxide group number reduced the concentration of free amino group. → We correlate the influence of the amino and ethyl groups with their colloidal property. → Inter-particles aggregation analyzed by magnetic measurement.

  20. Preparation and characterization of SPION functionalized via caffeic acid

    Energy Technology Data Exchange (ETDEWEB)

    Baykal, A. [Department of Chemistry, Fatih University, B.Çekmece, 34500 Istanbul (Turkey); Amir, Md., E-mail: mda.fatih@gmail.com [Department of Chemistry, Fatih University, B.Çekmece, 34500 Istanbul (Turkey); Günerb, S. [Department of Physics, Fatih University, B.Çekmece, 34500 Istanbul (Turkey); Sözeri, H. [TUBITAK-UME, National Metrology Institute, 41470 Gebze, Kocaeli (Turkey)

    2015-12-01

    Caffeic acid coated superparamagnetic iron oxide nanoparticles (SPION-CFA) was synthesized by reflux method. The structural, spectroscopic and magnetic properties were studied by X-ray diffraction (XRD), Transmission electron microscopy (TEM), Scanning electron microscopy (SEM), and Vibrating sample magnetometer (VSM) techniques. Thermal gravimetric analysis (TG) and Fourier transform infrared spectroscopy (FT-IR) confirmed the presence of CA on the surface of SPION. The theoretical analyzes performed on recorded room temperature VSM spectrum confirmed the formation of superparamagnetic nature of SPION-CFA. The particle size dependent Langevin function was applied to determine the average magnetic particle dimension (D{sub mag}) around 11.93 nm. In accordance, the average crystallite and particle sizes were obtained as 11.40 nm and ~12.00 nm from XRD and TEM measurements. The extrapolated specific saturation magnetization (σ{sub s}) is 44.11 emu/g and measured magnetic moment is 1.83 µ{sub B}. These parameters assign small order of magnetization for NPs with respect to bulk Fe{sub 3}O{sub 4}. Magnetic anisotropy was offered as uniaxial and calculated effective anisotropy constant (K{sub eff}) is 34.82×10{sup 4} Erg/g. The size-dependent saturation magnetization suggests the existence of a magnetically inactive layer as 1.035 nm for SPION-CFA. - Highlights: • The effects of CFA on the microstructure and magnetic properties of SPION have been investigated. • Product was structurally and magnetically characterized. • Product presented superparamagnetic behavior at room temperature.

  1. Preparation and characterization of SPION functionalized via caffeic acid

    International Nuclear Information System (INIS)

    Baykal, A.; Amir, Md.; Günerb, S.; Sözeri, H.

    2015-01-01

    Caffeic acid coated superparamagnetic iron oxide nanoparticles (SPION-CFA) was synthesized by reflux method. The structural, spectroscopic and magnetic properties were studied by X-ray diffraction (XRD), Transmission electron microscopy (TEM), Scanning electron microscopy (SEM), and Vibrating sample magnetometer (VSM) techniques. Thermal gravimetric analysis (TG) and Fourier transform infrared spectroscopy (FT-IR) confirmed the presence of CA on the surface of SPION. The theoretical analyzes performed on recorded room temperature VSM spectrum confirmed the formation of superparamagnetic nature of SPION-CFA. The particle size dependent Langevin function was applied to determine the average magnetic particle dimension (D mag ) around 11.93 nm. In accordance, the average crystallite and particle sizes were obtained as 11.40 nm and ~12.00 nm from XRD and TEM measurements. The extrapolated specific saturation magnetization (σ s ) is 44.11 emu/g and measured magnetic moment is 1.83 µ B . These parameters assign small order of magnetization for NPs with respect to bulk Fe 3 O 4 . Magnetic anisotropy was offered as uniaxial and calculated effective anisotropy constant (K eff ) is 34.82×10 4 Erg/g. The size-dependent saturation magnetization suggests the existence of a magnetically inactive layer as 1.035 nm for SPION-CFA. - Highlights: • The effects of CFA on the microstructure and magnetic properties of SPION have been investigated. • Product was structurally and magnetically characterized. • Product presented superparamagnetic behavior at room temperature

  2. State and development of new clinical contrast agents for MR diagnosis of liver diseases

    International Nuclear Information System (INIS)

    Rummeny, E.J.; Peters, P.E.

    1992-01-01

    MR contrast agents are developed for pharmaceutical manipulation of tissue signal intensities. Today it is widely recognized that MR contrast agents will play an increasingly important role in MR imaging of the liver. Contrast-enhanced MR-imaging allows to obtain simultaneously dynamic physiologic information and high anatomci detail. Up to now three major classes of MR contrast agents are available for clinical MR-imaging of the liver. These include paramagnetic perfusion agents, hepatobiliary agents, and superparamagnetic RES-specific iron oxide particles. A fourth class of contrast agents now in use for animal experiments includes ultrasmall superparamagnetic particles which can be targeted to extrareticuloendothelial structures such as asialoglycoprotein receptors of hepatocytes. In this article, we review recent advances in the development of MR contrast media and the clinical of contrast-enhanced MR imaging of the liver. (orig.) [de

  3. Superparamagnetic iron oxide nanoparticles labeling of bone marrow stromal (mesenchymal cells does not affect their "stemness".

    Directory of Open Access Journals (Sweden)

    Arun Balakumaran

    2010-07-01

    Full Text Available Superparamagnetic iron oxide nanoparticles (SPION are increasingly used to label human bone marrow stromal cells (BMSCs, also called "mesenchymal stem cells" to monitor their fate by in vivo MRI, and by histology after Prussian blue (PB staining. SPION-labeling appears to be safe as assessed by in vitro differentiation of BMSCs, however, we chose to resolve the question of the effect of labeling on maintaining the "stemness" of cells within the BMSC population in vivo. Assays performed include colony forming efficiency, CD146 expression, gene expression profiling, and the "gold standard" of evaluating bone and myelosupportive stroma formation in vivo in immuncompromised recipients. SPION-labeling did not alter these assays. Comparable abundant bone with adjoining host hematopoietic cells were seen in cohorts of mice that were implanted with SPION-labeled or unlabeled BMSCs. PB+ adipocytes were noted, demonstrating their donor origin, as well as PB+ pericytes, indicative of self-renewal of the stem cell in the BMSC population. This study confirms that SPION labeling does not alter the differentiation potential of the subset of stem cells within BMSCs.

  4. Evidence of magnetic dipolar interaction in micrometric powders of the Fe{sub 50}Mn{sub 10}Al{sub 40} system: Melted alloys

    Energy Technology Data Exchange (ETDEWEB)

    Perez Alcazar, G.A., E-mail: gpgeperez@gmail.com [Departamento de Fisica, Universidad del Valle, A. A. 25360, Cali (Colombia); Unidad Asociada ICMM-IMA, Apdo. 155, 28230 Las Rozas, Madrid (Spain); Zamora, L.E. [Departamento de Fisica, Universidad del Valle, A. A. 25360, Cali (Colombia); Unidad Asociada ICMM-IMA, Apdo. 155, 28230 Las Rozas, Madrid (Spain); Tabares, J.A.; Piamba, J.F. [Departamento de Fisica, Universidad del Valle, A. A. 25360, Cali (Colombia); Gonzalez, J.M. [Unidad Asociada ICMM-IMA, Apdo. 155, 28230 Las Rozas, Madrid (Spain); Greneche, J.M. [LUNAM, Universite du Maine, Institut des Molecules et Materiaux du Mans, UMR CNRS 6283, 72085 Le Mans Cedex 9 (France); Martinez, A. [Instituto de Magnetismo Aplicado, P.O. Box 155, 28230 Las Rozas (Spain); Romero, J.J. [Instituto de Ceramica y Vidrio, CSIC, C/Kelsen 5, 28049, Madrid (Spain); Marco, J.F. [Instituto de Quimica Fisica Rocasolano, CSIC, C/Serrano 119, 28006 Madrid (Spain)

    2013-02-15

    Powders of melted disordered Fe{sub 50}Mn{sub 10}Al{sub 40} alloy were separated at different mean particle sizes as well as magnetically and structurally characterized. All the samples are BCC and show the same nanostructure. Particles larger than 250 {mu}m showed a lamellar shape compared to smaller particles, which exhibited a more regular form. All the samples are ferromagnetic at room temperature and showed reentrant spin-glass (RSG) and superparamagnetic (SP)-like behaviors between 30 and 60 K and 265 and > 280 K, respectively, as a function of frequency and particle size. The freezing temperature increases with increasing particle size while the blocking one decreases with particle size. The origin of these magnetic phenomena relies in the internal disordered character of samples and the competitive interaction of Fe and Mn atoms. The increase of their critical freezing temperature with increasing mean particle size is due to the increase of the magnetic dipolar interaction between the magnetic moment of each particle with the field produced by the other magnetic moments of their surrounding particles. - Highlights: Black-Right-Pointing-Pointer The effect of particle size in microsized powders of Fe{sub 50}Mn{sub 10}Al{sub 40} melted disordered alloy is studied. Black-Right-Pointing-Pointer Dipolar magnetic interaction between particles exists and this changes with the particle size. Black-Right-Pointing-Pointer For all the particle sizes the reentrant spin- glass and the superparamagnetic-like phases exist. Black-Right-Pointing-Pointer RSG and SP critical temperatures increase with increasing the dipolar magnetic interaction (the mean particle size).

  5. Preparation and characterization of (3-aminopropyl)triethoxysilane-coated magnetite nanoparticles

    International Nuclear Information System (INIS)

    Yamaura, M.; Camilo, R.L.; Sampaio, L.C.; Macedo, M.A.; Nakamura, M.; Toma, H.E.

    2004-01-01

    Magnetite nanoparticles coated with (3-aminopropyl)triethoxysilane, NH 2 (CH 2 ) 3 Si(OC 2 H 5 ) 3 , were prepared by silanization reaction and characterized by X-ray diffractometry, transmission electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy and magnetization measurements. Both uncoated and organosilane-coated magnetite exhibited superparamagnetic behavior and strong magnetization at room temperature. Basic groups anchored on the external surface of the coated magnetite were observed. The superparamagnetic particles of coated magnetite are able to bind to biological molecules, drugs and metals and in this way remove them from medium by magnetic separation procedures

  6. Manipulation of Superparamagnetic Beads on Patterned Exchange-Bias Layer Systems for Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Arno Ehresmann

    2015-11-01

    Full Text Available A technology platform based on a remotely controlled and stepwise transport of an array arrangement of superparamagnetic beads (SPB for efficient molecular uptake, delivery and accumulation in the context of highly specific and sensitive analyte molecule detection for the application in lab-on-a-chip devices is presented. The near-surface transport of SPBs is realized via the dynamic transformation of the SPBs’ magnetic potential energy landscape above a magnetically stripe patterned Exchange-Bias (EB thin film layer systems due to the application of sub-mT external magnetic field pulses. In this concept, the SPB velocity is dramatically influenced by the magnitude and gradient of the magnetic field landscape (MFL above the magnetically stripe patterned EB substrate, the SPB to substrate distance, the magnetic properties of both the SPBs and the EB layer system, respectively, as well as by the properties of the external magnetic field pulses and the surrounding fluid. The focus of this review is laid on the specific MFL design in EB layer systems via light-ion bombardment induced magnetic patterning (IBMP. A numerical approach is introduced for the theoretical description of the MFL in comparison to experimental characterization via scanning Hall probe microscopy. The SPB transport mechanism will be outlined in terms of the dynamic interplay between the EB substrate’s MFL and the pulse scheme of the external magnetic field.

  7. Manipulation of Superparamagnetic Beads on Patterned Exchange-Bias Layer Systems for Biosensing Applications.

    Science.gov (United States)

    Ehresmann, Arno; Koch, Iris; Holzinger, Dennis

    2015-11-13

    A technology platform based on a remotely controlled and stepwise transport of an array arrangement of superparamagnetic beads (SPB) for efficient molecular uptake, delivery and accumulation in the context of highly specific and sensitive analyte molecule detection for the application in lab-on-a-chip devices is presented. The near-surface transport of SPBs is realized via the dynamic transformation of the SPBs' magnetic potential energy landscape above a magnetically stripe patterned Exchange-Bias (EB) thin film layer systems due to the application of sub-mT external magnetic field pulses. In this concept, the SPB velocity is dramatically influenced by the magnitude and gradient of the magnetic field landscape (MFL) above the magnetically stripe patterned EB substrate, the SPB to substrate distance, the magnetic properties of both the SPBs and the EB layer system, respectively, as well as by the properties of the external magnetic field pulses and the surrounding fluid. The focus of this review is laid on the specific MFL design in EB layer systems via light-ion bombardment induced magnetic patterning (IBMP). A numerical approach is introduced for the theoretical description of the MFL in comparison to experimental characterization via scanning Hall probe microscopy. The SPB transport mechanism will be outlined in terms of the dynamic interplay between the EB substrate's MFL and the pulse scheme of the external magnetic field.

  8. Accumulation and Toxicity of Superparamagnetic Iron Oxide Nanoparticles in Cells and Experimental Animals.

    Science.gov (United States)

    Jarockyte, Greta; Daugelaite, Egle; Stasys, Marius; Statkute, Urte; Poderys, Vilius; Tseng, Ting-Chen; Hsu, Shan-Hui; Karabanovas, Vitalijus; Rotomskis, Ricardas

    2016-08-19

    The uptake and distribution of negatively charged superparamagnetic iron oxide (Fe₃O₄) nanoparticles (SPIONs) in mouse embryonic fibroblasts NIH3T3, and magnetic resonance imaging (MRI) signal influenced by SPIONs injected into experimental animals, were visualized and investigated. Cellular uptake and distribution of the SPIONs in NIH3T3 after staining with Prussian Blue were investigated by a bright-field microscope equipped with digital color camera. SPIONs were localized in vesicles, mostly placed near the nucleus. Toxicity of SPION nanoparticles tested with cell viability assay (XTT) was estimated. The viability of NIH3T3 cells remains approximately 95% within 3-24 h of incubation, and only a slight decrease of viability was observed after 48 h of incubation. MRI studies on Wistar rats using a clinical 1.5 T MRI scanner were showing that SPIONs give a negative contrast in the MRI. The dynamic MRI measurements of the SPION clearance from the injection site shows that SPIONs slowly disappear from injection sites and only a low concentration of nanoparticles was completely eliminated within three weeks. No functionalized SPIONs accumulate in cells by endocytic mechanism, none accumulate in the nucleus, and none are toxic at a desirable concentration. Therefore, they could be used as a dual imaging agent: as contrast agents for MRI and for traditional optical biopsy by using Prussian Blue staining.

  9. Fluorescent labelling of DNA on superparamagnetic nanoparticles by a perylene bisimide derivative for cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Maltas, Esra, E-mail: maltasesra@gmail.com [Selcuk University, Faculty of Science, Department of Chemistry, 42075 Konya (Turkey); Malkondu, Sait [Selcuk University, Faculty of Science, Department of Chemistry, 42075 Konya (Turkey); Uyar, Pembegul [Selcuk University, Faculty of Science, Department of Biology, 42075 Konya (Turkey); Selcuk University, Advanced Technology Research and Application Center, Konya (Turkey); Ozmen, Mustafa [Selcuk University, Faculty of Science, Department of Chemistry, 42075 Konya (Turkey)

    2015-03-01

    N,N′-Bis[tris-(2-aminoethyl) amine]-3,4,9,10-perylenetetracarboxylic diimide (PBI-TRIS), nonfluorescent dye was used to fluorescent labelling of DNA. For this aim, (3-aminopropyl) triethoxysilane (APTS) modified superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized to provide a suitable surface for binding of DNA. Amine functionalized nanoparticles showed a high immobilization capacity (82.70%) at 25 mg of nanoparticle concentration for Calf thymus DNA. Binding capacity of PBI-TRIS to DNA-SPION was also found as 1.93 μM on 25 mg of nanoparticles by using UV–vis spectroscopy. Binding of PBI-TRIS to DNA onto nanoparticles was also characterized by scanning electron microscopy and infrared spectroscopy. The confocal images of PBI-TRIS labelled DNA-SPION and breast cells were taken at 488 and 561.7 nm of excitation wavelengths. Cell image was also compared with a commercial dye, DAPI at 403.7 nm of excitation wavelength. Results showed that PBI-TRIS can be used for cell staining. - Highlights: • Functionalized SPIONs were synthesized and treated with DNA. • The binding of PBI-TRIS with DNA was studied. • The image of PBI-TRIS labelled DNA-SPION was detected by a confocal microscope.

  10. Fluorescent labelling of DNA on superparamagnetic nanoparticles by a perylene bisimide derivative for cell imaging

    International Nuclear Information System (INIS)

    Maltas, Esra; Malkondu, Sait; Uyar, Pembegul; Ozmen, Mustafa

    2015-01-01

    N,N′-Bis[tris-(2-aminoethyl) amine]-3,4,9,10-perylenetetracarboxylic diimide (PBI-TRIS), nonfluorescent dye was used to fluorescent labelling of DNA. For this aim, (3-aminopropyl) triethoxysilane (APTS) modified superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized to provide a suitable surface for binding of DNA. Amine functionalized nanoparticles showed a high immobilization capacity (82.70%) at 25 mg of nanoparticle concentration for Calf thymus DNA. Binding capacity of PBI-TRIS to DNA-SPION was also found as 1.93 μM on 25 mg of nanoparticles by using UV–vis spectroscopy. Binding of PBI-TRIS to DNA onto nanoparticles was also characterized by scanning electron microscopy and infrared spectroscopy. The confocal images of PBI-TRIS labelled DNA-SPION and breast cells were taken at 488 and 561.7 nm of excitation wavelengths. Cell image was also compared with a commercial dye, DAPI at 403.7 nm of excitation wavelength. Results showed that PBI-TRIS can be used for cell staining. - Highlights: • Functionalized SPIONs were synthesized and treated with DNA. • The binding of PBI-TRIS with DNA was studied. • The image of PBI-TRIS labelled DNA-SPION was detected by a confocal microscope

  11. Lymph node metastases from head and neck squamous cell carcinoma: MR imaging with ultrasmall superparamagnetic iron oxide particles (Sinerem MR) - results of a phase-III multicenter clinical trial

    International Nuclear Information System (INIS)

    Sigal, R.; Viala, J.; Bosq, J.; Vogl, T.; Mack, M.; Casselman, J.; Depondt, M.; Mattelaer, C.; Moulin, G.; Petit, P.; Champsaur, P.; Veillon, F.; Riehm, S.; Dadashitazehozi, Y.; Hermans, R.; de Jaegere, T.; Marchal, G.; Dubrulle, F.; Chevalier, D.; Lemaitre, L.; Kubiak, C.; Helmberger, R.; Halimi, P.

    2002-01-01

    The aim of this study was to compare the clinical usefulness of ultrasmall superparamagnetic iron oxide (USPIO) MR contrast media (Sinerem, Guerbet Laboratories, Aulnay-sous-Bois, France) with precontrast MRI in the diagnosis of metastatic lymph nodes in patients with head and neck squamous cell carcinoma, using histology as gold standard. Eighty-one previously untreated patients were enrolled in a multicenter phase-III clinical trial. All patients had a noncontrast MR, a Sinerem MR, and surgery within a period of 15 days. The MR exams were analyzed both on site and by two independent radiologists (centralized readers). Correlation between histology and imaging was done per lymph node groups, and per individual lymph nodes when the short axis was ≥10 mm. For individual lymph nodes, Sinerem MR showed a high sensitivity (≥88%) and specificity (≥77%). For lymph node groups, the sensitivity was ≥59% and specificity ≥81%. False-positive results were partially due to inflammatory nodes; false-negative results from the presence of undetected micrometastases. Errors of interpretation were also related to motion and/or susceptibility artifacts and problems of zone assignment. Sinerem MR had a negative predictive value (NPV) ≥90% and a positive predictive value (PPV) ≥51%. The specificity and PPV of Sinerem MR were better than those of precontrast MR. Precontrast MR showed an unexpectedly high sensitivity and NPV which were not increased with Sinerem MR. The potential contribution of Sinerem MR still remains limited by technical problems regarding motion and susceptibility artifacts and spatial resolution. It is also noteworthy that logistical problems, which could reduce the practical value of Sinerem MR, will be minimized in the future since Sinerem MR alone performed as good as the combination of precontrast and Sinerem MR. (orig.)

  12. Lymph node metastases from head and neck squamous cell carcinoma: MR imaging with ultrasmall superparamagnetic iron oxide particles (Sinerem MR) - results of a phase-III multicenter clinical trial

    Energy Technology Data Exchange (ETDEWEB)

    Sigal, R.; Viala, J.; Bosq, J. [Department of Radiology, Institut Gustave Roussy, Villejuif (France); Vogl, T.; Mack, M. [Institut fuer Diagnostische und Interventionelle Radiologie, Universitaetsklinikum, Frankfurt Main (Germany); Casselman, J.; Depondt, M.; Mattelaer, C. [Department of Radiology, Brugge (Belgium); Moulin, G.; Petit, P.; Champsaur, P. [Hopital de la Timone, Marseille (France); Veillon, F.; Riehm, S.; Dadashitazehozi, Y. [Hopital de Hautepierre, Avenue Moliere, 67098 Strasbourg (France); Hermans, R.; de Jaegere, T.; Marchal, G. [Department of Radiology, University Hospitals Gasthuisberg, KU Leuven, Heerestraat 49, 3000 Leuven (Belgium); Dubrulle, F.; Chevalier, D.; Lemaitre, L. [Hopital Huriez, 1 place Verdun, 59037 Lille (France); Kubiak, C.; Helmberger, R.; Halimi, P.

    2002-05-01

    The aim of this study was to compare the clinical usefulness of ultrasmall superparamagnetic iron oxide (USPIO) MR contrast media (Sinerem, Guerbet Laboratories, Aulnay-sous-Bois, France) with precontrast MRI in the diagnosis of metastatic lymph nodes in patients with head and neck squamous cell carcinoma, using histology as gold standard. Eighty-one previously untreated patients were enrolled in a multicenter phase-III clinical trial. All patients had a noncontrast MR, a Sinerem MR, and surgery within a period of 15 days. The MR exams were analyzed both on site and by two independent radiologists (centralized readers). Correlation between histology and imaging was done per lymph node groups, and per individual lymph nodes when the short axis was {>=}10 mm. For individual lymph nodes, Sinerem MR showed a high sensitivity ({>=}88%) and specificity ({>=}77%). For lymph node groups, the sensitivity was {>=}59% and specificity {>=}81%. False-positive results were partially due to inflammatory nodes; false-negative results from the presence of undetected micrometastases. Errors of interpretation were also related to motion and/or susceptibility artifacts and problems of zone assignment. Sinerem MR had a negative predictive value (NPV) {>=}90% and a positive predictive value (PPV) {>=}51%. The specificity and PPV of Sinerem MR were better than those of precontrast MR. Precontrast MR showed an unexpectedly high sensitivity and NPV which were not increased with Sinerem MR. The potential contribution of Sinerem MR still remains limited by technical problems regarding motion and susceptibility artifacts and spatial resolution. It is also noteworthy that logistical problems, which could reduce the practical value of Sinerem MR, will be minimized in the future since Sinerem MR alone performed as good as the combination of precontrast and Sinerem MR. (orig.)

  13. Multimodal Theranostic Nanoformulations Permit Magnetic Resonance Bioimaging of Antiretroviral Drug Particle Tissue-Cell Biodistribution

    Science.gov (United States)

    Kevadiya, Bhavesh D.; Woldstad, Christopher; Ottemann, Brendan M.; Dash, Prasanta; Sajja, Balasrinivasa R.; Lamberty, Benjamin; Morsey, Brenda; Kocher, Ted; Dutta, Rinku; Bade, Aditya N.; Liu, Yutong; Callen, Shannon E.; Fox, Howard S.; Byrareddy, Siddappa N.; McMillan, JoEllyn M.; Bronich, Tatiana K.; Edagwa, Benson J.; Boska, Michael D.; Gendelman, Howard E.

    2018-01-01

    RATIONALE: Long-acting slow effective release antiretroviral therapy (LASER ART) was developed to improve patient regimen adherence, prevent new infections, and facilitate drug delivery to human immunodeficiency virus cell and tissue reservoirs. In an effort to facilitate LASER ART development, “multimodal imaging theranostic nanoprobes” were created. These allow combined bioimaging, drug pharmacokinetics and tissue biodistribution tests in animal models. METHODS: Europium (Eu3+)- doped cobalt ferrite (CF) dolutegravir (DTG)- loaded (EuCF-DTG) nanoparticles were synthesized then fully characterized based on their size, shape and stability. These were then used as platforms for nanoformulated drug biodistribution. RESULTS: Folic acid (FA) decoration of EuCF-DTG (FA-EuCF-DTG) nanoparticles facilitated macrophage targeting and sped drug entry across cell barriers. Macrophage uptake was higher for FA-EuCF-DTG than EuCF-DTG nanoparticles with relaxivities of r2 = 546 mM-1s-1 and r2 = 564 mM-1s-1 in saline, and r2 = 850 mM-1s-1 and r2 = 876 mM-1s-1 in cells, respectively. The values were ten or more times higher than what was observed for ultrasmall superparamagnetic iron oxide particles (r2 = 31.15 mM-1s-1 in saline) using identical iron concentrations. Drug particles were detected in macrophage Rab compartments by dual fluorescence labeling. Replicate particles elicited sustained antiretroviral responses. After parenteral injection of FA-EuCF-DTG and EuCF-DTG into rats and rhesus macaques, drug, iron and cobalt levels, measured by LC-MS/MS, magnetic resonance imaging, and ICP-MS were coordinate. CONCLUSION: We posit that these theranostic nanoprobes can assess LASER ART drug delivery and be used as part of a precision nanomedicine therapeutic strategy. PMID:29290806

  14. Phase transition and magnetic properties of Mg-doped hexagonal close-packed Ni nanoparticles

    International Nuclear Information System (INIS)

    Yang Jinghai; Feng Bo; Liu Yang; Zhang Yongjun; Yang Lili; Wang Yaxin; Wei Maobin; Lang Jihui; Wang Dandan; Liu Xiaoyan

    2008-01-01

    Mg-doped Ni nanoparticles with the hexagonal close-packed (hcp) and face-centered cubic (fcc) structure have been synthesized by sol-gel method sintered at different temperatures in argon atmosphere. The sintering temperature played an important role in the control of the crystalline phase and the particle size. The pure hcp Mg-doped Ni nanoparticles with average particle size of 6.0 nm were obtained at 320 deg. C. The results indicated that the transition from the hcp to the fcc phase occurred in the temperature range between 320 deg. C and 450 deg. C. Moreover, the VSM results showed that the hcp Mg-doped Ni nanoparticles had unique ferromagnetic and superparamagnetic behavior. The unsaturation even at 5000 Oe is one of the superparamagnetic characteristics due to the small particle size. From the ZFC and FC curves, the blocking temperature T B of the hcp sample (6.0 nm) was estimated to be 10 K. The blocking temperature was related to the size of the magnetic particles and the magnetocrystalline anisotropy constant. By theoretical calculation, the deduced particle size was 6.59 nm for hcp Mg-doped Ni nanoparticles which was in agreement with the results of XRD and TEM

  15. Microwave-assisted green synthesis of superparamagnetic nanoparticles using fruit peel extracts: surface engineering, T2 relaxometry, and photodynamic treatment potential

    Directory of Open Access Journals (Sweden)

    Bano S

    2016-08-01

    Full Text Available Shazia Bano,1–3 Samina Nazir,2 Alia Nazir,1 Saeeda Munir,3 Tariq Mahmood,2 Muhammad Afzal,1 Farzana Latif Ansari,4 Kehkashan Mazhar3 1Department of Physics, The Islamia University of Bahawalpur, Bahawalpur, 2Nanosciences and Technology Department, National Centre for Physics, 3Institute of Biomedical and Genetic Engineering (IBGE, 4Pakistan Council for Science and Technology, Islamabad, Pakistan Abstract: Superparamagnetic iron oxide nanoparticles (SPIONs have the potential to be used as multimodal imaging and cancer therapy agents due to their excellent magnetism and ability to generate reactive oxygen species when exposed to light. We report the synthesis of highly biocompatible SPIONs through a facile green approach using fruit peel extracts as the biogenic reductant. This green synthesis protocol involves the stabilization of SPIONs through coordination of different phytochemicals. The SPIONs were functionalized with polyethylene glycol (PEG-6000 and succinic acid and were extensively characterized by X-ray diffraction analysis, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, atomic force microscopy, Rutherford backscattering spectrometry, diffused reflectance spectroscopy, fluorescence emission, Fourier-transform infrared spectroscopy, ultraviolet-visible spectroscopy, and magnetization analysis. The developed SPIONs were found to be stable, almost spherical with a size range of 17–25 nm. They exhibited excellent water dispersibility, colloidal stability, and relatively high R2 relaxivity (225 mM-1 s-1. Cell viability assay data revealed that PEGylation or carboxylation appears to significantly shield the surface of the particles but does not lead to improved cytocompatibility. A highly significant increase of reactive oxygen species in light-exposed samples was found to play an important role in the photokilling of human cervical epithelial malignant carcinoma (HeLa cells. The bio-SPIONs developed

  16. Synthesis and anomalous magnetic properties of LaFeO{sub 3} nanoparticles by hot soap method

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Tatsuo, E-mail: tfujii@cc.okayama-u.ac.jp [Department of Applied Chemistry, Okayama University, Tsushima-naka 3-1-1, Okayama 700-8530 (Japan); Matsusue, Ikkoh; Nakatsuka, Daisuke; Nakanishi, Makoto; Takada, Jun [Department of Applied Chemistry, Okayama University, Tsushima-naka 3-1-1, Okayama 700-8530 (Japan)

    2011-10-03

    Highlights: {yields} Nanocrystalline LaFeO{sub 3} particles were synthesized by using hot soap technique. {yields} Average diameter of the obtained LaFeO{sub 3} nanoparticles was about 15 nm. {yields} They exhibited superparamagnetic behavior with a blocking temperature of 30 K. {yields} Large magnetization due to the presence of uncompensated surface spins was induced. - Abstract: Nanocrystalline LaFeO{sub 3} particles were synthesized at low temperatures by using hot soap technique. The synthesis was based on the thermal decomposition of organometallic compounds precipitated in a hot coordinating solvent. Moderate heat treatment at low temperature far below the combustion point of organic compounds produced spherical LaFeO{sub 3} nanoparticles with average diameter of about 15 nm. The crystalline phase, structure and particle size of obtained products were characterized by X-ray diffraction, infrared spectroscopy and transmission electron microscopy observations. In spite of the antiferromagnetic nature of bulk LaFeO{sub 3}, the obtained nanoparticles exhibited anomalous large magnetization. Superparamagnetic behavior with a blocking temperature of about 30 K was observed in both magnetization and Moessbauer spectroscopic analyses.

  17. Preparation of molecularly imprinted nanoparticles with superparamagnetic susceptibility through atom transfer radical emulsion polymerization for the selective recognition of tetracycline from aqueous medium

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Jiangdong; Pan, Jianming; Xu, Longcheng; Li, Xiuxiu [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Zhou, Zhiping [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Zhang, Rongxian [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Yan, Yongsheng, E-mail: djdxxx123@163.com [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191 (China)

    2012-02-29

    Highlights: Black-Right-Pointing-Pointer Atom transfer radical emulsion polymerization is a 'living' and green technique. Black-Right-Pointing-Pointer Nanoparticles can overcome mass transfer limitations and improve accessibility. Black-Right-Pointing-Pointer Molecular imprinted nanoparticles with magnetic property for fast separation. Black-Right-Pointing-Pointer The performance of imprinted nanoparticles was investigated in detail. Black-Right-Pointing-Pointer Nanoparticles were used to selective recognize Tetracycline from water medium. - Abstract: In the work, we reported an effective method for the preparation of molecularly imprinted nanoparticles with superparamagnetic susceptibility through atom transfer radical emulsion polymerization (ATREP), and then as-prepared magnetic molecularly imprinted nanoparticles (MMINs) were evaluated as adsorbents for selective recognition of tetracycline (TC) molecules from aqueous medium. The resulting nanoparticles were characterized by FT-IR, TGA, VSM, SEM and TEM. The results demonstrated MMINs with a narrow diameter distribution were cross-linked with modified Fe{sub 3}O{sub 4} particles, composed of imprinted layer and exhibited good magnetic sensitivity, magnetic and thermal stability. Batch rebinding studies were carried out to determine the specific adsorption equilibrium, kinetics, and selective recognition. The estimated adsorption capacity of MMINs towards TC by the Langmuir isotherm model was 12.10 mg g{sup -1} at 298 K, which was 6.33 times higher than that of magnetic non-molecularly imprinted nanoparticles (MNINs). The kinetic property of MMINs was well-described by the pseudo-second-order rate equation. The results of selective recognition experiments demonstrated outstanding affinity and selectivity towards TC over competitive antibiotics. The reusability of MMINs showed no obviously deterioration at least five repeated cycles in performance. In addition, the MMINs prepared were successfully

  18. Magnetic properties of cobalt ferrite-silica nanocomposites prepared by a sol-gel autocombustion technique

    DEFF Research Database (Denmark)

    Cannas, C.; Musinu, A.; Piccaluga, G.

    2006-01-01

    The magnetic properties of cobalt ferrite-silica nanocomposites with different concentrations (15, 30, and 50 wt %) and sizes (7, 16, and 28 nm) of ferrite particles have been studied by static magnetization measurements and Mossbauer spectroscopy. The results indicate a superparamagnetic behavio...

  19. FY1995 acquisition of useful and high ability genes for acidophilic bacteria; 1995 nendo kosansei saikin ni takai noryoku wo fuyosuru idenshi no kakutoku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The purpose of this project is to obtain and to study useful and high ability genes which can use for gene engineering of acidophilic bacteria. 130 isolates of acidophilic bacteria (major species are iron-oxidizing bacteria) were isolated from various environment. 10 isolates of iron-oxidizing bacteria were selected in the point of high ferrous iron oxidizing ability and heavy metal tolerance. Mercury ion resistance genes of iron-oxidizing bacteria were identified and cloned in E.coli. Sequencing analysis and functional identification of gene products were performed. These genes are thought to be useful for selection marker of gen engineering of acidophilic bacteria. (NEDO)

  20. Superparamagnetic nanoparticles for enhanced magnetic resonance and multimodal imaging

    Science.gov (United States)

    Sikma, Elise Ann Schultz

    Magnetic resonance imaging (MRI) is a powerful tool for noninvasive tomographic imaging of biological systems with high spatial and temporal resolution. Superparamagnetic (SPM) nanoparticles have emerged as highly effective MR contrast agents due to their biocompatibility, ease of surface modification and magnetic properties. Conventional nanoparticle contrast agents suffer from difficult synthetic reproducibility, polydisperse sizes and weak magnetism. Numerous synthetic techniques and nanoparticle formulations have been developed to overcome these barriers. However, there are still major limitations in the development of new nanoparticle-based probes for MR and multimodal imaging including low signal amplification and absence of biochemical reporters. To address these issues, a set of multimodal (T2/optical) and dual contrast (T1/T2) nanoparticle probes has been developed. Their unique magnetic properties and imaging capabilities were thoroughly explored. An enzyme-activatable contrast agent is currently being developed as an innovative means for early in vivo detection of cancer at the cellular level. Multimodal probes function by combining the strengths of multiple imaging techniques into a single agent. Co-registration of data obtained by multiple imaging modalities validates the data, enhancing its quality and reliability. A series of T2/optical probes were successfully synthesized by attachment of a fluorescent dye to the surface of different types of nanoparticles. The multimodal nanoparticles generated sufficient MR and fluorescence signal to image transplanted islets in vivo. Dual contrast T1/T2 imaging probes were designed to overcome disadvantages inherent in the individual T1 and T2 components. A class of T1/T2 agents was developed consisting of a gadolinium (III) complex (DTPA chelate or DO3A macrocycle) conjugated to a biocompatible silica-coated metal oxide nanoparticle through a disulfide linker. The disulfide linker has the ability to be reduced

  1. Multifunctional doxorubicin/superparamagnetic iron oxide-encapsulated Pluronic F127 micelles used for chemotherapy/magnetic resonance imaging

    Science.gov (United States)

    Lai, Jian-Ren; Chang, Yong-Wei; Yen, Hung-Chi; Yuan, Nai-Yi; Liao, Ming-Yuan; Hsu, Chia-Yen; Tsai, Jai-Lin; Lai, Ping-Shan

    2010-05-01

    Polymeric micelles are frequently used to transport and deliver drugs throughout the body because they protect against degradation. Research on functional polymeric micelles for biomedical applications has generally shown that micelles have beneficial properties, such as specific functionality, enhanced specific tumor targeting, and stabilized nanostructures. The particular aim of this study was to synthesize and characterize multifunctional polymeric micelles for use in controlled drug delivery systems and biomedical imaging. In this study, a theranostic agent, doxorubicin/superparamagnetic iron oxide (SPIO)-encapsulated Pluronic F127 (F127) micelles, was developed for dual chemotherapy/magnetic resonance imaging (MRI) purposes, and the structure and composition of the micellar SPIO were characterized by transmission electron microscopy and magnetic measurements. Our results revealed that the micellar SPIO with a diameter of around 100 nm led to a significant advantage in terms of T2 relaxation as compared with a commercial SPIO contrast agent (Resovist®) without cell toxicity. After doxorubicin encapsulation, a dose-dependent darkening of MR images was observed and HeLa cells were killed by this theranostic micelle. These findings demonstrate that F127 micelles containing chemotherapeutic agents and SPIO could be used as a multifunctional nanocarrier for cancer treatment and imaging.

  2. Effects of superparamagnetic iron oxide nanoparticles on the longitudinal and transverse relaxation of hyperpolarized xenon gas

    Science.gov (United States)

    Burant, Alex; Antonacci, Michael; McCallister, Drew; Zhang, Le; Branca, Rosa Tamara

    2018-06-01

    SuperParamagnetic Iron Oxide Nanoparticles (SPIONs) are often used in magnetic resonance imaging experiments to enhance Magnetic Resonance (MR) sensitivity and specificity. While the effect of SPIONs on the longitudinal and transverse relaxation time of 1H spins has been well characterized, their effect on highly diffusive spins, like those of hyperpolarized gases, has not. For spins diffusing in linear magnetic field gradients, the behavior of the magnetization is characterized by the relative size of three length scales: the diffusion length, the structural length, and the dephasing length. However, for spins diffusing in non-linear gradients, such as those generated by iron oxide nanoparticles, that is no longer the case, particularly if the diffusing spins experience the non-linearity of the gradient. To this end, 3D Monte Carlo simulations are used to simulate the signal decay and the resulting image contrast of hyperpolarized xenon gas near SPIONs. These simulations reveal that signal loss near SPIONs is dominated by transverse relaxation, with little contribution from T1 relaxation, while simulated image contrast and experiments show that diffusion provides no appreciable sensitivity enhancement to SPIONs.

  3. Synthesis and characterization of Supeparamagnetics Microspheres (PMMA via suspension polymerization

    Directory of Open Access Journals (Sweden)

    Paulo Emilio Feuser

    2014-02-01

    Full Text Available Magnetics nanoparticles (NPMs has found many applications in biomedical and technological areas. The objective of this work is the preparation and characterization of PMMA microspheres containing NPMs coated with oleic acid (NPMs-AO. For the preparation of MNPs-AO was used the coprecipitation method in an aqueous medium. For the preparation of the superparamagnetic microspheres used in suspension polymerization technique. The microspheres showed a size distribution particles of approximately 150um and a spherical morphology. From the analysis of gel permeation chromatography (GPC determined the number average molecular weight (Mw of the magnetics microspheres and there was a variation in the Mw depending on the concentration of MNPs-AO in this reaction. To analyze the magnetic properties used the vibrating sample magnetometer (MAV. The microspheres showed superparamagnetic properties and a value of saturation magnetization (Ms of about 8 emu/g MNPs. Therefore you can conclude that it is possible to obtain superparamagnetics microspheres for a particular application, either, biomedical or technological.

  4. Synthesis and characterization of superparamagnetic iron oxide nanoparticles as calcium-responsive MRI contrast agents

    International Nuclear Information System (INIS)

    Xu, Pengfei; Shen, Zhiwei; Zhang, Baolin; Wang, Jun; Wu, Renhua

    2016-01-01

    Highlights: • SPIONs were conjugated with EGTA by EDC/sulfo-NHS method. • The presence of Ca"2"+ induced the aggregation of EGTA-SPIONs. • The aggregation of EGTA-SPIONs increased the T2 relaxation time. • EGTA-SPIONs can be used for the calcium imaging with MRI. - Abstract: Superparamagnetic iron oxide nanoparticles (SPIONs) as T2 contrast agents have great potential to sense calcium ion (Ca"2"+) using magnetic resonance imaging (MRI). Here we prepared calcium-responsive SPIONs for MRI, formed by combining poly(ethylene glycol) (PEG) and polyethylenimine (PEI) coated iron oxide nanoparticle (PEI/PEG-SPIONs) contrast agents with the straightforward calcium-sensing compound EGTA (ethylene glycol tetraacetic acid). EGTA was conjugated onto PEI/PEG-SPIONs using EDC/sulfo-NHS method. EGTA-SPIONs were characterized using TEM, XPS, DSL, TGA and SQUIID. DSL results show that the SPIONs aggregate in the presence of Ca"2"+. MRI analyses indicate that the water proton T2 relaxation rates in HEPES suspensions of the EGTA-SPIONs significantly increase with the calcium concentration because the SPIONs aggregate in the presence of Ca"2"+. The T2 values decreased 25% when Ca"2"+ concentration decreased from 1.2 to 0.8 mM. The aggregation of EGTA-SPIONs could be reversed by EDTA. EGTA-SPIONs have potential as smart contrast agents for Ca"2"+-sensitive MRI.

  5. Synthesis and characterization of superparamagnetic iron oxide nanoparticles as calcium-responsive MRI contrast agents

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Pengfei [State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing, School of Materials Science and Engineering, Guilin University of Technology, Jian Gan Road 12, Guilin 541004 (China); Shen, Zhiwei [Second Affiliated Hospital of Shantou University Medical College, Dong Xia North Road, Shantou 515041,China (China); Zhang, Baolin, E-mail: baolinzhang@ymail.com [State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing, School of Materials Science and Engineering, Guilin University of Technology, Jian Gan Road 12, Guilin 541004 (China); Wang, Jun [State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing, School of Materials Science and Engineering, Guilin University of Technology, Jian Gan Road 12, Guilin 541004 (China); Wu, Renhua, E-mail: rhwu@stu.edu.cn [Second Affiliated Hospital of Shantou University Medical College, Dong Xia North Road, Shantou 515041,China (China)

    2016-12-15

    Highlights: • SPIONs were conjugated with EGTA by EDC/sulfo-NHS method. • The presence of Ca{sup 2+} induced the aggregation of EGTA-SPIONs. • The aggregation of EGTA-SPIONs increased the T2 relaxation time. • EGTA-SPIONs can be used for the calcium imaging with MRI. - Abstract: Superparamagnetic iron oxide nanoparticles (SPIONs) as T2 contrast agents have great potential to sense calcium ion (Ca{sup 2+}) using magnetic resonance imaging (MRI). Here we prepared calcium-responsive SPIONs for MRI, formed by combining poly(ethylene glycol) (PEG) and polyethylenimine (PEI) coated iron oxide nanoparticle (PEI/PEG-SPIONs) contrast agents with the straightforward calcium-sensing compound EGTA (ethylene glycol tetraacetic acid). EGTA was conjugated onto PEI/PEG-SPIONs using EDC/sulfo-NHS method. EGTA-SPIONs were characterized using TEM, XPS, DSL, TGA and SQUIID. DSL results show that the SPIONs aggregate in the presence of Ca{sup 2+}. MRI analyses indicate that the water proton T2 relaxation rates in HEPES suspensions of the EGTA-SPIONs significantly increase with the calcium concentration because the SPIONs aggregate in the presence of Ca{sup 2+}. The T2 values decreased 25% when Ca{sup 2+} concentration decreased from 1.2 to 0.8 mM. The aggregation of EGTA-SPIONs could be reversed by EDTA. EGTA-SPIONs have potential as smart contrast agents for Ca{sup 2+}-sensitive MRI.

  6. Magnetic properties in an ash flow tuff with continuous grain size variation: a natural reference for magnetic particle granulometry

    Science.gov (United States)

    Till, J.L.; Jackson, M.J.; Rosenbaum, J.G.; Solheid, P.

    2011-01-01

    The Tiva Canyon Tuff contains dispersed nanoscale Fe-Ti-oxide grains with a narrow magnetic grain size distribution, making it an ideal material in which to identify and study grain-size-sensitive magnetic behavior in rocks. A detailed magnetic characterization was performed on samples from the basal 5 m of the tuff. The magnetic materials in this basal section consist primarily of (low-impurity) magnetite in the form of elongated submicron grains exsolved from volcanic glass. Magnetic properties studied include bulk magnetic susceptibility, frequency-dependent and temperature-dependent magnetic susceptibility, anhysteretic remanence acquisition, and hysteresis properties. The combined data constitute a distinct magnetic signature at each stratigraphic level in the section corresponding to different grain size distributions. The inferred magnetic domain state changes progressively upward from superparamagnetic grains near the base to particles with pseudo-single-domain or metastable single-domain characteristics near the top of the sampled section. Direct observations of magnetic grain size confirm that distinct transitions in room temperature magnetic susceptibility and remanence probably denote the limits of stable single-domain behavior in the section. These results provide a unique example of grain-size-dependent magnetic properties in noninteracting particle assemblages over three decades of grain size, including close approximations of ideal Stoner-Wohlfarth assemblages, and may be considered a useful reference for future rock magnetic studies involving grain-size-sensitive properties.

  7. Rapid DNA multi-analyte immunoassay on a magneto-resistance biosensor

    NARCIS (Netherlands)

    Koets, M.; Wijk, van der T.; Eemeren, van J.T.W.M.; Amerongen, van A.; Prins, M.W.J.

    2009-01-01

    We present the rapid and sensitive detection of amplified DNA on a giant magneto-resistance sensor using superparamagnetic particles as a detection label. The one-step assay is performed on an integrated and miniaturized detection platform suitable for application into point-of-care devices. A

  8. Targeting EGFR-overexpressing tumor cells using Cetuximab-immunomicelles loaded with doxorubicin and superparamagnetic iron oxide

    International Nuclear Information System (INIS)

    Liao Chengde; Sun Qiquan; Liang, Biling; Shen Jun; Shuai Xintao

    2011-01-01

    Epidermal growth factor receptor (EGFR), a cellular transmembrane receptor, plays a key role in cell proliferation and is linked to a poor prognosis in various human cancers. In this study, we constructed Cetuximab-immunomicelles in which the anti-EGFR monoclonal antibody was linked to poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG–PCL) nanomicelles that were loaded with doxorubicin (DOX) and superparamagnetic iron oxide (SPIO). The specific interactions between EGFR-overexpressing tumor cells (A431) and immunomicelles were observed using confocal laser scanning microscopy (CLSM) and flow cytometry. Furthermore, the capacity of transporting SPIO into tumor cells using these immunomicelles was evaluated with a 1.5 T clinical magnetic resonance imaging (MRI) scanner. It was found that the acquired MRI T2 signal intensity of A431 cells that were treated with the SPIO-loaded and antibody-functionalized micelles decreased significantly. Using the thiazolyl blue tetrazolium bromide (MTT) assay, we also demonstrated that the immunomicelles inhibited cell proliferation more effectively than their nontargeting counterparts. Our results suggest that Cetuximab-immunomicelles are a useful delivery vehicle for DOX and SPIO to EGFR-overexpressing tumor cells in vitro and that Cetuximab-immunomicelles can serve as a MRI-visible and targeted drug delivery agent for better tumor imaging and therapy.

  9. Study on magnetic fluid optical fiber devices for optical logic operations by characteristics of superparamagnetic nanoparticles and magnetic fluids

    International Nuclear Information System (INIS)

    Chieh, J. J.; Hong, C. Y.; Yang, S. Y.; Horng, H. E.; Yang, H. C.

    2010-01-01

    We propose two optical fiber-based schemes using two magnetic fluid optical fiber modulators in series or in parallel for optical logic signal processing and operation. Here, each magnetic fluid optical fiber modulator consists of a bare multimode fiber surrounded by magnetic fluid in which the refractive index is adjustable by applying external magnetic fields amplifying the input electrical signal to vary the transmission intensity of the optical fiber-based scheme. The physical mechanisms for the performances of the magnetic fluid optical fiber devices, such as the transmission loss related to Boolean number of the logic operation as well as the dynamic response, are studied by the characteristics of superparamagnetic nanoparticles and magnetic fluids. For example, in the dynamic response composed of the retarding and response sub-procedures except the response times of the actuation coil, the theoretical evaluation of the retarding time variation with cladding magnetic fluids length has good agreement with the experimental results.

  10. A novel superparamagnetic surface molecularly imprinted nanoparticle adopting dummy template: an efficient solid-phase extraction adsorbent for bisphenol A.

    Science.gov (United States)

    Lin, Zhenkun; Cheng, Wenjing; Li, Yanyan; Liu, Zhiren; Chen, Xiangping; Huang, Changjiang

    2012-03-30

    Leakage of the residual template molecules is one of the biggest challenges for application of molecularly imprinted polymer (MIP) in solid-phase extraction (SPE). In this study, bisphenol F (BPF) was adopted as a dummy template to prepare MIP of bisphenol A (BPA) with a superparamagnetic core-shell nanoparticle as the supporter, aiming to avoid residual template leakage and to increase the efficiency of SPE. Characterization and test of the obtained products (called mag-DMIP beads) revealed that these novel nanoparticles not only had excellent magnetic property but also displayed high selectivity to the target molecule BPA. As mag-DMIP beads were adopted as the adsorbents of solid-phase extraction for detecting BPA in real water samples, the recoveries of spiked samples ranged from 84.7% to 93.8% with the limit of detection of 2.50 pg mL(-1), revealing that mag-DMIP beads were efficient SPE adsorbents. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Structural Iron (II) of Basaltic Glass as an Energy Source for Zetaproteobacteria in an Abyssal Plain Environment, Off the Mid Atlantic Ridge.

    Science.gov (United States)

    Henri, Pauline A; Rommevaux-Jestin, Céline; Lesongeur, Françoise; Mumford, Adam; Emerson, David; Godfroy, Anne; Ménez, Bénédicte

    2015-01-01

    To explore the capability of basaltic glass to support the growth of chemosynthetic microorganisms, complementary in situ and in vitro colonization experiments were performed. Microbial colonizers containing synthetic tholeitic basaltic glasses, either enriched in reduced or oxidized iron, were deployed off-axis from the Mid Atlantic Ridge on surface sediments of the abyssal plain (35°N; 29°W). In situ microbial colonization was assessed by sequencing of the 16S rRNA gene and basaltic glass alteration was characterized using Scanning Electron Microscopy, micro-X-ray Absorption Near Edge Structure at the Fe-K-edge and Raman microspectroscopy. The colonized surface of the reduced basaltic glass was covered by a rind of alteration made of iron-oxides trapped in a palagonite-like structure with thicknesses up to 150 μm. The relative abundance of the associated microbial community was dominated (39% of all reads) by a single operational taxonomic unit (OTU) that shared 92% identity with the iron-oxidizer Mariprofundus ferrooxydans PV-1. Conversely, the oxidized basaltic glass showed the absence of iron-oxides enriched surface deposits and correspondingly there was a lack of known iron-oxidizing bacteria in the inventoried diversity. In vitro, a similar reduced basaltic glass was incubated in artificial seawater with a pure culture of the iron-oxidizing M. ferrooxydans DIS-1 for 2 weeks, without any additional nutrients or minerals. Confocal Laser Scanning Microscopy revealed that the glass surface was covered by twisted stalks characteristic of this iron-oxidizing Zetaproteobacteria. This result supported findings of the in situ experiments indicating that the Fe(II) present in the basalt was the energy source for the growth of representatives of Zetaproteobacteria in both the abyssal plain and the in vitro experiment. In accordance, the surface alteration rind observed on the reduced basaltic glass incubated in situ could at least partly result from their activity.

  12. Microstructural evolution and magnetic properties of ultrafine solute-atom particles formed in a Cu75-Ni20-Fe5 alloy on isothermal annealing

    Science.gov (United States)

    Kim, Jun-Seop; Takeda, Mahoto; Bae, Dong-Sik

    2016-12-01

    Microstructural features strongly affect magnetism in nano-granular magnetic materials. In the present work we have investigated the relationship between the magnetic properties and the self-organized microstructure formed in a Cu75-Ni20-Fe5 alloy comprising ferromagnetic elements and copper atoms. High resolution transmission electron microscopy (HRTEM) observations showed that on isothermal annealing at 873 K, nano-scale solute (Fe,Ni)-rich clusters initially formed with a random distribution in the Cu-rich matrix. Superconducting quantum interference device (SQUID) measurements revealed that these ultrafine solute clusters exhibited super-spinglass and superparamagnetic states. On further isothermal annealing the precipitates evolved to cubic or rectangular ferromagnetic particles and aligned along the directions of the copper-rich matrix. Electron energy-band calculations based on the first-principle Korringa-Kohn-Rostocker (KKR) method were also implemented to investigate both the electronic structure and the magnetic properties of the alloy. Inputting compositions obtained experimentally by scanning transmission electron microscopy-electron dispersive X-ray spectroscopy (STEM-EDS) analysis, the KKR calculation confirmed that ferromagnetic precipitates (of moment 1.07μB per atom) formed after annealing for 2 × 104 min. Magneto-thermogravimetric (MTG) analysis determined with high sensitivity the Curie temperatures and magnetic susceptibility above room temperature of samples containing nano-scale ferromagnetic particles.

  13. Gentamicin coated iron oxide nanoparticles as novel antibacterial agents

    Science.gov (United States)

    Bhattacharya, Proma; Neogi, Sudarsan

    2017-09-01

    Applications of different types of magnetic nanoparticles for biomedical purposes started a long time back. The concept of surface functionalization of the iron oxide nanoparticles with antibiotics is a novel technique which paves the path for further application of these nanoparticles by virtue of their property of superparamagnetism. In this paper, we have synthesized novel iron oxide nanoparticles surface functionalized with Gentamicin. The average size of the particles, concluded from the HR-TEM images, came to be around 14 nm and 10 nm for unmodified and modified nanoparticles, respectively. The magnetization curve M(H) obtained for these nanoparticles are typical of superparamagnetic nature and having almost zero values of coercivity and remanance. The release properties of the drug coated nanoparticles were studied; obtaining an S shaped profile, indicating the initial burst effect followed by gradual sustained release. In vitro investigations against various gram positive and gram negative strains viz Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis indicated significant antibacterial efficiency of the drug-nanoparticle conjugate. The MIC values indicated that a small amount like 0.2 mg ml-1 of drug capped particles induce about 98% bacterial death. The novelty of the work lies in the drug capping of the nanoparticles, which retains the superparamagnetic nature of the iron oxide nanoparticles and the medical properties of the drug simultaneously, which is found to extremely blood compatible.

  14. Effect of experimental factors on magnetic properties of nickel nanoparticles produced by chemical reduction method using a statistical design

    International Nuclear Information System (INIS)

    Vaezi, M.R.; Barzgar Vishlaghi, M.; Farzalipour Tabriz, M.; Mohammad Moradi, O.

    2015-01-01

    Highlights: • Superparamagnetic nickel nanoparticles are synthesized by wet chemical reduction. • Effects of synthesis parameters on magnetic properties are studied. • Central composite experimental design is used for building an empirical model. • Solvents ratio was more influential than reactants mixing rate. - Abstract: Nickel nanoparticles were synthesized by chemical reduction method in the absence of any surface capping agent. The effect of reactants mixing rate and the volume ratio of methanol/ethanol as solvent on the morphology and magnetic properties of nickel nanoparticles were studied by design of experiment using central composite design. X-ray diffraction (XRD) technique and Transmission Electron Microscopy (TEM) were utilized to characterize the synthesized nanoparticles. Size distribution of particles was studied by Dynamic Light Scattering (DLS) technique and magnetic properties of produced nanoparticles were investigated by Vibrating Sample Magnetometer (VSM) apparatus. The results showed that the magnetic properties of nickel nanoparticles were more influenced by volume ratio of methanol/ethanol than the reactants mixing rate. Super-paramagnetic nickel nanoparticles with size range between 20 and 50 nm were achieved when solvent was pure methanol and the reactants mixing rate was kept at 70 ml/h. But addition of more ethanol to precursor solvent leads to the formation of larger particles with broader size distribution and weak ferromagnetic or super-paramagnetic behavior

  15. Preparation and properties of superparamagnetic nanoparticles with narrow size distribution and biocompatible

    International Nuclear Information System (INIS)

    Jiang Wanquan; Yang, H.C.; Yang, S.Y.; Horng, H.E.; Hung, J.C.; Chen, Y.C.; Hong, C.-Y.

    2004-01-01

    A chemical co-precipitation method capable of controlling the average size and size distribution of magnetic Fe 3 O 4 nano-particles was developed. It was found that the homogeneous variation of the pH value in the solution plays a role in the size distribution of the synthesized Fe 3 O 4 particles. In this work, we added urea to the ferrite solution, followed by heating the solution to decompose the urea before titrating a base solution into the ferrite solution. Thus, the variation in pH value in the solution can become uniform, and the uniformity in the particles size can be greatly enhanced. In addition, the average particle size is adjustable via control of the amount of urea decomposing at one time. To be biocompatible, dextran is selected as the surfactant for the Fe 3 O 4 particles, because of its non-toxicity and high bio-affinity. The desired bio-probes can be coated on the dextran layer through adequate chemical reactions

  16. Decoration of carbon nanotube with size-controlled L10-FePt nanoparticles for storage media

    Science.gov (United States)

    Moradi, Reza; Sebt, Seyed Ali; Arabi, Hadi; Larijani, Majid Mojtahedzadeh

    2013-10-01

    In this work, first multi-wall carbon nanotubes (MWCNTs) with outer diameter about 20-30 nm are synthesized by a CVD method; they have been purified and functionalized with a two-step process. The approach consists of thermal oxidation and subsequent chemical oxidation. Then, monosize FePt nanoparticles along carbon nanotubes surface are synthesized by a Polyol process. The synthesized FePt nanoparticles are about 2.5 nm in size and they have superparamagnetic behavior with fcc structure. The CNTs surfaces as a substrate prevent the coalescence of particles during thermal annealing. Annealing at the temperature higher than 600 ∘C for 2 h under a reducing atmosphere (90 % Ar + 10 % H2) leads to phase transition from fcc to fct-L10 structure. So, the magnetic behavior changes from the superparamagnetic to the ferromagnetic. Furthermore, after the phase transition, the FePt nanoparticles have finite size with an average of about 3.5 nm and the coercivity of particles reaches 5.1 kOe.

  17. Giant Faraday Rotation through Ultrasmall Fe0 n Clusters in Superparamagnetic FeO-SiO2 Vitreous Films.

    Science.gov (United States)

    Nakatsuka, Yuko; Pollok, Kilian; Wieduwilt, Torsten; Langenhorst, Falko; Schmidt, Markus A; Fujita, Koji; Murai, Shunsuke; Tanaka, Katsuhisa; Wondraczek, Lothar

    2017-04-01

    Magnetooptical (MO) glasses and, in particular, Faraday rotators are becoming key components in lasers and optical information processing, light switching, coding, filtering, and sensing. The common design of such Faraday rotator materials follows a simple path: high Faraday rotation is achieved by maximizing the concentration of paramagnetic ion species in a given matrix material. However, this approach has reached its limits in terms of MO performance; hence, glass-based materials can presently not be used efficiently in thin film MO applications. Here, a novel strategy which overcomes this limitation is demonstrated. Using vitreous films of x FeO·(100 - x )SiO 2 , unusually large Faraday rotation has been obtained, beating the performance of any other glassy material by up to two orders of magnitude. It is shown that this is due to the incorporation of small, ferromagnetic clusters of atomic iron which are generated in line during laser deposition and rapid condensation of the thin film, generating superparamagnetism. The size of these clusters underbids the present record of metallic Fe incorporation and experimental verification in glass matrices.

  18. Structural and Mössbauer studies of nanocrystalline Mn{sup 4+}-doped Li{sub 0.5}Fe{sub 2.5}O{sub 4} particles prepared by mechanical milling

    Energy Technology Data Exchange (ETDEWEB)

    Widatallah, H. M., E-mail: hishammw@squ.edu.om; Al-Mabsali, F. N.; Al-Hajri, F. S. [Sultan Qaboos University, Physics Department, College of Science (Oman); Khalifa, N. O. [University of Khartoum, Physics Department, Faculty of Science (Sudan); Gismelseed, A. M.; Al-Rawas, A. D.; Elzain, M.; Yousif, A. [Sultan Qaboos University, Physics Department, College of Science (Oman)

    2016-12-15

    The structure and magnetic properties of spinel-related Mn{sup 4+}-doped Li{sub 0.5}Fe{sub 2.5}O{sub 4} nanocrystalline particles of the composition Li{sub 0.5}Fe{sub 2.25}Mn{sub 0.1875}O{sub 4}, prepared by milling a pristine sample for different times, were investigated. The average crystallite and particle size, respectively, decreased form ∼40 nm to ∼10 nm and ∼2.5 μm to ∼10 nm with increasing milling time from 0 h to 70 h. Rietveld refinement of the XRD data of the non-milled sample show the Mn{sup 4+} dopant ions to substitute for Fe{sup 3+} at the octahedral B-sites of the spinel-related structure. The Mössbauer spectra of the milled ferrites indicate that more particles turn superparamagnetic with increasing milling time. The Mössbauer data collected at 78 K suggest that while in the non-milled sample the Mn{sup 4+} ions substitute for Fe{sup 3+} at the octahedral B-sites, this is reversed as milling proceeds with doped Mn{sup 4+} ions, balancing Fe{sup 3+} vacancies and possibly Li{sup +} ions progressively migrate to the tetrahedral A-sites. This is supported by the slight increase observed in the magnetization of the milled samples relative to that of the non-milled one. The magnetic data suggest that in addition to the increasing superparamagentic component of the milled particles, thermal spin reversal and/or spin canting effects are possible at the surface layers of the nanoparticles.

  19. Noninvasive monitoring of early antiangiogenic therapy response in human nasopharyngeal carcinoma xenograft model using MRI with RGD-conjugated ultrasmall superparamagnetic iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Cui Y

    2016-11-01

    Full Text Available Yanfen Cui,1,* Caiyuan Zhang,1,* Ran Luo,1 Huanhuan Liu,1 Zhongyang Zhang,1 Tianyong Xu,2 Yong Zhang,2 Dengbin Wang11Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 2MR Advanced Application and Research Center, GE Healthcare China, Shanghai, People’s Republic of China *These authors contributed equally to this workPurpose: Arginine-glycine-aspartic acid (RGD-based nanoprobes allow specific imaging of integrin αvβ3, a protein overexpressed during angiogenesis. Therefore, this study applied a novel RGD-coupled, polyacrylic acid (PAA-coated ultrasmall superparamagnetic iron oxide (USPIO (referred to as RGD-PAA-USPIO in order to detect tumor angiogenesis and assess the early response to antiangiogenic treatment in human nasopharyngeal carcinoma (NPC xenograft model by magnetic resonance imaging (MRI.Materials and methods: The binding specificity of RGD-PAA-USPIO with human umbilical vein endothelial cells (HUVECs was confirmed by Prussian blue staining and transmission electron microscopy in vitro. The tumor targeting of RGD-PAA-USPIO was evaluated in the NPC xenograft model. Later, mice bearing NPC underwent MRI at baseline and after 4 and 14 days of consecutive treatment with Endostar or phosphate-buffered saline (n=10 per group.Results: The specific uptake of the RGD-PAA-USPIO nanoparticles was mainly dependent on the interaction between RGD and integrin αvβ3 of HUVECs. The tumor targeting of RGD-PAA-USPIO was observed in the NPC xenograft model. Moreover, the T2 relaxation time of mice in the Endostar-treated group decreased significantly compared with those in the control group both on days 4 and 14, consistent with the immunofluorescence results of CD31 and CD61 (P<0.05.Conclusion: This study demonstrated that the magnetic resonance molecular nanoprobes, RGD-PAA-USPIOs, allow noninvasive in vivo imaging of tumor angiogenesis and assessment of the early response to antiangiogenic treatment in

  20. Magnetic properties of zinc ferrite nanoparticles synthesized by hydrolysis in a polyol medium

    International Nuclear Information System (INIS)

    Ammar, Souad; Jouini, Noureddine; Fievet, Fernand; Beji, Zyed; Smiri, Leila; Moline, Philippe; Danot, Michel; Greneche, Jean-Marc

    2006-01-01

    Highly crystalline, nanometre sized ZnFe 2 O 4 particles with different diameters, 6.6 and 14.8 nm, were prepared by forced hydrolysis in a polyol medium. The DC magnetic properties exhibit a strong dependence on the particle size as a result of the unusual cation distribution. They clearly establish their superparamagnetic character at room temperature and the occurrence of ferrimagnetic or ferromagnetic ordering at low temperature. The magnetization is found to increase with grain size reduction. The 57 Fe Moessbauer spectra were recorded at 300 and 4.5 K. There is no evidence for the presence of the Fe 2+ charge state, confirming the perfect stoichiometry of the two samples. At 300 K, the Moessbauer spectra consist of doublets due to the superparamagnetic behaviour whereas at 4.5 K they reveal a magnetically blocked state. Moessbauer spectra at 10 K in an external 6 T magnetic field applied parallel to the direction of the gamma rays clearly show a close to collinear Neel-like ferrimagnetic ordering for the 6.6 nm particles and a canted Yafet-Kittel-like ferrimagnetic ordering for the 14.8 nm ones