WorldWideScience

Sample records for superparamagnetic drug formulations

  1. Physical and Chemical Characterization of Therapeutic Iron Containing Materials: A Study of Several Superparamagnetic Drug Formulations with the β-FeOOH or Ferrihydrite Structure

    International Nuclear Information System (INIS)

    Funk, Felix; Long, Gary J.; Hautot, Dimitri; Buechi, Ruth; Christl, Iso; Weidler, Peter G.

    2001-01-01

    The effectiveness of therapeutically used iron compounds is related to their physical and chemical properties. Four different iron compounds used in oral, intravenous, and intramuscular therapy have been examined by X-ray powder diffraction, iron-57 Moessbauer spectroscopy, transmission electron microscopy, BET surface area measurement, potentiometric titration and studied through dissolution kinetics determinations using acid, reducing and chelating agents. All compounds are nanosized with particle diameters, as determined by X-ray diffraction, ranging from 1 to 4.1 nm. The superparamagnetic blocking temperatures, as determined by Moessbauer spectroscopy, indicate that the relative diameters of the aggregates range from 2.5 to 4.1 nm. Three of the iron compounds have an akaganeite-like structure, whereas one has a ferrihydrite-like structure. As powders the particles form large and dense aggregates which have a very low surface area on the order of 1 m 2 g -1 . There is evidence, however, that in a colloidal solution the surface area is increased by two to three orders of magnitude, presumably as a result of the break up of the aggregates. Iron release kinetics by acid, chelating and reducing agents reflect the high surface area, the size and crystallinity of the particles, and the presence of the protective carbohydrate layer coating the iron compound. Within a physiologically relevant time period, the iron release produced by acid or large chelating ligands is small. In contrast, iron is rapidly mobilized by small organic chelating agents, such as oxalate, or by chelate-forming reductants, such as thioglycolate

  2. Physical and Chemical Characterization of Therapeutic Iron Containing Materials: A Study of Several Superparamagnetic Drug Formulations with the β-FeOOH or Ferrihydrite Structure

    Science.gov (United States)

    Funk, Felix; Long, Gary J.; Hautot, Dimitri; Büchi, Ruth; Christl, Iso; Weidler, Peter G.

    2001-03-01

    The effectiveness of therapeutically used iron compounds is related to their physical and chemical properties. Four different iron compounds used in oral, intravenous, and intramuscular therapy have been examined by X-ray powder diffraction, iron-57 Mössbauer spectroscopy, transmission electron microscopy, BET surface area measurement, potentiometric titration and studied through dissolution kinetics determinations using acid, reducing and chelating agents. All compounds are nanosized with particle diameters, as determined by X-ray diffraction, ranging from 1 to 4.1 nm. The superparamagnetic blocking temperatures, as determined by Mössbauer spectroscopy, indicate that the relative diameters of the aggregates range from 2.5 to 4.1 nm. Three of the iron compounds have an akaganeite-like structure, whereas one has a ferrihydrite-like structure. As powders the particles form large and dense aggregates which have a very low surface area on the order of 1 m2 g-1. There is evidence, however, that in a colloidal solution the surface area is increased by two to three orders of magnitude, presumably as a result of the break up of the aggregates. Iron release kinetics by acid, chelating and reducing agents reflect the high surface area, the size and crystallinity of the particles, and the presence of the protective carbohydrate layer coating the iron compound. Within a physiologically relevant time period, the iron release produced by acid or large chelating ligands is small. In contrast, iron is rapidly mobilized by small organic chelating agents, such as oxalate, or by chelate-forming reductants, such as thioglycolate.

  3. Drug delivery and formulations.

    Science.gov (United States)

    Breitkreutz, Jörg; Boos, Joachim

    2011-01-01

    Paediatric drug delivery is a major challenge in drug development. Because of the heterogeneous nature of the patient group, ranging from newborns to adolescents, there is a need to use appropriate excipients, drug dosage forms and delivery devices for different age groups. So far, there is a lack of suitable and safe drug formulations for children, especially for the very young and seriously ill patients. The new EU legislation will enforce paediatric clinical trials and drug development. Current advances in paediatric drug delivery include interesting new concepts such as fast-dissolving drug formulations, including orodispersible tablets and oral thin strips (buccal wafers), and multiparticulate dosage forms based on mini-tabletting or pelletization technologies. Parenteral administration is likely to remain the first choice for children in the neonatal period and for emergency cases. Alternative routes of administration include transdermal, pulmonary and nasal drug delivery systems. A few products are already available on the market, but others still need further investigations and clinical proof of concept.

  4. Multifunctional superparamagnetic nanoparticles for enhanced drug transport in cystic fibrosis

    Science.gov (United States)

    Armijo, Leisha M.; Brandt, Yekaterina I.; Rivera, Antonio C.; Cook, Nathaniel C.; Plumley, John B.; Withers, Nathan J.; Kopciuch, Michael; Smolyakov, Gennady A.; Huber, Dale L.; Smyth, Hugh D.; Osinski, Marek

    2012-10-01

    Iron oxide colloidal nanoparticles (ferrofluids) are investigated for application in the treatment of cystic fibrosis lung infections, the leading cause of mortality in cystic fibrosis patients. We investigate the use of iron oxide nanoparticles to increase the effectiveness of administering antibiotics through aerosol inhalation using two mechanisms: directed particle movement in the presence of an inhomogeneous static external magnetic field and magnetic hyperthermia. Magnetic hyperthermia is an effective method for decreasing the viscosity of the mucus and biofilm, thereby enhancing drug, immune cell, and antibody penetration to the affected area. Iron oxide nanoparticles of various sizes and morphologies were synthesized and tested for specific losses (heating power). Nanoparticles in the superparamagnetic to ferromagnetic size range exhibited excellent heating power. Additionally, iron oxide / zinc selenide core/shell nanoparticles were prepared, in order to enable imaging of the iron oxide nanoparticles. We also report on synthesis and characterization of MnSe/ZnSeS alloyed quantum dots.

  5. Neonates need tailored drug formulations.

    Science.gov (United States)

    Allegaert, Karel

    2013-02-08

    Drugs are very strong tools used to improve outcome in neonates. Despite this fact and in contrast to tailored perfusion equipment, incubators or ventilators for neonates, we still commonly use drug formulations initially developed for adults. We would like to make the point that drug formulations given to neonates need to be tailored for this age group. Besides the obvious need to search for active compounds that take the pathophysiology of the newborn into account, this includes the dosage and formulation. The dosage or concentration should facilitate the administration of low amounts and be flexible since clearance is lower in neonates with additional extensive between-individual variability. Formulations need to be tailored for dosage variability in the low ranges and also to the clinical characteristics of neonates. A specific focus of interest during neonatal drug development therefore is a need to quantify and limit excipient exposure based on the available knowledge of their safety or toxicity. Until such tailored vials and formulations become available, compounding practices for drug formulations in neonates should be evaluated to guarantee the correct dosing, product stability and safety.

  6. Superparamagnetic iron oxide nanoparticles (SPIONs) for targeted drug delivery

    Science.gov (United States)

    Garg, Vijayendra K.; Kuzmann, Erno; Sharma, Virender K.; Kumar, Arun; Oliveira, Aderbal C.

    2016-10-01

    Studies of superparamagnetic iron oxide nanoparticles (SPIONs) have been extensively carried out. Since the earlier work on Mössbauer studies on SPIONs in 1970s, many biomedical applications and their uses in innovative methods to produce new materials with improved performance have appeared. Applications of SPIONs in environmental remediation are also forthcoming. Several different methods of synthesis and coating of the magnetic particles have been described in the literature, and Mössbauer spectroscopy has been an important tool in the characterization of these materials. It is quite possible that the interpretation of the Mössbauer spectra might not be entirely correct because the possible presence of maghemite in the end product of SPIONs might not have been taken into consideration. Nanotechnology is an emerging field that covers a wide range of new technologies under development in nanoscale (1 to 100 nano meters) to produce new products and methodology.

  7. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Neuberger, Tobias [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty Zurich, University of Zurich, Winterthurerstr. 260, 8057 Zurich (Switzerland); Schoepf, Bernhard [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty Zurich, University of Zurich, Winterthurerstr. 260, 8057 Zurich (Switzerland); Hofmann, Heinrich [Laboratory of Powder Technology, Institute of Materials, Swiss Federal Institute of Technology, EPFL, 1015 Lausanne (Switzerland); Hofmann, Margarete [MatSearch Pully, Chemin Jean Pavillard, 14, CH-1009 Pully (Switzerland); Rechenberg, Brigitte von [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty Zurich, University of Zurich, Winterthurerstr. 260, 8057 Zurich (Switzerland)]. E-mail: bvonrechenberg@vetclinics.unizh.ch

    2005-05-15

    Nanoparticles can be used in biomedical applications, where they facilitate laboratory diagnostics, or in medical drug targeting. They are used for in vivo applications such as contrast agent for magnetic resonance imaging (MRI), for tumor therapy or cardiovascular disease. Very promising nanoparticles for these applications are superparamagnetic nanoparticles based on a core consisting of iron oxides (SPION) that can be targeted through external magnets. SPION are coated with biocompatible materials and can be functionalized with drugs, proteins or plasmids. In this review, the characteristics and applications of SPION in the biomedical sector are introduced and discussed.

  8. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system

    International Nuclear Information System (INIS)

    Neuberger, Tobias; Schoepf, Bernhard; Hofmann, Heinrich; Hofmann, Margarete; Rechenberg, Brigitte von

    2005-01-01

    Nanoparticles can be used in biomedical applications, where they facilitate laboratory diagnostics, or in medical drug targeting. They are used for in vivo applications such as contrast agent for magnetic resonance imaging (MRI), for tumor therapy or cardiovascular disease. Very promising nanoparticles for these applications are superparamagnetic nanoparticles based on a core consisting of iron oxides (SPION) that can be targeted through external magnets. SPION are coated with biocompatible materials and can be functionalized with drugs, proteins or plasmids. In this review, the characteristics and applications of SPION in the biomedical sector are introduced and discussed

  9. Incorporation and release of drug into/from superparamagnetic iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Maver, Uros; Bele, Marjan [National Institute of Chemistry Slovenia, Hajdrihova 19, 1000 Ljubljana (Slovenia); Makovec, Darko; Campelj, Stanislav [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Jamnik, Janko [National Institute of Chemistry Slovenia, Hajdrihova 19, 1000 Ljubljana (Slovenia); Gaberscek, Miran [National Institute of Chemistry Slovenia, Hajdrihova 19, 1000 Ljubljana (Slovenia)], E-mail: miran.gaberscek@ki.si

    2009-10-15

    The aim of this study was to attach a model drug (naproxen) onto superparamagnetic iron oxide nanoparticles (SPION). First, SPION were coated with thin layer of silica that contained micropores. We demonstrated that such surface functionalization could be optimized by the use of citric acid which prevented SPION agglomeration during the procedure. HRTEM investigation showed a uniform 1-2-nm-thick silica coating around SPION. This coating did not affect significantly the magnetic properties of the SPION. Into the coated SPION we successfully incorporated about 30 wt% of naproxen. The latter was readily released after immersion into a testing solution. The composites could be interesting for potential use in diagnostics.

  10. Incorporation and release of drug into/from superparamagnetic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Maver, Uros; Bele, Marjan; Makovec, Darko; Campelj, Stanislav; Jamnik, Janko; Gaberscek, Miran

    2009-01-01

    The aim of this study was to attach a model drug (naproxen) onto superparamagnetic iron oxide nanoparticles (SPION). First, SPION were coated with thin layer of silica that contained micropores. We demonstrated that such surface functionalization could be optimized by the use of citric acid which prevented SPION agglomeration during the procedure. HRTEM investigation showed a uniform 1-2-nm-thick silica coating around SPION. This coating did not affect significantly the magnetic properties of the SPION. Into the coated SPION we successfully incorporated about 30 wt% of naproxen. The latter was readily released after immersion into a testing solution. The composites could be interesting for potential use in diagnostics.

  11. A facile method to prepare superparamagnetic iron oxide and hydrophobic drug-encapsulated biodegradable polyurethane nanoparticles

    Directory of Open Access Journals (Sweden)

    Cheng K

    2017-03-01

    Full Text Available Kuo-Wei Cheng, Shan-hui Hsu Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University, Taipei, Taiwan, Republic of China Abstract: Superparamagnetic iron oxide nanoparticles (SPIO NPs have a wide range of biomedical applications such as in magnetic resonance imaging, targeting, and hyperthermia therapy. Aggregation of SPIO NPs can occur because of the hydrophobic surface and high surface energy of SPIO NPs. Here, we developed a facile method to encapsulate SPIO NPs in amphiphilic biodegradable polymer. Anionic biodegradable polyurethane nanoparticles (PU NPs with ~35 nm size and different chemistry were prepared by waterborne processes. SPIO NPs were synthesized by chemical co-precipitation. SPIO NPs were then added to the aqueous dispersion of PU NPs, followed by application of high-frequency (~20 kHz ultrasonic vibration for 3 min. This method rendered SPIO-PU hybrid NPs (size ~110 nm suspended in water. SPIO-PU hybrid NPs contained ~50–60 wt% SPIO and retained the superparamagnetic property (evaluated by a magnetometer as well as high contrast in magnetic resonance imaging. SPIO-PU NPs also showed the ability to provide cell hyperthermic treatment. Using the same ultrasonic method, hydrophobic drug (Vitamin K3 [VK3] or (9-(methylaminomethylanthracene [MAMA] could also be encapsulated in PU NPs. The VK3-PU or MAMA-PU hybrid NPs had ~35 nm size and different release profiles for PUs with different chemistry. The encapsulation efficiency for VK3 and MAMA was high (~95% without burst release. The encapsulation mechanism may be attributed to the low glass transition temperature (Tg and good mechanical compliance of PU NPs. The new encapsulation method involving waterborne biodegradable PU NPs is simple, rapid, and effective to produce multimodular NP carriers. Keywords: superparamagnetic iron oxide, polyurethane, drug release, hybrid nanoparticles

  12. Drug Nanoparticle Formulation Using Ascorbic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Kunikazu Moribe

    2011-01-01

    Full Text Available Drug nanoparticle formulation using ascorbic acid derivatives and its therapeutic uses have recently been introduced. Hydrophilic ascorbic acid derivatives such as ascorbyl glycoside have been used not only as antioxidants but also as food and pharmaceutical excipients. In addition to drug solubilization, drug nanoparticle formation was observed using ascorbyl glycoside. Hydrophobic ascorbic acid derivatives such as ascorbyl mono- and di-n-alkyl fatty acid derivatives are used either as drugs or carrier components. Ascorbyl n-alkyl fatty acid derivatives have been formulated as antioxidants or anticancer drugs for nanoparticle formulations such as micelles, microemulsions, and liposomes. ASC-P vesicles called aspasomes are submicron-sized particles that can encapsulate hydrophilic drugs. Several transdermal and injectable formulations of ascorbyl n-alkyl fatty acid derivatives were used, including ascorbyl palmitate.

  13. Formulation and stability testing of photolabile drugs.

    Science.gov (United States)

    Tønnesen, H H

    2001-08-28

    Exposure of a drug to irradiation can influence the stability of the formulation, leading to changes in the physicochemical properties of the product. The influence of excipients of frequently used stabilizers is often difficult to predict and, therefore, stability testing of the final preparation is important. The selection of a protective packaging must be based on knowledge about the wavelength causing the instability. Details on drug photoreactivity will also be helpful in order to minimize side-effects and/or optimize drug targeting by developing photoresponsive drug delivery systems. This review focuses on practical problems related to formulation and stability testing of photolabile drugs.

  14. Clinical pharmacology of novel anticancer drug formulations

    NARCIS (Netherlands)

    Stuurman, F.E.

    2013-01-01

    Studies outlined in this thesis describe the impact of drug formulations on pharmacology of anticancer drugs. It consists of four parts and starts with a review describing the mechanisms of low oral bioavailability of anti-cancer drugs and strategies for improvement of the bioavailability. The

  15. Magnetic manipulation of superparamagnetic nanoparticles in a microfluidic system for drug delivery applications

    International Nuclear Information System (INIS)

    Agiotis, L.; Theodorakos, I.; Samothrakitis, S.; Papazoglou, S.; Zergioti, I.; Raptis, Y.S.

    2016-01-01

    Magnetic nanoparticles (MNPs), such as superparamagnetic iron oxide nanoparticles (SPIONS), have attracted major interest, due to their small size and unique magnetic properties, for drug delivery applications. In this context, iron oxide nanoparticles of magnetite (Fe 3 O 4 ) (150 nm magnetic core diameter), were used as drug carriers, aiming to form a magnetically controlled nano-platform. The navigation capabilities of the iron oxide nanoparticles in a microfluidic channel were investigated by simulating the magnetic field and the magnetic force applied on the magnetic nanoparticles inside a microfluidic chip. The simulations have been performed using finite element method (ANSY’S software). The optimum setup which intends to simulate the magnetic navigation of the nanoparticles, by the use of MRI-type fields, in the human circulatory system, consists of two parallel permanent magnets to produce a homogeneous magnetic field, in order to ensure the maximum magnetization of the magnetic nanoparticles, an electromagnet for the induction of the magnetic gradients and the creation of the magnetic force and a microfluidic setup so as to simulate the blood flow inside the human blood vessels. The magnetization of the superparamagnetic nanoparticles and the consequent magnetic torque developed by the two permanent magnets, together with the mutual interactions between the magnetized nanoparticles lead to the creation of rhabdoid aggregates in the direction of the homogeneous field. Additionally, the magnetic gradients introduced by the operation of the electromagnet are capable of directing the aggregates, as a whole, to the desired direction. By removing the magnetic fields, the aggregates are disrupted, due to the super paramagnetic nature of the nanoparticles, avoiding thus the formation of undesired thrombosis. - Highlights: • Homogeneous field yields an aggregation of particles along the lines of the field. • Additional electromagnet field rotates the

  16. Magnetic manipulation of superparamagnetic nanoparticles in a microfluidic system for drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Agiotis, L.; Theodorakos, I.; Samothrakitis, S.; Papazoglou, S.; Zergioti, I.; Raptis, Y.S.

    2016-03-01

    Magnetic nanoparticles (MNPs), such as superparamagnetic iron oxide nanoparticles (SPIONS), have attracted major interest, due to their small size and unique magnetic properties, for drug delivery applications. In this context, iron oxide nanoparticles of magnetite (Fe{sub 3}O{sub 4}) (150 nm magnetic core diameter), were used as drug carriers, aiming to form a magnetically controlled nano-platform. The navigation capabilities of the iron oxide nanoparticles in a microfluidic channel were investigated by simulating the magnetic field and the magnetic force applied on the magnetic nanoparticles inside a microfluidic chip. The simulations have been performed using finite element method (ANSY’S software). The optimum setup which intends to simulate the magnetic navigation of the nanoparticles, by the use of MRI-type fields, in the human circulatory system, consists of two parallel permanent magnets to produce a homogeneous magnetic field, in order to ensure the maximum magnetization of the magnetic nanoparticles, an electromagnet for the induction of the magnetic gradients and the creation of the magnetic force and a microfluidic setup so as to simulate the blood flow inside the human blood vessels. The magnetization of the superparamagnetic nanoparticles and the consequent magnetic torque developed by the two permanent magnets, together with the mutual interactions between the magnetized nanoparticles lead to the creation of rhabdoid aggregates in the direction of the homogeneous field. Additionally, the magnetic gradients introduced by the operation of the electromagnet are capable of directing the aggregates, as a whole, to the desired direction. By removing the magnetic fields, the aggregates are disrupted, due to the super paramagnetic nature of the nanoparticles, avoiding thus the formation of undesired thrombosis. - Highlights: • Homogeneous field yields an aggregation of particles along the lines of the field. • Additional electromagnet field rotates the

  17. A facile method to prepare superparamagnetic iron oxide and hydrophobic drug-encapsulated biodegradable polyurethane nanoparticles.

    Science.gov (United States)

    Cheng, Kuo-Wei; Hsu, Shan-Hui

    2017-01-01

    Superparamagnetic iron oxide nanoparticles (SPIO NPs) have a wide range of biomedical applications such as in magnetic resonance imaging, targeting, and hyperthermia therapy. Aggregation of SPIO NPs can occur because of the hydrophobic surface and high surface energy of SPIO NPs. Here, we developed a facile method to encapsulate SPIO NPs in amphiphilic biodegradable polymer. Anionic biodegradable polyurethane nanoparticles (PU NPs) with ~35 nm size and different chemistry were prepared by waterborne processes. SPIO NPs were synthesized by chemical co-precipitation. SPIO NPs were then added to the aqueous dispersion of PU NPs, followed by application of high-frequency (~20 kHz) ultrasonic vibration for 3 min. This method rendered SPIO-PU hybrid NPs (size ~110 nm) suspended in water. SPIO-PU hybrid NPs contained ~50-60 wt% SPIO and retained the superparamagnetic property (evaluated by a magnetometer) as well as high contrast in magnetic resonance imaging. SPIO-PU NPs also showed the ability to provide cell hyperthermic treatment. Using the same ultrasonic method, hydrophobic drug (Vitamin K3 [VK3]) or (9-(methylaminomethyl) anthracene [MAMA]) could also be encapsulated in PU NPs. The VK3-PU or MAMA-PU hybrid NPs had ~35 nm size and different release profiles for PUs with different chemistry. The encapsulation efficiency for VK3 and MAMA was high (~95%) without burst release. The encapsulation mechanism may be attributed to the low glass transition temperature (Tg) and good mechanical compliance of PU NPs. The new encapsulation method involving waterborne biodegradable PU NPs is simple, rapid, and effective to produce multimodular NP carriers.

  18. "9th Annual Congress on Drug Formulation & Drug Design"

    OpenAIRE

    Monty Karl

    2017-01-01

    Conference Series has been instrumental in conducting international meetings for seven years, and very excited to expand Europe, America and Asia Pacific continents. Previous meetings were held in major cities like Belgium, Tokyo, Madrid, with success the meetings again scheduled in three continents. It’s time to announce 9th Annual Congress on Drug Formulation & Drug Design October 19-21, 2017 Seoul, South Korea . Drug Formulation 2017 is a 3-day event offering the Exhibition, at venue to sh...

  19. Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy.

    Science.gov (United States)

    Dilnawaz, Fahima; Singh, Abhalaxmi; Mohanty, Chandana; Sahoo, Sanjeeb K

    2010-05-01

    The primary inadequacy of chemotherapeutic drugs is their relative non-specificity and potential side effects to the healthy tissues. To overcome this, drug loaded multifunctional magnetic nanoparticles are conceptualized. We report here an aqueous based formulation of glycerol monooleate coated magnetic nanoparticles (GMO-MNPs) devoid of any surfactant capable of carrying high payload hydrophobic anticancer drugs. The biocompatibility was confirmed by tumor necrosis factor alpha assay, confocal microscopy. High entrapment efficiency approximately 95% and sustained release of encapsulated drugs for more than two weeks under in vitro conditions was achieved for different anticancer drugs (paclitaxel, rapamycin, alone or combination). Drug loaded GMO-MNPs did not affect the magnetization properties of the iron oxide core as confirmed by magnetization study. Additionally the MNPs were functionalized with carboxylic groups by coating with DMSA (Dimercaptosuccinic acid) for the supplementary conjugation of amines. For targeted therapy, HER2 antibody was conjugated to GMO-MNPs and showed enhanced uptake in human breast carcinoma cell line (MCF-7). The IC(50) doses revealed potential antiproliferative effect in MCF-7. Therefore, antibody conjugated GMO-MNPs could be used as potential drug carrier for the active therapeutic aspects in cancer therapy. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. A facile method to prepare superparamagnetic iron oxide and hydrophobic drug-encapsulated biodegradable polyurethane nanoparticles

    OpenAIRE

    Cheng,Kuo-Wei; Hsu,Shan-hui

    2017-01-01

    Kuo-Wei Cheng, Shan-hui Hsu Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University, Taipei, Taiwan, Republic of China Abstract: Superparamagnetic iron oxide nanoparticles (SPIO NPs) have a wide range of biomedical applications such as in magnetic resonance imaging, targeting, and hyperthermia therapy. Aggregation of SPIO NPs can occur because of the hydrophobic surface and high surface energy of SPIO NPs. Here, we developed a facile method to encaps...

  1. Nano-formulations of drugs: Recent developments, impact and challenges.

    Science.gov (United States)

    Jeevanandam, Jaison; Chan, Yen San; Danquah, Michael K

    2016-01-01

    Nano-formulations of medicinal drugs have attracted the interest of many researchers for drug delivery applications. These nano-formulations enhance the properties of conventional drugs and are specific to the targeted delivery site. Dendrimers, polymeric nanoparticles, liposomes, nano-emulsions and micelles are some of the nano-formulations that are gaining prominence in pharmaceutical industry for enhanced drug formulation. Wide varieties of synthesis methods are available for the preparation of nano-formulations to deliver drugs in biological system. The choice of synthesis methods depend on the size and shape of particulate formulation, biochemical properties of drug, and the targeted site. This article discusses recent developments in nano-formulation and the progressive impact on pharmaceutical research and industries. Additionally, process challenges relating to consistent generation of nano-formulations for drug delivery are discussed. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  2. Lipid Based Formulations of Biopharmaceutics Classification System (BCS Class II Drugs: Strategy, Formulations, Methods and Saturation

    Directory of Open Access Journals (Sweden)

    Šoltýsová I.

    2016-12-01

    Full Text Available Active ingredients in pharmaceuticals differ by their physico-chemical properties and their bioavailability therefore varies. The most frequently used and most convenient way of administration of medicines is oral, however many drugs are little soluble in water. Thus they are not sufficiently effective and suitable for such administration. For this reason a system of lipid based formulations (LBF was developed. Series of formulations were prepared and tested in water and biorelevant media. On the basis of selection criteria, there were selected formulations with the best emulsification potential, good dispersion in the environment and physical stability. Samples of structurally different drugs included in the Class II of the Biopharmaceutics classification system (BCS were obtained, namely Griseofulvin, Glibenclamide, Carbamazepine, Haloperidol, Itraconazol, Triclosan, Praziquantel and Rifaximin, for testing of maximal saturation in formulations prepared from commercially available excipients. Methods were developed for preparation of formulations, observation of emulsification and its description, determination of maximum solubility of drug samples in the respective formulation and subsequent analysis. Saturation of formulations with drugs showed that formulations 80 % XA and 20 % Xh, 35 % XF and 65 % Xh were best able to dissolve the drugs which supports the hypothesis that it is desirable to identify limited series of formulations which could be generally applied for this purpose.

  3. Formulation of Bioadhesive Carbomer Gel Incorporating Drug ...

    African Journals Online (AJOL)

    incorporated into carbomer gel and evaluated for drug release. Results: ... localized delivery system for the treatment inflammation and infection in periodontal pockets. ..... loaded with diclofenac sodium for intra- articular administration. J Drug ...

  4. Mitoxantrone Loaded Superparamagnetic Nanoparticles for Drug Targeting: A Versatile and Sensitive Method for Quantification of Drug Enrichment in Rabbit Tissues Using HPLC-UV

    Directory of Open Access Journals (Sweden)

    Rainer Tietze

    2010-01-01

    Full Text Available In medicine, superparamagnetic nanoparticles bound to chemotherapeutics are currently investigated for their feasibility in local tumor therapy. After intraarterial application, these particles can be accumulated in the targeted area by an external magnetic field to increase the drug concentration in the region of interest (Magnetic-Drug-Targeting. We here present an analytical method (HPLC-UV, to detect pure or ferrofluid-bound mitoxantrone in a complex matrix even in trace amounts in order to perform biodistribution studies. Mitoxantrone could be extracted in high yields from different tissues. Recovery of mitoxantrone in liver tissue (5000 ng/g was 76±2%. The limit of quantification of mitoxantrone standard was 10 ng/mL ±12%. Validation criteria such as linearity, precision, and stability were evaluated in ranges achieving the FDA requirements. As shown for pilot samples, biodistribution studies can easily be performed after application of pure or ferrofluid-bound mitoxantrone.

  5. Benefits of different drug formulations in psychopharmacology

    NARCIS (Netherlands)

    Frijlink, Henderik W

    Adequate dosage forms are essential for achieving successful pharmacotherapy. Innovative dosage forms or delivery systems may direct a drug to its specific site of action, optimize the timing of the drug release, or increase comfort or convenience for the patient. Thus, such innovations may improve

  6. Multifunctional pH-sensitive superparamagnetic iron-oxide nanocomposites for targeted drug delivery and MR imaging.

    Science.gov (United States)

    Zhu, Lijuan; Wang, Dali; Wei, Xuan; Zhu, Xinyuan; Li, Jianqi; Tu, Chunlai; Su, Yue; Wu, Jieli; Zhu, Bangshang; Yan, Deyue

    2013-08-10

    A multifunctional pH-sensitive superparamagnetic iron-oxide (SPIO) nanocomposite system was developed for simultaneous tumor magnetic resonance imaging (MRI) and therapy. Small-size SPIO nanoparticles were chemically bonded with antitumor drug doxorubicin (DOX) and biocompatible poly(ethylene glycol) (PEG) through pH-sensitive acylhydrazone linkages, resulting in the formation of SPIO nanocomposites with magnetic targeting and pH-sensitive properties. These DOX-conjugated SPIO nanocomposites exhibited not only good stability in aqueous solution but also high saturation magnetizations. Under an acidic environment, the DOX was quickly released from the SPIO nanocomposites due to the cleavage of pH-sensitive acylhydrazone linkages. With the help of magnetic field, the DOX-conjugated SPIO nanocomposites showed high cellular uptake, indicating their magnetic targeting property. Comparing to free DOX, the DOX-conjugated SPIO nanocomposites showed better antitumor effect under magnetic field. At the same time, the relaxivity value of these SPIO nanocomposites was higher than 146s(-1)mM(-1) Fe, leading to ~4 times enhancement compared to that of free SPIO nanoparticles. As a negative contrast agent, these SPIO nanocomposites illustrated high resolution in MRI diagnosis of tumor-bearing mice. All of these results confirm that these pH-sensitive SPIO nanocomposites are promising hybrid materials for synergistic MRI diagnosis and tumor therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Integrin-targeting thermally cross-linked superparamagnetic iron oxide nanoparticles for combined cancer imaging and drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Mi Kyung; Park, Jinho; Jon, Sangyong [School of Life Sciences, Gwangju Institute of Science and Technology, 261 Chemdangwagi-ro, Gwangju 500-712 (Korea, Republic of); Jeong, Yong Yeon [Department of Diagnostic Radiology, Jeonnam National University Hwasun Hospital, 160 Ilsim-ri, Hwasun-eup, Jeonnam 519-809 (Korea, Republic of); Moon, Woo Kyung, E-mail: syjon@gist.ac.kr [Diagnostic Radiology, Seoul National University Hospital and the Institute of Radiation Medicine, Medical Research Center Seoul National University, Seoul 110-744 (Korea, Republic of)

    2010-10-15

    We report multifunctional nanoparticles that are capable of cancer targeting and simultaneous cancer imaging and therapy. The nanoparticles are composed of cyclic arginine-glycine-aspartic acid (cRGD) peptide ligand bioconjugated thermally cross-linked superparamagnetic iron oxide nanoparticles (TCL-SPION) that enable loading of the anticancer drug doxorubicin (Dox). The cyclic RGD-conjugated TCL-SPION (cRGD{sub T}CL-SPION) had a mean hydrodynamic size of 34 {+-} 8 nm with approximately 0.39 wt% of cyclic RGD attached to the surface of the nanoparticles. The cRGD{sub T}CL-SPION exhibited preferential binding towards target cancer cells (U87MG, integrin {alpha}{sub v{beta}3} +) when analyzed by T{sub 2}-weighted magnetic resonance (MR) imaging. When Dox was loaded onto the polymeric coating layers of cRGD{sub T}CL-SPION via ionic interaction, the resulting Dox-loaded cRGD{sub T}CL-SPION (Dox-cRGD{sub T}CL-SPION) showed much higher cytotoxicity in U87MG cells than Dox-TCL-SPION lacking cRGD (IC{sub 50} value of 0.02 {mu}M versus 0.12 {mu}M). These results suggest that Dox-cRGD{sub T}CL-SPION has potential for use as an integrin-targeted, combined imaging and therapeutic agent.

  8. Paediatric Drug Development and Formulation Design-a European Perspective

    NARCIS (Netherlands)

    Nales, D.A.; Kozarewicz, Piotr; Aylward, Brian; de Vries, Rutger; Egberts, Toine C G; Rademaker, Carin M A; Schobben, Alfred F A M

    The availability of licensed paediatric drugs is lagging behind those for adults, and there is a lack of safe formulations in suitable doses that children are able and willing to take. As a consequence, children are commonly treated with off-label or unlicensed drugs. As off-label and unlicensed

  9. Paediatric Drug Development and Formulation Design—a European Perspective

    NARCIS (Netherlands)

    van Riet-Nales, Diana A.; Kozarewicz, Piotr; Aylward, Brian; de Vries, Rutger; Egberts, Toine C G; Rademaker, Carin M A; Schobben, Alfred F A M

    The availability of licensed paediatric drugs is lagging behind those for adults, and there is a lack of safe formulations in suitable doses that children are able and willing to take. As a consequence, children are commonly treated with off-label or unlicensed drugs. As off-label and unlicensed

  10. Formulation and Evaluation of Rifampicin Liposomes for Buccal Drug Delivery.

    Science.gov (United States)

    Lankalapalli, Srinivas; Tenneti, V S Vinai Kumar

    2016-01-01

    Drug delivery through liposomes offers several advantages, but still challenging to the researchers for the use of liposomes as carriers in drug delivery due to their poor physical stability, unpredictable drug encapsulation and systemic availability of the loaded drug. The present investigation was planned with an objective to prepare Rifampicin loaded liposomes by using response surface methodology of statistical 32 factorial design and further to formulate them into pastilles for deliver through buccal route thereby to enhance systemic absorption. Rifampicin liposomes were prepared by using different ratios of soya lecithin and cholesterol by solvent Injection method. These liposomes were characterized by using optical microscopy, Scanning Electron Microscopy (SEM) and evaluated for particle size, entrapment efficiency (EE), in vitro and ex vivo drug release. Main effects and interaction terms of the formulation variables were evaluated quantitatively using a mathematical statistical model approach showing that both independent variables have significant (P value value: 0.0273), percentage entrapment efficiency (P value: 0.0096), percentage drug release through dialysis membrane (P value: 0.0047) and percentage drug release through porcine buccal membrane (P value: 0.0019). The statistical factorial design of liposomal formulations fulfilled all the requirements of the target set and exhibited suitable values for the selected test parameters. Pastilles were prepared for liposomes using glycerol gelatin base and were found to be soft, smooth with uniform drug content and drug release.

  11. Mesoporous silica formulation strategies for drug dissolution enhancement: a review.

    Science.gov (United States)

    McCarthy, Carol A; Ahern, Robert J; Dontireddy, Rakesh; Ryan, Katie B; Crean, Abina M

    2016-01-01

    Silica materials, in particular mesoporous silicas, have demonstrated excellent properties to enhance the oral bioavailability of poorly water-soluble drugs. Current research in this area is focused on investigating the kinetic profile of drug release from these carriers and manufacturing approaches to scale-up production for commercial manufacture. This review provides an overview of different methods utilized to load drugs onto mesoporous silica carriers. The influence of silica properties and silica pore architecture on drug loading and release are discussed. The kinetics of drug release from mesoporous silica systems is examined and the manufacturability and stability of these formulations are reviewed. Finally, the future prospects of mesoporous silica drug delivery systems are considered. Substantial progress has been made in the characterization and development of mesoporous drug delivery systems for drug dissolution enhancement. However, more research is required to fully understand the drug release kinetic profile from mesoporous silica materials. Incomplete drug release from the carrier and the possibility of drug re-adsorption onto the silica surface need to be investigated. Issues to be addressed include the manufacturability and regulation status of formulation approaches employing mesoporous silica to enhance drug dissolution. While more research is needed to support the move of this technology from the bench to a commercial medicinal product, it is a realistic prospect for the near future.

  12. Otic drug delivery systems: formulation principles and recent developments.

    Science.gov (United States)

    Liu, Xu; Li, Mingshuang; Smyth, Hugh; Zhang, Feng

    2018-04-25

    Disorders of the ear severely impact the quality of life of millions of people, but the treatment of these disorders is an ongoing, but often overlooked challenge particularly in terms of formulation design and product development. The prevalence of ear disorders has spurred significant efforts to develop new therapeutic agents, but perhaps less innovation has been applied to new drug delivery systems to improve the efficacy of ear disease treatments. This review provides a brief overview of physiology, major diseases, and current therapies used via the otic route of administration. The primary focuses are on the various administration routes and their formulation principles. The article also presents recent advances in otic drug deliveries as well as potential limitations. Otic drug delivery technology will likely evolve in the next decade and more efficient or specific treatments for ear disease will arise from the development of less invasive drug delivery methods, safe and highly controlled drug delivery systems, and biotechnology targeting therapies.

  13. Topical Drug Formulations for Prolonged Corneal Anesthesia

    Science.gov (United States)

    Wang, Liqiang; Shankarappa, Sahadev A.; Tong, Rong; Ciolino, Joseph B.; Tsui, Jonathan H.; Chiang, Homer H.; Kohane, Daniel S.

    2013-01-01

    Purpose Ocular local anesthetics (OLA’s) currently used in routine clinical practice for corneal anesthesia are short acting and their ability to delay corneal healing makes them unsuitable for long-term use. In this study, we examined the effect on the duration of corneal anesthesia of the site-1 sodium channel blocker tetrodotoxin (TTX), applied with either proparacaine or the chemical permeation enhancer OTAB. The effect of test solutions on corneal healing was also studied. Methods Solutions of TTX, proparacaine, and OTAB, singly or in combination were applied topically to the rat cornea. The blink response, an indirect measure of corneal sensitivity, was recorded using a Cochet-Bonnet esthesiometer, and the duration of corneal anesthesia calculated. The effect of test compounds on the rate of corneal epithelialization was studied in vivo following corneal debridement. Results Combination of TTX and proparacaine resulted in corneal anesthesia that was 8–10 times longer in duration than that from either drug administered alone, while OTAB did not prolong anesthesia. The rate of corneal healing was moderately delayed following co-administration of TTX and proparacaine. Conclusion Co-administration of TTX and proparacaine significantly prolonged corneal anesthesia but in view of delayed corneal re-epithelialization, caution is suggested in use of the combination. PMID:23615270

  14. Preparation of nanoscale pulmonary drug delivery formulations by spray drying

    DEFF Research Database (Denmark)

    Bohr, Adam; Ruge, Christian A; Beck-Broichsitter, Moritz

    2014-01-01

    and can offer controlled drug release. There are numerous methods for producing therapeutic nanoparticles, each with their own advantages and suitable application. Liquid atomization techniques such as spray drying can produce nanoparticle formulations in a dry powder form suitable for pulmonary...... administration in a direct one-step process. This chapter describes the different state-of-the-art techniques used to prepare drug nanoparticles (with special emphasize on spray drying techniques) and the strategies for administering such unique formulations to the pulmonary environment....

  15. Optimal structure of particles-based superparamagnetic microrobots: application to MRI guided targeted drug therapy

    International Nuclear Information System (INIS)

    Mellal, Lyès; Belharet, Karim; Folio, David; Ferreira, Antoine

    2015-01-01

    This paper presents an optimal design strategy for therapeutic magnetic micro carriers (TMMC) guided in real time by a magnetic resonance imaging (MRI) system. As aggregates of TMMCs must be formed to carry the most amount of drug and magnetic actuation capability, different clustering agglomerations could be arranged. Nevertheless, its difficult to predict the hydrodynamic behavior of any arbitrary-shaped object due to the nonlinear hydrodynamic effects. Indeed, the drag effect is related not only to the properties of the bolus but also to its interaction with the fluid viscosity, the free-stream velocity and the container geometry. In this work, we propose a mathematical framework to optimize the TMMC aggregates to improve the steering efficiency in experimental endovascular conditions. The proposed analysis is carried out on various sizes and geometries of microcarrier: spherical, ellipsoid-like, and chain-like of microsphere structures. We analyze the magnetophoretic behavior of such designs to exhibit the optimal configuration. Based on the optimal design of the boluses, experimental investigations were carried out in mm-sized fluidic artery phantoms to demonstrate the steerability of the magnetic bolus using a proof-of-concept setup. The experiments demonstrate the steerability of the magnetic bolus under different velocity, shear-stress, and trajectory constraints with a laminar viscous fluidic environment. Preliminary experiments with a MRI system confirm the feasibility of the steering of these TMMCs in hepatic artery microchannel phantom

  16. Refining stability and dissolution rate of amorphous drug formulations

    DEFF Research Database (Denmark)

    Grohganz, Holger; Priemel, Petra A; Löbmann, Korbinian

    2014-01-01

    Introduction: Poor aqueous solubility of active pharmaceutical ingredients (APIs) is one of the main challenges in the development of new small molecular drugs. Additionally, the proportion of poorly soluble drugs among new chemical entities is increasing. The transfer of a crystalline drug to its...... and on the interaction of APIs with small molecular compounds rather than polymers. Finally, in situ formation of an amorphous form might be an option to avoid storage problems altogether. Expert opinion: The diversity of poorly soluble APIs formulated in an amorphous drug delivery system will require different...... approaches for their stabilisation. Thus, increased focus on emerging techniques can be expected and a rational approach to decide the correct formulation is needed....

  17. Pediatric drug formulations: a review of challenges and progress.

    NARCIS (Netherlands)

    Ivanovska, V.; Rademaker, C.M.A.; Dijk, L. van; Mantel-Teeuwisse, A.K.

    2014-01-01

    Children differ from adults in many aspects of pharmacotherapy, including capabilities for drug administration, medicine-related toxicity, and taste preferences. It is essential that pediatric medicines are formulated to best suit a child’s age, size, physiologic condition, and treatment

  18. Design of new polymeric formulations for drug nanocarriers

    Science.gov (United States)

    Mattu, C.; Li, R.; Sartori, S.; Boffito, M.; Ramtoola, Z.; Ciardelli, G.

    2012-07-01

    In this work, novel strategies for the design and characterization of complex nanosized drug delivery systems for the release of different formulations were proposed and investigated. Natural or synthetic polymers, such as chitosan, poly (D,L lactide) (PLA) and proprietary polyesterurethanes, were used to prepare carriers for different applications in nanomedicine.

  19. Magnetic and in vitro heating properties of implants formed in situ from injectable formulations and containing superparamagnetic iron oxide nanoparticles (SPIONs) embedded in silica microparticles for magnetically induced local hyperthermia

    International Nuclear Information System (INIS)

    Le Renard, Pol-Edern; Lortz, Rolf; Senatore, Carmine; Rapin, Jean-Philippe; Buchegger, Franz; Petri-Fink, Alke; Hofmann, Heinrich; Doelker, Eric; Jordan, Olivier

    2011-01-01

    The biological and therapeutic responses to hyperthermia, when it is envisaged as an anti-tumor treatment modality, are complex and variable. Heat delivery plays a critical role and is counteracted by more or less efficient body cooling, which is largely mediated by blood flow. In the case of magnetically mediated modality, the delivery of the magnetic particles, most often superparamagnetic iron oxide nanoparticles (SPIONs), is also critically involved. We focus here on the magnetic characterization of two injectable formulations able to gel in situ and entrap silica microparticles embedding SPIONs. These formulations have previously shown suitable syringeability and intratumoral distribution in vivo. The first formulation is based on alginate, and the second on a poly(ethylene-co-vinyl alcohol) (EVAL). Here we investigated the magnetic properties and heating capacities in an alternating magnetic field (141 kHz, 12 mT) for implants with increasing concentrations of magnetic microparticles. We found that the magnetic properties of the magnetic microparticles were preserved using the formulation and in the wet implant at 37 o C, as in vivo. Using two orthogonal methods, a common SLP (20 W g -1 ) was found after weighting by magnetic microparticle fraction, suggesting that both formulations are able to properly carry the magnetic microparticles in situ while preserving their magnetic properties and heating capacities. - Research highlights: → Magnetic formulations that form implants on injection into tissues are proposed for hyperthermia. → Superparamagnetic properties of the SPION-silica composite microparticles are preserved in the wet implants. → Heat-dissipating properties (SLP of 20 W/g of implant) support in vivo use.

  20. [Plasma lipoproteins as drug carriers. Effect of phospholipid formulations].

    Science.gov (United States)

    Torkhovskaia, T I; Ipatova, O M; Medvedeva, N V; Ivanov, V S; Ivanova, L I

    2010-01-01

    The extensive development of nanotechnologies in the last two decades has brought about new understanding of plasma lipoproteins (LP) as natural drug nanocarriers that escape interaction with immune and reticuloendothelial systems. Drugs bound to LP (especially LDL) can more actively penetrate into cells of many cancer and inflammation tissues with enhanced expression or/and dysregulation of B,E receptors or possibly scavenger SR-BI receptors. Relevant studies are focused on the development of new dosage forms by conjugating lipophilic drugs either with isolated plasma LP or with their model formulations, such as nanoemulsions, mimetics, lipid nanospheres, etc. Some authors include in these particles serum or recombinant apoproteins, peptides, and modified polymer products. As shown recently, protein-free lipid nanoemulsions in plasma take up free apoA and apoE. Complexes with various LP also form after direct administration of lypophilic drugs into blood especially those enclosed in phospholipid formulations, e.g. liposomes. Results of evaluation of some lipophilic dugs (mainly cytostatics, amphotericin B, cyclosporine A, etc.) are discussed. Original data are presented on the influence of phospholipid formulations on the distribution of doxorubicin and indomethacin between LP classes after in vitro incubation in plasma. On the whole, the review illustrates the importance of research on LP and phospholi pid forms as drug nanocarriers to be used to enhance effect of therapy.

  1. Recent advances in co-amorphous drug formulations

    DEFF Research Database (Denmark)

    Dengale, Swapnil Jayant; Grohganz, Holger; Rades, Thomas

    2016-01-01

    with other amorphous stabilization techniques. Because of this, several research groups started to investigate the co-amorphous formulation approach, resulting in an increasing amount of scientific publications over the last few years. This study provides an overview of the co-amorphous field and its recent......Co-amorphous drug delivery systems have recently gained considerable interest in the pharmaceutical field because of their potential to improve oral bioavailability of poorly water-soluble drugs through drug dissolution enhancement as a result of the amorphous nature of the material. A co...... findings. In particular, we investigate co-amorphous formulations from the viewpoint of solid dispersions, describe their formation and mechanism of stabilization, study their impact on dissolution and in vivo performance and briefly outline the future potentials....

  2. Pharmacogenomics and its potential impact on drug and formulation development.

    Science.gov (United States)

    Regnstrom, Karin; Burgess, Diane J

    2005-01-01

    Recent advances in genomic research have provided the basis for new insights into the importance of genetic and genomic markers during the different stages of drug development. A new field of research, pharmacogenomics, which studies the relationship between drug effects and the genome, has emerged. Structural pharmacogenomics maps the complete DNA sequences of whole genomes (genotypes) including individual variations, and functional pharmacogenomics assesses the expression levels of thousands of genes in one single experiment. Together, these two areas of pharmacogenomics have generated massive databases, which have become a challenge for the research field of informatics and have fostered a new branch of research, bioinformatics. If skillfully used, the databases generated by pharmacogenomics together with data mining on the Web promise to improve the drug development process in a variety of areas: identification of drug targets, evaluation of toxicity, classification of diseases, evaluation of formulations, assessment of drug response and treatment, post-marketing applications, and development of personalized medicines.

  3. Target-mediated drug disposition with drug-drug interaction, Part I: single drug case in alternative formulations.

    Science.gov (United States)

    Koch, Gilbert; Jusko, William J; Schropp, Johannes

    2017-02-01

    Target-mediated drug disposition (TMDD) describes drug binding with high affinity to a target such as a receptor. In application TMDD models are often over-parameterized and quasi-equilibrium (QE) or quasi-steady state (QSS) approximations are essential to reduce the number of parameters. However, implementation of such approximations becomes difficult for TMDD models with drug-drug interaction (DDI) mechanisms. Hence, alternative but equivalent formulations are necessary for QE or QSS approximations. To introduce and develop such formulations, the single drug case is reanalyzed. This work opens the route for straightforward implementation of QE or QSS approximations of DDI TMDD models. The manuscript is the first part to introduce DDI TMDD models with QE or QSS approximations.

  4. Formulation of mucoadhesive gastric retentive drug delivery using thiolated xyloglucan.

    Science.gov (United States)

    Bhalekar, Mangesh R; Bargaje, Rajesh V; Upadhaya, Prashant G; Madgulkar, Ashwini R; Kshirsagar, Sanjay J

    2016-01-20

    Tamarind seed xyloglucan is a polymer reported to possess mucoadhesive property. In the present work, role of cysteine derivative of tamarind seed polysaccharide (thiomer) to enhance the mucoadhesion and its influence on drug permeation has been studied. The xyloglucan was first chemically modified to carboxymethyl derivative which was further converted to thiomer by conjugation with cysteine in presence of a coupling agent, EDAC. The matrix tablets of simvastatin prepared using thiomer demonstrated drug release retardation, increased mucoadhesion force and increased ex vivo permeation, the same were proportional to the increase in the amount of thiomer. The in vivo residence of thiomer placebo was more than 7h in rabbit. Pharmacokinetic evaluation in rabbits indicated higher AUC for the formulation with highest content of thiomer and level 'A' correlation could be established from the generated dissolution and bioavailability data. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Inhaled Micro/Nanoparticulate Anticancer Drug Formulations: An Emerging Targeted Drug Delivery Strategy for Lung Cancers.

    Science.gov (United States)

    Islam, Nazrul; Richard, Derek

    2018-05-24

    Local delivery of drug to the target organ via inhalation offers enormous benefits in the management of many diseases. Lung cancer is the most common of all cancers and it is the leading cause of death worldwide. Currently available treatment systems (intravenous or oral drug delivery) are not efficient in accumulating the delivered drug into the target tumor cells and are usually associated with various systemic and dose-related adverse effects. The pulmonary drug delivery technology would enable preferential accumulation of drug within the cancer cell and thus be superior to intravenous and oral delivery in reducing cancer cell proliferation and minimising the systemic adverse effects. Site-specific drug delivery via inhalation for the treatment of lung cancer is both feasible and efficient. The inhaled drug delivery system is non-invasive, produces high bioavailability at low dose and avoids first pass metabolism of the delivered drug. Various anticancer drugs including chemotherapeutics, proteins and genes have been investigated for inhalation in lung cancers with significant outcomes. Pulmonary delivery of drugs from dry powder inhaler (DPI) formulation is stable and has high patient compliance. Herein, we report the potential of pulmonary drug delivery from dry powder inhaler (DPI) formulations inhibiting lung cancer cell proliferation at very low dose with reduced unwanted adverse effects. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system

    International Nuclear Information System (INIS)

    Gao Lei; Zhang Dianrui; Chen Minghui

    2008-01-01

    Formulation of poorly soluble drugs is a general intractable problem in pharmaceutical field, especially those compounds poorly soluble in both aqueous and organic media. It is difficult to resolve this problem using conventional formulation approaches, so many drugs are abandoned early in discovery. Nanocrystals, a new carrier-free colloidal drug delivery system with a particle size ranging from 100 to 1000 nm, is thought as a viable drug delivery strategy to develop the poorly soluble drugs, because of their simplicity in preparation and general applicability. In this article, the product techniques of the nanocrystals were reviewed and compared, the special features of drug nanocrystals were discussed. The researches on the application of the drug nanocrystals to various administration routes were described in detail. In addition, as introduced later, the nanocrystals could be easily scaled up, which was the prerequisite to the development of a delivery system as a market product

  7. Formulation and Optimization of Multiparticulate Drug Delivery System Approach for High Drug Loading.

    Science.gov (United States)

    Shah, Neha; Mehta, Tejal; Gohel, Mukesh

    2017-08-01

    The aim of the present work was to develop and optimize multiparticulate formulation viz. pellets of naproxen by employing QbD and risk assessment approach. Mixture design with extreme vertices was applied to the formulation with high loading of drug (about 90%) and extrusion-spheronization as a process for manufacturing pellets. Independent variables chosen were level of microcrystalline cellulose (MCC)-X 1 , polyvinylpyrrolidone K-90 (PVP K-90)-X 2 , croscarmellose sodium (CCS)-X 3 , and polacrilin potassium (PP)-X 4 . Dependent variables considered were disintegration time (DT)-Y 1 , sphericity-Y 2 , and percent drug release-Y 3 . The formulation was optimized based on the batches generated by MiniTab 17 software. The batch with maximum composite desirability (0.98) proved to be optimum. From the evaluation of design batches, it was observed that, even in low variation, the excipients affect the pelletization property of the blend and also the final drug release. In conclusion, pellets with high drug loading can be effectively manufactured and optimized systematically using QbD approach.

  8. Fixed-dose combinations of drugs versus single-drug formulations for treating pulmonary tuberculosis

    Science.gov (United States)

    Gallardo, Carmen R; Rigau Comas, David; Valderrama Rodríguez, Angélica; Roqué i Figuls, Marta; Parker, Lucy Anne; Caylà, Joan; Bonfill Cosp, Xavier

    2016-01-01

    Background People who are newly diagnosed with pulmonary tuberculosis (TB) typically receive a standard first-line treatment regimen that consists of two months of isoniazid, rifampicin, pyrazinamide, and ethambutol followed by four months of isoniazid and rifampicin. Fixed-dose combinations (FDCs) of these drugs are widely recommended. Objectives To compare the efficacy, safety, and acceptability of anti-tuberculosis regimens given as fixed-dose combinations compared to single-drug formulations for treating people with newly diagnosed pulmonary tuberculosis. Search methods We searched the Cochrane Infectious Disease Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL, published in the Cochrane Library, Issue 11 2015); MEDLINE (1966 to 20 November 2015); EMBASE (1980 to 20 November 2015); LILACS (1982 to 20 November 2015); the metaRegister of Controlled Trials; and the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP), without language restrictions, up to 20 November 2015. Selection criteria Randomized controlled trials that compared the use of FDCs with single-drug formulations in adults (aged 15 years or more) newly diagnosed with pulmonary TB. Data collection and analysis Two review authors independently assessed studies for inclusion, and assessed the risk of bias and extracted data from the included trials. We used risk ratios (RRs) for dichotomous data and mean differences (MDs) for continuous data with 95% confidence intervals (CIs). We attempted to assess the effect of treatment for time-to-event measures with hazard ratios and their 95% CIs. We used the Cochrane 'Risk of bias' assessment tool to determine the risk of bias in included trials. We used the fixed-effect model when there was little heterogeneity and the random-effects model with moderate heterogeneity. We used an I² statistic value of 75% or greater to denote significant heterogeneity, in which case we did not perform a

  9. Design of Novel Ophthalmic Formulation Containing Drug Nanoparticles and Its Usefulness as Anti-glaucoma Drugs.

    Science.gov (United States)

    Nagai, Noriaki

    2016-01-01

    The ophthalmic application of drugs is the primary route of administration for the therapy of glaucoma; however, in traditional formulations, only small amounts of the administered drug penetrate the cornea to reach the desired intraocular tissue due to corneal barriers. Recently, nanoparticulate drug delivery is expected as a technology to overcome the difficulties in delivering drugs across biological barriers (improvement of bioavailability). In this study, we attempted to establish a new method for preparing solid drug nanoparticles by using a bead mill and various additives, and succeeded in preparing a high quality dispersion containing drug nanoparticles. For a more concrete example, a mean particle size of disulfiram (DSF) treated with bead mill is 183 nm. The corneal penetration and corneal residence time of DSF from the ophthalmic dispersion containing DSF nanoparticles were significantly higher than those from a 2-hydroxypropyl-β-cyclodextrin solution containing DSF (DSF solution). It is known that the administration of DSF has intraocular pressure (IOP)-reducing effects. The IOP-reducing effects of the ophthalmic dispersion containing DSF nanoparticles were significantly greater than those of the DSF solution in rabbits (the IOP was enhanced by placing the rabbits in a dark room for 5 h). In addition, the ophthalmic dispersion containing DSF nanoparticles is better tolerated by corneal epithelial cells than DSF solution. It is possible that dispersions containing DSF nanoparticles provide new possibilities for effectively treating glaucoma, and that ocular drug delivery systems using drug nanoparticles may expand their usage for therapy in the ophthalmologic field.

  10. Formulating a poorly water soluble drug into an oral solution suitable for paediatric patients; lorazepam as a model drug

    NARCIS (Netherlands)

    A.C. Van Der Vossen (Anna C.); I. Van Der Velde (Iris); O. Smeets (Oscar); Postma, D.J.; Eckhardt, M.; A. Vermes (Andras); B.C.P. Koch (Birgit C. P.); A.G. Vulto (Arnold); L.M. Hanff (Lidwien)

    2017-01-01

    textabstractIntroduction Many drugs are unavailable in suitable oral paediatric dosage forms, and pharmacists often have to compound drugs to provide paediatric patients with an acceptable formulation in the right dose. Liquid formulations offer the advantage of dosing flexibility and ease of

  11. Electrical control of superparamagnetism

    Science.gov (United States)

    Yamada, Kihiro T.; Koyama, Tomohiro; Kakizakai, Haruka; Miwa, Kazumoto; Ando, Fuyuki; Ishibashi, Mio; Kim, Kab-Jin; Moriyama, Takahiro; Ono, Shimpei; Chiba, Daichi; Ono, Teruo

    2017-01-01

    The electric field control of superparamagnetism is realized using a Cu/Ni system, in which the deposited Ni shows superparamagnetic behavior above the blocking temperature. An electric double-layer capacitor (EDLC) with the Cu/Ni electrode and a nonmagnetic counter electrode is fabricated to examine the electric field effect on magnetism in the magnetic electrode. By changing the voltage applied to the EDLC, the blocking temperature of the system is clearly modulated.

  12. Enhanced vaginal drug delivery through the use of hypotonic formulations that induce fluid uptake

    Science.gov (United States)

    Ensign, Laura M.; Hoen, Timothy; Maisel, Katharina; Cone, Richard; Hanes, Justin

    2013-01-01

    Mucosal epithelia use osmotic gradients for fluid absorption and secretion. We hypothesized that administration of hypotonic solutions would induce fluid uptake that could be advantageous for rapidly delivering drugs through mucus to the vaginal epithelium. We found that hypotonic formulations markedly increased the rate at which small molecule drugs and muco-inert nanoparticles (mucus-penetrating particles, or MPP), but not conventional mucoadhesive nanparticles (CP), reached the vaginal epithelial surface in vivo in mice. Additionally, hypotonic formulations greatly enhanced drug and MPP delivery to the entire epithelial surface, including deep into the vaginal folds (rugae) that drugs or MPP in isotonic formulations failed to reach efficiently. However, hypotonic formulations caused unencapsulated “free” drugs to be drawn through the epithelium, reducing vaginal retention. In contrast, hypotonic formulations caused MPP to accumulate rapidly and uniformly on vaginal surfaces, ideally positioned for localized sustained drug delivery. Using a mouse model of vaginal genital herpes (HSV-2) infection, we found that hypotonic delivery of free drug led to improved immediate protection, but diminished longer-term protection. In contrast, as we previously demonstrated, hypotonic delivery of drug via MPP led to better long-term retention and protection in the vagina. Importantly, we demonstrate that slightly hypotonic formulations provided rapid and uniform delivery of MPP to the entire vaginal surface, thus enabling formulations with minimal risk of epithelial toxicity. Hypotonic formulations for vaginal drug delivery via MPP may significantly improve prevention and treatment of reproductive tract diseases and disorders. PMID:23769419

  13. Formulation, quality control and shelf life of the experimental cytostatic drug cyclopentenyl cytosine

    NARCIS (Netherlands)

    Schimmel, Kirsten; Guchelaar, Henk-Jan; van Kan, Erik

    2006-01-01

    This paper describes the formulation and quality control of an aqueous sterilized formulation of the experimental cytostatic drug cyclopentenyl cytosine (CPEC) to be used in Phase I/II clinical trials. The raw drug substance was extensively tested. A High Pressure Liquid Chromotography (HPLC) method

  14. Development of gellan gum containing formulations for transdermal drug delivery: Component evaluation and controlled drug release using temperature responsive nanogels.

    Science.gov (United States)

    Carmona-Moran, Carlos A; Zavgorodnya, Oleksandra; Penman, Andrew D; Kharlampieva, Eugenia; Bridges, S Louis; Hergenrother, Robert W; Singh, Jasvinder A; Wick, Timothy M

    2016-07-25

    Enhancing skin permeation is important for development of new transdermal drug delivery formulations. This is particularly relevant for non-steroidal anti-inflammatory drugs (NSAIDs). To address this, semisolid gel and solid hydrogel film formulations containing gellan gum as a gelling agent were developed and the effects of penetration enhancers (dimethyl sulfoxide, isopropyl alcohol and propylene glycol) on transport of the NSAID diclofenac sodium was quantified. A transwell diffusion system was used to accelerate formulation development. After 4h, diclofenac flux from a superior formulation of the semisolid gel or the solid hydrogel film was 130±11μg/cm(2)h and 108±7μg/cm(2)h, respectively, and significantly greater than that measured for a currently available diclofenac sodium topical gel (30±4μg/cm(2)h, ptransdermal drug formulations with adjustable drug transport kinetics. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A Nanodroplet Processor for Advanced Microencapsulated Drug Formulations, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — During this Phase II program we propose to build on the key aspects of the nanodroplet encapsulation technology to demonstrate optimized formulation and...

  16. Drug Solubility in Fatty Acids as a Formulation Design Approach for Lipid-Based Formulations: A Technical Note.

    Science.gov (United States)

    Lee, Yung-Chi; Dalton, Chad; Regler, Brian; Harris, David

    2018-06-06

    Lipid-based drug delivery systems have been intensively investigated as a means of delivering poorly water-soluble drugs. Upon ingestion, the lipases in the gastrointestinal tract digest lipid ingredients, mainly triglycerides, within the formulation into monoglycerides and fatty acids. While numerous studies have addressed the solubility of drugs in triglycerides, comparatively few publications have addressed the solubility of drugs in fatty acids, which are the end product of digestion and responsible for the solubility of drug within mixed micelles. The objective of this investigation was to explore the solubility of a poorly water-soluble drug in fatty acids and raise the awareness of the importance of drug solubility in fatty acids. The model API (active pharmaceutical ingredient), a weak acid, is considered a BCS II compound with an aqueous solubility of 0.02 μg/mL and predicted partition coefficient >7. The solubility of API ranged from 120 mg/mL to over 1 g/mL in fatty acids with chain lengths across the range C18 to C6. Hydrogen bonding was found to be the main driver of the solubilization of API in fatty acids. The solubility of API was significantly reduced by water uptake in caprylic acid but not in oleic acid. This report demonstrates that solubility data generated in fatty acids can provide an indication of the solubility of the drug after lipid digestion. This report also highlights the importance of measuring the solubility of drugs in fatty acids in the course of lipid formulation development.

  17. A REVIEW ON CONTROLLED DRUG RELEASE FORMULATION: SPANSULES

    OpenAIRE

    Rinky Maurya; Dr. Pramod Kumar Sharma; Rishabha Malviya

    2014-01-01

    Spansules are a dosage form which was considered as one of the Advanced Drug Delivery System. Multidrug preparations can be delivered easily by spansules or granules in capsule technology. This type of delivery system designed to release a drug or a medicament at two or more different rates or in different span of time. A quick/slow release system provides an initial release of drug followed by a constant rate of drug release over a extended period or a defined period of time and in slow/quic...

  18. Self-emulsifying drug delivery systems (SEDDS): formulation development, characterization, and applications.

    Science.gov (United States)

    Singh, Bhupinder; Bandopadhyay, Shantanu; Kapil, Rishi; Singh, Ramandeep; Katare, O

    2009-01-01

    Self-emulsifying drug delivery systems (SEDDS) possess unparalleled potential in improving oral bioavailability of poorly water-soluble drugs. Following their oral administration, these systems rapidly disperse in gastrointestinal fluids, yielding micro- or nanoemulsions containing the solubilized drug. Owing to its miniscule globule size, the micro/nanoemulsifed drug can easily be absorbed through lymphatic pathways, bypassing the hepatic first-pass effect. We present an exhaustive and updated account of numerous literature reports and patents on diverse types of self-emulsifying drug formulations, with emphasis on their formulation, characterization, and systematic optimization strategies. Recent advancements in various methodologies employed to characterize their globule size and shape, ability to encapsulate the drug, gastrointestinal and thermodynamic stability, rheological characteristics, and so forth, are discussed comprehensively to guide the formula-tor in preparing an effective and robust SEDDS formulation. Also, this exhaustive review offers an explicit discussion on vital applications of the SEDDS in bioavailability enhancement of various drugs, outlining an overview on myriad in vitro, in situ, and ex vivo techniques to assess the absorption and/ or permeation potential of drugs incorporated in the SEDDS in animal and cell line models, and the subsequent absorption pathways followed by them. In short, the current article furnishes an updated compilation of wide-ranging information on all the requisite vistas of the self-emulsifying formulations, thus paving the way for accelerated progress into the SEDDS application in pharmaceutical research.

  19. [Efficacy of a new fenbendazole formulation produced by nanotechnology-based drug delivery system against nematodosis].

    Science.gov (United States)

    Varlamova, A I; Arkhipov, I A; Odoevskaia, I M; Danilevskaia, N V; Khalikov, S S; Chistiachenko, Iu S; Dushkin, A V

    2014-01-01

    The efficacy of a new fenbendazile formulation produced by nanotechnology-based drug delivery system was investigated in45 sheep naturally infected with gastrointestinal nematodes. The formulation showed 95.6% efficacy against Nematodes spp. at a dose of 1.0 mg/kg dw of its active ingredient and 100% efficacy against other species of gastrointestinal nematodes. Given at a dose of 10 mg/kg dw, the basic drug--fenbendazole (substance) displayed 96.39 and 100% efficacy, respectively.

  20. A Nanodroplet Processor for Advanced Microencapsulated Drug Formulations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to provide a demonstration of a nanodroplet synthesis of multifunctional liposomes for drug delivery based on immiscible...

  1. Phototoxicity free quantum dot-based niosome formulation for controlled drug release and its monitoring

    Science.gov (United States)

    Kumar, Sunil; Kang, T. W.; Bala, Suman; Kamboj, Sunil; Jeon, H. C.

    2018-04-01

    A novel niosomes-based system composed of Hypromellose (HPMC) functionalized fluorescent, biocompatible ZnS:Mn quantum dots (QDs), and anti-HIV drug Tenofovir disoproxil fumarate (TDF) was designed. An appropriate ratio of surfactant Sorbitan Monostearate (SPAN-60) and cholesterol was used to obtain an optimal entrapment efficiency. Initially, after observing the successful interaction of HPMC with SPAN-60, the noisome formulation including (QDs + drug) and HPMC-coated QDs was synthesized by a wet chemical route and characterized by X-ray diffraction (XRD), Transmission electron microscope (TEM) and Selected Electron Diffraction (SAED). Secondly, (QDs + drug) loaded niosome formulations were studied by varying the ratio of SPAN-60 and cholesterol. Multiple studies were done to characterize the shape, size, viscosity, colloidal stability, and entrapment efficiency of (QDs + drug) loaded niosomes. Lastly, pH-dependent (QDs + drug) release profiles were studied by a spectroscopic technique considering the pH of the human gastrointestinal region to obtain the formulation stability of (QDs + drug) release from the niosome vesicles. These studies also include pH-dependent photo-stability measurements based on laser-induced multiphoton excitation technique in the Infrared region. The multiphoton time-resolved studies were completed to avoid the UV induced phototoxicity in the drug delivery modules. Current studies on the formulation of niosomes-based (QDs + drug) system laid a foundation to make a complete phototoxicity free system for tracking controlled drug release and its imaging.

  2. Preparation of finasteride capsules-loaded drug nanoparticles: formulation, optimization, in vitro, and pharmacokinetic evaluation

    Directory of Open Access Journals (Sweden)

    Ahmed TA

    2016-02-01

    Full Text Available Tarek A Ahmed1,2 1Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; 2Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt Abstract: In this study, optimized freeze-dried finasteride nanoparticles (NPs were prepared from drug nanosuspension formulation that was developed using the bottom–up technique. The effects of four formulation and processing variables that affect the particle size and solubility enhancement of the NPs were explored using the response surface optimization design. The optimized formulation was morphologically characterized using transmission electron microscopy (TEM. Physicochemical interaction among the studied components was investigated. Crystalline change was investigated using X-ray powder diffraction (XRPD. Crystal growth of the freeze-dried NPs was compared to the corresponding aqueous drug nanosuspension. Freeze-dried NPs formulation was subsequently loaded into hard gelatin capsules that were examined for in vitro dissolution and pharmacokinetic behavior. Results revealed that in most of the studied variables, some of the quadratic and interaction effects had a significant effect on the studied responses. TEM image illustrated homogeneity and shape of the prepared NPs. No interaction among components was noticed. XRPD confirmed crystalline state change in the optimized NPs. An enhancement in the dissolution rate of more than 2.5 times from capsules filled with optimum drug NPs, when compared to capsules filled with pure drug, was obtained. Crystal growth, due to Ostwald ripening phenomenon and positive Gibbs free energy, was reduced following lyophilization of the nanosuspension formulation. Pharmacokinetic parameters from drug NPs were superior to that of pure drug and drug microparticles. In conclusion, freeze-dried NPs based on drug nanosuspension formulation is a successful

  3. Formulation of gastroretentive floating drug delivery system using hydrophilic polymers and its in vitro characterization

    Directory of Open Access Journals (Sweden)

    Venkata Srikanth Meka

    2014-04-01

    Full Text Available The aim of the present research is to formulate and evaluate the gastroretentive floating drug delivery system of antihypertensive drug, propranolol HCl. Gastroretentive floating tablets (GRFT were prepared by using a synthetic hydrophilic polymer polyethylene oxide of different grades such as PEO WSR N-12 K and PEO 18 NF as release retarding polymers and calcium carbonate as gas generating agent. The GRFT were compressed by direct compression strategy and the tablets were evaluated for physico-chemical properties, in vitro buoyancy, swelling studies, in vitro dissolution studies and release mechanism studies. From the dissolution and buoyancy studies, F 9 was selected as an optimized formulation. The optimized formulation followed zero order rate kinetics with non-Fickian diffusion mechanism. The optimized formulation was characterised with FTIR studies and observed no interaction between the drug and the polymers.

  4. A new self-emulsifying formulation of mefenamic acid with enhanced drug dissolution

    Directory of Open Access Journals (Sweden)

    Pornsak Sriamornsak

    2015-04-01

    Full Text Available To enhance the dissolution of poorly soluble mefenamic acid, self-emulsifying formulation (SEF, composing of oil, surfactant and co-surfactant, was formulated. Among the oils and surfactants studied, Imwitor® 742, Tween® 60, Cremophore® EL and Transcutol® HP were selected as they showed maximal solubility to mefenamic acid. The ternary phase diagram was constructed to find optimal concentration that provided the highest drug loading. The droplet size after dispersion and drug dissolution of selected formulations were investigated. The results showed that the formulation containing Imwitor® 742, Tween® 60 and Transcutol® HP (10:30:60 can encapsulate high amount of mefenamic acid. The dissolution study demonstrated that, in the medium containing surfactant, nearly 100% of mefenamic acid were dissolved from SEF within 5 min while 80% of drugs were dissolved from the commercial product in 45 min. In phosphate buffer (without surfactant, 80% of drug were dissolved from the developed SEF within 5 min while only about 13% of drug were dissolved in 45 min, from the commercial product. The results suggested that the SEF can enhance the dissolution of poorly soluble drug and has a potential to enhance drug absorption and improve bioavailability of drug.

  5. Novel micellar systems for the formulation of poorly water soluble drugs : biocompatibility aspects and pharmaceutical applications

    OpenAIRE

    Dumontet Mondon, Karine

    2010-01-01

    Amongst the large number of novel drugs, 95% are lipophilic and poorly water soluble. Particularly, this renders their aqueous formulation very difficult. In this regard this thesis focused on polymeric micelles based on novel MPEG-hexPLA copolymers forming a hydrophilic shell and a very hydrophobic core that favors the incorporation of poorly water soluble drugs. Although the drug hydrophobicity and water solubility are the main parameters in respect to their incorporation efficiency, struct...

  6. Dissolution properties of co-amorphous drug-amino acid formulations in buffer and biorelevant media.

    Science.gov (United States)

    Heikkinen, A T; DeClerck, L; Löbmann, K; Grohganz, H; Rades, T; Laitinen, R

    2015-07-01

    Co-amorphous formulations, particularly binary drug-amino acid mixtures, have been shown to provide enhanced dissolution for poorly-soluble drugs and improved physical stability of the amorphous state. However, to date the dissolution properties (mainly intrinsic dissolution rate) of the co-amorphous formulations have been tested only in buffers and their supersaturation ability remain unexplored. Consequently, dissolution studies in simulated intestinal fluids need to be conducted in order to better evaluate the potential of these systems in increasing the oral bioavailability of biopharmaceutics classification system class II drugs. In this study, solubility and dissolution properties of the co-amorphous simvastatin-lysine, gibenclamide-serine, glibenclamide-threonine and glibenclamide-serine-threonine were studied in phosphate buffer pH 7.2 and biorelevant media (fasted and fed state simulated intestinal fluids (FaSSIF and FeSSIF, respectively)). The co-amorphous formulations were found to provide a long-lasting supersaturation and improve the dissolution of the drugs compared to the crystalline and amorphous drugs alone in buffer. Similar improvement, but in lesser extent, was observed in biorelevant media suggesting that a dissolution advantage observed in aqueous buffers may overestimate the advantage in vivo. However, the results show that, in addition to stability advantage shown earlier, co-amorphous drug-amino acid formulations provide dissolution advantage over crystalline drugs in both aqueous and biorelevant conditions.

  7. The solubility-permeability interplay and oral drug formulation design: Two heads are better than one.

    Science.gov (United States)

    Dahan, Arik; Beig, Avital; Lindley, David; Miller, Jonathan M

    2016-06-01

    Poor aqueous solubility is a major challenge in today's biopharmaceutics. While solubility-enabling formulations can significantly increase the apparent solubility of the drug, the concomitant effect on the drug's apparent permeability has been largely overlooked. The mathematical equation to describe the membrane permeability of a drug comprises the membrane/aqueous partition coefficient, which in turn is dependent on the drug's apparent solubility in the GI milieu, suggesting that the solubility and the permeability are closely related, exhibit a certain interplay between them, and treating the one irrespectively of the other may be insufficient. In this article, an overview of this solubility-permeability interplay is provided, and the available data is analyzed in the context of the effort to maximize the overall drug exposure. Overall, depending on the type of solubility-permeability interplay, the permeability may decrease, remain unchanged, and even increase, in a way that may critically affect the formulation capability to improve the overall absorption. Therefore, an intelligent design of solubility-enabling formulation needs to consider both the solubility afforded by the formulation and the permeability in the new luminal environment resulting from the formulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Oral formulation strategies to improve solubility of poorly water-soluble drugs.

    Science.gov (United States)

    Singh, Abhishek; Worku, Zelalem Ayenew; Van den Mooter, Guy

    2011-10-01

    In the past two decades, there has been a spiraling increase in the complexity and specificity of drug-receptor targets. It is possible to design drugs for these diverse targets with advances in combinatorial chemistry and high throughput screening. Unfortunately, but not entirely unexpectedly, these advances have been accompanied by an increase in the structural complexity and a decrease in the solubility of the active pharmaceutical ingredient. Therefore, the importance of formulation strategies to improve the solubility of poorly water-soluble drugs is inevitable, thus making it crucial to understand and explore the recent trends. Drug delivery systems (DDS), such as solid dispersions, soluble complexes, self-emulsifying drug delivery systems (SEDDS), nanocrystals and mesoporous inorganic carriers, are discussed briefly in this review, along with examples of marketed products. This article provides the reader with a concise overview of currently relevant formulation strategies and proposes anticipated future trends. Today, the pharmaceutical industry has at its disposal a series of reliable and scalable formulation strategies for poorly soluble drugs. However, due to a lack of understanding of the basic physical chemistry behind these strategies, formulation development is still driven by trial and error.

  9. Implications of formulation design on lipid-based nanostructured carrier system for drug delivery to brain.

    Science.gov (United States)

    Salunkhe, Sachin S; Bhatia, Neela M; Bhatia, Manish S

    2016-05-01

    The aim of present investigation was to formulate and develop lipid-based nanostructured carriers (NLCs) containing Idebenone (IDE) for delivery to brain. Attempts have been made to evaluate IDE NLCs for its pharmacokinetic and pharmacodynamic profile through the objective of enhancement in bioavailability and effectivity of drug. Nanoprecipitation technique was used for development of drug loaded NLCs. The components solid lipid Precirol ATO 5, oil Miglyol 840, surfactants Tween 80 and Labrasol have been screened out for formulation development by consideration of preformulation parameters including solubility, Required Hydrophilic lipophilic balance (HLB) of lipids and stability study. Developed IDE NLCs were subjected for particle size, zeta potential, entrapment efficiency (%EE), crystallographic investigation, transmission electron microscopy, in vitro drug release, pharmacokinetics, in vivo and stability study. Formulation under investigation has particle size 174.1 ± 2.6 nm, zeta potential -18.65 ± 1.13 mV and% EE 90.68 ± 2.90. Crystallographic studies exemplified for partial amorphization of IDE by molecularly dispersion within lipid crust. IDE NLCs showed drug release 93.56 ± 0.39% at end of 24 h by following Higuchi model which necessitates for appropriate drug delivery with enhancement in bioavailability of drug by 4.6-fold in plasma and 2.8-fold in brain over plain drug loaded aqueous dispersions. In vivo studies revealed that effect of drug was enhanced by prepared lipid nanocarriers. IDE lipid-based nanostructured carriers could have potential for efficient drug delivery to brain with enhancement in bioavailability of drug over the conventional formulations.

  10. [Formulation aspects and ex-vivo examination of buccal drug delivery systems].

    Science.gov (United States)

    Szabó, Barnabás; Hetényi, Gergely; Majoros, Klaudia; Miszori, Veronika; Kállai, Nikolett; Zelkó, Romána

    2011-01-01

    Application of buccal dosage forms has several advantages. Buccal route can be used for systemic delivery because the mucosa has a rich blood supply and it is relatively permeable. This route of drug delivery is of special advantages, including the bypass of first pass effect and the avoidance of presystemic elimination within the GIT. Buccal delivery systems enable the systemic delivery of peptides and proteins. In our previous study the physiological background of this application and the excipients of the possible formulations were reviewed. In the present work the formulation and ex vivo examination aspects of buccal drug delivery systems are summarized.

  11. Design and optimization of self-nanoemulsifying formulations for lipophilic drugs

    International Nuclear Information System (INIS)

    Zhao, Tianjing; Maniglio, Devid; Motta, Antonella; Migliaresi, Claudio; Chen, Jie; Chen, Bin

    2015-01-01

    The purpose of the current study was to develop and optimize novel self-nanoemulsifying drug delivery systems (SNEDDS) with a high proportion of essential oil as carriers for lipophilic drugs. Solubility and droplet size as a function of the composition were investigated, and a ternary phase diagram was constructed in order to identify the self-emulsification regions. The optimized SNEDDS formulation consisted of lemon essential oil (oil), Cremophor RH40 (surfactant) and Transcutol HP (co-surfactant) in the ratio 50:30:20 (v/v). Ibuprofen was chosen as the model drug. The droplet size, ζ-potential and stability of the drug-loaded optimized formulations were determined. The stability of SNEDDS was proved after triple freezing/thawing cycles and storage at 4 °C and 25 °C for 3 months. In vitro drug release studies of optimized SNEDDS revealed a significant increase of the drug release and release rate in comparison to the Ibuprofen suspension (80% versus approximately 40% in 2 h). The results indicated that these SNEDDS formulations could be used to improve the bioavailability of lipophilic drugs. (paper)

  12. Safety and efficacy of generic drugs with respect to brand formulation.

    Science.gov (United States)

    Gallelli, Luca; Palleria, Caterina; De Vuono, Antonio; Mumoli, Laura; Vasapollo, Piero; Piro, Brunella; Russo, Emilio

    2013-12-01

    Generic drugs are equivalent to the brand formulation if they have the same active substance, the same pharmaceutical form and the same therapeutic indications and a similar bioequivalence respect to the reference medicinal product. The use of generic drugs is indicated from many countries in order to reduce medication price. However some points, such as bioequivalence and the role of excipients, may be clarified regarding the clinical efficacy and safety during the switch from brand to generic formulations. In conclusion, the use of generic drugs could be related with an increased days of disease (time to relapse) or might lead to a therapeutic failure; on the other hand, a higher drug concentration might expose patients to an increased risk of dose-dependent side-effects.

  13. FORMULATION AND EVALUATION OF FLOATING DRUG DELIVERY SYSTEM OF AMOXYCILLIN TRIHYDRATE

    OpenAIRE

    Marella Radhakrishna; K.G.Parthiban; Nelluri Ramarao; Nagapuri Santhoshi Deepika; Perumulla Abhishek

    2012-01-01

    The present study was designed to formulate and evaluate balanced Floating Drug Delivery Systems as controlled release modules, which prolongs the release rate of the drugs. Amoxycillin is an anti- bacterial acts by inhibiting the synthesis of bacterial cell walls. It inhibits cross-linkage between the linear peptidoglycan polymer chains that make up a major component of the cell walls of both Gram-positive and Gram-negative bacteria. Helicobacter pylori exists in the gastric mucous layer or ...

  14. Safety and efficacy of generic drugs with respect to brand formulation

    OpenAIRE

    Gallelli, Luca; Palleria, Caterina; De Vuono, Antonio; Mumoli, Laura; Vasapollo, Piero; Piro, Brunella; Russo, Emilio

    2013-01-01

    Generic drugs are equivalent to the brand formulation if they have the same active substance, the same pharmaceutical form and the same therapeutic indications and a similar bioequivalence respect to the reference medicinal product. The use of generic drugs is indicated from many countries in order to reduce medication price. However some points, such as bioequivalence and the role of excipients, may be clarified regarding the clinical efficacy and safety during the switch from brand to gener...

  15. Parenteral formulation of an antileishmanial drug candidate--tackling poor solubility, chemical instability, and polymorphism.

    Science.gov (United States)

    Kupetz, Eva; Preu, Lutz; Kunick, Conrad; Bunjes, Heike

    2013-11-01

    The paullon chalcone derivative KuRei300 is active against Leishmania donovani, the protozoans causing visceral leishmaniasis. The aim of this study was the development of a parenteral formulation of the virtually water insoluble compound in order to enable future studies in mice. Mixed lecithin/bile salt micelles, liposomes, supercooled smectic cholesterol myristate nanoparticles, cubic phase nanoparticles and a triglyceride emulsion were screened for their solubilizing properties. Due to the limited available amount of KuRei300 a passive loading approach with pre-formulated carriers that were incubated with drug substance deposited onto the walls of glass vials was used. The loading capacities of the nanocarriers, the influence of the solid state properties of the drug and its deposits on the loading results and chemical stability aspects of KuRei300 were investigated. Employed methods included HPLC, UV spectroscopy, (1)H NMR, XRPD, and DSC. All nanocarriers substantially improved the solubility of KuRei300; the mixed micelles exhibited the highest drug load. Related to the lipid matrix, however, the smectic nanoparticles solubilized the significantly highest amount of drug. Loading from physically altered drug deposits improved the obtainable concentration to the threefold compared with untreated drug powder. Formulations with KuRei300 must be stored excluded from light under a nitrogen atmosphere as the substance is susceptible to photoisomerization and decomposition. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Formulation and Evaluation of Two-Pulse Drug Delivery System of ...

    African Journals Online (AJOL)

    Purpose: To develop a pH-controlled two-pulse drug delivery system of amoxicillin in order to overcome the snag of biological ... Conclusion: The developed formulation demonstrates the feasibility of a two-phase release of amoxicillin separated by a ... comprised of a calorimeter (DSC 60), flow controller (FCL 60), thermal ...

  17. Sustained release of intravitreal flurbiprofen from a novel drug-in-liposome-in-hydrogel formulation.

    Science.gov (United States)

    Pachis, K; Blazaki, S; Tzatzarakis, M; Klepetsanis, P; Naoumidi, E; Tsilimbaris, M; Antimisiaris, S G

    2017-11-15

    A novel Flurbiprofen (FLB)-in-liposome-in-hydrogel formulation was developed, as a method to sustain the release and increase the ocular bioavailability of FLB following intravitreal injection. For this, FLB loading into liposomes was optimized and liposomes were entrapped in thermosensitive hydrogels consisted of Pluronic F-127 (P). FLB solution, liposomes, and FLB dissolved in hydrogel were also used as control formulations. Actively loaded liposomes were found to be optimal for high FLB loading and small size, while in vitro studies revealed that P concentration of 18% (w/v) was best to retain the integrity of the hydrogel-dispersed liposome, compared to a 20% concentration. The in vitro release of FLB was significantly sustained when FLB-liposomes were dispersed in the hydrogel compared to hydrogel dissolved FLB, as well as the other control formulations. In vivo studies were carried out in pigmented rabbits which were injected through a 27G needle with 1mg/mL FLB in the different formulation-types. Ophthalmic examinations after intravitreal injection of all FLB formulations, revealed no evidence of inflammation, hemorrhage, uveitis or endophthalmitis. Pharmacokinetic analysis results confirm that the hybrid drug delivery system increases the bioavailability (by 1.9 times compared to solution), and extends the presence of the drug in the vitreous cavity, while liposome and hydrogel formulations demonstrate intermediate performance. Furthermore the hybrid system increases MRT of FLB in aqueous humor and retina/choroid tissues, compared to all the control formulations. Currently the potential therapeutic advances of FLB sustained release formulations for IVT administration are being evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Formulation, optimization, and evaluation of self-emulsifying drug delivery systems of nevirapine.

    Science.gov (United States)

    Chintalapudi, Ramprasad; Murthy, T E G K; Lakshmi, K Rajya; Manohar, G Ganesh

    2015-01-01

    The aim of the present study was to formulate and optimize the self-emulsifying drug delivery systems (SEDDS) of nevirapine (NVP) by use of 2(2) factorial designs to enhance the oral absorption of NVP by improving its solubility, dissolution rate, and diffusion profile. SEDDS are the isotropic mixtures of oil, surfactant, co-surfactant and drug that form oil in water microemulsion when introduced into the aqueous phase under gentle agitation. Solubility of NVP in different oils, surfactants, and co-surfactants was determined for the screening of excipients. Pseudo-ternary phase diagrams were constructed by the aqueous titration method, and formulations were developed based on the optimum excipient combinations with the help of data obtained through the maximum micro emulsion region containing combinations of oil, surfactant, and co-surfactant. The formulations of SEDDS were optimized by 2(2) factorial designs. The optimum formulation of SEDDS contains 32.5% oleic acid, 44.16% tween 20, and 11.9% polyethylene glycol 600 as oil, surfactant, and co-surfactant respectively. The SEDDS was evaluated for the following drug content, self-emulsification time, rheological properties, zeta potential, in vitro diffusion studies, thermodynamic stability studies, and in vitro dissolution studies. An increase in dissolution was achieved by SEDDS compared to pure form of NVP. Overall, this study suggests that the dissolution and oral bioavailability of NVP could be improved by SEDDS technology.

  19. Microvesicle formulations used in topical drugs and cosmetics affect product efficiency, performance and allergenicity

    DEFF Research Database (Denmark)

    Madsen, Jakob Torp; Ejner Andersen, Klaus

    2010-01-01

    transdermal delivery more efficient for a number of drugs. Vesicular systems may also allow a more precise drug delivery to the site of action (ie, the hair follicles) and thereby minimize the applied drug concentration, reducing potential side effects. On the other hand, this may increase the risk of other......Attempts to improve the formulations of topical products are continuing processes (ie, to increase cosmetic performance, enhance effects, and protect ingredients from degradation). The development of micro- and nanovesicular systems has led to the marketing of topical drugs and cosmetics that use...... these technologies. Several articles have reported improved clinical efficacy by the encapsulation of pharmaceuticals in vesicular systems, and the numbers of publications and patents are rising. Some vesicular systems may deliver the drug deeper in the skin as compared to conventional vehicles, or even make...

  20. Formulation and characterisation of self-microemulsifying drug delivery systems based on biocompatible nonionic surfactants

    Directory of Open Access Journals (Sweden)

    Đekić Ljiljana M.

    2014-01-01

    Full Text Available Development of self-dispersing drug delivery systems (SMEDDS is a modern strategy for oral delivery improvement of poorly soluble drugs. Self-microemulsifying drug delivery systems (SMEDDS are isotropic mixtures of oils and hydrophilic surfactants, which form oil-in-water (o/w microemulsions by dilution in aqueous media (e.g., gastrointestinal fluids. Formulation of SMEDDS carriers requires consideration of a large number of formulation parameters and their influences on process of self-microemulsifying and releasing of drug. The aim of this work was formulation and characterisation of SMEDDS for oral administration of ibuprofen. In the experimental work, two series of potential SMEDDS were prepared (M1-M10, using surfactant (Labrasol®, Gattefosse, cosurfactant (PEG-40 hydrogenated castor (Cremophor® RH40, and oil (medium chain triglycerides (Crodamol® GTCC and olive oil (Cropur® Olive, at surfactant-to-cosurfactant mass ratios (Km 9:1, 7:3, 5:5, 3:7, and 1:9, and 10 % or 20 % of the oil phase. Ibuprofen was dissolved in formulations in concentration of 10 %. Characterisation of the investigated formulations included evaluation of physical stability, self-microemulsification ability in 0,1M HCl (pH 1.2 and phosphate buffer pH 7.2 (USP and in vitro drug release. Formation of o/w microemulsions with the average droplet size (Z-ave up to 100 nm, was observed in dispersions of formulations prepared with 10% w/w of medium chain triglycerides, within the entire investigated range of the Km values (M1-M5. These formulations were selected as SMEDDS. Results of characterisation pointed out the importance of the type and concentration of the oil as well as the Km value for the self-microemulsying ability as well as drug release kinetics from the investigated SMEDDS. Ibuprofen relase was in accordance with the request of USP 30-NF 25 (at least 80 %, after 60 min from the formulations M1 (Km 9:1 and M5 (Km 1:9. Furthermore, ibuprofen release was

  1. Optimization of primaquine diphosphate tablet formulation for controlled drug release using the mixture experimental design.

    Science.gov (United States)

    Duque, Marcelo Dutra; Kreidel, Rogério Nepomuceno; Taqueda, Maria Elena Santos; Baby, André Rolim; Kaneko, Telma Mary; Velasco, Maria Valéria Robles; Consiglieri, Vladi Olga

    2013-01-01

    A tablet formulation based on hydrophilic matrix with a controlled drug release was developed, and the effect of polymer concentrations on the release of primaquine diphosphate was evaluated. To achieve this purpose, a 20-run, four-factor with multiple constraints on the proportions of the components was employed to obtain tablet compositions. Drug release was determined by an in vitro dissolution study in phosphate buffer solution at pH 6.8. The polynomial fitted functions described the behavior of the mixture on simplex coordinate systems to study the effects of each factor (polymer) on tablet characteristics. Based on the response surface methodology, a tablet composition was optimized with the purpose of obtaining a primaquine diphosphate release closer to a zero order kinetic. This formulation released 85.22% of the drug for 8 h and its kinetic was studied regarding to Korsmeyer-Peppas model, (Adj-R(2) = 0.99295) which has confirmed that both diffusion and erosion were related to the mechanism of the drug release. The data from the optimized formulation were very close to the predictions from statistical analysis, demonstrating that mixture experimental design could be used to optimize primaquine diphosphate dissolution from hidroxypropylmethyl cellulose and polyethylene glycol matrix tablets.

  2. Evaluation of skin absorption of drugs from topical and transdermal formulations

    Directory of Open Access Journals (Sweden)

    André Luís Morais Ruela

    Full Text Available ABSTRACT The skin barrier function has been attributed to the stratum corneum and represents a major challenge in clinical practice pertaining to cutaneous administration of drugs. Despite this, a large number of bioactive compounds have been successfully administered via cutaneous administration because of advances in the design of topical and transdermal formulations. In vitro and in vivo evaluations of these novel drug delivery systems are necessary to characterize their quality and efficacy. This review covers the most well-known methods for assessing the cutaneous absorption of drugs as an auxiliary tool for pharmaceutical formulation scientists in the design of drug delivery systems. In vitro methods as skin permeation assays using Franz-type diffusion cells, cutaneous retention and tape-stripping methods to study the cutaneous penetration of drugs, and in vivo evaluations as pre-clinical pharmacokinetic studies in animal models are discussed. Alternative approaches to cutaneous microdialysis are also covered. Recent advances in research on skin absorption of drugs and the effect of skin absorption enhancers, as investigated using confocal laser scanning microscopy, Raman confocal microscopy, and attenuated total reflectance Fourier-transform infrared spectroscopy, are reviewed.

  3. Formulation and development of a self-nanoemulsifying drug delivery system of irbesartan

    Directory of Open Access Journals (Sweden)

    Jaydeep Patel

    2011-01-01

    Full Text Available Irbesartan (IRB is an angiotensin II receptor blocker antihypertensive agent. The aim of the present investigation was to develop a self-nanoemulsifying drug delivery system (SNEDDS to enhance the oral bioavailability of poorly water-soluble IRB. The solubility of IRB in various oils was determined to identify the oil phase of SNEDDS. Various surfactants and co-surfactants were screened for their ability to emulsify the selected oil. Pseudoternary phase diagrams were constructed to identify the efficient self-emulsifying region. The optimized SNEDDS formulation contained IRB (75 mg, Cremophor® EL (43.33%, Carbitol® (21.67% and Capryol® 90 (32%. SNEDDS was further evaluated for its percentage transmittance, emulsification time, drug content, phase separation, dilution, droplet size and zeta potential. The optimized formulation of IRB-loaded SNEDDS exhibited complete in vitro drug release in 15 min as compared with the plain drug, which had a limited dissolution rate. It was also compared with the pure drug solution by oral administration in male Wister rats. The in vivo study exhibited a 7.5-fold increase in the oral bioavailability of IRB from SNEDDS compared with the pure drug solution. These results suggest the potential use of SNEDDS to improve dissolution and oral bioavailability of poorly water-soluble IRB.

  4. Development of sustained and dual drug release co-extrusion formulations for individual dosing.

    Science.gov (United States)

    Laukamp, Eva Julia; Vynckier, An-Katrien; Voorspoels, Jody; Thommes, Markus; Breitkreutz, Joerg

    2015-01-01

    In personalized medicine and patient-centered medical treatment individual dosing of medicines is crucial. The Solid Dosage Pen (SDP) allows for an individual dosing of solid drug carriers by cutting them into tablet-like slices. The aim of the present study was the development of sustained release and dual release formulations with carbamazepine (CBZ) via hot-melt co-extrusion for the use in the SDP. The selection of appropriate coat- and core-formulations was performed by adapting the mechanical properties (like tensile strength and E-modulus) for example. By using different excipients (polyethyleneglycols, poloxamers, white wax, stearic acid, and carnauba wax) and drug loadings (30-50%) tailored dissolution kinetics was achieved showing cube root or zero order release mechanisms. Besides a biphasic drug release, the dose-dependent dissolution characteristics of sustained release formulations were minimized by a co-extruded wax-coated formulation. The dissolution profiles of the co-extrudates were confirmed during short term stability study (six months at 21.0 ± 0.2 °C, 45%r.h.). Due to a good layer adhesion of core and coat and adequate mechanical properties (maximum cutting force of 35.8 ± 2.0 N and 26.4 ± 2.8 N and E-modulus of 118.1 ± 8.4 and 33.9 ± 4.5 MPa for the dual drug release and the wax-coated co-extrudates, respectively) cutting off doses via the SDP was precise. While differences of the process parameters (like the barrel temperature) between the core- and the coat-layer resulted in unsatisfying content uniformities for the wax-coated co-extrudates, the content uniformity of the dual drug release co-extrudates was found to be in compliance with pharmacopoeial specification. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Determination of prilocaine HCl in bulk drug and pharmaceutical formulation by GC-NPD method

    Directory of Open Access Journals (Sweden)

    Atila Alptug

    2013-01-01

    Full Text Available The novel analytical method was developed and validated for determination of prilocaine HCl in bulk drug and pharmaceutical formulation by gas chromatography-nitrogen phosphorus detection (GC-NPD. The chromatographic separation was performed using a HP-5MS column. The calibration curve was linear over the concentration range of 40-1000 ng ml-1 with a correlation coefficient of 0.9998. The limits of detection (LOD and quantification (LOQ of method were 10 ng ml-1 and 35 ng ml-1, respectively. The within-day and between-day precision, expressed as the percent relative standard deviation (RSD% was less than 5.0%, and accuracy (percent relative error was better than 4.0%. The developed method can be directly and easily applied for determination of prilocaine HCl in bulk drug and pharmaceutical formulation using internal standard methodology.

  6. Recent Trends in Nanotechnology-Based Drugs and Formulations for Targeted Therapeutic Delivery.

    Science.gov (United States)

    Iqbal, Hafiz M N; Rodriguez, Angel M V; Khandia, Rekha; Munjal, Ashok; Dhama, Kuldeep

    2017-01-01

    In the recent past, a wider spectrum of nanotechnologybased drugs or drug-loaded devices and systems has been engineered and investigated with high interests. The key objective is to help for an enhanced/better quality of patient life in a secure way by avoiding/limiting drug abuse, or severe adverse effects of some in practice traditional therapies. Various methodological approaches including in vitro, in vivo, and ex vivo techniques have been exploited, so far. Among them, nanoparticles-based therapeutic agents are of supreme interests for an enhanced and efficient delivery in the current biomedical sector of the modern world. The development of new types of novel, effective and highly reliable therapeutic drug delivery system (DDS) for multipurpose applications is essential and a core demand to tackle many human health related diseases. In this context, nanotechnology-based several advanced DDS have been engineered with novel characteristics for biomedical, pharmaceutical and cosmeceutical applications that include but not limited to the enhanced/improved bioactivity, bioavailability, drug efficacy, targeted delivery, and therapeutically safer with an extra advantage of overcoming demerits of traditional drug formulations/designs. This review work is focused on recent trends/advances in nanotechnology-based drugs and formulations designed for targeted therapeutic delivery. Moreover, information is also reviewed and given from recent patents and summarized or illustrated diagrammatically to depict a better understanding. Recent patents covering various nanotechnology-based approaches for several applications have also been reviewed. The drug-loaded nanoparticles are among versatile candidates with multifunctional characteristics for potential applications in biomedical, and tissue engineering sector. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. A comprehensive screening platform for aerosolizable protein formulations for intranasal and pulmonary drug delivery.

    Science.gov (United States)

    Röhm, Martina; Carle, Stefan; Maigler, Frank; Flamm, Johannes; Kramer, Viktoria; Mavoungou, Chrystelle; Schmid, Otmar; Schindowski, Katharina

    2017-10-30

    Aerosolized administration of biopharmaceuticals to the airways is a promising route for nasal and pulmonary drug delivery, but - in contrast to small molecules - little is known about the effects of aerosolization on safety and efficacy of biopharmaceuticals. Proteins are sensitive against aerosolization-associated shear stress. Tailored formulations can shield proteins and enhance permeation, but formulation development requires extensive screening approaches. Thus, the aim of this study was to develop a cell-based in vitro technology platform that includes screening of protein quality after aerosolization and transepithelial permeation. For efficient screening, a previously published aerosolization-surrogate assay was used in a design of experiments approach to screen suitable formulations for an IgG and its antigen-binding fragment (Fab) as exemplary biopharmaceuticals. Efficient, dose-controlled aerosol-cell delivery was performed with the ALICE-CLOUD system containing RPMI 2650 epithelial cells at the air-liquid interface. We could demonstrate that our technology platform allows for rapid and efficient screening of formulations consisting of different excipients (here: arginine, cyclodextrin, polysorbate, sorbitol, and trehalose) to minimize aerosolization-induced protein aggregation and maximize permeation through an in vitro epithelial cell barrier. Formulations reduced aggregation of native Fab and IgG relative to vehicle up to 50% and enhanced transepithelial permeation rate up to 2.8-fold. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  8. The difficulties for a photolabile drug in topical formulations: the case of diclofenac.

    Science.gov (United States)

    Ioele, Giuseppina; De Luca, Michele; Tavano, Lorena; Ragno, Gaetano

    2014-04-25

    Topical commercial formulations containing diclofenac (DC) were submitted to photostability tests, according to the international rules, showing a clear degradation of the drug. The degradation process was monitored by applying the multivariate curve resolution technique to the UV spectral data from samples exposed to stressing irradiation. This method was able to estimate the number of components evolved as well as to draw their spectra and concentration profiles. Three photoproducts (PhPs) were resolved by the analysis of photodegradation kinetics, according to two consecutive reactions with a mechanism postulated as DC>PhP₁>PhP₂ and PhP₃. Photodegradation rate of DC in gel was found to be very fast, with a residual content of 90% only after 3.90 min under a radiant exposure of 450 Wm(-2). Because of a very slow skin uptake of DC, a prolonged time of exposure to light could lead to a significant decrease of drug available or the uptake of undesired photoproducts. New gel formulations were designed to increase the photostability of DC by incorporating chemical light-absorbers or entrapping the drug into cyclodextrin. Drug photostability resulted increased significantly in comparison with that of the commercial formulations. The gel containing the light-absorbers such as octisilate, octyl methoxycinnamate and a combination thereof showed a residual DC of 90% up to 12.22 min, 13.75 min and 15.71 min, respectively, under the same irradiation power. The best results were obtained by incorporating the drug in β-cyclodextrin with a degradation of 10% after 25.01 min of light exposure. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Characterization of SNARE Cleavage Products Generated by Formulated Botulinum Neurotoxin Type-A Drug Products

    Directory of Open Access Journals (Sweden)

    Jack Xie

    2010-08-01

    Full Text Available The study evaluated substrate cleavage product(s generated by three botulinum neurotoxin serotype A (BoNT/A medicinal drug products utilizing a novel and highly specific, light-chain activity, high-performance liquid chromatography (LCA-HPLC method. Samples were reacted with a commercially available BoNT/A fluorescent substrate derived from the SNAP-25 sequence. Reaction products were separated by reversed-phase HPLC. The method detected an atypical cleavage pattern by one of the formulated drug products. IncobotulinumtoxinA produced two cleavage fragments rather than the single fragment typically generated by BoNT/A. Identification confirmed the secondary cleavage at a position corresponding to SNAP-25 Arg198–Ala199 (normal BoNT/A cleavage is Gln197–Arg198. Arg198–Ala199 is also the cleavage site for trypsin and serotype C toxin. Normal cleavage was observed for all other BoNT/A drug product samples, as well as 900-kD and 150-kD bulk toxin BoNT/A. The reason for this unexpected secondary cleavage pattern by one formulated BoNT/A drug product is unknown. Possible explanations include a contaminating protease and/or damage to the 150-kD type-A toxin causing nonspecific substrate recognition and subsequent cleavage uncharacteristic of type-A toxin. The BoNT/A drug products were also analyzed via the LCA-HPLC assay using a commercial BoNT/C fluorescent substrate derived from the syntaxin sequence. Cleavage of the serotype C substrate by incobotulinumtoxinA was also confirmed whilst neither of the other drug products cleaved the syntaxin substrate.

  10. Challenges and strategies to facilitate formulation development of pediatric drug products: Safety qualification of excipients.

    Science.gov (United States)

    Buckley, Lorrene A; Salunke, Smita; Thompson, Karen; Baer, Gerri; Fegley, Darren; Turner, Mark A

    2018-02-05

    A public workshop entitled "Challenges and strategies to facilitate formulation development of pediatric drug products" focused on current status and gaps as well as recommendations for risk-based strategies to support the development of pediatric age-appropriate drug products. Representatives from industry, academia, and regulatory agencies discussed the issues within plenary, panel, and case-study breakout sessions. By enabling practical and meaningful discussion between scientists representing the diversity of involved disciplines (formulators, nonclinical scientists, clinicians, and regulators) and geographies (eg, US, EU), the Excipients Safety workshop session was successful in providing specific and key recommendations for defining paths forward. Leveraging orthogonal sources of data (eg. food industry, agro science), collaborative data sharing, and increased awareness of the existing sources such as the Safety and Toxicity of Excipients for Paediatrics (STEP) database will be important to address the gap in excipients knowledge needed for risk assessment. The importance of defining risk-based approaches to safety assessments for excipients vital to pediatric formulations was emphasized, as was the need for meaningful stakeholder (eg, patient, caregiver) engagement. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Formulation of Dihydroartemisinin-Piperaquine (DHP Generic Tablet as Antimalarials Drug

    Directory of Open Access Journals (Sweden)

    Nanang Yunarto

    2016-09-01

    Full Text Available The incidence of malaria in Indonesia is about two million cases annually. Dihydroartemisinin-piperaquine (DHP is the first line therapy recommended for uncomplicated malaria treatment, whereas  DHP is still fully imported. The generic DHP tablet formulation has the potential to become the first of DHP drug which is locally produced. This study is aimed to formulate generic DHP film coated tablets for antimalaria drug. Tablets were compressed with the combination of wet granulation for piperaquine phosphate (PQP and direct compression method for DHA and coated with a moisture barier coating material. The parameters to evaluate the quality of DHP tablets are physical properties, assay, and dissolution test. DHA and PQP assay were performed by HPLC method. The dissolution testing was conducted by in house method using HCl 0.1 N medium. The result shows physical properties of film-coated tablets meet the requirement, i.e. uniform weight, 7.0-8.5 kp hardness, 0.02% friability and 3 minute 22 seconds disintegration. The assay to determine  DHA in tablet was 95.17% and PQP was 97.05%. The result of dissolution testing shows the content of DHA and PQP in the tablet were 113.51% and 96.55%, respesctively. The formulation which is developed meets the general requirement of API in tablet 90–110% and dissolution requirement >75%.

  12. Effect of cell culture medium components on color of formulated monoclonal antibody drug substance.

    Science.gov (United States)

    Vijayasankaran, Natarajan; Varma, Sharat; Yang, Yi; Mun, Melissa; Arevalo, Silvana; Gawlitzek, Martin; Swartz, Trevor; Lim, Amy; Li, Feng; Zhang, Boyan; Meier, Steve; Kiss, Robert

    2013-01-01

    As the industry moves toward subcutaneous delivery as a preferred route of drug administration, high drug substance concentrations are becoming the norm for monoclonal antibodies. At such high concentrations, the drug substance may display a more intense color than at the historically lower concentrations. The effect of process conditions and/or changes on color is more readily observed in the higher color, high concentration formulations. Since color is a product quality attribute that needs to be controlled, it is useful to study the impact of process conditions and/or modifications on color. This manuscript summarizes cell culture experiments and reports on findings regarding the effect of various media components that contribute to drug substance color for a specific monoclonal antibody. In this work, lower drug substance color was achieved via optimization of the cell culture medium. Specifically, lowering the concentrations of B-vitamins in the cell culture medium has the effect of reducing color intensity by as much as 25%. In addition, decreasing concentration of iron was also directly correlated color intensity decrease of as much as 37%. It was also shown that the color of the drug substance directly correlates with increased acidic variants, especially when increased iron levels cause increased color. Potential mechanisms that could lead to antibody coloration are briefly discussed. © 2013 American Institute of Chemical Engineers.

  13. Pharmaceutical assistance in the enteral administration of drugs: choosing the appropriate pharmaceutical formulation

    Directory of Open Access Journals (Sweden)

    Gisele de Lima

    2009-03-01

    Full Text Available Objective: To study solid medications for oral delivery on the formulary of Hospital Israelita Albert Einstein (HIAE, investigating the  possibility of using these drugs through enteral feeding tubes, and recommending appropriate administration. Methods: Study carried out through survey of solid medications for oral delivery included on the formulary of HIAE, literature review, and analysis of medication monographs, manufacturer information and pharmacotechnical data of active ingredients and excipients. It was observed the factors that might hinder or complicate the administration of these drugs though enteral tubes, and was drawn an information chart with recommendations about drug administration in this context. Rresults: The study evaluated 234 medications; and the main problems of administering these drugs through enteral feeding tubes were as follows: changes in drug pharmacokinetics (38; gastrointestinal damage (9; risk of obstruction (40, drug-nutrient interactions (7; biological hazards (5 and no information (33. Cconclusions: Compiling this information helps the healthcare team to choose the appropriate pharmaceutical formulation for medications administered through enteral tubes, and may help identify adverse events related to this technique.

  14. Study on Mixed Solvency Concept in Formulation Development of Aqueous Injection of Poorly Water Soluble Drug

    Directory of Open Access Journals (Sweden)

    Shailendra Singh Solanki

    2013-01-01

    Full Text Available In the present investigation, mixed-solvency approach has been applied for the enhancement of aqueous solubility of a poorly water- soluble drug, zaltoprofen (selected as a model drug, by making blends (keeping total concentrations 40% w/v, constant of selected water-soluble substances from among the hydrotropes (urea, sodium benzoate, sodium citrate, nicotinamide; water-soluble solids (PEG-4000, PEG-6000; and co-solvents (propylene glycol, glycerine, PEG-200, PEG-400, PEG-600. Aqueous solubility of drug in case of selected blends (12 blends ranged from 9.091 ± 0.011 mg/ml–43.055 ± 0.14 mg/ml (as compared to the solubility in distilled water 0.072 ± 0.012 mg/ml. The enhancement in the solubility of drug in a mixed solvent containing 10% sodium citrate, 5% sodium benzoate and 25 % S cosolvent (25% S cosolvent contains PEG200, PEG 400, PEG600, Glycerine and Propylene glycol was more than 600 fold. This proved a synergistic enhancement in solubility of a poorly water-soluble drug due to mixed cosolvent effect. Each solubilized product was characterized by ultraviolet and infrared techniques. Various properties of solution such as pH, viscosity, specific gravity and surface tension were studied. The developed formulation was studied for physical and chemical stability. This mixed solvency shall prove definitely a boon for pharmaceutical industries for the development of dosage form of poorly water soluble drugs.

  15. A targeted liposome delivery system for combretastatin A4: formulation optimization through drug loading and in vitro release studies.

    Science.gov (United States)

    Nallamothu, Ramakrishna; Wood, George C; Kiani, Mohammad F; Moore, Bob M; Horton, Frank P; Thoma, Laura A

    2006-01-01

    Efficient liposomal therapeutics require high drug loading and low leakage. The objective of this study is to develop a targeted liposome delivery system for combretastatin A4 (CA4), a novel antivascular agent, with high loading and stable drug encapsulation. Liposomes composed of hydrogenated soybean phosphatidylcholine (HSPC), cholesterol, and distearoyl phosphoethanolamine-PEG-2000 conjugate (DSPE-PEG) were prepared by the lipid film hydration and extrusion process. Cyclic arginine-glycine-aspartic acid (RGD) peptides with affinity for alphav beta3-integrins overexpressed on tumor vascular endothelial cells were coupled to the distal end of polyethylene glycol (PEG) on the liposomes sterically stabilized with PEG (non-targeted liposomes; LCLs). Effect of lipid concentration, drug-to-lipid ratio, cholesterol, and DSPE-PEG content in the formulation on CA4 loading and its release from the liposomes was studied. Total liposomal CA4 levels obtained increased with increasing lipid concentration in the formulation. As the drug-to-lipid ratio increased from 10:100 to 20:100, total drug in the liposome formulation increased from 1.05+/-0.11 mg/mL to 1.55+/-0.13 mg/mL, respectively. When the drug-to-lipid ratio was further raised to 40:100, the total drug in liposome formulation did not increase, but the amount of free drug increased significantly, thereby decreasing the percent of entrapped drug. Increasing cholesterol content in the formulation decreased drug loading. In vitro drug leakage from the liposomes increased with increase in drug-to-lipid ratio or DSPE-PEG content in the formulation; whereas increasing cholesterol content of the formulation up to 30 mol-percent, decreased CA4 leakage from the liposomes. Ligand coupling to the liposome surface increased drug leakage as a function of ligand density. Optimized liposome formulation with 100 mM lipid concentration, 20:100 drug-to-lipid ratio, 30 mol-percent cholesterol, 4 mol-percent DSPE-PEG, and 1 mol

  16. The economics of pediatric formulation development for off-patent drugs.

    Science.gov (United States)

    Milne, Christopher-Paul; Bruss, Jon B

    2008-11-01

    Many drugs currently used in children have never been adequately studied in rigorous scientific trials. Although these medications can still be prescribed in the pediatric setting, they are considered "off-label" because they are not specifically approved for use in children. The role of the Economics Working Group (EWG) within the Pediatric Formulation Initiative (PFI) of the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) is to identify economic barriers and to propose possible mechanisms to create cost-effective and appropriately formulated products for off-patent pediatric drugs and to ensure their distribution and availability. The purpose of this article was to briefly outline the EWG's considerations and recommendations on these topics. Information for this article was gathered from the proceedings of a PFI workshop sponsored by the NICHD, held December 6 and 7, 2005, in Bethesda, Maryland. Other information was based on: the authors' unpublished and published research as well as personal communication with members of the EWG; a comprehensive search of Web sites, publications, and publicly accessible databases of the European Medicines Agency, the US Food and Drug Administration, the Agency for Healthcare Research and Quality, and the NICHD; and the databases and publications available from the Louis Lasagna Library of the Tufts Center for the Study of Drug Development (Boston, Massachusetts). The US Congress has attempted to remedy the lack of incentives to develop pediatric drugs by passing 2 key pieces of legislation. After >10 years, this US pediatric initiative has stimulated a great deal of pediatric drug research, and similar initiatives have been emulated in Europe and proposed in Japan. Although the initiative is generally considered successful in the United States, an incentive gap exists that still hinders pediatric drug development. It results from a series of factors, including: (1) a relatively small

  17. Controlled-release, pegylation, liposomal formulations: new mechanisms in the delivery of injectable drugs.

    Science.gov (United States)

    Reddy, K R

    2000-01-01

    To review recent developments in novel injectable drug delivery mechanisms and outline the advantages and disadvantages of each. A MEDLINE (1995-January 2000) search using the terms polyethylene glycol, liposomes, polymers, polylactic acid, and controlled release was conducted. Additional references were identified by scanning bibliographies. All articles were considered for inclusion. Abstracts were included only if they were judged to add critical information not otherwise available in the medical literature. A number of systems that alter the delivery of injectable drugs have been developed in attempts to improve pharmacodynamic and pharmacokinetic properties of therapeutic agents. New drug delivery systems can be produced either through a change in formulation (e.g., continuous-release products, liposomes) or an addition to the drug molecule (e.g., pegylation). Potential advantages of new delivery mechanisms include an increased or prolonged duration of pharmacologic activity, a decrease in adverse effects, and increased patient compliance and quality of life. Injectable continuous-release systems deliver drugs in a controlled, predetermined fashion and are particularly appropriate when it is important to avoid large fluctuations in plasma drug concentrations. Encapsulating a drug within a liposome can produce a prolonged half-life and a shift of distribution toward tissues with increased capillary permeability (e.g., tumors, infected tissue). Pegylation provides a method for modification of therapeutic proteins to minimize many of the limitations (e.g., poor stability, short half-life, immunogenicity) associated with these agents. Pegylation of therapeutic proteins is an established process with new applications. However, not all pegylated proteins are alike, and each requires optimization on a protein-by-protein basis to derive maximum clinical benefit. The language required to describe each pegylated therapeutic protein must be more precise to accurately

  18. The Precipitation Behavior of Poorly Water-Soluble Drugs with an Emphasis on the Digestion of Lipid Based Formulations.

    Science.gov (United States)

    Khan, Jamal; Rades, Thomas; Boyd, Ben

    2016-03-01

    An increasing number of newly discovered drugs are poorly water-soluble and the use of natural and synthetic lipids to improve the oral bioavailability of these drugs by utilizing the digestion pathway in-vivo has proved an effective formulation strategy. The mechanisms responsible for lipid digestion and drug solubilisation during gastrointestinal transit have been explored in detail, but the implications of drug precipitation beyond the potential adverse effect on bioavailability have received attention only in recent years. Specifically, these implications are that different solid forms of drug on precipitation may affect the total amount of drug absorbed in-vivo through their different physico-chemical properties, and the possibility that the dynamic environment of the small intestine may afford re-dissolution of precipitated drug if present in a high-energy form. This review describes the events that lead to drug precipitation during the dispersion and digestion of lipid based formulations, common methods used to inhibit precipitation, as well as conventional and newly emerging characterization techniques for studying the solid state form of the precipitated drug. Moreover, selected case studies are discussed where drug precipitation has ensued from the digestion of lipid based formulations, as well as the apparent link between drug ionisability and altered solid forms on precipitation, culminating in a discussion about the importance of the solid form on precipitation with relevance to the total drug absorbed.

  19. Formulation and drug-content assay of microencapsulated antisense oligonucleotide to NF-κB using ATR-FTIR

    International Nuclear Information System (INIS)

    Siwale, Rodney; Meadows, Fred; Mody, Vicky V; Shah, Samit

    2013-01-01

    Antisense oligonucleotide to NF-κB sequence: 5′-GGA AAC ACA TCC TCC ATG-3′, was microencapsulated in an albumin matrix by the method of spray drying TM . Spectral analysis was performed on varying drug loading formulations of both drugs by mid-IR attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). An out of plane O–H bending vibration at 948 cm −1 , unique to both the native and microencapsulated drugs was identified. The calculated peak areas corresponded to the drug loadings in the microsphere formulations. A standard curve could then be used to determine the drug content of an unknown microsphere formulation. Accuracy and precision were determined to be comparable to other analytical techniques such as HPLC. (paper)

  20. Formulation of avanafil in a solid self-nanoemulsifying drug delivery system for enhanced oral delivery.

    Science.gov (United States)

    Soliman, Kareem AbuBakr; Ibrahim, Howida Kamal; Ghorab, Mahmoud Mohammed

    2016-10-10

    Avanafil was incorporated into solid self-nanoemulsifying systems with the aim of improving its oral bioavailability. Labrafil, Labrafac, and Miglyol 812 N were investigated as oils, Tween 80 and Cremophor EL as surfactants, and Transcutol HP as a co-surfactant. Nine formulations produced clear solutions of 13.89-38.09nm globules after aqueous dilution. Adsorption of preconcentrate onto Aeroperl 300 Pharma at a 2:1 ratio had no effect on nanoemulsion particle size. Differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy indicated that avanafil was molecularly dispersed within the solid nanosystems. A formulation containing 10% Labrafil, 60% Tween 80, and 30% Transcutol HP had the highest drug loading (44.48mg/g) and an acceptable in vitro dissolution profile (96.42% within 30min). This formulation was chemically and physically stable for 6months under accelerated storage conditions and it produced a 3.2-fold increase in bioavailability in rabbits, as compared to conventional commercially available avanafil tablets (Spedra(®)). Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Development of parenteral formulations and evaluation of the biological activity of the trypanocide drug benznidazole.

    Science.gov (United States)

    Lamas, María C; Villaggi, Luciano; Nocito, Isabel; Bassani, Georgina; Leonardi, Darío; Pascutti, Fernanda; Serra, Esteban; Salomón, Claudio J

    2006-01-13

    Chagas disease, caused by Trypanosoma cruzi, is a major public health problem in Latin America. According to the World Health Organization, around 20 million people are infected and another 40 million are at risk of acquiring the disease. One of the drugs most frequently used for the treatment of Chagas disease is benznidazole (BZL). It is practically insoluble in water (0.4 mg/ml), which precludes the preparation of liquid dosage forms, in particular, parenteral formulations. Thus, the aim of this work was to investigate the solubilization of BZL at two pH values using various cosolvents such as ethyl alcohol, propylene glycol, polyethylene glycol 400, benzyl alcohol, diethylene glycol monoethyl ether (Transcutol) and surfactants such as polysorbates (Tween) 40 and 80, and sodium dioctyl sulfosuccinate (AOT). Solvent systems based on PEG 400, with the addition ethyl alcohol and/or potassium biphthalate buffer solution, increased the BZL solubility up to 10 mg/ml. These alcoholic vehicles showed no toxicity against parasite when assayed at 1%. Physical and chemical stability studies showed that the formulations were stable for at least 1.5 years. In agreement with the biological activity results, the selected formulations are suitable for further clinical studies. Moreover, increasing the aqueous solubility of BZL reduced the problems in vitro testing techniques and bioassays leading to more reliable results and/or reproducibility.

  2. Evaluation of package inserts of Ayurveda drug formulations from Mumbai city.

    Science.gov (United States)

    Shirolkar, Sudatta; Tripathi, Raakhi K; Potey, Anirudha V

    2015-01-01

    Package insert (PI) is a vital document accompanying a prescribed medication to provide information to the prescriber and end-user at a glance. Studies regarding PIs of Ayurvedic medicines in accordance with standard guidelines are lacking. Present study was undertaken to evaluate PI of Ayurveda drugs. PIs of Ayurveda drugs were obtained from five randomly selected Ayurveda medical shops located in three main zones of Mumbai. From each medical shop, a range of 15-20 PI was planned to be collected for different formulations. It was decided to collect a minimum fifty PIs/group for equitable distribution of various formulations in period of January-June2013. Checklist was prepared, and content validity was achieved. Final validated checklist contained a total of 13 items, and the presence or absence of information pertaining to these items on the PI was evaluated. Any other additional information present on PI was also noted. Each item was analyzed and expressed as percentages. The information on 258 PIs included: Name of ingredients (67%), quantity of ingredients (47.27%), route of administration (86.8%), dosage form (86.8%), indications (18%), dose (18%), contraindications (18%), side effects (9%), shelf life (5.81%), storage conditions (11%), and manufacturers name with contact details (34%). PIs accompanying Ayurveda medicinal products in India are deficient in information required to be furnished by them.

  3. Optimizing Oral Bioavailability in Drug Discovery: An Overview of Design and Testing Strategies and Formulation Options.

    Science.gov (United States)

    Aungst, Bruce J

    2017-04-01

    For discovery teams working toward new, orally administered therapeutic agents, one requirement is to attain adequate systemic exposure after oral dosing, which is best accomplished when oral bioavailability is optimized. This report summarizes the bioavailability challenges currently faced in drug discovery, and the design and testing methods and strategies currently utilized to address the challenges. Profiling of discovery compounds usually includes separate assessments of solubility, permeability, and susceptibility to first-pass metabolism, which are the 3 most likely contributors to incomplete oral bioavailability. An initial assessment of absorption potential may be made computationally, and high throughput in vitro assays are typically performed to prioritize compounds for in vivo studies. The initial pharmacokinetic study is a critical decision point in compound evaluation, and the importance of the effect the dosing vehicle or formulation can have on oral bioavailability, especially for poorly water soluble compounds, is emphasized. Dosing vehicles and bioavailability-enabling formulations that can be used for discovery and preclinical studies are described. Optimizing oral bioavailability within a chemical series or for a lead compound requires identification of the barrier limiting bioavailability, and methods used for this purpose are outlined. Finally, a few key guidelines are offered for consideration when facing the challenges of optimizing oral bioavailability in drug discovery. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  4. Impact of polymer type on bioperformance and physical stability of hot melt extruded formulations of a poorly water soluble drug.

    Science.gov (United States)

    Mitra, Amitava; Li, Li; Marsac, Patrick; Marks, Brian; Liu, Zhen; Brown, Chad

    2016-05-30

    Amorphous solid dispersion formulations have been widely used to enhance bioavailability of poorly soluble drugs. In these formulations, polymer is included to physically stabilize the amorphous drug by dispersing it in the polymeric carrier and thus forming a solid solution. The polymer can also maintain supersaturation and promote speciation during dissolution, thus enabling better absorption as compared to crystalline drug substance. In this paper, we report the use of hot melt extrusion (HME) to develop amorphous formulations of a poorly soluble compound (FaSSIF solubility=1μg/mL). The poor solubility of the compound and high dose (300mg) necessitated the use of amorphous formulation to achieve adequate bioperformance. The effect of using three different polymers (HPMCAS-HF, HPMCAS-LF and copovidone), on the dissolution, physical stability, and bioperformance of the formulations was demonstrated. In this particular case, HPMCAS-HF containing HME provided the highest bioavailability and also had better physical stability as compared to extrudates using HPMCAS-LF and copovidone. The data demonstrated that the polymer type can have significant impact on the formulation bioperformance and physical stability. Thus a thorough understanding of the polymer choice is imperative when designing an amorphous solid dispersion formulation, such that the formulation provides robust bioperformance and has adequate shelf life. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Optical instrument for measurement of vaginal coating thickness by drug delivery formulations

    International Nuclear Information System (INIS)

    Henderson, Marcus H.; Peters, Jennifer J.; Walmer, David K.; Couchman, Grace M.; Katz, David F.

    2005-01-01

    An optical device has been developed for imaging the human vaginal epithelial surfaces, and quantitatively measuring distributions of coating thickness of drug delivery formulations - such as gels - applied for prophylaxis, contraception or therapy. The device consists of a rigid endoscope contained within a 27-mm-diam hollow, polished-transparent polycarbonate tube (150 mm long) with a hemispherical cap. Illumination is from a xenon arc. The device is inserted into, and remains stationary within the vagina. A custom gearing mechanism moves the endoscope relative to the tube, so that it views epithelial surfaces immediately apposing its outer surface (i.e., 150 mm long by 360 deg. azimuthal angle). Thus, with the tube fixed relative to the vagina, the endoscope sites local regions at distinct and measurable locations that span the vaginal epithelium. The returning light path is split between a video camera and photomultiplier. Excitation and emission filters in the light path enable measurement of fluorescence of the sited region. Thus, the instrument captures video images simultaneously with photometric measurement of fluorescence of each video field [∼10 mm diameter; formulations are labeled with 0.1% w/w United States Pharmacoepia (USP) injectable sodium fluorescein]. Position, time and fluorescence measurements are continuously displayed (on video) and recorded (to a computer database). The photomultiplier output is digitized to quantify fluorescence of the endoscope field of view. Quantification of the thickness of formulation coating of a surface sited by the device is achieved due to the linear relationship between thickness and fluorescence intensity for biologically relevant thin layers (of the order of 0.5 mm). Summary measures of coating have been developed, focusing upon extent, location and uniformity. The device has begun to be applied in human studies of model formulations for prophylaxis against infection with HIV and other sexually transmitted

  6. Formulation and characterization of lipid-based drug delivery system of raloxifene-microemulsion and self-microemulsifying drug delivery system

    Science.gov (United States)

    Thakkar, Hetal; Nangesh, Jitesh; Parmar, Mayur; Patel, Divyakant

    2011-01-01

    Background: Raloxifene, a second-generation selective estrogen receptor modulator (SERM) used to prevent osteoporosis in postmenopausal women is administered orally in the form of a tablet. The absolute bioavailability of the drug is only 2% because of extensive hepatic first-pass metabolism. Lipid-based formulations are reported to reduce the first-pass metabolism by promoting its lymphatic uptake. Materials and Methods: In the present investigation, microemulsion and Self-Microemulsifying Drug Delivery System (SMEDDS) formulations of Raloxifene were prepared. The prepared formulations were characterized for drug loading, size, transparency, zeta potential, Transmission Electron Microscopy (TEM) and in vitro intestinal permeability. Results: The results indicated that high drug loading, optimum size and desired zeta potential and transparency could be achieved with both SMEDDS and microemulsion. The TEM studies indicated the absence of aggregation with both the systems. The in vitro intestinal permeability results showed that the permeation of the drug from the microemulsion and SMEDDs was significantly higher than that obtained from the drug dispersion and marketed formulation. Conclusion: Lipid based formulations such as microemulsion and Self Microemulsifying drug delivery systems are expected to increase the oral bioavailability as evidenced by the increased intestinal permeation. PMID:21966167

  7. Formulation and characterization of lipid-based drug delivery system of raloxifene-microemulsion and self-microemulsifying drug delivery system

    Directory of Open Access Journals (Sweden)

    Hetal Thakkar

    2011-01-01

    Full Text Available Background : Raloxifene, a second-generation selective estrogen receptor modulator (SERM used to prevent osteoporosis in postmenopausal women is administered orally in the form of a tablet. The absolute bioavailability of the drug is only 2% because of extensive hepatic first-pass metabolism. Lipid-based formulations are reported to reduce the first-pass metabolism by promoting its lymphatic uptake. Materials and Methods : In the present investigation, microemulsion and Self-Microemulsifying Drug Delivery System (SMEDDS formulations of Raloxifene were prepared. The prepared formulations were characterized for drug loading, size, transparency, zeta potential, Transmission Electron Microscopy (TEM and in vitro intestinal permeability. Results : The results indicated that high drug loading, optimum size and desired zeta potential and transparency could be achieved with both SMEDDS and microemulsion. The TEM studies indicated the absence of aggregation with both the systems. The in vitro intestinal permeability results showed that the permeation of the drug from the microemulsion and SMEDDs was significantly higher than that obtained from the drug dispersion and marketed formulation. Conclusion : Lipid based formulations such as microemulsion and Self Microemulsifying drug delivery systems are expected to increase the oral bioavailability as evidenced by the increased intestinal permeation.

  8. Design and syntheses of MMP inhibitors and photosensitive lipid nanoparticle formulations for drug delivery

    Science.gov (United States)

    Subramaniam, Rajesh

    Drug administration without any compromise to the quality of life and lifespan is the ideal goal for disease management. The molecular mechanisms of several pathologies have shown that site-specific delivery of target-specific drugs seems to be a promising avenue to achieve this goal. This thesis describes the initial steps that we have taken toward that goal. Matrix metalloproteinases (MMPs) are a family of about 23 isozymes in humans that were actively targeted for treating a multitude of pathologies. Clinical studies carried out on cancer patients have revealed the complexity of the working of this enzyme family and necessitated the development of isozyme-specific MMP inhibitors. Our studies toward the development of isozyme-specific inhibitors have resulted in the development of several inhibitors that seem to be selective toward some MMP isozymes. Our understanding on the molecular mechanism that confers this selectivity is documented in this thesis. Another aspect of discussion in the thesis is the development of photosensitive liposomes for drug delivery that could be triggered to release the drug by irradiation with light of appropriate wavelength. Development of such delivery vehicles, in principle, would confer external spatiotemporal control on drug delivery. This could potentially lead to better disease management by minimizing side effects and enhancing patient compatibility. The thesis discusses our attempts toward the development of photosensitive liposomes. These liposomes incorporated a photosensitive lipid (PSL) that would be cleaved upon irradiation with UV light, causing liposomal destabilization and release of the enclosed drug. The discussion includes: (i) the syntheses of the PSLs, (ii) formulation of the photosensitive liposomes that contained a model drug, (iii) light-mediated release of the drug and (iv) the mechanism of photocleavage of the PSL that leads to content release from liposomes. The thesis concludes with suggestions toward the

  9. Formulation development of smart gel periodontal drug delivery system for local delivery of chemotherapeutic agents with application of experimental design.

    Science.gov (United States)

    Dabhi, Mahesh R; Nagori, Stavan A; Gohel, Mukesh C; Parikh, Rajesh K; Sheth, Navin R

    2010-01-01

    Smart gel periodontal drug delivery systems (SGPDDS) containing gellan gum (0.1-0.8% w/v), lutrol F127 (14, 16, and 18% w/v), and ornidazole (1% w/v) were designed for the treatment of periodontal diseases. Each formulation was characterized in terms of in vitro gelling capacity, viscosity, rheology, content uniformity, in vitro drug release, and syringeability. In vitro gelation time and the nature of the gel formed in simulated saliva for prepared formulations showed polymeric concentration dependency. Drug release data from all formulations was fitted to different kinetic models and the Korsemeyer-Peppas model was the best fit model. Drug release was significantly decreased as the concentration of each polymer component was increased. Increasing the concentration of each polymeric component significantly increased viscosity, syringeability, and time for 50%, 70%, and 90% drug release. In conclusion, the formulations described offer a wide range of physical and drug release characteristics. The formulation containing 0.8% w/v of gellan gum and 16% w/v of lutrol F127 exhibited superior physical characteristics.

  10. The Precipitation Behavior of Poorly Water-Soluble Drugs with an Emphasis on the Digestion of Lipid Based Formulations

    DEFF Research Database (Denmark)

    Khan, Jamal; Rades, Thomas; Boyd, Ben

    2016-01-01

    digestion and drug solubilisation during gastrointestinal transit have been explored in detail, but the implications of drug precipitation beyond the potential adverse effect on bioavailability have received attention only in recent years. Specifically, these implications are that different solid forms...... the events that lead to drug precipitation during the dispersion and digestion of lipid based formulations, common methods used to inhibit precipitation, as well as conventional and newly emerging characterization techniques for studying the solid state form of the precipitated drug. Moreover, selected case...... studies are discussed where drug precipitation has ensued from the digestion of lipid based formulations, as well as the apparent link between drug ionisability and altered solid forms on precipitation, culminating in a discussion about the importance of the solid form on precipitation with relevance...

  11. Enhancement of oral bioavailability of anti-HIV drug rilpivirine HCl through nanosponge formulation.

    Science.gov (United States)

    Zainuddin, Rana; Zaheer, Zahid; Sangshetti, Jaiprakash N; Momin, Mufassir

    2017-12-01

    To synthesize β cyclodextrin nanosponges using a novel and efficient microwave mediated method for enhancing bioavailability of Rilpivirine HCl (RLP). Belonging to BCS class II RLP has pH dependent solubility and poor oral bioavailability. However, a fatty meal enhances its absorption hence the therapy indicates that the dosage form be consumed with a meal. But then it becomes tedious and inconvenient to continue the therapy for years with having to face the associated gastric side effects such as nausea. Microwave synthesizer was used to mediate the poly-condensation reaction between β-cyclodextrin and cross-linker diphenylcarbonate. Critical parameters selected were polymer to cross-linker ratio, Watt power, reaction time and solvent volume. Characterization studies were performed using FTIR, DSC, SEM, 1 H-NMR and PXRD. Molecular modeling was applied to confirm the possibility of drug entrapment. In vitro drug dissolution followed by oral bioavailability studies was performed in Sprawley rats. Samples were analyzed using HPLC. Microwave synthesis yields para-crystalline, porous nanosponges (∼205 nm). Drug entrapment led to enhancement of solubility and a two-fold increase in drug dissolution (P bioavailability was observed in fasted Sprawley rats where C max and AUC 0-∞ increases significantly (C max of NS∼ 586 ± 5.91 ng/mL; plain RLP ∼310 ± 5. 74 ng/mL). The approach offers a comfortable dosing zone for AIDs patients, negating the requirement of consuming the formulation in a fed state due to enhancement in drugs' oral bioavailability.

  12. Stabilized Polymer Micelles for the Development of IT-147, an Epothilone D Drug-Loaded Formulation

    Directory of Open Access Journals (Sweden)

    Adam Carie

    2016-01-01

    Full Text Available Epothilones have demonstrated promising potential for oncology applications but suffer from a narrow therapeutic window. Epothilone D stabilizes microtubules leading to apoptosis, is active against multidrug-resistant cells, and is efficacious in animal tumor models despite lack of stability in rodent plasma. Clinical development was terminated in phase II due to dose limiting toxicities near the efficacious dose. Taken together, this made epothilone D attractive for encapsulation in a stabilized polymer micelle for improved safety and efficacy. We have designed a library of triblock copolymers to develop IT-147, a lead formulation of epothilone D that extends plasma circulation for accumulation in the tumor environment, and potentially decrease systemic exposure to reduce dose limiting toxicities. The drug loading efficiency for IT-147 exceeds 90%, is 75 nm in diameter, and demonstrates pH-dependent release of epothilone D without chemical conjugation or enzymatic activation. Administration of IT-147 at 20 mg/kg increases exposure of epothilone D to the plasma compartment over 6-fold compared to free drug. At the same dose, 20 mg/kg epothilone D from IT-147 is considered the no observed adverse effect level (NOAEL but is the maximum tolerated dose for free drug. Consequently, IT-147 is positioned to be a safer, more effective means to deliver epothilone D.

  13. Self-Microemulsifying Drug Delivery System: Formulation and Study Intestinal Permeability of Ibuprofen in Rats

    Directory of Open Access Journals (Sweden)

    Bharat Bhushan Subudhi

    2013-01-01

    Full Text Available The study was aimed at developing a self-microemulsifying drug delivery system (SMEDDS of Ibuprofen for investigating its intestinal transport behavior using the single-pass intestinal perfusion (SPIP method in rat. Methods. Ibuprofen loaded SMEDDS (ISMEDDS was developed and was characterized. The permeability behavior of Ibuprofen over three different concentrations (20, 30, and 40 µg/mL was studied in each isolated region of rat intestine by SPIP method at a flow rate of 0.2 mL/min. The human intestinal permeability was predicted using the Lawrence compartment absorption and transit (CAT model since effective permeability coefficients (Peff values for rat are highly correlated with those of human, and comparative intestinal permeability of Ibuprofen was carried out with plain drug suspension (PDS and marketed formulation (MF. Results. The developed ISMEDDS was stable, emulsified upon mild agitation with 44.4 nm ± 2.13 and 98.86% ± 1.21 as globule size and drug content, respectively. Higher Peff in colon with no significant Peff difference in jejunum, duodenum, and ileum was observed. The estimated human absorption of Ibuprofen for the SMEDDS was higher than that for PDS and MF (P<0.01. Conclusion. Developed ISMEDDS would possibly be advantageous in terms of minimized side effect, increased bioavailability, and hence the patient compliance.

  14. Computational Models of the Gastrointestinal Environment. 2. Phase Behavior and Drug Solubilization Capacity of a Type I Lipid-Based Drug Formulation after Digestion.

    Science.gov (United States)

    Birru, Woldeamanuel A; Warren, Dallas B; Han, Sifei; Benameur, Hassan; Porter, Christopher J H; Pouton, Colin W; Chalmers, David K

    2017-03-06

    Lipid-based drug formulations can greatly enhance the bioavailability of poorly water-soluble drugs. Following the oral administration of formulations containing tri- or diglycerides, the digestive processes occurring within the gastrointestinal (GI) tract hydrolyze the glycerides to mixtures of free fatty acids and monoglycerides that are, in turn, solubilized by bile. The behavior of drugs within the resulting colloidal mixtures is currently not well characterized. This work presents matched in vitro experimental and molecular dynamics (MD) theoretical models of the GI microenvironment containing a digested triglyceride-based (Type I) drug formulation. Both the experimental and theoretical models consist of molecular species representing bile (glycodeoxycholic acid), digested triglyceride (1:2 glyceryl-1-monooleate and oleic acid), and water. We have characterized the phase behavior of the physical system using nephelometry, dynamic light scattering, and polarizing light microscopy and compared these measurements to phase behavior observed in multiple MD simulations. Using this model microenvironment, we have investigated the dissolution of the poorly water-soluble drug danazol experimentally using LC-MS and theoretically by MD simulation. The results show how the formulation lipids alter the environment of the GI tract and improve the solubility of danazol. The MD simulations successfully reproduce the experimental results showing the utility of MD in modeling the fate of drugs after digestion of lipid-based formulations within the intestinal lumen.

  15. UV SPECTROPHOTOMETRY APPLICATION FOR QUANTITATIVE DETERMINATION OF VINPOCETINE IN DRUG FORMULATIONS

    Directory of Open Access Journals (Sweden)

    J. V. Monaykina

    2014-12-01

    Full Text Available Introduction. In this paper simple, rapid and sensitive assay methods for quantitative determination of vinpocetine in two new drug formulations (suppositories and nasal cream are proposed. Analysis has been performed directly by using zero-order UV spectrophotometry. It is known from the special literature that the chromatographic techniques used for vinpocetine assay require expensive equipment and are rather time consuming. Therefore UV spectrophotometry is preferable due to its accuracy and simplicity. The object of this study was to develop new, simple, rapid, precise and accurate UV spectrophotometric procedure for the quantitative determination of vinpocetine in suppositories and nasal cream and evaluation of some validation characteristics of the methods. Materials and methods. The objects of the study were the new drug formulations of vinpocetine, namely 0,01 suppositories and 0,5% nasal cream developed by the scientists of The Chair of Technology of Drugs of Zaporizhzhia State Medical University. Distilled water and 0.05M HCl were used as the solvents, working standard sample of vinpocetine was used as a reference standard. Analytical equipment: spectrophotometer Specord 200, electronic balance ABT-120-5DM, measuring glassware of class A. Assay procedure: An accurately weighed sample of cream (1,200 – 2,000 g or one suppository was dissolved in 0.05M HCl and filtered into a 50,00 ml volumetric flask. Then the solution was brought to the mark with the same solvent and stirred. 3,00 ml or 4,00 ml of the resulting solutions (for suppositories or cream respectively were transferred into a 25,00 ml volumetric flask and brought to the mark with distilled water. Absorbance was measured at a wavelength of 272 nm on the blank of distilled water. The parallel measurement with 1,00 ml of 0,064% vinpocetine standard solution was carried out. The content of active substance was calculated according to standard formulas. Results. The suggested

  16. Differential electrolytic potentiometric titration method for the determination of ciprofloxacin in drug formulations.

    Science.gov (United States)

    Abulkibash, Abdalla M; Sultan, Salah M; Al-Olyan, Abeer M; Al-Ghannam, Sheikha M

    2003-10-17

    A simple and rapid differential electrolytic potentiometric titration method for the determination of ciprofloxacin was developed. The work is based on the fast complexation reaction between iron(III) and ciprofloxacin in a ratio of 1:3, respectively, in sulfuric acid media of 0.09 mol dm(-3). Among the electrodes tested silver amalgam electrodes were found to be a suitable indicating system. By applying a current density of 0.5 muA cm(-2) to these electrodes and using iron(III) solution of 0.097 mol dm(-3) as a titrant, normal titration curves were obtained. The method was successfully applied for the determination of ciprofloxacin in drug formulations as low as 4.0 ppm.

  17. Hydrogel-based ultra-moisturizing cream formulation for skin hydration and enhanced dermal drug delivery.

    Science.gov (United States)

    Lee, Sang Gon; Kim, Sung Rae; Cho, Hye In; Kang, Mean Hyung; Yeom, Dong Woo; Lee, Seo Hyun; Lee, Sangkil; Choi, Young Wook

    2014-01-01

    To develop an external vehicle for skin hydration and enhanced dermal drug delivery, a hydrogel-based ultra-moisturizing cream (HUMC) was successfully formulated with carbopol 934P, urea, Tinocare GL, grape seed oil, and other excipients. The HUMC showed plastic flow behavior due to a gel structure with a cream base. Different types of drug-free vehicles such as a hydrogel, conventional cream (CC), and three HUMCs were prepared and subjected to an in vivo skin hydration test on a hairless mouse using a corneometer. Hydration effect (∆AU) was in the order of HUMC2>HUMC1 ≥ CC>HUMC3>hydrogel. Using nile red (NR) and 5-carboxyfluorescein (5-CF) as lipophilic and hydrophilic fluorescent probes, respectively, in vitro skin permeation and accumulation studies were conducted using Franz diffusion cells. The values of steady-state flux (Jss, ng/h/cm(2)) were obtained: 74.8 (CC), 145.6 (HUMC1), and 161.9 (HUMC2) for NR delivery; 6.8 (CC), 8.3 (HUMC1), and 10.9 (HUMC2) for 5-CF delivery. The amounts retained in the skin at 12 h (Qr, ng/cm(2)) were determined: 86.4 (CC) and 102.0 (HUMC2) for NR; and 70.1 (CC) and 195.6 (HUMC2) for 5-CF. Confocal microscopy was used to visualize the distribution of the fluorescent probes. NR tended to be localized into the deeper part of the skin with adipose tissue whereas 5-CF localized in the upper layer of the skin. Thus we propose that HUMC2 is an efficacious vehicle for skin hydration and enhances dermal delivery of lipophilic and hydrophilic drugs.

  18. Formulation of 3D Printed Tablet for Rapid Drug Release by Fused Deposition Modeling: Screening Polymers for Drug Release, Drug-Polymer Miscibility and Printability.

    Science.gov (United States)

    Solanki, Nayan G; Tahsin, Md; Shah, Ankita V; Serajuddin, Abu T M

    2018-01-01

    The primary aim of this study was to identify pharmaceutically acceptable amorphous polymers for producing 3D printed tablets of a model drug, haloperidol, for rapid release by fused deposition modeling. Filaments for 3D printing were prepared by hot melt extrusion at 150°C with 10% and 20% w/w of haloperidol using Kollidon ® VA64, Kollicoat ® IR, Affinsiol ™ 15 cP, and HPMCAS either individually or as binary blends (Kollidon ® VA64 + Affinisol ™ 15 cP, 1:1; Kollidon ® VA64 + HPMCAS, 1:1). Dissolution of crushed extrudates was studied at pH 2 and 6.8, and formulations demonstrating rapid dissolution rates were then analyzed for drug-polymer, polymer-polymer and drug-polymer-polymer miscibility by film casting. Polymer-polymer (1:1) and drug-polymer-polymer (1:5:5 and 2:5:5) mixtures were found to be miscible. Tablets with 100% and 60% infill were printed using MakerBot printer at 210°C, and dissolution tests of tablets were conducted at pH 2 and 6.8. Extruded filaments of Kollidon ® VA64-Affinisol ™ 15 cP mixtures were flexible and had optimum mechanical strength for 3D printing. Tablets containing 10% drug with 60% and 100% infill showed complete drug release at pH 2 in 45 and 120 min, respectively. Relatively high dissolution rates were also observed at pH 6.8. The 1:1-mixture of Kollidon ® VA64 and Affinisol ™ 15 cP was thus identified as a suitable polymer system for 3D printing and rapid drug release. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  19. Design, formulation, in vitro, in vivo, and pharmacokinetic evaluation of nisoldipine-loaded self-nanoemulsifying drug delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamoorthy, Balakumar; Habibur Rahman, S. M.; Tamil selvan, N. [PSG College of Pharmacy, Department of Pharmaceutics (India); Hari prasad, R. [PSG College of Pharmacy, Department of Pharmaceutical Analysis (India); Rajkumar, M. [PSG College of Pharmacy, Department of Pharmaceutics (India); Siva selvakumar, M. [PSG College of Pharmacy, Department of Pharmaceutical Analysis (India); Vamshikrishna, K. [PSG College of Pharmacy, Department of Pharmaceutics (India); Gregory, Marslin [University of Minho, Department of Biology (Portugal); Vijayaraghavan, Chellan, E-mail: balakumar-27@yahoo.co.uk, E-mail: drvijayaragha@gmail.com [PSG College of Pharmacy, Department of Pharmaceutics (India)

    2015-01-15

    The aim of the present work was to prepare and optimize the self-nanoemulsifying drug delivery system (SNEDDS) of poor aqueous soluble and less bioavailable nisoldipine to improve its solubility and bioavailability. The solubility of nisoldipine was assessed in various vehicles and ternary phase diagram was constructed to identify the efficient self-emulsifying region. The selected formulations were evaluated for self-emulsification time, droplet size analysis, and in vitro drug release profile. The optimized formulation ACP 19 had reduced particle size (118.3 ± 1.53 nm), when compared to PCT 08 (740 ± 1.16 nm). In vitro drug release study revealed that 98.05 ± 0.95 and 93.71 ± 1.05 % of drug was, respectively, released from ACP 19 and PCT 08 formulations at 24 h, whereas only 47.42 ± 0.65 % was released from drug in suspension. ACT 19 and PCT 08, respectively, showed 2.5- and 2.22-folds greater bioavailability than drug in suspension. PK Solver 2.0 was used for analysis of data obtained from in vivo study and the results revealed that both ACP 19 SNEDDS and drug in suspension fit into one-compartment pharmacokinetic model.

  20. Design, formulation, in vitro, in vivo, and pharmacokinetic evaluation of nisoldipine-loaded self-nanoemulsifying drug delivery system

    International Nuclear Information System (INIS)

    Krishnamoorthy, Balakumar; Habibur Rahman, S. M.; Tamil selvan, N.; Hari prasad, R.; Rajkumar, M.; Siva selvakumar, M.; Vamshikrishna, K.; Gregory, Marslin; Vijayaraghavan, Chellan

    2015-01-01

    The aim of the present work was to prepare and optimize the self-nanoemulsifying drug delivery system (SNEDDS) of poor aqueous soluble and less bioavailable nisoldipine to improve its solubility and bioavailability. The solubility of nisoldipine was assessed in various vehicles and ternary phase diagram was constructed to identify the efficient self-emulsifying region. The selected formulations were evaluated for self-emulsification time, droplet size analysis, and in vitro drug release profile. The optimized formulation ACP 19 had reduced particle size (118.3 ± 1.53 nm), when compared to PCT 08 (740 ± 1.16 nm). In vitro drug release study revealed that 98.05 ± 0.95 and 93.71 ± 1.05 % of drug was, respectively, released from ACP 19 and PCT 08 formulations at 24 h, whereas only 47.42 ± 0.65 % was released from drug in suspension. ACT 19 and PCT 08, respectively, showed 2.5- and 2.22-folds greater bioavailability than drug in suspension. PK Solver 2.0 was used for analysis of data obtained from in vivo study and the results revealed that both ACP 19 SNEDDS and drug in suspension fit into one-compartment pharmacokinetic model

  1. Preparation and Evaluation of Taste Masked Famotidine Formulation Using Drug/β-cyclodextrin/Polymer Ternary Complexation Approach

    OpenAIRE

    Patel, Ashok R.; Vavia, Pradeep R.

    2008-01-01

    The main aim of the present study was to evaluate potential of ternary complexation (comprising of drug, cyclodextrin and polymer) as an approach for taste masking. For this purpose famotidine with property of bitter taste was selected as a model drug. Improvement in taste masking capability of cyclodextrin towards famotidine was evaluated by formulating a ternary complex including hydrophilic polymer hydroxyl propyl methyl cellulose (HPMC 5 cps) as the third component. Phase solubility analy...

  2. Herb-Drug Interaction between the Traditional Hepatoprotective Formulation and Sorafenib on Hepatotoxicity, Histopathology and Pharmacokinetics in Rats

    Directory of Open Access Journals (Sweden)

    Chin-Tsung Ting

    2017-06-01

    Full Text Available Sorafenib has been used as a standard therapy for advanced hepatocellular carcinoma (HCC. In Asia, patients with HCC are potentially treated with the combination of sorafenib and Chinese herbal medicines to improve the efficiency and reduce the side effects of sorafenib. However, limited information about the herb-drug interactions is available. We hypothesize that the Chinese herbal medicine may exert hepatoprotective effects on the sorafenib-treated group. The aim of this study is to investigate the pharmacokinetic mechanism of drug-drug interactions of sorafenib including interacting with hepatoprotective formulation, Long-Dan-Xie-Gan-Tang formulation (LDXGT and with two cytochrome P450 3A4 (CYP3A4 inhibitors, grapefruit juice and ketoconazole. Liver enzyme levels and histopathology of liver slices were used to evaluate sorafenib-induced hepatotoxicity and the potential hepatoprotective effects of the LDXGT formulation on subjects treated with the combination of sorafenib and the herbal medicine. In this study, a validated HPLC-photodiode array analytical system was developed for the pharmacokinetic study of sorafenib in rats. As the result of the pharmacokinetic data, pretreatment with the LDXGT formulation did not significantly interact with sorafenib compared with sorafenib oral administration alone. Furthermore, grapefruit juice and ketoconazole did not significantly affect sorafenib metabolism. Furthermore, pretreatment with variable, single or repeat doses of the LDXGT formulation did not suppress or exacerbate the sorafenib-induced hepatotoxicity and histopathological alterations. According to these results, the LDXGT formulation is safe, but has no beneficial effects on sorafenib-induced hepatotoxicity. A detailed clinical trial should be performed to further evaluate the efficacy or adverse effects of the LDXGT formulation in combination with sorafenib in humans.

  3. The relevance of polymeric synthetic membranes in topical formulation assessment and drug diffusion study.

    Science.gov (United States)

    Ng, Shiow-Fern; Rouse, Jennifer J; Sanderson, Francis D; Eccleston, Gillian M

    2012-03-01

    Synthetic membranes are composed of thin sheets of polymeric macromolecules that can control the passage of components through them. Generally, synthetic membranes used in drug diffusion studies have one of two functions: skin simulation or quality control. Synthetic membranes for skin simulation, such as the silicone-based membranes polydimethylsiloxane and Carbosil, are generally hydrophobic and rate limiting, imitating the stratum corneum. In contrast, synthetic membranes for quality control, such as cellulose esters and polysulfone, are required to act as a support rather than a barrier. These synthetic membranes also often contain pores; hence, they are called porous membranes. The significance of Franz diffusion studies and synthetic membranes in quality control studies involves an understanding of the fundamentals of synthetic membranes. This article provides a general overview of synthetic membranes, including a brief background of the history and the common applications of synthetic membranes. This review then explores the types of synthetic membranes, the transport mechanisms across them, and their relevance in choosing a synthetic membrane in Franz diffusion cell studies for formulation assessment purposes.

  4. Enhanced Physical Stability of Amorphous Drug Formulations via Dry Polymer Coating.

    Science.gov (United States)

    Capece, Maxx; Davé, Rajesh

    2015-06-01

    Although amorphous solid drug formulations may be advantageous for enhancing the bioavailability of poorly soluble active pharmaceutical ingredients, they exhibit poor physical stability and undergo recrystallization. To address this limitation, this study investigates stability issues associated with amorphous solids through analysis of the crystallization behavior for acetaminophen (APAP), known as a fast crystallizer, using a modified form of the Avrami equation that kinetically models both surface and bulk crystallization. It is found that surface-enhanced crystallization, occurring faster at the free surface than in the bulk, is the major impediment to the stability of amorphous APAP. It is hypothesized that a novel use of a dry-polymer-coating process referred to as mechanical-dry-polymer-coating may be used to inhibit surface crystallization and enhance stability. The proposed process, which is examined, simultaneously mills and coats amorphous solids with polymer, while avoiding solvents or solutions, which may otherwise cause stability or crystallization issues during coating. It is shown that solid dispersions of APAP (64% loading) with a small particle size (28 μm) could be prepared and coated with the polymer, carnauba wax, in a vibratory ball mill. The resulting amorphous solid was found to have excellent stability as a result of inhibition of surface crystallization. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  5. Spectrophotometric Determination of Rifampicin in Bulk Drug and Pharmaceutical Formulations Based on Redox and Complexation Reactions

    Science.gov (United States)

    Swamy, N.; Basavaiah, K.

    2017-09-01

    Two spectrophotometric methods were developed and validated for the determination of rifampicin (RIF) in bulk form, formulations, and spiked human urine. The first method is based on the reduction of the Folin-Ciocalteu (FC) reagent by RIF to form a blue colored chromogen with λmax at 760 nm (the FCR method). In the second method, iron(III) is reduced by RIF in a neutral medium, and the resulting iron(II) is complexed with ferricyanide to form a Prussian blue peaking at 750 nm (the FFC method). Under optimum conditions, Beer's law enabled the determination of the drug in the concentration ranges 1-35 and 2.5-50 μg/mL with apparent molar absorptivities of 2.72 × 104 and 1.63×104 L/(mol × cm) for the FCR and FFC methods, respectively. The Sandell sensitivity, limits of detection (LOD), and quantification (LOQ) values were also reported for both methods. The precision of the methods, with % RSD of human urine without interference from endogenous substances. A statistical analysis indicated that there was no significant difference between the results obtained by the developed methods and the official method.

  6. Assessment of Aprotinin Loaded Microemulsion Formulations for Parenteral Drug Delivery: Preparation, Characterization, in vitro Release and Cytotoxicity Studies.

    Science.gov (United States)

    Okur, Neslihan Üstündağ; Özdemir, Derya İlem; Kahyaoğlu, Şennur Görgülü; Şenyiğit, Zeynep Ay; Aşıkoğlu, Makbule; Genç, Lütfi; Karasulu, H Yeşim

    2015-01-01

    The object of the current study was to prepare novel microemulsion formulations of aprotinin for parenteral delivery and to compare in vitro characteristics and release behaviour of different Technetium-99m ((99m)Tc)-Aprotinin loaded microemulsion formulations. In addition, cytotoxicity of microemulsion formulation was evaluated with cell culture studies on human immortalized pancreatic duct epithelial-like cells. For this aim, firstly, pseudo-ternary phase diagrams were plotted to detect the formulation region and optimal microemulsions were characterized for their thermodynamic stability, conductivity, particle size, zeta potential, viscosity, pH and in vitro release properties. For in vitro release studies aprotinin was labelled with (99m)Tc and labelling efficiency, radiochemical purity and stability of the radiolabeled complex were determined by several chromatography techniques. Radiolabeling efficiency of (99m)Tc-Aprotinin was found over than 90% without any significant changes up to 6 hours after labelling at room temperature. After that, in vitro release studies of (99m)Tc-Aprotinin loaded microemulsions were performed with two different methods; dissolution from diffusion cells and dialysis bags. Both methods showed that release rate of (99m)Tc- Aprotinin from microemulsion could be controlled by microemulsion formulations. Drug release from the optimized microemulsion formulations was found lower compared to drug solution at the end of six hours. According to stability studies, the optimized formulation was found to be stable over a period of 12 months. Also, human immortalized pancreatic duct epithelial-like cells were used to evaluate the cytotoxicity of optimum formulation. Developed microemulsion did not reveal cytotoxicity. In conclusion the present study indicated that the M1-APT microemulsion is appropriate for intravenous application of aprotinin.

  7. Degeneration of biogenic superparamagnetic magnetite.

    Science.gov (United States)

    Li, Y-L; Pfiffner, S M; Dyar, M D; Vali, H; Konhauser, K; Cole, D R; Rondinone, A J; Phelps, T J

    2009-01-01

    Magnetite crystals precipitated as a consequence of Fe(III) reduction by Shewanella algae BrY after 265 h incubation and 5-year anaerobic storage were investigated with transmission electron microscopy, Mössbauer spectroscopy and X-ray diffraction. The magnetite crystals were typically superparamagnetic with an approximate size of 13 nm. The lattice constants of the 265 h and 5-year crystals are 8.4164A and 8.3774A, respectively. The Mössbauer spectra indicated that the 265 h magnetite had excess Fe(II) in its crystal-chemistry (Fe(3+) (1.990)Fe(2+) (1.015)O(4)) but the 5-year magnetite was Fe(II)-deficient in stoichiometry (Fe(3+) (2.388)Fe(2+) (0.419)O(4)). Such crystal-chemical changes may be indicative of the degeneration of superparamagnetic magnetite through the aqueous oxidization of Fe(II) anaerobically, and the concomitant oxidation of the organic phases (fatty acid methyl esters) that were present during the initial formation of the magnetite. The observation of a corona structure on the aged magnetite corroborates the anaerobic oxidation of Fe(II) on the outer layers of magnetite crystals. These results suggest that there may be a possible link between the enzymatic activity of the bacteria and the stability of Fe(II)-excess magnetite, which may help explain why stable nano-magnetite grains are seldom preserved in natural environments.

  8. Degeneration of Biogenic Superparamagnetic Magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dr. Yi-Liang [University of Tennessee, Knoxville (UTK); Pfiffner, Susan M. [University of Tennessee, Knoxville (UTK); Dyar, Dr. M Darby [Mount Holyoke College; Vali, Dr. Hojatolah [McGill University, Montreal, Quebec; Konhauser, Dr, Kurt [University of Alberta; Cole, David R [ORNL; Rondinone, Adam Justin [ORNL; Phelps, Tommy Joe [ORNL

    2009-01-01

    ABSTRACT. Magnetite crystals precipitated as a consequence of Fe(III) reduction by Shewanella algae BrY after 265 hours incubation and 5-year storage were investigated with transmission electron microscopy, M ssbauer spectroscopy and X-ray diffraction. The magnetite crystals were typically superparamagnetic with an approximate size of 13 nm. The lattice constants of the 265 hour and 5-year crystals are 8.4164 and 8.3774 , respectively. The M ssbauer spectra indicated that the 265 hour magnetite had excess Fe(II) in its crystal-chemistry (Fe3+1.9901Fe2+ 1.0149O4) but the 5-year magnetite was Fe(II)-deficient in stoichiometry (Fe3+2.3875Fe2+0.4188O4). Such crystal-hemical changes may be indicative of the degeneration of superparamagnetic magnetite through the aqueous oxidization of Fe(II) anaerobically, and the concomitant oxidation of the organic phases(fatty acid methyl esters) that were present during the initial formation of the magnetite. The observation of a corona structure on the aged magnetite corroborates the oxidation of Fe(II) on the outer layers of magnetite crystals. These results suggest that there may be a possible link between the enzymatic activity of the bacteria and the stability of Fe(II)-excess magnetite, which may help explain why stable nano-magnetite grains are seldom preserved in natural environments.

  9. Solid formulation of a supersaturable self-microemulsifying drug delivery system for valsartan with improved dissolution and bioavailability.

    Science.gov (United States)

    Yeom, Dong Woo; Chae, Bo Ram; Kim, Jin Han; Chae, Jun Soo; Shin, Dong Jun; Kim, Chang Hyun; Kim, Sung Rae; Choi, Ji Ho; Song, Seh Hyon; Oh, Dongho; Sohn, Se Il; Choi, Young Wook

    2017-11-07

    In order to improve the dissolution and oral bioavailability of valsartan (VST), and reduce the required volume for treatment, we previously formulated a supersaturable self-microemulsifying drug delivery system (SuSMEDDS) composed of VST (80 mg), Capmul ® MCM (13.2 mg), Tween ® 80 (59.2 mg), Transcutol ® P (59.2 mg), and Poloxamer 407 (13.2 mg). In the present study, by using Florite ® PS-10 (119.1 mg) and Vivapur ® 105 (105.6 mg) as solid carriers, VST-loaded solidified SuSMEDDS (S-SuSMEDDS) granules were successfully developed, which possessed good flow properties and rapid drug dissolution. By introducing croscarmellose sodium (31 mg) as a superdisintegrant, S-SuSMEDDS tablets were also successfully formulated, which showed fast disintegration and high dissolution efficiency. Preparation of granules and tablets was successfully optimized using D-optimal mixture design and 3-level factorial design, respectively, resulting in percentage prediction errors of <10%. In pharmacokinetic studies in rats, the relative bioavailability of the optimized granules was 107% and 222% of values obtained for SuSMEDDS and Diovan ® powder, respectively. Therefore, we conclude that novel S-SuSMEDDS formulations offer great potential for developing solid dosage forms of a liquefied formulation such as SuSMEDDS, while improving oral absorption of drugs with poor water solubility.

  10. Current Challenges and Future of Lipid nanoparticles formulations for topical drug application to oral mucosa, skin, and eye.

    Science.gov (United States)

    Guilherme, Viviane A; Ribeiro, Ligia N M; Tofoli, Giovana Radomille; Franz-Montan, Michelle; de Paula, Eneida; de Jesus, Marcelo Bispo

    2017-11-21

    Topical drug administration offers an attractive route with minimal invasiveness. It also avoids limitations of intravenous administration such as the first pass metabolism and presystemic elimination within the gastrointestinal tract. Furthermore, topical drug administration is safe, have few side effects, is easy to apply, and offers a fast onset of action. However, the development of effective topical formulations still represents a challenge for the desired effect to be reached, locally or systemically. Solid lipid nanoparticles and nanostructured lipid carriers are particular candidates to overcome the problem of topical drug administration. The nanometric particle size of lipid nanoparticles favors the physical adhesion to the skin or mucosal, what can also be attained with the formation of hybrid (nanoparticles/polymer) systems. In this review, we discuss the major challenges for lipid nanoparticles formulations for topical application to oral mucosa, skin, and eye, highlighting the strategies to improve the performance of lipid nanoparticles for topical applications. Next, we critically analyzed the in vitro and in vivo approaches used to evaluate lipid nanoparticles performance and toxicity. We addressed some major drawbacks related to lipid nanoparticle topical formulations and concluded the key points that have to be overcome to help them to reach the market in topical formulations to oral mucosa, skin and eye. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Formulation and evaluation of xanthan gum based aceclofenac tablets for colon targeted drug delivery

    Directory of Open Access Journals (Sweden)

    Thiruganesh Ramasamy

    2011-06-01

    Full Text Available The objective of the present study is to develop a colon targeted drug delivery systems for Aceclofenac using xanthan gum as a carrier. In this study, multilayer coated system that is resistant to gastric and small intestinal conditions but can be easily degraded by colonic bacterial enzymes was designed to achieve effective colon delivery of Aceclofenac. The xanthan gum, the drug and the physical mixture were characterized by Fourier transform infrared spectroscopy (FTIR and differential scanning calorimetry (DSC. All the formulations were evaluated for hardness, drug content uniformity and other physical properties. Release aspects of Aceclofenac in simulated gastrointestinal fluid and colonic fluid with enzymes were investigated. From these results, Eudragit coated system exhibited gastric and small intestinal resistance to the release of Aceclofenac. The rapid increase in release of Aceclofenac in SCF was revealed as due to the degradation of the xanthan gum membrane by bacterial enzymes. The designed system could be used potentially as a carrier for colon delivery of Aceclofenac by regulating drug release in stomach and the small intestine.O presente estudo teve como objetivo o desenvolvimento de sistema de liberação cólon-alvo de aceclofenaco empregando goma xantana. Nesse trabalho, o revestimento de múltiplas camadas com característica de resistência às condições do intestino delgado além de gastrorresistência oferece como vantagem a rápida degradação desse sistema por enzimas bacterianas colônicas. Dessa forma, o planejamento de tal sistema possibilitou a liberação específica do aceclofenaco no cólon. A goma xantana e o fármaco, além da mistura física desses dois componentes, foram caracterizados por espectroscopia no infravermelho com transformada de Fourier (FTIR e calorimetria diferencial exploratória (DSC. Todas as formulações foram avaliadas no que se refere à dureza, à uniformidade de conteúdo do f

  12. A review of formulation techniques that impact the disintegration and mechanical properties of oradispersible drug delivery technologies.

    Science.gov (United States)

    Manyikana, Martina; Choonara, Yahya E; Tomar, Lomas K; Tyagi, Charu; Kumar, Pradeep; du Toit, Lisa C; Pillay, Viness

    2016-01-01

    The drug treatment of acute disorders such as neuropathic pain, migraines, insomnia, vomiting, allergic rhinitis or erectile dysfunction requires an immediate pharmacological effect that may be achieved through parenteral drug administration. However, the parenteral route is not always convenient for reasons that are well known. Therefore, in the recent past there has been a barrage of interest in formulating new, non-invasive, reliable and convenient oradispersible drug delivery technologies (ODDTs). Research in this area has focused extensively on developing ODDTs that are capable of releasing drugs immediately when they come into contact with saliva. This disregards the necessity of water during administration and several other advantages that is an attribute that makes this technology lucrative for groups such as pediatrics, geriatrics, psychiatrics and unconscious patients. Many reviews have been compiled on the salient features of ODDTs. However, none to date has focused on the actual formulation techniques used to produce these technologies and how this may impact their disintegration and physical stability for fulfilling their purpose. Therefore this review provides a concise incursion on the recent formulation techniques, excipients used as well as methods of testing the performance of ODDTs and critically assesses these in terms of improving their performance.

  13. The solubility-permeability interplay and its implications in formulation design and development for poorly soluble drugs.

    Science.gov (United States)

    Dahan, Arik; Miller, Jonathan M

    2012-06-01

    While each of the two key parameters of oral drug absorption, the solubility and the permeability, has been comprehensively studied separately, the relationship and interplay between the two have been largely ignored. For instance, when formulating a low-solubility drug using various solubilization techniques: what are we doing to the apparent permeability when we increase the solubility? Permeability is equal to the drug's diffusion coefficient through the membrane times the membrane/aqueous partition coefficient divided by the membrane thickness. The direct correlation between the intestinal permeability and the membrane/aqueous partitioning, which in turn is dependent on the drug's apparent solubility in the GI milieu, suggests that the solubility and the permeability are closely associated, exhibiting a certain interplay between them, and the current view of treating the one irrespectively of the other may not be sufficient. In this paper, we describe the research that has been done thus far, and present new data, to shed light on this solubility-permeability interplay. It has been shown that decreased apparent permeability accompanies the solubility increase when using different solubilization methods. Overall, the weight of the evidence indicates that the solubility-permeability interplay cannot be ignored when using solubility-enabling formulations; looking solely at the solubility enhancement that the formulation enables may be misleading with regards to predicting the resulting absorption, and hence, the solubility-permeability interplay must be taken into account to strike the optimal solubility-permeability balance, in order to maximize the overall absorption.

  14. Formulation and optimization of pH sensitive drug releasing O/W emulsions using Albizia lebbeck L. seed polysaccharide.

    Science.gov (United States)

    Varma, Chekuri Ashok Kumar; Jayaram Kumar, K

    2018-04-30

    Smart polymers, one of the class of polymers with extensive growth in the last few decades due to their wide applications in drug targeting and controlled delivery systems. With this in mind, the aim of the present study is to design and formulate smart releasing o/w emulsion by using Albizia lebbeck L. seed polysaccharide (ALPS). For this purpose, the physicochemical and drug release characteristics like emulsion capacity (EC), emulsion stability (ES), viscosity, microscopy, zeta potential, polydispersity index (PDI) and in-vitro drug release were performed. The EC and ES values were found to increase with an increased concentration of ALPS. The emulsion formulations were statistically designed by using 3 2 full factorial design. All the emulsions showed a shear-thinning behavior. The zeta potential and polydispersity index were found to be in the range of -35.83 mV to -19.00 mV and 0.232-1.000 respectively. Further, the percent cumulative drug release of the emulsions at 8 h was found to be in the range of 30.19-82.65%. The drug release profile exhibited zero order release kinetics. In conclusion, the ALPS can be used as a natural emulsifier and smart polymer for the preparation of pH sensitive emulsions in drug delivery systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Frequency and Severity of Neutropenia Associated with Food and Drug Administration Approved and Compounded Formulations of Lomustine in Dogs with Cancer

    OpenAIRE

    Burton, J.H.; Stanley, S.D.; Knych, H.K.; Rodriguez, C.O.; Skorupski, K.A.; Rebhun, R.B.

    2015-01-01

    Background Compounded lomustine is used commonly in veterinary patients. However, the potential variability in these formulations is unknown and concern exists that compounded formulations of drugs may differ in potency from Food and Drug Administration (FDA)?approved products. Hypothesis/Objectives The initial objective of this study was to evaluate the frequency and severity of neutropenia in dogs treated with compounded or FDA?approved formulations of lomustine. Subsequent analyses aimed t...

  16. Oral matrix tablet formulations for concomitant controlled release of anti-tubercular drugs: design and in vitro evaluations.

    Science.gov (United States)

    Hiremath, Praveen S; Saha, Ranendra N

    2008-10-01

    The aim of the present investigation was to develop controlled release (C.R.) matrix tablet formulations of rifampicin and isoniazid combination, to study the design parameters and to evaluate in vitro release characteristics. In the present study, a series of formulations were developed with different release rates and duration using hydrophilic polymers hydroxypropyl methylcellulose (HPMC) and hydroxypropyl cellulose (HPC). The duration of rifampicin and isoniazid release could be tailored by varying the polymer type, polymer ratio and processing techniques. Further, Eudragit L100-55 was incorporated in the matrix tablets to compensate for the pH-dependent release of rifampicin. Rifampicin was found to follow linear release profile with time from HPMC formulations. In case of formulations with HPC, there was an initial higher release in simulated gastric fluid (SGF) followed by zero order release profiles in simulated intestinal fluid (SIFsp) for rifampicin. The release of isoniazid was found to be predominantly by diffusion mechanism in case of HPMC formulations, and with HPC formulations release was due to combination of diffusion and erosion. The initial release was sufficiently higher for rifampicin from HPC thus ruling out the need to incorporate a separate loading dose. The initial release was sufficiently higher for isoniazid in all formulations. Thus, with the use of suitable polymer or polymer combinations and with the proper optimization of the processing techniques it was possible to design the C.R. formulations of rifampicin and isoniazid combination that could provide the sufficient initial release and release extension up to 24h for both the drugs despite of the wide variations in their physicochemical properties.

  17. Evaluation of herb-drug interaction of a polyherbal Ayurvedic formulation through high throughput cytochrome P450 enzyme inhibition assay.

    Science.gov (United States)

    Pandit, Subrata; Kanjilal, Satyajyoti; Awasthi, Anshumali; Chaudhary, Anika; Banerjee, Dipankar; Bhatt, B N; Narwaria, Avinash; Singh, Rahul; Dutta, Kakoli; Jaggi, Manu; Singh, Anu T; Sharma, Neena; Katiyar, Chandra Kant

    2017-02-02

    Arishtas are Ayurvedic formulation made with decoction of herbs. Arjunarishta formulation is being used in Ayurveda for cardio-protective activity. Ashwagandharishta formulation possesses antioxidant, anti-atherosclerotic and anti-stress properties. Ridayarishta, a novel empirical formulation was prepared using combination of selected ingredients from these two formulations to support healthy heart functions and to reduce stress. Aim of the Study was to investigate herb-drug interaction (HDI) of Ridayarishta formulation through human hepatic cytochrome P450 (CYP450) enzyme inhibition assay. Ridayarishta formulation was phyto-chemically standardized against arjunolic acid, arjunetin, berberine, piperine, resveratrol and withaferin-A using high performance thin layer chromatography (HPTLC) analysis. The formulation was standardized with respect to ethanol by gas chromatographic (GC) analysis. HDI was evaluated with Ridayarishta formulation and amlodipine besilate, atenolol, atorvastatin, metformin, glipizide glimepiride cocktail using high throughput CYP450 enzyme inhibition assay; against CYP1A2, 2C19, 2D6 and 3A4 isozymes. Contents of arjunolic acid, arjunetin, berberine, piperine, resveratrol and withaferin-A in Ridayarishta formulation were found to be 1.76±0.12, 1.51±0.09, 1.85±0.05, 3.2±0.12, 1.21±0.08, and 2.16±0.09ppm, respectively. Quantity of ethanol in Ridayarishta was found to be 7.95±0.023% (V/V). Ridayarishta showed significantly higher (Pdrugs showed significantly (P<0.001and P<0.01) less or negligible HDI. Ridayarishta formulation alone and cocktail with amlodipine besilate, atenolol, atorvastatin, metformin, glipizide, glimepiride had negligible or insignificant effect on CYP450 inhibition. It may be concluded that consumption of Ridayarishta along with selective cardio protective, antihypertensive and anti-diabetic conventional medicine is safe with negligible or without any significant CYP450 (CYP1A2, 2C19, 2D6 and 3A4) inhibition mediated

  18. Application of mixture experimental design in formulation and characterization of solid self-nanoemulsifying drug delivery systems containing carbamazepine

    Directory of Open Access Journals (Sweden)

    Krstić Marko Z.

    2016-01-01

    Full Text Available One of the problems with orally used drugs is their poor solubility, which can be overcame by creating solid self-nanoemulsifying drug delivery systems (SNEDDS. Aim is choosing appropriate SNEDDS using mixture design and adsorption of SNEDDS on a solid carrier to improve the dissolution rate of carbamazepine. Self-emulsifying drug delivery systems (SEDDS consisting of oil phase (caprilic-capric triglycerides, a surfactant (Polisorbat 80 and Labrasol® (1:1 and cosurfactant (Transcutol® HP are formed by applying mixture design. 16 formulations were formulated, where proportion of lipids, surfactant and cosurfactant were varied (input parameters in the following ranges: 10-30%, 40-60%, 30-50%, respectively. After dilution of SEDDS with water (90% water, the droplet size and polydispersity index (PdI of the obtained emulsions (output parameters were measured using photon correlation spectroscopy. After processing data, appropriate mathematical models that describe the dependence of input and output parameters were selected. The optimized SNEDDS was adsorbed on the carbamazepine and solid carrier physical mixture, containing 20% carbamazepine. Neusilin® UFl2, Neusilin® FL2, Sylysia® 320, diatomite were used as the carriers. The ratio of SNEDDS:carrier varied (1:1, 2:1. Dissolution testing was carried out in the rotation paddles apparatus. Caracterization of solid SNEDDS was performed using the hot stage microscopy (HSM, thermogravimetric analysis (TGA, differential scanning calorimetry (DSC, infrared spectrophotometry with Fourier transformation (FT-IR, scanning electron microscopy (SEM and X-ray diffraction (PXRD. Selected SNEDDS consisting of lipids (21.12%, surfactant (42.24% and cosurfactant (36.64% had a droplet size 157.02±34.09 nm and PDI 0.184±0.021. Drug release profiles showed that in all formulations dissolution rate increased (the fastest drug release was observed in formulations with Sylysia® 320. It can be concluded that in all

  19. The utilisation of short-lived radionuclides in the assessment of formulation and in vivo disposition of drugs

    International Nuclear Information System (INIS)

    Digenis, G.A.

    1982-01-01

    The utilisation of short-lived radionuclides in the assessment of drug formulations, and the in vivo distribution of drugs is discussed. Disintegration of tablets and capsules as a function of the formulation, and gastric emptying are important. The applicability of perturbed angular correlation to the study of the dissolution of water soluble substances from solid dosages in man is shown. Examples are given to illustrate how external scintigraphy can be applied to study the tissue distribution of 18 F-haloperidol, 82 Br-bromperidol, in rat and monkey. 11 C, L-andD-phenylalanine in rats, 11 C, D-leucine in mice with human colon tumours; 13 N-nitrosoureas and 13 N-nitroso-carbamates. (U.K.)

  20. Determination of drug content in semisolid formulations by non-invasive spectroscopic methods: FTIR - ATR, - PAS, - Raman and PDS

    International Nuclear Information System (INIS)

    Gotter, B; Hein, J; Neubert, R H H; Faubel, W; Heissler, St

    2010-01-01

    This study elucidates the potential use of photothermal deflection spectroscopy (PDS), FTIR photoacoustic (FTIR-PAS), FT Raman, and FTIR-attenuated total reflection (FTIR-ATR) spectroscopy as analytical tools for investigating the drug content in semisolid formulations. Regarding the analytical parameters, this study demonstrates the photothermal beam deflection to be definitely comparable to well established spectroscopic methods for this purpose. The correlation coefficients range from 0.990 to 0.999. Likewise, repeatability and limit of detection are comparable.

  1. Disintegration mediated controlled release supersaturating solid dispersion formulation of an insoluble drug: design, development, optimization, and in vitro evaluation.

    Science.gov (United States)

    Verma, Sanjay; Rudraraju, Varma S

    2015-02-01

    The objective of this study was to develop a solid dispersion based controlled release system for drug substances that are poorly soluble in water. A wax-based disintegration mediated controlled release system was designed based on the fact that an amorphous drug can crystallize out from hydrophilic matrices. For this study, cilostazol (CIL) was selected as the model drug, as it exhibits poor aqueous solubility. An amorphous solid dispersion was prepared to assist the drug to attain a supersaturated state. Povidone was used as carrier for solid dispersion (spray drying technique), hydrogenated vegetable oil (HVO) as wax matrix former, and sodium carboxymethyl cellulose (NaCMC) as a disintegrant. The extreme vertices mixture design (EVMD) was applied to optimize the designed and developed composition. The optimized formulation provided a dissolution pattern which was equivalent to the predicted curve, ascertaining that the optimal formulation could be accomplished with EVMD. The release profile of CIL was described by the Higuchi's model better than zero-order, first-order, and Hixson-Crowell's model, which indicated that the supersaturation state of CIL dominated to allow drug release by diffusion rather than disintegration regulated release as is generally observed by Hixson-Crowell's model. The optimized composition was evaluated for disintegration, dissolution, XRD, and stability studies. It was found that the amorphous state as well as the dissolution profile of CIL was maintained under the accelerated conditions of 40°C/75% RH for 6 months.

  2. Formulation and In-vitro Evaluation of Tretinoin Microemulsion as a Potential Carrier for Dermal Drug Delivery.

    Science.gov (United States)

    Mortazavi, Seyed Alireza; Pishrochi, Sanaz; Jafari Azar, Zahra

    2013-01-01

    In this study, tretinoin microemulsion has been formulated based on phase diagram studies by changing the amounts and proportions of inactive ingredients, such as surfactants, co-surfactants and oils. The effects of these variables have been determined on microemulsion formation, particle size of the dispersed phase and release profile of tretinoin from microemulsion through dialysis membrane. In released studies, static Franz diffusion cells mounted with dialysis membrane were used. Sampling was conducted every 3 h at room temperature over a period of 24 h. The amount of released drug was measured with UV-spectrophotometer and the percentage of drug released was calculated. Based on the results obtained, the oil phase concentration had a proportional effect on particle size which can consequently influence on drug release. The particle size and the amount of released drug were affected by the applied surfactants. The components of the optimized microemulsion formulation were 15% olive oil, 12% propylene glycol (as co-surfactant), 33% Tween(®)80 (as surfactant) and 40% distilled water, which was tested for viscosity and rheological behavior. The prepared tretinoin microemulsion showed pseudoplastic-thixotropic behavior. The profile of drug release follows zero order kinetics. The optimized tretinoin microemulsion showed enhanced in-vitro release profile compared to the commercial gels and creams.

  3. Aerosol-Assisted Fast Formulating Uniform Pharmaceutical Polymer Microparticles with Variable Properties toward pH-Sensitive Controlled Drug Release

    Directory of Open Access Journals (Sweden)

    Hong Lei

    2016-05-01

    Full Text Available Microencapsulation is highly attractive for oral drug delivery. Microparticles are a common form of drug carrier for this purpose. There is still a high demand on efficient methods to fabricate microparticles with uniform sizes and well-controlled particle properties. In this paper, uniform hydroxypropyl methylcellulose phthalate (HPMCP-based pharmaceutical microparticles loaded with either hydrophobic or hydrophilic model drugs have been directly formulated by using a unique aerosol technique, i.e., the microfluidic spray drying technology. A series of microparticles of controllable particle sizes, shapes, and structures are fabricated by tuning the solvent composition and drying temperature. It is found that a more volatile solvent and a higher drying temperature can result in fast evaporation rates to form microparticles of larger lateral size, more irregular shape, and denser matrix. The nature of the model drugs also plays an important role in determining particle properties. The drug release behaviors of the pharmaceutical microparticles are dependent on their structural properties and the nature of a specific drug, as well as sensitive to the pH value of the release medium. Most importantly, drugs in the microparticles obtained by using a more volatile solvent or a higher drying temperature can be well protected from degradation in harsh simulated gastric fluids due to the dense structures of the microparticles, while they can be fast-released in simulated intestinal fluids through particle dissolution. These pharmaceutical microparticles are potentially useful for site-specific (enteric delivery of orally-administered drugs.

  4. A novel in situ hydrophobic ion paring (HIP) formulation strategy for clinical product selection of a nanoparticle drug delivery system.

    Science.gov (United States)

    Song, Young Ho; Shin, Eyoung; Wang, Hong; Nolan, Jim; Low, Susan; Parsons, Donald; Zale, Stephen; Ashton, Susan; Ashford, Marianne; Ali, Mir; Thrasher, Daniel; Boylan, Nicholas; Troiano, Greg

    2016-05-10

    The present studies were aimed at formulating AZD2811-loaded polylactic acid-polyethylene glycol (PLA-PEG) nanoparticles with adjustable release rates without altering the chemical structures of the polymer or active pharmaceutical ingredient (API). This was accomplished through the use of a hydrophobic ion pairing approach. A series of AZD2811-containing nanoparticles with a variety of hydrophobic counterions including oleic acid, 1-hydroxy-2-naphthoic acid, cholic acid, deoxycholic acid, dioctylsulfosuccinic acid, and pamoic acid is described. The hydrophobicity of AZD2811 was increased through formation of ion pairs with these hydrophobic counterions, producing nanoparticles with exceptionally high drug loading-up to five fold higher encapsulation efficiency and drug loading compared to nanoparticles made without hydrophobic ion pairs. Furthermore, the rate at which the drug was released from the nanoparticles could be controlled by employing counterions with various hydrophobicities and structures, resulting in release half-lives ranging from about 2 to 120h using the same polymer, nanoparticle size, and nanoemulsion process. Process recipe variables affecting drug load and release rate were identified, including pH and molarity of quench buffer. Ion pair formation between AZD2811 and pamoic acid as a model counterion was investigated using solubility enhancement as well as nuclear magnetic resonance spectroscopy to demonstrate solution-state interactions. Further evidence for an ion pairing mechanism of controlled release was provided through the measurement of API and counterion release profiles using high-performance liquid chromatography, which had stoichiometric relationships. Finally, Raman spectra of an AZD2811-pamoate salt compared well with those of the formulated nanoparticles, while single components (AZD2811, pamoic acid) alone did not. A library of AZD2811 batches was created for analytical and preclinical characterization. Dramatically improved

  5. A Study on Improvement of Solubility of Rofecoxib and its effect on Permeation of Drug from Topical Formulations.

    Science.gov (United States)

    Kulkarni, Madhur; Nagarsenker, Mangal

    2008-01-01

    Rofecoxib, a practically insoluble cox-2 selective nonsteroidal antiinflammatory agent was subjected to improvement in solubility by preparing its binary mixtures with beta cyclodextrin using various methods such as physical mixing, co-grinding, kneading with aqueous methanol and co-evaporation from methanol-water mixture. Characterization of the resulting binary mixtures by differential scanning calorimetry and X-ray diffraction studies indicated partial amorphization of the drug in its binary mixtures. In vitro dissolution studies exhibited remarkable increase in rate and extent of dissolution of the drug from its complexes with beta -cyclodextrin. Pure rofecoxib as well as its co-ground binary mixture were formulated as aqueous gels for topical application. In vitro skin permeation of rofecoxib from formulation containing rofecoxib-cyclodextrin complex was significantly higher (p<0.05) at 1, 2, 12, 18 and 24 hr as compared to formulation containing pure rofecoxib. This could be attributed to better solubility of binary mixture in the aqueous gel vehicle leading to greater concentration gradient between the vehicle and skin and hence higher flux of the drug.

  6. How to stabilize cilazapril-containing solid dosage forms? The optimization of a final drug formulation

    Directory of Open Access Journals (Sweden)

    Katarzyna Regulska

    2017-03-01

    Full Text Available Cilazapril, a moisture-sensitive compound, is known to undergo rapid degradation which could be additionally facilitated by the presence of excipients that contain or absorb moisture. Hence we investigated the stability of cilazapril in two commercially-available dosage forms and in binary mixtures with the selected excipients used in the studied commercial formulations i.e.: hypromellose, lactose monohydrate, maize starch and talc in order to detect any possible, stability-affecting incompatibilities. Also the impact of the blister made of oriented polyamide/aluminum/polyvinyl chloride//aluminum on cilazapril-containing tablets was researched. A validated HPLC and HPLC-MS methods were used for analysis and the isothermal stress testing conditions were applied (temperature range 318–343 K, relative humidity 76.4% for tablets and temperature 333 K, relative humidity range 50.9–76.4% for binary mixtures. It was shown that the degradation of cilazapril in both, model mixtures and tablets follows the autocatalytic model kinetics and it is more rapid than that observed for pure substance, evidenced by higher degradation rate constants. The immediate packaging protects cilazapril in tablets from degradation only in case of the original drug while in its blistered generic counterpart a slight but statistically insignificant increase of cilazapril decay occurs when compared to bare tablets (p < 0.05. The degradation product of cilazapril in tablets and binary mixtures was identified as cilazaprilat. It was also observed that the increase of relative humidity or the presence of hypromellose, lactose and talc significantly impairs the stability of cilazapril in the aforementioned order. Only maize starch exhibited a positive effect on cilazapril stability (10.8% loss of cilazapril in binary mixture after 360 days of stressing compared to 35% loss of pure cilazapril in analogous test conditions probably thanks to its moisture-scavenging properties

  7. ATR-FTIR Based Pre and Post Formulation Compatibility Studies for the Design of Niosomal Drug Delivery System Containing Nonionic Amphiphiles and Chondroprotective Drug

    International Nuclear Information System (INIS)

    Khan, M.I.; Madni, A.; Ahmad, S.; Rehmanand, M.; Mahmood, M.A.; Khan, A.

    2015-01-01

    Pharmaceutical compatibility studies are considered as the most important and first screening stage during development of pharmaceutical drug product. Attenuated total reflectance/fourier transform infrared (ATR-FTIR) is one of the techniques currently available to pharmaceutical scientists for investigating the compatibilities between active drug and inactive pharmaceutical ingredients. The present study was designed to assess the interaction among different niosomes forming components i.e nonionic amphiphiles and chondroprotective/antiinflamatory drug Diacerein by ATR-FTIR method. Physical mixtures and niosomes were prepared by physical mixing and thin film hydration method, respectively. The individual niosomal components, physical mixtures as well as niosomal formulations were analyzed. The spectra of Diacerein showed characteristic peaks at 3300 cm/sup -1/(-COOH) and 760 cm/sup -1/(msubstituted benzene), Span 60 at 2916 cm/sup -1/(-OH), Span 80 at 1740 cm/sup -1/(5- membered ring), Span 85 at 1643 cm/sup -1/(ketone with 5-membered ring), Tween 20 at 1734 cm/sup 1/ (5-membered ring) and Tween 80 at 3488 cm/sup -1/(-OH). The characteristic peaks of Diacerein were present in niosomal formulations with slight shift at 3355-3379 cm/sup -1/(-COOH) and 760-770 cm/sup -1/(m-substituted benzene). This work suggested no significant interaction in characteristic peaks of Diacerein after combining with nonionic surfactants as physical mixtures and niosomal formulations which proposed potential for niosomes to encapsulate diacerein in their micro vicinity. (author)

  8. An Extrusion Spheronization Approach to Enable a High Drug Load Formulation of a Poorly Soluble Drug with a Low Melting Surfactant.

    Science.gov (United States)

    Tatavarti, Aditya; Kesisoglou, Filippos

    2015-11-01

    Vitamin E tocopherol polyethylene glycol succinate (TPGS) is a non-ionic surface active agent, known to enhance the bioavailability of lipophilic compounds via wettability, solubility, and in some cases permeability enhancement. MK-0536 is an anti-retroviral drug with poor wettability and solubility and a high dose. Based on pharmacokinetic studies in dogs and humans, use of vitamin E TPGS in oral solid formulations of MK-0536 provides desired PK characteristics. The use of vitamin E TPGS, however, in solid dosage forms is limited because of the processing challenges resulting from its waxy nature and low melting temperature (∼37°C). The current study, for the first time, demonstrates the use of an alternative low pressure extrusion and spheronization approach to enable high loadings of the poorly soluble, poorly compactable drug and relatively high levels of vitamin E TPGS. This approach not only aided in mitigating processing challenges arising from most high energy process steps such as milling, compression, and coating, but also enabled a higher drug load formulation that provided superior bioperformance relative to a conventional high shear wet granulated formulation. An encapsulated dosage form consisting of pellets prepared by extrusion spheronization with 75% (w/w) MK-0536 and 10% (w/w) vitamin E TPGS was developed. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. Lipid-based formulations for oral administration of poorly water-soluble drugs

    DEFF Research Database (Denmark)

    Mu, Huiling; Holm, René; Müllertz, Anette

    2013-01-01

    Lipid-based drug delivery systems have shown great potentials in oral delivery of poorly water-soluble drugs, primarily for lipophilic drugs, with several successfully marketed products. Pre-dissolving drugs in lipids, surfactants, or mixtures of lipids and surfactants omits the dissolving....../dissolution step, which is a potential rate limiting factor for oral absorption of poorly water-soluble drugs. Lipids not only vary in structures and physiochemical properties, but also in their digestibility and absorption pathway; therefore selection of lipid excipients and dosage form has a pronounced effect...

  10. Development of a novel cell-based assay system EPISSAY for screening epigenetic drugs and liposome formulated decitabine

    International Nuclear Information System (INIS)

    Lim, Sue Ping; Callen, David F; Kumar, Raman; Akkamsetty, Yamini; Wang, Wen; Ho, Kristen; Neilsen, Paul M; Walther, Diego J; Suetani, Rachel J; Prestidge, Clive

    2013-01-01

    Despite the potential of improving the delivery of epigenetic drugs, the subsequent assessment of changes in their epigenetic activity is largely dependent on the availability of a suitable and rapid screening bioassay. Here, we describe a cell-based assay system for screening gene reactivation. A cell-based assay system (EPISSAY) was designed based on a silenced triple-mutated bacterial nitroreductase TMnfsB fused with Red-Fluorescent Protein (RFP) expressed in the non-malignant human breast cell line MCF10A. EPISSAY was validated using the target gene TXNIP, which has previously been shown to respond to epigenetic drugs. The potency of a epigenetic drug model, decitabine, formulated with PEGylated liposomes was also validated using this assay system. Following treatment with DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors such as decitabine and vorinostat, increases in RFP expression were observed, indicating expression of RFP-TMnfsB. The EPISSAY system was then used to test the potency of decitabine, before and after PEGylated liposomal encapsulation. We observed a 50% higher potency of decitabine when encapsulated in PEGylated liposomes, which is likely to be due to its protection from rapid degradation. The EPISSAY bioassay system provides a novel and rapid system to compare the efficiencies of existing and newly formulated drugs that reactivate gene expression

  11. Development of novel encapsulated formulations using albumin-chitosan as a polymer matrix for ocular drug delivery

    Science.gov (United States)

    Addo, Richard Tettey

    Designing formulations for ophthalmic drug delivery is one of the most challenging endeavors facing the pharmaceutical scientist due to the unique anatomy, physiology, and biochemistry of the eye. Current treatment protocols for administration of drugs in eye diseases are primarily solution formulations, gels or ointments. However, these modes of delivery have several drawbacks such as short duration of exposure, need for repeated administrations and non-specific toxicity. We hypothesize that development of ocular drugs in microparticles will overcome the deficiencies of the current modalities of treatment. We based the hypothesis on the preliminary studies conducted with encapsulated tetracaine, an anesthetic used for surgical purposes and atropine, a medication used for several ophthalmic indications including mydriatic and cycloplegic effects. However, atropine is well absorbed into the systemic circulation and has been reported to exert severe systemic side effects after ocular administration (Hoefnagel D. 1961, Morton H. G. 1939 and Lang J. C. 1995) and may lead to serious side effects including death in extreme cases with pediatric use. Based on these observations, the focus of this dissertation is to formulate microparticulate drug carrier for treatment of various conditions of the eye. Purpose: To prepare, characterize, study the in vitro and in vivo interaction of albumin-chitosan microparticles (BSA-CSN MS), a novel particulate drug carrier for ocular drug delivery. Method: Microparticle formulations were prepared by method of spray drying. The percentage drug loading and efficiency were assessed using USP (I) dissolution apparatus. Using Malvern Zeta-Sizer, we determined size and surface charge of the fabrication. Surface morphology of the microparticles was examined using Scanning Electron Microscopy. Microparticles were characterized in terms of thermal properties using Differential Scanning Calorimetry. Human corneal epithelial cells (HCET-1) were

  12. A novel experimental design method to optimize hydrophilic matrix formulations with drug release profiles and mechanical properties.

    Science.gov (United States)

    Choi, Du Hyung; Lim, Jun Yeul; Shin, Sangmun; Choi, Won Jun; Jeong, Seong Hoon; Lee, Sangkil

    2014-10-01

    To investigate the effects of hydrophilic polymers on the matrix system, an experimental design method was developed to integrate response surface methodology and the time series modeling. Moreover, the relationships among polymers on the matrix system were studied with the evaluation of physical properties including water uptake, mass loss, diffusion, and gelling index. A mixture simplex lattice design was proposed while considering eight input control factors: Polyethylene glycol 6000 (x1 ), polyethylene oxide (PEO) N-10 (x2 ), PEO 301 (x3 ), PEO coagulant (x4 ), PEO 303 (x5 ), hydroxypropyl methylcellulose (HPMC) 100SR (x6 ), HPMC 4000SR (x7 ), and HPMC 10(5) SR (x8 ). With the modeling, optimal formulations were obtained depending on the four types of targets. The optimal formulations showed the four significant factors (x1 , x2 , x3 , and x8 ) and other four input factors (x4 , x5 , x6 , and x7 ) were not significant based on drug release profiles. Moreover, the optimization results were analyzed with estimated values, targets values, absolute biases, and relative biases based on observed times for the drug release rates with four different targets. The result showed that optimal solutions and target values had consistent patterns with small biases. On the basis of the physical properties of the optimal solutions, the type and ratio of the hydrophilic polymer and the relationships between polymers significantly influenced the physical properties of the system and drug release. This experimental design method is very useful in formulating a matrix system with optimal drug release. Moreover, it can distinctly confirm the relationships between excipients and the effects on the system with extensive and intensive evaluations. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Enhancement of the bioavailability of an antihypertensive drug by transdermal protransfersomal system: formulation and in vivo study.

    Science.gov (United States)

    Morsi, Nadia M; Aboelwafa, Ahmed A; Dawoud, Marwa H S

    2018-06-01

    Timolol Maleate (TiM), a nonselective β-adrenergic blocker, is a potent highly effective agent for management of hypertension. The drug suffers from poor oral bioavailability (50%) due to its first pass effect and a short elimination half-life of 4 h; resulting in its frequent administration. Transdermal formulation may circumvent these problems in the form of protransfersomes. The aim of this study is to develop and optimize transdermal protransfersomal system of Timolol Maleate by film deposition on carrier method where protransfersomes were converted to transfersomes upon skin hydration following transdermal application under occlusive conditions. Two 2 3 full factorial designs were employed to investigate the influence of three formulation variables which were; phosphatidyl choline: surfactant molar ratio, carrier: mixture and the type of SAA each on particle size, drug entrapment efficiency and release rate. The optimized formulation was evaluated regarding permeation through hairless rat skin and compared with oral administration of aqueous solution on male Wistar rats. Optimized protransfersomal system had excellent permeation rate through shaved rat skin (780.69 μg/cm 2 /h) and showed six times increase in relative bioavailability with prolonged plasma profile up to 72 h. A potential protransfresomal transdermal system was successfully developed and factorial design was found to be a smart tool in its optimization.

  14. Melt dispersion granules: formulation and evaluation to improve oral delivery of poorly soluble drugs - a case study with valsartan.

    Science.gov (United States)

    Chella, Naveen; Tadikonda, Ramarao

    2015-06-01

    Solid dispersion (SD) technique is a promising strategy to improve the solubility and dissolution of BCS class II drugs. However, only few products are marketed till today based on SD technology due to poor flow properties and stability. The present work was intended to solve these problems by using combination approach, melt dispersion and surface adsorption technologies. The main aim of the present work is to improve the absorption in the stomach (at lower pH) where the absorption window exists for the drug by improving the dissolution, resulting in the enhancement of oral bioavailability of poorly soluble, weakly acidic drug with pH dependant solubility, i.e. valsartan. Melt dispersion granules were prepared in different ratios using different carriers (Gelucire 50/13, PEG 8000 and Pluronic F-68) and lactose as an adsorbent. Similarly, physical mixtures were also prepared at corresponding ratios. The prepared dispersion granules and physical mixtures were characterized by FTIR, DSC and in vitro dissolution studies. DSC studies revealed reduction in the crystallinity with a possibility of presence of amorphous character of drug in the dispersion granules. From dissolution studies, valsartan Gelucire dispersion (GSD4; 1:4 ratio) showed complete drug release in 30 min against the plain drug which showed only 11.31% of drug release in 30 min. Pharmacokinetic studies of optimized formulation in male Wistar rats showed 2.65-fold higher bioavailability and 1.47-fold higher Cmax compared to pure drug. The melt dispersion technology has the potential to improve dissolution and the bioavailability of BCS class II drugs.

  15. The dynamic gastric environment and its impact on drug and formulation behaviour.

    Science.gov (United States)

    Van Den Abeele, Jens; Rubbens, Jari; Brouwers, Joachim; Augustijns, Patrick

    2017-01-01

    Before being absorbed in the small intestine and/or colon, orally administered drugs inevitably need to pass through the stomach. Hence, it seems reasonable that the residence of a dosage form in the gastric environment, however brief it may be, may influence drug disposition further down the gastrointestinal tract and may potentially impact systemic exposure to a drug of interest. However, research efforts in the past mainly focused on drug disposition at the level of the intestine, i.e. the main site of absorption, hereby disregarding or oversimplifying the stomach's contribution to gastrointestinal drug disposition. In the first part of this review, the complexity of the stomach with regard to anatomy, physiology and gastric fluid composition is emphasized. Between-population differences in gastric functioning and physicochemical characteristics of gastric fluids are discussed. The second part of this review focuses on several of the processes to which a dosage form can be exposed during its passage through the stomach and the implications for gastrointestinal drug behaviour and systemic drug disposition. Finally, the influence of real-life dosing conditions on drug disposition is discussed in the context of the stomach. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Gd3+ doped Mn-Zn soft ferrite nanoparticles: Superparamagnetism and its correlation with other physical properties

    Science.gov (United States)

    Thakur, Prashant; Sharma, Rohit; Sharma, Vineet; Barman, P. B.; Kumar, Manoj; Barman, Dipto; Katyal, S. C.; Sharma, Pankaj

    2017-06-01

    Superparamagnetic nanoparticles are very important in biomedicine due to their various applications like drug delivery, gene delivery in the body and also used for hyperthermia. In the present work, superparamagnetic nanoparticles of Mn0.5Zn0.5GdxFe2-xO4 (x = 0, 0.025, 0.050, 0.075, 0.1) ferrites have been prepared by co-precipitation method. Thorough characterizations (XRD, FTIR, FE-SEM, EDS, VSM and fluorescence spectroscopy) have proved the formation of cubical spinel superparamagnetic nanoparticles of soft ferrites. A cation distribution has been proposed for the determination of various important theoretical parameters for these samples. With the addition of Gd3+ nanoparticles have shown the superparamagnetism at room temperature confirmed by VSM analysis. Photoluminescence (PL) spectra shows a blue shift (for x = 0.025, 0.075) which may be due to quantum confinement.

  17. PEG-lipid micelles as drug carriers: physiochemical attributes, formulation principles and biological implication.

    Science.gov (United States)

    Gill, Kanwaldeep K; Kaddoumi, Amal; Nazzal, Sami

    2015-04-01

    PEG-lipid micelles, primarily conjugates of polyethylene glycol (PEG) and distearyl phosphatidylethanolamine (DSPE) or PEG-DSPE, have emerged as promising drug-delivery carriers to address the shortcomings associated with new molecular entities with suboptimal biopharmaceutical attributes. The flexibility in PEG-DSPE design coupled with the simplicity of physical drug entrapment have distinguished PEG-lipid micelles as versatile and effective drug carriers for cancer therapy. They were shown to overcome several limitations of poorly soluble drugs such as non-specific biodistribution and targeting, lack of water solubility and poor oral bioavailability. Therefore, considerable efforts have been made to exploit the full potential of these delivery systems; to entrap poorly soluble drugs and target pathological sites both passively through the enhanced permeability and retention (EPR) effect and actively by linking the terminal PEG groups with targeting ligands, which were shown to increase delivery efficiency and tissue specificity. This article reviews the current state of PEG-lipid micelles as delivery carriers for poorly soluble drugs, their biological implications and recent developments in exploring their active targeting potential. In addition, this review sheds light on the physical properties of PEG-lipid micelles and their relevance to the inherent advantages and applications of PEG-lipid micelles for drug delivery.

  18. Development of Nano-Liposomal Formulations of Epidermal Growth Factor Receptor Inhibitors and their Pharmacological Interactions on Drug-Sensitive and Drug-Resistant Cancer Cell Lines

    Science.gov (United States)

    Trummer, Brian J.

    A rapidly expanding understanding of molecular derangements in cancer cell function has led to the development of selective, targeted chemotherapeutic agents. Growth factor signal transduction networks are frequently activated in an aberrant fashion, particularly through the activity of receptor tyrosine kinases (RTK). This has spurred an intensive effort to develop receptor tyrosine kinase inhibitors (RTKI) that are targeted to specific receptors, or receptor subfamilies. Chapter 1 reviews the pharmacology, preclinical, and clinical aspects of RTKIs that target the epidermal growth factor receptor (EGFR). EGFR inhibitors demonstrate significant success at inhibiting phosphorylation-based signaling pathways that promote cancer cell proliferation. Additionally RTKIs have physicochemical and structural characteristics that enable them to function as inhibitors of multi-drug resistance transport proteins. Thus EGFR inhibitors and other RTKIs have both on-target and off-target activities that could be beneficial in cancer therapy. However, these agents exert a number of side effects, some of which arise from their hydrophobic nature and large in vivo volume of distribution. Side effects of the EGFR inhibitor gefitinib include skin rash, severe myelotoxicity when combined with certain chemotherapeutic agents, and impairment of the blood brain barrier to xenobiotics. Weighing the preclinical and clinical observations with the EGFR inhibitors, we developed the primary overall hypothesis of this research: that drug-carrier formulations of RTKIs such as the EGFR inhibitors could be developed based on nanoparticulate liposomal carriers. Theoretically, this carrier strategy would ameliorate toxicity and improve the biodistribution and tumor selectivity of these agents. We hypothesized specifically that liposomal formulations could shift the biodistribution of EGFR inhibitors such as gefitinib away from skin, bone marrow, and the blood brain barrier, and toward solid tumors

  19. Development of ELISA-based methods to measure the anti-malarial drug chloroquine in plasma and in pharmaceutical formulations

    DEFF Research Database (Denmark)

    Khalil, Insaf F; Alifrangis, Michael; Recke, Camilla

    2011-01-01

    In Central and South America and Eastern and Southern Africa, Plasmodium vivax infections accounts for 71-81% and 5% of malaria cases, respectively. In these areas, chloroquine (CQ) remains the treatment of choice for P. vivax malaria. In addition, CQ has recently proven to be an effective HIV-1...... therapeutic agent. There is a dire need to continue monitoring quality of CQ as there is a major influx of substandard and fake formulations into malaria-endemic countries. The use of fake/substandard drugs will result in sub-therapeutic levels endangering the patient and possibly select for parasite...

  20. Stabilization challenges and formulation strategies associated with oral biologic drug delivery systems.

    Science.gov (United States)

    Truong-Le, Vu; Lovalenti, Phillip M; Abdul-Fattah, Ahmad M

    2015-10-01

    Delivery of proteins to mucosal tissues of GI tract typically utilize formulations which protect against proteolysis and target the mucosal tissues. Using case studies from literature and the authors' own work, the in-process stability and solid state storage stability of biopharmaceuticals formulated in delivery systems designed for oral delivery to the GI tract will be reviewed. Among the range of delivery systems, biodegradable polymer systems for protection and controlled release of proteins have been the most studied; hence these systems will be covered in greater depth. These delivery systems include polymeric biodegradable microspheres or nanospheres that contain proteins or vaccines, which are designed to reduce the number of administrations/inoculations and the total protein dose required to achieve the desired biological effect. Specifically, this review will include a landscape survey of the systems that have been studied, the manufacturing processes involved, stability through the manufacturing process, key pharmaceutical formulation parameters that impact stability of the encased proteins, and storage stability of the encapsulated proteins in these delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Superparamagnetic photocurable nanocomposite for the fabrication of microcantilevers

    DEFF Research Database (Denmark)

    Suter, M; Ergeneman, O; Zürcher, J

    2011-01-01

    We present a photocurable polymer composite with superparamagnetic characteristics for the fabrication of microcantilevers. Uniform distribution and low particle agglomeration (......We present a photocurable polymer composite with superparamagnetic characteristics for the fabrication of microcantilevers. Uniform distribution and low particle agglomeration (...

  2. A new in vitro lipid digestion - in vivo absorption model to evaluate the mechanisms of drug absorption from lipid-based formulations.

    Science.gov (United States)

    Crum, Matthew F; Trevaskis, Natalie L; Williams, Hywel D; Pouton, Colin W; Porter, Christopher J H

    2016-04-01

    In vitro lipid digestion models are commonly used to screen lipid-based formulations (LBF), but in vitro-in vivo correlations are in some cases unsuccessful. Here we enhance the scope of the lipid digestion test by incorporating an absorption 'sink' into the experimental model. An in vitro model of lipid digestion was coupled directly to a single pass in situ intestinal perfusion experiment in an anaesthetised rat. The model allowed simultaneous real-time analysis of the digestion and absorption of LBFs of fenofibrate and was employed to evaluate the influence of formulation digestion, supersaturation and precipitation on drug absorption. Formulations containing higher quantities of co-solvent and surfactant resulted in higher supersaturation and more rapid drug precipitation in vitro when compared to those containing higher quantities of lipid. In contrast, when the same formulations were examined using the coupled in vitro lipid digestion - in vivo absorption model, drug flux into the mesenteric vein was similar regardless of in vitro formulation performance. For some drugs, simple in vitro lipid digestion models may underestimate the potential for absorption from LBFs. Consistent with recent in vivo studies, drug absorption for rapidly absorbed drugs such as fenofibrate may occur even when drug precipitation is apparent during in vitro digestion.

  3. Characterization of new functionalized calcium carbonate-polycaprolactone composite material for application in geometry-constrained drug release formulation development.

    Science.gov (United States)

    Wagner-Hattler, Leonie; Schoelkopf, Joachim; Huwyler, Jörg; Puchkov, Maxim

    2017-10-01

    A new mineral-polymer composite (FCC-PCL) performance was assessed to produce complex geometries to aid in development of controlled release tablet formulations. The mechanical characteristics of a developed material such as compactibility, compressibility and elastoplastic deformation were measured. The results and comparative analysis versus other common excipients suggest efficient formation of a complex, stable and impermeable geometries for constrained drug release modifications under compression. The performance of the proposed composite material has been tested by compacting it into a geometrically altered tablet (Tablet-In-Cup, TIC) and the drug release was compared to commercially available product. The TIC device exhibited a uniform surface, showed high physical stability, and showed absence of friability. FCC-PCL composite had good binding properties and good compactibility. It was possible to reveal an enhanced plasticity characteristic of a new material which was not present in the individual components. The presented FCC-PCL composite mixture has the potential to become a successful tool to formulate controlled-release dosage solid forms.

  4. Toward the establishment of standardized in vitro tests for lipid-based formulations. 2. The effect of bile salt concentration and drug loading on the performance of type I, II, IIIA, IIIB, and IV formulations during in vitro digestion.

    Science.gov (United States)

    Williams, Hywel D; Anby, Mette U; Sassene, Philip; Kleberg, Karen; Bakala-N'Goma, Jean-Claude; Calderone, Marilyn; Jannin, Vincent; Igonin, Annabel; Partheil, Anette; Marchaud, Delphine; Jule, Eduardo; Vertommen, Jan; Maio, Mario; Blundell, Ross; Benameur, Hassan; Carrière, Frédéric; Müllertz, Anette; Pouton, Colin W; Porter, Christopher J H

    2012-11-05

    The LFCS Consortium was established to develop standardized in vitro tests for lipid-based formulations (LBFs) and to examine the utility of these tests to probe the fundamental mechanisms that underlie LBF performance. In this publication, the impact of bile salt (sodium taurodeoxycholate, NaTDC) concentration and drug loading on the ability of a range of representative LBFs to generate and sustain drug solubilization and supersaturation during in vitro digestion testing has been explored and a common driver of the potential for drug precipitation identified. Danazol was used as a model poorly water-soluble drug throughout. In general, increasing NaTDC concentrations increased the digestion of the most lipophilic LBFs and promoted lipid (and drug) trafficking from poorly dispersed oil phases to the aqueous colloidal phase (AP(DIGEST)). High NaTDC concentrations showed some capacity to reduce drug precipitation, although, at NaTDC concentrations ≥3 mM, NaTDC effects on either digestion or drug solubilization were modest. In contrast, increasing drug load had a marked impact on drug solubilization. For LBFs containing long-chain lipids, drug precipitation was limited even at drug loads approaching saturation in the formulation and concentrations of solubilized drug in AP(DIGEST) increased with increased drug load. For LBFs containing medium-chain lipids, however, significant precipitation was evident, especially at higher drug loads. Across all formulations a remarkably consistent trend emerged such that the likelihood of precipitation was almost entirely dependent on the maximum supersaturation ratio (SR(M)) attained on initiation of digestion. SR(M) defines the supersaturation "pressure" in the system and is calculated from the maximum attainable concentration in the AP(DIGEST) (assuming zero precipitation), divided by the solubility of the drug in the colloidal phases formed post digestion. For LBFs where phase separation of oil phases did not occur, a

  5. Synergistic Interplay of Medicinal Chemistry and Formulation Strategies in Nanotechnology - From Drug Discovery to Nanocarrier Design and Development.

    Science.gov (United States)

    Sunoqrot, Suhair; Hamed, Rania; Abdel-Halim, Heba; Tarawneh, Ola

    2017-01-01

    Over the last few decades, nanotechnology has given rise to promising new therapies and diagnostic tools for a wide range of diseases, especially cancer. The unique properties of nanocarriers such as liposomes, polymeric nanoparticles, micelles, and bioconjugates have mainly been exploited to enhance drug solubility, dissolution, and bioavailability. The most important advantage offered by nanotechnology is the ability to specifically target organs, tissues, and individual cells, which ultimately reduces the systemic side effects and improves the therapeutic index of drug molecules. The contribution of medicinal chemistry to nanotechnology is evident in the abundance of new active molecules that are being discovered but are faced with tremendous delivery challenges by conventional formulation strategies. Additionally, medicinal chemistry plays a crucial role in all the steps involved in the preparation of nanocarriers, where structure-activity relationships of the drug molecule as well as the nanocarrier are harnessed to enhance the design, efficacy, and safety of nanoformulations. The aim of this review is to provide an overview of the contributions of medicinal chemistry to nanotechnology, from supplying drug candidates and inspiring high-throughput nanocarrier design strategies, to structure-activity relationship elucidation and construction of computational models for better understanding of nanocarrier physicochemical properties and biological behavior. These two fields are undoubtedly interconnected and we will continue to see the fruits of that communion for years to come. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Influence of different test parameters on in vitro drug release from topical diclofenac formulations in a vertical diffusion cell setup.

    Science.gov (United States)

    Klein, S

    2013-07-01

    In the past decades, the vertical diffusion cell has emerged as a useful device for testing drug release of topical dosage forms. However, to date neither a general USP method nor formulation-related monographs have been published in international pharmacopoeia. The purpose of the present work was to examine the influence of different test parameters in a vertical diffusion cell setup on in vitro drug release from semi-solid preparations for cutaneous application. Diclofenac was selected as the model compound. Release experiments were performed in a 7 ml Microett vertical diffusion cell system. Various test parameters, including the media composition and pH, degassing, membrane material and pore size, stirring speed and stirrer type, were varied. Results obtained with different test parameter settings clearly indicate that both drug properties and instrumental details can have a huge impact on the outcome of in vitro diffusion/drug release studies with the vertical diffusion cell. Thus, the selection of adequate test parameters is crucial for the success of the release experiments and, as shown in the present study, optimal test parameters/conditions need to be established and validated on a case by case study.

  7. Time-oriented experimental design method to optimize hydrophilic matrix formulations with gelation kinetics and drug release profiles.

    Science.gov (United States)

    Shin, Sangmun; Choi, Du Hyung; Truong, Nguyen Khoa Viet; Kim, Nam Ah; Chu, Kyung Rok; Jeong, Seong Hoon

    2011-04-04

    A new experimental design methodology was developed by integrating the response surface methodology and the time series modeling. The major purposes were to identify significant factors in determining swelling and release rate from matrix tablets and their relative factor levels for optimizing the experimental responses. Properties of tablet swelling and drug release were assessed with ten factors and two default factors, a hydrophilic model drug (terazosin) and magnesium stearate, and compared with target values. The selected input control factors were arranged in a mixture simplex lattice design with 21 experimental runs. The obtained optimal settings for gelation were PEO, LH-11, Syloid, and Pharmacoat with weight ratios of 215.33 (88.50%), 5.68 (2.33%), 19.27 (7.92%), and 3.04 (1.25%), respectively. The optimal settings for drug release were PEO and citric acid with weight ratios of 191.99 (78.91%) and 51.32 (21.09%), respectively. Based on the results of matrix swelling and drug release, the optimal solutions, target values, and validation experiment results over time were similar and showed consistent patterns with very small biases. The experimental design methodology could be a very promising experimental design method to obtain maximum information with limited time and resources. It could also be very useful in formulation studies by providing a systematic and reliable screening method to characterize significant factors in the sustained release matrix tablet. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Development of a screening method for co-amorphous formulations of drugs and amino acids

    DEFF Research Database (Denmark)

    Kasten, Georgia; Grohganz, Holger; Rades, Thomas

    2016-01-01

    Using amino acids (AA) as low molecular weight excipients in the preparation of co-amorphous blends with the aim to stabilize the drug in the amorphous form have been discussed in a range of studies. However, there is currently no theoretical consensus behind which AA would be a suitable co...

  9. Transdermal iontophoresis of dopaminergic (pro) drugs : from formulation to in vivo application

    NARCIS (Netherlands)

    Ackaert, Oliver

    2010-01-01

    Parkinson’s disease (PD) is an age-related neurodegenerative disorder. Pharmacotherapy is the first line symptomatic treatment of this neurological disease. Currently Levodopa (L-DOPA) is still considered the drug of first choice, but its possible neurotoxicity and the induction of movement

  10. Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy.

    Science.gov (United States)

    Piktel, Ewelina; Niemirowicz, Katarzyna; Wątek, Marzena; Wollny, Tomasz; Deptuła, Piotr; Bucki, Robert

    2016-05-26

    The rapid development of nanotechnology provides alternative approaches to overcome several limitations of conventional anti-cancer therapy. Drug targeting using functionalized nanoparticles to advance their transport to the dedicated site, became a new standard in novel anti-cancer methods. In effect, the employment of nanoparticles during design of antineoplastic drugs helps to improve pharmacokinetic properties, with subsequent development of high specific, non-toxic and biocompatible anti-cancer agents. However, the physicochemical and biological diversity of nanomaterials and a broad spectrum of unique features influencing their biological action requires continuous research to assess their activity. Among numerous nanosystems designed to eradicate cancer cells, only a limited number of them entered the clinical trials. It is anticipated that progress in development of nanotechnology-based anti-cancer materials will provide modern, individualized anti-cancer therapies assuring decrease in morbidity and mortality from cancer diseases. In this review we discussed the implication of nanomaterials in design of new drugs for effective antineoplastic therapy and describe a variety of mechanisms and challenges for selective tumor targeting. We emphasized the recent advantages in the field of nanotechnology-based strategies to fight cancer and discussed their part in effective anti-cancer therapy and successful drug delivery.

  11. Formulation and Evaluation of Two-Pulse Drug Delivery System of ...

    African Journals Online (AJOL)

    Purpose: To develop a pH-controlled two-pulse drug delivery system of amoxicillin in order to overcome ... delivery have lately been applied in developing a .... Note: Each tablet contained 2 mg each of magnesium stearate and colloidal silicon dioxide; total weight of each ..... and Manufacture of Medicines, 3rd edn, Elsevier,.

  12. Formulation and evaluation of two-pulse drug delivery system of ...

    African Journals Online (AJOL)

    Purpose: To develop a pH-controlled two-pulse drug delivery system of amoxicillin in order to overcome the snag of biological tolerance and to improve bactericidal activity. Methods: The core tablets were compressed and coated with hydroxylpropyl methylcellulose (HPMC) of different viscosities with spray-dried lactose ...

  13. Mixing monoclonal antibody formulations using bottom-mounted mixers: impact of mechanism and design on drug product quality.

    Science.gov (United States)

    Gikanga, Benson; Chen, Yufei; Stauch, Oliver B; Maa, Yuh-Fun

    2015-01-01

    Using bottom-mounted mixers, particularly those that are magnetically driven, is becoming increasingly common during the mixing process in pharmaceutical and biotechnology manufacturing because of their associated low risk of contamination, ease of use, and ability to accommodate low minimum mixing volumes. Despite these benefits, the impact of bottom-mounted mixers on biologic drug product is not yet fully understood and is scarcely reported. This study evaluated four bottom-mounted mixers to assess their impact on monoclonal antibody formulations. Changes in product quality (size variants, particles, and turbidity) and impact on process performance (sterile filtration) were evaluated after mixing. The results suggested that mixers that are designed to function with no contact between the impeller and the drive unit are the most favorable and gentle to monoclonal antibody molecules. Designs with contact or a narrow clearance tended to shear and grind the protein and resulted in high particle count in the liquid, which would subsequently foul a filter membrane during sterile filtration using a 0.22 μm pore size filter. Despite particle formation, increases in turbidity of the protein solution and protein aggregation/fragmentation were not detected. Further particle analysis indicated particles in the range of 0.2-2 μm are responsible for filter fouling. A small-scale screening model was developed using two types of magnetic stir bars mimicking the presence or absence of contact between the impeller and drive unit in the bottom-mounted mixers. The model is capable of differentiating the sensitivity of monoclonal antibody formulations to bottom-mounted mixers with a small sample size. This study fills an important gap in understanding a critical bioprocess unit operation. Mixing is an important unit operation in drug product manufacturing for compounding (dilution, pooling, homogenization, etc.). The current trend in adopting disposable bottom-mounted mixers has

  14. Ethanol-drug absorption interaction: potential for a significant effect on the plasma pharmacokinetics of ethanol vulnerable formulations.

    Science.gov (United States)

    Lennernäs, Hans

    2009-01-01

    Generally, gastric emptying of a drug to the small intestine is controlled by gastric motor activity and is the main factor affecting the onset of absorption. Accordingly, the emptying rate from the stomach is mainly affected by the digestive state, the properties of the pharmaceutical formulation and the effect of drugs, posture and circadian rhythm. Variability in the gastric emptying of drugs is reflected in variability in the absorption rate and the shape of the plasma pharmacokinetic profile. When ethanol interacts with an oral controlled release product, such that the mechanism controlling drug release is impaired, the delivery of the dissolved dose into the small intestine and the consequent absorption may result in dangerously high plasma concentrations. For example, the maximal plasma concentration of hydromorphone has individually been shown to be increased as much as 16 times through in vivo testing as a result of this specific pharmacokinetic ethanol-drug formulation interaction. Thus, a pharmacokinetic ethanol-drug interaction is a very serious safety concern when substantially the entire dose from a controlled release product is rapidly emptied into the small intestine (dose dumping), having been largely dissolved in a strong alcoholic beverage in the stomach during a sufficient lag-time in gastric emptying. Based on the literature, a two hour time frame for screening the in vitro dissolution profile of a controlled release product in ethanol concentrations of up to 40% is strongly supported and may be considered as the absolute minimum standard. It is also evident that the dilution, absorption and metabolism of ethanol in the stomach are processes with a minor effect on the local ethanol concentration and that ethanol exposure will be highly dependent on the volume and ethanol concentration of the fluid ingested, together with the rate of intake and gastric emptying. When and in which patients a clinically significant dose dumping will happen is

  15. Tissue Plasminogen Activator Binding to Superparamagnetic Iron Oxide Nanoparticle—Covalent Versus Adsorptive Approach

    Science.gov (United States)

    Friedrich, Ralf P.; Zaloga, Jan; Schreiber, Eveline; Tóth, Ildikó Y.; Tombácz, Etelka; Lyer, Stefan; Alexiou, Christoph

    2016-06-01

    Functionalized superparamagnetic iron oxide nanoparticles are frequently used to develop vehicles for drug delivery, hyperthermia, and photodynamic therapy and as tools used for magnetic separation and purification of proteins or for biomolecular imaging. Depending on the application, there are various possible covalent and non-covalent approaches for the functionalization of particles, each of them shows different advantages and disadvantages for drug release and activity at the desired location.

  16. [Effect of concomitant use of dental drug on the properties of recombinant human basic fibroblast growth factor formulation for periodontal disease].

    Science.gov (United States)

    Sato, Yasuhiko; Oba, Takuma; Danjo, Kazumi

    2013-01-01

    We have discussed the essential property for periodontal disease medication using protein, such as recombinant human basic fibroblast growth factor (rhbFGF). In our previous study, the criteria of thickener for the medication, viscosity, flowability etc., were set. The aim of this study was to evaluate the physical and chemical effect of concomitant use of general dental drug or device on thickener properties for the clinical use of viscous rhbFGF formulation. Viscous formulation was prepared with six cellulose derivatives, two types hydroxy propyl cellulose (HPC), three types hydroxy ethyl cellulose (HEC) and methyl cellulose (MC). Antibiotic ointment, local anesthetic, bone graft substitute, agent for gargle and mouthwashes, were chosen as general dental drug and device. These drugs and device were mixed with the viscous formulations and the change of viscosity and flowability, the remaining ratio of rhbFGF were evaluated. When the various thickener solutions were mixed with the liquid drugs, viscosity and flowability did not changed much. However, in the case of MC solution, viscous property declined greatly when MC solution was mixed with cationic surfactant for gargle. The flowabilities of thickener solutions were declined with insoluble bone graft. The stabilities of rhbFGF in thickener solutions were no problem for 24 hours even in the case of mixing with dental drug or device. Our findings suggested that the viscous rhbFGF formulations prepared in this research were not substantially affected by the concomitant use of dental drug or device, especially the formulation with HPC or HEC was useful.

  17. Pharmaceutical characterization of novel tenofovir liposomal formulations for enhanced oral drug delivery: in vitro pharmaceutics and Caco-2 permeability investigations

    Directory of Open Access Journals (Sweden)

    Spinks CB

    2017-02-01

    Full Text Available Crystal B Spinks,1 Ahmed S Zidan,2,3 Mansoor A Khan,4 Muhammad J Habib,1 Patrick J Faustino2 1Department of Pharmaceutical Sciences, School of Pharmacy, Howard University, Washington, DC, 2Division of Product Quality Research, Office of Pharmaceutical Quality, Food and Drug Administration, Silver Spring, MD, USA; 3Faculty of Pharmacy, Zagazig University, Zagazig, Egypt; 4Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX, USA Abstract: Tenofovir, currently marketed as the prodrug tenofovir disoproxil fumarate, is used clinically to treat patients with HIV/AIDS. The oral bioavailability of tenofovir is relatively low, limiting its clinical effectiveness. Encapsulation of tenofovir within modified long-circulating liposomes would deliver this hydrophilic anti-HIV drug to the reticuloendothelial system for better therapeutic efficacy. The objectives of the current study were to prepare and pharmaceutically characterize model liposomal tenofovir formulations in an attempt to improve their bioavailability. The entrapment process was performed using film hydration method, and the formulations were characterized in terms of encapsulation efficiency and Caco-2 permeability. An efficient reverse-phase high-performance liquid chromatography method was developed and validated for tenofovir quantitation in both in vitro liposomal formulations and Caco-2 permeability samples. Separation was achieved isocratically on a Waters Symmetry C8 column using 10 mM Na2PO4/acetonitrile pH 7.4 (95:5 v/v. The flow rate was 1 mL/min with a 12 min elution time. Injection volume was 10 µL with ultraviolet detection at 270 nm. The method was validated according to United States Pharmacopeial Convention category I requirements. The obtained result showed that tenofovir encapsulation within the prepared liposomes was dependent on the employed amount of the positive charge-imparting agent. The obtained results indicated that

  18. Superparamagnetic relaxation of weakly interacting particles

    DEFF Research Database (Denmark)

    Mørup, Steen; Tronc, Elisabeth

    1994-01-01

    The influence of particle interactions on the superparamagnetic relaxation time has been studied by Mossbauer spectroscopy in samples of maghemite (gamma-Fe2O3) particles with different particle sizes and particle separations. It is found that the relaxation time decreases with decreasing particl...

  19. Superparamagnetic relaxation in alpha-Fe particles

    DEFF Research Database (Denmark)

    Bødker, Franz; Mørup, Steen; Pedersen, Michael Stanley

    1998-01-01

    The superparamagnetic relaxation time of carbon-supported alpha-Fe particles with an average size of 3.0 Mm has been studied over a large temperature range by the use of Mossbauer spectroscopy combined with AC and DC magnetization measurements. It is found that the relaxation time varies...

  20. Nanomedicine formulations for the delivery of antiviral drugs: a promising solution for the treatment of viral infections.

    Science.gov (United States)

    Lembo, David; Donalisio, Manuela; Civra, Andrea; Argenziano, Monica; Cavalli, Roberta

    2018-01-01

    Viral infections represent a public health problem and one of the leading causes of global mortality. Nanomedicine strategies can be considered a powerful tool to enhance the effectiveness of antiviral drugs, often associated with solubility and bioavailability issues. Consequently, high doses and frequent administrations are required, resulting in adverse side effects. To overcome these limitations, various nanomedicine platforms have been designed. Areas covered: This review focuses on the state of the art of organic-based nanoparticles for the delivery of approved antivirals. A brief description of the main characteristics of nanocarriers is followed by an overview of the most promising research addressing the treatment of most important viral infections. Expert opinion: The activity of antiviral drugs could be improved with nanomedicine formulations. Indeed, nanoparticles can affect the fate of the encapsulated drugs, allowing controlled release kinetics, enhanced bioavailability, modified pharmacokinetics, and reduced side effects. In addition, the physicochemical properties of nanocarriers can enable their capability to target specific sites and to interact with virus structures. In this regard, nanomedicines can be considered an opportunity to enhance the therapeutic index of antivirals. Efficacy, safety, and manufacturing issues need to be carefully assessed to bring this promising approach to the clinic.

  1. Formulation and evaluation of gastroretentive microballoons containing baclofen for a floating oral controlled drug delivery system.

    Science.gov (United States)

    Dube, T S; Ranpise, N S; Ranade, A N

    2014-01-01

    The objective of the present study was to fabricate and evaluate a multiparticulate oral gastroretentive dosage form of baclofen characterized by a central large cavity (hollow core) promoting unmitigated floatation with practical applications to alleviate the signs and symptoms of spasticity and muscular rigidity. Solvent diffusion and evaporation procedure were applied to prepare floating microspheres with a central large cavity using various combinations of ethylcellulose (release retardant) and HPMC K4M (release modifier) dissolved in a mixture of dichloromethane and methanol (2:1). The obtained microspheres (700-1000 µm) exhibit excellent floating ability (86 ± 2.00%) and release characteristics with entrapment efficiency of 95.2 ± 0.32%. Microspheres fabricated with ethylcellulose to HPMC K4M in the ratio 8.5:1.5 released 98.67% of the entrapped drug in 12 h. Muscle relaxation caused by baclofen microspheres impairs the rotarod performance for more than 12 h. Abdominal X-ray images showed that the gastroretention period of the floating barium sulfate- labeled microspheres was no less than 10 h. The buoyant baclofen microspheres provide a promising gastroretentive drug delivery system to deliver baclofen in spastic patients with a sustained release rate.

  2. Clinical perspectives on the influence of drug formulation on patient tolerability and use of commonly prescribed antidepressants in major depressive disorder

    Directory of Open Access Journals (Sweden)

    Matthew A Fuller

    2013-01-01

    Full Text Available The purpose of this review is to summarize the formulation options for currently available antidepressants, and discuss examples of the influence that formulation may have on the pharmacologic and clinical profiles of the medications. A review of current literature suggests that differences in drug-delivery technologies can lead to variations in the pharmacokinetic and pharmacodynamic profiles of generic and branded drugs, despite generic drugs being required to meet bioequivalence standards compared with their branded counterparts. These differences may influence the effectiveness and tolerability of treatment. Recent reports have highlighted the need for individualized treatment regimens and careful assessment of tolerability and efficacy when switching patients from brand to generic formulations. There is a growing body of evidence indicating that differences in formulation can substantially impact drug pharmacokinetics and pharmacodynamics, which in turn, can affect drug effects. The clinical impact of these differences remains unclear. Further research is needed to clarify the influence of antidepressant formulations on treatment adherence, patient preference, and quality of life, and how this impacts clinical practice with regard to brand versus generic treatment selection.

  3. Enhancing tablet disintegration characteristics of a highly water-soluble high-drug-loading formulation by granulation process.

    Science.gov (United States)

    Pandey, Preetanshu; Levins, Christopher; Pafiakis, Steve; Zacour, Brian; Bindra, Dilbir S; Trinh, Jade; Buckley, David; Gour, Shruti; Sharif, Shasad; Stamato, Howard

    2018-07-01

    The objective of this study was to improve the disintegration and dissolution characteristics of a highly water-soluble tablet matrix by altering the manufacturing process. A high disintegration time along with high dependence of the disintegration time on tablet hardness was observed for a high drug loading (70% w/w) API when formulated using a high-shear wet granulation (HSWG) process. Keeping the formulation composition mostly constant, a fluid-bed granulation (FBG) process was explored as an alternate granulation method using a 2 (4-1) fractional factorial design with two center points. FBG batches (10 batches) were manufactured using varying disingtegrant amount, spray rate, inlet temperature (T) and atomization air pressure. The resultant final blend particle size was affected significantly by spray rate (p = .0009), inlet T (p = .0062), atomization air pressure (p = .0134) and the interaction effect between inlet T*spray rate (p = .0241). The compactibility of the final blend was affected significantly by disintegrant amount (p disintegration times than the HSWG batches, and mercury intrusion porosimetry data revealed that this was caused by the higher internal pore structure of tablets manufactured using the FBG batches.

  4. Development of ELISA-based methods to measure the anti-malarial drug chloroquine in plasma and in pharmaceutical formulations

    Directory of Open Access Journals (Sweden)

    Ronn Anita

    2011-08-01

    Full Text Available Abstract Background In Central and South America and Eastern and Southern Africa, Plasmodium vivax infections accounts for 71-81% and 5% of malaria cases, respectively. In these areas, chloroquine (CQ remains the treatment of choice for P. vivax malaria. In addition, CQ has recently proven to be an effective HIV-1 therapeutic agent. There is a dire need to continue monitoring quality of CQ as there is a major influx of substandard and fake formulations into malaria-endemic countries. The use of fake/substandard drugs will result in sub-therapeutic levels endangering the patient and possibly select for parasite resistance. The aim of this study was to develop an inexpensive, simple antibody-based ELISA to measure CQ concentrations in tablets and in plasma. Methods A monoclonal antibody (MAb that reacts with the N-side chain of the CQ molecule was prepared by use of a CQ analogue. A specific and reliable ELISA for detection of CQ was developed. The developed assay was validated by measuring CQ in tablets sold in Denmark, India and Sudan. Furthermore, kinetics of CQ concentrations in plasma of four volunteers, who ingested two tablets of Malarex® containing, 250 mg CQ base, were measured before drug intake, three hours later and thereafter at days 1, 3, 7, 14, 21 and 28. The same plasma samples were simultaneously measured by high performance liquid chromatography (HPLC. Results The ELISA proved an easy-to-handle and very sensitive tool for the detection of CQ with a lower limit of detection at 3.9 ng/ml. ELISA levels of CQ in plasma showed high agreement with the levels obtained by HPLC (r = 0.98. The specificity in the negative control group was 100%. Conclusion The developed ELISA can be used for quality screening of CQ in pharmaceutical formulations and for drug monitoring in malaria and in other infectious diseases, such as HIV, where CQ proved to be an effective therapeutic agent. The methodology has been exploited to develop monoclonal

  5. Salt formation improved the properties of a candidate drug during early formulation development.

    Science.gov (United States)

    Sigfridsson, Kalle; Ahlqvist, Matti; Lindsjö, Martin; Paulsson, Stefan

    2018-07-30

    The purpose of this study was to investigate if AZD5329, a dual neurokinin NK1/2 receptor antagonist, is a suitable candidate for further development as an oral immediate release (IR) solid dosage form as a final product. The neutral form of AZD5329 has only been isolated as amorphous material. In order to search for a solid material with improved physical and chemical stability and more suitable solid-state properties, a salt screen was performed. Crystalline material of a maleic acid salt and a fumaric acid salt of AZD5329 were obtained. X-ray powder diffractiometry, thermogravimetric analysis, differential scanning calorimetry and dynamic vapor sorption were used to investigate the physicochemical characteristics of the two salts. The fumarate salt of AZD5329 is anhydrous, the crystallization is reproducible and the hygroscopicity is acceptable. Early polymorphism assessment work using slurry technique did not reveal any better crystal modification or crystallinity for the fumarate salt. For the maleate salt, the form isolated originally was found to be a solvate, but an anhydrous form was found in later experiments; by suspension in water or acetone, by drying of the solvate to 100-120 °C or by subjecting the solvate form to conditions of 40 °C/75%RH for 3 months. The dissolution behavior and the chemical stability (in aqueous solutions, formulations and solid-state) of both salts were also studied and found to be satisfactory. The compound displays sensitivity to low pH, and the salt of the maleic acid, which is the stronger acid, shows more degradation during stability studies, in line with this observation. The presented data indicate that the substance fulfils basic requirements for further development of an IR dosage form, based on the characterization on crystalline salts of AZD5329. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. High drug load, stable, manufacturable and bioavailable fenofibrate formulations in mesoporous silica: a comparison of spray drying versus solvent impregnation methods.

    Science.gov (United States)

    Hong, Shiqi; Shen, Shoucang; Tan, David Cheng Thiam; Ng, Wai Kiong; Liu, Xueming; Chia, Leonard S O; Irwan, Anastasia W; Tan, Reginald; Nowak, Steven A; Marsh, Kennan; Gokhale, Rajeev

    2016-01-01

    Encapsulation of drugs in mesoporous silica using co-spray drying process has been recently explored as potential industrial method. However, the impact of spray drying on manufacturability, physiochemical stability and bioavailability in relation to conventional drug load processes are yet to be fully investigated. Using a 2(3) factorial design, this study aims to investigate the effect of drug-loading process (co-spray drying and solvent impregnation), mesoporous silica pore size (SBA-15, 6.5 nm and MCM-41, 2.5 nm) and percentage drug load (30% w/w and 50% w/w) on material properties, crystallinity, physicochemical stability, release profiles and bioavailability of fenofibrate (FEN) loaded into mesoporous silica. From the scanning electronic microscopy (SEM) images, powder X-ray diffraction and Differential scanning calorimetry measurements, it is indicated that the co-spray drying process was able to load up to 50% (w/w) FEN in amorphous form onto the mesoporous silica as compared to the 30% (w/w) for solvent impregnation. The in vitro dissolution rate of the co-spray dried formulations was also significantly (p = 0.044) better than solvent impregnated formulations at the same drug loading. Six-month accelerated stability test at 40 °C/75 RH in open dish indicated excellent physical and chemical stability of formulations prepared by both methods. The amorphous state of FEN and the enhanced dissolution profiles were well preserved, and very low levels of degradation were detected after storage. The dog data for the three selected co-spray-dried formulations revealed multiple fold increment in FEN bioavailability compared to the reference crystalline FEN. These results validate the viability of co-spray-dried mesoporous silica formulations with high amorphous drug load as potential drug delivery systems for poorly water soluble drugs.

  7. Peptide drug stability: The anti-inflammatory drugs Pep19-2.5 and Pep19-4LF in cream formulation.

    Science.gov (United States)

    Kuhlmann, Nicole; Heinbockel, Lena; Correa, Wilmar; Gutsmann, Thomas; Goldmann, Torsten; Englisch, Uwe; Brandenburg, Klaus

    2018-03-30

    In previous years, we developed anti-infective drugs based on antimicrobial peptides (AMPs), which have been shown to effectively block severe infections and inflammation in vitro as well as in vivo. Besides systemic application, the occurrence of severe local infections necessitates a topical application for example in the case of severe skin and soft tissue infections (SSTI). Recent investigations show that the synthetic anti-lipopolysaccharide peptide (SALP) Pep19-2.5 (Aspidasept® I) and a variant called Pep19-4LF (Aspidasept® II) are able to supress inflammation reactions also in keratinocytes, Langerhans cells, and dendritic cells from the skin. For topical application, a possible formulation represents the drug dispersed into a pharmaceutical cream (DAC base cream). Here, we present investigations on the stability of the peptides using this formulation in dependence on time, which includes the evaluation of the extraction procedure, the quantitative analysis of the peptides after extraction, its sensitivity to protease degradation and its ability to maintain activity against LPS-induced inflammation in vitro. We have developed an extraction procedure for the peptides with an optimum yield and showed that Pep19-2.5 is present as a dimer after extraction from the cream, whereas Pep19-4LF retains its monomeric form. Both peptides show no degradation by chymotrypsin after extraction for at least 1 h, which is indicative for an attachment of constituents of the base cream, inhibiting the cutting into peptidic part structures. The extracted peptides and in particular the dimeric Pep19-2.5 are still able to inhibit the LPS-induced inflammation reaction in human mononuclear cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Parental adaptation to adolescent drug abuse: an ethnographic study of role formulation in response to courtesy stigma.

    Science.gov (United States)

    Barton, J A

    1991-03-01

    Community based nurses have increasingly been involved in caring for the parents of drug abusing adolescents. They are in need of research data about how parents are coping with the problem. This study analyzed parental role formulation in response to their position as parents of deviant children. The method of inquiry was ethnographic. Data were gathered from nonparticipant observations, parent informant journals, and interviews with parents involved in a survival group. Parents move through three phases of role formation, the content of which has implications for nursing assessments. The similarities of these parents to those of physically and mentally handicapped children is striking. Both are outside the conventional norm and are constantly involved in interpreting situations with others as to their different parenting role. A pecularity in the findings is that the parents were less discredited by their family and friends than had been anticipated. They met their greatest discreditation from community institutions, including the school, police, and court systems, institutions that were expected to assist them in bringing their child's drug abuse under control.

  9. Formulation and characterization of hydrophilic drug diclofenac sodium-loaded solid lipid nanoparticles based on phospholipid complexes technology.

    Science.gov (United States)

    Liu, Dongfei; Chen, Li; Jiang, Sunmin; Zhu, Shuning; Qian, Yong; Wang, Fengzhen; Li, Rui; Xu, Qunwei

    2014-03-01

    To successfully prepare the diclofenac sodium (DS)-loaded solid lipid nanoparticles (SLNs), phospholipid complexes (PCs) technology was applied here to improve the liposolubility of DS. Solid lipid nanoparticles (SLNs) loaded with phospholipid complexes (PCs) were prepared by the modified emulsion/solvent evaporation method. DS could be solubilized effectively in the organic solvents with the existence of phospholipid and apparent partition coefficient of DS in PCs increased significantly. X-ray diffraction analysis suggested that DS in PCs was either molecularly dispersed or in an amorphous form. However, no significant difference was observed between the Fourier transform infrared spectroscopy (FT-IR) spectra of physical mixture and that of PCs. Particles with small sizes, narrow polydispersity indexes and high entrapment efficiencies could be obtained with the addition of PCs. Furthermore, according to the transmission electron microscopy, a core-shell structure was likely to be formed. The presence of PCs caused the change of zeta potential and retarded the drug release of SLNs, which indicated that phospholipid formed multilayers around the solid lipid core of SLNs. Both FT-IR and differential scanning calorimetry analysis also illustrated that some weak interactions between DS and lipid materials might take place during the preparation of SLNs. In conclusion, the model hydrophilic drug-DS can be formulated into the SLNs with the help of PCs.

  10. Design of an expert system for the development and formulation of push-pull osmotic pump tablets containing poorly water-soluble drugs.

    Science.gov (United States)

    Zhang, Zhi-hong; Dong, Hong-ye; Peng, Bo; Liu, Hong-fei; Li, Chun-lei; Liang, Min; Pan, Wei-san

    2011-05-30

    The purpose of this article was to build an expert system for the development and formulation of push-pull osmotic pump tablets (PPOP). Hundreds of PPOP formulations were studied according to different poorly water-soluble drugs and pharmaceutical acceptable excipients. The knowledge base including database and rule base was built based on the reported results of hundreds of PPOP formulations containing different poorly water-soluble drugs and pharmaceutical excipients and the experiences available from other researchers. The prediction model of release behavior was built using back propagation (BP) neural network, which is good at nonlinear mapping and learning function. Formulation design model was established based on the prediction model of release behavior, which was the nucleus of the inference engine. Finally, the expert system program was constructed by VB.NET associating with SQL Server. Expert system is one of the most popular aspects in artificial intelligence. To date there is no expert system available for the formulation of controlled release dosage forms yet. Moreover, osmotic pump technology (OPT) is gradually getting consummate all over the world. It is meaningful to apply expert system on OPT. Famotidine, a water insoluble drug was chosen as the model drug to validate the applicability of the developed expert system. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Polycaprolactone/maltodextrin nanocarrier for intracellular drug delivery: formulation, uptake mechanism, internalization kinetics, and subcellular localization.

    Science.gov (United States)

    Korang-Yeboah, Maxwell; Gorantla, Yamini; Paulos, Simon A; Sharma, Pankaj; Chaudhary, Jaideep; Palaniappan, Ravi

    2015-01-01

    Prostate cancer (PCa) disease progression is associated with significant changes in intracellular and extracellular proteins, intracellular signaling mechanism, and cancer cell phenotype. These changes may have direct impact on the cellular interactions with nanocarriers; hence, there is the need for a much-detailed understanding, as nanocarrier cellular internalization and intracellular sorting mechanism correlate directly with bioavailability and clinical efficacy. In this study, we report the differences in the rate and mechanism of cellular internalization of a biocompatible polycaprolactone (PCL)/maltodextrin (MD) nanocarrier system for intracellular drug delivery in LNCaP, PC3, and DU145 PCa cell lines. PCL/MD nanocarriers were designed and characterized. PCL/MD nanocarriers significantly increased the intracellular concentration of coumarin-6 and fluorescein isothiocyanate-labeled bovine serum albumin, a model hydrophobic and large molecule, respectively. Fluorescence microscopy and flow cytometry analysis revealed rapid internalization of the nanocarrier. The extent of nanocarrier cellular internalization correlated directly with cell line aggressiveness. PCL/MD internalization was highest in PC3 followed by DU145 and LNCaP, respectively. Uptake in all PCa cell lines was metabolically dependent. Extraction of endogenous cholesterol by methyl-β-cyclodextrin reduced uptake by 75%±4.53% in PC3, 64%±6.01% in LNCaP, and 50%±4.50% in DU145, indicating the involvement of endogenous cholesterol in cellular internalization. Internalization of the nanocarrier in LNCaP was mediated mainly by macropinocytosis and clathrin-independent pathways, while internalization in PC3 and DU145 involved clathrin-mediated endocytosis, clathrin-independent pathways, and macropinocytosis. Fluorescence microscopy showed a very diffused and non-compartmentalized subcellular localization of the PCL/MD nanocarriers with possible intranuclear localization and minor colocalization in

  12. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION

    Directory of Open Access Journals (Sweden)

    Neenu Singh

    2010-09-01

    Full Text Available Superparamagnetic iron oxide nanoparticles (SPION are being widely used for various biomedical applications, for example, magnetic resonance imaging, targeted delivery of drugs or genes, and in hyperthermia. Although, the potential benefits of SPION are considerable, there is a distinct need to identify any potential cellular damage associated with these nanoparticles. Besides focussing on cytotoxicity, the most commonly used determinant of toxicity as a result of exposure to SPION, this review also mentions the importance of studying the subtle cellular alterations in the form of DNA damage and oxidative stress. We review current studies and discuss how SPION, with or without different surface coating, may cause cellular perturbations including modulation of actin cytoskeleton, alteration in gene expression profiles, disturbance in iron homeostasis and altered cellular responses such as activation of signalling pathways and impairment of cell cycle regulation. The importance of protein–SPION interaction and various safety considerations relating to SPION exposure are also addressed.

  13. Development and characterization of superparamagnetic coatings

    Directory of Open Access Journals (Sweden)

    Kuschnerus I.

    2015-09-01

    Full Text Available Since 2005, Magnetic Particle Imaging (MPI is handled as a key technology with great potential in medical applications as an imaging method [1]. The superparamagnetic iron oxide nanoparticles (SPIONs which are already used as a tracer in MPI, combined with various polymers, are being investigated in order to enhance this potential. A combination of polymers such as polyethylene (PE and polyurethane (PU and SPIONs could be used as a coating for medical devices, or added to semi-rigid polyurethane for the production of surgical instruments [2]. This would be of great interest, since the method provides high sensitivity with simultaneous high spatial resolution and three-dimensional imaging in real time. Therefore various superparamagnetic coatings were developed, tested and characterized. Finally SPIONs and various polymers were combined directly and used for MPI-compatible models.

  14. Spectrophotometric and spectrofluorimetric methods for determination of certain biologically active phenolic drugs in their bulk powders and different pharmaceutical formulations

    Science.gov (United States)

    Omar, Mahmoud A.; Badr El-Din, Kalid M.; Salem, Hesham; Abdelmageed, Osama H.

    2018-03-01

    Two simple and sensitive spectrophotometric and spectrofluorimetric methods for the determination of terbutaline sulfate, fenoterol hydrobromide, etilefrine hydrochloride, isoxsuprine hydrochloride, ethamsylate, doxycycline hyclate have been developed. Both methods were based on the oxidation of the cited drugs with cerium (IV) in acid medium. The spectrophotometric method was based on measurement of the absorbance difference (ΔA), which represents the excess cerium (IV), at 317 nm for each drug. On the other hand, the spectrofluorimetric method was based on measurement of the fluorescent of the produced cerium (III) at emission wavelength 354 nm (λexcitation = 255 nm) for the concentrations studied for each drug. For both methods, the variables affecting the reactions were carefully investigated and the conditions were optimized. Linear relationships were found between either ΔA or the fluorescent of the produced cerium (III) values and the concentration of the studied drugs in a general concentration range of 2.0-24.0 μg mL- 1, 20.0-24.0 ng mL- 1 with good correlation coefficients in the following range 0.9990-0.9999, 0.9990-0.9993 for spectrophotometric and spectrofluorimetric methods respectively. The limits of detection and quantitation of spectrophotometric method were found in general concentration range 0.190-0.787 and 0.634-2.624 μg mL- 1respectively. For spectrofluorimetric method, the limits of detection and quantitation were found in general concentration range 4.77-9.52 and 15.91-31.74 ng mL- 1 respectively. The stoichiometry of the reaction was determined, and the reactions pathways were postulated. The analytical performance of the methods, in terms of accuracy and precision, were statistically validated and the results obtained were satisfactory. The methods have been successfully applied to the determination of the cited drugs in their commercial pharmaceutical formulations. Statistical comparison of the results with the reference methods

  15. Assessment of bioequivalence of rifampicin, isoniazid and pyrazinamide in a four drug fixed dose combination with separate formulations at the same dose levels.

    Science.gov (United States)

    Agrawal, Shrutidevi; Kaur, Kanwal Jit; Singh, Inderjit; Bhade, Shantaram R; Kaul, Chaman Lal; Panchagnula, Ramesh

    2002-02-21

    Tuberculosis (TB) needs treatment with three to five different drugs simultaneously, depending on the patient category. These drugs can be given as single drug preparations or fixed dose combinations (FDCs) of two more drugs in a single formulation. World Health Organization and International Union against Tuberculosis and Lung Disease (IUATLD) recommend FDCs only of proven bioavailability. The relative bioavailability of rifampicin (RIF), isoniazid (INH) and pyrazinamide (PYZ) was assessed on a group of 13 healthy male subjects from a four drug FDC versus separate formulations at the same dose levels. The study was designed to be an open, crossover experiment. A total of nine blood samples each of 3 ml volume were collected over a period of 24-h. The concentrations of RIF, its main metabolite desacetyl RIF (DRIF), INH and PYZ in plasma were assessed by HPLC analysis. Pharmacokinetic parameters namely AUC(0-24), AUC(0-inf), C(max), T(max), were calculated and subjected to different statistical tests (Hauschke analysis, two way ANOVA, normal and log transformed confidence interval) at 90% confidence interval. In addition, elimination rate constant (K(el)) and absorption efficiencies for each drug were also calculated. It was concluded that four drugs FDC tablet is bioequivalent for RIF, INH and PYZ to separate formulation at the same dose levels.

  16. THE STUDY ON THE EFFECT OF FORMULATION VARIABLES ON IN VITRO FLOATING TIME AND THE RELEASE PROPERTIES OF A FLOATING DRUG DELIVERY SYSTEM BY A STATISTICAL OPTIMIZATION TECHNIQUE

    Directory of Open Access Journals (Sweden)

    C. NARENDRA

    2008-03-01

    Full Text Available The present investigation concerns the evaluation of the effect of formulation variables on in vitro floating time and the release properties in developing a floating drug delivery system (FDDS containing a highly water soluble drug metoprolol tartrate (MT in the presence of a gas generating agent. A 32 full factorial design was employed in formulating the FDDS containing hydroxyl propylmethylcellulose (HPMC K4M and sodium carboxymethylcellulose (NaCMC as swellable polymers. Drug-to-polymer ratio and polymer-to-polymer ratio were included as independent variables. The main effect and the interaction terms were quantitatively evaluated by a quadratic model to predict formulations with the floating time desired, and the release properties. It was found that only drug-to-polymer ratio and its quadratic term were found to be significantly affective for all the response variables. Non-Fickian transport was confirmed as a release mechanism from the optimized formulations. The desirability function was used to optimize the response variables, each having a different target, and the observed responses were highly agreed with experimental values. The results demonstrate the feasibility of the model in the development of FDDS containing a highly water-soluble drug MT.

  17. Development and characterization of superparamagnetic coatings

    OpenAIRE

    Kuschnerus I.; Lüdtke-Buzug K.

    2015-01-01

    Since 2005, Magnetic Particle Imaging (MPI) is handled as a key technology with great potential in medical applications as an imaging method [1]. The superparamagnetic iron oxide nanoparticles (SPIONs) which are already used as a tracer in MPI, combined with various polymers, are being investigated in order to enhance this potential. A combination of polymers such as polyethylene (PE) and polyurethane (PU) and SPIONs could be used as a coating for medical devices, or added to semi-rigid polyu...

  18. Superparamagnetic response of zinc ferrite incrusted nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Maldonado, K.L., E-mail: liliana.lopez.maldonado@gmail.com [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Av. Del Charro 450 norte, 32310 Ciudad Juárez (Mexico); Presa, P. de la, E-mail: pmpresa@ucm.es [Instituto de Magnetismo Aplicado (UCM-ADIF-CSIC), PO Box 155, 28230 Las Rozas (Spain); Dpto. Física de Materiales, Univ. Complutense de Madrid, Madrid (Spain); Betancourt, I., E-mail: israelb@unam.mx [Departamento de Materiales Metálicos y Cerámicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México, D.F. 04510 (Mexico); Farias Mancilla, J.R., E-mail: rurik.farias@uacj.mx [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Av. Del Charro 450 norte, 32310 Ciudad Juárez (Mexico); Matutes Aquino, J.A., E-mail: jose.matutes@cimav.edu.mx [Centro de Investigación en Materiales Avanzados, Miguel de Cervantes 120, 31109 Chihuahua (Mexico); Hernando, A., E-mail: antonio.hernando@externos.adif.es [Instituto de Magnetismo Aplicado (UCM-ADIF-CSIC), PO Box 155, 28230 Las Rozas (Spain); Dpto. Física de Materiales, Univ. Complutense de Madrid, Madrid (Spain); and others

    2015-07-15

    Highlights: • Incrusted nanoparticles are found at the surface of ZnFe{sub 2}O{sub 4} microparticles. • Magnetic contribution of nano and microparticles are analyzed by different models. • Langevin model is used to calculate the nanoparticles-superparamagnetic diameter. • Susceptibility and Langevin analysis and calculations agree with experimental data. - Abstract: Zinc ferrite is synthesized via mechano-activation, followed by thermal treatment. Spinel ZnFe{sub 2}O{sub 4} single phase is confirmed by X-ray diffraction. SEM micrographs show large particles with average particle size 〈D{sub part}〉 = 1 μm, with particles in intimate contact. However, TEM micrographs show incrusted nanocrystallites at the particles surface, with average nanocrystallite size calculated as 〈D{sub inc}〉 ≈ 5 nm. The blocking temperature at 118 K in the ZFC–FC curves indicates the presence of a superparamagnetic response which is attributable to the incrusted nanocrystallites. Moreover, the hysteresis loops show the coexistence of superpara- and paramagnetic responses. The former is observable at the low field region; meanwhile, the second one is responsible of the lack of saturation at high field region. This last behavior is related to a paramagnetic contribution coming from well-ordered crystalline microdomains. The hysteresis loops are analyzed by means of two different models. The first one is the susceptibility model used to examine separately the para- and superparamagnetic contributions. The fittings with the theoretical model confirm the presence of the above mentioned magnetic contributions. Finally, using the Langevin-based model, the average superparamagnetic diameter 〈D{sub SPM}〉 is calculated. The obtained value 〈D{sub SPM}〉 = 4.7 nm (∼5 nm) is consistent with the average nanocrystallite size observed by TEM.

  19. Design and characterization of submicron formulation for a poorly soluble drug: the effect of Vitamin E TPGS and other solubilizers on skin permeability enhancement.

    Science.gov (United States)

    Ghosh, Indrajit; Michniak-Kohn, Bozena

    2012-09-15

    In transdermal drug delivery systems (TDDS), it is a challenge to achieve stable and prolonged high permeation rates across the skin since the concentrations of the drug dissolved in the matrix have to be high in order to maintain zero order release kinetics. Several attempts have been reported to improve the permeability of poorly soluble drug compounds using supersaturated systems, however, due to thermodynamic challenges, there was a high tendency for the drug to nucleate immediately after formulating or even during storage. The present study focuses on the efficiency of drug crystals at the submicron/nano range in presence of different solubilizers to improve the permeation rate. Effect of several solubilizers, e.g. Pluronic F-127, Vitamin E TPGS, propylene glycol were studied on the submicron suspension systems of ibuprofen as a model drug. Various stabilizers such as hydroxylpropyl methylcellulose (HPMC) and polyvinylpyrrolidone (PVP) were examined to evaluate their crystal inhibitory effects on particle growth of the drug compound at submicron range. The overall permeation enhancement process through the skin seems to be influenced by the presence of solubilizers and also the presence of submicron drug crystal. The most promising stable formulation was developed with Vitamin E TPGS+HPMC submicron suspension, which produced higher permeation rate compared to other vehicles. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Dual centrifugation - A new technique for nanomilling of poorly soluble drugs and formulation screening by an DoE-approach.

    Science.gov (United States)

    Hagedorn, Martin; Bögershausen, Ansgar; Rischer, Matthias; Schubert, Rolf; Massing, Ulrich

    2017-09-15

    The development of nanosuspensions of poorly soluble APIs takes a lot of time and high amount of active material is needed. In this publication the use of dual centrifugation (DC) for an effective and rapid API-nanomilling is described for the first time. DC differs from normal centrifugation by an additional rotation of the samples during centrifugation, resulting in a very fast and powerful movement of the samples inside the vials, which - in combination with milling beads - result in effective milling. DC-nanomilling was compared to conventional wet ball milling and results in same or even smaller particle sizes. Also drug concentrations up to 40% can be processed. The process is fast (typical 90min) and the temperature can be controlled. DC-nanomilling appears to be very gentle, experiments showed no change of the crystal structure during milling. Since batch sizes are very small (100-1000mg) and since 40 sample vials can be processed in parallel, DC is ideal for the screening of suitable polymer/surfactant combinations. Fenofibrate was used to investigate DC-nanomilling for formulation screening by applying a DoE-approach. The presented data also show that the results of DC-nanomilling experiments are highly comparable to the results obtained by common agitator mills. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Gd3+ doped Mn-Zn soft ferrite nanoparticles: Superparamagnetism and its correlation with other physical properties

    International Nuclear Information System (INIS)

    Thakur, Prashant; Sharma, Rohit; Sharma, Vineet; Barman, P.B.; Kumar, Manoj; Barman, Dipto; Katyal, S.C.; Sharma, Pankaj

    2017-01-01

    Highlights: • Superparamagnetic nanoparticles of Gd doped Mn-Zn spinel ferrites synthesized by co-precipitation. • XRD and FTIR studies justify the formation of cubical spinel structure. • Maximum saturation magnetization and magnetic moment at x = 0.025. • PL spectra shows blue shift for x = 0.025, 0.075 and may be attributed to quantum confinement. - Abstract: Superparamagnetic nanoparticles are very important in biomedicine due to their various applications like drug delivery, gene delivery in the body and also used for hyperthermia. In the present work, superparamagnetic nanoparticles of Mn 0.5 Zn 0.5 Gd x Fe 2-x O 4 (x = 0, 0.025, 0.050, 0.075, 0.1) ferrites have been prepared by co-precipitation method. Thorough characterizations (XRD, FTIR, FE-SEM, EDS, VSM and fluorescence spectroscopy) have proved the formation of cubical spinel superparamagnetic nanoparticles of soft ferrites. A cation distribution has been proposed for the determination of various important theoretical parameters for these samples. With the addition of Gd 3+ nanoparticles have shown the superparamagnetism at room temperature confirmed by VSM analysis. Photoluminescence (PL) spectra shows a blue shift (for x = 0.025, 0.075) which may be due to quantum confinement.

  2. Gd{sup 3+} doped Mn-Zn soft ferrite nanoparticles: Superparamagnetism and its correlation with other physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Prashant; Sharma, Rohit; Sharma, Vineet; Barman, P.B. [Department of Physics & Materials Science, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173234 (India); Kumar, Manoj [Department of Physics & Materials Science, Jaypee Institute of Information Technology, Noida 201307 (India); Barman, Dipto [Gwangju Institute of Science & Technology, Gwangju (Korea, Republic of); Department of Computer Science & Engineering, Jaypee University of Information Technology, Waknaghat, Solan, Himachap Pradesh 173234 (India); Katyal, S.C. [Department of Physics & Materials Science, Jaypee Institute of Information Technology, Noida 201307 (India); Sharma, Pankaj, E-mail: pankaj.sharma@juit.ac.in [Department of Physics & Materials Science, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173234 (India)

    2017-06-15

    Highlights: • Superparamagnetic nanoparticles of Gd doped Mn-Zn spinel ferrites synthesized by co-precipitation. • XRD and FTIR studies justify the formation of cubical spinel structure. • Maximum saturation magnetization and magnetic moment at x = 0.025. • PL spectra shows blue shift for x = 0.025, 0.075 and may be attributed to quantum confinement. - Abstract: Superparamagnetic nanoparticles are very important in biomedicine due to their various applications like drug delivery, gene delivery in the body and also used for hyperthermia. In the present work, superparamagnetic nanoparticles of Mn{sub 0.5}Zn{sub 0.5}Gd{sub x}Fe{sub 2-x}O{sub 4} (x = 0, 0.025, 0.050, 0.075, 0.1) ferrites have been prepared by co-precipitation method. Thorough characterizations (XRD, FTIR, FE-SEM, EDS, VSM and fluorescence spectroscopy) have proved the formation of cubical spinel superparamagnetic nanoparticles of soft ferrites. A cation distribution has been proposed for the determination of various important theoretical parameters for these samples. With the addition of Gd{sup 3+} nanoparticles have shown the superparamagnetism at room temperature confirmed by VSM analysis. Photoluminescence (PL) spectra shows a blue shift (for x = 0.025, 0.075) which may be due to quantum confinement.

  3. In vitro evaluation of mucoadhesive vaginal tablets of antifungal drugs prepared with thiolated polymer and development of a new dissolution technique for vaginal formulations.

    Science.gov (United States)

    Baloglu, Esra; Ay Senyıgıt, Zeynep; Karavana, Sinem Yaprak; Vetter, Anja; Metın, Dilek Yesim; Hilmioglu Polat, Suleyha; Guneri, Tamer; Bernkop-Schnurch, Andreas

    2011-01-01

    The main objective of this work was to develop antifungal matrix tablet for vaginal applications using mucoadhesive thiolated polymer. Econazole nitrate (EN) and miconazole nitrate (MN) were used as antifungal drugs to prepare the vaginal tablet formulations. Thiolated poly(acrylic acid)-cysteine (PAA-Cys) conjugate was synthesized by the covalent attachment of L-cysteine to PAA with the formation of amide bonds between the primary amino group of L-cysteine and the carboxylic acid group of the polymer. Vaginal mucoadhesive matrix tablets were prepared by direct compression technique. The investigation focused on the influence of modified polymer on water uptake behavior, mucoadhesive property and release rate of drug. Thiolated polymer increased the water uptake ratio and mucoadhesive property of the formulations. A new simple dissolution technique was developed to simulate the vaginal environment for the evaluation of release behavior of vaginal tablets. In this technique, daily production amount and rate of the vaginal fluid was used without any rotational movement. The drug release was found to be slower from PAA-Cys compared to that from PAA formulations. The similarity study results confirmed that the difference in particle size of EN and MN did not affect their release profile. The release process was described by plotting the fraction released drug versus time and n fitting data to the simple exponential model: M(t)/M(∞)=kt(n). The release kinetics were determined as Super Case II for all the formulations prepared with PAA or PAA-Cys. According to these results the mucoadhesive vaginal tablet formulations prepared with PAA-Cys represent good example for delivery systems which prolong the residence time of drugs at the vaginal mucosal surface.

  4. Preparation and evaluation of a timolol maleate drug-resin ophthalmic suspension as a sustained-release formulation in vitro and in vivo.

    Science.gov (United States)

    Qin, Fuhong; Zeng, Li; Zhu, Yongtao; Cao, Jingjing; Wang, Xiaohui; Liu, Wei

    2016-01-01

    The aim of this work was to assess the performance of resin as an ocular delivery system. Timolol maleate (TM) was chosen as the model drug and an ion exchange resin (IER) as the carrier. The drug-resin complex was prepared using an oscillation method and then characterized regarding particle size, zeta potential, morphology, and drug content. After in vitro drug release study and corneal permeation study were performed, in vivo studies were performed in New Zealand albino rabbits using a suspension with particles sized 4.8 ± 1.2 μm and drug loading at 43.00 ± 0.09%. The results indicate that drug released from the drug-resin ophthalmic suspension permeated the cornea and displayed a sustained-release behavior. Drug levels in the ocular tissues after administration of the drug-resin ophthalmic suspension were significantly higher than after treatment with an eye drop formulation but were lower in body tissues and in the plasma. In conclusion, resins have great potential as effective ocular drug delivery carriers to increase ocular bioavailability of timolol while simultaneously reducing systemic drug absorption.

  5. Evaluation of critical formulation parameters in design and differentiation of self-microemulsifying drug delivery systems (SMEDDSs) for oral delivery of aciclovir.

    Science.gov (United States)

    Janković, Jovana; Djekic, Ljiljana; Dobričić, Vladimir; Primorac, Marija

    2016-01-30

    The study investigated the influence of formulation parameters for design of self-microemulsifying drug delivery systems (SMEDDSs) comprising oil (medium chain triglycerides) (10%), surfactant (Labrasol(®), polysorbate 20, or Kolliphor(®) RH40), cosurfactant (Plurol(®) Oleique CC 497) (q.s. ad 100%), and cosolvent (glycerol or macrogol 400) (20% or 30%), and evaluate their potential as carriers for oral delivery of a poorly permeable antivirotic aciclovir (acyclovir). The drug loading capacity of the prepared formulations ranged from 0.18-31.66 mg/ml. Among a total of 60 formulations, three formulations meet the limits for average droplet size (Z-ave) and polydispersity index (PdI) that have been set for SMEDDSs (Z-ave≤100nm, PdI<0.250) upon spontaneous dispersion in 0.1M HCl and phosphate buffer pH 7.2. SMEDDSs with the highest aciclovir loading capacity (24.06 mg/ml and 21.12 mg/ml) provided the in vitro drug release rates of 0.325 mg cm(-2)min(-1) and 0.323 mg cm(-2)min(-1), respectively, and significantly enhanced drug permeability in the parallel artificial membrane permeability assay (PAMPA), in comparison with the pure drug substance. The results revealed that development of SMEDDSs with enhanced drug loading capacity and oral delivery potential, required optimization of hydrophilic ingredients, in terms of size of hydrophilic moiety of the surfactant, surfactant-to-cosurfactant mass ratio (Km), and log P of the cosolvent. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Synthesis and characterization of superparamagnetic polymeric nanocapsules

    Energy Technology Data Exchange (ETDEWEB)

    Grillo, Renato; Fraceto, Leonardo Fernandes, E-mail: renato.grillo@ymail.com [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sorocaba, SP (Brazil); Gallo, Juan; Grando Stroppa, Daniel; Carbo-Argibay, Enrique; Banõbre-Lopez, Manuel [International Iberian Nanotechnology Laboratory, Braga (Portugal); Lima, Renata de [Universidade de Sorocaba (UNISO), SP (Brazil)

    2016-07-01

    Full text: A wide variety of applications have been considered for superparamagnetic iron oxide nanoparticles (SPIONs), such as magnetic resonance imaging, cancer therapy and remediation of contaminants [1].Polymeric nanostructures (PNS) have also received great interest as suitable encapsulating agents and carriers due to their ability to influence the delivery profile. Hybrid nanosystems have been explored as a synergic approach that combines the modified active release induced by the polymer encapsulation and the intrinsic properties from the inorganic nanoparticles [2]. In this context, poly-ε-caprolactone nanocapsules containing different concentration of ∼8 nm superparamagnetic oleic acid coated magnetite (Fe{sub 3}O{sub 4}@OA) nanoparticles were developed. Successful incorporation of the magnetic nanoparticles was confirmed by transmission electron microscopy coupled with energy dispersive X-ray (TEM-EDX). Results showed that they accumulate preferentially in the outer organic membrane of the PNS. On the other hand, scanning electron microscopy and dynamic light scattering measurements showed a significant increase in particle size from ca. 400 to 800 nm. Magnetic measurements as a function of the applied magnetic field and temperature were performed in both vibrant sample (VSM) and superconducting quantum interference device magnetometers (SQUID). Hysteresis loops showed a superparamagnetic behavior with increasing saturation magnetization as magnetite concentration was progressively incorporated into the PNS. Zero-field cooled and field-cooled (ZFC-FC) magnetic curves showed a shift of the blocking temperature to higher temperatures as the content of magnetite increases in the capsules. These results are promising and contribute to a better understanding of the interaction between magnetic nanoparticles and PNS. References: [1] L. Zhang, W. Dong, H. Sun. Nanoscale 5, 7664-7684 (2013) [2] K.T. Nguyen and Y.L. Zhao. Acc. Chem. Res. 48, 3016-3025 (2015

  7. Laboratory-based testing to evaluate abuse-deterrent formulations and satisfy the Food and Drug Administration's recommendation for Category 1 Testing.

    Science.gov (United States)

    Altomare, Christopher; Kinzler, Eric R; Buchhalter, August R; Cone, Edward J; Costantino, Anthony

    The US Food and Drug Administration (FDA) considers the development of abuse-deterrent formulations of solid oral dosage forms a public health priority and has outlined a series of premarket studies that should be performed prior to submitting an application to the Agency. Category 1 studies are performed to characterize whether the abuse-deterrent properties of a new formulation can be easily defeated. Study protocols are designed to evaluate common abuse patterns of prescription medications as well as more advanced methods that have been reported on drug abuse websites and forums. Because FDA believes Category 1 testing should fully characterize the abuse-deterrent characteristics of an investigational formulation, Category 1 testing is time consuming and requires specialized laboratory resources as well as advanced knowledge of prescription medication abuse. Recent Advisory Committee meetings at FDA have shown that Category 1 tests play a critical role in FDA's evaluation of an investigational formulation. In this article, we will provide a general overview of the methods of manipulation and routes of administration commonly utilized by prescription drug abusers, how those methods and routes are evaluated in a laboratory setting, and discuss data intake, analysis, and reporting to satisfy FDA's Category 1 testing requirements.

  8. An overview of polymeric dosage forms in buccal drug delivery: State of art, design of formulations and their in vivo performance evaluation.

    Science.gov (United States)

    Fonseca-Santos, Bruno; Chorilli, Marlus

    2018-05-01

    Owing to the ease of the administration, the oral cavity is an attractive site for the delivery of drugs. The main difficulty for administration via the buccal route is an effective physiological removal mechanism of the oral cavity that takes way the formulation from the buccal site and decreases the bioavailability of drugs. The use of mucoadhesive polymers in buccal drug delivery shows assessing buccal drug permeation and absorption, however some studies bring an in vivo performance. This review points to the use of polymers in the manufacture of drug delivery systems (hydrogels, films and tablets) and shows the results of their in vivo performance tests. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Enhanced oral bioavailability of a sterol-loaded microemulsion formulation of Flammulina velutipes, a potential antitumor drug

    Science.gov (United States)

    Yi, Chengxue; Zhong, Hui; Tong, Shanshan; Cao, Xia; Firempong, Caleb K; Liu, Hongfei; Fu, Min; Yang, Yan; Feng, Yingshu; Zhang, Huiyun; Xu, Ximing; Yu, Jiangnan

    2012-01-01

    Purpose To investigate the growth inhibition activity of Flammulina velutipes sterol (FVS) against certain human cancer cell lines (gastric SGC and colon LoVo) and to evaluate the optimum microemulsion prescription, as well as the pharmacokinetics of encapsulated FVS. Methods Molecules present in the FVS isolate were identified by gas chromatography/mass spectrometry analysis. The cell viability of FVS was assessed with methyl thiazolyl tetrazolium (MTT) bioassay. Based on the solubility study, phase diagram and stability tests, the optimum prescription of F. velutipes sterol microemulsions (FVSMs) were determined, followed by FVSMs characterization, and its in vivo pharmacokinetic study in rats. Results The chemical composition of FVS was mainly ergosterol (54.8%) and 22,23-dihydroergosterol (27.9%). After 72 hours of treatment, both the FVS (half-maximal inhibitory concentration [IC50] = 11.99 μg · mL−1) and the standard anticancer drug, 5-fluorouracil (IC50 = 0.88 μg · mL−1) exhibited strong in vitro antiproliferative activity against SGC cells, with IC50 > 30.0 μg · mL−1; but the FVS performed poorly against LoVo cells (IC50 > 40.0 μg · mL−1). The optimal FVSMs prescription consisted of 3.0% medium chain triglycerides, 5.0% ethanol, 21.0% Cremophor EL and 71.0% water (w/w) with associated solubility of FVS being 0.680 mg · mL−1 as compared to free FVS (0.67 μg · mL−1). The relative oral bioavailability (area-under-the-curve values of ergosterol and 22,23-dihydroergosterol showed a 2.56-fold and 4.50-fold increase, respectively) of FVSMs (mean diameter ~ 22.9 nm) as against free FVS were greatly enhanced. Conclusion These results indicate that the FVS could be a potential candidate for the development of an anticancer drug and it is readily bioavailable via microemulsion formulations. PMID:23049254

  10. Dissolution stability studies of suspensions of prolonged-release diclofenac microcapsules prepared by the Wurster process: I. Eudragit-based formulation and possible drug-excipient interaction.

    Science.gov (United States)

    Adeyeye, M C; Mwangi, E; Katondo, B; Jain, A; Ichikawa, H; Fukumori, Y

    2005-06-01

    The aim was to evaluate possible interaction in solid and liquid state of the drug with formulation excipients consequent to very fast drug release of diclofenac-Eudragit prolonged release microcapsules. The microcapsules were prepared by drug layering on calcium carbonate cores and coated with Eudragit RS 30D and L30D-55 as previously reported. Suspension of the microcapsules was prepared using microcrystalline cellulose/sodium carboxymethyl cellulose (Avicel CL-611) as medium. In vitro dissolution testing of the suspension was done, and, based on the dissolution results, possible interaction between diclofenac and Eudragit and Avicel in the medium was studied. Powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC) analyses were performed using 1:1 binary, 1:1:1 ternary mixtures and a ratio equivalent to that in the formulation. The mixtures were prepared by mixing the dispersions--Eudragit RS 30D or L30D-55 with the drug or other components, followed by drying at 60 degrees C for 48 h. Dry mixing was done using the powder equivalents of the polymers, Eudragit RS PO and L100-55, Avicel and calcium carbonate. In vitro dissolution of the suspended microcapsules showed a very fast release after 48 h (T50 = microcapsules (T50 = 6 h). DSC curves of the formulation components or microcapsules did not show the characteristic endothermic peak of diclofenac at 287 degrees C. Powder X-ray diffraction of the binary or ternary mixtures of diclofenac and Eudragit polymers indicated reduction, shift or modification of the crystalline peaks of the drug or excipients at 2theta of 12 degrees and 18 degrees , suggestive of interaction. Some changes in drug peak characteristics at 18 degrees and 23 degrees were observed for Avicel/drug mixture, though not significant. The DSC curves of the binary mixture of diclofenac co-dried with liquid forms of Eudragit (i.e. RS 30D or L30D-55) revealed greater interaction compared to the curves of drug and powdered forms of

  11. Simultaneous densitometric determination of anthelmintic drug albendazole and its metabolite albendazole sulfoxide by HPTLC in human plasma and pharmaceutical formulations.

    Science.gov (United States)

    Pandya, Jui J; Sanyal, Mallika; Shrivastav, Pranav S

    2017-09-01

    A new, simple, accurate and precise high-performance thin-layer chromatographic method has been developed and validated for simultaneous determination of an anthelmintic drug, albendazole, and its active metabolite albendazole, sulfoxide. Planar chromatographic separation was performed on aluminum-backed layer of silica gel 60G F 254 using a mixture of toluene-acetonitrile-glacial acetic acid (7.0:2.9:0.1, v/v/v) as the mobile phase. For quantitation, the separated spots were scanned densitometrically at 225 nm. The retention factors (R f ) obtained under the established conditions were 0.76 ± 0.01 and 0.50 ± 0.01 and the regression plots were linear (r 2  ≥ 0.9997) in the concentration ranges 50-350 and 100-700 ng/band for albendazole and albendazole sulfoxide, respectively. The method was validated for linearity, specificity, accuracy (recovery) and precision, repeatability, stability and robustness. The limit of detection and limit of quantitation found were 9.84 and 29.81 ng/band for albendazole and 21.60 and 65.45 ng/band for albendazole sulfoxide, respectively. For plasma samples, solid-phase extraction of analytes yielded mean extraction recoveries of 87.59 and 87.13% for albendazole and albendazole sulfoxide, respectively. The method was successfully applied for the analysis of albendazole in pharmaceutical formulations with accuracy ≥99.32%. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Preclinical pilot study monitoring topical drug penetration and dermal bioavailability of a peptidase inhibitor from different galenic formulations into pig dermis, using cutaneous microdialysis.

    Science.gov (United States)

    Quist, S R; Heimburg, A; Bank, U; Mahnkopf, D; Koch, G; Gollnick, H; Täger, M; Ansorge, S

    2017-08-01

    Cutaneous microdialysis (CM) is an ex vivo technique that allows study of tissue chemistry, including bioavailability of actual tissue concentration of unbound drug in the interstitial fluid of the body. To test the penetration and dermal bioavailability of galenic formulations of the small-molecule IP10.C8, a dual-protease inhibitor of the dipeptidyl peptidase and aminopeptidase families. Using CM, we tested the penetration and dermal bioavailability of IP10.C8 into the dermis and subcutis of pigs, and determined the tissue concentration of IP10.C8 enzymatically, using an enzyme activity assay (substrate Gly-Pro-pNA) and high performance liquid chromatography. Dermal bioavailability was enhanced by using microemulsion or the addition of the penetration enhancer oleic acid to a hydroxyethylcellulose (HEC) gel formulation. Dermal bioavailability was also enhanced when galenic formulations were prepared with higher pH (7.5 vs. 6.5) or higher drug concentration (5% vs. 1%) in HEC gel. It seems possible, using CM for topical skin penetration testing in anaesthetized domestic pigs, to test the bioavailability of newly designed drugs. However, the experimental time is limited due to the anaesthesia, and is dependent on drug recovery. Validation of this technique for routine use is challenging, and more experiments are needed to validate this preclinical set-up. © 2017 British Association of Dermatologists.

  13. Montmorillonite-lipid hybrid carriers for ionizable and neutral poorly water-soluble drugs: Formulation, characterization and in vitro lipolysis studies.

    Science.gov (United States)

    Dening, Tahnee J; Rao, Shasha; Thomas, Nicky; Prestidge, Clive A

    2017-06-30

    Lipid-based formulations (LBFs) are a popular strategy for enhancing the gastrointestinal solubilization and absorption of poorly water-soluble drugs. In light of this, montmorillonite-lipid hybrid (MLH) particles, composed of medium-chain triglycerides, lecithin and montmorillonite clay platelets, have been developed as a novel solid-state LBF. Owing to the unique charge properties of montmorillonite, whereby the clay platelet surfaces carry a permanent negative charge and the platelet edges carry a pH-dependent charge, three model poorly water-soluble drugs with different charge properties; blonanserin (weak base, pKa 7.7), ibuprofen (weak acid, pKa 4.5) and fenofibrate (neutral), were formulated as MLH particles and their performance during biorelevant in vitro lipolysis at pH 7.5 was investigated. For blonanserin, drug solubilization during in vitro lipolysis was significantly reduced 3.4-fold and 3.2-fold for MLH particles in comparison to a control lipid solution and silica-lipid hybrid (SLH) particles, respectively. It was hypothesized that strong electrostatic interactions between the anionic montmorillonite platelet surfaces and cationic blonanserin molecules were responsible for the inferior performance of MLH particles. In contrast, no significant influence on drug solubilization was observed for ibuprofen- and fenofibrate-loaded MLH particles. The results of the current study indicate that whilst MLH particles are a promising novel formulation strategy for poorly water-soluble drugs, drug ionization tendency and the potential for drug-clay interactions must be taken into consideration to ensure an appropriate performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Use of a screening method to determine excipients which optimize the extent and stability of supersaturated drug solutions and application of this system to solid formulation design.

    Science.gov (United States)

    Vandecruys, Roger; Peeters, Jef; Verreck, Geert; Brewster, Marcus E

    2007-09-05

    Assessing the effect of excipients on the ability to attain and maintain supersaturation of drug-based solution may provide useful information for the design of solid formulations. Judicious selection of materials that affect either the extent or stability of supersaturating drug delivery systems may be enabling for poorly soluble drug candidates or other difficult-to-formulate compounds. The technique suggested herein is aimed at providing a screening protocol to allow preliminary assessment of these factors based on small to moderate amounts of drug substance. A series of excipients were selected that may, by various mechanisms, affect supersaturation including pharmaceutical polymers such as HMPC and PVP, surfactants such as Polysorbate 20, Cremophor RH40 and TPGS and hydrophilic cyclodextrins such as HPbetaCD. Using a co-solvent based method and 25 drug candidates, the data suggested, on the whole, that the surfactants and the selected cyclodextrin seemed to best augment the extent of supersaturation but had variable benefits as stabilizers, while the pharmaceutical polymers had useful effect on supersaturation stability but were less helpful in increasing the extent of supersaturation. Using these data, a group of simple solid dosage forms were prepared and tested in the dog for one of the drug candidates. Excipients that gave the best extent and stability for the formed supersaturated solution in the screening assay also gave the highest oral bioavailability in the dog.

  15. Intrinsically superparamagnetic Fe-hydroxyapatite nanoparticles positively influence osteoblast-like cell behaviour

    Science.gov (United States)

    2012-01-01

    Background Superparamagnetic nanoparticles (MNPs) have been progressively explored for their potential in biomedical applications and in particular as a contrast agent for diagnostic imaging, for magnetic drug delivery and more recently for tissue engineering applications. Considering the importance of having safe MNPs for such applications, and the essential role of iron in bone remodelling, this study developed and analysed novel biocompatible and bioreabsorbable superparamagnetic nanoparticles, that avoid the use of poorly tolerated magnetite based nanoparticles, for bone tissue engineering applications. Results MNPs were obtained by doping hydroxyapatite (HA) with Fe ions, by directly substituting Fe2+ and Fe3+ into the HA structure yielding superparamagnetic bioactive phase. In the current study, we have investigated the effects of increasing concentrations (2000 μg/ml; 1000 μg/ml; 500 μg/ml; 200 μg/ml) of FeHA MNPs in vitro using Saos-2 human osteoblast-like cells cultured for 1, 3 and 7 days with and without the exposure to a static magnetic field of 320 mT. Results demonstrated not only a comparable osteoblast viability and morphology, but increased in cell proliferation, when compared to a commercially available Ha nanoparticles, even with the highest dose used. Furthermore, FeHA MNPs exposure to the static magnetic field resulted in a significant increase in cell proliferation throughout the experimental period, and higher osteoblast activity. In vivo preliminary results demonstrated good biocompatibility of FeHA superparamagnetic material four weeks after implantation into a critical size lesion of the rabbit condyle. Conclusions The results of the current study suggest that these novel FeHA MNPs may be particularly relevant for strategies of bone tissue regeneration and open new perspectives for the application of a static magnetic field in a clinical setting of bone replacement, either for diagnostic imaging or magnetic drug delivery

  16. Transdermal delivery of diclofenac using water-in-oil microemulsion: formulation and mechanistic approach of drug skin permeation.

    Science.gov (United States)

    Thakkar, Priyanka J; Madan, Parshotam; Lin, Senshang

    2014-05-01

    The objective of the present investigation was to enhance skin permeation of diclofenac using water-in-oil microemulsion and to elucidate its skin permeation mechanism. The w/o microemulsion formulations were selected based on constructed pseudoternary phase diagrams depending on water solubilization capacity and thermodynamic stability. These formulations were also subjected to physical characterization based on droplet size, viscosity, pH and conductivity. Permeation of diclofenac across rat skin using side-by-side permeation cells from selected w/o microemulsion formulations were evaluated and compared with control formulations. The selected w/o microemulsion formulations were thermodynamically stable, and incorporation of diclofenac sodium into microemulsion did not affect the phase behavior of system. All microemulsion formulations had very low viscosity (11-17 cps) and droplet size range of 30-160 nm. Microemulsion formulations exhibited statistically significant increase in diclofenac permeation compared to oily solution, aqueous solution and oil-Smix solution. Higher skin permeation of diclofenac was observed with low Smix concentration and smaller droplet size. Increase in diclofenac loading in aqueous phase decreased the partition of diclofenac. Diclofenac from the oil phase of microemulsion could directly partition into skin, while diclofenac from the aqueous droplets was carried through skin by carrier effect.

  17. Drug utilization review of potassium chloride injection formulations available in a private hospital in kuching, sarawak, malaysia.

    Science.gov (United States)

    Melissa, Mohammad Hirman; Azmi, Sarriff

    2013-07-01

    The concentrated potassium chloride injection is a high-alert medication and replacing it with a pre-mixed formulation can reduce the risks associated with its use. The aim of this study was to determine the clinical characteristics of patients receiving different potassium chloride formulations available at a private institution. The study also assessed the effectiveness and safety of pre-mixed formulations in the correction of hypokalaemia. This was a retrospective observational study consisting of 296 cases using concentrated and pre-mixed potassium chloride injections in 2011 in a private hospital in Kuching, Sarawak, Malaysia. There were 135 (45.6%) cases that received concentrated potassium chloride, and 161 (54.4%) cases that received pre-mixed formulations. The patients' clinical characteristics that were significantly related to the utilization of the different formulations were diagnosis (P < 0.001), potassium serum blood concentration (P < 0.05), and fluid overload risk (P < 0.05). The difference observed for the cases that achieved or maintained normokalaemia was statistically insignificant (P = 0.172). Infusion-related adverse effects were seen more in pre-mixes compared to concentrated formulations (6.8% versus 2.2%, P < 0.05). This study provides insight into the utilization of potassium chloride injections at this specific institution. The results support current recommendations to use pre-mixed formulations whenever possible.

  18. Lipid-Based Formulations Can Enable the Model Poorly Water-Soluble Weakly Basic Drug Cinnarizine to Precipitate in an Amorphous-Salt Form during in Vitro Digestion

    DEFF Research Database (Denmark)

    Khan, Jamal; Rades, Thomas; Boyd, Ben J

    2016-01-01

    The tendency for poorly water-soluble weakly basic drugs to precipitate in a noncrystalline form during the in vitro digestion of lipid-based formulations (LBFs) was linked to an ionic interaction between drug and fatty acid molecules produced upon lipid digestion. Cinnarizine was chosen as a model...... from the starting free base crystalline material to the hydrochloride salt, thus supporting the case that ionic interactions between weak bases and fatty acid molecules during digestion are responsible for producing amorphous-salts upon precipitation. The conclusion has wide implications...... weakly basic drug and was dissolved in a medium-chain (MC) LBF, which was subject to in vitro lipolysis experiments at various pH levels above and below the reported pKa value of cinnarizine (7.47). The solid-state form of the precipitated drug was analyzed using X-ray diffraction (XRD), Fourier...

  19. Magnetoviscoelastic characteristics of superparamagnetic oxides (Fe, Ni) based ferrofluids

    Science.gov (United States)

    Katiyar, Ajay; Dhar, Purbarun; Nandi, Tandra; Das, Sarit K.

    2017-08-01

    Ferrofluids have been popular among the academic and scientific communities owing to their intelligent physical characteristics under external stimuli and are in fact among the first nanotechnology products to be employed in real world applications. However, studies on the magnetoviscoelastic behavior of concentrated ferrofluids, especially of superparamagnetic oxides of iron and nickel are rare. The present article comprises the formulation of magneto-colloids utilizing the three various metal oxides nanoparticles viz. Iron (II, III) oxide (Fe3O4), Iron (III) oxide (Fe2O3) and Nickel oxide (NiO) in oil. Iron (II, III) oxide based colloids demonstrate high magnetoviscous characteristics over the other oxides based colloids under external magnetic fields. The maximum magnitude of yield stress and viscosity is found to be 3.0 kPa and 2.9 kPa.s, respectively for iron (II, III) oxide based colloids at 2.6 vol% particle concentration and 1.2 T magnetic field. Experimental investigations reveal that the formulated magneto-nanocolloids are stable, even in high magnetic fields and almost reversible when exposed to rising and drop of magnetic fields of the same magnitude. Observations also reveal that the elastic behavior dominates over the viscous behavior with enhanced relaxation and creep characteristics under the magnetic field. The effect of temperature on viscosity and yield stress of magneto-nanocolloids under magnetic fields has also been discussed. Thus, the present findings have potential applications in various fields such as electromagnetic clutch and brakes of automotive, damping, sealing, optics, nanofinishing etc.

  20. Understanding and optimizing the dual excipient functionality of sodium lauryl sulfate in tablet formulation of poorly water soluble drug: wetting and lubrication.

    Science.gov (United States)

    Aljaberi, Ahmad; Chatterji, Ashish; Dong, Zedong; Shah, Navnit H; Malick, Waseem; Singhal, Dharmendra; Sandhu, Harpreet K

    2013-01-01

    To evaluate and optimize sodium lauryl sulfate (SLS) and magnesium stearate (Mg.St) levels, with respect to dissolution and compaction, in a high dose, poorly soluble drug tablet formulation. A model poorly soluble drug was formulated using high shear aqueous granulation. A D-optimal design was used to evaluate and model the effect of granulation conditions, size of milling screen, SLS and Mg.St levels on tablet compaction and ejection. The compaction profiles were generated using a Presster(©) compaction simulator. Dissolution of the kernels was performed using a USP dissolution apparatus II and intrinsic dissolution was determined using a stationary disk system. Unlike kernels dissolution which failed to discriminate between tablets prepared with various SLS contents, the intrinsic dissolution rate showed that a SLS level of 0.57% was sufficient to achieve the required release profile while having minimal effect on compaction. The formulation factors that affect tablet compaction and ejection were identified and satisfactorily modeled. The design space of best factor setting to achieve optimal compaction and ejection properties was successfully constructed by RSM analysis. A systematic study design helped identify the critical factors and provided means to optimize the functionality of key excipient to design robust drug product.

  1. Permanent magnet system to guide superparamagnetic particles

    Science.gov (United States)

    Baun, Olga; Blümler, Peter

    2017-10-01

    A new concept of using permanent magnet systems for guiding superparamagnetic nano-particles on arbitrary trajectories over a large volume is proposed. The basic idea is to use one magnet system which provides a strong, homogeneous, dipolar magnetic field to magnetize and orient the particles, and a second constantly graded, quadrupolar field, superimposed on the first, to generate a force on the oriented particles. In this configuration the motion of the particles is driven predominantly by the component of the gradient field which is parallel to the direction of the homogeneous field. As a result, particles are guided with constant force and in a single direction over the entire volume. The direction is simply adjusted by varying the angle between quadrupole and dipole. Since a single gradient is impossible due to Gauß' law, the other gradient component of the quadrupole determines the angular deviation of the force. However, the latter can be neglected if the homogeneous field is stronger than the local contribution of the quadrupole field. A possible realization of this idea is a coaxial arrangement of two Halbach cylinders. A dipole to evenly magnetize and orient the particles, and a quadrupole to generate the force. The local force was calculated analytically for this particular geometry and the directional limits were analyzed and discussed. A simple prototype was constructed to demonstrate the principle in two dimensions on several nano-particles of different size, which were moved along a rough square by manual adjustment of the force angle. The observed velocities of superparamagnetic particles in this prototype were always several orders of magnitude higher than the theoretically expected value. This discrepancy is attributed to the observed formation of long particle chains as a result of their polarization by the homogeneous field. The magnetic moment of such a chain is then the combination of that of its constituents, while its hydrodynamic radius

  2. Audits of radiopharmaceutical formulations

    International Nuclear Information System (INIS)

    Castronovo, F.P. Jr.

    1992-01-01

    A procedure for auditing radiopharmaceutical formulations is described. To meet FDA guidelines regarding the quality of radiopharmaceuticals, institutional radioactive drug research committees perform audits when such drugs are formulated away from an institutional pharmacy. All principal investigators who formulate drugs outside institutional pharmacies must pass these audits before they can obtain a radiopharmaceutical investigation permit. The audit team meets with the individual who performs the formulation at the site of drug preparation to verify that drug formulations meet identity, strength, quality, and purity standards; are uniform and reproducible; and are sterile and pyrogen free. This team must contain an expert knowledgeable in the preparation of radioactive drugs; a radiopharmacist is the most qualified person for this role. Problems that have been identified by audits include lack of sterility and apyrogenicity testing, formulations that are open to the laboratory environment, failure to use pharmaceutical-grade chemicals, inadequate quality control methods or records, inadequate training of the person preparing the drug, and improper unit dose preparation. Investigational radiopharmaceutical formulations, including nonradiolabeled drugs, must be audited before they are administered to humans. A properly trained pharmacist should be a member of the audit team

  3. Magnetoviscoelastic characteristics of superparamagnetic oxides (Fe, Ni) based ferrofluids

    Energy Technology Data Exchange (ETDEWEB)

    Katiyar, Ajay, E-mail: ajay_k@ric.drdo.in [Research and Innovation Centre (DRDO), IIT Madras Research Park, Chennai 600113 (India); Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Dhar, Purbarun [Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001 (India); Nandi, Tandra [Defence Materials and Stores Research and Development Establishment (DRDO), G.T. Road, Kanpur 208013 (India); Das, Sarit K. [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001 (India)

    2017-08-15

    Highlights: • The magnetoviscous effect in ferrofluids in the presence of magnetic field is investigated. • Oxides of Fe and Ni are dispersed in oil to formulate the ferrofluids. • Drastic enhancement in the yield stress and viscosity under the magnetic field is observed for Fe{sub 3}O{sub 4}-based ferrofluids. • Viscoelastic properties of the formulated ferrofluids demonstrate the strong function of magnetic field. • The increase in temperature reduces the magneto-viscous effect in ferrofluids under the magnetic field. - Abstract: Ferrofluids have been popular among the academic and scientific communities owing to their intelligent physical characteristics under external stimuli and are in fact among the first nanotechnology products to be employed in real world applications. However, studies on the magnetoviscoelastic behavior of concentrated ferrofluids, especially of superparamagnetic oxides of iron and nickel are rare. The present article comprises the formulation of magneto-colloids utilizing the three various metal oxides nanoparticles viz. Iron (II, III) oxide (Fe{sub 3}O{sub 4}), Iron (III) oxide (Fe{sub 2}O{sub 3}) and Nickel oxide (NiO) in oil. Iron (II, III) oxide based colloids demonstrate high magnetoviscous characteristics over the other oxides based colloids under external magnetic fields. The maximum magnitude of yield stress and viscosity is found to be 3.0 kPa and 2.9 kPa.s, respectively for iron (II, III) oxide based colloids at 2.6 vol% particle concentration and 1.2 T magnetic field. Experimental investigations reveal that the formulated magneto-nanocolloids are stable, even in high magnetic fields and almost reversible when exposed to rising and drop of magnetic fields of the same magnitude. Observations also reveal that the elastic behavior dominates over the viscous behavior with enhanced relaxation and creep characteristics under the magnetic field. The effect of temperature on viscosity and yield stress of magneto

  4. Shortening the decade-long gap between adult and paediatric drug formulations: a new framework based on the HIV experience in low- and middle-income countries.

    Science.gov (United States)

    Penazzato, Martina; Lewis, Linda; Watkins, Melynda; Prabhu, Vineet; Pascual, Fernando; Auton, Martin; Kreft, Wesley; Morin, Sébastien; Vicari, Marissa; Lee, Janice; Jamieson, David; Siberry, George K

    2018-02-01

    Despite the coordinated efforts by several stakeholders to speed up access to HIV treatment for children, development of optimal paediatric formulations still lags 8 to 10 years behind that of adults, due mainly to lack of market incentives and technical complexities in manufacturing. The small and fragmented paediatric market also hinders launch and uptake of new formulations. Moreover, the problems affecting HIV similarly affect other disease areas where development and introduction of optimal paediatric formulations is even slower. Therefore, accelerating processes for developing and commercializing optimal paediatric drug formulations for HIV and other disease areas is urgently needed. The Global Accelerator for Paediatric Formulations (GAP-f) is an innovative collaborative model that will accelerate availability of optimized treatment options for infectious diseases, such as HIV, tuberculosis and viral hepatitis, affecting children in low- and middle-income countries (LMICs). It builds on the HIV experience and existing efforts in paediatric drug development, formalizing collaboration between normative bodies, research networks, regulatory agencies, industry, supply and procurement organizations and funding bodies. Upstream, the GAP-f will coordinate technical support to companies to design and study optimal paediatric formulations, harmonize efforts with regulators and incentivize manufacturers to conduct formulation development. Downstream, the GAP-f will reinforce coordinated procurement and communication with suppliers. The GAP-f will be implemented in a three-stage process: (1) development of a strategic framework and promotion of key regulatory efficiencies; (2) testing of feasibility and results, building on the work of existing platforms such as the Paediatric HIV Treatment Initiative (PHTI) including innovative approaches to incentivize generic development and (3) launch as a fully functioning structure. GAP-f is a key partnership example enhancing

  5. Washing effect on superparamagnetic iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Laura-Karina Mireles

    2016-06-01

    Full Text Available Much recent research on nanoparticles has occurred in the biomedical area, particularly in the area of superparamagnetic iron oxide nanoparticles (SPIONs; one such area of research is in their use as magnetically directed prodrugs. It has been reported that nanoscale materials exhibit properties different from those of materials in bulk or on a macro scale [1]. Further, an understanding of the batch-to-batch reproducibility and uniformity of the SPION surface is essential to ensure safe biological applications, as noted in the accompanying article [2], because the surface is the first layer that affects the biological response of the human body. Here, we consider a comparison of the surface chemistries of a batch of SPIONs, before and after the supposedly gentle process of dialysis in water.

  6. Switchable cell trapping using superparamagnetic beads

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, M. T.; Smith, K. H.; Real, M. E.; Bashir, M. A.; Fry, P. W.; Fischer, P.; Im, M.-Y.; Schrefl, T.; Allwood, D. A.; Haycock, J. W.

    2010-04-30

    Ni{sub 81}Fe{sub 19} microwires are investigated as the basis of a switchable template for positioning magnetically-labeled neural Schwann cells. Magnetic transmission X-ray microscopy and micromagnetic modeling show that magnetic domain walls can be created or removed in zigzagged structures by an applied magnetic field. Schwann cells containing superparamagnetic beads are trapped by the field emanating from the domain walls. The design allows Schwann cells to be organized on a surface to form a connected network and then released from the surface if required. As aligned Schwann cells can guide nerve regeneration, this technique is of value for developing glial-neuronal co-culture models in the future treatment of peripheral nerve injuries.

  7. SOLUBILITY AND BIOAVAILABILITY ENHANCEMENT STRATEGIES FOR EFFECTIVE DELIVERY OF POORLY WATER SOLUBLE DRUGS BY NANO FORMULATIONS AND SOLID DISPERSIONS

    OpenAIRE

    Rayapolu Ranga Goud*, Gunnala Krishnaveni, Girija Prasad Patro

    2018-01-01

    For the ancient few years, there has been a substantial research done on diverse methodologies for poorly water soluble and lipophilic drugs. More in modern times voluminous molecules cannot be distributed due to low solubility. Now a day frequently, particulate vesicle systems such as nanoparticles, liposomes, microspheres, niosomes, pronisomes, ethosomes, and proliposomes have been used as drug carriers. Drug delivery designates the technique and methodology to conveying medications or drug...

  8. Novel in situ self-assembly nanoparticles for formulating a poorly water-soluble drug in oral solid granules, improving stability, palatability, and bioavailability

    Directory of Open Access Journals (Sweden)

    Guo S

    2016-04-01

    Full Text Available Shujie Guo,1 Kevin Pham,2 Diana Li,2 Scott R Penzak,3 Xiaowei Dong2 1State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China; 2Department of Pharmaceutical Sciences, 3Department of Pharmacotherapy, University of North Texas Health Science Center, Fort Worth, TX, USA Purpose: The purpose of this study was to develop a novel lipid-based nanotechnology to formulate poorly water-soluble drugs in oral solid granules to improve stability, palatability, and bioavailability. Materials and methods: In one method, we prepared ritonavir (RTV nanoparticles (NPs by a microemulsion-precursor method and then converted the RTV NPs to solid granules by wet granulation to produce RTV NP-containing granules. In the other innovative method, we did not use water in the formulation preparation, and discovered novel in situ self-assembly nanoparticles (ISNPs. We prepared RTV ISNP granules that did not initially contain NPs, but spontaneously produced RTV ISNPs when the granules were introduced to water with gentle agitation. We fully characterized these RTV nanoformulations. We also used rats to test the bioavailability of RTV ISNP granules. Finally, an Astree electronic tongue was used to assess the taste of the RTV ISNP granules. Results: RTV NP-containing granules only had about 1% drug loading of RTV in the solid granules. In contrast, RTV ISNP granules achieved over 16% drug loading and were stable at room temperature over 24 weeks. RTV ISNPs had particle size between 160 nm and 300 nm with narrow size distribution. RTV ISNPs were stable in simulated gastric fluid for 2 hours and in simulated intestinal fluid for another 6 hours. The data from the electronic tongue showed that the RTV ISNP granules were similar in taste to blank ISNP granules, but were much different from RTV solution. RTV ISNP granules increased RTV bioavailability

  9. Formulation of a poorly water-soluble drug in sustained-release hollow granules with a high viscosity water-soluble polymer using a fluidized bed rotor granulator.

    Science.gov (United States)

    Asada, Takumi; Yoshihara, Naoki; Ochiai, Yasushi; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2018-04-25

    Water-soluble polymers with high viscosity are frequently used in the design of sustained-release formulations of poorly water-soluble drugs to enable complete release of the drug in the gastrointestinal tract. Tablets containing matrix granules with a water-soluble polymer are preferred because tablets are easier to handle and the multiple drug-release units of the matrix granules decreases the influences of the physiological environment on the drug. However, matrix granules with a particle size of over 800 μm sometimes cause a content uniformity problem in the tableting process because of the large particle size. An effective method of manufacturing controlled-release matrix granules with a smaller particle size is desired. The aim of this study was to develop tablets containing matrix granules with a smaller size and good controlled-release properties, using phenytoin as a model poorly water-soluble drug. We adapted the recently developed hollow spherical granule granulation technology, using water-soluble polymers with different viscosities. The prepared granules had an average particle size of 300 μm and sharp particle size distribution (relative width: 0.52-0.64). The values for the particle strength of the granules were 1.86-1.97 N/mm 2 , and the dissolution profiles of the granules were not affected by the tableting process. The dissolution profiles and the blood concentration levels of drug released from the granules depended on the viscosity of the polymer contained in the granules. We succeeded in developing the desired controlled-release granules, and this study should be valuable in the development of sustained-release formulations of poorly water-soluble drugs. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Enhancement of solubility and bioavailability of ambrisentan by solid dispersion using Daucus carota as a drug carrier: formulation, characterization, in vitro, and in vivo study.

    Science.gov (United States)

    Deshmane, Subhash; Deshmane, Snehal; Shelke, Santosh; Biyani, Kailash

    2018-06-01

    Ambrisentan is an US FDA approved drug, it is the second oral endothelin A receptor antagonist known for the treatment of pulmonary arterial hypertension, but its oral administration is limited due to its poor water solubility. Hence, the objective of the investigation was focused on enhancement of solubility and bioavailability of ambrisentan by solid dispersion technique using natural Daucus carota extract as drug carrier. Drug carrier was evaluated for solubility, swelling index, viscosity, angle of repose, hydration capacity, and acute toxicity test (LD 50 ). Ambrisentan was studied for the saturation solubility, phase solubility, and Gibbs free energy change. Compatibility of drug and the natural carrier was confirmed by DSC, FTIR, and XRD. Solid dispersions were evaluated for drug content, solubility, morphology, in vitro, and in vivo study. Screening of the natural carrier showed the desirable properties like water solubility, less swelling index, less viscosity, and acute toxicity study revealed no any clinical symptoms of toxicity. Drug and carrier interaction study confirmed the compatibility to consider its use in the formulation. Formed particles were found to be spherical with smooth surface. In vitro studies revealed higher drug release from the solid dispersion than that of the physical mixture. Bioavailability study confirms the increased absorption and bioavailability by oral administration of solid dispersion. Hence, it can be concluded that the natural Daucus carota extract can be the better alternative source for the preparation of solid dispersion and/or other dosage forms for improving solubility and bioavailability.

  11. Comparative bioavailability of rifampicin, isoniazid and pyrazinamide from a four drug fixed dose combination with separate formulations at the same dose levels.

    Science.gov (United States)

    Agrawal, Shrutidevi; Singh, Inderjit; Kaur, Kanwal Jit; Bhade, Shantaram R; Kaul, Chaman Lal; Panchagnula, Ramesh

    2004-05-19

    Fixed dose combination (FDC) formulations became popular in the treatment of tuberculosis (TB) because of the better patient compliance, reduced risk of monotherapy and emergence of drug resistance in contrast to treatment with separate formulations of two to four first-line drugs. However, its successful implementation in national programs is limited by probable bioinequivalency of rifampicin if present in FDC form. In this regard, World Health Organization (WHO) and International Union Against Tuberculosis and Lung Disease (IUATLD) recommend FDCs only of proven bioavailability. Hence, bioequivalence study of four drug FDC tablet was conducted using 22 healthy male volunteers according to WHO recommended protocol to determine bioavailability of rifampicin, isoniazid and pyrazinamide compared to standard separate combination at the same dose level. The study was designed as two period, two treatment crossover experiment with a washout period of 1 week. Bioequivalence of rifampicin was estimated by plasma and urinary method for both rifampicin and its active metabolite, des-acetyl rifampicin whereas isoniazid and pyrazinamide were estimated from plasma. Mean concentration time profiles and all the pharmacokinetic parameters of rifampicin, isoniazid and pyrazinamide from FDC tablet were comparable to individual formulations and passed the bioequivalence test with power of the test above 95%. Further, bioequivalence of both rifampicin and isoniazid shows that in vitro interaction of rifampicin and isoniazid is clinically insignificant. Thus, it was concluded that FDC formulation is bioequivalent for rifampicin, isoniazid and pyrazinamide and ensures the successful treatment of TB without compromising therapeutic efficacy of any of these components of anti-TB therapy.

  12. Transdermal solid delivery of epigallocatechin-3-gallate using self-double-emulsifying drug delivery system as vehicle: Formulation, evaluation and vesicle-skin interaction.

    Science.gov (United States)

    Hu, Caibiao; Gu, Chengyu; Fang, Qiao; Wang, Qiang; Xia, Qiang

    2016-02-01

    The present study investigated a self-double-emulsifying drug delivery system loaded with epigallocatechin-3-gallate to improve epigallocatechin-3-gallate skin retention. The long chain solid lipids (cetostearyl alcohol) and macadamia oil were utilized as a carrier to deliver the bioactive ingredient. Response surface methodology was used to optimize the formulation, and the solid lipid to total lipid weight ratio, concentration of epigallocatechin-3-gallate and hydrophilic surfactant on skin retention were found to be the principal factors. The optimum formulation with high encapsulation efficiency (95.75%), self-double-emulsification performance (99.58%) and skin retention (87.24%) were derived from the fitted models and experimentally examined, demonstrating a reasonable agreement between experimental and predicted values. Epigallocatechin-3-gallate-self-double-emulsifying drug delivery system was found to be stable for 3 months. Transdermal studies could explain a higher skin diffusion of epigallocatechin-3-gallate from the self-double-emulsifying drug delivery system compared with EGCG aqueous solution. In vitro cytotoxicity showed that epigallocatechin-3-gallate-self-double-emulsifying drug delivery system did not exert hazardous effect on L929 cells up to 1:10. © The Author(s) 2015.

  13. Chondroitin sulfate-capped super-paramagnetic iron oxide nanoparticles as potential carriers of doxorubicin hydrochloride.

    Science.gov (United States)

    Mallick, Neha; Anwar, Mohammed; Asfer, Mohammed; Mehdi, Syed Hassan; Rizvi, Mohammed Moshahid Alam; Panda, Amulya Kumar; Talegaonkar, Sushama; Ahmad, Farhan Jalees

    2016-10-20

    Chondroitin-4-sulfate (CS), a glycosaminoglycan, was used to prepare CS-capped super-paramagnetic iron oxide nanoparticles, which were further employed for loading a water-soluble chemotherapeutic agent (doxorubicin hydrochloride, DOX). CS-capped SPIONs have potential biomedical application in cancer targeting. The optimized formulation had a hydrodynamic size of 91.2±0.8nm (PDI; 0.228±0.004) and zeta potential of -49.1±1.66mV. DOX was loaded onto the formulation up to 2% (w/w) by physical interaction with CS. TEM showed nano-sized particles having a core-shell structure. XRD confirmed crystal phase of iron oxide. FT-IR conceived the interaction of iron oxide with CS as bidentate chelation and also confirmed DOX loading. Vibration sample magnetometry confirmed super-paramagnetic nature of nanoparticles, with saturation magnetization of 0.238emug(-1). In vitro release profile at pH 7.4 showed that 96.67% of DOX was released within 24h (first order kinetics). MTT assay in MCF7 cells showed significantly higher (p<0.0001) cytotoxicity for DOX in SPIONs than DOX solution (IC50 values 6.294±0.4169 and 11.316±0.1102μgmL(-1), respectively). Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Influence of different formulations and process parameters during the preparation of drug-loaded PLGA microspheres evaluated by multivariate data analysis

    Directory of Open Access Journals (Sweden)

    Vysloužil Jakub

    2014-12-01

    Full Text Available The main objective of this study was to evaluate the influence of the formulation and process parameters on PLGA microparticles containing a practically insoluble model drug (ibuprofen prepared by the o/w solvent evaporation method. Multivariate data analysis was used. The effects of altered stirring speed of a mechanical stirrer (600, 1000 rpm, emulsifier concentrations (PVA concentration 0.1 %, 1 % and solvent selection (dichloromethane, ethyl acetate on microparticle characteristics (encapsulation efficiency, drug loading, burst effect were observed. It was found that with increased stirring speed, the PVA concentration or the use of ethyl acetate had a significantly negative effect on encapsulation efficiency. In addition, ethyl acetate had an adverse effect on the burst effect, while increased stirring speed had the opposite effect. Drug load was not affected by any particular variable, but rather by the interactions of evaluated variables.

  15. Selective manipulation of superparamagnetic beads by a magnetic microchip

    KAUST Repository

    Gooneratne, Chinthaka Pasan; Yassine, Omar; Giouroudi, Ioanna; Kosel, Jü rgen

    2013-01-01

    In this paper, a magnetic microchip (MMC) is presented, to first trap and then selectively manipulate individual, superparamagnetic beads (SPBs) to another trapping site. Trapping sites are realized through soft magnetic micro disks made of Ni80Fe20

  16. Effects of PEG tethering chain length of vitamin E TPGS with a Herceptin-functionalized nanoparticle formulation for targeted delivery of anticancer drugs.

    Science.gov (United States)

    Zhao, Jing; Feng, Si-Shen

    2014-03-01

    Drug formulation by ligand conjugated nanoparticles of biodegradable polymers has become one of the most important strategies in drug targeting. We have developed in our previous work nanoparticles of a mixture of two vitamin E TPGS based copolymers PLA-TPGS and TPGS-TOOH with the latter for Herceptin conjugation for targeted delivery of anticancer drugs such as docetaxel to the cancer cells of human epidermal growth factor receptor 2 (HER2) overexpression. In this research, we investigated the effects of the PEG chain length in TPGS, which is in fact a PEGylated vitamin E, on the cellular uptake and cytotoxicity of the drug formulated in the Herceptin-conjugated nanoparticles of PLA-TPGS/TPGS-COOH blend (NPs). Such NPs of PEG1000, PEG2000, PEG3350 and PEG5000, i.e. the PEG of molecule weight 1000, 2000, 3350 and 5000, were prepared by the nanoprecipitation method and characterized for their size and size distribution, drug loading, surface morphology, surface charge and surface chemistry as well as in vitro drug release profile, cellular uptake and cytotoxicity. We found among such nanoparticles, those of PEG1000, i.e. of the shortest PEG tethering chain length, could result in the best therapeutic effects, which are 24.1%, 37.3%, 38.1% more efficient in cellular uptake and 68.1%, 90%, 92.6% lower in IC50 (thus higher in cytotoxicity) than the Herceptin-conjugated nanoparticles of PLA-TPGS/TPGS-COOH blend of PEG2000, PEG3350 and PEG5000 respectively in treatment of SK-BR-3 cancer cells which are of high HER2 overexpression. We provided a theoretical explanation from surface mechanics and thermodynamics for endocytosis of nanoparticles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Improving co-amorphous drug formulations by the addition of the highly water soluble amino acid proline

    DEFF Research Database (Denmark)

    Jensen, Katrine Birgitte Tarp; Löbmann, Korbinian; Rades, Thomas

    2014-01-01

    Co-amorphous drug amino acid mixtures were previously shown to be a promising approach to create physically stable amorphous systems with the improved dissolution properties of poorly water-soluble drugs. The aim of this work was to expand the co-amorphous drug amino acid mixture approach...... by combining the model drug, naproxen (NAP), with an amino acid to physically stabilize the co-amorphous system (tryptophan, TRP, or arginine, ARG) and a second highly soluble amino acid (proline, PRO) for an additional improvement of the dissolution rate. Co-amorphous drug-amino acid blends were prepared...... the molecular interactions in the form of hydrogen bonds between all three components in the mixture. A salt formation between the acidic drug, NAP, and the basic amino acid, ARG, was found in co-amorphous NAP–ARG. In comparison to crystalline NAP, binary NAP–TRP and NAP–ARG, it could be shown that the highly...

  18. Application of mixture experimental design in formulation and characterization of solid self-nanoemulsifying drug delivery systems containing carbamazepine

    OpenAIRE

    Krstić Marko Z.; Ibrić Svetlana R.

    2016-01-01

    One of the problems with orally used drugs is their poor solubility, which can be overcame by creating solid self-nanoemulsifying drug delivery systems (SNEDDS). Aim is choosing appropriate SNEDDS using mixture design and adsorption of SNEDDS on a solid carrier to improve the dissolution rate of carbamazepine. Self-emulsifying drug delivery systems (SEDDS) consisting of oil phase (caprilic-capric triglycerides), a surfactant (Polisorbat 80 and Labrasol® (1:...

  19. A Very Simple and Sensitive Spectrofluorimetric Method Based on the Oxidation with Cerium (IV for the Determination of Four Different Drugs in Their Pharmaceutical Formulations

    Directory of Open Access Journals (Sweden)

    Ahad Bavili-Tabrizi, Farshad Bahrami, Hossein Badrouj

    2017-03-01

    Full Text Available Background: Methyldopa is a catecholamine widely used as an antihypertensive agent. Pioglitazone is an oral anti-hyperglycemic agent. It is used for the treatment of diabetes mellitus type 2. A survey of the literature reveals that only one spectrofluorimetric method has been reported for the determination of pioglitazone in pharmaceutical preparations. Atenolol and metoprolol are prescription drugs of the β-blocker class with hypotensive action to treat angina, MI, alcohol syndrome, hypertension, and arrhythmias. A survey of the literature reveals that several spectrofluorimetric methods have been reported for the determination of atenolol and metoprolol in pharmaceutical preparations. In continuing of our studies on the developing of simple and fast spectrofluorimetric methods for determination of drugs and active ingredients, in this work we have developed a spectrofluorimetric method based on the oxidation with cerium (IV for the determination of studied drugs in their pharmaceutical formulations. Methods: A simple, rapid and sensitive spectrofluorimetric method was developed for the determination of studied drugs in pharmaceutical formulations. Proposed method is based on the oxidation of these drugs with Ce (IV to produce Ce (III, and its fluorescence was monitored at 356 ± 3 nm after excitation at 254 ± 3 nm. Results: The variables affecting oxidation of each drug were studied and optimized. Under the experimental conditions used, the calibration graphs were linear over the range of 25-450, 50-550, 15-800 and 15-800 ng/mL in the case of atenolol, metoprolol, pioglitazone and methyldopa, respectively. The limit of detection was found to be 8.27, 16.5, 1.52 and 5.08 ng/mL in the case of atenolol, metoprolol, pioglitazone and methyldopa, respectively. Intra- and inter-day assay precisions, expressed as the relative standard deviation (RSD, were lower than 3% in all cases. Conclusion: The proposed method was applied to the determination of

  20. Design of Superparamagnetic Nanoparticles for Magnetic Particle Imaging (MPI

    Directory of Open Access Journals (Sweden)

    Philip W. T. Pong

    2013-09-01

    Full Text Available Magnetic particle imaging (MPI is a promising medical imaging technique producing quantitative images of the distribution of tracer materials (superparamagnetic nanoparticles without interference from the anatomical background of the imaging objects (either phantoms or lab animals. Theoretically, the MPI platform can image with relatively high temporal and spatial resolution and sensitivity. In practice, the quality of the MPI images hinges on both the applied magnetic field and the properties of the tracer nanoparticles. Langevin theory can model the performance of superparamagnetic nanoparticles and predict the crucial influence of nanoparticle core size on the MPI signal. In addition, the core size distribution, anisotropy of the magnetic core and surface modification of the superparamagnetic nanoparticles also determine the spatial resolution and sensitivity of the MPI images. As a result, through rational design of superparamagnetic nanoparticles, the performance of MPI could be effectively optimized. In this review, the performance of superparamagnetic nanoparticles in MPI is investigated. Rational synthesis and modification of superparamagnetic nanoparticles are discussed and summarized. The potential medical application areas for MPI, including cardiovascular system, oncology, stem cell tracking and immune related imaging are also analyzed and forecasted.

  1. Development and optimization of a new processing approach for manufacturing topical liposomes-in-hydrogel drug formulations by dual asymmetric centrifugation.

    Science.gov (United States)

    Ingebrigtsen, Sveinung G; Škalko-Basnet, Nataša; Holsæter, Ann Mari

    2016-09-01

    The objective of the present study was to utilize dual asymmetric centrifugation (DAC) as a novel processing approach for the production of liposomes-in-hydrogel formulations. Lipid films of phosphatidylcholine, with and without chloramphenicol (CAM), were hydrated and homogenized by DAC to produce liposomes in the form of vesicular phospholipid gels with a diameter in the size range of 200-300 nm suitable for drug delivery to the skin. Different homogenization processing parameters were investigated along with the effect of adding propylene glycol (PG) to the formulations prior to homogenization. The produced liposomes were incorporated into a hydrogel made of 2.5% (v/v) soluble β-1,3/1,6-glucan (SBG) and mixed by DAC to achieve a homogenous liposomes-in-hydrogel-formulation suitable for topical application. CAM-containing liposomes with a vesicle diameter of 282 ± 30 nm and polydispersity index (PI) of 0.13 ± 0.02 were successfully produced by DAC after 50 min centrifugation at 3500 rpm, and homogenously (< 4% content variation) incorporated into the SBG hydrogel. Addition of PG decreased the necessary centrifugation time to 2 min and 55 s, producing liposomes of 230 ± 51 nm and PI of 0.25 ± 0.04. All formulations had an entrapment efficiency of approximately 50%. We managed to develop a relatively fast and reproducible new method for the production of liposomes-in-hydrogel formulations by DAC.

  2. A novel approach to support formulation design on twin screw wet granulation technology: Understanding the impact of overarching excipient properties on drug product quality attributes.

    Science.gov (United States)

    Willecke, N; Szepes, A; Wunderlich, M; Remon, J P; Vervaet, C; De Beer, T

    2018-04-21

    The overall objective of this work is to understand how excipient characteristics influence the drug product quality attributes and process performance of a continuous twin screw wet granulation process. The knowledge gained in this study is intended to be used for Quality by Design (QbD)-based formulation design and formulation optimization. Three principal components which represent the overarching properties of 8 selected pharmaceutical fillers were used as factors, whereas factors 4 and 5 represented binder type and binder concentration in a design of experiments (DoE). The majority of process parameters were kept constant to minimize their influence on the granule and drug product quality. 27 DoE batches consisting of binary filler/binder mixtures were processed via continuous twin screw wet granulation followed by tablet compression. Multiple linear regression models were built providing understanding of the impact of filler and binder properties on granule and tablet quality attributes (i.e. 16 DoE responses). The impact of fillers on the granule and tablet responses was more dominant compared to the impact of binder type and concentration. The filler properties had a relevant effect on granule characteristics, such as particle size, friability and specific surface area. Binder type and concentration revealed a relevant influence on granule flowability and friability as well as on the compactability (required compression force during tableting to obtain target hardness). In order to evaluate the DoE models' validity, a verification of the DoE models was performed with new formulations (i.e. a new combination of filler, binder type and binder concentration) which were initially not included in the dataset used to build the DoE models. The combined PCA (principle component analysis)/DoE approach allowed to link the excipient properties with the drug product quality attributes. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Rapid Conformational Analysis of Protein Drugs in Formulation by Hydrogen/Deuterium Exchange Mass Spectrometry (HDX-MS)

    DEFF Research Database (Denmark)

    Esmail Nazari, Zeinab; van de Weert, Marco; Bou-Assaf, George

    2016-01-01

    Hydrogen Deuterium Exchange coupled to Mass Spectrometry (HDX-MS) has become an established method for analysis of protein higher-order structure. Here, we use HDX-MS methodology based on manual Solid-Phase Extraction (SPE) to allow fast and simplified conformational analysis of proteins under...... pharmaceutically relevant formulation conditions. Of significant practical utility, the methodology allows global HDX-MS analyses to be performed without refrigeration or external cooling of the setup. In Mode 1, we used DMSO-containing solvents for SPE, allowing the HDX-MS analysis to be performed at acceptable...... in formulation, using an internal HDX reference peptide (P7I) to control for any sample-to-sample variations in back exchange. Advantages of the methodology include low sample use, optimized excipient removal using multiple solvents, and fast data acquisition. Our results indicate that the SPE-HDX-MS system can...

  4. Intraarticular application of superparamagnetic nanoparticles and their uptake by synovial membrane-an experimental study in sheep

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Katja [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich (Switzerland); Koch, Annette [Department of Chemistry and Applied BioSciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Winterthurerstrasse 190, 8057 Zurich (Switzerland); Schoepf, Bernhard [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich (Switzerland); Petri, Alke [Laboratory of Powder Technology, Swiss Federal Institute of Technology (EPFL), Lausanne (Switzerland); Steitz, Benedikt [Laboratory of Powder Technology, Swiss Federal Institute of Technology (EPFL), Lausanne (Switzerland); Chastellain, Mathieu [Laboratory of Powder Technology, Swiss Federal Institute of Technology (EPFL), Lausanne (Switzerland); Hofmann, Margarethe [MatSearch, Chemin Jean Pavillard 14, 1009 Pully (Switzerland); Hofmann, Heinrich [Laboratory of Powder Technology, Swiss Federal Institute of Technology (EPFL), Lausanne (Switzerland); Rechenberg, Brigitte von [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich (Switzerland)]. E-mail: bvonrechenberg@vetclinics.unizh.ch

    2005-05-15

    A superparamagnetic iron oxide nanoparticle, coated with polyvinyl alcohol (PVA-SPION) and its fluorescently functionalized analogue (amino-PVA-Cy3.5-SPION) were compared in vivo as proof of principle for future use in magnetic drug targeting in inflammatory joint diseases. They were injected either intraarticularly or periarticularly and their uptake by cells of the synovial membrane was evaluated. Uptake was completed in 48 h and was enforced by an extracorporally applied magnet.

  5. Intraarticular application of superparamagnetic nanoparticles and their uptake by synovial membrane-an experimental study in sheep

    International Nuclear Information System (INIS)

    Schulze, Katja; Koch, Annette; Schoepf, Bernhard; Petri, Alke; Steitz, Benedikt; Chastellain, Mathieu; Hofmann, Margarethe; Hofmann, Heinrich; Rechenberg, Brigitte von

    2005-01-01

    A superparamagnetic iron oxide nanoparticle, coated with polyvinyl alcohol (PVA-SPION) and its fluorescently functionalized analogue (amino-PVA-Cy3.5-SPION) were compared in vivo as proof of principle for future use in magnetic drug targeting in inflammatory joint diseases. They were injected either intraarticularly or periarticularly and their uptake by cells of the synovial membrane was evaluated. Uptake was completed in 48 h and was enforced by an extracorporally applied magnet

  6. Floating matrix tablets based on low density foam powder: effects of formulation and processing parameters on drug release.

    Science.gov (United States)

    Streubel, A; Siepmann, J; Bodmeier, R

    2003-01-01

    The aim of this study was to develop and physicochemically characterize single unit, floating controlled drug delivery systems consisting of (i). polypropylene foam powder, (ii). matrix-forming polymer(s), (iii). drug, and (iv). filler (optional). The highly porous foam powder provided low density and, thus, excellent in vitro floating behavior of the tablets. All foam powder-containing tablets remained floating for at least 8 h in 0.1 N HCl at 37 degrees C. Different types of matrix-forming polymers were studied: hydroxypropyl methylcellulose (HPMC), polyacrylates, sodium alginate, corn starch, carrageenan, gum guar and gum arabic. The tablets eroded upon contact with the release medium, and the relative importance of drug diffusion, polymer swelling and tablet erosion for the resulting release patterns varied significantly with the type of matrix former. The release rate could effectively be modified by varying the "matrix-forming polymer/foam powder" ratio, the initial drug loading, the tablet geometry (radius and height), the type of matrix-forming polymer, the use of polymer blends and the addition of water-soluble or water-insoluble fillers (such as lactose or microcrystalline cellulose). The floating behavior of the low density drug delivery systems could successfully be combined with accurate control of the drug release patterns.

  7. Development of Multiple-Unit Floating Drug Delivery System of Clarithromycin: Formulation, in vitro Dissolution by Modified Dissolution Apparatus, in vivo Radiographic Studies in Human Volunteers.

    Science.gov (United States)

    Reddy, Arun B; Reddy, Narendar D

    2017-07-01

    Clarithromycin (CM), a broad spectrum macrolide antibiotic used to eradicate H. pylori in peptic ulcer. Clarithromycin (CM) is well absorbed from the gastrointestinal tract, but has a bioavailability of 50% due to rapid biodegradation. The aim of this investigation was to increase the gastric residence time, and to control the drug release of clarithromycin by formulating into multiple unit floating mini-tablets. Floating tablets were prepared by using direct compression method with HPMC K 4 M and Polyox WSR 1105 as release retarded polymers and sodium bicarbonate as gas generating agent. The prepared mini-tablets were evaluated for thickness, weight variation, friability, hardness, drug content, in vitro buoyancy, swelling studies, in vitro dissolution studies by using modified Rossett-Rice test and in vivo radiographic studies in healthy human volunteers in fasting conditions. DSC analysis revealed that no interaction between drug and excipients. All the physical parameters of the tablets were within the acceptable limits. The optimized formulation (F6) had showed controlled drug release of 99.16±3.22% in 12 h, by zero-order release kinetics, along with floating lag time of 9.5±1.28 s and total floating time of 12±0.14 h. X-ray imaging studies revealed that in vivo gastric residence time of clarithromycin floating mini-tablet in the stomach was about 3.5 h. The results demonstrated that the developed floating mini-tablets of clarithromycin caused significant enhancement in gastric retention time along with sustained effect and increased oral bioavailability. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Formulation design of an HPMC-based sustained release tablet for pyridostigmine bromide as a highly hygroscopic model drug and its in vivo/in vitro dissolution properties.

    Science.gov (United States)

    Huang, Yuh-Tyng; Tsai, Tong-Rong; Cheng, Chun-Jen; Cham, Thau-Ming; Lai, Tsun-Fwu; Chuo, Wen-Ho

    2007-11-01

    Pyridostigmine bromide (PB), a highly hygroscopic drug was selected as the model drug. A sustained-release (SR) tablet prepared by direct compression of wet-extruded and spheronized core pellets with HPMC excipients and exhibited a zero-order sustained release (SR) profile. The 2(3) full factorial design was utilized to search an optimal SR tablet formulation. This optimal formulation was followed zero-order mechanism and had specific release rate at different time intervals (released % of 1, 6, and 12 hr were 15.84, 58.56, and 93.10%). The results of moisture absorption by Karl Fischer meter showed the optimum SR tablet could improve the hygroscopic defect of the pure drug (PB). In the in vivo study, the results of the bioavailability data showed the T(max) was prolonged (from 0.65 +/- 0.082 hr to 4.83 +/- 1.60 hr) and AUC(0-t) (from 734.88 +/- 230.68 ng/ml.hr to 1153.34 +/- 488.08 ng/ml.hr) and was increased respectively for optimum PB-SR tablets when compared with commercial immediate release (IR) tablets. Furthermore, the percentages of in vitro dissolution and in vivo absorption in the rabbits have good correlation. We believe that PB-SR tablets designed in our study would improve defects of PB, decrease the frequency of administration and enhance the retention period of drug efficacy in vivo for personnel exposed to contamination situations in war or terrorist attacks in the future.

  9. Evaluating the Properties of Poly(lactic-co-glycolic acid) Nanoparticle Formulations Encapsulating a Hydrophobic Drug by Using the Quality by Design Approach.

    Science.gov (United States)

    Kozaki, Masato; Kobayashi, Shin-Ichiro; Goda, Yukihiro; Okuda, Haruhiro; Sakai-Kato, Kumiko

    2017-01-01

    We applied the Quality by Design (QbD) approach to the development of poly(lactic-co-glycolic acid) (PLGA) nanoparticle formulations encapsulating triamcinolone acetonide, and the critical process parameters (CPPs) were identified to clarify the correlations between critical quality attributes and CPPs. Quality risk management was performed by using an Ishikawa diagram and experiments with a fractional factorial design (ANOVA). The CPPs for particle size were PLGA concentration and rotation speed, and the CPP for relative drug loading efficiency was the poor solvent to good solvent volume ratio. By assessing the mutually related factors in the form of ratios, many factors could be efficiently considered in the risk assessment. We found a two-factor interaction between rotation speed and rate of addition of good solvent by using a fractional factorial design with resolution V. The system was then extended by using a central composite design, and the results obtained were visualized by using the response surface method to construct a design space. Our research represents a case study of the application of the QbD approach to pharmaceutical development, including formulation screening, by taking actual production factors into consideration. Our findings support the feasibility of using a similar approach to nanoparticle formulations under development. We could establish an efficient method of analyzing the CPPs of PLGA nanoparticles by using a QbD approach.

  10. Formulation of porous poly(lactic-co-glycolic acid) microparticles by electrospray deposition method for controlled drug release

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Shilei; Wang, Yazhou; Wang, Bochu, E-mail: wangbc2000@126.com; Deng, Jia; Zhu, Liancai; Cao, Yang

    2014-06-01

    In the present study, the electrospray deposition was successfully applied to prepare the porous poly(lactic-co-glycolic acid) (PLGA) microparticles by one-step processing. Metronidazole was selected as the model drug. The porous PLGA microparticles had high drug loading and low density, and the porous structure can be observed by scanning electron microscope (SEM) and transmission electron microscopy (TEM). The production time has been shortened considerably compared with that of the traditional multi-emulsion method. In addition, no chemical reaction occurred between the drug and polymer in the preparation of porous microparticles, and the crystal structure of drug did not change after entrapment into the porous microparticles. The porous microparticles showed a sustained release in the simulated gastric fluid, and the release followed non-Fickian or case II transport. Furthermore, porous microparticles showed a slight cytotoxicity in vitro. The results indicated that electrospray deposition is a good technique for preparation of porous microparticles, and the low-density porous PLGA microparticles has a potential for the development of gastroretentive systems or for pulmonary drug delivery. - Highlights: • The porous PLGA microparticles were successfully prepared by the electrospray deposition method at one step. • The porous microparticles had high loading capacity and low density. • The microparticle showed a sustained release in the simulated gastric liquid. • The microparticles showed a slight cytotoxicity in vitro.

  11. Formulation of porous poly(lactic-co-glycolic acid) microparticles by electrospray deposition method for controlled drug release

    International Nuclear Information System (INIS)

    Hao, Shilei; Wang, Yazhou; Wang, Bochu; Deng, Jia; Zhu, Liancai; Cao, Yang

    2014-01-01

    In the present study, the electrospray deposition was successfully applied to prepare the porous poly(lactic-co-glycolic acid) (PLGA) microparticles by one-step processing. Metronidazole was selected as the model drug. The porous PLGA microparticles had high drug loading and low density, and the porous structure can be observed by scanning electron microscope (SEM) and transmission electron microscopy (TEM). The production time has been shortened considerably compared with that of the traditional multi-emulsion method. In addition, no chemical reaction occurred between the drug and polymer in the preparation of porous microparticles, and the crystal structure of drug did not change after entrapment into the porous microparticles. The porous microparticles showed a sustained release in the simulated gastric fluid, and the release followed non-Fickian or case II transport. Furthermore, porous microparticles showed a slight cytotoxicity in vitro. The results indicated that electrospray deposition is a good technique for preparation of porous microparticles, and the low-density porous PLGA microparticles has a potential for the development of gastroretentive systems or for pulmonary drug delivery. - Highlights: • The porous PLGA microparticles were successfully prepared by the electrospray deposition method at one step. • The porous microparticles had high loading capacity and low density. • The microparticle showed a sustained release in the simulated gastric liquid. • The microparticles showed a slight cytotoxicity in vitro

  12. Solid self-nanoemulsifying drug delivery systems for oral delivery of polypeptide-k: Formulation, optimization, in-vitro and in-vivo antidiabetic evaluation.

    Science.gov (United States)

    Garg, Varun; Kaur, Puneet; Singh, Sachin Kumar; Kumar, Bimlesh; Bawa, Palak; Gulati, Monica; Yadav, Ankit Kumar

    2017-11-15

    Development of self-nanoemulsifying drug delivery systems (SNEDDS) of polypeptide-k (PPK) is reported with the aim to achieve its oral delivery. Box-Behnken design (BBD) was adopted to develop and optimize the composition of SNEDDS. Oleoyl polyoxyl-6 glycerides (A), Tween 80 (B), and diethylene glycol monoethyl ether (C) were used as oil, surfactant and co-surfactant, respectively as independent variables. The effect of variation in their composition was observed on the mean droplet size (y1), polydispersity index (PDI) (y2), % drug loading (y3) and zeta potential (y4). As per the optimal design, seventeen SNEDDS prototypes were prepared. The optimized composition of SNEDDS formulation was 25% v/v Oleoyl polyoxyl-6 glycerides, 37% v/v Tween 80, 38% v/v diethylene glycol monoethyl ether, and 3% w/v PPK. The optimized formulation revealed values of y1, y2, y3, and y4 as 31.89nm, 0.16, 73.15%, and -15.65mV, respectively. Further the optimized liquid SNEDDS were solidified through spray drying using various hydrophilic and hydrophobic carriers. Among the various carriers, Aerosil 200 was found to provide desirable flow, compression, disintegration and dissolution properties. Both, liquid and solid-SNEDDS have shown release of >90% within 10min. The formulation was found stable with change in pH, dilution, temperature variation and freeze thaw cycles in terms of droplet size, zeta potential, drug precipitation and phase separation. Crystalline PPK was observed in amorphous state in solid SNEDDS when characterized through DSC and PXRD studies. The biochemical, hematological and histopathological results of streptozotocin induced diabetic rats shown promising antidiabetic potential of PPK loaded in SNEDDS at its both the doses (i.e. 400mg/kg and 800mg/kg) as compared to its naïve form at both the doses. The study revealed successful formulation of SNEDDS for oral delivery of PPK. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Formulation and Evaluation of Fast-Disintegrating Sublingual Tablets of Atropine Sulfate: the Effect of Tablet Dimensions and Drug Load on Tablet Characteristics.

    Science.gov (United States)

    Aodah, Alhussain; Bafail, Rawan S; Rawas-Qalaji, Mutasem

    2017-07-01

    In this study, we formulated and evaluated the effects of tablet dimensions and drug load on the characteristics of atropine sulfate (AS) fast-disintegrating sublingual tablets (FDSTs). We aim to develop AS FDSTs as an alternative non-invasive and portable dosage form for the emergency treatment of organophosphate (OP) toxicity. AS autoinjector, AtroPen®, is the only self-administered dosage form available as an antidote for-out-of-hospital emergency use, but it is associated with several limitations and drawbacks. Seven FDST formulations of two tablet sizes, 150 mg (A) and 50 mg (B), and of several AS loads, 0 mg (A1, B1), 2 mg (A2, B2), 4 mg (B3), and 8 mg (B4a, B4b), were formulated and manufactured by direct compression. AS FDST characteristics were evaluated using USP and non-USP tests. Results were statistically compared at p < 0.05. All FDSTs passed the USP content uniformity and friability tests, disintegrated and released AS in ≤30 and 60 s. B1 and B2 were significantly harder than A1 and A2. Water uptake of A1 was significantly the highest. However, B1 and B2 had shorter disintegration and wetting times and higher amounts of AS dissolved than did A1 and A2 (p < 0.05). Increasing AS negatively affected FDST tensile strength (p < 0.05 for B4a) and water uptake (p < 0.05 for B3, B4a and B4b), however, without affecting AS dissolution. Formulation of AS up to 16% into smaller FDSTs was successful. Smaller FDSTs were harder and disintegrated more quickly. These AS FDSTS have the potential for further in vivo testing to evaluate their OP antidote potential.

  14. Formulation and optimization of a novel oral fast dissolving film containing drug nanoparticles by Box-Behnken design-response surface methodology.

    Science.gov (United States)

    Shen, Chengying; Shen, Baode; Xu, He; Bai, Jinxia; Dai, Ling; Lv, Qingyuan; Han, Jin; Yuan, Hailong

    2014-05-01

    The purpose of this study was to design and optimize a novel drug nanoparticles-loaded oral fast dissolving film (NP-OFDF) using Box-Behnken design-response surface methodology. Drug nanosuspensions produced from high pressure homogenization were transformed into oral fast dissolving film containing drug nanoparticles by casting methods. Herpetrione (HPE), a novel and potent antiviral agent with poor water solubility that was extracted from Herpetospermum caudigerum, was studied as the model drug. The formulations of oral fast dissolving film containing HPE nanoparticles (HPE-NP-OFDF) were optimized by employing Box-Behnken design-response surface methodology and then systematically characterized. The optimized HPE-NP-OFDF was disintegrated in water within 20 s with reconstituted nanosuspensions particle size of 299.31 nm. Scanning electron microscopy (SEM) images showed that well-dispersed HPE nanoparticles with slight adhesion to each other were exposed on the surface of film or embedded in film. The X-ray diffractogram (XRD) analysis suggested that HPE in the HPE-NP-OFDF was in the amorphous state. In-vitro release study, approximate 77.23% of HPE was released from the HPE-NP-OFDF within 5 min, which was more than eight times compared with that of HPE raw materials (9.57%). The optimized HPE-NP-OFDF exhibits much faster drug release rates compared to HPE raw material, which indicated that this novel NP-OFDF may provide a potential opportunity for oral delivery of drugs with poor water solubility.

  15. Influence of route of administration/drug formulation and other factors on adherence to treatment in rheumatoid arthritis (pain related) and dyslipidemia (non-pain related).

    Science.gov (United States)

    Fautrel, Bruno; Balsa, Alejandro; Van Riel, Piet; Casillas, Marta; Capron, Jean-Philippe; Cueille, Carine; de la Torre, Inmaculada

    2017-07-01

    A comprehensive review was performed to investigate the effect of route of administration on medication adherence and persistence in rheumatoid arthritis (RA) and to compare adherence/persistence with oral medications between RA and a non-painful disease (dyslipidemia). Comprehensive database searches were performed to identify studies investigating medication adherence and/or persistence in adults with RA receiving conventional synthetic or biologic agents. Similar searches were performed for studies of patients with dyslipidemia receiving statins. Studies had to be published after 1998 in English and involve ≥6 months' follow up. Adherence and persistence were compared between the different routes of drug administration in RA, and between the two diseases for oral medications. A total of 35 and 28 papers underwent data extraction for RA and dyslipidemia, respectively. Within the constraints of the analysis, adherence and persistence rates appeared broadly similar for the different routes of drug administration in RA. Adherence to oral medications was also broadly similar across the two diseases, but persistence was lower in dyslipidemia. Poor adherence has clinical consequences in both diseases: greater disease activity and risk of flare in RA, and increased serum cholesterol levels and risk of heart and cerebrovascular disease in dyslipidemia. Over 1-3 years, poor adherence to biologic RA medications led to increased resource use and medical costs but lower total direct costs due to reduced biologic drug costs. Conversely, poor adherence to dyslipidemia medications resulted in increased total direct costs. In both diseases, adherence improved with patient education/support. The route of drug administration and the symptomatic (pain) nature of the disease do not appear to be dominant factors for drug adherence or persistence in RA. The wide range of adherence and persistence values and definitions across studies made comparisons between drug formulations and

  16. Acceleration of superparamagnetic particles with magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Stange, R., E-mail: Robert.stange@tu-dresden.de; Lenk, F.; Bley, T.; Boschke, E.

    2017-04-01

    High magnetic capture efficiency in the context of Biomagnetic Separation (BMS) using superparamagnetic particles (SMPs) requires efficient mixing and high relative velocities between cellular and other targets and SMPs. For this purpose, batch processes or microfluidic systems are commonly used. Here, we analyze the characteristics of an in-house developed batch process experimental setup, the Electromagnetic Sample Mixer (ESM) described earlier. This device uses three electromagnets to increase the relative velocity between SMPs and targets. We carry out simulations of the magnetic field in the ESM and in a simpler paradigmatic setup, and thus were able to calculate the force field acting on the SMPs and to simulate their relative velocities and fluid dynamics due to SMP movement. In this way we were able to show that alternate charging of the magnets induces a double circular stream of SMPs in the ESM, resulting in high relative velocities of SMPs to the targets. Consequently, due to the conservation of momentum, the fluid experiences an acceleration induced by the SMPs. We validated our simulations by microscopic observation of the SMPs in the magnetic field, using a homemade apparatus designed to accommodate a long working-distance lens. By comparing the results of modeling this paradigmatic setup with the experimental observations, we determined that the velocities of the SMPs corresponded to the results of our simulations. - Highlights: • Investigation of a batch process setup for complex forming at Biomagnetic Separation. • Simulation of fluid flow characteristics in this Electro Magnetic Samplemixer. • Simulation of relative velocities between magnetic particles and fluid in the setup. • Simulation of fluid flow induced by the acceleration of magnet particles. • Validation of magnetic fields and flow characteristics in paradigmatic setups. • Reached relative velocity is higher than the sedimentation velocity of the particles • Alternating

  17. EFFECT OF A PLURONIC® P123 FORMULATION ON THE NITRIC OXIDE-GENERATING DRUG JS-K

    Science.gov (United States)

    Kaur, Imit; Kosak, Ken M.; Terrazas, Moises; Herron, James N.; Kern, Steven E.; Boucher, Kenneth M.; Shami, Paul J.

    2014-01-01

    Purpose O2-(2,4-dinitrophenyl)1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate] or JS-K is a nitric oxide-producing prodrug of the arylated diazeniumdiolate class with promising anti-tumor activity. JS-K has challenging solubility and stability properties. We aimed to characterize and compare Pluronic® P123-formulated JS-K (P123/JS-K) with free JS-K. Methods We determined micelle size, shape, and critical micelle concentration of Pluronic® P123. Efficacy was evaluated in vitro using HL-60 and U937 cells and in vivo in a xenog raft in NOD/SCID IL2Rγnull mice using HL-60 cells. We compared JS-K and P123/JS-K stability in different media. We also compared plasma protein binding of JS-K and P123/JS-K. We determined the binding and Stern Volmer constants, and thermodynamic parameters. Results Spherical P123/JS-K micelles were smaller than blank P123. P123/JS-K formulation was more stable in buffered saline, whole blood, plasma and RPMI media as compared to free JS-K. P123 affected the protein binding properties of JS-K. In vitro it was as efficacious as JS-K alone when tested in HL-60 and U937 cells and in vivo greater tumor regression was observed for P123/JS-K treated NOD/SCID IL2Rγnull mice when compared to free JS-K-treated NOD/SCID IL2Rγnull mice. Conclusions Pluronic® P123 solubilizes, stabilizes and affects the protein binding characteristics of JS-K. P123/JS-K showed more in vivo anti-tumor activity than free JS-K. PMID:25330743

  18. Effect of a Pluronic(®) P123 formulation on the nitric oxide-generating drug JS-K.

    Science.gov (United States)

    Kaur, Imit; Kosak, Ken M; Terrazas, Moises; Herron, James N; Kern, Steven E; Boucher, Kenneth M; Shami, Paul J

    2015-04-01

    O(2)-(2,4-dinitrophenyl)1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate] or JS-K is a nitric oxide-producing prodrug of the arylated diazeniumdiolate class with promising anti-tumor activity. JS-K has challenging solubility and stability properties. We aimed to characterize and compare Pluronic(®) P123-formulated JS-K (P123/JS-K) with free JS-K. We determined micelle size, shape, and critical micelle concentration of Pluronic(®) P123. Efficacy was evaluated in vitro using HL-60 and U937 cells and in vivo in a xenograft in NOD/SCID IL2Rγ (null) mice using HL-60 cells. We compared JS-K and P123/JS-K stability in different media. We also compared plasma protein binding of JS-K and P123/JS-K. We determined the binding and Stern Volmer constants, and thermodynamic parameters. Spherical P123/JS-K micelles were smaller than blank P123. P123/JS-K formulation was more stable in buffered saline, whole blood, plasma and RPMI media as compared to free JS-K. P123 affected the protein binding properties of JS-K. In vitro it was as efficacious as JS-K alone when tested in HL-60 and U937 cells and in vivo greater tumor regression was observed for P123/JS-K treated NOD/SCID IL2Rγ (null) mice when compared to free JS-K-treated NOD/SCID IL2Rγ (null) mice. Pluronic(®) P123 solubilizes, stabilizes and affects the protein binding characteristics of JS-K. P123/JS-K showed more in vivo anti-tumor activity than free JS-K.

  19. High efficiency dry coating of non-subcoated pellets for sustained drug release formulations using amino methacrylate copolymers.

    Science.gov (United States)

    Klar, Fabian; Urbanetz, Nora Anne

    2017-12-12

    Dry coating utilizing a fluidized bed was evaluated in order to produce films with sustained drug release using amino methacrylate copolymers as film former. In contrast to other dry coating procedures using amino methacrylate copolymers, the described method enables an appropriate polymer adhesion by the selection of a plasticizer additive mixture in combination with the use of a three-way nozzle for simultaneous application. Well spreading fatty acid esters were found to increase the coating efficiency from 73% to approximately 86%, when they were used in conjunction with the plasticizer. Pellets were used as drug cores without previous treatment. After a curing step at 55 °C, the pellets exhibited a prolongation of the drug release over a period of about 6 h. Mainly the three parameters, coating level, composition of the polymers in the coating mixture, and the type of plasticizer, were found to exert distinct influence on the dissolution profile. Despite the differences in the coating procedure, the dissolution profiles of the coated pellets as well as the influencing parameters were similar to those known from conventional coating techniques.

  20. Furosemide self nano emulsifying drug delivery system (SNEDDS formulation comprising of capryol-90, polysorbate-80, and peg-400 with simplex-lattice-design

    Directory of Open Access Journals (Sweden)

    Najma Annuria Fithri

    2017-10-01

    Full Text Available Preparation of SNEDDS aims to improve solubility and absorption of furosemide in the body to reduce the dosage and minimize the side effects of drugs. Ternary diagram constructed from composition mixture produced nanoemulsion in the range of 20-40% of capryol-90, 20-40% polysorbate-80 and 40-60% PEG-400. Formulations of SNEDDS using Design-Expert®10 with simplex-lattice-design method in the study was aimed to investigate the effect of SNEDDS each component's proportions towards test responses. Emulsification time, drug content and viscosity were best demonstrated by run-7 with consecutive values of 131.68±2.14 seconds, 99.89±2.68% and 0.87±0.0043 mm2/s. The optimum formula was obtained through entering test response parameter data of all thirteen formula. Drug content and emulsification time was 107.0 ± 1.44% and 155.59±1.56 seconds with viscosity value 0.91±0.00 mm2/s. From the physical stability studies, SNEDDS formulas were stable and did not show phase separation when exposed to temparature stress testing.

  1. Plasma Antenna Based on Superparamagnetic Nanoparticles

    Science.gov (United States)

    Papadopoulos, K.

    2017-12-01

    A novel plasma antenna for space or ground based generation and injection of whistler and Alfven waves is presented. The new antenna concept is based on recently manufactured, small (10-60 nm radius), single domain, non-interacting magnetic grains with uniaxial magnetic anisotropy, known as superparamagnetic nanoparticles (SPN), dispersed in low viscosity, non-conducting media. SPNs can be described as ensembles of non-interacting magnetic moments μ with energy E=-μB when driven by a magnetic field B, similar to ordinary paramagnets, with exception that SPNs are composed by many thousands of magnetic atoms and as result have susceptibilities comparable to ferromagnets but with zero coercivity. The Langevin function accurately describes the dynamic behavior of the magnetization in the presence of low frequency AC fields since the characteristic mechanical (Brownian) and magnetic (Neel) relaxation times are shorter than 10msecs. For ground-based applications the grains are suspended in low viscosity carrier liquids, such as water or benzne and are known as ferrofluids. For space based applications, such as wave injection from CubeSats they can be dispersed as dust in vacuum containers. Agglomeration is avoided by coating the grains by coating their surface by an appropriate surfactant molecule. The ensemble of magnetic grains is driven to rotation at the desired VLF or ELF frequency by a pair of Helmholtz like coils surrounding the grain container. The near field electric field associated with rotating magnetic field then drives currents such as were observed in Rotating Magnetic Field experiments at the UCLA/LAPD chamber [Gigliotti et al., Phys. of Plasmas 16:092106; Karavaev et al., Phys. of Plasmas 17(1):012102,2010]. The magnetic moment of the AC coil is amplified by the susceptibility χ of the SPN ensemble that depending on the grain size and material can reach values of 104-105. Preliminary estimates indicate that less than 1 kg of SPN grains and power of

  2. Outcomes analysis of an alternative formulation of PEGylated liposomal doxorubicin in recurrent epithelial ovarian carcinoma during the drug shortage era

    Directory of Open Access Journals (Sweden)

    Berger JL

    2014-08-01

    Full Text Available Jessica L Berger, Ashlee Smith, Kristin K Zorn, Paniti Sukumvanich, Alexander B Olawaiye, Joseph Kelley, Thomas C Krivak Magee-Womens Hospital, University of Pittsburgh Medical Center, Division of Gynecologic Oncology, Pittsburgh, PA, USA Background: In response to the critical shortage of Doxil®, the US Food and Drug Administration (FDA allowed temporary importation of non-FDA-approved second-generation liposomal doxorubicin, Lipo-Dox®. Lipo-Dox utilizes a different liposomal particle than Doxil and demonstrates different pharmacokinetic properties. Its use has never been evaluated in a North American population. The objective of this study was to evaluate the efficacy and tolerability of Lipo-Dox at Magee-Womens Hospital, University of Pittsburgh Medical Center, for patients with recurrent epithelial ovarian cancer who were treated during the Doxil shortage. Methods: Patients treated with Lipo-Dox from January 2012 to December 2012 were identified retrospectively. Disease response was defined radiographically by RECIST (Response Evaluation Criteria in Solid Tumors or biochemically by CA-125 level if measurable disease was not present. Survival was defined from the start date of Lipo-Dox until the date of progression or death. Toxicity was assessed by the Gynecologic Oncology Group common toxicity criteria. Results: Eighteen patients with recurrent epithelial ovarian cancer who received Lipo-Dox were identified. These patients had a median of three prior treatment regimens. The median number of Lipo-Dox cycles given was 3.5 (range 1–8. No patients had a complete or partial response. Two patients had stable disease over a mean follow-up of 144.5 days. Fourteen patients had progressive disease, with a median time to progression of 82 days. Progression was based on CA-125 in four patients and RECIST in the remainder. Nine patients died from the disease. Conclusion: Although this represents a small, pretreated population, there were no clinical

  3. Liquid chromatographic method for simultaneous determination of citalopram with NSAIDs in bulk drug, pharmaceutical formulation and human serum

    International Nuclear Information System (INIS)

    Ali, S.N.; Akram, S.

    2017-01-01

    A high performance liquid chromatographic method was developed and validated to simultaneously quantify citalopram with piroxicam, celecoxib and diclofenac sodium. Chromatographic analysis was performed at ambient temperature using Shimadzu Shim-pack CLC-ODS (M) 25M column linked to a UV-visible detector adjusted at 230 nm, employing 80:20 (v/v) methanol: water (pH 3.5) as mobile phase with flow rate 1.0 mL min-1. Validation was performed in the ranges 0.6-20, 0.9-28, 0.6-20 and 1.0-32 mu g mL-1 with lowest level corresponding to detection limit 16.45, 23.33, 27.66 and 14.44 ng mL-1 respectively. With-in the day precision ranged from 0.14-1.67% and between-day precision from 0.40-1.50%, accuracies were 99.61-100.86%. The analytes were successfully detected without any observable interference in pharmaceutical formulation and human serum samples demonstrating effectiveness of method. (author)

  4. Novel Solid Self-Nanoemulsifying Drug Delivery System (S-SNEDDS for Oral Delivery of Olmesartan Medoxomil: Design, Formulation, Pharmacokinetic and Bioavailability Evaluation

    Directory of Open Access Journals (Sweden)

    Ali Nasr

    2016-06-01

    Full Text Available The main purpose of this study was to develop a solid self-nanoemulsifying drug delivery system (S-SNEDDS of Olmesartan (OLM for enhancement of its solubility and dissolution rate. In this study, liquid SNEDDS containing Olmesartan was formulated and further developed into a solid form by the spray drying technique using Aerosil 200 as a solid carrier. Based on the preliminary screening of different unloaded SNEDDS formulae, eight formulae of OLM loaded SNEEDS were prepared using Capryol 90, Cremophor RH40 and Transcutol HP as oil, surfactant and cosurfactant, respectively. Results showed that the mean droplet size of all reconstituted SNEDDS was found to be in the nanometric range (14.91–22.97 nm with optimum PDI values (0.036–0.241. All formulae also showed rapid emulsification time (15.46 ± 1.34–24.17 ± 1.47 s, good optical clarity (98.33% ± 0.16%–99.87% ± 0.31% and high drug loading efficiency (96.41% ± 1.20%–99.65% ± 1.11%. TEM analysis revealed the formation of spherical and homogeneous droplets with a size smaller than 50 nm. In vitro release of OLM from SNEDDS formulae showed that more than 90% of OLM released in approximately 90 min. Optimized SNEDDS formulae were selected to be developed into S-SNEDDS using the spray drying technique. The prepared S-SNEDDS formulae were evaluated for flow properties, differential scanning calorimetry (DSC, scanning electron microscopy (SEM, reconstitution properties, drug content and in vitro dissolution study. It was found that S-SNEDDS formulae showed good flow properties and high drug content. Reconstitution properties of S-SNEDDS showed spontaneous self-nanoemulsification and no sign of phase separation. DSC thermograms revealed that OLM was in solubilized form and FTIR supported these findings. SEM photographs showed smooth uniform surface of S-SNEDDS with less aggregation. Results of the in vitro drug release showed that there was great enhancement in the dissolution rate of OLM

  5. In vitro and in vivo evaluations of the performance of an indirubin derivative, formulated in four different self-emulsifying drug delivery systems

    DEFF Research Database (Denmark)

    Heshmati, Nasim; Cheng, Xinlai; Dapat, Else

    2014-01-01

    -chain or long-chain glycerides. METHODS: SEDDS E804 were developed. In-vitro lipolysis was carried out at pH 6.5 (37°C) by adding pancreatic lipase (800 U/ml) and controlling by CaCl2 and NaOH addition. E804 content was quantified in the aqueous micellar phase and precipitate using HPLC. Oral bioavailability...... was determined in rats. Plasma drug content was determined by liquid chromatography (LC)-mass spectrometry. KEY FINDINGS: All formulations reserved E804 in the aqueous micellar phase up to 60 min. Precipitation proceeded towards the end of lipolysis up to 45%. Lowest level of precipitation (21%) occurred...

  6. Simultaneous determination of non-steroidal anti-inflammatory drugs in pharmaceutical formulations and human serum by reversed phase high performance liquid chromatography

    Directory of Open Access Journals (Sweden)

    Muhammad Nawaz

    2012-01-01

    Full Text Available A rapid and sensitive method using high performance liquid chromatography has been developed and validated for the simultaneous determination of non-steroidal anti-inflammatory drugs (NSAIDs in pharmaceutical formulations and human serum. Six NSAIDs including: naproxen sodium, diclofenac sodium, meloxicam, flurbiprofen, tiaprofenic and mefenamic acid were analyzed simultaneously in presence of ibuprofen as internal standard on Mediterranea C18 (5 µm, 250 x 0.46 mm column. Mobile phase comprised of methanol: acetonitrile: H2O (60:20:20, v/v; pH 3.35 and pumped at a flow rate of 1 mL min-1 using 265 nm UV detection. The method was linear over a concentration range of 0.25-50 µg mL-1 (r² = 0.9999.

  7. Immunological effects of iron oxide nanoparticles and iron-based complex drug formulations: Therapeutic benefits, toxicity, mechanistic insights, and translational considerations.

    Science.gov (United States)

    Shah, Ankit; Dobrovolskaia, Marina A

    2018-04-01

    Nanotechnology offers several advantages for drug delivery. However, there is the need for addressing potential safety concerns regarding the adverse health effects of these unique materials. Some such effects may occur due to undesirable interactions between nanoparticles and the immune system, and they may include hypersensitivity reactions, immunosuppression, and immunostimulation. While strategies, models, and approaches for studying the immunological safety of various engineered nanoparticles, including metal oxides, have been covered in the current literature, little attention has been given to the interactions between iron oxide-based nanomaterials and various components of the immune system. Here we provide a comprehensive review of studies investigating the effects of iron oxides and iron-based nanoparticles on various types of immune cells, highlight current gaps in the understanding of the structure-activity relationships of these materials, and propose a framework for capturing their immunotoxicity to streamline comparative studies between various types of iron-based formulations. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Superparamagnetic nanoparticles for enhanced magnetic resonance and multimodal imaging

    Science.gov (United States)

    Sikma, Elise Ann Schultz

    Magnetic resonance imaging (MRI) is a powerful tool for noninvasive tomographic imaging of biological systems with high spatial and temporal resolution. Superparamagnetic (SPM) nanoparticles have emerged as highly effective MR contrast agents due to their biocompatibility, ease of surface modification and magnetic properties. Conventional nanoparticle contrast agents suffer from difficult synthetic reproducibility, polydisperse sizes and weak magnetism. Numerous synthetic techniques and nanoparticle formulations have been developed to overcome these barriers. However, there are still major limitations in the development of new nanoparticle-based probes for MR and multimodal imaging including low signal amplification and absence of biochemical reporters. To address these issues, a set of multimodal (T2/optical) and dual contrast (T1/T2) nanoparticle probes has been developed. Their unique magnetic properties and imaging capabilities were thoroughly explored. An enzyme-activatable contrast agent is currently being developed as an innovative means for early in vivo detection of cancer at the cellular level. Multimodal probes function by combining the strengths of multiple imaging techniques into a single agent. Co-registration of data obtained by multiple imaging modalities validates the data, enhancing its quality and reliability. A series of T2/optical probes were successfully synthesized by attachment of a fluorescent dye to the surface of different types of nanoparticles. The multimodal nanoparticles generated sufficient MR and fluorescence signal to image transplanted islets in vivo. Dual contrast T1/T2 imaging probes were designed to overcome disadvantages inherent in the individual T1 and T2 components. A class of T1/T2 agents was developed consisting of a gadolinium (III) complex (DTPA chelate or DO3A macrocycle) conjugated to a biocompatible silica-coated metal oxide nanoparticle through a disulfide linker. The disulfide linker has the ability to be reduced

  9. Development of SCAR (sequence-characterized amplified region) markers as a complementary tool for identification of ginger (Zingiber officinale Roscoe) from crude drugs and multicomponent formulations.

    Science.gov (United States)

    Chavan, Preeti; Warude, Dnyaneshwar; Joshi, Kalpana; Patwardhan, Bhushan

    2008-05-01

    Zingiber officinale Roscoe (common or culinary ginger) is an official drug in Ayurvedic, Indian herbal, Chinese, Japanese, African and British Pharmacopoeias. The objective of the present study was to develop DNA-based markers that can be applied for the identification and differentiation of the commercially important plant Z. officinale Roscoe from the closely related species Zingiber zerumbet (pinecone, bitter or 'shampoo' ginger) and Zingiber cassumunar [cassumunar or plai (Thai) ginger]. The rhizomes of the other two Zingiber species used in the present study are morphologically similar to that of Z. officinale Roscoe and can be used as its adulterants or contaminants. Various methods, including macroscopy, microscopy and chemoprofiling, have been reported for the quality control of crude ginger and its products. These methods are reported to have limitations in distinguishing Z. officinale from closely related species. Hence, newer complementary methods for correct identification of ginger are useful. In the present study, RAPD (random amplification of polymorphic DNA) analysis was used to identify putative species-specific amplicons for Z. officinale. These were further cloned and sequenced to develop SCAR (sequence-characterized amplified region) markers. The developed SCAR markers were tested in several non-Zingiber species commonly used in ginger-containing formulations. One of the markers, P3, was found to be specific for Z. officinale and was successfully applied for detection of Z. officinale from Trikatu, a multicomponent formulation.

  10. Effect of a controlled-release drug delivery system made of oleanolic acid formulated into multivesicular liposomes on hepatocellular carcinoma in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Luo YL

    2016-07-01

    Full Text Available Yuling Luo, Zhongbing Liu, Xiaoqin Zhang, Juan Huang, Xin Yu, Jinwei Li, Dan Xiong, Xiaoduan Sun, Zhirong Zhong Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan,People’s Republic of ChinaAbstract: The aim of the present study was to develop a novel dosage form of multivesicular liposomes for oleanolic acid (OA to overcome its poor solubility, prolong therapeutic drug levels in the blood, and enhance the antitumor effect on hepatocellular carcinoma. OA-encapsulated multivesicular liposomes (OA-MVLs were prepared by a double-emulsion method, and the formulation was optimized by the central composite design. The morphology, particle size, and drug-loading efficiency of OA-MVLs were investigated. Furthermore, OA-MVLs were also characterized both in vitro and in vivo. The results showed that OA-MVLs were spherical particles with an average particle size of 11.57 µm and an encapsulation efficiency of 82.3%±0.61%. OA-MVLs exhibited a sustained-release pattern in vitro, which was fitted to Ritger–Peppas equation. OA-MVLs inhibited the growth of human HepG2 cells which was confirmed by the MTT assay and fluorescence microscopy detection. The in vivo release of OA from OA-MVLs exhibited a sustained manner, indicating a longer circulation time compared to OA solution. The in vivo toxicity study indicated that medium-dose OA-MVLs exerted no toxic effect on the hosts. Importantly, OA-MVLs suppressed the growth of murine H22 hepatoma and prolonged the survival of tumor-bearing mice. In conclusion, the poorly soluble OA could be encapsulated into MVLs to form a novel controlled-release drug delivery system. The present study may hold promise for OA-MVLs as a new dosage form for sustained-release drug delivery in cancer therapy.Keywords: oleanolic acid, multivesicular liposomes, murine hepatocellular carcinoma, controlled release, cancer therapy

  11. Controlled torque on superparamagnetic beads for functional biosensors

    NARCIS (Netherlands)

    Janssen, X.J.A.; Schellekens, A.J.; van Ommering, K.; IJzendoorn, van L.J.; Prins, M.W.J.

    2009-01-01

    We demonstrate that a rotating magnetic field can be used to apply a controlled torque on superparamagnetic beads which leads to a tunable bead rotation frequency in fluid. Smooth rotation is obtained for field rotation frequencies many orders of magnitude higher than the bead rotation frequency. A

  12. Superparamagnetic beads in rotating magnetic fields: microfluidic experiments

    NARCIS (Netherlands)

    Den Toonder, J.M.J.; Bokdam, M.

    2008-01-01

    The effect of the Mason number, ratio of viscous and magnetic force, on suspended superparamagnetic micro sized beads was investigated experimentally. Microfluidic experiments were performed in a set-up that generates a rotating homogeneous magnetic field. In the presence of a magnetic field, the

  13. Moessbauer studies of superparamagnetic ferrite nanoparticles for functional application

    Energy Technology Data Exchange (ETDEWEB)

    Mazeika, K., E-mail: kestas@ar.fi.lt; Jagminas, A.; Kurtinaitiene, M. [SSRI Center for Physical Sciences and Technology (Lithuania)

    2013-04-15

    Nanoparticles of CoFe{sub 2}O{sub 4} and MnFe{sub 2}O{sub 4} prepared for functional applications in nanomedicine were studied using Moessbauer spectrometry. Superparamagnetic properties of nanoparticles of different size and composition were compared applying collective excitations and multilevel models for the description of the Moessbauer spectra.

  14. Applications of linking PBPK and PD models to predict the impact of genotypic variability, formulation differences, differences in target binding capacity and target site drug concentrations on drug responses and variability.

    Directory of Open Access Journals (Sweden)

    Manoranjenni eChetty

    2014-11-01

    Full Text Available This study aimed to demonstrate the added value of integrating prior in vitro data and knowledge-rich physiologically based pharmacokinetic (PBPK models with pharmacodynamics (PD models. Four distinct applications that were developed and tested are presented here. PBPK models were developed for metoprolol using different CYP2D6 genotypes based on in vitro data. Application of the models for prediction of phenotypic differences in the pharmacokinetics (PK and PD compared favourably with clinical data, demonstrating that these differences can be predicted prior to the availability of such data from clinical trials. In the second case, PK and PD data for an immediate release formulation of nifedipine together with in vitro dissolution data for a controlled release formulation (CR were used to predict the PK and PD of the CR. This approach can be useful to pharmaceutical scientists during formulation development. The operational model of agonism was used in the third application to describe the hypnotic effects of triazolam, and this was successfully extrapolated to zolpidem by changing only the drug related parameters from in vitro experiments. This PBPK modelling approach can be useful to developmental scientists who which to compare several drug candidates in the same therapeutic class. Finally, differences in QTc prolongation due to quinidine in Caucasian and Korean females were successfully predicted by the model using free heart concentrations as an input to the PD models. This PBPK linked PD model was used to demonstrate a higher sensitivity to free heart concentrations of quinidine in Caucasian females, thereby providing a mechanistic understanding of a clinical observation. In general, permutations of certain conditions which potentially change PK and hence PD may not be amenable to the conduct of clinical studies but linking PBPK with PD provides an alternative method of investigating the potential impact of PK changes on PD.

  15. Applications of linking PBPK and PD models to predict the impact of genotypic variability, formulation differences, differences in target binding capacity and target site drug concentrations on drug responses and variability.

    Science.gov (United States)

    Chetty, Manoranjenni; Rose, Rachel H; Abduljalil, Khaled; Patel, Nikunjkumar; Lu, Gaohua; Cain, Theresa; Jamei, Masoud; Rostami-Hodjegan, Amin

    2014-01-01

    This study aimed to demonstrate the added value of integrating prior in vitro data and knowledge-rich physiologically based pharmacokinetic (PBPK) models with pharmacodynamics (PDs) models. Four distinct applications that were developed and tested are presented here. PBPK models were developed for metoprolol using different CYP2D6 genotypes based on in vitro data. Application of the models for prediction of phenotypic differences in the pharmacokinetics (PKs) and PD compared favorably with clinical data, demonstrating that these differences can be predicted prior to the availability of such data from clinical trials. In the second case, PK and PD data for an immediate release formulation of nifedipine together with in vitro dissolution data for a controlled release (CR) formulation were used to predict the PK and PD of the CR. This approach can be useful to pharmaceutical scientists during formulation development. The operational model of agonism was used in the third application to describe the hypnotic effects of triazolam, and this was successfully extrapolated to zolpidem by changing only the drug related parameters from in vitro experiments. This PBPK modeling approach can be useful to developmental scientists who which to compare several drug candidates in the same therapeutic class. Finally, differences in QTc prolongation due to quinidine in Caucasian and Korean females were successfully predicted by the model using free heart concentrations as an input to the PD models. This PBPK linked PD model was used to demonstrate a higher sensitivity to free heart concentrations of quinidine in Caucasian females, thereby providing a mechanistic understanding of a clinical observation. In general, permutations of certain conditions which potentially change PK and hence PD may not be amenable to the conduct of clinical studies but linking PBPK with PD provides an alternative method of investigating the potential impact of PK changes on PD.

  16. Stability-indicating liquid chromatographic method for quantification of new anti-epileptic drug lacosamide in bulk and pharmaceutical formulation

    Directory of Open Access Journals (Sweden)

    Chhalotiya Usmangani K.

    2012-01-01

    Full Text Available An isocratic stability indicating reversed-phase liquid chromatographic determination was developed for the quantitative determination of lacosamide in the pharmaceutical dosage form. A Hypersil C-18, 4.5μm column with mobile phase containing acetonitrile-water (20:80, v/v was used. The flow rate was 1.0 mL min-1 and effluents were monitored at 258 nm. The retention time of lacosamide was 8.9 min. The method was found to be linear in the concentration range of 5-100 μg/ml and the recovery was found to be in the range of 99.15 - 100.09 %. The limit of detection and limit of quantification were found to be 2 μg/ml and 5 μg/ml, respectively. Lacosamide stock solutions were subjected to acid and alkali hydrolysis, chemical oxidation and dry heat degradation. The drug was found to be stable to the dry heat and acidic condition attempted. The proposed method was validated and successfully applied to the estimation of lacosamide in tablet dosage forms.

  17. A validated RP-HPLC method for simultaneous determination of propranolol and valsartan in bulk drug and gel formulation

    Science.gov (United States)

    Imam, Syed Sarim; Ahad, Abdul; Aqil, Mohammed; Sultana, Yasmin; Ali, Asgar

    2013-01-01

    Objective: A simple, precise, and stability indicating high performance liquid chromatography (HPLC) method was developed and validated for the simultaneous determination of propranolol hydrochloride and valsartan in pharmaceutical dosage form. Materials and Methods: The method involves the use of easily available inexpensive laboratory reagents. The separation was achieved on Hypersil ODS C-18 column (250*4.6 mm, i.d., 5 μm particle size) with isocratic flow with UV detector. The mobile phase at a flow rate of 1.0 mL/min consisted of acetonitrile, methanol, and 0.01 M disodium hydrogen phosphate (pH 3.5) in the ratio of 50:35:15 v/v. Results: A linear response was observed over the concentration range 5-50 μg/mL of propranolol and the concentration range 4-32 μg/mL of valsartan. Limit of detection and limit of quantitation for propranolol were 0.27 μg/mL and 0.85 μg/mL, and for valsartan were 0.45 μg/mL and 1.39 μg/mL, respectively. The method was successfully validated in accordance to ICH guidelines acceptance criteria for linearity, accuracy, precision, specificity, robustness. Conclusion: The analysis concluded that the method was selective for simultaneous estimation of propranolol and valsartan can be potentially used for the estimation of these drugs in combined dosage form. PMID:23559826

  18. Superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Feuser, Paulo Emilio [Federal University of Santa Catarina, Department of Chemical Engineering and Food Engineering (Brazil); Jacques, Amanda Virtuoso [Federal University of Santa Catarina, Department of Clinical Analyses (Brazil); Arévalo, Juan Marcelo Carpio; Rocha, Maria Eliane Merlin [Federal University of Paraná, Department of Biochemistry and Molecular Biology (Brazil); Santos-Silva, Maria Claudia dos [Federal University of Santa Catarina, Department of Clinical Analyses (Brazil); Sayer, Claudia; Araújo, Pedro H. Hermes de, E-mail: pedro.h.araujo@ufsc.br [Federal University of Santa Catarina, Department of Chemical Engineering and Food Engineering (Brazil)

    2016-04-15

    The encapsulation of superparamagnetic nanoparticles (MNPs) in polymeric nanoparticles (NPs) with modified surfaces can improve targeted delivery and induce cell death by hyperthermia. The goals of this study were to synthesize and characterize surface modified superparamagnetic poly(methyl methacrylate) with folic acid (FA) prepared by miniemulsion polymerization (MNPsPMMA-FA) and to evaluate their in vitro cytotoxicity and cellular uptake in non-tumor cells, murine fibroblast (L929) cells and tumor cells that overexpressed folate receptor (FR) β, and chronic myeloid leukemia cells in blast crisis (K562). Lastly, hemolysis assays were performed on human red blood cells. MNPsPMMA-FA presented an average mean diameter of 135 nm and a saturation magnetization (Ms) value of 37 emu/g of iron oxide, as well as superparamagnetic behavior. The MNPsPMMA-FA did not present cytotoxicity in L929 and K562 cells. Cellular uptake assays showed a higher uptake of MNPsPMMA-FA than MNPsPMMA in K562 cells when incubated at 37 °C. On the other hand, MNPsPMMA-FA showed a low uptake when endocytosis mechanisms were blocked at low temperature (4 °C), suggesting that the MNPsPMMA-FA uptake was mediated by endocytosis. High concentrations of MNPsPMMA-FA showed hemocompatibility when incubated for 24 h in human red blood cells. Therefore, our results suggest that these carrier systems can be an excellent alternative in targeted drug delivery via FR.

  19. Superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis

    International Nuclear Information System (INIS)

    Feuser, Paulo Emilio; Jacques, Amanda Virtuoso; Arévalo, Juan Marcelo Carpio; Rocha, Maria Eliane Merlin; Santos-Silva, Maria Claudia dos; Sayer, Claudia; Araújo, Pedro H. Hermes de

    2016-01-01

    The encapsulation of superparamagnetic nanoparticles (MNPs) in polymeric nanoparticles (NPs) with modified surfaces can improve targeted delivery and induce cell death by hyperthermia. The goals of this study were to synthesize and characterize surface modified superparamagnetic poly(methyl methacrylate) with folic acid (FA) prepared by miniemulsion polymerization (MNPsPMMA-FA) and to evaluate their in vitro cytotoxicity and cellular uptake in non-tumor cells, murine fibroblast (L929) cells and tumor cells that overexpressed folate receptor (FR) β, and chronic myeloid leukemia cells in blast crisis (K562). Lastly, hemolysis assays were performed on human red blood cells. MNPsPMMA-FA presented an average mean diameter of 135 nm and a saturation magnetization (Ms) value of 37 emu/g of iron oxide, as well as superparamagnetic behavior. The MNPsPMMA-FA did not present cytotoxicity in L929 and K562 cells. Cellular uptake assays showed a higher uptake of MNPsPMMA-FA than MNPsPMMA in K562 cells when incubated at 37 °C. On the other hand, MNPsPMMA-FA showed a low uptake when endocytosis mechanisms were blocked at low temperature (4 °C), suggesting that the MNPsPMMA-FA uptake was mediated by endocytosis. High concentrations of MNPsPMMA-FA showed hemocompatibility when incubated for 24 h in human red blood cells. Therefore, our results suggest that these carrier systems can be an excellent alternative in targeted drug delivery via FR.

  20. Superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis

    Science.gov (United States)

    Feuser, Paulo Emilio; Jacques, Amanda Virtuoso; Arévalo, Juan Marcelo Carpio; Rocha, Maria Eliane Merlin; dos Santos-Silva, Maria Claudia; Sayer, Claudia; de Araújo, Pedro H. Hermes

    2016-04-01

    The encapsulation of superparamagnetic nanoparticles (MNPs) in polymeric nanoparticles (NPs) with modified surfaces can improve targeted delivery and induce cell death by hyperthermia. The goals of this study were to synthesize and characterize surface modified superparamagnetic poly(methyl methacrylate) with folic acid (FA) prepared by miniemulsion polymerization (MNPsPMMA-FA) and to evaluate their in vitro cytotoxicity and cellular uptake in non-tumor cells, murine fibroblast (L929) cells and tumor cells that overexpressed folate receptor (FR) β, and chronic myeloid leukemia cells in blast crisis (K562). Lastly, hemolysis assays were performed on human red blood cells. MNPsPMMA-FA presented an average mean diameter of 135 nm and a saturation magnetization (Ms) value of 37 emu/g of iron oxide, as well as superparamagnetic behavior. The MNPsPMMA-FA did not present cytotoxicity in L929 and K562 cells. Cellular uptake assays showed a higher uptake of MNPsPMMA-FA than MNPsPMMA in K562 cells when incubated at 37 °C. On the other hand, MNPsPMMA-FA showed a low uptake when endocytosis mechanisms were blocked at low temperature (4 °C), suggesting that the MNPsPMMA-FA uptake was mediated by endocytosis. High concentrations of MNPsPMMA-FA showed hemocompatibility when incubated for 24 h in human red blood cells. Therefore, our results suggest that these carrier systems can be an excellent alternative in targeted drug delivery via FR.

  1. The role of hyaluronan as a drug carrier to enhance the bioavailability of extended release ophthalmic formulations. Hyaluronan-timolol ionic complexes as a model case.

    Science.gov (United States)

    Battistini, F D; Tártara, L I; Boiero, C; Guzmán, M L; Luciani-Giaccobbe, L C; Palma, S D; Allemandi, D A; Manzo, R H; Olivera, M E

    2017-07-15

    The aim of this work was to obtain information concerning the properties of ophthalmic formulations based on hyaluronic-drug ionic complexes, to identify the factors that determine the onset, intensity and duration of the pharmacotherapeutic effect. Dispersions of a complex of 0.5% w/v of sodium hyaluronate (HyNa) loaded with 0.5% w/v of timolol maleate (TM) were obtained and presented a counterionic condensation higher than 75%. For comparison a similar complex obtained with hyaluronic acid (HyH) was also prepared. Although the viscosity of HyNa-TM was significantly higher than that of HyH-TM, in vitro release of TM from both complexes showed a similar extended drug release profile (20-31% over 5h) controlled by diffusion and ionic exchange. Ocular pharmacokinetic study performed in normotensive rabbits showed that HyNa-TM complex exhibited attractive bioavailability properties in the aqueous humor (AUC and Cmax significantly higher and later Tmax) compared to commercial TM eye-drops. Moreover, a more prolonged period of lowered intra-ocular pressure (10h) and a more intense hypotensive activity was observed after instillation of a drop of HyNa-TM as compared to the eye-drops. Such behavior was related to the longer pre-corneal residence times (400%) observed with HyNa-TM complex. No significant changes in rabbit transcorneal permeation were detected upon complexation. These results demonstrate that the ability of HyNa to modulate TM release, together with its mucoadhesiveness related to the viscosity, affected both the pharmacokinetic and pharmacodynamic parameters. The HyNa-TM complex is a potentially useful carrier for ocular drug delivery, which could improve the TM efficacy and reduce the frequency of administration to improve patient compliance. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Novel kinetic spectrophotometric method for estimation of certain biologically active phenolic sympathomimetic drugs in their bulk powders and different pharmaceutical formulations

    Science.gov (United States)

    Omar, Mahmoud A.; Badr El-Din, Khalid M.; Salem, Hesham; Abdelmageed, Osama H.

    2018-03-01

    A simple, selective and sensitive kinetic spectrophotometric method was described for estimation of four phenolic sympathomimetic drugs namely; terbutaline sulfate, fenoterol hydrobromide, isoxsuprine hydrochloride and etilefrine hydrochloride. This method is depended on the oxidation of the phenolic drugs with Folin-Ciocalteu reagent in presence of sodium carbonate. The rate of color development at 747-760 nm was measured spectrophotometrically. The experimental parameters controlling the color development were fully studied and optimized. The reaction mechanism for color development was proposed. The calibration graphs for both the initial rate and fixed time methods were constructed, where linear correlations were found in the general concentration ranges of 3.65 × 10- 6-2.19 × 10- 5 mol L- 1 and 2-24.0 μg mL- 1 with correlation coefficients in the following range 0.9992-0.9999, 0.9991-0.9998 respectively. The limits of detection and quantitation for the initial rate and fixed time methods were found to be in general concentration range 0.109-0.273, 0.363-0.910 and 0.210-0.483, 0.700-1.611 μg mL- 1 respectively. The developed method was validated according to ICH and USP 30 -NF 25 guidelines. The suggested method was successfully implemented to the estimation of these drugs in their commercial pharmaceutical formulations and the recovery percentages obtained were ranged from 97.63% ± 1.37 to 100.17% ± 0.95 and 97.29% ± 0.74 to 100.14 ± 0.81 for initial rate and fixed time methods respectively. The data obtained from the analysis of dosage forms were compared with those obtained by reported methods. Statistical analysis of these results indicated no significant variation in the accuracy and precision of both the proposed and reported methods.

  3. Comparative study of magnetic properties and the anticancer effect of superparamagnetic and ferromagnetic iron oxide nanoparticles in the nanocomplex with doxorubicin

    International Nuclear Information System (INIS)

    Orel, V.E.; Shevchenko, A.D.; Rikhal's'kij, O.Yu.; Romanov, A.V.; Orel, Yi.V.; Lukyin, S.M.; Burlaka, A.P.; Venger, Je.F.

    2015-01-01

    Mechano-magneto-chemically synthesized magnetic nanocomplex (MNC) of superparamagnetic iron oxide Fe 3 O 4 nanoparticles (NP) and anticancer drug doxorubicin (DR) had significantly lower saturation magnetic moment and magnetic hysteresis loop area as compared to the MNC of ferro- magnetic NP. However, the last was characterized by lower coercivity. MNC of superparamagnetic NP and DR had g-factors of 2.00, 2.30, and 4.00. MNC of ferromagnetic NP and DR had the g-factor of 2.50, and the integrated intensity of electron spin resonance signals was by 61% greater. Superparamagnetic iron oxide Fe 3 O 4 NP in MNC with DR initiated a greater antitumor effect during magnetic nanotherapy of animals with carcinosarcoma Walker-256 as compared to the MNC composed of ferromagnetic NP and DR. In the future, superparamagnetic iron oxide Fe 3 O 4 NP as a part of the nanocomplex with DR can be used in theranostics - a methodology that combines magnetic resonance diagnostics and magnetic nanotherapy using MNC both as therapeutic and diagnostic agents

  4. Superparamagnetic Bifunctional Bisphosphonates Nanoparticles: A Potential MRI Contrast Agent for Osteoporosis Therapy and Diagnostic

    Directory of Open Access Journals (Sweden)

    Y. Lalatonne

    2010-01-01

    Full Text Available A bone targeting nanosystem is reported here which combined magnetic contrast agent for Magnetic Resonance Imaging (MRI and a therapeutic agent (bisphosphonates into one drug delivery system. This new targeting nanoplatform consists of superparamagnetic γFe2O3 nanoparticles conjugated to 1,5-dihydroxy-1,5,5-tris-phosphono-pentyl-phosphonic acid (di-HMBPs molecules with a bisphosphonate function at the outer of the nanoparticle surface for bone targeting. The as-synthesized nanoparticles were evaluated as a specific MRI contrast agent by adsorption study onto hydroxyapatite and MRI measurment. The strong adsorption of the bisphosphonates nanoparticles to hydroxyapatite and their use as MRI T2∗ contrast agent were demonstrated. Cellular tests performed on human osteosarcoma cells (MG63 show that γFe2O3@di-HMBP hybrid nanomaterial has no citoxity effect in cell viability and may act as a diagnostic and therapeutic system.

  5. Application of Terahertz Attenuated Total Reflection Spectroscopy to Detect Changes in the Physical Properties of Lactose during the Lubrication Process Required for Drug Formulation.

    Science.gov (United States)

    Dohi, Masafumi; Momose, Wataru; Yamashita, Kazunari; Hakomori, Tadashi; Sato, Shusaku; Noguchi, Shuji; Terada, Katsuhide

    2017-02-01

    Manufacturing the solid dosage form of an orally administered drug requires lubrication to enhance manufacturability, ensuring that critical quality attributes such as disintegration and dissolution of the drug product are maintained during manufacture. Here, to evaluate lubrication performance during manufacture, we used terahertz attenuated total reflection (THz-ATR) spectroscopy to detect differences in the physical characteristics of the lubricated powder. We applied a simple formulation prepared by blending granulated lactose as filler with magnesium stearate as lubricant. A flat tablet was prepared using the lubricated powder to acquire sharp THz-ATR absorption peaks of the samples. First, we investigated the effects of lubricant concentration and compression pressure on preparation of the tablet and then determined the effect of the pressure applied to samples in contact with the ATR prism on sample absorption amplitude. We focused on the differences in the magnitudes of spectra at the lactose-specific frequency. Second, we conducted the dynamic lubrication process using a 120-L mixer to investigate differences in the magnitudes of absorption corresponding to the lactose-specific frequency during lubrication. In both studies, enriching the lubricated powder with a higher concentration of magnesium stearate or prolonging blending time correlated with higher magnitudes of spectra at the lactose-specific frequency. Further, in the dynamic lubrication study, the wettability and disintegration time of the tablets were compared with the absorption spectra amplitudes at the lactose-specific frequency. We conclude that THz-ATR spectroscopy is useful for detecting differences in densities caused by a change in the physical properties of lactose during lubrication.

  6. Near-infrared-responsive, superparamagnetic Au@Co nanochains

    Directory of Open Access Journals (Sweden)

    Varadee Vittur

    2017-08-01

    Full Text Available This manuscript describes a new type of nanomaterial, namely superparamagnetic Au@Co nanochains with optical extinctions in the near infrared (NIR. The Au@Co nanochains were synthesized via a one-pot galvanic replacement route involving a redox-transmetalation process in aqueous medium, where Au salt was reduced to form Au shells on Co seed templates, affording hollow Au@Co nanochains. The Au shells serve not only as a protective coating for the Co nanochain cores, but also to give rise to the optical properties of these unique nanostructures. Importantly, these bifunctional, magneto-optical Au@Co nanochains combine the advantages of nanophotonics (extinction at ca. 900 nm and nanomagnetism (superparamagnetism and provide a potentially useful new nanoarchitecture for biomedical or catalytic applications that can benefit from both activation by light and manipulation using an external magnetic field.

  7. Selective manipulation of superparamagnetic beads by a magnetic microchip

    KAUST Repository

    Gooneratne, Chinthaka Pasan

    2013-07-01

    In this paper, a magnetic microchip (MMC) is presented, to first trap and then selectively manipulate individual, superparamagnetic beads (SPBs) to another trapping site. Trapping sites are realized through soft magnetic micro disks made of Ni80Fe20, and SPB motion is controlled by current-carrying, tapered, conducting lines made of Au. The MMC was realized using standard microfabrication techniques and provides a cheap and versatile platform for microfluidic systems for cell manipulation. © 2013 IEEE.

  8. Structure and superparamagnetic behaviour of magnetite nanoparticles in cellulose beads

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Jose R., E-mail: correa@fq.uh.cu [Department of General Chemistry, Faculty of Chemistry, University of Havana, Zapata and G, Havana City 10400 (Cuba); Bordallo, Eduardo [Sugar Cane-Cellulose Research Center, Cuba-9, Quivican (Cuba); Canetti, Dora [Department of Inorganic Chemistry, Faculty of Chemistry, University of Havana, Zapata and G, Havana City 10400 (Cuba); Leon, Vivian [Sugar Cane-Cellulose Research Center, Cuba-9, Quivican (Cuba); Otero-Diaz, Luis C. [Department of Inorganic Chemistry-1, Complutense University of Madrid, Madrid 28040 (Spain); Electron Microscopy Center, Complutense University of Madrid, Madrid 28040 (Spain); Negro, Carlos [Chemical Engineering Department, Complutense University of Madrid, Madrid 28040 (Spain); Gomez, Adrian [Electron Microscopy Center, Complutense University of Madrid, Madrid 28040 (Spain); Saez-Puche, Regino [Department of Inorganic Chemistry-1, Complutense University of Madrid, Madrid 28040 (Spain)

    2010-08-15

    Superparamagnetic magnetite nanoparticles were obtained starting from a mixture of iron(II) and iron(III) solutions in a preset total iron concentration from 0.04 to 0.8 mol l{sup -1} with ammonia at 25 and 70 {sup o}C. The regeneration of cellulose from viscose produces micrometrical spherical cellulose beads in which synthetic magnetite were embedded. The characterization of cellulose-magnetite beads by X-ray diffraction, Scanning and Transmission Electron Microscopy and magnetic measurement is reported. X-ray diffraction patterns indicate that the higher is the total iron concentration and temperature the higher is the crystal size of the magnetite obtained. Transmission Electron Microscopy studies of cellulose-magnetite beads revealed the distribution of magnetite nanoparticles inside pores of hundred nanometers. Magnetite as well as the cellulose-magnetite composites exhibit superparamagnetic characteristics. Field cooling and zero field cooling magnetic susceptibility measurements confirm the superparamagnetic behaviour and the blocking temperature for the magnetite with a mean size of 12.5 nm, which is 200 K.

  9. Intracellular Delivery of siRNA by Polycationic Superparamagnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Betzaida Castillo

    2012-01-01

    Full Text Available The siRNA transfection efficiency of nanoparticles (NPs, composed of a superparamagnetic iron oxide core modified with polycationic polymers (poly(hexamethylene biguanide or branched polyethyleneimine, were studied in CHO-K1 and HeLa cell lines. Both NPs demonstrated to be good siRNA transfection vehicles, but unmodified branched polyethyleneimine (25 kD was superior on both cell lines. However, application of an external magnetic field during transfection (magnetofection increased the efficiency of the superparamagnetic NPs. Furthermore, our results reveal that these NPs are less toxic towards CHO-K1 cell lines than the unmodified polycationic-branched polyethyleneimine (PEI. In general, the external magnetic field did not alter the cell’s viability nor it disrupted the cell membranes, except for the poly(hexamethylene biguanide-modified NP, where it was observed that in CHO-K1 cells application of the external magnetic field promoted membrane damage. This paper presents new polycationic superparamagnetic NPs as promising transfection vehicles for siRNA and demonstrates the advantages of magnetofection.

  10. Effects of Superparamagnetic Nanoparticle Clusters on the Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Toshiaki Higashi

    2012-04-01

    Full Text Available The polymerase chain reaction (PCR method is widely used for the reproduction and amplification of specific DNA segments, and a novel PCR method using nanomaterials such as gold nanoparticles has recently been reported. This paper reports on the effects of superparamagnetic nanoparticles on PCR amplification without an external magnetic field, and clarifies the mechanism behind the effects of superparamagnetic particle clusters on PCR efficiency by estimating the structures of such clusters in PCR. It was found that superparamagnetic nanoparticles tend to inhibit PCR amplification depending on the structure of the magnetic nanoparticle clusters. The paper also clarifies that Taq polymerase is captured in the spaces formed among magnetic nanoparticle clusters, and that it is captured more efficiently as a result of their motion from heat treatment in PCR thermal cycles. Consequently, Taq polymerase that should be used in PCR is reduced in the PCR solution. These outcomes will be applied to novel PCR techniques using magnetic particles in an external magnetic field.

  11. Atomic layer deposition of superparamagnetic and ferrimagnetic magnetite thin films

    International Nuclear Information System (INIS)

    Zhang, Yijun; Liu, Ming; Ren, Wei; Zhang, Yuepeng; Chen, Xing; Ye, Zuo-Guang

    2015-01-01

    One of the key challenges in realizing superparamagnetism in magnetic thin films lies in finding a low-energy growth way to create sufficiently small grains and magnetic domains which allow the magnetization to randomly and rapidly reverse. In this work, well-defined superparamagnetic and ferrimagnetic Fe 3 O 4 thin films are successfully prepared using atomic layer deposition technique by finely controlling the growth condition and post-annealing process. As-grown Fe 3 O 4 thin films exhibit a conformal surface and poly-crystalline nature with an average grain size of 7 nm, resulting in a superparamagnetic behavior with a blocking temperature of 210 K. After post-annealing in H 2 /Ar at 400 °C, the as-grown α−Fe 2 O 3 sample is reduced to Fe 3 O 4 phase, exhibiting a ferrimagnetic ordering and distinct magnetic shape anisotropy. Atomic layer deposition of magnetite thin films with well-controlled morphology and magnetic properties provides great opportunities for integrating with other order parameters to realize magnetic nano-devices with potential applications in spintronics, electronics, and bio-applications

  12. Preparation, Characterization and Tests of Incorporation in Stem Cells of Superparamagnetic Iron Oxide

    International Nuclear Information System (INIS)

    Haddad, P S; Britos, T N; Li, L M; Li, L D S

    2015-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) have been produced and used as contrast-enhancing agents in magnetic resonance imaging (MRI) for diagnostic use in a wide range of maladies including cardiovascular, neurological disorders, and cancer. The reasons why these SPIONs are attractive for medical purposes are based on their important and unique features. The large surface area of the nanoparticles and their manipulation through an external magnetic field are features that allow their use for carrying a large number of molecules such as biomolecules or drugs. In this scenario, the present work reports on the synthesis and characterization of SPIONs and in vitro MRI experiments to increase their capacity as probes for MRI applications on stem cells therapy. Initially, the SPIONs were prepared through the co-precipitation method using ferrous and ferric chlorides in acidic solution. The SPIONs were coated with two thiolmolecules such as mercaptosuccinic acid (MSA) and cysteine (Cys) (molar ratio SPIONs:ligand = 1:20), leading to the formation of a stable aqueous dispersion of thiolated nanoparticles (SH-SPIONs). The SH-SPIONs were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and vibrating sample magnetometry (VSM). The results showed that the SH-SPIONs have a mean diameter of 14 nm and display superparamagnetic behavior at room temperature. Preliminary tests of incorporation of SH-SPIONs were evaluated stem cells. The results showed that the thiolated nanoparticles have no toxic effects for stem cells and successfully internalized and enhance the contrast in MRI. (paper)

  13. Synthesis, characterization and theranostic evaluation of Indium-111 labeled multifunctional superparamagnetic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Zolata, Hamidreza; Abbasi Davani, Fereydoun; Afarideh, Hossein

    2015-01-01

    Indium-111 labeled, Trastuzumab-Doxorubicin Conjugated, and APTES-PEG coated magnetic nanoparticles were designed for tumor targeting, drug delivery, controlled drug release, and dual-modal tumor imaging. Superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized by thermal decomposition method to obtain narrow size particles. To increase SPIONs circulation time in blood and decrease its cytotoxicity in healthy tissues, SPIONs surface was modified with 3-Aminopropyltriethoxy Silane (APTES) and then were functionalized with N-Hydroxysuccinimide (NHS) ester of Polyethylene Glycol Maleimide (NHS-PEG-Mal) to conjugate with thiolated 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-3,6, 9,-triacetic acid (PCTA) bifunctional chelator (BFC) and Trastuzumab antibody. In order to tumor SPECT/MR imaging, SPIONs were labeled with Indium-111 (T 1/2 = 2.80d). NHS ester of monoethyl malonate (MEM-NHS) was used for conjugation of Doxorubicin (DOX) chemotherapeutic agent onto SPIONs surface. Mono-Ethyl Malonate allows DOX molecules to be attached to SPIONs via pH-sensitive hydrazone bonds which lead to controlled drug release in tumor region. Active and passive tumor targeting were achieved through incorporated anti-HER2 (Trastuzumab) antibody and EPR effect of solid tumors for nanoparticles respectively. In addition to in vitro assessments of modified SPIONs in SKBR3 cell lines, their theranostic effects were evaluated in HER2 + breast tumor bearing BALB/c mice via biodistribution study, dual-modal molecular imaging and tumor diameter measurements

  14. Public/private partnerships for prescription drug coverage: policy formulation and outcomes in Quebec's universal drug insurance program, with comparisons to the Medicare prescription drug program in the United States.

    Science.gov (United States)

    Pomey, Marie-Pascale; Forest, Pierre-Gerlier; Palley, Howard A; Martin, Elisabeth

    2007-09-01

    In January 1997, the government of Quebec, Canada, implemented a public/private prescription drug program that covered the entire population of the province. Under this program, the public sector collaborates with private insurers to protect all Quebecers from the high cost of drugs. This article outlines the principal features and history of the Quebec plan and draws parallels between the factors that led to its emergence and those that led to the passage of the Medicare Prescription Drug, Improvement and Modernization Act (MMA) in the United States. It also discusses the challenges and similarities of both programs and analyzes Quebec's ten years of experience to identify adjustments that may help U.S. policymakers optimize the MMA.

  15. Enhanced pulsed magneto-motive ultrasound imaging using superparamagnetic nanoclusters

    International Nuclear Information System (INIS)

    Mehrmohammadi, M; Qu, M; Emelianov, S Y; Yoon, K Y; Johnston, K P

    2011-01-01

    Recently, pulsed magneto-motive ultrasound (pMMUS) imaging augmented with ultra-small magnetic nanoparticles has been introduced as a tool capable of imaging events at molecular and cellular levels. The sensitivity of a pMMUS system depends on several parameters, including the size, geometry and magnetic properties of the nanoparticles. Under the same magnetic field, larger magnetic nanostructures experience a stronger magnetic force and produce larger displacement, thus improving the sensitivity and signal-to-noise ratio (SNR) of pMMUS imaging. Unfortunately, large magnetic iron-oxide nanoparticles are typically ferromagnetic and thus are very difficult to stabilize against colloidal aggregation. In the current study we demonstrate improvement of pMMUS image quality by using large size superparamagnetic nanoclusters characterized by strong magnetization per particle. Water-soluble magnetic nanoclusters of two sizes (15 and 55 nm average size) were synthesized from 3 nm iron precursors in the presence of citrate capping ligand. The size distribution of synthesized nanoclusters and individual nanoparticles was characterized using dynamic light scattering (DLS) analysis and transmission electron microscopy (TEM). Tissue mimicking phantoms containing single nanoparticles and two sizes of nanoclusters were imaged using a custom-built pMMUS imaging system. While the magnetic properties of citrate-coated nanoclusters are identical to those of superparamagnetic nanoparticles, the magneto-motive signal detected from nanoclusters is larger, i.e. the same magnetic field produced larger magnetically induced displacement. Therefore, our study demonstrates that clusters of superparamagnetic nanoparticles result in pMMUS images with higher contrast and SNR.

  16. In situ hybridization of superparamagnetic iron-biomolecule nanoparticles.

    Science.gov (United States)

    Moghimi, Nafiseh; Donkor, Apraku David; Mohapatra, Mamata; Thomas, Joseph Palathinkal; Su, Zhengding; Tang, Xiaowu Shirley; Leung, Kam Tong

    2014-07-23

    The increase in interest in the integration of organic-inorganic nanostructures in recent years has promoted the use of hybrid nanoparticles (HNPs) in medicine, energy conversion, and other applications. Conventional hybridization methods are, however, often long, complicated, and multistepped, and they involve biomolecules and discrete nanostructures as separate entities, all of which hinder the practical use of the resulting HNPs. Here, we present a novel, in situ approach to synthesizing size-specific HNPs using Fe-biomolecule complexes as the building blocks. We choose an anticancer peptide (p53p, MW 1.8 kDa) and an enzyme (GOx, MW 160 kDa) as model molecules to demonstrate the versatility of the method toward different types of molecules over a large size range. We show that electrostatic interaction for complex formation of metal hydroxide ion with the partially charged side of biomolecule in the solution is the key to hybridization of metal-biomolecule materials. Electrochemical deposition is then used to produce hybrid NPs from these complexes. These HNPs with controllable sizes ranging from 30 nm to 3.5 μm are found to exhibit superparamagnetic behavior, which is a big challenge for particles in this size regime. As an example of greatly improved properties and functionality of the new hybrid material, in vitro toxicity assessment of Fe-GOx HNPs shows no adverse effect, and the Fe-p53p HNPs are found to selectively bind to cancer cells. The superparamagnetic nature of these HNPs (superparamagnetic even above the size regime of 15-20 nm!), their biocompatibility, and the direct integration approach are fundamentally important to biomineralization and general synthesis strategy for bioinspired functional materials.

  17. Fluxgate magnetorelaxometry of superparamagnetic nanoparticles for hydrogel characterization

    International Nuclear Information System (INIS)

    Heim, Erik; Harling, Steffen; Poehlig, Kai; Ludwig, Frank; Menzel, Henning; Schilling, Meinhard

    2007-01-01

    A new characterization method for hydrogels based on the relaxation behavior of superparamagnetic nanoparticles (MNPs) is proposed. MNPs are incorporated in the hydrogel to examine its network properties. By analyzing their relaxation behavior, incorporated and mobile nanoparticles can be studied. In the case of mobile nanoparticles, the microviscosity of the hydrogel can be determined. Thus, this method allows the studying of gelation as well as the degradation process of hydrogels. Furthermore, the hydrogel can have any shape (e.g. microspheres or larger blocks) and no sample preparation is needed, avoiding artefacts

  18. Superparamagnetic perpendicular magnetic tunnel junctions for true random number generators

    Science.gov (United States)

    Parks, Bradley; Bapna, Mukund; Igbokwe, Julianne; Almasi, Hamid; Wang, Weigang; Majetich, Sara A.

    2018-05-01

    Superparamagnetic perpendicular magnetic tunnel junctions are fabricated and analyzed for use in random number generators. Time-resolved resistance measurements are used as streams of bits in statistical tests for randomness. Voltage control of the thermal stability enables tuning the average speed of random bit generation up to 70 kHz in a 60 nm diameter device. In its most efficient operating mode, the device generates random bits at an energy cost of 600 fJ/bit. A narrow range of magnetic field tunes the probability of a given state from 0 to 1, offering a means of probabilistic computing.

  19. Magnet polepiece design for uniform magnetic force on superparamagnetic beads

    OpenAIRE

    Fallesen, Todd; Hill, David B.; Steen, Matthew; Macosko, Jed C.; Bonin, Keith; Holzwarth, George

    2010-01-01

    Here we report construction of a simple electromagnet with novel polepieces which apply a spatially uniform force to superparamagnetic beads in an optical microscope. The wedge-shaped gap was designed to keep ∂Bx∕∂y constant and B large enough to saturate the bead. We achieved fields of 300–600 mT and constant gradients of 67 T∕m over a sample space of 0.5×4 mm2 in the focal plane of the microscope and 0.05 mm along the microscope optic axis. Within this space the maximum force on a 2.8 μm di...

  20. In Situ Lipolysis and Synchrotron Small-Angle X-ray Scattering for the Direct Determination of the Precipitation and Solid-State Form of a Poorly Water-Soluble Drug During Digestion of a Lipid-Based Formulation

    DEFF Research Database (Denmark)

    Khan, Jamal; Hawley, Adrian; Rades, Thomas

    2016-01-01

    In situ lipolysis and synchrotron small-angle X-ray scattering (SAXS) were used to directly detect and elucidate the solid-state form of precipitated fenofibrate from the digestion of a model lipid-based formulation (LBF). This method was developed in light of recent findings that indicate variab...... on drugs, and experimental conditions, which are anticipated to produce altered solid-state forms upon the precipitation of drug (i.e., polymorphs, amorphous forms, and salts). © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci....

  1. Formulation of Sustained-Release Diltiazem Matrix Tablets Using ...

    African Journals Online (AJOL)

    Erah

    surface, their drug release behavior appears simple, but ... matrix material for the formulation of ..... formulation F5 (,) and reference formulations. ( , □). 0. 50. 100. 150. 200. 250. 300. 0. 3. 6 .... Coviello T, Matricardi P, Marianecci C, Alhaique F.

  2. Synthesis of superparamagnetic nanoparticles dispersed in spherically shaped carbon nanoballs

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, E.M.M., E-mail: e.ibrahim@science.sohag.edu.eg; Hampel, Silke; Thomas, Juergen; Haase, Diana; Wolter, A. U. B.; Khavrus, Vyacheslav O.; Taeschner, Christine; Leonhardt, Albrecht; Buechner, Bernd [Leibniz Institute of Solid State and Material Research (Germany)

    2012-09-15

    In this work, carbon nanoballs in spherical shape with diameter 70 {+-} 2 nm containing well-dispersed superparamagnetic magnetite/maghemite Fe{sub 3}O{sub 4}/{gamma}-Fe{sub 2}O{sub 3} nanoparticles of 5-10 nm in size were synthesised by a facile route using the radio frequency (rf) plasma in order to assist the pyrolysis of ferrocene. Ferrocene was placed in an inductively coupled rf plasma field without additional thermal heating to activate simultaneous sublimation and pre-pyrolysis processes. During this plasma activation, the resultant derivatives were carried by an argon gas stream into the hot zone of a resistance furnace (600 Degree-Sign C) for complete thermal decomposition. The deposition of the nanoballs could be observed in the hot zone of the furnace at a temperature of 600 Degree-Sign C. The synthesised nanoballs are highly dispersible in solvents that make them particularly suitable for different applications. Their morphology, composition and structure were characterized by high-resolution scanning and transmission electron microscopy, including selected area electron diffraction, electron energy loss spectroscopy and X-ray diffraction. Magnetic measurements demonstrated that the nanoballs possess superparamagnetic characteristics.

  3. Synthesis and super-paramagnetic properties of neodymium ferrites nanorods

    Energy Technology Data Exchange (ETDEWEB)

    El moussaoui, H. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Laboratoire of Magnetism and the Physics of the High Energies, URAC 12, Departement of Physique, Faculty of Science, Mohammed V- Agdal University, BP 1014, Rabat (Morocco); Mounkachi, O., E-mail: o.mounkachi@mascir.com [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Masrour, R. [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, Route Sidi Bouzid, BP 63, 46000 Safi (Morocco); Hamedoun, M., E-mail: hamedoun@hotmail.com [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hlil, E.K. [Institut Néel, CNRS-UJF, B.P. 166, 38042 Grenoble Cedex (France); Benyoussef, A. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Laboratoire of Magnetism and the Physics of the High Energies, URAC 12, Departement of Physique, Faculty of Science, Mohammed V- Agdal University, BP 1014, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco)

    2013-12-25

    Highlights: •Magnetic properties of Neodymium nanorods depend on calcination temperature. •The as-synthesized Nd ferrite nanorods are superparamagnetic at room temperature. •The blocking temperature is higher than room temperature. -- Abstract: In this work we report the microstructural characterization and the magnetic properties of neodymium ferrites (NdFe{sub 2}O{sub 4}) nanorods prepared by well controlled co-precipitation method. The effect of annealing temperature on the structure, morphology and magnetic properties of NdFe{sub 2}O{sub 4} has been investigated. The transmission electron microscopy (TEM) observations revealed that the as-prepared nanoparticles have rods-like shape with the average diameter ranging from 5 to 14 nm and uniform length. The magnetic measurements show that the as-synthesized nanorods have a superparamagnetic behavior at room temperature, with a blocking temperature of 360 K and magnetic anisotropy constant of 2.8 × 10{sup 5} ergs/cm{sup 3}. The magnetization and coercitivity at room temperature are increased from 26 to 34 emu/g and from 151 to 171 Oe with increasing annealing temperature from 400 to 600 °C, respectively.

  4. Highly fluorescent and superparamagnetic nanosystem for biomedical applications

    Science.gov (United States)

    Cabrera, Mariana P.; E Cabral Filho, Paulo; Silva, Camila M. C. M.; Oliveira, Rita M.; Geraldes, Carlos F. G. C.; Castro, M. Margarida C. A.; Costa, Benilde F. O.; Henriques, Marta S. C.; Paixão, José A.; Carvalho, Luiz B., Jr.; Santos, Beate S.; Hallwass, Fernando; Fontes, Adriana; Pereira, Giovannia A. L.

    2017-07-01

    This work reports on highly fluorescent and superparamagnetic bimodal nanoparticles (BNPs) obtained by a simple and efficient method as probes for fluorescence analysis and/or contrast agents for MRI. These promising BNPs with small dimensions (ca. 17 nm) consist of superparamagnetic iron oxide nanoparticles (SPIONs) covalently bound with CdTe quantum dots (ca. 3 nm). The chemical structure of the magnetic part of BNPs is predominantly magnetite, with minor goethite and maghemite contributions, as shown by Mössbauer spectroscopy, which is compatible with the x-ray diffraction data. Their size evaluation by different techniques showed that the SPION derivatization process, in order to produce the BNPs, does not lead to a large size increase. The BNPs saturation magnetization, when corrected for the organic content of the sample, is ca. 68 emu g-1, which is only slightly reduced relative to the bare nanoparticles. This indicates that the SPION surface functionalization does not change considerably the magnetic properties. The BNP aqueous suspensions presented stability, high fluorescence, high relaxivity ratio (r 2/r 1 equal to 25) and labeled efficiently HeLa cells as can be seen by fluorescence analysis. These BNP properties point to their applications as fluorescent probes as well as negative T 2-weighted MRI contrast agents. Moreover, their potential magnetic response could also be used for fast bioseparation applications.

  5. Intracellular trafficking of superparamagnetic iron oxide nanoparticles conjugated with TAT peptide: 3-dimensional electron tomography analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Baiju G.; Fukuda, Takahiro; Mizuki, Toru; Hanajiri, Tatsuro [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan); Maekawa, Toru, E-mail: maekawa@toyo.jp [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan)

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer We study the intracellular localisation of TAT-SPIONs using 3-D electron tomography. Black-Right-Pointing-Pointer 3-D images of TAT-SPIONs in a cell are clearly shown. Black-Right-Pointing-Pointer Release of TAT-SPIONs from endocytic vesicles into the cytoplasm is clearly shown. -- Abstract: Internalisation of nanoparticles conjugated with cell penetrating peptides is a promising approach to various drug delivery applications. Cell penetrating peptides such as transactivating transcriptional activator (TAT) peptides derived from HIV-1 proteins are effective intracellular delivery vectors for a wide range of nanoparticles and pharmaceutical agents thanks to their amicable ability to enter cells and minimum cytotoxicity. Although different mechanisms of intracellular uptake and localisation have been proposed for TAT conjugated nanoparticles, it is necessary to visualise the particles on a 3-D plane in order to investigate the actual intracellular uptake and localisation. Here, we study the intracellular localisation and trafficking of TAT peptide conjugated superparamagnetic ion oxide nanoparticles (TAT-SPIONs) using 3-D electron tomography. 3-D tomograms clearly show the location of TAT-SPIONs in a cell and their slow release from the endocytic vesicles into the cytoplasm. The present methodology may well be utilised for further investigations of the behaviours of nanoparticles in cells and eventually for the development of nano drug delivery systems.

  6. Intracellular trafficking of superparamagnetic iron oxide nanoparticles conjugated with TAT peptide: 3-dimensional electron tomography analysis

    International Nuclear Information System (INIS)

    Nair, Baiju G.; Fukuda, Takahiro; Mizuki, Toru; Hanajiri, Tatsuro; Maekawa, Toru

    2012-01-01

    Highlights: ► We study the intracellular localisation of TAT-SPIONs using 3-D electron tomography. ► 3-D images of TAT-SPIONs in a cell are clearly shown. ► Release of TAT-SPIONs from endocytic vesicles into the cytoplasm is clearly shown. -- Abstract: Internalisation of nanoparticles conjugated with cell penetrating peptides is a promising approach to various drug delivery applications. Cell penetrating peptides such as transactivating transcriptional activator (TAT) peptides derived from HIV-1 proteins are effective intracellular delivery vectors for a wide range of nanoparticles and pharmaceutical agents thanks to their amicable ability to enter cells and minimum cytotoxicity. Although different mechanisms of intracellular uptake and localisation have been proposed for TAT conjugated nanoparticles, it is necessary to visualise the particles on a 3-D plane in order to investigate the actual intracellular uptake and localisation. Here, we study the intracellular localisation and trafficking of TAT peptide conjugated superparamagnetic ion oxide nanoparticles (TAT-SPIONs) using 3-D electron tomography. 3-D tomograms clearly show the location of TAT-SPIONs in a cell and their slow release from the endocytic vesicles into the cytoplasm. The present methodology may well be utilised for further investigations of the behaviours of nanoparticles in cells and eventually for the development of nano drug delivery systems.

  7. Self-assembled superparamagnetic nanoparticles as MRI contrast agents— A review

    International Nuclear Information System (INIS)

    Su Hong-Ying; Wu Chang-Qiang; Ai Hua; Li Dan-Yang

    2015-01-01

    Recent progress of the preparation and applications of superparamagnetic iron oxide (SPIO) clusters as magnetic resonance imaging (MRI) probes is reviewed with regard to their applications in labeling and tracking cells in vivo, in diagnosis of cardiovascular diseases and tumors, and in drug delivery systems. Magnetic nanoparticles (NPs), especially SPIO nanoparticles, have long been used as MRI contrast agents and as an advantageous nanoplatform for drug delivery, taking advantage of their unique magnetic properties and ability to function at the molecular and cellular levels. Due to advances in nanotechnology, various means to control SPIO NPs’ size, composition, magnetization and relaxivity have been developed, as well as ways to usefully modify their surface. Recently, self-assembly of SPIO NP clusters in particulate carriers—such as polymeric micelles, vesicles, liposomes, and layer-by-layer (LbL) capsules—have been widely studied for application as ultrasensitive MRI probes, owing to their remarkably high spin–spin (T 2 ) relaxivity and convenience for further functionalization. (topical review)

  8. Subtle cytotoxicity and genotoxicity differences in superparamagnetic iron oxide nanoparticles coated with various functional groups

    Directory of Open Access Journals (Sweden)

    Hong SC

    2011-12-01

    Full Text Available Seong Cheol Hong1,*, Jong Ho Lee1,*, Jaewook Lee1, Hyeon Yong Kim1, Jung Youn Park2, Johann Cho3, Jaebeom Lee1, Dong-Wook Han11Department of Nanomedical Engineering, BK21 Nano Fusion Technology Division, College of Nanoscience and Nanotechnology, Pusan National University, 2Department of Biotechnology Research, National Fisheries Research and Development Institute, Busan, 3Electronic Materials Lab, Samsung Corning Precision Materials Co, Ltd, Gumi City, Gyeongsangbukdo, Korea*These authors contributed equally to this workAbstract: Superparamagnetic iron oxide nanoparticles (SPIONs have been widely utilized for the diagnosis and therapy of specific diseases, as magnetic resonance imaging (MRI contrast agents and drug-delivery carriers, due to their easy transportation to targeted areas by an external magnetic field. For such biomedical applications, SPIONs must have multifunctional characteristics, including optimized size and modified surface. However, the biofunctionality and biocompatibility of SPIONs with various surface functional groups of different sizes have yet to be elucidated clearly. Therefore, it is important to carefully monitor the cytotoxicity and genotoxicity of SPIONs that are surfaced-modified with various functional groups of different sizes. In this study, we evaluated SPIONs with diameters of approximately 10 nm and 100~150 nm, containing different surface functional groups. SPIONs were covered with –O-groups, so-called bare SPIONs. Following this, they were modified with three different functional groups – hydroxyl (–OH, carboxylic (–COOH, and amine (–NH2 groups – by coating their surfaces with tetraethyl orthosilicate (TEOS, (3-aminopropyltrimethoxysilane (APTMS, TEOS-APTMS, or citrate, which imparted different surface charges and sizes to the particles. The effects of SPIONs coated with these functional groups on mitochondrial activity, intracellular accumulation of reactive oxygen species, membrane integrity

  9. Experimental study of the biological properties of 188Re-Hepama-1 biologic superparamagnetic nanoparticles

    International Nuclear Information System (INIS)

    Feng Yanlin; Tan Jiaju; Sun Jing; Wen Guanghua; Wu Xiaolian; Liang Sheng; Xia Jiaoyun

    2007-01-01

    Objective: To investigate a new biologic-superparamagnetic nanoparticles's characteristics of immunological activity, biological distributing in vivo, targeting and inhibiting tumor effect. Methods: The experimental group 188 Re-Hepama-l-superparamagnetic nanoparticles, and control groups, including 188 ReO 4 - , 188 Re-Hepama-1, and 188 Re-superparamagnetic nanoparticles, were set up. The distributions were measured after injection 4 h and 24 h by caudal vein of Kuming mice. The magnetic targeting experiments in vivo were clone with and without magnetic field in liver after injection in New Zealand rabbit. The inhibiting tumor effect on hepatic cancer cell lines SMMC-7721 of the above four 188 Re labeled products were measured by mono nuclear cell direct cytotoxicity assay method. Results: After injection 4 h and 24 h by vein, the liver taking was highest in group 188 Re-Hepama-l-superparamagnetic nanoparticles. The radiative activity in liver in magnetism zoo was higher than in non magnetism zoo in 188 Re- Hepama-1-superparamagnetic nanoparticles after applying magnetic field in left lobe of liver, and the ratio of in magnetism zoo to non magnetism zoo was 1.87. And the half effective inhibition radioactive concentrations (IC 50 ) in 188 Re-Hepama-l-superparamagnetic nanoparticles was one forth of 188 ReO 4 - . Conclusion: 188 Re- Hepama-l-superparamagnetic nanoparticles showed its fine stability in intro, good immunological activity and significant liver target. (authors)

  10. Superparamagnetic iron oxide nanoparticles (SPIONs)-loaded Trojan microparticles for targeted aerosol delivery to the lung.

    Science.gov (United States)

    Tewes, Frederic; Ehrhardt, Carsten; Healy, Anne Marie

    2014-01-01

    Targeted aerosol delivery to specific regions of the lung may improve therapeutic efficiency and minimise unwanted side effects. Targeted delivery could potentially be achieved with porous microparticles loaded with superparamagnetic iron oxide nanoparticles (SPIONs)-in combination with a target-directed magnetic gradient field. The aim of this study was to formulate and evaluate the aerodynamic properties of SPIONs-loaded Trojan microparticles after delivery from a dry powder inhaler. Microparticles made of SPIONs, PEG and hydroxypropyl-β-cyclodextrin (HPβCD) were formulated by spray drying and characterised by various physicochemical methods. Aerodynamic properties were evaluated using a next generation cascade impactor (NGI), with or without a magnet positioned at stage 2. Mixing appropriate proportions of SPIONs, PEG and HPβCD allowed Trojan microparticle to be formulated. These particles had a median geometric diameter of 2.8±0.3μm and were shown to be sensitive to the magnetic field induced by a magnet having a maximum energy product of 413.8kJ/m(3). However, these particles, characterised by a mass median aerodynamic diameter (MMAD) of 10.2±2.0μm, were considered to be not inhalable. The poor aerodynamic properties resulted from aggregation of the particles. The addition of (NH4)2CO3 and magnesium stearate (MgST) to the formulation improved the aerodynamic properties of the Trojan particles and resulted in a MMAD of 2.2±0.8μm. In the presence of a magnetic field on stage 2 of the NGI, the amount of particles deposited at this stage increased 4-fold from 4.8±0.7% to 19.5±3.3%. These Trojan particles appeared highly sensitive to the magnetic field and their deposition on most of the stages of the NGI was changed in the presence compared to the absence of the magnet. If loaded with a pharmaceutical active ingredient, these particles may be useful for treating localised lung disease such as cancer nodules or bacterial infectious foci. Copyright

  11. Activity of an enzyme immobilized on superparamagnetic particles in a rotational magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Mizuki, Toru; Watanabe, Noriyuki; Nagaoka, Yutaka [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan); Fukushima, Tadamasa [Shimadzu GLC Ltd., Phenomenex Support Centre, Tokyo 110-0016 (Japan); Morimoto, Hisao; Usami, Ron [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan); Maekawa, Toru, E-mail: maekawa@toyonet.toyo.ac.jp [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan)

    2010-03-19

    We immobilize {alpha}-amylase extracted from Bacillus Iicheniformis on the surfaces of superparamagnetic particles and investigate the effect of a rotational magnetic field on the enzyme's activity. We find that the activity of the enzyme molecules immobilized on superparamagnetic particles increases in the rotational magnetic field and reaches maximum at a certain frequency. We clarify the effect of the cluster structures formed by the superparamagnetic particles on the activity. Enzyme reactions are enhanced even in a tiny volume of solution using the present method, which is very important for the development of efficient micro reactors and micro total analysis systems ({mu}-TAS).

  12. Genotoxicity of Superparamagnetic Iron Oxide Nanoparticles in Granulosa Cells

    Directory of Open Access Journals (Sweden)

    Marina Pöttler

    2015-11-01

    Full Text Available Nanoparticles that are aimed at targeting cancer cells, but sparing healthy tissue provide an attractive platform of implementation for hyperthermia or as carriers of chemotherapeutics. According to the literature, diverse effects of nanoparticles relating to mammalian reproductive tissue are described. To address the impact of nanoparticles on cyto- and genotoxicity concerning the reproductive system, we examined the effect of superparamagnetic iron oxide nanoparticles (SPIONs on granulosa cells, which are very important for ovarian function and female fertility. Human granulosa cells (HLG-5 were treated with SPIONs, either coated with lauric acid (SEONLA only, or additionally with a protein corona of bovine serum albumin (BSA; SEONLA-BSA, or with dextran (SEONDEX. Both micronuclei testing and the detection of γH2A.X revealed no genotoxic effects of SEONLA-BSA, SEONDEX or SEONLA. Thus, it was demonstrated that different coatings of SPIONs improve biocompatibility, especially in terms of genotoxicity towards cells of the reproductive system.

  13. Superparamagnetic bimetallic iron-palladium nanoalloy: synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Nazir, Rabia; Mazhar, Muhammad [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Akhtar, M Javed; Nadeem, M; Siddique, Muhammad [Physics Division, PINSTECH, PO Nilore, Islamabad 44000 (Pakistan); Shah, M Raza [HEJ Research Institute of Chemistry, University of Karachi, Karachi 75270 (Pakistan); Khan, Nawazish A [Material Science Laboratory, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Mehmood, Mazhar [National Centre for Nanotechnology, PIEAS, Islamabad 45650 (Pakistan); Butt, N M [Pakistan Science Foundation, Islamabad 44000 (Pakistan)], E-mail: mazhar42pk@yahoo.com

    2008-05-07

    Iron-palladium nanoalloy in the particle size range of 15-30 nm is synthesized by the relatively low temperature thermal decomposition of coprecipitated [Fe(Bipy){sub 3}]Cl{sub 2} and [Pd(Bipy){sub 3}]Cl{sub 2} in an inert ambient of dry argon gas. The silvery black Fe-Pd alloy nanoparticles are air-stable and have been characterized by EDX-RF, XRD, AFM, TEM, magnetometry, {sup 57}Fe Moessbauer and impedance spectroscopy. This Fe-Pd nanoalloy is in single phase and contains iron sites having up to 11 nearest-neighboring atoms. It is superparamagnetic in nature with high magnetic susceptibility, low coercivity and hyperfine field.

  14. Relaxometry imaging of superparamagnetic magnetite nanoparticles at ambient conditions

    Science.gov (United States)

    Finkler, Amit; Schmid-Lorch, Dominik; Häberle, Thomas; Reinhard, Friedemann; Zappe, Andrea; Slota, Michael; Bogani, Lapo; Wrachtrup, Jörg

    We present a novel technique to image superparamagnetic iron oxide nanoparticles via their fluctuating magnetic fields. The detection is based on the nitrogen-vacancy (NV) color center in diamond, which allows optically detected magnetic resonance (ODMR) measurements on its electron spin structure. In combination with an atomic-force-microscope, this atomic-sized color center maps ambient magnetic fields in a wide frequency range from DC up to several GHz, while retaining a high spatial resolution in the sub-nanometer range. We demonstrate imaging of single 10 nm sized magnetite nanoparticles using this spin noise detection technique. By fitting simulations (Ornstein-Uhlenbeck process) to the data, we are able to infer additional information on such a particle and its dynamics, like the attempt frequency and the anisotropy constant. This is of high interest to the proposed application of magnetite nanoparticles as an alternative MRI contrast agent or to the field of particle-aided tumor hyperthermia.

  15. Superparamagnetic nanoparticle-inclusion microbubbles for ultrasound contrast agents

    International Nuclear Information System (INIS)

    Yang Fang; Li Yixin; Chen Zhongping; Gu Ning; Li Ling; Wu Junru

    2008-01-01

    We have developed a new type of ultrasound (US) contrast agent, consisting of a gas core, a layer of superparamagnetic iron oxide Fe 3 O 4 nanoparticles (SPIO) and an oil in water outermost layer. The newly developed US contrast agent microbubbles have a mean diameter of 760 nm with a polydisperity index (PI) of 0.699. Our in vitro and in vivo experiments have shown that they have the following advantages compared to gas-encapsulated microbbubbles without SPIO inclusion: (1) they provide better contrast for US images; (2) the SPIO-inclusion microbubbles generate a higher backscattering signal; the mean grey scale is 97.9, which is 38.6 higher than that of microbubbles without SPIO; and (3) since SPIO can also serve as a contrast agent of magnetic resonance images (MRI) in vitro, they can be potentially used as contrast agents for double-modality (MRI and US) clinical studies.

  16. Deviation from the superparamagnetic behaviour of fine-particle systems

    CERN Document Server

    Malaescu, I

    2000-01-01

    Studies concerning superparamagnetic behaviour of fine magnetic particle systems were performed using static and radiofrequency measurements, in the range 1-60 MHz. The samples were: a ferrofluid with magnetite particles dispersed in kerosene (sample A), magnetite powder (sample B) and the same magnetite powder dispersed in a polymer (sample C). Radiofrequency measurements indicated a maximum in the imaginary part of the complex magnetic susceptibility, for each of the samples, at frequencies with the magnitude order of tens of MHz, the origin of which was assigned to Neel-type relaxation processes. The static measurements showed a Langevin-type dependence of magnetisation M and of susceptibility chi, on the magnetic field for sample A. For samples B and C deviations from this type of dependence were found. These deviations were analysed qualitatively and explained in terms of the interparticle interactions, dispersion medium influence and surface effects.

  17. Increased cellular uptake of lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles due to surface modification with folic acid.

    Science.gov (United States)

    Feuser, Paulo Emilio; Arévalo, Juan Marcelo Carpio; Junior, Enio Lima; Rossi, Gustavo Rodrigues; da Silva Trindade, Edvaldo; Rocha, Maria Eliane Merlin; Jacques, Amanda Virtuoso; Ricci-Júnior, Eduardo; Santos-Silva, Maria Claudia; Sayer, Claudia; de Araújo, Pedro H Hermes

    2016-12-01

    Lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid were synthesized by miniemulsion polymerization in just one step. In vitro biocompatibility and cytotoxicity assays on L929 (murine fibroblast), human red blood, and HeLa (uterine colon cancer) cells were performed. The effect of folic acid at the nanoparticles surface was evaluated through cellular uptake assays in HeLa cells. Results showed that the presence of folic acid did not affect substantially the polymer particle size (~120 nm), the superparamagnetic behavior, the encapsulation efficiency of lauryl gallate (~87 %), the Zeta potential (~38 mV) of the polymeric nanoparticles or the release profile of lauryl gallate. The release profile of lauryl gallate from superparamagnetic poly(methyl methacrylate) nanoparticles presented an initial burst effect (0-1 h) followed by a slow and sustained release, indicating a biphasic release system. Lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles with folic acid did not present cytotoxicity effects on L929 and human red blood cells. However, free lauryl gallate presented significant cytotoxic effects on L929 and human red blood cells at all tested concentrations. The presence of folic acid increased the cytotoxicity of lauryl gallate loaded in nanoparticles on HeLa cells due to a higher cellular uptake when HeLa cells were incubated at 37 °C. On the other hand, when the nanoparticles were incubated at low temperature (4 °C) cellular uptake was not observed, suggesting that the uptake occurred by folate receptor mediated energy-dependent endocytosis. Based on presented results our work suggests that this carrier system can be an excellent alternative in targeted drug delivery by folate receptor.

  18. Magnetic characterization of superparamagnetic nanoparticles pulled through model membranes.

    Science.gov (United States)

    Barnes, Allison L; Wassel, Ronald A; Mondalek, Fadee; Chen, Kejian; Dormer, Kenneth J; Kopke, Richard D

    2007-01-04

    To quantitatively compare in-vitro and in vivo membrane transport studies of targeted delivery, one needs characterization of the magnetically-induced mobility of superparamagnetic iron oxide nanoparticles (SPION). Flux densities, gradients, and nanoparticle properties were measured in order to quantify the magnetic force on the SPION in both an artificial cochlear round window membrane (RWM) model and the guinea pig RWM. Three-dimensional maps were created for flux density and magnetic gradient produced by a 24-well casing of 4.1 kilo-Gauss neodymium-iron-boron (NdFeB) disc magnets. The casing was used to pull SPION through a three-layer cell culture RWM model. Similar maps were created for a 4 inch (10.16 cm) cube 48 MGOe NdFeB magnet used to pull polymeric-nanoparticles through the RWM of anesthetized guinea pigs. Other parameters needed to compute magnetic force were nanoparticle and polymer properties, including average radius, density, magnetic susceptibility, and volume fraction of magnetite. A minimum force of 5.04 x 10(-16) N was determined to adequately pull nanoparticles through the in-vitro model. For the guinea pig RWM, the magnetic force on the polymeric nanoparticles was 9.69 x 10-20 N. Electron microscopy confirmed the movement of the particles through both RWM models. As prospective carriers of therapeutic substances, polymers containing superparamagnetic iron oxide nanoparticles were succesfully pulled through the live RWM. The force required to achieve in vivo transport was significantly lower than that required to pull nanoparticles through the in-vitro RWM model. Indeed very little force was required to accomplish measurable delivery of polymeric-SPION composite nanoparticles across the RWM, suggesting that therapeutic delivery to the inner ear by SPION is feasible.

  19. Synthesis and magnetic properties of superparamagnetic CoAs nanostructures

    Science.gov (United States)

    Desai, P.; Ashokaan, N.; Masud, J.; Pariti, A.; Nath, M.

    2015-03-01

    This article provides a comprehensive guide on the synthesis and characterization of superparamagnetic CoAs nanoparticles and elongated nanostructures with high blocking temperature, (TB), via hot-injection precipitation and solvothermal methods. Cobalt arsenides constitute an important family of magnetically active solids that find a variety of applications ranging from magnetic semiconductors to biomedical imaging. While the higher temperature hot-injection precipitation technique (300 °C) yields pure CoAs nanostructures, the lower temperature solvothermal method (200 °C) yields a mixture of CoAs nanoparticles along with other Co-based impurity phases. The synthesis in all these cases involved usage of triphenylarsine ((C6H5)3As) as the As precursor which reacts with solid Co2(CO)8 by ligand displacement to yield a single source precursor. The surfactant, hexadecylamine (HDA) further assists in controlling the morphology of the nanostructures. HDA also provides a basic medium and molten flux-like conditions for the redox chemistry to occur between Co and As at elevated temperatures. The influence of the length of reaction time was investigated by studying the evolution of product morphology over time. It was observed that while spontaneous nucleation at higher temperature followed by controlled growth led to the predominant formation of short nanorods, with longer reaction time, the nanorods were further converted to nanoparticles. The size of the nanoparticles obtained, was mostly in the range of 10-15 nm. The key finding of this work is exceptionally high coercivity in CoAs nanostructures for the first time. Coercivity observed was as high as 0.1 T (1000 Oe) at 2 K. These kinds of magnetic nanostructures find multiple applications in spintronics, whereas the superparamagnetic nanoparticles are viable for use in magnetic storage, ferrofluids and as contrast enhancing agents in MRI.

  20. Chemical interactions study of antiretroviral drugs efavirenz and lamivudine concerning the development of stable fixed-dose combination formulations for AIDS treatment

    International Nuclear Information System (INIS)

    Gomes, Elionai C. de L.; Mussel, Wagner N.; Resende, Jarbas M.; Yoshida, Maria I.

    2013-01-01

    Lamivudine and efavirenz are among the most worldwide used drugs for acquired immune deficiency syndrome (AIDS) treatment. Solid state nuclear magnetic resonance (ssNMR), Fourier-transformed infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermo-optical analysis (TOA) were used to study possible interactions between these drugs, aiming the development of a fixed-dose drug combination. DSC and TOA have evidenced significant shifts on the melting points of both drugs in the mixture, which may be due to interaction between them. Although DSC and TOA results indicated incompatibility between the drugs, FTIR spectra were mostly unmodified due to overlapping peaks. The ssNMR analyses showed significant changes in chemical shifts values of the mixture when compared with spectra of pure drugs, especially in the signals relating to the deficient electron carbon atoms of both drugs. These results confirm the interactions suggested by DSC and TOA, which is probably due to acid-base interactions between electronegative and deficient electron atoms of both lamivudine and efavirenz. (author)

  1. Chemical interactions study of antiretroviral drugs efavirenz and lamivudine concerning the development of stable fixed-dose combination formulations for AIDS treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Elionai C. de L.; Mussel, Wagner N.; Resende, Jarbas M.; Yoshida, Maria I., E-mail: mirene@ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Instituto de Ciencias Exatas. Departamento de Quimica; Fialho, Silvia L.; Barbosa, Jamile; Fialho, Silvia L. [Fundacao Ezequiel Dias, Belo Horizonte, MG (Brazil)

    2013-04-15

    Lamivudine and efavirenz are among the most worldwide used drugs for acquired immune deficiency syndrome (AIDS) treatment. Solid state nuclear magnetic resonance (ssNMR), Fourier-transformed infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermo-optical analysis (TOA) were used to study possible interactions between these drugs, aiming the development of a fixed-dose drug combination. DSC and TOA have evidenced significant shifts on the melting points of both drugs in the mixture, which may be due to interaction between them. Although DSC and TOA results indicated incompatibility between the drugs, FTIR spectra were mostly unmodified due to overlapping peaks. The ssNMR analyses showed significant changes in chemical shifts values of the mixture when compared with spectra of pure drugs, especially in the signals relating to the deficient electron carbon atoms of both drugs. These results confirm the interactions suggested by DSC and TOA, which is probably due to acid-base interactions between electronegative and deficient electron atoms of both lamivudine and efavirenz. (author)

  2. Harmonic decomposition of magneto-optical signal from suspensions of superparamagnetic nanoparticles

    Science.gov (United States)

    Patterson, Cody; Syed, Maarij; Takemura, Yasushi

    2018-04-01

    Magnetic nanoparticles (MNPs) are widely used in biomedical applications. Characterizing dilute suspensions of superparamagnetic iron oxide nanoparticles (SPIONs) in bio-relevant media is particularly valuable for magnetic particle imaging, hyperthermia, drug delivery, etc. Here, we study dilute aqueous suspensions of single-domain magnetite nanoparticles using an AC Faraday rotation (FR) setup. The setup uses an oscillating magnetic field (800 Hz) which generates a multi-harmonic response. Each harmonic is collected and analyzed using the Fourier components of the theoretical signal determined by a Langevin-like magnetization. With this procedure, we determine the average magnetic moment per particle μ , particle number density n, and Verdet constant of the sample. The fitted values of μ and n are shown to be consistent across each harmonic. Additionally, we present the results of these parameters as n is varied. The large values of μ reveal the possibility of clustering as reported in other literature. This suggests that μ is representative of the average magnetic moment per cluster of nanoparticles. Multiple factors, including the external magnetic field, surfactant degradation, and laser absorption, can contribute to dynamic and long-term aggregation leading to FR signals that represent space- and time-averaged sample parameters. Using this powerful analysis procedure, future studies are aimed at determining the clustering mechanisms in this AC system and characterizing SPION suspensions at different frequencies and viscosities.

  3. Investigation properties of superparamagnetic nanoparticles and magnetic field-dependent hyperthermia therapy

    Science.gov (United States)

    Hedayatnasab, Z.; Abnisa, F.; Daud, W. M. A. Wan

    2018-03-01

    The application of superparamagnetic nanoparticles as heating agents in hyperthermia therapy has made a therapeutic breakthrough in cancer treatment. The high efficiency of this magnetic hyperthermia therapy has derived from a great capability of superparamagnetic nanoparticles to generate focused heat in inaccessible tumors being effectively inactivated. The main challenges of this therapy are the improvement of the induction heating power of superparamagnetic nanoparticles and the control of the hyperthermia temperature in a secure range of 42 °C to 47 °C, at targeted area. The variation of these hyperthermia properties is principally dependent on the magnetic nanoparticles as well as the magnetic field leading to enhance the efficiency of magnetic hyperthermia therapy at targeted area and also avoid undue heating to healthy cells. The present study evaluates the magnetic hyperthermia therapy through the determination of superparamagnetic nanoparticles properties and magnetic field’ parameters.

  4. The influence of polymeric excipients on the process of pharmaceutical availability of therapeutic agents from a model drug form. Part I. In formulations with controlled disintegration and release time.

    Science.gov (United States)

    Nachajski, Michal Jakub; Zgoda, Marian Mikołaj

    2010-01-01

    Pre-formulation research was conducted on the application of Ex. Echinaceae aq. siccum in the production of a quickly disintegrating suspension tablet, a lozenge with kariostatic sugar alcohols (mannitol, sorbitol), and, above all, a solid drug form with controlled release of therapeutic agents included in the extract. Morphological parameters of tablets obtained in the course of experiment were estimated and the profiles of the release (diffusion) ofhydrophilic therapeutic agents into model receptor fluids with varying values of osmolarity (0.1 mol HCl approximately 200 mOsm/l, hypotonic hydrating fluid approximately 143 mOsm/l, and compensatory paediatric fluid approximately 272 mOsm/l) were examined. The study focused on the technological problem of determining the effect of hydrogel Carbopol structure on the ordering of diffusion ofhydrophilic therapeutic agents from a model drug form (a tablet) into model fluids with variable osmolarity.

  5. MZnFe{sub 2}O{sub 4} (M = Ni, Mn) cubic superparamagnetic nanoparticles obtained by hydrothermal synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Freire, R. M. [Universidade Federal do Ceara-UFC, Grupo de Quimica de Materiais Avancados (GQMAT)- Departamento de Quimica Analitica e Fisico-Quimica (Brazil); Ribeiro, T. S.; Vasconcelos, I. F. [Universidade Federal do Ceara, Departamento de Engenharia Metalurgica e de Materiais (Brazil); Denardin, J. C. [Universidad de Santiago de Chile, USACH, Departamento de Fisica (Chile); Barros, E. B. [Universidade Federal do Ceara-UFC, Departamento de Fisica (Brazil); Mele, Giuseppe [Universita del Salento, Dipartimento di Ingegneria dell' Innovazione (Italy); Carbone, L. [IPCF-CNR, UOS Pisa (Italy); Mazzetto, S. E.; Fechine, P. B. A., E-mail: fechine@ufc.br [Universidade Federal do Ceara-UFC, Grupo de Quimica de Materiais Avancados (GQMAT)- Departamento de Quimica Analitica e Fisico-Quimica (Brazil)

    2013-05-15

    MZnFe{sub 2}O{sub 4} (M = Ni or Mn) cubic nanoparticles have been prepared by hydrothermal synthesis in mild conditions and short time without any procedure of calcinations. The structural and magnetic properties of the mixed ferrites were investigated by X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Moessbauer spectroscopy, vibrating sample magnetometer, and Transmission electron microscopy (TEM). X-ray analysis showed peaks characteristics of the spinel phase. The average diameter of the nanoparticles observed by TEM measurements was approximately between 4 and 10 nm. Spectroscopy study of the spinel structure was performed based on Group Theory. The predicted bands were observed in FTIR and Raman spectrum. The magnetic parameters and Moessbauer spectroscopy were measured at room temperature and superparamagnetic behavior was observed for mixed ferrites. This kind of nanoparticles can be used as precursor in drug delivery systems, magnetic hyperthermia, ferrofluids, or magnetic imaging contrast agents.

  6. Bioactivation antioxidant and transglycating properties of N-acetylcarnosine autoinduction prodrug of a dipeptide L-carnosine in mucoadhesive drug delivery eye-drop formulation: powerful eye health application technique and therapeutic platform.

    Science.gov (United States)

    Babizhayev, Mark A

    2012-06-01

    the study document that the therapeutic benefit in clinical trials is associated with the bioactivation universal antioxidant and transglycating properties of N-acetylcarnosine acting as the ophthalmic prodrug of L-carnosine, and depends on the nature of the specific drug delivery lubricant eye-drop formulation applied as the topical solution. The research highlights findings in N-acetylcarnosine prodrug activation, transport mechanisms, drug-to-drug interactions, and formulations in order to unlock the optimization of complicated ocular pharmacology of N-acetylcarnosine. Patented N-acetylcarnosine lubricant eye-drop formula was marketed as numerous human biological brands reaching important distribution networks on over 550 000 bottles sold. Nature Does Nothing Uselessly. -Aristotle Copyright © 2011 John Wiley & Sons, Ltd.

  7. Investigation of superparamagnetism in pure and chromium substituted cobalt nanoferrite

    Energy Technology Data Exchange (ETDEWEB)

    Raghasudha, M., E-mail: raghasudha_m@yahoo.co.in [Department of Chemistry, University College of Science, Osmania University, Hyderabad 500007, Telangana (India); Ravinder, D. [Department of Physics, University College of Science, Osmania University, Hyderabad 500007, Telangana (India); Veerasomaiah, P. [Department of Chemistry, University College of Science, Osmania University, Hyderabad 500007, Telangana (India)

    2016-12-15

    Nanostructured magnetic materials with the chemical composition CoFe{sub 2}O{sub 4} and CoCr{sub 0.9}Fe{sub 1.1}O{sub 4} were synthesized through Citrate-gel chemical synthesis with a crystallite size of 6.5 nm and 10.7 nm respectively. Structural characterization of the samples was performed by X-ray diffraction analysis and magnetic properties were studied using Vibrating Sample Magnetometer (VSM). Magnetization measurements as a function of applied magnetic field ±10 T at various temperatures 5 K, 25 K, 310 K and 355 K were carried out. Field cooled (FC) and Zero field cooled (ZFC) magnetization measurements under a magnetic field of 100 Oe for temperature ranging from 5–400 K were studied. The blocking temperature (T{sub b}) for both the ferrites was observed to be around 355 K. Below blocking temperature they showed ferromagnetic behavior and above which they are superparamagnetic in nature that favors their application in the biomedical field. The substitution of paramagnetic Cr{sup 3+} ions for magnetic Fe{sup 3+} ion in cobalt ferrite has resulted in a decrease in magnetization and the coercivity of the samples. CoCr{sub 0.9}Fe{sub 1.1}O{sub 4} nanoferrites with observed low coercivity of 338 Oe make them desirable in high frequency transformers due to their very soft magnetic behavior. - Highlights: • Particle size of CoFe{sub 2}O{sub 4} and CoCr{sub 0.9}Fe{sub 1.1}O{sub 4} is 6.5 nm and 10.7 nm respectively. • At 5 K and 25 K the materials were ferromagnetic in nature with high coercivity. • Materials show superparamagnetic behavior above room temperature. • Blocking temperature is at around 355 K where coercivity and remanence are zero. • Materials are suitable for hyperthermia cancer therapy.

  8. Optimization of chlorphenesin emulgel formulation

    OpenAIRE

    Mohamed, Magdy I.

    2004-01-01

    This study was conducted to develop an emulgel formulation of chlorphenesin (CHL) using 2 types of gelling agents: hydroxypropylmethyl cellulose (HPMC) and Carbopol 934. The influence of the type of the gelling agent and the concentration of both the oil phase and emulsifying agent on the drug release from the prepared emulgels was investigated using a 23 factorial design. The prepared emulgels were evaluated for their physical appearance, rheological behavior, drug release, antifungal activi...

  9. Ferroferric oxide/polystyrene (Fe3O4/PS superparamagnetic nanocomposite via facile in situ bulk radical polymerization

    Directory of Open Access Journals (Sweden)

    2010-03-01

    Full Text Available Organo-modified ferroferric oxide superparamagnetic nanoparticles, synthesized by the coprecipitation of superparamagnetic nanoparticles in presence of oleic acid (OA, were incorporated in polystyrene (PS by the facile in situ bulk radical polymerization by using 2,2-azobisisobutyronitrile (AIBN as initiator. The transmission electron microscopy (TEM analysis of the resultant uniform ferroferric oxide/polystyrene superparamagnetic nanocomposite (Fe3O4/PS showed that the superparamagnetic nanoparticles had been dispersed homogeneously in the polymer matrix due to the surface grafted polystyrene, confirmed by Fourier transform infrared (FT-IR spectroscopy and thermogravimetric analysis (TGA. The superparamagnetic property of the Fe3O4/PS nanocomposite was testified by the vibrating sample magnetometer (VSM analysis. The strategy developed is expected to be applied for the large-scale industrial manufacturing of the superparamagnetic polymer nanocomposite.

  10. Simultaneous determination of moxifloxacin and H2 receptor antagonist in pharmaceutical dosage formulations by RP-HPLC: application to in vitro drug interactions

    Directory of Open Access Journals (Sweden)

    Najma Sultana

    2011-01-01

    Full Text Available Simultaneous determination of moxifloxacin (MOX and H2-antagonists was first time developed in bulk and formulations. Purospher STAR C18 (250 x 4.6 mm, 5 μm column was used. The mobile phase (methanol: water: ACN, 60:45:5 v/v/v, pH 2.7 was delivered at a flow rate of 1.0 mL min-1, eluent was monitored at 236, 270 and 310 nm for cimetidine, famotidine and ranitidine, respectively. The proposed method is specific, accurate (98-103%, precise (intra-day and inter-day variation 0.098-1.970% and linear (r>0.998. The LOD and LOQ were 0.006-0.018 and 0.019-0.005 μg mL-1, respectively. The statistical parameters were applied to verify the results. The method is applicable to routine analysis of formulations and interaction of MOX with H2-antagonist.

  11. Lipid drug conjugate nanoparticle as a potential nanocarrier for the oral delivery of pemetrexed diacid: Formulation design, characterization, ex vivo, and in vivo assessment.

    Science.gov (United States)

    Soni, Kriti; Mujtaba, Ali; Kohli, Kanchan

    2017-10-01

    The present work was to develop lipid drug conjugated (LDC) nanoparticles for the potential oral delivery of pemetrexed diacid (PTX) and evaluation of its in vitro, ex vivo and in vivo potentials. The LDC was prepared by salt formation of PTX with stearic acid and followed by cold homogenization technique to produce the LDC nanoparticles. FTIR analysis of LDC proved the presence of amide bond in LDC powder indicating the conjugation between drug and lipid. LDC nanoparticles was found to have particle size 121.9±1.85nm and zeta potential -51.6mV±1.23 and entrapment efficiency 81.0±0.89%. TEM images revealed spherical morphology and were in corroboration with particle size measurements. Ex vivo gut permeation studies revealed a very good enhancement in permeation of drug present in the LDC as compared to plain drug solution and were confirmed by CLSM. MTT assay conformed significant% toxicity at the end of 24h and 48h. Furthermore, the AUC 0-24 of PTX from the optimized LDC nanoparticels was found to be 4.22 folds higher than that from PTX suspension on oral administration. Thus, LDC has high potential for the oral delivery of PTX in cancer therapy and future prospects for the industrial purpose. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A new approach to formulating and appraising drug policy: A multi-criterion decision analysis applied to alcohol and cannabis regulation

    NARCIS (Netherlands)

    Rogeberg, Ole; Bergsvik, Daniel; Phillips, Lawrence D.; van Amsterdam, Jan; Eastwood, Niamh; Henderson, Graeme; Lynskey, Micheal; Measham, Fiona; Ponton, Rhys; Rolles, Steve; Schlag, Anne Katrin; Taylor, Polly; Nutt, David

    2018-01-01

    Drug policy, whether for legal or illegal substances, is a controversial field that encompasses many complex issues. Policies can have effects on a myriad of outcomes and stakeholders differ in the outcomes they consider and value, while relevant knowledge on policy effects is dispersed across

  13. A new approach to formulating and appraising drug policy: A multi-criterion decision analysis applied to alcohol and cannabis regulation.

    Science.gov (United States)

    Rogeberg, Ole; Bergsvik, Daniel; Phillips, Lawrence D; van Amsterdam, Jan; Eastwood, Niamh; Henderson, Graeme; Lynskey, Micheal; Measham, Fiona; Ponton, Rhys; Rolles, Steve; Schlag, Anne Katrin; Taylor, Polly; Nutt, David

    2018-02-16

    Drug policy, whether for legal or illegal substances, is a controversial field that encompasses many complex issues. Policies can have effects on a myriad of outcomes and stakeholders differ in the outcomes they consider and value, while relevant knowledge on policy effects is dispersed across multiple research disciplines making integrated judgements difficult. Experts on drug harms, addiction, criminology and drug policy were invited to a decision conference to develop a multi-criterion decision analysis (MCDA) model for appraising alternative regulatory regimes. Participants collectively defined regulatory regimes and identified outcome criteria reflecting ethical and normative concerns. For cannabis and alcohol separately, participants evaluated each regulatory regime on each criterion and weighted the criteria to provide summary scores for comparing different regimes. Four generic regulatory regimes were defined: absolute prohibition, decriminalisation, state control and free market. Participants also identified 27 relevant criteria which were organised into seven thematically related clusters. State control was the preferred regime for both alcohol and cannabis. The ranking of the regimes was robust to variations in the criterion-specific weights. The MCDA process allowed the participants to deconstruct complex drug policy issues into a set of simpler judgements that led to consensus about the results. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Fitness for work in health care workers: state of the art and possible operational recommendations for its formulation and management in relationship to alcohol and drug addiction.

    Science.gov (United States)

    Riboldi, L; Bordini, L; Ferrario, M M

    2012-01-01

    Both chronic and acute alcohol or drug consumption have severe health consequences, alter the subject's cognitive functions and work performance and increase the risk of work-related accidents, for the worker and for third parties (e.g., co-workers and other people subject to negative impact of worker's actions). Limited scientific evidence has suggested that some working conditions present in the health care sector (e.g., high levels of responsibility, competitiveness, burnout, shiftwork, work-related stress) may favour alcohol and drug abuse. The aim of the present report is to describe the problem of alcohol and drug consumption among health care professionals and to evaluate the problem of related fitness for work. The magnitude of this problem remains unclear; recent estimates have reported alcohol abuse and addiction problems in 1-14% and psychotropic, illicit and non-illicit, substance abuse in 6-15% of health care workers. The prevalence of tranquilizer and sedative/hypnotic drug use is high, particularly among physicians. However, it remains unclear whether the incidence of workplace accidents and injuries is higher among drug abusers, and whether the statutory introduction of prevention programmes has led to actual control of this problem in the workplace. Italian legislation identifies the occupational physician as a key figure to prevent psychotropic substance abuse in some work activities, but some difficulties in its application remain. Legislators should issue simple norms that clearly define the responsibilities and skills of each actor involved in safeguarding workplace health and safety, as well as clearly outlining workplace monitoring procedures.

  15. High frequency lateral flow affinity assay using superparamagnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lago-Cachón, D., E-mail: dlagocachon@gmail.com [Dpto. de Física, Universidad de Oviedo, Edificio Departamental Este, Campus de Viesques, 33204 Gijón (Spain); Rivas, M., E-mail: rivas@uniovi.es [Dpto. de Física, Universidad de Oviedo, Edificio Departamental Este, Campus de Viesques, 33204 Gijón (Spain); Martínez-García, J.C., E-mail: jcmg@uniovi.es [Dpto. de Física, Universidad de Oviedo, Edificio Departamental Este, Campus de Viesques, 33204 Gijón (Spain); Oliveira-Rodríguez, M., E-mail: oliveiramyriam@uniovi.es [Dpto. de Química Física y Analítica, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo (Spain); Blanco-López, M.C., E-mail: cblanco@uniovi.es [Dpto. de Química Física y Analítica, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo (Spain); García, J.A., E-mail: joseagd@uniovi.es [Dpto. de Física, Universidad de Oviedo, Escuela de Marina, Campus de Viesques, 33204 Gijón (Spain)

    2017-02-01

    Lateral flow assay is one of the simplest and most extended techniques in medical diagnosis for point-of-care testing. Although it has been traditionally a positive/negative test, some work has been lately done to add quantitative abilities to lateral flow assay. One of the most successful strategies involves magnetic beads and magnetic sensors. Recently, a new technique of superparamagnetic nanoparticle detection has been reported, based on the increase of the impedance induced by the nanoparticles on a RF-current carrying copper conductor. This method requires no external magnetic field, which reduces the system complexity. In this work, nitrocellulose membranes have been installed on the sensor, and impedance measurements have been carried out during the sample diffusion by capillarity along the membrane. The impedance of the sensor changes because of the presence of magnetic nanoparticles. The results prove the potentiality of the method for point-of-care testing of biochemical substances and nanoparticle capillarity flow studies. - Highlights: • A method for quantification of Lateral Flow Assays is proposed. • MNP induce an increase of the impedance on a RF-current carrying copper sensor. • Magnetic nanoparticles (MNP) can be detected flowing over the sensing element.

  16. Single-cell nanotoxicity assays of superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Eustaquio, Trisha; Leary, James F

    2012-01-01

    Properly evaluating the nanotoxicity of nanoparticles involves much more than bulk-cell assays of cell death by necrosis. Cells exposed to nanoparticles may undergo repairable oxidative stress and DNA damage or be induced into apoptosis. Exposure to nanoparticles may cause the cells to alter their proliferation or differentiation or their cell-cell signaling with neighboring cells in a tissue. Nanoparticles are usually more toxic to some cell subpopulations than others, and toxicity often varies with cell cycle. All of these facts dictate that any nanotoxicity assay must be at the single-cell level and must try whenever feasible and reasonable to include many of these other factors. Focusing on one type of quantitative measure of nanotoxicity, we describe flow and scanning image cytometry approaches to measuring nanotoxicity at the single-cell level by using a commonly used assay for distinguishing between necrotic and apoptotic causes of cell death by one type of nanoparticle. Flow cytometry is fast and quantitative, provided that the cells can be prepared into a single-cell suspension for analysis. But when cells cannot be put into suspension without altering nanotoxicity results, or if morphology, attachment, and stain location are important, a scanning image cytometry approach must be used. Both methods are described with application to a particular type of nanoparticle, a superparamagnetic iron oxide nanoparticle (SPION), as an example of how these assays may be applied to the more general problem of determining the effects of nanomaterial exposure to living cells.

  17. Hydrodynamic Torques and Rotations of Superparamagnetic Bead Dimers

    Science.gov (United States)

    Pease, Christopher; Etheridge, J.; Wijesinghe, H. S.; Pierce, C. J.; Prikockis, M. V.; Sooryakumar, R.

    Chains of micro-magnetic particles are often rotated with external magnetic fields for many lab-on-a-chip technologies such as transporting beads or mixing fluids. These applications benefit from faster responses of the actuated particles. In a rotating magnetic field, the magnetization of superparamagnetic beads, created from embedded magnetic nano-particles within a polymer matrix, is largely characterized by induced dipoles mip along the direction of the field. In addition there is often a weak dipole mop that orients out-of-phase with the external rotating field. On a two-bead dimer, the simplest chain of beads, mop contributes a torque Γm in addition to the torque from mip. For dimers with beads unbound to each other, mop rotates individual beads which generate an additional hydrodynamic torque on the dimer. Whereas, mop directly torques bound dimers. Our results show that Γm significantly alters the average frequency-dependent dimer rotation rate for both bound and unbound monomers and, when mop exceeds a critical value, increases the maximum dimer rotation frequency. Models that include magnetic and hydrodynamics torques provide good agreement with the experimental findings over a range of field frequencies.

  18. High frequency lateral flow affinity assay using superparamagnetic nanoparticles

    International Nuclear Information System (INIS)

    Lago-Cachón, D.; Rivas, M.; Martínez-García, J.C.; Oliveira-Rodríguez, M.; Blanco-López, M.C.; García, J.A.

    2017-01-01

    Lateral flow assay is one of the simplest and most extended techniques in medical diagnosis for point-of-care testing. Although it has been traditionally a positive/negative test, some work has been lately done to add quantitative abilities to lateral flow assay. One of the most successful strategies involves magnetic beads and magnetic sensors. Recently, a new technique of superparamagnetic nanoparticle detection has been reported, based on the increase of the impedance induced by the nanoparticles on a RF-current carrying copper conductor. This method requires no external magnetic field, which reduces the system complexity. In this work, nitrocellulose membranes have been installed on the sensor, and impedance measurements have been carried out during the sample diffusion by capillarity along the membrane. The impedance of the sensor changes because of the presence of magnetic nanoparticles. The results prove the potentiality of the method for point-of-care testing of biochemical substances and nanoparticle capillarity flow studies. - Highlights: • A method for quantification of Lateral Flow Assays is proposed. • MNP induce an increase of the impedance on a RF-current carrying copper sensor. • Magnetic nanoparticles (MNP) can be detected flowing over the sensing element.

  19. Enzymatic- and temperature-sensitive controlled release of ultrasmall superparamagnetic iron oxides (USPIOs).

    Science.gov (United States)

    Yu, Shann S; Scherer, Randy L; Ortega, Ryan A; Bell, Charleson S; O'Neil, Conlin P; Hubbell, Jeffrey A; Giorgio, Todd D

    2011-02-27

    Drug and contrast agent delivery systems that achieve controlled release in the presence of enzymatic activity are becoming increasingly important, as enzymatic activity is a hallmark of a wide array of diseases, including cancer and atherosclerosis. Here, we have synthesized clusters of ultrasmall superparamagnetic iron oxides (USPIOs) that sense enzymatic activity for applications in magnetic resonance imaging (MRI). To achieve this goal, we utilize amphiphilic poly(propylene sulfide)-bl-poly(ethylene glycol) (PPS-b-PEG) copolymers, which are known to have excellent properties for smart delivery of drug and siRNA. Monodisperse PPS polymers were synthesized by anionic ring opening polymerization of propylene sulfide, and were sequentially reacted with commercially available heterobifunctional PEG reagents and then ssDNA sequences to fashion biofunctional PPS-bl-PEG copolymers. They were then combined with hydrophobic 12 nm USPIO cores in the thin-film hydration method to produce ssDNA-displaying USPIO micelles. Micelle populations displaying complementary ssDNA sequences were mixed to induce crosslinking of the USPIO micelles. By design, these crosslinking sequences contained an EcoRV cleavage site. Treatment of the clusters with EcoRV results in a loss of R2 negative contrast in the system. Further, the USPIO clusters demonstrate temperature sensitivity as evidenced by their reversible dispersion at ~75°C and re-clustering following return to room temperature. This work demonstrates proof of concept of an enzymatically-actuatable and thermoresponsive system for dynamic biosensing applications. The platform exhibits controlled release of nanoparticles leading to changes in magnetic relaxation, enabling detection of enzymatic activity. Further, the presented functionalization scheme extends the scope of potential applications for PPS-b-PEG. Combined with previous findings using this polymer platform that demonstrate controlled drug release in oxidative

  20. Enzymatic- and temperature-sensitive controlled release of ultrasmall superparamagnetic iron oxides (USPIOs

    Directory of Open Access Journals (Sweden)

    Ortega Ryan A

    2011-02-01

    Full Text Available Abstract Background Drug and contrast agent delivery systems that achieve controlled release in the presence of enzymatic activity are becoming increasingly important, as enzymatic activity is a hallmark of a wide array of diseases, including cancer and atherosclerosis. Here, we have synthesized clusters of ultrasmall superparamagnetic iron oxides (USPIOs that sense enzymatic activity for applications in magnetic resonance imaging (MRI. To achieve this goal, we utilize amphiphilic poly(propylene sulfide-bl-poly(ethylene glycol (PPS-b-PEG copolymers, which are known to have excellent properties for smart delivery of drug and siRNA. Results Monodisperse PPS polymers were synthesized by anionic ring opening polymerization of propylene sulfide, and were sequentially reacted with commercially available heterobifunctional PEG reagents and then ssDNA sequences to fashion biofunctional PPS-bl-PEG copolymers. They were then combined with hydrophobic 12 nm USPIO cores in the thin-film hydration method to produce ssDNA-displaying USPIO micelles. Micelle populations displaying complementary ssDNA sequences were mixed to induce crosslinking of the USPIO micelles. By design, these crosslinking sequences contained an EcoRV cleavage site. Treatment of the clusters with EcoRV results in a loss of R2 negative contrast in the system. Further, the USPIO clusters demonstrate temperature sensitivity as evidenced by their reversible dispersion at ~75°C and re-clustering following return to room temperature. Conclusions This work demonstrates proof of concept of an enzymatically-actuatable and thermoresponsive system for dynamic biosensing applications. The platform exhibits controlled release of nanoparticles leading to changes in magnetic relaxation, enabling detection of enzymatic activity. Further, the presented functionalization scheme extends the scope of potential applications for PPS-b-PEG. Combined with previous findings using this polymer platform that

  1. Formulation and Pharmacokinetic Evaluation of Controlled-Release ...

    African Journals Online (AJOL)

    A coating layer was then applied with a mixture of HPMC, ethylcellulose, shellac, and HPMC phthalate. The effect of several formulation variables on in vitro drug release was studied; furthermore, the drug release kinetics of the optimized formulation was evaluated. The in vivo pharmacokinetics of the optimized formulation ...

  2. Application of UV Imaging in Formulation Development

    DEFF Research Database (Denmark)

    Sun, Yu; Østergaard, Jesper

    2017-01-01

    defining formulation behavior after exposure to the aqueous environments and pharmaceutical performance is critical in pharmaceutical development, manufacturing and quality control of drugs. UV imaging has been explored as a tool for qualitative and quantitative characterization of drug dissolution...... related to the structural properties of the drug substance or formulation can be monitored. UV imaging is a non-intrusive and simple-to-operate analytical technique which holds potential for providing a mechanistic foundation for formulation development. This review aims to cover applications of UV...

  3. Formulation of self-nanoemulsifying drug delivery systems containing monoacyl phosphatidylcholine and Kolliphor® RH40 using experimental design

    DEFF Research Database (Denmark)

    Tran, Thuy; Rades, Thomas; Müllertz, Anette

    2018-01-01

    40 hydrogenated castor oil (Kolliphor® RH40). Monoacyl phosphatidylcholine was used in the form of Lipoid S LPC 80 (LPC, containing approximately 80% monoacyl phosphatidylcholine, 13% phosphatidylcholine and 4% concomitant components). The investigated SNEDDS comprised of long-chain or medium...... on the emulsion droplet size formed when dispersing the SNEDDS in an aqueous environment. The current study investigates the emulsion droplet sizes formed from SNEDDS containing different levels of the natural surfactant monoacyl phosphatidylcholine to reduce the concentration of the synthetic surfactant polyoxyl...... on the resulting droplet size of the dispersed SNEDDS measured by dynamic light scattering. All investigated formulations formed nano-emulsions with droplet sizes from about 20 to 200 nm. The use of medium-chain glycerides was more likely to result in smaller and more monodisperse droplet sizes compared to the use...

  4. Drug Delivery and Transport into the Central Circulation: An Example of Zero-Order In vivo Absorption of Rotigotine from a Transdermal Patch Formulation.

    Science.gov (United States)

    Cawello, Willi; Braun, Marina; Andreas, Jens-Otto

    2018-01-13

    Pharmacokinetic studies using deconvolution methods and non-compartmental analysis to model clinical absorption of drugs are not well represented in the literature. The purpose of this research was (1) to define the system of equations for description of rotigotine (a dopamine receptor agonist delivered via a transdermal patch) absorption based on a pharmacokinetic model and (2) to describe the kinetics of rotigotine disposition after single and multiple dosing. The kinetics of drug disposition was evaluated based on rotigotine plasma concentration data from three phase 1 trials. In two trials, rotigotine was administered via a single patch over 24 h in healthy subjects. In a third trial, rotigotine was administered once daily over 1 month in subjects with early-stage Parkinson's disease (PD). A pharmacokinetic model utilizing deconvolution methods was developed to describe the relationship between drug release from the patch and plasma concentrations. Plasma-concentration over time profiles were modeled based on a one-compartment model with a time lag, a zero-order input (describing a constant absorption via skin into central circulation) and first-order elimination. Corresponding mathematical models for single- and multiple-dose administration were developed. After single-dose administration of rotigotine patches (using 2, 4 or 8 mg/day) in healthy subjects, a constant in vivo absorption was present after a minor time lag (2-3 h). On days 27 and 30 of the multiple-dose study in patients with PD, absorption was constant during patch-on periods and resembled zero-order kinetics. Deconvolution based on rotigotine pharmacokinetic profiles after single- or multiple-dose administration of the once-daily patch demonstrated that in vivo absorption of rotigotine showed constant input through the skin into the central circulation (resembling zero-order kinetics). Continuous absorption through the skin is a basis for stable drug exposure.

  5. Polímeros usados como sistemas de transporte de princípios ativos Polymers for drug delivery systems formulations

    Directory of Open Access Journals (Sweden)

    Patrícia Severino

    2011-01-01

    Full Text Available Os diferentes sistemas de transporte têm evidenciado potencial terapêutico para uma grande variedade de princípios ativos, satisfazendo vários requisitos, como a prevenção da sua eliminação rápida do organismo, a redução da sua toxicidade sistêmica, a estabilização e a otimização do seu metabolismo, e o direcionamento específico ao local alvo e os mecanismos de defesa. No entanto, têm sido reconhecidos vários outros desafios associados à liberação específica do princípio ativo ao local alvo, pelo que, para ultrapassar os obstáculos químicos e biológicos, a seleção do polímero utilizado para a preparação do sistema de transporte é de importância crucial. O presente trabalho apresenta um relato sobre os principais polímeros naturais e sintéticos utilizados para a preparação de sistemas de transporte de princípios ativos in vivo.The different carrier systems have shown therapeutic potential for a wide variety of drugs, satisfying multiple requirements, such as prevention of rapid elimination, reducing toxicity, promoting stabilization, optimization of metabolism, drug delivery and defense mechanisms. However, it has been recognized several other challenges associated with the specific release of actives in drug delivery. Therefore, to overcome chemical and biological obstacles, the selection of the polymer used to prepare the transport system is crucial. This paper presents a report on the main natural and synthetic polymers used in the preparation of drug carrier systems in vivo.

  6. Different mathematical processing of absorption, ratio and derivative spectra for quantification of mixtures containing minor component: An application to the analysis of the recently co-formulated antidiabetic drugs; canagliflozin and metformin

    Science.gov (United States)

    Lotfy, Hayam M.; Mohamed, Dalia; Elshahed, Mona S.

    2018-01-01

    In the presented work several spectrophotometric methods were performed for the quantification of canagliflozin (CGZ) and metformin hydrochloride (MTF) simultaneously in their binary mixture. Two of these methods; response correlation (RC) and advanced balance point-spectrum subtraction (ABP-SS) were developed and introduced for the first time in this work, where the latter method (ABP-SS) was performed on both the zero order and the first derivative spectra of the drugs. Besides, two recently established methods; advanced amplitude modulation (AAM) and advanced absorbance subtraction (AAS) were also accomplished. All the proposed methods were validated in accordance to the ICH guidelines, where all methods were proved to be accurate and precise. Additionally, the linearity range, limit of detection and limit of quantification were determined and the selectivity was examined through the analysis of laboratory prepared mixtures and the combined dosage form of the drugs. The proposed methods were capable of determining the two drugs in the ratio present in the pharmaceutical formulation CGZ:MTF (1:17) without the requirement of any preliminary separation, further dilution or standard spiking. The results obtained by the proposed methods were in compliance with the reported chromatographic method when compared statistically, proving the absence of any significant difference in accuracy and precision between the proposed and reported methods.

  7. Optimization of chlorphenesin emulgel formulation.

    Science.gov (United States)

    Mohamed, Magdy I

    2004-10-11

    This study was conducted to develop an emulgel formulation of chlorphenesin (CHL) using 2 types of gelling agents: hydroxypropylmethyl cellulose (HPMC) and Carbopol 934. The influence of the type of the gelling agent and the concentration of both the oil phase and emulsifying agent on the drug release from the prepared emulgels was investigated using a 2(3) factorial design. The prepared emulgels were evaluated for their physical appearance, rheological behavior, drug release, antifungal activity, and stability. Commercially available CHL topical powder was used for comparison. All the prepared emulgels showed acceptable physical properties concerning color, homogeneity, consistency, spreadability, and pH value. They also exhibited higher drug release and antifungal activity than the CHL powder. It was found that the emulsifying agent concentration had the most pronounced effect on the drug release from the emulgels followed by the oil phase concentration and finally the type of the gelling agent. The drug release from all the emulgels was found to follow diffusion-controlled mechanism. Rheological studies revealed that the CHL emulgels exhibited a shear-thinning behavior with thixotropy. Stability studies showed that the physical appearance, rheological properties, drug release, and antifungal activity in all the prepared emulgels remained unchanged upon storage for 3 months. As a general conclusion, it was suggested that the CHL emulgel formulation prepared with HPMC with the oil phase concentration in its low level and emulsifying agent concentration in its high level was the formula of choice since it showed the highest drug release and antifungal activity.

  8. Formulation and Characterization of Biodegradable Medicated ...

    African Journals Online (AJOL)

    PEG)-600, tributyl citrate, PEG-200, PEG-300, PEG-400, PEG-4000, triethyl citrate and castor oil. The gum formulations were characterized for the following parameters: texture profile analysis (TPA), biodegradation, in vitro drug release using a ...

  9. Paclitaxel Albumin-stabilized Nanoparticle Formulation

    Science.gov (United States)

    This page contains brief information about paclitaxel albumin-stabilized nanoparticle formulation and a collection of links to more information about the use of this drug, research results, and ongoing clinical trials.

  10. Aerosol formulation and clinical efficacy of bronchodilators

    NARCIS (Netherlands)

    Zanen, Pieter

    1998-01-01

    This thesis subject is the improvement of the formulation of inhaled aerosols. It is well known that the formulation of inhaled drugs is not optimal: the major part of the mass delivered does not reach the lower airways. This phenomenon is due to the particle size of the inhaled particles, which

  11. Surface functionalization of superparamagnetic nanoparticles encapsulated by chitosan for protein immobilization

    International Nuclear Information System (INIS)

    Sousa, Jose Silva de

    2010-01-01

    Nanoscience and nanotechnology have opened up numerous developments of devices and systems on the nanometer scale, with new molecular organization, properties and functions. In this context, the polymeric magnetic nanoparticles are composites formed by magnetic materials with a particle size between 1 and 100 nm combined with functional polymers. They are well-known and have been widely studied because of its applications in various technology areas. Applications on the biological and medical areas include separation and immobilization of enzymes and proteins, improved techniques of magnetic resonance imaging and diagnostic systems for controlled drug delivery. In this work, proteins were immobilized on the surface of a biopolymer combined with superparamagnetic particles of magnetite. The biopolymer chitosan was used, cross-linked and functionalized with glutaraldehyde, applicable to the biological assays. Three types of magnetic composites were obtained, which were called QM1Glu, QM2NaGlu and QM3Glu. They were characterized by X-ray diffraction, scanning electron microscopy, vibrating sample magnetometry, differential scanning calorimetry, thermogravimetry and infrared spectroscopy. They were evaluated concerning the immobilization of the proteins bovine serum albumin (BSA), collagen and trypsin. The study showed that the immobilization of proteins on the biopolymer occurred in 30 min of incubation. The magnetic composite of non functionalized chitosan (QM3) was also evaluated. For trypsin, it was found that the immobilization potential of QM3 was higher than that observed for QM3Glu. After 30 days, the trypsin of the QM3-Trip and QM3Glu-Trip was still with activity. The activity and the enzyme kinetics of the QM3Glu-Trip with the substrate BApNA were demonstrated. (author)

  12. A method for determination of [Fe3+]/[Fe2+] ratio in superparamagnetic iron oxide

    Science.gov (United States)

    Jiang, Changzhao; Yang, Siyu; Gan, Neng; Pan, Hongchun; Liu, Hong

    2017-10-01

    Superparamagnetic iron oxide nanoparticles (SPION), as a kind of nanophase materials, are widely used in biomedical application, such as magnetic resonance imaging (MRI), drug delivery, and magnetic field assisted therapy. The magnetic property of SPION has close connection with its crystal structure, namely it is related to the ratio of Fe3+ and Fe2+ which form the SPION. So a simple way to determine the content of the Fe3+ and Fe2+ is important for researching the property of SPION. This review covers a method for determination of the Fe3+ and Fe2+ ratio in SPION by UV-vis spectrophotometry based the reaction of Fe2+ and 1,10-phenanthroline. The standard curve of Fe with R2 = 0.9999 is used for determination the content of Fe2+ and total iron with 2.5 mL 0.01% (w/v) SPION digested by HCl, pH = 4.30 HOAc-NaAc buffer 10 mL, 0.01% (w/v) 1,10-phenanthroline 5 mL and 10% (w/v) ascorbic acid 1 mL for total iron determine independently. But the presence of Fe3+ interfere with obtaining the actual value of Fe2+ (the error close to 9%). We designed a calibration curve to eliminate the error by devising a series of solution of different ratio of [Fe3+]/[Fe2+], and obtain the calibration curve. Through the calibration curve, the error between the measured value and the actual value can be reduced to 0.4%. The R2 of linearity of the method is 0.99441 and 0.99929 for Fe2+ and total iron respectively. The error of accuracy of recovery and precision of inter-day and intra-day are both lower than 2%, which can prove the reliability of the determination method.

  13. Investigation on the toxic interaction of superparamagnetic iron oxide nanoparticles with catalase

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zehua [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, China–America CRC for Environment and Health, Shandong Province, Shandong University, 27# Shanda South Road, Jinan 250100 (China); Liu, Hongwei [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, China–America CRC for Environment and Health, Shandong Province, Shandong University, 27# Shanda South Road, Jinan 250100 (China); Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Hu, Xinxin; Song, Wei [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, China–America CRC for Environment and Health, Shandong Province, Shandong University, 27# Shanda South Road, Jinan 250100 (China); Liu, Rutao, E-mail: rutaoliu@sdu.edu.cn [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, China–America CRC for Environment and Health, Shandong Province, Shandong University, 27# Shanda South Road, Jinan 250100 (China)

    2015-03-15

    Superparamagnetic iron oxide nanoparticles (SPIONs) have been investigated for various applications in targeted drug delivery and magnetic resonance imaging. Given their clinical relevance, there is a need to understand these particles' potential cytotoxic effects and possible mechanisms of cytotoxicity. Using a variety of spectroscopic techniques, we investigated the interaction of SPIONs with catalase (CAT) in an aqueous environment. Catalase is an important enzyme that protects cells and tissues from oxidative damage by reactive oxygen species (ROS). Therefore, in this work, CAT served as a model protein for examining the physiological effects of SPIONs due to is function in eliminating H{sub 2}O{sub 2}. Synchronous fluorescence spectroscopy results showed that SPIONs have little effect on tryptophan residues in CAT. Data from circular dichroism (CD) and UV–vis spectroscopies showed that CAT α-helical content decreased from 32.4% to 29.1% in the presence of SPIONs. Moreover, a ca. 10% decrease in CAT activity was observed in the presence of SPIONs at a 20:1 particle:protein ratio. These results show that SPIONs can interact with proteins to alter both their structure and function. Further studies with CAT or other toxicologically relevant enzymes may be used for elucidating the mechanisms of SPION cytotoxicity. - Highlights: • This work established the binding mode of SPIONs with CAT on molecular level. • The interaction mechanism was explored by multiple spectroscopic techniques. • SPIONs can loosen the skeleton of protein and increase the exposure of amide moieties in the hydrophobic pocket. • SPIONs can inhibit CAT activity and trigger conformational changes in CAT.

  14. Surface modified superparamagnetic nanoparticles: Interaction with fibroblasts in primary cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Chapa Gonzalez, Christian; Roacho Pérez, Jorge A.; Martínez Pérez, Carlos A.; Olivas Armendáriz, Imelda [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro #610 norte, Col. Partido Romero, C.P. 32320 Cd. Juárez, Chihuahua, México (Mexico); Jimenez Vega, Florinda [Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo envolvente del PRONAF y Estocolmo, C.P. 32320 Cd. Juárez, Chihuahua, México (Mexico); Castrejon Parga, Karen Y. [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro #610 norte, Col. Partido Romero, C.P. 32320 Cd. Juárez, Chihuahua, México (Mexico); Garcia Casillas, Perla E., E-mail: pegarcia@uacj.mx [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro #610 norte, Col. Partido Romero, C.P. 32320 Cd. Juárez, Chihuahua, México (Mexico)

    2014-12-05

    Highlights: • An inorganic layer before an organic material shell onto MNPs improves cell viability. • The coating type and the concentration of nanoparticles directly affect cell viability. • Modified magnetite nanoparticles with organic and inorganic materials was developed. - Abstract: The development of a variety of medical applications such as drug delivery, cell labeling, and medical imaging have been possible owing to the unique features exhibited by magnetic nanoparticles. Nanoparticle–cell interaction is related to the surface aspects of nanoparticle, which may be described based on their chemistry or inorganic/organic characteristics. The coating on particle surface reduces the inter-particle interactions and provides properties such as biocompatibility. Among the coating materials used for nanoparticles employed in biomedical applications, oleic acid is one of the most utilized due to its biocompatibility. However, a major drawback with this naturally occurring fatty acid is that it is easily oxidized by cells and this reduces their performance in biomedical applications. In order to avoid the direct contact of the cell with the magnetite particle, coating with an inorganic material prior to the oleic acid shell would be effective. This would retard the magnetite dissociation thereby improve the cell viability. Here we report our investigation on the effect of surface modified magnetite nanoparticles (MNPs) on the cell viability using primary cultures incubated with those particles. We prepared magnetite nanoparticles by chemical co-precipitation method; nanoparticle surface was first modified by silanol condensation followed by chemisorption of oleic acid. All nanostructures have a particle size less than 100 nm, depending on the material coating and superparamagnetic behavior. The saturated magnetizations (M{sub s}) of the magnetite samples coated with oleic acid (MAO; 49.15 emu/g) and double shell silica-oleic acid (MSAO; 46.16 emu/g) are

  15. Investigation on the toxic interaction of superparamagnetic iron oxide nanoparticles with catalase

    International Nuclear Information System (INIS)

    Yu, Zehua; Liu, Hongwei; Hu, Xinxin; Song, Wei; Liu, Rutao

    2015-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) have been investigated for various applications in targeted drug delivery and magnetic resonance imaging. Given their clinical relevance, there is a need to understand these particles' potential cytotoxic effects and possible mechanisms of cytotoxicity. Using a variety of spectroscopic techniques, we investigated the interaction of SPIONs with catalase (CAT) in an aqueous environment. Catalase is an important enzyme that protects cells and tissues from oxidative damage by reactive oxygen species (ROS). Therefore, in this work, CAT served as a model protein for examining the physiological effects of SPIONs due to is function in eliminating H 2 O 2 . Synchronous fluorescence spectroscopy results showed that SPIONs have little effect on tryptophan residues in CAT. Data from circular dichroism (CD) and UV–vis spectroscopies showed that CAT α-helical content decreased from 32.4% to 29.1% in the presence of SPIONs. Moreover, a ca. 10% decrease in CAT activity was observed in the presence of SPIONs at a 20:1 particle:protein ratio. These results show that SPIONs can interact with proteins to alter both their structure and function. Further studies with CAT or other toxicologically relevant enzymes may be used for elucidating the mechanisms of SPION cytotoxicity. - Highlights: • This work established the binding mode of SPIONs with CAT on molecular level. • The interaction mechanism was explored by multiple spectroscopic techniques. • SPIONs can loosen the skeleton of protein and increase the exposure of amide moieties in the hydrophobic pocket. • SPIONs can inhibit CAT activity and trigger conformational changes in CAT

  16. Crystallization Formulation Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Crystallization Formulation Lab fills a critical need in the process development and optimization of current and new explosives and energetic formulations. The...

  17. Improving titer while maintaining quality of final formulated drug substance via optimization of CHO cell culture conditions in low-iron chemically defined media.

    Science.gov (United States)

    Xu, Jianlin; Rehmann, Matthew S; Xu, Xuankuo; Huang, Chao; Tian, Jun; Qian, Nan-Xin; Li, Zheng Jian

    2018-04-01

    During biopharmaceutical process development, it is important to improve titer to reduce drug manufacturing costs and to deliver comparable quality attributes of therapeutic proteins, which helps to ensure patient safety and efficacy. We previously reported that relative high-iron concentrations in media increased titer, but caused unacceptable coloration of a fusion protein during early-phase process development. Ultimately, the fusion protein with acceptable color was manufactured using low-iron media, but the titer decreased significantly in the low-iron process. Here, long-term passaging in low-iron media is shown to significantly improve titer while maintaining acceptable coloration during late-phase process development. However, the long-term passaging also caused a change in the protein charge variant profile by significantly increasing basic variants. Thus, we systematically studied the effect of media components, seed culture conditions, and downstream processing on productivity and quality attributes. We found that removing β-glycerol phosphate (BGP) from basal media reduced basic variants without affecting titer. Our goals for late-phase process development, improving titer and matching quality attributes to the early-phase process, were thus achieved by prolonging seed culture age and removing BGP. This process was also successfully scaled up in 500-L bioreactors. In addition, we demonstrated that higher concentrations of reactive oxygen species were present in the high-iron Chinese hamster ovary cell cultures compared to that in the low-iron cultures, suggesting a possible mechanism for the drug substance coloration caused by high-iron media. Finally, hypotheses for the mechanisms of titer improvement by both high-iron and long-term culture are discussed.

  18. New gentle-wing high-shear granulator: impact of processing variables on granules and tablets characteristics of high-drug loading formulation using design of experiment approach.

    Science.gov (United States)

    Fayed, Mohamed H; Abdel-Rahman, Sayed I; Alanazi, Fars K; Ahmed, Mahrous O; Tawfeek, Hesham M; Al-Shdefat, Ramadan I

    2017-10-01

    The aim of this work was to study the application of design of experiment (DoE) approach in defining design space for granulation and tableting processes using a novel gentle-wing high-shear granulator. According to quality-by-design (QbD) prospective, critical attributes of granules, and tablets should be ensured by manufacturing process design. A face-centered central composite design has been employed in order to investigate the effect of water amount (X 1 ), impeller speed (X 2 ), wet massing time (X 3 ), and water addition rate (X 4 ) as independent process variables on granules and tablets characteristics. Acetaminophen was used as a model drug and granulation experiments were carried out using dry addition of povidone k30. The dried granules have been analyzed for their size distribution, density, and flow pattern. Additionally, the produced tablets have been investigated for; weight uniformity, breaking force, friability and percent capping, disintegration time, and drug dissolution. Results of regression analysis showed that water amount, impeller speed and wet massing time have significant (p tablets characteristics. However, the water amount had the most pronounced effect as indicated by its higher parameter estimate. On the other hand, water addition rate showed a minimal impact on granules and tablets properties. In conclusion, water amount, impeller speed, and wet massing time could be considered as critical process variables. Thus, understanding the relationship between these variables and quality attributes of granules and corresponding tablets provides the basis for adjusting granulation variables in order to optimize product performance.

  19. Multiple functionalities of Ni nanoparticles embedded in carboxymethyl guar gum polymer: catalytic activity and superparamagnetism

    International Nuclear Information System (INIS)

    Sardar, Debasmita; Sengupta, Manideepa; Bordoloi, Ankur; Ahmed, Md. A.; Neogi, S.K.; Bandyopadhyay, Sudipta; Jain, Ruchi; Gopinath, Chinnakonda S.; Bala, Tanushree

    2017-01-01

    Highlights: • Ni nanoparticles were synthesized in polymer to form Ni-Polymer composite. • Ni nanoparticles retain their superparamagnetism in the composite. • Ni-Polymer composites showed catalytic activity. - Abstract: Composites comprising of metallic nanoparticles in polymer matrices have allured significant importance due to multifunctionalities. Here a simple protocol has been described to embed Ni nanoparticles in carboxymethyl guar gum (CMGG) polymer. The composite formation helps in the stabilization of Ni nanoparticles which are otherwise prone towards aerial oxidation. Further the nanoparticles retain their superparamagnetic nature and catalytic capacity. Ni-Polymer composite catalyses the reduction of 4-Nitrophenol to 4-Aminophenol very efficiently in presence of NaBH_4, attaining a complete conversion under some experimental conditions. Ni-Polymer composite is well characterized using UV–vis spectroscopy, FTIR, XPS, powder XRD, TGA, SEM and TEM. A detailed magnetic measurement using superconducting quantum interference device-vibrating sample magnetometer (SQUID-VSM) reveals superparamagnetic behaviour of the composite.

  20. Binding assays with streptavidin-functionalized superparamagnetic nanoparticles and biotinylated analytes using fluxgate magnetorelaxometry

    International Nuclear Information System (INIS)

    Heim, Erik; Ludwig, Frank; Schilling, Meinhard

    2009-01-01

    Binding assays based on the magnetorelaxation of superparamagnetic nanoparticles as markers are presented utilizing a differential fluxgate system. As ligand and receptor, streptavidin and biotin, respectively, are used. Superparamagnetic nanoparticles are functionalized with streptavidin and bound to two types of biotinylated analytes: agarose beads and bovine serum (BSA) proteins. The size difference of the two analytes causes a different progress of the reaction. As a consequence, the analysis of the relaxation signal is carried out dissimilarly for the two analytes. In addition, we studied the reaction kinetics of the two kinds of analytes with the fluxgate system.

  1. Quality risk management of top spray fluidized bed process for antihypertensive drug formulation with control strategy engendered by Box-behnken experimental design space.

    Science.gov (United States)

    Mukharya, Amit; Patel, Paresh U; Shenoy, Dinesh; Chaudhary, Shivang

    2013-01-01

    Lacidipine (LCDP) is a very low soluble and highly biovariable calcium channel blocker used in the treatment of hypertension. To increase its apparent solubility and to reduce its biovariability, solid dispersion fluid bed processing technology was explored, as it produces highly dispersible granules with a characteristic porous structure that enhances dispersibility, wettability, blend uniformity (by dissolving and spraying a solution of actives), flow ability and compressibility of granules for tableting and reducing variability by uniform drug-binder solution distribution on carrier molecules. Main object of this quality risk management (QRM) study is to provide a sophisticated "robust and rugged" Fluidized Bed Process (FBP) for the preparation of LCDP tablets with desired quality (stability) and performance (dissolution) by quality by design (QbD) concept. THIS STUDY IS PRINCIPALLY FOCUSING ON THOROUGH MECHANISTIC UNDERSTANDING OF THE FBP BY WHICH IT IS DEVELOPED AND SCALED UP WITH A KNOWLEDGE OF THE CRITICAL RISKS INVOLVED IN MANUFACTURING PROCESS ANALYZED BY RISK ASSESSMENT TOOLS LIKE: Qualitative Initial Risk-based Matrix Analysis (IRMA) and Quantitative Failure Mode Effective Analysis (FMEA) to identify and rank parameters with potential to have an impact on In Process/Finished Product Critical Quality Attributes (IP/FP CQAs). These Critical Process Parameters (CPPs) were further refined by DoE and MVDA to develop design space with Real Time Release Testing (RTRT) that leads to implementation of a control strategy to achieve consistent finished product quality at lab scale itself to prevent possible product failure at larger manufacturing scale.

  2. Measuring and modeling the magnetic settling of superparamagnetic nanoparticle dispersions.

    Science.gov (United States)

    Prigiobbe, Valentina; Ko, Saebom; Huh, Chun; Bryant, Steven L

    2015-06-01

    In this paper, we present settling experiments and mathematical modeling to study the magnetic separation of superparamagnetic iron-oxide nanoparticles (SPIONs) from a brine. The experiments were performed using SPIONs suspensions of concentration between 3 and 202g/L dispersed in water and separated from the liquid under the effect of a permanent magnet. A 1D model was developed in the framework of the sedimentation theory with a conservation law for SPIONs and a mass flux function based on the Newton's law for motion in a magnetic field. The model describes both the hindering effect of suspension concentration (n) during settling due to particle collisions and the increase in settling rate due to the attraction of the SPIONs towards the magnet. The flux function was derived from the settling experiments and the numerical model validated against the analytical solution and the experimental data. Suspensions of SPIONs were of 2.8cm initial height, placed on a magnet, and monitored continuously with a digital camera. Applying a magnetic field of 0.5T of polarization, the SPION's velocity was of approximately 3·10(-5)m/s close to the magnet and decreases of two orders of magnitude across the domain. The process was characterized initially by a classical sedimentation behavior, i.e., an upper interface between the clear water and the suspension slowly moving towards the magnet and a lower interface between the sediment layer and the suspension moving away from the magnet. Subsequently, a rapid separation of nanoparticle occured suggesting a non-classical settling phenomenon induced by magnetic forces which favor particle aggregation and therefore faster settling. The rate of settling decreased with n and an optimal condition for fast separation was found for an initial n of 120g/L. The model agrees well with the measurements in the early stage of the settling, but it fails to describe the upper interface movement during the later stage, probably because of particle

  3. Development of clinical dosage forms for a poorly water-soluble drug II: formulation and characterization of a novel solid microemulsion preconcentrate system for oral delivery of a poorly water-soluble drug.

    Science.gov (United States)

    Li, Ping; Hynes, Sara R; Haefele, Thomas F; Pudipeddi, Madhu; Royce, Alan E; Serajuddin, Abu T M

    2009-05-01

    The solution of a poorly water-soluble drug in a liquid lipid-surfactant mixture, which served as a microemulsion preconcentrate, was converted into a solid form by incorporating it in a solid polyethylene glycol (PEG) matrix. The solid microemulsion preconcentrates thus formed consisted of Capmul PG8 (propylene glycol monocaprylate) as oil, Cremophor EL (polyoxyl 35 castor oil) as surfactant, and hydrophilic polymer PEG 3350 as solid matrix. The drug (aqueous solubility: 0.17 microg/mL at pH 1-8 and 25 degrees C) was dissolved in a melt of the mixture at 65-70 degrees C and then the hot solution was filled into hard gelatin capsules; the liquid gradually solidified upon cooling below 55 degrees C. The solid system was characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), confocal Raman microscopy (CRM), and the dispersion testing in water. It was confirmed that a solid microemulsion preconcentrate is a two-phase system, where clusters of crystalline PEG 3350 formed the solid structure (m.p. 55-60 degrees C) and the liquid microemulsion preconcentrate dispersed in between PEG 3350 crystals as a separate phase. The drug remained dissolved in the liquid phase. In vitro release testing showed that the preconcentrate dispersed readily in water forming a microemulsion with the drug dissolved in the oil particles (PEG 3350 did not interfere with the process of self-microemulsification.

  4. Multifunctional doxorubicin/superparamagnetic iron oxide-encapsulated Pluronic F127 micelles used for chemotherapy/magnetic resonance imaging

    Science.gov (United States)

    Lai, Jian-Ren; Chang, Yong-Wei; Yen, Hung-Chi; Yuan, Nai-Yi; Liao, Ming-Yuan; Hsu, Chia-Yen; Tsai, Jai-Lin; Lai, Ping-Shan

    2010-05-01

    Polymeric micelles are frequently used to transport and deliver drugs throughout the body because they protect against degradation. Research on functional polymeric micelles for biomedical applications has generally shown that micelles have beneficial properties, such as specific functionality, enhanced specific tumor targeting, and stabilized nanostructures. The particular aim of this study was to synthesize and characterize multifunctional polymeric micelles for use in controlled drug delivery systems and biomedical imaging. In this study, a theranostic agent, doxorubicin/superparamagnetic iron oxide (SPIO)-encapsulated Pluronic F127 (F127) micelles, was developed for dual chemotherapy/magnetic resonance imaging (MRI) purposes, and the structure and composition of the micellar SPIO were characterized by transmission electron microscopy and magnetic measurements. Our results revealed that the micellar SPIO with a diameter of around 100 nm led to a significant advantage in terms of T2 relaxation as compared with a commercial SPIO contrast agent (Resovist®) without cell toxicity. After doxorubicin encapsulation, a dose-dependent darkening of MR images was observed and HeLa cells were killed by this theranostic micelle. These findings demonstrate that F127 micelles containing chemotherapeutic agents and SPIO could be used as a multifunctional nanocarrier for cancer treatment and imaging.

  5. Application of UV Imaging in Formulation Development.

    Science.gov (United States)

    Sun, Yu; Østergaard, Jesper

    2017-05-01

    Efficient drug delivery is dependent on the drug substance dissolving in the body fluids, being released from dosage forms and transported to the site of action. A fundamental understanding of the interplay between the physicochemical properties of the active compound and pharmaceutical excipients defining formulation behavior after exposure to the aqueous environments and pharmaceutical performance is critical in pharmaceutical development, manufacturing and quality control of drugs. UV imaging has been explored as a tool for qualitative and quantitative characterization of drug dissolution and release with the characteristic feature of providing real-time visualization of the solution phase drug transport in the vicinity of the formulation. Events occurring during drug dissolution and release, such as polymer swelling, drug precipitation/recrystallization, or solvent-mediated phase transitions related to the structural properties of the drug substance or formulation can be monitored. UV imaging is a non-intrusive and simple-to-operate analytical technique which holds potential for providing a mechanistic foundation for formulation development. This review aims to cover applications of UV imaging in the early and late phase pharmaceutical development with a special focus on the relation between structural properties and performance. Potential areas of future advancement and application are also discussed.

  6. Characterizing and quantifying superparamagnetic magnetite particles in serpentinized mantle peridotite observed in continental ophiolite complexes.

    Science.gov (United States)

    Ortiz, E.; Vento, N. F. R.; Tominaga, M.; Beinlich, A.; Einsle, J. F.; Buisman, I.; Ringe, E.; Schrenk, M. O.; Cardace, D.

    2017-12-01

    Serpentinization of mantle peridotite has been recognized as one of the most important energy factories for the deep biosphere. To better evaluate the habitability of the deep biosphere, it is crucial to understand the link between in situ peridotite serpentinization processes and associated magnetite and hydrogen production. Previous efforts in correlating magnetite and hydrogen production during serpentinization processes are based primarily on laboratory experiments and numerical modeling, being challenged to include the contribution of superparamagnetic-sized magnetites (i.e., extremely fine-grained magnetite, petrographically observed as a "pepper flake" like texture in many natural serpentinized rock samples). To better estimate the abundance of superparamagnetic grains, we conducted frequency-dependent susceptibility magnetic measurements at the Institute of Rock Magnetism on naturally serpentinized rock samples from the Coast Range Ophiolite Microbial Observatory (CROMO) in California, USA and the Atlin Ophiolite (British Columbia). In addition, we conducted multiscale EDS phase mapping, BackScattered Electron (BSE) scanning, FIB-nanotomography and STEM-EELS to identify and quantify the superparamagnetic minerals that contribute to the measured magnetic susceptibility signals in our rock samples. Utilizing a multidisciplinary approach, we aim to improve the estimation of hydrogen production based on the abundance of magnetite, that includes the contribution of superparamagnetic particle size magnetite, to ultimately provide a more accurate estimation of bulk deep-biomass hosted by in situ serpentinization processes.

  7. Mössbauer studies of superparamagnetic ferrite nanoparticles for functional application

    International Nuclear Information System (INIS)

    Mažeika, K.; Jagminas, A.; Kurtinaitienė, M.

    2013-01-01

    Nanoparticles of CoFe 2 O 4 and MnFe 2 O 4 prepared for functional applications in nanomedicine were studied using Mössbauer spectrometry. Superparamagnetic properties of nanoparticles of different size and composition were compared applying collective excitations and multilevel models for the description of the Mössbauer spectra.

  8. Spin-lock MR enhances the detection sensitivity of superparamagnetic iron oxide particles

    NARCIS (Netherlands)

    Moonen, R.P.M.; van der Tol, P.; Hectors, S.J.C.G.; Starmans, L.W.E.; Nicolaij, K.; Strijkers, G.J.

    2015-01-01

    Purpose To evaluate spin-lock MR for detecting superparamagnetic iron oxides and compare the detection sensitivity of quantitative T1ρ with T2 imaging. Methods In vitro experiments were performed to investigate the influence of iron oxide particle size and composition on T1ρ. These comprise T1ρ and

  9. Spin-lock MR enhances the detection sensitivity of superparamagnetic iron oxide particles

    NARCIS (Netherlands)

    Moonen, Rik P. M.; van der Tol, Pieternel; Hectors, Stefanie J. C. G.; Starmans, Lucas W. E.; Nicolay, Klaas; Strijkers, Gustav J.

    2015-01-01

    To evaluate spin-lock MR for detecting superparamagnetic iron oxides and compare the detection sensitivity of quantitative T1ρ with T2 imaging. In vitro experiments were performed to investigate the influence of iron oxide particle size and composition on T1ρ . These comprise T1ρ and T2 measurements

  10. Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Pongrac, I. M.; Pavičić, I.; Milić, M.; Brkić Ahmed, L.; Babič, Michal; Horák, Daniel; Vinković Vrček, I.; Gajović, S.

    2016-01-01

    Roč. 11, 26 April (2016), s. 1701-1715 ISSN 1176-9114 R&D Projects: GA ČR(CZ) GC16-01128J EU Projects: European Commission(XE) 316120 - GLOWBRAIN Institutional support: RVO:61389013 Keywords : superparamagnetic iron oxide nanoparticles * biocompatibility * oxidative stress Subject RIV: CD - Macromolecular Chemistry

  11. Gas chromatography-flame ionization determination of benzaldehyde in non-steroidal anti-inflammatory drug injectable formulations using new ultrasound-assisted dispersive liquid-liquid micro extraction

    International Nuclear Information System (INIS)

    Mashayekhi, H.A.; Pourshamsian, K.

    2012-01-01

    Summary: In this study, simple and efficient ultrasound-assisted dispersive liquid-liquid micro extraction combined with gas chromatography (GC) was developed for the preconcentration and determination of benzaldehyde in injectable formulations of the non-steroidal anti-inflammatory drugs, diclofenac, Vitamin B-complex and Voltaren injection solutions. Fourteen microliters of toluene was injected slowly into 10 mL home-designed centrifuge glass vial containing an aqueous sample without salt addition that was located inside the ultrasonic water bath. The formed emulsion was centrifuged and 2 macro L of separated toluene was injected into a gas chromatographic system equipped with a flame ionization detector (GC-FID) for analysis. Several factors influencing the extraction efficiency as the nature and volume of organic solvent, extraction temperature, ionic strength and centrifugation time were investigated and optimized. Using optimum extraction conditions a detection limit of 0.3 macro g L/sup -1/ and a good linearity in a calibration range of 2.0-1000 macro g L/sup -1/ were achieved for analyte. This proposed method was successfully applied to the analysis of benzaldehyde in three injection formulations and relative standard deviation (RSD) of analysis (n=3), before spiking with standard benzaldehyde were 3.3, 2.0 and 1.3% for Na-diclofenac, vitamin B-complex and voltaren, respectively and after spiking of standard benzaldehyde (0.3 mg L/sup -1/), the RSD were 6.5, 3.6 and 2.8% for Na-diclofenac, vitamin B-complex and voltaren, respectively. (author)

  12. Formulation Optimization and In-vitro Evaluation of Oral Floating ...

    African Journals Online (AJOL)

    matrix tablets and to systematically optimize its drug release using varying levels of xanthan gum and hydroxypropyl ... stomach and improve oral bioavailability of drugs that have ... which can affect its sustained release formulation. [19].

  13. Hypersensitivity Reactions from Excipients in Systemic Glucocorticoid Formulations

    DEFF Research Database (Denmark)

    Calogiuri, Gianfranco; Garvey, Lene H; Romita, Paolo

    2016-01-01

    Glucocorticoids are the most widely used drugs for the treatment of hypersensitivity, however these drugs themselves and the excipients contained in commercial corticosteroid formulations are able to induce severe immediate-type hypersensitivity reactions. Reactions involving excipients have been...

  14. Superparamagnetic hollow hybrid nanogels as a potential guidable vehicle system of stimuli-mediated MR imaging and multiple cancer therapeutics.

    Science.gov (United States)

    Chiang, Wen-Hsuan; Ho, Viet Thang; Chen, Hsin-Hung; Huang, Wen-Chia; Huang, Yi-Fong; Lin, Sung-Chyr; Chern, Chorng-Shyan; Chiu, Hsin-Cheng

    2013-05-28

    Hollow hybrid nanogels were prepared first by the coassembly of the citric acid-coated superparamagnetic iron oxide nanoparticles (SPIONs, 44 wt %) with the graft copolymer (56 wt %) comprising acrylic acid and 2-methacryloylethyl acrylate units as the backbone and poly(ethylene glycol) and poly(N-isopropylacrylamide) as the grafts in the aqueous phase of pH 3.0 in the hybrid vesicle structure, followed by in situ covalent stabilization via the photoinitiated polymerization of MEA residues within vesicles. The resultant hollow nanogels, though slightly swollen, satisfactorily retain their structural integrity while the medium pH is adjusted to 7.4. Confining SPION clusters to such a high level (44 wt %) within the pH-responsive thin gel layer remarkably enhances the transverse relaxivity (r2) and renders the MR imaging highly pH-tunable. For example, with the pH being adjusted from 4.0 to 7.4, the r2 value can be dramatically increased from 138.5 to 265.5 mM(-1) s(-1). The DOX-loaded hybrid nanogels also exhibit accelerated drug release in response to both pH reduction and temperature increase as a result of the substantial disruption of the interactions between drug molecules and copolymer components. With magnetic transport guidance toward the target and subsequent exposure to an alternating magnetic field, this DOX-loaded nanogel system possessing combined capabilities of hyperthermia and stimuli-triggered drug release showed superior in vitro cytotoxicity against HeLa cells as compared to the case with only free drug or hyperthermia alone. This work demonstrates that the hollow inorganic/organic hybrid nanogels hold great potential to serve as a multimodal theranostic vehicle functionalized with such desirable features as the guidable delivery of stimuli-mediated diagnostic imaging and hyperthermia/chemotherapies.

  15. Preparation and characterization of 6-mercaptopurine-coated magnetite nanoparticles as a drug delivery system

    Directory of Open Access Journals (Sweden)

    Dorniani D

    2013-09-01

    . By MTT assay, the FCMP nanocomposite was shown not to be toxic to a normal mouse fibroblast cell line. Conclusion: Iron oxide coated with chitosan containing 6-mercaptopurine prepared using a coprecipitation method has the potential to be used as a controlled-release formulation. These nanoparticles may serve as an alternative drug delivery system for the treatment of cancer, with the added advantage of sparing healthy surrounding cells and tissue. Keywords: superparamagnetic nanoparticles, 6-mercaptopurine, controlled release, cytotoxicity, drug delivery

  16. Dermal pharmacokinetics of microemulsion formulations determined by in vivo microdialysis

    DEFF Research Database (Denmark)

    Kreilgaard, Mads

    2001-01-01

    To investigate the potential of improving dermal drug delivery of hydrophilic and lipophilic substances by formulation in microemulsion vehicles and to establish a reliable pharmacokinetic model to analyze cutaneous microdialysis data.......To investigate the potential of improving dermal drug delivery of hydrophilic and lipophilic substances by formulation in microemulsion vehicles and to establish a reliable pharmacokinetic model to analyze cutaneous microdialysis data....

  17. Value of Functionalized Superparamagnetic Iron Oxide Nanoparticles in the Diagnosis and Treatment of Acute Temporal Lobe Epilepsy on MRI

    Directory of Open Access Journals (Sweden)

    Tingting Fu

    2016-01-01

    Full Text Available Purpose. Although active targeting of drugs using a magnetic-targeted drug delivery system (MTDS with superparamagnetic iron oxide nanoparticles (SPIONs is a very effective treatment approach for tumors and other illnesses, successful results of drug-resistant temporal lobe epilepsy (TLE are unprecedented. A hallmark in the neuropathology of TLE is brain inflammation, in particular the activation of interleukin-1β (IL-1β induced by activated glial cells, which has been considered a new mechanistic target for treatment. The purpose of this study was to determine the feasibility of the functionalized SPIONs with anti-IL-1β monoclonal antibody (mAb attached to render MRI diagnoses and simultaneously provide targeted therapy with the neutralization of IL-1β overexpressed in epileptogenic zone of an acute rat model of TLE. Experimental Design. The anti-IL-1β mAb-SPIONs were studied in vivo versus plain SPIONs and saline. Lithium-chloride pilocarpine-induced TLE models (n=60 were followed by Western blot, Perl’s iron staining, Nissl staining, and immunofluorescent double-label staining after MRI examination. Results. The magnetic anti-IL-1β mAb-SPION administered intravenously, which crossed the BBB and was concentrated in the astrocytes and neurons in epileptogenic tissues, rendered these tissues visible on MRI and simultaneously delivered anti-IL-1β mAb to the epileptogenic focus. Conclusions. Our study provides the first evidence that the novel approach enhanced accumulation and the therapeutic effect of anti-IL-1β mAb by MTDS using SPIONs.

  18. Formulation and evaluation of antipsoriatic gel using natural excipients

    OpenAIRE

    Raghupatruni Jhansi Laxmi; R. Karthikeyan; P. Srinivasa Babu; R.V.V. Narendra Babu

    2013-01-01

    Objective: To develop topical gel formulations of Psoralen using natural excipients to minimize the side effects of synthetic drugs. Methods: The Psoralen gel formulations were prepared using different natural gums and polymers. The physicochemical compatibility between Psoralen and other excipients was confirmed by using Fourier transform infrared spectroscopy. All prepared gel formulations were evaluated for drug content uniformity, viscosity, pH, and stability. The release of psoralen f...

  19. Pulmonary toxicity and kinetic study of Cy5.5-conjugated superparamagnetic iron oxide nanoparticles by optical imaging

    International Nuclear Information System (INIS)

    Cho, Wan-Seob; Cho, Minjung; Kim, Seoung Ryul; Choi, Mina; Lee, Jeong Yeon; Han, Beom Seok; Park, Sue Nie; Yu, Mi Kyung; Jon, Sangyong; Jeong, Jayoung

    2009-01-01

    Recent advances in the development of nanotechnology and devices now make it possible to accurately deliver drugs or genes to the lung. Magnetic nanoparticles can be used as contrast agents, thermal therapy for cancer, and be made to concentrate to target sites through an external magnetic field. However, these advantages may also become problematic when taking into account safety and toxicological factors. This study demonstrated the pulmonary toxicity and kinetic profile of anti-biofouling polymer coated, Cy5.5-conjugated thermally cross-linked superparamagnetic iron oxide nanoparticles (TCL-SPION) by optical imaging. Negatively charged, 36 nm-sized, Cy5.5-conjugated TCL-SPION was prepared for optical imaging probe. Cy5.5-conjugated TCL-SPION was intratracheally instilled into the lung by a non-surgical method. Cy5.5-conjugated TCL-SPION slightly induced pulmonary inflammation. The instilled nanoparticles were distributed mainly in the lung and excreted in the urine via glomerular filtration. Urinary excretion was peaked at 3 h after instillation. No toxicity was found under the concentration of 1.8 mg/kg and the half-lives of nanoparticles in the lung and urine were estimated to be about 14.4 ± 0.54 h and 24.7 ± 1.02 h, respectively. Although further studies are required, our results showed that Cy5.5-conjugated TCL-SPION can be a good candidate for use in pulmonary delivery vehicles and diagnostic probes.

  20. Targeting EGFR-overexpressing tumor cells using Cetuximab-immunomicelles loaded with doxorubicin and superparamagnetic iron oxide

    International Nuclear Information System (INIS)

    Liao Chengde; Sun Qiquan; Liang, Biling; Shen Jun; Shuai Xintao

    2011-01-01

    Epidermal growth factor receptor (EGFR), a cellular transmembrane receptor, plays a key role in cell proliferation and is linked to a poor prognosis in various human cancers. In this study, we constructed Cetuximab-immunomicelles in which the anti-EGFR monoclonal antibody was linked to poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG–PCL) nanomicelles that were loaded with doxorubicin (DOX) and superparamagnetic iron oxide (SPIO). The specific interactions between EGFR-overexpressing tumor cells (A431) and immunomicelles were observed using confocal laser scanning microscopy (CLSM) and flow cytometry. Furthermore, the capacity of transporting SPIO into tumor cells using these immunomicelles was evaluated with a 1.5 T clinical magnetic resonance imaging (MRI) scanner. It was found that the acquired MRI T2 signal intensity of A431 cells that were treated with the SPIO-loaded and antibody-functionalized micelles decreased significantly. Using the thiazolyl blue tetrazolium bromide (MTT) assay, we also demonstrated that the immunomicelles inhibited cell proliferation more effectively than their nontargeting counterparts. Our results suggest that Cetuximab-immunomicelles are a useful delivery vehicle for DOX and SPIO to EGFR-overexpressing tumor cells in vitro and that Cetuximab-immunomicelles can serve as a MRI-visible and targeted drug delivery agent for better tumor imaging and therapy.

  1. Enhanced bio-compatibility of ferrofluids of self-assembled superparamagnetic iron oxide-silica core-shell nanoparticles

    Digital Repository Service at National Institute of Oceanography (India)

    Narayanan, T.N.; Mary, A.P.R.; Swalih, P.K.A.; Kumar, D.S.; Makarov, D.; Albrecht, M.; Puthumana, J.; Anas, A.; Anantharaman, A.

    -interacting, monodispersed and hence the synthesis of such nanostructures has great relevance in the realm of nanoscience. Silica-coated superparamagnetic iron oxide nanoparticles based ferrofluids were prepared using polyethylene glycol as carrier fluid by employing a...

  2. Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica

    International Nuclear Information System (INIS)

    Sodipo, Bashiru Kayode; Aziz, Azlan Abdul

    2016-01-01

    Research on synthesis of superparamagnetic iron oxide nanoparticles (SPION) and its surface modification for biomedical applications is of intense interest. Due to superparamagnetic property of SPION, the nanoparticles have large magnetic susceptibility, single magnetic domain and controllable magnetic behaviour. However, owing to easy agglomeration of SPION, surface modification of the magnetic particles with biocompatible materials such as silica nanoparticle has gained much attention in the last decade. In this review, we present recent advances in synthesis of SPION and various routes of producing silica coated SPION. - Highlights: • We present recent advances in synthesis of SPION and various routes of producing silica coated SPION • The synthetic routes of producing SPION can be classified into three: physical, chemical and biological methods. • The chemical method is the most cited method of producing SPION and it sub-classified into liquid and gas phase. • The techniques of producing silica coated SPION is grouped into seeded and non-seeded methods.

  3. Imaging pathobiology of carotid atherosclerosis with ultrasmall superparamagnetic particles of iron oxide: an update.

    Science.gov (United States)

    Sadat, Umar; Usman, Ammara; Gillard, Jonathan H

    2017-07-01

    To provide brief overview of the developments regarding use of ultrasmall superparamagnetic particles of iron oxide in imaging pathobiology of carotid atherosclerosis. MRI is a promising technique capable of providing morphological and functional information about atheromatous plaques. MRI using iron oxide particles, called ultrasmall superparamagnetic iron oxide (USPIO) particles, allows detection of macrophages in atherosclerotic tissue. Ferumoxytol has emerged as a new USPIO agent, which has an excellent safety profile. Based on the macrophage-selective properties of ferumoxytol, there is increasing number of recent reports suggesting its effectiveness to detect pathological inflammation. USPIO particles allow magnetic resonance detection of macrophages in atherosclerotic tissue. Ferumoxytol has emerged as a new USPIO agent, with an excellent safety profile. This has the potential to be used for MRI of the pathobiology of atherosclerosis.

  4. Effect of patterned micro-magnets on superparamagnetic beads in microchannels

    International Nuclear Information System (INIS)

    Guo, S S; Deng, Y L; Zhao, L B; Zhao, X-Z; Chan, H L W

    2008-01-01

    The trapping response of patterned micro-magnets (PMMs) was studied based on the parameters affecting superparamagnetic beads in microfluidic channels. Using replica moulding and electroplating technologies, the PMMs were fabricated on the microchannel bottom, which generated sufficient magnetic forces to bias the moments of magnetic particles in a flowing stream. A simplified physical principle was used to analyse the relative velocity of the magnetic particle in the confined space of a microchannel. The results revealed that the magnetic force contributed to the fluidic flow rate as well as to the hydrodynamic drag force. The relative velocity of magnetic particles was dependent on the frequency under an external magnetic field driven by an alternate current (ac) source. It showed that the magnetic gradient induced hysteresis characteristics of the transmission spectrum, associated with the interaction of superparamagnetic beads and magnetic field

  5. Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica

    Energy Technology Data Exchange (ETDEWEB)

    Sodipo, Bashiru Kayode, E-mail: bashirsodipo@gmail.com [School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia); Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia); Aziz, Azlan Abdul [School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia); Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia)

    2016-10-15

    Research on synthesis of superparamagnetic iron oxide nanoparticles (SPION) and its surface modification for biomedical applications is of intense interest. Due to superparamagnetic property of SPION, the nanoparticles have large magnetic susceptibility, single magnetic domain and controllable magnetic behaviour. However, owing to easy agglomeration of SPION, surface modification of the magnetic particles with biocompatible materials such as silica nanoparticle has gained much attention in the last decade. In this review, we present recent advances in synthesis of SPION and various routes of producing silica coated SPION. - Highlights: • We present recent advances in synthesis of SPION and various routes of producing silica coated SPION • The synthetic routes of producing SPION can be classified into three: physical, chemical and biological methods. • The chemical method is the most cited method of producing SPION and it sub-classified into liquid and gas phase. • The techniques of producing silica coated SPION is grouped into seeded and non-seeded methods.

  6. Superparamagnetic and ferrimagnetic behavior of nanocrystalline ZnO(MnO)

    Science.gov (United States)

    Kuryliszyn-Kudelska, I.; Dobrowolski, W.; Arciszewska, M.; Romčević, N.; Romčević, M.; Hadžić, B.; Sibera, D.; Narkiewicz, U.

    2018-04-01

    We have studied the magnetic properties of nanocrystals of ZnO:MnO prepared by traditional wet chemistry method. The detailed structural and morphological characterization was performed. The results of systematic measurements of AC magnetic susceptibility as a function of temperature and frequency as well as DC magnetization are reported. We observed two different types of magnetic behavior depending on the concentration doping. For samples with low nominal content (up to 30 wt% of MnO), superparamagnetic behavior was observed. We attribute the observed superparamagnetism to the presence of nanosized ZnMnO3 phase. For nanocrystals doped above nominal 60 wt% of MnO ferrimagnetism was detected with TC at around 42 K. This magnetic behavior we assign to the presence of nanosized Mn3O4 phase.

  7. A functionalized superparamagnetic iron oxide colloid as a receptor directed MR contrast agent

    International Nuclear Information System (INIS)

    Josephson, L.; Groman, E.V.; Menz, E.; Lewis, J.M.; Bengele, H.

    1990-01-01

    We have synthesized a surface functionalized superparamagnetic iron oxide colloid whose clearance from the vascular compartment was inhibited by asialofetuin but not fetuin. Unlike other particulate or colloidal magnetic resonance (MR) contrast agents, the agent of the current communication is not withdrawn from the vascular compartment by cells of the macrophage-monocyte phagocytic system, as indicated by its selective increase in hepatic relaxation rates. Because of this we refer to this colloid as a hepatic selective (HS) MR contrast agent. At 20 mumol Fe/kg the HS MR agent darkened MR images of liver. The HS MR agent exhibited no acute toxicity when injected into rats at 1800 mumol Fe/kg. Based on these observations, surface functionalized superparamagnetic iron oxide colloids may be the basis of MR contrast agents internalized by receptor mediated endocytosis generally, and by the asialoglycoprotein receptor in particular

  8. Environmentally Compatible Synthesis of Superparamagnetic Magnetite (Fe3O4 Nanoparticles with Prehydrolysate from Corn Stover

    Directory of Open Access Journals (Sweden)

    Chunming Zheng

    2013-12-01

    Full Text Available An environmentally compatible and size-controlled method has been employed for synthesis of superparamagnetic magnetite nanoparticles with prehydrolysate from corn stover. Various characterizations involving X-ray diffraction (XRD, standard and high-resolution transmission electron microscopy (TEM and HRTEM, selected area electron diffraction (SAED, and thermogravimetric analysis (TGA have integrally confirmed the formation of magnetite nanoparticles with homogeneous morphology and the formation mechanism of magnetite only from ferric precursor. Organic materials in the prehydrolysate act as a bifunctional agent: (1 a reducing agent to reduce ferric ions to prepare magnetite with the coexistence of ferric and ferrous ions; and (2 a coating agent to prevent particle growth and agglomeration and to promote the formation of nanoscale and superparamagnetic magnetite. The size of the magnetite nanoparticles can be easily controlled by tailoring the reducing sugar concentration, reaction time, or hydrothermal temperature.

  9. Splenic red pulp macrophages are intrinsically superparamagnetic and contaminate magnetic cell isolates.

    Science.gov (United States)

    Franken, Lars; Klein, Marika; Spasova, Marina; Elsukova, Anna; Wiedwald, Ulf; Welz, Meike; Knolle, Percy; Farle, Michael; Limmer, Andreas; Kurts, Christian

    2015-08-11

    A main function of splenic red pulp macrophages is the degradation of damaged or aged erythrocytes. Here we show that these macrophages accumulate ferrimagnetic iron oxides that render them intrinsically superparamagnetic. Consequently, these cells routinely contaminate splenic cell isolates obtained with the use of MCS, a technique that has been widely used in immunological research for decades. These contaminations can profoundly alter experimental results. In mice deficient for the transcription factor SpiC, which lack red pulp macrophages, liver Kupffer cells take over the task of erythrocyte degradation and become superparamagnetic. We describe a simple additional magnetic separation step that avoids this problem and substantially improves purity of magnetic cell isolates from the spleen.

  10. Multiple functionalities of Ni nanoparticles embedded in carboxymethyl guar gum polymer: catalytic activity and superparamagnetism

    Science.gov (United States)

    Sardar, Debasmita; Sengupta, Manideepa; Bordoloi, Ankur; Ahmed, Md. A.; Neogi, S. K.; Bandyopadhyay, Sudipta; Jain, Ruchi; Gopinath, Chinnakonda S.; Bala, Tanushree

    2017-05-01

    Composites comprising of metallic nanoparticles in polymer matrices have allured significant importance due to multifunctionalities. Here a simple protocol has been described to embed Ni nanoparticles in carboxymethyl guar gum (CMGG) polymer. The composite formation helps in the stabilization of Ni nanoparticles which are otherwise prone towards aerial oxidation. Further the nanoparticles retain their superparamagnetic nature and catalytic capacity. Ni-Polymer composite catalyses the reduction of 4-Nitrophenol to 4-Aminophenol very efficiently in presence of NaBH4, attaining a complete conversion under some experimental conditions. Ni-Polymer composite is well characterized using UV-vis spectroscopy, FTIR, XPS, powder XRD, TGA, SEM and TEM. A detailed magnetic measurement using superconducting quantum interference device-vibrating sample magnetometer (SQUID-VSM) reveals superparamagnetic behaviour of the composite.

  11. Magnetic composites based on hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides

    International Nuclear Information System (INIS)

    Braga, Tiago P.; Vasconcelos, Igor F.; Sasaki, Jose M.; Fabris, J.D.; Oliveira, Diana Q.L. de; Valentini, Antoninho

    2010-01-01

    Materials containing hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides were obtained from a chemical precursor prepared by admixing chitosan and iron and aluminum hydroxides. The oxides were first characterized with scanning electron microscopy, X-ray diffraction, and Moessbauer spectroscopy. Scanning electron microscopy micrographs showed the size distribution of the resulting spheres to be highly homogeneous. The occurrence of nano-composites containing aluminum oxides and iron oxides was confirmed from powder X-ray diffraction patterns; except for the sample with no aluminum, the superparamagnetic relaxation due to iron oxide particles were observed from Moessbauer spectra obtained at 298 and 110 K; the onset six line-spectrum collected at 20 K indicates a magnetic ordering related to the blocking relaxation effect for significant portion of small spheres in the sample with a molar ratio Al:Fe of 2:1.

  12. Quantum interference oscillations of the superparamagnetic blocking in an Fe8 molecular nanomagnet

    OpenAIRE

    Burzurí, E.; Luis, F.; Montero, O.; Barbara, B.; Ballou, R.; Maegawa, S.

    2013-01-01

    We show that the dynamic magnetic susceptibility and the superparamagnetic blocking temperature of an Fe8 single molecule magnet oscillate as a function of the magnetic field Hx applied along its hard magnetic axis. These oscillations are associated with quantum interferences, tuned by Hx, between different spin tunneling paths linking two excited magnetic states. The oscillation period is determined by the quantum mixing between the ground S=10 and excited multiplets. These experiments enabl...

  13. Whole tissue AC susceptibility after superparamagnetic iron oxide contrast agent administration in a rat model

    International Nuclear Information System (INIS)

    Lazaro, Francisco Jose; Gutierrez, Lucia; Rosa Abadia, Ana; Soledad Romero, Maria; Lopez, Antonio; Jesus Munoz, Maria

    2007-01-01

    A magnetic AC susceptibility characterisation of rat tissues after intravenous administration of superparamagnetic iron oxide (Endorem ( R)), at the same dose as established for Magnetic Resonance Imaging (MRI) contrast enhancement in humans, has been carried out. The measurements reveal the presence of the contrast agent as well as that of physiological ferritin in liver and spleen while no traces have been magnetically detected in heart and kidney. This preliminary work opens suggestive possibilities for future biodistribution studies of any type of magnetic carriers

  14. A method for synthesis and functionalization of ultrasmall superparamagnetic covalent carriers based on maghemite and dextran

    International Nuclear Information System (INIS)

    Mornet, Stephane; Portier, Josik; Duguet, Etienne

    2005-01-01

    A new generation of susceptibility contrast agents for MRI and based on maghemite cores covalently bonded to dextran stabilizing macromolecules was investigated. The multistep preparation of these versatile ultrasmall superparamagnetic iron oxides (VUSPIO) consisted of colloidal maghemite synthesis, surface modification by aminopropylsilane groups, and coupling of partially oxidized dextran via Schiff's bases and secondary amine bonds. The dextran corona might be easily derivatized, e.g. by PEGylation

  15. Monodisperse superparamagnetic nanoparticles by thermolysis of Fe(III) oleate and mandelate complexes

    Czech Academy of Sciences Publication Activity Database

    Patsula, Vitalii; Petrovský, Eduard; Kovářová, Jana; Konefal, Rafal; Horák, Daniel

    2014-01-01

    Roč. 292, č. 9 (2014), s. 2097-2110 ISSN 0303-402X R&D Projects: GA ČR GAP206/12/0381; GA MŠk 7E12053 EU Projects: European Commission(XE) 246513 - NADINE Institutional support: RVO:61389013 ; RVO:67985530 Keywords : superparamagnetic * nanoparticles * iron oxide Subject RIV: CD - Macromolecular Chemistry; DE - Earth Magnetism, Geodesy, Geography (GFU-E) Impact factor: 1.865, year: 2014

  16. Processing of superparamagnetic iron contrast agent ferucarbotran in transplanted pancreatic islets

    Czech Academy of Sciences Publication Activity Database

    Zacharovová, K.; Berková, Z.; Jirák, D.; Herynek, V.; Vancová, Marie; Dovolilová, E.; Saudek, F.

    2012-01-01

    Roč. 7, č. 6 (2012), s. 485-493 ISSN 1555-4309 Institutional research plan: CEZ:AV0Z60220518 Keywords : magnetic resonance imaging * pancreatic islets * transplantation * superparamagnetic iron oxide nanoparticles * ferucarbotran * β cells * diabetes * immunohistochemistry * transmission electron microscopy Subject RIV: CE - Biochemistry Impact factor: 2.872, year: 2012 http://onlinelibrary.wiley.com/doi/10.1002/cmmi.1477/full

  17. Spectroscopic and magnetic studies of highly dispersible superparamagnetic silica coated magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tadyszak, Krzysztof [NanoBioMedical Centre, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań (Poland); Institute of Molecular Physics Polish Academy of Sciences, ul. Mariana Smo.luchowskiego 17, 60-179 Poznań (Poland); Kertmen, Ahmet, E-mail: ahmet.kertmen@pg.gda.pl [Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk (Poland); Coy, Emerson [NanoBioMedical Centre, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań (Poland); Andruszkiewicz, Ryszard; Milewski, Sławomir [Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk (Poland); Kardava, Irakli; Scheibe, Błażej; Jurga, Stefan [NanoBioMedical Centre, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań (Poland); Chybczyńska, Katarzyna, E-mail: katarzyna.chybczynska@ifmpan.poznan.pl [Institute of Molecular Physics Polish Academy of Sciences, ul. Mariana Smo.luchowskiego 17, 60-179 Poznań (Poland)

    2017-07-01

    Highlights: • Superparamagnetic core-shell nanoparticles of Fe{sub 2}O{sub 3}@Silica were obtained. • Magnetic response was studied by DC, AC magnetometry and EPR spectroscopy. • Nanoparticles show magnetite structure with a well-defined Verwey transition. • Samples show no inter particle magnetic interactions or agglomeration. - Abstract: Superparamagnetic behavior in aqueously well dispersible magnetite core-shell Fe{sub 3}O{sub 4}@SiO{sub 2} nanoparticles is presented. The magnetic properties of core-shell nanoparticles were measured with use of the DC, AC magnetometry and EPR spectroscopy. Particles where characterized by HR-TEM and Raman spectroscopy, showing a crystalline magnetic core of 11.5 ± 0.12 nm and an amorphous silica shell of 22 ± 1.5 nm in thickness. The DC, AC magnetic measurements confirmed the superparamagnetic nature of nanoparticles, additionally the EPR studies performed at much higher frequency than DC, AC magnetometry (9 GHz) have confirmed the paramagnetic nature of the nanoparticles. Our results show the excellent magnetic behavior of the particles with a clear magnetite structure, which are desirable properties for environmental remediation and biomedical applications.

  18. Treatment of Aqueous Bromate by Superparamagnetic BiOCl-Mediated Advanced Reduction Process

    Directory of Open Access Journals (Sweden)

    Xiaowei Liu

    2017-05-01

    Full Text Available Bromate ( BrO 3 − contamination in drinking water is a growing concern. Advanced reduction processes (ARPs are reportedly promising in relieving this concern. In this work, UV/superparamagnetic BiOCl (BiOCl loaded onto superparamagnetic hydroxyapatite assisted with small molecule carboxylic acid (formate, citrate, and acetate, a carboxyl anion radical ( CO 2 • − -based ARP, was proposed to eliminate aqueous BrO 3 − . Formate and citrate were found to be ideal CO 2 • − precursor, and the latter was found to be safe for practical use. BrO 3 − (10 μg·L−1, WHO guideline for drinking water can be completely degraded within 3 min under oxygen-free conditions. In this process, BrO 3 − degradation was realized by the reduction of CO 2 • − (major role and formyloxyl radical (minor role in bulk solution. The formation mechanism of radicals and the transformation pathway of BrO 3 − were proposed based on data on electron paramagnetic resonance monitoring, competitive kinetics, and degradation product analysis. The process provided a sustainable decontamination performance (<5% deterioration for 10 cycles and appeared to be more resistant to common electron acceptors (O2, NO 3 − , and Fe3+ than hydrated electron based-ARPs. Phosphate based-superparamagnetic hydroxyapatite, used to support BiOCl in this work, was believed to be applicable for resolving the recycling problem of other metal-containing catalyst.

  19. MRI in acute cerebral ischaemia: perfusion imaging with superparamagnetic iron oxide in a rat model

    International Nuclear Information System (INIS)

    Forsting, M.; Reith, W.; Doerfler, A.; Kummer, R. von; Hacke, W.; Sartor, K.

    1994-01-01

    An imaging technique capable of detecting ischaemic cerebral injury at an early stage could improve diagnosis in acute or transient cerebral ischaemia. We compared the ability of superparamagnetically contrast-enhanced MRI and conventional T2-weighted MRI to detect ischaemic injury early after unilateral occlusion of the middle cerebral artery in 12 male Wistar rats. Permanent vessel occlusion was achieved by a transvascular approach, which has the advantage of not requiring a craniectom. At 45-60 min after the procedure, the animals had conventional T2-weighted MRI before and after administration of a superparamagnetic contrast agent (iron oxide particles). Unenhanced images were normal in all animals. After administration of iron oxide particles, the presumed ischaemic area was clearly visible, as relatively increased signal, in all animals; this high signal area corresponded to the area of ischaemic brain infarction seen on histological studies. Our results suggest that superparamagnetic iron particles may significantly reduce the interval between an ischaemic insult and the appearance of parenchymal changes on MRI. (orig./UWA)

  20. SEPARATION OF CELL POPULATIONS BY SUPER-PARAMAGNETIC PARTICLES WITH CONTROLLED SURFACE FUNCTIONALITY

    Directory of Open Access Journals (Sweden)

    Lootsik M. D.

    2014-02-01

    Full Text Available The recognition and isolation of specific mammalian cells by the biocompatible polymer coated super-paramagnetic particles with determined surface functionality were studied. The method of synthesis of nanoscaled particles on a core of iron III oxide (Fe2O3, magemit coated with a polymer shell containing reactive oligoperoxide groups for attachment of ligands is described. By using the developed superparamagnetic particles functionalized with peanut agglutinin (PNA we have separated the sub-populations of PNA+ and PNA– cells from ascites of murine Nemeth-Kellner lymphoma. In another type of experiment, the particles were opsonized with proteins of the fetal calf serum that improved biocompatibility of the particles and their ingestion by cultivated murine macrophages J774.2. Macrophages loaded with the particles were effeciently separated from the particles free cells by using the magnet. Thus, the developed surface functionalized superparamagnetic particles showed to be a versatile tool for cell separation independent on the mode of particles’ binding with cell surface or their engulfment by the targeted cells.

  1. Thermal treatment to enhance saturation magnetization of superparamagnetic Ni nanoparticles while maintaining low coercive force

    Science.gov (United States)

    Ishizaki, Toshitaka; Yatsugi, Kenichi; Akedo, Kunio

    2018-05-01

    Superparamagnetic nanoparticles capped by insulators have the potential to decrease eddy current and hysteresis losses. However, the saturation magnetization ( M s) decreases significantly with decreasing the particle size. In this study, superparamagnetic Ni nanoparticles having the mean size of 11.6 ± 1.8 nm were synthesized from the reduction of Ni(II) acetylacetonate in oleylamine with the addition of trioctylphosphine, indicating the coercive force ( H c) less than 1 Oe. Thermal treatments of the Ni nanoparticles were investigated as a method to enhance the M s. The results indicated that the M s was enhanced by an increase of the Ni mass ratio with increasing thermal treatment temperature. However, the decomposition behavior of the capping layers indicated that their alkyl chains actively decomposed at temperatures above 523 K to form Ni3P via reaction between Ni and P, resulting in particle growth with a significant increase in the H c. Therefore, the optimal temperature was determined to be 473 K, which increased the Ni ratio without formation of Ni3P while maintaining particle sizes with superparamagnetic properties. Further, the M s could be improved by 22% (relative to the as-synthesized Ni nanoparticles) after thermal treatment at 473 K while maintaining the H c to be less than 1 Oe.

  2. Conjugating folate on superparamagnetic Fe3O4@Au nanoparticles using click chemistry

    International Nuclear Information System (INIS)

    Shen, Xiaofang; Ge, Zhaoqiang; Pang, Yuehong

    2015-01-01

    Gold-coated magnetic core@shell nanoparticles, which exhibit magneto-optical properties, not only enhance the chemical stability of core and biocompatibility of surface, but also provide a combination of multimodal imaging and therapeutics. The conjugation of these tiny nanoparticles with specific biomolecules allows researchers to target the desired location. In this paper, superparamagnetic Fe 3 O 4 @Au nanoparticles were synthesized and functionalized with the azide group on the surface by formation of self-assembled monolayers. Folate (FA) molecules, non-immunogenic target ligands for cancer cells, are conjugated with alkyne and then immobilized on the azide-terminated Fe 3 O 4 @Au nanoparticles through copper(I)-catalyzed azide-alkyne cycloaddition (click reaction). Myelogenous leukemia K562 cells were used as a folate receptor (FR) model, which can be targeted and extracted by magnetic field after interaction with the Fe 3 O 4 @Au–FA nanoparticles. - Graphical abstract: Self-assembled azide-terminated group on superparamagnetic Fe 3 O 4 @Au nanoparticles followed by click reaction with alkyne-functionalized folate, allowing the nanoparticles target folate receptor of cancer cells. - Highlights: • Azidoundecanethiol was coated on the superparamagnetic Fe 3 O 4 @Au nanoparticles by forming self-assembled monolayers. • Alkyne-terminated folate was synthesized from a reaction between the amine and the carboxylic acid. • Conjugation of Fe 3 O 4 @Au nanoparticles with folate was made by copper-catalyzed azide-alkyne cycloaddition click chemistry

  3. Multiple functionalities of Ni nanoparticles embedded in carboxymethyl guar gum polymer: catalytic activity and superparamagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Sardar, Debasmita [Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India); Sengupta, Manideepa; Bordoloi, Ankur [Nano Catalysis, Catalytic Conversion and Process Division, CSIR—Indian Institute of Petroleum (IIP), Mohkampur, Dehradun 248005 (India); Ahmed, Md. A.; Neogi, S.K.; Bandyopadhyay, Sudipta [Department of Physics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India); Jain, Ruchi; Gopinath, Chinnakonda S. [Catalysis Division and Center of Excellence on Surface Science, CSIR—National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008 (India); Bala, Tanushree, E-mail: tanushreebala@gmail.com [Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India)

    2017-05-31

    Highlights: • Ni nanoparticles were synthesized in polymer to form Ni-Polymer composite. • Ni nanoparticles retain their superparamagnetism in the composite. • Ni-Polymer composites showed catalytic activity. - Abstract: Composites comprising of metallic nanoparticles in polymer matrices have allured significant importance due to multifunctionalities. Here a simple protocol has been described to embed Ni nanoparticles in carboxymethyl guar gum (CMGG) polymer. The composite formation helps in the stabilization of Ni nanoparticles which are otherwise prone towards aerial oxidation. Further the nanoparticles retain their superparamagnetic nature and catalytic capacity. Ni-Polymer composite catalyses the reduction of 4-Nitrophenol to 4-Aminophenol very efficiently in presence of NaBH{sub 4}, attaining a complete conversion under some experimental conditions. Ni-Polymer composite is well characterized using UV–vis spectroscopy, FTIR, XPS, powder XRD, TGA, SEM and TEM. A detailed magnetic measurement using superconducting quantum interference device-vibrating sample magnetometer (SQUID-VSM) reveals superparamagnetic behaviour of the composite.

  4. Magnetic polymer nanospheres for anticancer drug targeting

    Energy Technology Data Exchange (ETDEWEB)

    JurIkova, A; Csach, K; Koneracka, M; Zavisova, V; Tomasovicova, N; Lancz, G; Kopcansky, P; Timko, M; Miskuf, J [Institute of Experimental Physics, Slovak Academy of Sciences, 040 01 Kosice (Slovakia); Muckova, M, E-mail: akasard@saske.s [Hameln rds a.s., 900 01 Modra (Slovakia)

    2010-01-01

    Poly(D,L-lactide-co-glycolide) polymer (PLGA) nanospheres loaded with biocom-patible magnetic fluid as a magnetic carrier and anticancer drug Taxol were prepared by the modified nanoprecipitation method with size of 200-250 nm in diameter. The PLGA polymer was utilized as a capsulation material due to its biodegradability and biocompatibility. Taxol as an important anticancer drug was chosen for its significant role against a wide range of tumours. Thermal properties of the drug-polymer system were characterized using thermal analysis methods. It was determined the solubility of Taxol in PLGA nanospheres. Magnetic properties investigated using SQUID magnetometry showed superparamagnetism of the prepared magnetic polymer nanospheres.

  5. Preparation and characterization of 6-mercaptopurine-coated magnetite nanoparticles as a drug delivery system.

    Science.gov (United States)

    Dorniani, Dena; Hussein, Mohd Zobir Bin; Kura, Aminu Umar; Fakurazi, Sharida; Shaari, Abdul Halim; Ahmad, Zalinah

    2013-01-01

    Iron oxide nanoparticles are of considerable interest because of their use in magnetic recording tape, ferrofluid, magnetic resonance imaging, drug delivery, and treatment of cancer. The specific morphology of nanoparticles confers an ability to load, carry, and release different types of drugs. We synthesized superparamagnetic nanoparticles containing pure iron oxide with a cubic inverse spinal structure. Fourier transform infrared spectra confirmed that these Fe3O4 nanoparticles could be successfully coated with active drug, and thermogravimetric and differential thermogravimetric analyses showed that the thermal stability of iron oxide nanoparticles coated with chitosan and 6-mercaptopurine (FCMP) was markedly enhanced. The synthesized Fe3O4 nanoparticles and the FCMP nanocomposite were generally spherical, with an average diameter of 9 nm and 19 nm, respectively. The release of 6-mercaptopurine from the FCMP nanocomposite was found to be sustained and governed by pseudo-second order kinetics. In order to improve drug loading and release behavior, we prepared a novel nanocomposite (FCMP-D), ie, Fe3O4 nanoparticles containing the same amounts of chitosan and 6-mercaptopurine but using a different solvent for the drug. The results for FCMP-D did not demonstrate "burst release" and the maximum percentage release of 6-mercaptopurine from the FCMP-D nanocomposite reached about 97.7% and 55.4% within approximately 2,500 and 6,300 minutes when exposed to pH 4.8 and pH 7.4 solutions, respectively. By MTT assay, the FCMP nanocomposite was shown not to be toxic to a normal mouse fibroblast cell line. Iron oxide coated with chitosan containing 6-mercaptopurine prepared using a coprecipitation method has the potential to be used as a controlled-release formulation. These nanoparticles may serve as an alternative drug delivery system for the treatment of cancer, with the added advantage of sparing healthy surrounding cells and tissue.

  6. [New research on the significance of polymers in pharmaceutical formulations].

    Science.gov (United States)

    Amighi, K

    2001-01-01

    During these last few decades, a lot of work has been made in pharmaceutical area in order to control the drug delivery from various pharmaceutical dosage forms. The use of polymers in pharmaceutical technology have led to the development of the first drug delivery systems proposed in order to prolong or to delay the drug delivery, or to enhance drug release for drugs showing bioavailability shortcomings. The wide range of polymers available for pharmaceutical use, their low reactivity towards drugs and other formulation ingredients and their safe nature, have permitted a widespread use of polymers to improve manufacturing processes or for the formulation of pharmaceutical dosage forms for various administration routes. More over, the preparation of new polymeric materials by the synthesis of new polymers with unique properties or by the modification of available natural or synthetic polymers, offer to the formulator a wide range of applications in order to optimise the drug delivery for each specific case.

  7. Cyclodextrins as excipients in tablet formulations.

    Science.gov (United States)

    Conceição, Jaime; Adeoye, Oluwatomide; Cabral-Marques, Helena Maria; Lobo, José Manuel Sousa

    2018-04-22

    This paper aims to provide a critical review of cyclodextrins as excipients in tablet formulations, highlighting: (i) the principal pharmaceutical applications of cyclodextrins; (ii) the most relevant technological aspects in pharmaceutical formulation development; and (iii) the actual regulatory status of cyclodextrins. Moreover, several illustrative examples are presented. Cyclodextrins can be used as complexing excipients in tablet formulations for low-dose drugs. By contrast, for medium-dose drugs and/or when the complexation efficiency is low, the methods to enhance the complexation efficiency play a key part in reducing the cyclodextrin quantity. In addition, these compounds are used as fillers, disintegrants, binders and multifunctional direct compression excipients of the tablets. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Necessity of rethinking oral pediatric formulations

    DEFF Research Database (Denmark)

    Bar-Shalom, Daniel

    2014-01-01

    by all patient groups, is needed, and an automated compounding concept is proposed. The finishing of the formulation is done at the dispensing pharmacy using an automated process. The individual components (pudding-like carrier, microencapsulated drug, and the dispensing robot and its software...

  9. Formulation and evaluation and terbutaline sulphate and ...

    African Journals Online (AJOL)

    We report the use of low rugosity lactose, product of controlled crystallization of this carrier, in the formulation of terbutaline sulphate and beclomethasone dipropionate dry powder inhalers. The deposition patterns obtained with inhalation mixtures consisting of the modified lactose and each of the micronised drugs ...

  10. Reactive decontamination formulation

    Science.gov (United States)

    Giletto, Anthony [College Station, TX; White, William [College Station, TX; Cisar, Alan J [Cypress, TX; Hitchens, G Duncan [Bryan, TX; Fyffe, James [Bryan, TX

    2003-05-27

    The present invention provides a universal decontamination formulation and method for detoxifying chemical warfare agents (CWA's) and biological warfare agents (BWA's) without producing any toxic by-products, as well as, decontaminating surfaces that have come into contact with these agents. The formulation includes a sorbent material or gel, a peroxide source, a peroxide activator, and a compound containing a mixture of KHSO.sub.5, KHSO.sub.4 and K.sub.2 SO.sub.4. The formulation is self-decontaminating and once dried can easily be wiped from the surface being decontaminated. A method for decontaminating a surface exposed to chemical or biological agents is also disclosed.

  11. 21 CFR 864.2875 - Balanced salt solutions or formulations.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Balanced salt solutions or formulations. 864.2875 Section 864.2875 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2875...

  12. Evaluation of umbilical cord mesenchymal stem cells labeling with superparamagnetic iron oxide nanoparticles coated with dextran and complexed with Poly-L-Lysine

    International Nuclear Information System (INIS)

    Sibov, Tatiana Tais; Mamani, Javier Bustamante; Pavon, Lorena Favaro; Cardenas, Walter Humberto; Gamarra, Lionel Fernel; Miyaki, Liza Aya Mabuchi; Marti, Luciana Cavalheiro; Sardinha, Luiz Roberto; Oliveira, Daniela Mara de

    2012-01-01

    Objective: The objective of this study was to evaluate the effect of the labeling of umbilical cord vein derived mesenchymal stem cells with superparamagnetic iron oxide nanoparticles coated with dextran and complexed to a non-viral transfector agent transfector poly-L-lysine. Methods: The labeling of mesenchymal stem cells was performed using the superparamagnetic iron oxide nanoparticles/dextran complexed and not complexed to poly-L-lysine. Superparamagnetic iron oxide nanoparticles/dextran was incubated with poly-L-lysine in an ultrasonic sonicator at 37 deg C for 10 minutes for complex formation superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine by electrostatic interaction. Then, the mesenchymal stem cells were incubated overnight with the complex superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine and superparamagnetic iron oxide nanoparticles/dextran. After the incubation period the mesenchymal stem cells were evaluated by internalization of the complex superparamagnetic iron oxide nanoparticles/dextran/polyL-lysine and superparamagnetic iron oxide nanoparticles/dextran by Prussian Blue stain. Cellular viability of labeled mesenchymal stem cells was evaluated by cellular proliferation assay using 5,6-carboxyfluorescein-succinimidyl ester method and apoptosis detection by Annexin V- Propidium Iodide assay. Results: mesenchymal stem cells labeled with superparamagnetic iron oxide nanoparticles/ dextran without poly-L-lysine not internalized efficiently the superparamagnetic iron oxide nanoparticles due to its low presence detected within cells. Mesenchymal stem cells labeled with the complex superparamagnetic iron oxide nanoparticles/dextran/polyL-lysine efficiently internalized the superparamagnetic iron oxide nanoparticles due to greater presence in the cells interior. The viability and apoptosis assays demonstrated that the mesenchymal stem cells labeled and not labeled respectively with the superparamagnetic iron oxide

  13. Formulation and Characterization of Benzoyl Peroxide Gellified Emulsions

    Science.gov (United States)

    Thakur, Naresh Kumar; Bharti, Pratibha; Mahant, Sheefali; Rao, Rekha

    2012-01-01

    The present investigation was carried out with the objective of formulating a gellified emulsion of benzoyl peroxide, an anti-acne agent. The formulations were prepared using four different vegetable oils, viz. almond oil, jojoba oil, sesame oil, and wheat germ oil, owing to their emollient properties. The idea was to overcome the skin irritation and dryness caused by benzoyl peroxide, making the formulation more tolerable. The gellified emulsions were characterized for their homogeneity, rheology, spreadability, drug content, and stability. In vitro permeation studies were performed to check the drug permeation through rat skin. The formulations were evaluated for their antimicrobial activity, as well as their acute skin irritation potential. The results were compared with those obtained for the marketed formulation. Later, the histopathological examination of the skin treated with various formulations was carried out. Formulation F3 was found to have caused a very mild dysplastic change to the epidermis. On the other hand, the marketed formulation led to the greatest dysplastic change. Hence, it was concluded that formulation F3, containing sesame oil (6%w/w), was the optimized formulation. It exhibited the maximum drug release and anti-microbial activity, in addition to the least skin irritation potential. PMID:23264949

  14. Evaluating Suspension Formulations of Theophylline Cocrystals With Artificial Sweeteners.

    Science.gov (United States)

    Aitipamula, Srinivasulu; Wong, Annie B H; Kanaujia, Parijat

    2018-02-01

    Pharmaceutical cocrystals have garnered significant interest as potential solids to address issues associated with formulation development of drug substances. However, studies concerning the understanding of formulation behavior of cocrystals are still at the nascent stage. We present results of our attempts to evaluate suspension formulations of cocrystals of an antiasthmatic drug, theophylline, with 2 artificial sweeteners. Stability, solubility, drug release, and taste of the suspension formulations were evaluated. Suspension that contained cocrystal with acesulfame showed higher drug release rate, while a cocrystal with saccharin showed a significant reduction in drug release rate. The cocrystal with saccharin was found stable in suspension for over 9 weeks at accelerated test condition; in contrast, the cocrystal with acesulfame was found unstable. Taste analysis using an electronic taste-sensing system revealed improved sweetness of the suspension formulations with cocrystals. Theophylline has a narrow therapeutic index with a short half-life which necessitates frequent dosing. This adversely impacts patient compliance and enhances risk of gastrointestinal and cardiovascular adverse effects. The greater thermodynamic stability, sweetness, and sustained drug release of the suspension formulation of theophylline-saccharin could offer an alternative solution to the short half-life of theophylline and make it a promising formulation for treating asthmatic pediatric and geriatric patients. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  15. Preparation of radiopharmaceutical formulations

    International Nuclear Information System (INIS)

    Simon, J.; Garlich, J.R.; Frank, R.K.; McMillan, K.

    1998-01-01

    Radiopharmaceutical formulations for complexes comprising at least one radionuclide complexed with a ligand, or its physiologically-acceptable salts thereof, especially 153 samarium-ethylenediaminetetramethylenephosphonic acid, which optionally contains a divalent metal ion, e.g. calcium, and is frozen, thawed, and then administered by injection. Alternatively, the radiopharmaceutical formulations must contain the divalent metal and are frozen only if the time before administration is sufficiently long to cause concern for radiolysis of the ligand. 2 figs., 9 tabs

  16. Tariff formulation and equalization

    International Nuclear Information System (INIS)

    Svartsund, Trond

    2003-01-01

    The primary goal of the transmission tariff is to provide for socioeconomic use of the transmission grid. The present tariff structure is basically right. The responsibility for the formulation of the tariff resides with the local grid owner. This must take place in agreement with the current regulations which are passed by the authorities. The formulation must be adaptable to the local requirements. EBL (Norwegian Electricity Industry Association) is content with the current regulations

  17. Quantum Interference Oscillations of the Superparamagnetic Blocking in an Fe8 Molecular Nanomagnet

    Science.gov (United States)

    Burzurí, E.; Luis, F.; Montero, O.; Barbara, B.; Ballou, R.; Maegawa, S.

    2013-08-01

    We show that the dynamic magnetic susceptibility and the superparamagnetic blocking temperature of an Fe8 single molecule magnet oscillate as a function of the magnetic field Hx applied along its hard magnetic axis. These oscillations are associated with quantum interferences, tuned by Hx, between different spin tunneling paths linking two excited magnetic states. The oscillation period is determined by the quantum mixing between the ground S=10 and excited multiplets. These experiments enable us to quantify such mixing. We find that the weight of excited multiplets in the magnetic ground state of Fe8 amounts to approximately 11.6%.

  18. Toxicity of superparamagnetic iron oxide nanoparticles: Research strategies and implications for nanomedicine

    International Nuclear Information System (INIS)

    Li Lei; Jiang Ling-Ling; Zeng Yun; Liu Gang

    2013-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are one of the most versatile and safe nanoparticles in a wide variety of biomedical applications. In the past decades, considerable efforts have been made to investigate the potential adverse biological effects and safety issues associated with SPIONs, which is essential for the development of next-generation SPIONs and for continued progress in translational research. In this mini review, we summarize recent developments in toxicity studies on SPIONs, focusing on the relationship between the physicochemical properties of SPIONs and their induced toxic biological responses for a better toxicological understanding of SPIONs. (topical review - magnetism, magnetic materials, and interdisciplinary research)

  19. Formation of magnetite nanoparticles at low temperature: from superparamagnetic to stable single domain particles.

    Directory of Open Access Journals (Sweden)

    Jens Baumgartner

    Full Text Available The room temperature co-precipitation of ferrous and ferric iron under alkaline conditions typically yields superparamagnetic magnetite nanoparticles below a size of 20 nm. We show that at pH  =  9 this method can be tuned to grow larger particles with single stable domain magnetic (> 20-30 nm or even multi-domain behavior (> 80 nm. The crystal growth kinetics resembles surprisingly observations of magnetite crystal formation in magnetotactic bacteria. The physicochemical parameters required for mineralization in these organisms are unknown, therefore this study provides insight into which conditions could possibly prevail in the biomineralizing vesicle compartments (magnetosomes of these bacteria.

  20. Low temperature synthesis, magnetic and electrical properties of iron-magnesium superparamagnetic nanoalloy

    Energy Technology Data Exchange (ETDEWEB)

    Nazir, Rabia [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Mazhar, Muhammad [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan)], E-mail: mazhar42pk@yahoo.com; Akhtar, Muhammad Javed; Nadeem, Muhammad; Siddique, Muhammad [Physics Division, Pinstech, P.O. Nilore, Islamabad (Pakistan); Shah, Raza [HEJ Research Institute of Chemistry, University of Karachi, Karachi 75270 (Pakistan); Hasanain, S. Khurshid [Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2009-06-24

    A low temperature chemical approach which beats the miscibility barrier of Fe and Mg has been designed to synthesize Fe-Mg{sub 2} nanoalloy and tested to result nanoparticles of average 30 nm size. The nanoalloy is amorphous in nature and characterized by XPRD, AFM, magnetometery, Moessbauer and impedance spectroscopies. The result of magnetic measurement suggests the sample to be superparamagnetic as evidenced by the {sup 57}Fe Moessbauer spectroscopy. The two Mg atoms occupy different positions around iron resulting in two phase system as shown by Moessbauer and impedance spectroscopies.

  1. Low temperature synthesis, magnetic and electrical properties of iron-magnesium superparamagnetic nanoalloy

    International Nuclear Information System (INIS)

    Nazir, Rabia; Mazhar, Muhammad; Akhtar, Muhammad Javed; Nadeem, Muhammad; Siddique, Muhammad; Shah, Raza; Hasanain, S. Khurshid

    2009-01-01

    A low temperature chemical approach which beats the miscibility barrier of Fe and Mg has been designed to synthesize Fe-Mg 2 nanoalloy and tested to result nanoparticles of average 30 nm size. The nanoalloy is amorphous in nature and characterized by XPRD, AFM, magnetometery, Moessbauer and impedance spectroscopies. The result of magnetic measurement suggests the sample to be superparamagnetic as evidenced by the 57 Fe Moessbauer spectroscopy. The two Mg atoms occupy different positions around iron resulting in two phase system as shown by Moessbauer and impedance spectroscopies.

  2. Preparation and Characterization of Super-paramagnetic Nano-beads for DNA Isolation

    Institute of Scientific and Technical Information of China (English)

    Xin XIE; Xu ZHANG; Bing Bin YU; wei Yang FE

    2004-01-01

    Unique coupling reagent, bis-(2-hydroxyethyl methacrylate) phosphate was used to prepare coated and functionalized superparamagnetic nanobeads, leading to a simple, effective method for coating the nanobeads. With this method, the thickness of the coating layer and the functional group contents on the nano-beads could be controlled by changing the quantity of the coated monomers. The nanobeads were characterized by means of transmission electron microscopy (TEM) and Fourier transformation infrared spectroscopy (FTIR). The carboxyl-modified magnetic nano-beads were employed to streamline the protocol of isolation of genomic DNA from the human whole blood.

  3. Terbinafine: novel formulations that potentiate antifungal activities.

    Science.gov (United States)

    Ma, Y; Chen, X; Guan, S

    2015-03-01

    Terbinafine, an orally and topically active antifungal agent, has been available for the treatment of dermatophytic infections and onychomycosis for more than a decade. In addition, oral administration has been shown to be associated with drug-drug interactions, hepatotoxicity, low concentration at the infected sites, gastrointestinal and systemic side effects and other adverse effects. Since topical drug delivery can provide higher patient compliance, allow immediate access to the infected site and reduce unwanted systemic drug exposure, an improved topical drug delivery approach with high permeability, sustained release and prolonged retainment could overcome the limitations and side effects caused by oral administration. Conventional topical formulations cannot keep the drug in the targeted sites for a long duration of time and hence a novel drug delivery that can avoid the side effects while still providing sustained efficacy in treatment should be developed. This brief review of novel formulations based on polymers and nanostructure carriers provides insight into the efficacy and topical delivery of terbinafine. Copyright 2015 Prous Science, S.A.U. or its licensors. All rights reserved.

  4. A sonochemical approach to the direct surface functionalization of superparamagnetic iron oxide nanoparticles with (3-aminopropyl)triethoxysilane.

    Science.gov (United States)

    Sodipo, Bashiru Kayode; Aziz, Azlan Abdul

    2014-01-01

    We report a sonochemical method of functionalizing superparamagnetic iron oxide nanoparticles (SPION) with (3-aminopropyl)triethoxysilane (APTES). Mechanical stirring, localized hot spots and other unique conditions generated by an acoustic cavitation (sonochemical) process were found to induce a rapid silanization reaction between SPION and APTES. FTIR, XPS and XRD measurements were used to demonstrate the grafting of APTES on SPION. Compared to what was reported in literature, the results showed that the silanization reaction time was greatly minimized. More importantly, the product displayed superparamagnetic behaviour at room temperature with a more than 20% higher saturation magnetization.

  5. Smooth and rapid microwave synthesis of MIL-53(Fe) including superparamagnetic γ-Fe2O3 nanoparticles

    Science.gov (United States)

    Wengert, Simon; Albrecht, Joachim; Ruoss, Stephen; Stahl, Claudia; Schütz, Gisela; Schäfer, Ronald

    2017-12-01

    MIL-53(Fe) linked to superparamagnetic γ-Fe2O3 nanoparticles was created using time-efficient microwave synthesis. Intermediates as well as the final product have been characterized by Dynamic Light Scattering (DLS), Infrared Spectroscopy (FTIR) and Thermal Gravimetric Analysis (TGA). It is found that this route allows the production of Fe nanoparticles with typical sizes of about 80 nm that are embedded inside the metal-organic structures. Detailed magnetization measurements using SQUID magnetometry revealed a nearly reversible magnetization loop indicating essentially superparamagnetic behavior.

  6. Formulation variables affecting deposition with the Kchaler device, a ...

    African Journals Online (AJOL)

    As a result of current focus on tightening regulatory requirements, it is imperative that reproducibility of the metered dose of drugs be ensured during the formulation, packaging and use. We developed a dry powder inhalation package in our laboratories consisting of formulation mixes, design and a device, KCHALER, ...

  7. Formulation and Evaluation of Tramadol HCl Matrix Tablets Using ...

    African Journals Online (AJOL)

    Formulation and Evaluation of Tramadol HCl Matrix Tablets Using Carbopol ... to 83 % compared with the release rate of 99 % for the formulation with D:P ratio of 10:3. Kinetic analysis indicates that drug release mechanism was anomalous ...

  8. Formulation and Pharmacokinetic Evaluation of Controlled-Release ...

    African Journals Online (AJOL)

    The effect of several formulation variables on in ... The in vivo pharmacokinetics of the optimized formulation was compared ... Results: The core tablets exhibited extended release consisting of drug release from the embedded ... important factor in medical treatment with respect ... The solvents for high-performance liquid.

  9. Development of Oral Flexible Tablet (OFT) Formulation for Pediatric and Geriatric Patients: a Novel Age-Appropriate Formulation Platform.

    Science.gov (United States)

    Chandrasekaran, Prabagaran; Kandasamy, Ruckmani

    2017-08-01

    Development of palatable formulations for pediatric and geriatric patients involves various challenges. However, an innovative development with beneficial characteristics of marketed formulations in a single formulation platform was attempted. The goal of this research was to develop solid oral flexible tablets (OFTs) as a platform for pediatrics and geriatrics as oral delivery is the most convenient and widely used mode of drug administration. For this purpose, a flexible tablet formulation using cetirizine hydrochloride as model stability labile class 1 and 3 drug as per the Biopharmaceutical Classification System was developed. Betadex, Eudragit E100, and polacrilex resin were evaluated as taste masking agents. Development work focused on excipient selection, formulation processing, characterization methods, stability, and palatability testing. Formulation with a cetirizine-to-polacrilex ratio of 1:2 to 1:3 showed robust physical strength with friability of 0.1% (w/w), rapid in vitro dispersion within 30 s in 2-6 ml of water, and 0.2% of total organic and elemental impurities. Polacrilex resin formulation shows immediate drug release within 30 min in gastric media, better taste masking, and acceptable stability. Hence, it is concluded that ion exchange resins can be appropriately used to develop taste-masked, rapidly dispersible, and stable tablet formulations with tailored drug release suitable for pediatrics and geriatrics. Flexible formulations can be consumed as swallowable, orally disintegrating, chewable, and as dispersible tablets. Flexibility in dose administration would improve compliance in pediatrics and geriatrics. This drug development approach using ion exchange resins can be a platform for formulating solid oral flexible drug products with low to medium doses.

  10. Development and evaluation of exemestane-loaded lyotropic liquid crystalline gel formulations

    OpenAIRE

    Musa, Muhammad Nuh; David, Sheba Rani; Zulkipli, Ihsan Nazurah; Mahadi, Abdul Hanif; Chakravarthi, Srikumar; Rajabalaya, Rajan

    2017-01-01

    Introduction: The use of liquid crystalline (LC) gel formulations for drug delivery has considerably improved the current delivery methods in terms of bioavailability and efficacy. The purpose of this study was to develop and evaluate LC gel formulations to deliver the anti-cancer drug exemestane through transdermal route. Methods: Two LC gel formulations were prepared by phase separation coacervation method using glyceryl monooleate (GMO), Tween 80 and Pluronic® F127 (F127). The formulations...

  11. Water dispersible superparamagnetic Cobalt iron oxide nanoparticles for magnetic fluid hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Salunkhe, Ashwini B. [Centre for advanced materials research, Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Soft matter and molecular biophysics group, Department of Applied Physics, University of Santiago de Compostela, Santiago de Compostela (Spain); Khot, Vishwajeet M. [Department of Physics and Astronomy, University College London (United Kingdom); Ruso, Juan M. [Soft matter and molecular biophysics group, Department of Applied Physics, University of Santiago de Compostela, Santiago de Compostela (Spain); Patil, S.I., E-mail: patil@physics.unipune.ac.in [Centre for advanced materials research, Department of Physics, Savitribai Phule Pune University, Pune 411007 (India)

    2016-12-01

    Superparamagnetic nanoparticles of Cobalt iron oxide (CoFe{sub 2}O{sub 4}) are synthesized chemically, and dispersed in an aqueous suspension for hyperthermia therapy application. Different parameters such as magnetic field intensity, particle concentration which regulates the competence of CoFe{sub 2}O{sub 4} nanoparticle as a heating agents in hyperthermia are investigated. Specific absorption rate (SAR) decreases with increase in the particle concentration and increases with increase in applied magnetic field intensity. Highest value of SAR is found to be 91.84 W g{sup −1} for 5 mg. mL{sup −1} concentration. Oleic acid conjugated polyethylene glycol (OA-PEG) coated CoFe{sub 2}O{sub 4} nanoparticles have shown superior cyto-compatibility over uncoated nanoparticles to L929 mice fibroblast cell lines for concentrations below 2 mg. mL{sup −1}. Present work provides the underpinning for the use of CoFe{sub 2}O{sub 4} nanoparticles as a potential heating mediator for magnetic fluid hyperthermia. - Highlights: • Superparamagnetic, water dispersible CoFe{sub 2}O{sub 4} NPs were synthesized by simple and cost effective Co precipitation route. • Effect of coating on various physical and chemical properties of CoFe{sub 2}O{sub 4} NPs were studied. • The effect of coating on induction heating as well as biocompatibility of NPs were studied.

  12. Green synthesis of soya bean sprouts-mediated superparamagnetic Fe3O4 nanoparticles

    International Nuclear Information System (INIS)

    Cai Yan; Shen Yuhua; Xie Anjian; Li Shikuo; Wang Xiufang

    2010-01-01

    Superparamagnetic Fe 3 O 4 nanoparticles were first synthesized via soya bean sprouts (SBS) templates under ambient temperature and normal atmosphere. The reaction process was simple, eco-friendly, and convenient to handle. The morphology and crystalline phase of the nanoparticles were determined from scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD) spectra. The effect of SBS template on the formation of Fe 3 O 4 nanoparticles was investigated using X-ray photoemission spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). The results indicate that spherical Fe 3 O 4 nanoparticles with an average diameter of 8 nm simultaneously formed on the epidermal surface and the interior stem wall of SBS. The SBS are responsible for size and morphology control during the whole formation of Fe 3 O 4 nanoparticles. In addition, the superconducting quantum interference device (SQUID) results indicate the products are superparamagnetic at room temperature, with blocking temperature (T B ) of 150 K and saturation magnetization of 37.1 emu/g.

  13. Green synthesis of soya bean sprouts-mediated superparamagnetic Fe 3O 4 nanoparticles

    Science.gov (United States)

    Cai, Yan; Shen, Yuhua; Xie, Anjian; Li, Shikuo; Wang, Xiufang

    2010-10-01

    Superparamagnetic Fe 3O 4 nanoparticles were first synthesized via soya bean sprouts (SBS) templates under ambient temperature and normal atmosphere. The reaction process was simple, eco-friendly, and convenient to handle. The morphology and crystalline phase of the nanoparticles were determined from scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD) spectra. The effect of SBS template on the formation of Fe 3O 4 nanoparticles was investigated using X-ray photoemission spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). The results indicate that spherical Fe 3O 4 nanoparticles with an average diameter of 8 nm simultaneously formed on the epidermal surface and the interior stem wall of SBS. The SBS are responsible for size and morphology control during the whole formation of Fe 3O 4 nanoparticles. In addition, the superconducting quantum interference device (SQUID) results indicate the products are superparamagnetic at room temperature, with blocking temperature ( TB) of 150 K and saturation magnetization of 37.1 emu/g.

  14. Novel environmentally friendly synthesis of superparamagnetic magnetite nanoparticles using mechanochemical effect

    International Nuclear Information System (INIS)

    Iwasaki, Tomohiro; Kosaka, Kazunori; Watano, Satoru; Yanagida, Takeshi; Kawai, Tomoji

    2010-01-01

    A novel method for synthesizing superparamagnetic magnetite nanoparticles in water system via coprecipitation under an environmentally friendly condition has been developed. In this method, an almost neutral suspension containing ferrous hydroxide and goethite is used as the starting suspension and subjected to a ball-milling treatment. The product was characterized by transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, dynamic light scattering, superconducting quantum interference device magnetometry, and Moessbauer spectroscopy. The mechanochemical effect generated by the ball-milling treatment promoted the reaction between ferrous hydroxide and goethite even at room temperature, resulting in the formation of homogeneous magnetite nanoparticles. Simultaneously, it also contributed to crystallize the formed magnetite nanoparticles while inhibiting the particle growth. This resulted in the formation of ultrafine magnetite nanoparticles of about 10 nm having a single crystal structure. This method could provide ferromagnetic magnetite nanoparticles with superparamagnetism under the moderate condition without neither heating nor any additives such as surfactant and organic solvent.

  15. Dextran-coated superparamagnetic amorphous Fe–Co nanoalloy for magnetic resonance imaging applications

    International Nuclear Information System (INIS)

    An, Lu; Yu, Yanrong; Li, Xuejian; Liu, Wei; Yang, Hong; Wu, Dongmei; Yang, Shiping

    2014-01-01

    Graphical abstract: A dextran-coated Fe–Co nanoalloy was developed serving as a sensitive contrast agent for magnetic resonance imaging applications. - Highlights: • Amorphous Fe–Co nanoalloy was prepared via wet chemical reduction approach. • The Fe–Co nanoalloy is water-soluble, stable, and biocompatible. • The Fe–Co nanoalloy is superparamagnetic. • The Fe–Co nanoalloy exhibits T 2 -weighted MR enhancement both in vitro and in vivo. - Abstract: For magnetic resonance imaging applications, a facile approach for water-soluble dextran coated amorphous Fe–Co nanoalloy was developed. The as-synthesized nanoalloy had a diameter of 9 nm with a narrow size distribution and showed superparamagnetic property with a saturated magnetization (Ms) of 25 emu/g. In vitro cytotoxicity test revealed that it was biocompatible at a concentration below 120 μg/mL. It can be uptaken by HeLa cells effectively and resulted in the obvious T 2 effect after internalization. Biodistribution studies in conjunction with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) confirmed that Fe–Co nanoalloy was preferentially accumulated in lung and spleen after intravenous injection for 4 h. In vivo MRI, dextran-coated Fe–Co nanoalloy can serve as a sensitive contrast agent for MR imaging, especially in the spleen, so we believe that it maybe hold great promise for diagnosis of splenic disease by appropriately functionalizing their surface

  16. Cotunneling enhancement of magnetoresistance in double magnetic tunnel junctions with embedded superparamagnetic NiFe nanoparticles

    International Nuclear Information System (INIS)

    Dempsey, K.J.; Arena, D.; Hindmarch, A.T.; Wei, H.X.; Qin, Q.H.; Wen, Z.C.; Wang, W.X.; Vallejo-Fernandez, G.; Han, X.F.; Marrows, C.H.

    2010-01-01

    Temperature and bias voltage-dependent transport characteristics are presented for double magnetic tunnel junctions (DMTJs) with self-assembled NiFe nanoparticles embedded between insulating alumina barriers. The junctions with embedded nanoparticles are compared to junctions with a single barrier of comparable size and growth conditions. The embedded particles are characterized using x-ray absorption spectroscopy, transmission electron microscopy, and magnetometry techniques, showing that they are unoxidized and remain superparamagnetic to liquid helium temperatures. The tunneling magnetoresistance (TMR) for the DMTJs is lower than the control samples, however, for the DMTJs an enhancement in TMR is seen in the Coulomb blockade region. Fitting the transport data in this region supports the theory that cotunneling is the dominant electron transport process within the Coulomb blockade region, sequential tunneling being suppressed. We therefore see an enhanced TMR attributed to the change in the tunneling process due to the interplay of the Coulomb blockade and spin-dependent tunneling through superparamagnetic nanoparticles, and develop a simple model to quantify the effect, based on the fact that our nanoparticles will appear blocked when measured on femtosecond tunneling time scales.

  17. Nonlinear Parametric Excitation Effect Induces Stability Transitions in Swimming Direction of Flexible Superparamagnetic Microswimmers.

    Science.gov (United States)

    Harduf, Yuval; Jin, Dongdong; Or, Yizhar; Zhang, Li

    2018-04-05

    Microscopic artificial swimmers have recently become highly attractive due to their promising potential for biomedical microrobotic applications. Previous pioneering work has demonstrated the motion of a robotic microswimmer with a flexible chain of superparamagnetic beads, which is actuated by applying an oscillating external magnetic field. Interestingly, they have shown that the microswimmer's orientation undergoes a 90°-transition when the magnetic field's oscillation amplitude is increased above a critical value. This unexpected transition can cause severe problems in steering and manipulation of flexible magnetic microrobotic swimmers. Thus, theoretical understanding and analysis of the physical origins of this effect are of crucial importance. In this work, we investigate this transition both theoretically and experimentally by using numerical simulations and presenting a novel flexible microswimmer with an anisotropic superparamagnetic head. We prove that this effect depends on both frequency and amplitude of the oscillating magnetic field, and demonstrate existence of an optimal amplitude achieving maximal swimming speed. Asymptotic analysis of a minimal two-link model reveals that the changes in the swimmer's direction represent stability transitions, which are induced by a nonlinear parametric excitation.

  18. Magnetic and relaxometric properties of polyethylenimine-coated superparamagnetic MRI contrast agents

    International Nuclear Information System (INIS)

    Corti, M.; Lascialfari, A.; Marinone, M.; Masotti, A.; Micotti, E.; Orsini, F.; Ortaggi, G.; Poletti, G.; Innocenti, C.; Sangregorio, C.

    2008-01-01

    Novel systems to be employed as superparamagnetic contrast agents (CA) for magnetic resonance imaging (MRI) have been synthesized. These compounds are composed of an iron oxide magnetic core coated by polyethylenimine (PEI) or carboxylated polyethylenimine (PEI-COOH). The aim of the present work was to prepare and study new nanostructured systems (with better or at least comparable relaxivities, R 1 and R 2 , with respect to the commercial ones) with controlled, almost monodisperse average dimensions and shape, as candidates for molecular targeting. By means of atomic force microscopy (AFM) measurements we determined the average diameter, of the order of 200 nm, and the shape of the particles. The superparamagnetic behavior was assessed by SQUID measurements. From X-ray data the estimated average diameters of the magnetic cores were found to be ∼5.8 nm for PEI-COOH60 and ∼20 nm for the compound named PEI25. By NMR-dispersion (NMRD), we found that PEI-COOH60 presents R 1 and R 2 relaxivities slightly lower than Endorem. The experimental results suggest that these novel compounds can be used as MRI CA

  19. Dextran-coated superparamagnetic amorphous Fe–Co nanoalloy for magnetic resonance imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    An, Lu; Yu, Yanrong; Li, Xuejian; Liu, Wei [The Key Laboratory of Resource Chemistry of Ministry of Education and Shanghai Key Laboratory of Rare Earth Functional Materials, Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China); Yang, Hong, E-mail: yanghong@shnu.edu.cn [The Key Laboratory of Resource Chemistry of Ministry of Education and Shanghai Key Laboratory of Rare Earth Functional Materials, Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China); Wu, Dongmei [Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062 (China); Yang, Shiping, E-mail: shipingy@shnu.edu.cn [The Key Laboratory of Resource Chemistry of Ministry of Education and Shanghai Key Laboratory of Rare Earth Functional Materials, Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China)

    2014-01-01

    Graphical abstract: A dextran-coated Fe–Co nanoalloy was developed serving as a sensitive contrast agent for magnetic resonance imaging applications. - Highlights: • Amorphous Fe–Co nanoalloy was prepared via wet chemical reduction approach. • The Fe–Co nanoalloy is water-soluble, stable, and biocompatible. • The Fe–Co nanoalloy is superparamagnetic. • The Fe–Co nanoalloy exhibits T{sub 2}-weighted MR enhancement both in vitro and in vivo. - Abstract: For magnetic resonance imaging applications, a facile approach for water-soluble dextran coated amorphous Fe–Co nanoalloy was developed. The as-synthesized nanoalloy had a diameter of 9 nm with a narrow size distribution and showed superparamagnetic property with a saturated magnetization (Ms) of 25 emu/g. In vitro cytotoxicity test revealed that it was biocompatible at a concentration below 120 μg/mL. It can be uptaken by HeLa cells effectively and resulted in the obvious T{sub 2} effect after internalization. Biodistribution studies in conjunction with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) confirmed that Fe–Co nanoalloy was preferentially accumulated in lung and spleen after intravenous injection for 4 h. In vivo MRI, dextran-coated Fe–Co nanoalloy can serve as a sensitive contrast agent for MR imaging, especially in the spleen, so we believe that it maybe hold great promise for diagnosis of splenic disease by appropriately functionalizing their surface.

  20. New magnetic nanobiocomposite based in galactomannan/glycerol and superparamagnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Souza, N.D.G.; Freire, R.M.; Cunha, A.P. [Grupo de Química de Materiais Avançados (GQMAT), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará – UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza, CE (Brazil); Silva, M.A.S. da [LOCEM – Laboratório de Telecomunicações e Ciência e Engenharia de Materiais, Departamento de Física, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Mazzetto, S.E. [Grupo de Química de Materiais Avançados (GQMAT), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará – UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza, CE (Brazil); Sombra, A.S.B. [LOCEM – Laboratório de Telecomunicações e Ciência e Engenharia de Materiais, Departamento de Física, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Denardin, J.C. [Departamento de Física, Universidad de Santiago de Chile, USACH, Av. Ecuador 3493, Santiago (Chile); and others

    2015-04-15

    In this study, magnetic nanobiocomposites were prepared in different proportions and produced with galactomannan (GM), magnetic nanoparticles of NiZn and glycerol (GL). The microstructure and morphology of the samples were characterized by Scanning Electron Microscopy (SEM), X-ray powder diffraction, Fourier transform infrared (FTIR) spectroscopy, Thermal analysis (TG) and Differential scanning calorimetry (DSC). The magnetic and dielectric behavior of the films was studied by Vibrating sample magnetometer (VSM) and Impedance spectroscopy. The results showed efficient incorporation of NiZn in the polymer matrix. The degradation profiles presented thermal events that were confirmed by endothermic and exothermic processes from DSC measurements. Films presented saturation magnetization (M{sub s}) range from 6 to 17 emu/g and superparamagnetic behavior. It was observed that the values of dielectric constant increased as a function of the nanoparticles concentration in the bionacomposite. Thus, this kind of biocomposite could be used as a versatile magnetic-dielectric in microwave devices. - Highlights: • Incorporation of inorganic nanoparticles in the galactomannan/glycerol polymer matrix. • All nanobiocomposites presented superparamagnetic behavior. • It can be employed as a versatile material, due to their flexible and dielectric-magnetic features.

  1. Stabilisation effects of superparamagnetic nanoparticles on clustering in nanocomposite microparticles and on magnetic behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Mandel, K., E-mail: karl-sebastian.mandel@isc.fraunhofer.de [Fraunhofer Institute for Silicate Research, ISC, Neunerplatz 2, 97082 Würzburg (Germany); University Würzburg, Chair of Chemical Technology of Materials Synthesis, Röntgenring 11, 97070 Würzburg (Germany); Hutter, F., E-mail: frank.hutter@isc.fraunhofer.de [Fraunhofer Institute for Silicate Research, ISC, Neunerplatz 2, 97082 Würzburg (Germany); Gellermann, C., E-mail: carsten.gellermann@isc.fraunhofer.de [Fraunhofer Institute for Silicate Research, ISC, Neunerplatz 2, 97082 Würzburg (Germany); Sextl, G., E-mail: gerhard.sextl@isc.fraunhofer.de [Fraunhofer Institute for Silicate Research, ISC, Neunerplatz 2, 97082 Würzburg (Germany); University Würzburg, Chair of Chemical Technology of Materials Synthesis, Röntgenring 11, 97070 Würzburg (Germany)

    2013-04-15

    Superparamagnetic nanoparticles of magnetite were coprecipitated from iron salts, dispersed with nitric acid and stabilised either by lactic acid (LA) or by a polycarboxylate-ether polymer (MELPERS4343, MP). The differently stabilised nanoparticles were incorporated into a silica matrix to form nanocomposite microparticles. The silica matrix was prepared either from tetraethylorthosilicate (TEOS) or from an aqueous sodium silicate (water glass) solution. Stabilisation of nanoparticles had a crucial influence on microparticle texture and nanoparticle distribution in the silica matrix. Magnetic measurements in combination with transmission electron microscopy (TEM) investigations suggest a uniform magnetic interaction of nanoparticles in case of LA stabilisation and magnetically interacting nanoparticle clusters of different sizes in case of MP stabilisation. Splitting of blocking temperature (T{sub B}) and irreversible temperature (T{sub ir}) in zero field cooled (ZFC) and field cooled (FC) measurements is discussed in terms of nanoparticle clustering. -- Highlights: ► Superparamagnetic nanoparticles were synthesised, dispersed and stabilised. ► Stabilisation is either via a polycarboxylate ether polymer or lactic acid. ► Stabilised nanoparticles were incorporated into silica to form composite particles. ► Depending on the stabilisation, nanoparticle clustering in the composites differed. ► Clustering influences zero field cooled/field cooled magnetic measurements.

  2. Granulated decontamination formulations

    Science.gov (United States)

    Tucker, Mark D.

    2007-10-02

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a sorbent additive, and water. A highly adsorbent sorbent additive (e.g., amorphous silica, sorbitol, mannitol, etc.) is used to "dry out" one or more liquid ingredients into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field.

  3. Etodolac Containing Topical Niosomal Gel: Formulation Development and Evaluation

    Directory of Open Access Journals (Sweden)

    Gyati Shilakari Asthana

    2016-01-01

    Full Text Available The present study aimed to investigate the delivery potential of Etodolac (ETD containing topical niosomal gel. Niosomal formulations were prepared by thin film hydration method at various ratios of cholesterol and Span 60 and were evaluated with respect to particle size, shape, entrapment efficiency, and in vitro characteristics. Dicetyl phosphate (DCP was also added in the niosomal formulation. Mean particle size of niosomal formulation was found to be in the range of 2 μm to 4 μm. Niosomal formulation N2 (1 : 1 ratio of cholesterol and surfactant displayed good entrapment efficiency (96.72%. TEM analyses showed that niosomal formulation was spherical in shape. Niosomal formulation (N2 displayed high percentage of drug release after 24 h (94.91 at (1 : 1 ratio of cholesterol : surfactant. Further selected niosomal formulation was used to formulate topical gel and was characterized with respect to its various parameters such as pH, viscosity, spreadability, ex vivo study, and in vivo potential permeation. Ex vivo study showed that niosomal gel possessed better skin permeation study than the plain topical gel. Further in vivo study revealed good inhibition of inflammation in case of topical niosomal gel than plain gel and niosomal formulation. The present study suggested that topical niosomal gel formulations provide sustained and prolonged delivery of drug.

  4. Formulation of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Lazarus, C.R.

    1982-01-01

    Considerations when choosing a radionuclide include its method of incorporation into the drug, its purity, chemical stability, isotope effects, autoradiolysis, storage. Drug release and absorption, stability and interaction with the container are also important. Legal requirements must also be considered. (U.K.)

  5. Methodology description for detection of cellular uptake of PVA coated superparamagnetic iron oxide nanoparticles (SPION) in synovial cells of sheep

    International Nuclear Information System (INIS)

    Schoepf, Bernhard; Neuberger, Tobias; Schulze, Katja; Petri, Alke; Chastellain, Matthieu; Hofmann, Margarete; Hofmann, Heinrich; Rechenberg, Brigitte von

    2005-01-01

    The detection of superparamagnetic iron oxide nanoparticles (SPION) in synoviocytes is reported. Synoviocytes were incubated for 2, 12, 24 and 48 h with 1.5 mg/ml of PVA coated SPION under the influence of magnets (12 h). Particles were well tolerated by the synoviocytes, were easily detected using the Turnbulls and Prussian blue reactions between 12 and 24 h

  6. Methodology description for detection of cellular uptake of PVA coated superparamagnetic iron oxide nanoparticles (SPION) in synovial cells of sheep

    Energy Technology Data Exchange (ETDEWEB)

    Schoepf, Bernhard [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty Zurich, University of Zurich, Winterthurerstr. 260, 8057 Zurich (Switzerland); Neuberger, Tobias [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty Zurich, University of Zurich, Winterthurerstr. 260, 8057 Zurich (Switzerland); Schulze, Katja [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty Zurich, University of Zurich, Winterthurerstr. 260, 8057 Zurich (Switzerland); Petri, Alke [Powder Technology Laboratory, Institute of Materials, Swiss Federal Institute of Technology Lausanne, EPFL, MX-D Ecublens, 1015 Lausanne (Switzerland); Chastellain, Matthieu [Powder Technology Laboratory, Institute of Materials, Swiss Federal Institute of Technology Lausanne, EPFL, MX-D Ecublens, 1015 Lausanne (Switzerland); Hofmann, Margarete [MatSearch, Ch. Jean Pavillard 14, 1009 Pully (Switzerland); Hofmann, Heinrich [Powder Technology Laboratory, Institute of Materials, Swiss Federal Institute of Technology Lausanne, EPFL, MX-D Ecublens, 1015 Lausanne (Switzerland); Rechenberg, Brigitte von [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty Zurich, University of Zurich, Winterthurerstr. 260, 8057 Zurich (Switzerland)]. E-mail: bvonrechenberg@vetclinics.unizh.ch

    2005-05-15

    The detection of superparamagnetic iron oxide nanoparticles (SPION) in synoviocytes is reported. Synoviocytes were incubated for 2, 12, 24 and 48 h with 1.5 mg/ml of PVA coated SPION under the influence of magnets (12 h). Particles were well tolerated by the synoviocytes, were easily detected using the Turnbulls and Prussian blue reactions between 12 and 24 h.

  7. Comparison of New Formulation of Diclofenac Diethylamonium Emulgel with Standard Preparation

    Directory of Open Access Journals (Sweden)

    SA Mostafavi

    2006-07-01

    Full Text Available Introduction & Objective: Oral route is a common route of administration for anti-inflammatory drugs including diclofenac. Due to some disadvantages of this route, the alternative routes of administrations are considered. The skin has been increasingly important in this regard, and many drugs have been formulated intradermal delivery systems. The purpose of this study was to prepare a topical diclofenac formulation emulgel with appropriate skin penetration and compare it with standard formulation. Materials & Methods: To prepare the formulation, we used the emulsion form. Several formulations containing different kinds and amounts of diclofenac salts, different emulsifying agents, and different HPMC concentrations were prepared. The skin penetration was evaluated by using Franz cell apparatus and the concentrations of diclofenac were determined in the receptor phase of Franz cell using spectrophotometer. The in vivo absorption of diclofenac was evaluated by determination of drug in urine. The concentration of drug was determined by HPLC. Results: In selected formulation, 85% of drug was released after 4 hours from formulation which was similar to drug released from standard formulation. The values of coefficient variation for HPLC method were utmost 15%. The range of variation in measurement was between 10 and 1000 ng/ml. Conclusion: The selected formulation had appropriate physicochemical properties. We were unable to measure drug concentrations in urine by the constructed HPLC, therefore it can be suggested that one should determine drug concentration in synovial fluid as the drug is concentrated in it.

  8. Drug Release Mechanism of Slightly Soluble Drug from ...

    African Journals Online (AJOL)

    theophylline (THP) as drug in drug to clay ratios of 1:2, 3:4 and 1:1. The formulations were characterized for drug release and loading. Dependent and independent kinetic models were employed to analyze the drug release data. Fourier transform infrared spectroscopy (FTIR) was used for the structural characterization of ...

  9. Complexity of intravenous iron nanoparticle formulations: implications for bioequivalence evaluation.

    Science.gov (United States)

    Pai, Amy Barton

    2017-11-01

    Intravenous iron formulations are a class of complex drugs that are commonly used to treat a wide variety of disease states associated with iron deficiency and anemia. Venofer® (iron-sucrose) is one of the most frequently used formulations, with more than 90% of dialysis patients in the United States receiving this formulation. Emerging data from global markets outside the United States, where many iron-sucrose similars or copies are available, have shown that these formulations may have safety and efficacy profiles that differ from the reference listed drug. This may be attributable to uncharacterized differences in physicochemical characteristics and/or differences in labile iron release. As bioequivalence evaluation guidance evolves, clinicians should be educated on these potential clinical issues before a switch to the generic formulation is made in the clinical setting. © 2017 New York Academy of Sciences.

  10. Targeting experimental orthotopic glioblastoma with chitosan-based superparamagnetic iron oxide nanoparticles (CS-DX-SPIONs).

    Science.gov (United States)

    Shevtsov, Maxim; Nikolaev, Boris; Marchenko, Yaroslav; Yakovleva, Ludmila; Skvortsov, Nikita; Mazur, Anton; Tolstoy, Peter; Ryzhov, Vyacheslav; Multhoff, Gabriele

    2018-01-01

    Glioblastoma is the most devastating primary brain tumor of the central nervous system in adults. Magnetic nanocarriers may help not only for a targeted delivery of chemotherapeutic agents into the tumor site but also provide contrast enhancing properties for diagnostics using magnetic resonance imaging (MRI). Synthesized hybrid chitosan-dextran superparamagnetic nanoparticles (CS-DX-SPIONs) were characterized using transmission electron microscopy (TEM) and relaxometry studies. Nonlinear magnetic response measurements were employed for confirming the superparamagnetic state of particles. Following in vitro analysis of nanoparticles cellular uptake tumor targeting was assessed in the model of the orthotopic glioma in rodents. CS-DX-SPIONs nanoparticles showed a uniform diameter of 55 nm under TEM and superparamagentic characteristics as determined by T 1 (spin-lattice relaxation time) and T 2 (spin-spin relaxation time) proton relaxation times. Application of the chitosan increased the charge from +8.9 to +19.3 mV of the dextran-based SPIONs. The nonlinear magnetic response at second harmonic of CS-DX-SPIONs following the slow change of stationary magnetic fields with very low hysteresis evidenced superparamagnetic state of particles at ambient temperatures. Confocal microscopy and flow cytometry studies showed an enhanced internalization of the chitosan-based nanoparticles in U87, C6 glioma and HeLa cells as compared to dextran-coated particles. Cytotoxicity assay demonstrated acceptable toxicity profile of the synthesized nanoparticles up to a concentration of 10 μg/ml. Intravenously administered CS-DX-SPIONs in orthotopic C6 gliomas in rats accumulated in the tumor site as shown by high-resolution MRI (11.0 T). Retention of nanoparticles resulted in a significant contrast enhancement of the tumor image that was accompanied with a dramatic drop in T 2 values ( P chitosan-dextran magnetic particles demonstrated high MR contrast enhancing properties for the

  11. Solid effervescent formulations as new approach for topical minoxidil delivery.

    Science.gov (United States)

    Pereira, Maíra N; Schulte, Heidi L; Duarte, Natane; Lima, Eliana M; Sá-Barreto, Livia L; Gratieri, Tais; Gelfuso, Guilherme M; Cunha-Filho, Marcilio S S

    2017-01-01

    Currently marketed minoxidil formulations present inconveniences that range from a grease hard aspect they leave on the hair to more serious adverse reactions as scalp dryness and irritation. In this paper we propose a novel approach for minoxidil sulphate (MXS) delivery based on a solid effervescent formulation. The aim was to investigate whether the particle mechanical movement triggered by effervescence would lead to higher follicle accumulation. Preformulation studies using thermal, spectroscopic and morphological analysis demonstrated the compatibility between effervescent salts and the drug. The effervescent formulation demonstrated a 2.7-fold increase on MXS accumulation into hair follicles casts compared to the MXS solution (22.0±9.7μg/cm 2 versus 8.3±4.0μg/cm 2 ) and a significant drug increase (around 4-fold) in remaining skin (97.1±29.2μg/cm 2 ) compared to the drug solution (23.5±6.1μg/cm 2 ). The effervescent formulations demonstrated a prominent increase of drug permeation highly dependent on the effervescent mixture concentration in the formulation, confirming the hypothesis of effervescent reaction favoring drug penetration. Clinically, therapy effectiveness could be improved, increasing the administration interval, hence, patient compliance. More studies to investigate the follicular targeting potential and safety of new formulations are needed. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Prednisone raw material characterization and formulation development

    OpenAIRE

    Leonardo Henrique Toehwé; Livia Deris Prado; Helvécio Vinícius Antunes Rocha

    2018-01-01

    ABSTRACT Solid dosage forms for oral use, particularly tablets, are the most highly used dosage forms in therapy because they are easily administered, have high productivity and relatively low cost and provide a more stable drug to form a semi-solid net. Numerous parameters influence the quality of the final dosage form. In this study, the dissolution profile of 20-mg prednisone tablets bioequivalent to the reference product and three test formulations were evaluated using stability testing. ...

  13. Bioequivalence assessment of two formulations of ibuprofen

    KAUST Repository

    Al-Talla, Zeyad

    2011-10-19

    Background: This study assessed the relative bioavailability of two formulations of ibuprofen. The first formulation was Doloraz , produced by Al-Razi Pharmaceutical Company, Amman, Jordan. The second forumulation was Brufen , manufactured by Boots Company, Nottingham, UK. Methods and results: A prestudy validation of ibuprofen demonstrated long-term stability, freeze-thaw stability, precision, and accuracy. Twenty-four healthy volunteers were enrolled in this study. After overnight fasting, the two formulations (test and reference) of ibuprofen (100 mg ibuprofen/5 mL suspension) were administered as a single dose on two treatment days separated by a one-week washout period. After dosing, serial blood samples were drawn for a period of 14 hours. Serum harvested from the blood samples was analyzed for the presence of ibuprofen by high-pressure liquid chromatography with ultraviolet detection. Pharmacokinetic parameters were determined from serum concentrations for both formulations. The 90% confidence intervals of the ln-transformed test/reference treatment ratios for peak plasma concentration and area under the concentration-time curve (AUC) parameters were found to be within the predetermined acceptable interval of 80%-125% set by the US Food and Drug Administration. Conclusion: Analysis of variance for peak plasma concentrations and AUC parameters showed no significant difference between the two formulations and, therefore, Doloraz was considered bioequivalent to Brufen. 2011 Al-Talla et al, publisher and licensee Dove Medical Press Ltd.

  14. Formulation studies for mirtazapine orally disintegrating tablets.

    Science.gov (United States)

    Yıldız, Simay; Aytekin, Eren; Yavuz, Burçin; Bozdağ Pehlivan, Sibel; Ünlü, Nurşen

    2016-01-01

    Orally disintegrating tablets (ODTs) recently have gained much attention to fulfill the needs for pediatric, geriatric, and psychiatric patients with dysphagia. Aim of this study was to develop new ODT formulations containing mirtazapine, an antidepressant drug molecule having bitter taste, by using simple and inexpensive preparation methods such as coacervation, direct compression and to compare their characteristics with those of reference product (Remereon SolTab). Coacervation method was chosen for taste masking of mirtazapine. In vitro characterization studies such as diameter and thickness, weight variation, tablet hardness, tablet friability and disintegration time were performed on tablet formulations. Wetting time and in vitro dissolution tests of developed ODTs also studied using 900 mL 0.1 N HCl medium, 900 mL pH 6.8 phosphate buffer or 900 mL pH 4.5 acetate buffer at 37 ± 0.2 °C as dissolution medium. Ratio of Eudragit® E-100 was chosen as 6% (w/w) since the dissolution profile of A1 (6% Eudragit® E-100) was found closer to the reference product than A2 (4% Eudragit® E-100) and A3 (8% Eudragit® E-100). Group D, E and F formulations were presented better results in terms of disintegration time. Dissolution results indicated that Group E and F formulations showed optimum properties in all three dissolution media. Formulations D1, D4, D5, E3, E4, F1 and F5 found suitable as ODT formulations due to their favorable disintegration times and dissolution profiles. Developed mirtazapine ODTs were found promising in terms of showing the similar characteristics to the original formulation.

  15. Formulation, development and evaluation of colon-specific ketorolac ...

    African Journals Online (AJOL)

    The major intention to formulate and develop colon targeted tablets is to improve the therapeutic efficacy by increasing therapeutic drug concentrations in colon. The present study was aimed to develop guar gum compression coated tablets ketorolac tromethamine to achieve the colon-specific drug release. In this study ...

  16. Formulation and Evaluation of Spray-Dried Esomeprazole ...

    African Journals Online (AJOL)

    HP

    (FTIR), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Results: The microspheres were discrete, spherical, and showed good drug entrapment efficiency. (60.5 - 92.3 %). FTIR and DSC results indicate that the drug was compatible with the polymers used. Amongst all the formulations, ...

  17. Optimization and Formulation of Orodispersible Tablets of Meloxicam

    African Journals Online (AJOL)

    ... 98.5% and fast drug release rate of 99.5% within 30 min, as compared with the conventional tablet (49.5%) . Conclusion: It is feasible to formulate orodispersible tablets of meloxican with acceptable disintegration time, rapid drug release and good hardness, which could be amenable to replication on an industrial scale.

  18. Porphyrin synthesized from cashew nut shell liquid as part of a novel superparamagnetic fluorescence nanosystem

    Energy Technology Data Exchange (ETDEWEB)

    Clemente, C. S.; Ribeiro, V. G. P.; Sousa, J. E. A.; Maia, F. J. N.; Barreto, A. C. H. [Universidade Federal do Ceara, Laboratorio de Produtos e Tecnologia em Processos (LPT) (Brazil); Andrade, N. F. [Universidade Federal do Ceara, Departamento de Fisica (Brazil); Denardin, J. C. [Universidad de Santiago de Chile (USACH), Departamento de Fisica (Chile); Mele, G. [Universita del Salento, Dipartimento di Ingegneria dell' Innovazione (Italy); Carbone, L. [NNL, Istituto Nanoscienze UOS Lecce (Italy); Mazzetto, S. E. [Universidade Federal do Ceara, Laboratorio de Produtos e Tecnologia em Processos (LPT) (Brazil); Fechine, P. B. A., E-mail: fechine@ufc.br [Universidade Federal do Ceara (UFC), Grupo de Quimica de Materiais Avancados (GQMAT), Departamento de Quimica Analitica e Fisico-Quimica (Brazil)

    2013-06-15

    Magnetic Fe{sub 3}O{sub 4} nanoparticles with average size approximately 11 nm were first oleic acid coated to interact with the meso-porphyrin derivative from CNSL. This procedure produced a novel superparamagnetic fluorescent nanosystem (SFN) linked by van der Waals interactions. This system was characterized by transmission electron microscope, infrared spectroscopy, thermogravimetric analysis, magnetic measurements, UV-Vis absorption, and fluorescence emission measurements. These results showed that SFN has good thermal stability, excellent magnetization, and nanosized dimensions ({approx}13 nm). It exhibited emission peaks at 668 and 725 nm with a maximum emission at 467 nm of excitation wavelength. The type of interaction between porphyrin and magnetic nanoparticles allowed to obtain a material with interesting optical properties which might be used as an imaging agent for contrast in cells as well as heterogeneous photocatalysis.

  19. Bio-inspired synthesis and characterization of superparamagnetic particles; Sintese e caracterizacao bioinspirada de particulas superparamagneticas

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Vinicius F., E-mail: vfc_mg@yahoo.com.br [Universidade Federal de Itajuba (UNIFEI), MG (Brazil); Queiroz, Alvaro A.A. [Universidade Federal de Itajuba (UNIFEI), MG (Brazil). Centro de Estudos e Inovacao em Materiais Biofuncionais Avancados

    2012-08-15

    This paper discusses the bio-inspired synthesis of type YFeAl ferrites encapsulated into polyglycerol dendrimers (PGLD) generation 3. The structure and morphological properties of the system YFeAl/PGLD was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The magnetic properties were studied through the techniques of Moessbauer spectroscopy and magnetization. The cytotoxicity of the nanoparticles encapsulated in dendrimers PGLD G3 at the cell membrane was studied against mammalian cell line CHO.K1 measuring the amount of lactate dehydrogenase (LDH) released by the cell damage. Microscopy TEM and XRD analysis indicate that spherical nanoparticles were obtained highly crystalline and monodisperse with size 20 nmsuperparamagnetic behavior of the system YFeAl/PGLD. The cytotoxicity results indicated that YFeAl / PGLD nano system is suitable for use in nano medicine. (author)

  20. Relaxometry and Dephasing Imaging of Superparamagnetic Magnetite Nanoparticles Using a Single Qubit

    Science.gov (United States)

    Schmid-Lorch, Dominik; Häberle, Thomas; Reinhard, Friedemann; Zappe, Andrea; Slota, Michael; Bogani, Lapo; Finkler, Amit; Wrachtrup, Jörg

    2015-08-01

    To study the magnetic dynamics of superparamagnetic nanoparticles we use scanning probe relaxometry and dephasing of the nitrogen-vacancy (NV) center in diamond, characterizing the spin-noise of a single 10-nm magnetite particle. Additionally, we show the anisotropy of the NV sensitivity's dependence on the applied decoherence measurement method. By comparing the change in relaxation (T 1 ) and dephasing (T 2 ) time in the NV center when scanning a nanoparticle over it, we are able to extract the nanoparticle's diameter and distance from the NV center using an Ornstein-Uhlenbeck model for the nanoparticle's fluctuations. This scanning-probe technique can be used in the future to characterize different spin label substitutes for both medical applications and basic magnetic nanoparticle behavior.

  1. Magnetic field strength requirements to capture superparamagnetic nanoparticles within capillary flow

    International Nuclear Information System (INIS)

    Hallmark, B.; Darton, N. J.; James, T.; Agrawal, P.; Slater, N. K. H.

    2010-01-01

    This article reports the development of a model, with supporting experimental data, which can predict the magnitude of the magnetic flux required to capture superparamagnetic nanoparticles flowing through a plastic capillary micro array. The model takes into account the shape of the magnetic field, the magnetically induced aggregation of the nanoparticles and a criterion to determine whether nanoparticles are held at the capillary wall or not. It was found that the model gave a semi-quantitative match to experimental data showing that, once steered out of the core of the fluid flow, nanoparticles could be held at a capillary wall within a weaker region of magnetic field. This result may have implications for the design of magnets for use in magnetic directed therapy in addition to having implications concerning the design of nanoparticle dosage regimes.

  2. 188Re labeled MPEG-modified superparamagnetic nanogels: preparation and preliminary application in mice

    International Nuclear Information System (INIS)

    Sun Hanwen; Gong Peijun; Liu Xiuqing; Hong Jun; Xu Dongmei; Zhang Chunfu; Wang Yongxian; Yao Side

    2005-01-01

    Superparamagnetic poly(acrylamide) magnetic nanogels produced via photochemical method have been developed. After Hoffmann degradation of carbonyl, the nanogels with amino groups, or poly(acrylamide-vinyl amine) magnetic nanogels, were also obtained. And the magnetic nanogels were further modified by methoxy poly(ethylene glycol) (MPEG) for higher dispersibility and stability. The MPEG-modified magnetic nanogels were characterized by X-ray diffraction (XRD), photo correlation spectroscopy (PCS) and scanning electron microscopy (SEM), respectively. The MPEG-modified magnetic nanogels were labeled by 188 Re radiopharmaceuticals and intravenously injected into tails of mice in the presence and absence of a 0.5 T external magnetic field targeted on the bellies. The radioactivity distribution was monitored in vivo. In the absence of magnetic field, the radioactivity was mainly distributed in liver, spleen, kidney, stomach and lung. In the presence of the magnetic field, the radioactivity was mainly accumulated on the targeted point, verifying the magnetically targeted character. (authors)

  3. The correlation between superparamagnetic blocking temperatures and peak temperatures obtained from ac magnetization measurements

    International Nuclear Information System (INIS)

    Madsen, Daniel Esmarch; Moerup, Steen; Hansen, Mikkel Fougt

    2008-01-01

    We study the correlation between the superparamagnetic blocking temperature T B and the peak positions T p observed in ac magnetization measurements for nanoparticles of different classes of magnetic materials. In general, T p = α+βT B . The parameters α and β are different for the in-phase (χ') and out-of-phase (χ'') components and depend on the width σ V of the log-normal volume distribution and the class of magnetic material (ferromagnetic/antiferromagnetic). Consequently, knowledge of both α and β is required if the anisotropy energy barrier KV and the attempt time τ 0 are to be reliably obtained from an analysis based solely on the peak positions

  4. Facile synthesis of polymer-enveloped ultrasmall superparamagnetic iron oxide for magnetic resonance imaging

    International Nuclear Information System (INIS)

    Hong Jun; Xu Dongmei; Yu Jiahui; Gong Peijun; Ma Hongjuan; Yao Side

    2007-01-01

    Ultrasmall superparamagnetic iron oxide (USPIO) with synthetic polymer, based on magnetite core, was synthesized via facile photochemical in situ polymerization. A possible mechanism of photochemical in situ polymerization was proposed. The obtained polymer-enveloped UPSIO was characterized by transmission electron microscopy (TEM), photo-correlation spectroscopy (PCS), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric (TG) analysis and vibrating sampling magnetometer (VSM) measurement. Properties such as ultrasmall particle size, hydrophilicity, strong magnetization and surface characteristics, which are desirable for magnetic resonance imaging (MRI) contrast agents, were evaluated in detail. The resultant USPIO-based MRI contrast agent holds considerable promise in molecular MR tracking, MR immune imaging, cell tracking and targeted intracellular hyperthermia, etc

  5. The Effect of pH and Time on The Stability of Superparamagnetic Maghemite Nanoparticle Suspensions

    Directory of Open Access Journals (Sweden)

    Nurdin Irwan

    2016-01-01

    Full Text Available Maghemite (γ-Fe2O3 nanoparticles have been synthesized using a chemical co-precipitation method. The morphology and particle size is characterized using Transmission Electron Microscopy (TEM, and magnetic characterization using Alternating Gradient Magnetometry (AGM. The stability of the maghemite nanoparticles suspension were studied at different pH and time of storage. Dynamic Light Scattering (DLS and Zeta Potential were conducted to determine the stability of the suspensions. TEM observation showed that the particles size is 9.6 nm and have spherical morphology. The particles showed superparamagnetic behavior with saturation magnetization 25.5 emu/g. The suspensions are stable in the acidic condition at pH 4 and alkaline condition at pH 10. The suspensions remain stable after 4 weeks of storage.

  6. Superparamagnetic adsorbents for high-gradient magnetic fishing of lectins out of legume extracts

    DEFF Research Database (Denmark)

    Heebøll-Nielsen, Anders; Dalkiær, M.; Hubbuch, Jürgen

    2004-01-01

    This work presents the development, testing, and application in high-gradient magnetic fishing of superparamagnetic supports for adsorption of lectins. Various approaches were examined to produce affinity, mixed mode, and hydrophobic charge induction type adsorbents. In clean monocomponent systems...... affinity supports created by direct attachment of glucose or maltose to amine-terminated iron oxide particles could bind concanavalin A at levels of up to approximate to 280 mg g(-1) support with high affinity (approximate to 1 muM dissociation constants). However, the best performance was delivered......-linked adsorbents supplied sufficient competition to dissolved sugars to selectively bind concanavalin A in an extract of jack beans. The dextran-linked supports were employed in a high-gradient magnetic fishing experiment, in which concanavalin A was purified to near homogeneity from a crude, unclarified extract...

  7. Equilibrium magnetization and microstructure of the system of superparamagnetic interacting particles: numerical simulation

    CERN Document Server

    Pshenichnikov, A F

    2000-01-01

    The Monte Carlo method is used to study the equilibrium magnetization of a 3D system of superparamagnetic particles taking into account the steric and dipole-dipole interparticle interactions. Two types of systems are considered: magnetic fluids and solidified ferrocolloids containing randomly spatially distributed particles with negligible energy of magnetic anisotropy. The results of numerical simulations confirm the universality of Langevin susceptibility as a main dimensionless parameter determining the influence of interparticle interactions on the magnetization of the system for moderate values of the aggregation parameter. The obtained results are in good agreement with theoretical and experimental data. At large values of the aggregation parameter, the clustering of particles in magnetic fluids is observed resulting in a reduction of their magnetization as compared to solidified systems. It is shown that the magnetization of solidified systems can be well described by the modified effective field appr...

  8. Cellular uptake of folate-conjugated lipophilic superparamagnetic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Woo, Kyoungja; Moon, Jihyung; Choi, Kyu-Sil; Seong, Tae-Yeon; Yoon, Kwon-Ha

    2009-01-01

    We prepared five folate-conjugated lipophilic superparamagnetic iron oxide nanoparticles (F 5 -Liposuperparamagnetic iron oxide nanoparticles(SPIONs), 5.5 and 11 nm) and investigated their cellular uptake with KB cells, which is one of the representative folate-receptor over-expressing human epidermoid carcinoma cells, using MRI. The cellular uptake tests with the respective 5.5 and 11 nm F 5 -LipoSPIONs at a fixed particle concentration showed appreciable amount of receptor-mediated uptakes and the specificity was higher in 5.5 nm SPIONs, due to its higher folic acid (FA) density, without inhibition. However, the numbers of the particles taken up under FA inhibition were similar, irrespective of their sizes.

  9. Synthesis of carboxyl superparamagnetic ultrasmall iron oxide (USPIO) nanoparticles by a novel flocculation-redispersion process

    International Nuclear Information System (INIS)

    Cheng Changming; Kou Geng; Wang Xiaoliang; Wang Shuhui; Gu Hongchen; Guo Yajun

    2009-01-01

    We report a novel flocculation-redispersion method to synthesize and purify the biocompatible superparamagnetic ultrasmall iron oxide (USPIO) nanoparticles coated with carboxyl dextran derivative. First, USPIO nanoparticles were synthesized and flocculated to form the large clusters through bridging effect of polyvinyl alcohol (PVA) during coprecipitation process. Then the flocculated USPIO was separated and purified from the solution conveniently through magnetic sedimentation. Finally, USPIO in the clusters were released again and well dispersed through electrostatic repelling effect of citric acid with the aid of ultrasonic. The dispersed carboxyl-functionalized USPIO was conjugated with the monoclonal antibodies. And it has been proved that the antibodies anchored on USPIO still retained their bioactivity after the conjugation. These results implied that the USPIO synthesized have good potential as active targeting molecular probe in biomedical application.

  10. Synthesis and characterization of superparamagnetic nanoparticles obtained by precipitation in inverse microemulsion for biomedical applications

    International Nuclear Information System (INIS)

    Puca Pacheco, Mercedes; Guerrero Aquino, Marco; Tacuri Calanchi, Enrique; Lopez Campos, Raul G.

    2013-01-01

    In this work the preparation of nanoparticles of magnetite by methods of precipitation in inverse microemulsions and the conventional method 'Chemical Co-precipitation' is reported. Magnetite nanoparticles were characterized by X-ray diffraction, Moessbauer spectroscopy and vibrating sample magnetometer (VSM). The results showed that the nanoparticles obtained by the method of precipitation in inverse microemulsion showed a superparamagnetic behavior and had a particle average diameter of 9 nm, while by the conventional method 'Chemical Co-precipitation' were 17 nm. In addition, other benefits observed in the application of the method of precipitation in inverse microemulsion with regard to the conventional method is that it allowed obtaining spheroidal magnetite nanoparticles, monodisperse and with magnetic and chemical properties which might have better results in medical applications. (author)

  11. Equilibrium magnetization and microstructure of the system of superparamagnetic interacting particles: numerical simulation

    International Nuclear Information System (INIS)

    Pshenichnikov, A.F.; Mekhonoshin, V.V.

    2000-01-01

    The Monte Carlo method is used to study the equilibrium magnetization of a 3D system of superparamagnetic particles taking into account the steric and dipole-dipole interparticle interactions. Two types of systems are considered: magnetic fluids and solidified ferrocolloids containing randomly spatially distributed particles with negligible energy of magnetic anisotropy. The results of numerical simulations confirm the universality of Langevin susceptibility as a main dimensionless parameter determining the influence of interparticle interactions on the magnetization of the system for moderate values of the aggregation parameter. The obtained results are in good agreement with theoretical and experimental data. At large values of the aggregation parameter, the clustering of particles in magnetic fluids is observed resulting in a reduction of their magnetization as compared to solidified systems. It is shown that the magnetization of solidified systems can be well described by the modified effective field approximation within the whole investigated range of parameters

  12. Superparamagnetic microbead transport induced by a magnetic field on large-area magnetic antidot arrays

    Science.gov (United States)

    Ouk, Minae; Beach, Geoffrey S. D.

    2017-12-01

    A method is presented for directed transport of superparamagnetic microbeads (SPBs) on magnetic antidot patterned substrates by applying a rotating elliptical magnetic field. We find a critical frequency for transport, beyond which the bead dynamics transitions from stepwise locomotion to local oscillation. We also find that the out-of-plane (HOOP) and in-plane (HIP) field magnitudes play crucial roles in triggering bead motion. Namely, we find threshold values in HOOP and HIP that depend on bead size, which can be used to independently and remotely address specific bead populations in a multi-bead mixture. These behaviors are explained in terms of the dynamic potential energy lansdscapes computed from micromagnetic simulations of the substrate magnetization configuration. Finally, we show that large-area magnetic patterns suitable for particle transport and sorting can be fabricated through a self-assembly lithography technique, which provides a simple, cost-effective means to integrate magnetic actuation into microfluidic systems.

  13. Cellular uptake of folate-conjugated lipophilic superparamagnetic iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Kyoungja [Nano-Materials Research Center, Korea Institute of Science and Technology, P. O. Box 131, Cheongryang, Seoul 130-650 (Korea, Republic of)], E-mail: kjwoo@kist.re.kr; Moon, Jihyung [Nano-Materials Research Center, Korea Institute of Science and Technology, P. O. Box 131, Cheongryang, Seoul 130-650 (Korea, Republic of); Department of Materials Science and Engineering, Korea University, 5-1, Anam-Dong, Sungbook-Ku, Seoul, 136-713 (Korea, Republic of); Choi, Kyu-Sil [Division of Molecular Imaging, Samsung Biomedical Research Institute, Samsung Medical Center, 50 Ilwon-Dong, Kangnam-Ku, Seoul 135-710 (Korea, Republic of); Seong, Tae-Yeon [Department of Materials Science and Engineering, Korea University, 5-1, Anam-Dong, Sungbook-Ku, Seoul, 136-713 (Korea, Republic of); Yoon, Kwon-Ha [Institute for Radiological Imaging Science, Wonkwang University School of Medicine, 344-2, Shinyong, Iksan, Jeonbuk 570-749 (Korea, Republic of)

    2009-05-15

    We prepared five folate-conjugated lipophilic superparamagnetic iron oxide nanoparticles (F{sub 5}-Liposuperparamagnetic iron oxide nanoparticles(SPIONs), 5.5 and 11 nm) and investigated their cellular uptake with KB cells, which is one of the representative folate-receptor over-expressing human epidermoid carcinoma cells, using MRI. The cellular uptake tests with the respective 5.5 and 11 nm F{sub 5}-LipoSPIONs at a fixed particle concentration showed appreciable amount of receptor-mediated uptakes and the specificity was higher in 5.5 nm SPIONs, due to its higher folic acid (FA) density, without inhibition. However, the numbers of the particles taken up under FA inhibition were similar, irrespective of their sizes.

  14. Current status of superparamagnetic iron oxide contrast agents for liver magnetic resonance imaging.

    Science.gov (United States)

    Wang, Yi-Xiang J

    2015-12-21

    Five types of superparamagnetic iron oxide (SPIO), i.e. Ferumoxides (Feridex(®) IV, Berlex Laboratories), Ferucarbotran (Resovist(®), Bayer Healthcare), Ferumoxtran-10 (AMI-227 or Code-7227, Combidex(®), AMAG Pharma; Sinerem(®), Guerbet), NC100150 (Clariscan(®), Nycomed,) and (VSOP C184, Ferropharm) have been designed and clinically tested as magnetic resonance contrast agents. However, until now Resovist(®) is current available in only a few countries. The other four agents have been stopped for further development or withdrawn from the market. Another SPIO agent Ferumoxytol (Feraheme(®)) is approved for the treatment of iron deficiency in adult chronic kidney disease patients. Ferumoxytol is comprised of iron oxide particles surrounded by a carbohydrate coat, and it is being explored as a potential imaging approach for evaluating lymph nodes and certain liver tumors.

  15. Mechanism of Dimercaptosuccinic Acid Coated Superparamagnetic Iron Oxide Nanoparticles with Human Serum Albumin.

    Science.gov (United States)

    Zhao, Lining; Song, Wei; Wang, Jing; Yan, Yunxing; Chen, Jiangwei; Liu, Rutao

    2015-12-01

    To research the mechanism of dimercaptosuccinic acid coated-superparamagnetic iron oxide nanoparticles (SPION) with human serum albumin (HSA), the methods of spectroscopy, molecular modeling calculation, and calorimetry were used in this paper. The inner filter effect of the fluorescence intensity was corrected to obtain the accurate results. Ultraviolet-visible absorption and circular dichroism spectra reflect that SPION changed the secondary structure with a loss of α-helix and loosened the protein skeleton of HSA; the activity of the protein was also affected by the increasing exposure of SPION. Fluorescence lifetime measurement indicates that the quenching mechanism type of this system was static quenching. The isothermal titration calorimetry measurement and molecular docking calculations prove that the predominant force of this system was the combination of Van der Waals' force and hydrogen bonds. © 2015 Wiley Periodicals, Inc.

  16. Colloidal stability of superparamagnetic iron oxide nanoparticles in the central nervous system: a review.

    Science.gov (United States)

    Champagne, Pierre-Olivier; Westwick, Harrison; Bouthillier, Alain; Sawan, Mohamad

    2018-06-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) consist of nanosized metallic-based particles with unique magnetic properties. Their potential in both diagnostic and therapeutic applications in the CNS is at the source of an expanding body of the literature in recent years. Colloidal stability of nanoparticles represents their ability to resist aggregation and is a central aspect for the use of SPION in biological environment such as the CNS. This review gives a comprehensive update of the recent developments and knowledge on the determinants of colloidal stability of SPIONs in the CNS. Factors leading to aggregate formation and the repercussions of colloidal instability of SPION are reviewed in detail pertaining to their use in the CNS.

  17. Synthesis of superparamagnetic δ-FeOOH nanoparticles by a chemical method

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Naoki, E-mail: nnishida@rs.tus.ac.jp [Department of Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Amagasa, Shota [Department of Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Kobayashi, Yoshio [Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Yamada, Yasuhiro [Department of Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan)

    2016-11-30

    Highlights: • The spherical δ-FeOOH nanoparticles were synthesized by a chemical reaction of FeCl{sub 2}. • The δ-FeOOH nanoparticles showed superparamagnetic behavior. • A mixture of Fe{sub 3}O{sub 4} and Fe(OH){sub 2} were rapidly oxidized into δ-FeOOH nanoparticles. - Abstract: δ-FeOOH nanoparticles were synthesized via the oxidation of precipitates obtained from the reaction of FeCl{sub 2} and N{sub 2}H{sub 4} in the presence of sodium tartrate and gelatin in an alkaline condition. These δ-FeOOH particles were subsequently examined using transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), powder X-ray diffraction (XRD), Mössbauer spectroscopy, and superconducting quantum interference device (SQUID) assessment. The average size of the δ-FeOOH nanoparticles was below 10 nm, and these particles exhibited superparamagnetic behavior as a result of this small size. The precursors of the δ-FeOOH nanoparticles were also characterized as a means of elucidating the reaction mechanism. Precipitates prior to oxidation upon rinsing with water and ethanol were analyzed by obtaining XRD patterns and Mössbauer spectra of wet and frozen samples, respectively. The precipitates obtained by the reaction of FeCl{sub 2} and N{sub 2}H{sub 4} were found to consist of a mixture of Fe{sub 3}O{sub 4} and Fe(OH){sub 2}, and it is believed that these species then rapidly oxidized into δ-FeOOH nanoparticles.

  18. Efficient synthesis of superparamagnetic magnetite nanoparticles under air for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Namita, E-mail: saxenanamita@yahoo.com [School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030 (India); Singh, Man, E-mail: mansingh50@hotmail.com [School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030 (India)

    2017-05-01

    The facile co-precipitation process of synthesising Superparamagnetic Iron Oxide Nanoparticles (SPIONs) especially magnetite was investigated and simplified, to develop a reproducible and scaled up synthesis process under air, for producing particles with enhanced percentage of magnetite, thus eliminating the crucial and complicated need of using the inert atmosphere. Presence of magnetite was confirmed by XRD, TEM, and Raman spectroscopy. Efficiency of synthesising magnetite was increased up to approx. ∼58 wt%, under air with no other phases but maghemite present. Alkali concentration was optimised, and particles with better magnetisation values were synthesised. The approximate weight percentage of magnetite was calculated using the simple and rapid XRD peak deconvolution method. Higher pH values from 13 to14 were investigated in the study while alkali concentration was varied from 0.5 to 4 M. 1Molar NaOH with a final pH of 13.4 was found to be optimum. Well crystallised particles with approx. 6–12 nm size, n