WorldWideScience

Sample records for superoxide anion scavenging

  1. Scavenging of superoxide anions by lecithinized superoxide dismutase in HL-60 cells.

    Science.gov (United States)

    Ishihara, Tsutomu; Shibui, Misaki; Hoshi, Takaya; Mizushima, Tohru

    2016-01-01

    Superoxide dismutase covalently bound to four lecithin molecules (PC-SOD) has been found to have beneficial therapeutic effects in animal models of various diseases. However, the mechanism underlying these improved therapeutic effects has not yet been elucidated. It has previously been shown that PC-SOD localizes on the plasma membrane and in the lysosomes of cells. In this study, we evaluated the superoxide anion-scavenging activity of PC-SOD in HL-60 human promyelocytic leukemia cells. Compared to SOD, PC-SOD had only 17% scavenging activity in cell-free systems. Nevertheless, by analyzing enzyme activities in cell suspensions containing PC-SOD or SOD, PC-SOD and SOD showed almost equal activity for scavenging extracellular superoxide anions produced by HL-60 cells. Furthermore, the activity for scavenging extracellular superoxide anions increased with increased amount of PC-SOD on the plasma membrane. Moreover, PC-SOD exhibited no obvious inhibitory effect on the scavenging of intracellular superoxide anions. These results suggested that the association of PC-SOD with the plasma membrane plays a key role in its beneficial therapeutic effects. Thus, this finding may provide a rationale for selecting target diseases for PC-SOD treatment.

  2. Mechanism and kinetics for scavenging superoxide anion by progesterone

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The chemical reaction of progesterone with superoxide anion in 0.1 mol/L NaHCO3 medium is studied by polarography. Differing from the indirect inhibition of generation by synthesized glucocorticoids in mechanism, the function that progesterone scavenges is ascribed to that directly oxidizes the C == C double bond conjugated with the carbonyl moiety of progesterone molecule to a free radical, and then is reduced to H2O2. The result obtained in this work gives new evidence for biomedical research. The equation of rate constant of the oxidization reaction is de-duced, and the apparent rate constant obtained is 308 L·mol-1·s-1.

  3. Methylglyoxal as a scavenger for superoxide anion-radical.

    Science.gov (United States)

    Shumaev, K B; Lankin, V Z; Konovalova, G G; Grechnikova, M A; Tikhaze, A K

    2016-07-01

    Methylglyoxal at a concentration of 5 mM caused a significant inhibition of superoxide anion radical (O2 (·-)) comparable to the effect of Tirone. In the process of O2 (·-) generation in the system of egg phosphatidylcholine liposome peroxidation induced by the azo-initiator AIBN, a marked inhibition of chemiluminescence in the presence of 100 mM methylglyoxal was found. At the same time, methylglyoxal did not inhibit free radical peroxidation of low-density lipoprotein particles, which indicates the absence of interaction with methylglyoxal alkoxyl and peroxyl polyenoic lipid radicals. These findings deepen information about the role of methylglyoxal in the regulation of free radical processes.

  4. Effect of superoxide anion scavenger on rat hearts with chronic intermittent hypoxia.

    Science.gov (United States)

    Pai, Peiying; Lai, Ching Jung; Lin, Ching-Yuang; Liou, Yi-Fan; Huang, Chih-Yang; Lee, Shin-Da

    2016-04-15

    Only very limited information regarding the protective effects of the superoxide anion scavenger on chronic intermittent hypoxia-induced cardiac apoptosis is available. The purpose of this study is to evaluate the effects of the superoxide anion scavenger on cardiac apoptotic and prosurvival pathways in rats with sleep apnea. Forty-two Sprague-Dawley rats were divided into three groups, rats with normoxic exposure (Control, 21% O2, 1 mo), rats with chronic intermittent hypoxia exposure (Hypoxia, 3-7% O2vs. 21% O2per 40 s cycle, 8 h per day, 1 mo), and rats with pretreatment of the superoxide anion scavenger and chronic intermittent hypoxia exposure (Hypoxia-O2 (-)-Scavenger, MnTMPyP pentachloride, 1 mg/kg ip per day; 3-7% O2vs. 21% O2per 40 s cycle, 8 h per day, 1 mo) at 5-6 mo of age. After 1 mo, the protein levels and apoptotic cells of excised hearts from three groups were measured by Western blotting and terminal deoxynucleotide transferase-mediated dUTP nick end labeling (TUNEL) assay. The superoxide anion scavenger decreased hypoxia-induced myocardial architecture abnormalities, left ventricular hypertrophy, and TUNEL-positive apoptosis. The superoxide anion scavenger decreased hypoxia-induced Fas ligand, Fas death receptors, Fas-associated death domain (FADD), activated caspase-8, and activated caspase-3 (Fas-dependent apoptotic pathway) as well as Bad, activated caspase-9 and activated caspase-3 (mitochondria-dependent apoptotic pathway), endonuclease G (EndoG), apoptosis-inducing factor (AIF), and TUNEL-positive apoptosis. The superoxide anion scavenger increased IGF-1, IGF-1R, p-PI3k, p-Akt, p-Bad, Bcl-2, and Bcl-xL (survival pathway). Our findings imply that the superoxide anion scavenger might prevent cardiac Fas-mediated and mitochondrial-mediated apoptosis and enhance the IGF-1-related survival pathway in chronic intermittent hypoxia. The superoxide anion scavenger may prevent chronic sleep apnea-enhanced cardiac apoptotic pathways and enhances

  5. Superoxide Anion Radical Scavenging Ability of Quaternary Ammonium Salt of Chitosan

    Institute of Scientific and Technical Information of China (English)

    Xiao Yan ZHU; Jian Min WU; Zhi Shen JIA

    2004-01-01

    A series of N-alkyl or N-aryl chitosan quaternary ammonium salt were prepared using 96% deacetylated chitosan. Their scavenging activities against superoxide anion radical were investigated by chemiluminescence. The IC50 values of these compounds range from 280 to 880 μg/mL, which should be attributed to their different substitutes.

  6. Mechanism of Action of Sulforaphane as a Superoxide Radical Anion and Hydrogen Peroxide Scavenger by Double Hydrogen Transfer: A Model for Iron Superoxide Dismutase.

    Science.gov (United States)

    Prasad, Ajit Kumar; Mishra, P C

    2015-06-25

    The mechanism of action of sulforaphane as a scavenger of superoxide radical anion (O2(•-)) and hydrogen peroxide (H2O2) was investigated using density functional theory (DFT) in both gas phase and aqueous media. Iron superoxide dismutase (Fe-SOD) involved in scavenging superoxide radical anion from biological media was modeled by a complex consisting of the ferric ion (Fe(3+)) attached to three histidine rings. Reactions related to scavenging of superoxide radical anion by sulforaphane were studied using DFT in the presence and absence of Fe-SOD represented by this model in both gas phase and aqueous media. The scavenging action of sulforaphane toward both superoxide radical anion and hydrogen peroxide was found to involve the unusual mechanism of double hydrogen transfer. It was found that sulforaphane alone, without Fe-SOD, cannot scavenge superoxide radical anion in gas phase or aqueous media efficiently as the corresponding reaction barriers are very high. However, in the presence of Fe-SOD represented by the above-mentioned model, the scavenging reactions become barrierless, and so sulforaphane scavenges superoxide radical anion by converting it to hydrogen peroxide efficiently. Further, sulforaphane was found to scavenge hydrogen peroxide also very efficiently by converting it into water. Thus, the mechanism of action of sulforaphane as an excellent antioxidant has been unravelled.

  7. A study on scavenging effects of Chinese medicine on superoxide anion radicals by pulse radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Li Fengmei; Liu Andong; Gu Hongchun; Di Shaojie (Beijing Normal Univ., BJ (China). Inst. of Low Energy Nuclear Physics)

    A study on scavenging and dismutation effects on superoxide anion radical ([center dot]O[sub 2][sup -]) using two Chinese antiaging medicines - Salvia miltiorrhiza injection (S.M.) and Sulekang capsule (S.C.) was carried out using pulse radiolysis. The absorption spectra of [center dot] OH[sub 2][sup -] was redetermined by radiolysis of an aqueous solution of sodium format. The absorption maximum is at about 250 nm. The results suggested that S.M. and S.C. can dismutate and scavenge [center dot]O[sub 2][sup -]. The experimental scavenging rates of S.M. (150[mu]g/ml) and S.C. (250[mu]g/ml) were 89.6% and 69.5% respectively. (author).

  8. 1,1-Diphenyl-2-picrylhydrazyl radical and superoxide anion scavenging activity of Rhizophora mangle (L. bark

    Directory of Open Access Journals (Sweden)

    Janet Calero Sánchez

    2010-01-01

    Full Text Available Background: Rhizophora mangle (L. produce a variety of substances that possesses pharmacological actions. Although it shown antioxidant properties in some assays, there is no available information about its effect on some free radical species. So the objective of the present research is to evaluate the DPPH radical and superoxide anion scavenging properties of R. mangle extract and its polyphenol fraction. Methods: Rhizophora mangle (L. bark aqueous extract and its major constituent, polyphenols fraction, were investigated for their antioxidant activities employing 2 in vitro assay systems: 1,1-diphenyl-2-picrylhydrazyl (DPPH and superoxide anion radicals scavenging. Results: IC 50 for DPPH radical-scavenging activity was 6.7 μg tannins/mL for extract and 7.6 μg tannins/mL for polyphenolic fraction. The extract showed better activity than its fraction (P < 0.05 in the DPPH radicals reducing power. Polyphenolic fraction exhibited better superoxide anion scavenging ability (IC 50 = 21.6 μg tannins/mL than the extract (IC 50 = 31.9 μg tannins/mL. Antioxidant activities of both samples increased with the rise of tannins concentration. The comparison of regression lines showed significant differences (P < 0.05 between extract and its polyphenolic fraction in both assays, indicating that extract was more effective in DPPH radical scavenging than its fraction at tannin concentrations below the crossing point of both lines, while that fraction was more effective than extract inhibiting the superoxide anions generation. Conclusions: R. mangle aqueous extract showed a potent antioxidant activity, achieved by the scavenging ability observed against DPPH radicals and superoxide anions. Regarding its polyphenolic composition, the antioxidant effects observed in this study are due, most probably, to the presence of polyphenolic compounds.

  9. PCL assay application in superoxide anion-radical scavenging capacity of tea Camellia sinensis extracts

    Directory of Open Access Journals (Sweden)

    Anna Gramza-Michałowska

    2015-12-01

    Full Text Available Background. Plant polyphenols are known for their limiting of adverse effects on reactive oxygen species (ROS in biological systems. The photochemiluminescence (PCL assay allows to evaluate the antiradical activity of a compound in the presence of a superoxide anion-radical (O •-, which is one of the ROS directly associated with the human body. In this work, determination of the superoxide anion radical scavenging ac- tivity of different tea extracts using the PCL assay was performed. Material and methods. Investigations were conducted on different tea leaves extracts. The study included five kinds of tea leaves subjected to aqueous and ethanol extraction procedure. Catechins content was evalu- ated using HPLC. Antiradical activity of the samples was conducted with use of Photochem assay. Results. Analysis of total catechins content in tea aqueous extracts enabled them to be arranged as follows: yellow > green > white > red > black, while for ethanol extracts it was: yellow = green > white > red > black. The examined tea extracts were ranked from highest to lowest water-soluble antioxidative capacity (ACW values as follows: yellow > green > white > red > black. The results of lipid-soluble antioxidative capacity (ACL values for aqueous extracts were similar; however, were approximately 50% lower than those pre- sented as ACW. The second examined group were ethanol extracts, which ranked for ACW values: yellow > green = red = white > black, while ACL values ranked as follows: yellow > white = black = red > green. PCL assay results were correlated with total catechin content in aqueous extracts. Conclusions. Antiradical activity of different tea leaves extracts in PCL assay, showed that the highest activ- ity was found in extracts of yellow tea; the lowest, however, was identified in black tea extracts.

  10. Ferrous Ion Chelating, Superoxide Anion Radical Scavenging and Tyrosinase Inhibitory Properties of Pure and Commercial Essential Oils of Anetrhum Graveolens

    Directory of Open Access Journals (Sweden)

    Sh Darvish Alipour Astaneh

    2013-04-01

    Full Text Available Introduction: Despite slight toxicities of essential oils, they are not under strict control in many countries. Anethum graveolens is widely consumed and its essential oils are at public reach. This study was designed to study essential oils of Anethum graveolens. Methods: The biological properties of pure and commercial essential oils of Anethum graveolens were investigated. In fact, Ferrous ion chelating activity, superoxide anion radical scavenging property, tyrosinase inhibition and total flavonoids of the oils were determined. Results: Chelating activity of 7.8 µg of EDTA was equivalent to 2 µg of the pure oil. The oils had superoxide anion radical scavenging activities which may be related to their total phenol and flavonoid contents. IC50 of ferrous ion chelating, antityrosiase and superoxide anion radical scavenging activities of pure and commercial oils were 1.3, 1.4, 1 and (171.6, 589, 132 µg respectively. Antityrosiase activity of 6.4 µg pure oil was equal to 1000 µg of the commercial oil. Conclusion: Anethum possesses antioxidative and free radical scavenging properties. This oil chelates ferrous ions and superoxide radicals. It is effective in formation of reactive toxic products. Anethum has good potentials regarding its applications in food and drug industries.

  11. Traditional Chinese medicine formula Qing Huo Yi Hao as superoxide anion scavenger in high glucosetreated endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Qiong xu; Bin ZHANG; Xiao-mu LI; Xin GAO

    2012-01-01

    Aim:To investigate the effects of a traditional Chinese medicine formula Qing Huo Yi Hao (QHYH)and its components on hydroxyl radical (HO·)production in vitro and the activity of QHYH against free radicals in cultured endothelial cells induced by high glucose.Methods:Hydroxyl radicals (HO·)were generated through Fenton reactions in vitro,and 5,5-dimethyl-1-pyrroline N-oxide (DMPO)was used as a spin trap to form DMPO/HO·adducts detected using electron paramagnetic resonance (EPR).Immortalized mouse cerebral microvascular endothelial (bEnd.3)cells were treated with high glucose (35 mmol/L).The free radical scavenging ability of QHYH in the cells was evaluated using EPR.Superoxide dismutase (SOD)was used to identify the free radicals scavenged by QHYH in the cells.Results:QHYH and its 8 components concentration-dependently reduced DMPO/HO· signaling.The DMPO/HO· adduct scavenging ability of QHYH was 82.2%,which was higher than each individual component.The free radical scavenging ability of 1% QHYH in high glucose-treated bEnd.3 cells was approximately 70%.In these cells,the free radicals were also specifically reduced by SOD (400 U/mL),implying that the free radicals were primarily superoxide anions.Conclusion:The results demonstrate that the QHYH formula is potent antioxidant acting as scavenge of superoxide anions in high glucose-treated endothelial cells.

  12. Pyrroloquinoline quinone from Gluconobacter oxydans fermentation broth enhances superoxide anion-scavenging capacity of Cu/Zn-SOD.

    Science.gov (United States)

    Ma, Ke; Cui, Jun-Zhu; Ye, Jian-Bin; Hu, Xian-Mei; Ma, Ge-Li; Yang, Xue-Peng

    2017-09-01

    A bioassay-guided fractionation of extract from Gluconobacter oxydans fermentation broth afforded Compound 1, which was identified as pyrroloquinoline quinone (PQQ) by spectroscopic methods. PQQ has been shown to enhance the superoxide anion-scavenging capacity significantly for Cu/Zn-SOD. To illustrate the mechanism, the interaction between PQQ and Cu/Zn-SOD was investigated. The multiple binding sites involving hydrogen bonds and van der Waals force between PQQ and Cu/Zn-SOD were revealed by isothermal titration calorimetry. The α-helix content was increased in the Cu/Zn-SOD structure with the addition of PQQ into the solution through ultraviolet (UV) spectroscopy. These results indicated that PQQ could change the conformation of Cu/Zn-SOD through interaction, which could enhance its superoxide anion-scavenging capacity. Therefore, PQQ is a potential natural antioxidant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Superoxide radical anion scavenging and dismutation by some Cu2+ and Mn2+ complexes: A pulse radiolysis study

    Science.gov (United States)

    Joshi, Ravi

    2017-10-01

    Copper (Cu) and manganese (Mn) ions are catalytic centers, in complexed form, in scavenging and dismutation process of superoxide radicals anion (O2.-) by superoxide dismutase enzyme. In the present work, fast reaction kinetics and mechanism of scavenging and dismutation of O2.- by Cu2+, Mn2+ and their complexes formed with some natural ligands have been studied using pulse radiolysis technique. Catechol, gentisic acid, tetrahydroxyquinone, tyrosine, tryptophan, embelin and bilirubin have been used as low molecular weight natural ligands for Cu2+ and Mn2+ to understand superoxide radical scavenging and dismutation reactions. These complexes have been found to be efficient scavengers of O2.- (k 107-109 M-1 s-1). The effects of nature of metal ion and ligand, and stoichiometry of complex on scavenging reaction rate constants are reported. Higher scavenging rate constants have been observed with complexes of: (1) Cu2+ as compared to Mn2+, and (2) at [ligand]/[metal] ratio of one as compared to two. A clear evidence of O2.- dismutation by free metal ions and some of the complexes has been observed. The study suggests that complexes of Cu2+ and Mn2+ with small natural ligands can also act as SOD mimics.

  14. Ursodeoxycholic acid and superoxide anion

    Institute of Scientific and Technical Information of China (English)

    Predrag Ljubuncic; Omar Abu-Salach; Arieh Bomzon

    2005-01-01

    AIM: To investigate the ability of ursodeoxycholic acid (UDCA) to scavenge superoxide anion (O2-).METHODS: We assessed the ability of UDCA to scavenge (O2-) generated by xanthine-xanthine oxidase (X-XO) in a cell-free system and its effect on the rate of O2--induced ascorbic acid (AA) oxidation in hepatic post-mitochondrial supernatants.RESULTS: UDCA at a concentration as high as 1 mmol/Ldid not impair the ability of the X-XO system to generate O2-, but could scavenge O2- at concentrations of 0.5 and 1 mmol/L, and decrease the rate of AA oxidation at a concentration of 100 μmol/L.CONCLUSION: UDCA can scavenge O2-, an action that may be beneficial to patients with primary biliary cirrhosis.

  15. A superoxide anion-scavenger, 1,3-selenazolidin-4-one suppresses serum deprivation-induced apoptosis in PC12 cells by activating MAP kinase

    Energy Technology Data Exchange (ETDEWEB)

    Nishina, Atsuyoshi, E-mail: nishina@yone.ac.jp [Yonezawa Women' s Junior College, 6-15-1 Tohrimachi, Yonezawa, Yamagata 992-0025 (Japan); Kimura, Hirokazu; Kozawa, Kunihisa [Gunma Prefectural Institute of Public Health and Environmental Sciences, 378 Kamioki, Maebashi, Gunma 371-0052 (Japan); Sommen, Geoffroy [Lonza Braine SA, Chaussee de Tubize 297, B-1420 Braine l' Alleud (Belgium); Nakamura, Takao [Department of Biomedical Information Engineering, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585 (Japan); Heimgartner, Heinz [University of Zuerich, Institut of Organic Chemistry, Winterthurerstrasse 190, CH-8057 Zuerich (Switzerland); Koketsu, Mamoru [Department of Materials Science and Technology, Faculty of Engineering, Gifu University, Gifu 501-1193 (Japan); Furukawa, Shoei [Laboratory of Molecular Biology, Gifu Pharmaceutical University, 5-6-1 Mitahora-higashi, Gifu 502-8585 (Japan)

    2011-12-15

    Synthetic organic selenium compounds, such as ebselen, may show glutathione peroxidase-like antioxidant activity and have a neurotrophic effect. We synthesized 1,3-selenazolidin-4-ones, new types of synthetic organic selenium compounds (five-member ring compounds), to study their possible applications as antioxidants or neurotrophic-like molecules. Their superoxide radical scavenging effects were assessed using the quantitative, highly sensitive method of real-time kinetic chemiluminescence. At 166 {mu}M, the O{sub 2}{sup -} scavenging activity of 1,3-selenazolidin-4-ones ranged from 0 to 66.2%. 2-[3-(4-Methoxyphenyl)-4-oxo-1,3-selenazolidin-2-ylidene]malononitrile (compound b) showed the strongest superoxide anion-scavenging activity among the 6 kinds of 2-methylene-1,3-selenazolidin-4-ones examined. Compound b had a 50% inhibitory concentration (IC{sub 50}) at 92.4 {mu}M and acted as an effective and potentially useful O{sub 2}{sup -} scavenger in vitro. The effect of compound b on rat pheochromocytome cell line PC12 cells was compared with that of ebselen or nerve growth factor (NGF) by use of the MTT [3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide] assay. When ebselen was added at 100 {mu}M or more, toxicity toward PC12 cells was evident. On the contrary, compound b suppressed serum deprivation-induced apoptosis in PC12 cells more effectively at a concentration of 100 {mu}M. The activity of compound b to phosphorylate mitogen-activated protein kinase/extracellular signal-regulated protein kinase (ERK) 1/2 (MAP kinase) in PC12 cells was higher than that of ebselen, and the former at 100 {mu}M induced the phosphorylation of MAP kinase to a degree similar to that induced by NGF. From these results, we conclude that this superoxide anion-scavenger, compound b, suppressed serum deprivation-induced apoptosis by promoting the phosphorylation of MAP kinase. -- Highlights: Black-Right-Pointing-Pointer We newly synthesized 1,3-selenazolidin-4-ones to

  16. Superoxide generated by pyrogallol reduces highly water-soluble tetrazolium salt to produce a soluble formazan: a simple assay for measuring superoxide anion radical scavenging activities of biological and abiological samples.

    Science.gov (United States)

    Xu, Chen; Liu, Shu; Liu, Zhiqiang; Song, Fengrui; Liu, Shuying

    2013-09-02

    Superoxide anion radical (O2(˙-)) plays an important role in several human diseases. The xanthine/xanthine oxidase system is frequently utilized to produce O2(˙-). However, false positive results are easily got by using this system. The common spectrophotometric probes for O2(˙-) are nitroblue tetrazolium (NBT) and cytochrome c. Nevertheless, the application of NBT method is limited because of the water-insolubility of NBT formazan and the assay using cytochrome c lacks sensitivity and is not suitable for microplate measurement. We overcome these problems by using 1,2,3-trihydroxybenzene (pyrogallol) as O2(˙-)-generating system and a highly water-soluble tetrazolium salt, 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium sodium salt (WST-1) which can be reduced by superoxide anion radical to a stable water-soluble formazan with a high absorbance at 450 nm. The method is simple, rapid and sensitive. Moreover, it can be adapted to microplate format. In this study, the O2(˙-) scavenging activities of superoxide dismutase (SOD), L-ascorbic acid, N-acetyl-L-cysteine (NAC), albumin from human serum, flavonoids and herbal extracts were assessed by using this method. Meanwhile, the activities of tissue homogenates and serum were determined by using this validated method. This method, applicable to tissue homogenates, serum and herbal extracts, proved to be efficient for measuring O2(˙-) scavenging activities of biological and abiological samples.

  17. The activity of 3- and 7-hydroxyflavones as scavengers of superoxide radical anion generated from photo-excited riboflavin

    Energy Technology Data Exchange (ETDEWEB)

    Montana, P.; Pappano, N.; Debattista, N. [Universidad Nacional de San Luis, Area de Quimica Fisica, San Luis (Argentina); Avila, V.; Posadaz, A.; Bertolotti, S.G.; Garcia, N.A. [Universidad Nacional de Rio Cuarto, Dto. de Quimica, Rio Cuarto (Argentina)

    2003-08-01

    The visible-light irradiation of the system Riboflavin plus 3-hydroxyflavone or plus 7-hydroxyflavone, under aerobic conditions, produces a series of competitive processes that depend on the relative concentrations of the pigment and the flavones. The picture comprises photochemical mechanisms that potentially operate in nature. They mainly include the quenching of Rf singlet ({sup 1}Rf*) and triplet ({sup 3}Rf*) excited states (with bimolecular rate constants in the order of 10{sup 9} M{sup -1} s{sup -1}) and superoxide radical anion-mediated reactions. The participation of the oxidative species singlet molecular oxygen was not detected. The overall result shows chemical transformations in both Rf and 3-hydroxyflavone. No experimental evidence was found indicating any chemical reaction involving 7-hydroxyflavone. The fate of the pigment also depends on the amount of the dissolved flavonoid. At 50 mM concentrations of these compounds or higher, practically no photochemistry occurs, owing to the extensive quenching of ({sup 1}Rf*) When the concentration of the flavones is in the mM range or lower, ({sup 3}Rf*) is photogenerated. Then, the excited triplet species can be quenched mainly by the flavones through an electron-transfer process, yielding the semireduced pigment. The latter interacts with dissolved oxygen producing O{sub 2}{sup .-}, which reacts with both the pigment and 3-hydroxyflavone. In summary, 3-hydroxyflavone and 7-hydroxyflavone participate in the generation of superoxide ion in an Rf-sensitized process, and simultaneously 3-hydroxyflavone constitutes a degradable quencher of the oxidative species. (author)

  18. Ionol (BHT) produces superoxide anion.

    Science.gov (United States)

    Smirnova, E G; Lyubimov, Yu I; Malinina, T G; Lyubimova, E Yu; Alexandrushkina, N I; Vanyushin, B F; Kolesova, G M; Yaguzhinsky, L S

    2002-11-01

    In aqueous medium etiolated wheat seedlings release superoxide anion (O2*-). Interaction of a synthetic antioxidant, butylated hydroxytoluene (BHT, ionol), with oxygen in the aqueous medium is accompanied by O2*- formation. This suggests that under certain conditions BHT behaves as a prooxidant. A natural antioxidant, superoxide dismutase (SOD), and also a wound healing preparation, emulsified denatured placenta (EDP), do not exhibit the prooxidant properties. In contrast to BHT, they reduce O2*- production by the etiolated wheat seedling system.

  19. In vitro inhibition of superoxide anion production and superoxide dismutase activity by zinc in human spermatozoa.

    Science.gov (United States)

    Gavella, M; Lipovac, V; Vucić, M; Sverko, V

    1999-08-01

    The in vitro effect of zinc on superoxide anion (O2-) generation and on SOD-like activity in spermatozoa of infertile men was investigated. The formation of superoxide anion was stimulated by NADPH and the level of superoxide anion was measured by the reduction of ferricytochrome c. Both Percoll-isolated (n = 14) and washed spermatozoa (n = 14) exposed to 1 mmol/L zinc (60 min, 37 degrees C), released less (p zinc-untreated spermatozoa. These results implicate a possible role for zinc as a scavenger of excessive superoxide anions produced by defective spermatozoa in semen after ejaculation. Additionally, zinc was found to dose-dependently inhibit superoxide dismutase (SOD)-like activity of spermatozoa in vitro. The inhibition of SOD-like activity by an equal concentration of zinc (1 mmol/L) was less pronounced in oligospermic (p zinc to inhibit SOD-like activity may be relevant to the physiological function of spermatozoa in fertilization. The evidence that zinc may elicit an inhibition of both superoxide anion production and SOD-like activity in human spermatozoa, indicate the existence of novel, zinc-related mechanism(s) involved in the oxidative events occurring after ejaculation, with a possible modulatory effect on germ cell function.

  20. Bosentan, a mixed endothelin receptor antagonist, inhibits superoxide anion-induced pain and inflammation in mice.

    Science.gov (United States)

    Serafim, Karla G G; Navarro, Suelen A; Zarpelon, Ana C; Pinho-Ribeiro, Felipe A; Fattori, Victor; Cunha, Thiago M; Alves-Filho, Jose C; Cunha, Fernando Q; Casagrande, Rubia; Verri, Waldiceu A

    2015-11-01

    Bosentan is a mixed endothelin receptor antagonist widely used to treat patients with pulmonary arterial hypertension, and the emerging literature suggests bosentan as a potent anti-inflammatory drug. Superoxide anion is produced in large amounts during inflammation, stimulates cytokine production, and thus contributes to inflammation and pain. However, it remains to be determined whether endothelin contributes to the inflammatory response triggered by the superoxide anion. The present study investigated the effects of bosentan in a mouse model of inflammation and pain induced by potassium superoxide, a superoxide anion donor. Male Swiss mice were treated with bosentan (10-100 mg/kg) by oral gavage, 1 h before potassium superoxide injection, and the inflammatory response was evaluated locally and at spinal cord (L4-L6) levels. Bosentan (100 mg/kg) inhibited superoxide anion-induced mechanical and thermal hyperalgesia, overt pain-like behavior (abdominal writhings, paw flinching, and licking), paw edema, myeloperoxidase activity (neutrophil marker) in the paw skin, and leukocyte recruitment in the peritoneal cavity. Bosentan also inhibited superoxide anion-induced interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) production, while it enhanced IL-10 production in the paw skin and spinal cord. Bosentan inhibited the reduction of antioxidant capacity (reduced glutathione, ferric reducing antioxidant power, and ABTS radical scavenging ability) induced by the superoxide anion. Finally, we demonstrated that intraplantar injection of potassium superoxide induces the mRNA expression of prepro-endothelin-1 in the paw skin and spinal cord. In conclusion, our results demonstrated that superoxide anion-induced inflammation, pain, cytokine production, and oxidative stress depend on endothelin; therefore, these responses are amenable to bosentan treatment.

  1. Superoxide anion production by human neutrophils activated by Trichomonas vaginalis.

    Science.gov (United States)

    Song, Hyun-Ouk; Ryu, Jae-Sook

    2013-08-01

    Neutrophils are the predominant inflammatory cells found in vaginal discharges of patients infected with Trichomonas vaginalis. In this study, we examined superoxide anion (O2 (.-)) production by neutrophils activated by T. vaginalis. Human neutrophils produced superoxide anions when stimulated with either a lysate of T. vaginalis, its membrane component (MC), or excretory-secretory product (ESP). To assess the role of trichomonad protease in production of superoxide anions by neutrophils, T. vaginalis lysate, ESP, and MC were each pretreated with a protease inhibitor cocktail before incubation with neutrophils. Superoxide anion production was significantly decreased by this treatment. Trichomonad growth was inhibited by preincubation with supernatants of neutrophils incubated for 3 hr with T. vaginalis lysate. Furthermore, myeloperoxidase (MPO) production by neutrophils was stimulated by live trichomonads. These results indicate that the production of superoxide anions and MPO by neutrophils stimulated with T. vaginalis may be a part of defense mechanisms of neutrophils in trichomoniasis.

  2. Novel mechanisms for superoxide-scavenging activity of human manganese superoxide dismutase determined by the K68 key acetylation site.

    Science.gov (United States)

    Lu, Jiaqi; Cheng, Kuoyuan; Zhang, Bo; Xu, Huan; Cao, Yuanzhao; Guo, Fei; Feng, Xudong; Xia, Qing

    2015-08-01

    Superoxide is the primary reactive oxygen species generated in the mitochondria. Manganese superoxide dismutase (SOD2) is the major enzymatic superoxide scavenger present in the mitochondrial matrix and one of the most crucial reactive oxygen species-scavenging enzymes in the cell. SOD2 is activated by sirtuin 3 (SIRT3) through NAD(+)-dependent deacetylation. However, the exact acetylation sites of SOD2 are ambiguous and the mechanisms underlying the deacetylation-mediated SOD2 activation largely remain unknown. We are the first to characterize SOD2 mutants of the acetylation sites by investigating the relative enzymatic activity, structures, and electrostatic potential of SOD2 in this study. These SOD2 mutations affected the superoxide-scavenging activity in vitro and in HEK293T cells. The lysine 68 (K68) site is the most important acetylation site contributing to SOD2 activation and plays a role in cell survival after paraquat treatment. The molecular basis underlying the regulation of SOD2 activity by K68 was investigated in detail. Molecular dynamics simulations revealed that K68 mutations induced a conformational shift of residues located in the active center of SOD2 and altered the charge distribution on the SOD2 surface. Thus, the entry of the superoxide anion into the coordinated core of SOD2 was inhibited. Our results provide a novel mechanistic insight, whereby SOD2 acetylation affects the structure and charge distribution of SOD2, its tetramerization, and p53-SOD2 interactions of SOD2 in the mitochondria, which may play a role in nuclear-mitochondrial communication during aging.

  3. 酶法制备鲽鱼鱼皮胶原蛋白肽及其清除超氧阴离子自由基的研究%Study on the Enzymatic Preparation and Superoxide Anion Radical Scavenging Activity of Collagen Peptide from Plaice Skin

    Institute of Scientific and Technical Information of China (English)

    王群; 郑海涛; 葛尧; 何计国

    2011-01-01

    采用碱性蛋白酶酶解鲽鱼鱼皮胶原蛋白制备胶原蛋白肽,对其清除超氧阴离子自由基的能力进行研究.通过单因素试验和响应面法分析不同酶解条件对超氧阴离子自由基清除率的影响,优化得到最佳酶解工艺条件:pH 9.5,加酶量158l U/g,底物浓度10 mg/mL,酶解时间为6h,酶解温度60℃,最高清除率为75.51%,半数清除浓度(IC5o)为7.98 mg/mL.%Alcalase was used to hydrolyze plaice skin for preparing collagen peptide, and the superoxide anion radical scavenging activity of this collagen peptide was studied. Effect of the different enzymatic hydrolysis conditions on superoxide anion radical scavenging activity were analyzed by single factor experiment and response surface method. The optimal hydrolytic conditions of plaice skin collagen using Alcalase with high scavenging rate were pH=9.5, enzyme dosage 1581 U/g, concentration of substrate 10 mg/mL, hydrolysis time 6 h, temperature 60℃. The maximum scavenging rate of 75.51% and half scavenging concentration (IC50) of 7.98 mg/mL were obtained.

  4. Ferric human neuroglobin scavenges superoxide to form oxy adduct.

    Science.gov (United States)

    Yamashita, Taku; Hafsi, Leila; Masuda, Eri; Tsujino, Hirofumi; Uno, Tadayuki

    2014-01-01

    Neuroglobin (Ngb) is the third member of the vertebrate globin family, and the structure was solved as a typical globin fold with a b-type heme. Although it has been proposed that Ngb could be involved in neuroprotection against oxidative stress, the protective mechanism has not been fully identified yet. In order to clarify functions under hypoxic condition, in this study, we focused on the scavenger activity of human Ngb (hNgb) against superoxide. The activity of hNgb for superoxide was evaluated to be 7.4 µM for IC50, the half maximal inhibitory concentration. The result indicates that hNgb can be an anti-oxidant, and the value was almost the same as that of ascorbic acid. In addition, we characterized oxidation states of a heme iron in superoxide-treated hNgb with spectroscopic measurements. Superoxide-treated hNgb in the ferric form was readily converted to the oxygenated ferrous form, and the result suggested that ferric hNgb could scavenge superoxide by change of an oxidation state in a heme iron. Moreover, mutational experiments were performed, and the each variant mutated at 46 and 55 positions suggested a disulfide bond between Cys46 and Cys55 could be essential to be sensors for oxidative stress with the direct binding of superoxide. As a consequence, we concluded that redox changes of the heme iron and the disulfide bond could regulate neuroprotective functions of hNgb, and it suggests that hNgb can afford protection against hypoxic and ischemic stress in the brain.

  5. Corticosteroids increase superoxide anion production by rat liver microsomes.

    Science.gov (United States)

    Nelson, D H; Ruhmann-Wennhold, A

    1975-01-01

    Superoxide anion production by liver microsomes from intact, adrenalectomized, and cortisoltreated adrenalectomized rats has been determined. The amount formed was roughly proportionate to the amount of cortisol given, and a similar response was seen in the activity of NADPH-cytochrome c reductase. The amount of measurable superoxide anion was markedly reduced by the addition of superoxide dismutase. The increased production of this potent free radical with cortisol therapy suggests that its formation may contribute to some of the harmful effects of corticosteroids given in more than physiologic amounts. PMID:239969

  6. L -propionyl-carnitine as superoxide scavenger, antioxidant, and DNA cleavage protector.

    Science.gov (United States)

    Vanella, A; Russo, A; Acquaviva, R; Campisi, A; Di Giacomo, C; Sorrenti, V; Barcellona, M L

    2000-01-01

    L-Propionylcarnitine, a propionyl ester of L-carnitine, increases the intracellular pool of L-carnitine. It exhibits a high affinity for the enzyme carnitine acetyltransferase (CAT) and, thus, is readily converted into propionyl-coenzyme A and free carnitine. It has been reported that L-propionylcarnitine possesses a protective action against heart ischemia-reperfusion injury; however, the antioxidant mechanism is not yet clear. L-Propionylcarnitine might reduce the hydroxyl radical production in the Fenton system, by chelating the iron required for the generation of hydroxyl radicals. To obtain a better insight into the antiradical mechanism of L-propionylcarnitine, the present research analyzed the superoxide scavenging capacity of L-propionylcarnitine and its effect on linoleic acid peroxidation. In addition, the effect of L-propionylcarnitine against DNA cleavage was estimated using pBR322 plasmid. We found that L-propionylcarnitine showed a dose-dependent free-radical scavenging activity. In fact, it was able to scavenge superoxide anion, to inhibit the lipoperoxidation of linoleic acid, and to protect pBR322 DNA from cleavage induced by H2O2 UV-photolysis.

  7. Osmotic stress stimulates generation of superoxide anion by spermatozoa in horses.

    Science.gov (United States)

    Burnaugh, L; Ball, B A; Sabeur, K; Thomas, A D; Meyers, S A

    2010-02-01

    The objective of this study was to examine the interplay between osmotic and oxidative stress as well as to determine mechanisms by which osmotic stress increases superoxide generation in spermatozoa of horses. Superoxide production, as measured by dihydroethidium (DHE), increased when spermatozoa of horses were incubated under either hyperosmotic or hyposmotic conditions. This increase in superoxide production was inhibited by the MAP kinase p38 inhibitor, SB203580, and by the superoxide scavenger, tiron. Incubation of spermatozoa under hyperosmotic conditions increased overall protein tyrosine phosphorylation as measured by western blotting techniques; however, a similar increase was not detected when spermatozoa were incubated under hyposmotic conditions. The general protein kinase C (PKC) and protein tyrosine kinase (PTK) inhibitor staurosporine inhibited (P<0.05) tyrosine phosphorylation in samples from cells under hyperosmotic conditions. In addition, the NADPH oxidase inhibitor diphenyleneiodonium (DPI) also inhibited (P<0.05) protein tyrosine phosphorylation in cells under hyperosmotic conditions. In summary, these data indicate that incubation of equine spermatozoa under both hyposmotic and hyperosmotic conditions can increase superoxide anion generation. Under hyperosmotic conditions, this increased generation of superoxide anion was accompanied by increased protein tyrosine phosphorylation.

  8. The French Paradox: Determining the Superoxide-Scavenging Capacity of Red Wine and Other Beverages

    Science.gov (United States)

    Logan, Barry A.; Hammond, Matthew P.; Stormo, Benjamin M.

    2008-01-01

    Plant-derived phenolic compounds such as those found in red wine, tea, and certain fruit juices may protect against cardiovascular disease by detoxifying (scavenging) superoxide and other unstable reactive oxygen species. We present a laboratory exercise that can be used to assess the superoxide-scavenging capacity of beverages. Among the…

  9. Superoxide anion production and superoxide dismutase and catalase activities in Coxiella burnetii.

    OpenAIRE

    Akporiaye, E T; Baca, O G

    1983-01-01

    Coxiella burnetii was examined for superoxide anion (O2-) production and superoxide dismutase and catalase activities. The organism generated O2- at pH 4.5 but not at pH 7.4. The rickettsia displayed superoxide dismutase activity distinguishable from that of the host cell (L-929 mouse fibroblast). Catalase activity was maximal at pH 7.0 and diminished at pH 4.5. These enzymes may account, in part, for the ability of this obligate intracellular parasite to survive within phagocytes.

  10. Carbon dioxide suppresses macrophage superoxide anion production independent of extracellular pH and mitochondrial activity

    NARCIS (Netherlands)

    Kuebler, Joachim F.; Kos, Marcin; Jesch, NataLie K.; Metzelder, Martin L.; van der Zee, David C.; Bax, Klaas M.; Vieten, Gertrud; Ure, Benno M.

    2007-01-01

    Background: Superoxide anions released by activated inacrophages during surgery are considered to be responsible for local cellular damage. Application of CO2 prieumoperitoneum during laparoscopy affects superoxide anion release, but the underlying mechanism remains unclear and the data reported are

  11. Studies on the Nucleophilicity and Scavenge of Superoxide Ion by Cyclic Voltammetry

    Institute of Scientific and Technical Information of China (English)

    Wei Ying-liang; Dang Xue-ping; Hu Sheng-shui

    2003-01-01

    Superoxide ion was generated by the electrochemical reduction of oxygen at a platinum electrode in dimethylsulphoxide (DMSO). This work was focused on the nucleophilicity and scavenge of electrogenerated-superoxide ion by cyclic voltammetry. The nucleophilic displacement reactions of superoxide ion with ethyl acetate and diethyl adipate were discussed and the reason for remarkable influence of diethyl adipate was elucidated. The scavenging activity of ascorbic acid was evaluated and the result allowed the conclusion that the scavenging ability of ascorbic acid is much lower in DMSO than in aqueous phase. UV-spectrum of electrogenerated superoxide ion in DMSO exhibited a single absorption band with λmax at 275 nm, which certified further that the method of electrogeneration was reliable and superoxide ion was stable in DMSO.

  12. Studies on the Nucleophilicity and Scavenge of Superoxide Ion by Cyclic Voltammetry

    Institute of Scientific and Technical Information of China (English)

    WeiYing-liang; DangXue-ping; HuSheng-shui

    2003-01-01

    Superoxide ion was generated by the electro-chemical reduction of oxygen at a platinum electrode in dimethylsulphoxide (DMSO). This work was focused on the nucleophilicity and scavenge of electrogenemted-superoxide ion by cyclic voltammetry. The nucleophilic displacement reactions of superoxide ion with ethyl acetate and diethyl adipate were discussed and the reason for remarkable influence of diethyl adipate was elucidated. The scavenging activity of ascorbic acid was evaluated and the result allowed the conclusion that the scavenging ability of ascorbic acid is much lower in DMSO than in aqueous phasc UV-spectrum of electrogenerated superoxide ion in DMSO exhibited a single absorption band with λmax at 275 nm, which certified further that the method of electrogeneration was reliable and superoxide ion was stable in DMSO.

  13. Superoxide anion-induced pain and inflammation depends on TNFα/TNFR1 signaling in mice.

    Science.gov (United States)

    Yamacita-Borin, Fabiane Y; Zarpelon, Ana C; Pinho-Ribeiro, Felipe A; Fattori, Victor; Alves-Filho, Jose C; Cunha, Fernando Q; Cunha, Thiago M; Casagrande, Rubia; Verri, Waldiceu A

    2015-09-25

    Inhibition of tumor necrosis factor-alpha (TNFα) and superoxide anion production reduces inflammation and pain. The present study investigated whether superoxide anion-induced pain depends on TNFα signaling and the role of superoxide anion in TNFα-induced hyperalgesia to clarify the interrelation between these two mediators in the context of pain. Intraplantar injection of a superoxide anion donor (potassium superoxide) induced mechanical hyperalgesia (0.5-5h after injection), neutrophil recruitment (myeloperoxidase activity), and overt pain-like behaviors (paw flinching, paw licking, and abdominal writhings) in wild-type mice. Tumor necrosis factor receptor 1 deficiency (TNFR1-/-) and treatment of wild-type mice with etanercept (a soluble TNFR2 receptor that inhibits TNFα actions) inhibited superoxide anion-induced pain-like behaviors. TNFR1(-/-) mice were also protected from superoxide anion donor-induced oxidative stress, suggesting the role of this pathway in the maintenance of oxidative stress. Finally, we demonstrated that Apocynin (an NADPH oxidase inhibitor) or Tempol (a superoxide dismutase mimetic) treatment inhibited TNFα-induced paw mechanical hyperalgesia and neutrophil recruitment (myeloperoxidase activity). These results demonstrate that TNFα/TNFR1 signaling is important in superoxide anion-triggered pain and that TNFα/TNFR1 signaling amplifies the oxidative stress triggered by superoxide anion, which contributes to sustaining pain and inflammation.

  14. Parthenolide induces superoxide anion production by stimulating EGF receptor in MDA-MB-231 breast cancer cells.

    Science.gov (United States)

    D'Anneo, A; Carlisi, D; Emanuele, S; Buttitta, G; Di Fiore, R; Vento, R; Tesoriere, G; Lauricella, M

    2013-12-01

    The sesquiterpene lactone parthenolide (PN) has recently attracted considerable attention because of its anti-microbial, anti-inflammatory and anticancer effects. However, the mechanism of its cytotoxic action on tumor cells remains scarcely defined. We recently provided evidence that the effect exerted by PN in MDA-MB-231 breast cancer cells was mediated by the production of reactive oxygen species (ROS). The present study shows that PN promoted the phosphorylation of EGF receptor (phospho-EGFR) at Tyr1173, an event which was observed already at 1 h of incubation with 25 µM PN and reached a peak at 8-16 h. This effect seemed to be a consequence of ROS production, because N-acetylcysteine (NAC), a powerful ROS scavenger, prevented the increment of phospho-EGFR levels. In addition fluorescence analyses performed using dihydroethidium demonstrated that PN stimulated the production of superoxide anion already at 2-3 h of incubation and the effect further increased prolonging the time of treatment, reaching a peak at 8-16 h. Superoxide anion production was markedly hampered by apocynin, a well known NADPH oxidase (NOX) inhibitor, suggesting that the effect was dependent on NOX activity. The finding that AG1478, an EGFR kinase inhibitor, substantially blocked both EGFR phosphorylation and superoxide anion production strongly suggested that phosphorylation of EGFR can be responsible for the activation of NOX with the consequent production of superoxide anion. Therefore, EGFR phosphorylation can exert a key role in the production of superoxide anion and ROS induced by PN in MDA-MB-231 cells.

  15. Superoxide anion production by neutrophils in myelodysplastic syndromes (preleukemia.

    Directory of Open Access Journals (Sweden)

    Takahashi,Isao

    1988-02-01

    Full Text Available Superoxide anion (O2- production by neutrophils from 14 untreated patients with acute nonlymphocytic leukemia (ANLL was significantly less than that of healthy controls (4.93 +/- 1.99 vx 6.20 +/- 1.53 nmol/min/10(6 neutrophils, p less than 0.05. In 10 patients with myelodysplastic syndrome (MDS, however, it was not significantly different from the control level although 6 of the 10 patients had low levels, when individual patients were compared with the lower limit of the control range. An inverse correlation between the O2- production of neutrophils and the percentage of leukemic cells in the marrow existed in ANLL (r = -0.55, p less than 0.01, but not in MDS. Three of 4 MDS patients who died of pneumonia prior to leukemic conversion showed a low level of O2- production. The impaired O2- production by neutrophils from some MDS patients, probably due to the faulty differentiation from leukemic clones, may be one of the causes of enhanced susceptibility to infection.

  16. Inhibitory effects of cardols and related compounds on superoxide anion generation by xanthine oxidase.

    Science.gov (United States)

    Masuoka, Noriyoshi; Nihei, Ken-ichi; Maeta, Ayami; Yamagiwa, Yoshiro; Kubo, Isao

    2015-01-01

    5-Pentadecatrienylresorcinol, isolated from cashew nuts and commonly known as cardol (C₁₅:₃), prevented the generation of superoxide radicals catalysed by xanthine oxidase without the inhibition of uric acid formation. The inhibition kinetics did not follow the Michelis-Menten equation, but instead followed the Hill equation. Cardol (C₁₀:₀) also inhibited superoxide anion generation, but resorcinol and cardol (C₅:₀) did not inhibit superoxide anion generation. The related compounds 3,5-dihydroxyphenyl alkanoates and alkyl 2,4-dihydroxybenzoates, had more than a C9 chain, cooperatively inhibited but alkyl 3,5-dihydroxybenzoates, regardless of their alkyl chain length, did not inhibit the superoxide anion generation. These results suggested that specific inhibitors for superoxide anion generation catalysed by xanthine oxidase consisted of an electron-rich resorcinol group and an alkyl chain having longer than C9 chain.

  17. Production of superoxide anions by keratinocytes initiates P. acnes-induced inflammation of the skin.

    Directory of Open Access Journals (Sweden)

    Philippe A Grange

    2009-07-01

    Full Text Available Acne vulgaris is a chronic inflammatory disorder of the sebaceous follicles. Propionibacterium acnes (P. acnes, a gram-positive anareobic bacterium, plays a critical role in the development of these inflammatory lesions. This study aimed at determining whether reactive oxygen species (ROS are produced by keratinocytes upon P. acnes infection, dissecting the mechanism of this production, and investigating how this phenomenon integrates in the general inflammatory response induced by P. acnes. In our hands, ROS, and especially superoxide anions (O2(*-, were rapidly produced by keratinocytes upon stimulation by P. acnes surface proteins. In P. acnes-stimulated keratinocytes, O2(*- was produced by NAD(PH oxidase through activation of the scavenger receptor CD36. O2(*- was dismuted by superoxide dismutase to form hydrogen peroxide which was further detoxified into water by the GSH/GPx system. In addition, P. acnes-induced O2(*- abrogated P. acnes growth and was involved in keratinocyte lysis through the combination of O2(*- with nitric oxide to form peroxynitrites. Finally, retinoic acid derivates, the most efficient anti-acneic drugs, prevent O2(*- production, IL-8 release and keratinocyte apoptosis, suggesting the relevance of this pathway in humans.

  18. Endomorphins 1 and 2 modulate chemotaxis, phagocytosis and superoxide anion production by microglia.

    Science.gov (United States)

    Azuma, Y; Ohura, K; Wang, P L; Shinohara, M

    2001-09-03

    We evaluate the role of endomorphins 1 and 2 on microglial functions. Endomorphins 1 and 2 blocked phagocytosis of Escherichia coli. In addition, both markedly inhibited chemotaxis toward zymosan-activated serum. In contrast, when microglia was preincubated with these endomorphins, followed by incubation with LPS before stimulation with phorbol 12-myristate 13-acetate (PMA) at 200 nM, they potentiated superoxide anion production. Furthermore, when microglia was preincubated with these endomorphins together with PMA at 20 nM, followed by stimulation with PMA at 200 nM, superoxide anion production was potentiated. These results suggest that endomorphins 1 and 2 modulate phagocytosis, chemotaxis and superoxide anion production by microglia.

  19. Correlation between the circadian rhythm of melatonin, phagocytosis, and superoxide anion levels in ring dove heterophils.

    Science.gov (United States)

    Rodríguez, A B; Marchena, J M; Nogales, G; Durán, J; Barriga, C

    1999-01-01

    A functional role for melatonin is its relationship to circadian timing mechanisms. In addition, there has recently been assumed to be a functional connection between the pineal gland and the immune system in mammals and birds, with some findings showing melatonin to be a free radical scavenger and general antioxidant. The present study investigates the possible relationship between the circadian rhythm of melatonin and the ingestion capacity as well as superoxide anion levels of ring dove (Streptopelia risoria) heterophils. In birds, heterophils, with their ability to ingest and kill different antigens, play a central role in the host defence mechanism. All determinations were made during 24 hr periods at 2 hr intervals. Radioimmunoassay showed an increase of melatonin serum levels during the dark period (from 20:00 to 07:00 hr) with a maximum at 04:00 hr, and a significant decline during the hours of light with a minimum at 16:00 hr. Similarly, the phagocytic index was enhanced during the night, with the maximum at approximately 04:00 hr and the minimum at approximately 18:00 hr. The same was the case in relation to phagocytic percentage. However, the superoxide anion levels were lower during darkness (minimum at 04:00 hr) and higher during the light period (maximum at 14:00 hr). In conclusion, our findings show that one pineal-mediated effect on the immune system may be a direct action of melatonin on phagocytosis and the phagocytic biochemical process, and that this neurohormone might act as an antioxidant.

  20. Induction of Apoptosis by Superoxide Anion and the Protective Effects of Selenium and Vitamin E

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective The purpose of this study is to investigate the effect of superoxide anion on the apoptosis of cultured fibroblasts and the protective role of selenium and Vitamin E. Methods Cultured fibroblasts (NIH3T3), with or without selenium or vitamin E in the medium, were treated by superoxide anion produced by xanthine/xanthine oxidase reaction system and changes in cell structure and DNA were observed microscopically and electrophoretically. Results Apoptosis was observed when superoxide anion at a concentration of 5 nmol/L or 10 nmol/L had acted on the fibroblasts for 5-10 h. Selenium and Vitamin E in the medium inhibited the apoptosis significantly when their concentrations reached 1.15 mol/L and 2.3 mol/L respectively. Conclusion Selenium and vitamin E have protective effect against the apoptosis induced by superoxide anion. The effect of selenium is more remarkable than that of vitamin E.

  1. Chemiluminescence Imaging of Superoxide Anion Detects Beta-Cell Function and Mass.

    Science.gov (United States)

    Bronsart, Laura L; Stokes, Christian; Contag, Christopher H

    2016-01-01

    Superoxide anion is produced during normal cellular respiration and plays key roles in cellular physiology with its dysregulation being associated with a variety of diseases. Superoxide anion is a short-lived molecule and, therefore, its homeostatic regulation and role in biology and disease requires dynamic quantification with fine temporal resolution. Here we validated coelenterazine as a reporter of intracellular superoxide anion concentration and used it as a dynamic measure both in vitro and in vivo. Chemiluminescence was dependent upon superoxide anion levels, including those produced during cellular respiration, and concentrations varied both kinetically and temporally in response to physiologically relevant fluctuations in glucose levels. In vivo imaging with coelenterazine revealed that beta cells of the pancreas have increased levels of superoxide anion, which acted as a measure of beta-cell function and mass and could predict the susceptibility of mice to diabetes mellitus. Glucose response and regulation are key elements of cellular physiology and organismal biology, and superoxide anion appears to play a fundamental and dynamic role in both of these processes.

  2. Superoxide Anion Radical: Generation and Detection in Cellular and Non-Cellular Systems.

    Science.gov (United States)

    Chiste, Renan Campos; Freitas, Marisa; Mercadante, Adriana Zerlotti; Fernandes, Eduarda

    2015-01-01

    The production of superoxide anion radical (O2•(-)) is essential for the life of aerobic organisms. This free radical acts as a signaling molecule, regulating numerous biological processes including apoptosis, aging, and senescence. Nevertheless, when overproduction of O2•(-) occurs and/or antioxidant defences are deficient, oxidative stress may develop, damaging important biomolecules and altering their physiological function. These effects have been associated to the development of several diseases. Scavenging of O2•(-) has been used as a hallmark to test the antioxidant capacity of several types of compounds in cellular and non-cellular systems. However, despite the pathophysiological importance of O2•(-), the information about its endogenous and/or chemical generation and detection is dispersed and there are no reports that concisely cover the information in an integrated form. This gap can explain the limitations attributed to the currently used systems, namely in what concerns the selectivity, specificity and validation. This review attempts to provide a critical assessment of the available O2•(-) generating and detection, both in endogenous and chemical systems, scrutinizing its advantages and limitations in order to facilitate the choice and implementation of the O2•(-) generator and/or detection method that better fits the researchers' objectives.

  3. A novel murrel Channa striatus mitochondrial manganese superoxide dismutase: gene silencing, SOD activity, superoxide anion production and expression.

    Science.gov (United States)

    Arockiaraj, Jesu; Palanisamy, Rajesh; Bhatt, Prasanth; Kumaresan, Venkatesh; Gnanam, Annie J; Pasupuleti, Mukesh; Kasi, Marimuthu

    2014-12-01

    We have reported the molecular characterization including gene silencing, superoxide activity, superoxide anion production, gene expression and molecular characterization of a mitochondrial manganese superoxide dismutase (mMnSOD) from striped murrel Channa striatus (named as CsmMnSOD). The CsmMnSOD polypeptide contains 225 amino acids with a molecular weight of 25 kDa and a theoretical isoelectric point of 8.3. In the N-terminal region, CsmMnSOD carries a mitochondrial targeting sequence and a superoxide dismutases (SOD) Fe domain (28-109), and in C-terminal region, it carries another SOD Fe domain (114-220). The CsmMnSOD protein sequence shared significant similarity with its homolog of MnSOD from rock bream Oplegnathus fasciatus (96%). The phylogenetic analysis showed that the CsmMnSOD fell in the clade of fish mMnSOD group. The monomeric structure of CsmMnSOD possesses 9 α-helices (52.4%), 3 β-sheets (8.8%) and 38.8% random coils. The highest gene expression was noticed in liver, and its expression was inducted with fungal (Aphanomyces invadans) and bacterial (Aeromonas hydrophila) infections. The gene silencing results show that the fish that received dsRNA exhibited significant (P superoxide anion production was determined by calculating the granular blood cell count during infection in murrel. It shows that the infection influenced the superoxide radical production which plays a major role in killing the pathogens. Overall, this study indicated the defense potentiality of CsmMnSOD; however, further research is necessary to explore its capability at protein level.

  4. Role of superoxide dismutase enzymes and ascorbate in protection of nitrergic relaxation against superoxide anions in mouse duodenum

    Institute of Scientific and Technical Information of China (English)

    M Ata SECILMIS; Olcay Ergurhan KIROGLU; Nuran OGULENER

    2008-01-01

    Aim: The aim of this study was to investigate whether superoxide dismutase (SOD) enzymes and ascorbate play a role in the protection of the nitrergic relax-ation against superoxide anion inhibition in the mouse duodenum. Methods: The effects of exogenous SOD, N,N'-bis(salicylidene) ethylenediamine chlo-ride (EUK-8; a synthetic cell-permeable mimetic of the manganese SOD [Mn SOD] and ascorbate on relaxant responses induced by nitrergic nerve stimulation), exogenous nitric oxide (NO), and nitroglycerin were investigated in isolated mouse duodenum tissues. Results: Diethyidithiocarbamate (DETCA) inhibited the relaxation to exogenous NO and nitroglycerin, but not relaxation to electri-cal field stimulation (EFS). SOD and ascorbate partially prevented the inhibi-tory effect of DETCA on relaxation to NO, abut not to nitroglycerin. The DETCA-induced inhibition on nitroglycerin was prevented by ELrK-8. Hemoglobin, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazolinel-oxyl-3-oxide, and hydroxo-cobalamin inhibited the relaxation to NO, but not to EFS and nitroglycerin in the presence of DETCA. Pyrogallol and hydroquinone inhibited the relaxation to NO, but not to EFS and nitroglycerin. This inhibition was prevented by exog-enous SOD and ascorbate, but was not prevented by EUK-8. Pyrogallol and hy-droquinone did not inhibit the EFS-induced relaxation in the presence of DETCA. Duroquinone and 6-anilino-5.8-quinolinedione inhibited the relaxation to EFS, NO, and nitroglycerin, and this inhibition was prevented by EUK-8. Conclusion: These results suggest that the nitrergic neurotransmission in the mouse duode-num is protected by endogenous tissue antioxidants against superoxide anions, and Mn SOD, in addition to copper/zinc SOD, can protect NO from attack from superoxide anion generators intracellularly. Also, the possibility that the endog-enous neurotransmitter may not be the free NO but a NO-containing or NO-generating molecule in the mouse duodenum remains open.

  5. Reactions of superoxide dismutases with HS(-)/H2S and superoxide radical anion: An in vitro EPR study.

    Science.gov (United States)

    Bolić, Bojana; Mijušković, Ana; Popović-Bijelić, Ana; Nikolić-Kokić, Aleksandra; Spasić, Snežana; Blagojević, Duško; Spasić, Mihajlo B; Spasojević, Ivan

    2015-12-01

    Interactions of hydrogen sulfide (HS(-)/H2S), a reducing signaling species, with superoxide dimutases (SOD) are poorly understood. We applied low-T EPR spectroscopy to examine the effects of HS(-)/H2S and superoxide radical anion O2.- on metallocenters of FeSOD, MnSOD, and CuZnSOD. HS(-)/H2S did not affect FeSOD, whereas active centers of MnSOD and CuZnSOD were open to this agent. Cu(2+) was reduced to Cu(1+), while manganese appears to be released from MnSOD active center. Untreated and O2.- treated FeSOD and MnSOD predominantly show 5 d-electron systems, i.e. Fe(3+) and Mn(2+). Our study provides new details on the mechanisms of (patho)physiological effects of HS(-)/H2S.

  6. Induction of Apoptosis by Superoxide Anion and the Protective Effects of Selenium and Vitamin E

    Institute of Scientific and Technical Information of China (English)

    GUOLING; XUEAN-NA; 等

    2001-01-01

    Objective:The purpose of this study is to investigate the effect of superoxide anion on the apoptosis of cultured fibroblasts and the protective role of seleium and Vitamin E.Methods:Cultured fibroblasts(NIH3T3),with or without selenium or vitamin E in the medium,were treated by superoxide anion produced by xanthine/xanthine oxidase reaction system and changes in cell structure and DNA were observed microscopically and electrophoretically,Results:Apoptosis was observed when superoxide anion at a concentration of 5nmol/L or 10nmol/L had acted on the fibroblasts for 5-10h.Selenium and Vitamin E in the medium inhibited the apoptosis significantly when their concentrations reached 1.15mol/L and 2.3mol/L respectively.Concleusion:selenium and vitamin Ehave protective effect against the apoptosis induced by superoxide anion.The effect of selenium is more remakable than that of vitamin E.

  7. Qualitative analysis of phytochemicals, and comparative superoxide radical scavenging along with reducing potency of Solanum nigrum using various solvent extracts

    Directory of Open Access Journals (Sweden)

    A Thenmozhi

    2011-01-01

    Full Text Available An attempt has been made to screen the phytochemicals, comparative superoxide radical scavenging and reducing potency of Solanum nigrum using various solvent extracts. The herbal powder obtained from plant part-dry leaves were extracted with various solvents. The extracts were analysed for phytochemicals and antioxidants-carotenoids, ascorbic acid, tocopherol, total phenol, proteins, reducing sugars and sterols. Free radical scavenging capacity was analysed in terms of superoxide radial scavenging assay and reducing power assay. Phytochemical characterization of the different extracts revealed the presence of the phytochemicals-alkaloids, phenols, flavonoids, sterol, saponin glycosides, reducing sugars, proteins, cardio active aglycones and cardinolides. Excellent Superoxide Radical scavenging ability found in almost all extracts of S. nigrum. In the present study superoxide radical reduces nitro blue tetrazolium (NBT to a blue coloured formazan that is measured at 560 nm. Antioxidant activity has been reported to be concomitant with development of reducing power. This shows that extracts might contain reductones like ascorbic acid, reducing sugar, thiol group containing protein which could react with free radicals to stabilize and terminate radical chain reaction. These findings suggest that the promising phytonutrients of the plant could be exploited against oxidative stress, cancer, ageing, Ischemic heart disease in dissolving thrombus, microbial infections and hormone replacement therapy (HRT justifying their use in traditional medicine as nutraceuticals.

  8. Preparation of (±)-5,6,7-Trioxygenated Dihydrofiavonols and Evaluation of their Superoxide Radical Scavenging Activity

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The synthesis of (±)-5, 6, 7-trioxygenated dihydroflavonols was carried out. All synthetic compounds were passed through superoxide radical scavenging activity in vitro.Compounds 1 e and 1 g exhibited significant bioactivity with the inhibitory rates of 68.1% and 80.9% at 40 μg/mL, respectively.

  9. Inhibitory effects of chitosan on superoxide anion radicals and lipid free radicals

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    With the electron spin resonance (ESR) technique, the inhibitory effects of chitosan on superoxide anion radicals and linoleic acid lipid radicals were found. The inhibitory ratio E for these two kinds of radicals is in proportion to the concentration of chitosan. It was also observed that E for linoleic acid lipid radicals increased with the increase of the degree of deacetylation and decreased with the increase of the molecular weight of chitosan.

  10. Equine digital veins are more sensitive to superoxide anions than digital arteries.

    Science.gov (United States)

    Lapo, Rock Allister; Gogny, Marc; Chatagnon, Gérard; Lalanne, Valérie; Harfoush, Khaled; Assane, Moussa; Desfontis, Jean-Claude; Mallem, Mohamed Yassine

    2014-10-05

    This work was designed to investigate (i) the effect of superoxide dismutase (SOD) inhibition on endothelial function and (ii) the free radical-induced endothelial dysfunction in equine digital veins (EDVs) and equine digital arteries (EDAs) isolated from healthy horses. EDV and EDA rings were suspended in a 5 ml organ bath containing Krebs solution. After a 60 min equilibration period, EDV and EDA rings were contracted with phenylephrine. Then, cumulative concentration-response curves (CCRCs) to acetylcholine were performed. In both EDVs and EDAs, acetylcholine (1 nM to 10 µM) produced concentration-dependent relaxation. We investigated the influence of SOD inhibition by diethyldithiocarbamate (DETC; 100 µM), a CuZnSOD inhibitor, on EDAs and EDVs relaxant responses to acetylcholine. Acetylcholine -mediated relaxation was impaired by DETC only in EDVs. SOD activity assayed by a xanthine-xanthine oxidase method was higher in EDAs compared with EDVs (Psuperoxide anions generating systems showed that in both EDVs and EDAs, the acetylcholine-mediated relaxation was significantly impaired by pyrogallol and homocysteine. This impairment was more pronounced in EDVs than in EDAs. Moreover, the pyrogallol-induced impairment of acetylcholine-mediated relaxation was potentiated by DETC to a greater extent in EDVs. We concluded that due to the lower activity of SOD, EDVs are more sensitive to superoxide anions than EDAs. So, any alteration of superoxide anions metabolism is likely to have a more important impact on venous rather than arterial relaxation.

  11. Nanostructured cobalt phosphates as excellent biomimetic enzymes to sensitively detect superoxide anions released from living cells.

    Science.gov (United States)

    Wang, Min-Qiang; Ye, Cui; Bao, Shu-Juan; Xu, Mao-Wen; Zhang, Yan; Wang, Ling; Ma, Xiao-Qing; Guo, Jun; Li, Chang-Ming

    2017-01-15

    Monitoring superoxide anion radicals in living cells has been attracting much academic and industrial interest due to the dual roles of the radicals. Herein, we synthesized a novel nanostructured cobalt phosphate nanorods (Co3(PO4)2 NRs) with tunable pore structure using a simple and effective micro-emulsion method and explored their potential utilization in the electrochemical sensing of superoxide anions. As an analytical and sensing platform, the nanoscale biomimetic enzymes Co3(PO4)2 NRs exhibited excellent selectivity and sensitivity towards superoxide anion (O2(•-)) with a low detection limit (2.25nM), wide linear range (5.76-5396nM), and long-term stability. Further, the nanoscale biomimetic enzyme could be efficiently applied in situ to electrochemically detect O2(•-) released from human malignant melanoma cells and normal keratinocyte, showing excellent real time quantitative detection capability. This material open up exciting opportunities for implementing biomimetic enzymes in nanoscale transition metal phosphates and designing enzyme-free biosensors with much higher sensitivity and durability in health and disease analysis than those of natural one.

  12. Feijoa sellowiana Berg fruit juice: anti-inflammatory effect and activity on superoxide anion generation.

    Science.gov (United States)

    Monforte, Maria T; Fimiani, Vincenzo; Lanuzza, Francesco; Naccari, Clara; Restuccia, Salvatore; Galati, Enza M

    2014-04-01

    Feijoa sellowiana Berg var. coolidge fruit juice was studied in vivo for the anti-inflammatory activity by carrageenin-induced paw edema test and in vitro for the effects on superoxide anion release from neutrophils in human whole blood. The fruit juice was analyzed by the high-performance liquid chromatography method, and quercetin, ellagic acid, catechin, rutin, eriodictyol, gallic acid, pyrocatechol, syringic acid, and eriocitrin were identified. The results showed a significant anti-inflammatory activity of F. sellowiana fruit juice, sustained also by an effective antioxidant activity observed in preliminary studies on 1,1-diphenyl-2-picrylhydrazyl (DPPH) test. In particular, the anti-inflammatory activity edema inhibition is significant since the first hour (44.11%) and persists until the fifth hour (44.12%) of the treatment. The effect on superoxide anion release was studied in human whole blood, in the presence of activators affecting neutrophils by different mechanisms. The juice showed an inhibiting response on neutrophils basal activity in all experimental conditions. In stimulated neutrophils, the higher inhibition of superoxide anion generation was observed at concentration of 10(-4) and 10(-2) mg/mL in whole blood stimulate with phorbol-myristate-13-acetate (PMA; 20% and 40%) and with N-formyl-methionyl-leucyl-phenylalanine (FMLP; 15% and 48%). The significant reduction of edema and the inhibition of O2(-) production, occurring mainly through interaction with protein-kinase C pathway, confirm the anti-inflammatory effect of F. sellowiana fruit juice.

  13. The superoxide anion donor, potassium superoxide, induces pain and inflammation in mice through production of reactive oxygen species and cyclooxygenase-2.

    Science.gov (United States)

    Maioli, N A; Zarpelon, A C; Mizokami, S S; Calixto-Campos, C; Guazelli, C F S; Hohmann, M S N; Pinho-Ribeiro, F A; Carvalho, T T; Manchope, M F; Ferraz, C R; Casagrande, R; Verri, W A

    2015-04-01

    It is currently accepted that superoxide anion (O2•-) is an important mediator in pain and inflammation. The role of superoxide anion in pain and inflammation has been mainly determined indirectly by modulating its production and inactivation. Direct evidence using potassium superoxide (KO2), a superoxide anion donor, demonstrated that it induced thermal hyperalgesia, as assessed by the Hargreaves method. However, it remains to be determined whether KO2 is capable of inducing other inflammatory and nociceptive responses attributed to superoxide anion. Therefore, in the present study, we investigated the nociceptive and inflammatory effects of KO2. The KO2-induced inflammatory responses evaluated in mice were: mechanical hyperalgesia (electronic version of von Frey filaments), thermal hyperalgesia (hot plate), edema (caliper rule), myeloperoxidase activity (colorimetric assay), overt pain-like behaviors (flinches, time spent licking and writhing score), leukocyte recruitment, oxidative stress, and cyclooxygenase-2 mRNA expression (quantitative PCR). Administration of KO2 induced mechanical hyperalgesia, thermal hyperalgesia, paw edema, leukocyte recruitment, the writhing response, paw flinching, and paw licking in a dose-dependent manner. KO2 also induced time-dependent cyclooxygenase-2 mRNA expression in the paw skin. The nociceptive, inflammatory, and oxidative stress components of KO2-induced responses were responsive to morphine (analgesic opioid), quercetin (antioxidant flavonoid), and/or celecoxib (anti-inflammatory cyclooxygenase-2 inhibitor) treatment. In conclusion, the well-established superoxide anion donor KO2 is a valuable tool for studying the mechanisms and pharmacological susceptibilities of superoxide anion-triggered nociceptive and inflammatory responses ranging from mechanical and thermal hyperalgesia to overt pain-like behaviors, edema, and leukocyte recruitment.

  14. Synthesis, crystal structure, superoxide scavenging activity, anticancer and docking studies of novel adamantyl nitroxide derivatives

    Science.gov (United States)

    Zhu, Xiao-he; Sun, Jin; Wang, Shan; Bu, Wei; Yao, Min-na; Gao, Kai; Song, Ying; Zhao, Jin-yi; Lu, Cheng-tao; Zhang, En-hu; Yang, Zhi-fu; Wen, Ai-dong

    2016-03-01

    A novel adamantyl nitroxide derivatives has been synthesized and characterized by IR, ESI-MS and elemental analysis. Quantum chemical calculations have also been performed to calculate the molecular geometry using density functional theory (B3LYP) with the 6-31G (d,p) basis set. The calculated results showed that the optimized geometry can well reproduce the crystal structure. The antioxidant and antiproliferative activity were evaluated by superoxide (NBT) and MTT assay. The adamantyl nitroxide derivatives exhibited stronger scavenging ability towards O2· - radicals when compared to Vitamin C, and demonstrated a remarked anticancer activity against all the tested cell lines, especially Bel-7404 cells with IC50 of 43.3 μM, compared to the positive control Sorafenib (IC50 = 92.0 μM). The results of molecular docking within EGFR using AutoDock confirmed that the titled compound favorably fitted into the ATP binding site of EGFR and would be a potential anticancer agent.

  15. Neutrophil superoxide-anion generating capacity in chronic smoking: effect of long-term -tocopherol therapy

    Indian Academy of Sciences (India)

    Lambertus J Hvan Tits; Frouwkje De Waart; Heidi L M Hak-Lemmers; Jacqueline De Graaf; Pierre N M Demacker; Anton F H Stalenhoef

    2003-02-01

    We investigated whether long-term -tocopherol therapy in chronic smoking affects superoxide generating capacity of neutrophils ex vivo. To this purpose, we randomly assigned 128 male chronic smokers (37 ± 21 pack years of smoking) to treatment with placebo ( = 64) or -tocopherol (400 IU dL--tocopherol daily, = 64). After two years of therapy, we measured phorbol 12-myristate 13-acetate-induced superoxide production of isolated neutrophils and of diluted whole blood by monitoring reduction of ferricytochrome and luminolenhanced peroxidase-catalyzed chemiluminescence. Plasma lipids and lipoproteins were not different between the two treatment groups. As expected, concentrations of -tocopherol in plasma and in low-density lipoproteins were markedly elevated in the supplemented group compared to the placebo group (+ 120%, P < 0.0001 and + 83%, < 0.0001, respectively). Consequently, resistance to in vitro oxidation of low-density lipoproteins (reflected by lag time of conjugated diene formation) was higher in the supplemented group than in the placebo group (+ 22%, < 0.0001). Superoxide generating capacity of neutrophils and superoxide production in diluted whole blood did not differ between -tocopherol and placebo group. It is concluded that in chronic smoking long-term supranormal -tocopherol intake does not reduce neutrophil superoxide-anion generating capacity, despite large increases in the concentrations of -tocopherol in plasma and in low-density lipoproteins.

  16. A two-photon fluorescent probe for exogenous and endogenous superoxide anion imaging in vitro and in vivo.

    Science.gov (United States)

    Li, Run-Qing; Mao, Zhi-Qiang; Rong, Lei; Wu, Nian; Lei, Qi; Zhu, Jing-Yi; Zhuang, Lin; Zhang, Xian-Zheng; Liu, Zhi-Hong

    2017-01-15

    Herein, we report a novel quinoline derivative-based two-photon fluorescent probe 6-(dimethylamino)quinoline-2-benzothiazoline (HQ), which is capable of tracking superoxide anion in organisms with specific "turn-on" fluorescence response based on extension of π-conjugations and moderate ICT process. The probe exhibited favorable photophysical properties, a broad linear range and high photostability. It can specifically detect superoxide anion with a significant fluorescence enhancement and great linearity from 0 to 500μM in PBS buffer. Furthermore, HQ shows low cytotoxicity and excellent photostability toward living cells and organisms, which was able to monitor endogenous superoxide anion fluxes in living cells and in vivo. For the first time, endogenous superoxide anion in lung inflammation was visualized successfully by using HQ through two-photon microscopy, and the probe HQ shows great potential for fast in-situ detecting of inflammatory response in live organisms.

  17. Immobilization of superoxide dismutase on Pt-Pd/MWCNTs hybrid modified electrode surface for superoxide anion detection.

    Science.gov (United States)

    Zhu, Xiang; Niu, Xiangheng; Zhao, Hongli; Tang, Jie; Lan, Minbo

    2015-05-15

    Monitoring of reactive oxygen species like superoxide anion (O2(∙-)) turns to be of increasing significance considering their potential damages to organism. In the present work, we fabricated a novel O2(∙-) electrochemical sensor through immobilizing superoxide dismutase (SOD) onto a Pt-Pd/MWCNTs hybrid modified electrode surface. The Pt-Pd/MWCNTs hybrid was synthesized via a facile one-step alcohol-reduction process, and well characterized by transmission electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction. The immobilization of SOD was accomplished using a simple drop-casting method, and the performance of the assembled enzyme-based sensor for O2(∙-) detection was systematically investigated by several electrochemcial techniques. Thanks to the specific biocatalysis of SOD towards O2(∙-) and the Pt-Pd/MWCNTs - promoted fast electron transfer at the fabricated interface, the developed biosensor exhibits a fast, selective and linear amperometric response upon O2(∙-) in the concentration scope of 40-1550 μM (R(2)=0.9941), with a sensitivity of 0.601 mA cm(-2) mM(-1) and a detection limit of 0.71 μM (S/N=3). In addition, the favorable biocompatibility of this electrode interface endows the prepared biosensor with excellent long-term stability (a sensitivity loss of only 3% over a period of 30 days). It is promising that the proposed sensor will be utilized as an effective tool to quantitatively monitor the dynamic changes of O2(∙-) in biological systems.

  18. Scavenger

    DEFF Research Database (Denmark)

    2009-01-01

    Scavenger is one of the cyber foraging frameworks developed in the Locusts project. It has been released as open source software at http://code.google.com/p/scavenger-cf/......Scavenger is one of the cyber foraging frameworks developed in the Locusts project. It has been released as open source software at http://code.google.com/p/scavenger-cf/...

  19. Early superoxide scavenging accelerates renal microvascular rarefaction and damage in the stenotic kidney.

    Science.gov (United States)

    Kelsen, Silvia; He, Xiaochen; Chade, Alejandro R

    2012-08-15

    Renal artery stenosis (RAS), the main cause of chronic renovascular disease (RVD), is associated with significant oxidative stress. Chronic RVD induces renal injury partly by promoting renal microvascular (MV) damage and blunting MV repair in the stenotic kidney. We tested the hypothesis that superoxide anion plays a pivotal role in MV dysfunction, reduction of MV density, and progression of renal injury in the stenotic kidney. RAS was induced in 14 domestic pigs and observed for 6 wk. Seven RAS pigs were chronically treated with the superoxide dismutase mimetic tempol (RAS+T) to reduce oxidative stress. Single-kidney hemodynamics and function were quantified in vivo using multidetector computer tomography (CT) and renal MV density was quantified ex vivo using micro-CT. Expression of angiogenic, inflammatory, and apoptotic factors was measured in renal tissue, and renal apoptosis and fibrosis were quantified in tissue sections. The degree of RAS and blood pressure were similarly increased in RAS and RAS+T. Renal blood flow (RBF) and glomerular filtration rate (GFR) were reduced in the stenotic kidney (280.1 ± 36.8 and 34.2 ± 3.1 ml/min, P < 0.05 vs. control). RAS+T kidneys showed preserved GFR (58.5 ± 6.3 ml/min, P = not significant vs. control) but a similar decreases in RBF (293.6 ± 85.2 ml/min) and further decreases in MV density compared with RAS. These changes were accompanied by blunted angiogenic signaling and increased apoptosis and fibrosis in the stenotic kidney of RAS+T compared with RAS. The current study shows that tempol administration provided limited protection to the stenotic kidney. Despite preserved GFR, renal perfusion was not improved by tempol, and MV density was further reduced compared with untreated RAS, associated with increased renal apoptosis and fibrosis. These results suggest that a tight balance of the renal redox status is necessary for a normal MV repair response to injury, at least at the early stage of RVD, and raise caution

  20. Acute Superoxide Radical Scavenging Reduces Blood Pressure but Does Not Influence Kidney Function in Hypertensive Rats with Postischemic Kidney Injury

    Directory of Open Access Journals (Sweden)

    Zoran Miloradović

    2014-01-01

    Full Text Available Acute kidney injury (AKI is associated with significant morbidity and mortality in hypertensive surroundings. We investigated superoxide radical molecules influence on systemic haemodynamic and kidney function in spontaneously hypertensive rats (SHR with induced postischemic AKI. Experiment was performed in anesthetized adult male SHR. The right kidney was removed, and left renal artery was subjected to ischemia by clamping for 40 minutes. The treated group received synthetic superoxide dismutase mimetic TEMPOL in the femoral vein 5 minutes before, during, and 175 minutes after the period of reperfusion, while the control AKI group received the vehicle via the same route. All parameters were measured 24 h after renal reperfusion. TEMPOL treatment significantly decreased mean arterial pressure and total peripheral resistance P<0.05 compared to AKI control. It also increased cardiac output and catalase activity P<0.05. Lipid peroxidation and renal vascular resistance were decreased in TEMPOL P<0.05. Plasma creatinine and kidney morphological parameters were unchanged among TEMPOL treated and control groups. Our study shows that superoxide radicals participate in haemodynamic control, but acute superoxide scavenging is ineffective in glomerular and tubular improvement, probably due to hypertension-induced strong endothelial dysfunction which neutralizes beneficial effects of O2− scavenging.

  1. The TOM complex is involved in the release of superoxide anion from mitochondria.

    Science.gov (United States)

    Budzińska, Małgorzata; Gałgańska, Hanna; Karachitos, Andonis; Wojtkowska, Małgorzata; Kmita, Hanna

    2009-08-01

    Available data indicate that superoxide anion (O(2)(*-) ) is released from mitochondria, but apart from VDAC (voltage dependent anion channel), the proteins involved in its transport across the mitochondrial outer membrane still remain elusive. Using mitochondria of the yeast Saccharomyces cerevisiae mutant depleted of VDAC (Deltapor1 mutant) and the isogenic wild type, we studied the role of the TOM complex (translocase of the outer membrane) in the efflux of O(2)(*-) from the mitochondria. We found that blocking the TOM complex with the fusion protein pb(2)-DHFR decreased O(2)(*-) release, particularly in the case of Deltapor1 mitochondria. We also observed that the effect of the TOM complex blockage on O(2)(*-) release from mitochondria coincided with the levels of O(2)(*-) release as well as with levels of Tom40 expression in the mitochondria. Thus, we conclude that the TOM complex participates in O(2)(*-) release from mitochondria.

  2. Neuronal uptake and intracellular superoxide scavenging of a fullerene (C60)-poly(2-oxazoline)s nanoformulation

    KAUST Repository

    Tong, Jing

    2011-05-01

    Fullerene, the third allotrope of carbon, has been referred to as a "radical sponge" because of its powerful radical scavenging activities. However, the hydrophobicity and toxicity associated with fullerene limits its application as a therapeutic antioxidant. In the present study, we sought to overcome these limitations by generating water-soluble nanoformulations of fullerene (C(60)). Fullerene (C(60)) was formulated with poly(N-vinyl pyrrolidine) (PVP) or poly(2-alkyl-2-oxazoline)s (POx) homopolymer and random copolymer to form nano-complexes. These C(60)-polymer complexes were characterized by UV-vis spectroscopy, infrared spectroscopy (IR), dynamic light scattering (DLS), atomic force microscopy (AFM) and transmission electron microscopy (TEM). Cellular uptake and intracellular distribution of the selected formulations in catecholaminergic (CATH.a) neurons were examined by UV-vis spectroscopy, immunofluorescence and immunogold labeling. Electron paramagnetic resonance (EPR) spectroscopy was used to determine the ability of these C(60)-polymer complexes to scavenge superoxide. Their cytotoxicity was evaluated in three different cell lines. C(60)-POx and C(60)-PVP complexes exhibited similar physicochemical properties and antioxidant activities. C(60)-poly(2-ethyl-2-oxazoline) (PEtOx) complex, but not C(60)-PVP complex, were efficiently taken up by CATH.a neurons and attenuated the increase in intra-neuronal superoxide induced by angiotensin II (Ang II) stimulation. These results show that C(60)-POx complexes are non-toxic, neuronal cell permeable, superoxide scavenging antioxidants that might be promising candidates for the treatment of brain-related diseases associated with increased levels of superoxide.

  3. Oxidative stress and enzymatic scavenging of superoxide radicals induced by solar UV-B radiation in Ulva canopies from southern Spain

    NARCIS (Netherlands)

    Bischof, K.; Janknegt, P.J.; Buma, A.G.J.; Rijstenbil, J.W.; Peralta, G.; Breeman, Arno

    2003-01-01

    The generation of reactive oxygen species (ROS) and scavenging of the superoxide radical by superoxide dismutase (SOD) was studied in mat-like canopies of the green macroalga Ulva rotundata Bliding in a tidal brine pond system in southern Spain. Artificial canopies were covered with different cut-of

  4. Enhanced mitochondrial superoxide scavenging does not improve muscle insulin action in the high fat-fed mouse.

    Science.gov (United States)

    Lark, Daniel S; Kang, Li; Lustig, Mary E; Bonner, Jeffrey S; James, Freyja D; Neufer, P Darrell; Wasserman, David H

    2015-01-01

    Improving mitochondrial oxidant scavenging may be a viable strategy for the treatment of insulin resistance and diabetes. Mice overexpressing the mitochondrial matrix isoform of superoxide dismutase (sod2(tg) mice) and/or transgenically expressing catalase within the mitochondrial matrix (mcat(tg) mice) have increased scavenging of O2(˙-) and H2O2, respectively. Furthermore, muscle insulin action is partially preserved in high fat (HF)-fed mcat(tg) mice. The goal of the current study was to test the hypothesis that increased O2(˙-) scavenging alone or in combination with increased H2O2 scavenging (mtAO mice) enhances in vivo muscle insulin action in the HF-fed mouse. Insulin action was examined in conscious, unrestrained and unstressed wild type (WT), sod2(tg), mcat(tg) and mtAO mice using hyperinsulinemic-euglycemic clamps (insulin clamps) combined with radioactive glucose tracers following sixteen weeks of normal chow or HF (60% calories from fat) feeding. Glucose infusion rates, whole body glucose disappearance, and muscle glucose uptake during the insulin clamp were similar in chow- and HF-fed WT and sod2(tg) mice. Consistent with our previous work, HF-fed mcat(tg) mice had improved muscle insulin action, however, an additive effect was not seen in mtAO mice. Insulin-stimulated Akt phosphorylation in muscle from clamped mice was consistent with glucose flux measurements. These results demonstrate that increased O2(˙-) scavenging does not improve muscle insulin action in the HF-fed mouse alone or when coupled to increased H2O2 scavenging.

  5. Enhanced mitochondrial superoxide scavenging does not improve muscle insulin action in the high fat-fed mouse.

    Directory of Open Access Journals (Sweden)

    Daniel S Lark

    Full Text Available Improving mitochondrial oxidant scavenging may be a viable strategy for the treatment of insulin resistance and diabetes. Mice overexpressing the mitochondrial matrix isoform of superoxide dismutase (sod2(tg mice and/or transgenically expressing catalase within the mitochondrial matrix (mcat(tg mice have increased scavenging of O2(˙- and H2O2, respectively. Furthermore, muscle insulin action is partially preserved in high fat (HF-fed mcat(tg mice. The goal of the current study was to test the hypothesis that increased O2(˙- scavenging alone or in combination with increased H2O2 scavenging (mtAO mice enhances in vivo muscle insulin action in the HF-fed mouse. Insulin action was examined in conscious, unrestrained and unstressed wild type (WT, sod2(tg, mcat(tg and mtAO mice using hyperinsulinemic-euglycemic clamps (insulin clamps combined with radioactive glucose tracers following sixteen weeks of normal chow or HF (60% calories from fat feeding. Glucose infusion rates, whole body glucose disappearance, and muscle glucose uptake during the insulin clamp were similar in chow- and HF-fed WT and sod2(tg mice. Consistent with our previous work, HF-fed mcat(tg mice had improved muscle insulin action, however, an additive effect was not seen in mtAO mice. Insulin-stimulated Akt phosphorylation in muscle from clamped mice was consistent with glucose flux measurements. These results demonstrate that increased O2(˙- scavenging does not improve muscle insulin action in the HF-fed mouse alone or when coupled to increased H2O2 scavenging.

  6. Triterpenoids and Steroids from Ganoderma mastoporum and Their Inhibitory Effects on Superoxide Anion Generation and Elastase Release

    Directory of Open Access Journals (Sweden)

    Tran Dinh Thang

    2013-11-01

    Full Text Available The methanol extracts of the fruiting bodies of Ganoderma mastoporum collected in Vietnam was purified to afford eight compounds, including three triterpenoids and five steroids. The purified compounds were examined for their inhibitory effects against superoxide anion generation and elastase release. Among the tested compounds, ergosta-4,6,8(14,22-tetraen-3-one (3 exhibited the most significant inhibition towards superoxide anion generation and elastase release with IC50 values of 2.30 ± 0.38 and 1.94 ± 0.50 µg/mL, respectively.

  7. Insights in the radical scavenging mechanism of syringaldehyde and generation of its anion

    Science.gov (United States)

    Yancheva, D.; Velcheva, E.; Glavcheva, Z.; Stamboliyska, B.; Smelcerovic, A.

    2016-03-01

    The ability of syringaldehyde, a naturally occurring phenolic antioxidant and medicinally important compound, to scavenge free radicals according different mechanisms was elucidated by computing the respective reaction enthalpies at DFT B3LYP/6-311++G** level. Bond dissociation enthalpy, ionization potentials and proton affinities were calculated in gas phase, benzene, water and DMSO in order to account for different environment (nonpolar lipid membranes and polar physiological liquids) where the antioxidant action in the living organism could take place and various experimental in vitro conditions. Molecular and electronic properties influencing the reactivity of syringaldehyde according to the different mechanisms were discussed in the light of the reported radical scavenging activities in crocin bleaching, oxidation potential of the first anodic peak and DPPH test. According to the calculated reaction enthalpies, in polar environment the syringaldehyde reacts preferably by sequential proton loss electron transfer which is related to the formation of a phenoxy anion. Such phenoxy anion was generated in DMSO solution and the changes in the force field, steric and electronic structure, resulting from the conversion, were described in detail based on the IR spectral data and DFT computations.

  8. scavenging activity, anti-inflammatory and diabetes related enzyme ...

    African Journals Online (AJOL)

    2013-12-31

    Dec 31, 2013 ... extracts, using superoxide anions inhibition, radical scavenging ... on the screening of plants extract for identifying new antioxidants. ... mL of sodium carbonate aqueous solution (2%, w/v) was added to the mixture and was.

  9. Utilization of superoxide anion by indoleamine oxygenase-catalyzed tryptophan and indoleamine oxidation.

    Science.gov (United States)

    Hayaishi, O

    1996-01-01

    The following is our current working hypothesis concerning the biological significance of IDO induction. When tissues are invaded by virus, bacteria, or parasites, leukocytes and lymphocytes will accumulate at the site and interferon will be produced by these cells in the inflammatory loci. The interferon thus produced is released and interacts with the cell surface to trigger IDO induction in the same or other types of cells. As a consequence of inflammation, superoxide anion is liberated and serves as a substrate for IDO. Although it is possible that some trytophan metabolites may activate the immune system or act as bacteriostatic agents, available evidence does not support this hypothesis. We therefore tentatively conclude that tryptophan is degraded by IDO and depleted, whereby the growth of viruses, bacteria and certain parasites is inhibited, because tryptophan is the least available and therefore most important essential amino acid for their growth.

  10. Anamperometric superoxide anion radicalbiosensor based on SOD/PtPd-PDARGO modified electrode.

    Science.gov (United States)

    Tang, Jie; Zhu, Xiang; Niu, Xiangheng; Liu, Tingting; Zhao, Hongli; Lan, Minbo

    2015-05-01

    In the present work, a high-performance enzyme-based electrochemical sensor for the detection of superoxide anion radical (O2(●-)) is reported. Firstly, we employed a facile approach to synthesize PtPd nanoparticles (PtPd NPs) on chemically reduced graphene oxide (RGO) coated with polydopamine (PDA). The prepared PtPd-PDARGO composite was well characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectra, X-ray diffraction, X-ray photoelectron spectroscopy and electrochemical methods. Then the assembled composite was used as a desired electrochemcial interface for superoxide dismutase (SOD) immobilization. Owing to the PDA layer as well as the synergistic effect of PtPd NPs, the fabricated SOD/PtPd-PDARGO sensor exhibited an outstanding sensitivity of 909.7 μA mM(-1) cm(-2) upon O2(●-) in a linear range from 0.016 mM to 0.24 mM (R(2)=0.992), with a low detection limit of 2 μM (S/N=3) and excellent selectivity, good reproducibility as well as favorable long-term stability.

  11. Iron-mediated induction of sister-chromatid exchanges by hydrogen peroxide and superoxide anion.

    Science.gov (United States)

    Larramendy, M; Mello-Filho, A C; Martins, E A; Meneghini, R

    1987-05-01

    When Chinese hamster fibroblasts were exposed to hydrogen peroxide or to a system consisting of xanthine oxidase and hypoxanthine, which generates superoxide anion plus hydrogen peroxide, sister-chromatid exchanges (SCEs) were formed in a dose-dependent manner. When the iron-complexing agent o-phenanthroline was present in the medium, however, the production of these SCEs was completely inhibited. This fact indicates that the Fenton reaction: Fe2+ + H2O2----OH0 + OH- + Fe3+ is responsible for the production of SCEs. When O2- and H2O2 were generated inside the cell by incubation with menadione, the production of SCE was prevented by co-incubation with copper diisopropylsalicylate, a superoxide dismutase mimetic agent. The most likely role of O2- is as a reducing agent of Fe3+: O2- + Fe3+----Fe2+ + O2, so that the sum of this and the Fenton reaction, i.e., the iron-catalyzed Haber-Weiss reaction, provides an explanation for the active oxygen species-induced SCE: H2O2 + O2(-)----OH- + OH0 + O2. According to this view, the OH radical thus produced is the agent which ultimately causes SCE. These results are discussed in comparison with other mechanisms previously proposed for induction of SCE by active oxygen species.

  12. Superoxide anions and hydrogen peroxide induce hepatocyte death by different mechanisms : Involvement of JNK and ERK MAP kinases

    NARCIS (Netherlands)

    Conde de la Rosa, L; Schoemaker, MH; Vrenken, TE; Buist-Homan, M; Havinga, R; Jansen, PLM; Moshage, H

    2006-01-01

    Background/Aims: In liver diseases, reactive oxygen species (ROS) are involved in cell death and liver injury, but the mechanisms are not completely elucidated. To elucidate the mechanisms of hepatocyte cell death induced by the ROS superoxide anions and hydrogen peroxide, primary cultures of hepato

  13. Pyrrolidine dithiocarbamate inhibits superoxide anion-induced pain and inflammation in the paw skin and spinal cord by targeting NF-κB and oxidative stress.

    Science.gov (United States)

    Pinho-Ribeiro, Felipe A; Fattori, Victor; Zarpelon, Ana C; Borghi, Sergio M; Staurengo-Ferrari, Larissa; Carvalho, Thacyana T; Alves-Filho, Jose C; Cunha, Fernando Q; Cunha, Thiago M; Casagrande, Rubia; Verri, Waldiceu A

    2016-06-01

    We evaluated the effect of pyrrolidine dithiocarbamate (PDTC) in superoxide anion-induced inflammatory pain. Male Swiss mice were treated with PDTC and stimulated with an intraplantar or intraperitoneal injection of potassium superoxide, a superoxide anion donor. Subcutaneous PDTC treatment attenuated mechanical hyperalgesia, thermal hyperalgesia, paw oedema and leukocyte recruitment (neutrophils and macrophages). Intraplantar injection of superoxide anion activated NF-κB and increased cytokine production (IL-1β, TNF-α and IL-10) and oxidative stress (nitrite and lipid peroxidation levels) at the primary inflammatory foci and in the spinal cord (L4-L6). PDTC treatment inhibited superoxide anion-induced NF-κB activation, cytokine production and oxidative stress in the paw and spinal cord. Furthermore, intrathecal administration of PDTC successfully inhibited superoxide anion-induced mechanical hyperalgesia, thermal hyperalgesia and inflammatory response in peripheral foci (paw). These results suggest that peripheral stimulus with superoxide anion activates the local and spinal cord oxidative- and NF-κB-dependent inflammatory nociceptive mechanisms. PDTC targets these events, therefore, inhibiting superoxide anion-induced inflammatory pain in mice.

  14. Oxidative stress and enzymatic scavenging of superoxide radicals induced by solar UV-B radiation in Ulva canopies from southern Spain

    OpenAIRE

    Bischof, Kai; Janknegt, Paul J.; Buma, Anita G.J.; Rijstenbil, Jan W.; Peralta, Gloria; Breeman, Anneke M.

    2003-01-01

    The generation of reactive oxygen species (ROS) and scavenging of the superoxide radical by superoxide dismutase (SOD) was studied in mat-like canopies of the green macroalga Ulva rotundata Bliding in a tidal brine pond system in southern Spain. Artificial canopies were covered with different cut-off filters, generating different radiation conditions. ROS and SOD were assessed after three days of exposure. ROS induced lipid peroxidation depended on the position of individual thalli within the...

  15. Inhibitory effects of N-acetylcysteine on superoxide anion generation in human polymorphonuclear leukocytes.

    Science.gov (United States)

    Villagrasa, V; Cortijo, J; Martí-Cabrera, M; Ortiz, J L; Berto, L; Esteras, A; Bruseghini, L; Morcillo, E J

    1997-05-01

    It has been suggested that reactive oxygen species released by activated polymorphonuclear leukocytes (PMN) in man is one mechanism of tissue injury. Therapeutic action aimed at increasing antioxidant defence mechanisms is still a clinical challenge. This study examines the activity of N-acetylcysteine, a known antioxidant, in the protection of PMN exposed in-vitro to the chemoattractant peptide fMet-Leu-Phe (FMLP), the protein kinase C activator phorbol myristate acetate or the lipid peroxidation promoter t-butyl hydroperoxide. FMLP (3-300 nM) and phorbol myristate acetate (160 pm-160 nM) induced concentration-related superoxide anion generation. Pre-treatment with N-acetylcysteine (33-333 microM) resulted in concentration-related inhibition of superoxide production induced by FMLP (30 nM) or phorbol myristate acetate (16 nM);-log IC50 values were 3.97 +/- 0.07 and 3.91 +/- 0.10, respectively. Changes in intracellular calcium ion concentration ([Ca2+]i) induced by FMLP (30 nM) were studied in fura-2-loaded human PMN. FMLP produced a transient calcium response, i.e. a peak followed by decay to a residual value above baseline. N-Acetylcysteine (333 microM) did not affect either basal [Ca2+]i values or changes in [Ca2+]i values after treatment with FMLP. Activation by phorbol myristate acetate caused a reduction in glutathione levels from 5.94 +/- 0.86 (control) to 1.84 +/- 0.51 nmol/3 x 10(6) cells (P 0.05 compared with control). Exposure to t-butyl hydroperoxide (0.5 mM, 30 min) markedly increased malondialdehyde levels (from 0.03 +/- 0.02 to 0.73 +/- 0.07 nmol/10(6) cells), and index of lipid peroxidation. Malondialdehyde levels were significantly reduced in PMN treated with N-acetylcysteine (333 microM; 0.55 +/- 0.04 nmol/10(6) cells; P < 0.05 compared with untreated cells exposed to t-butyl hydroperoxide). In conclusion, N-acetylcysteine reduces superoxide generation in response to FMLP and phorbol myristate acetate and partially protects against lipid

  16. Superoxide anion production by human spermatozoa as a part of the ionophore-induced acrosome reaction process.

    Science.gov (United States)

    Griveau, J F; Renard, P; Le Lannou, D

    1995-04-01

    The involvement of superoxide anion (O2o-) in human sperm capacitation and/or acrosome reaction was investigated. Addition of superoxide dismutase (SOD) to the medium at the beginning of the capacitation process or 15 min before induction of the acrosome reaction, decreased the level of ionophore-induced acrosome reaction. Hyperactivation was unaffected by the presence of SOD during the capacitation process. Addition of calcium ionophore to the sperm suspension increased production of O2o- by the spermatozoa by four to five-fold and induced the acrosome reaction. In the presence of SOD, superoxide anion could not be detected in the medium and the rate of induced-acrosome reaction was decreased greatly. The presence of an inhibitor of protein kinase C inhibited the production of O2o- in the medium and reduced the induced-acrosome reaction. The production of O2o- and the acrosome reaction were also increased by exposure of spermatozoa to 12-myristate 13-acetate phorbol ester, a specific activator of protein kinase C. While the level of spontaneous acrosome reaction was not increased by the direct addition of O2o- to the medium, its presence induced the release of unesterified fatty acids from membrane phospholipids. These findings suggest that the production of O2o- by spermatozoa could be involved in the ionophore-induced acrosome reaction, possibly through the de-esterification of membrane phospholipids. However, this production of superoxide anion is not sufficient on its own to induce the acrosome reaction.

  17. [Production of superoxide anion radical and nitric oxide in renal tissues sutured with different surgical suture material].

    Science.gov (United States)

    Kostenko, V O; Tsebrzhins'kii, O I

    2000-01-01

    The generation of superoxide anion radicals (in mitochondria, microsomes and under respiratory burst of leucocytes) and nitric oxide (NO) in renal tissue has been studied in the experiment with white rats, which had been carried out nephrotomy with following usage for suture such absorbable surgical threads as plain and chromic catgut, biofil (of dura mater spinalis of the cattle), Dexon II (polyglycolic acid) and biofil modified with aethonium, succinate and mexidol. The research proves the use of plai and chromic catgut leads to the development longer oxidative stress with increasing of cytotoxic agents production (superoxide anion and NO). The risk of longitudinal oxidative stress decreases under the use of biofil suture modified with biological active compounds (aethonium, succinate and mexidol). In this case, the generation of superoxide anion radicals in mitochondria and microsomes is normalised earlier. The superoxide generation with respiratory burst of leucocytes and NO production decreases in 14 day of postoperative period under the use of biofil suture modified with succinate and mexidol.

  18. Superoxide anion radicals induce IGF-1 resistance through concomitant activation of PTP1B and PTEN.

    Science.gov (United States)

    Singh, Karmveer; Maity, Pallab; Krug, Linda; Meyer, Patrick; Treiber, Nicolai; Lucas, Tanja; Basu, Abhijit; Kochanek, Stefan; Wlaschek, Meinhard; Geiger, Hartmut; Scharffetter-Kochanek, Karin

    2015-01-01

    The evolutionarily conserved IGF-1 signalling pathway is associated with longevity, metabolism, tissue homeostasis, and cancer progression. Its regulation relies on the delicate balance between activating kinases and suppressing phosphatases and is still not very well understood. We report here that IGF-1 signalling in vitro and in a murine ageing model in vivo is suppressed in response to accumulation of superoxide anions (O2∙-) in mitochondria, either by chemical inhibition of complex I or by genetic silencing of O2∙--dismutating mitochondrial Sod2. The O2∙--dependent suppression of IGF-1 signalling resulted in decreased proliferation of murine dermal fibroblasts, affected translation initiation factors and suppressed the expression of α1(I), α1(III), and α2(I) collagen, the hallmarks of skin ageing. Enhanced O2∙- led to activation of the phosphatases PTP1B and PTEN, which via dephosphorylation of the IGF-1 receptor and phosphatidylinositol 3,4,5-triphosphate dampened IGF-1 signalling. Genetic and pharmacologic inhibition of PTP1B and PTEN abrogated O2∙--induced IGF-1 resistance and rescued the ageing skin phenotype. We thus identify previously unreported signature events with O2∙-, PTP1B, and PTEN as promising targets for drug development to prevent IGF-1 resistance-related pathologies.

  19. Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots.

    Science.gov (United States)

    Xu, Jia; Duan, Xiaoguang; Yang, Jun; Beeching, John R; Zhang, Peng

    2013-03-01

    Postharvest physiological deterioration (PPD) of cassava (Manihot esculenta) storage roots is the result of a rapid oxidative burst, which leads to discoloration of the vascular tissues due to the oxidation of phenolic compounds. In this study, coexpression of the reactive oxygen species (ROS)-scavenging enzymes copper/zinc superoxide dismutase (MeCu/ZnSOD) and catalase (MeCAT1) in transgenic cassava was used to explore the intrinsic relationship between ROS scavenging and PPD occurrence. Transgenic cassava plants integrated with the expression cassette p54::MeCu/ZnSOD-35S::MeCAT1 were confirmed by Southern-blot analysis. The expression of MeCu/ZnSOD and MeCAT1 was verified by quantitative reverse transcription-polymerase chain reaction and enzymatic activity analysis both in the leaves and storage roots. Under exposure to the ROS-generating reagent methyl viologen or to hydrogen peroxide (H2O2), the transgenic plants showed higher enzymatic activities of SOD and CAT than the wild-type plants. Levels of malondialdehyde, chlorophyll degradation, lipid peroxidation, and H2O2 accumulation were dramatically reduced in the transgenic lines compared with the wild type. After harvest, the storage roots of transgenic cassava lines show a delay in their PPD response of at least 10 d, accompanied by less mitochondrial oxidation and H2O2 accumulation, compared with those of the wild type. We hypothesize that this is due to the combined ectopic expression of Cu/ZnSOD and CAT leading to an improved synergistic ROS-scavenging capacity of the roots. Our study not only sheds light on the mechanism of the PPD process but also develops an effective approach for delaying the occurrence of PPD in cassava.

  20. Macrocyclic nickel(II) complexes: Synthesis, characterization, superoxide scavenging activity and DNA-binding

    Science.gov (United States)

    Ramadan, Abd El-Motaleb M.

    2012-05-01

    A new series of nickel(II) complexes with the tetraaza macrocyclic ligand have been synthesized as possible functional models for nickel-superoxide dismutase enzyme. The reaction of 5-amino-3-methyl-1-phenylpyrazole-4-carbaldehyde (AMPC) with itself in the presence of nickel(II) ion yields, the new macrocyclic cationic complex, [NiL(NO3)2], containing a ligand composed of the self-condensed AMPC (4 mol) bound to a single nickel(II) ion. A series of metathetical reactions have led to the isolation of a number of newly complexes of the types [NiL]X2; X = ClO4 and BF4, [NiLX2], X = Cl and Br (Scheme 1). Structures and characterizations of these complexes were achieved by several physicochemical methods namely, elemental analysis, magnetic moment, conductivity, and spectral (IR and UV-Vis) measurements. The electrochemical properties and thermal behaviors of these chelates were investigated by using cyclic voltammetry and thermogravimetric analysis (TGA and DTG) techniques. A distorted octahedral stereochemistry has been proposed for the six-coordinate nitrato, and halogeno complexes. For the four-coordinate, perchlorate and fluoroborate, complex species a square-planar geometry is proposed. The measured superoxide dismutase mimetic activities of the complexes indicated that they are potent NiSOD mimics and their activities are compared with those obtained previously for nickel(II) complexes. The probable mechanistic implications of the catalytic dismutation of O2rad - by the synthesized nickel(II) complexes are discussed. The DNA-binding properties of representative complexes [NiLCl2] and [NiL](PF4)2 have been investigated by the electronic absorption and fluorescence measurements. The results obtained suggest that these complexes bind to DNA via an intercalation binding mode and the binding affinity for DNA follows the order: [NiLCl2] □ [NiL](PF4)2.

  1. The Ability of Bile to Scavenge Superoxide Radicals and Pigment Gallstone Formation in Guinea Pigs

    Directory of Open Access Journals (Sweden)

    Cong Lin

    1996-01-01

    Full Text Available After partial ligation of the common bile duct (CBD of guinea pigs, 14 of 16 animals developed pigment gallstones within one week (S group. Intraperitoneal injection of Vit. E and C, each 10 mg/kg daily from 3 days before CBD ligation to one week after the operation (S+V group, decreased the gallstone incidence to 5/14 (exact probability0.05, but Vit. E and C normalized the SR, and the difference between S group and S+V group was significant (p<0.05. These results suggested that Vit. E and C, known as antioxidants, enhanced the ability to scavenge oxygen radical in S+V group; and that in addition to the increases of UCB and Ca2+ concentrations, the participation of oxygen radicals might be of importance for pigment gallstone formation induced by bile duct obstruction.

  2. Superoxide Anion Radical Production in the Tardigrade Paramacrobiotus richtersi, the First Electron Paramagnetic Resonance Spin-Trapping Study.

    Science.gov (United States)

    Savic, Aleksandar G; Guidetti, Roberto; Turi, Ana; Pavicevic, Aleksandra; Giovannini, Ilaria; Rebecchi, Lorena; Mojovic, Milos

    2015-01-01

    Anhydrobiosis is an adaptive strategy that allows withstanding almost complete body water loss. It has been developed independently by many organisms belonging to different evolutionary lines, including tardigrades. The loss of water during anhydrobiotic processes leads to oxidative stress. To date, the metabolism of free radicals in tardigrades remained unclear. We present a method for in vivo monitoring of free radical production in tardigrades, based on electron paramagnetic resonance and spin-trap DEPMPO, which provides simultaneous identification of various spin adducts (i.e., different types of free radicals). The spin trap can be easily absorbed in animals, and tardigrades stay alive during the measurements and during 24-h monitoring after the treatment. The results show that hydrated specimens of the tardigrade Paramacrobiotus richtersi produce the pure superoxide anion radical ((•)O2(-)). This is an unexpected result, as all previously examined animals and plants produce both superoxide anion radical and hydroxyl radical ((•)OH) or exclusively hydroxyl radical.

  3. The changes of serum nitric oxide, angiotensin Ⅱ and superoxide anion in renal artery hypertension rat

    Institute of Scientific and Technical Information of China (English)

    马向红; 杨万松; 黄体钢; 周丽娟; 倪燕平; 樊振旺

    2003-01-01

    Objectives To study the changes of nitric oxide, angiotensin Ⅱ and superoxide anion in renal artery hypertension pathogenesis. Methods Male Wistar rats weighing 256 -285g were divided into 5 groups randomly, 10 rats of each group. Control group:false operation was made and routine diet was given; Ligature group: left renal artery was ligatured uncompletely and routine diet was given; Ligature + Losartan group:left renal artery was ligatured uncompletely and Losartan ture + L -Arg group: left renal artery was ligatured undrinking water; Ligature + L - Arg + Losartan group: left the drinking water. Blood pressure and heart rate were measured before and at the end of the experiment. One week after ligature, blood was drawn to determine angiotensin Ⅱ, cGMP, nitric oxide, nitric oxide synthase (NOS), O2-, superoxide dismutase (SOD). Results Systolic blood pressure was higher in ligature group than that in control group (p<0.05), systolic blood pressure was much lower in ligature + Losartan group than that in ligature group. Heart rate did not change significantly after experiment (p > 0. 05 ). AngⅡ was higher in ligature group than that in control group, even much higher in ligature + Losartan group (p < 0. 01 ). There was no difference of cGMP in each group (p > 0. 05 ). The concentration of NO was lower in ligature group (p < 0. 05 ), NO was higher in ligature + L - Arg + Losartan group than that in ligature group (p < 0. 05). O2' was higher in ligature group and ligature + L - Arg group than that in control group (p < 0. 05), O2- was lower in ligature + Losartan group than that in ligature group (p <0. 05). The level of SOD was lower in ligature group than that in control group (p < 0.05), higher in ligature + L - Arg group and ligature + L - Arg + Losartan group than that in ligature group (p <0.05). Conclusions AnglⅡ,O2- and NO imbalance play an important role in hypertension pathogenesis, L-Arg and losartan may have protective effect.

  4. Modifications in nitric oxide and superoxide anion metabolism induced by fructose overload in rat heart are prevented by (-)-epicatechin.

    Science.gov (United States)

    Calabró, Valeria; Piotrkowski, Barbara; Fischerman, Laura; Vazquez Prieto, Marcela A; Galleano, Monica; Fraga, Cesar G

    2016-04-01

    Fructose overload promotes functional and metabolic derangements in humans and in animal experimental models. Evidence suggests that dietary flavonoids have the ability to prevent/attenuate the development of metabolic diseases. In this work we investigated the effects of (-)-epicatechin on the modifications induced by fructose overload in the rat heart in terms of nitric oxide and superoxide metabolism. Male Sprague Dawley rats received 10% (w/v) fructose in the drinking water for 8 weeks, with or without (-)-epicatechin (20 mg per kg body weight per day) in the rat chow diet. These conditions of fructose overload did not lead to overt manifestations of heart hypertrophy or tissue remodeling. However, biochemical and molecular changes were observed and could represent the onset of functional alterations. (-)-Epicatechin prevented a compromised NO bioavailability and the development of oxidative stress produced by fructose overload essentially acting on superoxide anion metabolism. In this line, the increase in superoxide anion production, the overexpression of NOX2 subunit p47phox and of NOX4, the decrease in superoxide dismutase activity, and the higher oxidized/reduced glutathione ratio installed by fructose overload were absent in the rats receiving (-)-epicatechin. These results support the hypothesis that diets rich in (-)-epicatechin could prevent the onset and progression of heart dysfunctions associated with metabolic alterations.

  5. A study on the comparison of antioxidant effects among cultivated ginseng, and cultivated wild ginseng extracts -Using the measurement of superoxide and hydroxy radical scavenging activities-

    Directory of Open Access Journals (Sweden)

    Tae Jin, Rhim

    2009-06-01

    Full Text Available Objectives : The objective of this study was to compare the antioxidant effects among cultivated wild ginseng and ginseng extracts. Methods : In vitro antioxidant activities were examined by superoxide and hydroxyl radical scavenging activities of ginseng and cultivated wild ginseng extracts. Results : 1. In the superoxide radical scavenging activities of ginseng and cultivated wild ginseng extracts, antioxidant activities of cultivated wild ginseng extracts was showed higher than cultivated ginseng in the concentration of 0.25 and 0.50㎎/㎖. 2. In the hydroxyl radical scavenging activities of ginseng and cultivated wild ginseng extracts, antioxidant activities of cultivated wild ginseng extracts was showed higher than cultivated ginseng in the concentration of 1.0, 2.5, and 5.0㎎/㎖. Conclusions : In summary, the results of this study demonstrate that cultivated wild ginseng extracts had higher antioxidant activities to cultivated ginseng.

  6. Potent Free Radical Scavenging Activity of Propol Isolated from Brazilian Propolis

    National Research Council Canada - National Science Library

    Purusotam Basnet; Tetsuya Matsuno; Richard Neidlein

    1997-01-01

    ...) generated superoxide anion assay systems. The free radical scavenging activity guided fractionation and chemical analysis led to the isolation of a new compound, propol {3-[4-hydroxy-3-(3-oxo-but-1-enyl)-phenyl]-acrylic acid...

  7. Superoxide anion production and expression of gp91(phox) and p47(phox) are increased in glomeruli and proximal tubules of cisplatin-treated rats.

    Science.gov (United States)

    Trujillo, Joyce; Molina-Jijón, Eduardo; Medina-Campos, Omar Noel; Rodríguez-Muñoz, Rafael; Reyes, José Luis; Barrera, Diana; Pedraza-Chaverri, José

    2015-04-01

    The chemotherapeutic drug cisplatin has some side effects including nephrotoxicity that has been associated with reactive oxygen species production, particularly superoxide anion. The major source of superoxide anion is nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidase. However, the specific segment of the nephron in which superoxide anion is produced has not been identified. Rats were sacrificed 72 h after cisplatin injection (7.5 mg/kg), and kidneys were obtained to isolate glomeruli and proximal and distal tubules. Cisplatin induced superoxide anion production in glomeruli and proximal tubules but not in distal tubules. This enhanced superoxide anion production was prevented by diphenylene iodonium, an inhibitor of NADPH oxidase. Consistently, this effect was associated with the increased expression of gp91(phox) and p47(phox), subunits of NADPH oxidase. The enhanced superoxide anion production in glomeruli and proximal tubules, associated with the increased expression of gp91(phox) and p47(phox), is involved in the oxidative stress in cisplatin-induced nephrotoxicity.

  8. Possible Involvement of NADPH Oxidase in Lanthanide Cation-Induced Superoxide Anion Generation in BY-2 Tobacco Cell Suspension Culture

    Institute of Scientific and Technical Information of China (English)

    Yang Shengchang

    2006-01-01

    A rapid and concentration-dependent generation of superoxide anion (·O-2), measured with a superoxide-specific Cypridina luciferin-derived chemiluminescent reagent, was observed when two lanthanide salts (LaCl3 and GdCl3) were added to tobacco (Nicotiana tabacum) cell suspension culture.Addition of superoxide dismutase (480 U·ml-1) and Tiron (5 μmol·L-1) to cell culture suspension decreases the level of lanthanide cation-induced ·O-2 generation, suggesting that ·O-2 generation is extra-cellular.Pretreatment of the cell culture suspension with diphenyleneiodonium (10 and 50 μmol·L-1), quinacrine (1 and 5 mmol·L-1) and imidazol (10 mmol·L-1), inhibitors of NADPH oxidase, notably inhibits the generation of superoxide induced by lanthanide cation, implying the possible involvement of activation of NADPH oxidase.In addition, addition of SHAM (1 and 5 mmol·L-1), azide (0.2 and 1 mmol·L-1), inhibitor of peroxidase, has no influence on ·O-2 generation.

  9. Antioxidant protection of NO-induced relaxations of the mouse anococcygeus against inhibition by superoxide anions, hydroquinone and carboxy-PTIO.

    Science.gov (United States)

    Lilley, E; Gibson, A

    1996-09-01

    physiological antioxidants protected NO from superoxide anions, and from direct NO-scavengers. The possibility that the presence of these antioxidants within nitrergically-innervated tissues might explain the lack of effect of the NO inhibitors on nerve-induced relaxation, without the need to invoke a transmitter other than free radical NO, is discussed.

  10. Propylparaben-induced disruption of energy metabolism in human HepG2 cell line leads to increased synthesis of superoxide anions and apoptosis.

    Science.gov (United States)

    Szeląg, S; Zabłocka, A; Trzeciak, K; Drozd, A; Baranowska-Bosiacka, I; Kolasa, A; Goschorska, M; Chlubek, D; Gutowska, I

    2016-03-01

    The effect of propylparaben (in final concentrations 0.4 ng/ml, 2.3 ng/ml and 4.6 ng/ml) on the energy metabolism of HepG2 hepatocytes, superoxide anion synthesis, apoptosis and necrosis is described. Propylparaben can be toxic to liver cells due to the increased production of superoxide anions, which can contribute to a reduced concentration of superoxide dismutase in vivo and impairment of the body's antioxidant mechanisms. Finally, a further reduction in the mitochondrial membrane potential and uncoupling of the respiratory chain resulting in a reduction in ATP concentration as a result of mitochondrial damage may lead to cell death by apoptosis.

  11. Effects of PDE4 inhibitors on lipopolysaccharide-induced priming of superoxide anion production from human mononuclear cells

    Directory of Open Access Journals (Sweden)

    Noëlla Germain

    2001-01-01

    Full Text Available Aims: Phosphodiesterase 4 (PDE4 inhibitors have been described as potent anti-inflammatory compounds, involving an increase in intracellular levels of cyclic 3',5'-adenosine monophosphate (AMP. The aim of this study was to compare the effects of selective PDE4 inhibitors, rolipram and RP 73-401 with the cell permeable analogue of cyclic AMP, dibutyryl-cyclic AMP (db-cAMP and the anti-inflammatory cytokine interleukin-10 (IL-10 on superoxide anion production from peripheral blood mononuclear cells preincubated with lipopolysaccharide (LPS.

  12. Superoxide anions produced by Streptococcus pyogenes group A-stimulated keratinocytes are responsible for cellular necrosis and bacterial growth inhibition.

    Science.gov (United States)

    Regnier, Elodie; Grange, Philippe A; Ollagnier, Guillaume; Crickx, Etienne; Elie, Laetitia; Chouzenoux, Sandrine; Weill, Bernard; Plainvert, Céline; Poyart, Claire; Batteux, Frédéric; Dupin, Nicolas

    2016-02-01

    Gram-positive Streptococcus pyogenes (group A Streptococcus or GAS) is a major skin pathogen and interacts with keratinocytes in cutaneous tissues. GAS can cause diverse suppurative and inflammatory infections, such as cellulitis, a common acute bacterial dermo-hypodermitis with a high morbidity. Bacterial isolation yields from the lesions are low despite the strong local inflammation observed, raising numerous questions about the pathogenesis of the infection. Using an in vitro model of GAS-infected keratinocytes, we show that the major ROS produced is the superoxide anion ([Formula: see text]), and that its production is time- and dose-dependent. Using specific modulators of ROS production, we show that [Formula: see text] is mainly synthesized by the cytoplasmic NADPH oxidase. Superoxide anion production leads to keratinocyte necrosis but incomplete inhibition of GAS growth, suggesting that GAS may be partially resistant to the oxidative burst. In conclusion, GAS-stimulated keratinocytes are able to develop an innate immune response based on the production of ROS. This local immune response limits GAS development and induces keratinocyte cell death, resulting in the skin lesions observed in patients with cellulitis.

  13. Stochastic modelling suggests that an elevated superoxide anion - hydrogen peroxide ratio can drive extravascular phagocyte transmigration by lamellipodium formation.

    Science.gov (United States)

    Kundu, Siddhartha

    2016-10-21

    Chemotaxis, integrates diverse intra- and inter-cellular molecular processes into a purposeful patho-physiological response; the operatic rules of which, remain speculative. Here, I surmise, that superoxide anion induced directional motility, in a responding cell, results from a quasi pathway between the stimulus, surrounding interstitium, and its biochemical repertoire. The epochal event in the mounting of an inflammatory response, is the extravascular transmigration of a phagocyte competent cell towards the site of injury, secondary to the development of a lamellipodium. This stochastic-to-markovian process conversion, is initiated by the cytosolic-ROS of the damaged cell, but is maintained by the inverse association of a de novo generated pool of self-sustaining superoxide anions and sub-critical hydrogen peroxide levels. Whilst, the exponential rise of O2(.-) is secondary to the focal accumulation of higher order lipid raft-Rac1/2-actin oligomers; O2(.-) mediated inactivation and redistribution of ECSOD, accounts for the minimal concentration of H2O2 that the phagocyte experiences. The net result of this reciprocal association between ROS/ RNS members, is the prolonged perturbation and remodeling of the cytoskeleton and plasma membrane, a prelude to chemotactic migration. The manuscript also describes the significance of stochastic modeling, in the testing of plausible molecular hypotheses of observable phenomena in complex biological systems.

  14. pH dependent catalytic activities of platinum nanoparticles with respect to the decomposition of hydrogen peroxide and scavenging of superoxide and singlet oxygen

    Science.gov (United States)

    Liu, Yi; Wu, Haohao; Li, Meng; Yin, Jun-Jie; Nie, Zhihong

    2014-09-01

    Recently, platinum (Pt) nanoparticles (NPs) have received increasing attention in the field of catalysis and medicine due to their excellent catalytic activity. To rationally design Pt NPs for these applications, it is crucial to understand the mechanisms underlying their catalytic and biological activities. This article describes a systematic study on the Pt NP-catalyzed decomposition of hydrogen peroxide (H2O2) and scavenging of superoxide (O2&z.rad;-) and singlet oxygen (1O2) over a physiologically relevant pH range of 1.12-10.96. We demonstrated that the catalytic activities of Pt NPs can be modulated by the pH value of the environment. Our results suggest that Pt NPs possess peroxidase-like activity of decomposing H2O2 into &z.rad;OH under acidic conditions, but catalase-like activity of producing H2O and O2 under neutral and alkaline conditions. In addition, Pt NPs exhibit significant superoxide dismutase-like activity of scavenging O2&z.rad;- under neutral conditions, but not under acidic conditions. The 1O2 scavenging ability of Pt NPs increases with the increase in the pH of the environment. The study will provide useful guidance for designing Pt NPs with desired catalytic and biological properties.Recently, platinum (Pt) nanoparticles (NPs) have received increasing attention in the field of catalysis and medicine due to their excellent catalytic activity. To rationally design Pt NPs for these applications, it is crucial to understand the mechanisms underlying their catalytic and biological activities. This article describes a systematic study on the Pt NP-catalyzed decomposition of hydrogen peroxide (H2O2) and scavenging of superoxide (O2&z.rad;-) and singlet oxygen (1O2) over a physiologically relevant pH range of 1.12-10.96. We demonstrated that the catalytic activities of Pt NPs can be modulated by the pH value of the environment. Our results suggest that Pt NPs possess peroxidase-like activity of decomposing H2O2 into &z.rad;OH under acidic conditions

  15. Viral infection correlated with superoxide anion radicals production and natural and synthetic copper complexes.

    Science.gov (United States)

    Tomas, E; Popescu, A; Titire, A; Cajal, N; Cristescu, C; Tomas, S

    1989-01-01

    Studies conducted on asymmetric triazine derivatives synthetized at the Chemical and Pharmaceutical Research Institute showed that products S1, S16, S17, S19, S20 and S22 have a remarkable O2- radical scavenger activity. Among these derivatives, the product S1 is the most efficient as an antiviral agent.

  16. Vascular nitric oxide and superoxide anion contribute to sex-specific programmed cardiovascular physiology in mice.

    Science.gov (United States)

    Roghair, Robert D; Segar, Jeffrey L; Volk, Kenneth A; Chapleau, Mark W; Dallas, Lindsay M; Sorenson, Anna R; Scholz, Thomas D; Lamb, Fred S

    2009-03-01

    Intrauterine environmental pertubations have been linked to the development of adult hypertension. We sought to evaluate the interrelated roles of sex, nitric oxide, and reactive oxygen species (ROS) in programmed cardiovascular disease. Programming was induced in mice by maternal dietary intervention (DI; partial substitution of protein with carbohydrates and fat) or carbenoxolone administration (CX, to increase fetal glucocorticoid exposure). Adult blood pressure and locomotor activity were recorded by radiotelemetry at baseline, after a week of high salt, and after a week of high salt plus nitric oxide synthase inhibition (by l-NAME). In male offspring, DI or CX programmed an elevation in blood pressure that was exacerbated by N(omega)-nitro-l-arginine methyl ester administration, but not high salt alone. Mesenteric resistance vessels from DI male offspring displayed impaired vasorelaxation to ACh and nitroprusside, which was blocked by catalase and superoxide dismutase. CX-exposed females were normotensive, while DI females had nitric oxide synthase-dependent hypotension and enhanced mesenteric dilation. Despite the disparate cardiovascular phenotypes, both male and female DI offspring displayed increases in locomotor activity and aortic superoxide production. Despite dissimilar blood pressures, DI and CX-exposed females had reductions in cardiac baroreflex sensitivity. In conclusion, both maternal malnutrition and fetal glucocorticoid exposure program increases in arterial pressure in male but not female offspring. While maternal DI increased both superoxide-mediated vasoconstriction and nitric oxide mediated vasodilation, the balance of these factors favored the development of hypertension in males and hypotension in females.

  17. Depression of alveolar macrophage hydrogen peroxide and superoxide anion release by mineral dusts: correlation with antimony, lead, and arsenic contents.

    Science.gov (United States)

    Gulyas, H; Labedzka, M; Gercken, G

    1990-04-01

    Activated rabbit alveolar macrophages were incubated with airborne dusts from four West German sites (1 to 200 micrograms/10(6) cells) and waste incinerator fly ash fractions (50 to 500 micrograms/10(6) cells). Quartz dust DQ 12 (5 to 200 micrograms/10(6) cells) and Fe2O3 (0.05 to 50 micrograms/10(6) cells) were used as control dusts. The zymosan-stimulated hydrogen peroxide and superoxide anion release of the macrophages were not affected significantly by Fe2O3. All other investigated dusts decreased the two cell functions which were correlated negatively with surfaces, particle numbers, and antimony, lead, and arsenic contents of the dusts. The influence of heavy metal antagonisms and dust surfaces on dust toxicity against alveolar macrophages is discussed.

  18. Peroxynitrite mediates active site tyrosine nitration in manganese superoxide dismutase. Evidence of a role for the carbonate radical anion.

    Science.gov (United States)

    Surmeli, N Basak; Litterman, Nadia K; Miller, Anne-Frances; Groves, John T

    2010-12-08

    carbonate radical anion (•CO3(-)) in MnSOD nitration by PN. We also observed that the nitration of Tyr34 caused inactivation of the enzyme, while nitration of Tyr9 and Tyr11 did not interfere with the superoxide dismutase activity. The loss of MnSOD activity upon Tyr34 nitration implies that the responsible reagent in vivo is peroxynitrite, acting either directly or through the action of •CO3(-).

  19. Proton transfer from 1,4-pentadiene to superoxide radical anion: a QTAIM analysis

    Directory of Open Access Journals (Sweden)

    Angela Rodríguez-Serrano

    2014-04-01

    Full Text Available We studied the bis-allylic proton transferreaction from 1,4-pentadiene to superoxideradical anion (O2·־. Minima andtransition state geometries, as well asthermochemical parameters were computedat the B3LYP/6-311+G(3df,2plevel of theory. The electronic wavefunctions of reactants, intermediates,and products were analyzed within theframework of the Quantum Theory ofAtoms in Molecules. The results showthe formation of strongly hydrogen bondedcomplexes between the 1,4-pentadien-3-yl anion and the hydroperoxylradical as the reaction products. Theseproduct complexes (PCs are more stablethan the isolated reactants and muchmore stable than the isolated products.This reaction occurs via pre-reactivecomplexes which are more stable thanthe PCs and the transition states. This isin agreement with the fact that the netproton transfer reaction that leads to freeproducts is an endothermic and nonspontaneousprocess.

  20. A novel amperometric biosensor for superoxide anion based on superoxide dismutase immobilized on gold nanoparticle-chitosan-ionic liquid biocomposite film

    Energy Technology Data Exchange (ETDEWEB)

    Wang Lu; Wen Wei; Xiong Huayu; Zhang Xiuhua; Gu Haoshuang [Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062 (China); Wang Shengfu, E-mail: wangsf@hubu.edu.cn [Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062 (China)

    2013-01-03

    Graphical abstract: Schematic representation of the assembly process of SOD/GNPs-CS-IL/GCE. Highlights: Black-Right-Pointing-Pointer SOD was immobilized in gold nanoparticles-chitosan-ionic liquid (GNPs-CS-IL) film. Black-Right-Pointing-Pointer The biosensor was constructed by one-step ultrasonic electrodeposition of GNPs-CS-IL onto GCE. Black-Right-Pointing-Pointer The biosensor showed excellent analytical performance for O{sub 2}{center_dot}{sup -} real-time analysis. - Abstract: A novel superoxide anion (O{sub 2}{center_dot}{sup -}) biosensor is proposed based on the immobilization of copper-zinc superoxide dismutase (SOD) in a gold nanoparticle-chitosan-ionic liquid (GNPs-CS-IL) biocomposite film. The SOD-based biosensor was constructed by one-step ultrasonic electrodeposition of GNP-CS-IL composite onto glassy carbon electrode (GCE), followed by immobilization of SOD on the modified electrode. Surface morphologies of a set of representative films were characterized by scanning electron microscopy. The electrochemical performance of the biosensor was evaluated by cyclic voltammetry and chronoamperometry. A pair of quasi-reversible redox peaks of SOD with a formal potential of 0.257 V was observed at SOD/GNPs-CS-IL/GCE in phosphate buffer solution (PBS, 0.1 M, pH 7.0). The effects of varying test conditions on the electrochemical behavior of the biosensor were investigated. Furthermore, several electrochemical parameters were calculated in detail. Based on the biomolecule recognition of the specific reactivity of SOD toward O{sub 2}{center_dot}{sup -}, the developed biosensor exhibited a fast amperometric response (<5 s), wide linear range (5.6-2.7 Multiplication-Sign 10{sup 3} nM), low detection limit (1.7 nM), and excellent selectivity for the real-time measurement of O{sub 2}{center_dot}{sup -}. The proposed method is promising for estimating quantitatively the dynamic changes of O{sub 2}{center_dot}{sup -} in biological systems.

  1. FITC Doped Rattle-Type Silica Colloidal Particle-Based Ratiometric Fluorescent Sensor for Biosensing and Imaging of Superoxide Anion.

    Science.gov (United States)

    Zhou, Ying; Ding, Jie; Liang, Tingxizi; Abdel-Halim, E S; Jiang, Liping; Zhu, Jun-Jie

    2016-03-01

    Fluorescent nanosensors have been widely applied in recognition and imaging of bioactive small molecules; however, the complicated surface modification process and background interference limit their applications in practical biological samples. Here, a simple, universal method was developed for ratiometric fluorescent determination of general small molecules. Taking superoxide anion (O2(•-)) as an example, the designed sensor was composed of three main moieties: probe carrier, rattle-type silica colloidal particles (mSiO2@hmSiO2 NPs); reference fluorophore doped into the core of NPs, fluorescein isothiocyanate (FITC); fluorescent probe for superoxide anion, hydroethidine (HE). In the absence of O2(•-), the sensor just emitted green fluorescence of FITC at 518 nm. When released HE was oxidized by O2(•-), the oxidation product exhibited red fluorescence at 570 nm and the intensity was linearly associated with the concentration of O2(•-), while that of reference element remained constant. Accordingly, ratiometric determination of O2(•-) was sensitively and selectively achieved with a linear range of 0.2-20 μM, and the detection limit was calculated as low as 80 nM. Besides, the technique was also successfully applied for dual-emission imaging of O2(•-) in live cells and realized visual recognition with obvious fluorescence color change in normal conditions or under oxidative stress. As long as appropriate reference dyes and sensing probes are selected, ratiometric biosensing and imaging of bioactive small molecules would be achieved. Therefore, the design could provide a simple, accurate, universal platform for biological applications.

  2. Homocysteine enhances superoxide anion release and NADPH oxidase assembly by human neutrophils. Effects on MAPK activation and neutrophil migration.

    Science.gov (United States)

    Alvarez-Maqueda, Moisés; El Bekay, Rajaa; Monteseirín, Javier; Alba, Gonzalo; Chacón, Pedro; Vega, Antonio; Santa María, Consuelo; Tejedo, Juan R; Martín-Nieto, José; Bedoya, Francisco J; Pintado, Elisabeth; Sobrino, Francisco

    2004-02-01

    Hyperhomocysteinaemia has recently been recognized as a risk factor of cardiovascular disease. However, the action mechanisms of homocysteine (Hcy) are not well understood. Given that Hcy may be involved in the recruitment of monocytes and neutrophils to the vascular wall, we have investigated the role of Hcy in essential functions of human neutrophils. We show that Hcy increased superoxide anion (O2*-) release by neutrophils to the extracellular medium, and that this effect was inhibited by superoxide dismutase and diphenyleneiodonium (DPI), an inhibitor of NADPH oxidase activity. The enzyme from rat peritoneal macrophages displayed a similar response. These effects were accompanied by a time-dependent increased translocation of p47phox and p67phox subunits of NADPH oxidase to the plasma membrane. We also show that Hcy increased intracellular H2O2 production by neutrophils, that Hcy enhanced the activation and phosphorylation of mitogen-activated protein kinases (MAPKs), specifically p38-MAPK and ERK1/2, and that the migration of neutrophils was increased by Hcy. Present results are the first evidence that Hcy enhances the oxidative stress of neutrophils, and underscore the potential role of phagocytic cells in vascular wall injury through O2*- release in hyperhomocysteinaemia conditions.

  3. Metal ions induced heat shock protein response by elevating superoxide anion level in HeLa cells transformed by HSE-SEAP reporter gene.

    Science.gov (United States)

    Yu, Zhanjiang; Yang, Xiaoda; Wang, Kui

    2006-06-01

    The aim of this work is to define the relationship between heat shock protein (HSP) and reactive oxygen species (ROS) in the cells exposed to different concentrations of metal ions, and to evaluate a new method for tracing the dynamic levels of cellular reactive oxygen species using a HSE-SEAP reporter gene. The expression of heat shock protein was measured using a secreted alkaline phosphatase (SEAP) reporter gene transformed into HeLa cell strain, the levels of superoxide anion (O(2)(-)) and hydrogen peroxide (H(2)O(2)) were determined by NBT reduction assay and DCFH staining flow cytometry (FCM), respectively. The experimental results demonstrated that the expression of heat shock protein induced by metal ions was linearly related to the cellular superoxide anion level before cytotoxic effects were observed, but not related to the cellular hydrogen peroxide level. The experimental results suggested that metal ions might induce heat shock protein by elevating cellular superoxide anion level, and thus the expression of heat shock protein indicated by the HSE-SEAP reporter gene can be an effective model for monitoring the dynamic level of superoxide anion and early metal-induced oxidative stress/cytotoxicity.

  4. Sonochemiluminescence of lucigenin: Evidence of superoxide radical anion formation by ultrasonic irradiation

    Science.gov (United States)

    Matsuoka, Masanori; Takahashi, Fumiki; Asakura, Yoshiyuki; Jin, Jiye

    2016-07-01

    The sonochemiluminescence (SCL) behavior of lucigenin (Luc2+) has been studied in aqueous solutions irradiated with 500 kHz ultrasound. Compared with the SCL of a luminol system, a tremendously increased SCL intensity is observed from 50 µM Luc2+ aqueous solution (pH =11) when small amounts of coreactants such as 2-propanol coexist. It is shown that SCL intensity strongly depends on the presence of dissolved gases such as air, O2, N2, and Ar. The highest SCL intensity is obtained in an O2-saturated solution, indicating that molecular oxygen is required to generate SCL. Since SCL intensity is quenched completely in the presence of superoxide dismutase (SOD), an enzyme that can catalyze the disproportionation of O2 •-, the generation of O2 •- in the ultrasonic reaction field is important in the SCL of Luc2+. In this work, the evidence of O2 •- production is examined by a spectrofluorometric method using 2-(2-pyridyl)benzothiazoline as the fluorescent probe. The results indicate that the yield of O2 •- is markedly increased in the O2-saturated solutions when a small amount of 2-propanol coexists, which is consistent with the results of SCL measurements. 2-Propanol in the interfacial region of a cavitation bubble reacts with a hydroxyl radical (•OH) to form a 2-propanol radical, CH3C•(OH)CH3, which can subsequently react with dissolved oxygen to generate O2 •-. The most likely pathways for SCL as well as the spatial distribution of SCL in a microreactor are discussed in this study.

  5. Ultrasensitive detection of superoxide anion released from living cells using a porous Pt-Pd decorated enzymatic sensor.

    Science.gov (United States)

    Zhu, Xiang; Liu, Tingting; Zhao, Hongli; Shi, Libo; Li, Xiaoqing; Lan, Minbo

    2016-05-15

    Considering the critical roles of superoxide anion (O2(∙-)) in pathological conditions, it is of great urgency to establish a reliable and durable approach for real-time determination of O2(∙-). In this study, we propose a porous Pt-Pd decorated superoxide dismutase (SOD) sensor for qualitative and quantitative detection O2(∙-). The developed biosensor exhibits a fast, selective and linear amperometric response upon O2(∙-) in the concentration scope of 16 to 1,536 μM (R(2)=0.9941), with a detection limit of 0.13 μM (S/N=3) and a low Michaelis-Menten constant of 1.37 μM which indicating a high enzymatic activity and affinity to O2(∙-). Inspiringly, the proposed sensor possesses an ultrahigh sensitivity of 1270 μA mM(-1)cm(-2). In addition, SOD/porous Pt-Pd sensor exhibits excellent anti-interference property, reproducibility and long-term storage stability. Beyond our expectation, the trace level of O2(∙-) released from living cells has also been successfully captured. These satisfactory results are mainly ascribed to (1) the porous interface with larger surface area and more active sites to provide a biocompatible environment for SOD (2) the specific biocatalysis of SOD towards O2(∙-) and (3) porous Pt-Pd nanomaterials fastening the electron transfer. The superior electrochemical performance makes SOD/porous Pt-Pd sensor a promising candidate for monitoring the dynamic changes of O2(∙-)in vivo.

  6. Titanium dioxide nanoparticles enhance production of superoxide anion and alter the antioxidant system in human osteoblast cells

    Directory of Open Access Journals (Sweden)

    Niska K

    2015-02-01

    Full Text Available Karolina Niska,1 Katarzyna Pyszka,1 Cecylia Tukaj,2 Michal Wozniak,1 Marek Witold Radomski,3–5 Iwona Inkielewicz-Stepniak1 1Department of Medical Chemistry, 2Department of Electron Microscopy, Medical University of Gdansk, Gdansk, Poland; 3School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, The University of Dublin Trinity College, Dublin, Ireland; 4Kardio-Med Silesia, 5Silesian Medical University, Zabrze, Poland Abstract: Titanium dioxide (TiO2 nanoparticles (NPs are manufactured worldwide for a variety of engineering and bioengineering applications. TiO2NPs are frequently used as a material for orthopedic implants. However, to the best of our knowledge, the biocompatibility of TiO2NPs and their effects on osteoblast cells, which are responsible for the growth and remodeling of the human skeleton, have not been thoroughly investigated. In the research reported here, we studied the effects of exposing hFOB 1.19 human osteoblast cells to TiO2NPs (5–15 nm for 24 and 48 hours. Cell viability, alkaline phosphatase (ALP activity, cellular uptake of NPs, cell morphology, superoxide anion (O2•- generation, superoxide dismutase (SOD activity and protein level, sirtuin 3 (SIR3 protein level, correlation between manganese (Mn SOD and SIR, total antioxidant capacity, and malondialdehyde were measured following exposure of hFOB 1.19 cells to TiO2NPs. Exposure of hFOB 1.19 cells to TiO2NPs resulted in: (1 cellular uptake of NPs; (2 increased cytotoxicity and cell death in a time- and concentration-dependent manner; (3 ultrastructure changes; (4 decreased SOD and ALP activity; (5 decreased protein levels of SOD1, SOD2, and SIR3; (6 decreased total antioxidant capacity; (7 increased O2•- generation; and (8 enhanced lipid peroxidation (malondialdehyde level. The linear relationship between the protein level of MnSOD and SIR3 and between O2•- content and SIR3 protein level was observed. Importantly, the cytotoxic

  7. Accumulation of non-superoxide anion reactive oxygen species mediates nitrogen-limited alcoholic fermentation by Saccharomyces cerevisiae.

    Science.gov (United States)

    Mendes-Ferreira, Ana; Sampaio-Marques, Belém; Barbosa, Catarina; Rodrigues, Fernando; Costa, Vítor; Mendes-Faia, Arlete; Ludovico, Paula; Leão, Cecília

    2010-12-01

    Throughout alcoholic fermentation, nitrogen depletion is one of the most important environmental stresses that can negatively affect the yeast metabolic activity and ultimately leads to fermentation arrest. Thus, the identification of the underlying effects and biomarkers of nitrogen limitation is valuable for controlling, and therefore optimizing, alcoholic fermentation. In this study, reactive oxygen species (ROS), plasma membrane integrity, and cell cycle were evaluated in a wine strain of Saccharomyces cerevisiae during alcoholic fermentation in nitrogen-limiting medium under anaerobic conditions. The results indicated that nitrogen limitation leads to an increase in ROS and that the superoxide anion is a minor component of the ROS, but there is increased activity of both Sod2p and Cta1p. Associated with these effects was a decrease in plasma membrane integrity and a persistent cell cycle arrest at G(0)/G(1) phases. Moreover, under these conditions it appears that autophagy, evaluated by ATG8 expression, is induced, suggesting that this mechanism is essential for cell survival but does not prevent the cell cycle arrest observed in slow fermentation. Conversely, nitrogen refeeding allowed cells to reenter cell cycle by decreasing ROS generation and autophagy. Altogether, the results provide new insights on the understanding of wine fermentations under nitrogen-limiting conditions and further indicate that ROS accumulation, evaluated by the MitoTracker Red dye CM-H(2)XRos, and plasma membrane integrity could be useful as predictive markers of fermentation problems.

  8. Construction of a highly sensitive non-enzymatic sensor for superoxide anion radical detection from living cells.

    Science.gov (United States)

    Liu, Yuelin; Liu, Xiuhui; Liu, Yidan; Liu, Guoan; Ding, Lan; Lu, Xiaoquan

    2017-04-15

    A novel non-enzymatic superoxide anion (O2•(-)) sensor was fabricated based on Ag nanoparticles (NPs)/L-cysteine functioned carbon nanotubes (Cys-MWCNTs) nanocomposites and used to measure the release of O2•(-) from living cells. In this strategy, AgNPs could be uniformly electrodeposited on the MWCNTs surface with average diameter of about 20nm as exhibited by scanning electronmicroscopy (SEM). Electrochemical study demonstrated that the AgNPs/Cys-MWCNTs modified glassy carbon electrode exhibited excellent catalytic activity toward the reduction of O2•(-) with a super wide linear range from 7.00×10(-11) to 7.41×10(-5)M and a low detection limit (LOD) of 2.33×10(-11)M (S/N=3). Meanwhile, the mechanism for O2•(-) reduction was also proposed for the first time. Importantly, this novel non-enzymatic O2•(-) sensor can detect O2•(-) release from cancer cells under both the external stimulation and the normal condition, which has the great potential application in clinical diagnostics to assess oxidative stress of living cells.

  9. Ratiometric fluorescence detection of superoxide anion based on AuNPs-BSA@Tb/GMP nanoscale coordination polymers.

    Science.gov (United States)

    Liu, Nan; Hao, Juan; Cai, Keying; Zeng, Mulan; Huang, Zhenzhong; Chen, Lili; Peng, Bingxian; Li, Ping; Wang, Li; Song, Yonghai

    2017-08-03

    A novel ratiometric fluorescence nanosensor for superoxide anion (O2(•-) ) detection was designed with gold nanoparticles-bovine serum albumin (AuNPs-BSA)@terbium/guanosine monophosphate disodium (Tb/GMP) nanoscale coordination polymers (NCPs) (AuNPs-BSA@Tb/GMP NCPs). The abundant hydroxyl and amino groups of AuNPs-BSA acted as binding points for the self-assembly of Tb(3+) and GMP to form core-shell AuNPs-BSA@Tb/GMP NCP nanosensors. The obtained probe exhibited the characteristic fluorescence emission of both AuNPs-BSA and Tb/GMP NCPs. The AuNPs-BSA not only acted as a template to accelerate the growth of Tb/GMP NCPs, but also could be used as the reference fluorescence for the detection of O2(•-) . The resulting AuNPs-BSA@Tb/GMP NCP ratiometric fluorescence nanosensor for the detection of O2(•-) demonstrated high sensitivity and selectivity with a wide linear response range (14 nM-10 μM) and a low detection limit (4.7 nM). Copyright © 2017 John Wiley & Sons, Ltd.

  10. Synthesis, Spectroscopy, Thermal Analysis, Electrochemistry and Superoxide Scavenging Activity of a New Bimetallic Copper(II Complex

    Directory of Open Access Journals (Sweden)

    Babita Sarma

    2013-01-01

    Full Text Available A new bimetallic copper(II complex has been synthesized with ligand obtained by the condensation of salicylaldehyde and the amine derived from reduction of nitration product of benzil. The ligand was characterized by 1H NMR and mass spectra, and the binuclear Copper(II complex was characterized by vibrational and electronic spectra, EPR spectra, and magnetic moment measurement. Thermogravimetric analysis study and electrochemical study of the complex were also done. The complex was found to show superoxide dismutase activity.

  11. Superoxide anion radical (O2(-)) degrades methylmercury to inorganic mercury in human astrocytoma cell line (CCF-STTG1).

    Science.gov (United States)

    Mailloux, Ryan J; Yumvihoze, Emmanuel; Chan, Hing Man

    2015-09-05

    Methylmercury (MeHg) is a global pollutant that is affecting the health of millions of people worldwide. However, the mechanism of MeHg toxicity still remains somewhat elusive and there is no treatment. It has been known for some time that MeHg can be progressively converted to inorganic mercury (iHg) in various tissues including the brain. Recent work has suggested that cleavage of the carbon-metal bond in MeHg in a biological environment is facilitated by reactive oxygen species (ROS). However, the oxyradical species that actually mediates this process has not been identified. Here, we provide evidence that superoxide anion radical (O2(-)) can convert MeHg to iHg. The calculated second-order rate constant for the degradation of 1μM MeHg by O2(-) generated by xanthine/xanthine oxidase was calculated to be 2×10(5)M(-1)s(-1). We were also able to show that this bioconversion can proceed in intact CCF-STTG1 human astrocytoma cells exposed to paraquat (PQ), a O2(-) generating viologen. Notably, exposure of cells to increasing amounts of PQ led to a dose dependent increase in both MeHg and iHg. Indeed, a 24h exposure to 500μM PQ induced a ∼13-fold and ∼18-fold increase in intracellular MeHg and iHg respectively. These effects were inhibited by superoxide dismutase mimetic MnTBAP. In addition, we also observed that a 24h exposure to a biologically relevant concentration of MeHg (1μM) did not induce cell death, oxidative stress, or even changes in cellular O2(-) and H2O2. However, co-exposure to PQ enhanced MeHg toxicity which was associated with a robust increase in cell death and oxidative stress. Collectively our results show that O2(-) can bioconvert MeHg to iHg in vitro and in intact cells exposed to conditions that simulate high intracellular O2(-) production. In addition, we show for the first time that O2(-) mediated degradation of MeHg to iHg enhances the toxicity of MeHg by facilitating an accumulation of both MeHg and iHg in the intracellular

  12. Enhanced Reactive Oxygen Species Scavenging by Overproduction of Superoxide Dismutase and Catalase Delays Postharvest Physiological Deterioration of Cassava Storage Roots1[C][W][OA

    Science.gov (United States)

    Xu, Jia; Duan, Xiaoguang; Yang, Jun; Beeching, John R.; Zhang, Peng

    2013-01-01

    Postharvest physiological deterioration (PPD) of cassava (Manihot esculenta) storage roots is the result of a rapid oxidative burst, which leads to discoloration of the vascular tissues due to the oxidation of phenolic compounds. In this study, coexpression of the reactive oxygen species (ROS)-scavenging enzymes copper/zinc superoxide dismutase (MeCu/ZnSOD) and catalase (MeCAT1) in transgenic cassava was used to explore the intrinsic relationship between ROS scavenging and PPD occurrence. Transgenic cassava plants integrated with the expression cassette p54::MeCu/ZnSOD-35S::MeCAT1 were confirmed by Southern-blot analysis. The expression of MeCu/ZnSOD and MeCAT1 was verified by quantitative reverse transcription-polymerase chain reaction and enzymatic activity analysis both in the leaves and storage roots. Under exposure to the ROS-generating reagent methyl viologen or to hydrogen peroxide (H2O2), the transgenic plants showed higher enzymatic activities of SOD and CAT than the wild-type plants. Levels of malondialdehyde, chlorophyll degradation, lipid peroxidation, and H2O2 accumulation were dramatically reduced in the transgenic lines compared with the wild type. After harvest, the storage roots of transgenic cassava lines show a delay in their PPD response of at least 10 d, accompanied by less mitochondrial oxidation and H2O2 accumulation, compared with those of the wild type. We hypothesize that this is due to the combined ectopic expression of Cu/ZnSOD and CAT leading to an improved synergistic ROS-scavenging capacity of the roots. Our study not only sheds light on the mechanism of the PPD process but also develops an effective approach for delaying the occurrence of PPD in cassava. PMID:23344905

  13. A new endoplasmic reticulum-targeted two-photon fluorescent probe for imaging of superoxide anion in diabetic mice.

    Science.gov (United States)

    Xiao, Haibin; Liu, Xiao; Wu, Chuanchen; Wu, Yaohuan; Li, Ping; Guo, Xiaomeng; Tang, Bo

    2017-05-15

    Excessive or unfolded proteins accumulation in endoplasmic reticulum (ER) will cause ER stress, which has evolved to involve in various metabolic diseases. In particular, ER stress plays an important role in the pathogenesis of diabetes. Both ER stress and course of diabetes accompany oxidative stress and production of reactive oxygen species (ROS), among which superoxide anion (O2(•-)) is the first produced ROS and has been recognized as cell signaling mediator involved in the physiological and pathological process of diabetes. Hence, the development of effective monitoring methods of O2(•-) in live cells and in vivo is of great importance for ascertaining the onset and progress of related diseases. Herein, a new endoplasmic reticulum-targeted two-photon fluorescent probe termed ER-BZT is designed and synthesized for imaging of O2(•-). The probe ER-BZT shows high sensitivity, selectivity, stability, and low cytotoxicity. Based on these superior properties, the rise of O2(•-) levels in endoplasmic reticulum induced with different stimuli is visualized by one- and two-photon fluorescence imaging. Most importantly, by utilizing ER-BZT, the two-photon fluorescence imaging results demonstrate that the endogenous O2(•-) concentration in abdominal or hepatic tissue of diabetic mice is higher than that in normal mice. Meanwhile, after treated with metformin, a broad-spectrum antidiabetic drug, the diabetic mice exhibit depressed O2(•-) level. The proposed two-photon probe, ER-BZT might serve as perfect tool to image the O2(•-) fluctuations and study the relevance between O2(•-) and various diseases in live cells and in vivo.

  14. Preventive effect of a melon extract rich in superoxide scavenging activity on abdominal and liver fat and adipokine imbalance in high-fat-fed hamsters.

    Science.gov (United States)

    Décordé, Kelly; Agne, Anta; Lacan, Dominique; Ramos, Jeanne; Fouret, Gilles; Ventura, Emilie; Feillet-Coudray, Christine; Cristol, Jean-Paul; Rouanet, Jean-Max

    2009-07-22

    Studies showed that dietary antioxidants could be a therapy against obesity that is associated with a state of oxidative stress. Thus, this paper investigates whether a dietary ingredient, a melon juice extract rich in superoxide dismutase, would prevent the development of such obesity in hamsters. Five groups received a standard diet or a high-fat diet (HF) plus a daily gavage with water (control) or extract at 0.7, 2.8, or 5.6 mg/day. After 84 days, the higher dose lowered triglyceridemia (68%), production of liver superoxide anion (12%), mitochondrial cytochrome c oxidase activity (40%), lipid and protein oxidation products (35 and 35%, respectively), and leptinemia (99%) and increased adiponectinemia (29%), leading to a concomitant reduction in insulinemia (39%), insulin resistance (41%), and abdominal lipids (25%). The extract triggered a remarkable decrease of liver lipids (73%) and fully prevented the steatohepatitis induced by the HF diet. Chronic consumption of this melon extract may represent a new alternative to reduce obesity induced by a high-fat diet.

  15. Signaling Pathways Linked to Serotonin-Induced Superoxide Anion Production: A Physiological Role for Mitochondria in Pulmonary Arteries

    Science.gov (United States)

    Genet, Nafiisha; Billaud, Marie; Rossignol, Rodrigue; Dubois, Mathilde; Gillibert-Duplantier, Jennifer; Isakson, Brant E.; Marthan, Roger; Savineau, Jean-Pierre; Guibert, Christelle

    2017-01-01

    Serotonin (5-HT) is a potent vasoconstrictor agonist and contributes to several vascular diseases including systemic or pulmonary hypertension and atherosclerosis. Although superoxide anion (O2•_) is commonly associated to cellular damages due to O2•_ overproduction, we previously demonstrated that, in physiological conditions, O2•_ also participates to the 5-HT contraction in intrapulmonary arteries (IPA). Here, we focused on the signaling pathways leading to O2•_ production in response to 5-HT in rat IPA. Using electron paramagnetic resonance on rat IPA, we showed that 5-HT (100 μM)-induced O2•_ production was inhibited by ketanserin (1 μM—an inhibitor of the 5-HT2 receptor), absence of extracellular calcium, two blockers of voltage-independent calcium permeable channels (RHC80267 50 μM and LOE-908 10 μM) and a blocker of the mitochondrial complex I (rotenone—100 nM). Depletion of calcium from the sarcoplasmic reticulum or nicardipine (1 μM—an inhibitor of the L-type voltage-dependent calcium channel) had no effect on the 5-HT-induced O2•_ production. O2•_ levels were also increased by α-methyl-5-HT (10 μM—a 5-HT2 receptors agonist) whereas GR127935 (1 μM—an antagonist of the 5-HT1B/D receptor) and citalopram (1 μM—a 5-HT transporter inhibitor) had no effect on the 5-HT-induced O2•_ production. Peroxynitrites were increased in response to 5-HT (100 μM). In isolated pulmonary arterial smooth muscle cells loaded with rhod-2 or mitosox probes, we respectively showed that 5-HT increased both mitochondrial calcium and O2•_ levels, which were both abrogated in absence of extracellular calcium. Mitochondrial O2•_ levels were also abolished in the presence of rotenone (100 nM). In pulmonary arterial smooth muscle cells loaded with TMRM, we showed that 5-HT transiently depolarized the mitochondrial membrane whereas in the absence of extracellular calcium the mitochondrial membrane depolarisation was delayed and sustained in

  16. The effect of orexin-A on cardiac dysfunction mediated by NADPH oxidase-derived superoxide anion in ventrolateral medulla.

    Directory of Open Access Journals (Sweden)

    Jun Chen

    Full Text Available Hypocretin/orexin-producing neurons, located in the perifornical region of the lateral hypothalamus area (LHA and projecting to the brain sites of rostral ventrolateral medulla (RVLM, involve in the increase of sympathetic activity, thereby regulating cardiovascular function. The current study was designed to test the hypothesis that the central orexin-A (OXA could be involved in the cardiovascular dysfunction of acute myocardial infarction (AMI by releasing NAD(PH oxidase-derived superoxide anion (O2 (- generation in RVLM, AMI rat model established by ligating the left anterior descending (LAD coronary artery to induce manifestation of cardiac dysfunction, monitored by the indicators as heart rate (HR, heart rate variability (HRV, mean arterial pressure (MAP and left intraventricular pressure. The results showed that the expressions of OXA in LHA and orexin 1 receptor (OX1R increased in RVLM of AMI rats. The double immunofluorescent staining indicated that OX1R positive cells and NAD(PH oxidative subunit gp91phox or p47phox-immunoreactive (IR cells were co-localized in RVLM. Microinjection of OXA into the cerebral ventricle significantly increased O2 (- production and mRNA expression of NAD(PH oxidase subunits when compared with aCSF-treated ones. Exogenous OXA administration in RVLM produced pressor and tachycardiac effects. Furthermore, the antagonist of OX1R and OX2R (SB-408124 and TCS OX2 29, respectively or apocynin (APO, an inhibitor of NAD(PH oxidase, partly abolished those cardiovascular responses of OXA. HRV power spectral analysis showed that exogenous OXA led to decreased HF component of HRV and increased LF/HF ratio in comparison with aCSF, which suggested that OXA might be related to sympathovagal imbalance. As indicated by the results, OXA might participate in the central regulation of cardiovascular activities by disturbing the sympathovagal balance in AMI, which could be explained by the possibility that OXR and NAD(PH-derived O

  17. Sensitive electrochemical detection of superoxide anion using gold nanoparticles distributed poly(methyl methacrylate)-polyaniline core-shell electrospun composite electrode.

    Science.gov (United States)

    Santhosh, Padmanabhan; Manesh, Kalayil Manian; Lee, Se-Hee; Uthayakumar, Sivaperumal; Gopalan, Anantha Iyengar; Lee, Kwang-Pill

    2011-04-21

    In the present communication, a novel composite nanofibrous electrode is developed for the detection of superoxide anion (O(2)˙(-)) in phosphate buffered saline (PBS). The composite fiber electrode is fabricated by dispersing gold nanoparticles onto poly(methyl methacrylate) (PMMA)-polyaniline (PANI) core-shell electrospun nanofibers. The constructed architecture is proven to be a favorable environment for the immobilization of the enzyme, superoxide dismutase (SOD). Direct electron transfer is achieved between SOD and the electrode with an electron transfer rate constant of 8.93 s(-1). At an applied potential of +300 mV, PMMA/PANI-Au(nano)/SOD-ESCFM shows highly sensitive detection of O(2)˙(-). In addition to this, quantification of different activities of SOD is realized at PMMA/PANI-Au(nano)/SOD-ESCFM. These analytical features offer great potential for construction of the third-generation O(2)˙(-) biosensor.

  18. The carbonate radical anion-induced covalent aggregation of human copper, zinc superoxide dismutase, and alpha-synuclein: intermediacy of tryptophan- and tyrosine-derived oxidation products.

    Science.gov (United States)

    Zhang, Hao; Andrekopoulos, Christopher; Joseph, Joy; Crow, John; Kalyanaraman, B

    2004-06-01

    In this review, we describe the free radical mechanism of covalent aggregation of human copper, zinc superoxide dismutase (hSOD1). Bicarbonate anion (HCO3-) enhances the covalent aggregation of hSOD1 mediated by the SOD1 peroxidase-dependent formation of carbonate radical anion (CO3*-), a potent and selective oxidant. This species presumably diffuses out the active site of hSOD1 and reacts with tryptophan residue located on the surface of hSOD1. The oxidative degradation of tryptophan to kynurenine and N-formyl kynurenine results in the covalent crosslinking and aggregation of hSOD1. Implications of oxidant-mediated aggregation of hSOD1 in the increased cytotoxicity of motor neurons in amyotrophic lateral sclerosis are discussed.

  19. A superoxide anion biosensor based on direct electron transfer of superoxide dismutase on sodium alginate sol-gel film and its application to monitoring of living cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiuhua; Han Min; Bao Jianchun; Tu Wenwen [Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097 (China); Dai Zhihui, E-mail: daizhihuii@njnu.edu.cn [Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097 (China)

    2012-03-02

    Highlights: Black-Right-Pointing-Pointer The direct electron transfer of SOD was facilitated on SA sol-gel film. Black-Right-Pointing-Pointer O{sub 2}{center_dot}{sup -} sensor has high selectivity, stability and sensitivity. Black-Right-Pointing-Pointer The proposed measurement for O{sub 2}{center_dot}{sup -} can be applied in living cells. - Abstract: The direct electron transfer of superoxide dismutase (SOD) was greatly facilitated by sodium alginate (SA) sol-gel film with the formal potential of 0.14 V, which was just located between O{sub 2}{center_dot}{sup -}/O{sub 2} and O{sub 2}{center_dot}{sup -}/H{sub 2}O{sub 2}. The preparation of the SOD/SA modified electrode was simple without any mediators or promoters. Based on bimolecular recognition for specific reactivity of SOD/SA toward O{sub 2}{center_dot}{sup -}, the SOD modified electrode was utilized to measure O{sub 2}{center_dot}{sup -} with good analytical performance, such as low applied potential (0 V), high selectivity (no obvious interference), wide linear range (0.44-229.88 {mu}M) and low detection limit (0.23 {mu}M) in pH 7.0 phosphate buffer solution. Furthermore, it could be successfully exploited for the determination of O{sub 2}{center_dot}{sup -} released from living cells directly adhered on the modified electrode surface. Thus, the proposed O{sub 2}{center_dot}{sup -} biosensor, combining with the properties of SA sol-gel film, provided a novel approach for protein immobilization, direct electron transfer study of the immobilized protein and real-time determination of O{sub 2}{center_dot}{sup -} released from living cells.

  20. SK-N-MC cell death occurs by distinct molecular mechanisms in response to hydrogen peroxide and superoxide anions: involvements of JAK2-STAT3, JNK, and p38 MAP kinases pathways.

    Science.gov (United States)

    Moslehi, Maryam; Yazdanparast, Razieh

    2013-07-01

    Oxidative stress plays a vital role in the pathogenesis of neurodegenerative diseases. Nerve cells are incessantly exposed to environmental stresses leading to overproduction of some harmful species like reactive oxygen species (ROS). ROS including hydrogen peroxide and superoxide anion are potent inducers of various signaling pathways encompassing MAPKs and JAK-STAT pathways. In the current study, we scrutinized the effects of hydrogen peroxide and/or menadione (superoxide anion generator) on JNK/p38-MAPKs and JAK2-STAT3 pathways to elucidate the mechanism(s) by which each oxidant modulated the above-mentioned pathways leading to SK-N-MC cell death. Our results delineated that hydrogen peroxide and superoxide anion radical induced distinct responses as we showed that STAT3 and p38 were activated in response to hydrogen peroxide, but not superoxide anion radicals indicating the specificity in ROS-induced signaling pathways activations and behaviors. We also observed that menadione induced JNK-dependent p53 expression and apoptotic death in SK-N-MC cells while H2O2-induced JNK activation was p53 independent. Thus, we declare that ROS type has a key role in selective instigation of JNK/p38-MAPKs and JAK2-STAT3 pathways in SK-N-MC cells. Identifying these differential behaviors and mechanisms of hydrogen peroxide and superoxide anion functions illuminates the possible therapeutic targets in the prevention or treatment of ROS-induced neurodegenerative diseases such as Alzheimer's disease.

  1. Prion-derived copper-binding peptide fragments catalyze the generation of superoxide anion in the presence of aromatic monoamines

    Directory of Open Access Journals (Sweden)

    Tomonori Kawano

    2007-01-01

    Full Text Available Objectives: Studies have proposed two opposing roles for copper-bound forms of prion protein (PrP as an anti-oxidant supporting the neuronal functions and as a pro-oxidant leading to neurodegenerative process involving the generation of reactive oxygen species. The aim of this study is to test the hypothesis in which putative copper-binding peptides derived from PrP function as possible catalysts for monoamine-dependent conversion of hydrogen peroxide to superoxide in vitro. Materials and methods: Four peptides corresponding to the copper (II-binding motifs in PrP were synthesized and used for analysis of peptide-catalyzed generation of superoxide in the presence of Cu (II and other factors naturally present in the neuronal tissues. Results: Among the Cu-binding peptides tested, the amino acid sequence corresponding to the Cu-binding site in the helical region was shown to be the most active for superoxide generation in the presence of Cu(II, hydrogen peroxide and aromatic monoamines, known precursors or intermediates of neurotransmitters. Among monoamines tested, three compounds namely phenylethylamine, tyramine and benzylamine were shown to be good substrates for superoxide-generating reactions by the Cu-bound helical peptide. Conclusions: Possible roles for these reactions in development of prion disease were suggested.

  2. Competitive Deprotonation and Superoxide [O2 -•] Radical-Anion Adduct Formation Reactions of Carboxamides under Negative-Ion Atmospheric-Pressure Helium-Plasma Ionization (HePI) Conditions

    Science.gov (United States)

    Hassan, Isra; Pinto, Spencer; Weisbecker, Carl; Attygalle, Athula B.

    2016-03-01

    Carboxamides bearing an N-H functionality are known to undergo deprotonation under negative-ion-generating mass spectrometric conditions. Herein, we report that N-H bearing carboxamides with acidities lower than that of the hydroperoxyl radical (HO-O•) preferentially form superoxide radical-anion (O2 -•) adducts, rather than deprotonate, when they are exposed to the glow discharge of a helium-plasma ionization source. For example, the spectra of N-alkylacetamides show peaks for superoxide radical-anion (O2 -•) adducts. Conversely, more acidic amides, such as N-alkyltrifluoroacetamides, preferentially undergo deprotonation under similar experimental conditions. Upon collisional activation, the O2 -• adducts of N-alkylacetamides either lose the neutral amide or the hydroperoxyl radical (HO-O•) to generate the superoxide radical-anion ( m/z 32) or the deprotonated amide [ m/z (M - H)-], respectively. For somewhat acidic carboxamides, the association between the two entities is weak. Thus, upon mildest collisional activation, the adduct dissociates to eject the superoxide anion. Superoxide-adduct formation results are useful for structure determination purposes because carboxamides devoid of a N-H functionality undergo neither deprotonation nor adduct formation under HePI conditions.

  3. BPA-toxicity via superoxide anion overload and a deficit in β-catenin signaling in human bone mesenchymal stem cells.

    Science.gov (United States)

    Leem, Yea-Hyun; Oh, Seikwan; Kang, Hong-Je; Kim, Jung-Hwa; Yoon, Juno; Chang, Jae-Suk

    2017-01-01

    Bisphenol A (BPA), used in the manufacture of products based on polycarbonate plastics and epoxy resins, is well known as an endocrine-disrupting monomer. In the current study, BPA increased cytotoxicity in hBMSCs in a dose- and time-dependent manner, concomitantly with increased lipid peroxidation. Increased cell death in BPA-treated cells was markedly blocked by pretreatment with the superoxide dismutase mimetic MnTBAP and MnTMPyP, but not by catalase, glutathione, the glutathione peroxidase mimetic ebselen, the NOS inhibitor NAME, or the xanthine oxidase inhibitor allopurinol. Furthermore, the decline in nuclear β-catenin and cyclin D1 levels in hBMSCs exposed to BPA was reversed by MnTBAP treatment. Finally, treatment of hBMSCs with the GSK3β inhibitor LiCl2 increased nuclear β-catenin levels and significantly attenuated cytotoxicity compared with BPA treatment. Our current results in hBMSCs exposed to BPA suggest that BPA causes a disturbance in β-catenin signaling via a superoxide anion overload. © 2016 The Authors Environmental Toxicology Published by Wiley Periodicals, Inc. Environ Toxicol 32: 344-352, 2017.

  4. Synergism between arsenite and proteasome inhibitor MG132 over cell death in myeloid leukaemic cells U937 and the induction of low levels of intracellular superoxide anion

    Energy Technology Data Exchange (ETDEWEB)

    Lombardo, Tomás [Laboratorio de Immunotoxicologia (LaITO), IDEHU-CONICET, Hospital de Clínicas, José de San Martín, Universidad de Buenos Aires (UBA), Buenos Aires (Argentina); Cavaliere, Victoria; Costantino, Susana N. [Laboratorio de Inmunología Tumoral (LIT), IDEHU-CONICET, Facultad de Farmacia y Bioquímica, UBA, Buenos Aires (Argentina); Kornblihtt, Laura [Servicio de Hematología, Hospital de Clínicas, José de San Martín (UBA), Buenos Aires (Argentina); Alvarez, Elida M. [Laboratorio de Inmunología Tumoral (LIT), IDEHU-CONICET, Facultad de Farmacia y Bioquímica, UBA, Buenos Aires (Argentina); Blanco, Guillermo A., E-mail: gblanco@ffyb.uba.ar [Laboratorio de Immunotoxicologia (LaITO), IDEHU-CONICET, Hospital de Clínicas, José de San Martín, Universidad de Buenos Aires (UBA), Buenos Aires (Argentina)

    2012-02-01

    Increased oxygen species production has often been cited as a mechanism determining synergism on cell death and growth inhibition effects of arsenic-combined drugs. However the net effect of drug combination may not be easily anticipated solely from available knowledge of drug-induced death mechanisms. We evaluated the combined effect of sodium arsenite with the proteasome inhibitor MG132, and the anti-leukaemic agent CAPE, on growth-inhibition and cell death effect in acute myeloid leukaemic cells U937 and Burkitt's lymphoma-derived Raji cells, by the Chou–Talalay method. In addition we explored the association of cytotoxic effect of drugs with changes in intracellular superoxide anion (O{sub 2}{sup −}) levels. Our results showed that combined arsenite + MG132 produced low levels of O{sub 2}{sup −} at 6 h and 24 h after exposure and were synergic on cell death induction in U937 cells over the whole dose range, although the combination was antagonistic on growth inhibition effect. Exposure to a constant non-cytotoxic dose of 80 μM hydrogen peroxide together with arsenite + MG132 changed synergism on cell death to antagonism at all effect levels while increasing O{sub 2}{sup −} levels. Arsenite + hydrogen peroxide also resulted in antagonism with increased O{sub 2}{sup −} levels in U937 cells. In Raji cells, arsenite + MG132 also produced low levels of O{sub 2}{sup −} at 6 h and 24 h but resulted in antagonism on cell death and growth inhibition. By contrast, the combination arsenite + CAPE showed high levels of O{sub 2}{sup −} production at 6 h and 24 h post exposure but resulted in antagonism over cell death and growth inhibition effects in U937 and Raji cells. We conclude that synergism between arsenite and MG132 in U937 cells is negatively associated to O{sub 2}{sup −} levels at early time points after exposure. -- Highlights: ► Arsenic combined cytotoxic and anti-proliferative effects by Chou–Talalay method. ► Cytotoxic effect

  5. Inhibition of formyl peptide-stimulated superoxide anion generation by Fal-002-2 occurs mainly through the blockade of the p21-activated kinase and protein kinase C signaling pathways in ratneutrophils.

    Science.gov (United States)

    Tsai, Ya-Ru; Huang, Li-Jiau; Lin, Hui-Yi; Hung, Yun-Jie; Lee, Miau-Rong; Kuo, Sheng-Chu; Hsu, Mei-Feng; Wang, Jih-Pyang

    2013-02-15

    In formyl-Met-Leu-Phe (fMLP)-stimulated rat neutrophils, a synthetic compound, 6-chloro-2-(2-chlorophenyl)-4-oxo-1,4-dihydroquinoline-3-carboxylate (Fal-002-2), inhibited superoxide anion (O2(•-)) generation with an IC50 value of about 11μM, which was not mediated by scavenging the generated O2(•-) or by a cytotoxic effect on neutrophils. Fal-002-2 effectively attenuated the phosphorylation of Ser residues in p47(phox) and the association between p47(phox) and p22(phox) in fMLP-stimulated neutrophils. The interaction of p47(phox) with protein kinase C (PKC) isoforms (α, βI, βII, δ and ζ) was attenuated by Fal-002-2 with a similar IC50 value to that required for inhibition of O2(•-) generation, whereas Fal-002-2 had no prominent effect on PKC isoform membrane translocation and did not affect the kinase activity. Moreover, Fal-002-2 had no effect on the phosphorylation of Akt and downstream glycogen synthase kinase-3β, only slightly affected the intracellular free Ca(2+) concentration, phosphorylation of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase (MAPK), but effectively attenuated the downstream MAPK-activated protein kinase-2 phosphorylation. The interaction of p21-activated kinase (PAK) 1with p47(phox), phosphorylation of PAK1 (Thr423/Ser144) and the membrane recruitment of PAK1 were effectively inhibited by Fal-002-2. Fal-002-2 also blocked the activation of Rac1 and Cdc42 in a concentration range that effectively inhibited PAK activation. Taken together, these results suggest that Fal-002-2 inhibits fMLP-stimulated O2(•-) generation in neutrophils mainly through the blockade of PKC and PAK signaling pathways and partly through p38 MAPK signaling.

  6. 氧脱木素过程中超氧阴离子自由基的控制%Regulation of Superoxide Anion Radical During the Oxygen Delignification Process

    Institute of Scientific and Technical Information of China (English)

    曹石林; 詹怀宇; 付时雨; 陈礼辉

    2007-01-01

    In this study, the superoxide anion radicals were generated by the auto-oxidation of 1,2,3-trihydroxybenzene and determined by UV spectrophotometry, and the reaction was found to be facilitated by anthraquinone-2-sulfonic acid sodium salt. The bamboo kraft pulps were treated by the 1,2,3-trihydroxybenzene auto-oxidation method or the 1,2,3-trihydroxybenzene auto-oxidation combined with anthraquinone-2-suffonic acid sodium salt to show the effect of the superoxide anion radicals during the oxygen delignification of bamboo kraft pulp and the enhancing affect of anthraquinone compounds as an additive on delignification. The results indicated that the superoxide anion radicals could react with lignin and remove it from pulp with negligible damage on cellulose, and the anthraquinone-2-sulfonic acid sodium salt could facilitate the generation of superoxide anion radical to enhance delignification of pulps. The oxygen delignification selectivity could be improved using the 1,2,3-trihydroxybenzene auto-oxidation system combined with anthraquinone-2-sulfonic acid sodium salt.

  7. Free radical scavenging abilities of polypeptide from Chlamys farreri

    Science.gov (United States)

    Han, Zhiwu; Chu, Xiao; Liu, Chengjuan; Wang, Yuejun; Mi, Sun; Wang, Chunbo

    2006-09-01

    We investigated the radical scavenging effect and antioxidation property of polypeptide extracted from Chlamys farreri (PCF) in vitro using chemiluminescence and electron spin resonance (ESR) methods. We examined the scavenging effects of PCF on superoxide anions (O{2/-}), hydroxyl radicals (OH·), peroxynitrite (ONOO-) and the inhibiting capacity of PCF on peroxidation of linoleic acid. Our experiment suggested that PCF could scavenge oxygen free radicals including superoxide anions (O{2/-}) (IC50=0.3 mg/ml), hydroxyl radicals (OH·) (IC50=0.2 μg/ml) generated from the reaction systems and effectively inhibit the oxidative activity of ONOO- (IC50=0.2 mg/ml). At 1.25 mg/ml of PCF, the inhibition ratio on lipid peroxidation of linoleic acid was 43%. The scavenging effect of PCF on O{2/-}, OH· and ONOO- free radicals were stronger than those of vitamin C but less on lipid peroxidation of linoleic acid. Thus PCF could scavenge free radicals and inhibit the peroxidation of linoleic acid in vitro. It is an antioxidant from marine products and potential for industrial production in future.

  8. Free radical scavenging abilities of polypeptide from Chlamys farreri

    Institute of Scientific and Technical Information of China (English)

    HAN Zhiwu; CHU Xiao; LIU Chengjuan; WANG Yuejun; SUN Mi; WANG Chunbo

    2006-01-01

    We investigated the radical scavenging effect and antioxidation property of polypeptide extracted from Chlamys farreri (PCF) in vitro using chemiluminescence and electron spin resonance (ESR) methods. We examined the scavenging effects of PCF on superoxide anions (O-2), hydroxyl radicals (OH·), peroxynitrite (ONOO-) and the inhibiting capacity of PCF on peroxidation of linoleic acid. Our experiment suggested that PCF could scavenge oxygen free radicals including superoxide anions (O-2) (IC50 =0.3 mg/ml), hydroxyl radicals (OH·) (IC50 = 0.2 μg/ml) generated from the reaction systems and effectively inhibit the oxidative activity of ONOO- (IC50 = 0.2 mg/ml). At 1.25 mg/ml of PCF, the inhibition ratio on lipid peroxidation of linoleic acid was 43 %. The scavenging effect of PCF on (O-2), OH·and ONOO- free radicals were stronger than those of vitamin C but less on lipid peroxidation of linoleic acid. Thus PCF could scavenge free radicals and inhibit the peroxidation of linoleic acid in vitro. It is an antioxidant from marine products and potential for industrial production in future.

  9. Effect of insulin, the glutathione system, and superoxide anion radical in modulation of lipolysis in adipocytes of rats with experimental diabetes.

    Science.gov (United States)

    Ivanov, V V; Shakhristova, E V; Stepovaya, E A; Nosareva, O L; Fedorova, T S; Ryazantseva, N V; Novitsky, V V

    2015-01-01

    Spontaneous lipolysis was found to be increased in adipocytes of rats with alloxan-induced diabetes. In addition, isoproterenol-stimulated hydrolysis of triacylglycerols was inhibited against the background of oxidative stress and decreased redox-status of cells. A decrease in the ability of insulin to inhibit isoproterenol-stimulated lipolysis in adipocytes that were isolated from adipose tissue of rats with experimental diabetes was found, which shows a disorder in regulation of lipolysis in adipocytes by the hormone in alloxan-induced diabetes. Based on these findings, we concluded that there is an influence of reactive oxygen species, superoxide anion radical in particular, and redox potential of the glutathione system on molecular mechanisms of change in lipolysis intensity in rat adipocytes in alloxan-induced oxidative stress. Activation of spontaneous lipolysis under conditions of oxidative stress might be a reason for the high concentration of free fatty acids in blood plasma in experimental diabetes, and this may play a significant role in development of insulin resistance and appearance of complications of diabetes.

  10. Synthesis of malachite@clay nanocomposite for rapid scavenging of cationic and anionic dyes from synthetic wastewater.

    Science.gov (United States)

    Srivastava, Varsha; Sillanpää, Mika

    2017-01-01

    Synthesis of malachite@clay nanocomposite was successfully carried out for the removal of cationic (Methylene Blue, MB) and anionic dyes (Congo Red, CR) from synthetic wastewater. Nanocomposite was characterized by TEM, SEM, FT-IR, EDS analysis and zeta potential. TEM analysis indicated that the particle diameter of nanocomposite was in the range of 14 to 23nm. Various important parameters viz. contact time, concentration of dyes, nanocomposite dosage, temperature and solution pH were optimized to achieve maximum adsorption capacity. In the case of MB, removal decreased from 99.82% to 93.67% while for CR, removal decreased from 88.55% to 75.69% on increasing dye concentration from 100 to 450mg/L. pH study confirmed the higher removal of CR in acidic range while MB removal was higher in alkaline range. Kinetic study revealed the applicability of pseudo-second-order model for the adsorption of both dyes. Negative values of ΔG(0) for both systems suggested the feasibility of dye removal and support for spontaneous adsorption of CR and MB on nanocomposite. Nanocomposite showed 277.77 and 238.09mg/g Langmuir adsorption capacity for MB and CR respectively. Desorption of dyes from the dye loaded nanocomposite was easily carried out with acetone. The results indicate that the prepared malachite@clay nanocomposite is an efficient adsorbent with high adsorption capacity for the aforementioned dyes. Copyright © 2016. Published by Elsevier B.V.

  11. In vitro screening of Crataegus succulenta extracts for free radical scavenging and 15-lipoxygenase inhibitory activities.

    Science.gov (United States)

    Bedreag, Catrinel Florentina Giurescu; Trifan, Adriana; Vasincu, Al; Miron, S D; Aprotosoaie, Ana Clara; Miron, Anca

    2014-01-01

    Crataegus succulenta Schrad. ex Link is widely spread in North America. A literature survey revealed no studies on the chemical composition and biological effects of this species. The aim of the present study was to investigate the phenolic content, free radical scavenging and 15-lipoxygenase inhibitory effects of Crataegus succulenta leaf and flower extracts. Total phenolic, flavonoid and proanthocyanidin contents were quantified by spectrophotometric methods. Both extracts were evaluated for their ability to scavenge DPPH, superoxide anion and hydroxyl radicals and to inhibit 15-lipoxygenase activity. There were noticed no striking differences in the total phenolic, flavonoid and proanthocyanidin contents between leaf and flower extracts. Both extracts showed similar 15-lipoxygenase inhibitory effects. Flower extract scavenged more effectively DPPH and superoxide radicals while leave extract was more active against hydroxyl radical. In superoxide anion radical scavenging assay, both extracts were more active than (+)-catechin. In hydroxyl radical scavenging and 15-lipoxygenase inhibition assays, the extracts were only 4-5 times less active than (+)-catechin. The high antioxidant potential of Crataegus succulenta extracts suggest a possible use as ingredients in functional foods for the prevention of oxidative stress-related diseases.

  12. Myocardial capillary permeability after regional ischemia and reperfusion in the in vivo canine heart. Effect of superoxide dismutase

    DEFF Research Database (Denmark)

    Svendsen, Jesper Hastrup; Bjerrum, P J; Haunsø, S

    1991-01-01

    This study assesses the effect of the superoxide anion scavenger superoxide dismutase on myocardial capillary permeability-surface area (PS) products for small hydrophilic molecules after ischemia and reperfusion. Open-chest dogs underwent a 20-minute occlusion of the left anterior descending...... the start of reperfusion. In 13 dogs, no scavenger treatment was given (nonprotected control group), whereas eight dogs were treated systemically with 15,000 units/kg superoxide dismutase during 1 hour, starting 20 minutes before ischemia. In the control group, three dogs developed reperfusion ventricular...... fibrillation in contrast to none in the superoxide dismutase group. Before ischemia, plasma flow rate, myocardial capillary extraction fraction, and PS values were similar in the two groups. Five minutes after the start of reperfusion, plasma flow rate increased significantly (p less than 0.01) in both groups...

  13. N-acetylcysteine downregulates phosphorylated p-38 expression but does not reverse the increased superoxide anion levels in the spinal cord of rats with neuropathic pain.

    Science.gov (United States)

    Horst, A; de Souza, J A; Santos, M C Q; Riffel, A P K; Kolberg, C; Ribeiro, M F M; de Fraga, L S; Partata, W A

    2017-02-16

    We determined the effect of N-acetylcysteine (NAC) on the expression of the phosphorylated p38 (p-p38) protein and superoxide anion generation (SAG), two important players in the processing of neuropathic pain, in the lumbosacral spinal cord of rats with chronic constriction injury (CCI)-induced neuropathic pain. The sciatic functional index (SFI) was also measured to assess the functional recovery post-nerve lesion. Thirty-six male Wistar rats were divided equally into the following groups: Naive (rats did not undergo surgical manipulation); Sham (rats in which all surgical procedures involved in CCI were used except the ligature), and CCI (rats in which four ligatures were tied loosely around the right common sciatic nerve), which received 2, 4, or 8 intraperitoneal injections of NAC (150 mg·kg-1·day-1) or saline beginning 4 h after CCI. Rats were sacrificed 1, 3, and 7 days after CCI. The SFI was measured on these days and the lumbosacral spinal cord was used for analysis of p-p38 expression and SAG. CCI induced a decrease in SFI as well as an increase in p-p38 expression and SAG in the spinal cord. The SFI showed a partial recovery at day 7 in saline-treated CCI rats, but recovery was improved in NAC-treated CCI rats. NAC induced a downregulation in p-p38 expression at all time-points evaluated, but did not reverse the increased SAG induced by CCI. Since p-p38 is a mediator in neuropathic pain and/or nerve regeneration, modulation of this protein may play a role in NAC-induced effects in CCI rats.

  14. Inhibition of glutamate receptors reduces the homocysteine-induced whole blood platelet aggregation but does not affect superoxide anion generation or platelet membrane fluidization.

    Science.gov (United States)

    Karolczak, Kamil; Pieniazek, Anna; Watala, Cezary

    2017-01-01

    Homocysteine (Hcy) is an excitotoxic amino acid. It is potentially possible to prevent Hcy-induced toxicity, including haemostatic impairments, by antagonizing glutaminergic receptors. Using impedance aggregometry with arachidonate and collagen as platelet agonists, we tested whether the blockade of platelet NMDA (N-methyl-D-aspartate), AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and kainate receptors with their inhibitors: MK-801 (dizocilpine hydrogen maleate, [5R,10S]-[+]-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine), CNQX (7-nitro-2,3-dioxo-1,4-dihydroquinoxaline-6-carbonitrile) and UBP-302 (2-{[3-[(2S)-2-amino-2-carboxyethyl]-2,6-dioxo-3,6-dihydropyrimidin 1(2H)-yl]methyl}benzoic acid) may hamper Hcy-dependent platelet aggregation. All the tested compounds significantly inhibited Hcy-augmented aggregation of blood platelets stimulated either with arachidonate or collagen. Hcy stimulated the generation of superoxide anion in whole blood samples in a concentration-dependent manner; however, this process appeared as independent on ionotropic glutamate receptors, as well as on NADPH oxidase and protein kinase C, and was not apparently associated with the extent of either arachidonate- or collagen-dependent platelet aggregation. Moreover, Hcy acted as a significant fluidizer of surface (more hydrophilic) and inner (more hydrophobic) regions of platelet membrane lipid bilayer, when used at the concentration range from 10 to 50 µmol/l. However, this effect was independent on the Hcy action through glutamate ionotropic receptors, since there was no effects of MK-801, CNQX or UBP-302 on Hcy-mediated membrane fluidization. In conclusion, Hcy-induced changes in whole blood platelet aggregation are mediated through the ionotopic excitotoxic receptors, although the detailed mechanisms underlying such interactions remain to be elucidated.

  15. Acute ethanol intake induces superoxide anion generation and mitogen-activated protein kinase phosphorylation in rat aorta: A role for angiotensin type 1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Yogi, Alvaro; Callera, Glaucia E. [Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario (Canada); Mecawi, André S. [Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP (Brazil); Batalhão, Marcelo E.; Carnio, Evelin C. [Department of General and Specialized Nursing, College of Nursing of Ribeirão Preto, USP, São Paulo (Brazil); Antunes-Rodrigues, José [Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP (Brazil); Queiroz, Regina H. [Department of Clinical, Toxicological and Food Science Analysis, Faculty of Pharmaceutical Sciences, USP, São Paulo (Brazil); Touyz, Rhian M. [Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario (Canada); Tirapelli, Carlos R., E-mail: crtirapelli@eerp.usp.br [Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP (Brazil)

    2012-11-01

    Ethanol intake is associated with increase in blood pressure, through unknown mechanisms. We hypothesized that acute ethanol intake enhances vascular oxidative stress and induces vascular dysfunction through renin–angiotensin system (RAS) activation. Ethanol (1 g/kg; p.o. gavage) effects were assessed within 30 min in male Wistar rats. The transient decrease in blood pressure induced by ethanol was not affected by the previous administration of losartan (10 mg/kg; p.o. gavage), a selective AT{sub 1} receptor antagonist. Acute ethanol intake increased plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, plasma angiotensin I (ANG I) and angiotensin II (ANG II) levels. Ethanol induced systemic and vascular oxidative stress, evidenced by increased plasma thiobarbituric acid-reacting substances (TBARS) levels, NAD(P)H oxidase‐mediated vascular generation of superoxide anion and p47phox translocation (cytosol to membrane). These effects were prevented by losartan. Isolated aortas from ethanol-treated rats displayed increased p38MAPK and SAPK/JNK phosphorylation. Losartan inhibited ethanol-induced increase in the phosphorylation of these kinases. Ethanol intake decreased acetylcholine-induced relaxation and increased phenylephrine-induced contraction in endothelium-intact aortas. Ethanol significantly decreased plasma and aortic nitrate levels. These changes in vascular reactivity and in the end product of endogenous nitric oxide metabolism were not affected by losartan. Our study provides novel evidence that acute ethanol intake stimulates RAS activity and induces vascular oxidative stress and redox-signaling activation through AT{sub 1}-dependent mechanisms. These findings highlight the importance of RAS in acute ethanol-induced oxidative damage. -- Highlights: ► Acute ethanol intake stimulates RAS activity and vascular oxidative stress. ► RAS plays a role in acute ethanol-induced oxidative damage via AT{sub 1} receptor activation.

  16. The Protective Effects of N-Acetylcysteine on Exogenous Hydrogen Peroxide and Endogenous Superoxide Anion induced DNA Strand Breakage in Human Spermatozoa%`

    Institute of Scientific and Technical Information of China (English)

    徐德祥; 沈汉民; 王俊南

    2001-01-01

    Objective To explore the protective effects of N-Acetylcysteine (NAC) on exogenous hydrogen peroxide and endogenous superoxide anion-induced DNA strand breakage in human spermatozoa by using the single-cell gel electropherosis (SCGE)Methods Sperm cells were exposed to 0. 5 mmol/L of H2O2 or 5. 0 mmol/L of β -NADPH with or without 0. 1, 0. 5, 1. 0 mmol/L of NAC. The percentage of sperm comet cells and the comet tail lengths were measured in the treated sperm cells by using SCGE.Results Both percentage of comet sperm nuclei and mean tail length in sperm cells exposed to 0. 5 mmol/L hydrogen peroxide with different concentrations of NAC decrease significantly in a dose-dependent manner as compared with sperm cells exposed to H2O2 without NAC or catalase. Although mean tail length in sperm cells exposed to 5. 0 mmol/L of β-NADPH with different concentrations of NAC decreases significantly compared with sperm cells exposed to β-NADPH without NAC or SOD,there were no significant differences on the percentage of sperm comet cells between sperm cells exposed to 5. 0 mmol/L of β-NADPH with different concentrations of NAC and sperm cells exposed to 5. 0 mmol/L of β-NADPH without NAC.Conclusion NAC has a protective effect on exogenous hydrogen peroxide-induced DNA damage, while protective effect of NAC against O2- induced DNA strand break age is significant but very weak.

  17. Radical scavenging activity of ribonuclease inhibitor from cow placenta.

    Science.gov (United States)

    Wang, Shuo; Li, Haiping

    2006-05-01

    Cow placenta ribonuclease inhibitor (CPRI) has been purified 5062-fold by affinity chromatography, the product being homogeneous by sodium dodecyl sulfate-gel electrophoresis. The chemiluminescence technique was used to determine the radical scavenging activities of CPRI toward different reactive oxygen species (ROS) including superoxide anion (O2-*), hydroxyl radical (OH*), lipid-derived radicals (R*), and singlet oxygen (1O2). CPRI could effectively scavenge O2-*, OH*, R*, and 1O2 at EC50 of 0.12, 0.008, 0.009, and 0.006 mg/ml, respectively. In addition, the radical scavenging activities of CPRI were higher than those of tea polyphenols, indicating that CPRI is a powerful antioxidant.

  18. Potent free radical scavenging activity of propol isolated from Brazilian propolis.

    Science.gov (United States)

    Basnet, P; Matsuno, T; Neidlein, R

    1997-01-01

    We evaluated free radical scavenging activity of the water, methanol and chloroform extracts of propolis in 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical and xanthine-xanthine oxidase (XOD) generated superoxide anion assay systems. The free radical scavenging activity guided fractionation and chemical analysis led to the isolation of a new compound, propol (3-[4-hydroxy-3-(3-oxo-but-1-enyl)-phenyl]-acrylic acid) from the water extract, which was more potent than most common antioxidants such as vitamin C and vitamin E (alpha-tocopherol) in these assay systems.

  19. Possible involvement of an extracellular superoxide dismutase (SodA) as a radical scavenger in poly(cis-1,4-isoprene) degradation.

    Science.gov (United States)

    Schulte, Carina; Arenskötter, Matthias; Berekaa, Mahmoud M; Arenskötter, Quyen; Priefert, Horst; Steinbüchel, Alexander

    2008-12-01

    Gordonia westfalica Kb1 and Gordonia polyisoprenivorans VH2 induce the formation of an extracellular superoxide dismutase (SOD) during poly(cis-1,4-isoprene) degradation. To investigate the function of this enzyme in G. polyisoprenivorans VH2, the sodA gene was disrupted. The mutants exhibited reduced growth in liquid mineral salt media containing poly(cis-1,4-isoprene) as the sole carbon and energy source, and no SOD activity was detectable in the supernatants of the cultures. Growth experiments revealed that SodA activity is required for optimal growth on poly(cis-1,4-isoprene), whereas this enzyme has no effect on aerobic growth in the presence of water-soluble substrates like succinate, acetate, and propionate. This was detected by activity staining, and proof of expression was by antibody detection of SOD. When SodA from G. westfalica Kb1 was heterologously expressed in the sodA sodB double mutant Escherichia coli QC779, the recombinant mutant exhibited increased resistance to paraquat, thereby indicating the functionality of the G. westfalica Kb1 SodA and indirectly protection of G. westfalica cells by SodA from oxidative damage. Both sodA from G. polyisoprenivorans VH2 and sodA from G. westfalica Kb1 coded for polypeptides comprising 209 amino acids and having approximately 90% and 70% identical amino acids, respectively, to the SodA from Mycobacterium smegmatis strain MC(2) 155 and Micrococcus luteus NCTC 2665. As revealed by activity staining experiments with the wild type and the disruption mutant of G. polyisoprenivorans, this bacterium harbors only one active SOD belonging to the manganese family. The N-terminal sequences of the extracellular SodA proteins of both Gordonia species showed no evidence of leader peptides for the mature proteins, like the intracellular SodA protein of G. polyisoprenivorans VH2, which was purified under native conditions from the cells. In G. westfalica Kb1 and G. polyisoprenivorans VH2, SodA probably provides protection

  20. Vibrio vulnificus MO6-24/O Lipopolysaccharide Stimulates Superoxide Anion, Thromboxane B2, Matrix Metalloproteinase-9, Cytokine and Chemokine Release by Rat Brain Microglia in Vitro

    Directory of Open Access Journals (Sweden)

    Alejandro M. S. Mayer

    2014-03-01

    Full Text Available Although human exposure to Gram-negative Vibrio vulnificus (V. vulnificus lipopolysaccharide (LPS has been reported to result in septic shock, its impact on the central nervous system’s innate immunity remains undetermined. The purpose of this study was to determine whether V. vulnificus MO6-24/O LPS might activate rat microglia in vitro and stimulate the release of superoxide anion (O2−, a reactive oxygen species known to cause oxidative stress and neuronal injury in vivo. Brain microglia were isolated from neonatal rats, and then treated with either V. vulnificus MO6-24/O LPS or Escherichia coli O26:B6 LPS for 17 hours in vitro. O2− was determined by cytochrome C reduction, and matrix metalloproteinase-2 (MMP-2 and MMP-9 by gelatinase zymography. Generation of cytokines tumor necrosis factor alpha (TNF-α, interleukin-1 alpha (IL-1α, IL-6, and transforming growth factor-beta 1 (TGF-β1, chemokines macrophage inflammatory protein (MIP-1α/chemokine (C-C motif ligand 3 (CCL3, MIP-2/chemokine (C-X-C motif ligand 2 (CXCL2, monocyte chemotactic protein-1 (MCP-1/CCL2, and cytokine-induced neutrophil chemoattractant-2alpha/beta (CINC-2α/β/CXCL3, and brain-derived neurotrophic factor (BDNF, were determined by specific immunoassays. Priming of rat microglia by V. vulnificus MO6-24/O LPS in vitro yielded a bell-shaped dose-response curve for PMA (phorbol 12-myristate 13-acetate-stimulated O2− generation: (1 0.1–1 ng/mL V. vulnificus LPS enhanced O2− generation significantly but with limited inflammatory mediator generation; (2 10–100 ng/mL V. vulnificus LPS maximized O2− generation with concomitant release of thromboxane B2 (TXB2, matrix metalloproteinase-9 (MMP-9, and several cytokines and chemokines; (3 1000–100,000 ng/mL V. vulnificus LPS, with the exception of TXB2, yielded both attenuated O2− production, and a progressive decrease in MMP-9, cytokines and chemokines investigated. Thus concentration-dependent treatment of

  1. Vibrio vulnificus MO6-24/O lipopolysaccharide stimulates superoxide anion, thromboxane B₂, matrix metalloproteinase-9, cytokine and chemokine release by rat brain microglia in vitro.

    Science.gov (United States)

    Mayer, Alejandro M S; Hall, Mary L; Holland, Michael; De Castro, Cristina; Molinaro, Antonio; Aldulescu, Monica; Frenkel, Jeffrey; Ottenhoff, Lauren; Rowley, David; Powell, Jan

    2014-03-26

    Although human exposure to Gram-negative Vibrio vulnificus (V. vulnificus) lipopolysaccharide (LPS) has been reported to result in septic shock, its impact on the central nervous system's innate immunity remains undetermined. The purpose of this study was to determine whether V. vulnificus MO6-24/O LPS might activate rat microglia in vitro and stimulate the release of superoxide anion (O₂⁻), a reactive oxygen species known to cause oxidative stress and neuronal injury in vivo. Brain microglia were isolated from neonatal rats, and then treated with either V. vulnificus MO6-24/O LPS or Escherichia coli O26:B6 LPS for 17 hours in vitro. O₂⁻ was determined by cytochrome C reduction, and matrix metalloproteinase-2 (MMP-2) and MMP-9 by gelatinase zymography. Generation of cytokines tumor necrosis factor alpha (TNF-α), interleukin-1 alpha (IL-1α), IL-6, and transforming growth factor-beta 1 (TGF-β1), chemokines macrophage inflammatory protein (MIP-1α)/chemokine (C-C motif) ligand 3 (CCL3), MIP-2/chemokine (C-X-C motif) ligand 2 (CXCL2), monocyte chemotactic protein-1 (MCP-1)/CCL2, and cytokine-induced neutrophil chemoattractant-2alpha/beta (CINC-2α/β)/CXCL3, and brain-derived neurotrophic factor (BDNF), were determined by specific immunoassays. Priming of rat microglia by V. vulnificus MO6-24/O LPS in vitro yielded a bell-shaped dose-response curve for PMA (phorbol 12-myristate 13-acetate)-stimulated O₂⁻ generation: (1) 0.1-1 ng/mL V. vulnificus LPS enhanced O₂⁻ generation significantly but with limited inflammatory mediator generation; (2) 10-100 ng/mL V. vulnificus LPS maximized O₂⁻ generation with concomitant release of thromboxane B2 (TXB2), matrix metalloproteinase-9 (MMP-9), and several cytokines and chemokines; (3) 1000-100,000 ng/mL V. vulnificus LPS, with the exception of TXB2, yielded both attenuated O₂⁻ production, and a progressive decrease in MMP-9, cytokines and chemokines investigated. Thus concentration-dependent treatment of

  2. Study on the Free Radical Scavenging Activity of Sea Cucumber (Paracaudina chinens var.) Gelatin Hydrolysate

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Gelatin from the sea cucumber (Paracaudina chinens var.) was hydrolyzed by bromelain and the hydrolysate was found to have a high free radical scavenging activity. The hydrolysate was fractionated through an ultrafiltration membrane with 5 kDa molecular weight cutoff (MWCO). The portion (less than 5 kDa) was further separated by Sephadex G-25. The active peak was collected and assayed for free radical scavenging activity. The scavenging rates for superoxide anion radicals (O2·-) and hydroxyl radicals (·OH) of the fraction with the highest activity were 29.02% and 75.41%, respectively. A rabbit liver mitochondrial free radical damage model was adopted to study the free radical scavenging activity of the fraction. The results showed that the sea cucumber gelatin hydrolysate can prevent the damage of rabbit liver and mitochondria.

  3. Reactive oxygen species scavenging activity of aminoderivatized chitosan with different degree of deacetylation.

    Science.gov (United States)

    Je, Jae-Young; Kim, Se-Kwon

    2006-09-01

    Chitosans with different degree of deacetylation were prepared from crab shell chitin in the presence of alkali. Aminoderivatized chitosan derivatives were prepared in addition of amino functional groups at a hydroxyl site in the chitosan backbone. Six kinds of aminoderivatized chitosan such as aminoethyl-chitosan (AEC90), dimethylaminoethyl-chitosan (DMAEC90), and diethylaminoethyl-chitosan (DEAEC90), which were prepared from 90% deacetylated chitosan, and AEC50, DMAEC50 and DEAEC50, which were prepared from 50% deacetylated chitosan, were prepared and their reactive oxygen species (ROS) scavenging activities were investigated against hydroxyl radical, superoxide anion radical and hydrogen peroxide. The electron spin resonance (ESR) spectrum revealed that AEC90 showed the highest scavenging effects against hydroxyl and superoxide anion radical, the effects were 91.67% and 65.34% at 0.25 and 5 mg/mL, respectively. For hydrogen peroxide scavenging effect, DEAEC90 exhibited the strongest activity. These results suggest that the scavenging effect depends on their degree of deacetylation and substituted group.

  4. Gas-phase reactions of molecular oxygen with uranyl(V) anionic complexes-synthesis and characterization of new superoxides of uranyl(VI).

    Science.gov (United States)

    Lucena, Ana F; Carretas, José M; Marçalo, Joaquim; Michelini, Maria C; Gong, Yu; Gibson, John K

    2015-04-16

    Gas-phase complexes of uranyl(V) ligated to anions X(-) (X = F, Cl, Br, I, OH, NO3, ClO4, HCO2, CH3CO2, CF3CO2, CH3COS, NCS, N3), [UO2X2](-), were produced by electrospray ionization and reacted with O2 in a quadrupole ion trap mass spectrometer to form uranyl(VI) anionic complexes, [UO2X2(O2)](-), comprising a superoxo ligand. The comparative rates for the oxidation reactions were measured, ranging from relatively fast [UO2(OH)2](-) to slow [UO2I2](-). The reaction rates of [UO2X2](-) ions containing polyatomic ligands were significantly faster than those containing the monatomic halogens, which can be attributed to the greater number of vibrational degrees of freedom in the polyatomic ligands to dissipate the energy of the initial O2-association complexes. The effect of the basicity of the X(-) ligands was also apparent in the relative rates for O2 addition, with a general correlation between increasing ligand basicity and O2-addition efficiency for polyatomic ligands. Collision-induced dissociation of the superoxo complexes showed in all cases loss of O2 to form the [UO2X2](-) anions, indicating weaker binding of the O2(-) ligand compared to the X(-) ligands. Density functional theory computations of the structures and energetics of selected species are in accord with the experimental observations.

  5. THE EFFECTS OF S-3-1 ON LIPID PEROXIDATION AND SCAVENGING FREE RADICALS IN VITRO

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    S-3-1 is a simplified synthetic analogue of the active principle of Salvia miltiorrhioza. Electron spin resonance spectrometry using 5,5′-dimethyl-1-pyrroline-N-oxide as a scavenger of free radicals indicated that 200 μg/ml of S-3-1 scavenged 1,1-diphenyl-2-picrylhydrazyl radicals completely. 25μg/ml of this compound quenched 100% of superoxide anion and a concentration of 250 μg/ml of S-3-1 quenched 63% of hydroxyl radicals. It was also shown that 3.56 mg/ml of S-3-1 could inhibit lipid peroxidation in microsome fraction from rat liver induced by FeSO4 and cysteine. These results show that S-3-1 is an effective antioxidant by scavenging free radicals.

  6. In vitroevaluation of free radical scavenging activity ofCodariocalyx motorius root extract

    Institute of Scientific and Technical Information of China (English)

    Uma Chidambaram; Vanitha Pachamuthu; Suganya Natarajan; Bhakkiyalakshmi Elango; Suriyanarayanan; Kunga Mohan Ramkumar

    2013-01-01

    Objective:To determine the phenolic content inCodariocalyx motorius root extract and to evaluate its antioxidant properties using variousin vitro assay systems.Methods: The antioxidant activity was evaluated based on scavenging of 1,1-diphenyl-2-picrylhydrazyl, hydroxyl radicals, superoxide anions, nitric oxide, hydrogen peroxide, peroxynitrite, reducing power and by inhibition of lipid peroxidation which was estimated in terms of thiobarbituric acid reactive substances.Results: The root extract of theCodariocalyx motorius (C. motorius)exhibited potent total antioxidant activity that increased with increasing amount of extract concentration, which was compared with standard drug such as quercetin, butylated hydroxytoluene, tocopherol at different concentrations. The different concentrations of the extracts showed inhibition on lipid peroxidation. In addition, the extracts had effective reducing power, free radical scavenging, super oxide anion scavenging, nitric oxide scavenging, lipid peroxidation, and total phenolic content depending on concentration. High correlation between total phenolic contents and scavenging potential of different reactive oxygen species (r2=0.831-0.978) indicated the polyphenols as the main antioxidants.Conclusions:Codariocalyx motorius (C. motorius) root possess the highly active antioxidant substance which can be used for the treatment of oxidative stress-related diseases.

  7. Diosgenin inhibits superoxide generation in FMLP-activated mouse neutrophils via multiple pathways.

    Science.gov (United States)

    Lin, Y; Jia, R; Liu, Y; Gao, Y; Zeng, X; Kou, J; Yu, B

    2014-12-01

    Diosgenin possesses anti-inflammatory and anticancer properties. Activated neutrophils produce high concentrations of the superoxide anion which is involved in the pathophysiology of inflammation-related diseases and cancer. In the present study, the inhibitory effect and possible mechanisms of diosgenin on superoxide generation were investigated in mouse bone marrow neutrophils. Diosgenin potently and concentration-dependently inhibited the extracellular and intracellular superoxide anion generation in Formyl-Met-Leu-Phe (FMLP)- activated neutrophils, with IC50 values of 0.50 ± 0.08 μM and 0.66 ± 0.13 μM, respectively. Such inhibition was not mediated by scavenging the superoxide anion or by a cytotoxic effect. Diosgenin inhibited the phosphorylation of p47phox and membrane translocation of p47phox and p67phox, and thus blocking the assembly of nicotinamide adenine dinucleotide phosphate oxidase. Moreover, cellular cyclic adenosine monophosphate (cAMP) levels and protein kinase A (PKA) expression were also effectively increased by diosgenin. It attenuated FMLP-induced increase of phosphorylation of cytosolic phospholipase A (cPLA2), p21-activated kinase (PAK), Akt, p38 mitogen-activated protein kinase (p38MAPK), extracellular signal-regulated kinase (ERK1/2), and c-Jun N-terminal kinase (JNK). Our data indicate that diosgenin exhibits inhibitory effects on superoxide anion production through the blockade of cAMP, PKA, cPLA2, PAK, Akt and MAPKs signaling pathways. The results may explain the clinical implications of diosgenin in the treatment of inflammation-related disorders.

  8. Determination of antioxidant and radical scavenging activity of Basil (Ocimum basilicum L. Family Lamiaceae) assayed by different methodologies.

    Science.gov (United States)

    Gülçin, Ilhami; Elmastaş, Mahfuz; Aboul-Enein, Hassan Y

    2007-04-01

    The antioxidant properties of plants have been investigated, in the light of recent scientific developments, throughout the world due to their potent pharmacological activities and food viability. Basil (Ocimum basilicum L. Family Lamiaceae) is used as a kitchen herb and as an ornamental plant in house gardens. In the present study, the possible radical scavenging and antioxidant activity of the water (WEB) and ethanol extracts (EEB) of basil was investigated using different antioxidant methodologies: 1,1-diphenyl-2-picryl-hydrazyl (DPPH) free radical scavenging, scavenging of superoxide anion radical-generated non-enzymatic system, ferric thiocyanate method, reducing power, hydrogen peroxide scavenging and metal chelating activities. Experiments revealed that WEB and EEB have an antioxidant effects which are concentration-dependent. The total antioxidant activity was performed according to the ferric thiocyanate method. At the 50 microg/mL concentration, the inhibition effects of WEB and EEB on peroxidation of linoleic acid emulsion were found to be 94.8% and 97.5%, respectively. On the other hand, the percentage inhibition of a 50 microg/mL concentration of BHA, BHT and alpha-tocopherol was found to be 97.1%, 98.5% and 70.4% inhibition of peroxidation of linoleic acid emulsion, respectively. In addition, WEB and EEB had effective DPPH radical scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, reducing power and metal chelating activities. Additionally, these various antioxidant activities were compared with BHA, BHT and alpha-tocopherol as reference antioxidants. The additional total phenolic content of these basil extracts was determined as the gallic acid equivalent and were found to be equivalent.

  9. Synthesis of calcium superoxide

    Science.gov (United States)

    Rewick, R. T.; Blucher, W. G.; Estacio, P. L.

    1972-01-01

    Efforts to prepare Ca(O2) sub 2 from reactions of calcium compounds with 100% O3 and with O(D-1) atoms generated by photolysis of O3 at 2537 A are described. Samples of Ca(OH) sub 2, CaO, CaO2, Ca metal, and mixtures containing suspected impurities to promote reaction have been treated with excess O3 under static and flow conditions in the presence and absence of UV irradiation. Studies with KO2 suggest that the superoxide anion is stable to radiation at 2537 A but reacts with oxygen atoms generated by the photolysis of O3 to form KO3. Calcium superoxide is expected to behave in an analogous.

  10. Adsorption and photocatalysis of nanocrystalline TiO2 particles for Reactive Red 195 removal: effect of humic acids, anions and scavengers.

    Science.gov (United States)

    Chládková, B; Evgenidou, E; Kvítek, L; Panáček, A; Zbořil, R; Kovář, P; Lambropoulou, D

    2015-11-01

    In the present study, the coupling of adsorption capacity and photocatalytic efficiency of two different industrially produced titania catalysts was investigated and compared. The azo dye Reactive Red 195 was selected as a model compound. The tested catalysts, PK-10 and PK-180, exhibited different adsorption capacities due to their significant difference in their specific surface, but both have proven to be effective photocatalysts for photodegradation of the studied dye. PK-10 exhibited strong adsorption of the studied dye due to its high specific surface area, while the second studied catalyst, PK-180, demonstrated negligible adsorption of Reactive Red 195. The effect of the pH, the concentration of the catalyst and the initial concentration of the dye appear to affect the photocatalytic rate. The effect of the presence of humic acids and inorganic ions was also examined, while the contribution of various reactive species was indirectly evaluated through the addition of various scavengers. To evaluate the extent of mineralisation of the studied dye, total organic carbon (TOC) measurements during the experiment were also conducted. Besides total colour removal, evident reduction of TOC was also achieved using both catalysts.

  11. CBLB502, an agonist of Toll-like receptor 5, has antioxidant and scavenging free radicals activities in vitro.

    Science.gov (United States)

    Li, Weiguang; Ge, Changhui; Yang, Liu; Wang, Ruixue; Lu, Yiming; Gao, Yan; Li, Zhihui; Wu, Yonghong; Zheng, Xiaofei; Wang, Zhaoyan; Zhang, Chenggang

    2016-01-01

    The bacterial protein flagellin is the known agonist of Toll-like receptor 5 (TLR5). It has been reported that CBLB502, a novel agonist of TLR5 derived from Salmonella flagellin, could reduce radiation toxicity in mouse and primate models, protect mice from dermatitis and oral mucositis caused by radiation, inhibit acute renal ischemic failure, and inhibit the growth of A549 lung cancer cell. The property of CBLB502 is able to bind to TLR5 and activates NF-κB signaling. In this study, we investigated the antioxidant potential and free radicals scavenging properties of CBLB502 in vitro. Interestingly, we found that CBLB502 has a direct and distinct antioxidant capacity and can efficiently scavenge a variety of free radicals, including superoxide anion, hydroxyl radical, and ABTS cation (ABTS(+)). Through wave scanning and kinetic evaluation of scavenging ABTS(+), we found that the ABTS(+) scavenging process of CBLB502 is relatively slow, and the ABTS(+) scavenging activity of CBLB502 has a consistently kinetics characteristics. In conclusion, our results suggested that CBLB502 has antioxidant and scavenging free radicals activities in vitro. It is implied that CBLB502 might partially promote the beneficial protective effect through its scavenging free radicals.

  12. 1,4-Anhydro-4-seleno-d-talitol (SeTal) protects endothelial function in the mouse aorta by scavenging superoxide radicals under conditions of acute oxidative stress

    DEFF Research Database (Denmark)

    Ng, Hooi Hooi; Leo, Chen Huei; O'Sullivan, Kelly

    2016-01-01

    . Aortae were isolated from C57BL/6 male mice and mounted on a wire-myograph to assess vascular function. In the presence of a superoxide radical generator, pyrogallol, 300μM and 1mM of SeTal effectively prevented endothelial dysfunction compared to other selenium-containing compounds. In a second set...... of ex vivo experiments, mouse aortae were incubated for three days with either normal or high glucose, and co-incubated with SeTal at 37°C in 5% CO2. High glucose significantly reduced the sensitivity to the endothelium-dependent agonist, acetylcholine (ACh), increased superoxide production......, but had no effect in SeTal-treated aortae. Our data show that SeTal has potent antioxidant activity in isolated mouse aortae and prevents high glucose-induced endothelial dysfunction by decreasing superoxide levels, increasing basal NO availability and normalising the contribution of vasoconstrictor...

  13. Scoparone attenuates RANKL-induced osteoclastic differentiation through controlling reactive oxygen species production and scavenging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Hyun; Jang, Hae-Dong, E-mail: haedong@hnu.kr

    2015-02-15

    Scoparone, one of the bioactive components of Artemisia capillaris Thunb, has various biological properties including immunosuppressive, hepatoprotective, anti-allergic, anti-inflammatory, and antioxidant effects. This study aims at evaluating the anti-osteoporotic effect of scoparone and its underlying mechanism in vitro. Scoparone demonstrated potent cellular antioxidant capacity. It was also found that scoparone inhibited the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation and suppressed cathepsin K and tartrate-resistant acid phosphatase (TRAP) expression via c-jun N-terminal kinase (JNK)/extracellular signal-regulated kinase (ERK)/p38-mediated c-Fos–nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) signaling pathway. During osteoclast differentiation, the production of general reactive oxygen species (ROS) and superoxide anions was dose-dependently attenuated by scoparone. In addition, scoparone diminished NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 1 (Nox1) expression and activation via the tumor necrosis factor receptor-associated factor 6 (TRAF6)–cSrc–phosphatidylinositol 3-kinase (PI3k) signaling pathway and prevented the disruption of mitochondrial electron transport chain system. Furthermore, scoparone augmented the expression of superoxide dismutase 1 (SOD1) and catalase (CAT). The overall results indicate that the inhibitory effect of scoparone on RANKL-induced osteoclast differentiation is attributed to the suppressive effect on ROS and superoxide anion production by inhibiting Nox1 expression and activation and protecting the mitochondrial electron transport chain system and the scavenging effect of ROS resulting from elevated SOD1 and CAT expression. - Highlights: • Scoparone dose-dependently inhibited RANKL-induced osteoclast differentiation. • Scoparone diminished general ROS and superoxide anions in a dose-dependent manner. • Scoparone inhibited Nox1 expression and

  14. Radiation-induced formation of 8-hydroxy-2'-deoxyguanosine and its prevention by scavengers

    DEFF Research Database (Denmark)

    Fischer-Nielsen, A; Jeding, I B; Loft, S

    1994-01-01

    and 100 Gy radiation, i.e. within a wide range of OH. exposure, which is useful information considering clinical applications where the exact amount of ROS formed is unknown. Both 5-ASA and ascorbate at low concentrations (... measured 8-OHdG formation in calf thymus DNA exposed to ionizing radiation under conditions generating either hydroxyl radicals (OH.), superoxide anions (O2-) or both. Additionally, we investigated the relationship between the scavenger effect of the drug 5-aminosalicylic acid (5-ASA) and increasing OH....... exposure toward 8-OHdG formation. The effect of this drug was compared to those of the physiological scavengers ascorbate and reduced glutathione (GSH). We found that OH. generated 8-OHdG in a dose-dependent manner, whereas O2- did not cause 8-OHdG formation. 5-ASA, ascorbate and GSH all acted as hydroxyl...

  15. Free radical scavenging potential and HPTLC analysis of Indigofera tinctoria linn (Fabaceae

    Directory of Open Access Journals (Sweden)

    Sakthivel Srinivasan

    2016-04-01

    Full Text Available The objective of this study was to evaluate the free radical scavenging potential and high performance thin layer chromatography (HPTLC fingerprinting of Indigofera tinctoria (I. tinctoria. Phytochemical analysis was carried out using standard methods, and free radical scavenging activity of the plant was determined using 2,2-diphenyl-1-picrylhydrazy (DPPH, nitric oxide (NO and superoxide anion (O2− radical scavenging capacities. HPTLC plate was kept in CAMAG TLC Scanner 3 and the Rf values at fingerprint data were recorded by WINCATS software. Aqueous extract of I. tinctoria reliably showed the total phenolics (267.2±2.42 mg/g, flavonoids (75.43±3.36 mg/g and antioxidants (349.11±8.04 mg/g. The extract was found to have DPPH (52.08%, NO (23.12% and O2− (26.79% scavenging activities at the concentration of 250 μg/mL and the results were statistically significant compared with ascorbic acid standard (p<0.05. HPTLC results confirmed that the extract contained several potential active components such as phenols, flavonoids, saponins and terpenoids as the slides revealed multi-colored bands of varying intensities. This study confirmed that the plant had multipotential antioxidant and free radicals scavenging activities.

  16. Free radical scavenging potential and HPTLC analysis of Indigofera tinctoria linn (Fabaceae)$

    Institute of Scientific and Technical Information of China (English)

    Sakthivel Srinivasan; Wankupar Wankhar; Sheeladevi Rathinasamy; Ravindran Rajan n

    2016-01-01

    The objective of this study was to evaluate the free radical scavenging potential and high performance thin layer chromatography (HPTLC) fingerprinting of Indigofera tinctoria (I. tinctoria). Phytochemical analysis was carried out using standard methods, and free radical scavenging activity of the plant was determined using 2,2-diphenyl-1-picrylhydrazy (DPPH), nitric oxide (NO) and superoxide anion ( O−2 ) radical scavenging capacities. HPTLC plate was kept in CAMAG TLC Scanner 3 and the Rf values at fin-gerprint data were recorded by WINCATS software. Aqueous extract of I. tinctoria reliably showed the total phenolics (267.2 7 2.42 mg/g), flavonoids (75.43 7 3.36 mg/g) and antioxidants (349.11 7 8.04 mg/g). The extract was found to have DPPH (52.08%), NO (23.12%) and O−2 (26.79%) scavenging activities at the concentration of 250μg/mL and the results were statistically significant compared with ascorbic acid standard (p o 0.05). HPTLC results confirmed that the extract contained several potential active com-ponents such as phenols, flavonoids, saponins and terpenoids as the slides revealed multi-colored bands of varying intensities. This study confirmed that the plant had multipotential antioxidant and free ra-dicals scavenging activities.

  17. Automatic flow injection based methodologies for determination of scavenging capacity against biologically relevant reactive species of oxygen and nitrogen.

    Science.gov (United States)

    Magalhães, Luís M; Lúcio, Marlene; Segundo, Marcela A; Reis, Salette; Lima, José L F C

    2009-06-15

    Redox reactions are the heart of numerous biochemical pathways found in cellular chemistry, generating reactive oxygen species (ROS) and reactive nitrogen species (RNS), that includes superoxide anion radical (O2-), hydrogen peroxide (H2O2), hydroxyl radical (HO), singlet oxygen ((1)O2), hypochlorite anion (OCl-), peroxynitrite anion (ONOO-) and nitric oxide radical (NO). The measurement of scavenging capacity against these reactive species presents new challenges, which can be met by flow injection analysis (FIA). In the present review several methods based on FIA and also on its predecessors computer-controlled techniques (sequential injection analysis, multisyringe flow injection analysis, multicommutated and multipumping flow systems) are critically discussed. The selectivity and applicability of the methodology, the generation and detection of the target reactive species, the benefits and limitations of automation when compared to batch methods are some of the issues addressed.

  18. Antioxidant activity of Cat's whiskers flavonoid on some reactive oxygen and nitrogen species generating inflammatory cells is mediated by scavenging of free radicals

    Institute of Scientific and Technical Information of China (English)

    Asis Bala; Biswakanth Kar; Indrajit Karmakar; R.B.Suresh Kumar; Pallab Kanti Haldar

    2012-01-01

    AIM:To find out the effect of Cat's whiskers (Cleome gynandra L.,Capparidaceae) flavonoid (CWF) for the scavenging of free radicals in some inflammatory cells.METHODS:Mouse erythrocyte's hemoglobin,peritoneal macrophage,and peripheral blood lymphocytes were oxidized either by some of toxic chemicals (nitrite,carbon tetrachloride) or by enzymatic stimulation (glucoseoxidase) to produce oxidative damage to cells.The protective effect of the CWF was examined,and the biochemical mechanism of action was also investigated in terms of the scavenging of free radicals.RESULTS:CWF (1-20 μg·mL-1) decreased glucoseoxidase and nitrite induce oxidative damage in a concentration dependent manner in an in vitro model and inhibited the lysis of RBC [(28.64 ±13.03)% and (70.31 ± 1.80)%] when mice were treated with CWF (25 and 50 mg·kg-1).To assess the antioxidant potential of CWF in the lymphocytes and macrophages in living animals,the effect of CWF was measured on the elevated level of superoxide anions production in the cells.CWF scavenged the superoxide anion (O2-) production and inhibited the O2-induced destruction of protein and lipid biomolecules.CONCLUSION:The study has established that the CWF mediates its antioxidant activity in some chronic inflammatory cells via its free radical scavenging activity.

  19. The Superoxide Reductase from the Early Diverging Eukaryote Giardia Intestinalis

    Energy Technology Data Exchange (ETDEWEB)

    Cabelli, D.E.; Testa, F.; Mastronicola, D.; Bordi, E.; Pucillo, L.P.; Sarti, P.; Saraiva, L.M.; Giuffre, A.; Teixeira, M.

    2011-10-15

    Unlike superoxide dismutases (SODs), superoxidereductases (SORs) eliminate superoxide anion (O{sub 2}{sup {sm_bullet}-}) not through its dismutation, but via reduction to hydrogen peroxide (H{sub 2}O{sub 2}) in the presence of an electron donor. The microaerobic protist Giardia intestinalis, responsible for a common intestinal disease in humans, though lacking SOD and other canonical reactive oxygen species-detoxifying systems, is among the very few eukaryotes encoding a SOR yet identified. In this study, the recombinant SOR from Giardia (SOR{sub Gi}) was purified and characterized by pulse radiolysis and stopped-flow spectrophotometry. The protein, isolated in the reduced state, after oxidation by superoxide or hexachloroiridate(IV), yields a resting species (T{sub final}) with Fe{sup 3+} ligated to glutamate or hydroxide depending on pH (apparent pK{sub a} = 8.7). Although showing negligible SOD activity, reduced SOR{sub Gi} reacts with O{sub 2}{sup {sm_bullet}-} with a pH-independent second-order rate constant k{sub 1} = 1.0 x 10{sup 9} M{sup -1} s{sup -1} and yields the ferric-(hydro)peroxo intermediate T{sub 1}; this in turn rapidly decays to the T{sub final} state with pH-dependent rates, without populating other detectable intermediates. Immunoblotting assays show that SOR{sub Gi} is expressed in the disease-causing trophozoite of Giardia. We propose that the superoxide-scavenging activity of SOR in Giardia may promote the survival of this air-sensitive parasite in the fairly aerobic proximal human small intestine during infection.

  20. Superoxide-dependent hydroxylation by myeloperoxidase.

    Science.gov (United States)

    Kettle, A J; Winterbourn, C C

    1994-06-24

    When stimulated, neutrophils undergo a respiratory burst converting oxygen to superoxide. Although superoxide is critical for microbial killing by phagocytic cells, the precise role it plays has yet to be established. It has been proposed to optimize their production of hypochlorous acid and to be required for the generation of hydroxyl radicals. Superoxide is also involved in the hydroxylation of salicylate by neutrophils. However, the mechanism of this reaction is unknown. We found that neutrophils stimulated with opsonized zymosan hydroxylated salicylate to produce mainly 2,5-dihydroxybenzoate. Its formation was dependent on superoxide and a heme protein but was independent of hydrogen peroxide and hydroxyl radicals. Production of 2,5-dihydroxybenzoate was enhanced by methionine, which scavenges hypochlorous acid. Neutrophils from an individual with myeloperoxidase deficiency hydroxylated salicylate at only 13% of the level of control cells. Purified human myeloperoxidase and xanthine oxidase plus hypoxanthine hydroxylated salicylate to produce 2,5-dihydroxybenzoate. As with neutrophils, the reaction required superoxide but not hydrogen peroxide and was unaffected by hydroxyl radical scavengers. Thus, myeloperoxidase catalyzes superoxide-dependent hydroxylation. This newly recognized reaction may be relevant to the in vivo functions of superoxide and myeloperoxidase.

  1. Free radical scavenging property and antiproliferative activity of Rhodiola imbricata Edgew extracts in HT-29 human colon cancer cells

    Institute of Scientific and Technical Information of China (English)

    Ravichandran Senthilkumar; Thangaraj Parimelazhagan; Om Prakash Chaurasia; RB Srivastava

    2013-01-01

    Objective: To investigate the in vitro antioxidant and antiproliferative activity of rhizome extracts of Rhodiola imbricata (R. imbricata) in HT-29 human colon cancer cell line. Methods: The successively extracted rhizome of R. imbricata using various solvents was analyzed for their total phenolics, tannins and flavonoid contents. In vitro antioxidant activity was evaluated by employing different assays, including DPPH, ABTS radical scavenging assays, FRAP, phosphomolybdenum reduction assay, superoxide anion, hydroxyl radical scavenging activities and metal chelating ability. Results: Acetone and methanol extracts recorded higher phenolic content and showed comparable antioxidant activity with standard reference. Additionally, they also inhibited the proliferation of HT-29 cells upon treatment at higher concentration (200 μg/mL) (acetone and methanol, 84% and 84%, respectively). On examination acetone extract exhibited antiproliferative activity in a concentration dependent manner whereas, methanol extract showed both dose dependent and time dependent inhibitory activity. Conclusions: The results obtained justify the traditional usage of R. imbricata from their promising antioxidant activity.

  2. SCAVENGING ACTIVITY, ANTI-INFLAMMATORY AND DIABETES RELATED ENZYME INHIBITION PROPERTIES OF ETHANOL LEAVES EXTRACT OF PHOENYX DACTYLIFERA

    Directory of Open Access Journals (Sweden)

    S. E. Laouini

    2015-07-01

    Full Text Available In this study we investigate the antioxidant, anti-inflammatory, and antidiabetic activities of ethanolic leaf extracts of three selected varieties of Phoenyx dactylifera L. namely: “Ghars”, “Deglet Nour” and “Hamraya”. The assessment of the antioxidant potential of crude leaf extracts, using superoxide anions inhibition, radical scavenging activity "DPPH" and total antioxidant activity essays, was carried out. Furthermore, the anti-inflammatory properties of the extracts were determined by measuring the inhibition of nitric oxide (NO production. Moreover, the antidiabetic effect was evaluated by inhibition of α-amylase and α-glucosidase enzymes. The total phenolic content measured by Folin-ciocalteu method. The raw leaf extracts of the selected varieties were found to contain a high content of total phenolic content (342.45 mg GAE/ gDW for GE and therefore exhibited a higher antioxidant activity and inhibitory effect of radicals scavenging activity against DPPH and superoxide anion (IC50=7.44 μg/mL and 39.11 μg/mL respectively.

  3. SCAVENGING ACTIVITY, ANTI-INFLAMMATORY AND DIABETES RELATED ENZYME INHIBITION PROPERTIES OF ETHANOL LEAVES EXTRACT OF PHOENYX DACTYLIFERA

    Directory of Open Access Journals (Sweden)

    S. E. Laouini

    2013-12-01

    Full Text Available In this study we investigate the antioxidant, anti-inflammatory, and antidiabetic activities of ethanolic leaf extracts of three selected varieties of Phoenyx dactylifera L. namely: “Ghars”, “Deglet Nour” and “Hamraya”. The assessment of the antioxidant potential of crude leaf extracts, using superoxide anions inhibition, radical scavenging activity "DPPH" and total antioxidant activity essays, was carried out. Furthermore, the anti-inflammatory properties of the extracts were determined by measuring the inhibition of nitric oxide (NO production. Moreover, the antidiabetic effect was evaluated by inhibition of α-amylase and α-glucosidase enzymes. The total phenolic content measured by Folin-ciocalteu method. The raw leaf extracts of the selected varieties were found to contain a high content of total phenolic content (342.45 mg GAE/ gDW for GE and therefore exhibited a higher antioxidant activity and inhibitory effect of radicals scavenging activity against DPPH and superoxide anion (IC50=7.44 μg/mL and 39.11 μg/mL respectively.

  4. Inhibition of nitric oxide synthase expression in activated microglia and peroxynitrite scavenging activity by Opuntia ficus indica var. saboten.

    Science.gov (United States)

    Lee, Ming Hong; Kim, Jae Yeon; Yoon, Jeong Hoon; Lim, Hyo Jin; Kim, Tae Hee; Jin, Changbae; Kwak, Wie-Jong; Han, Chang-Kyun; Ryu, Jae-Ha

    2006-09-01

    Activated microglia by neuronal injury or inflammatory stimulation overproduce nitric oxide (NO) by inducible nitric oxide synthase (iNOS) and reactive oxygen species (ROS) such as superoxide anion, resulting in neurodegenerative diseases. The toxic peroxynitrite (ONOO-), the reaction product of NO and superoxide anion further contributes to oxidative neurotoxicity. A butanol fraction obtained from 50% ethanol extracts of Opuntia ficus indica var. saboten (Cactaceae) stem (SK OFB901) and its hydrolysis product (SK OFB901H) inhibited the production of NO in LPS-activated microglia in a dose dependent manner (IC50 15.9, 4.2 microg/mL, respectively). They also suppressed the expression of protein and mRNA of iNOS in LPS-activated microglial cells at higher than 30 microg/mL as observed by western blot analysis and RT-PCR experiment. They also inhibited the degradation of I-kappaB-alpha in activated microglia. Moreover, they showed strong activity of peroxynitrite scavenging in a cell free bioassay system. These results imply that Opuntia ficus indica may have neuroprotective activity through the inhibition of NO production by activated microglial cells and peroxynitrite scavenging activity.

  5. Mechanism of Scavenging Reactive Oxygen Radicals of Tea catechins%茶儿茶素清除活性氧自由基的机制

    Institute of Scientific and Technical Information of China (English)

    陈留记; 杨贤强; 沈生荣; 王岳飞

    2002-01-01

    @@ Tea catechins, have received considerable attention in recent years due to their numerous potentially beneficial medicinal properties. A common discussed mechanism of their biological and pharmacological effects is the antioxidative activities of tea catechins. In this paper, we evaluated the scavenging effects of four catechins both on superoxide anions (O2-) and hydroxyl free radical (@OH). In addition their synergic effects, structure-activity relationship, as well as stoichiometric factors and rate constants for the reactions of O2-and @OH with EGCG were discussed.

  6. Novel chromone and xanthone derivatives: Synthesis and ROS/RNS scavenging activities.

    Science.gov (United States)

    Proença, Carina; Albuquerque, Hélio M T; Ribeiro, Daniela; Freitas, Marisa; Santos, Clementina M M; Silva, Artur M S; Fernandes, Eduarda

    2016-06-10

    Chromones and xanthones are oxygen-containing heterocyclic compounds acknowledged by their antioxidant properties. In an effort to develop novel agents with improved activity, a series of compounds belonging to these chemical classes were prepared. Their syntheses involve the condensation of appropriate 2-methyl-4H-chromen-4-ones, obtained via Baker-Venkataraman rearrangement, with (E)-3-(3,4-dimethoxyphenyl)acrylaldehyde to provide the corresponding 2-[(1E,3E)-4-(3,4-dimethoxyphenyl)buta-1,3-dien-1-yl]-4H-chromen-4-ones. Subsequent electrocyclization and oxidation of these compounds led to the synthesis of 1-aryl-9H-xanthen-9-ones. After cleavage of the protecting groups, hydroxylated chromones and xanthones were assessed as scavenging agents against both reactive oxygen species (ROS) [superoxide radical (O2(•-)), hydrogen peroxide (H2O2), hypochlorous acid (HOCl), singlet oxygen ((1)O2), and peroxyl radical (ROO(•))] and reactive nitrogen species (RNS) [nitric oxide ((•)NO) and peroxynitrite anion (ONOO(-))]. Generally, all the tested new hydroxylated chromones and xanthones exhibited scavenger effects dependent on the concentration, with IC50 values found in the micromolar range. Some of them were shown to have improved scavenging activity when compared with previously reported analogues, allowing the inference of preliminary conclusions on the structure-activity relationship. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. In vitro scavenger and antioxidant properties of hesperidin and neohesperidin dihydrochalcone.

    Science.gov (United States)

    Suarez, J; Herrera, M D; Marhuenda, E

    1998-12-01

    We have assesed the actions as free radical scavengers and inhibitors on peroxidation of hesperidin and neohesperidin dihydrochalcone, two flavonoids, flavanone and dihydrochalcone respectively, as some of the pharmacological properties of flavonoids group have been related with these activities. Hesperidin just at 10(-4) and 5 · 10(-4)M is able to show a low inhibitory activity in the superoxide anion radicals (O(2)(-)) genesis (8.66 ± 1.40 and 11.69 ± 2.36% respectively), and on the non-enzymatic lipid peroxidation at 10(-3)M dose (9.78 ± 0.35%), without affecting the hydroxyl radical (•OH) formation, generated by the ascorbic acid-Fe(3+)-EDTA system. In the other hand, neohesperidin dihydrochalcone is an authentic antioxidant drug as tested at all doses. It showed a great scavenger activity and/or inhibition of formation on O(2)(-) radicals (31.53 - 84.62%) and a significant scavenging effect on OH radicals (6.00 - 23.49%), as well as an important inhibitory action on non-enzymatic lipid peroxidation (15.43-95.33%).

  8. Isolation and characterisation of in vitro and cellular free radical scavenging peptides from corn peptide fractions.

    Science.gov (United States)

    Wang, Liying; Ding, Long; Wang, Ying; Zhang, Yan; Liu, Jingbo

    2015-02-16

    Corn gluten meal, a corn processing industry by-product, is a good source for the preparation of bioactive peptides due to its special amino acid composition. In the present study, the in vitro and cellular free radical scavenging activities of corn peptide fractions (CPFs) were investigated. Results indicated that CPF1 (molecular weight less than 1 kDa) and CPF2 (molecular weight between 1 and 3 kDa) exhibited good hydroxyl radical, superoxide anion radical and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonicacid) diammonium salt (ABTS) radical scavenging activity and oxygen radical absorbance capacity (ORAC). Meanwhile, the in vitro radical scavenging activity of CPF1 was slightly higher than that of CPF2. Both CPF1 and CPF2 also exhibited significant cytoprotective effects and intracellular reactive oxygen species scavenging activity in Caco-2 cells exposed to hydrogen peroxide (H2O2). The amino acid composition analysis revealed that the CPF were rich in hydrophobic amino acids, which comprised of more than 45% of total amino acids. An antioxidant peptide sequence of Tyr-Phe-Cys-Leu-Thr (YFCLT) was identified from CPF1 using matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI TOF/TOF MS). The YFCLT exhibited excellent ABTS radical scavenging activity with a 50% effective concentration (EC50) value of 37.63 µM, which was much lower than that of Trolox. In conclusion, corn gluten meal might be a good source to prepare antioxidant peptides.

  9. Healing of colonic ischemic anastomoses in the rat: role of superoxide radicals.

    Science.gov (United States)

    Garcia, J G; Criado, F J; Persona, M A; Alonso, A G

    1998-07-01

    The aim of this study was to evaluate the role of superoxide radicals in the healing of ischemic colonic anastomoses in the rat. Adult male Wistar rats were used in a factorial design with two factors (normal or ischemic colonic anastomoses) each having two levels (treatment with saline or allopurinol). Colonic anastomoses were performed either in normal or previously devascularized colons (ischemic anastomoses) at identical locations, using the same technique. On the fourth postoperative day, animals were killed, and specimens were taken for determinations. Ischemic anastomoses displayed significant increases in superoxide radical (assayed as superoxide anion), superoxide dismutase, and glutathione peroxidase concentrations. Bursting strength and hydroxyproline levels were also significantly lower in these anastomoses. Allopurinol administration elicited a significant decrease in superoxide anions and raised both bursting strength and hydroxyproline levels only in ischemic anastomoses. Superoxide radicals are involved in the delay in healing of ischemic anastomoses. Allopurinol lowers superoxide anion production and has beneficial effects on the cicatrization of ischemic anastomoses.

  10. Anti-Inflammatory and Free Radial Scavenging Activities of the Constituents Isolated from Machilus zuihoensis

    Directory of Open Access Journals (Sweden)

    Shui-Tein Chen

    2011-11-01

    Full Text Available A new biflavonol glycoside, quercetin-3-O-β-D-glucopyranoside-(3¢→O-3¢¢¢- quercetin-3-O-β-D-galactopyranoside (9, together with eight known compounds was isolated for the first time from the leaves of Machilus zuihoensis Hayata (Lauraceae. The structure of compound 9 was elucidated by various types of spectroscopic data analysis. Analysis of the biological activity assay found that compound 9 showed significant superoxide anion scavenging activity (IC50 is 30.4 μM and markedly suppressed LPS-induced high mobility group box 1 (HMGB-1 protein secretion in RAW264.7 cells. In addition, the HMGB-1 protein secretion was also inhibited by quercitrin (3, ethyl caffeate (6, and ethyl 3-O-caffeoylquinate (7 treatment. In the LPS-stimulated inducible nitric oxide synthase (iNOS activation analysis, two known compounds, quercetin (1 and ethyl caffeate (6, were found to markedly suppress nitric oxide (NO production (IC50 value, 27.6 and 42.9 μM, respectively in RAW264.7 cells. Additionally, it was determined that ethyl caffeate (6 down-regulated mRNA expressions of iNOS, IL-1β, and IL-10 in the LPS-treatment of RAW264.7 cells via a suppressed NF-kB pathway. These results suggested for the first time that the new compound 9 and other constituents isolated from M. zuihoensis have potential anti-inflammatory and superoxide anion scavenging effects. These constituents may be useful for treating various inflammatory diseases.

  11. Scopoletin and scopolin isolated from Artemisia iwayomogi suppress differentiation of osteoclastic macrophage RAW 264.7 cells by scavenging reactive oxygen species.

    Science.gov (United States)

    Lee, Sang-Hyun; Ding, Yan; Yan, Xi Tao; Kim, Young-Ho; Jang, Hae-Dong

    2013-04-26

    Artemisia iwayomogi has been used as a folk medicine for treating various diseases including inflammatory and immune-related diseases. Scopoletin (1) and scopolin (2) were isolated from this species. Scopoletin (1) showed more potent peroxyl radical-scavenging capacity, reducing capacity, and cellular antioxidant capacity compared to scopolin (2). The inhibitory effect of 1 on the receptor activator of nuclear factor κB ligand-induced osteoclastic differentiation of RAW 264.7 macrophage cells was also more potent than that of 2. The production of general reactive oxygen species (ROS) and superoxide anions during differentiation of preosteoclastic RAW 264.7 cells into osteoclasts was attenuated by compounds 1 and 2. These findings indicate that the suppressive effects of 1 and 2 on the differentiation of preosteoclastic RAW 264.7 cells is partially due to their intracellular antioxidant capacity, as they can scavenge ROS and play an important signaling role in the differentiation process.

  12. The Scavenging of Free Radical and Oxygen Species Activities and Hydration Capacity of Collagen Hydrolysates from Walleye Pollock (Theragra chalcogramma) Skin

    Institute of Scientific and Technical Information of China (English)

    ZHUANG Yongliang; LI Bafang; ZHAO Xue

    2009-01-01

    Fish skin collagen hydrolysates (FSCH) were prepared from walleye pollock (Theragra chalcogramma) using a mixture of enzymes, namely trypsin and flavourzyme. The degree of hydrolysis of the skin collagen was 27.3%. FSCH was mainly composed of low-molecular-weight peptides and the relative proportion of <1000Da fraction was 70.6%. Free radical and oxygen species scavenging activities of FSCH were investigated in four model systems, including diphenylpicrylhy-drazyl radical (DPPH), superox-ide anion radical, hydroxyl radical and hydrogen peroxide model, and compared with that of a native antioxidant, reduced glutathione (GSH). FSCH was also evaluated by water-absorbing and water-holding capacity. The results showed that FSCH was able to scav-enge free radical and oxygen species significantly and to enhance water-absorbing and water-holding capacity remarkably. Therefore, FSCH may have potential applications in the medicine and food industries.

  13. Revisiting the reactions of superoxide with glutathione and other thiols.

    Science.gov (United States)

    Winterbourn, Christine C

    2016-04-01

    The reaction between GSH and superoxide has long been of interest in the free radical biology. Early studies were confusing, as some reports suggested that the reaction could be a major pathway for superoxide removal whereas others questioned whether it happened at all. Further research by several investigators, including Helmut Sies, was required to clarify this complex reaction. We now know that superoxide does react with GSH, but the reaction is relatively slow and occurs mostly by a chain reaction that consumes oxygen and regenerates superoxide. Most of the GSH is converted to GSSG, with a small amount of sulfonic acid. As shown by Sies and colleagues, singlet oxygen is a by-product. Although removal of superoxide by GSH may be a minor pathway, GSH and superoxide have a strong physiological connection. GSH is an efficient free radical scavenger, and when it does so, thiyl radicals are generated. These further react to generate superoxide. Therefore, radical scavenging by GSH and other thiols is a source of superoxide and hydrogen peroxide, and to be an antioxidant pathway, there must be efficient removal of these species.

  14. 螺旋藻体外清除自由基的ESR研究%Investigation with ESR on the Radical Scavenging Effect of Spirulina in Vitro

    Institute of Scientific and Technical Information of China (English)

    赵淑锐; 郑美青; 吴英婷; 薛冰

    2015-01-01

    利用DPPH、Fenton反应、SNAP、黄嘌呤氧化酶氧化黄嘌呤反应产生活性有机氮自由基、羟自由基(·OH)、一氧化氮(NO)自由基、超氧阴离子(·O2-)自由基,以电子顺磁共振法(ESR)研究了螺旋藻体外清除上述四种自由基的作用.该方法操作简单易行,结果直观.结果表明螺旋藻能有效清除上述4种自由基,而且随浓度的增加抗氧化能力也增加,浓度在40 mg/mL时对超氧阴离子和有机氮自由基的清除率达到了90%以上.%Organic nitrogen radicals, hydroxyl radicals (·OH), nitric oxide (NO) radicals, superoxide anion radicals (·O2-) were produced by DPPH, Fenton reaction, SNAP, oxidation reaction of xanthine and xanthine oxidase. The antioxidant activities of spirulina in different concentrations were determined by the four radicals scavenging activity using electron paramagnetic resonance (ESR)Technology. The method was simple and easy to observe the results. Experimental results showed that spirulina have strong free radical scavenging capacity. The free radical scavenging capacity was increased by increasing concentrations. when the concentration in 40 mg/mL , the scavenging rates of Superoxide anion and organic nitrogen radicals reached more than 90%.

  15. Biological Superoxide In Manganese Oxide Formation

    Science.gov (United States)

    Hansel, C.; Learman, D.; Zeiner, C.; Santelli, C. M.

    2011-12-01

    Manganese (Mn) oxides are among the strongest sorbents and oxidants within the environment, controlling the fate and transport of numerous elements and the degradation of recalcitrant carbon. Both bacteria and fungi mediate the oxidation of Mn(II) to Mn(III/IV) oxides but the genetic and biochemical mechanisms responsible remain poorly understood. Furthermore, the physiological basis for microbial Mn(II) oxidation remains an enigma. We have recently reported that a common marine bacterium (Roseobacter sp. AzwK-3b) oxidizes Mn(II) via reaction with extracellular superoxide (O2-) produced during exponential growth. Here we expand this superoxide-mediated Mn(II) oxidation pathway to fungi, introducing a surprising homology between prokaryotic and eukaryotic metal redox processes. For instance, Stibella aciculosa, a common soil Ascomycete filamentous fungus, precipitates Mn oxides at the base of asexual reproductive structures (synnemata) used to support conidia (Figure 1). This distribution is a consequence of localized production of superoxide (and it's dismutation product hydrogen peroxide, H2O2), leading to abiotic oxidation of Mn(II) by superoxide. Disruption of NADPH oxidase activity using the oxidoreductase inhibitor DPI leads to diminished cell differentiation and subsequent Mn(II) oxidation inhibition. Addition of Cu(II) (an effective superoxide scavenger) leads to a concentration dependent decrease in Mn oxide formation. We predict that due to the widespread production of extracellular superoxide within the fungal and likely bacterial kingdoms, biological superoxide may be an important contributor to the cycling of Mn, as well as other metals (e.g., Hg, Fe). Current and future explorations of the genes and proteins involved in superoxide production and Mn(II) oxidation will ideally lend insight into the physiological and biochemical basis for these processes.

  16. Comparison of the radical scavenging potential of polar and lipidic fractions of olive oil and other vegetable oils under normal conditions and after thermal treatment.

    Science.gov (United States)

    Valavanidis, Athanasios; Nisiotou, Christala; Papageorgiou, Yiannis; Kremli, Ioulia; Satravelas, Nikolaos; Zinieris, Nikolaos; Zygalaki, Helen

    2004-04-21

    The antioxidant activity (IC(50)) of extra virgin olive oil (EVOO), commercial olive oil, and other vegetable oils (soybean, sunflower, and corn oil) was determined by UV-vis and by electron paramagnetic resonance (EPR) spectroscopy of the stable radical 2,2-diphenyl-1-picrylhydrazyl (DPPH). Also, we studied the antioxidant activity of the methanol soluble phase (methanolic, MF) and the nonsoluble phase (lipidic, LF) of oils by the same methods. Similarly, we studied the effect of heating on the antioxidant activity at 160 and 190 degrees C. Also, the MF, containing the polyphenolic substances, was used for measurements of the radical scavenging capacity toward the most important oxygen free radicals, superoxide anion (O(2)(*)(-)) and hydroxyl (HO(*)) radicals. Results showed that soybean oil and EVOO had the highest antioxidant potential and thermal stability. In the case of soybean oil, the antioxidant capacity is the result of its high content of gamma- and delta-tocopherols (with the highest antioxidant capacity and thermostabilities), whereas in EVOO, the antioxidant potential is the result of the combination of specific antioxidant polyphenols, which are acting additionally as effective stabilizers of alpha-tocopherol. The high content of EVOO in tyrosol, hydrotyrosol, and oleuropein and other polyphenolics with radical scavenging abilities toward superoxide anion and hydroxyl radical suggests that olive oil possesses biological properties that could partially account for the observed beneficial health effects of the Mediterranean diet.

  17. Antioxidant capacity and angiotensin I converting enzyme inhibitory activity of a melon concentrate rich in superoxide dismutase.

    Science.gov (United States)

    Carillon, Julie; Del Rio, Daniele; Teissèdre, Pierre-Louis; Cristol, Jean-Paul; Lacan, Dominique; Rouanet, Jean-Max

    2012-12-01

    Antioxidant capacity and angiotensin 1-converting enzyme (ACE) inhibitory activity of a melon concentrate rich in superoxide dismutase (SOD-MC) were investigated in vitro. The total antioxidant capacity (TAC) was measured by the Trolox equivalent antioxidant capacity assay (TEAC), the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical assay, and the ferric reducing antioxidant power assay (FRAP). The ability of the extract to scavenge three specific reactive oxygen species (superoxide radical anion (O(2)(-)), hydroxyl radical (HO()) and hydrogen peroxide (H(2)O(2))) was also investigated in order to better evaluate its antioxidant properties. Even if the measures of TAC were relatively low, results clearly established an antioxidant potential of SOD-MC that exhibited the highest radical-scavenging activity towards O(2)(-), with a IC(50) 12-fold lower than that of H(2)O(2) or HO(). This lets hypothesis that the antioxidant potential of SOD-MC could be mainly due to its high level of SOD. Moreover, for the first time, an ACE inhibitory activity of SOD-MC (IC(50)=2.4±0.1mg/mL) was demonstrated, showing that its use as a functional food ingredient with potential preventive benefits in the context of hypertension may have important public health implications and should be carefully considered.

  18. Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase

    Directory of Open Access Journals (Sweden)

    Abrahim Noor

    2012-11-01

    Full Text Available Abstract Background Breast cancer is the most common form of cancer and the focus on finding chemotherapeutic agents have recently shifted to natural products. Piper betle is a medicinal plant with various biological activities. However, not much data is available on the anti-cancer effects of P. betle on breast cancer. Due to the current interest in the potential effects of antioxidants from natural products in breast cancer treatment, we investigated the antioxidant activities of the leaves of P. betle and its inhibitory effect on the proliferation of the breast cancer cell line, MCF-7. Methods The leaves of P. betle were extracted with solvents of varying polarities (water, methanol, ethyl acetate and hexane and their phenolic and flavonoid content were determined using colorimetric assays. Phenolic composition was characterized using HPLC. Antioxidant activities were measured using FRAP, DPPH, superoxide anion, nitric oxide and hyroxyl radical scavenging assays. Biological activities of the extracts were analysed using MTT assay and antioxidant enzyme (catalase, superoxide dismutase, glutathione peroxidase assays in MCF-7 cells. Results Overall, the ethyl acetate extract showed the highest ferric reducing activity and radical scavenging activities against DPPH, superoxide anion and nitric oxide radicals. This extract also contained the highest phenolic content implying the potential contribution of phenolics towards the antioxidant activities. HPLC analyses revealed the presence of catechin, morin and quercetin in the leaves. The ethyl acetate extract also showed the highest inhibitory effect against the proliferation of MCF-7 cells (IC50=65 μg/ml. Treatment of MCF-7 cells with the plant extract increased activities of catalase and superoxide dismutase. Conclusions Ethyl acetate is the optimal solvent for the extraction of compounds with antioxidant and anti-proliferative activities. The increased activities of catalase and superoxide

  19. Co-Immobilization of Superoxide Dismutase with Catalase on Soft Microparticles Formed by Self-Assembly of Amphiphilic Poly(Aspartic Acid

    Directory of Open Access Journals (Sweden)

    Siyu Mao

    2017-07-01

    Full Text Available Through genetic engineering technology, catalase (CAT and superoxide dismutase (SOD have been separately fused to an elastin-like polypeptide (ELP. Thus, the enzymes can be purified through phase transition. Hexadecylamine-modified poly(aspartic acid (HPASP is able to self-assemble, forming soft microparticles. The HPASP microparticles were used to co-immobilize SOD-ELP and CAT-ELP through amidation reaction. Circular dichroism (CD confirmed that the secondary structures of the co-immobilized enzymes have been preserved. Fluorescence spectra showed that the co-immobilized enzymes exhibited a higher stability than the free enzymes. Dismutation of superoxide by superoxide dismutase (SOD generates hydrogen peroxide. By using the co-immobilized enzymes (SOD-ELP/CAT-ELP@HPASP, the generated hydrogen peroxide of SOD-ELP can be decomposed in situ by CAT-ELP. Activity assay results demonstrated that the superoxide anion (•O2− scavenging ability is 63.15 ± 0.75% for SOD-ELP/CAT-ELP@HPASP. The advantages of the approach of enzyme co-immobilization include the fact that the soft support HPASP itself is a polypeptide in nature, the stability of immobilized enzymes is improved, and a high activity has been achieved. Potentially SOD-ELP/CAT-ELP@HPASP can be applied in the cosmetic industry.

  20. Part 1: Antiplasmodial, cytotoxic, radical scavenging and antioxidant activities of Thai plants in the family Acanthaceae.

    Science.gov (United States)

    Charoenchai, Panarat; Vajrodaya, Srunya; Somprasong, Winai; Mahidol, Chulabhorn; Ruchirawat, Somsak; Kittakoop, Prasat

    2010-11-01

    Crude extracts (CH(2)Cl(2) and MeOH) of 20 plants in the family Acanthaceae were screened for their antiplasmodial, cytotoxic, antioxidant, and radical scavenging activities. These plants included Asystasia nemorum, Barleria cristata, B. strigosa, Dicliptera burmanni, Eranthemum tetragonum, Hygrophila ringens, Justicia balansae, J. procumbens, Lepidagathis incurva, Peristrophe lanceolaria, Phaulopsis dorsiflora, Ruellia kerrii, Strobilanthes auriculata, S. corrugata, S. cusia, S. dimorphotricha, S. karensium, S. maxwellii, S. pateriformis, and S. brandisii. CH(2)Cl(2) extracts of A. nemorum, S. corrugata, S. cusia, S. maxwellii, S. pateriformis, and S. brandisii, as well as MeOH extracts of J. balansae and J. procumbens, showed antiplasmodial activity with IC(50) values of 10-100 µg/mL. CH(2)Cl(2) extracts of nine plants including D. burmanni, H. ringens, J. balansae, J. procumbens, L. incurva, P. lanceolaria, P. dorsiflora, S. corrugata, and S. maxwellii showed cytotoxic activity with IC(50) values of 3.5-46.0 µg/mL. MeOH extracts (at 100 µg/mL) of R. kerrii and S. auriculata could effectively scavenge DPPH free radicals (82-83% inhibition) and superoxide anion radicals (79% and 88% inhibition). In the ORAC antioxidant assay, MeOH extracts of B. cristata, J. procumbens, R. kerrii, and S. auriculata exhibited activity with ORAC units of 3.1-3.9.

  1. Cranberry flavonoids prevent toxic rat liver mitochondrial damage in vivo and scavenge free radicals in vitro.

    Science.gov (United States)

    Lapshina, Elena A; Zamaraeva, Maria; Cheshchevik, Vitali T; Olchowik-Grabarek, Ewa; Sekowski, Szymon; Zukowska, Izabela; Golovach, Nina G; Burd, Vasili N; Zavodnik, Ilya B

    2015-06-01

    The present study was undertaken for further elucidation of the mechanisms of flavonoid biological activity, focusing on the antioxidative and protective effects of cranberry flavonoids in free radical-generating systems and those on mitochondrial ultrastructure during carbon tetrachloride-induced rat intoxication. Treatment of rats with cranberry flavonoids (7 mg/kg) during chronic carbon tetrachloride-induced intoxication led to prevention of mitochondrial damage, including fragmentation, rupture and local loss of the outer mitochondrial membrane. In radical-generating systems, cranberry flavonoids effectively scavenged nitric oxide (IC50  = 4.4 ± 0.4 µg/ml), superoxide anion radicals (IC50  = 2.8 ± 0.3 µg/ml) and hydroxyl radicals (IC50  = 53 ± 4 µg/ml). The IC50 for reduction of 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH) was 2.2 ± 0.3 µg/ml. Flavonoids prevented to some extent lipid peroxidation in liposomal membranes and glutathione oxidation in erythrocytes treated with UV irradiation or organic hydroperoxides as well as decreased the rigidity of the outer leaflet of the liposomal membranes. The hepatoprotective potential of cranberry flavonoids could be due to specific prevention of rat liver mitochondrial damage. The mitochondria-addressed effects of flavonoids might be related both to radical-scavenging properties and modulation of various mitochondrial events.

  2. Antioxidant, Antimicrobial, and Free Radical Scavenging Potential of Aerial Parts of Periploca aphylla and Ricinus communis

    Science.gov (United States)

    Iqbal, Jamshed; Zaib, Sumera; Farooq, Umar; Khan, Afsar; Bibi, Irum; Suleman, Saba

    2012-01-01

    Context. Many diseases are associated with oxidative stress caused by free radicals. Objective. The present study evaluated the in vitro antioxidant and antibacterial activities of various extracts of aerial parts of Periploca aphylla and Ricinus communis. Materials and Methods. In vitro antioxidant activities of the plant extract were determined by DPPH and NO scavenging method. Superoxide anion radical activity was measured by the reduction of nitro blue tetrazolium as compared with standard antioxidants. Total phenolic contents and antibacterial activities of these plants were determined by gallic acid equivalent (GAE) and serial tube dilution method, respectively. Results. Plants showed significant radical scavenging activity. The results were expressed as IC50. n-Propyl gallate and 3-t-butyl-4-hydroxyanisole were used as standards for antioxidant assay. All the extracts of both plants showed comparable IC50 to those of standards. Plants extract exhibited high phenolic contents and antibacterial activities were comparable with standard drug, Ciprofloxacin. Discussion and Conclusion. The present study provides evidence that Periploca aphylla and Ricinus communis prove to be potent natural antioxidants and could replace synthetic antioxidants. Plants can also be used against pathogenic bacterial strains. PMID:22919511

  3. ROLE OF COPPER,ZINC-SUPEROXIDE DISMUTASE IN CATALYZING NITROTYROSINE FORMATION IN MURINE LIVER

    Science.gov (United States)

    The solely known function of Cu,Zn-superoxide dismutase (SOD1) is to catalyze the dismutation of superoxide anion into hydrogen peroxide. Our objective was to determine if SOD1 catalyzed murine liver protein nitration induced by acetaminophen (APAP) and lipopolysaccharide (LPS). Liver and plasma ...

  4. A new formula to calculate activity of superoxide dismutase in indirect assays

    NARCIS (Netherlands)

    Zhang, Chen; Bruins, Marieke E.; Yang, Zhi Qiang; Liu, Shu Tao; Rao, Ping Fan

    2016-01-01

    To calculate superoxide dismutase (SOD) activity rapidly and accurately by indirect SOD assays, a formula based on the ratio of the catalytic speed of SOD to the reaction speed of the indicator with superoxide anion was deduced. The accuracy of this formula was compared with the conventional form

  5. Research progress in superoxide dismutase and its application%超氧化物歧化酶及其应用的研究进展

    Institute of Scientific and Technical Information of China (English)

    徐靖

    2013-01-01

    超氧化物歧化酶是广泛存在于各种生物体中的重要金属酶,它能够特异性的清除超氧阴离子,保护机体免受氧化的损伤.本文从超氧化物歧化酶的定义及分类、结构、分布、测定方法以及其自身特性的应用方面进行较为全面的综述,并且对其广阔的应用前景进行了展望.%Superoxide dismutase is an important metal enzyme which widely exists in various organisms.It can specifically scavenging superoxide anion that protect the body from oxidative damage.The superoxide dismutase from definition and classification,distribution,structure,measuring method and application of its own characteristic were reviewed in this paper comprehensively.Its' wide application prospect was previewed.

  6. Extra Copper-mediated Enhancement of the DNA Cleavage Activity Supported with Wild-type Cu, Zn Superoxide Dismutase

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ruo-Yu; JIANG Wei; ZHANG Li-Na; WANG Li; LIU Chang-Lin

    2008-01-01

    It is well known that the primary function of wild type Cu, Zn superoxide dismutase (holo SOD) is to catalyze the conversion of the superoxide anion to H2O2 and O2 as an antioxidant enzyme. However, the aberrant copper-mediated oxidation chemistry in the enzyme (including its mutation forms) that damages nucleic acids, proteins including itself and cell membrane has attracted extensive attention in the past decade. The present study examined the hydrogen peroxide-dependent DNA cleavage activity supported with the combinations between holo SOD and extra copper (holo SOD+nCu(Ⅱ)). The results indicate that the presence of extra copper can enhance the DNA cleavage activity and a cooperative effect between holo SOD and the extra Cu(Ⅱ) occurs in DNA cleavage. The relative activity and kinetic assay showed that the DNA cleavage activity of holo SOD+nCu(Ⅱ) was enhanced upon addition of extra Cu(Ⅱ). The favorable pH regions for the DNA cleavage were observed to be 3.6-5.6 and 9.0-10, suggesting the species responsible for the DNA cleavage are different in different pH regions. In addition,to obtain an insight into DNA cleavage pathways, the effect of free radical scavengers and inhibitors on the DNA cleavage activity was probed.

  7. Cu/Zn-superoxide dismutase from the fungal strain Humicola lutea 103 improves ram spermatozoa functions in vitro.

    Science.gov (United States)

    Stefanov, R; Angelova, M; Stefanova, T; Subev, M; Dolashka, P; Voelter, W; Zachariev, Z

    2004-04-01

    In this study we determined the effect of reactive oxygen species (ROS) generation during incubation in media at 39 degrees C on ram spermatozoa and the protection by exogenously added antioxidant enzyme, superoxide dismutase (SOD). A novel Cu/Zn-SOD, isolated from the fungal strain Humicola lutea 103 (HLSOD), was used. Our results point out that the levels of both, superoxide anion radicals (*O2-) and H2O2, increase approximately 8-10- and 2-3-fold, respectively, during incubation of spermatozoa. Enhanced ROS generation coincided with reduction of motility, independently of the type of diluted medium. Addition of HLSOD (30, 60 and 120 U ml(-1) sperm) improved sperm functions, maintaining almost initial percentages of motile spermatozoa and increasing the values of mean cytochemical coefficient. At the same time, a significant diminution of *O2- and H2O2 content in the presence of antioxidant enzyme was established. The results suggest that HLSOD is an effective *O2- scavenger in semen that leads to protection of sperm functions.

  8. Scavenging Capacities of Some Wines and Wine Phenolic Extracts

    Directory of Open Access Journals (Sweden)

    Ioannis G. Roussis

    2005-01-01

    Full Text Available The aim of this study was to assess the ability of different wines – a sweet red, a dry red, a sweet white, and a dry white – to scavenge the stable 1,1’-diphenyl-2-picryl-hydrazyl radical (DPPH. and to determine their phenolic composition. Both red wines contained, apart from anthocyanins, also higher concentration of total phenolics, tartaric esters, and flavonols than the two white wines. All wines exhibited scavenging activity analogous to their total phenolic content. However, their phenolics differed in antiradical potency, which was visible in their EC50 values. The dry red wine, Xinomavro, had a lower EC50 value, indicating the higher antiradical potency of its phenolics. The scavenging capacities of phenolic extracts from Xinomavro red wine on hydroxyl radicals, superoxide radicals, and singlet oxygen were also assessed. Wine total extract was fractionated by extraction, and each of the three fractions was then subfractionated by column chromatography into two subfractions. Wine total extract, and its fractions and subfractions exhibited scavenging capacity on hydroxyl radicals, superoxide radicals, and singlet oxygen, indicating the activity of many wine phenolics. The most active wine extracts towards hydroxyl radicals were characterized by the high peaks of flavanols, anthocyanins and flavonols in their HPLC-DAD chromatograms. The most active extract towards superoxide radicals was rich in flavanols and anthocyanins. The characteristic phenolics of the most active wine extracts towards singlet oxygen were flavanols, flavonols and phenolic acids. The ability of all red wine phenolic extracts to scavenge singlet oxygen, along with hydroxyl and superoxide radicals, emphasizes its health functionality.

  9. An Ethanol Extract Derived from Bonnemaisonia hamifera Scavenges Ultraviolet B (UVB Radiation-Induced Reactive Oxygen Species and Attenuates UVB-Induced Cell Damage in Human Keratinocytes

    Directory of Open Access Journals (Sweden)

    Nam Ho Lee

    2012-12-01

    Full Text Available The present study investigated the photoprotective properties of an ethanol extract derived from the red alga Bonnemaisonia hamifera against ultraviolet B (UVB-induced cell damage in human HaCaT keratinocytes. The Bonnemaisonia hamifera ethanol extract (BHE scavenged the superoxide anion generated by the xanthine/xanthine oxidase system and the hydroxyl radical generated by the Fenton reaction (FeSO4 + H2O2, both of which were detected by using electron spin resonance spectrometry. In addition, BHE exhibited scavenging activity against the 1,1-diphenyl-2-picrylhydrazyl radical and intracellular reactive oxygen species (ROS that were induced by either hydrogen peroxide or UVB radiation. BHE reduced UVB-induced apoptosis, as shown by decreased apoptotic body formation and DNA fragmentation. BHE also attenuated DNA damage and the elevated levels of 8-isoprostane and protein carbonyls resulting from UVB-mediated oxidative stress. Furthermore, BHE absorbed electromagnetic radiation in the UVB range (280–320 nm. These results suggest that BHE protects human HaCaT keratinocytes against UVB-induced oxidative damage by scavenging ROS and absorbing UVB photons, thereby reducing injury to cellular components.

  10. An ethanol extract derived from Bonnemaisonia hamifera scavenges ultraviolet B (UVB) radiation-induced reactive oxygen species and attenuates UVB-induced cell damage in human keratinocytes.

    Science.gov (United States)

    Piao, Mei Jing; Hyun, Yu Jae; Cho, Suk Ju; Kang, Hee Kyoung; Yoo, Eun Sook; Koh, Young Sang; Lee, Nam Ho; Ko, Mi Hee; Hyun, Jin Won

    2012-12-14

    The present study investigated the photoprotective properties of an ethanol extract derived from the red alga Bonnemaisonia hamifera against ultraviolet B (UVB)-induced cell damage in human HaCaT keratinocytes. The Bonnemaisonia hamifera ethanol extract (BHE) scavenged the superoxide anion generated by the xanthine/xanthine oxidase system and the hydroxyl radical generated by the Fenton reaction (FeSO₄ + H₂O₂), both of which were detected by using electron spin resonance spectrometry. In addition, BHE exhibited scavenging activity against the 1,1-diphenyl-2-picrylhydrazyl radical and intracellular reactive oxygen species (ROS) that were induced by either hydrogen peroxide or UVB radiation. BHE reduced UVB-induced apoptosis, as shown by decreased apoptotic body formation and DNA fragmentation. BHE also attenuated DNA damage and the elevated levels of 8-isoprostane and protein carbonyls resulting from UVB-mediated oxidative stress. Furthermore, BHE absorbed electromagnetic radiation in the UVB range (280-320 nm). These results suggest that BHE protects human HaCaT keratinocytes against UVB-induced oxidative damage by scavenging ROS and absorbing UVB photons, thereby reducing injury to cellular components.

  11. New Active Organic Substance in Oyster Shell Capable of Scavenging Oxygen Free Radicals with High Efficiency

    Institute of Scientific and Technical Information of China (English)

    MA Jian-hua

    2008-01-01

    A light purple organic active substance capable of scavenging hydroxyl radical·OH with a high efficiency was extracted from Oyster shell at an extraction rate of 2.49%.It was found for the first time that this active substance may scavenge ·OH with the efficiency far higher than that of vitamin C.This active substance may scavenge also superoxide radical(O2-·)although the scavenging efficiency is far lower than that of vitamin C.Infrared spectrometry and routine chemical analysis primarily reveal that this active substance belongs to glycoprotein.

  12. Extracellular superoxide dismutase of boar seminal plasma.

    Science.gov (United States)

    Kowalowka, M; Wysocki, P; Fraser, L; Strzezek, J

    2008-08-01

    Superoxide dismutase (SOD) is an enzymatic component of the antioxidant defense system that protects spermatozoa by catalysing the dismutation of superoxide anions to hydrogen peroxide and oxygen. Age and season effects on SOD activity in the seminal plasma were measured in boars at the onset of 8 months through a 35-month period. It was found that age-related changes in SOD activity in the seminal plasma were markedly higher in boars less than 2 years of age. However, it appeared that SOD activity was established at the early sexual maturity age (8-12 months). There were variations in SOD activity throughout the season, being significantly higher in spring and autumn than in summer. A secretory extracellular form of SOD (EC-SOD) was purified to homogeneity (350-fold) from boar seminal plasma, using a three-step purification protocol (affinity chromatography followed by ion exchange and ceramic hydroxyapatite chromatography). The molecular properties and specificity of SOD (molecular mass, isoelectric point, optimum pH, thermostability and susceptibility to inhibitors) confirmed that the purified enzyme is an extracellular form of Cu/Zn-superoxide dismutase occurring in boar seminal plasma. The results of this study indicate that EC-SOD is an important antioxidant enzyme of boar seminal plasma, which plays an important physiological role in counteracting oxidative stress in spermatozoa.

  13. Effect of scavengers of active oxygen species on cell damage caused in CHO-K1 cells by phenylhydroquinone, an o-phenylphenol metabolite.

    Science.gov (United States)

    Tayama, S; Nakagawa, Y

    1994-07-01

    Phenylhydroquinone (PHQ), a metabolite of o-phenylphenol (OPP), is easily autoxidized to phenylbenzoquinone (PBQ) via the semiquinone (phenylsemiquinone, PSQ) with concomitant production of superoxide anion radicals (O2-.). We have used scavengers of active oxygen species to examine whether or not O2-. produced during oxidation of PHQ is related to cell damage in CHO-K1 cells. PHQ at 10 micrograms/ml (3-h treatment) induced sister-chromatid exchange (SCE), endoreduplication (ERD) and cell-cycle delay in CHO-K1 cells. These effects were inhibited by catalase (280 U/ml), a scavenger of hydrogen peroxide (H2O2), as well as by the reductants, ascorbate (3 mM) and GSH (1 mM). Mannitol (50 mM), a scavenger of hydroxyl radical (OH.), was ineffective and superoxide dismutase (SOD, 150 U/ml), a scavenger of O2-., or SOD plus catalase rather intensified the toxicity as did aminotriazole (20 mM), an inhibitor of catalase. Analyses of incubation solutions by HPLC showed that the extent of cell damage is correlated with PHQ loss; catalase suppressed PHQ loss, whereas SOD promoted it. The correlation was more clearly seen in the time courses of cell death and PHQ loss during incubation of PHQ with each of the scavengers of active oxygen species. These results show that neither O2-. nor OH. participates in the cell damage, but rather H2O2 generated via dismutation of O2-. may participate, probably by accelerating the autoxidation of PHQ and thus causing an increase in the production of toxic intermediates. In fact, conversion of PHQ to PBQ, a reactive product, was demonstrated during incubation with PHQ in phosphate-buffered saline by following the changes in UV-visible spectra of PHQ. Inclusion of H2O2 (0.2 or 1 mM) in the incubation mixture accelerated the PHQ loss. The present results can be explained in terms of the autoxidation mechanism of hydroquinone proposed by O'Brien (1991). Different from the results in the absence of S9 mix, the cell damage induced by 50 micrograms

  14. PEGylated Nanoceria as Radical Scavenger with Tunable Redox Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Karakoti, Ajay S.; Singh, Sanjay; Kumar, Amit; Malinska, M.; Kuchibhatla, Satyanarayana V N T; Wozniak, K.; Self, William; Seal, Sudipta

    2009-10-14

    Cerium oxide nanoparticles (CNPs) have shown tremendous potential in various applications such as water gas shift catalysis, chemical mechanical planarization (CMP), solid oxide fuel cells (SOFC), solar cells4 and high temperature oxidation protection coatings1. Recently, CNPs have been demonstrated to protect biological tissues against radiation induced damage, scavenging of superoxide anions, prevention of laser induced retinal damage, reduction of spinal injury in a tissue culture model, prevention of cardiovascular myopathy, pH dependent antioxidant properties, as a tool for immunoassays as well as other inflammatory diseases2. In most biomedical applications it is speculated that nanoceria is a regenerative radical scavenger with the ability to regenerate its active 3+ oxidation state for radical scavenging. Thus far there are no reports to control the regeneration of Ce3+ oxidation state which is the most important parameter in the application of CNPs as a reliable and regenerative radical scavenger. Thus, there is an imminent need to increase the potency of CNPs to achieve higher degree of protection against reactive oxygen species (ROS), to increase the residence time of CNPs in body and to control the regeneration of 3+ oxidation state. PEG has been reported to increase the residence time of nanoparticles and proteins inside cells and provide biocompatibility3. PEGylated counterparts of the SOD enzymes have shown improved performance over non-PEGylated enzymes. Herein, we report our efforts to synthesize CNPs directly in polyethylene glycol (mol wt 600) solution and determine the effect of increasing concentration of PEG (PEG vol % as 5, 10, 20, 40, 60 and 80) on the SOD mimetic properties exhibited by nanoceria. We also report how the active Ce3+ oxidation state can be regenerated or further tuned to regenerate at faster rate. We further demonstrate the role of PEG on the redox chemistry of CNPs catalyzed by hydrogen peroxide. Several complexes of PEGs

  15. Clastogenic Factors as Potential Biomarkers of Increased Superoxide Production

    Directory of Open Access Journals (Sweden)

    Ingrid Emerit

    2007-01-01

    Full Text Available The formation of clastogenic factors (CF and their damaging effects are mediated by superoxide, since superoxide dismutase is regularly protective. CF are produced via superoxide and stimulate the production of superoxide by monocytes and neutrophils. This results in a selfsustaining and longlasting process of clastogenesis, which may exceed the DNA repair system and ultimately lead to cancer (Emerit, 1994. An increased cancer risk is indeed observed in conditions accompanied by CF formation. These include irradiated persons, patients with chronic inflammatory diseases, HIV-infected persons and the chromosomal breakage syndromes ataxia telangiectasia, Bloom’s syndrome and Fanconi’s anemia. Biochemical analysis has identifi ed lipid peroxidation products, arachidonic acid metabolites, nucleotides of inosine and cytokines, in particular tumor necrosis factor alpha, as the clastogenic and also superoxide stimulating components of CF. Due to their chromosome damaging effects, these oxidants can be detected with classical cytogenetic techniques. Their synergistic action renders the CF-test particularly sensitive for the detection of a pro-oxidant state. Correlations were observed between CF and other biomarkers of oxidative stress such as decreases in total plasma thiols or increases in TBARS or chemiluminescence. Correlations between CF and disease activity, between CF and radiation exposure, suggest the study of CF for monitoring these conditions. CF may also be useful as biochemical markers and intermediate endpoints for the evaluation of promising antioxidant drugs. CF formation represents a link between chronic inflammation and carcinogenesis. Prophylactic use of superoxide scavengers as anticarcinogens is therefore suggested.

  16. Superoxide reduction by a superoxide reductase lacking the highly conserved lysine residue.

    Science.gov (United States)

    Pinto, Ana F; Romão, Célia V; Pinto, Liliana C; Huber, Harald; Saraiva, Lígia M; Todorovic, Smilja; Cabelli, Diane; Teixeira, Miguel

    2015-01-01

    Superoxide reductases (SORs) are the most recently identified superoxide detoxification systems, being found in microorganisms from the three domains of life. These enzymes are characterized by a catalytic mononuclear iron site, with one cysteine and four histidine ligands of the ferrous active form. A lysine residue in the -EKHVP- motif, located close to the active site, has been considered to be essential for the enzyme function, by contributing to the positive surface patch that attracts the superoxide anion and by controlling the chemistry of the catalytic mechanism through a hydrogen bond network. However, we show here that this residue is substituted by non-equivalent amino acids in several putative SORs from Archaea and unicellular Eukarya. In this work, we focus on mechanistic and spectroscopic studies of one of these less common enzymes, the SOR from the hyperthermophilic Crenarchaeon Ignicoccus hospitalis. We employ pulse radiolysis fast kinetics and spectroscopic approaches to study the wild-type enzyme (-E23T24HVP-), and two mutants, T24K and E23A, the later mimicking enzymes lacking both the lysine and glutamate (a ferric ion ligand) of the motif. The efficiency of the wild-type protein and mutants in reducing superoxide is comparable to other SORs, revealing the robustness of these enzymes to single mutations.

  17. Radical Scavenging Effects of Different Veronica species

    Directory of Open Access Journals (Sweden)

    Ummuhan Şebnem Harput

    2011-01-01

    Full Text Available It is well known that the excessive production of reactive oxygen species is hazardous for living organisms and damages major cellular constituents such as DNA, lipid and protein. To find new products reducing free radical damage is very important researches in recent pharmaceutical investigations. Considering this information, fourteen Veronica species are decided to research in the view point of their antioxidant capacity and the chemical content. Water extracts of the plants were tested for their radical scavenging activity against 2,2-diphenyl-1-picryl hydrazyl (DPPH, superoxide (SO and nitric oxide (NO radicals spectroscopically. Dose dependent radical scavenging activity was observed and the results were found to be comparable to that of ascorbic acid, quercetin and BHA which are known antioxidative compounds. In addition, gallic acid equivalent total phenolic contents of the plants were also determined using Folin-Ciocalteau reagent. The most significant scavenging activity was found for V. chamaedrys against SO radical (IC50 113.40 μg/ml and V. officinalis against DPPH and NO radicals (IC50 40.93 μg/ml, 570.33 μg/ml, respectively .

  18. Active Oxygen Radical Scavenging Ability of Water-Soluble β-Alanine C60 Adducts

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Water-soluble β-alanine C60 adducts were synthesized, and the scavenging ability to superoxygen anion radical O2-and hydroxyl radicalOH were studied by autoxidation ofpyrogallol and chemiluminescence, respectively. It was found that β-alanine C60 adducts showed an excellent efficiency in eliminating superoxygen anion radical and hydroxyl radical. The 50% inhibition concentration (IC50) for superoxygen anion radical and hydroxyl radical were 0.15 mg/mL and 0.048 mg/mL, respectively. The difference should be mainly attributed to the different scavenging mechanisms.

  19. Superoxide dismutase phenotypes in duodenal ulcers: A genetic marker?

    Directory of Open Access Journals (Sweden)

    Sulekha S

    2006-01-01

    Full Text Available Background:Cu-Zn superoxide dismutases are antioxidative defensive enzymes that catalyze the reduction of superoxide anions to hydrogen peroxide. Aim:The study focuses on the association of electromorph of superoxide dismutase with duodenal ulcers, which result due to an imbalance between aggressive and defensive factors. Materials and Methods:Endoscopically confirmed 210 duodenal ulcer patients and 185 healthy individuals for comparative analysis were considered for the present study. Phenotyping of superoxide dismutase was carried out by subjecting the RBC membranes to polyacrylamide gel electrophoresis, using appropriate staining protocols. Results:Statistical analysis of SOD phenotypes revealed a significant increase of SOD AFNx012 allele and Superoxide dismutases (SOD 2-2 phenotype in duodenal ulcer group. Among these individuals, a predominance of Helicobacter pylori infection was observed. The increased preponderance of homozygotes can be explained on the basis of reduced and altered enzyme activity, which may lead to disturbance in homeostasis of antioxidant/oxidant culminating in high lipid peroxidative gastric mucosal tissue damage and ulceration. No variation in the distribution of SOD phenotypes with respect to Helicobacter pylori indicates the role of Mn-SOD rather than Cu-Zn SOD in the Helicobacter pylori infected cases as reported earlier. Conclusions:Superoxide dismutase as a genetic marker / gene modifier, encoding for an antioxidant enzyme in maintaining tissue homeostasis of the gastric mucosa is discussed.

  20. Scavenging of photogenerated oxidative species by antimuscarinic drugs: atropine and derivatives.

    Science.gov (United States)

    Criado, Susana; Guardianelli, Carina; Tuninetti, Jimena; Molina, Patricia; García, Norman A

    2002-01-01

    The quenching ability of photogenerated oxidative species by some antimuscarinic drugs generically named atropines (e.g. atropine [I] eucatropine [II], homatropine [III] and scopolamine [IV]) have been investigated employing stationary photolysis, polarographic detection of dissolved oxygen, stationary and time-resolved fluorescence spectroscopy, and laser flash photolysis. Using Rose Bengal as a dye sensitiser for singlet molecular oxygen, O(2)((1)Delta(g)), generation, compounds I-IV behave as moderate chemical plus physical quenchers of the oxidative species. Correlation between kinetic and electrochemical data indicates that the process is possibly driven by a charge-transfer interaction. The situation is somewhat more complicated employing the natural pigment riboflavin (Rf) as a sensitiser. Compounds I and II complex Rf ground state, diminishing the quenching ability towards singlet and triplet excited state of the pigment. On the other hand, compounds III and IV effectively quench Rf excited states, protecting the pigment against photodegradation. Under anaerobic conditions, semireduced Rf (Rf(.-)) is formed through quenching of excited triplet Rf. Nevertheless, although Rf(.-) is a well-known generator of the reactive species superoxide radical anion by reductive quenching in the presence of oxygen, the process of O(2)((1)Delta(g)) production prevails over superoxide radical generation, due to the relatively low rate constants for the quenching of triplet Rf by the atropines (in the order of 10(7) M(-1)s(-1) for compounds III and IV) in comparison to the rate constant for the quenching by ground state oxygen, approximately two orders of magnitude higher, yielding O(2)((1)Delta(g)). Compound I is the most promising O(2)((1)Delta(g)) physical scavenger, provided that it exhibits the higher value for the overall quenching rate constant and only 11% of the quenching process leads to its own chemical damage.

  1. Superoxide Mediates the Toxicity of Paraquat for Chinese Hamster Ovary Cells

    Science.gov (United States)

    Bagley, Ann C.; Krall, Judith; Lynch, Robert E.

    1986-05-01

    The roles of superoxide and H2O2 in the cytotoxicity of paraquat were assessed in Chinese hamster ovary cells. Neither catalase nor superoxide dismutase inhibited the loss of ability to form colonies when added to the medium. When introduced into the cells, superoxide dismutase but not catalase inhibited the toxicity of paraquat. That superoxide dismutase acted by its known catalytic action is shown by the loss of inhibition when the enzyme was inactivated by H2O2 before being introduced into the cells. The lack of inhibition by catalase, by dimethyl sulfoxide, and by desferoxamine suggests that the toxicity is not mediated by a reaction between H2O2 and superoxide to engender the hydroxyl radical. Exposure of Chinese hamster ovary cells to paraquat may be a suitable means to determine the effects of superoxide anion in cultured cells and the ways in which cells can resist this toxic action.

  2. Models of Superoxide Dismutases

    Energy Technology Data Exchange (ETDEWEB)

    Cabelli, Diane E.; Riley, Dennis; Rodriguez, Jorge A.; Valentine, Joan Selverstone; Zhu, Haining

    1998-05-20

    In this review we have focused much of our discussion on the mechanistic details of how the native enzymes function and how mechanistic developments/insights with synthetic small molecule complexes possessing SOD activity have influenced our understanding of the electron transfer processes involved with the natural enzymes. A few overriding themes have emerged. Clearly, the SOD enzymes operate at near diffusion controlled rates and to achieve such catalytic turnover activity, several important physical principles must be operative. Such fast electron transfer processes requires a role for protons; i.e., proton-coupled electron transfer (''H-atom transfer'') solves the dilemma of charge separation developing in the transition state for the electron transfer step. Additionally, outer-sphere electron transfer is likely a most important pathway for manganese and iron dismutases. This situation arises because the ligand exchange rates on these two ions in water never exceed {approx}10{sup +7} s{sup -1}; consequently, 10{sup +9} catalytic rates require more subtle mechanistic insights. In contrast, copper complexes can achieve diffusion controlled (>10{sup +9}) exchange rates in water; thus inner-sphere electron transfer processes are more likely to be operative in the Cu/Zn enzymes. Recent studies have continued to expand our understanding of the mechanism of action of this most important class of redox active enzymes, the superoxide dismutases, which have been critical in the successful adaptation of life on this planet to an oxygen-based metabolism. The design of SOD mimic drugs, synthetic models compounds that incorporate this superoxide dismutase catalytic activity and are capable of functioning in vivo, offers clear potential benefits in the control of diseases, ranging from the control of neurodegenerative conditions, such as Parkinson's or Alzheimer's disease, to cancer.

  3. Dehydroepiandrosterone inhibits the spontaneous release of superoxide radical by alveolar macrophages in vitro in asbestosis

    Energy Technology Data Exchange (ETDEWEB)

    Rom, W.N.; Harkin, T. (New York Univ. Medical Center, New York (United States))

    1991-08-01

    Asbestosis is characterized by an alveolar macrophage alveolitis with injury and fibrosis of the lower respiratory tract. Alveolar macrophages recovered by bronchoalveolar lavage spontaneously release exaggerated amounts of oxidants including superoxide anion and hydrogen peroxide that may mediate alveolar epithelial cell injury. Dehydroepiandrosterone (DHEA) is a normally occurring adrenal androgen that inhibits glucose-6-phosphate dehydrogenase, the initial enzyme in the pentose phosphate shunt necessary for NADPH generation and superoxide anion formation. In this regard, the authors hypothesized that DHEA may reduce asbestos-induced oxidant release. DHEA added in vitro to alveolar macrophages lavaged from 11 nonsmoking asbestos workers significantly reduced superoxide anion release. DHEA is an antioxidant and potential anticarcinogenic agent that may have a therapeutic role in reducing the increased oxidant burden in asbestos-induced alveolitis of the lower respiratory tract.

  4. Oxidation of Hantzsch 1,4-dihydropyridines of pharmacological significance by electrogenerated superoxide.

    Science.gov (United States)

    Ortiz, M E; Núñez-Vergara, L J; Camargo, C; Squella, J A

    2004-03-01

    To study the reaction of a series of Hantzsch dihydropyridines with pharmacological significance such as, nifedipine, nitrendipine, nisoldipine, nimodipine, isradipine and felodipine, with electrogenerated superoxide in order to identify products and postulate a mechanism. The final pyridine derivatives were separated and identified by gas chromatography/mass spectrometry (GC-MS). The intermediates, anion dihydropyridine and the HO2*/HO2- species, were observed from voltammetric studies and controlled potential electrolysis was used to electrogenerate O2*-. The current work reveals that electrogenerated superoxide can quantitatively oxidize Hantzsch dihydropyridines to produce the corresponding aromatized pyridine derivatives. Our results indicate that the aromatization of Hantzsch dihydropyridines by superoxide is initiated by proton transfer from the N1-position on the 1,4-dihydropyridine ring to give the corresponding anion dihydropyridine, which readily undergoes further homogeneous oxidations to provide the final aromatized products. The oxidation of the anionic species of the dihydropyridine is more easily oxidized than the parent compound.

  5. The impact of the lacto-ovo vegetarian diet on the erythrocyte superoxide dismutase activity: a study in the Romanian population.

    Science.gov (United States)

    Boancă, M M; Colosi, H A; Crăciun, E C

    2014-02-01

    Recent studies have shown that vitamin B12 scavenges superoxide anion as effectively as superoxide dismutase (SOD), and has a key role in the defense against oxidative stress. The status of vitamin B12 is suboptimal in a substantial number of vegans and even vegetarians. We therefore evaluated in lacto-ovo vegetarians (LOVs) who did not take vitamin B12 supplements the impact of the duration of this diet on the vitamin B12 status, the erythrocyte SOD activity and the serum malondialdehyde (MDA) concentration. The study group included 38 non-vegetarians and 48 LOVs divided, according to the duration of this diet, into two subgroups: LOV1 (2-10 years) and LOV2 (11-29 years). The erythrocyte SOD activity and the serum concentrations of vitamin B12 and MDA were assayed. In LOVs, the mean serum vitamin B12 concentration, the erythrocyte SOD activity and the mean serum MDA concentration were statistically significantly lower that in non-vegetarians. No significant association between the serum vitamin B12 and MDA concentrations and the duration of the LOV diet were observed. A significant inverse linear correlation between SOD activity and the duration of adherence to LOV diet was observed in LOVs. The duration of LOV diet has impact only on SOD activity. Further researches, both in vitro and in vivo, are necessary to understand the underlying molecular mechanism.

  6. Copper complexes of bioactive ligands with superoxide dismutase activity.

    Science.gov (United States)

    Khalid, Huma; Hanif, Muhammad; Hashmi, Muhammad Ali; Mahmood, Tariq; Ayub, Khurshid; Monim-Ul-Mehboob, Muhammad

    2013-11-01

    Free radicals or reactive oxygen species (ROS) are highly toxic and their damaging effects result in a variety of detrimental health issues such as neurodegenerative, cardiovascular and age-related diseases. Human body has evolved an effective defense system including superoxide dismutase (SOD) and catalase against the toxicity of these free radicals. SOD is a metalloenzyme and it acts as an excellent antioxidant to protect the body from superoxide radicals that are generated in the biological system. However, the clinical use of SOD is limited due to its short in vivo life span, and its large size that hampered its penetration across the cell membranes. Pharmaceuticals that provide ROS scavenging systems are the most effective when the production of ROS exceeds the scavenging capacity of endogenous SOD as a result of aging or pathological processes. Inspired by the Nature, scientists have designed metal-based mimics of the superoxide dismutase. This review focuses on different copper complexes that are developed from bioactive ligands and mimic the protecting action of the SOD.

  7. Permeability transition pore-mediated mitochondrial superoxide flashes regulate cortical neural progenitor differentiation.

    Science.gov (United States)

    Hou, Yan; Mattson, Mark P; Cheng, Aiwu

    2013-01-01

    In the process of neurogenesis, neural progenitor cells (NPCs) cease dividing and differentiate into postmitotic neurons that grow dendrites and an axon, become excitable, and establish synapses with other neurons. Mitochondrial biogenesis and aerobic metabolism provide energy substrates required to support the differentiation, growth and synaptic activity of neurons. Mitochondria may also serve signaling functions and, in this regard, it was recently reported that mitochondria can generate rapid bursts of superoxide (superoxide flashes), the frequency of which changes in response to environmental conditions and signals including oxygen levels and Ca(2+) fluxes. Here we show that the frequency of mitochondrial superoxide flashes increases as embryonic cerebral cortical neurons differentiate from NPCs, and provide evidence that the superoxide flashes serve a signaling function that is critical for the differentiation process. The superoxide flashes are mediated by mitochondrial permeability transition pore (mPTP) opening, and pharmacological inhibition of the mPTP suppresses neuronal differentiation. Moreover, superoxide flashes and neuronal differentiation are inhibited by scavenging of mitochondrial superoxide. Conversely, manipulations that increase superoxide flash frequency accelerate neuronal differentiation. Our findings reveal a regulatory role for mitochondrial superoxide flashes, mediated by mPTP opening, in neuronal differentiation.

  8. Antioxidative capacity and enzyme activity in Haematococcus pluvialis cells exposed to superoxide free radicals

    Institute of Scientific and Technical Information of China (English)

    刘建国; 张晓丽; 孙延红; 林伟

    2010-01-01

    The antioxidative capacity of astaxanthin and enzyme activity of reactive oxygen eliminating enzymes such as superoxide dismutase (SOD),peroxidase (POD),catalase (CAT) and ascorbate peroxidase (APX) were studied in three cell types of Haematococcus pluvialis exposed to high concentrations of a superoxide anion radical (O2ˉ).The results show that defensive enzymes and astaxanthin-related mechanisms were both active in H.pluvialis during exposure to reactive oxygen species (ROS) such as Oˉ2.Astaxanthin reacte...

  9. Antiviral, immunomodulatory, and free radical scavenging activities of a protein-enriched fraction from the larvae of the housefly, Musca domestica.

    Science.gov (United States)

    Ai, Hui; Wang, Furong; Zhang, Na; Zhang, Lingyao; Lei, Chaoliang

    2013-01-01

    In our previous study, protein-enriched fraction (PEF) that was isolated from the larvae of the housefly, Musca domestica L. (Diptera: Muscidae), showed excellent hepatoprotective activity as well as the potential for clinical application in therapy for liver diseases. In this study, antiviral, immunomodulatory, and free radical scavenging activities of PEF were evaluated. The antiviral results demonstrated that PEF inhibited the infection of avian influenza virus H9N2 and had a virucidal effect against the multicapsid nucleopolyhedrovirus of the alfalfa looper, Autographa californica Speyer (Lepidoptera: Noctuidae) in vitro. The mortality of silkworm larve in a PEF treatment group decreased significantly compared with a negative control. PEF showed excellent scavenging activity for 1,1-diphenyl-2-picrylhydrazyl and superoxide anion radicals, which were similar to those of ascorbic acid. The imunomodulatory results suggested that PEF could effectively improve immune function in experimental mice. Our results indicated that PEF could possibly be used for the prophylaxis and treatment of diseases caused by avian influenza virus infection. In addition, PEF with virucidal activity against insect viruses might provide useful for the development of antimicrobial breeding technology for economically important insects. As a natural product from insects, PEF could be a potential source for the discovery of potent antioxidant and immunomodulatory agents.

  10. Complexes trans-[RuCl(2)(nic)(4)] and trans-[RuCl(2)(i-nic)(4)] as free radical scavengers.

    Science.gov (United States)

    Creczynski-Pasa, T B; Bonetti, V R; Beirith, A; Ckless, K; Konzen, M; Seifriz, I; Paula, M S; Franco, C V; Wilhelm Filho, D; Calixto, J B

    2001-09-01

    This study evaluates the action of the new ruthenium complexes trans-RuCl(2)(nic)(4)] (I) and trans-[RuCl(2)(i-nic)(4)] (II) as free radical scavengers. In our experiments, both compounds acted as scavengers of superoxide anion (O(2)*(-)), hydroxyl radicals (HO*) and nitrogen monoxide (formally known as 'nitric oxide'; NO*). In addition, complexes I and II potentiated the release of NO* from S-nitroso-N-acetyl-DL-penicilamine (SNAP), a NO* donor. Complex II, but not I, also decreased the nitrite levels in culture media of activated macrophages. A hypsochromic shift of lambda(max) and a significant change in half-wave potential (E(1/2)) was observed when NO* was added to the Complex II. Thiobarbituric reactive substance (TBARS) levels were significantly reduced in rats treated for 1 week with Complex II plus tert-butylhydroperoxide, when compared to rats treated only with tert-butylhydroperoxide. None of the complexes showed cytotoxicity. These findings support the suggestion that the new ruthenium complexes, especially trans-[RuCl(2)(i-nic)(4)] or its derivatives, might provide potential therapeutic benefits in disorders where reactive nitrogen (RNS) or oxygen (ROS) species are involved.

  11. 蛋清的蛋白酶解物清除自由基能力的研究%STUDY ON FREE RADICAL SCAVENGING ACTIVITY OF PROTEINASE HYDROLYSATES FROM EGG WHITE

    Institute of Scientific and Technical Information of China (English)

    陈晨; 迟玉杰; 刘丽

    2009-01-01

    目的 研究胃蛋白酶、胰蛋白酶、木瓜蛋白酶、中性蛋白酶及Alcalase碱性蛋白酶对蛋清蛋白的水解效果以及其酶解物对自由基的清除能力.方法 采用茚三酮法分析五种蛋白酶对蛋清蛋白的水解效果;通过Fenton体系和邻苯三酚自氧化体系测定五种蛋白酶水解产物对羟自由基及超氧阴离子的清除能力.结果 五种蛋白酶在其最适反应条件下,水解度大小依次为:alcalase碱性蛋白酶>胰蛋白酶>木瓜蛋白酶>中性蛋白酶>胃蛋白酶;羟自由基清除能力强弱依次为:木瓜蛋白酶>alcalase碱性蛋白酶>胰蛋白酶>中性蛋白酶>胃蛋白酶;超氧阴离子清除能力强弱依次为:木瓜蛋白酶>alcalase碱性蛋白酶>中性蛋白酶>胃蛋白酶>胰蛋白酶.木瓜蛋白酶水解3h的产物对两种自由基清除能力最强,对羟自由基的清除率为65.63%,对超氧阴离子的清除率为38.40%.结论 蛋清的蛋白酶解物具有清除羟自由基及超氧阴离子的能力,且对羟自由基的清除能力大于超氧阴离子.%Objective To determine the degree of hydrolysis (DH) and free radical scavenging activity of the hydrolysates of egg white protein (EWPHs) with pepsin, trypsin, papain, neutrase and Alcalase. Method The degree of hydrolysis of EWPH was measured by ninhydrin colorimetric method. The hydroxyl radical and superoxide anion scavenging activity was detected by the methods related to pyrogallol autoxidation and Fenton system. Results Under the optimal conditions the sequence of enzyme hydrolysis capacity was: alcalase>typsin>papain>neutrase>pepsin. The order of hydroxyl radical scavenging activity was: papain>alcalase>trypsin>neutrase>pepsin and the order of superoxide radical scavenging activity was: papain>alcalase>neutrase>pepsin>trypsin. The EWPHs with papain for 3h displayed the strongest radical scavenging activity. The values of hydroxyl radical and superoxide free radical scavenging activity were 65.63% and 38

  12. Dark production of extracellular superoxide by the coral Porites astreoides and representative symbionts

    Directory of Open Access Journals (Sweden)

    Tong Zhang

    2016-11-01

    Full Text Available The reactive oxygen species (ROS superoxide has been implicated in both beneficial and detrimental processes in coral biology, ranging from pathogenic disease resistance to coral bleaching. Despite the critical role of ROS in coral health, there is a distinct lack of ROS measurements and thus an incomplete understanding of underpinning ROS sources and production mechanisms within coral systems. Here, we quantified in situ extracellular superoxide concentrations at the surfaces of aquaria-hosted Porites astreoides during a diel cycle. High concentrations of superoxide (~10’s of nM were present at coral surfaces, and these levels did not change significantly as a function of time of day. These results indicate that the coral holobiont produces extracellular superoxide in the dark, independent of photosynthesis. As a short-lived anion at physiological pH, superoxide has a limited ability to cross intact biological membranes. Further, removing surface mucus layers from the P. astreoides colonies did not impact external superoxide concentrations. We therefore attribute external superoxide derived from the coral holobiont under these conditions to the activity of the coral host epithelium, rather than mucus-derived epibionts or internal sources such as endosymbionts (e.g., Symbiodinium. However, endosymbionts likely contribute to internal ROS levels via extracellular superoxide production. Indeed, common coral symbionts, including multiple strains of Symbiodinium (clades A to D and the bacterium Endozoicomonas montiporae LMG 24815, produced extracellular superoxide in the dark and at low light levels. Further, representative P. astreoides symbionts, Symbiodinium CCMP2456 (clade A and E. montiporae, produced similar concentrations of superoxide alone and in combination with each other, in the dark and low light, and regardless of time of day. Overall, these results indicate that healthy, non-stressed P. astreoides and representative symbionts produce

  13. Measurement of Antioxidant Activity Towards Superoxide in Natural Waters.

    Directory of Open Access Journals (Sweden)

    D. Whitney King

    2016-11-01

    Full Text Available Antioxidants are a class of molecules that provide a protective function against reactive oxygen species (ROS in biological systems by out competing physiologically important molecules for ROS oxidation. In natural waters, the reactivity of antioxidants gives an estimate of oxidative stress and may determine the reactivity and distribution of reactive oxidants. We present an analytical method to measure antioxidant activity in natural waters through the competition between ascorbic acid, an antioxidant, and MCLA, a chemiluminescent probe for superoxide. A numerical kinetic model of the analytical method has been developed to optimize analytical performance. Measurements of antioxidant concentrations in pure and seawater are possible with detection limits below 0.1 nM. Surface seawater samples collected at solar noon contained over 0.4 nM of antioxidants and exhibited first-order decay with a half-life of 3-7 minutes, consistent with a reactive species capable of scavenging photochemically produced superoxide.

  14. How the location of superoxide generation influences the β-cell response to nitric oxide.

    Science.gov (United States)

    Broniowska, Katarzyna A; Oleson, Bryndon J; McGraw, Jennifer; Naatz, Aaron; Mathews, Clayton E; Corbett, John A

    2015-03-20

    Cytokines impair the function and decrease the viability of insulin-producing β-cells by a pathway that requires the expression of inducible nitric oxide synthase (iNOS) and generation of high levels of nitric oxide. In addition to nitric oxide, excessive formation of reactive oxygen species, such as superoxide and hydrogen peroxide, has been shown to cause β-cell damage. Although the reaction of nitric oxide with superoxide results in the formation of peroxynitrite, we have shown that β-cells do not have the capacity to produce this powerful oxidant in response to cytokines. When β-cells are forced to generate peroxynitrite using nitric oxide donors and superoxide-generating redox cycling agents, superoxide scavenges nitric oxide and prevents the inhibitory and destructive actions of nitric oxide on mitochondrial oxidative metabolism and β-cell viability. In this study, we show that the β-cell response to nitric oxide is regulated by the location of superoxide generation. Nitric oxide freely diffuses through cell membranes, and it reacts with superoxide produced within cells and in the extracellular space, generating peroxynitrite. However, only when it is produced within cells does superoxide attenuate nitric oxide-induced mitochondrial dysfunction, gene expression, and toxicity. These findings suggest that the location of radical generation and the site of radical reactions are key determinants in the functional response of β-cells to reactive oxygen species and reactive nitrogen species. Although nitric oxide is freely diffusible, its biological function can be controlled by the local generation of superoxide, such that when this reaction occurs within β-cells, superoxide protects β-cells by scavenging nitric oxide.

  15. NOC/oFQ PKC-dependent superoxide generation contributes to hypoxic-ischemic impairment of NMDA cerebrovasodilation.

    Science.gov (United States)

    Armstead, W M

    2000-12-01

    This study determined whether nociceptin/orphanin FQ (NOC/oFQ) generates superoxide anion (O(2)(-)) in a protein kinase C (PKC)-dependent manner and whether such production contributes to hypoxic-ischemic (H-I) impairment of N-methyl-D-aspartate (NMDA)-induced pial artery dilation in newborn pigs equipped with closed cranial windows. Superoxide dismutase (SOD)-inhibitable nitroblue tetrazolium (NBT) reduction was an index of O(2)(-) generation. Under non-H-I conditions, topical NOC/oFQ (10(-10) M, concentration present in cerebrospinal fluid after I or H-I) increased SOD-inhibitable NBT reduction from 1 +/- 1 to 20 +/- 3 pmol/mm(2). PKC inhibitors staurosporine and chelerythrine (10(-7) M) blunted NBT reduction (1 +/- 1 to 7 +/- 2 pmol/mm(2) for chelerythrine), whereas the NOC/oFQ receptor antagonist [F/G]NOC/oFQ (1-13)-NH(2) (10(-6) M) blocked NBT reduction. [F/G]NOC/oFQ(1-13)-NH(2) and staurosporine also blunted the NBT reduction observed after I or H-I. NMDA (10(-8), 10(-6) M)-induced pial artery dilation was reversed to vasoconstriction after H-I. The NOC/oFQ antagonist staurosporine and free radical scavengers partially prevented this impaired dilation (sham: 9 +/- 1 and 16 +/- 1; H-I: -5 and -10 +/- 1; H-I staurosporine pretreated: 3 +/- 1 and 6 +/- 1%). These data show that NOC/oFQ increased O(2)(-) production in a PKC-dependent manner and contributed to this production after insult and that NOC/oFQ contributed to impaired NMDA-induced pial artery dilation after H-I, suggesting, therefore, that PKC-dependent O(2)(-) generation by NOC/oFQ links NOC/oFQ release to impaired NMDA dilation after H-I.

  16. Pharmacognostic Screening, Phytochemical Evaluation and In- Vitro free radical Scavenging Activity of Acacia leucophloea Root

    Institute of Scientific and Technical Information of China (English)

    Deenanath Jhade; Sachin Jain; Ankit Jain; Praveen Sharma

    2012-01-01

    Objective: Pharmacognostic Screening and evaluate the in-vitro free radical scavenging activity of roots Acacia leucophloea. Methods: Pharmacognostic Standardization, Physico-chemical evaluation of the roots of Acacia leucophloea was carried out to determine its macro-and microscopical characters and also some of its quantitative standards. Microscopical studies were done by using trinocular microscope. Microscopically, root showed cork, cortex, stellar region and calcium oxalate crystals. Petroleum ether, ethanol, aqueous extracts of Acacia leucophloea were prepared, with successive extraction in soxhlet apparatus. Each extract was selected to study the free radical scavenging activity by superoxide scavenging assay method. Results: It was found that aqueous extract contained carbohydrates, glycosides amino acids flavonoids, tannins, alkaloids, steroids; ethanolic extract contained glycosides amino acids flavonoids, tannins, alkaloids, steroids. Ethanolic extract of Acacia leucophloea shows maximam inhibition in superoxide scavenging model. Aqueous extract also showed almost similar activity compared to ethanolic extract), while Petroleum ether extract showed poor inhibition of superoxide scavenging activity. Conclusion: The present study on pharmacognostic standardization, physico and phytochemical evaluation of Acacia leucophloea root might be useful to supplement information about its identification parameters assumed significantly in the way of acceptability of herbal drugs in present scenario lacking regulatory laws to control quality of herbal drugs.

  17. Mechanisms of nitric oxide crosstalk with reactive oxygen species scavenging enzymes during abiotic stress tolerance in plants.

    Science.gov (United States)

    Arora, Dhara; Jain, Prachi; Singh, Neha; Kaur, Harmeet; Bhatla, Satish C

    2016-01-01

    Nitric oxide (NO) acts in a concentration and redox-dependent manner to counteract oxidative stress either by directly acting as an antioxidant through scavenging reactive oxygen species (ROS), such as superoxide anions (O(2)(-)*), to form peroxynitrite (ONOO(-)) or by acting as a signaling molecule, thereby altering gene expression. NO can interact with different metal centres in proteins, such as heme-iron, zinc-sulfur clusters, iron-sulfur clusters, and copper, resulting in the formation of a stable metal-nitrosyl complex or production of varied biochemical signals, which ultimately leads to modification of protein structure/function. The thiols (ferrous iron-thiol complex and nitrosothiols) are also involved in the metabolism and mobilization of NO. Thiols bind to NO and transport it to the site of action whereas nitrosothiols release NO after intercellular diffusion and uptake into the target cells. S-nitrosoglutathione (GSNO) also has the ability to transnitrosylate proteins. It is an NO˙ reservoir and a long-distance signaling molecule. Tyrosine nitration of proteins has been suggested as a biomarker of nitrosative stress as it can lead to either activation or inhibition of target proteins. The exact molecular mechanism(s) by which exogenous and endogenously generated NO (or reactive nitrogen species) modulate the induction of various genes affecting redox homeostasis, are being extensively investigated currently by various research groups. Present review provides an in-depth analysis of the mechanisms by which NO interacts with and modulates the activity of various ROS scavenging enzymes, particularly accompanying ROS generation in plants in response to varied abiotic stress.

  18. Investigation of the antioxidant and radical scavenging activities of some phenolic Schiff bases with different free radicals.

    Science.gov (United States)

    Marković, Zoran; Đorović, Jelena; Petrović, Zorica D; Petrović, Vladimir P; Simijonović, Dušica

    2015-11-01

    The antioxidant properties of some phenolic Schiff bases in the presence of different reactive particles such as (•)OH, (•)OOH, (CH2=CH-O-O(•)), and (-•)O2 were investigated. The thermodynamic values, ΔH BDE, ΔH IP, and ΔH PA, were used for this purpose. Three possible mechanisms for transfer of hydrogen atom, concerted proton-electron transfer (CPET), single electron transfer followed by proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET) were considered. These mechanisms were tested in solvents of different polarity. On the basis of the obtained results it was shown that SET-PT antioxidant mechanism can be the dominant mechanism when Schiff bases react with radical cation, while SPLET and CPET are competitive mechanisms for radical scavenging of hydroxy radical in all solvents under investigation. Examined Schiff bases react with the peroxy radicals via SPLET mechanism in polar and nonpolar solvents. The superoxide radical anion reacts with these Schiff bases very slowly.

  19. Manganese Superoxide Dismutase: Guardian of the Powerhouse

    Directory of Open Access Journals (Sweden)

    Daret K. St. Clair

    2011-10-01

    Full Text Available The mitochondrion is vital for many metabolic pathways in the cell, contributing all or important constituent enzymes for diverse functions such as β-oxidation of fatty acids, the urea cycle, the citric acid cycle, and ATP synthesis. The mitochondrion is also a major site of reactive oxygen species (ROS production in the cell. Aberrant production of mitochondrial ROS can have dramatic effects on cellular function, in part, due to oxidative modification of key metabolic proteins localized in the mitochondrion. The cell is equipped with myriad antioxidant enzyme systems to combat deleterious ROS production in mitochondria, with the mitochondrial antioxidant enzyme manganese superoxide dismutase (MnSOD acting as the chief ROS scavenging enzyme in the cell. Factors that affect the expression and/or the activity of MnSOD, resulting in diminished antioxidant capacity of the cell, can have extraordinary consequences on the overall health of the cell by altering mitochondrial metabolic function, leading to the development and progression of numerous diseases. A better understanding of the mechanisms by which MnSOD protects cells from the harmful effects of overproduction of ROS, in particular, the effects of ROS on mitochondrial metabolic enzymes, may contribute to the development of novel treatments for various diseases in which ROS are an important component.

  20. Placental NAD(P)H oxidase mediated superoxide generation in early pregnancy.

    NARCIS (Netherlands)

    Raijmakers, M.; Burton, G.J.; Jauniaux, E.; Seed, P.T.; Peters, W.H.M.; Steegers, E.A.P.; Poston, L.

    2006-01-01

    Early placental development is characterised by rapid cell differentiation and migration, matrix remodelling and angiogenesis. The enzyme NAD(P)H oxidase is a major source of superoxide anions implicated in signalling pathways regulating these processes in other systems. It is also thought to be

  1. [Generation of superoxides during the interaction of melanins with oxygen].

    Science.gov (United States)

    Lapina, V A; Dontsov, A E; Ostrovskiĭ, M A

    1984-10-01

    The rate of nitroblue tetrazolium (NBT) reduction by dihydroxyphenylalanine-melanin, pheomelanin and retinal pigment epithelium melanosomes under aerobic conditions (pH 7.4) is low both in the dark and upon illumination, but increases drastically in the presence of cetyltrimethylammonium bromide (CTAB). Under these conditions, the light insignificantly stimulates NBT reduction (1.3-fold). The reaction is effectively inhibited by superoxide dismutase. This suggests that superoxide anions (O2-. are formed as intermediate reaction products in the course of NBT reduction by melanins. At alkaline values of pH (greater than or equal to 9.0), the O2-.-dependent reduction of NBT can also take place in the absence of CTAB. In contrast with oxidation of photoreduced riboflavin, the melanin oxidation by O2 cannot induce lipid peroxidation. It is concluded that O2-. generation via melanin oxidation of melanosomes occurs only under non-physiological conditions and can hardly take place in vivo.

  2. 野葛异黄酮糖苷的分离纯化及体外清除自由基活性的研究%Free radical scavenging capacities of isoflavonoid glycosides isolated from Pueraria Radix

    Institute of Scientific and Technical Information of China (English)

    杨华; 韩坤; 宛晓春; 方从兵

    2011-01-01

    以野葛的根样为试材,依次通过总黄酮提取、有机溶荆分级分离和柱色谱法进行分离纯化,获得4种异黄酮糖苷组分,依据核磁共振谱和质谱分析结果分别鉴定为葛根素、大豆苷、芒柄花苷和染料木苷.采用1,1-二苯基苦基苯肼(DPPH·)的有机自由基体系和超氧阴离子(O2·-)的无机活性氧自由基体系,对上述4种异黄酮糖苷化舍物的体外清除自由基能力和抗氧化活性进行测定.结果表明,4个异黄酮糖苷组分对DPPH·自由基和O2-·自由基均具有一定的清除活性,清除能力的大小与处理浓度均成正相关关系,对DPPH·自由基的清除效果由高到低依次为染料木苷、大豆苷、葛根素和芒柄花苷,抑制O2·-自由基能力由强到弱依次为葛根素、大豆苷、染料木苷和芒柄花苷.%Crude total isoflavonoids extracted from Pueraria Radix were partitioned by different organic solvents, then isolated and purified by several column chromatographic techniques and four isoflavonoid glycosides were obtained. On basis of the NMR and ESI-MS spectra, these four compounds can be identified as puerarin, daidzin, ononin, and genistin, respectively. Using an organic free radical system of 1, 1-diphenyl-2-picrylhydrazyl (DPPH · ) and an inorganic free radical system of superoxide anion free radical, the free radical scavenging capacities and antioxidant activities of these four isoflavonoid glycosides were examined in vitro. The results showed that all the four isoflavonoid glycosides were discovered to possess the scavenging capacities of the DPPH · free radical and superoxide anion radical. Meanwhile, there was a significantly positive correlation between the two free radical scavenging capacities and the treated concentrations of the four isoflavonoid glycosides. Genistin showed the highest DPPH · free radical scavenging capacity, followed by daidzin and puerarin,and ononin was the lowest among them. However, the

  3. Bacteriocuprein superoxide dismutases in pseudomonads

    Energy Technology Data Exchange (ETDEWEB)

    Steinman, H.M.

    1985-06-01

    Two new instances of the rare bacteriocuprein form of superoxide dismutase have been discovered in Pseudomonas diminuta and P. maltophilia. Each species contains a manganese superoxide dismutase as well. Eight other strains of Pseudomonas and Xanthomonas spp. lacked bacteriocupreins and contained either a manganese or an iron superoxide dismutase. Native molecular weights and isoelectric points were determined for all these bacterial dismutases. A monospecific polyclonal antibody was prepared against the bacteriocuprein from Photobacterium leiognathi; it was not cross-reactive with the bacteriocuprein from either Pseudomonas strain. Bacteriocupreins have previously been identified in only two procaryotes, P. leiognathi and Caulobacter crescentus. The discovery of the Pseudomonas bacteriocupreins reveals a broader distribution, raising the possibility that bacteriocupreins are a continuous line of descent among procryotes and not isolated evolutionary occurrences, as previous data suggested.

  4. Endogenous antioxidant defense induction by melon superoxide dismutase reduces cardiac hypertrophy in spontaneously hypertensive rats.

    Science.gov (United States)

    Carillon, Julie; Rugale, Caroline; Rouanet, Jean-Max; Cristol, Jean-Paul; Lacan, Dominique; Jover, Bernard

    2014-08-01

    We assessed the influence of SODB, a melon superoxide dismutase (SOD), on left ventricular (LV) hypertrophy in SHR. SODB (4 or 40U SOD) was given orally for 4 or 28 days to SHR. For each treatment period, LV weight index (LVWI) and cardiomyocytes size were measured. SOD, glutathione peroxidase (GPx) and catalase expressions, and LV production and presence of superoxide anion were determined. Pro-inflammatory markers were also measured. SODB reduced LVWI and cardiomyocytes size after 4 or 28 days. Cardiac SOD and GPx increased by 30-40% with SODB. The presence but not production of superoxide anion was significantly reduced by SODB. No effect of SODB was detected on inflammatory status in any group. The beneficial effect of SODB on cardiac hypertrophy seems to be related to the stimulation of endogenous antioxidant defense, suggesting that SODB may be of interest as a dietary supplementation during conventional antihypertensive therapy.

  5. Ab initio molecular dynamics of the reaction of quercetin with superoxide radical

    Science.gov (United States)

    Lespade, Laure

    2016-08-01

    Superoxide plays an important role in biology but in unregulated concentrations it is implicated in a lot of diseases such as cancer or atherosclerosis. Antioxidants like flavonoids are abundant in plant and are good scavengers of superoxide radical. The modeling of superoxide scavenging by flavonoids from the diet still remains a challenge. In this study, ab initio molecular dynamics of the reaction of the flavonoid quercetin toward superoxide radical has been carried out using Car-Parrinello density functional theory. The study has proven different reactant solvation by modifying the number of water molecules surrounding superoxide. The reaction consists in the gift of a hydrogen atom of one of the hydroxyl groups of quercetin to the radical. When it occurs, it is relatively fast, lower than 100 fs. Calculations show that it depends largely on the environment of the hydroxyl group giving its hydrogen atom, the geometry of the first water layer and the presence of a certain number of water molecules in the second layer, indicating a great influence of the solvent on the reactivity.

  6. Economical synthesis of potassium superoxide

    Science.gov (United States)

    Bell, A. T.; Sadhukhan, P.

    1979-01-01

    High-frequency discharge in oxygen can be used to prepare superoxides of alkali and alkaline-earth metals. Since no direct-current discharge at the electrodes is present, no sputtering can contaminate the product, hence a high conversion efficiency.

  7. Anion exchange membrane

    Science.gov (United States)

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  8. LC-MS/MS Analysis Unravels Deep Oxidation of Manganese Superoxide Dismutase in Kidney Cancer

    Science.gov (United States)

    Zhao, Zuohui; Azadzoi, Kazem M.; Choi, Han-Pil; Jing, Ruirui; Lu, Xin; Li, Cuiling; Wang, Fengqin; Lu, Jiaju; Yang, Jing-Hua

    2017-01-01

    Manganese superoxide dismutase (MNSOD) is one of the major scavengers of reactive oxygen species (ROS) in mitochondria with pivotal regulatory role in ischemic disorders, inflammation and cancer. Here we report oxidative modification of MNSOD in human renal cell carcinoma (RCC) by the shotgun method using data-dependent liquid chromatography tandem mass spectrometry (LC-MS/MS). While 5816 and 5571 proteins were identified in cancer and adjacent tissues, respectively, 208 proteins were found to be up- or down-regulated (p kidney cancer due to modifications. Thus, LC-MS/MS analysis revealed multiple oxidative modifications of MNSOD at different amino acid residues that might mediate the regulation of the superoxide radicals, mitochondrial ROS scavenging and MNSOD activity in kidney cancer. PMID:28165386

  9. AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function.

    Science.gov (United States)

    Dugan, Laura L; You, Young-Hyun; Ali, Sameh S; Diamond-Stanic, Maggie; Miyamoto, Satoshi; DeCleves, Anne-Emilie; Andreyev, Aleksander; Quach, Tammy; Ly, San; Shekhtman, Grigory; Nguyen, William; Chepetan, Andre; Le, Thuy P; Wang, Lin; Xu, Ming; Paik, Kacie P; Fogo, Agnes; Viollet, Benoit; Murphy, Anne; Brosius, Frank; Naviaux, Robert K; Sharma, Kumar

    2013-11-01

    Diabetic microvascular complications have been considered to be mediated by a glucose-driven increase in mitochondrial superoxide anion production. Here, we report that superoxide production was reduced in the kidneys of a steptozotocin-induced mouse model of type 1 diabetes, as assessed by in vivo real-time transcutaneous fluorescence, confocal microscopy, and electron paramagnetic resonance analysis. Reduction of mitochondrial biogenesis and phosphorylation of pyruvate dehydrogenase (PDH) were observed in kidneys from diabetic mice. These observations were consistent with an overall reduction of mitochondrial glucose oxidation. Activity of AMPK, the major energy-sensing enzyme, was reduced in kidneys from both diabetic mice and humans. Mitochondrial biogenesis, PDH activity, and mitochondrial complex activity were rescued by treatment with the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR). AICAR treatment induced superoxide production and was linked with glomerular matrix and albuminuria reduction in the diabetic kidney. Furthermore, diabetic heterozygous superoxide dismutase 2 (Sod2(+/-)) mice had no evidence of increased renal disease, and Ampka2(-/-) mice had increased albuminuria that was not reduced with AICAR treatment. Reduction of mitochondrial superoxide production with rotenone was sufficient to reduce AMPK phosphorylation in mouse kidneys. Taken together, these results demonstrate that diabetic kidneys have reduced superoxide and mitochondrial biogenesis and activation of AMPK enhances superoxide production and mitochondrial function while reducing disease activity.

  10. Knockout of crtB or crtI gene blocks the carotenoid biosynthetic pathway in Deinococcus radiodurans R1 and influences its resistance to oxidative DNA-damaging agents due to change of free radicals scavenging ability.

    Science.gov (United States)

    Zhang, Lei; Yang, Qiao; Luo, Xuesong; Fang, Chengxiang; Zhang, Qiuju; Tang, Yali

    2007-10-01

    Deinococcus radiodurans R1, a red-pigmented strain of the extremely radioresistant genus Deinococcus, contains a major carotenoid namely deinoxanthin. The high resistance of this organism against the lethal actions of DNA-damaging agents including ionizing radiation and ultraviolet light (UV) has been widely reported. However, the possible antioxidant role of carotenoids in this strain has not been completely elucidated. In this study, we constructed two colorless mutants by knockout of crtB and crtI genes, respectively. Comparative analysis of the two colorless mutants and the wild type showed that the two colorless mutants were more sensitive to ionizing radiation, UV, and hydrogen peroxide, but not to mitomycin-C (MMC). With electron spin resonance (ESR) and spin trapping techniques, we observed that hydroxyl radical signals occurred in the suspensions of UV irradiated Deinococcus radiodurans cells and the intensity of signals was influenced by carotenoids levels. We further showed that the carotenoid extract from the wild type could obviously scavenge superoxide anions generated by the irradiated riboflavin/EDTA system. These results suggest that carotenoids in D. radiodurans R1 function as free radical scavengers to protect this organism against the deleterious effects of oxidative DNA-damaging agents.

  11. Study on stability and oxygen radicals scavenging capacity of acylated blueberries anthocyanins%酰基化蓝莓花色苷的稳定性和对氧自由基清除能力

    Institute of Scientific and Technical Information of China (English)

    李颖畅; 李冰心; 吕春茂; 孟宪军

    2012-01-01

    The instability of natural anthocyanins was a big obstacle for its usage in food as colorants.In order to improve the stability of anthocyanins, molecular modification was used.The molecular modification of blueberry anthocyanins by acylation, the light, thermal stability and scavenging oxygen radicals of acylated anthocyanins were studied.The UV absorption spectrum and infrared spectrum showed that the blueberry anthocyanins had been acylated.Light and heat stability of acylated anthocyanins were significantly increased being compared with no acylated anthocyanins, but the capability of acylated anthocyanins on scavenging the hydroxyl radical, superoxide anion radical were weaker than those no acylated anthocyanins.lC~0 of scavenging hydroxyl radical and superoxide anion was 0.74,3.14mg/mL, respectively.%由于天然花色苷稳定性差,严重阻碍了其在食品工业中的广泛应用。为了改善花色苷的稳定性,采用分子修饰的方法,通过酰基化反应修饰蓝莓花色苷,并研究酰化后蓝莓花色苷的光、热稳定性和对氧自由基的清除能力。通过紫外吸收光谱和红外光谱表明蓝莓花色苷已经酰基化。相对未酰化的蓝莓花色苷,酰基化蓝莓花色苷的光、热稳定性显著提高,但清除羟基自由基、超氧阴离子自由基的能力略有下降,清除羟自由基、超氧阴离子自由基的IC,。分别为0.74、3.14mg/mL。

  12. Anions in Cometary Comae

    Science.gov (United States)

    Charnley, Steven B.

    2011-01-01

    The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions 0-, OH-, C-, CH- and CN- have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu (Chaizy et al. 1991). Organic molecular anions are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been explored. We present details of the first attempt to model the chemistry of anions in cometary comae. Based on the combined chemical and hydro dynamical model of Rodgers & Charnley (2002), we investigate the role of large carbon-chain anions in cometary coma chemistry. We calculate the effects of these anions on coma thermodynamics, charge balance and examine their impact on molecule formation.

  13. Mn(II) oxidation by an ascomycete fungus is linked to superoxide production during asexual reproduction

    Energy Technology Data Exchange (ETDEWEB)

    Hansel, C. M.; Zeiner, C. A.; Santelli, C. M.; Webb, S. M.

    2012-07-16

    Manganese (Mn) oxides are among the most reactive minerals within the environment, where they control the bioavailability of carbon, nutrients, and numerous metals. Although the ability of microorganisms to oxidize Mn(II) to Mn(III/IV) oxides is scattered throughout the bacterial and fungal domains of life, the mechanism and physiological basis for Mn(II) oxidation remains an enigma. Here, we use a combination of compound-specific chemical assays, microspectroscopy, and electron microscopy to show that a common Ascomycete filamentous fungus, Stilbella aciculosa, oxidizes Mn(II) to Mn oxides by producing extracellular superoxide during cell differentiation. The reactive Mn oxide phase birnessite and the reactive oxygen species superoxide and hydrogen peroxide are colocalized at the base of asexual reproductive structures. Mn oxide formation is not observed in the presence of superoxide scavengers (e.g., Cu) and inhibitors of NADPH oxidases (e.g., diphenylene iodonium chloride), enzymes responsible for superoxide production and cell differentiation in fungi. Considering the recent identification of Mn(II) oxidation by NADH oxidase-based superoxide production by a common marine bacterium (Roseobacter sp.), these results introduce a surprising homology between some prokaryotic and eukaryotic organisms in the mechanisms responsible for Mn(II) oxidation, where oxidation appears to be a side reaction of extracellular superoxide production. Finally, given the versatility of superoxide as a redox reactant and the widespread ability of fungi to produce superoxide, this microbial extracellular superoxide production may play a central role in the cycling and bioavailability of metals (e.g., Hg, Fe, Mn) and carbon in natural systems.

  14. Mn(II) oxidation by an ascomycete fungus is linked to superoxide production during asexual reproduction.

    Science.gov (United States)

    Hansel, Colleen M; Zeiner, Carolyn A; Santelli, Cara M; Webb, Samuel M

    2012-07-31

    Manganese (Mn) oxides are among the most reactive minerals within the environment, where they control the bioavailability of carbon, nutrients, and numerous metals. Although the ability of microorganisms to oxidize Mn(II) to Mn(III/IV) oxides is scattered throughout the bacterial and fungal domains of life, the mechanism and physiological basis for Mn(II) oxidation remains an enigma. Here, we use a combination of compound-specific chemical assays, microspectroscopy, and electron microscopy to show that a common Ascomycete filamentous fungus, Stilbella aciculosa, oxidizes Mn(II) to Mn oxides by producing extracellular superoxide during cell differentiation. The reactive Mn oxide phase birnessite and the reactive oxygen species superoxide and hydrogen peroxide are colocalized at the base of asexual reproductive structures. Mn oxide formation is not observed in the presence of superoxide scavengers (e.g., Cu) and inhibitors of NADPH oxidases (e.g., diphenylene iodonium chloride), enzymes responsible for superoxide production and cell differentiation in fungi. Considering the recent identification of Mn(II) oxidation by NADH oxidase-based superoxide production by a common marine bacterium (Roseobacter sp.), these results introduce a surprising homology between some prokaryotic and eukaryotic organisms in the mechanisms responsible for Mn(II) oxidation, where oxidation appears to be a side reaction of extracellular superoxide production. Given the versatility of superoxide as a redox reactant and the widespread ability of fungi to produce superoxide, this microbial extracellular superoxide production may play a central role in the cycling and bioavailability of metals (e.g., Hg, Fe, Mn) and carbon in natural systems.

  15. Copper complexes of 1,10-phenanthroline and related compounds as superoxide dismutase mimetics.

    Science.gov (United States)

    Bijloo, G J; van der Goot, H; Bast, A; Timmerman, H

    1990-11-01

    In a preliminary study we tested CuSO4.5H2O, (Cu(II]2[3,5-diisopropylsalicylate]4.2H2O and a number of copper complexes of substituted 1,10-phenanthrolines for superoxide anion dismutase activity. It appeared that this activity depends on the ligands involved and might be governed by the redox potential of the Cu(I) complex/Cu(II) complex couple. The strong superoxide anion dismutase activity of Cu(II)[DMP]2 complex can be expected considering its high redox potential. Rather surprisingly is the superoxide anion dismutase activity of the Cu(I)[DMP]2 complex since it involves oxidation to Cu(II)[DMP]2 complex. From regression analysis it was established that steric and field effects of the substituents of the investigated phenanthrolines play an important role in SOD activity and therefore it is concluded that complex formation is important for the superoxide dismutase-like activity.

  16. Synthesis of Gentiooligosaccharides of Genistein and Glycitein and Their Radical Scavenging and Anti-Allergic Activity

    Directory of Open Access Journals (Sweden)

    Hiroki Hamada

    2011-06-01

    Full Text Available The synthesis of gentiooligosaccharides of genistein and glycitein using cultured cells of Eucalyptus perriniana as biocatalysts was investigated. The cells of E. perriniana glycosylated genistein and glycitein to give the corresponding 4'-O-b-glucosides, 7-O-b-glucosides, and 7-O-b-gentiobiosides, which were two new compounds. The b-glucosides of genistein and glycitein showed 2,2-diphenyl-1-picrylhydrazyl (DPPH free-radical scavenging activity and superoxide-radical scavenging activity. On the other hand, 7-O-b-glucosides of genistein and glycitein and the 7-O-b-gentiobioside of glycitein exerted inhibitory effects on IgE antibody production.

  17. Microbial copper reduction method to scavenge anthropogenic radioiodine

    Science.gov (United States)

    Lee, Seung Yeop; Lee, Ji Young; Min, Je Ho; Kim, Seung Soo; Baik, Min Hoon; Chung, Sang Yong; Lee, Minhee; Lee, Yongjae

    2016-06-01

    Unexpected reactor accidents and radioisotope production and consumption have led to a continuous increase in the global-scale contamination of radionuclides. In particular, anthropogenic radioiodine has become critical due to its highly volatile mobilization and recycling in global environments, resulting in widespread, negative impact on nature. We report a novel biostimulant method to effectively scavenge radioiodine that exhibits remarkable selectivity for the highly difficult-to-capture radioiodine of >500-fold over other anions, even under circumneutral pH. We discovered a useful mechanism by which microbially reducible copper (i.e., Cu2+ to Cu+) acts as a strong binder for iodide-iodide anions to form a crystalline halide salt of CuI that is highly insoluble in wastewater. The biocatalytic crystallization of radioiodine is a promising way to remove radioiodine in a great capacity with robust growth momentum, further ensuring its long-term stability through nuclear I- fixation via microcrystal formation.

  18. Superoxide dismutase prevents development of adenocarcinoma in a rat model of Barrett's esophagus

    Institute of Scientific and Technical Information of China (English)

    Elena Piazuelo; Carmelo Cebrián; Alfredo Escartín; Pilar Jiménez; Fernando Soteras; Javier Ortego; Angel Lanas

    2005-01-01

    AIM: To test whether antioxidant treatment could prevent the progression of Barrett's esophagus to adenocarcinoma.METHODS: In a rat model of gastroduodenoesophageal reflux by esophagojejunal anastomosis with gastric preservation, groups of 6-10 rats were randomized to receive treatment with superoxide dismutase (SOD) or vehicle and followed up for 4 mo. Rat's esophagus was assessed by histological analysis, superoxide anion and peroxinitrite generation, SOD levels and DNA oxidative damage.RESULTS: All rats undergoing esophagojejunostomy developed extensive esophageal mucosal ulceration and inflammation by mo 4. The process was associated with a progressive presence of intestinal metaplasia beyondthe anastomotic area (9% 1st mo and 50% 4th mo) (94% at the anastomotic level) and adenocarcinoma(11% 1st mo and 60% 4th mo). These changes were associated with superoxide anion and peroxinitrite mucosal generation, an early and significant increase of DNA oxidative damage and a significant decrease in SOD levels (P<0.05). Exogenous administration of SOD decreased mucosal superoxide levels, increased mucosal SOD levels and reduced the risk of developing intestinal metaplasia beyond the anastomotic area (odds ratio = 0.326; 95%CI: 0.108-0.981; P = 0.046),and esophageal adenocarcinoma (odds ratio = 0.243;95%CI: 0.073-0.804; P = 0.021).CONCLUSION: Superoxide dismutase prevents the progression of esophagitis to Barrett's esophagus and adenocarcinoma in this rat model of gastrointestinal reflux, supporting a role of antioxidants in the chemoprevention of esophageal adenocarcinoma.

  19. Unraveling the role of animal heme peroxidases in superoxide mediated Mn oxide formation

    Science.gov (United States)

    Learman, D. R.; Hansel, C. M.

    2013-12-01

    Manganese(III,IV) oxides are important in the environment as they can impact the fate of a broad range of nutrients (e.g. carbon and phosphate) and contaminates (e.g. lead and chromium). Bacteria play a valuable role in the production of Mn oxides, yet the mechanisms and physiological reasons remain unclear. Roseobacter sp. AzwK-3b, an organism within the abundant and ubiquitous Roseobacter clade, has recently been shown to oxidize Mn(II) via a novel pathway that involves enzymatic extracellular superoxide production. However, in reactions with only Mn(II) and abiotically generated superoxide, we find superoxide alone is not enough to produce Mn(III,IV) oxides. Scavenging of the byproduct hydrogen peroxide (via the addition of catalase) is required to generate Mn oxides via abiotic reaction of Mn(II) with superoxide. Thus, R. AzwK-3b must produce superoxide and also scavenge hydrogen peroxide to form Mn oxides. Further, in-gel Mn(II) oxidation assay revealed a protein band that could generate Mn oxides in the presence of soluble Mn(II). This Mn(II)-oxidizing protein band was excised from the gel and the peptides identified via mass spectrometry. An animal heme peroxidase (AHP) was the predominant protein found in this band. This protein is homologous to the AHPs previously implicated as a Mn(II)-oxidizing enzyme within the Alphaproteobacteria, Erythrobacter SD-21 and Aurantimonas manganoxydans strain SI85-9A1. Currently, protein expression of the AHPs in R. AzwK-3b is being examined to determine if expression is correlated with Mn(II) concentration or oxidative stress. Our data suggests that AHPs do not directly oxidize Mn(II) but rather plays a role in scavenging hydrogen peroxide and/or producing an organic Mn(III) ligand that complexes Mn(III) and likely aids in Mn oxide precipitation.

  20. Rebamipide attenuates nonsteroidal anti-inflammatory drugs (NSAID) induced lipid peroxidation by the manganese superoxide dismutase (MnSOD) overexpression in gastrointestinal epithelial cells.

    Science.gov (United States)

    Nagano, Y; Matsui, H; Shimokawa, O; Hirayama, A; Tamura, M; Nakamura, Y; Kaneko, T; Rai, K; Indo, H P; Majima, H J; Hyodo, I

    2012-04-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) often cause gastrointestinal complications such as gastric ulcers and erosions. Recent studies on the pathogenesis have revealed that NSAIDs induce lipid peroxidation in gastric epithelial cells by generating superoxide anion in mitochondria, independently with cyclooxygenase-inhibition and the subsequent prostaglandin deficiency. Although not clearly elucidated, the impairment of mitochondrial oxidative phosphorylation, or uncoupling, by NSAIDs is associated with the generation of superoxide anion. Physiologically, superoxide is immediately transformed into hydrogen peroxide and diatomic oxygen with manganese superoxide dismutase (MnSOD). Rebamipide is an antiulcer agent that showed protective effects against NSAID-induced lipid peroxidation in gastrointestinal tracts. We hypothesized that rebamipide may attenuate lipid peroxidation by increasing the expression of MnSOD protein in mitochondria and decreasing the leakage of superoxide anion in NSAID-treated gastric and small intestinal epithelial cells. Firstly, to examine rebamipide increases the expression of MnSOD proteins in mitochondria of gastrointestinal epithelial cells, we underwent Western blotting analysis against anti-MnSOD antibody in gastric RGM1 cells and small intestinal IEC6 cells. Secondly, to examine whether the pretreatment of rebamipide decreases NSAID-induced mitochondrial impairment and lipid peroxidation, we treated these cells with NSAIDs with or without rebamipide pretreatment, and examined with specific fluorescent indicators. Finally, to examine whether pretreatment of rebamipide attenuates NSAID-induced superoxide anion leakage from mitochondria, we examined the mitochondria from indomethacin-treated RGM1 cells with electron spin resonance (ESR) spectroscopy using a specific spin-trapping reagent, CYPMPO. Rebamipide increased the expression of MnSOD protein, and attenuated NSAID-induced mitochondrial impairment and lipid peroxidation in RGM1

  1. A new formula to calculate activity of superoxide dismutase in indirect assays.

    Science.gov (United States)

    Zhang, Chen; Bruins, Marieke E; Yang, Zhi-Qiang; Liu, Shu-Tao; Rao, Ping-Fan

    2016-06-15

    To calculate superoxide dismutase (SOD) activity rapidly and accurately by indirect SOD assays, a formula based on the ratio of the catalytic speed of SOD to the reaction speed of the indicator with superoxide anion was deduced. The accuracy of this formula was compared with the conventional formula based on inhibition in five indirect SOD assays. The new formula was validated in nearly the entire SOD activity range, whereas the conventional formula was validated only during inhibition of 40-60%. This formula might also be used for the assays of other enzymes.

  2. Anti-aging effects of moxa cone moxibustion As a free radical scavenger complement

    Institute of Scientific and Technical Information of China (English)

    Lihua Zhao; Shangjie Chen; Huang Chen; Zhen Qiu

    2011-01-01

    Therapies that complement free radical scavenging are an important approach for treating aging in the brain. In the present study, two formulations of moxa cone moxibustion were applied at acupoints Zusanli (ST 36) and Xuanzhong (GB 39), and at acupoints Baihui (DU 20) and Guanyuan (RN 4), in D-galactose-induced senile mice. The results revealed that moxa cone moxibustion improved total superoxide dismutase and Cu/Zn-superoxide dismutase activity in the homogenates of the cerebral tissue, as well as ameliorating deficits in neuronal morphology and neuronal density in the cerebral cortex and hippocampal CA3. Moxa cone moxibustion also enhanced learning and memory functions of senile mice. Moxa cone moxibustion at Zusanli, Xuanzhong, Baihui and Guanyuan acupoints can thus be used to complement free radical scavengers, with efficacy that is equal to that of electroacupuncture at Zusanli and Xuanzhong, and superior to that of nimodipine treatment.

  3. Melatonin scavenges phenylglyoxylic ketyl radicals.

    Science.gov (United States)

    Sersen, F; Vencel, T; Annus, J

    2004-12-01

    The antioxidant properties of melatonin were tested in this work by EPR technique. It was found that melatonin scavenges phenylglyoxylic ketyl radicals. Its effectiveness was 10-times lower than that of vitamin C. A new method of generation of phenylglyoxylic ketyl radicals by spontaneous decomposition of D,L-2,3-diphenyltartaric acid in propan-2-ol was used.

  4. Superoxide microsensor integrated into a Sensing Cell Culture Flask microsystem using direct oxidation for cell culture application.

    Science.gov (United States)

    Flamm, H; Kieninger, J; Weltin, A; Urban, G A

    2015-03-15

    A new electrochemical sensor system for reliable and continuous detection of superoxide radical release from cell culture was developed utilizing direct oxidation of superoxide on polymer covered gold microelectrodes. Direct superoxide oxidation was demonstrated to provide robust measurement principle for sensitive and selective reactive oxygen species (ROS) quantification without the need for biocomponent supported conversion. Sensor performance was investigated by using artificial enzymatic superoxide production revealing a sensitivity of 2235AM(-1)m(-2). An electrode protection layer with molecular weight cut-off property from adsorbed linear branched polyethylenimine was successfully introduced for long term and selectivity improvement. Thin-film based sensor chip fabrication with implemented three-electrode setup and full integration into the technological platform Sensing Cell Culture Flask was described. Cell culturing directly on-chip and free radical release by phorbol-12-myristate-13-acetate (PMA) stimulation was demonstrated using T-47D human breast cancer carcinoma cell model. Transient extracellular superoxide production upon stimulation was successfully observed from amperometric monitoring. Signal inhibition from scavenging of extracellular superoxide by specific superoxide dismutase (SOD) showed the applicability for selective in vitro ROS determination. The results confirm the possibility of direct superoxide oxidation, with exclusion of the main interfering substances uric acid and hydrogen peroxide. This offers new insights into the development of reliable and robust ROS sensors.

  5. Radical scavenging and anti-lipoperoxidative activities of Smallanthus sonchifolius leaf extracts.

    Science.gov (United States)

    Valentová, Katerina; Sersen, Frantisek; Ulrichová, Jitka

    2005-07-13

    Radical scavenging and anti-lipoperoxidative effects of two organic fractions and two aqueous extracts from the leaves of a neglected Andean crop-yacon (Smallanthus sonchifolius Poepp. & Endl., Asteraceae) were determined using various in vitro models. The extracts' total phenolic content was 10.7-24.6%. They exhibited DPPH (IC50 16.14-33.39 microg/mL) and HO* scavenging activities (4.49-6.51 mg/mL). The extracts did not scavenge phenylglyoxylic ketyl radicals, but they retarded their formation. In the xanthine/xanthine oxidase superoxide radical generating system, the extracts' activities were 26.10-37.67 superoxide dismutase equivalents/mg. As one of the extracts displayed xanthine oxidase inhibitory activity, the effect of the extracts on a nonenzymatically generated superoxide was determined (IC50 7.36-21.01 microg/mL). The extracts inhibited t-butyl hydroperoxide-induced lipoperoxidation of microsomal and mitochondrial membranes (IC50 22.15-465.3 microg/mL). These results make yacon leaves a good candidate for use as a food supplement in the prevention of chronic diseases involving oxidative stress.

  6. Macroporous mesh of nanoporous gold in electrochemical monitoring of superoxide release from skeletal muscle cells.

    Science.gov (United States)

    Banan Sadeghian, Ramin; Han, Jiuhui; Ostrovidov, Serge; Salehi, Sahar; Bahraminejad, Behzad; Ahadian, Samad; Chen, Mingwei; Khademhosseini, Ali

    2017-02-15

    Real-time monitoring of metabolically relevant biochemicals released in minuscule amounts is of utmost diagnostic importance. Superoxide anion as a primary member of reactive oxygen species, has physiological and pathological effects that depend on its concentration and release rate. Here we present fabrication and successfully testing of a highly sensitive electrochemical biosensor featuring a three-dimensional macroporous mesh of nanoporous gold tailored to measure the dynamics of extracellular superoxide concentration. Wide and accessible surface of the mesh combined with high porosity of the thin nanoporous gold coating enables capturing the analyte in pico- to nano-molar ranges. The mesh is functionalized with cytochrome-c (cyt-c) and incorporated as a working electrode to measure the release rate of drug-induced superoxides from C2C12 cells through a porous membrane. The device displays a considerably improved superoxide sensitivity of 7.29nAnM(-)(1)cm(-)(2) and a low level of detection of 70pM. Such sensitivity is orders of magnitude higher than any similar enzyme-based electrochemical superoxide sensor and is attributed to the facile diffusion of the analyte through the well-spread nanofeatured gold skin. Superoxide generation rates captured from monolayer myoblast cultures containing about 4×10(4) cells, varied from 1.0 to 9.0nMmin(-)(1) in a quasi-linear fashion as a function of drug concentration. This work provides a platform for the development of highly sensitive molecular electrochemical biosensors.

  7. 枣醋多酚的提取及其对自由基的清除效应%Extraction and Its Free Radical Scavenging Effect of Jujube Vinegar Polyphenol

    Institute of Scientific and Technical Information of China (English)

    许牡丹; 杨艳艳; 王俊华

    2012-01-01

    [Objective] The aim was to determine polyphenol content of jujube vinegar, and study the free radical scavenging capacity of the polyphenol. [Method] Jujube vinegar polyphenol was extracted with different solvents, and its hydroxyl radical and superoxide anion radical scavenging activity were studied. [ Result] The results showed that extraction rate of polyphenol could reach 0.312 5 mg/ml with methanol as solvent , Which is the highest. The free radical scavenging capacity of the jujube vinegar polyphenol increased with the increasing polyphenol concentration , which indicated jujube vinegar had remarkable antioxidation activity. [ Conclusion] The study provides reference for development and exploitation of jujube vinegar.%[目的]测定枣醋中的多酚含量,并对枣醋多酚的自由基清除能力进行研究.[方法]采用不同的溶剂提取枣醋中的多酚,测定枣醋多酚对羟基自由基和超氧阴离子自由基的清除能力.[结果]甲醇的提取率最高,多酚物质得率为0.312 5 mg/ml.枣醋多酚对羟基自由基和超氧阴离子自由基的清除作用,随着浓度的增加而逐渐增大,表明枣醋具有很强的抗氧化性.[结论]该研究可为枣醋的开发和利用提供参考.

  8. Iron-responsive regulation of the Helicobacter pylori iron-cofactored superoxide dismutase SodB is mediated by Fur.

    NARCIS (Netherlands)

    F.D.J. Ernst (Florian); G. Homuth (Georg); J. Stoof (Jeroen); U. Mader; B. Waidner (Barbara); E.J. Kuipers (Ernst); M. Kist (Manfred); J.G. Kusters (Johannes); S. Bereswill (Stefan); A.H.M. van Vliet (Arnoud)

    2005-01-01

    textabstractMaintaining iron homeostasis is a necessity for all living organisms, as free iron augments the generation of reactive oxygen species like superoxide anions, at the risk of subsequent lethal cellular damage. The iron-responsive regulator Fur controls iron metabolism in many bacteria, inc

  9. 碧萝芷对辐射所致小鼠各脏器中自由基的清除作用%Scavenging Effect of Pycnogenol on Free Radicals in Radiation Exposed Mice Organs

    Institute of Scientific and Technical Information of China (English)

    丁翔; 强亦忠; 王利利; 程跃进; 江家贵; 崔凤梅

    2011-01-01

    certain anti-radiation effect through scavenging the superoxide anion and hydroxyl radical without increasing SOD content.

  10. Superoxide and its metabolism during germination and axis growth of Vigna radiata (L.) Wilczek seeds.

    Science.gov (United States)

    Singh, Khangembam Lenin; Chaudhuri, Abira; Kar, Rup Kumar

    2014-01-01

    Involvement of reactive oxygen species in regulation of plant growth and development is recently being demonstrated with various results depending on the experimental system and plant species. Role of superoxide and its metabolism in germination and axis growth was investigated in case of Vigna radiata seeds, a non-endospermous leguminous species having epigeal germination, by studying the effect of different reactive oxygen species (ROS) inhibitors, distribution of O2(•)- and H2O2 and ROS enzyme profile in axes. Germination percentage and axis growth were determined under treatment with ROS inhibitors and scavengers. Localization of O2(•)- and H2O2 was done using nitroblue tetrazolium (NBT) and 3,3',5,5'-tetramethyl benzidine dihydrochloride hydrate (TMB), respectively. Apoplastic level of O2(•)- was monitored by spectrophotometric analysis of bathing medium of axes. Profiles of NADPH oxidase and superoxide dismutase (SOD) were studied by in-gel assay. Germination was retarded by treatments affecting ROS level except H2O2 scavengers, while axis growth was retarded by all. Superoxide synthesis inhibitor and scavenger prevented H2O2 accumulation in axes in later phase as revealed from TMB staining. Activity of Cu/Zn SOD1 was initially high and declined thereafter. Superoxide being produced in apoplast possibly by NADPH oxidase activity is further metabolized to (•)OH via H2O2. Germination process depends possibly on (•)OH production in the axes. Post-germinative axis growth requires O2(•)- while the differentiating zone of axis (radicle) requires H2O2 for cell wall stiffening.

  11. Over-expressed copper/zinc superoxide dismutase localizes to mitochondria in neurons inhibiting the angiotensin II-mediated increase in mitochondrial superoxide.

    Science.gov (United States)

    Li, Shumin; Case, Adam J; Yang, Rui-Fang; Schultz, Harold D; Zimmerman, Matthew C

    2013-01-01

    Angiotensin II (AngII) is the main effector peptide of the renin-angiotensin system (RAS), and contributes to the pathogenesis of cardiovascular disease by exerting its effects on an array of different cell types, including central neurons. AngII intra-neuronal signaling is mediated, at least in part, by reactive oxygen species, particularly superoxide (O2 (•-)). Recently, it has been discovered that mitochondria are a major subcellular source of AngII-induced O2 (•-). We have previously reported that over-expression of manganese superoxide dismutase (MnSOD), a mitochondrial matrix-localized O2 (•-) scavenging enzyme, inhibits AngII intra-neuronal signaling. Interestingly, over-expression of copper/zinc superoxide dismutase (CuZnSOD), which is believed to be primarily localized to the cytoplasm, similarly inhibits AngII intra-neuronal signaling and provides protection against AngII-mediated neurogenic hypertension. Herein, we tested the hypothesis that CuZnSOD over-expression in central neurons localizes to mitochondria and inhibits AngII intra-neuronal signaling by scavenging mitochondrial O2 (•-). Using a neuronal cell culture model (CATH.a neurons), we demonstrate that both endogenous and adenovirus-mediated over-expressed CuZnSOD (AdCuZnSOD) are present in mitochondria. Furthermore, we show that over-expression of CuZnSOD attenuates the AngII-mediated increase in mitochondrial O2 (•-) levels and the AngII-induced inhibition of neuronal potassium current. Taken together, these data clearly show that over-expressed CuZnSOD in neurons localizes in mitochondria, scavenges AngII-induced mitochondrial O2 (•-), and inhibits AngII intra-neuronal signaling.

  12. Over-expressed copper/zinc superoxide dismutase localizes to mitochondria in neurons inhibiting the angiotensin II-mediated increase in mitochondrial superoxide

    Directory of Open Access Journals (Sweden)

    Shumin Li

    2014-01-01

    Full Text Available Angiotensin II (AngII is the main effector peptide of the renin–angiotensin system (RAS, and contributes to the pathogenesis of cardiovascular disease by exerting its effects on an array of different cell types, including central neurons. AngII intra-neuronal signaling is mediated, at least in part, by reactive oxygen species, particularly superoxide (O2·−. Recently, it has been discovered that mitochondria are a major subcellular source of AngII-induced O2·−. We have previously reported that over-expression of manganese superoxide dismutase (MnSOD, a mitochondrial matrix-localized O2·− scavenging enzyme, inhibits AngII intra-neuronal signaling. Interestingly, over-expression of copper/zinc superoxide dismutase (CuZnSOD, which is believed to be primarily localized to the cytoplasm, similarly inhibits AngII intra-neuronal signaling and provides protection against AngII-mediated neurogenic hypertension. Herein, we tested the hypothesis that CuZnSOD over-expression in central neurons localizes to mitochondria and inhibits AngII intra-neuronal signaling by scavenging mitochondrial O2·−. Using a neuronal cell culture model (CATH.a neurons, we demonstrate that both endogenous and adenovirus-mediated over-expressed CuZnSOD (AdCuZnSOD are present in mitochondria. Furthermore, we show that over-expression of CuZnSOD attenuates the AngII-mediated increase in mitochondrial O2·− levels and the AngII-induced inhibition of neuronal potassium current. Taken together, these data clearly show that over-expressed CuZnSOD in neurons localizes in mitochondria, scavenges AngII-induced mitochondrial O2·−, and inhibits AngII intra-neuronal signaling.

  13. Use of the Comet assay to investigate the role of superoxide in glutathione-induced DNA damage.

    Science.gov (United States)

    Thomas, S; Lowe, J E; Hadjivassiliou, V; Knowles, R G; Green, I C; Green, M H

    1998-02-04

    Although glutathione is an important scavenging molecule within the cell, it can also act as a pro-oxidant and at biological concentrations (1 mM) can induce DNA damage. We have used a sensitive cell-free Comet assay for DNA strand breakage to investigate this damage and to try to determine the active species involved. We show a substantial protection against glutathione-mediated DNA damage by superoxide dismutase (200 U/ml) and complete protection by combined superoxide dismutase and catalase. Damage is also prevented by EDTA but only at 100 mM and is not prevented by the chelating agent diethylenetriamine-pentaacetic acid (100 microM). Although superoxide is known to potentiate DNA damage by other reactive species, none of these indirect mechanisms seem to account for our results and it is possible that superoxide may damage DNA directly. Under the same experimental conditions, S-nitrosoglutathione requires ultraviolet A photolysis to cause DNA strand breakage and superoxide dismutase increases the level of this damage. When intact human lymphocytes are incubated with glutathione (1 mM) in phosphate buffer, DNA damage is also observed, but in this case it is completely preventable by catalase, with no protective effect of superoxide dismutase. Since cellular scavenging systems are not completely protective against reactive species formed from autooxidation of extracellular glutathione and since glutathione and oxygen are ubiquitously present within cells, our results imply that cells may have a mechanism of preventing autooxidation, rather than simply relying on scavenging the reactive species formula.

  14. HIV-1-infected monocytes and monocyte-derived macrophages are impaired in their ability to produce superoxide radicals.

    Science.gov (United States)

    Howell, A L; Groveman, D S; Wallace, P K; Fanger, M W

    1997-01-01

    Monocytes and monocyte-derived macrophages play a key role in immune defense against pathogenic organisms. Superoxide anion production is a key mechanism by which phagocytes kill pathogens. We sought to determine whether human immunodeficiency virus-infected monocytes and monocyte-derived macrophages are compromised in their ability to produce the superoxide anion following stimulation with phorbol myristate acetate (PMA) or after cross-linking the type I Fc receptor for IgG (Fc gamma RI). Fc gamma RI was cross-linked by the binding of monoclonal antibody 197, which reacts with an epitope of Fc gamma RI via its Fc region. Monocytes and monocyte-derived macrophages obtained from seronegative donors were infected in vitro with human immunodeficiency virus-1JR-FL and used in effector assays that measured superoxide anion production by the reduction of nitroblue tetrazolium. Reduced nitroblue tetrazolium was measured spectrophotometrically and by microscopy in which the percentage of cells containing intracellular deposits of the dye was assessed. By spectrophotometric measurement, we found that human immunodeficiency virus-infected monocytes and monocyte-derived macrophages produced less superoxide anion following either phorbol myristate acetate stimulation or Fc gamma RI cross-linking than uninfected cells from the same donor. Using microscopy we saw no difference in the percentage of infected and uninfected macrophages containing intracellular deposits of nitroblue tetrazolium suggesting that human immunodeficiency virus-infected macrophages produce less superoxide anion on a per cell basis than uninfected macrophages. Activation of human immunodeficiency virus-infected monocytes with interferon-gamma for 72 h prior to stimulation with phorbol myristate acetate or monoclonal antibody 197 increased their ability to reduce nitroblue tetrazolium. These findings suggest that impairment in the production of reactive oxygen intermediates may, in some cases, contribute to

  15. Kinetics and mechanism of protection of thymine from sulphate radical anion under anoxic conditions

    Indian Academy of Sciences (India)

    M Sudha Swaraga; M Adinarayana

    2003-04-01

    The rates of photooxidation of thymine in presence of peroxydisulphate (PDS) have been determined by measuring the absorbance of thymine at 264 nm spectrophotometrically. The rates and the quantum yields () of oxidation of thymine by sulphate radical anion have been determined in the presence of different concentrations of caffeic acid. Increase in [caffeic acid] is found to decrease the rate of oxidation of thymine suggesting that caffeic acid acts as an efficient scavenger of SO$^{\\bullet -}_{4}$ and protects thymine from it. Sulphate radical anion competes for thymine as well as for caffeic acid. The rate constant of sulphate radical anion with caffeic acid has been calculated to be 1.24 × 1010 dm3 mol-1 s-1. The quantum yields of photooxidation of thymine have been calculated from the rates of oxidation of thymine and the light intensity absorbed by PDS at 254 nm, the wavelength at which PDS is activated to sulphate radical anion. From the results of experimentally determined quantum yields (exptl) and the quantum yields calculated (cl) assuming caffeic acid acting only as a scavenger of SO$^{\\bullet -}_{4}$ radicals show that exptl values are lower than cl values. The ' values, which are experimentally found quantum yield values at each caffeic acid concentration and corrected for SO$^{\\bullet-}_{4}$ scavenging by caffeic acid, are also found to be greater than exptl values. These observations suggest that the thymine radicals are repaired by caffeic acid in addition to scavenging of sulphate radical anions.

  16. Effects of Acetosalicylic Acid on Levels of Superoxide Anion and Peroxidation of Membrane Lipid in Rice Seedlings Under Nickel-Stress%乙酰水杨酸对镍胁迫下水稻幼苗中O-2水平和膜脂过氧化的影响

    Institute of Scientific and Technical Information of China (English)

    王海华; 蒋明义; 康健; 彭喜旭; 帕尼古丽

    2001-01-01

    采用室内培养及生理指标测定方法,研究了乙酰水杨酸对镍胁迫下水稻幼苗中部分生理指标的影响。结果表明, 10 μ mol· L- 1和 30 μ mol· L- 1的镍胁迫下,稻苗叶片中 SOD活性明显降低,质外体中的 NADH氧化酶活性显著上升;同时,细胞中总和质外体中产生明显加快,从而导致叶片组织中 MDA含量和质膜透性亦明显增加。同样胁迫条件下,加入 0.05% ASA, SOD活性回升,产生速率回落, MDA含量和质膜透性增加的程度亦减小,但乙酰水杨酸 (ASA)对质外体中 NADH氧化酶活性无明显影响。这些结果提示产生与积累导致的膜脂过氧化作用介导了镍对稻苗的毒害; ASA能降低产生速率,减轻膜脂过氧化损伤程度,因而缓解了镍胁迫对稻苗的毒害%Two stress concentrations of nickel tested (10,30 μ mol· L- 1) significantly decreased superoxide dismutase (SOD) activity in rice leaves, while enhanced NADH oxidase activity significantly in apoplast. Measurement of, malondialdehyde(MDA), relative electric conductivity showed that there was a significantly increase in both totalgeneration rate and that of apoplast, as well as in MDA content and the plasma membrane permeability after nickel treatment. Addition of 0.05 % acetylsalicylic (ASA) to the same nickel stress condition decreased the rate of decline in SOD activity, and that of increase in generation, MDA content and the plasma permeability observed in rice leaves treated with nickel alone. However, no changes in apoplast NADH oxidase activity were observed. The results suggested that accumulation and membrane lipid peroxidation were involved in the toxicity to rice seedlings led by nickel, and the decline in level and membrane lipid peroxidation were the reasons by which ASA mitigated the injuries induced by nickel stress in rice seedlings.

  17. Activation of Mitochondrial Uncoupling Protein 4 and ATP-Sensitive Potassium Channel Cumulatively Decreases Superoxide Production in Insect Mitochondria.

    Science.gov (United States)

    Slocińska, Malgorzata; Rosinski, Grzegorz; Jarmuszkiewicz, Wieslawa

    2016-01-01

    It has been evidenced that mitochondrial uncoupling protein 4 (UCP4) and ATP-regulated potassium channel (mKATP channel) of insect Gromphadorhina coqereliana mitochondria decrease superoxide anion production. We elucidated whether the two energy-dissipating systems work together on a modulation of superoxide level in cockroach mitochondria. Our data show that the simultaneous activation of UCP4 by palmitic acid and mKATP channel by pinacidil revealed a cumulative effect on weakening mitochondrial superoxide formation. The inhibition of UCP4 by GTP (and/or ATP) and mKATP channel by ATP elevated superoxide production. These results suggest a functional cooperation of both energy-dissipating systems in protection against oxidative stress in insects.

  18. A superoxide dismutase of metacestodes of Taenia taeniaeformis.

    Science.gov (United States)

    Leid, R W; Suquet, C M

    1986-03-01

    Superoxide dismutase was purified from Taenia taeniaeformis metacestodes by sequential ion exchange chromatography on quaternary-amino-ethyl-cellulose, gel filtration chromatography on ACA 44 and ion exchange chromatography on DEAE-cellulose, followed by chromatofocusing on polybuffer exchanger 94. This isolation procedure resulted in the detection of a single protein-staining band on alkaline gels, coincident with enzyme activity. We have, however, detected what appear to be two peaks of enzyme activity within this single protein-staining band. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis using gradient slab gels and analysis under reducing conditions, resulted in the detection of only one protein at an apparent Mr of 16,600, while analysis under non-reducing conditions, gave a single protein of an apparent Mr of 64,000. The isoelectric point of the purified protein is 6.6. Boiling for 3 min completely destroyed the enzyme, whereas incubation for 2 h at 37 degrees C resulted in the loss of 56% of the enzymic activity. Incubation with 10 mM KCN resulted in 83% inhibition of the enzyme. We have detected up to 168 U ml-1 of enzyme activity in the cyst fluid surrounding the parasite in situ. This is the first instance in which any parasite superoxide dismutase has been purified to apparent homogeneity. Parasite-mediated enzymic destruction of superoxide anion can not only protect against oxygen toxicity as a result of normal parasite respiratory processes but also may serve as yet another mechanism used by tissue-dwelling parasites to evade host immunologic attack.

  19. Increased salt sensitivity induced by sensory denervation:role of superoxide

    Institute of Scientific and Technical Information of China (English)

    Wei-zhong SONG; Alex F CHEN; Donna H WANG

    2004-01-01

    AIM: To test the hypothesis that production of superoxide in mesenteric resistance arteries is increased and contributes to the development of hypertension induced by sensory denervation plus high salt intake. METHODS:Newborn Wistar rats were given capsaicin 50mg/kg sc on the 1st and 2nd d of life. After weaning, male rats were grouped as follows and treated for 3 weeks with: capsaicin pretreatment plus normal sodium diet (0.5%, CAP-NS),CAP plus high sodium diet (4%, CAP-HS), control plus NS (CON-NS), or CON-HS. Both tail-cuff systolic blood pressure and mean arterial pressure (MAP) were measured in each of the groups. Western blot analysis was used for measurement of manganese superoxide dismutase (MnSOD) and endothelial nitric oxide synthase (eNOS) in the mesenteric resistance arteries. Lucigenin chemiluminescence assay was used for superoxide production in the mesenteric resistance arteries. The Griess method was used for measurement of nitrite/nitrate levels in plasma.RESULTS: Both tail-cuff pressure and MAP were higher in CAP-HS compared with CAP-NS, CON-HS, and CONNS rats (P<0.05). Both MnSOD and eNOS in the mesenteric resistance arteries were increased in CAP-HS compared with CAP-NS, CON-HS, and CON-NS (P<0.05). However, nitrite/nitrate levels in plasma were not different among 4 groups. Acute iv administration of tempol, a membrane-permeable superoxide scavenger, decreased MAP in both CAP-HS and CON-HS when compared with their respective controls. However, the decreases of MAP between these two groups were not different. Chronic treatment with tempol failed to prevent the development of hypertension in CAP-HS rats. Superoxide production in the mesenteric resistance arteries was increased in CAP-HS compared with CAP-NS, CON-HS, and CON-NS (P<0.05). However, chronic treatment with tempol did not prevent the increase of mesenteric superoxide production in CAP-HS rats. CONCLUSIONS:Regardless of increased vascular MnSOD levels, salt sensitive hypertension

  20. Superoxide dismutases in chronic gastritis.

    Science.gov (United States)

    Švagelj, Dražen; Terzić, Velimir; Dovhanj, Jasna; Švagelj, Marija; Cvrković, Mirta; Švagelj, Ivan

    2016-04-01

    Human gastric diseases have shown significant changes in the activity and expression of superoxide dismutase (SOD) isoforms. The aim of this study was to detect Mn-SOD activity and expression in the tissue of gastric mucosa, primarily in chronic gastritis (immunohistochemical Helicobacter pylori-negative gastritis, without other pathohistological changes) and to evaluate their possible connection with pathohistological diagnosis. We examined 51 consecutive outpatients undergoing endoscopy for upper gastrointestinal symptoms. Patients were classified based on their histopathological examinations and divided into three groups: 51 patients (archive samples between 2004-2009) with chronic immunohistochemical Helicobacter pylori-negative gastritis (mononuclear cells infiltration were graded as absent, moderate, severe) divided into three groups. Severity of gastritis was graded according to the updated Sydney system. Gastric tissue samples were used to determine the expression of Mn-SOD with anti-Mn-SOD Ab immunohistochemically. The Mn-SOD expression was more frequently present in specimens with severe and moderate inflammation of gastric mucosa than in those with normal mucosa. In patients with normal histological finding, positive immunoreactivity of Mn-SOD was not found. Our results determine the changes in Mn-SOD expression occurring in the normal gastric mucosa that had undergone changes in the intensity of chronic inflammatory infiltrates in the lamina propria. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  1. [Involvement of carbonate/bicarbonate ions in the superoxide-generating reaction of adrenaline autoxidation].

    Science.gov (United States)

    Sirota, T V

    2015-01-01

    An important role of carbonate/bicarbonate ions has been recognized in the superoxide generating reaction of adrenaline autooxidation in an alkaline buffer (a model of quinoid adrenaline oxidation in the body). It is suggested that these ions are directly involved not only in formation of superoxide anion radical (О(2)(-)) but also other radicals derived from the carbonate/bicarbonate buffer. Using various buffers it was shown that the rate of accumulation of adrenochrome, the end product of adrenaline oxidation, and the rate of О(2)(-)· formation depend on concentration of carbonate/bicarbonate ions in the buffer and that these ions significantly accelerate adrenaline autooxidation thus demonstrating prooxidant properties. The detectable amount of diformazan, the product of nitro blue tetrazolium (NBT) reduction, was significantly higher than the amount of adrenochrome formed; taking into consideration the literature data on О(2)(-)· detection by NBT it is suggested that adrenaline autooxidation is accompanied by one-electron reduction not only of oxygen dissolved in the buffer and responsible for superoxide formation but possible carbon dioxide also dissolved in the buffer as well as carbonate/bicarbonate buffer components leading to formation of corresponding radicals. The plots of the dependence of the inhibition of adrenochrome and diformazan formation on the superoxide dismutase concentration have shown that not only superoxide radicals are formed during adrenaline autooxidation. Since carbonate/bicarbonate ions are known to be universally present in the living nature, their involvement in free radical processes proceeding in the organism is discussed.

  2. Free radical scavenging window of infertile patients with polycystic ovary syndrome: correlation with embryo quality.

    Science.gov (United States)

    Huang, Bo; Li, Zhou; Ren, Xinling; Ai, Jihui; Zhu, Lixia; Jin, Lei

    2017-06-01

    The activity of free radicals in follicular fluid was related to ovarian responsiveness, in vitro fertilization (IVF), and embryo transfer success rate. However, studies analyzing the relationship between the free radical scavenging capacity and embryo quality of infertile women with polycystic ovarian syndrome (PCOS) were lacking. The aim of this study was to evaluate the relationship between the free radical scavenging window of women with PCOS and their embryo quality. The free radical scavenging capacity of follicular fluid from women with PCOS was determined by a,a-diphenyl-b-picrylhydrazyl (DPPH), 2,2-azinobis (3-ethylbenzthiazoline-6-sulphonic acid) assay, superoxide radical, and reactive oxygen species (ROS) assay. In the DPPH and ROS assays, the follicular fluid from grades I and II embryos was significantly higher than the follicular fluid from grades III and IVembryos. The lower control limit of DPPH radical scavenging capacity and upper control limit of ROS level were 13.2% and 109.0 cps, respectively. The calculated lower control limit and upper control limit were further confirmed in the follicular fluid of embryos of all grades. These cut-off values of free radical scavenging activity of follicular fluid could assist embryologists in choosing the development of embryos in PCOS patients undergoing IVF.

  3. Free radical scavenging and COX-2 inhibition by simple colon metabolites of polyphenols: A theoretical approach.

    Science.gov (United States)

    Amić, Ana; Marković, Zoran; Marković, Jasmina M Dimitrić; Jeremić, Svetlana; Lučić, Bono; Amić, Dragan

    2016-12-01

    Free radical scavenging and inhibitory potency against cyclooxygenase-2 (COX-2) by two abundant colon metabolites of polyphenols, i.e., 3-hydroxyphenylacetic acid (3-HPAA) and 4-hydroxyphenylpropionic acid (4-HPPA) were theoretically studied. Different free radical scavenging mechanisms are investigated in water and pentyl ethanoate as a solvent. By considering electronic properties of scavenged free radicals, hydrogen atom transfer (HAT) and sequential proton loss electron transfer (SPLET) mechanisms are found to be thermodynamically probable and competitive processes in both media. The Gibbs free energy change for reaction of inactivation of free radicals indicates 3-HPAA and 4-HPPA as potent scavengers. Their reactivity toward free radicals was predicted to decrease as follows: hydroxyl>alkoxyls>phenoxyl≈peroxyls>superoxide. Shown free radical scavenging potency of 3-HPAA and 4-HPPA along with their high μM concentration produced by microbial colon degradation of polyphenols could enable at least in situ inactivation of free radicals. Docking analysis with structural forms of 3-HPAA and 4-HPPA indicates dianionic ligands as potent inhibitors of COX-2, an inducible enzyme involved in colon carcinogenesis. Obtained results suggest that suppressing levels of free radicals and COX-2 could be achieved by 3-HPAA and 4-HPPA indicating that these compounds may contribute to reduced risk of colon cancer development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Capacity of Tea Scavenging Singlet Oxygen Studied by Means of 1,3-Diphenylisobenzofuran as Fluorescence Probe

    Institute of Scientific and Technical Information of China (English)

    L(U) Qing-luan; YUE Ning-ning; ZHANG Miao; GONG Bin; WANG Huai-you

    2009-01-01

    1 Introduction In recent years, the effects of reactive oxygen species(ROS) generated in the course of biological metabolism, such as superoxide(O_2~(-.)), hydrogen peroxide(H_2O_2), hydroxyl radical(HO~.) and singlet oxygen(~1O_2) on the human health have received more attention due to their vital roles in physiological functions. Normally, antioxidant molecules, superoxide dismutase and catalase in biological organism can scavenge excessive free radicals by a series of chemical reactions to keep the cells in a state of redox homeostasis[1].

  5. Energy scavenging from environmental vibration.

    Energy Technology Data Exchange (ETDEWEB)

    Galchev, Tzeno (University of Michigan); Apblett, Christopher Alan; Najafi, Khalil (University of Michigan)

    2009-10-01

    The goal of this project is to develop an efficient energy scavenger for converting ambient low-frequency vibrations into electrical power. In order to achieve this a novel inertial micro power generator architecture has been developed that utilizes the bi-stable motion of a mechanical mass to convert a broad range of low-frequency (< 30Hz), and large-deflection (>250 {micro}m) ambient vibrations into high-frequency electrical output energy. The generator incorporates a bi-stable mechanical structure to initiate high-frequency mechanical oscillations in an electromagnetic scavenger. This frequency up-conversion technique enhances the electromechanical coupling and increases the generated power. This architecture is called the Parametric Frequency Increased Generator (PFIG). Three generations of the device have been fabricated. It was first demonstrated using a larger bench-top prototype that had a functional volume of 3.7cm3. It generated a peak power of 558{micro}W and an average power of 39.5{micro}W at an input acceleration of 1g applied at 10 Hz. The performance of this device has still not been matched by any other reported work. It yielded the best power density and efficiency for any scavenger operating from low-frequency (<10Hz) vibrations. A second-generation device was then fabricated. It generated a peak power of 288{micro}W and an average power of 5.8{micro}W from an input acceleration of 9.8m/s{sup 2} at 10Hz. The device operates over a frequency range of 20Hz. The internal volume of the generator is 2.1cm{sup 3} (3.7cm{sup 3} including casing), half of a standard AA battery. Lastly, a piezoelectric version of the PFIG is currently being developed. This device clearly demonstrates one of the key features of the PFIG architecture, namely that it is suitable for MEMS integration, more so than resonant generators, by incorporating a brittle bulk piezoelectric ceramic. This is the first micro-scale piezoelectric generator capable of <10Hz operation. The

  6. Anion-π catalysis.

    Science.gov (United States)

    Zhao, Yingjie; Beuchat, César; Domoto, Yuya; Gajewy, Jadwiga; Wilson, Adam; Mareda, Jiri; Sakai, Naomi; Matile, Stefan

    2014-02-05

    The introduction of new noncovalent interactions to build functional systems is of fundamental importance. We here report experimental and theoretical evidence that anion-π interactions can contribute to catalysis. The Kemp elimination is used as a classical tool to discover conceptually innovative catalysts for reactions with anionic transition states. For anion-π catalysis, a carboxylate base and a solubilizer are covalently attached to the π-acidic surface of naphthalenediimides. On these π-acidic surfaces, transition-state stabilizations up to ΔΔGTS = 31.8 ± 0.4 kJ mol(-1) are found. This value corresponds to a transition-state recognition of KTS = 2.7 ± 0.5 μM and a catalytic proficiency of 3.8 × 10(5) M(-1). Significantly increasing transition-state stabilization with increasing π-acidity of the catalyst, observed for two separate series, demonstrates the existence of "anion-π catalysis." In sharp contrast, increasing π-acidity of the best naphthalenediimide catalysts does not influence the more than 12 000-times weaker substrate recognition (KM = 34.5 ± 1.6 μM). Together with the disappearance of Michaelis-Menten kinetics on the expanded π-surfaces of perylenediimides, this finding supports that contributions from π-π interactions are not very important for anion-π catalysis. The linker between the π-acidic surface and the carboxylate base strongly influences activity. Insufficient length and flexibility cause incompatibility with saturation kinetics. Moreover, preorganizing linkers do not improve catalysis much, suggesting that the ideal positioning of the carboxylate base on the π-acidic surface is achieved by intramolecular anion-π interactions rather than by an optimized structure of the linker. Computational simulations are in excellent agreement with experimental results. They confirm, inter alia, that the stabilization of the anionic transition states (but not the neutral ground states) increases with the π-acidity of the

  7. Superoxide dismutase activity in mesocarp tissue from divergent Cucumis melo L. genotypes.

    Science.gov (United States)

    Lester, Gene E; Jifon, John L; Crosby, Kevin M

    2009-09-01

    Muskmelons (Cucumis melo L.) are well-known as excellent sources of several vitamins, minerals and non-enzymatic antioxidant phytochemicals such as vitamin C and pro-vitamin A. Less well-studied is their potential role as sources of enzymatic antioxidants such as superoxide dismutase (SOD), which have been associated with enhanced reactive oxygen species scavenging capacity in some muskmelon fruits. In this study, we investigated the variability in SOD activities among diverse advanced breeding lines and commercial muskmelon cultivars grown in two different soil types-clay or sandy loam. Specific and total SOD activities varied significantly among the genotypes (P melo as a functional food with enhanced SOD content.

  8. Differential production of superoxide by neuronal mitochondria

    Directory of Open Access Journals (Sweden)

    Levin Leonard A

    2008-01-01

    Full Text Available Abstract Background Mitochondrial DNA (mtDNA mutations, which are present in all mitochondria-containing cells, paradoxically cause tissue-specific disease. For example, Leber's hereditary optic neuropathy (LHON results from one of three point mutations mtDNA coding for complex I components, but is only manifested in retinal ganglion cells (RGCs, a central neuron contained within the retina. Given that RGCs use superoxide for intracellular signaling after axotomy, and that LHON mutations increase superoxide levels in non-RGC transmitochondrial cybrids, we hypothesized that RGCs regulate superoxide levels differently than other neuronal cells. To study this, we compared superoxide production and mitochondrial electron transport chain (METC components in isolated RGC mitochondria to mitochondria isolated from cerebral cortex and neuroblastoma SK-N-AS cells. Results In the presence of the complex I substrate glutamate/malate or the complex II substrate succinate, the rate of superoxide production in RGC-5 cells was significantly lower than cerebral or neuroblastoma cells. Cerebral but not RGC-5 or neuroblastoma cells increased superoxide production in response to the complex I inhibitor rotenone, while neuroblastoma but not cerebral or RGC-5 cells dramatically decreased superoxide production in response to the complex III inhibitor antimycin A. Immunoblotting and real-time quantitative PCR of METC components demonstrated different patterns of expression among the three different sources of neuronal mitochondria. Conclusion RGC-5 mitochondria produce superoxide at significantly lower rates than cerebral and neuroblastoma mitochondria, most likely as a result of differential expression of complex I components. Diversity in METC component expression and function could explain tissue specificity in diseases associated with inherited mtDNA abnormalities.

  9. Superoxide dismutase overexpression protects against glucocorticoid-induced depressive-like behavioral phenotypes in mice.

    Science.gov (United States)

    Uchihara, Yuki; Tanaka, Ken-ichiro; Asano, Teita; Tamura, Fumiya; Mizushima, Tohru

    2016-01-22

    In the stress response, activation of the hypothalamic-pituitary-adrenal axis, and particularly the release of glucocorticoids, plays a critical role. However, dysregulation of this system and sustained high plasma levels of glucocorticoids can result in depression. Recent studies have suggested the involvement of reactive oxygen species (ROS), such as superoxide anion, in depression. However, direct evidence for a role of ROS in the pathogenesis of this disorder is lacking. In this study, using transgenic mice expressing human Cu/Zn-superoxide dismutase (SOD1), an enzyme that catalyzes the dismutation of superoxide anions, we examined the effect of SOD1 overexpression on depressive-like behavioral phenotypes in mice. Depressive-like behaviors were induced by daily subcutaneous administration of the glucocorticoid corticosterone for 4 weeks, and was monitored with the social interaction test, the sucrose preference test and the forced swim test. These tests revealed that transgenic mice overexpressing SOD1 are more resistant to glucocorticoid-induced depressive-like behavioral disorders than wild-type animals. Furthermore, compared with wild-type mice, transgenic mice showed a reduction in the number of 8-hydroxy-2'-deoxyguanosine (a marker of oxidative stress)-positive cells in the hippocampal CA3 region following corticosterone administration. These results suggest that overexpression of SOD1 protects mice against glucocorticoid-induced depressive-like behaviors by decreasing cellular ROS levels.

  10. Melatonin and its precursors scavenge nitric oxide

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Y.; Mori, A.; Liburdy, R.; Packer, L.

    1998-12-01

    Nitric oxide (NO) scavenging activity of melatonin, N-acetyl-5-hydroxytryptamine, serotonin, 5-hydroxytryptophan and L-tryptophan was examined by the Griess reaction using flow injection analysis. 1-Hydroxy-2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazene(NOC-7) was used as NO generator. The Griess reagent stoichiometrically reacts with NO2-, which was converted by a cadmium-copper reduction column from the stable end products of NO oxidation. Except for tryptophan, all the compounds examined scavenged NO in a dose-dependent manner. Melatonin, which has a methoxy group in the 5-position and an acetyl side chain, exhibited the most potent scavenging activity among the compounds tested. Serotonin, N-acetyl-5-hydroxytryptamine, and 5-hydroxytryptophan, respectively, showed moderate scavenging activity compared to melatonin. Tryptophan, which has neither a methoxy nor a hydroxyl group in the 5-position, exhibited the least NO scavenging activity.

  11. Potentiometric anion selective sensors

    NARCIS (Netherlands)

    Antonisse, Martijn M.G.; Reinhoudt, David N.

    1999-01-01

    In comparison with selective receptors (and sensors) for cationic species, work on the selective complexation and detection of anions is of more recent date. There are three important components for a sensor, a transducer element, a membrane material that separates the transducer element and the aqu

  12. Manganese superoxide dismutase, but not CuZn superoxide dismutase, is highly expressed in the granulomas of pulmonary sarcoidosis and extrinsic allergic alveolitis.

    Science.gov (United States)

    Lakari, E; Pääkkö, P; Kinnula, V L

    1998-08-01

    The role of antioxidant defense mechanisms in the pathogenesis of granulomatous human lung diseases remains open to investigation. In this study we investigated the immunoreactivity of two important superoxide radical scavenging intracellular antioxidant enzymes, manganese superoxide dismutase (MnSOD) and copperzinc superoxide dismutase (CuZnSOD), in pulmonary sarcoidosis and extrinsic allergic alveolitis. In histologically normal lung MnSOD was variable but mostly positive in the cells of bronchial epithelium, alveolar epithelium especially in type II pneumocytes, and alveolar macrophages. Copperzinc SOD showed positive immunoreactivity most markedly in the bronchial epithelium. The biopsies of 22 patients with pulmonary sarcoidosis and 10 with extrinsic allergic alveolitis indicated that MnSOD was highly stained in the granulomas of both diseases, with 60 to 100% of the granulomas showing intensive immunoreactivity. Western blots conducted on the cell samples of bronchoalveolar lavage (BAL) fluid revealed significantly higher amounts of MnSOD in sarcoidosis and extrinsic allergic alveolitis than in the controls. Immunohistochemistry on the cells obtained from BAL fluid showed positive immunoreactivity of MnSOD in the macrophages but not in the lymphocytes. In contrast, copperzinc SOD was not induced in either of these diseases. We conclude that MnSOD is highly expressed in the granulomas of pulmonary sarcoidosis and extrinsic allergic alveolitis, and variable but mostly positive in alveolar macrophages, possibly owing to cytokine mediated induction during the granuloma formation.

  13. electrochemical behaviour and voltammetric determination of ...

    African Journals Online (AJOL)

    PROPERTIES IN AQUEOUS BUFFER SOLUTIONS ... The superoxide anion scavenging ability of Geshoidin was examined by differential .... described elsewhere [4] and was identified and characterized by spectroscopic methods. The.

  14. Microscope Image of Scavenged Particles

    Science.gov (United States)

    2008-01-01

    This image from NASA's Phoenix Mars Lander's Optical Microscope shows a strongly magnetic surface which has scavenged particles from within the microscope enclosure before a sample delivery from the lander's Robotic Arm. The particles correspond to the larger grains seen in fine orange material that makes up most of the soil at the Phoenix site. They vary in color, but are of similar size, about one-tenth of a millimeter. As the microscope's sample wheel moved during operation, these particles also shifted, clearing a thin layer of the finer orange particles that have also been collected. Together with the previous image, this shows that the larger grains are much more magnetic than the fine orange particles with a much larger volume of the grains being collected by the magnet. The image is 2 milimeters across. It is speculated that the orange material particles are a weathering product from the larger grains, with the weathering process both causing a color change and a loss of magnetism. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by JPL, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  15. Anaesthesia machine: Checklist, hazards, scavenging

    Directory of Open Access Journals (Sweden)

    Umesh Goneppanavar

    2013-01-01

    Full Text Available From a simple pneumatic device of the early 20 th century, the anaesthesia machine has evolved to incorporate various mechanical, electrical and electronic components to be more appropriately called anaesthesia workstation. Modern machines have overcome many drawbacks associated with the older machines. However, addition of several mechanical, electronic and electric components has contributed to recurrence of some of the older problems such as leak or obstruction attributable to newer gadgets and development of newer problems. No single checklist can satisfactorily test the integrity and safety of all existing anaesthesia machines due to their complex nature as well as variations in design among manufacturers. Human factors have contributed to greater complications than machine faults. Therefore, better understanding of the basics of anaesthesia machine and checking each component of the machine for proper functioning prior to use is essential to minimise these hazards. Clear documentation of regular and appropriate servicing of the anaesthesia machine, its components and their satisfactory functioning following servicing and repair is also equally important. Trace anaesthetic gases polluting the theatre atmosphere can have several adverse effects on the health of theatre personnel. Therefore, safe disposal of these gases away from the workplace with efficiently functioning scavenging system is necessary. Other ways of minimising atmospheric pollution such as gas delivery equipment with negligible leaks, low flow anaesthesia, minimal leak around the airway equipment (facemask, tracheal tube, laryngeal mask airway, etc. more than 15 air changes/hour and total intravenous anaesthesia should also be considered.

  16. Anaesthesia machine: checklist, hazards, scavenging.

    Science.gov (United States)

    Goneppanavar, Umesh; Prabhu, Manjunath

    2013-09-01

    From a simple pneumatic device of the early 20(th) century, the anaesthesia machine has evolved to incorporate various mechanical, electrical and electronic components to be more appropriately called anaesthesia workstation. Modern machines have overcome many drawbacks associated with the older machines. However, addition of several mechanical, electronic and electric components has contributed to recurrence of some of the older problems such as leak or obstruction attributable to newer gadgets and development of newer problems. No single checklist can satisfactorily test the integrity and safety of all existing anaesthesia machines due to their complex nature as well as variations in design among manufacturers. Human factors have contributed to greater complications than machine faults. Therefore, better understanding of the basics of anaesthesia machine and checking each component of the machine for proper functioning prior to use is essential to minimise these hazards. Clear documentation of regular and appropriate servicing of the anaesthesia machine, its components and their satisfactory functioning following servicing and repair is also equally important. Trace anaesthetic gases polluting the theatre atmosphere can have several adverse effects on the health of theatre personnel. Therefore, safe disposal of these gases away from the workplace with efficiently functioning scavenging system is necessary. Other ways of minimising atmospheric pollution such as gas delivery equipment with negligible leaks, low flow anaesthesia, minimal leak around the airway equipment (facemask, tracheal tube, laryngeal mask airway, etc.) more than 15 air changes/hour and total intravenous anaesthesia should also be considered.

  17. Extracellular production and degradation of superoxide in the coral Stylophora pistillata and cultured Symbiodinium.

    Directory of Open Access Journals (Sweden)

    Eldad Saragosti

    Full Text Available BACKGROUND: Reactive oxygen species (ROS are thought to play a major role in cell death pathways and bleaching in scleractinian corals. Direct measurements of ROS in corals are conspicuously in short supply, partly due to inherent problems with ROS quantification in cellular systems. METHODOLOGY/PRINCIPAL FINDINGS: In this study we characterized the dynamics of the reactive oxygen species superoxide anion radical (O(2(- in the external milieu of the coral Stylophora pistillata. Using a sensitive, rapid and selective chemiluminescence-based technique, we measured extracellular superoxide production and detoxification activity of symbiont (non-bleached and aposymbiont (bleached corals, and of cultured Symbiodinium (from clades A and C. Bleached and non-bleached Stylophora fragments were found to produce superoxide at comparable rates of 10(-11-10(-9 mol O(2(- mg protein(-1 min(-1 in the dark. In the light, a two-fold enhancement in O(2(- production rates was observed in non-bleached corals, but not in bleached corals. Cultured Symbiodinium produced superoxide in the dark at a rate of . Light was found to markedly enhance O(2(- production. The NADPH Oxidase inhibitor Diphenyleneiodonium chloride (DPI strongly inhibited O(2(- production by corals (and more moderately by algae, possibly suggesting an involvement of NADPH Oxidase in the process. An extracellular O(2(- detoxifying activity was found for bleached and non-bleached Stylophora but not for Symbiodinium. The O(2(- detoxifying activity was partially characterized and found to resemble that of the enzyme superoxide dismutase (SOD. CONCLUSIONS/SIGNIFICANCE: The findings of substantial extracellular O(2(- production as well as extracellular O(2(- detoxifying activity may shed light on the chemical interactions between the symbiont and its host and between the coral and its environment. Superoxide production by Symbiodinium possibly implies that algal bearing corals are more susceptible to an

  18. Hyperglycemic switch from mitochondrial nitric oxide to superoxide production in endothelial cells.

    Science.gov (United States)

    Brodsky, Sergey V; Gao, Shujuan; Li, Hong; Goligorsky, Michael S

    2002-11-01

    The accumulated ultrastructural and biochemical evidence is highly suggestive of the existence of mitochondrial nitric oxide (NO) synthase (mtNOS), where local production of NO regulates the electron transport along the respiratory chain. Here, the functional competence of mtNOS in situ in a living cell was examined using an intravital fluorescent NO indicator, 4,5-diaminofluorescein, employing a new procedure for loading it into the mitochondria to demonstrate local NO generation in undisrupted endothelial cells and in isolated mitochondria as well as in human embryonic kidney cells stably expressing endothelial NOS. With the use of this approach, we showed that endothelial cells incubated in the presence of high concentration of D-glucose (but not L-glucose) are characterized by the reduced NO synthetic function of mitochondria despite the unaltered abundance of the enzyme. In parallel, mitochondrial generation of superoxide was augmented in endothelial cells incubated in the presence of a high concentration of D-glucose. Both the NO generation and superoxide production in hyperglycemic environment could be restored to control levels by treating cells with a cell-permeable superoxide dismutase mimetic. In addition, enhanced mitochondrial superoxide production could be suppressed with an inhibitor of NOS in stimulated endothelial cells. In conclusion, the data 1) provide direct evidence of mitochondrial NO production in endothelial cells, 2) demonstrate its suppression and enhanced superoxide generation in hyperglycemic environment, and 3) provide evidence that "uncoupled" mtNOS represents an important source of superoxide anions in endothelial cells incubated in high glucose-containing medium.

  19. In vitro Free Radical Scavenging Potential of Defatted Ethanolic Extract of the Seeds of Lepidium sativum Linn.

    Institute of Scientific and Technical Information of China (English)

    Annie Shirwaikar; Bharatkumar Patel; Yogesh Kamariya; Vinit Parmar; Saleemulla Khan

    2011-01-01

    AIM:The objective of the present study was to evaluate the antioxidant potential of the defatted ethanolic extract of the seeds of Lepidium Sativum Linn.METHODS:Different in vitro chemical assays viz.DPPH (1,l-diphenyl-2-picrylhydrazyl) radical scavenging,ABTS (2,2-azinobis- (3-ethylbenzothiazoline-6-sulphonate) radical scavenging,iron chelation,lipid peroxidation,superoxide scavenging and non-enzymatic haemoglobin glycosylation assay were used.The total antioxidant capacity of the extract was determined spectrophotometrically by phosphomolybdic acid method.RESULT & CONCLUSION:The defatted lepidium seed extract showed significant free radical scavenging activity in ABTS and non-enzymatic glycosylation assays,and a moderate activity in all the other assays.IC5o of the extract in the DPPH,ABTS,iron chelation,lipid peroxidation and super oxide scavenging assays were found to be 171.13,38.64,128.94,71.39 and 206.09 μg.mL-1 respectively.The haemoglobin glycosylation assay of the extract showed a percentage scavenging of 46.60% and 74.88%,at 0.5 and 1.0 μg.mL-1,concentrations,respectively.Total antioxidant capacity of ethanolic extract of L.sativum (10 mg·mL-1) was found to be equivalent to 58.38 μg.mL-1 of ascorbic acid.

  20. High-Content Imaging Assays for Identifying Compounds that Generate Superoxide and Impair Mitochondrial Membrane Potential in Adherent Eukaryotic Cells.

    Science.gov (United States)

    Billis, Puja; Will, Yvonne; Nadanaciva, Sashi

    2014-02-19

    Reactive oxygen species (ROS) are constantly produced in cells as a result of aerobic metabolism. When there is an excessive production of ROS and the cell's antioxidant defenses are overwhelmed, oxidative stress occurs. The superoxide anion is a type of ROS that is produced primarily in mitochondria but is also generated in other regions of the cell including peroxisomes, endoplasmic reticulum, plasma membrane, and cytosol. Here, a high-content imaging assay using the dye dihydroethidium is described for identifying compounds that generate superoxide in eukaryotic cells. A high-content imaging assay using the fluorescent dye tetramethylrhodamine methyl ester is also described to identify compounds that impair mitochondrial membrane potential in eukaryotic cells. The purpose of performing both assays is to identify compounds that (1) generate superoxide at lower concentrations than they impair mitochondrial membrane potential, (2) impair mitochondrial membrane potential at lower concentrations than they generate superoxide, (3) generate superoxide and impair mitochondrial function at similar concentrations, and (4) do not generate superoxide or impair mitochondrial membrane potential during the duration of the assays.

  1. Free radical scavenging activity of Calotropis gigantea on streptozotocin-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Rathod N

    2009-01-01

    Full Text Available Swarnabhasma , an Ayurvedic preparation containing Calotropis gigantea R. Br. (Asclepiadaceae is extensively used by Ayurvedic physicians for treatment of diabetes mellitus, bronchial asthma, rheumatoid arthritis and nervous disorders. In the present study, we report the effect of chloroform extracts of Calotropis gigantea leaf and flower on free radical scavenging activity, and lipid profile in streptozotozin-induced diabetic rats. The lipid peroxidation, superoxide dismutase, and catalase were measured in liver homogenate and serum glutamic pyruvic transaminase, serum glutamic oxaloacetic transaminase, alkaline phosphatase, lipid profile were measured in blood serum. Administration of single dose of streptozotozin (55 mg/kg, i.p. caused significant increases in lipid peroxidation, serum glutamic pyruvic transaminase, serum glutamic oxaloacetic transaminase, alkaline phosphatase, cholesterol and triglyceride levels, while superoxide dismutase and catalase levels were significantly decreased. Further, administration of chloroform extracts of Calotropis gigantea leaf and flower to streptozotocin-induced diabetes rats at a dose of 10, 20 and 50 mg/kg orally for 27 d lead to a significant decrease in lipid peroxidation, serum glutamic pyruvic transaminase, serum glutamic oxaloacetic transaminase, alkaline phosphatase, cholesterol and triglyceride levels. Consequently, superoxide dismutase and catalase levels were significantly increased. Glibenclamide was used as a positive control (10 mg/kg. It was observed that the effect of chloroform extracts of Calotropis gigantea on alkaline phosphatase, cholesterol, superoxide dismutase, serum glutamic pyruvic transaminase, serum glutamic oxaloacetic transaminase, levels are comparable to that of those produced by the positive control.

  2. Effect of Korea red ginseng on cerebral blood flow and superoxide production

    Institute of Scientific and Technical Information of China (English)

    Cuk Seong KIM; Jin Bong PARK; Kwang-Jin KIM; Seok Jong CHANG; Sung-Woo RYOO; Byeong Hwa JEON

    2002-01-01

    AIM: To investigate the effects of Korea red ginseng (KRG) on the cerebral perfusion rate in the rats and the generation of superoxide anion in the endothelial cells. METHODS: The cerebral perfusion rate was measured using laser-doppler flowmetry before and after the administration of crude saponin (CS) and saponin-free fraction (SFF) of KRG in the anesthetized rats. The superoxide generation was measured by the method based on lucigeninenhanced chemiluminescence in the cultured endothelial cells. RESULTS: The relative cerebral perfusion rate (rCBF) was significantly increased by the intraperitoneal injection of CS (100 mg/kg) in the rats, but SFF had no effect on the rCBF. Chronic treatment with CS for 7 d significantly inhibited the decrease of forebrain cerebral blood flow induced by clamping both carotid arteries in the rats. Furthermore, CS (0.1 g/L) significantly suppressed NADPH-induced superoxide generation in the human umbilical vein endothelial cells (P<0.01).CONCLUSION: The present study demonstrated that crude saponin fraction of KRG enhanced cerebral blood flow in rats. Furthermore, crude saponin fraction of KRG abrogated the NADPH-driven superoxide generation in endothelial cells.

  3. Characterization and free radical scavenging activity of rapeseed meal polysaccharides WPS-1 and APS-2.

    Science.gov (United States)

    Zhu, Jianfei; Wu, Moucheng

    2009-02-11

    Two major polysaccharide fractions, WPS-1 and APS-2, were isolated from water-soluble and alkali-soluble extracts of Huaza No. 4 rapeseed meal with a stepwise procedure of D3520 macroporous adsorption resin column chromatography, ethanol precipitation, and DE-52 cellulose column chromatography. Physicochemical properties of the polysaccharides were determined by chemical methods, high -performance liquid chromatography (HPLC), gel permeation chromatography (GPC), and Fourier transform infrared spectrometry (FT-IR). The chemiluminescence (CL) method was used to investigate the free radical scavenging activity of the polysaccharide fractions. The polysaccharides were primarily polymers of arabinose, galactose, and glucose, associated with protein portions consisting of 13 different amino acids. The average molecular masses of WPS-1 and APS-2 were 7.20 x 10(5) and 1.61 x 10(5) Da, respectively. Compared with APS-2, WPS-1 was more effective at scavenging superoxide radical (O(2)(*-)) and hydroxyl radical (HO(*)), but less effective at scavenging hydrogen peroxide (H(2)O(2)). In decreasing order, the free radical scavenging activity of WPS-1 and APS-2 toward reactive oxygen species (ROS) was H(2)O(2) > HO(*) > O(2)(*-).

  4. Radical scavenging potentials of single and combinatorial herbal formulations in vitro.

    Science.gov (United States)

    Ojiako, Okey A; Chikezie, Paul C; Ogbuji, Agomuo C

    2016-04-01

    Reactive oxygen and nitrogen species (RONS) are involved in deleterious/beneficial biological processes. The present study sought to investigate the capacity of single and combinatorial herbal formulations of Acanthus montanus, Emilia coccinea, Hibiscus rosasinensis, and Asystasia gangetica to act as superoxide radicals (SOR), hydrogen peroxide (HP), nitric oxide radical (NOR), hydroxyl radical (HR), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical antagonists using in vitro models. The herbal extracts were single herbal formulations (SHfs), double herbal formulations (DHfs), triple herbal formulations (THfs), and a quadruple herbal formulation (QHf). The phytochemical composition and radical scavenging capacity index (SCI) of the herbal formulations were measured using standard methods. The flavonoids were the most abundant phytochemicals present in the herbal extracts. The SCI50 defined the concentration (μg/mL) of herbal formulation required to scavenge 50% of the investigated radicals. The SHfs, DHfs, THfs, and QHf SCI50 against the radicals followed the order HR > SOR > DPPH radical > HP > NOR. Although the various herbal formulations exhibited ambivalent antioxidant activities in terms of their radical scavenging capabilities, a broad survey of the results of the present study showed that combinatorial herbal formulations (DHfs, THfs, and QHf) appeared to exhibit lower radical scavenging capacities than those of the SHfs in vitro.

  5. Oxidant-scavenging activities of ampicillin and sulbactam and their effects on neutrophil functions.

    Science.gov (United States)

    Gunther, M R; Mao, J; Cohen, M S

    1993-05-01

    Luminol-enhanced luminescence is a method used to measure formation of reactive oxygen intermediates important in the ability of neutrophils to kill microbes. Several studies have demonstrated that under some conditions of incubation, ampicillin can inhibit neutrophil-derived luminol-enhanced luminescence. We evaluated the mechanism(s) by which ampicillin inhibited the luminescent response of stimulated neutrophils. We also investigated sulbactam, a beta-lactamase inhibitor which has been given in combination with ampicillin and other beta-lactam antibiotics to increase their spectra, for possible similar effects. Both ampicillin and sulbactam attenuated luminol-enhanced luminescence by approximately 40%. Superoxide production was not prevented by added ampicillin, nor was superoxide scavenged by it. Myeloperoxidase reacts with H2O2 and Cl- to generate OCl-, which is believed to be the oxidizer of luminol that is primarily responsible for enhancement of neutrophil-derived luminescence. Hydroxyl radicals (HO.), which may also oxidize luminol, resulting in luminescence, can be formed from O2- and H2O2 via either myeloperoxidase-dependent (involving intermediate OCl-) or myeloperoxidase-independent (through a metal ion catalyst) reactions. Ampicillin scavenged H2O2 and OCl- and prevented 95% of Fenton reaction-generated HO. from reacting with 5,5-dimethyl-1-pyrroline-N-oxide. Sulbactam was found to scavenge OCl- and HO., but less avidly than ampicillin did. Neither ampicillin nor sulbactam inhibited myeloperoxidase activity. Sublethal concentrations of sulbactam had no significant effect on neutrophil killing of Staphylococcus aureus and Escherichia coli. Our results demonstrate a mechanism(s) by which ampicillin inhibits luminol-enhanced luminescence from stimulated neutrophils, namely, through scavenging of the oxidant(s) primarily responsible for the generation of luminescence.

  6. Triazine-based H2S Scavenging

    DEFF Research Database (Denmark)

    Madsen, Henrik Tækker; Vestergaard Jensen, Carina; Søgaard, Erik Gydesen

    2014-01-01

    The authors studied the applicability of a previously suggested model to describe the reaction between 1,3,5-tri-(2-hydroxypropyl)-hexahydro-s-triazine and H2S and thereby predict formation of fouling. To investigate the reaction system, electrospray ionization mass spectrometry was employed...... to analyze the composition of the generated mixture as H2S is bubbled through the scavenger. The results of the study confirm that the suggested model is capable of explaining how the scavenger reacts with H2S, which may be used to explain from where and how the fouling originates, and how a scavenging...

  7. Process for the preparation of calcium superoxide

    Science.gov (United States)

    Ballou, E. V.; Wood, P. C.; Wydeven, T. J.; Spitze, L. A. (Inventor)

    1978-01-01

    Calcium superoxide is prepared in high yields by spreading a quantity of calcium peroxide diperoxyhydrate on the surface of a container, positioning said container in a vacuum chamber on a support structure through which a coolant fluid can be circulated, partially evacuating said vacuum chamber, allowing the temperature of the diperoxyhydrate to reach the range of about 0 to about 40 C; maintaining the temperature selected for a period of time sufficient to complete the disproproriation of the diperoxyhydrate to calcium superoxide, calcium hydroxide, oxygen, and water; constantly and systematically removing the water as it is formed by sweeping the reacting material with a current of dry inert gas and/or by condensation of said water on a cold surface; backfilling the chamber with a dry inert gas; and finally, recovering the calcium superoxide produced.

  8. The role of vasoactive intestinal peptide in scavenging singlet oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Misra, B.R.; Misra, H.P. (Virginia Polytechnic Inst. and State Univ., Blacksburg (United States))

    1990-02-26

    The neuropeptide vasoactive intestinal peptide (VIP), a highly basic 28 amino acid peptide, has a widespread distribution in the body. The functional specificity of this peptide not only includes its potent vasodilatory activity, but also its role in protecting lungs against acute injury, in preventing T-lymphocyte proliferation and in modulating immune function. The purpose of this study was to examine the possible antioxidant properties of VIP. The authors found that VIP up to 50 {mu}g/ml had no inhibitory effect on its reduction of cytochrome C by xanthine and xanthine oxidase, indicating that the peptide does not have significant O{sub 2} scavenging ability. However, VIP was found to inhibit, in a dose-dependent manner, the {sup 1}O{sub 2} dependent 2, 2, 6, 6 tetramethyl piperidine oxide (TEMPO) formation. {sup 1}O{sub 2} was produced by rose benzal photosensitizing system and was detected as TEMP-{sup 1}O{sub 2} adduct (TEMPO) by electron paramagnetic resonance (EPR) spectroscopic technique. The formation of TEMPO signal was strongly inhibited by {beta}-carotene, histidine as well as azide, but not by superoxide dismutase (48 {mu}g/ml), catalase (20 {mu}g/ml) and mannitol (6mM), indicating that TEMPO signal was a TEMP-{sup 1}O{sub 2} adduct. These results indicate that VIP has potent antioxidant activity and may serve as a singlet O{sub 2} scavenger, thus it may modulate the oxidative tissue injury caused by this reactive oxygen species.

  9. T Plant first cycle waste scavenging

    Energy Technology Data Exchange (ETDEWEB)

    Ludlow, J.O.; Poucher, F.W.

    1954-12-23

    A scavenging process for the TBP Plant wastes has recently been installed and is expected to result in a considerable reduction in the waste tankage required for storage of TBP Plant Wastes. A similar process has been developed for scavenging the first cycle waste from the BiPO{sub 4} Plants. A study of future requirements and availability of tank storage space indicates that in order to avoid an overall plant critical tank shortage, or the necessity of construction of new tanks, a T-Plant waste scavenging program should provide cribbing facilities by February, 1955. Since tank storage space is critical ad the cost of such storage is a sizable factor in the overall plant operating costs, an investigation of the feasibility of the installation of this waste scavenging process in T-Plant has been undertaken.

  10. Nitric oxide signals ROS scavenger-mediated enhancement of PAL activity in nitrogen-deficient Matricaria chamomilla roots: side effects of scavengers.

    Science.gov (United States)

    Kovácik, Jozef; Klejdus, Borivoj; Backor, Martin

    2009-06-15

    Owing to the abundance of phenolic metabolites in plant tissue, their accumulation represents an important tool for stress protection. However, the regulation of phenolic metabolism is still poorly known. The regulatory role of reactive oxygen species (ROS) in the activity of phenylalanine ammonia-lyase (PAL) in nitrogen (N)-deficient chamomile roots treated for 24 h was studied using three ROS scavengers [dithiothreitol (DTT), salicylhydroxamic acid, and sodium benzoate]. Scavengers decreased the level of hydrogen peroxide and/or superoxide (and up-regulated ascorbate/guaiacol peroxidase and glutathione reductase), but, surprisingly, stimulated PAL activity. This up-regulation was correlated with increases in nitric oxide (NO) content, total soluble phenols, selected phenolic acids, and, partially, lignin (being expressed the most in DTT-exposed roots). We therefore tested the hypothesis that NO may be involved in these changes. Application of 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) decreased PAL activity and the accumulation of soluble phenols in all treatments. Exogenous H(2)O(2) and NO also stimulated PAL activity and the accumulation of phenols. We conclude that NO, in addition to hydrogen peroxide, may regulate PAL activity during N deficiency. The anomalous effect of PTIO on NO content and possible mechanism of ROS scavenger-evoked NO increases in light of the current knowledge are also discussed.

  11. Superoxide Complex [W4O12(O2')]:A Theoretical Study

    Institute of Scientific and Technical Information of China (English)

    WANG Bin; ZHANG Xian-Hui; HUANG Xin; ZHANG Yong-Fan

    2008-01-01

    Extensive DFT calculations are performed to optimize the geometric structures of O-rich tungsten oxide clusters, to simulate the PES spectra, and to analyze the chemical bonding. The ground-state structure of W4O14- is best considered as W4O12(O2-), containing a side-on bound superoxide ligand. The current study indicates that the extra electron in W4O12- is capable of activating dioxygen by non-dissociative electron transfer (W 5d→O2 π*), and the anionic clusters can be viewed as models for reduced defect sites on tungsten oxide surfaces for the chemisorption of O2.

  12. Neural stem cells genetically modified to overexpress cu/zn-superoxide dismutase enhance amelioration of ischemic stroke in mice.

    Science.gov (United States)

    Sakata, Hiroyuki; Niizuma, Kuniyasu; Wakai, Takuma; Narasimhan, Purnima; Maier, Carolina M; Chan, Pak H

    2012-09-01

    The harsh host brain microenvironment caused by production of reactive oxygen species after ischemic reperfusion injury offers a significant challenge to survival of transplanted neural stem cells (NSCs) after ischemic stroke. Copper/zinc-superoxide dismutase (SOD1) is a specific antioxidant enzyme that counteracts superoxide anions. We have investigated whether genetic manipulation to overexpress SOD1 enhances survival of grafted stem cells and accelerates amelioration of ischemic stroke. NSCs genetically modified to overexpress or downexpress SOD1 were administered intracerebrally 2 days after transient middle cerebral artery occlusion. Histological and behavioral tests were examined from Days 0 to 28 after stroke. Overexpression of SOD1 suppressed production of superoxide anions after ischemic reperfusion injury and reduced NSC death after transplantation. In contrast, downexpression of SOD1 promoted superoxide generation and increased oxidative stress-mediated NSC death. Transplantation of SOD1-overexpressing NSCs enhanced angiogenesis in the ischemic border zone through upregulation of vascular endothelial growth factor. Moreover, grafted SOD1-overexpressing NSCs reduced infarct size and improved behavioral performance compared with NSCs that were not genetically modified. Our findings reveal a strong involvement of SOD1 expression in NSC survival after ischemic reperfusion injury. We propose that conferring antioxidant properties on NSCs by genetic manipulation of SOD1 is a potential approach for enhancing the effectiveness of cell transplantation therapy in ischemic stroke.

  13. Reactive oxygen species scavenging activities in a chemiluminescence model and neuroprotection in rat pheochromocytoma cells by astaxanthin, beta-carotene, and canthaxanthin.

    Science.gov (United States)

    Chang, Chi-Sen; Chang, Chia-Lin; Lai, Guia-Hung

    2013-08-01

    The objective of this study was to determine chemiluminescence (CL) antioxidant activities and neuroprotective effects of astaxanthin, beta-carotene (β-carotene), and canthaxanthin on undifferentiated rat pheochromocytoma (PC12) cells. We performed three CL antioxidant assays, and the three carotenoids showed varying degrees of antioxidant activity, with astaxanthin exhibiting the highest antioxidant activity than the other two samples. Results of a pyrogallol-luminol assay revealed β-carotene to have higher antioxidant activity than canthaxanthin, whereas cupric sulfate-Phen-Vc-hydrogen peroxide (H₂O₂) assay showed canthaxanthin to have higher antioxidant activity than β-carotene. Luminol-H₂O₂ assay showed the antioxidant activity series as canthaxanthin > β-carotene at 62.5-1000 μg/mL and β-carotene > canthaxanthin at 1000-4000 μg/mL. Astaxanthin exhibited partial neuroprotective activity against H₂O₂ and the strongest neuroprotective activity against amyloid beta-peptide(25-35) [(Aβ)(25-35)]-induced undifferentiated PC12 cell deaths at 0.5-5.0 μM. Canthaxanthin showed partial neuroprotective activity in Aβ(25-35)-induced undifferentiated PC12 cell deaths at 1.0-5.0 μM. Astaxanthin protected undifferentiated PC12 cells from the damaging effects of H₂O₂ and Aβ(25-35) by the following ways: (1) scavenging superoxide anion radicals, hydroxyl radicals, and H₂O₂; (2) securing cell viability; (3) suppressing the production of reactive oxygen species; and (4) eliminating calcium ion influx. Our results conclusively show that astaxanthin has the merit as a potential neuron protectant.

  14. Study on Scavenging DPPH Radical Activity with Polysaccharide in Tartary Buckwheat%苦荞麦多糖清除DPPH自由基的作用

    Institute of Scientific and Technical Information of China (English)

    谭萍; 方玉梅; 王毅红; 张春生

    2013-01-01

    Aimed at the further exploration of the polysaccharide in Tartary Buckwheat resource, a study of the antioxidant action of polysaccharide in Tartary Buckwheat is made. The activity component is extracted with water. Using the assay system of DPPH, the antioxidant activities of the polysaccharide in Tartary Buck-wheat were studied and compared with those of VE and assorbic acid. Results shows that the extracts of the polysaccharide in Tartary Buckwheat could inhibit lipid peroxidation and scavenge active oxygen free radi-cals. The elimination of the density of the polysaccharide in Tartary Buckwheat (21.764µg/mL) was attained by 24.85%, and remarkable exceeded the same density VE and assorbic acid. The polysaccharide in Tartary Buckwheat extracts showed strongest inhibitory effect on the antioxidation of superoxidized anionic and lipid peroxidantion.%以水为溶剂提取苦荞麦多糖类化合物,并以抗坏血酸( VC)和VE为对照品,采用DPPH法探究了苦荞麦多糖提取物对自由基的清除作用。结果表明:苦荞麦多糖具有一定的抗氧化作用,在其浓度为21.764µg/mL时其清除率可达24.85%,显著高于相同浓度下的VC和VE的清除率。认为苦荞麦多糖是一种有前途的天然抗氧化剂。

  15. Propofol attenuates high glucose-induced superoxide anion accumulation in human umbilical vein endothelial cells.

    Science.gov (United States)

    Wang, Jiaqiang; Jiang, Hui; Wang, Jing; Zhao, Yanjun; Zhu, Yun; Zhu, Minmin

    2016-12-01

    Perioperative hyperglycemia is a common clinical metabolic disorder. Hyperglycemia could induce endothelial apoptosis, dysfunction, and inflammation, resulting in endothelial injury. Propofol is a widely used anesthetic drug in clinical settings. Our previous studies indicated that propofol attenuated high glucose-induced endothelial apoptosis, dysfunction, and inflammation via inhibiting reactive oxygen species (ROS) accumulation. However, the mechanisms by which propofol reduces high glucose-induced endothelial ROS accumulation are still obscure. In this study, we examined how propofol attenuates high glucose-induced endothelial ROS accumulation. Compared with 5 mm glucose treatment, 15 mm glucose upregulated the expression of pin-1, phosphatase A2 (PP2A), p66(shc) and mitochondrial p66(shc) expression, increased p66(shc) -Ser(36) phosphorylation, and O2·- accumulation. More importantly, although propofol had no effect on 15 mm glucose-induced p66(shc) -Ser(36) phosphorylation and pin-1 expression, propofol could downregulated PP2A expression and p66(shc) expression in whole-cell and mitochondrion, resulting in the reduction of O2·- accumulation. Moreover, we demonstrated that the antioxidative effect of propofol was similar to that of calyculin A, an inhibitor of PP2A. In contrast, FTY720, an activator of PP2A, antagonized the effect of propofol. Our data indicated that the antioxidative effect of propofol was achieved by downregulating PP2A expression, resulting in the inhibition of p66(shc) -Ser(36) dephosphorylation and mitochondrial p66(shc) expression. © 2016 Société Française de Pharmacologie et de Thérapeutique.

  16. Microsomal superoxide anion production and NADPH-oxidation in a series of 22 aziridinylbenzoquinones

    NARCIS (Netherlands)

    Prins, Bram; Koster, Andries Sj.; Verboom, Willem; Reinhoudt, David N.

    1989-01-01

    Several 2,5-bis(1-aziridinyl)-1,4-benzoquinones (BABQs) can be activated to alkylating species by reduction of the quinone moiety. On the other hand, cytotoxicity of these compounds can be induced by redox cycling. A series of BABQs and their methylated analogues (BMABQs) with different substituents

  17. Effect of beta2-adrenergic agonists on eosinophil adhesion, superoxide anion generation, and degranulation

    Directory of Open Access Journals (Sweden)

    Toru Noguchi

    2015-09-01

    Conclusions: These findings suggest that formoterol, but not salbutamol, suppresses eosinophil functions enhanced by IL-5, LTD4, or IP-10. As these factors are involved in the development of asthma exacerbation, our results strongly support the hypothesis that administration of formoterol is a novel strategy for treating asthma exacerbation.

  18. Magnetoreception through Cryptochrome may involve superoxide

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Schulten, Klaus

    2009-01-01

    pair-based reaction in the photoreceptor cryptochrome that reduces the protein's flavin group from its signaling state FADH$^bullet$ to the inactive state FADH$^–$ (which reacts to the likewise inactive FAD) by means of the superoxide radical, O2$^$. We argue that the spin dynamics in the suggested...

  19. Manganese superoxide dismutase and breast cancer recurrence

    DEFF Research Database (Denmark)

    Cronin-Fenton, Deirdre P; Christensen, Mariann; Lash, Timothy L

    2014-01-01

    BACKGROUND: Manganese superoxide dismutase (MnSOD) inhibits oxidative damage and cancer therapy effectiveness. A polymorphism in its encoding gene (SOD2: Val16Ala rs4880) may confer poorer breast cancer survival, but data are inconsistent. We examined the association of SOD2 genotype and breast...

  20. Calorimetric Study of Thermal Denaturation of Superoxide Dismutase

    Institute of Scientific and Technical Information of China (English)

    王邦宁; 谈夫

    1994-01-01

    The thermal denaturation of superoxide dismutase (SOD) from bovine erythrocytes was studied at various pH values of different buffers and at various concentrations of solutions of two neutral salts by differential scanning calorimetry. The experiments performed indicate that the PIPES is a buffer non-coordinating with the SOD, and that the binding of the anions studied influences more or less the thermal denaturation of SOD, but the effect on the oxidation form of SOD is more apparent. A new conformer of SOD with lower thermostability was discovered by the experiments performed in different buffers at certain pH values higher than the isoelectric point of SOD, or at higher concentrations of neutral salt solutions. The new conformer may be converted irreversibly into the usual conformer with high thermostability during heating. Based on the thermodynamic parameters obtained in distilled water and by thermodynamic analysis using the Ooi’s model, it is revealed that the large enthalpy △Hdc contributed by

  1. Detection of superoxide production in stimulated and unstimulated living cells using new cyclic nitrone spin traps.

    Science.gov (United States)

    Abbas, Kahina; Hardy, Micael; Poulhès, Florent; Karoui, Hakim; Tordo, Paul; Ouari, Olivier; Peyrot, Fabienne

    2014-06-01

    Reactive oxygen species (ROS), including superoxide anion and hydrogen peroxide (H2O2), have a diverse array of physiological and pathological effects within living cells depending on the extent, timing, and location of their production. For measuring ROS production in cells, the ESR spin trapping technique using cyclic nitrones distinguishes itself from other methods by its specificity for superoxide and hydroxyl radical. However, several drawbacks, such as the low spin trapping rate and the spontaneous and cell-enhanced decomposition of the spin adducts to ESR-silent products, limit the application of this method to biological systems. Recently, new cyclic nitrones bearing a triphenylphosphonium (Mito-DIPPMPO) or a permethylated β-cyclodextrin moiety (CD-DIPPMPO) have been synthesized and their spin adducts demonstrated increased stability in buffer. In this study, a comparison of the spin trapping efficiency of these new compounds with commonly used cyclic nitrone spin traps, i.e., 5,5-dimethyl-1-pyrroline N-oxide (DMPO), and analogs BMPO, DEPMPO, and DIPPMPO, was performed on RAW 264.7 macrophages stimulated with phorbol 12-myristate 13-acetate. Our results show that Mito-DIPPMPO and CD-DIPPMPO enable a higher detection of superoxide adduct, with a low (if any) amount of hydroxyl adduct. CD-DIPPMPO, especially, appears to be a superior spin trap for extracellular superoxide detection in living macrophages, allowing measurement of superoxide production in unstimulated cells for the first time. The main rationale put forward for this extreme sensitivity is that the extracellular localization of the spin trap prevents the reduction of the spin adducts by ascorbic acid and glutathione within cells.

  2. Superoxide radical production in chicken skeletal muscle induced by acute heat stress.

    Science.gov (United States)

    Mujahid, A; Yoshiki, Y; Akiba, Y; Toyomizu, M

    2005-02-01

    Heat stress is of major concern for poultry, especially in the hot regions of the world because of the resulting poor growth performance, immunosuppression, and high mortality. To assess superoxide (O2*-) production in mitochondria isolated from skeletal muscle of chickens (n = 4 to 8) exposed to acute heat stress, electron spin resonance (ESR) spectroscopy using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as a spin trap agent and lucigenin-derived chemiluminescence (LDCL) method were applied. ESR spectra of suspensions containing mitochondria from control and acute heat-treated meat-type chickens showed similar hyperfine coupling constants (aN = 1.44 mT, aHbeta = 0.12 mT, and aHbeta = 0.11 mT) to those of DMPO-O2*- adducts observed in a hypoxanthine-xanthine oxidase system. Heat exposure resulted in enhancement of the DMPO-O2*- signal. The results using LDCL showed significantly enhanced superoxide production in heat stress-treated skeletal muscle mitochondria of meat-type chickens, whereas no such increase was observed in laying chickens. The enhancement of superoxide production in the former case was associated with heat-induced increments in rectal and muscle temperatures, leading to significant body weight loss. In contrast, the latter case showed no increase in temperatures, although there was a slight decrease in body weight gain. Percentage increases of superoxide production in the presence of carboxyatractylate, a specific inhibitor of adenine nucleotide translocator (ANT), were the same for skeletal muscle mitochondria from meat- and laying-type chickens from the control or heat stress-treated group. This finding suggests the irrelevance of ANT in the regulation of reactive oxygen species flux under heat stress conditions. The study provides the first evidence of superoxide anion production in the skeletal muscle mitochondria of meat-type chickens in response to acute heat stress.

  3. Resonant spectra of quadrupolar anions

    CERN Document Server

    Fossez, K; Nazarewicz, W; Michel, N; Garrett, W R; Płoszajczak, M

    2016-01-01

    In quadrupole-bound anions, an extra electron is attached at a sufficiently large quadrupole moment of a neutral molecule, which is lacking a permanent dipole moment. The nature of the bound states and low-lying resonances of such anions is of interest for understanding the threshold behavior of open quantum systems in general. In this work, we investigate the properties of quadrupolar anions as extreme halo systems, the formation of rotational bands, and the transition from a subcritical to supercritical electric quadrupole moment. We solve the electron-plus-molecule problem using a non-adiabatic coupled-channel formalism by employing the Berggren ensemble, which explicitly contains bound states, narrow resonances, and the scattering continuum. We demonstrate that binding energies and radii of quadrupolar anions strictly follow the scaling laws for two-body halo systems. Contrary to the case of dipolar anions, ground-state band of quadrupolar anions smoothly extend into the continuum, and many rotational ban...

  4. Phytochemical analysis and free radical scavenging activity of medicinal plants Gnidia glauca and Dioscorea bulbifera.

    Science.gov (United States)

    Ghosh, Sougata; Derle, Abhishek; Ahire, Mehul; More, Piyush; Jagtap, Soham; Phadatare, Suvarna D; Patil, Ajay B; Jabgunde, Amit M; Sharma, Geeta K; Shinde, Vaishali S; Pardesi, Karishma; Dhavale, Dilip D; Chopade, Balu A

    2013-01-01

    Gnidia glauca and Dioscorea bulbifera are traditional medicinal plants that can be considered as sources of natural antioxidants. Herein we report the phytochemical analysis and free radical scavenging activity of their sequential extracts. Phenolic and flavonoid content were determined. Scavenging activity was checked against pulse radiolysis generated ABTS(•+) and OH radical, in addition to DPPH, superoxide and hydroxyl radicals by biochemical methods followed by principal component analysis. G. glauca leaf extracts were rich in phenolic and flavonoid content. Ethyl acetate extract of D. bulbifera bulbs and methanol extract of G. glauca stem exhibited excellent scavenging of pulse radiolysis generated ABTS(•+) radical with a second order rate constant of 2.33 × 10(6) and 1.72 × 10(6), respectively. Similarly, methanol extract of G. glauca flower and ethyl acetate extract of D. bulbifera bulb with second order rate constants of 4.48 × 10(6) and 4.46 × 10(6) were found to be potent scavengers of pulse radiolysis generated OH radical. G. glauca leaf and stem showed excellent reducing activity and free radical scavenging activity. HPTLC fingerprinting, carried out in mobile phase, chloroform: toluene: ethanol (4: 4: 1, v/v) showed presence of florescent compound at 366 nm as well as UV active compound at 254 nm. GC-TOF-MS analysis revealed the predominance of diphenyl sulfone as major compound in G. glauca. Significant levels of n-hexadecanoic acid and octadecanoic acid were also present. Diosgenin (C₂₇H₄₂O₃) and diosgenin (3á,25R) acetate were present as major phytoconstituents in the extracts of D. bulbifera. G. glauca and D. bulbifera contain significant amounts of phytochemicals with antioxidative properties that can be exploited as a potential source for herbal remedy for oxidative stress induced diseases. These results rationalize further investigation in the potential discovery of new natural bioactive principles from these two important

  5. Blood Glutamate Scavenging: Insight into Neuroprotection

    Directory of Open Access Journals (Sweden)

    Alexander Zlotnik

    2012-08-01

    Full Text Available Brain insults are characterized by a multitude of complex processes, of which glutamate release plays a major role. Deleterious excess of glutamate in the brain’s extracellular fluids stimulates glutamate receptors, which in turn lead to cell swelling, apoptosis, and neuronal death. These exacerbate neurological outcome. Approaches aimed at antagonizing the astrocytic and glial glutamate receptors have failed to demonstrate clinical benefit. Alternatively, eliminating excess glutamate from brain interstitial fluids by making use of the naturally occurring brain-to-blood glutamate efflux has been shown to be effective in various animal studies. This is facilitated by gradient driven transport across brain capillary endothelial glutamate transporters. Blood glutamate scavengers enhance this naturally occurring mechanism by reducing the blood glutamate concentration, thus increasing the rate at which excess glutamate is cleared. Blood glutamate scavenging is achieved by several mechanisms including: catalyzation of the enzymatic process involved in glutamate metabolism, redistribution of glutamate into tissue, and acute stress response. Regardless of the mechanism involved, decreased blood glutamate concentration is associated with improved neurological outcome. This review focuses on the physiological, mechanistic and clinical roles of blood glutamate scavenging, particularly in the context of acute and chronic CNS injury. We discuss the details of brain-to-blood glutamate efflux, auto-regulation mechanisms of blood glutamate, natural and exogenous blood glutamate scavenging systems, and redistribution of glutamate. We then propose different applied methodologies to reduce blood and brain glutamate concentrations and discuss the neuroprotective role of blood glutamate scavenging.

  6. Peroxynitrite Scavenging Activities of Resveratrol and Piceid

    Institute of Scientific and Technical Information of China (English)

    ZHAO Guang-rong; TIAN Li-li; MA Qiong; WANG Chang-song; QIAO Bin; ZHANG Jun-gang; JI Xiang-wu

    2012-01-01

    In vitro antioxidant activities of resveratrol and piceid against peroxynitrite(ONOO-) were examined by the inhibition of 3-nitrotyrosine formation.Trolox was used as a positive control.Resveratrol and piceid exhibited high ONOO--scavenging activities in a concentration dependent manner.The antioxidant activities(the concentration of test compound required to yield a 50% inhibition of tyrosine nitration,IC50) of resveratrol and piceid against ONOO-were (48.34±0.97) and (74.69±1.49) μmol/L,respectively.Compared with that of trolox[(105.40±1.16)μmol/L],their scavenging activities were 2.2-and 1.5-fold higher for resveratrol and piceid.Formation of nitroresveratrol as shown by UV-Vis spectroscopy and liquid chromatography-tandom mass spectrometry(LC-MS/MS) analysis indicates that resveratrol could directly scavenge ONOO-via nitration reaction.Our results demonstrate that foods and medicinal herbs with resveratrol and piceid as stronger ONOO-scavengers are valuable ingredients and have healthy application in preventing humans from peroxynitrite-mediated oxidative damage by scavenging peroxynitrite efficiently.

  7. Mechanism of protection of adenosine from sulphate radical anion and repair of adenosine radicals by caffeic acid in aqueous solution

    Indian Academy of Sciences (India)

    M Sudha Swaraga; L Charitha; M Adinarayana

    2005-07-01

    The photooxidation of adenosine in presence of peroxydisulphate (PDS) has been studied by spectrophotometrically measuring the absorbance of adenosine at 260 nm. The rates of oxidation of adenosine by sulphate radical anion have been determined in the presence of different concentrations of caffeic acid. Increase in [caffeic acid] is found to decrease the rate of oxidation of adenosine suggesting that caffeic acid acts as an efficient scavenger of $SO_{4}^{\\bullet-}$ and protects adenosine from it. Sulphate radical anion competes for adenosine as well as for caffeic acid. The quantum yields of photooxidation of adenosine have been calculated from the rates of oxidation of adenosine and the light intensity absorbed by PDS at 254 nm, the wavelength at which PDS is activated to sulphate radical anion. From the results of experimentally determined quantum yields (exptl) and the quantum yields calculated (cal) assuming caffeic acid acting only as a scavenger of $SO_{4}^{\\bullet-}$ show that exptl values are lower than cal values. The ' values, which are experimentally found quantum yield values at each caffeic acid concentration and corrected for $SO_{4}^{\\bullet-}$ scavenging by caffeic acid, are also found to be greater than exptl values. These observations suggest that the transient adenosine radicals are repaired by caffeic acid in addition to scavenging of sulphate radical anions.

  8. Unique Characteristics of Recombinant Hybrid Manganese Superoxide Dismutase from Staphylococcus equorum and S. saprophyticus.

    Science.gov (United States)

    Retnoningrum, Debbie S; Rahayu, Anis Puji; Mulyanti, Dina; Dita, Astrid; Valerius, Oliver; Ismaya, Wangsa T

    2016-04-01

    A recombinant hybrid of manganese dependent-superoxide dismutase of Staphylococcus equorum and S. saprophyticus has successfully been overexpressed in Escherichia coli BL21(DE3), purified, and characterized. The recombinant enzyme suffered from degradation and aggregation upon storage at -20 °C, but not at room temperature nor in cold. Chromatographic analysis in a size exclusion column suggested the occurrence of dimeric form, which has been reported to contribute in maintaining the stability of the enzyme. Effect of monovalent (Na(+), K(+)), divalent (Ca(2+), Mg(2+)), multivalent (Mn(2+/4+), Zn(2+/4+)) cations and anions (Cl(-), SO4 (2-)) to the enzyme stability or dimeric state depended on type of cation or anion, its concentration, and pH. However, tremendous effect was observed with 50 mM ZnSO4, in which thermostability of both the dimer and monomer was increased. Similar situation was not observed with MnSO4, and its presence was detrimental at 200 mM. Finally, chelating agent appeared to destabilize the dimer around neutral pH and dissociate it at basic pH. The monomer remained stable upon addition of ethylene diamine tetraacetic acid. Here we reported unique characteristics and stability of manganese dependent-superoxide dismutase from S. equorum/saprophyticus.

  9. Different influences of extracellular and intracellular superoxide on relaxation through the NO/sGC/cGMP pathway in isolated rat iliac arteries.

    Science.gov (United States)

    Tawa, Masashi; Shimosato, Takashi; Iwasaki, Hirotaka; Imamura, Takeshi; Okamura, Tomio

    2015-02-01

    Superoxide production is increased in diseased blood vessels, which is considered to lead to impairment of the nitric oxide (NO)/soluble guanylate cyclase (sGC)/cGMP pathway. To investigate the respective influence of extracellular and intracellular superoxide on vascular function through the NO/sGC/cGMP pathway, mechanical responses of rat external iliac arteries without endothelium were studied under exposure to a superoxide-generating agent, pyrogallol, or menadione. Exposure to pyrogallol impaired the relaxation induced by acidified NaNO2 (exogenous NO) but not that by nitroglycerin (organic nitrate), BAY 41-2272 (sGC stimulator), BAY 60-2770 (sGC activator), or 8-Br-cGMP (cGMP analog). Superoxide dismutase (SOD) and tempol restored the impaired relaxation by acidified NaNO2. Superoxide production in the bathing solution, but not in artery segments, was significantly increased by exposure to pyrogallol, which was abolished in the presence of SOD or tempol. However, exposure to menadione impaired the relaxant response to acidified NaNO2, nitroglycerin, or BAY 41-2272, whereas it augmented that to BAY 60-2770. Also, this exposure had no effect on the 8-Br-cGMP-induced vasorelxation. Superoxide production in artery segments was dramatically enhanced by exposure to menadione, whereas that in the bathing solution was not affected. This increase in vascular superoxide production was normalized by tempol but not by SOD. These findings suggest that extracellular superoxide reacts with NO only outside the cell, whereas intracellular superoxide not only scavenges NO inside the cell but also shifts the sGC redox equilibrium.

  10. Antiglycation and Antioxidant Activities and HPTLC Analysis of ...

    African Journals Online (AJOL)

    polar fractions showed more than 50 % inhibition in superoxide anion scavenging assay. Scavenging ... The present study employs HPTLC identification and biological ... The solution was ..... Cytotoxic and Antioxidant Properties of Aqueous.

  11. Role of extracellular superoxide dismutase in hypertension.

    Science.gov (United States)

    Gongora, Maria Carolina; Qin, Zhenyu; Laude, Karine; Kim, Ha Won; McCann, Louise; Folz, J Rodney; Dikalov, Sergey; Fukai, Tohru; Harrison, David G

    2006-09-01

    We previously found that angiotensin II-induced hypertension increases vascular extracellular superoxide dismutase (ecSOD), and proposed that this is a compensatory mechanism that blunts the hypertensive response and preserves endothelium-dependent vasodilatation. To test this hypothesis, we studied ecSOD-deficient mice. ecSOD(-/-) and C57Blk/6 mice had similar blood pressure at baseline; however, the hypertension caused by angiotensin II was greater in ecSOD(-/-) compared with wild-type mice (168 versus 147 mm Hg, respectively; P<0.01). In keeping with this, angiotensin II increased superoxide and reduced endothelium-dependent vasodilatation in small mesenteric arterioles to a greater extent in ecSOD(-/-) than in wild-type mice. In contrast to these findings in resistance vessels, angiotensin II paradoxically improved endothelium-dependent vasodilatation, reduced intracellular and extracellular superoxide, and increased NO production in aortas of ecSOD(-/-) mice. Whereas aortic expression of endothelial NO synthase, Cu/ZnSOD, and MnSOD were not altered in ecSOD(-/-) mice, the activity of Cu/ZnSOD was increased by 80% after angiotensin II infusion. This was associated with a concomitant increase in expression of the copper chaperone for Cu/ZnSOD in the aorta but not in the mesenteric arteries. Moreover, the angiotensin II-induced increase in aortic reduced nicotinamide-adenine dinucleotide phosphate oxidase activity was diminished in ecSOD(-/-) mice as compared with controls. Thus, during angiotensin II infusion, ecSOD reduces hypertension, minimizes vascular superoxide production, and preserves endothelial function in resistance arterioles. We also identified novel compensatory mechanisms involving upregulation of copper chaperone for Cu/ZnSOD, increased Cu/ZnSOD activity, and decreased reduced nicotinamide-adenine dinucleotide phosphate oxidase activity in larger vessels. These compensatory mechanisms preserve large vessel function when ecSOD is absent in

  12. Absence of superoxide dismutase activity causes nuclear DNA fragmentation during the aging process

    Energy Technology Data Exchange (ETDEWEB)

    Muid, Khandaker Ashfaqul; Karakaya, Hüseyin Çaglar; Koc, Ahmet, E-mail: ahmetkoc@iyte.edu.tr

    2014-02-07

    Highlights: • Aging process increases ROS accumulation. • Aging process increases DNA damage levels. • Absence of SOD activity does not cause DNA damage in young cells. • Absence of SOD activity accelerate aging and increase oxidative DNA damages during the aging process. - Abstract: Superoxide dismutases (SOD) serve as an important antioxidant defense mechanism in aerobic organisms, and deletion of these genes shortens the replicative life span in the budding yeast Saccharomyces cerevisiae. Even though involvement of superoxide dismutase enzymes in ROS scavenging and the aging process has been studied extensively in different organisms, analyses of DNA damages has not been performed for replicatively old superoxide dismutase deficient cells. In this study, we investigated the roles of SOD1, SOD2 and CCS1 genes in preserving genomic integrity in replicatively old yeast cells using the single cell comet assay. We observed that extend of DNA damage was not significantly different among the young cells of wild type, sod1Δ and sod2Δ strains. However, ccs1Δ mutants showed a 60% higher amount of DNA damage in the young stage compared to that of the wild type cells. The aging process increased the DNA damage rates 3-fold in the wild type and more than 5-fold in sod1Δ, sod2Δ, and ccs1Δ mutant cells. Furthermore, ROS levels of these strains showed a similar pattern to their DNA damage contents. Thus, our results confirm that cells accumulate DNA damages during the aging process and reveal that superoxide dismutase enzymes play a substantial role in preserving the genomic integrity in this process.

  13. Anionic surface binders

    Directory of Open Access Journals (Sweden)

    Aljaž-Rožič Mateja

    2004-01-01

    Full Text Available The MELAMIN Chemical Factory in Kočevje manufactures synthetic resins and binders for the paper industry. Binders based on AKD (alkyl ketene dimer are produced which are used for binding paper and cardboard in the range of neutral and partially basic pH. Cationic and, lately, anionic binders are mostly used for the bulk binding of paper and board. The possibility of using AKD binders on paper or board surfaces is presented. In this case partially cationic AKD binders may be applied. When optical whiteners are used, the application of AKD binders is recommended. In the case of paper it is possible to substitute acrylate binders by AKD binders. The best results are obtained when the paper is first partly treated in bulk and subsequently surface treated.

  14. Daily hydroxyl radical scavenging capacity of mammals.

    Science.gov (United States)

    Ienaga, Kazuharu; Hum Park, Chan; Yokozawa, Takako

    2014-04-01

    Both the formation and reactions of hydroxyl radical (•OH) are quantitative chemical reactions even in mammalians, and so we can reproduce such in vivo reactions in test tubes. Daily urinary excretions of some reaction products have been used to estimate the amount of •OH produced daily. Although urinary 8-hydroxydeoxyguanosine (8-OHdG) is a well-known marker of •OH, we have shown that creatol (CTL: 5-hydroxycreatinine), an •OH adduct of creatinine (Crn), and its metabolite, methylguanidine (MG), are better markers, because the amount of •OH scavenged by deoxyguanosine (dG) in the body is negligible. We measured CTL and MG together with Crn in 24-h urine, and calculated their molar sum, CTL + MG, providing a daily estimate of moles of •OH scavenged with Crn, and, from the molar ratio (CTL + MG)/Crn, we can calculate the percentage of Crn that was used to scavenge •OH. Healthy subjects and normal rats were indicated to use circa (ca.) 0.2 and 0.3% of Crn in order to scavenge •OH, respectively, because the corresponding ratios, scavenged •OH/Crn, were 2.2 and 3.0 mmole/mole (24-h urine) (Crn scavenged ca. 20-25 μmole and ca. 200 pmole of •OH in healthy subjects and normal rats, respectively). Since 8-OHdG/Crn has been reported to be 1.9 μmole/mole (24-h urine), the daily scavenging capacity with Crn is 10(3)-fold more than dG. In patients with chronic renal failure (CRF) or chronic kidney disease (CKD) at stages 3-5: glomerular filtration rate (GFR) < 60 mL/min/1.73 m(2), •OH levels increased in proportion to the severity of CKD: up to ca. 3% of Crn was used daily in order to scavenge •OH. Although the accumulation of MG in organs has not been reported except for the brain and skin tissues in normal animals, •OH increases markedly and MG becomes detectable in all organs such as the kidney, liver, and heart in CRF rats.

  15. Reactions between the (SO·4-) radical and some common anions in atmospheric aqueous droplets

    Institute of Scientific and Technical Information of China (English)

    OUYANG Bin; FANG Hao-jie; ZHU Cheng-zhu; DONG Wen-bo; HOU Hui-qi

    2005-01-01

    The rate constants of reactions between the SO4·- radical and some common anions in atmospheric aqueous droplets e.g. Cl-,NO3-, HSO3- and HCO3- were determined using the laser flash photolysis technique. Absorption spectra of SO4·- and the product radicals were also reported. The chloride ion was evaluated among all the anions to be the most efficient scavenger of SO4·- . The results may supply useful information for a better understanding of the vigorous radical-initiated reactions in atmospheric aqueous droplets such as clouds, rains or fogs.

  16. Resonant spectra of quadrupolar anions

    Science.gov (United States)

    Fossez, K.; Mao, Xingze; Nazarewicz, W.; Michel, N.; Garrett, W. R.; Płoszajczak, M.

    2016-09-01

    In quadrupole-bound anions, an extra electron is attached at a sufficiently large quadrupole moment of a neutral molecule, which is lacking a permanent dipole moment. The nature of the bound states and low-lying resonances of such anions is of interest for understanding the threshold behavior of open quantum systems in general. In this work, we investigate the properties of quadrupolar anions as halo systems, the formation of rotational bands, and the transition from a subcritical to supercritical electric quadrupole moment. We solve the electron-plus-rotor problem using a nonadiabatic coupled-channel formalism by employing the Berggren ensemble, which explicitly contains bound states, narrow resonances, and the scattering continuum. The rotor is treated as a linear triad of point charges with zero monopole and dipole moments and nonzero quadrupole moment. We demonstrate that binding energies and radii of quadrupolar anions strictly follow the scaling laws for two-body halo systems. Contrary to the case of dipolar anions, ground-state band of quadrupolar anions smoothly extend into the continuum, and many rotational bands could be identified above the detachment threshold. We study the evolution of a bound state of an anion as it dives into the continuum at a critical quadrupole moment and we show that the associated critical exponent is α =2 . Everything considered, quadrupolar anions represent a perfect laboratory for the studies of marginally bound open quantum systems.

  17. Rutin inhibits proliferation, attenuates superoxide production and decreases adhesion and migration of human cancerous cells.

    Science.gov (United States)

    Ben Sghaier, Mohamed; Pagano, Alessandra; Mousslim, Mohamed; Ammari, Youssef; Kovacic, Hervé; Luis, José

    2016-12-01

    Lung and colorectal cancer are the principal causes of death in the world. Rutin, an active flavonoid compound, is known for possessing a wide range of biological activities. In this study, we examined the effect of rutin on the viability, superoxide anion production, adhesion and migration of human lung (A549) and colon (HT29 and Caco-2) cancer cell lines. In order to control the harmlessness of the tested concentrations of rutin, the viability of cancer cell lines was assessed using a 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. ROS generation was measured by lucigenin chemiluminescence detecting superoxide ions. To investigate the effect of rutin on the behavior of human lung and colon cancer cell lines, we performed adhesion assays, using various purified extracellular matrix (ECM) proteins. Finally, in vitro cell migration assays were explored using modified Boyden chambers. The viability of cancerous cells was inhibited by rutin. It also significantly attenuated the superoxide production in HT29 cells. In addition, rutin affected adhesion and migration of A549 and HT29 cell. These findings indicate that rutin, a natural molecule, might have potential as anticancer agent against lung and colorectal carcinogenesis.

  18. Comparison of taurine, GABA, Glu, and Asp as scavengers of malondialdehyde in vitro and in vivo

    Science.gov (United States)

    Deng, Yan; Wang, Wei; Yu, Pingfeng; Xi, Zhijiang; Xu, Lijian; Li, Xiaolong; He, Nongyue

    2013-04-01

    The purpose of this study is to determine if amino acid neurotransmitters such as gamma-aminobutyric acid (GABA), taurine, glutamate (Glu), and aspartate (Asp) can scavenge activated carbonyl toxicants. In vitro, direct reaction between malondialdehyde (MDA) and amino acids was researched using different analytical methods. The results indicated that scavenging activated carbonyl function of taurine and GABA is very strong and that of Glu and Asp is very weak in pathophysiological situations. The results provided perspective into the reaction mechanism of taurine and GABA as targets of activated carbonyl such as MDA in protecting nerve terminals. In vivo, we studied the effect of taurine and GABA as antioxidants by detecting MDA concentration and superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities. It was shown that MDA concentration was decreased significantly, and the activities of SOD and GSH-Px were increased significantly in the cerebral cortex and hippocampus of acute epileptic state rats, after the administration of taurine and GABA. The results indicated that the peripherally administered taurine and GABA can scavenge free radicals and protect the tissue against activated carbonyl in vivo and in vitro.

  19. Scavenging of reactive oxygen species by tryptophan metabolites helps Pseudomonas aeruginosa escape neutrophil killing.

    Science.gov (United States)

    Genestet, Charlotte; Le Gouellec, Audrey; Chaker, Hichem; Polack, Benoit; Guery, Benoit; Toussaint, Bertrand; Stasia, Marie José

    2014-08-01

    Pseudomonas aeruginosa is responsible for persistent infections in cystic fibrosis patients, suggesting an ability to circumvent innate immune defenses. This bacterium uses the kynurenine pathway to catabolize tryptophan. Interestingly, many host cells also produce kynurenine, which is known to control immune system homeostasis. We showed that most strains of P. aeruginosa isolated from cystic fibrosis patients produce a high level of kynurenine. Moreover, a strong transcriptional activation of kynA (the first gene involved in the kynurenine pathway) was observed upon contact with immune cells and particularly with neutrophils. In addition, using coculture of human neutrophils with various strains of P. aeruginosa producing no (ΔkynA) or a high level of kynurenine (ΔkynU or ΔkynA pkynA), we demonstrated that kynurenine promotes bacterial survival. In addition, increasing the amount kynurenine inhibits reactive oxygen species production by activated neutrophils, as evaluated by chemiluminescence with luminol or isoluminol or SOD-sensitive cytochrome c reduction assay. This inhibition is due neither to a phagocytosis defect nor to direct NADPH oxidase inhibition. Indeed, kynurenine has no effect on oxygen consumption by neutrophils activated by PMA or opsonized zymosan. Using in vitro reactive oxygen species-producing systems, we showed that kynurenine scavenges hydrogen peroxide and, to a lesser extent, superoxide. Kynurenine׳s scavenging effect occurs mainly intracellularly after bacterial stimulation, probably in the phagosome. In conclusion, the kynurenine pathway allows P. aeruginosa to circumvent the innate immune response by scavenging neutrophil reactive oxygen species production.

  20. Antioxidant capacity and radical scavenging effect of polyphenol rich Mallotus philippenensis fruit extract on human erythrocytes: an in vitro study.

    Science.gov (United States)

    Gangwar, Mayank; Gautam, Manish Kumar; Sharma, Amit Kumar; Tripathi, Yamini B; Goel, R K; Nath, Gopal

    2014-01-01

    Mallotus philippinensis is an important source of molecules with strong antioxidant activity widely used medicinal plant. Previous studies have highlighted their anticestodal, antibacterial, wound healing activities, and so forth. So, present investigation was designed to evaluate the total antioxidant activity and radical scavenging effect of 50% ethanol fruit glandular hair extract (MPE) and its role on Human Erythrocytes. MPE was tested for phytochemical test followed by its HPLC analysis. Standard antioxidant assays like DPPH, ABTS, hydroxyl, superoxide radical, nitric oxide, and lipid peroxidation assay were determined along with total phenolic and flavonoids content. Results showed that MPE contains the presence of various phytochemicals, with high total phenolic and flavonoid content. HPLC analysis showed the presence of rottlerin, a polyphenolic compound in a very rich quantity. MPE exhibits significant strong scavenging activity on DPPH and ABTS assay. Reducing power showed dose dependent increase in concentration absorption compared to standard, Quercetin. Superoxide, hydroxyl radical, lipid peroxidation, nitric oxide assay showed a comparable scavenging activity compared to its standard. Our finding further provides evidence that Mallotus fruit extract is a potential natural source of antioxidants which have a protective role on human Erythrocytes exhibiting minimum hemolytic activity and this justified its uses in folklore medicines.

  1. Antioxidant Capacity and Radical Scavenging Effect of Polyphenol Rich Mallotus philippenensis Fruit Extract on Human Erythrocytes: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Mayank Gangwar

    2014-01-01

    Full Text Available Mallotus philippinensis is an important source of molecules with strong antioxidant activity widely used medicinal plant. Previous studies have highlighted their anticestodal, antibacterial, wound healing activities, and so forth. So, present investigation was designed to evaluate the total antioxidant activity and radical scavenging effect of 50% ethanol fruit glandular hair extract (MPE and its role on Human Erythrocytes. MPE was tested for phytochemical test followed by its HPLC analysis. Standard antioxidant assays like DPPH, ABTS, hydroxyl, superoxide radical, nitric oxide, and lipid peroxidation assay were determined along with total phenolic and flavonoids content. Results showed that MPE contains the presence of various phytochemicals, with high total phenolic and flavonoid content. HPLC analysis showed the presence of rottlerin, a polyphenolic compound in a very rich quantity. MPE exhibits significant strong scavenging activity on DPPH and ABTS assay. Reducing power showed dose dependent increase in concentration absorption compared to standard, Quercetin. Superoxide, hydroxyl radical, lipid peroxidation, nitric oxide assay showed a comparable scavenging activity compared to its standard. Our finding further provides evidence that Mallotus fruit extract is a potential natural source of antioxidants which have a protective role on human Erythrocytes exhibiting minimum hemolytic activity and this justified its uses in folklore medicines.

  2. Lower Superoxide Dismutase 2 (SOD2) Protein Content in Mononuclear Cells Is Associated with Better Survival in Patients with Hemodialysis Therapy

    Science.gov (United States)

    Shen, Jianlin

    2016-01-01

    Mitochondrial superoxide dismutase 2 (SOD2) converts superoxide anions to hydrogen peroxide and oxygen. Human data on SOD2 protein content in chronic kidney disease (CKD) are sparse and mortality data are lacking. We investigated SOD2 protein content in monocytes from patients with hemodialysis therapy (n = 81), CKD stage 1–5 (n = 120), and healthy controls (n = 13) using in-cell Western assays. SOD2 protein decreased from CKD stage 1 until stage 4 whereas it increased again in stage 5 with and without hemodialysis. SOD2 gene expression, analyzed by quantitative real-time PCR, was not significantly different between the groups. Elevating cellular superoxide production reduced SOD2 protein content. This effect was abolished by the superoxide dismutase mimetic Tempol. Using gelelectrophoresis and Western blot we did not detect nitrotyrosine modifications of SOD2 in CKD. Finally, in patients with CKD stage 5 with hemodialysis therapy higher than median SOD2 protein content was associated with higher all-cause mortality. In conclusion, SOD2 protein content declined in CKD until stage 4 while SOD2 gene expression did not. Increased cellular superoxide anion production might affect SOD2 protein content. In advanced CKD (stage 5) SOD2 protein content increased again, but higher than median SOD2 protein content in these patients did not confer a survival benefit. PMID:27630759

  3. Lower Superoxide Dismutase 2 (SOD2 Protein Content in Mononuclear Cells Is Associated with Better Survival in Patients with Hemodialysis Therapy

    Directory of Open Access Journals (Sweden)

    Katharina Krueger

    2016-01-01

    Full Text Available Mitochondrial superoxide dismutase 2 (SOD2 converts superoxide anions to hydrogen peroxide and oxygen. Human data on SOD2 protein content in chronic kidney disease (CKD are sparse and mortality data are lacking. We investigated SOD2 protein content in monocytes from patients with hemodialysis therapy (n=81, CKD stage 1–5 (n=120, and healthy controls (n=13 using in-cell Western assays. SOD2 protein decreased from CKD stage 1 until stage 4 whereas it increased again in stage 5 with and without hemodialysis. SOD2 gene expression, analyzed by quantitative real-time PCR, was not significantly different between the groups. Elevating cellular superoxide production reduced SOD2 protein content. This effect was abolished by the superoxide dismutase mimetic Tempol. Using gelelectrophoresis and Western blot we did not detect nitrotyrosine modifications of SOD2 in CKD. Finally, in patients with CKD stage 5 with hemodialysis therapy higher than median SOD2 protein content was associated with higher all-cause mortality. In conclusion, SOD2 protein content declined in CKD until stage 4 while SOD2 gene expression did not. Increased cellular superoxide anion production might affect SOD2 protein content. In advanced CKD (stage 5 SOD2 protein content increased again, but higher than median SOD2 protein content in these patients did not confer a survival benefit.

  4. Lower Superoxide Dismutase 2 (SOD2) Protein Content in Mononuclear Cells Is Associated with Better Survival in Patients with Hemodialysis Therapy.

    Science.gov (United States)

    Krueger, Katharina; Shen, Jianlin; Maier, Alexandra; Tepel, Martin; Scholze, Alexandra

    2016-01-01

    Mitochondrial superoxide dismutase 2 (SOD2) converts superoxide anions to hydrogen peroxide and oxygen. Human data on SOD2 protein content in chronic kidney disease (CKD) are sparse and mortality data are lacking. We investigated SOD2 protein content in monocytes from patients with hemodialysis therapy (n = 81), CKD stage 1-5 (n = 120), and healthy controls (n = 13) using in-cell Western assays. SOD2 protein decreased from CKD stage 1 until stage 4 whereas it increased again in stage 5 with and without hemodialysis. SOD2 gene expression, analyzed by quantitative real-time PCR, was not significantly different between the groups. Elevating cellular superoxide production reduced SOD2 protein content. This effect was abolished by the superoxide dismutase mimetic Tempol. Using gelelectrophoresis and Western blot we did not detect nitrotyrosine modifications of SOD2 in CKD. Finally, in patients with CKD stage 5 with hemodialysis therapy higher than median SOD2 protein content was associated with higher all-cause mortality. In conclusion, SOD2 protein content declined in CKD until stage 4 while SOD2 gene expression did not. Increased cellular superoxide anion production might affect SOD2 protein content. In advanced CKD (stage 5) SOD2 protein content increased again, but higher than median SOD2 protein content in these patients did not confer a survival benefit.

  5. Superoxide dismutase versus ferricytochrome C: determining rate constants for the spin trapping of superoxide by cyclic nitrones.

    Science.gov (United States)

    Weaver, John; Tsai, Pei; Pou, Sovitj; Rosen, Gerald M

    2004-11-26

    Given that spin trapping/electron paramagnetic resonance (EPR) spectroscopy has become the primary technique to identify important biologically generated free radicals, such as superoxide (O(2)(*-)), in vitro and in vivo models, evaluation of the efficiency of specific spin traps to identify this free radical is paramount. Recently, a family of ester-containing nitrones has been prepared, which appears to have distinct advantages for spin trapping O(2)(*-) compared to the well-studied spin traps 5,5-dimethyl-1-pyrroline N-oxide 1 and 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide 2. An important determinant in the selection of a spin trap is the rate constant (k(app)) for its reaction with O(2)(*-), and several different methods have been employed in estimating this k(app). In this paper, the two most frequently used scavengers of O(2)(*-), ferricytochrome c and Cu/Zn-SOD, were evaluated as competitive inhibitors for spin trapping this free radical. Data presented herein demonstrate that SOD is the preferred compound when determining the k(app) for the reaction of O(2)(*-) with spin traps. Using this model, the k(app) for the reaction of nitrone 1, 5-tert-butoxycarbonyl-5-methyl-1-pyrroline N-oxide 3, and 5-methoxycarbonyl-5-methyl-1-pyrroline N-oxide 4 with O(2)(*)(-) was estimated to be 24.6 +/- 3.1, 73.0 +/- 12, and 89.4 +/- 1.0 M(-1) s(-1) at pH 7.0, respectively. Several other comparative studies between known spin traps were also undertaken.

  6. Scavenger Receptors and Resistance to Inhaled Allergens

    Science.gov (United States)

    2010-02-01

    directs mod- ified proteins to antigen presentation. Eur. J. Immunol. 29: 512–521. 30. Granucci, F., F. Petralia, M. Urbano , S. Citterio, F. Di Tota, L...11 Suppl:S32-6. 50. Granucci F, Petralia F, Urbano M, Citterio S, Di Tota F, Santambrogio L, Ricciardi-Castagnoli P: The scavenger receptor MARCO

  7. Nature or Nurture? Gender Roles Scavenger Hunt

    Science.gov (United States)

    Whalen, Shannon; Maurer-Starks, Suanne

    2008-01-01

    The examination of gender roles and stereotypes and their subsequent impact on sexual behavior is a concept for discussion in many sex education courses in college and sex education units in high school. This analysis often leads to a discussion of the impact of nature vs. nurture on gender roles. The gender roles scavenger hunt is an interactive…

  8. Nature or Nurture? Gender Roles Scavenger Hunt

    Science.gov (United States)

    Whalen, Shannon; Maurer-Starks, Suanne

    2008-01-01

    The examination of gender roles and stereotypes and their subsequent impact on sexual behavior is a concept for discussion in many sex education courses in college and sex education units in high school. This analysis often leads to a discussion of the impact of nature vs. nurture on gender roles. The gender roles scavenger hunt is an interactive…

  9. Decreasing Pica by Targeting Antecedent Scavenging Behaviors.

    Science.gov (United States)

    Bluestone, Michael A.

    A nonverbal, severely retarded, 24-year-old female, who had undergone abdominal surgery due to pica (compulsive eating of inedible substances) participated in the study. Antecendent scavenging behavior was reliably identified and redirected. Pica was prevented by using a short duration physical restraint. Giving non-edible items that might be…

  10. Molecular mass spectrometric identification of superoxide dismutase in the liver of mice Mus musculus and Mus spretus using a metallomics analytical approach.

    Science.gov (United States)

    González-Fernández, M; García-Barrera, T; Gómez-Ariza, J L

    2011-11-01

    This paper reports the identification and quantification of superoxide dismutase in the liver of Mus musculus and Mus spretus mice using a metallomics analytical approach. The approach consisted of using orthogonal chromatographic systems coupled to ICP-MS and UV detectors. Size-exclusion fractionation of the cytosolic extracts was followed by anion-exchange chromatographic separation of Cu- and Zn-containing species. After purification then tryptic digestion, Cu- and Zn-containing superoxide dismutase was identified by nESI-QqTOF. The MS-MS spectra of doubly charged peptides, with the Mascot searching engine, were used to obtain the sequence of the protein.

  11. 螺旋藻转化纳米元素硒的制备及其体外清除自由基活性的初步研究%Nano Elemental Selenium Bio-transformed from S.platensis and Scavenging Activity on Oxygen Free Radicals in vitro

    Institute of Scientific and Technical Information of China (English)

    靳兴媛; 周永林; 任璐艳; 张逸波; 凌钦婕; 黄峙

    2012-01-01

    Preparation of Nano elemental selenium ( Nano-Se) bio-transformed from Se enriched S. Platensis (Se-SP) and scavenging activity on oxygen free redicals was investigated. Nano-Se was harvested from high cells density cultures of Se-SP with total Se supplementation of 600 (jig/ml in form of sodium selenite. The shape and size of Nano-Se was characterized by atomic force microscope (AFM) , transmission electron microcope (TEM) and energy-dispersive X-ray (EDX). Se contents were detected by inductively coupled plasma mass spectrometry (ICP-MS). The scavenging activities of Nano-Se on superoxide anions and hydroxyl radicals were detected by chemiluminescence method. The data showed that the bio-transformed Nano-Se was constructed mainly by elemental Se. A 73% fraction of Nano-Se was collected by gradient centrifugation, in which it was spherical in shape and uniform in size with average diameter of (61 ± 17)nm. In vitro maximum scavenging rates of Nano-Se on superoxide anions and hydroxyl radicals were 30. 1% and 27. 6% , and the correspondence EC50 were 0. 8 and 2.2 μg/ml, respectively. The scavenging activities of Nano-Se on oxygen free radicals were much higher than that of selenomethinoine and other Se containing compounds isolated from Se-SP at the same dosages. In conclusion, present results suggested that Nano-Se produced by high cells density cultures of Se-SP is a novel Se species with anti-oxidative activity in vitro.%研究利用高密度富硒螺旋藻(Se-SP)细胞通过生物转化制备纳米元素硒(Nano-Se)的可行性,观察Nano-Se在体外对氧自由基的清除作用.用梯度离心分选Nano-Se,原子力显微镜(AFM)、透射电镜(TEM)及X-射线能谱(EDX)联用表征纳米粒中的元素硒形态,电感耦合等离子质谱仪(ICP-MS)测定Nano-Se中的硒含量,化学发光方法检测Nano-Se在体外对超氧自由基和羟自由基的清除作用.结果发现,Nano-Se主要由元素硒构成,形态呈球形,73%的纳

  12. Synthesis and characterization of a monomeric mutant Cu/Zn superoxide dismutase with partially reconstituted enzymic activity.

    Science.gov (United States)

    Banci, L; Bertini, I; Chiu, C Y; Mullenbach, G T; Viezzoli, M S

    1995-12-15

    A monomeric analog of human Cu/Zn superoxide dismutase (F50E/G51E SOD), previously characterized and found to have reduced enzymic activity, was here further modified by replacing Glu133 with Gln. This substitution does not dramatically affect the coordination geometry at the active site, but enhances enzymic activity, and also increases the affinity for anions at the active site. This behavior parallels earlier published results in which this point mutation was made in the dimeric wild-type enzyme. The analog described here has afforded for the first time a monomeric superoxide dismutase with substantial activity. This point mutation does not significantly influence the protein structure but interactions with anions, including superoxide, are altered with respect to the monomeric form. The present monomeric Glu133Gln mutant has partially restored enzymic activity. The diminished activity of the monomeric analogs is discussed in the light of possible minor structural changes and some of their characteristics are compared with those of naturally occurring mutants associated with various neurological diseases.

  13. Differential effects of superoxide dismutase and superoxide dismutase/catalase mimetics on human breast cancer cells.

    Science.gov (United States)

    Shah, Manisha H; Liu, Guei-Sheung; Thompson, Erik W; Dusting, Gregory J; Peshavariya, Hitesh M

    2015-04-01

    Reactive oxygen species (ROS) such as superoxide and hydrogen peroxide (H2O2) have been implicated in development and progression of breast cancer. In the present study, we have evaluated the effects of the superoxide dismutase (SOD) mimetic MnTmPyP and the SOD/catalase mimetic EUK 134 on superoxide and H2O2 formation as well as proliferation, adhesion, and migration of MCF-7 and MDA-MB-231 cells. Superoxide and H2O2 production was examined using dihydroethidium and Amplex red assays, respectively. Cell viability and adhesion were measured using a tetrazolium-based MTT assay. Cell proliferation was determined using trypan blue assay. Cell cycle progression was analyzed using flow cytometry. Clonal expansion of a single cell was performed using a colony formation assay. Cell migration was measured using transwell migration assay. Dual luciferase assay was used to determine NF-κB reporter activity. EUK 134 effectively reduced both superoxide and H2O2, whereas MnTmPyP removed superoxide but enhanced H2O2 formation. EUK 134 effectively attenuated viability, proliferation, clonal expansion, adhesion, and migration of MCF-7 and MDA-MB-231 cells. In contrast, MnTmPyP only reduced clonal expansion of MCF-7 and MDA-MB-231 cells but had no effect on adhesion and cell cycle progression. Tumor necrosis factor-alpha-induced NF-κB activity was reduced by EUK 134, whereas MnTmPyP enhanced this activity. These data indicate that the SOD mimetic MnTmPyP and the SOD/catalase mimetic EUK 134 exert differential effects on breast cancer cell growth. Inhibition of H2O2 signaling using EUK 134-like compound might be a promising approach to breast cancer therapy.

  14. Phosphazene-promoted anionic polymerization

    KAUST Repository

    Zhao, Junpeng

    2014-01-01

    In the recent surge of metal-free polymerization techniques, phosphazene bases have shown their remarkable potential as organic promoters/catalysts for the anionic polymerization of various types of monomers. By complexation with the counterion (e.g. proton or lithium cation), phosphazene base significantly improve the nucleophilicity of the initiator/chain-end resulting in rapid and usually controlled anionic/quasi-anionic polymerization. In this review, we will introduce the general mechanism, i.e. in situ activation (of initiating sites) and polymerization, and summarize the applications of such a mechanism on macromolecular engineering toward functionalized polymers, block copolymers and complex macromolecular architectures.

  15. Free radical scavenging activity of methanolic extract of Luffa cylindrica leaves

    Directory of Open Access Journals (Sweden)

    Neeraj Kant Sharma

    2012-01-01

    Full Text Available Context: Free radicals contribute to more than one hundred disorders in humans including atherosclerosis, hypertension, arthritis, ischemia, gastritis, central nervous system injury, reperfusion injury of many tissues, cancer, Alzheimer′s disease, Parkinsonism, diabetes mellitus and AIDS. There is considerable evidence that antioxidants could help to prevent these diseases because they have the capacity to quench free radicals. Aim: Free radical scavenging activity of methanolic extract of the leaves of Luffa cylindrica (MELC was evaluated in various in vitro systems. Materials and Methods: The methods were extensively reviewed and free radical scavenging activity was performed by employing various in-vitro assay methods like DPPH, hydroxyl radical, superoxide and nitric oxide scavenging activities. Statistical Analysis: Results were analyzed statistically using one way analysis of variance (ANOVA followed by Dunnett′s multiple comparison test and were expressed as mean ± SE of three observations. Values of P < 0.05 were considered significant. Results: In all the studies, a significant correlation existed between concentrations of the extract and percentage inhibition of free radicals. The preliminary phytochemical screening of MELC indicated the presence of terpenoids, steroids, flavonoids and glycosides. The extract was found to contain 53.78 ± 1.01 =g/mg total polyphenolics expressed as GAE (micrograms per milligram of GAE. Conclusion: The results of the study suggested that the methanolic extract of the leaves of Luffa cylindrica possessed a significant scavenging effect with increasing concentrations probably due to its antioxidant potential and could serve as a potential source of natural antioxidants effective in treatments against free radical mediated diseases.

  16. Investigation into Seasonal Scavenging Patterns of Raccoons on Human Decomposition.

    Science.gov (United States)

    Jeong, Yangseung; Jantz, Lee Meadows; Smith, Jake

    2016-03-01

    Although raccoons are known as one of the most common scavengers in the U.S., scavenging by these animals has seldom been studied in terms of forensic significance. In this research, the seasonal pattern of raccoon scavenging and its effect on human decomposition was investigated using 178 human cadavers placed at the Anthropological Research Facility (ARF) of the University of Tennessee, Knoxville (UTK) between February 2011 and December 2013. The results reveal that (i) the frequency of scavenging increases during summer, (ii) scavenging occurs relatively immediately and lasts shorter in summer months, and (iii) scavenging influences the decomposition process by hollowing limbs and by disturbing insect activities, both of which eventually increases the chance of mummification on the affected body. This information is expected to help forensic investigators identify raccoon scavenging as well as make a more precise interpretation of the effect of raccoon scavenging on bodies at crime scenes. © 2015 American Academy of Forensic Sciences.

  17. Fluoranthene fumigation and exogenous scavenging of reactive oxygen intermediates (ROI) in evergreen Japanese red pine seedlings (Pinus densiflora Sieb. et. Zucc.).

    Science.gov (United States)

    Oguntimehin, Ilemobayo; Sakugawa, Hiroshi

    2008-06-01

    Generation of reactive oxygen intermediates (ROI) such as O(2)(-), H(2)O(2), and *OH is known to be a major mechanism of damage in biological systems. This study investigated and compared effectiveness of scavenging ROI generated in fluoranthene (FLU) pre-fumigated Japanese red pine seedlings. Three kinds of eco-physiological assessments were used to express the impact of the different fumigants used inside the green house. Gas exchange measurements showed negative changes induced by 10 microM FLU on Japanese pine seedlings during a 10 d exposure period whilst no negative change was found during a 5 d exposure period. Moreover, during a 14 d FLU exposure incorporating ROI scavengers, results revealed that chlorophyll fluorescence, needle chemical contents and needle dry mass per unit area of the seedlings were affected. The negative effects of FLU on the conifer were dependent on both the dose and period of FLU fumigation. Peroxidase (PERO), superoxide dismutase (SOD) and mannitol (MANN) were all effective scavengers of ROI. MANN scavenged *OH, the most lethal of the ROI. For practicable use, MANN is more economical, and may be the best ROI scavenger among the three considered. It can be concluded that efficient scavenging of ROI in biological systems is important to mitigate the negative effects of FLU on Japanese red pine trees.

  18. LC-MS/MS Analysis Unravels Deep Oxidation of Manganese Superoxide Dismutase in Kidney Cancer

    Directory of Open Access Journals (Sweden)

    Zuohui Zhao

    2017-02-01

    Full Text Available Manganese superoxide dismutase (MNSOD is one of the major scavengers of reactive oxygen species (ROS in mitochondria with pivotal regulatory role in ischemic disorders, inflammation and cancer. Here we report oxidative modification of MNSOD in human renal cell carcinoma (RCC by the shotgun method using data-dependent liquid chromatography tandem mass spectrometry (LC-MS/MS. While 5816 and 5571 proteins were identified in cancer and adjacent tissues, respectively, 208 proteins were found to be up- or down-regulated (p < 0.05. Ontological category, interaction network and Western blotting suggested a close correlation between RCC-mediated proteins and oxidoreductases such as MNSOD. Markedly, oxidative modifications of MNSOD were identified at histidine (H54 and H55, tyrosine (Y58, tryptophan (W147, W149, W205 and W210 and asparagine (N206 and N209 residues additional to methionine. These oxidative insults were located at three hotspots near the hydrophobic pocket of the manganese binding site, of which the oxidation of Y58, W147 and W149 was up-regulated around three folds and the oxidation of H54 and H55 was detected in the cancer tissues only (p < 0.05. When normalized to MNSOD expression levels, relative MNSOD enzymatic activity was decreased in cancer tissues, suggesting impairment of MNSOD enzymatic activity in kidney cancer due to modifications. Thus, LC-MS/MS analysis revealed multiple oxidative modifications of MNSOD at different amino acid residues that might mediate the regulation of the superoxide radicals, mitochondrial ROS scavenging and MNSOD activity in kidney cancer.

  19. Pentaarylfullerenes as noncoordinating cyclopentadienyl anions

    NARCIS (Netherlands)

    Bouwkamp, Marco W.; Meetsma, Auke

    2009-01-01

    The first example of an early-transition-metal complex involving a pentaarylfullerene was prepared. Instead of half-sandwich complexes, solvent separated ion pairs were obtained in which the pentaarylfullerene moiety acts as noncoordinating cyclopentadienyl anion.

  20. Subsarcolemmal and interfibrillar mitochondria display distinct superoxide production profiles.

    Science.gov (United States)

    Crochemore, C; Mekki, M; Corbière, C; Karoui, A; Noël, R; Vendeville, C; Vaugeois, J-M; Monteil, C

    2015-03-01

    Cardiac subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM) subpopulations display distinct biochemical, morphological, and functional characteristics. Moreover, they appear to be differently influenced during cardiac pathologies or toxic injuries. Although mitochondrial reactive oxygen species seem to play a critical role in cardiac function and diseases, limited information exists about the superoxide production characteristics of these mitochondrial subpopulations. In this work, using direct measurement of superoxide by electron paramagnetic resonance, we showed that differences in superoxide production profiles were present between cardiac IFM and SSM, in terms of intensity and major sites of superoxide generation. In SSM incubated with glutamate plus malate as substrates, the total observed superoxide levels were significantly higher than those observed with IFM, with an important contribution of the NADH-oxidizing site of complex I (site If) and the quinol-oxidizing site of complex III (site IIIQ0). In both IFM and SSM, succinate leads to similar rates of total superoxide levels with a substantial role for contribution of reverse electron transfer. Finally, using two spin probes with different membrane permeabilities, our data on complex III showed direct intra- and extra-mitochondrial superoxide release whereas complex I- and II-dependent superoxide were exclusively released inside the mitochondria, confirming previous studies. Feasibility of this approach to measure intra- and extra-mitochondrial superoxide levels and to characterize distinct superoxide production profiles of cardiac IFM and SSM has been demonstrated.

  1. Global regulation of reactive oxygen species scavenging genes in alfalfa root and shoot under gradual drought stress and recovery.

    Science.gov (United States)

    Kang, Yun; Udvardi, Michael

    2012-05-01

    Reactive oxygen species (ROS) production and scavenging in plants under drought stress have been studied intensively in recent years. Here we report a global analysis of gene expression for the major ROS generating and scavenging proteins in alfalfa root and shoot under gradual drought stress followed by one-day recovery. Data from two alfalfa varieties, one drought tolerant and one drought sensitive, were compared and no qualitative differences in ROS gene regulation between the two were found. Conserved, tissue-specific patterns of gene expression in response to drought were observed for several ROS-scavenging gene families, including ascorbate peroxidase, monodehydroascorbate reductase, and peroxiredoxin. In addition, differential gene expression within families was observed. Genes for the ROS-generating enzyme, NADPH oxidase were generally induced under drought, while those for glycolate oxidase were repressed. Among the ROS-scavenging protein genes, Ferritin, Cu/Zn superoxide dismutase (SOD), and the majority of the glutathione peroxidase family members were induced under drought in both roots and shoots of both alfalfa varieties. In contrast, Fe-SOD, CC-type glutaredoxins, and thoiredoxins were downregulated.

  2. β-eudesmol, a sesquiterpene from Teucrium ramosissimum, inhibits superoxide production, proliferation, adhesion and migration of human tumor cell.

    Science.gov (United States)

    Ben Sghaier, Mohamed; Mousslim, Mohamed; Pagano, Alessandra; Ammari, Youssef; Luis, José; Kovacic, Hervé

    2016-09-01

    Reactive oxygen species are well-known mediators of various biological responses. Recently, new homologues of the catalytic subunit of NADPH oxidase have been discovered in non phagocytic cells. These new homologues (Nox1-Nox5) produce low levels of superoxides compared to the phagocytic homologue Nox2/gp91phox. In this study we examined the effect of β-eudesmol, a sesquiterpenoid alcohol isolated from Teucrium ramosissimum leaves, on proliferation, superoxide anion production, adhesion and migration of human lung (A549) and colon (HT29 and Caco-2) cancer cell lines. Proliferation of tumor cells was inhibited by β-eudesmol. It also significantly inhibited superoxide production in A549 cells. Furthermore, β-eudesmol inhibited adhesion and migration of A549 and HT29 cell. These results demonstrate that β-eudesmol may be a novel anticancer agent for the treatment of lung and colon cancer by different ways: by inhibition of superoxide production or by blocking proliferation, adhesion and migration.

  3. Vapor scavenging by atmospheric aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, E.

    1996-05-01

    Particle growth due to vapor scavenging was studied using both experimental and computational techniques. Vapor scavenging by particles is an important physical process in the atmosphere because it can result in changes to particle properties (e.g., size, shape, composition, and activity) and, thus, influence atmospheric phenomena in which particles play a role, such as cloud formation and long range transport. The influence of organic vapor on the evolution of a particle mass size distribution was investigated using a modified version of MAEROS (a multicomponent aerosol dynamics code). The modeling study attempted to identify the sources of organic aerosol observed by Novakov and Penner (1993) in a field study in Puerto Rico. Experimentally, vapor scavenging and particle growth were investigated using two techniques. The influence of the presence of organic vapor on the particle`s hydroscopicity was investigated using an electrodynamic balance. The charge on a particle was investigated theoretically and experimentally. A prototype apparatus--the refractive index thermal diffusion chamber (RITDC)--was developed to study multiple particles in the same environment at the same time.

  4. Atmospheric hydrogen scavenging: from enzymes to ecosystems.

    Science.gov (United States)

    Greening, Chris; Constant, Philippe; Hards, Kiel; Morales, Sergio E; Oakeshott, John G; Russell, Robyn J; Taylor, Matthew C; Berney, Michael; Conrad, Ralf; Cook, Gregory M

    2015-02-01

    We have known for 40 years that soils can consume the trace amounts of molecular hydrogen (H2) found in the Earth’s atmosphere.This process is predicted to be the most significant term in the global hydrogen cycle. However, the organisms and enzymes responsible for this process were only recently identified. Pure culture experiments demonstrated that several species of Actinobacteria, including streptomycetes and mycobacteria, can couple the oxidation of atmospheric H2 to the reduction of ambient O2. A combination of genetic, biochemical, and phenotypic studies suggest that these organisms primarily use this fuel source to sustain electron input into the respiratory chain during energy starvation. This process is mediated by a specialized enzyme, the group 5 [NiFe]-hydrogenase, which is unusual for its high affinity, oxygen insensitivity, and thermostability. Atmospheric hydrogen scavenging is a particularly dependable mode of energy generation, given both the ubiquity of the substrate and the stress tolerance of its catalyst. This minireview summarizes the recent progress in understanding how and why certain organisms scavenge atmospheric H2. In addition, it provides insight into the wider significance of hydrogen scavenging in global H2 cycling and soil microbial ecology.

  5. Hydrogen peroxide-independent generation of superoxide by plant peroxidase: hypotheses and supportive data employing ferrous ion as a model stimulus

    Science.gov (United States)

    Kimura, Makoto; Umemoto, Yosuke; Kawano, Tomonori

    2014-01-01

    When plants are threaten by microbial attacks or treated with elicitors, alkalization of extracellular space is often induced and thus pH-dependent extracellular peroxidase-mediated oxidative burst reportedly takes place, especially at the site of microbial challenge. However, direct stimulus involved in activation of peroxidase-catalyzed oxidative burst has not been identified to date. Here, we would like to propose a likely role for free ferrous ion in reduction of ferric native peroxidase into ferrous enzyme intermediate which readily produces superoxide anion via mechanism involving Compound III, especially under alkaline condition, thus, possibly contributing to the plant defense mechanism. Through spectroscopic and chemiluminescence (CL) analyses of reactions catalyzed by horseradish peroxidase (HRP), the present study proposed that plant peroxidase-catalyzed production of superoxide anion can be stimulated in the absence of conventional peroxidase substrates but in the presence of free ferrous ion. PMID:25071789

  6. Superoxide dismutase activity of the naturally occurring human serum albumin-copper complex without hydroxyl radical formation.

    Science.gov (United States)

    Kato, Ryunosuke; Akiyama, Matofusa; Kawakami, Hiroyoshi; Komatsu, Teruyuki

    2014-01-01

    The superoxide radical anion (O2(.-)) is biologically toxic and contributes to the pathogenesis of various diseases. Here we describe the superoxide dismutase (SOD) activity of human serum albumin (HSA) complexed with a single Cu(II) ion at the N-terminal end (HSA-Cu complex). The structure of this naturally occurring copper-coordinated blood serum protein has been characterized by several physicochemical measurements. The O2(.-) dismutation ability of the HSA-Cu (1:1) complex is almost the same as that of the well-known SOD mimics, such as Mn(III) -tetrakis(N-methylpyridinium)porphyrin. Interestingly, the HSA-Cu complex does not induce a subsequent Fenton reaction to produce the hydroxyl radical (OH(.)), which is one of the most harmful reactive oxygen species.

  7. Highly efficient conversion of superoxide to oxygen using hydrophilic carbon clusters.

    Science.gov (United States)

    Samuel, Errol L G; Marcano, Daniela C; Berka, Vladimir; Bitner, Brittany R; Wu, Gang; Potter, Austin; Fabian, Roderic H; Pautler, Robia G; Kent, Thomas A; Tsai, Ah-Lim; Tour, James M

    2015-02-24

    Many diseases are associated with oxidative stress, which occurs when the production of reactive oxygen species (ROS) overwhelms the scavenging ability of an organism. Here, we evaluated the carbon nanoparticle antioxidant properties of poly(ethylene glycolated) hydrophilic carbon clusters (PEG-HCCs) by electron paramagnetic resonance (EPR) spectroscopy, oxygen electrode, and spectrophotometric assays. These carbon nanoparticles have 1 equivalent of stable radical and showed superoxide (O2 (•-)) dismutase-like properties yet were inert to nitric oxide (NO(•)) as well as peroxynitrite (ONOO(-)). Thus, PEG-HCCs can act as selective antioxidants that do not require regeneration by enzymes. Our steady-state kinetic assay using KO2 and direct freeze-trap EPR to follow its decay removed the rate-limiting substrate provision, thus enabling determination of the remarkable intrinsic turnover numbers of O2 (•-) to O2 by PEG-HCCs at >20,000 s(-1). The major products of this catalytic turnover are O2 and H2O2, making the PEG-HCCs a biomimetic superoxide dismutase.

  8. Changes in manganese superoxide dismutase expression after exposure of the retina to intense light.

    Science.gov (United States)

    Yamamoto, M; Lidia, K; Gong, H; Onitsuka, S; Kotani, T; Ohira, A

    1999-02-01

    Manganese superoxide dismutase (Mn-SOD) is a naturally-occurring scavenger of superoxide, one of several reactive oxygen intermediates. To determine if Mn-SOD expression is enhanced as a defensive mechanism against oxidative challenges, such as intense light exposure, rats were exposed to cyclic light (80 lux) for 2 weeks, intense light (1,800 lux) for 24 h, and then again to cyclic light. Experimental and control (exposed to cyclic light only) eyes were enucleated 3 h, 1, 3, 7, and 14 days after light challenge. Protein expression was examined immunohistochemically using rabbit antisera against rat Mn-SOD. There was no significant difference between the light-exposed and the control groups in the thickness of the outer nuclear layers. Both retinal pigment epithelial cells and photoreceptor inner segments in the normal retina were labeled for Mn-SOD. Mn-SOD labeling was lost 3 h and day 1 after light challenge. It was re-expressed in the retinal pigment epithelial cells 3, 7, and 14 days after the light challenge, and in the photoreceptor inner segments after day 14. These results suggest that the retina might have a protective potential against light damage, in which Mn-SOD may play an important role.

  9. Bound anionic states of adenine

    Energy Technology Data Exchange (ETDEWEB)

    Haranczyk, Maciej; Gutowski, Maciej S; Li, Xiang; Bowen, Kit H

    2007-03-20

    Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases, are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the new-found anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The discovery of these valence anionic states of adenine was facilitated by the development of: (i) a new experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (ii) a new combinatorial/ quantum chemical approach for identification of the most stable tautomers of organic molecules. The computational portion of this work was supported by the: (i) Polish State Committee for Scientific Research (KBN) Grants: DS/8000-4-0140-7 (M.G.) and N204 127 31/2963 (M.H.), (ii) European Social Funds (EFS) ZPORR/2.22/II/2.6/ARP/U/2/05 (M.H.), and (iii) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G.). M.H. holds the Foundation for Polish Science (FNP) award for young scientists. The calculations were performed at the Academic

  10. Anion exchange polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Seung; Kim, Dae Sik; Lee, Kwan-Soo

    2013-07-23

    Solid anion exchange polymer electrolytes and compositions comprising chemical compounds comprising a polymeric core, a spacer A, and a guanidine base, wherein said chemical compound is uniformly dispersed in a suitable solvent and has the structure: ##STR00001## wherein: i) A is a spacer having the structure O, S, SO.sub.2, --NH--, --N(CH.sub.2).sub.n, wherein n=1-10, --(CH.sub.2).sub.n--CH.sub.3--, wherein n=1-10, SO.sub.2-Ph, CO-Ph, ##STR00002## wherein R.sub.5, R.sub.6, R.sub.7 and R.sub.8 each are independently --H, --NH.sub.2, F, Cl, Br, CN, or a C.sub.1-C.sub.6 alkyl group, or any combination of thereof; ii) R.sub.9, R.sub.10, R.sub.11, R.sub.12, or R.sub.13 each independently are --H, --CH.sub.3, --NH.sub.2, --NO, --CH.sub.nCH.sub.3 where n=1-6, HC.dbd.O--, NH.sub.2C.dbd.O--, --CH.sub.nCOOH where n=1-6, --(CH.sub.2).sub.n--C(NH.sub.2)--COOH where n=1-6, --CH--(COOH)--CH.sub.2--COOH, --CH.sub.2--CH(O--CH.sub.2CH.sub.3).sub.2, --(C.dbd.S)--NH.sub.2, --(C.dbd.NH)--N--(CH.sub.2).sub.nCH.sub.3, where n=0-6, --NH--(C.dbd.S)--SH, --CH.sub.2--(C.dbd.O)--O--C(CH.sub.3).sub.3, --O--(CH.sub.2).sub.n--CH--(NH.sub.2)--COOH, where n=1-6, --(CH.sub.2).sub.n--CH.dbd.CH wherein n=1-6, --(CH.sub.2).sub.n--CH--CN wherein n=1-6, an aromatic group such as a phenyl, benzyl, phenoxy, methylbenzyl, nitrogen-substituted benzyl or phenyl groups, a halide, or halide-substituted methyl groups; and iii) wherein the composition is suitable for use in a membrane electrode assembly.

  11. A superoxide dismutase/catalase mimetic nanomedicine for targeted therapy of inflammatory bowel disease.

    Science.gov (United States)

    Zhang, Qixiong; Tao, Hui; Lin, Yongyao; Hu, Ying; An, Huijie; Zhang, Dinglin; Feng, Shibin; Hu, Houyuan; Wang, Ruibing; Li, Xiaohui; Zhang, Jianxiang

    2016-10-01

    Oxidative stress, resulting from excessive generation of reactive oxygen species (ROS), plays a pivotal role in the initiation and progression of inflammatory bowel disease (IBD). To develop an efficacious and safe nanotherapy against IBD, we designed and developed a superoxide dismutase/catalase mimetic nanomedicine comprising a hydrogen peroxide-eliminating nanomatrix and a free radical scavenger Tempol (Tpl). To this end, an oxidation-responsive β-cyclodextrin material (OxbCD) was synthesized, and a Tpl-loaded OxbCD nanoparticle (Tpl/OxbCD NP) was produced. Hydrolysis of OxbCD NP could be triggered by hydrogen peroxide, leading to on-demand release of loaded Tpl molecules from Tpl/OxbCD NP. OxbCD NP was able to efficiently accumulate in the inflamed colon in mice, thereby dramatically reducing nonspecific distribution after oral delivery. In three mouse colitis models, oral administration of Tpl/OxbCD NP notably mitigated manifestations relevant to colitis, and significantly suppressed expression of proinflammatory mediators, with the efficacy superior over free Tpl or a control nanomedicine based on poly(lactide-co-glycolide) (PLGA). Accordingly, by scavenging multiple components of ROS, Tpl/OxbCD NP may effectively reduce ulcerative colitis in mice, and it can be intensively developed as a translational nanomedicine for the management of IBD and other inflammatory diseases.

  12. Overexpressing the Sedum alfredii Cu/Zn Superoxide Dismutase Increased Resistance to Oxidative Stress in Transgenic Arabidopsis

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2017-06-01

    Full Text Available Superoxide dismutase (SOD is a very important reactive oxygen species (ROS-scavenging enzyme. In this study, the functions of a Cu/Zn SOD gene (SaCu/Zn SOD, from Sedum alfredii, a cadmium (Cd/zinc/lead co-hyperaccumulator of the Crassulaceae, was characterized. The expression of SaCu/Zn SOD was induced by Cd stress. Compared with wild-type (WT plants, overexpression of SaCu/Zn SOD gene in transgenic Arabidopsis plants enhanced the antioxidative defense capacity, including SOD and peroxidase activities. Additionally, it reduced the damage associated with the overproduction of hydrogen peroxide (H2O2 and superoxide radicals (O2•-. The influence of Cd stress on ion flux across the root surface showed that overexpressing SaCu/Zn SOD in transgenic Arabidopsis plants has greater Cd uptake capacity existed in roots. A co-expression network based on microarray data showed possible oxidative regulation in Arabidopsis after Cd-induced oxidative stress, suggesting that SaCu/Zn SOD may participate in this network and enhance ROS-scavenging capability under Cd stress. Taken together, these results suggest that overexpressing SaCu/Zn SOD increased oxidative stress resistance in transgenic Arabidopsis and provide useful information for understanding the role of SaCu/Zn SOD in response to abiotic stress.

  13. A mitochondrial superoxide theory for oxidative stress diseases and aging.

    Science.gov (United States)

    Indo, Hiroko P; Yen, Hsiu-Chuan; Nakanishi, Ikuo; Matsumoto, Ken-Ichiro; Tamura, Masato; Nagano, Yumiko; Matsui, Hirofumi; Gusev, Oleg; Cornette, Richard; Okuda, Takashi; Minamiyama, Yukiko; Ichikawa, Hiroshi; Suenaga, Shigeaki; Oki, Misato; Sato, Tsuyoshi; Ozawa, Toshihiko; Clair, Daret K St; Majima, Hideyuki J

    2015-01-01

    Fridovich identified CuZnSOD in 1969 and manganese superoxide dismutase (MnSOD) in 1973, and proposed "the Superoxide Theory," which postulates that superoxide (O2 (•-)) is the origin of most reactive oxygen species (ROS) and that it undergoes a chain reaction in a cell, playing a central role in the ROS producing system. Increased oxidative stress on an organism causes damage to cells, the smallest constituent unit of an organism, which can lead to the onset of a variety of chronic diseases, such as Alzheimer's, Parkinson's, amyotrophic lateral sclerosis and other neurological diseases caused by abnormalities in biological defenses or increased intracellular reactive oxygen levels. Oxidative stress also plays a role in aging. Antioxidant systems, including non-enzyme low-molecular-weight antioxidants (such as, vitamins A, C and E, polyphenols, glutathione, and coenzyme Q10) and antioxidant enzymes, fight against oxidants in cells. Superoxide is considered to be a major factor in oxidant toxicity, and mitochondrial MnSOD enzymes constitute an essential defense against superoxide. Mitochondria are the major source of superoxide. The reaction of superoxide generated from mitochondria with nitric oxide is faster than SOD catalyzed reaction, and produces peroxynitrite. Thus, based on research conducted after Fridovich's seminal studies, we now propose a modified superoxide theory; i.e., superoxide is the origin of reactive oxygen and nitrogen species (RONS) and, as such, causes various redox related diseases and aging.

  14. Scavenging of the one-electron reduction product from nisoldipine with relevant thiols: electrochemical and EPR spectroscopic evidences.

    Science.gov (United States)

    Núñez-Vergara, L J; Díaz-Araya, G; Olea-Azar, C; Atria, A M; Bollo-Dragnic, S; Squella, J A

    1998-11-01

    To determine the formation of the one-electron reduction product from nisoldipine and its reactivity with relevant thiols in mixed medium. Cyclic voltammetry (CV) and electron paramagnetic resonance (EPR) techniques were used to determine the one-electron reduction product corresponding to the nitro radical anion. CV was employed to assess both the rate constants corresponding to the decay of the radicals and its interaction with relevant thiols. The nisoldipine radical anion follows second order kinetics, with an association rate constant of 283+/-16 l mol(-1) sec(-1). Nitro radical anion from nisoldipine significantly reacted with thiol compounds. This reactivity was significantly higher than the natural decay of the radical in mixed medium. EPR spectra recorded in situ using DMF/ 0.1 N NaOH (pH 13) confirmed the formation of the nitro radical anion, giving a well-resolved spectra in 35 lines using 0.1 G modulation. Electrochemical and EPR data indicated that all the tested thiols scavenged the nitro radical anion from nisoldipine. The following tentative order of reactivity towards the thiols can be proposed: cysteamine approximately glutathione > N-acetylcysteine > captopril > penicillamine.

  15. Amide-based Fluorescent Macrocyclic Anion Receptors

    Institute of Scientific and Technical Information of China (English)

    ZENG, Zhen-Ya(曾振亚); XU, Kuo-Xi(徐括喜); HE, Yong-Bing(何永炳); LIU, Shun-Ying(刘顺英); WU, Jin-Long(吴进龙); WEI, Lan-Hua(隗兰华); MENG, Ling-Zhi(孟令芝)

    2004-01-01

    Two fluorescent anion receptors (1 and 2) based on amide macrocycle were synthesized and corresponding fluorescence quenching induced by anion complexation was observed in different degree. Receptors form 1: 1 complexes with anions by hydrogen bonding interactions. Receptor 1 bound anions in the order of F->Cl->H2PO4->CH3COO->>Br-, I- and receptor 2 showed high selectivity to F- over other anions.

  16. Production and scavenging of reactive oxygen species in photosynthesis of chloroplasts%叶绿体光合代谢中活性氧的产生与清除

    Institute of Scientific and Technical Information of China (English)

    张有福; 陈春艳; 孙会忠; 陈应武

    2011-01-01

    有氧代谢不可避免产生活性氧(ROS),叶绿体的PSⅠ和PSⅡ反应中心均是ROS产生的主要位点.叶绿体产生的ROS主要有超氧阴离子(O2-)、过氧化氢(H2O2)、羟自由基(·OH)和单线氧(1O1),其中在PSI产生的O2-将进一步产生H2O2和·OH,而1O2产生在PSⅡ.正常生理代谢条件下,叶绿体内抗氧化系统和光能吸收利用的调节保持活性氧产生和消灭的平衡,不会影响植物的正常生理功能.%Aerobic metabolism inevitably products the reactive oxygen species ( ROS) in chloroplasts , and the reaction centers of PSⅠ and PSⅡ in chloroplast thylakoids are the major generation sites of ROS. ROS from chloroplasts mainly include superoxide anion ( O2- ) , hydrogen peroxide ( H2O2) , singlet state oxygen (1O2) and hydroxy radical ( · OH) . Both · OH and H2O2origin from O2- in PSⅠ, however, 1O2generate in PSⅡ. In normal physiological conditions, the production and scavenging of ROS maintains balance, and will not affect the plant's physiological function by regulating antioxidant system, absorption and elimination of light.

  17. Neutral and anionic superhalogen hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Swierszcz, Iwona [Department of Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Anusiewicz, Iwona, E-mail: iwonaa@chem.univ.gda.pl [Department of Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland)

    2011-05-26

    Graphical abstract: The energy profile for the Na(OH){sub 2}{sup -} anionic hydroxide formation according to the NaOH+OH{sup -}{yields}Na(OH){sub 2}{sup -} reaction. Display Omitted Highlights: {yields} The superhalogen hydroxides and their anions were studied at the CCSD(T)/6-311++G(3df,3pd) level. {yields} All anionic superhalogen hydroxides were found to be thermodynamically stable. {yields} The VDE values calculated for the M(OH){sub k+1}{sup -} anions exceed 4 eV in all cases. {yields} The largest VDEs were found for the Al(OH){sub 4}{sup -} (6.07 eV) and Ga(OH){sub 4}{sup -} (6.21 eV). - Abstract: The properties of superhalogen M(OH){sub k+1}{sup -} anions and their M(OH){sub k+1} neutral parents (where M = Li, Na, K, Be, Mg, Ca, B, Al, Ga) were investigated at the ab initio CCSD(T)/6-311++G(3df,3pd)//MP2/6-311++G(d,p) level of theory. All the M(OH){sub k+1}{sup -} anions and some of their M(OH){sub k+1} neutral parents (k is the maximal formal valence of M) were found to be thermodynamically stable against the fragmentations (OH, OH{sup -}, O{sub 2} or H{sub 2}O loss). The vertical electron detachment energies (VDE) of the M(OH){sub k+1}{sup -} anions were calculated with the OVGF method and using the 6-311++G(3df,3pd) basis sets. The VDE values calculated for the anions studied exceed 4 eV in all cases, whereas the largest values of the electron binding energies were found for the Al(OH){sub 4}{sup -} (6.07 eV) and Ga(OH){sub 4}{sup -} anions (6.21 eV). Finally, formation of most of the species considered was predicted to be spontaneous due to the lack of kinetic barriers for these processes and their thermodynamic favorability.

  18. Literature Review of Research and Application on Superoxide Dismutase%超氧化物歧化酶研究与应用

    Institute of Scientific and Technical Information of China (English)

    张俊艳; 贺阳

    2012-01-01

    Superoxide dismutase is a specific metalloproteinase to clear the superoxide anion radical (O2^**). It could catalyze the disproportionation of superoxide anion radical O2^**- to clear the O2^.**, and it have anti- inflammatory, anti-virus, anti-radiation, anti-aging effect. The source and distribution, purification methods, chemical modification, activity determination and application of the SOD on the article were reviewed, and its production problems and application prospect were analyzed.%超氧化物歧化酶(superoxide dismutase SOD)是一种专一清除超氧阴离子自由基(O2.-)的金属蛋白酶,催化超氧阴离子自由基O2.-发生歧化反应,从而清除O2.-,具有抗炎,抗病毒,抗辐射,抗衰老等作用。对SOD的来源分布、提纯方法、化学修饰、活性测定和生产应用等方面进行了综述,并对其生产问题以及应用前景进行了分析。

  19. A Review on Superoxide Dismutases of Hydrobios%水生生物超氧化物岐化酶的研究进展

    Institute of Scientific and Technical Information of China (English)

    张立颖; 赵萌; 王跃智

    2012-01-01

    Superoxide dismutase(SOD) is an important antioxidase in living creature, existing widely in cytoplasm, mitochondria and chloroplast of eukaryotic and prokaryotic cells, and it can efficiently eliminate superoxide free anion radicals in organism,and prevent organism damage from superoxide free anion radicals. This paper summarizes the research advances on hydrobios( eg. fishes, shrimps, shellfishes and algaes ) superoxide dismutase in terms of types, distribution, structural characteristics, physicochemical properties and gene cloning and expression. Meanwhile, the prospect of its application is also forecasted.%超氧化物歧化酶是生物体内一种重要的抗氧化酶,具有清除生物体内超氧阴离子自由基的作用,可有效地抗御氧自由基对有机体的伤害.概述水生生物(如鱼、虾、贝、藻)SOD的种类、分布、结构特征、理化性质及基因克隆表达的研究进展,并对其应用前景进行展望.

  20. Scavenging of urban air emissions by Fog at Delhi, India

    Science.gov (United States)

    Saxena, P.; Kulshrestha, U. C.

    2015-12-01

    The present study focuses upon the understanding of fog water chemistry in Delhi city. Total seventy fog water samples were collected at two different sites in Delhi during December 2014 to March 2015. Selected parameters such as pH, major anions (Cl-, F-, NO3- and SO42-) and major cations (NH4+, K+, Ca2+, Mg2+, Na+) were determined in the samples. The pH of the fog water collected during the monitoring period at Site I (traffic intersection) varied from 4.68 to 5.58 indicating the acidic nature of fog water while at the site II (green cover area), it ranged from 6.11 to 6.88 having slightly lower acidity. At the Site I, the average concentration of Cl-, Na+, SO42-, NH4+ was recorded as 1.5 X 10-2, 8 X 10-3, 4 X 10-3 and 1 X 10-2 μEqu/L respectively. Such values of ionic species may be attributed to the local sources, including factories, motor vehicle emissions and civil construction etc. However, non-local sources such as moderate- and long-range transport of sea salt also had significant influence on ionic content of fog water. In general the Na+ ratio values were found to be higher side suggesting the influence of non-marine sources. Extremely high values of Cl-/ Na+ ratios indicated the contribution from combustion of organochlorine compounds. Hence, the higher ratios of inorganic ions and acidic pH revealed that fog is an effective mechanism for the scavenging of various pollutants emitted by different sources in the city.

  1. Computational Design of Biomimetic Phosphate Scavengers

    DEFF Research Database (Denmark)

    Gruber, Mathias Felix; Wood, Elizabeth Baker; Truelsen, Sigurd Friis

    2015-01-01

    for phosphorus recovery, as well as improving existing techniques, has increased. In this study we apply a hybrid simulation approach of molecular dynamics and quantum mechanics to investigate the binding modes of phosphate anions by a small intrinsically disordered peptide. Our results confirm...... that the conformational ensemble of the peptide is significantly changed, or stabilized, by the binding of phosphate anions and that binding does not take place purely as a result of a stable P-loop binding nest, but rather that multiple binding modes may be involved. Such small synthetic peptides capable of binding...... phosphate could be the starting point of new novel technological approaches toward phosphorus recovery, and they represent an excellent model system for investigating the nature and dynamics of functional de novo designed intrinsically disordered proteins....

  2. Nitric oxide scavenging by red cell microparticles.

    Science.gov (United States)

    Liu, Chen; Zhao, Weixin; Christ, George J; Gladwin, Mark T; Kim-Shapiro, Daniel B

    2013-12-01

    Red cell microparticles form during the storage of red blood cells and in diseases associated with red cell breakdown and asplenia, including hemolytic anemias such as sickle cell disease. These small phospholipid vesicles that are derived from red blood cells have been implicated in the pathogenesis of transfusion of aged stored blood and hemolytic diseases, via activation of the hemostatic system and effects on nitric oxide (NO) bioavailability. Red cell microparticles react with the important signaling molecule NO almost as fast as cell-free hemoglobin, about 1000 times faster than red-cell-encapsulated hemoglobin. The degree to which this fast reaction with NO by red cell microparticles influences NO bioavailability depends on several factors that are explored here. In the context of stored blood preserved in ADSOL, we find that both cell-free hemoglobin and red cell microparticles increase as a function of duration of storage, and the proportion of extra erythrocytic hemoglobin in the red cell microparticle fraction is about 20% throughout storage. Normalized by hemoglobin concentration, the NO-scavenging ability of cell-free hemoglobin is slightly higher than that of red cell microparticles as determined by a chemiluminescence NO-scavenging assay. Computational simulations show that the degree to which red cell microparticles scavenge NO will depend substantially on whether they enter the cell-free zone next to the endothelial cells. Single-microvessel myography experiments performed under laminar flow conditions demonstrate that microparticles significantly enter the cell-free zone and inhibit acetylcholine, endothelial-dependent, and NO-dependent vasodilation. Taken together, these data suggest that as little as 5 μM hemoglobin in red cell microparticles, an amount formed after the infusion of one unit of aged stored packed red blood cells, has the potential to reduce NO bioavailability and impair endothelial-dependent vasodilation.

  3. Anions in Nucleic Acid Crystallography.

    Science.gov (United States)

    D'Ascenzo, Luigi; Auffinger, Pascal

    2016-01-01

    Nucleic acid crystallization buffers contain a large variety of chemicals fitting specific needs. Among them, anions are often solely considered for pH-regulating purposes and as cationic co-salts while their ability to directly bind to nucleic acid structures is rarely taken into account. Here we review current knowledge related to the use of anions in crystallization buffers along with data on their biological prevalence. Chloride ions are frequently identified in crystal structures but display low cytosolic concentrations. Hence, they are thought to be distant from nucleic acid structures in the cell. Sulfate ions are also frequently identified in crystal structures but their localization in the cell remains elusive. Nevertheless, the characterization of the binding properties of these ions is essential for better interpreting the solvent structure in crystals and consequently, avoiding mislabeling of electron densities. Furthermore, understanding the binding properties of these anions should help to get clues related to their potential effects in crowded cellular environments.

  4. Pu Anion Exchange Process Intensification

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-08

    This project seeks to improve the efficiency of the plutonium anion-exchange process for purifying Pu through the development of alternate ion-exchange media. The objective of the project in FY15 was to develop and test a porous foam monolith material that could serve as a replacement for the current anion-exchange resin, Reillex® HPQ, used at the Savannah River Site (SRS) for purifying Pu. The new material provides advantages in efficiency over the current resin by the elimination of diffusive mass transport through large granular resin beads. By replacing the large resin beads with a porous foam there is much more efficient contact between the Pu solution and the anion-exchange sites present on the material. Several samples of a polystyrene based foam grafted with poly(4-vinylpyridine) were prepared and the Pu sorption was tested in batch contact tests.

  5. Radiation-induced decomposition of anion exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    Baidak, Aliaksandr [Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556 (United States); LaVerne, Jay A., E-mail: laverne.1@nd.ed [Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556 (United States) and Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2010-12-31

    Radiation-induced degradation of the strongly basic anion exchange resin Amberlite{sup TM} IRA400 in NO{sub 3}{sup -}, Cl{sup -} and OH{sup -} forms has been studied. The research focused on the formation of molecular hydrogen in the gamma-radiolysis of water slurries of these quaternary ammonium resins with varying water content. Extended studies with various electron scavengers (NO{sub 3}{sup -}, N{sub 2}O and O{sub 2}) prove an important role of e{sub solv}{sup -} in the formation of H{sub 2} from these resins. An excess production of H{sub 2} in these systems at about 85% water weight fraction was found to be due to trimethylamine, dimethylamine and other compounds that leach from the resin to the aqueous phase. Irradiations with 5 MeV {sup 4}He ions were performed to simulate the effects of {alpha}-particles.

  6. Modulation of renal superoxide dismutase by telmisartan therapy in C57BL/6-Ins2Akita diabetic mice

    Science.gov (United States)

    Fujita, Hiroki; Fujishima, Hiromi; Morii, Tsukasa; Sakamoto, Takuya; Komatsu, Koga; Hosoba, Mihoko; Narita, Takuma; Takahashi, Keiko; Takahashi, Takamune; Yamada, Yuichiro

    2012-01-01

    Renal superoxide excess, which is induced by an imbalance of the superoxide-producing enzyme NAD(P)H oxidase and the superoxide-scavenging enzyme superoxide dismutase (SOD) under hyperglycemia, increases oxidative stress and contributes to the development of diabetic nephropathy. In this study, we treated non-obese and hypoinsulinemic C57BL/6-Ins2Akita (C57BL/6-Akita) diabetic mice with telmisartan (5 mg kg−1 per day), an angiotensin II type 1 receptor blocker, or amlodipine (5 mg kg−1 per day), a calcium channel blocker, for 4 weeks and compared the effects of these two anti-hypertensive drugs on renal NAD(P)H oxidase, SOD and transcription factor Nrf2 (NF-E2-related factor 2), which is known to upregulate several antioxidant enzymes including SOD. Vehicle-treated C57BL/6-Akita mice exhibited higher renal NAD(P)H oxidase and lower renal SOD activity with increased levels of renal superoxide than the C57BL/6-wild-type non-diabetic mice. Interestingly, telmisartan treatment not only reduced NAD(P)H oxidase activity but also enhanced SOD activity in C57BL/6-Akita mouse kidneys, leading to a reduction of renal superoxide levels. Furthermore, telmisartan-treated C57BL/6-Akita mice increased the renal protein expression of SOD and Nrf2. In parallel with the reduction of renal superoxide levels, a reduction of urinary albumin levels and a normalization of elevated glomerular filtration rate were observed in telmisartan-treated C57BL/6-Akita mice. In contrast, treatment with amlodipine failed to modulate renal NAD(P)H oxidase, SOD and Nrf2. Finally, treatment of C57BL/6-Akita mice with apocynin, an NAD(P)H oxidase inhibitor, also increased the renal protein expression of SOD and Nrf2. Collectively, our data suggest that NAD(P)H oxidase negatively regulates renal SOD, possibly by downregulation of Nrf2, and that telmisartan could upregulate renal SOD by the suppression of NAD(P)H oxidase and subsequent upregulation of Nrf2, leading to the amelioration of

  7. Improved survival using oxygen free radical scavengers in the presence of ischemic bowel anastomosis.

    Science.gov (United States)

    Bergren, C T; Bodzin, J H; Cortez, J A

    1988-06-01

    A rat model was developed to determine the efficacy of oxygen free radical scavenger compounds in improving small bowel anastomotic healing in ischemia. 50 Sprague-Dawley rats underwent laparotomy and were divided into groups: I. sham operation; II. ischemia produced by ligation of mesenteric vessels along 3-5 cm of bowel; III. bowel transection and anastomosis; IV. ligation of vessels with bowel transection and anastomosis; V. ligation of vessels, bowel transection and IV administration of superoxide dismutase (SOD) (5000 U/kg) prior to anastomosis. All surviving animals were sacrificed after 2 weeks. Anastomotic tensile strength and histology were evaluated. Percent survival and the average length of survival for all groups is seen in the table below. (table: see text) A significant decrease in survival was present with the anastomotic group and the ischemic anastomotic group when compared with controls. An improved survival similar to ischemia alone was present in SOD group. No significant difference was noted between SOD and control groups. The results of this study indicate an improved survival rate and length of survival similar to controls in animals undergoing ischemic and penetrating injury to the bowel with the use of oxygen free radical scavenger compounds prior to anastomosis.

  8. Control of superoxide and nitric oxide formation during human sperm capacitation.

    Science.gov (United States)

    de Lamirande, Eve; Lamothe, Geneviève; Villemure, Michèle

    2009-05-15

    We studied the modulation of superoxide anion (O(2).(-)) and nitric oxide (NO.) generation during human sperm capacitation (changes needed for the acquisition of fertility). The production of NO. (diaminofluorescein-2 fluorescence assay), but not that of O(2).(-) (luminescence assay), related to sperm capacitation was blocked by inhibitors of protein kinase C, Akt, protein tyrosine kinase, etc., but not by those of protein kinase A. Extracellular calcium (Ca(2+)) controlled O(2).(-) synthesis but extra- and intracellular Ca(2+) regulated NO. formation. Zinc inhibited capacitation and formation of O(2).(-) and NO.. Zinc chelators (TPEN and EDTA) and sulfhydryl-targeted compounds (diamide and N-ethylmaleimide) stimulated capacitation and formation of O(2).(-) and NO.; superoxide dismutase (SOD) and nitric oxide synthase inhibitor (L-NMMA) prevented these events. Diphenyliodonium (flavoenzyme inhibitor) blocked capacitation and related O(2).(-) synthesis but promoted NO. formation, an effect canceled by SOD and L-NMMA. NADPH induced capacitation and NO. (but not O(2).(-)) synthesis and these events were blocked by L-NMMA and not by SOD. Integration of these data on O(2).(-) and NO. production during capacitation reinforces the concept that a complex, but flexible, network of factors is involved and probably is associated with rescue mechanisms, so that spermatozoa can achieve successful fertilization.

  9. Ras Oncogene-Mediated Progressive Silencing of Extracellular Superoxide Dismutase in Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Francesca Cammarota

    2015-01-01

    Full Text Available Extracellular superoxide dismutase (SOD3 is a secreted enzyme that uses superoxide anion as a substrate in a dismutase reaction that results in the formation of hydrogen peroxide. Both of these reactive oxygen species affect growth signaling in cells. Although SOD3 has growth-supporting characteristics, the expression of SOD3 is downregulated in epithelial cancer cells. In the current work, we studied the mechanisms regulating SOD3 expression in vitro using thyroid cell models representing different stages of thyroid cancer. We demonstrate that a low level of RAS activation increases SOD3 mRNA synthesis that then gradually decreases with increasing levels of RAS activation and the decreasing degree of differentiation of the cancer cells. Our data indicate that SOD3 regulation can be divided into two classes. The first class involves RAS–driven reversible regulation of SOD3 expression that can be mediated by the following mechanisms: RAS GTPase regulatory genes that are responsible for SOD3 self-regulation; RAS-stimulated p38 MAPK activation; and RAS-activated increased expression of the mir21 microRNA, which inversely correlates with sod3 mRNA expression. The second class involves permanent silencing of SOD3 mediated by epigenetic DNA methylation in cells that represent more advanced cancers. Therefore, the work suggests that SOD3 belongs to the group of ras oncogene-silenced genes.

  10. Superoxide generation in extracts from isolated plant cell walls is regulated by fungal signal molecules.

    Science.gov (United States)

    Kiba, A; Miyake, C; Toyoda, K; Ichinose, Y; Yamada, T; Shiraishi, T

    1997-08-01

    ABSTRACT Fractions solubilized with NaCl from cell walls of pea and cowpea plants catalyzed the formation of blue formazan from nitroblue tetrazolium. Because superoxide dismutase decreased formazan production by over 90%, superoxide anion (O(2) ) may participate in the formation of formazan in the solubilized cell wall fractions. The formazan formation in the fractions solubilized from pea and cowpea cell walls was markedly reduced by exclusion of NAD(P)H, manganese ion, or p-coumaric acid from the reaction mixture. The formazan formation was severely inhibited by salicylhydroxamic acid and catalase, but not by imidazole, pyridine, quinacrine, and diphenyleneiodonium. An elicitor preparation from the pea pathogen Mycosphaerella pinodes enhanced the activities of formazan formation nonspecifically in both pea and cowpea fractions. The suppressor preparation from M. pinodes inhibited the activity in the pea fraction in the presence or absence of the elicitor. In the cowpea fraction, however, the suppressor did not inhibit the elicitor-enhanced activity, and the suppressor alone stimulated formazan formation. These results indicated that O(2) generation in the fractions solubilized from pea and cowpea cell walls seems to be catalyzed by cell wall-bound peroxidase(s) and that the plant cell walls alone are able to respond to the elicitor non-specifically and to the suppressor in a species-specific manner, suggesting the plant cell walls may play an important role in determination of plant-fungal pathogen specificity.

  11. The many ways of making anionic clays

    Indian Academy of Sciences (India)

    Michael Rajamathi; Grace S Thomas; P Vishnu Kamath

    2001-10-01

    Together with hydrotalcite-like layered double hydroxides, bivalent and trivalent metal hydroxides and their hydroxy salts are actually anionic clays consisting of positively charged hydroxide layers with anions intercalated in the interlayer region. The anionic clays exhibit anion sorption, anion diffusion and exchange properties together with surface basicity making them materials of importance for many modern applications. In this article, we discuss many different ways of making anionic clays and compare and contrast the rich diversity of this class of materials with the better-known cationic clays.

  12. Power conversion from environmentally scavenged energy sources.

    Energy Technology Data Exchange (ETDEWEB)

    Druxman, Lee Daniel

    2007-09-01

    As the power requirements for modern electronics continue to decrease, many devices which were once dependent on wired power are now being implemented as portable devices operating from self-contained power sources. The most prominent source of portable power is the electrochemical battery, which converts chemical energy into electricity. However, long lasting batteries require large amounts of space for chemical storage, and inevitably require replacement when the chemical reaction no longer takes place. There are many transducers and scavenging energy sources (SES) that are able to exploit their environment to generate low levels of electrical power over a long-term time period, including photovoltaic cells, thermoelectric generators, thermionic generators, and kinetic/piezoelectric power generators. This generated power is sustainable as long as specific environmental conditions exist and also does not require the large volume of a long lifetime battery. In addition to the required voltage generation, stable power conversion requires excess energy to be efficiently stored in an ultracapacitor or similar device and monitoring control algorithms to be implemented, while computer modeling and simulation can be used to complement experimental testing. However, building an efficient and stable power source scavenged from a varying input source is challenging.

  13. Anion binding in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Feiters, Martin C [Department of Organic Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Meyer-Klaucke, Wolfram [EMBL Hamburg Outstation at DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Kostenko, Alexander V; Soldatov, Alexander V [Faculty of Physics, Southern Federal University, Sorge 5, Rostov-na-Donu, 344090 (Russian Federation); Leblanc, Catherine; Michel, Gurvan; Potin, Philippe [Centre National de la Recherche Scientifique and Universite Pierre et Marie Curie Paris-VI, Station Biologique de Roscoff, Place Georges Teissier, BP 74, F-29682 Roscoff cedex, Bretagne (France); Kuepper, Frithjof C [Scottish Association for Marine Science, Dunstaffnage Marine Laboratory, Oban, Argyll PA37 1QA, Scotland (United Kingdom); Hollenstein, Kaspar; Locher, Kaspar P [Institute of Molecular Biology and Biophysics, ETH Zuerich, Schafmattstrasse 20, Zuerich, 8093 (Switzerland); Bevers, Loes E; Hagedoorn, Peter-Leon; Hagen, Wilfred R, E-mail: m.feiters@science.ru.n [Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft (Netherlands)

    2009-11-15

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L{sub 3} (2p{sub 3/2}) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  14. Anion binding in biological systems

    Science.gov (United States)

    Feiters, Martin C.; Meyer-Klaucke, Wolfram; Kostenko, Alexander V.; Soldatov, Alexander V.; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Küpper, Frithjof C.; Hollenstein, Kaspar; Locher, Kaspar P.; Bevers, Loes E.; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2009-11-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L3 (2p3/2) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  15. Design of Energy Scavengers Mounted on Rotating Shafts

    CERN Document Server

    Shahruz, S M

    2008-01-01

    In this paper, a novel energy scavenger is proposed. The scavenger consists of a cantilever beam on which piezoelectric films and a mass are mounted. The mass at the tip of the beam is known as the proof mass and the device is called either an energy scavenger or a beam-mass system. The beam-mass system is mounted on a rotating shaft, where the axis of the shaft is horizontal. A single-degree-of-freedom (SDOF) mathematical model is derived for the scavenger and its properties are carefully examined. From the model, it becomes clear that the rotation of the shaft and gravity cause both parametric excitations and exogenous forces which make the beam-mass system vibrate. Guidelines are provided as how to choose the scavenger parameters in order to have it resonate. Examples are given to illustrate the performance of the proposed scavenger.

  16. Scavenging of reactive oxygen species by the plant phenols genistein and oleuropein.

    Science.gov (United States)

    Kruk, Irena; Aboul-Enein, Hassan Y; Michalska, Teresa; Lichszteld, Krzysztof; Kładna, Aleksandra

    2005-01-01

    The plant-derived phenolic compounds genistein and oleuropein are known to exhibit several biological properties, many of which may result from their antioxidant and free radical scavenger activity. In this paper we report the results of a complex study of antioxidant activity of genistein and oleuropein, using electron spin resonance (ESR), chemiluminescence, fluorescence and spectrophotometric techniques. Different reaction systems were applied to study the inhibitory effect of the phenolic compounds studied: (a) the potassium superoxide/18-crown-6 dissolved in DMSO system, which generates superoxide radical (O(2).(-)) and hydrogen peroxide (H(2)O(2)); (b) the Co(II)-EDTA-H(2)O(2) system (the Fenton-like reaction), which generates hydroxyl radical (HO.); (c) 2,2'-azobis(2-amidino-propane)dichloride (AAPH) as the peroxyl radical (ROO.) generator, and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical test. Results showed that genistein and oleuropein decreased the chemiluminescence sum from the O(2).(-) generating system, an inhibitory effect that was dependent on their concentration. These compounds also reacted with ROO radicals and they showed activity about two-fold greater than the standard Trolox. The antioxidant effects were studied at different concentrations and reflected in protection against the fluorescence decay of beta-phycoerythrin (beta-PE), due to ROO. attack on this protein. Using the Fenton-like reaction and the spin trap agent 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), the phenolic compounds examined were found to inhibit DMPO-.OH radical formation in the range 10-90% at concentrations of 0.1 mmol/L to 2 mmol/L. Furthermore, these compounds also inhibited HO.-dependent deoxyribose degradation; about 20% and 60% inhibitions were observed in the presence of 0.5 mmol/L genistein and oleuropein, respectively. It was also demonstrated that genistein had a weaker DPPH radical scavenging activity than oleuropein. Our results confirm good scavenging

  17. Glutathione revisited: A better scavenger than previously thought.

    Directory of Open Access Journals (Sweden)

    Guido R.M.M. Haenen

    2014-11-01

    Full Text Available Glutathione is the classical example of a scavenging antioxidant. It forms the first line of defense and efficiently scavenges reactive species, e.g. hypochlorous acid (HOCl, before they inflict damage to biomolecules.Glutathione is the classical example of a scavenging antioxidant. It forms the first line of defense and efficiently scavenges reactive species, e.g. hypochlorous acid (HOCl, before they inflict damage to biomolecules.Scavenging antioxidant activity is best established in competition assays (that closely mimics molecular mechanism of the biological effect. In this type of assay, the antioxidant competes with a molecule that functions as an easy read-out detector for a reactive species. It is generally assumed that the scavenging antioxidant activity reflects the reaction rate constant of the antioxidant with the reactive species (ka. However, critical appraisal of several competition assays of glutathione with HOCl as reactive species, reveals that ka does not determine the scavenging antioxidant activity. Assays using acetylcholine esterase, alpha1-antiprotease, methionine and albumin as detector are compared. The total number of molecules of the reactive species scavenged by glutathione plus that by partially oxidized forms of the glutathione, reflect the scavenging activity of glutathione. The contribution of the partially oxidized forms of glutathione depends on the reactivity of the competing molecule. In several assays the partially oxidized forms of glutathione have a substantial contribution to the scavenging activity of glutathione. In contrast to the prevailing perception, not the reaction rate but rather the total number of molecules of the reactive species scavenged reflects the true scavenging activity of an antioxidant like glutathione.

  18. Study on Free Radical Scavenging in vitro and Antioxidative Activity of Extracts from Cook Noni (Morinda citrifolia ) Juice%库克诺你果汁提取物体外清除自由基及抗氧化活性研究

    Institute of Scientific and Technical Information of China (English)

    李昌; 谢明勇; 聂少平; 陈军辉; Barbara Zimmermann

    2006-01-01

    This study was conducted to investigate the antioxidant and radical scavenging activity of different extracts from Cook noni juice, including noni polysaccharide (noni-ppt), ethanol solute and ethyl acetate extract. Superoxide anion radicals and hydroxyl radicals were generated from autoxidation of pyrogallol (PR) and Fenton reaction (Fe2 +/H2O2). Furthermore 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) method was applied to evaluate the scavenging activity of the extracts. Malondialdehyde (MDA) ,the product of lipid peroxidation (LPO) was induced by adding Fe2+ into yolk homogenate. The ability of preventing LPO was measured by thibarbituric acid (TBA) method. All measurements were performed by spectrophotometric methods. The results suggested that the fraction of ethanol solute and ethyl acetate extract showed significant scavenging and antioxidant ability; L-ascorbic acid served as the standard. Noni-ppt had weaker activity on hydroxyl radical, DPPH radical, and LPO, and could accelerate the procedure of PR autoxidation. The abilities of the extracts may be related to their polarity.%本文对诺你果汁多糖、乙醇溶出物和乙酸乙酯萃取物体外对超氧阴离子(O2-·)、羟自由基(·OH)、DPPH和脂质过氧化(LPO)的抑制作用进行了研究.超氧阴离子(O2-·)由邻苯三酚自氧化产生;羟自由基(·OH)由Fenton反应产生;利用Fe2+诱发卵黄脂蛋白产生丙二醛(NDA),TBA法测定.所有测定均为分光光度法.结果表明,与已知抗氧化剂L-抗坏血酸相比,乙醇溶出物和乙酸乙酯萃取物均有明显的捕捉自由基和抗氧化能力,而多糖捕捉自由基和抗氧化能力很低,且对O2-·没有抑制作用,反而会增加其生成速度.

  19. 茶绿色素的提取及体外清除自由基活性研究%Study on the extraction andin vitro free radical scavenging activity of tea green pigment

    Institute of Scientific and Technical Information of China (English)

    郭凌云; 舒阳

    2015-01-01

    ABSTRACT:Objective To evaluate the yield, chemical components, color appearance andin vitrofree radical scavenging activity of tea green pigment extracted with different methods.MethodsTea green pigment was extracted with 95% ethanol through the methods of room-temperature immersion, hot water extraction, ultrasonic extraction and microwave extraction, respectively. Its chemical components and color appearance were studied with conventional methods, and the free radical scavenging activity was measured with commercially assay kits.ResultsCompared to other extraction methods, the yield of the pigment extracted with microwave and the chlorophyll content in the pigment were the highest, 37.02% and 8.92%, respectively. The content of tea polyphenols, total flavonoids and amino acids in the pigment was also relatively high. The greenness of the pigment was the highest, -27.63, and the brightness (40.21) was only lower than that of tea green pigment extracted with room-temperature immersion (40.29). The scavenging activities against hydroxylradical and superoxide anion radical were high, and slightly lower than that of tea green pigment extracted with room-temperature immersion.ConclusionThe yield and color appearance of the tea green pigment extracted with microwave is excellent, and the free radical scavenging activity is high. The microwave extraction method is the best method for the extraction of tea green pigment.%目的:研究几种不同提取方法提取的茶绿色素的得率、化学组成、色相及体外清除自由基活性。方法分别用95%乙醇经常温浸泡、热水提取、超声波提取及微波提取茶绿色素,采用常规方法分析该色素化学组成及色相,试剂盒检查其清除自由基活性。结果与其他几种提取方法相比,微波提取茶绿色素的得率、色素中叶绿素含量均最高,分别为37.02%、8.92%;该色素所含茶多酚、总黄酮、氨基酸含量也相对较高;微波提

  20. Mitochondrial Reactive Oxygen Species Scavenging Investigations of Astragalus Membranaceus/Codonopsis Pilosula Qi-invigorating Herbal Tea%芪参补气药茶清除线粒体活性氧研究

    Institute of Scientific and Technical Information of China (English)

    李兴太; 韦豪华; 张红玲; 孙海波; 苏亚茹

    2015-01-01

    Astragalus membranaceus/Codonopsis pilosula Qi-invigorating herbal tea ( ACT) was prepared from Astragalus membranaceus and Codonopsis pilosula according to traditional Chinese medicine principle. Mitochondrial reactive oxygen species scavenging activity of ACT and the underlying health - promoting mechanism were investigated. Total flavonoids, total carbohy-drates and total polysaccharides, which are the functional factors of ACT, were determined by AlCl3 colorimetry, and sulfuric acid and phenol method respectively. The scavenging activities of ACT on superoxide anion ( O2 ·-) and hydroxyl radical ( ·OH) , which were produced by re-duced nicotinamide adenine dinucleotide ( NADH )/N - Methylphenazonium methyl sulfate ( PMS) and hydrogen peroxide ( H2 O2 )/Fe2+ system respectively, were measured by NBT re-duction and Fenton reaction colorimetry. The Na2 S2 O3 titration method was used to measure the scavenging activities of ACT on H2 O2 . The contents of total carbohydrates, total polysaccharides and total flavonoids of ACT were 26 ± 1. 3 mg/mL, 12. 5 ± 0. 8 mg/mL and 121 ± 8. 5 μg/mL, respectively. ACT could scavenge O2·-, ·OH and H2O2. According to the research, ACT has mild antioxidation, therefore, the balance of oxidation and antioxidant ( redox balance) was maintained, and this maybe the underlying mechanism of the health benefits for ACT.%以黄芪和党参为原料,根据中医学原理组方制成芪参补气药茶(ACT),探索ACT清除线粒体活性氧作用及促进健康的机制. 分别用AlCl3 比色法和硫酸苯酚法测定ACT的功能因子总黄酮、总糖及总多糖含量. 以还原型辅酶Ⅰ/吩嗪硫酸甲酯( NADH/PMS)为超氧阴离子( O2 ·-)生成系统,过氧化氢( H2 O2 )/Fe2+体系为羟自由基( ·OH)生成系统,分别用氮蓝四唑( NBT)还原法和Fenton反应显色法测定ACT清除O2 ·-及·OH的能力;用Na2 S2 O3 滴定法测定ACT清除H2 O2 的能力. ACT总糖质量分数为(26 ±1.3) mg·mL-1,

  1. Tripodal Receptors for Cation and Anion Sensors

    NARCIS (Netherlands)

    Kuswandi, Bambang; Nuriman,; Verboom, Willem; Reinhoudt, David N.

    2006-01-01

    This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing

  2. Atmospheric scavenging of solid rocket exhaust effluents

    Science.gov (United States)

    Fenton, D. L.; Purcell, R. Y.

    1978-01-01

    Solid propellant rocket exhaust was directly utilized to ascertain raindrop scavenging rates for hydrogen chloride. Two chambers were used to conduct the experiments; a large, rigid walled, spherical chamber stored the exhaust constituents, while the smaller chamber housing all the experiments was charged as required with rocket exhaust HCl. Surface uptake experiments demonstrated an HCl concentration dependence for distilled water. Sea water and brackish water HCl uptake was below the detection limit of the chlorine-ion analysis technique used. Plant life HCl uptake experiments were limited to corn and soybeans. Plant age effectively correlated the HCl uptake data. Metallic corrosion was not significant for single 20 minute exposures to the exhaust HCl under varying relative humidity. Characterization of the aluminum oxide particles substantiated the similarity between the constituents of the small scale rocket and the full size vehicles.

  3. Efficient Amide Based Halogenide Anion Receptors

    Institute of Scientific and Technical Information of China (English)

    Hong Xing WU; Feng Hua LI; Hai LIN; Shou Rong ZHU; Hua Kuan LIN

    2005-01-01

    In this paper, we present the synthesis and anion recognition properties of the amide based phenanthroline derivatives 1, 2 and 3. In all cases 1:1 receptor: anion complexes were observed. The receptors were found to be selective for fluoride and chloride respectively over other putative anionic guest species.

  4. Binding Hydrated Anions with Hydrophobic Pockets.

    Science.gov (United States)

    Sokkalingam, Punidha; Shraberg, Joshua; Rick, Steven W; Gibb, Bruce C

    2016-01-13

    Using a combination of isothermal titration calorimetry and quantum and molecular dynamics calculations, we demonstrate that relatively soft anions have an affinity for hydrophobic concavity. The results are consistent with the anions remaining partially hydrated upon binding, and suggest a novel strategy for anion recognition.

  5. Methods and systems for measuring anions

    KAUST Repository

    Masih, Dilshad

    2016-08-18

    Embodiments of the present disclosure provide for methods for detecting the presence and/or concentration of anions in a solution, systems for detecting the presence and/or concentration of anions in a solution, anion sensor systems, and the like.

  6. Mitochondrial Flashes: Dump Superoxide and Dance with Protons Now.

    Science.gov (United States)

    Demaurex, Nicolas; Schwarzländer, Markus

    2016-09-20

    Transient changes in the physiology of individual mitochondria have recently drawn much interest. The use of a circular permuted yellow fluorescent protein (cpYFP) to monitor mitochondrial flashes and their interpretation as superoxide bursts has added confusion, however. Reviewing mitochondrial flashes in this Forum, Wang et al. again deem cpYFP to be a specific and reversible superoxide indicator, dismissing evidence that purified cpYFP is insensitive to superoxide. This interpretation lacks reproducible evidence and conflicts with the parsimony principle. We offer a constructive, transparent pathway to reach definitive clarification of contradictory reports. Antioxid. Redox Signal. 25, 550-551.

  7. Senescence marker protein-30/superoxide dismutase 1 double knockout mice exhibit increased oxidative stress and hepatic steatosis

    Directory of Open Access Journals (Sweden)

    Yoshitaka Kondo

    2014-01-01

    Full Text Available Superoxide dismutase 1 (SOD1 is an antioxidant enzyme that converts superoxide anion radicals into hydrogen peroxide and molecular oxygen. The senescence marker protein-30 (SMP30 is a gluconolactonase that functions as an antioxidant protein in mammals due to its involvement in ascorbic acid (AA biosynthesis. SMP30 also participates in Ca2+ efflux by activating the calmodulin-dependent Ca2+-pump. To reveal the role of oxidative stress in lipid metabolism defects occurring in non-alcoholic fatty liver disease pathogenesis, we generated SMP30/SOD1-double knockout (SMP30/SOD1-DKO mice and investigated their survival curves, plasma and hepatic lipid profiles, amounts of hepatic oxidative stress, and hepatic protein levels expressed by genes related to lipid metabolism. While SMP30/SOD1-DKO pups had no growth retardation by 14 days of age, they did have low plasma and hepatic AA levels. Thereafter, 39% and 53% of male and female pups died by 15–24 and 89 days of age, respectively. Compared to wild type, SMP30-KO and SOD1-KO mice, by 14 days SMP30/SOD1-DKO mice exhibited: (1 higher plasma levels of triglyceride and aspartate aminotransferase; (2 severe accumulation of hepatic triglyceride and total cholesterol; (3 higher levels of superoxide anion radicals and thiobarbituric acid reactive substances in livers; and (4 decreased mRNA and protein levels of Apolipoprotein B (ApoB in livers – ApoB is an essential component of VLDL secretion. These results suggest that high levels of oxidative stress due to concomitant deficiency of SMP30 and/or AA, and SOD1 cause abnormal plasma lipid metabolism, hepatic lipid accumulation and premature death resulting from impaired VLDL secretion.

  8. Laser Cooling of Molecular Anions

    CERN Document Server

    Yzombard, Pauline; Gerber, Sebastian; Doser, Michael; Comparat, Daniel

    2015-01-01

    We propose a scheme for laser cooling of negatively charged molecules. We briefly summarise the requirements for such laser cooling and we identify a number of potential candidates. A detailed computation study with C$\\_2^-$, the most studied molecular anion, is carried out. Simulations of 3D laser cooling in a gas phase show that this molecule could be cooled down to below 1 mK in only a few tens of milliseconds, using standard lasers. Sisyphus cooling, where no photo-detachment process is present, as well as Doppler laser cooling of trapped C$\\_2^-$, are also simulated. This cooling scheme has an impact on the study of cold molecules, molecular anions, charged particle sources and antimatter physics.

  9. Polymerization of anionic wormlike micelles.

    Science.gov (United States)

    Zhu, Zhiyuan; González, Yamaira I; Xu, Hangxun; Kaler, Eric W; Liu, Shiyong

    2006-01-31

    Polymerizable anionic wormlike micelles are obtained upon mixing the hydrotropic salt p-toluidine hydrochloride (PTHC) with the reactive anionic surfactant sodium 4-(8-methacryloyloxyoctyl)oxybenzene sulfonate (MOBS). Polymerization captures the cross-sectional radius of the micelles (approximately 2 nm), induces micellar growth, and leads to the formation of a stable single-phase dispersion of wormlike micellar polymers. The unpolymerized and polymerized micelles were characterized using static and dynamic laser light scattering, small-angle neutron scattering, 1H NMR, and stopped-flow light scattering. Stopped-flow light scattering was also used to measure the average lifetime of the unpolymerized wormlike micelles. A comparison of the average lifetime of unpolymerized wormlike micelles with the surfactant monomer propagation rate was used to elucidate the mechanism of polymerization. There is a significant correlation between the ratio of the average lifetime to the monomer propagation rate and the average aggregation number of the polymerized wormlike micelles.

  10. Laser cooling of molecular anions.

    Science.gov (United States)

    Yzombard, Pauline; Hamamda, Mehdi; Gerber, Sebastian; Doser, Michael; Comparat, Daniel

    2015-05-29

    We propose a scheme for laser cooling of negatively charged molecules. We briefly summarize the requirements for such laser cooling and we identify a number of potential candidates. A detailed computation study with C_{2}^{-}, the most studied molecular anion, is carried out. Simulations of 3D laser cooling in a gas phase show that this molecule could be cooled down to below 1 mK in only a few tens of milliseconds, using standard lasers. Sisyphus cooling, where no photodetachment process is present, as well as Doppler laser cooling of trapped C_{2}^{-}, are also simulated. This cooling scheme has an impact on the study of cold molecules, molecular anions, charged particle sources, and antimatter physics.

  11. The interaction of certain inorganic anions with clays and soils

    NARCIS (Netherlands)

    Haan, de F.A.M.

    1965-01-01

    Interaction between anions and soil colloids was governed by 2 antagonistic processes, anion exclusion and positive anion adsorption. The predominantly negative charge on the colloids caused anion repulsion; positively charged sites and chemisorption resulted in positive

  12. Mitochondrial superoxide mediates labile iron level: evidence from Mn-SOD-transgenic mice and heterozygous knockout mice and isolated rat liver mitochondria.

    Science.gov (United States)

    Ibrahim, Wissam H; Habib, Hosam M; Kamal, Hina; St Clair, Daret K; Chow, Ching K

    2013-12-01

    Superoxide is the main reactive oxygen species (ROS) generated by aerobic cells primarily in mitochondria. It is also capable of producing other ROS and reactive nitrogen species (RNS). Moreover, superoxide has the potential to release iron from its protein complexes. Unbound or loosely bound cellular iron, known as labile iron, can catalyze the formation of the highly reactive hydroxyl radical. ROS/RNS can cause mitochondrial dysfunction and damage. Manganese superoxide dismutase (Mn-SOD) is the chief ROS-scavenging enzyme and thereby the primary antioxidant involved in protecting mitochondria from oxidative damage. To investigate whether mitochondrial superoxide mediates labile iron in vivo, the levels of labile iron were determined in the tissues of mice overexpressing Mn-SOD and heterozygous Mn-SOD-knockout mice. Furthermore, the effect of increased mitochondrial superoxide generation on labile iron levels was determined in isolated rat liver mitochondria exposed to various electron transport inhibitors. The results clearly showed that increased expression of Mn-SOD significantly lowered the levels of labile iron in heart, liver, kidney, and skeletal muscle, whereas decreased expression of Mn-SOD significantly increased the levels of labile iron in the same organs. In addition, the data showed that peroxidative damage to membrane lipids closely correlated with the levels of labile iron in various tissues and that altering the status of Mn-SOD did not alter the status of other antioxidant systems. Results also showed that increased ROS production in isolated liver mitochondria significantly increased the levels of mitochondrial labile iron. These findings constitute the first evidence suggesting that mitochondrial superoxide is capable of releasing iron from its protein complexes in vivo and that it could also release iron from protein complexes contained within the organelle.

  13. Hosting anions. The energetic perspective.

    Science.gov (United States)

    Schmidtchen, Franz P

    2010-10-01

    Hosting anions addresses the widely spread molecular recognition event of negatively charged species by dedicated organic compounds in condensed phases at equilibrium. The experimentally accessible energetic features comprise the entire system including the solvent, any buffers, background electrolytes or other components introduced for e.g. analysis. The deconvolution of all these interaction types and their dependence on subtle structural variation is required to arrive at a structure-energy correlation that may serve as a guide in receptor construction. The focus on direct host-guest interactions (lock-and-key complementarity) that have dominated the binding concepts of artificial receptors in the past must be widened in order to account for entropic contributions which constitute very significant fractions of the total free energy of interaction. Including entropy necessarily addresses the ambiguity and fuzziness of the host-guest structural ensemble and requires the appreciation of the fact that most liquid phases possess distinct structures of their own. Apparently, it is the perturbation of the intrinsic solvent structure occurring upon association that rules ion binding in polar media where ions are soluble and abundant. Rather than specifying peculiar structural elements useful in anion binding this critical review attempts an illumination of the concepts and individual energetic contributions resulting in the final observation of specific anion recognition (95 references).

  14. Requirements for superoxide-dependent tyrosine hydroperoxide formation in peptides

    DEFF Research Database (Denmark)

    Winterbourn, Christine C; Parsons-Mair, Helena N; Gebicki, Silvia

    2004-01-01

    Superoxide reacts rapidly with other radicals, but these reactions have received little attention in the context of oxidative stress. For tyrosyl radicals, reaction with superoxide is 3-fold faster than dimerization, and forms the addition product tyrosine hydroperoxide. We have explored structural...... requirements for hydroperoxide formation using tyrosine analogues and di- and tri-peptides. Superoxide and phenoxyl radicals were generated using xanthine oxidase, peroxidase and the respective tyrosine derivative, or by gamma-radiation. Peroxides were measured using FeSO4/Xylenol Orange. Tyrosine and tyramine...... losses, indicated that, in the absence of a free amino group, reaction with superoxide resulted primarily in restitution of the parent compound. With dipeptides, hydroperoxides were formed only on N-terminal tyrosines. However, adjacent lysines promoted hydroperoxide formation, as did addition of free...

  15. Water stress induces overexpression of superoxide dismutases that ...

    African Journals Online (AJOL)

    SERVER

    2007-09-05

    Sep 5, 2007 ... aim of this study was to determine the effect of water stress on superoxide ... In the same time, photosynthesis characteristics were deter- ... tion rate per reaction centre. ..... Factors affecting the enhancement of oxidative stress.

  16. Oxidative stress and superoxide dismutase activity in brain of rats ...

    African Journals Online (AJOL)

    JTEkanem

    effect of superoxide dismutase (SOD) activity in brain homogenates of Wistar rats. Oxidative stress measured as ... SOD is an important enzyme family in living cells for maintaining ..... one unit of activity with oxidation rate of organic substrate in.

  17. Modeling of an Integrated Electromagnetic Generator for Energy Scavenging

    NARCIS (Netherlands)

    Lu, J.; Kovalgin, A.Y.; Schmitz, J.

    2007-01-01

    The ubiquitous deploying of wireless electronic devices due to pervasive computing results in the idea of Energy Scavenging, i.e., harvesting ambient energy from surroundings of the electronic devices. As an approach to possible practical realization of such an energy scavenger, we aim at the fabric

  18. Suppressors of superoxide production from mitochondrial complex III.

    Science.gov (United States)

    Orr, Adam L; Vargas, Leonardo; Turk, Carolina N; Baaten, Janine E; Matzen, Jason T; Dardov, Victoria J; Attle, Stephen J; Li, Jing; Quackenbush, Douglas C; Goncalves, Renata L S; Perevoshchikova, Irina V; Petrassi, H Michael; Meeusen, Shelly L; Ainscow, Edward K; Brand, Martin D

    2015-11-01

    Mitochondrial electron transport drives ATP synthesis but also generates reactive oxygen species, which are both cellular signals and damaging oxidants. Superoxide production by respiratory complex III is implicated in diverse signaling events and pathologies, but its role remains controversial. Using high-throughput screening, we identified compounds that selectively eliminate superoxide production by complex III without altering oxidative phosphorylation; they modulate retrograde signaling including cellular responses to hypoxic and oxidative stress.

  19. Interaction of electron leak and proton leak in respiratory chain of mitochondria——Proton leak induced by superoxide from an electron leak pathway of univalent reduction of oxygen

    Institute of Scientific and Technical Information of China (English)

    刘树森; 焦选茂; 王孝铭; 张力

    1996-01-01

    By incubating the isolated rat myocardial mitochondria with xanthine-xanthine oxidase, anexogenous superoxide (O2) generating system, and by ischemia-reperfusion procedure of isolated rat heart as an endogenous O2 generating system, it was found that both sources of O2 showed the same injurious effects on mitochondrial function resulting in (i) increasing proton leak rate, lowering proton pumping activity and Ht/2e ratio of respiratory chain, and (ii) decreasing transmembrane potential of energized mitochondria] inner membrane by succinate oxidation. The injurious effects of O2 on these mitochondrial bioenergitical parameters mentioned above exhibited a dosage- or reaction time-dependent mode. (X has no effects on the electron transfer activity and transmembrane potential of nonenergized mitochondria. Being a superoxide scavenger, 3, 4-dihydroxylphenyl lactate showed obvious protection effects against damage of both exogenous superoxide sources from xanthine-xanthine oxidase system and endogenous Or sou

  20. Production of superoxide and activity of superoxide dismutase in rabbit epididymal spermatozoa.

    Science.gov (United States)

    Holland, M K; Alvarez, J G; Storey, B T

    1982-12-01

    Mature rabbit spermatozoa from the cauda epididymidis suspended in potassium Tris phosphate buffer at 24 degrees C produced O2.-, as measured by reduction of acetylated ferricytochrome c, with an intrinsic rate of 0.20 nmol/min per 10(8) cells. This rate increased to 1.80 nmol/min per 10(8) cells in the presence of 10 mM cyanide. These spermatozoa contain 2.8 units per 10(8) cells of superoxide dismutase activity, 95% of which is sensitive, and 5% of which is insensitive, to cyanide inhibition. These activities correspond to the cytosolic Cu-Zn form and the mitochondrial Mn form of the dismutase, respectively. Only the cyanide-sensitive form is released from the sperm on hypo-osmotic treatment or sonication. Hypo-osmotically treated rabbit epididymal spermatozoa produced O2.- with an intrinsic rate of 0.24 nmol/min per 10(8) cells, which increased to 0.58 nmol/min per 10(8) cells in the presence of 10 mM cyanide. Both intact and hypo-osmotically treated cells react with O2.- in a second order reaction as inferred from the hyperbolic dependence on cell concentration of O2.- production rate in both the absence and presence of cyanide. The second order rate constant for this reaction with intact cells, kS, was calculated to be 22.9 X 10(-8) (cells/ml)-1 min-1 in its absence. For hypo-osmotically treated cells, the values of kS were 10.8 X 10(-8) (cells/ml)-1 min-1 and 8.2 X 10(-8) (cells/ml) -1 min-1, respectively. Since hypo-osmotically treated cells have lost much of their plasma membrane, the lower value of kS for the treated cells implies that this membrane is one site of reaction of O2.- with the cells. The increase in kS in the presence of cyanide, which inhibits superoxide dismutase and so increases O2.- production, suggests that the cells become more reactive with O2.- as its production rate increase, as would be expected for the occurrence of radical chain oxidation. This in turn suggests that superoxide dismutase plays a major role in protecting rabbit sperm

  1. The effects of caffeic, coumaric and ferulic acids on proliferation, superoxide production, adhesion and migration of human tumor cells in vitro.

    Science.gov (United States)

    Nasr Bouzaiene, Nouha; Kilani Jaziri, Soumaya; Kovacic, Hervé; Chekir-Ghedira, Leila; Ghedira, Kamel; Luis, José

    2015-11-05

    Reactive oxygen species are well-known mediators of various biological responses. In this study, we examined the effect of three phenolic acids, caffeic, coumaric and ferulic acids, on superoxide anion production, adhesion and migration of human lung (A549) and colon adenocarcinoma (HT29-D4) cancer cell lines. Proliferation of both tumor cells was inhibited by phenolic acids. Caffeic, coumaric and ferulic acids also significantly inhibited superoxide production in A549 and HT29-D4 cells. Superoxide anion production decreased by 92% and 77% at the highest tested concentration (200 µM) of caffeic acid in A549 and HT29-D4 cell lines respectively. Furthermore, A549 and HT29-D4 cell adhesion was reduced by 77.9% and 79.8% respectively at the higher tested concentration of ferulic acid (200 µM). Migration assay performed towards A549 cell line, revealed that tested compounds reduced significantly cell migration. At the highest concentration tested (200 µM), the covered surface was 7.7%, 9.5% and 35% for caffeic, coumaric or ferulic acids, respectively. These results demonstrate that caffeic, coumaric and ferulic acids may participate as active ingredients in anticancer agents against lung and colon cancer development, at adhesion and migration steps of tumor progression.

  2. Anion

    Directory of Open Access Journals (Sweden)

    A. Vadivel Murugan

    2003-01-01

    . Its characterization is investigated by Fourier Transform Infrared Spectroscopy (FT-IR and Scanning Electron Microscopy (SEM. The hybrid material presents predominantly high electronic conductivities of around 2.0 and 7.0 S cm-1 at 300 and 400K respectively.

  3. Skeletal muscle contractions induce acute changes in cytosolic superoxide, but slower responses in mitochondrial superoxide and cellular hydrogen peroxide.

    Science.gov (United States)

    Pearson, Timothy; Kabayo, Tabitha; Ng, Rainer; Chamberlain, Jeffrey; McArdle, Anne; Jackson, Malcolm J

    2014-01-01

    Skeletal muscle generation of reactive oxygen species (ROS) is increased following contractile activity and these species interact with multiple signaling pathways to mediate adaptations to contractions. The sources and time course of the increase in ROS during contractions remain undefined. Confocal microscopy with specific fluorescent probes was used to compare the activities of superoxide in mitochondria and cytosol and the hydrogen peroxide content of the cytosol in isolated single mature skeletal muscle (flexor digitorum brevis) fibers prior to, during, and after electrically stimulated contractions. Superoxide in mitochondria and cytoplasm were assessed using MitoSox red and dihydroethidium (DHE) respectively. The product of superoxide with DHE, 2-hydroxyethidium (2-HE) was acutely increased in the fiber cytosol by contractions, whereas hydroxy-MitoSox showed a slow cumulative increase. Inhibition of nitric oxide synthases increased the contraction-induced formation of hydroxy-MitoSox only with no effect on 2-HE formation. These data indicate that the acute increases in cytosolic superoxide induced by contractions are not derived from mitochondria. Data also indicate that, in muscle mitochondria, nitric oxide (NO) reduces the availability of superoxide, but no effect of NO on cytosolic superoxide availability was detected. To determine the relationship of changes in superoxide to hydrogen peroxide, an alternative specific approach was used where fibers were transduced using an adeno-associated viral vector to express the hydrogen peroxide probe, HyPer within the cytoplasmic compartment. HyPer fluorescence was significantly increased in fibers following contractions, but surprisingly followed a relatively slow time course that did not appear directly related to cytosolic superoxide. These data demonstrate for the first time temporal and site specific differences in specific ROS that occur in skeletal muscle fibers during and after contractile activity.

  4. Magnetic graphene based nanocomposite for uranium scavenging

    Energy Technology Data Exchange (ETDEWEB)

    El-Maghrabi, Heba H. [Egyptian Petroleum Research Institute, 11727, Cairo (Egypt); Abdelmaged, Shaimaa M. [Nuclear Materials Authority, 6530 P.O. Box Maadi, Cairo (Egypt); Nada, Amr A. [Egyptian Petroleum Research Institute, 11727, Cairo (Egypt); Zahran, Fouad, E-mail: f.zahran@quim.ucm.es [Faculty of Science, Helwan University, 11795, Cairo (Egypt); El-Wahab, Saad Abd; Yahea, Dena [Faculty of Science, Ain shams University, Cairo (Egypt); Hussein, G.M.; Atrees, M.S. [Nuclear Materials Authority, 6530 P.O. Box Maadi, Cairo (Egypt)

    2017-01-15

    Graphical abstract: Graphical representation of U{sup 6+} adsorption on Magnetic Ferberite-Graphene Nanocomposite. - Highlights: • Synthesis of new magnetic wolframite bimetallic nanostructure on graphene. • A promising adsorption capacity of 455 mg/g was recorded for FG-20 within 60 min at room temperature. • The uranium removal was followed pseudo-second order kinetics and Langmuir isotherm. - Abstract: Magnetic graphene based ferberite nanocomposite was tailored by simple, green, low cost and industrial effective method. The microstructure and morphology of the designed nanomaterials were examined via XRD, Raman, FTIR, TEM, EDX and VSM. The prepared nanocomposites were introduced as a novel adsorbent for uranium ions scavenging from aqueous solution. Different operating conditions of time, pH, initial uranium concentration, adsorbent amount and temperature were investigated. The experimental data shows a promising adsorption capacity. In particular, a maximum value of 455 mg/g was obtained within 60 min at room temperature with adsorption efficiency of 90.5%. The kinetics and isotherms adsorption data were fitted with the pseudo-second order model and Langmuir equation, respectively. Finally, the designed nanocomposites were found to have a great degree of sustainability (above 5 times of profiteering) with a complete maintenance of their parental morphology and adsorption capacity.

  5. HUNT: Scavenger Hunt with Augmented Reality

    Directory of Open Access Journals (Sweden)

    Yan Lu

    2015-04-01

    Full Text Available This project shows a creative approach to the familiar scavenger hunt game. It involved the implementation of an iPhone application, HUNT, with Augmented Reality (AR capability for the users to play the game as well as an administrative website that game organizers can use to create and make available games for users to play. Using the HUNT mobile app, users will first make a selection from a list of games, and they will then be shown a list of objects that they must seek. Once the user finds a correct object and scans it with the built-in camera on the smartphone, the application will attempt to verify if it is the correct object and then display associated multi-media AR content that may include images and videos overlaid on top of real world views. HUNT not only provides entertaining activities within an environment that players can explore, but the AR contents can serve as an educational tool. The project is designed to increase user involvement by using a familiar and enjoyable game as a basis and adding an educational dimension by incorporating AR technology and engaging and interactive multimedia to provide users with facts about the objects that they have located

  6. Scavenger hunt in the CERN Computing Centre

    CERN Multimedia

    CERN Bulletin

    2013-01-01

    Hidden among the racks of servers and disks in the CERN Computing Centre, you’ll find Hawaiian dancers, space aliens, gorillas… all LEGO® figurines! These characters were placed about the Centre for the arrival of Google’s Street View team for the world to discover.   PLEASE NOTE THAT THE COMPETITION IS OVER. ONLY FOR REFERENCE, HERE IS THE ORIGINAL ARTICLE. We’re pleased to announce our first global scavenger hunt! Spot three LEGO® figurines using Google’s Street View and you’ll be entered to win a gift of your choice from our CERN Gift Guide. A LEGO® figurine in the CERN Computing Centre, as seen on Google Street View. Here are the details: Find at least three LEGO® figurines hidden around the CERN Computing Centre using Google Street View.   Take screencaps of the figurines and e-mail the pictures to TreasureHunt-ComputingCentre@cern.ch. This email is no longer active.   The...

  7. Effect of ethanol extract of Piper betle Linn leaf on healing of NSAID-induced experimental ulcer--a novel role of free radical scavenging action.

    Science.gov (United States)

    Majumdar, Biswajit; Ray Chaudhuri, Susri Guha; Ray, Arun; Bandyopadhyay, Sandip K

    2003-04-01

    Treatment with ethanol extract of leaf of P. betle at a dose of 150 mg/kg body weight daily for 10 days, after induction of peptic ulcer by NSAID in albino rats, produced significant healing effect. During healing process, on treatment with the extractive, antioxidative factor, e.g. superoxide dismutase and catalase activity, mucus and total gastric tissue sulfhydryl group were increased. In contrast, oxidised lipid and oxidatively modified proteins were reduced to near normalcy, within 7 to 10 days, however, change in the untreated group was not significant. The extract also showed significant in vitro free radical scavenging action. The results suggest that the antioxidant or free radical scavenging activity of the plant extract, may be responsible for its healing action.

  8. Scavenger Receptors: Emerging Roles in Cancer Biology and Immunology.

    Science.gov (United States)

    Yu, Xiaofei; Guo, Chunqing; Fisher, Paul B; Subjeck, John R; Wang, Xiang-Yang

    2015-01-01

    Scavenger receptors constitute a large family of evolutionally conserved protein molecules that are structurally and functionally diverse. Although scavenger receptors were originally identified based on their capacity to scavenge modified lipoproteins, these molecules have been shown to recognize and bind to a broad spectrum of ligands, including modified and unmodified host-derived molecules or microbial components. As a major subset of innate pattern recognition receptors, scavenger receptors are mainly expressed on myeloid cells and function in a wide range of biological processes, such as endocytosis, adhesion, lipid transport, antigen presentation, and pathogen clearance. In addition to playing a crucial role in maintenance of host homeostasis, scavenger receptors have been implicated in the pathogenesis of a number of diseases, e.g., atherosclerosis, neurodegeneration, or metabolic disorders. Emerging evidence has begun to reveal these receptor molecules as important regulators of tumor behavior and host immune responses to cancer. This review summarizes our current understanding on the newly identified, distinct functions of scavenger receptors in cancer biology and immunology. The potential of scavenger receptors as diagnostic biomarkers and novel targets for therapeutic interventions to treat malignancies is also highlighted.

  9. Vibrational Autodetachment in Nitroalkane Anions

    Science.gov (United States)

    Adams, Christopher L.; Weber, J. Mathias

    2010-06-01

    Nitroalkanes have electron affinities ge 1370 cm-1, well below the excitation energies for CH stretching modes, with the excess charge localized on the nitro group. Upon absorption of an IR photon in a CH stretching vibrational mode, the absorbed energy is redistributed in the molecule. If enough energy is transferred to the NO2 stretching/wagging modes, the excess electron residing on the nitro group is emitted. Vibrational autodetachment (VAD) spectra encode information regarding intramolecular vibrational relaxation (IVR) processes leading up to electron emission. We present VAD photoelectron spectroscopy of polyatomic molecular anions and discuss how a VAD photoelectron spectrum can be modeled.

  10. Antioxidant and Free Radical Scavenging Activity of Trigonella foenum-graecum L, Murraya koenigii , Coriandrum sativum and Centella asiatica

    Directory of Open Access Journals (Sweden)

    Sanghamitra Dutta

    2016-04-01

    Full Text Available Antioxidants are naturally occurring substances that combat oxidative damage in biological entities. An antioxidant achieves this by slowing or preventing the oxidation process that can damage cells in the body. It does this by getting oxidized itself in place of the cells. The aim of the present study was to evaluate the in vitro antioxidant and free radical scavenging activities of aqueous and 95% methanol leaf extracts of four herbs viz. Trigonella foenum-graecum L, Murraya koenigii, Coriandrum sativum and Centella asiatica which have frequent use in Indian cuisine. Both aqueous and 95% methanol leaf extracts have shown significant amount reducing power. Both aqueous and 95% methanol leaf extracts of Coriandrum sativum had significant DPPH radical scavenging activity with IC50 value of 0.21± 0.3 mg/L and 0.176 ± 0.008 mg/L respectively. The aqueous leaf extract of Trigonella foenum-graecum L showed low scavenging activity. Among all the leaf extracts, the aqueous leaf extract of Centella asiatica has exhibited significantly high NO radical scavenging activity (80% with IC50 value of 0.11 ± 0.17 mg/L. The aqueous leaf extracts of the samples have showed significantly high superoxide radical scavenging activity. The activity was maximum for the aqueous leaf extract of Centella asiatica, IC50 value is 4.36 ± 0.41 mg/L. anti lipid peroxide activities were very high ( 90 % for aqueous leaf extracts of Coriandrum sativum (IC50 = 0.064 ± 0.85 mg/L and Centella asiatica (IC50 = 0.066 ± 0.9mg/L at a concentration of 0.16 mg/L. The aqueous leaf extracts of the samples were found to contain large amounts of flavonoids and phenolic compounds and exhibited high antioxidant and free radical scavenging activities. These in vitro assays indicate that these plant extracts are significant source of natural antioxidants which might be helpful in preventing the progress of various oxidative stresses.

  11. Ameliorative effect of alkaloid extract of Cyclea peltata (Poir.) Hook. f. & Thoms. roots (ACP) on APAP/CCl4 induced liver toxicity in Wistar rats and in vitro free radical scavenging property

    Institute of Scientific and Technical Information of China (English)

    Varghese Jancy Shine; Somasekharan Nair Rajam Suja; Gangadharan Indira Anuja; Gopan Raj; Sreedharan Nair Rajasekharan

    2014-01-01

    Objective: To evaluate the hepatoprotective and antioxidant properties of alkaloid extract of Cyclea peltata (C. peltata) against paracetamol/carbon tetra chloride induced liver damage in Wistar rats.Methods: In vivo paracetamol/carbon tetrachloride induced liver damage in Wistar rats, in vitro free radical scavenging studies, HPTLC estimation of tetrandrine and direct analysis in real time-mass spectrometry of alkaloid extract of C. peltata were used for the validation. Results: The results showed that pretreatment with alkaloid extract of C. peltata caused significant reduction of serum glutamate pyruvate transaminase, serum glutamate oxaloacetate transaminase, serum alkaline phosphatase, serum cholesterol, liver malondialdehyde levels. The reduced glutathione, catalase, superoxide dismutase levels in liver were increased with alkaloid extract of C. peltata treatment. These results were almost comparable to silymarin and normal control. Histopathological studies also substantiated the biochemical findings. The in vitro hydroxyl, superoxide and DPPH scavenging study of alkaloid extract of C. peltata showed significant free radical scavenging property.Conclusions:The hepatoprotective property of alkaloid extract of C. peltata against paracetamol/carbon tetrachloride may be due the synergistic action of alkaloids especially tetrandrine, fangchinoline through free radical scavenging and thus preventing oxidative stress.

  12. Quantification of superoxide radical production in thylakoid membrane using cyclic hydroxylamines.

    Science.gov (United States)

    Kozuleva, Marina; Klenina, Irina; Mysin, Ivan; Kirilyuk, Igor; Opanasenko, Vera; Proskuryakov, Ivan; Ivanov, Boris

    2015-12-01

    Applicability of two lipophilic cyclic hydroxylamines (CHAs), CM-H and TMT-H, and two hydrophilic CHAs, CAT1-H and DCP-H, for detection of superoxide anion radical (O2(∙-)) produced by the thylakoid photosynthetic electron transfer chain (PETC) of higher plants under illumination has been studied. ESR spectrometry was applied for detection of the nitroxide radical originating due to CHAs oxidation by O2(∙-). CHAs and corresponding nitroxide radicals were shown to be involved in side reactions with PETC which could cause miscalculation of O2(∙-) production rate. Lipophilic CM-H was oxidized by PETC components, reducing the oxidized donor of Photosystem I, P700(+), while at the same concentration another lipophilic CHA, TMT-H, did not reduce P700(+). The nitroxide radical was able to accept electrons from components of the photosynthetic chain. Electrostatic interaction of stable cation CAT1-H with the membrane surface was suggested. Water-soluble superoxide dismutase (SOD) was added in order to suppress the reaction of CHA with O2(∙-) outside the membrane. SOD almost completely inhibited light-induced accumulation of DCP(∙), nitroxide radical derivative of hydrophilic DCP-H, in contrast to TMT(∙) accumulation. Based on the results showing that change in the thylakoid lumen pH and volume had minor effect on TMT(∙) accumulation, the reaction of TMT-H with O2(∙-) in the lumen was excluded. Addition of TMT-H to thylakoid suspension in the presence of SOD resulted in the increase in light-induced O2 uptake rate, that argued in favor of TMT-H ability to detect O2(∙-) produced within the membrane core. Thus, hydrophilic DCP-H and lipophilic TMT-H were shown to be usable for detection of O2(∙-) produced outside and within thylakoid membranes.

  13. Nitric oxide and superoxide dismutase modulate endothelial progenitor cell function in type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Brenner Benjamin

    2009-10-01

    Full Text Available Abstract Background The function of endothelial progenitor cells (EPCs, which are key cells in vascular repair, is impaired in diabetes mellitus. Nitric oxide (NO and reactive oxygen species can regulate EPC functions. EPCs tolerate oxidative stress by upregulating superoxide dismutase (SOD, the enzyme that neutralizes superoxide anion (O2-. Therefore, we investigated the roles of NO and SOD in glucose-stressed EPCs. Methods The functions of circulating EPCs from patients with type 2 diabetes were compared to those from healthy individuals. Healthy EPCs were glucose-stressed, and then treated with insulin and/or SOD. We assessed O2- generation, NO production, SOD activity, and their ability to form colonies. Results EPCs from diabetic patients generated more O2-, had higher NAD(PH oxidase and SOD activity, but lower NO bioavailability, and expressed higher mRNA and protein levels of p22-phox, and manganese SOD and copper/zinc SOD than those from the healthy individuals. Plasma glucose and HbA1c levels in the diabetic patients were correlated negatively with the NO production from their EPCs. SOD treatment of glucose-stressed EPCs attenuated O2- generation, restored NO production, and partially restored their ability to form colonies. Insulin treatment of glucose-stressed EPCs increased NO production, but did not change O2- generation and their ability to form colonies. However, their ability to produce NO and to form colonies was fully restored after combined SOD and insulin treatment. Conclusion Our data provide evidence that SOD may play an essential role in EPCs, and emphasize the important role of antioxidant therapy in type 2 diabetic patients.

  14. Mutations by near-ultraviolet radiation in Escherichia coli strains lacking superoxide dismutase

    Energy Technology Data Exchange (ETDEWEB)

    Hoerter, J. (Stephens College, Columbia (USA). Department of Natural Sciences); Eisenstark, A. (Missouri Univ., Columbia, MO (USA). Div. of Biological Sciences Paris 7 Universite (France). Centre National de la Recherche, Institut Jacques Monod); Touati, D. (Paris 7 Universite (France). Centre National de la Recherche, Institut Jacques Monod)

    1989-12-01

    In wild-type Eschericia coli, near-ultraviolet radiation (NUV) was only weakly mutagenic. However, in an allelic mutant strain (sodA sodB) that lacks both Mn- and Fe-superoxide dismutase (SOD) and assumed to have excess superoxide anion, NUV induced a 9-fold increase in mutatin above the level that normally occurs in this double mutant. When a sodA sodB double mutant contained a plasmid carrying katG{sup +} (excess HP-I catalase), mutation by NUV was reduced to wild-type (sodA{sup +} sodB{sup +}) levels. Also, in the sodA sodB xthA triple mutant, which lacks exonuclease III (exoIII) in addition to SOD, the mutational frequency by NUV was reduced to wild-type levels. This synergistic action of NUV and O{sub 2}{sup {minus}} suggested that pre-mutational lesions occur, with exoIII converting these lesions to stable mutants. Exposure to H{sub 2}O{sub 2} induced a 2.8-fold increase in mutations in sodA sodB double mutants, but was reduced to control levels when a plasmid carrying katG{sup +} was introduced. These results suggest that NUV, in addition to its other effects on cells, increases mutations indirectly by increasing the flux of OH{sup .} radicals, possibly by generating excess H{sub 2}O{sub 2}. (author). 20 refs.; 1 fig.; 1 tab.

  15. Effects of superoxide generating systems on muscle tone, cholinergic and NANC responses in cat airway.

    Science.gov (United States)

    Bauer, V; Nakajima, T; Pucovsky, V; Onoue, H; Ito, Y

    2000-02-14

    To study the possible role of reactive oxygen species in airway hyperreactivity, we examined the effects of the superoxide anion radical (O(2)(-)) generating systems, pyrogallol and xanthine with xanthine oxidase, on muscle tone, excitatory and inhibitory neurotransmission in the cat airway. Smooth muscle contraction or non-adrenergic non-cholinergic (NANC) relaxation evoked by electrical field stimulation (EFS) were measured before or after O(2)(-) generating systems with or without diethydithiocarbamic acid (DEDTCA), an inhibitor of endogenous superoxide dismutase (SOD). Resting membrane potential or excitatory junction potential (EJP) were also measured in vitro. Both pyrogallol and xanthine/xanthine oxidase produced biphasic changes in basal and elevated (by 5-HT) muscle tone. After SOD pretreatment, both systems consistently produced a prolonged contraction, thereby indicating that O(2)(-) was converted to H(2)O(2) by the action of SOD and as a result the actions of O(2)(-) were lost but those of H(2)O(2) introduced. The O(2)(-) showed no significant effect on smooth muscle contraction or EJP evoked by EFS, however after DEDTCA pretreatment, it evoked initial enhancement followed by suppression of the contraction and EJP. DEDTCA pretreatment ameliorated the inhibitory action of pyrogallol and xanthine/xanthine oxidase on the NANC relaxation, probably because O(2)(-) could combine with endogenous NO to form peroxynitrite. These results indicate that the O(2)(-) generating systems have multiple actions, presumably due to the presence and simultaneous action of at least two different reactive oxygen species (O(2)(-) and H(2)O(2)). While H(2)O(2) seems to be responsible for elevation of muscle tone and augmentation of smooth muscle contraction by EFS, O(2)(-) inhibits muscle tone, cholinergic and NANC neurotransmission.

  16. Inducible superoxide dismutase 1 aggregation in transgenic amyotrophic lateral sclerosis mouse fibroblasts.

    Science.gov (United States)

    Turner, Bradley J; Lopes, Elizabeth C; Cheema, Surindar S

    2004-04-01

    High molecular weight detergent-insoluble complexes of superoxide dismutase 1 (SOD1) enzyme are a biochemical abnormality associated with mutant SOD1-linked familial amyotrophic lateral sclerosis (FALS). In the present study, SOD1 protein from spinal cords of transgenic FALS mice was fractionated according to solubility in saline, zwitterionic, non-ionic or anionic detergents. Both endogenous mouse SOD1 and mutant human SOD1 were least soluble in SDS, followed by NP-40 and CHAPS, with an eight-fold greater detergent resistance of mutant protein overall. Importantly, high molecular weight mutant SOD1 complexes were isolated with SDS-extraction only. To reproduce SOD1 aggregate pathology in vitro, primary fibroblasts were isolated and cultured from neonatal transgenic FALS mice. Fibroblasts expressed abundant mutant SOD1 without spontaneous aggregation over time with passage. Proteasomal inhibition of cultures using lactacystin induced dose-dependent aggregation and increased the SDS-insoluble fraction of mutant SOD1, but not endogenous SOD1. In contrast, paraquat-mediated superoxide stress in fibroblasts promoted aggregation of endogenous SOD1, but not mutant SOD1. Treatment of cultures with peroxynitrite or the copper chelator diethyldithiocarbamate (DDC) alone did not modulate aggregation. However, DDC inhibited lactacystin-induced mutant SOD1 aggregation in transgenic fibroblasts, while exogenous copper slightly augmented aggregation. These data suggest that SOD1 aggregates may derive from proteasomal or oxidation-mediated oligomerisation pathways from mutant and endogenous subunits respectively. Furthermore, these pathways may be affected by copper availability. We propose that non-neural cultures such as these transgenic fibroblasts with inducible SOD1 aggregation may be useful for rapid screening of compounds with anti-aggregation potential in FALS.

  17. Schlenk Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar

    2015-09-01

    Anionic polymerization-high vacuum techniques (HVTs) are doubtlessly the most prominent and reliable experimental tools to prepare polymer samples with well-defined and, in many cases, complex macromolecular architectures. Due to the high demands for time and skilled technical personnel, HVTs are currently used in only a few research laboratories worldwide. Instead, most researchers in this filed are attracted to more facile Schlenk techniques. The basic principle of this technique followed in all laboratories is substantially the same, i.e. the use of alternate vacuum and inert gas atmosphere in glass apparatus for the purification/charging of monomer, solvents, additives, and for the manipulation of air-sensitive compounds such as alkyl metal initiators, organometallic or organic catalysts. However, it is executed quite differently in each research group in terms of the structure of Schlenk apparatus (manifolds, connections, purification/storage flasks, reactors, etc.), the use of small supplementary devices (soft tubing, cannulas, stopcocks, etc.) and experimental procedures. The operational methods are partly purpose-oriented while also featured by a high flexibility, which makes it impossible to describe in detail each specific one. In this chapter we will briefly exemplify the application of Schlenk techniques for anionic polymerization by describing the performance of a few experiments from our own work.

  18. Superoxide production in aprotic interior of chloroplast thylakoids.

    Science.gov (United States)

    Takahashi, M; Asada, K

    1988-12-01

    The site of superoxide production in spinach thylakoids was found to be the aprotic interior of the thylakoid membranes near the P700 chlorophyll a protein at the reaction center of photosystem I complexes. This conclusion was drawn from the following findings. (i) Cytochrome c reduction by illuminated thylakoids, which was confirmed to be superoxide dependent by the failure of this reaction to occur in anaerobiosis, was completely inhibited by a dibutyl catechol, but partially inhibited by a hydrophilic disulfonated derivative. (ii) P700 chlorophyll a proteins were preferentially iodinated by lactoperoxidase by the use of hydrogen peroxide that was derived from the disproportionation of superoxides in illuminated thylakoids. (iii) Hydrogen peroxide production and oxygen uptake were induced by ammonium chloride, a proton conductor that can permeate through thylakoid membranes, but whole superoxide in the bulk solution was oxidized back to molecular oxygen by cytochrome c. The effective concentration of ammonium chloride decreased to one-sixtieth of the original, when an ammonium ion ionophore, nonactin, was added. Thus, the weak acid allowed superoxide to yield hydrogen peroxide disproportionately in the thylakoid membrane interior.

  19. Differential inhibition of Arabidopsis superoxide dismutases by peroxynitrite-mediated tyrosine nitration.

    Science.gov (United States)

    Holzmeister, Christian; Gaupels, Frank; Geerlof, Arie; Sarioglu, Hakan; Sattler, Michael; Durner, Jörg; Lindermayr, Christian

    2015-02-01

    Despite the importance of superoxide dismutases (SODs) in the plant antioxidant defence system little is known about their regulation by post-translational modifications. Here, we investigated the in vitro effects of nitric oxide derivatives on the seven SOD isoforms of Arabidopsis thaliana. S-nitrosoglutathione, which causes S-nitrosylation of cysteine residues, did not influence SOD activities. By contrast, peroxynitrite inhibited the mitochondrial manganese SOD1 (MSD1), peroxisomal copper/zinc SOD3 (CSD3), and chloroplastic iron SOD3 (FSD3), but no other SODs. MSD1 was inhibited by up to 90% but CSD3 and FSD3 only by a maximum of 30%. Down-regulation of these SOD isoforms correlated with tyrosine (Tyr) nitration and both could be prevented by the peroxynitrite scavenger urate. Site-directed mutagenesis revealed that-amongst the 10 Tyr residues present in MSD1-Tyr63 was the main target responsible for nitration and inactivation of the enzyme. Tyr63 is located nearby the active centre at a distance of only 5.26 Å indicating that nitration could affect accessibility of the substrate binding pocket. The corresponding Tyr34 of human manganese SOD is also nitrated, suggesting that this might be an evolutionarily conserved mechanism for regulation of manganese SODs. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase.

    Science.gov (United States)

    Wang, Fang-Zheng; Wang, Qing-Bin; Kwon, Suk-Yoon; Kwak, Sang-Soo; Su, Wei-Ai

    2005-04-01

    We investigated the role that manganese superoxide dismutase (MnSOD), an important antioxidant enzyme, may play in the drought tolerance of rice. MnSOD from pea (Pisum sativum) under the control of an oxidative stress-inducible SWPA2 promoter was introduced into chloroplasts of rice (Oryza sativa) by Agrobacterium-mediated transformation to develop drought-tolerant rice plants. Functional expression of the pea MnSOD in transgenic rice plants (T1) was revealed under drought stress induced by polyethylene glycol (PEG) 6000. After PEG treatment the transgenic leaf slices showed reduced electrolyte leakage compared to wild type (WT) leaf slices, whether they were exposed to methyl viologen (MV) or not, suggesting that transgenic plants were more resistant to MV- or PEG-induced oxidative stress. Transgenic plants also exhibited less injury, measured by net photosynthetic rate, when treated with PEG. Our data suggest that SOD is a critical component of the ROS scavenging system in plant chloroplasts and that the expression of MnSOD can improve drought tolerance in rice.

  1. Modification and inactivation of Cu,Zn-superoxide dismutase by the lipid peroxidation product, acrolein

    Directory of Open Access Journals (Sweden)

    Jung Hoon Kang

    2013-11-01

    Full Text Available Acrolein is the most reactive aldehydic product of lipidperoxidation and is found to be elevated in the brain whenoxidative stress is high. The effects of acrolein on the structureand function of human Cu,Zn-superoxide dismutase (SOD wereexamined. When Cu,Zn-SOD was incubated with acrolein, thecovalent crosslinking of the protein was increased, and the loss ofenzymatic activity was increased in a dose-dependent manner.Reactive oxygen species (ROS scavengers and copper chelatorsinhibited the acrolein-mediated Cu,Zn-SOD modification and theformation of carbonyl compound. The present study shows thatROS may play a critical role in acrolein-induced Cu,Zn-SODmodification and inactivation. When Cu,Zn-SOD that has beenexposed to acrolein was subsequently analyzed by amino acidanalysis, serine, histidine, arginine, threonine and lysine residueswere particularly sensitive. It is suggested that the modificationand inactivation of Cu,Zn-SOD by acrolein could be produced bymore oxidative cell environments. [BMB Reports 2013; 46(11:555-560

  2. Modification and inactivation of Cu,Zn-superoxide dismutase by the lipid peroxidation product, acrolein.

    Science.gov (United States)

    Kang, Jung Hoon

    2013-11-01

    Acrolein is the most reactive aldehydic product of lipid peroxidation and is found to be elevated in the brain when oxidative stress is high. The effects of acrolein on the structure and function of human Cu,Zn-superoxide dismutase (SOD) were examined. When Cu,Zn-SOD was incubated with acrolein, the covalent crosslinking of the protein was increased, and the loss of enzymatic activity was increased in a dose-dependent manner. Reactive oxygen species (ROS) scavengers and copper chelators inhibited the acrolein-mediated Cu,Zn-SOD modification and the formation of carbonyl compound. The present study shows that ROS may play a critical role in acrolein-induced Cu,Zn-SOD modification and inactivation. When Cu,Zn-SOD that has been exposed to acrolein was subsequently analyzed by amino acid analysis, serine, histidine, arginine, threonine and lysine residues were particularly sensitive. It is suggested that the modification and inactivation of Cu,Zn-SOD by acrolein could be produced by more oxidative cell environments.

  3. Differential expression of superoxide dismutase genes in aphid-stressed maize (Zea mays L.) seedlings.

    Science.gov (United States)

    Sytykiewicz, Hubert

    2014-01-01

    The aim of this study was to compare the expression patterns of superoxide dismutase genes (sod2, sod3.4, sod9 and sodB) in seedling leaves of the Zea mays L. Tasty Sweet (susceptible) and Ambrozja (relatively resistant) cultivars infested with one of two hemipteran species, namely monophagous Sitobion avenae F. (grain aphid) or oligophagous Rhopalosiphum padi L. (bird cherry-oat aphid). Secondarily, aphid-elicited alternations in the antioxidative capacity towards DPPH (1,1-diphenyl-2-picrylhydrazyl) radical in insect-stressed plants were evaluated. Comprehensive comparison of expression profiles of the four sod genes showed that both insect species evoked significant upregulation of three genes sod2, sod3.4 and sod9). However, aphid infestation affected non-significant fluctuations in expression of sodB gene in seedlings of both maize genotypes. The highest levels of transcript accumulation occurred at 8 h (sod2 and sod3.4) or 24 h (sod9) post-infestation, and aphid-induced changes in the expression of sod genes were more dramatic in the Ambrozja cultivar than in the Tasty Sweet variety. Furthermore, bird cherry-oat aphid colonization had a more substantial impact on levels of DPPH radical scavenging activity in infested host seedlings than grain aphid colonization. Additionally, Ambrozja plants infested by either hemipteran species showed markedly lower antioxidative capacity compared with attacked Tasty Sweet plants.

  4. Relative reactivity of dihydropyridine derivatives to electrogenerated superoxide ion in DMSO solutions: a voltammetric approach.

    Science.gov (United States)

    Oriz, María Eugenia; Núñez-Vergara, Luis Joaquin; Squella, Juan Arturo

    2003-02-01

    To evaluate the reaction of a large series of pharmacologically significant 1,4-dihydropyridine (1,4-DHP) compounds with superoxide (O2.-) in dimethylsulfoxide using differential pulse voltammetry and controlled potential electrolysis. Differential pulse voltammetry was used to track the consumption of O2.-, and controlled potential electrolysis was used to electrogenerate O2.-. With the addition of 1,4-DHP, the oxidation peak current of O2.- decreased concentration dependently, suggesting that 1,4-DHP reacts with O2.-, that is, 1,4-DHP scavenges O2.- in dimethylsulfoxide. very easy and direct voltammetric procedure to study the relative reactivity of different 1,4-DHP with O2.- is proposed. Using the proposed method we have found that all commercial 1,4-DHP reacts with O2.-. The following order of rates was obtained: felodipine > or = vitamin E > isradipine > nimodipine > furnidipine > nitrendipine > nisoldipine > nifedipine. Furthermore, it was demonstrated that the hydrogen at the N-position of 1,4-DHP compounds could be released as a proton in the presence of O2.-, thus the electrogenerated O2.- worked as a proton acceptor to 1,4-DHP.

  5. Differential expression of superoxide dismutase genes in aphid-stressed maize (Zea mays L. seedlings.

    Directory of Open Access Journals (Sweden)

    Hubert Sytykiewicz

    Full Text Available The aim of this study was to compare the expression patterns of superoxide dismutase genes (sod2, sod3.4, sod9 and sodB in seedling leaves of the Zea mays L. Tasty Sweet (susceptible and Ambrozja (relatively resistant cultivars infested with one of two hemipteran species, namely monophagous Sitobion avenae F. (grain aphid or oligophagous Rhopalosiphum padi L. (bird cherry-oat aphid. Secondarily, aphid-elicited alternations in the antioxidative capacity towards DPPH (1,1-diphenyl-2-picrylhydrazyl radical in insect-stressed plants were evaluated. Comprehensive comparison of expression profiles of the four sod genes showed that both insect species evoked significant upregulation of three genes sod2, sod3.4 and sod9. However, aphid infestation affected non-significant fluctuations in expression of sodB gene in seedlings of both maize genotypes. The highest levels of transcript accumulation occurred at 8 h (sod2 and sod3.4 or 24 h (sod9 post-infestation, and aphid-induced changes in the expression of sod genes were more dramatic in the Ambrozja cultivar than in the Tasty Sweet variety. Furthermore, bird cherry-oat aphid colonization had a more substantial impact on levels of DPPH radical scavenging activity in infested host seedlings than grain aphid colonization. Additionally, Ambrozja plants infested by either hemipteran species showed markedly lower antioxidative capacity compared with attacked Tasty Sweet plants.

  6. A novel selenium and copper-containing peptide with both superoxide dismutase and glutathione peroxidase activities.

    Science.gov (United States)

    Zou, Xian-Feng; Ji, Yue-Tong; Gao, Gui; Zhu, Xue-Jun; Lv, Shao-Wu; Yan, Fei; Han, Si-Ping; Chen, Xing; Gao, Chang-Cheng; Liu, Junqiu; Luo, Gui-Min

    2010-01-01

    Superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase (CAT) play crucial roles in balancing the production and decomposition of reactive oxygen species (ROS) in living organisms. These enzymes act cooperatively and synergistically to scavenge ROS. In order to imitate the synergism of these enzymes, we designed and synthesized a novel 32-mer peptide (32P) on the basis of the previous 15-mer peptide with GPX activity and a 17-mer peptide with SOD activity. Upon the selenation and chelation of copper, the 32-mer peptide is converted to a new Se- and Cu-containing 32-mer peptide (Se-Cu-32P) and displays both SOD and GPX activities and its kinetics was studied. Moreover, the novel peptide was demonstrated to be able to better protect vero cells from the injury induced by xanthine oxidase (XOD)/xanthine/Fe2+ damage system than its parents. Thus, this bifunctional enzyme imitated the synergism of SOD and GPX and could be a better candidate of therapeutic medicine.

  7. Assessment of the anti-inflammatory activity and free radical scavenger activity of tiliroside.

    Science.gov (United States)

    Sala, Araceli; Recio, M Carmen; Schinella, Guillermo R; Máñez, Salvador; Giner, Rosa M; Cerdá-Nicolás, Miguel; Rosí, José Luis

    2003-02-01

    Three flavonoids, gnaphaliin, pinocembrin and tiliroside, isolated from Helichrysum italicum, were studied in vitro for their antioxidant and/or scavenger properties and in vivo in different models of inflammation. In vitro tests included lipid peroxidation in rat liver microsomes, superoxide radical generation in the xanthine/xanthine oxidase system and the reduction of the stable radical 1,1-diphenyl-2-pycryl-hydrazyl (DPPH). Acute inflammation was induced by application of 12-O-tetradecanoylphorbol 13-acetate (TPA) to the mouse ear or by subcutaneous injection of phospholipase A(2) or serotonin in the mouse paw. Eczema provoked on the mouse ear by repeated administration of TPA was selected as a model of chronic inflammation. The flavonoids were assayed against sheep red blood cell-induced mouse paw oedema as a model of delayed-type hypersensitivity reaction. The most active compound, both in vitro and in vivo, was tiliroside. It significantly inhibited enzymatic and non-enzymatic lipid peroxidation (IC(50)=12.6 and 28 microM, respectively). It had scavenger properties (IC(50)=21.3 microM) and very potent antioxidant activity in the DPPH test (IC(50)=6 microM). In vivo, tiliroside significantly inhibited the mouse paw oedema induced by phospholipase A(2)(ED(50)=35.6 mg/kg) and the mouse ear inflammation induced by TPA (ED(50)=357 microg/ear). Pinocembrin was the only flavonoid that exhibited anti-inflammatory activity in the sheep red blood cell-induced delayed-type hypersensitivity reaction. However, only tiliroside significantly reduced the oedema and leukocyte infiltration induced by TPA. As in the case of other flavonoids, the anti-inflammatory activity of tiliroside could be based on its antioxidant properties, although other mechanisms are probably involved.

  8. Tunable electronic interactions between anions and perylenediimide.

    Science.gov (United States)

    Goodson, Flynt S; Panda, Dillip K; Ray, Shuvasree; Mitra, Atanu; Guha, Samit; Saha, Sourav

    2013-08-07

    Over the past decade anion-π interaction has emerged as a new paradigm of supramolecular chemistry of anions. Taking advantage of the electronic nature of anion-π interaction, we have expanded its boundaries to charge-transfer (CT) and formal electron transfer (ET) events by adjusting the electron-donating and accepting abilities of anions and π-acids, respectively. To establish that ET, CT, and anion-π interactions could take place between different anions and π-acids as long as their electronic and structural properties are conducive, herein, we introduce 3,4,9,10-perylenediimide (PDI-1) that selectively undergoes thermal ET from strong Lewis basic hydroxide and fluoride anions, but remains electronically and optically silent to poor Lewis basic anions, as ET and CT events are turned OFF. These interactions have been fully characterized by UV/Vis, NMR, and EPR spectroscopies. These results demonstrate the generality of anion-induced ET events in aprotic solvents and further refute a notion that strong Lewis basic hydroxide and fluoride ions can only trigger nucleophilic attack to form covalent bonds instead of acting as sacrificial electron donors to π-acids under appropriate conditions.

  9. Adsorption affinity of anions on metal oxyhydroxides

    Science.gov (United States)

    Pechenyuk, S. I.; Semushina, Yu. P.; Kuz'mich, L. F.

    2013-03-01

    The dependences of anion (phosphate, carbonate, sulfate, chromate, oxalate, tartrate, and citrate) adsorption affinity anions from geometric characteristics, acid-base properties, and complex forming ability are generalized. It is shown that adsorption depends on the nature of both the anions and the ionic medium and adsorbent. It is established that anions are generally grouped into the following series of adsorption affinity reduction: PO{4/3-}, CO{3/2-} > C2O{4/2-}, C(OH)(CH2)2(COO){3/3-}, (CHOH)2(COO){2/2-} > CrO{4/2-} ≫ SO{4/2-}.

  10. Simultaneous monitoring of superoxides and intracellular calcium ions in neutrophils by chemiluminescence and fluorescence: evaluation of action mechanisms of bioactive compounds in foods.

    Science.gov (United States)

    Kazumura, Kimiko; Sato, Yukiko; Satozono, Hiroshi; Koike, Takashi; Tsuchiya, Hiroshi; Hiramatsu, Mitsuo; Katsumata, Masakazu; Okazaki, Shigetoshi

    2013-10-01

    We have developed a measuring system for simultaneous monitoring of chemiluminescence and fluorescence, which indicate respectively, (i) generation of superoxide anion radicals (O2(-•)) and (ii) change in the intracellular calcium ion concentration ([Ca(2+)]i) of neutrophils triggered by the mechanism of innate immune response. We applied this measuring system for establishing a method to distinguish between anti-inflammatory actions and antioxidant actions caused by bioactive compounds. We evaluated anti-inflammatory agents (zinc ion [Zn(2+)] and ibuprofen) and antioxidants (superoxide dismutase [SOD] and ascorbic acid). It was shown that ibuprofen and Zn(2+) were anti-inflammatory while SOD and ascorbic acid were anti-oxidative. We conclude that it is possible to determine the mechanism of action of bioactive compounds using this method.

  11. The bacterial superoxide dismutase and glutathione reductase are crucial for endophytic colonization of rice roots by Gluconacetobacter diazotrophicus PAL5.

    Science.gov (United States)

    Alquéres, Sylvia; Meneses, Carlos; Rouws, Luc; Rothballer, Michael; Baldani, Ivo; Schmid, Michael; Hartmann, Anton

    2013-08-01

    Gluconacetobacter diazotrophicus is an aerobic diazotrophic plant-growth-promoting bacterium isolated from different gramineous plants. We showed that reactive oxygen species (ROS) were produced at early stages of rice root colonization, a typical plant defense response against pathogens. The transcription of the pathogen-related-10 gene of the jasmonic acid (JA) pathway but not of the PR-1 gene of the salicylic acid pathway was activated by the endophytic colonization of rice roots by G. diazotrophicus strain PAL5. Quantitative polymerase chain reaction analyses showed that, at early stages of colonization, the bacteria upregulated the transcript levels of ROS-detoxifying genes such as superoxide dismutase (SOD) and glutathione reductase (GR). To proof the role of ROS-scavenging enzymes in the colonization and interaction process, transposon insertion mutants of the SOD and GR genes of strain PAL5 were constructed. The SOD and GR mutants were unable to efficiently colonize the roots, indicated by the decrease of tightly root-associated bacterial cell counts and endophytic colonization and by fluorescence in situ hybridization analysis. Interestingly, the mutants did not induce the PR-10 of the JA-pathway, probably due to the inability of endophytic colonization. Thus, ROS-scavenging enzymes of G. diazotrophicus strain PAL5 play an important role in the endophytic colonization of rice plants.

  12. Synthesis and Free Radical Scavenging Activity of New Hydroxybenzylidene Hydrazines

    National Research Council Canada - National Science Library

    Frantisek Sersen; Fridrich Gregan; Peter Kotora; Jarmila Kmetova; Juraj Filo; Dusan Loos; Juraj Gregan

    2017-01-01

    Hydroxybenzylidene hydrazines exhibit a wide spectrum of biological activities. Here, we report synthesis and free radical scavenging activity of nine new N-(hydroxybenzylidene)-N′-[2,6-dinitro-4-(trifluoromethyl)]phenylhydrazines...

  13. Free Radical Scavenging and Cellular Antioxidant Properties of Astaxanthin

    Directory of Open Access Journals (Sweden)

    Janina Dose

    2016-01-01

    Full Text Available Astaxanthin is a coloring agent which is used as a feed additive in aquaculture nutrition. Recently, potential health benefits of astaxanthin have been discussed which may be partly related to its free radical scavenging and antioxidant properties. Our electron spin resonance (ESR and spin trapping data suggest that synthetic astaxanthin is a potent free radical scavenger in terms of diphenylpicryl-hydrazyl (DPPH and galvinoxyl free radicals. Furthermore, astaxanthin dose-dependently quenched singlet oxygen as determined by photon counting. In addition to free radical scavenging and singlet oxygen quenching properties, astaxanthin induced the antioxidant enzyme paroxoanase-1, enhanced glutathione concentrations and prevented lipid peroxidation in cultured hepatocytes. Present results suggest that, beyond its coloring properties, synthetic astaxanthin exhibits free radical scavenging, singlet oxygen quenching, and antioxidant activities which could probably positively affect animal and human health.

  14. Free radical scavenging activity of Kielmeyera variabilis (Clusiaceae)

    National Research Council Canada - National Science Library

    Coqueiro, Aline; Regasini, Luis Octávio; Skrzek, Scheila Cristina Gutkoski; Queiroz, Marcos Marçal Ferreira; Silva, Dulce Helena Siqueira; da Silva Bolzani, Vanderlan

    2013-01-01

    As part of our ongoing research on antioxidant agents from Brazilian flora, we screened the free radical scavenging activity of two extracts and eight fractions of Kielmeyera variabilis (Clusiaceae) using DPPH...

  15. Radical Scavenging Efficacy of Thiol Capped Silver Nanoparticles

    Indian Academy of Sciences (India)

    Kumudini Chandraker; Sandeep Kumar Vaishanav; Rekha Nagwanshi; Manmohan L Satnami

    2015-12-01

    Radical scavenging efficacy of L-cysteine (L-Cys), glutathione (GSH) and thioctic acid (TA) in the presence of silver nanoparticles (AgNPs) were determined by 1,1-diphenyl 2-picryl hydrazil (DPPH), nitric oxide (NO) and hydroxyl (OH) radicals as spectrophotometric assay. The hydrogen peroxide (H2O2) scavenging efficacy has been determined by titration method. Ascorbic acid has been used as standard for all radical scavenging efficacies. In general, antioxidant activity decreases in the presence of AgNPs. The covalent interactions of thiols (-SH) were found to be a key factor for the decreases in scavenging activity. The effect of thiol concentrations has been discussed. The size and shape of the nanoparticles and AgNP-SR interactions have been characterized through Transmission Electron Microscopy (TEM) and Fourier Transform Infrared (FTIR) spectroscopy, respectively.

  16. Free Radical Scavenging and Cellular Antioxidant Properties of Astaxanthin.

    Science.gov (United States)

    Dose, Janina; Matsugo, Seiichi; Yokokawa, Haruka; Koshida, Yutaro; Okazaki, Shigetoshi; Seidel, Ulrike; Eggersdorfer, Manfred; Rimbach, Gerald; Esatbeyoglu, Tuba

    2016-01-14

    Astaxanthin is a coloring agent which is used as a feed additive in aquaculture nutrition. Recently, potential health benefits of astaxanthin have been discussed which may be partly related to its free radical scavenging and antioxidant properties. Our electron spin resonance (ESR) and spin trapping data suggest that synthetic astaxanthin is a potent free radical scavenger in terms of diphenylpicryl-hydrazyl (DPPH) and galvinoxyl free radicals. Furthermore, astaxanthin dose-dependently quenched singlet oxygen as determined by photon counting. In addition to free radical scavenging and singlet oxygen quenching properties, astaxanthin induced the antioxidant enzyme paroxoanase-1, enhanced glutathione concentrations and prevented lipid peroxidation in cultured hepatocytes. Present results suggest that, beyond its coloring properties, synthetic astaxanthin exhibits free radical scavenging, singlet oxygen quenching, and antioxidant activities which could probably positively affect animal and human health.

  17. Oxygen radical-scavenging capacities of peptides from swine blood ...

    African Journals Online (AJOL)

    Oxygen radical-scavenging capacities of peptides from swine blood. ... African Journal of Biotechnology. Journal Home ... Swine blood is generally discarded except for the small amount that is used in soybean curd and other food products.

  18. Bleaching of the red anthocyanin induced by superoxide radical.

    Science.gov (United States)

    Yamasaki, H; Uefuji, H; Sakihama, Y

    1996-08-01

    Red anthocyanin prepared from petals of Hibiscus rosa-sinensis L. was photobleached in the EDTA-riboflavin system. The rate of bleaching monitored at 565 nm depended on the light intensity and EDTA concentrations. Anaerobic conditions and/or addition of superoxide dismutase prevented the bleaching of anthocyanin, whereas mannitol and catalase did not. A similar bleaching was observed under dark conditions in the xanthine-xanthine oxidase system. The results indicate that anthocyanin is bleached by the nonenzymatic reaction with the superoxide radical and suggest that the pigment can function as an antioxidant. The antioxidative efficiency of cyanidin to superoxide was 10-fold higher than that of cyanidin-3-sophoroside as a Hibiscus anthocyanin.

  19. Propylthiouracil, Perchlorate, and Thyroid-Stimulating Hormone Modulate High Concentrations of Iodide Instigated Mitochondrial Superoxide Production in the Thyroids of Metallothionein I/II Knockout Mice

    Directory of Open Access Journals (Sweden)

    Qi Duan

    2016-03-01

    Full Text Available BackgroundIncreased oxidative stress has been suggested as one of the underlying mechanisms in iodide excess-induced thyroid disease. Metallothioneins (MTs are regarded as scavengers of reactive oxygen species (ROS in oxidative stress. Our aim is to investigate the effects of propylthiouracil (PTU, a thyroid peroxidase inhibitor, perchlorate (KClO4, a competitive inhibitor of iodide transport, and thyroid stimulating hormone (TSH on mitochondrial superoxide production instigated by high concentrations of iodide in the thyroids of MT-I/II knockout (MT-I/II KO mice.MethodsEight-week-old 129S7/SvEvBrd-Mt1tm1Bri Mt2tm1Bri/J (MT-I/II KO mice and background-matched wild type (WT mice were used.ResultsBy using a mitochondrial superoxide indicator (MitoSOX Red, lactate dehydrogenase (LDH release, and methyl thiazolyl tetrazolium (MTT assay, we demonstrated that the decreased relative viability and increased LDH release and mitochondrial superoxide production induced by potassium iodide (100 µM can be relieved by 300 µM PTU, 30 µM KClO4, or 10 U/L TSH in the thyroid cell suspensions of both MT-I/II KO and WT mice (P<0.05. Compared to the WT mice, a significant decrease in the relative viability along with a significant increase in LDH release and mitochondrial superoxide production were detected in MT-I/II KO mice(P<0.05.ConclusionWe concluded that PTU, KClO4, or TSH relieved the mitochondrial oxidative stress induced by high concentrations of iodide in the thyroids of both MT-I/II KO and WT mice. MT-I/II showed antioxidant effects against high concentrations of iodide-induced mitochondrial superoxide production in the thyroid.

  20. Free radical scavenging activity of leaves of Cucumis sativus

    OpenAIRE

    Pritesh Rashmikant Shah; Swati Dhande; Yadunath Joshi; Vilasrao Kadam

    2013-01-01

    Cucumis sativus commonly called as ‘Cucumber’ is commonly used plant throughout the world. The plant is attributed to various uses in Ayurveda. The methanolic extract of leaves of Cucumis sativus was screened for free radical scavenging activity properties using gallic acid as standard antioxidant. Free radical scavenging activity was evaluated using 1, 1-diphenyl-2-picryl-hydrazyl (DPPH) free radical. Different concentrations of leaf extract ranging from 100- 1000µg/ml were subjected to DPPH...

  1. A methylflavan with free radical scavenging properties from Pancratium littorale.

    Science.gov (United States)

    Ioset, J R; Marston, A; Gupta, M P; Hostettmann, K

    2001-01-01

    The isolation of 7,4'-dihydroxy-8-methylflavan (1) from the dichloromethane extract of Pancratium littorale stem was guided by an assay for free radical scavenging activity towards the 2,2-diphenyl-1-picryl-hydrazyl radical (DPPH). The structure of 1 was established by spectrometric methods including UV, EI mass spectrometry, 1H and 13C-NMR. The free radical scavenging properties of 1 were quantified in solution using spectrophotometry.

  2. Shark scavenging behavior in the presence of competition

    Directory of Open Access Journals (Sweden)

    Shannon P. GERRY, Andrea J. SCOTT

    2010-02-01

    Full Text Available The distribution of organisms within a community can often be determined by the degree of plasticity or degree of specialization of resource acquisition. Resource acquisition is often based on the morphology of an organism, behavior, or a combination of both. Performance tests of feeding can identify the possible interactions that allow one species to better exploit a prey item. Scavenging behaviors in the presence or absence of a competitor were investigated by quantifying prey selection in a trophic generalist, spiny dogfish Squalus acanthias, and a trophic specialist, smooth-hounds Mustelus canis, in order to determine if each shark scavenged according to its jaw morphology. The diet of dogfish consists of small fishes, squid, ctenophores, and bivalves; they are expected to be nonselective predators. Smooth-hounds primarily feed on crustaceans; therefore, they are predicted to select crabs over other prey types. Prey selection was quantified by ranking each prey item according to the order it was consumed. Dietary shifts were analyzed by comparing the percentage of each prey item selected during solitary versus competitive scavenging. When scavenging alone, dogfish prefer herring and squid, which are easily handled by the cutting dentition of dogfish. Dogfish shift their diet to include a greater number of prey types when scavenging with a competitor. Smooth-hounds scavenge on squid, herring, and shrimp when alone, but increase the number of crabs in the diet when scavenging competitively. Competition causes smooth-hounds to scavenge according to their jaw morphology and locomotor abilities, which enables them to feed on a specialized resource [Current Zoology 56 (1: 100–108 2010].

  3. Silymarin and its components scavenge phenylglyoxylic ketyl radicals.

    Science.gov (United States)

    Sersen, Frantisek; Vencel, Tomas; Annus, Julius

    2006-12-01

    The antioxidant properties of silymarin and its flavanolignan components (silybin, silychristin and silydianin) were tested. Silymarin, silychristin and silydianin exhibit relatively good antioxidant effectiveness against phenylglyoxylic ketyl radicals and DPPH. The most effective scavengers of phenylglyoxylic ketyl radicals were silymarin and silychristin whereas silydianin was ca. 5-times less active than the first two compounds whereas silybin was ineffective. The scavenging properties of the studied compounds against DPPH radicals were in the same sequence: silymarin>silychristin>silydianin>silybin.

  4. Constraints on superoxide mediated formation of manganese oxides

    Directory of Open Access Journals (Sweden)

    Deric R. Learman

    2013-09-01

    Full Text Available Manganese (Mn oxides are among the most reactive sorbents and oxidants within the environment, where they play a central role in the cycling of nutrients, metals, and carbon. Recent discoveries have identified superoxide (O2- (both of biogenic and abiogenic origin as an effective oxidant of Mn(II leading to the formation of Mn oxides. Here we examined the conditions under which abiotically produced superoxide led to oxidative precipitation of Mn and the solid-phases produced. Oxidized Mn, as both aqueous Mn(III and Mn(III/IV oxides, was only observed in the presence of active catalase, indicating that hydrogen peroxide, a product of the reaction of O2- with Mn(II, inhibits the oxidation process presumably through the reduction of Mn(III. Citrate and pyrophosphate increased the yield of oxidized Mn but decreased the amount of Mn oxide produced via formation of Mn(III-ligand complexes. While complexing ligands played a role in stabilizing Mn(III, they did not eliminate the inhibition of net Mn(III formation by H2O2. The Mn oxides precipitated were highly disordered colloidal hexagonal birnessite, similar to those produced by biotically generated superoxide. Yet, in contrast to the large particulate Mn oxides formed by biogenic superoxide, abiotic Mn oxides did not ripen to larger, more crystalline phases. This suggests that the deposition of crystalline Mn oxides within the environment requires a biological, or at least organic, influence. This work provides the first direct evidence that, under conditions relevant to natural waters, oxidation of Mn(II by superoxide can occur and lead to formation of Mn oxides. For organisms that oxidize Mn(II by producing superoxide, these findings may also point to other microbially mediated processes, in particular enzymatic hydrogen peroxide degradation and/or production of organic ligand metabolites, that allow for Mn oxide formation.

  5. Peroxisomal membrane manganese superoxide dismutase: characterization of the isozyme from watermelon (Citrullus lanatus Schrad.) cotyledons.

    Science.gov (United States)

    Rodríguez-Serrano, María; Romero-Puertas, María C; Pastori, Gabriela M; Corpas, Francisco J; Sandalio, Luisa M; del Río, Luis A; Palma, José M

    2007-01-01

    In this work the manganese superoxide dismutase (Mn-SOD) bound to peroxisomal membranes of watermelon cotyledons (Citrullus lanatus Schrad.) was purified to homogeneity and some of its molecular properties were determined. The stepwise purification procedure consisted of ammonium sulphate fractionation, batch anion-exchange chromatography, and anion-exchange and gel-filtration column chromatography using a fast protein liquid chromatography system. Peroxisomal membrane Mn-SOD (perMn-SOD; EC 1.15.1.1) was purified 5600-fold with a yield of 2.6 mug of enzyme g(-1) of cotyledons, and had a specific activity of 480 U mg(-1) of protein. The native molecular mass determined for perMn-SOD was 108 000 Da, and it was composed of four equal subunits of 27 kDa, which indicates that perMn-SOD is a homotetramer. Ultraviolet and visible absorption spectra of the enzyme showed a shoulder at 275 nm and two absorption maxima at 448 nm and 555 nm, respectively. By isoelectric focusing, a pI of 5.75 was determined for perMn-SOD. In immunoblot assays, purified perMn-SOD was recognized by a polyclonal antibody against Mn-SOD from pea leaves, and the peroxisomal enzyme rapidly dissociated in the presence of dithiothreitol and SDS. The potential binding of the Mn-SOD isozyme to the peroxisomal membrane was confirmed by immunoelectron microscopy analysis. The properties of perMn-SOD and the mitMn-SOD are compared and the possible function in peroxisomal membranes of the peripheral protein Mn-SOD is discussed.

  6. Resveratrol induces acute endothelium-dependent renal vasodilation mediated through nitric oxide and reactive oxygen species scavenging

    Science.gov (United States)

    Gordish, Kevin L.

    2014-01-01

    Resveratrol is suggested to have beneficial cardiovascular and renoprotective effects. Resveratrol increases endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) synthesis. We hypothesized resveratrol acts as an acute renal vasodilator, mediated through increased NO production and scavenging of reactive oxygen species (ROS). In anesthetized rats, we found 5.0 mg/kg body weight (bw) of resveratrol increased renal blood flow (RBF) by 8% [from 6.98 ± 0.42 to 7.54 ± 0.17 ml·min−1·gram of kidney weight−1 (gkw); n = 8; P resveratrol before and after 10 mg/kg bw of the NOS inhibitor N-nitro-l-arginine methyl ester (l-NAME). l-NAME reduced the increase in RBF to resveratrol by 54% (from 0.59 ± 0.05 to 0.27 ± 0.06 ml·min−1·gkw−1; n = 10; P resveratrol before and after 1 mg/kg bw tempol, a superoxide dismutase mimetic. Resveratrol increased RBF 7.6% (from 5.91 ± 0.32 to 6.36 ± 0.12 ml·min−1·gkw−1; n = 7; P resveratrol-induced increase in RBF (from 0.45 ± 0.12 to 0.10 ± 0.05 ml·min−1·gkw−1; n = 7; P Resveratrol-induced vasodilation remained unaffected. We conclude intravenous resveratrol acts as an acute renal vasodilator, partially mediated by increased NO production/NO bioavailability and superoxide scavenging but not by inducing vasodilatory cyclooxygenase products. PMID:24431202

  7. Loading of free radicals on the functional graphene combined with liquid chromatography-tandem mass spectrometry screening method for the detection of radical-scavenging natural antioxidants.

    Science.gov (United States)

    Wang, Guoying; Shi, Gaofeng; Chen, Xuefu; Chen, Fuwen; Yao, Ruixing; Wang, Zhenju

    2013-11-13

    A novel free radical reaction combined with liquid chromatography electrospray ionization tandem mass spectrometry (FRR-LC-PDA-ESI/APCI-MS/MS) screening method was developed for the detection and identification of radical-scavenging natural antioxidants. Functionalized graphene was prepared by chemical method for loading free radicals (superoxide radical, peroxyl radical and PAHs free radical). Separation was performed with and without a preliminary exposure of the sample to specific free radicals on the functionalized graphene, which can facilitate reaction kinetics (charge transfers) between free radicals and potential antioxidants. The difference in chromatographic peak areas is used to identify potential antioxidants. The structure of the antioxidants in one sample (Swertia chirayita) is identified using MS/MS and comparison with standards. Thirteen compounds were found to possess potential antioxidant activity, and their free radical-scavenging capacities were investigated. The thirteen compounds were identified as 1,3,5-trihydroxyxanthone-8-O-β-D-glucopyranoside (PD1), norswertianin (PD2), 1,3,5,8-tetrahydroxyxanthone (PD3), 3, 3', 4', 5, 8-penta hydroxyflavone-6-β-D-glucopyranosiduronic acid-6'-pentopyranose-7-O-glucopyranoside (PD4), 1,5,8-trihydroxy-3-methoxyxanthone (PD5), swertiamarin (PS1), 2-C-β-D-glucopyranosyl-1,3,7-trihydroxylxanthone (PS2), 1,3,7-trihydroxylxanthone-8-O-β-D-glucopyranoside (PL1), 1,3,8-trihydroxyl xanthone-5-O-β-D-glucopyranoside (PL2), 1,3,7-trihydroxy-8-methoxyxanthone (PL3), 1,2,3-trihydroxy-7,8-dimethoxyxanthone (PL4), 1,8-dihydroxy-2,6-dimethoxy xanthone (PL5) and 1,3,5,8-tetramethoxydecussatin (PL6). The reactivity and SC50 values of those compounds were investigated, respectively. PD4 showed the strongest capability for scavenging PAHs free radical; PL4 showed prominent scavenging capacities in the lipid peroxidation processes; it was found that all components in S. chirayita exhibited weak reactivity in the superoxide

  8. Vibrational Spectroscopy of Microhydrated Conjugate Base Anions

    NARCIS (Netherlands)

    Asmis, K. R.; Neumark, D. M.

    2012-01-01

    Conjugate-base anions are ubiquitous in aqueous solution. Understanding the hydration of these anions at the molecular level represents a long-standing goal in chemistry. A molecular-level perspective on ion hydration is also important for understanding the surface speciation and reactivity of aeros

  9. Effects of recombinant trout leptin in superoxide production and NF-κB/MAPK phosphorylation in blood leukocytes.

    Science.gov (United States)

    Mariano, Giovanna; Stilo, Romania; Terrazzano, Giuseppe; Coccia, Elena; Vito, Pasquale; Varricchio, Ettore; Paolucci, Marina

    2013-10-01

    Studies in mammals indicate that leptin is a multifunctional cytokine involved in regulation of energy metabolism and the modulation of the immune function. However, evidence for an immunomodulatory effect of leptin in fish is still missing. At least in part, this lack of knowledge is due to the absence of materials and models. In this study, we produced trout recombinant leptin (rt-lep) and tested its capacity to trigger cellular pathways, usually active in mammal immune system cells. STAT3, NF-κB, and the three major MAPK cascades (JNK, p38 and ERK), were activated by rt-lep in in vitro incubations with blood leucocytes of the rainbow trout Oncorhynchus mykiss. We also showed that rt-lep causes a decrease in superoxide anion production in trout blood leucocytes. Thus our data indicate that as in mammals also in teleosts leptin plays pleiotropic activities. Importantly, its actions in fishes do not always conform to the picture emerging for mammals.

  10. Creating molecular macrocycles for anion recognition

    Directory of Open Access Journals (Sweden)

    Amar H. Flood

    2016-03-01

    Full Text Available The creation and functionality of new classes of macrocycles that are shape persistent and can bind anions is described. The genesis of triazolophane macrocycles emerges out of activity surrounding 1,2,3-triazoles made using click chemistry; and the same triazoles are responsible for anion capture. Mistakes made and lessons learnt in anion recognition provide deeper understanding that, together with theory, now provides for computer-aided receptor design. The lessons are acted upon in the creation of two new macrocycles. First, cyanostars are larger and like to capture large anions. Second is tricarb, which also favors large anions but shows a propensity to self-assemble in an orderly and stable manner, laying a foundation for future designs of hierarchical nanostructures.

  11. Anion stripping as a general method to create cationic porous framework with mobile anions.

    Science.gov (United States)

    Mao, Chengyu; Kudla, Ryan A; Zuo, Fan; Zhao, Xiang; Mueller, Leonard J; Bu, Xianhui; Feng, Pingyun

    2014-05-28

    Metal-organic frameworks (MOFs) with cationic frameworks and mobile anions have many applications from sensing, anion exchange and separation, to fast ion conductivity. Despite recent progress, the vast majority of MOFs have neutral frameworks. A common mechanism for the formation of neutral frameworks is the attachment of anionic species such as F(-) or OH(-) to the framework metal sites, neutralizing an otherwise cationic scaffolding. Here, we report a general method capable of converting such neutral frameworks directly into cationic ones with concurrent generation of mobile anions. Our method is based on the differential affinity between distinct metal ions with framework anionic species. Specifically, Al(3+) is used to strip F(-) anions away from framework Cr(3+) sites, leading to cationic frameworks with mobile Cl(-) anions. The subsequent anion exchange with OH(-) further leads to a porous network with mobile OH(-) anions. New materials prepared by anion stripping can undergo ion exchange with anionic organic dyes and also exhibit much improved ionic conductivity compared to the original unmodified MOFs.

  12. Effects of iron deficiency on free radical scavenging enzymes in muscles of diabetic rats

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, S.; Hegarty, P.V.J.

    1986-03-05

    Catalase, superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) prevent free-radical mediated tissue damage. Diabetes increases, and low dietary intakes of iron decreases catalase activity in muscles. Therefore, the combined effects of diabetes and iron deficiency on the free radical enzyme scavenging system was studied. Male, weanling rats were injected with streptozotocin (65 mg/kg, I.V.) and fed diets containing either 35 ppm (Db+Fe) or 8 ppm (Db-Fe) iron. Sham-injected animals served as iron adequate (C+Fe) or iron deficient (C-Fe) controls. Heart, gastrocnemius, soleus and anterior tibialis muscles were dissected, weighed and analyzed for catalase, SOD and GSH-Px activities after 1,3 or 6 weeks on the respective diets. Muscles in Db+Fe and Db-Fe groups had elevated catalase activity after one week in the diabetic state. Conversely, catalase activity was depressed in the C-Fe animals. SOD and GSH-Px activities did not differ from control values for any experimental group. Treatment with insulin and/or iron returned catalase activity to control levels. These data indicate that iron deficiency does not inhibit responses of muscle catalase to the diabetic condition, and the diabetic condition exerts an effect on catalase which is independent of SOD and GSH-Px.

  13. Free radical scavenging potential of in vitro raised and greenhouse acclimatized plants of Artemisia amygdalina

    Institute of Scientific and Technical Information of China (English)

    R.Rasool; B.A.Ganai; S.Akbar; A.N.Kamili

    2013-01-01

    AIM:Artemisia amygdalina Decne.(Asteraceae) is a critically endangered and endemic herb of Kashmir Himalayan sub-alpine region and Pakistan.Scientific research throughout the world has evidence to support the tremendous medicinal utility of the genus Artemisia.The natural resources of medicinal plants are being reduced day by day.This study provides the alternative way for medicinal resource utilization and conservation of A.amygdalina.METHODS:In vitro-raised plants and greenhouse acclimatized plants were obtained by culturing wild explants on Murashige and Skoog's medium.Plant extracts were obtained and subjected to different antioxidant assays:DPPH assay,riboflavin photo-oxidation assay,deoxy ribose assay,ferric thiocyanate assay,thiobarbituric acid assay,post mitochondrial supernatant assay and DNA damage on agarose gel.RESULTS:In vitro grown plants,as well as those acclimatized in the greenhouse reveals antioxidant activity against hydroxyl,superoxide,and lipid peroxyl radicals.CONCLUSION:This preliminary study revealed the free radical scavenging potential of tissue culture-raised plant extracts of A.amydalina.

  14. Quercetin inhibits degranulation and superoxide generation in PMA stimulated neutrophils

    OpenAIRE

    2012-01-01

    Activated neutrophils represent the main source of myeloperoxidase (MPO), superoxide (SO) and subsequently derived oxygen metabolites. They have important microbicidal activities, however in inflammatory conditions they may secondarily attack surrounding tissues. Overproduction of reactive oxygen species, prolonged or excessive liberation of MPO and other effective yet also toxic substances from neutrophils may participate in disturbed apoptosis, intensify the inflammatory processes and resul...

  15. High glucose impairs superoxide production from isolated blood neutrophils

    DEFF Research Database (Denmark)

    Perner, A; Nielsen, S E; Rask-Madsen, J

    2003-01-01

    Superoxide (O(2)(-)), a key antimicrobial agent in phagocytes, is produced by the activity of NADPH oxidase. High glucose concentrations may, however, impair the production of O(2)(-) through inhibition of glucose-6-phosphate dehydrogenase (G6PD), which catalyzes the formation of NADPH. This study...

  16. Cu/Zn superoxide dismutases in developing cotton fibers

    Science.gov (United States)

    Hydrogen peroxide (H2O2) and other reactive oxygen species (ROS) are important signaling molecules in diverse physiological processes. Previously, we discovered superoxide dismutase (SOD) activity in extracellular protein preparations from fiber-bearing cotton (Gossypium hirsutum L.) seeds. We sho...

  17. Superoxide dismutase in the marine sponge Cliona celata

    NARCIS (Netherlands)

    Marques, D.; Esteves, A.I.; Almeida, M.; Xavier, J.; Humanes, M.

    2008-01-01

    The aim of this work is to investigate the activity of the antioxidant enzyme superoxide dismutase in the cosmopolitan sponge Cliona celata (Grant, 1826), since this enzyme has been described as a useful biomarker for marine pollution in other marine invertebrates. The quantification of the catalyti

  18. Computing Stability Effects of Mutations in Human Superoxide Dismutase 1

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2014-01-01

    Protein stability is affected in several diseases and is of substantial interest in efforts to correlate genotypes to phenotypes. Superoxide dismutase 1 (SOD1) is a suitable test case for such correlations due to its abundance, stability, available crystal structures and thermochemical data...

  19. Superoxide dismutase in the marine sponge Cliona celata

    NARCIS (Netherlands)

    Marques, D.; Esteves, A.I.; Almeida, M.; Xavier, J.; Humanes, M.

    2008-01-01

    The aim of this work is to investigate the activity of the antioxidant enzyme superoxide dismutase in the cosmopolitan sponge Cliona celata (Grant, 1826), since this enzyme has been described as a useful biomarker for marine pollution in other marine invertebrates. The quantification of the

  20. Effect of Low Level Cadmium Exposure on Superoxide Dismutase ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research January 2016; 15 (1): 115-119. ISSN: 1596-5996 ... Results: The data revealed a significant (p < 0.05) decrease in organ weight of the exposed rats, and with the highest ... system such as superoxide dismutase. Antioxidants ... the guiding principles of laboratory animal care.

  1. Effect of yogic exercise on superoxide dismutase levels in diabetics

    Directory of Open Access Journals (Sweden)

    Mahapure Hemant

    2008-01-01

    Full Text Available Context: Reactive oxygen species are known to aggravate disease progression. To counteract their harmful effects, the body produces various antioxidant enzymes, viz , superoxide dismutase, glutathione reductase etc. Literature reviews revealed that exercises help to enhance antioxidant enzyme systems; hence, yogic exercises may be useful to combat various diseases. Aims: This study aims to record the efficacy of yoga on superoxide dismutase, glycosylated hemoglobin (Hb and fasting blood glucose levels in diabetics. Settings and Design: Forty diabetics aged 40-55 years were assigned to experimental (30 and control (10 groups. The experimental subjects underwent a Yoga program comprising of various Asanas (isometric type exercises and Pranayamas (breathing exercises along with regular anti-diabetic therapy whereas the control group received anti-diabetic therapy only. Methods and Material: Heparinized blood samples were used to determine erythrocyte superoxide dismutase (SOD activity and glycosylated Hb levels and fasting blood specimens collected in fluoride Vacutainers were used for assessing blood glucose. Statistical analysis used: Data were analyzed by using 2 x 2 x 3 Factorial ANOVA followed by Scheffe′s posthoc test. Results: The results revealed that Yogic exercise enhanced the levels of Superoxide dismutase and reduced glycosylated Hb and glucose levels in the experimental group as compared to the control group. Conclusion: The findings conclude that Yogic exercises have enhanced the antioxidant defence mechanism in diabetics by reducing oxidative stress.

  2. Purification and properties of Cu-Zn superoxide dismutase extracted from Brucella abortus strain 19

    Energy Technology Data Exchange (ETDEWEB)

    Tabatabai, L.B. (ARS-USDA, Ames, IA (United States))

    1991-03-11

    Recent work showed that a recombinant 20 kDa protein from Brucella abortus expressed in E. coli is a Cu-Zn superoxide dismutase (SOD). Western blot and ELISA results indicated that cattle with brucellosis have antibody to SOD. Here the authors report the purification and properties of the native B. abortus Cu-Zn SOD. SOD was extracted from methanol-killed Brucella abortus strain 19 with 0.1 M sodium citrate-1.0 M sodium chloride solution. The extract was dialyzed and protein precipitated by ammonium sulfate at 70-100% saturation was collected. The SOD was purified by HPLC anion exchange chromatography. SOD activity was assayed with a coupled enzyme assay using xanthine oxidase-cytochrome C reduction assay. The authors determined that the Brucella SOD is present in two molecular forms both inhibitable with KCN with Ki's of 0.32 mM and 4.98 mM, respectively. No other form of SOD was identified in the extract. Polyclonal antibody to SOD and polyclonal antibody to SOD synthetic peptide residues 134-143 inhibited SOD activity by 50% and 13%, respectively. Both SOD and the synthetic peptide inhibited binding of anti-SOD antibody to SOD by 60% and 20%, respectively. Based on these results the SOD and its amphipathic peptide will be considered as candidates for the design of synthetic multiple peptide vaccines and diagnostic reagents for bovine brucellosis.

  3. Salicylic acid-induced superoxide generation catalyzed by plant peroxidase in hydrogen peroxide-independent manner.

    Science.gov (United States)

    Kimura, Makoto; Kawano, Tomonori

    2015-01-01

    It has been reported that salicylic acid (SA) induces both immediate spike and long lasting phases of oxidative burst represented by the generation of reactive oxygen species (ROS) such as superoxide anion radical (O2(•-)). In general, in the earlier phase of oxidative burst, apoplastic peroxidase are likely involved and in the late phase of the oxidative burst, NADPH oxidase is likely involved. Key signaling events connecting the 2 phases of oxidative burst are calcium channel activation and protein phosphorylation events. To date, the known earliest signaling event in response to exogenously added SA is the cell wall peroxidase-catalyzed generation of O2(•-) in a hydrogen peroxide (H2O2)-dependent manner. However, this model is incomplete since the source of the initially required H2O2 could not be explained. Based on the recently proposed role for H2O2-independent mechanism for ROS production catalyzed by plant peroxidases (Kimura et al., 2014, Frontiers in Plant Science), we hereby propose a novel model for plant peroxidase-catalyzed oxidative burst fueled by SA.

  4. The extra cellular synthesis of gold and silver nanoparticles and their free radical scavenging and antibacterial properties.

    Science.gov (United States)

    Ramamurthy, C H; Padma, M; samadanam, I Daisy mariya; Mareeswaran, R; Suyavaran, A; Kumar, M Suresh; Premkumar, K; Thirunavukkarasu, C

    2013-02-01

    The bio reduction of chloro auric acid (HAuCl(4)) and silver nitrate (AgNO(3)) is achieved extracellularly by using the aqueous extract of Solanum torvum (S. torvum) fruit. The nanoparticle formation was screened by UV-visible spectroscopy through color conversion due to surface plasma resonance bands at 560 nm and 430 nm for gold and silver nanoparticles respectively. The spherical shapes with smooth surface of gold and silver nanoparticles were analyzed through scanning electron microscope and its presence was confirmed by energy dispersive X-ray spectroscopy (SEM/EDX). The functional groups in the gold and silver salts and the bio interactive functional groups present in the S. torvum extract were characterized by employing Fourier transform infra-red spectroscopy (FTIR). The biomedical properties of gold and silver nanoparticles were premeditated as free radical scavenging activity and antibacterial static agents. Gold and silver nanoparticles serve as strong hydroxyl, superoxide, nitric oxide and DPPH radical scavengers in contrast to their corresponding metal oxides. The radical quenching properties of gold and silver nanoparticles were found to correlate with in vitro DNA protective effect. The silver nanoparticles show strong zone of inhibition against Escherichia coli, Pseudomonas and Bacillus whereas, gold nanoparticles exhibit fair zone of inhibition. To our knowledge this is the first report that S. torvum extract can reduce metal acids to nano materials. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Electrochemical, UV--visible and EPR studies on nitrofurantoin: nitro radical anion generation and its interaction with glutathione.

    Science.gov (United States)

    Núñez-Vergara, L J; Sturm, J C; Olea-Azar, C; Navarrete-Encina, P; Bollo, S; Squella, J A

    2000-05-01

    This paper deals with the reactivity of the nitro radical anion electrochemically generated from nitrofurantoin with glutathione. Cyclic voltammetry (CV) and controlled potential electrolysis were used to generate the nitro radical anion in situ and in bulk solution, respectively and cyclic voltammetry, UV--Visible and EPR spectroscopy were used to characterize the electrochemically formed radical and to study its interaction with GSH. By cyclic voltammetry on a hanging mercury drop electrode, the formation of the nitro radical anion was possible in mixed media (0.015M aqueous citrate/DMF, 40/60, pH 9) and in aprotic media. A second order decay of the radicals was determined, with a k2 value of 201 and 111 M(-1) s(-1), respectively. Controlled potential electrolysis generated the radical and its detection by cyclic voltammetry, UV--Visible and EPR spectroscopy was possible. When glutathione (GSH) was added to the solution, an unambiguous decay in the signals corresponding to a nitro radical anion were observed and using a spin trapping technique, a thiyl radical was detected. Electrochemical and spectroscopic data indicated that it is possible to generate the nitro radical anion from nitrofurantoin in solution and that GSH scavenged this reactive species, in contrast with other authors, which previously reported no interaction between them.

  6. Agaricus bisporus

    African Journals Online (AJOL)

    Peter Omenda (Dr.)

    2015-04-22

    Apr 22, 2015 ... Lycopene were determined in both ethanolic and aqueous mushrooms ... Mushroom extracts solution (1 ml) were diluted with 4.3 ml of 80% ... Determination of superoxide anion radical scavenging activity ..... Identifying the.

  7. Molecular Cloning and Biochemical Characterization of the Iron Superoxide Dismutase from the Cyanobacterium Nostoc punctiforme ATCC 29133 and Its Response to Methyl Viologen-Induced Oxidative Stress.

    Science.gov (United States)

    Moirangthem, Lakshmipyari Devi; Ibrahim, Kalibulla Syed; Vanlalsangi, Rebecca; Stensjö, Karin; Lindblad, Peter; Bhattacharya, Jyotirmoy

    2015-12-01

    Superoxide dismutase (SOD) detoxifies cell-toxic superoxide radicals and constitutes an important component of antioxidant machinery in aerobic organisms, including cyanobacteria. The iron-containing SOD (SodB) is one of the most abundant soluble proteins in the cytosol of the nitrogen-fixing cyanobacterium Nostoc punctiforme ATCC 29133, and therefore, we investigated its biochemical properties and response to oxidative stress. The putative SodB-encoding open reading frame Npun_R6491 was cloned and overexpressed in Escherichia coli as a C-terminally hexahistidine-tagged protein. The purified recombinant protein had a SodB specific activity of 2560 ± 48 U/mg protein at pH 7.8 and was highly thermostable. The presence of a characteristic iron absorption peak at 350 nm, and its sensitivity to H2O2 and azide, confirmed that the SodB is an iron-containing SOD. Transcript level of SodB in nitrogen-fixing cultures of N. punctiforme decreased considerably (threefold) after exposure to an oxidative stress-generating herbicide methyl viologen for 4 h. Furthermore, in-gel SOD activity analysis of such cultures grown at increasing concentrations of methyl viologen also showed a loss of SodB activity. These results suggest that SodB is not the primary scavenger of superoxide radicals induced by methyl viologen in N. punctiforme.

  8. Modulation of genotoxic effects in asbestos-exposed primary human mesothelial cells by radical scavengers, metal chelators and a glutathione precursor.

    Science.gov (United States)

    Poser, Ina; Rahman, Qamar; Lohani, Mohtashim; Yadav, Santosh; Becker, Hans-Henner; Weiss, Dieter G; Schiffmann, Dietmar; Dopp, Elke

    2004-04-11

    The genotoxicity of asbestos fibers is generally mediated by reactive oxygen species (ROS) and by insufficient antioxidant protection. To further elucidate which radicals are involved in asbestos-mediated genotoxicity and to which extent, we have carried out experiments with the metal chelators deferoxamine (DEF) and phytic acid (PA), and with the radical scavengers superoxide dismutase (SOD), dimethylthiourea (DMTU) and the glutathione precursor Nacystelyn trade mark (NAL). We investigated the influence of these compounds on the potency of crocidolite, an amphibole asbestos fiber with a high iron content (27%), and chrysotile, a serpentine asbestos fiber with a low iron content (2%), to induce micronuclei (MN) in human mesothelial cells (HMC) after an exposure time of 24-72 h. Our results show that the number of crocidolite-induced MN is significantly reduced after pretreatment of fibers with PA and DEF. This effect was not observed with chrysotile. In contrast, simultaneous treatment of cells with asbestos and the OH*scavenging DMTU or the O2- -scavenging SOD significantly decreased the number of MN induced by chrysotile and crocidolite. In particular, DMTU almost completely suppressed micronucleus induction by both fiber types. A similar effect was observed in the presence of the H(2)O(2)-scavenging NAL after chrysotile treatment of HMC. By means of kinetochore analysis, it could be shown that the number of clastogenic events is decreased after PA and DEF pretreatment of fibers as well as after application of the above-mentioned scavengers. Our results show that chrysotile asbestos induces an increased release of H(2)O(2) in contrast to crocidolite. Also, the iron content of the fiber plays an important role in radical formation, but nevertheless, chrysotile produces oxy radicals to a similar extent as crocidolite, probably by phagocytosis-mediated oxidative bursting.

  9. Variations in free radical scavenging activities and antioxidant responses in salivary glands of Hyalomma anatolicum anatolicum and Hyalomma dromedarii (Acari: Ixodidae ticks

    Directory of Open Access Journals (Sweden)

    Mayukh Ghosh

    2014-10-01

    Full Text Available Aim: Hyalomma anatolicum anatolicum and Hyalomma dromedarii ticks are of major economic importance in the livestock sector as the vector of tropical theileriosis causing huge production loss, mostly in tropical countries. The release of different reactive oxygen and nitrogen species by exogenous and endogenous means can potentially induce oxidative damage to the ticks during their prolonged feeding on their vertebrate hosts. Hence, ticks need an effective free radical scavenging and antioxidant defense system for their successful feeding of a blood meal. Therefore, the present study was undertaken to evaluate the interspecies variations in antioxidant response, free radical scavenging, and anti-inflammatory activities in salivary gland extracts (SGE of the two species as they differ considerably in relation to feeding behavior and host specificity. Materials and Methods: Tick salivary glands were dissected out under ice from semi-fed female ticks of both the species and homogenized at low temperature to prepare SGE. SGE was stored at −40°C for analysis of free radical scavenging activities and antioxidant status. Results: Significant depletion in reduced glutathione concentrations, malondialdehyde level and elevation in free radical scavenging activity, superoxide dismutase, anti-inflammatory activity were found in SGE of engorging female H. dromedarii ticks as compared to H. a. anatolicum. Conclusion: Higher antioxidant status and free radical scavenging activities in H. dromedarii might have enabled these ticks to suck more blood from the host in spite of continuous host’s immune responses. These findings about tick biology will help in improving tick control strategies.

  10. Melatonin and steroid hormones activate intermembrane Cu,Zn-superoxide dismutase by means of mitochondrial cytochrome P450.

    Science.gov (United States)

    Iñarrea, Pedro; Casanova, Alvaro; Alava, Maria Angeles; Iturralde, María; Cadenas, Enrique

    2011-06-01

    Melatonin and steroid hormones are cytochrome P450 (CYP or P450; EC 1.14.14.1) substrates that have antioxidant properties and mitochondrial protective activities. The mitochondrial intermembrane space (IMS) Cu,Zn-superoxide dismutase (SOD1) is activated after oxidative modification of its critical thiol moieties by superoxide anion (O₂(•-)). This study was aimed at investigating the potential association between the hormonal protective antioxidant actions in mitochondria and the regulation of IMS SOD1 activity. Melatonin, testosterone, dihydrotestosterone, estradiol, and vitamin D induced a sustained activation over time of SOD1 in intact mitochondria, showing a bell-shaped enzyme activation dose response with a threshold at 50nM and a maximum effect at 1μM concentration. Enzyme activation was not affected by furafylline, but it was inhibited by omeprazole, ketoconazole, and tiron, thereby supporting the occurrence of a mitochondrial P450 activity and O₂(•-) requirements. Mitochondrial P450-dependent activation of IMS SOD1 prevented O₂(•-)-induced loss of aconitase activity in intact mitochondria respiring in State 3. Optimal protection of aconitase activity was observed at 0.1μM P450 substrate concentration, evidencing a likely oxidative effect on the mitochondrial matrix by higher substrate concentrations. Likewise, enzyme activation mediated by mitochondrial P450 activity delayed CaCl₂-induced loss of transmembrane potential and decreased cytochrome c release. Omeprazole and ketoconazole abrogated both protecting mitochondrial functions promoted by melatonin and steroid hormones.

  11. Bioactive compounds and scavenging capacity of extracts from different parts of Vismia cauliflora against reactive oxygen and nitrogen species.

    Science.gov (United States)

    Ribeiro, Alessandra Braga; Berto, Alessandra; Chisté, Renan Campos; Freitas, Marisa; Visentainer, Jesuí V; Fernandes, Eduarda

    2015-01-01

    Vismia cauliflora A.C.Sm. [Hypericaceae (Clusiaceae)] is a plant from Amazonian forest. It is used by Amerindians to treat dermatosis and inflammatory processes in the skin and has been considered an interesting source of bioactive compounds. We evaluated the scavenging capacity of extracts from V. cauliflora (leaf, branch, stem bark, flower, and whole fruit) against reactive oxygen (ROS) and nitrogen species (RNS), namely, superoxide radical ([Formula: see text]), hydrogen peroxide (H2O2), hypochlorous acid (HOCl), singlet oxygen ((1)O2), nitric oxide ((•)NO), and peroxynitrite (ONOO(-)). In addition, for the first time, the profile of phenolic compounds and carotenoids was determined. The scavenging capacities of each extract were determined using specific probes (fluorescent, colorimetric, and chemiluminescent) to detect different reactive species ((1)O2, HOCl, H2O2, [Formula: see text], (•)NO, and ONOO(-)). The identification and the quantification of phenolic compounds and carotenoids were carried out by HPLC-DAD-ESI-MS/MS and HPLC-DAD, respectively. (-)-Epicatechin and proanthocyanidin dimers and trimer were the major phenolic compounds tentatively identified in leaf, branch, stem bark, and flower extracts, while dihydroxybenzoic acids were the major compounds in whole fruit extracts. All-trans-zeinoxanthin and all-trans-β-carotene were the major carotenoids tentatively identified in leaf extracts. All extracts of V. cauliflora showed high efficiency against all tested ROS and RNS, although flower and stem bark extracts exhibited the most remarkable scavenging capacity, especially for (•)NO and ONOO(-). Vismia cauliflora has great potential to be used in the development of phytopharmaceutical products due to its characteristic of being a promising source of bioactive compounds with high antioxidant properties.

  12. Supramolecular electron transfer by anion binding.

    Science.gov (United States)

    Fukuzumi, Shunichi; Ohkubo, Kei; D'Souza, Francis; Sessler, Jonathan L

    2012-10-11

    Anion binding has emerged as an attractive strategy to construct supramolecular electron donor-acceptor complexes. In recent years, the level of sophistication in the design of these systems has advanced to the point where it is possible to create ensembles that mimic key aspects of the photoinduced electron-transfer events operative in the photosynthetic reaction centre. Although anion binding is a reversible process, kinetic studies on anion binding and dissociation processes, as well as photoinduced electron-transfer and back electron-transfer reactions in supramolecular electron donor-acceptor complexes formed by anion binding, have revealed that photoinduced electron transfer and back electron transfer occur at time scales much faster than those associated with anion binding and dissociation. This difference in rates ensures that the linkage between electron donor and acceptor moieties is maintained over the course of most forward and back electron-transfer processes. A particular example of this principle is illustrated by electron-transfer ensembles based on tetrathiafulvalene calix[4]pyrroles (TTF-C4Ps). In these ensembles, the TTF-C4Ps act as donors, transferring electrons to various electron acceptors after anion binding. Competition with non-redox active substrates is also observed. Anion binding to the pyrrole amine groups of an oxoporphyrinogen unit within various supramolecular complexes formed with fullerenes also results in acceleration of the photoinduced electron-transfer process but deceleration of the back electron transfer; again, this is ascribed to favourable structural and electronic changes. Anion binding also plays a role in stabilizing supramolecular complexes between sulphonated tetraphenylporphyrin anions ([MTPPS](4-): M = H(2) and Zn) and a lithium ion encapsulated C(60) (Li(+)@C(60)); the resulting ensemble produces long-lived charge-separated states upon photoexcitation of the porphyrins.

  13. Anion conductance selectivity mechanism of the CFTR chloride channel.

    Science.gov (United States)

    Linsdell, Paul

    2016-04-01

    All ion channels are able to discriminate between substrate ions to some extent, a process that involves specific interactions between permeant anions and the so-called selectivity filter within the channel pore. In the cystic fibrosis transmembrane conductance regulator (CFTR) anion-selective channel, both anion relative permeability and anion relative conductance are dependent on anion free energy of hydration--anions that are relatively easily dehydrated tend to show both high permeability and low conductance. In the present work, patch clamp recording was used to investigate the relative conductance of different anions in CFTR, and the effect of mutations within the channel pore. In constitutively-active E1371Q-CFTR channels, the anion conductance sequence was Cl(-) > NO3(-) > Br(-) > formate > SCN(-) > I(-). A mutation that disrupts anion binding in the inner vestibule of the pore (K95Q) disrupted anion conductance selectivity, such that anions with different permeabilities showed almost indistinguishable conductances. Conversely, a mutation at the putative narrowest pore region that is known to disrupt anion permeability selectivity (F337A) had minimal effects on anion relative conductance. Ion competition experiments confirmed that relatively tight binding of permeant anions resulted in relatively low conductance. These results suggest that the relative affinity of ion binding in the inner vestibule of the pore controls the relative conductance of different permeant anions in CFTR, and that the pore has two physically distinct anion selectivity filters that act in series to control anion conductance selectivity and anion permeability selectivity respectively.

  14. Molecular anions sputtered from fluorides

    CERN Document Server

    Gnaser, H

    2002-01-01

    The emission of negatively charged ions from different fluoride samples (LiF, CaF sub 2 , LaF sub 3 and HfF sub 4) induced by sputtering with a 14.5-keV Cs sup + ion beam was studied. Sputtered ions were detected in a high-sensitivity double-focusing mass spectrometer. In particular, the possible existence of small doubly charged negative molecular ions was investigated. But whereas singly charged species of the general type MF sub n sup - (where M represents a metal atom) were detected with high abundances, stable dianions were observed in an unambiguous way only for one molecule: HfF sub 6 sup 2 sup -. The flight time through the mass spectrometer of approx 35 mu s establishes a lower limit with respect to the intrinsic lifetime of this doubly charged ion. For singly charged anions abundance distributions and, in selected cases, emission-energy spectra were recorded. For two ion species (Ca sup - and HfF sub 5 sup -) isotopic fractionation effects caused by the (velocity dependent) ionization process were d...

  15. A novel flow-injection analysis system for evaluation of antioxidants by using sodium dichloroisocyanurate as a source of hypochlorite anion.

    Science.gov (United States)

    Ichiba, H; Hanami, K; Yagasaki, K; Tanaka, M; Ito, H; Fukushima, T

    2012-02-01

    A flow injection analysis (FIA) system for evaluation of the antioxidant activity of a compound capable of scavenging a hypochlorite anion (OCl⁻), one of the reactive oxygen species (ROS), was developed. Aminophenyl fluorescein (APF), a fluorescence indicator of ROS, was mixed manually with the test compounds and the mixed solution was injected into the FIA system. The injected solution was reacted in-line with OCl⁻, that was produced by using sodium dichloroisocyanurate in the presence of 0.1 M CH3CO2Na in H2O. The fluorescence intensity of fluorescein generated from non-fluorescent APF was significantly attenuated in compounds that had a scavenging effect on OCl⁻. The precision obtained by the FIA system was satisfactory (relative standard deviation OCl⁻. Therefore, the proposed FIA system can be used as a screening assay for OCl⁻-scavenging compounds.

  16. Superoxide reductase from the syphilis spirochete Treponema pallidum: crystallization and structure determination using soft X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Silva, Teresa; Trincão, José; Carvalho, Ana L.; Bonifácio, Cecília; Auchère, Françoise; Moura, Isabel; Moura, José J. G.; Romão, Maria J., E-mail: mromao@dq.fct.unl.pt [REQUIMTE Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2005-11-01

    Superoxide reductase is a non-haem iron-containing protein involved in resistance to oxidative stress. The oxidized form of the protein has been crystallized and its three-dimensional structure solved. A highly redundant X-ray diffraction data set was collected on a rotating-anode generator using Cu Kα X-ray radiation. Four Fe atoms were located in the asymmetric unit corresponding to four protein molecules arranged as a dimer of homodimers. Superoxide reductase is a 14 kDa metalloprotein containing a catalytic non-haem iron centre [Fe(His){sub 4}Cys]. It is involved in defence mechanisms against oxygen toxicity, scavenging superoxide radicals from the cell. The oxidized form of Treponema pallidum superoxide reductase was crystallized in the presence of polyethylene glycol and magnesium chloride. Two crystal forms were obtained depending on the oxidizing agents used after purification: crystals grown in the presence of K{sub 3}Fe(CN){sub 6} belonged to space group P2{sub 1} (unit-cell parameters a = 60.3, b = 59.9, c = 64.8 Å, β = 106.9°) and diffracted beyond 1.60 Å resolution, while crystals grown in the presence of Na{sub 2}IrCl{sub 6} belonged to space group C2 (a = 119.4, b = 60.1, c = 65.6 Å, β = 104.9°) and diffracted beyond 1.55 Å. A highly redundant X-ray diffraction data set from the C2 crystal form collected on a copper rotating-anode generator (λ = 1.542 Å) clearly defined the positions of the four Fe atoms present in the asymmetric unit by SAD methods. A MAD experiment at the iron absorption edge confirmed the positions of the previously determined iron sites and provided better phases for model building and refinement. Molecular replacement using the P2{sub 1} data set was successful using a preliminary trace as a search model. A similar arrangement of the four protein molecules could be observed.

  17. Anion photoelectron imaging spectroscopy of glyoxal

    Science.gov (United States)

    Xue, Tian; Dixon, Andrew R.; Sanov, Andrei

    2016-09-01

    We report a photoelectron imaging study of the radical-anion of glyoxal. The 532 nm photoelectron spectrum provides the first direct spectroscopic determination of the adiabatic electron affinity of glyoxal, EA = 1.10 ± 0.02 eV. This assignment is supported by a Franck-Condon simulation of the experimental spectrum that successfully reproduces the observed spectral features. The vertical detachment energy of the radical-anion is determined as VDE = 1.30 ± 0.04 eV. The reported EA and VDE values are attributed to the most stable (C2h symmetry) isomers of the neutral and the anion.

  18. Antioxidant Activities of Total Pigment Extract from Blackberries

    OpenAIRE

    Jiao, Zhonggao; Liu, Jiechao; Wang, Sixin

    2005-01-01

    Total pigment has been extracted from blackberries and its antioxidant activity against lipid peroxidation and scavenging capacities towards superoxide anion radicals, hydroxyl radicals and nitrite in different in vitro systems have been investigated. The total pigment extract from blackberries (TPEB) exhibited strong antioxidant activity against lipid peroxidation in a linoleic acid model system and scavenging capacities towards superoxide anion radicals, generated by a pyrogallol autoxidati...

  19. The Evolution of the Scavenger Receptor Cysteine-Rich Domain of the Class A Scavenger Receptors

    Directory of Open Access Journals (Sweden)

    Nicholas eYap

    2015-07-01

    Full Text Available The class A Scavenger Receptor (cA-SR family is a group of five evolutionarily related innate immune receptors. The cA-SRs are known for their promiscuous ligand binding; as they have been shown to bind bacteria such as Streptococcus pneumoniae, and Escherichia coli, as well as different modified forms of low-density lipoprotein. Three of the five family members possess a Scavenger Receptor Cysteine Rich (SRCR domain while the remaining two receptors lack the domain. Previous work has suggested that the Macrophage Associated Receptor with COllagenous structure (MARCO shares a recent common ancestor with the non-SRCR-containing receptors; however the origin of the SRCR domain within the cA-SRs remains unknown. We hypothesize that the SRCR domains of the cA-SRs have a common origin that predates teleost fish. Using the newly available sequence data from sea lamprey and ghost shark genome projects, we have shown that MARCO shares a common ancestor with the SRCR-containing proteins. In addition, we explored the evolutionary relationships within the SRCR domain by reconstructing the ancestral SRCR domains of the cA-SRs. We identified a motif that is highly conserved between the cA-SR SRCR domains and the ancestral SRCR domain that consist of WGTVCDD. We also show that the GRAEVYY motif, a functionally important motif within MARCO, is poorly conserved in the other cA-SRs and in the reconstructed ancestral domain. Further, we identified three sites within MARCO’s SRCR domain which are under positive selection. Two of these sites lie adjacent to the conserved WGTVCDD motif, and may indicate a potential biological function for these sites. Together these findings indicate a common origin of the SRCR domain within the cA-SRs; however different selective pressures between the proteins may have caused MARCOs SRCR domain to evolve to contain different functional motifs when compared to the other SRCR-containing cA-SRs.

  20. Free radical scavenging activity of leaves of Cucumis sativus

    Directory of Open Access Journals (Sweden)

    Pritesh Rashmikant Shah

    2013-11-01

    Full Text Available Cucumis sativus commonly called as ‘Cucumber’ is commonly used plant throughout the world. The plant is attributed to various uses in Ayurveda. The methanolic extract of leaves of Cucumis sativus was screened for free radical scavenging activity properties using gallic acid as standard antioxidant. Free radical scavenging activity was evaluated using 1, 1-diphenyl-2-picryl-hydrazyl (DPPH free radical. Different concentrations of leaf extract ranging from 100- 1000µg/ml were subjected to DPPH assay. Leaf extract showed a maximum DPPH scavenging activity of 86.17% at 1000µg/ml, whereas for Gallic acid it was found to be 98.03%. The study reveals that antioxidant activity of plant would exert beneficial effects if consumed.

  1. Free radical scavenging (DPPH) potential in nine Mentha species.

    Science.gov (United States)

    Ahmad, Nisar; Fazal, Hina; Ahmad, Iftikhar; Abbasi, Bilal Haider

    2012-02-01

    Mentha species are used in every day life in various food items. These species produce valuable secondary metabolites that scavenge toxic free radicals. Toxic free radicals can cause different diseases in the human body. In the present study free radical scavenging potential (1,1-diphenyl-2-picrylhydrazyl scavenging activity) in nine Mentha species were investigated to evaluate and explore new potential sources for natural antioxidants. The activity was performed after different time intervals with incubation period of 30 minutes. The methanolic extracts revealed that significantly higher activity (82%) was observed in Mentha suaveolens, followed by Mentha longifolia (79%), Mentha officinalis (76%) and Mentha piperita, Mentha pulegium, Mentha royleana (75%), respectively. Significantly same activity was observed in Mentha arvensis and Mentha spicata. Lower activity was observed in Mentha citrata (64%). The present study revealed that these species can be used as natural antioxidants.

  2. In vitro free radical scavenging activity of Ixora coccinea L

    Directory of Open Access Journals (Sweden)

    Moni Rani Saha

    2008-06-01

    Full Text Available Antioxidant activity of the methanol extract of Ixora coccinea L. was determined by DPPH free radical scavenging assay, reducing power and total antioxidant capacity using phosphomolybdenum method. Preliminary phytochemical screening revealed that the extract of the flower of I. coccinea possesses flavonoids, steroids and tannin materials. The extract showed significant activities in all antioxidant assays compared to the standard antioxidant in a dose dependent manner and remarkable activities to scavenge reactive oxygen species (ROS may be attributed to the high amount of hydrophilic phenolics. In DPPH radical scavenging assay the IC50 value of the extract was found to be 100.53 μg/mL while ascorbic acid had the IC50 value 58.92 μg/mL. Moreover, I. coccinea extract showed strong reducing power and total antioxidant capacity.

  3. Nitric oxide-scavenging properties of some chalcone derivatives.

    Science.gov (United States)

    Herencia, Felipe; López-García, M Pilar; Ubeda, Amalia; Ferrándiz, M Luisa

    2002-03-01

    The implication of NO in many inflammatory diseases has been well documented. We have previously reported that some chalcone derivatives can control the iNOS pathway in inflammatory processes. In the present study, we have assessed the NO-scavenging capacity of three chalcone derivatives (CH8, CH11, and CH12) in a competitive assay with HbO(2), a well-known physiologically relevant NO scavenger. Our data identify these chalcones as new NO scavengers. The estimated second-order rate constants (k(s)) for the reaction of the three derivatives with NO is in the same range as the value obtained for HbO(2), with CH11 exerting the greatest effect. These results suggest an additional action of these compounds on NO regulation.

  4. High throughput assay for evaluation of reactive carbonyl scavenging capacity

    Directory of Open Access Journals (Sweden)

    N. Vidal

    2014-01-01

    Full Text Available Many carbonyl species from either lipid peroxidation or glycoxidation are extremely reactive and can disrupt the function of proteins and enzymes. 4-hydroxynonenal and methylglyoxal are the most abundant and toxic lipid-derived reactive carbonyl species. The presence of these toxics leads to carbonyl stress and cause a significant amount of macromolecular damages in several diseases. Much evidence indicates trapping of reactive carbonyl intermediates may be a useful strategy for inhibiting or decreasing carbonyl stress-associated pathologies. There is no rapid and convenient analytical method available for the assessment of direct carbonyl scavenging capacity, and a very limited number of carbonyl scavengers have been identified to date, their therapeutic potential being highlighted only recently. In this context, we have developed a new and rapid sensitive fluorimetric method for the assessment of reactive carbonyl scavengers without involvement glycoxidation systems. Efficacy of various thiol- and non-thiol-carbonyl scavenger pharmacophores was tested both using this screening assay adapted to 96-well microplates and in cultured cells. The scavenging effects on the formation of Advanced Glycation End-product of Bovine Serum Albumin formed with methylglyoxal, 4-hydroxynonenal and glucose-glycated as molecular models were also examined. Low molecular mass thiols with an α-amino-β-mercaptoethane structure showed the highest degree of inhibitory activity toward both α,β-unsaturated aldehydes and dicarbonyls. Cysteine and cysteamine have the best scavenging ability toward methylglyoxal. WR-1065 which is currently approved for clinical use as a protective agent against radiation and renal toxicity was identified as the best inhibitor of 4-hydroxynonenal.

  5. The Impact of Flight Hardware Scavenging on Space Logistics

    Science.gov (United States)

    Oeftering, Richard C.

    2011-01-01

    For a given fixed launch vehicle capacity the logistics payload delivered to the moon may be only roughly 20 percent of the payload delivered to the International Space Station (ISS). This is compounded by the much lower flight frequency to the moon