WorldWideScience

Sample records for superoxide anion scavenging

  1. Mitochondrial respiration scavenges extramitochondrial superoxide anion via a nonenzymatic mechanism.

    OpenAIRE

    Guidot, D M; Repine, J E; Kitlowski, A D; Flores, S C; Nelson, S K; Wright, R M; McCord, J M

    1995-01-01

    We determined that mitochondrial respiration reduced cytosolic oxidant stress in vivo and scavenged extramitochondrial superoxide anion (O2-.) in vitro. First, Saccharomyces cerevisiae deficient in both the cytosolic antioxidant cupro-zinc superoxide dismutase (Cu,Zn-SOD) and electron transport (Rho0 state) grew poorly (P 0.05) in all yeast. Seco...

  2. Effect of superoxide anion scavenger on rat hearts with chronic intermittent hypoxia.

    Science.gov (United States)

    Pai, Peiying; Lai, Ching Jung; Lin, Ching-Yuang; Liou, Yi-Fan; Huang, Chih-Yang; Lee, Shin-Da

    2016-04-15

    Only very limited information regarding the protective effects of the superoxide anion scavenger on chronic intermittent hypoxia-induced cardiac apoptosis is available. The purpose of this study is to evaluate the effects of the superoxide anion scavenger on cardiac apoptotic and prosurvival pathways in rats with sleep apnea. Forty-two Sprague-Dawley rats were divided into three groups, rats with normoxic exposure (Control, 21% O2, 1 mo), rats with chronic intermittent hypoxia exposure (Hypoxia, 3-7% O2vs. 21% O2per 40 s cycle, 8 h per day, 1 mo), and rats with pretreatment of the superoxide anion scavenger and chronic intermittent hypoxia exposure (Hypoxia-O2 (-)-Scavenger, MnTMPyP pentachloride, 1 mg/kg ip per day; 3-7% O2vs. 21% O2per 40 s cycle, 8 h per day, 1 mo) at 5-6 mo of age. After 1 mo, the protein levels and apoptotic cells of excised hearts from three groups were measured by Western blotting and terminal deoxynucleotide transferase-mediated dUTP nick end labeling (TUNEL) assay. The superoxide anion scavenger decreased hypoxia-induced myocardial architecture abnormalities, left ventricular hypertrophy, and TUNEL-positive apoptosis. The superoxide anion scavenger decreased hypoxia-induced Fas ligand, Fas death receptors, Fas-associated death domain (FADD), activated caspase-8, and activated caspase-3 (Fas-dependent apoptotic pathway) as well as Bad, activated caspase-9 and activated caspase-3 (mitochondria-dependent apoptotic pathway), endonuclease G (EndoG), apoptosis-inducing factor (AIF), and TUNEL-positive apoptosis. The superoxide anion scavenger increased IGF-1, IGF-1R, p-PI3k, p-Akt, p-Bad, Bcl-2, and Bcl-xL (survival pathway). Our findings imply that the superoxide anion scavenger might prevent cardiac Fas-mediated and mitochondrial-mediated apoptosis and enhance the IGF-1-related survival pathway in chronic intermittent hypoxia. The superoxide anion scavenger may prevent chronic sleep apnea-enhanced cardiac apoptotic pathways and enhances

  3. Potential Superoxide Anion Radical Scavenging Activity of Doum Palm ( Hyphaene thebaica L. Leaves Extract

    Directory of Open Access Journals (Sweden)

    Mohamed M. Al-Azizi

    2008-08-01

    Full Text Available The antioxidant activity of the aqueous ethanolic extract of Doum leaves, Hyphaene thebaica L. (Palmae, was studied. Data obtained showed that the extract scavenged superoxide anion radicals ( IC 50=1602 µg/ml in a dose dependant manner using xanthine/hypoxanthine oxidase assay. Four major flvonoidal compounds were identified by LC/SEI as; Quercetin glucoside , Kaempferol rhamnoglucoside, Dimethyoxyquercetin rhamnoglucoside . While , further in-depth phytochemical investigation of this extract lead to the isolation and identification of fourteen compounds ;their structures were elucidated based upon the interpretation of their spectral data(UV, 1H, 13C NMR and ESI/MS as; 8-C-β-D-glucopyranosyl-5, 7, 4`-trihydroxyflavone (vitexin 1, 6-C-β-D-glucopyranosyl-5, 7, 4`-trihydroxyflavone (iso-vitexin 2, quercetin 3-O-β- 4C 1-D-glucopyranoside 3, gallic acid 4, quercetin 7-O-β- 4C 1-D-glucoside 5, luteolin 7-O-β- 4C 1-D-glucoside 6, tricin 5 O-β- 4C 1-D-glucoside 7, 7, 3` dimethoxy quercetin 3-O-[6''-O-α-L-rhamnopyranosyl]-β-D-gluco-pyranoside (Rhamnazin 3-O-rutinoside 8, kaempferol-3-O-[6''-O-α- L-rhamnopyranosyl]-β- D-glucopyranoside (nicotiflorin 9, apigenin 10, luteolin 11, tricin 12, quercetin 13 and kaempferol 14

  4. The activity of 3- and 7-hydroxyflavones as scavengers of superoxide radical anion generated from photo-excited riboflavin

    International Nuclear Information System (INIS)

    Montana, P.; Pappano, N.; Debattista, N.; Avila, V.; Posadaz, A.; Bertolotti, S.G.; Garcia, N.A.

    2003-01-01

    The visible-light irradiation of the system Riboflavin plus 3-hydroxyflavone or plus 7-hydroxyflavone, under aerobic conditions, produces a series of competitive processes that depend on the relative concentrations of the pigment and the flavones. The picture comprises photochemical mechanisms that potentially operate in nature. They mainly include the quenching of Rf singlet ( 1 Rf*) and triplet ( 3 Rf*) excited states (with bimolecular rate constants in the order of 10 9 M -1 s -1 ) and superoxide radical anion-mediated reactions. The participation of the oxidative species singlet molecular oxygen was not detected. The overall result shows chemical transformations in both Rf and 3-hydroxyflavone. No experimental evidence was found indicating any chemical reaction involving 7-hydroxyflavone. The fate of the pigment also depends on the amount of the dissolved flavonoid. At 50 mM concentrations of these compounds or higher, practically no photochemistry occurs, owing to the extensive quenching of ( 1 Rf*) When the concentration of the flavones is in the mM range or lower, ( 3 Rf*) is photogenerated. Then, the excited triplet species can be quenched mainly by the flavones through an electron-transfer process, yielding the semireduced pigment. The latter interacts with dissolved oxygen producing O 2 .- , which reacts with both the pigment and 3-hydroxyflavone. In summary, 3-hydroxyflavone and 7-hydroxyflavone participate in the generation of superoxide ion in an Rf-sensitized process, and simultaneously 3-hydroxyflavone constitutes a degradable quencher of the oxidative species. (author)

  5. A superoxide anion-scavenger, 1,3-selenazolidin-4-one suppresses serum deprivation-induced apoptosis in PC12 cells by activating MAP kinase

    International Nuclear Information System (INIS)

    Nishina, Atsuyoshi; Kimura, Hirokazu; Kozawa, Kunihisa; Sommen, Geoffroy; Nakamura, Takao; Heimgartner, Heinz; Koketsu, Mamoru; Furukawa, Shoei

    2011-01-01

    Synthetic organic selenium compounds, such as ebselen, may show glutathione peroxidase-like antioxidant activity and have a neurotrophic effect. We synthesized 1,3-selenazolidin-4-ones, new types of synthetic organic selenium compounds (five-member ring compounds), to study their possible applications as antioxidants or neurotrophic-like molecules. Their superoxide radical scavenging effects were assessed using the quantitative, highly sensitive method of real-time kinetic chemiluminescence. At 166 μM, the O 2 − scavenging activity of 1,3-selenazolidin-4-ones ranged from 0 to 66.2%. 2-[3-(4-Methoxyphenyl)-4-oxo-1,3-selenazolidin-2-ylidene]malononitrile (compound b) showed the strongest superoxide anion-scavenging activity among the 6 kinds of 2-methylene-1,3-selenazolidin-4-ones examined. Compound b had a 50% inhibitory concentration (IC 50 ) at 92.4 μM and acted as an effective and potentially useful O 2 − scavenger in vitro. The effect of compound b on rat pheochromocytome cell line PC12 cells was compared with that of ebselen or nerve growth factor (NGF) by use of the MTT [3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide] assay. When ebselen was added at 100 μM or more, toxicity toward PC12 cells was evident. On the contrary, compound b suppressed serum deprivation-induced apoptosis in PC12 cells more effectively at a concentration of 100 μM. The activity of compound b to phosphorylate mitogen-activated protein kinase/extracellular signal-regulated protein kinase (ERK) 1/2 (MAP kinase) in PC12 cells was higher than that of ebselen, and the former at 100 μM induced the phosphorylation of MAP kinase to a degree similar to that induced by NGF. From these results, we conclude that this superoxide anion-scavenger, compound b, suppressed serum deprivation-induced apoptosis by promoting the phosphorylation of MAP kinase. -- Highlights: ► We newly synthesized 1,3-selenazolidin-4-ones to study their possible applications. ► Among new

  6. A superoxide anion-scavenger, 1,3-selenazolidin-4-one suppresses serum deprivation-induced apoptosis in PC12 cells by activating MAP kinase

    Energy Technology Data Exchange (ETDEWEB)

    Nishina, Atsuyoshi, E-mail: nishina@yone.ac.jp [Yonezawa Women' s Junior College, 6-15-1 Tohrimachi, Yonezawa, Yamagata 992-0025 (Japan); Kimura, Hirokazu; Kozawa, Kunihisa [Gunma Prefectural Institute of Public Health and Environmental Sciences, 378 Kamioki, Maebashi, Gunma 371-0052 (Japan); Sommen, Geoffroy [Lonza Braine SA, Chaussee de Tubize 297, B-1420 Braine l' Alleud (Belgium); Nakamura, Takao [Department of Biomedical Information Engineering, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585 (Japan); Heimgartner, Heinz [University of Zuerich, Institut of Organic Chemistry, Winterthurerstrasse 190, CH-8057 Zuerich (Switzerland); Koketsu, Mamoru [Department of Materials Science and Technology, Faculty of Engineering, Gifu University, Gifu 501-1193 (Japan); Furukawa, Shoei [Laboratory of Molecular Biology, Gifu Pharmaceutical University, 5-6-1 Mitahora-higashi, Gifu 502-8585 (Japan)

    2011-12-15

    Synthetic organic selenium compounds, such as ebselen, may show glutathione peroxidase-like antioxidant activity and have a neurotrophic effect. We synthesized 1,3-selenazolidin-4-ones, new types of synthetic organic selenium compounds (five-member ring compounds), to study their possible applications as antioxidants or neurotrophic-like molecules. Their superoxide radical scavenging effects were assessed using the quantitative, highly sensitive method of real-time kinetic chemiluminescence. At 166 {mu}M, the O{sub 2}{sup -} scavenging activity of 1,3-selenazolidin-4-ones ranged from 0 to 66.2%. 2-[3-(4-Methoxyphenyl)-4-oxo-1,3-selenazolidin-2-ylidene]malononitrile (compound b) showed the strongest superoxide anion-scavenging activity among the 6 kinds of 2-methylene-1,3-selenazolidin-4-ones examined. Compound b had a 50% inhibitory concentration (IC{sub 50}) at 92.4 {mu}M and acted as an effective and potentially useful O{sub 2}{sup -} scavenger in vitro. The effect of compound b on rat pheochromocytome cell line PC12 cells was compared with that of ebselen or nerve growth factor (NGF) by use of the MTT [3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide] assay. When ebselen was added at 100 {mu}M or more, toxicity toward PC12 cells was evident. On the contrary, compound b suppressed serum deprivation-induced apoptosis in PC12 cells more effectively at a concentration of 100 {mu}M. The activity of compound b to phosphorylate mitogen-activated protein kinase/extracellular signal-regulated protein kinase (ERK) 1/2 (MAP kinase) in PC12 cells was higher than that of ebselen, and the former at 100 {mu}M induced the phosphorylation of MAP kinase to a degree similar to that induced by NGF. From these results, we conclude that this superoxide anion-scavenger, compound b, suppressed serum deprivation-induced apoptosis by promoting the phosphorylation of MAP kinase. -- Highlights: Black-Right-Pointing-Pointer We newly synthesized 1,3-selenazolidin-4-ones to

  7. Polysulfides and products of H2S/S-nitrosoglutathione in comparison to H2S, glutathione and antioxidant Trolox are potent scavengers of superoxide anion radical and produce hydroxyl radical by decomposition of H2O2.

    Science.gov (United States)

    Misak, Anton; Grman, Marian; Bacova, Zuzana; Rezuchova, Ingeborg; Hudecova, Sona; Ondriasova, Elena; Krizanova, Olga; Brezova, Vlasta; Chovanec, Miroslav; Ondrias, Karol

    2018-06-01

    Exogenous and endogenously produced sulfide derivatives, such as H 2 S/HS - /S 2- , polysulfides and products of the H 2 S/S-nitrosoglutathione interaction (S/GSNO), affect numerous biological processes in which superoxide anion (O 2 - ) and hydroxyl (OH) radicals play an important role. Their cytoprotective-antioxidant and contrasting pro-oxidant-toxic effects have been reported. Therefore, the aim of our work was to contribute to resolving this apparent inconsistency by studying sulfide derivatives/free radical interactions and their consequent biological effects compared to the antioxidants glutathione (GSH) and Trolox. Using the electron paramagnetic resonance (EPR) spin trapping technique and O 2 - , we found that a polysulfide (Na 2 S 4 ) and S/GSNO were potent scavengers of O 2 - and cPTIO radicals compared to H 2 S (Na 2 S), GSH and Trolox, and S/GSNO scavenged the DEPMPO-OH radical. As detected by the EPR spectra of DEPMPO-OH, the formation of OH in physiological solution by S/GSNO was suggested. All the studied sulfide derivatives, but not Trolox or GSH, had a bell-shaped potency to decompose H 2 O 2 and produced OH in the following order: S/GSNO > Na 2 S 4  ≥ Na 2 S > GSH = Trolox = 0, but they scavenged OH at higher concentrations. In studies of the biological consequences of these sulfide derivatives/H 2 O 2 properties, we found the following: (i) S/GSNO alone and all sulfide derivatives in the presence of H 2 O 2 cleaved plasmid DNA; (ii) S/GSNO interfered with viral replication and consequently decreased the infectivity of viruses; (iii) the sulfide derivatives induced apoptosis in A2780 cells but inhibited apoptosis induced by H 2 O 2 ; and (iv) Na 2 S 4 modulated intracellular calcium in A87MG cells, which depended on the order of Na 2 S 4 /H 2 O 2 application. We suggest that the apparent inconsistency of the cytoprotective-antioxidant and contrasting pro-oxidant-toxic biological effects of sulfide derivatives results from their time

  8. Superoxide anion production by human neutrophils activated by Trichomonas vaginalis.

    Science.gov (United States)

    Song, Hyun-Ouk; Ryu, Jae-Sook

    2013-08-01

    Neutrophils are the predominant inflammatory cells found in vaginal discharges of patients infected with Trichomonas vaginalis. In this study, we examined superoxide anion (O2 (.-)) production by neutrophils activated by T. vaginalis. Human neutrophils produced superoxide anions when stimulated with either a lysate of T. vaginalis, its membrane component (MC), or excretory-secretory product (ESP). To assess the role of trichomonad protease in production of superoxide anions by neutrophils, T. vaginalis lysate, ESP, and MC were each pretreated with a protease inhibitor cocktail before incubation with neutrophils. Superoxide anion production was significantly decreased by this treatment. Trichomonad growth was inhibited by preincubation with supernatants of neutrophils incubated for 3 hr with T. vaginalis lysate. Furthermore, myeloperoxidase (MPO) production by neutrophils was stimulated by live trichomonads. These results indicate that the production of superoxide anions and MPO by neutrophils stimulated with T. vaginalis may be a part of defense mechanisms of neutrophils in trichomoniasis.

  9. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    International Nuclear Information System (INIS)

    Rodacka, Aleksandra; Serafin, Eligiusz; Puchala, Mieczyslaw

    2010-01-01

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as · OH and ONOO - . In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  10. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Rodacka, Aleksandra, E-mail: olakow@biol.uni.lodz.p [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland); Serafin, Eligiusz, E-mail: serafin@biol.uni.lodz.p [Laboratory of Computer and Analytical Techniques, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland); Puchala, Mieczyslaw, E-mail: puchala@biol.uni.lodz.p [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland)

    2010-09-15

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as {sup {center_dot}}OH and ONOO{sup -}. In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  11. Superoxide scavenging activity of pirfenidone-iron complex

    International Nuclear Information System (INIS)

    Mitani, Yoshihiro; Sato, Keizo; Muramoto, Yosuke; Karakawa, Tomohiro; Kitamado, Masataka; Iwanaga, Tatsuya; Nabeshima, Tetsuji; Maruyama, Kumiko; Nakagawa, Kazuko; Ishida, Kazuhiko; Sasamoto, Kazumi

    2008-01-01

    Pirfenidone (PFD) is focused on a new anti-fibrotic drug, which can minimize lung fibrosis etc. We evaluated the superoxide (O 2 ·- ) scavenging activities of PFD and the PFD-iron complex by electron spin resonance (ESR) spectroscopy, luminol-dependent chemiluminescence assay, and cytochrome c reduction assay. Firstly, we confirmed that the PFD-iron complex was formed by mixing iron chloride with threefold molar PFD, and the complex was stable in distillated water and ethanol. Secondary, the PFD-iron complex reduced the amount of O 2 ·- produced by xanthine oxidase/hypoxanthine without inhibiting the enzyme activity. Thirdly, it also reduced the amount of O 2 ·- released from phorbor ester-stimulated human neutrophils. PFD alone showed few such effects. These results suggest the possibility that the O 2 ·- scavenging effect of the PFD-iron complex contributes to the anti-fibrotic action of PFD used for treating idiopathic pulmonary fibrosis

  12. The superoxide scavenger TEMPOL induces urokinase receptor (uPAR expression in human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Francis Joseph

    2006-06-01

    Full Text Available Abstract There is little understanding of the effect that reactive oxygen metabolites have on cellular behavior during the processes of invasion and metastasis. These oxygen metabolites could interact with a number of targets modulating their function such as enzymes involved in basement membrane dissolution, adhesion molecules involved in motility or receptors involved in proliferation. We investigated the effect of increased scavenging of superoxide anions on the expression of the urokinase receptor (uPAR in PC-3M human prostate cancer cells. Urokinase receptor is a GPI-linked cell surface molecule which mediates multiple functions including adhesion, proliferation and pericellular proteolysis. Addition of the superoxide scavenger 4-hydroxy-2,2,6,6-tetramethylpiperidinyloxy (TEMPOL to PC-3M cultures stimulated expression of uPAR protein peaking between 48 and 72 hours. Cell surface expression of the uPAR was also increased. Surprisingly, uPAR transcript levels increased only slightly and this mild increase did not coincide with the striking degree of protein increase. This disparity indicates that the TEMPOL effect on uPAR occurs through a post-transcriptional mechanism. TEMPOL presence in PC-3M cultures reduced intracellular superoxide-type species by 75% as assayed by NBT dye conversion; however this reduction significantly diminished within hours following TEMPOL removal. The time gap between TEMPOL treatment and peak uPAR protein expression suggests that reduction of reactive oxygen metabolites in prostate cancer cells initiates a multistep pathway which requires several hours to culminate in uPAR induction. These findings reveal a novel pathway for uPAR regulation involving reactive oxygens such as superoxide anion.

  13. Superoxide anion production and superoxide dismutase and catalase activities in Coxiella burnetii.

    OpenAIRE

    Akporiaye, E T; Baca, O G

    1983-01-01

    Coxiella burnetii was examined for superoxide anion (O2-) production and superoxide dismutase and catalase activities. The organism generated O2- at pH 4.5 but not at pH 7.4. The rickettsia displayed superoxide dismutase activity distinguishable from that of the host cell (L-929 mouse fibroblast). Catalase activity was maximal at pH 7.0 and diminished at pH 4.5. These enzymes may account, in part, for the ability of this obligate intracellular parasite to survive within phagocytes.

  14. The French Paradox: Determining the Superoxide-Scavenging Capacity of Red Wine and Other Beverages

    Science.gov (United States)

    Logan, Barry A.; Hammond, Matthew P.; Stormo, Benjamin M.

    2008-01-01

    Plant-derived phenolic compounds such as those found in red wine, tea, and certain fruit juices may protect against cardiovascular disease by detoxifying (scavenging) superoxide and other unstable reactive oxygen species. We present a laboratory exercise that can be used to assess the superoxide-scavenging capacity of beverages. Among the…

  15. Electrocatalytic analysis of superoxide anion radical using nitrogen-doped graphene supported Prussian Blue as a biomimetic superoxide dismutase

    International Nuclear Information System (INIS)

    Liu, Tingting; Niu, Xiangheng; Shi, Libo; Zhu, Xiang; Zhao, Hongli; Lana, Minbo

    2015-01-01

    Graphical abstract: Prussian Blue (PB) cubes supported on nitrogen-doped graphene sheets (NGS) were synthesized using a simple and scalable method, and the utilization of the PB-NGS hybrid as an efficient superoxide dismutase mimic in the electrochemical sensing of O 2 ·− was demonstrated. - Highlights: • Facile and scalable synthesis of Prussian Blue cubes supported on nitrogen-doped graphene; • Nitrogen-doped graphene supported Prussian Blue as an efficient biomimetic superoxide dismutase for the electrocatalytic sensing of superoxide anion; • Good sensitivity, excellent selectivity and attractive long-term stability for superoxide anion sensing. - Abstract: Considering the double-sided roles of superoxide anion radical, monitoring of its track in living systems is attracting increasing academic and practical interest. Here we synthesized Prussian Blue (PB) cubes that were supported on nitrogen-doped graphene sheets (NGS) using a facile and scalable method, and explored their potential utilization in the electrochemical sensing of superoxide anion. As an efficient superoxide dismutase mimic, direct electron transfer of the prepared PB-NGS hybrid immobilized on a screen-printed gold electrode was harvested in physiological media. With the bifunctional activities, the synthetic mimic could catalyze the dismutation of superoxide anion via the redox cycle of active iron. By capturing the electro-reduction amperometric responses of superoxide anion radical to hydrogen peroxide in the cathodic polarization, highly sensitive determination (a sensitivity of as high as 0.32 μA cm −2 μM −1 ) of the target was achieved, with no interference from common coexisting species including ascorbic acid, dopamine, and uric acid observed. Compared to natural superoxide dismutases, the artificial enzyme mimic exhibited favorable activity stability, indicating its promising applications in the in vivo long-term monitoring of superoxide anion

  16. Trypsin Binding with Copper Ions Scavenges Superoxide: Molecular Dynamics-Based Mechanism Investigation

    Directory of Open Access Journals (Sweden)

    Xin Li

    2018-01-01

    Full Text Available Trypsin is a serine protease, which has been proved to be a novel superoxide scavenger. The burst of superoxide induced by polychlorinated biphenyls can be impeded by trypsin in both wild type and sod knockout mutants of Escherichia coli. The experimental results demonstrated that the activities of superoxide scavenging of trypsin were significantly accelerated by Cu ions. Also, with the addition of Cu ions, a new β-sheet (β7 transited from a random coil in the Cu(II-trypsin (TP system, which was favorable for the formation of more contacts with other sheets of trypsin. Residue–residue network analysis and the porcupine plots proved that the Cu ion in trypsin strengthened some native interactions among residues, which ultimately resulted in much greater stability of the Cu(II-TP system. Moreover, compact and stable trypsin structures with Cu ions might be responsible for significantly provoking the activity of superoxide scavenging.

  17. 2,4,6-Trichlorophenylhydrazine Schiff bases as DPPH radical and super oxide anion scavengers.

    Science.gov (United States)

    Khan, Khalid Mohammed; Shah, Zarbad; Ahmad, Viqar Uddin; Khan, Momin; Taha, Muhammad; Rahim, Fazal; Ali, Sajjad; Ambreen, Nida; Perveen, Shahnaz; Choudhary, M Iqbal; Voelter, Wolfgang

    2012-05-01

    Syntheses of thirty 2,4,6-trichlorophenylhydrazine Schiff bases 1-30 were carried out and evaluated for their in vitro DPPH radical and super oxide anion scavenging activities. Compounds 1-30 have shown a varying degree of DPPH radical scavenging activity and their IC50 values range between 4.05-369.30 µM. The compounds 17, 28, 18, 14, 8, 15, 12, 2, 29, and 7 exhibited IC50 values ranging between 4.05±0.06-24.42±0.86 µM which are superior to standard n-propylgallate (IC50=30.12±0.27 µM). Selected compounds have shown a varying degree of superoxide anion radical scavenger activity and their IC50 values range between 91.23-406.90 µM. The compounds 28, 8, 17, 15, and 14, showed IC50 values between 91.23±1.2-105.31±2.29 µM which are superior to standard n-propylgallate (IC50=106.34±1.6 µM).

  18. Induction of Apoptosis by Superoxide Anion and the Protective Effects of Selenium and Vitamin E

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective The purpose of this study is to investigate the effect of superoxide anion on the apoptosis of cultured fibroblasts and the protective role of selenium and Vitamin E. Methods Cultured fibroblasts (NIH3T3), with or without selenium or vitamin E in the medium, were treated by superoxide anion produced by xanthine/xanthine oxidase reaction system and changes in cell structure and DNA were observed microscopically and electrophoretically. Results Apoptosis was observed when superoxide anion at a concentration of 5 nmol/L or 10 nmol/L had acted on the fibroblasts for 5-10 h. Selenium and Vitamin E in the medium inhibited the apoptosis significantly when their concentrations reached 1.15 mol/L and 2.3 mol/L respectively. Conclusion Selenium and vitamin E have protective effect against the apoptosis induced by superoxide anion. The effect of selenium is more remarkable than that of vitamin E.

  19. Neutrophil superoxide-anion generating capacity in chronic smoking ...

    Indian Academy of Sciences (India)

    Unknown

    To this purpose, we randomly assigned 128 male chronic smokers (37 ± 21 pack years of smoking) ... Secondly, in non-smoking human subjects we have recently shown ... therapy in chronic smoking affects superoxide generating capacity of ...

  20. Formation and scavenging of superoxide in chloroplasts, with relation to injury by sulfur dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Asada, K

    1980-01-01

    Injury of plant leaf cells by sulfur dioxide-exposure is greater in day time than in night. A hypothesis is proposed that the free radical chain oxidation of sulfite is initiated by the superoxide radicals (O/sub 2//sup -/) produced in illuminated chloroplasts, and that the resulting amplified production of O/sub 2//sup -/, the hydroxyl radicals and the bisulfite radicals causes the injury of leaf tissues. In this review, the production of O/sub 2//sup -/ in illuminated chloroplasts and scavenging of O/sub 2//sup -/ by superoxide dismutase and their relation to oxidation of sulfite in chloroplasts are discussed. Superoxide dismutase in chloroplasts plays an important role in protecting leaf cells from injury by sulfur dioxide.

  1. Neutrophil superoxide-anion generating capacity in chronic smoking ...

    Indian Academy of Sciences (India)

    We investigated whether long-term -tocopherol therapy in chronic smoking affects superoxide generating capacity of neutrophils ex vivo. To this purpose, we randomly assigned 128 male chronic smokers (37 ± 21 pack years of smoking) to treatment with placebo ( = 64) or -tocopherol (400 IU dL--tocopherol daily, ...

  2. Caveolin-1 sensitizes cisplatin-induced lung cancer cell apoptosis via superoxide anion-dependent mechanism.

    Science.gov (United States)

    Pongjit, Kanittha; Chanvorachote, Pithi

    2011-12-01

    Caveolin-1 (Cav-1) expression frequently found in lung cancer was linked with disease prognosis and progression. This study reveals for the first time that Cav-1 sensitizes cisplatin-induced lung carcinoma cell death by the mechanism involving oxidative stress modulation. We established stable Cav-1 overexpressed (H460/Cav-1) cells and investigated their cisplatin susceptibility in comparison with control-transfected cells and found that Cav-1 expression significantly enhanced cisplatin-mediated cell death. Results indicated that the different response to cisplatin between these cells was resulted from different level of superoxide anion induced by cisplatin. Inhibitory study revealed that superoxide anion inhibitor MnTBAP could inhibit cisplatin-mediated toxicity only in H460/Cav-1 cells while had no effect on H460 cells. Further, superoxide anion detected by DHE probe indicated that H460/Cav-1 cells generated significantly higher superoxide anion level in response to cisplatin than that of control cells. The role of Cav-1 in regulating cisplatin sensitivity was confirmed in shRNA-mediated Cav-1 down-regulated (H460/shCav-1) cells and the cells exhibited decreased cisplatin susceptibility and superoxide generation. In summary, these findings reveal novel aspects regarding role of Cav-1 in modulating oxidative stress induced by cisplatin, possibly providing new insights for cancer biology and cisplatin-based chemotherapy.

  3. Direct antioxidant properties of methotrexate: Inhibition of malondialdehyde-acetaldehyde-protein adduct formation and superoxide scavenging

    Directory of Open Access Journals (Sweden)

    Matthew C. Zimmerman

    2017-10-01

    Full Text Available Methotrexate (MTX is an immunosuppressant commonly used for the treatment of autoimmune diseases. Recent observations have shown that patients treated with MTX also exhibit a reduced risk for the development of cardiovascular disease (CVD. Although MTX reduces systemic inflammation and tissue damage, the mechanisms by which MTX exerts these beneficial effects are not entirely known. We have previously demonstrated that protein adducts formed by the interaction of malondialdehyde (MDA and acetaldehyde (AA, known as MAA-protein adducts, are present in diseased tissues of individuals with rheumatoid arthritis (RA or CVD. In previously reported studies, MAA-adducts were shown to be highly immunogenic, supporting the concept that MAA-adducts not only serve as markers of oxidative stress but may have a direct role in the pathogenesis of inflammatory diseases. Because MAA-adducts are commonly detected in diseased tissues and are proposed to mitigate disease progression in both RA and CVD, we tested the hypothesis that MTX inhibits the generation of MAA-protein adducts by scavenging reactive oxygen species. Using a cell free system, we found that MTX reduces MAA-adduct formation by approximately 6-fold, and scavenges free radicals produced during MAA-adduct formation. Further investigation revealed that MTX directly scavenges superoxide, but not hydrogen peroxide. Additionally, using the Nrf2/ARE luciferase reporter cell line, which responds to intracellular redox changes, we observed that MTX inhibits the activation of Nrf2 in cells treated with MDA and AA. These studies define previously unrecognized mechanisms by which MTX can reduce inflammation and subsequent tissue damage, namely, scavenging free radicals, reducing oxidative stress, and inhibiting MAA-adduct formation.

  4. Superoxide Anions and NO in the Paraventricular Nucleus Modulate the Cardiac Sympathetic Afferent Reflex in Obese Rats

    Directory of Open Access Journals (Sweden)

    Qing-Bo Lu

    2017-12-01

    Full Text Available This study was conducted to explore the hypothesis that the endogenous superoxide anions (O2− and nitric oxide (NO system of the paraventricular nucleus (PVN regulates the cardiac sympathetic afferent reflex (CSAR contributing to sympathoexcitation in obese rats induced by a high-fat diet (42% kcal as fat for 12 weeks. CSAR was evaluated by monitoring the changes of renal sympathetic nerve activity (RSNA and the mean arterial pressure (MAP responses to the epicardial application of capsaicin (CAP in anaesthetized rats. In obese rats with hypertension (OH group or without hypertension (OB group, the levels of PVN O2−, angiotensinII (Ang II, Ang II type 1 receptor (AT1R, and nicotinamide adenine dinucleotide phosphate (NADPH oxidase were elevated, whereas neural NO synthase (nNOS and NO were significantly reduced. Moreover, CSAR was markedly enhanced, which promoted the elevation of plasma norepinephrine levels. The enhanced CSAR was attenuated by PVN application of the superoxide scavenger polyethylene glycol-superoxide dismutase (PEG-SOD and the NO donor sodium nitroprusside (SNP, and was strengthened by the superoxide dismutase inhibitor diethyldithiocarbamic acid (DETC and the nNOS inhibitor N(ω-propyl-l-arginine hydrochloride (PLA; conversely, there was a smaller CSAR response to PLA or SNP in rats that received a low-fat (12% kcal diet. Furthermore, PVN pretreatment with the AT1R antagonist losartan or with PEG-SOD, but not SNP, abolished Ang II-induced CSAR enhancement. These findings suggest that obesity alters the PVN O2− and NO system that modulates CSAR and promotes sympathoexcitation.

  5. Comparative study of copper(II)-curcumin complexes as superoxide dismutase mimics and free radical scavengers.

    Science.gov (United States)

    Barik, Atanu; Mishra, Beena; Kunwar, Amit; Kadam, Ramakant M; Shen, Liang; Dutta, Sabari; Padhye, Subhash; Satpati, Ashis K; Zhang, Hong-Yu; Indira Priyadarsini, K

    2007-04-01

    Two stoichiometrically different copper(II) complexes of curcumin (stoichiometry, 1:1 and 1:2 for copper:curcumin), were examined for their superoxide dismutase (SOD) activity, free radical-scavenging ability and antioxidant potential. Both the complexes are soluble in lipids and DMSO. The formation constants of the complexes were determined by voltammetry. EPR spectra of the complexes in DMSO at 77K showed that the 1:2 Cu(II)-curcumin complex is square planar and the 1:1 Cu(II)-curcumin complex is distorted orthorhombic. Cu(II)-curcumin complex (1:1) with larger distortion from square planar structure shows higher SOD activity. These complexes inhibit gamma-radiation induced lipid peroxidation in liposomes and react with DPPH acting as free radical scavengers. One-electron oxidation of the two complexes by radiolytically generated azide radicals in Tx-100 micellar solutions produced phenoxyl radicals, indicating that the phenolic moiety of curcumin in the complexes participates in free radical reactions. Depending on the structure, these two complexes possess different SOD activities, free radical neutralizing abilities and antioxidant potentials. In addition, quantum chemical calculations with density functional theory have been performed to support the experimental observations.

  6. Brain superoxide anion formation in immature rats during seizures: Protection by selected compounds

    Czech Academy of Sciences Publication Activity Database

    Folbergrová, Jaroslava; Otáhal, Jakub; Druga, Rastislav

    2012-01-01

    Roč. 233, č. 1 (2012), s. 421-429 ISSN 0014-4886 R&D Projects: GA ČR GA309/08/0292; GA ČR GAP303/10/0999 Institutional research plan: CEZ:AV0Z50110509 Keywords : immature rats * DL-homocysteic acid-induced seizures * superoxide anion * SOD mimetics * protection * Fluoro-Jade B staining * brain damage Subject RIV: FH - Neurology Impact factor: 4.645, year: 2012

  7. Early superoxide scavenging accelerates renal microvascular rarefaction and damage in the stenotic kidney.

    Science.gov (United States)

    Kelsen, Silvia; He, Xiaochen; Chade, Alejandro R

    2012-08-15

    Renal artery stenosis (RAS), the main cause of chronic renovascular disease (RVD), is associated with significant oxidative stress. Chronic RVD induces renal injury partly by promoting renal microvascular (MV) damage and blunting MV repair in the stenotic kidney. We tested the hypothesis that superoxide anion plays a pivotal role in MV dysfunction, reduction of MV density, and progression of renal injury in the stenotic kidney. RAS was induced in 14 domestic pigs and observed for 6 wk. Seven RAS pigs were chronically treated with the superoxide dismutase mimetic tempol (RAS+T) to reduce oxidative stress. Single-kidney hemodynamics and function were quantified in vivo using multidetector computer tomography (CT) and renal MV density was quantified ex vivo using micro-CT. Expression of angiogenic, inflammatory, and apoptotic factors was measured in renal tissue, and renal apoptosis and fibrosis were quantified in tissue sections. The degree of RAS and blood pressure were similarly increased in RAS and RAS+T. Renal blood flow (RBF) and glomerular filtration rate (GFR) were reduced in the stenotic kidney (280.1 ± 36.8 and 34.2 ± 3.1 ml/min, P < 0.05 vs. control). RAS+T kidneys showed preserved GFR (58.5 ± 6.3 ml/min, P = not significant vs. control) but a similar decreases in RBF (293.6 ± 85.2 ml/min) and further decreases in MV density compared with RAS. These changes were accompanied by blunted angiogenic signaling and increased apoptosis and fibrosis in the stenotic kidney of RAS+T compared with RAS. The current study shows that tempol administration provided limited protection to the stenotic kidney. Despite preserved GFR, renal perfusion was not improved by tempol, and MV density was further reduced compared with untreated RAS, associated with increased renal apoptosis and fibrosis. These results suggest that a tight balance of the renal redox status is necessary for a normal MV repair response to injury, at least at the early stage of RVD, and raise caution

  8. Acute Superoxide Radical Scavenging Reduces Blood Pressure but Does Not Influence Kidney Function in Hypertensive Rats with Postischemic Kidney Injury

    Directory of Open Access Journals (Sweden)

    Zoran Miloradović

    2014-01-01

    Full Text Available Acute kidney injury (AKI is associated with significant morbidity and mortality in hypertensive surroundings. We investigated superoxide radical molecules influence on systemic haemodynamic and kidney function in spontaneously hypertensive rats (SHR with induced postischemic AKI. Experiment was performed in anesthetized adult male SHR. The right kidney was removed, and left renal artery was subjected to ischemia by clamping for 40 minutes. The treated group received synthetic superoxide dismutase mimetic TEMPOL in the femoral vein 5 minutes before, during, and 175 minutes after the period of reperfusion, while the control AKI group received the vehicle via the same route. All parameters were measured 24 h after renal reperfusion. TEMPOL treatment significantly decreased mean arterial pressure and total peripheral resistance P<0.05 compared to AKI control. It also increased cardiac output and catalase activity P<0.05. Lipid peroxidation and renal vascular resistance were decreased in TEMPOL P<0.05. Plasma creatinine and kidney morphological parameters were unchanged among TEMPOL treated and control groups. Our study shows that superoxide radicals participate in haemodynamic control, but acute superoxide scavenging is ineffective in glomerular and tubular improvement, probably due to hypertension-induced strong endothelial dysfunction which neutralizes beneficial effects of O2− scavenging.

  9. Neuronal uptake and intracellular superoxide scavenging of a fullerene (C60)-poly(2-oxazoline)s nanoformulation

    KAUST Repository

    Tong, Jing

    2011-05-01

    Fullerene, the third allotrope of carbon, has been referred to as a "radical sponge" because of its powerful radical scavenging activities. However, the hydrophobicity and toxicity associated with fullerene limits its application as a therapeutic antioxidant. In the present study, we sought to overcome these limitations by generating water-soluble nanoformulations of fullerene (C(60)). Fullerene (C(60)) was formulated with poly(N-vinyl pyrrolidine) (PVP) or poly(2-alkyl-2-oxazoline)s (POx) homopolymer and random copolymer to form nano-complexes. These C(60)-polymer complexes were characterized by UV-vis spectroscopy, infrared spectroscopy (IR), dynamic light scattering (DLS), atomic force microscopy (AFM) and transmission electron microscopy (TEM). Cellular uptake and intracellular distribution of the selected formulations in catecholaminergic (CATH.a) neurons were examined by UV-vis spectroscopy, immunofluorescence and immunogold labeling. Electron paramagnetic resonance (EPR) spectroscopy was used to determine the ability of these C(60)-polymer complexes to scavenge superoxide. Their cytotoxicity was evaluated in three different cell lines. C(60)-POx and C(60)-PVP complexes exhibited similar physicochemical properties and antioxidant activities. C(60)-poly(2-ethyl-2-oxazoline) (PEtOx) complex, but not C(60)-PVP complex, were efficiently taken up by CATH.a neurons and attenuated the increase in intra-neuronal superoxide induced by angiotensin II (Ang II) stimulation. These results show that C(60)-POx complexes are non-toxic, neuronal cell permeable, superoxide scavenging antioxidants that might be promising candidates for the treatment of brain-related diseases associated with increased levels of superoxide.

  10. Mitochondria Superoxide Anion Production Contributes to Geranylgeraniol-Induced Death in Leishmania amazonensis

    Directory of Open Access Journals (Sweden)

    Milene Valéria Lopes

    2012-01-01

    Full Text Available Here we demonstrate the activity of geranylgeraniol, the major bioactive constituent from seeds of Bixa orellana, against Leishmania amazonensis. Geranylgeraniol was identified through 1H and 13C nuclear magnetic resonance imaging and DEPT. The compound inhibited the promastigote and intracellular amastigote forms, with IC50 of 11±1.0 and 17.5±0.7 μg/mL, respectively. This compound was also more toxic to parasites than to macrophages and did not cause lysis in human blood cells. Morphological and ultrastructural changes induced by geranylgeraniol were observed in the protozoan by electronic microscopy and included mainly mitochondria alterations and an abnormal chromatin condensation in the nucleus. These alterations were confirmed by Rh 123 and TUNEL assays. Additionally, geranylgeraniol induces an increase in superoxide anion production. Collectively, our in vitro studies indicate geranylgeraniol as a selective antileishmanial that appears to be mediated by apoptosis-like cell death.

  11. Scavenger

    DEFF Research Database (Denmark)

    2009-01-01

    Scavenger is one of the cyber foraging frameworks developed in the Locusts project. It has been released as open source software at http://code.google.com/p/scavenger-cf/......Scavenger is one of the cyber foraging frameworks developed in the Locusts project. It has been released as open source software at http://code.google.com/p/scavenger-cf/...

  12. Superoxide anions and hydrogen peroxide induce hepatocyte death by different mechanisms : Involvement of JNK and ERK MAP kinases

    NARCIS (Netherlands)

    Conde de la Rosa, L; Schoemaker, MH; Vrenken, TE; Buist-Homan, M; Havinga, R; Jansen, PLM; Moshage, H

    Background/Aims: In liver diseases, reactive oxygen species (ROS) are involved in cell death and liver injury, but the mechanisms are not completely elucidated. To elucidate the mechanisms of hepatocyte cell death induced by the ROS superoxide anions and hydrogen peroxide, primary cultures of

  13. Superoxide anions and hydrogen peroxide induce hepatocyte death by different mechanisms: involvement of JNK and ERK MAP kinases

    NARCIS (Netherlands)

    Conde de la Rosa, Laura; Schoemaker, Marieke H.; Vrenken, Titia E.; Buist-Homan, Manon; Havinga, Rick; Jansen, Peter L. M.; Moshage, Han

    2006-01-01

    BACKGROUND/AIMS: In liver diseases, reactive oxygen species (ROS) are involved in cell death and liver injury, but the mechanisms are not completely elucidated. To elucidate the mechanisms of hepatocyte cell death induced by the ROS superoxide anions and hydrogen peroxide, primary cultures of

  14. Pyrrolidine dithiocarbamate inhibits superoxide anion-induced pain and inflammation in the paw skin and spinal cord by targeting NF-κB and oxidative stress.

    Science.gov (United States)

    Pinho-Ribeiro, Felipe A; Fattori, Victor; Zarpelon, Ana C; Borghi, Sergio M; Staurengo-Ferrari, Larissa; Carvalho, Thacyana T; Alves-Filho, Jose C; Cunha, Fernando Q; Cunha, Thiago M; Casagrande, Rubia; Verri, Waldiceu A

    2016-06-01

    We evaluated the effect of pyrrolidine dithiocarbamate (PDTC) in superoxide anion-induced inflammatory pain. Male Swiss mice were treated with PDTC and stimulated with an intraplantar or intraperitoneal injection of potassium superoxide, a superoxide anion donor. Subcutaneous PDTC treatment attenuated mechanical hyperalgesia, thermal hyperalgesia, paw oedema and leukocyte recruitment (neutrophils and macrophages). Intraplantar injection of superoxide anion activated NF-κB and increased cytokine production (IL-1β, TNF-α and IL-10) and oxidative stress (nitrite and lipid peroxidation levels) at the primary inflammatory foci and in the spinal cord (L4-L6). PDTC treatment inhibited superoxide anion-induced NF-κB activation, cytokine production and oxidative stress in the paw and spinal cord. Furthermore, intrathecal administration of PDTC successfully inhibited superoxide anion-induced mechanical hyperalgesia, thermal hyperalgesia and inflammatory response in peripheral foci (paw). These results suggest that peripheral stimulus with superoxide anion activates the local and spinal cord oxidative- and NF-κB-dependent inflammatory nociceptive mechanisms. PDTC targets these events, therefore, inhibiting superoxide anion-induced inflammatory pain in mice.

  15. Superoxide anion radicals induce IGF-1 resistance through concomitant activation of PTP1B and PTEN

    Science.gov (United States)

    Singh, Karmveer; Maity, Pallab; Krug, Linda; Meyer, Patrick; Treiber, Nicolai; Lucas, Tanja; Basu, Abhijit; Kochanek, Stefan; Wlaschek, Meinhard; Geiger, Hartmut; Scharffetter-Kochanek, Karin

    2015-01-01

    The evolutionarily conserved IGF-1 signalling pathway is associated with longevity, metabolism, tissue homeostasis, and cancer progression. Its regulation relies on the delicate balance between activating kinases and suppressing phosphatases and is still not very well understood. We report here that IGF-1 signalling in vitro and in a murine ageing model in vivo is suppressed in response to accumulation of superoxide anions () in mitochondria, either by chemical inhibition of complex I or by genetic silencing of -dismutating mitochondrial Sod2. The -dependent suppression of IGF-1 signalling resulted in decreased proliferation of murine dermal fibroblasts, affected translation initiation factors and suppressed the expression of α1(I), α1(III), and α2(I) collagen, the hallmarks of skin ageing. Enhanced led to activation of the phosphatases PTP1B and PTEN, which via dephosphorylation of the IGF-1 receptor and phosphatidylinositol 3,4,5-triphosphate dampened IGF-1 signalling. Genetic and pharmacologic inhibition of PTP1B and PTEN abrogated -induced IGF-1 resistance and rescued the ageing skin phenotype. We thus identify previously unreported signature events with , PTP1B, and PTEN as promising targets for drug development to prevent IGF-1 resistance-related pathologies. PMID:25520316

  16. Antioxidant Effects of Herbal Tea Leaves from Yacon (Smallanthus sonchifolius) on Multiple Free Radical and Reducing Power Assays, Especially on Different Superoxide Anion Radical Generation Systems.

    Science.gov (United States)

    Sugahara, Shintaro; Ueda, Yuto; Fukuhara, Kumiko; Kamamuta, Yuki; Matsuda, Yasushi; Murata, Tatsuro; Kuroda, Yasuhiro; Kabata, Kiyotaka; Ono, Masateru; Igoshi, Keiji; Yasuda, Shin

    2015-11-01

    Yacon (Smallanthus sonchifolius), a native Andean plant, has been cultivated as a crop and locally used as a traditional folk medicine for the people suffering from diabetes and digestive/renal disorders. However, the medicinal properties of this plant and its processed foods have not been completely established. This study investigates the potent antioxidative effects of herbal tea leaves from yacon in different free radical models and a ferric reducing model. A hot-water extract exhibited the highest yield of total polyphenol and scavenging effect on 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical among four extracts prepared with hot water, methanol, ethanol, and ethylacetate. In addition, a higher reducing power of the hot-water extract was similarly demonstrated among these extracts. Varying concentrations of the hot-water extract resulted in different scavenging activities in four synthetic free radical models: DPPH radical (EC50 28.1 μg/mL), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) cation radical (EC50 23.7 μg/mL), galvinoxyl radical (EC50 3.06 μg/mL), and chlorpromazine cation radical (EC50 475 μg/mL). The yacon tea-leaf extract further demonstrated superoxide anion (O2(-)) radical scavenging effects in the phenazine methosulfate-NADH-nitroblue tetrazolium (EC50 64.5 μg/mL) and xanthine oxidase assay systems (EC50 20.7 μg/mL). Subsequently, incubating human neutrophilic cells in the presence of the tea-leaf extract could suppress the cellular O2(-) radical generation (IC50 65.7 μg/mL) in a phorbol 12-myristate 13-acetate-activated cell model. These results support yacon tea leaves may be a good source of natural antioxidants for preventing O2(-) radical-mediated disorders. Yacon has been considered to be a potent alternative food source for patients who require a dietary cure in regional area, while the leaf part has been provided and consumed as an herbal tea in local markets. We demonstrated here potent antioxidative effects of the tea

  17. Ca2+ and Mg2+-enhanced reduction of arsenazo III to its anion free radical metabolite and generation of superoxide anion by an outer mitochondrial membrane azoreductase.

    Science.gov (United States)

    Moreno, S N; Mason, R P; Docampo, R

    1984-12-10

    At the concentrations usually employed as a Ca2+ indicator, arsenazo III underwent a one-electron reduction by rat liver mitochondria to produce an azo anion radical as demonstrated by electron-spin resonance spectroscopy. Either NADH or NADPH could serve as a source of reducing equivalents for the production of this free radical by intact rat liver mitochondria. Under aerobic conditions, addition of arsenazo III to rat liver mitochondria produced an increase in electron flow from NAD(P)H to molecular oxygen, generating superoxide anion. NAD(P)H generated from endogenous mitochondrial NAD(P)+ by intramitochondrial reactions could not be used for the NAD(P)H azoreductase reaction unless the mitochondria were solubilized by detergent or anaerobiosis. In addition, NAD(P)H azoreductase activity was higher in the crude outer mitochondrial membrane fraction than in mitoplasts and intact mitochondria. The steady-state concentration of the azo anion radical and the arsenazo III-stimulated cyanide-insensitive oxygen consumption were enhanced by calcium and magnesium, suggesting that, in addition to an enhanced azo anion radical-stabilization by complexation with the metal ions, enhanced reduction of arsenazo III also occurred. Accordingly, addition of cations to crude outer mitochondrial membrane preparations increased arsenazo III-stimulated cyanide-insensitive O2 consumption, H2O2 formation, and NAD(P)H oxidation. Antipyrylazo III was much less effective than arsenazo III in increasing superoxide anion formation by rat liver mitochondria and gave a much weaker electron spin resonance spectrum of an azo anion radical. These results provide direct evidence of an azoreductase activity associated with the outer mitochondrial membrane and of a stimulation of arsenazo III reduction by cations.

  18. Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots.

    Science.gov (United States)

    Xu, Jia; Duan, Xiaoguang; Yang, Jun; Beeching, John R; Zhang, Peng

    2013-03-01

    Postharvest physiological deterioration (PPD) of cassava (Manihot esculenta) storage roots is the result of a rapid oxidative burst, which leads to discoloration of the vascular tissues due to the oxidation of phenolic compounds. In this study, coexpression of the reactive oxygen species (ROS)-scavenging enzymes copper/zinc superoxide dismutase (MeCu/ZnSOD) and catalase (MeCAT1) in transgenic cassava was used to explore the intrinsic relationship between ROS scavenging and PPD occurrence. Transgenic cassava plants integrated with the expression cassette p54::MeCu/ZnSOD-35S::MeCAT1 were confirmed by Southern-blot analysis. The expression of MeCu/ZnSOD and MeCAT1 was verified by quantitative reverse transcription-polymerase chain reaction and enzymatic activity analysis both in the leaves and storage roots. Under exposure to the ROS-generating reagent methyl viologen or to hydrogen peroxide (H2O2), the transgenic plants showed higher enzymatic activities of SOD and CAT than the wild-type plants. Levels of malondialdehyde, chlorophyll degradation, lipid peroxidation, and H2O2 accumulation were dramatically reduced in the transgenic lines compared with the wild type. After harvest, the storage roots of transgenic cassava lines show a delay in their PPD response of at least 10 d, accompanied by less mitochondrial oxidation and H2O2 accumulation, compared with those of the wild type. We hypothesize that this is due to the combined ectopic expression of Cu/ZnSOD and CAT leading to an improved synergistic ROS-scavenging capacity of the roots. Our study not only sheds light on the mechanism of the PPD process but also develops an effective approach for delaying the occurrence of PPD in cassava.

  19. The Ability of Bile to Scavenge Superoxide Radicals and Pigment Gallstone Formation in Guinea Pigs

    Directory of Open Access Journals (Sweden)

    Cong Lin

    1996-01-01

    Full Text Available After partial ligation of the common bile duct (CBD of guinea pigs, 14 of 16 animals developed pigment gallstones within one week (S group. Intraperitoneal injection of Vit. E and C, each 10 mg/kg daily from 3 days before CBD ligation to one week after the operation (S+V group, decreased the gallstone incidence to 5/14 (exact probability0.05, but Vit. E and C normalized the SR, and the difference between S group and S+V group was significant (p<0.05. These results suggested that Vit. E and C, known as antioxidants, enhanced the ability to scavenge oxygen radical in S+V group; and that in addition to the increases of UCB and Ca2+ concentrations, the participation of oxygen radicals might be of importance for pigment gallstone formation induced by bile duct obstruction.

  20. Adaptation of Staphylococcus aureus to Airway Environments in Patients With Cystic Fibrosis by Upregulation of Superoxide Dismutase M and Iron-Scavenging Proteins.

    Science.gov (United States)

    Treffon, Janina; Block, Desiree; Moche, Martin; Reiss, Swantje; Fuchs, Stephan; Engelmann, Susanne; Becher, Dörte; Langhanki, Lars; Mellmann, Alexander; Peters, Georg; Kahl, Barbara C

    2018-04-11

    Adaptation of S. aureus to the hostile environment of CF airways resulted in changed abundance of proteins involved in energy metabolism, cellular processes, transport and binding, but most importantly in an iron-scavenging phenotype and increased activity of superoxide dismutase M.

  1. A study on the comparison of antioxidant effects among cultivated ginseng, and cultivated wild ginseng extracts -Using the measurement of superoxide and hydroxy radical scavenging activities-

    Directory of Open Access Journals (Sweden)

    Tae Jin, Rhim

    2009-06-01

    Full Text Available Objectives : The objective of this study was to compare the antioxidant effects among cultivated wild ginseng and ginseng extracts. Methods : In vitro antioxidant activities were examined by superoxide and hydroxyl radical scavenging activities of ginseng and cultivated wild ginseng extracts. Results : 1. In the superoxide radical scavenging activities of ginseng and cultivated wild ginseng extracts, antioxidant activities of cultivated wild ginseng extracts was showed higher than cultivated ginseng in the concentration of 0.25 and 0.50㎎/㎖. 2. In the hydroxyl radical scavenging activities of ginseng and cultivated wild ginseng extracts, antioxidant activities of cultivated wild ginseng extracts was showed higher than cultivated ginseng in the concentration of 1.0, 2.5, and 5.0㎎/㎖. Conclusions : In summary, the results of this study demonstrate that cultivated wild ginseng extracts had higher antioxidant activities to cultivated ginseng.

  2. Arsenic alters monocyte superoxide anion and nitric oxide production in environmentally exposed children

    International Nuclear Information System (INIS)

    Luna, Ana L.; Acosta-Saavedra, Leonor C.; Lopez-Carrillo, Lizbeth; Conde, Patricia; Vera, Eunice; De Vizcaya-Ruiz, Andrea; Bastida, Mariana; Cebrian, Mariano E.; Calderon-Aranda, Emma S.

    2010-01-01

    Arsenic (As) exposure has been associated with alterations in the immune system, studies in experimental models and adults have shown that these effects involve macrophage function; however, limited information is available on what type of effects could be induced in children. The aim of this study was to evaluate effects of As exposure, through the association of inorganic As (iAs) and its metabolites [monomethylated arsenic (MMA) and dimethylated arsenic (DMA)] with basal levels of nitric oxide (NO ·- ) and superoxide anion (O 2 ·- ), in peripheral blood mononuclear cells (PBMC) and monocytes, and NO ·- and O 2 ·- produced by activated monocytes. Hence, a cross-sectional study was conducted in 87 children (6-10 years old) who had been environmentally exposed to As through drinking water. Levels of urinary As species (iAs, MMA and DMA) were determined by hydride generation atomic absorption spectrometry, total As (tAs) represents the sum of iAs and its species; tAs urine levels ranged from 12.3 to 1411 μg/g creatinine. Using multiple linear regression models, iAs presented a positive and statistical association with basal NO ·- in PBMC (β = 0.0048, p = 0.049) and monocytes (β = 0.0044, p = 0.044), while basal O 2 ·- had a significant positive association with DMA (β = 0.0025, p = 0.046). In activated monocytes, O 2 ·- showed a statistical and positive association with iAs (β = 0.0108, p = 0.023), MMA (β = 0.0066, p = 0.022), DMA (β = 0.0018, p = 0.015), and tAs (β = 0.0013, p = 0.015). We conclude that As exposure in the studied children was positively associated with basal levels of NO ·- and O 2 ·- in PBMC and monocytes, suggesting that As induces oxidative stress in circulating blood cells. Additionally, this study showed a positive association of O 2 ·- production with iAs and its metabolites in stimulated monocytes, supporting previous data that suggests that these cells, and particularly the O 2 ·- activation pathway, are relevant targets

  3. (-)-Xanthienopyran, a new inhibitor of superoxide anion generation by activated neutrophils, and further constituents of the seeds of Xanthium strumarium.

    Science.gov (United States)

    Lee, Chia-Lin; Huang, Po-Ching; Hsieh, Pei-Wen; Hwang, Tsong-Long; Hou, Yu-Yi; Chang, Fang-Rong; Wu, Yang-Chang

    2008-08-01

    The dried seeds of XANTHIUM STRUMARIUM (Asteraceae) are used after thorough stir-frying as an ingredient in traditional Chinese medicines for relieving allergy. Two new compounds, xanthialdehyde ( 2) and (-)-xanthienopyran ( 7), as well as 26 known compounds were isolated in the present study. The structures of the isolates were elucidated by spectroscopic methods. Among them, compound 7 exhibited significant selective inhibition of superoxide anion generation by human neutrophils induced by formyl- L-methionyl- L-leucyl- L-phenylalanine, with an IC50 value of 1.72 microg/mL.

  4. Radical intermediates involved in the bleaching of the carotenoid crocin. Hydroxyl radicals, superoxide anions and hydrated electrons

    International Nuclear Information System (INIS)

    Bors, W.; Saran, M.; Michel, C.

    1982-01-01

    The participation of the primary radicals in the bleaching of aqueous solutions of the carotenoid crocin by ionizing radiation was investigated, employing both X-radiolysis and pulse radiolysis. The pulse-radiolytic data demonstrated a very rapid diffusion-controlled attack by both hydroxyl radicals (radicalsOH) and hydrated electrons (e - sub(aq)), while superoxide anions (O 2 - ) did not react at all. The site of the initial reaction of these radicals was not limited to the polyene chromophore. Slower secondary reactions involving crocin alkyl or peroxy radicals contribute mainly to the overall bleaching, in particular during steady-state irradiation. (author)

  5. [Cell surface peroxidase--generator of superoxide anion in wheat root cells under wound stress].

    Science.gov (United States)

    Chasov, A V; Gordon, L Kh; Kolesnikov, O P; Minibaeva, F V

    2002-01-01

    Development of wound stress in excised wheat roots is known to be accompanied with an increase in reactive oxygen species (ROS) production, fall of membrane potential, release of K+ from cells, alkalization of extracellular solution, changes in respiration and metabolism of structural lipids. Dynamics of superoxide release correlates with changes in other physiological parameters, indicating the cross-reaction of these processes. Activity of peroxidase in extracellular solution after a 1 h incubation and removal of roots was shown to be stimulated by the range of organic acids, detergents, metals, and to be inhibited by cyanide. Superoxide production was sensitive to the addition of Mn2+ and H2O2. Increase in superoxide production correlates with the enhancement of peroxidase activity at the application of organic acids and detergents. The results obtained indicate that cell surface peroxidase is one of the main generators of superoxide in wounded wheat root cells. Different ways of stimulation of the ROS producing activity in root cells is supposed. By controlling superoxide and hydrogen peroxide formation, the cell surface peroxidase can control the adaptation processes in stressed plant cells.

  6. A novel amperometric biosensor for superoxide anion based on superoxide dismutase immobilized on gold nanoparticle-chitosan-ionic liquid biocomposite film

    International Nuclear Information System (INIS)

    Wang Lu; Wen Wei; Xiong Huayu; Zhang Xiuhua; Gu Haoshuang; Wang Shengfu

    2013-01-01

    Graphical abstract: Schematic representation of the assembly process of SOD/GNPs-CS-IL/GCE. Highlights: ► SOD was immobilized in gold nanoparticles-chitosan-ionic liquid (GNPs-CS-IL) film. ► The biosensor was constructed by one-step ultrasonic electrodeposition of GNPs-CS-IL onto GCE. ► The biosensor showed excellent analytical performance for O 2 · − real-time analysis. - Abstract: A novel superoxide anion (O 2 · − ) biosensor is proposed based on the immobilization of copper-zinc superoxide dismutase (SOD) in a gold nanoparticle-chitosan-ionic liquid (GNPs-CS-IL) biocomposite film. The SOD-based biosensor was constructed by one-step ultrasonic electrodeposition of GNP-CS-IL composite onto glassy carbon electrode (GCE), followed by immobilization of SOD on the modified electrode. Surface morphologies of a set of representative films were characterized by scanning electron microscopy. The electrochemical performance of the biosensor was evaluated by cyclic voltammetry and chronoamperometry. A pair of quasi-reversible redox peaks of SOD with a formal potential of 0.257 V was observed at SOD/GNPs-CS-IL/GCE in phosphate buffer solution (PBS, 0.1 M, pH 7.0). The effects of varying test conditions on the electrochemical behavior of the biosensor were investigated. Furthermore, several electrochemical parameters were calculated in detail. Based on the biomolecule recognition of the specific reactivity of SOD toward O 2 · − , the developed biosensor exhibited a fast amperometric response ( 3 nM), low detection limit (1.7 nM), and excellent selectivity for the real-time measurement of O 2 · − . The proposed method is promising for estimating quantitatively the dynamic changes of O 2 · − in biological systems.

  7. SUPEROXIDE-DEPENDENT IRON UPTAKE: A NEW ROLE FOR ANION EXCHANGE PROTEIN 2

    Science.gov (United States)

    Lung cells import iron across the plasma membrane as ferrous (Fe2+) ion by incompletely understood mechanisms. We tested the hypothesis that human bronchial epithelial (HBE) cells import non-transferrin-bound iron (NTBI) using superoxide-dependent ferri-reductase activity involvi...

  8. Cytochrome b5 reductase is the component from neuronal synaptic plasma membrane vesicles that generates superoxide anion upon stimulation by cytochrome c

    Directory of Open Access Journals (Sweden)

    Alejandro K. Samhan-Arias

    2018-05-01

    Full Text Available In this work, we measured the effect of cytochrome c on the NADH-dependent superoxide anion production by synaptic plasma membrane vesicles from rat brain. In these membranes, the cytochrome c stimulated NADH-dependent superoxide anion production was inhibited by antibodies against cytochrome b5 reductase linking the production to this enzyme. Measurement of the superoxide anion radical generated by purified recombinant soluble and membrane cytochrome b5 reductase corroborates the production of the radical by different enzyme isoforms. In the presence of cytochrome c, a burst of superoxide anion as well as the reduction of cytochrome c by cytochrome b5 reductase was measured. Complex formation between both proteins suggests that cytochrome b5 reductase is one of the major partners of cytochrome c upon its release from mitochondria to the cytosol during apoptosis. Superoxide anion production and cytochrome c reduction are the consequences of the stimulated NADH consumption by cytochrome b5 reductase upon complex formation with cytochrome c and suggest a major role of this enzyme as an anti-apoptotic protein during cell death.

  9. Nitric oxide and superoxide anion production in monocytes from children exposed to arsenic and lead in region Lagunera, Mexico

    International Nuclear Information System (INIS)

    Pineda-Zavaleta, Ana Patricia; Garcia-Vargas, Gonzalo; Borja-Aburto, Victor H.; Acosta-Saavedra, Leonor C.; Vera Aguilar, Eunice; Gomez-Munoz, Aristides; Cebrian, Mariano E.; Calderon-Aranda, Emma S.

    2004-01-01

    We evaluated in Mexican children environmentally exposed to arsenic and lead monocyte nitric oxide (NO) and superoxide anion production in response to direct activation with interferon-γ (IFN-γ) + lipopolysaccharide (LPS). The integrity of Th1-regulated cellular immune response when monocytes were indirectly activated was also evaluated. Most children lived near a primary lead smelter. Lead and arsenic contamination in soil and dust by far exceeded background levels. As levels in water were between 10 and 30 ppb. Most children (93%) had urinary arsenic (AsU) concentrations above 50 μg/l (range 16.75-465.75) and 65% had lead blood levels (PbB) above 10 μg/dl (range 3.47-49.19). Multivariate analyses showed that NO production in monocytes activated indirectly was negatively associated with both PbB and AsU. Superoxide production in directly activated monocytes was negatively associated with AsU but positively associated with PbB. The models including the interaction term for AsU and PbB suggested the possibility of a negative interaction for NO production and a positive interaction for superoxide. There were indications of differential gender-based associations, NO production in indirectly activated monocytes obtained from girls was negatively associated with AsU but not with PbB. Superoxide production was positively associated with PbB in both directly and indirectly activated monocytes from boys but the latter was negatively associated with AsU. These effects are consistent with immune system abnormalities observed in human populations exposed to Pb or As. Further studies in larger populations are required to characterize As and Pb interactions and the mechanism(s) underlying the observed effects

  10. Uranyl nitrate-exposed rat alveolar macrophages cell death: Influence of superoxide anion and TNF α mediators

    International Nuclear Information System (INIS)

    Orona, N.S.; Tasat, D.R.

    2012-01-01

    Uranium compounds are widely used in the nuclear fuel cycle, military and many other diverse industrial processes. Health risks associated with uranium exposure include nephrotoxicity, cancer, respiratory, and immune disorders. Macrophages present in body tissues are the main cell type involved in the internalization of uranium particles. To better understand the pathological effects associated with depleted uranium (DU) inhalation, we examined the metabolic activity, phagocytosis, genotoxicity and inflammation on DU-exposed rat alveolar macrophages (12.5–200 μM). Stability and dissolution of DU could differ depending on the dissolvent and in turn alter its biological action. We dissolved DU in sodium bicarbonate (NaHCO 3 100 mM) and in what we consider a more physiological vehicle resembling human internal media: sodium chloride (NaCl 0.9%). We demonstrate that uranyl nitrate in NaCl solubilizes, enters the cell, and elicits its cytotoxic effect similarly to when it is diluted in NaHCO 3 . We show that irrespective of the dissolvent employed, uranyl nitrate impairs cell metabolism, and at low doses induces both phagocytosis and generation of superoxide anion (O 2 − ). At high doses it provokes the secretion of TNFα and through all the range of doses tested, apoptosis. We herein suggest that at DU low doses O 2 − may act as the principal mediator of DNA damage while at higher doses the signaling pathway mediated by O 2 − may be blocked, prevailing damage to DNA by the TNFα route. The study of macrophage functions after uranyl nitrate treatment could provide insights into the pathophysiology of uranium‐related diseases. -- Highlights: ► Uranyl nitrate effect on cultured macrophages is linked to the doses and independent of its solubility. ► At low doses uranyl nitrate induces generation of superoxide anion. ► At high doses uranyl nitrate provokes secretion of TNFα. ► Uranyl nitrate induces apoptosis through all the range of doses tested.

  11. High-sensitivity imaging method of singlet oxygen and superoxide anion in photodynamic and sonodynamic actions

    Science.gov (United States)

    Xing, Da; He, Yonghong; Hao, Min; Chen, Qun

    2004-07-01

    A novel method of photodynamic diagnosis (PDD) of cancer mediated by chemiluminescence (CL) probe is presented. The mechanism for photodynamic therapy (PDT) involves reactive oxygen species (ROS), such as singlet oxygen (1O2) and superoxide (O2-), generated by during the photochemical process. Both 1O2 and O2- can react with Cypridina luciferin analogue (FCLA), a highly selective CL probe for detecting the ROS. Chemiluminescence from the reaction of FCLA with the ROS, at about 530 nm, was detected by a highly sensitive ICCD system. The CL was markedly inhibited by the addition of 10 mmol/L sodium azide (NaN3) in a sample solution. Similar phenomena, with lesser extents of changes, were observed at the additions of 10 μmol/L superoxide dismutase (SOD), 10 mmol/L mannitol, and 100 μg/mL catalase, respectively. This indicates that the detected CL signals were mainly from ROS generated during the photosensitization reactions. Also, the chemiluminescence method was used to detect the ROS during sonodynamic action, both in vitro and in vivo. ROS formation during sonosensitizations of HpD and ATX-70 were detected using our newly-developed imaging technique, in real time, on tumor bearing animals. This method can provide a new means in clinics for tumor diagnosis.

  12. Highly functionalized piperidines: Free radical scavenging, anticancer activity, DNA interaction and correlation with biological activity

    OpenAIRE

    Suvankar Das; Cristiane J. da Silva; Marina de M. Silva; Maria Dayanne de A. Dantas; Ângelo de Fátima; Ana Lúcia T. Góis Ruiz; Cleiton M. da Silva; João Ernesto de Carvalho; Josué C.C. Santos; Isis M. Figueiredo; Edeildo F. da Silva-Júnior; Thiago M. de Aquino; João X. de Araújo-Júnior; Goutam Brahmachari; Luzia Valentina Modolo

    2018-01-01

    Twenty-five piperidines were studied as potential radical scavengers and antitumor agents. Quantitative interaction of compounds with ctDNA using spectroscopic techniques was also evaluated. Our results demonstrate that the evaluated piperidines possesses different abilities to scavenge the radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the anion radical superoxide (·O2−). The piperidine 19 was the most potent radical DPPH scavenger, while the most effective to ·O2− scavenger was piperidine...

  13. Aliphatic alcohols of illegally produced spirits can act synergistically on superoxide-anion production by human granulocytes.

    Science.gov (United States)

    Arnyas, Ervin M; Pál, László; Kovács, Csilla; Adány, Róza; McKee, Martin; Szűcs, Sándor

    2012-10-01

    Aliphatic alcohols present in illegally produced spirits in a large number of low and middle income countries have been implicated in the etiology of chronic liver disease and cirrhosis. Previous studies have confirmed that chronic alcoholism can lead to increased susceptibility to infectious diseases. Reduced superoxide-anion (O(2)·(-)) production by granulocytes could provide a mechanism by which antimicrobial defense is impaired in alcoholics. In vitro experiments have also demonstrated that ethanol can inhibit granulocyte O(2)·(-) generation. Aliphatic alcohols consumed as contaminants of illicit spirits may also influence O(2)·(-) production thereby contributing to a decrease in microbicidal activity. The aim of this study was to investigate this possibility. It measured the O(2)·(-) production by human granulocytes following treatment of the cells with aliphatic alcohol contaminants found in illicit spirits. Granulocytes were isolated from human buffy coats with centrifugal elutriation and then treated with individual aliphatic alcohols and their mixture. The O(2)·(-) production was stimulated with phorbol-12-13-dibutyrate and N-formyl-methionyl-leucyl-phenylalanine (FMLP) and measured by superoxide dismutase inhibitable reduction of ferricytochrome c. Aliphatic alcohols of illegally produced spirits inhibited the FMLP-induced O(2)·(-) production in a concentration dependent manner. They suppressed O(2)·(-) generation at 2.5-40 times lower concentrations when combined than when tested individually. Aliphatic alcohols found in illegally produced spirits can inhibit FMLP-induced O(2)·(-) production by granulocytes in a concentration-dependent manner. Due to their synergistic effects, it is possible that, in combination with ethanol, they may inhibit O(2)·(-) formation in heavy episodic drinkers.

  14. Uranyl nitrate-exposed rat alveolar macrophages cell death: Influence of superoxide anion and TNF α mediators

    Energy Technology Data Exchange (ETDEWEB)

    Orona, N.S. [School of Science and Technology, National University of General Martín, Avda Gral Paz 5445 (1650) San Martín, Buenos Aires (Argentina); Tasat, D.R., E-mail: deborah.tasat@unsam.edu.ar [School of Science and Technology, National University of General Martín, Avda Gral Paz 5445 (1650) San Martín, Buenos Aires (Argentina); School of Dentistry, University of Buenos Aires, M. T. de Alvear 2142 (1122), Buenos Aires (Argentina)

    2012-06-15

    Uranium compounds are widely used in the nuclear fuel cycle, military and many other diverse industrial processes. Health risks associated with uranium exposure include nephrotoxicity, cancer, respiratory, and immune disorders. Macrophages present in body tissues are the main cell type involved in the internalization of uranium particles. To better understand the pathological effects associated with depleted uranium (DU) inhalation, we examined the metabolic activity, phagocytosis, genotoxicity and inflammation on DU-exposed rat alveolar macrophages (12.5–200 μM). Stability and dissolution of DU could differ depending on the dissolvent and in turn alter its biological action. We dissolved DU in sodium bicarbonate (NaHCO{sub 3} 100 mM) and in what we consider a more physiological vehicle resembling human internal media: sodium chloride (NaCl 0.9%). We demonstrate that uranyl nitrate in NaCl solubilizes, enters the cell, and elicits its cytotoxic effect similarly to when it is diluted in NaHCO{sub 3}. We show that irrespective of the dissolvent employed, uranyl nitrate impairs cell metabolism, and at low doses induces both phagocytosis and generation of superoxide anion (O{sub 2}{sup −}). At high doses it provokes the secretion of TNFα and through all the range of doses tested, apoptosis. We herein suggest that at DU low doses O{sub 2}{sup −} may act as the principal mediator of DNA damage while at higher doses the signaling pathway mediated by O{sub 2}{sup −} may be blocked, prevailing damage to DNA by the TNFα route. The study of macrophage functions after uranyl nitrate treatment could provide insights into the pathophysiology of uranium‐related diseases. -- Highlights: ► Uranyl nitrate effect on cultured macrophages is linked to the doses and independent of its solubility. ► At low doses uranyl nitrate induces generation of superoxide anion. ► At high doses uranyl nitrate provokes secretion of TNFα. ► Uranyl nitrate induces apoptosis through

  15. Titanium dioxide nanoparticles enhance production of superoxide anion and alter the antioxidant system in human osteoblast cells

    Directory of Open Access Journals (Sweden)

    Niska K

    2015-02-01

    Full Text Available Karolina Niska,1 Katarzyna Pyszka,1 Cecylia Tukaj,2 Michal Wozniak,1 Marek Witold Radomski,3–5 Iwona Inkielewicz-Stepniak1 1Department of Medical Chemistry, 2Department of Electron Microscopy, Medical University of Gdansk, Gdansk, Poland; 3School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, The University of Dublin Trinity College, Dublin, Ireland; 4Kardio-Med Silesia, 5Silesian Medical University, Zabrze, Poland Abstract: Titanium dioxide (TiO2 nanoparticles (NPs are manufactured worldwide for a variety of engineering and bioengineering applications. TiO2NPs are frequently used as a material for orthopedic implants. However, to the best of our knowledge, the biocompatibility of TiO2NPs and their effects on osteoblast cells, which are responsible for the growth and remodeling of the human skeleton, have not been thoroughly investigated. In the research reported here, we studied the effects of exposing hFOB 1.19 human osteoblast cells to TiO2NPs (5–15 nm for 24 and 48 hours. Cell viability, alkaline phosphatase (ALP activity, cellular uptake of NPs, cell morphology, superoxide anion (O2•- generation, superoxide dismutase (SOD activity and protein level, sirtuin 3 (SIR3 protein level, correlation between manganese (Mn SOD and SIR, total antioxidant capacity, and malondialdehyde were measured following exposure of hFOB 1.19 cells to TiO2NPs. Exposure of hFOB 1.19 cells to TiO2NPs resulted in: (1 cellular uptake of NPs; (2 increased cytotoxicity and cell death in a time- and concentration-dependent manner; (3 ultrastructure changes; (4 decreased SOD and ALP activity; (5 decreased protein levels of SOD1, SOD2, and SIR3; (6 decreased total antioxidant capacity; (7 increased O2•- generation; and (8 enhanced lipid peroxidation (malondialdehyde level. The linear relationship between the protein level of MnSOD and SIR3 and between O2•- content and SIR3 protein level was observed. Importantly, the cytotoxic

  16. The role of mitochondrial superoxide anion (O2-) on physiological aging in C57BL/6J mice

    International Nuclear Information System (INIS)

    Miyazawa, Masaki; Ishii, Takamasa; Yasuda, Kayo; Onouchi, Hiromi; Ishii, Naoaki; Noda, Setsuko; Hartman, Philip S.

    2009-01-01

    Much attention has been focused on the mitochondrial superoxide anion (O 2 - ), which is also a critical free radical produced by ionizing radiation. The specific role of the mitochondrial O 2 - on physiological aging in mammals is still nuclear despite wide-spread evidence that oxidative stress is involved in aging and age-related diseases. The major endogenous source of O 2 - is generated as a byproduct of energy metabolism from mitochondria. In order to better understand how O 2 - relates to metazoan aging, we have comprehensively examined age-related changes in the levels of oxidative damage, mitochondrial O 2 - production, mitochondrial antioxidant enzyme activity and apoptosis induction in key organs of an inbred mouse strain (C57BL/6J). Oxidative damage accumulated and excess apoptosis occurred in the brain, oculus and kidney with aging, but comparatively little occurred in the heart and muscle. These rates are correlated with O 2 - levels. Mitochondrial O 2 - production levels increased with aging in the brain, oculus and kidney, and did not significantly increased in the heart and muscle. In contrast to O 2 - production, mitochondrial SOD activities increased in heart and muscle, and remained unchanged in the brain, oculus and kidney with aging. These results suggest that O 2 - production has high organ specificity, and oxidative damage by O 2 - from mitochondria mediated apoptosis can lead to organ atrophy and physiological dysfunction. In addition, O 2 - from mitochondria plays a core role in physiological aging. (author)

  17. The role of mitochondrial superoxide anion (O2(-)) on physiological aging in C57BL/6J mice.

    Science.gov (United States)

    Miyazawa, Masaki; Ishii, Takamasa; Yasuda, Kayo; Noda, Setsuko; Onouchi, Hiromi; Hartman, Philip S; Ishii, Naoaki

    2009-01-01

    Much attention has been focused on the mitochondrial superoxide anion (O2(-)), which is also a critical free radial produced by ionizing radiation. The specific role of the mitochondrial O2(-) on physiological aging in mammals is still unclear despite wide-spread evidence that oxidative stress is involved in aging and age-related diseases. The major endogenous source of O2(-) is generated as a byproduct of energy metabolism from mitochondria. In order to better understand how O2(-)relates to metazoan aging, we have comprehensively examined age-related changes in the levels of oxidative damage, mitochondrial O2(-) production, mitochondrial antioxidant enzyme activity and apoptosis induction in key organs of an inbred mouse strain (C57BL/6J). Oxidative damage accumulated and excess apoptosis occurred in the brain, oculus and kidney with aging, but comparatively little occurred in the heart and muscle. These rates are correlated with O2(-) levels. Mitochondrial O2(-) production levels increased with aging in the brain, oculus and kidney, and did not significantly increased in the heart and muscle. In contrast to O2(-) production, mitochondrial SOD activities increased in heart and muscle, and remained unchanged in the brain, oculus and kidney with aging. These results suggest that O2(-) production has high organ specificity, and oxidative damage by O2(-) from mitochondria mediated apoptosis can lead to organ atrophy and physiological dysfunction. In addition, O2(-) from mitochondria plays a core role in physiological aging.

  18. Titanium dioxide nanoparticles enhance production of superoxide anion and alter the antioxidant system in human osteoblast cells

    Science.gov (United States)

    Niska, Karolina; Pyszka, Katarzyna; Tukaj, Cecylia; Wozniak, Michal; Radomski, Marek Witold; Inkielewicz-Stepniak, Iwona

    2015-01-01

    Titanium dioxide (TiO2) nanoparticles (NPs) are manufactured worldwide for a variety of engineering and bioengineering applications. TiO2NPs are frequently used as a material for orthopedic implants. However, to the best of our knowledge, the biocompatibility of TiO2NPs and their effects on osteoblast cells, which are responsible for the growth and remodeling of the human skeleton, have not been thoroughly investigated. In the research reported here, we studied the effects of exposing hFOB 1.19 human osteoblast cells to TiO2NPs (5–15 nm) for 24 and 48 hours. Cell viability, alkaline phosphatase (ALP) activity, cellular uptake of NPs, cell morphology, superoxide anion (O2•−2) generation, superoxide dismutase (SOD) activity and protein level, sirtuin 3 (SIR3) protein level, correlation between manganese (Mn) SOD and SIR, total antioxidant capacity, and malondialdehyde were measured following exposure of hFOB 1.19 cells to TiO2NPs. Exposure of hFOB 1.19 cells to TiO2NPs resulted in: (1) cellular uptake of NPs; (2) increased cytotoxicity and cell death in a time- and concentration-dependent manner; (3) ultrastructure changes; (4) decreased SOD and ALP activity; (5) decreased protein levels of SOD1, SOD2, and SIR3; (6) decreased total antioxidant capacity; (7) increased O2•− generation; and (8) enhanced lipid peroxidation (malondialdehyde level). The linear relationship between the protein level of MnSOD and SIR3 and between O2•− content and SIR3 protein level was observed. Importantly, the cytotoxic effects of TiO2NPs were attenuated by the pretreatment of hFOB 1.19 cells with SOD, indicating the significant role of O2•− in the cell damage and death observed. Thus, decreased expression of SOD leading to increased oxidizing stress may underlie the nanotoxic effects of TiO2NPs on human osteoblasts. PMID:25709434

  19. Evaluation of intracellular anion superoxide level, heat shock protein A2 and protamine positive spermatozoa percentages in teratoasthenozoospermia

    Directory of Open Access Journals (Sweden)

    Parvin Sabeti

    2017-09-01

    Full Text Available Background: Teratoasthenozoospermia (TA is a severe form of male infertility with no clear etiology. Objective: To compare the level of intracellular anion superoxide (O2–, heat shock protein A2 (HSPA2 and protamine deficiencies in ejaculated spermatozoa between teratoasthenozoospermic and normozoospermic men. Materials and Methods: In this case- control study, semen samples of 20 infertile men, with TA (with normal morphology lower than 4%_ and total motility lower than 40% as the case group and 20 normozoospermic fertile men as the control group were evaluated for intracellular O2 – and HSPA2 by flow cytometry and protamine deficiency by Chromomycin A3 (CMA3 test. Results: The rate of CMA3+ spermatozoa in the case group was higher than controls (p=0.001. The percentages of HSPA2+ spermatozoa in the cases were significantly lower than controls (p=0.001. Also, intracellular O2 – levels in the case group were significantly higher than controls (p=0.001 and had positive correlations with sperm apoptosis (r=0.79, p=0.01 and CMA3 positive sperm (r=0.76, p=0.01, but negative correlations with normal morphology (r=-0.81, p=0.01 and motility (r=-0.81, p=0.01. There was no significant correlation between intracellular O2 – and HSPA2 in the case group (r=0.041, p=0.79. Conclusion: We suggest that the increase in intracellular O2 –, decrease in spermatozoa HSPA2+, and high percentages of spermatozoa with immature chromatin might be considered as etiologies of infertility in TA patients

  20. Oxidative stress and enzymatic scavenging of superoxide radicals induced by solar UV-B radiation in Ulva canopies from southern Spain

    Directory of Open Access Journals (Sweden)

    Kai Bischof

    2003-09-01

    Full Text Available The generation of reactive oxygen species (ROS and scavenging of the superoxide radical by superoxide dismutase (SOD was studied in mat-like canopies of the green macroalga Ulva rotundata Bliding in a tidal brine pond system in southern Spain. Artificial canopies were covered with different cut-off filters, generating different radiation conditions. ROS and SOD were assessed after three days of exposure. ROS induced lipid peroxidation depended on the position of individual thalli within the canopy and on radiation conditions. Samples exposed to the full solar spectrum were most affected, whereas samples either exposed to photosynthetically active radiation (PAR alone or UV radiation without PAR exhibited fewer peroxidation products. The activity of SOD appeared to be controlled by the impinging UV-A and UV-B radiation and also increased in response to oxidative stress. The results provide evidence for additive effects of high PAR and UV-B under field conditions and support the previously proposed hypothesis that UV-B effects are mediated by an inhibition of the xanthophyll cycle, which increases ROS production and, consequently, causes oxidative damage to components of the photosynthetic machinery, such as proteins and pigments.

  1. The effect of orexin-A on cardiac dysfunction mediated by NADPH oxidase-derived superoxide anion in ventrolateral medulla.

    Directory of Open Access Journals (Sweden)

    Jun Chen

    Full Text Available Hypocretin/orexin-producing neurons, located in the perifornical region of the lateral hypothalamus area (LHA and projecting to the brain sites of rostral ventrolateral medulla (RVLM, involve in the increase of sympathetic activity, thereby regulating cardiovascular function. The current study was designed to test the hypothesis that the central orexin-A (OXA could be involved in the cardiovascular dysfunction of acute myocardial infarction (AMI by releasing NAD(PH oxidase-derived superoxide anion (O2 (- generation in RVLM, AMI rat model established by ligating the left anterior descending (LAD coronary artery to induce manifestation of cardiac dysfunction, monitored by the indicators as heart rate (HR, heart rate variability (HRV, mean arterial pressure (MAP and left intraventricular pressure. The results showed that the expressions of OXA in LHA and orexin 1 receptor (OX1R increased in RVLM of AMI rats. The double immunofluorescent staining indicated that OX1R positive cells and NAD(PH oxidative subunit gp91phox or p47phox-immunoreactive (IR cells were co-localized in RVLM. Microinjection of OXA into the cerebral ventricle significantly increased O2 (- production and mRNA expression of NAD(PH oxidase subunits when compared with aCSF-treated ones. Exogenous OXA administration in RVLM produced pressor and tachycardiac effects. Furthermore, the antagonist of OX1R and OX2R (SB-408124 and TCS OX2 29, respectively or apocynin (APO, an inhibitor of NAD(PH oxidase, partly abolished those cardiovascular responses of OXA. HRV power spectral analysis showed that exogenous OXA led to decreased HF component of HRV and increased LF/HF ratio in comparison with aCSF, which suggested that OXA might be related to sympathovagal imbalance. As indicated by the results, OXA might participate in the central regulation of cardiovascular activities by disturbing the sympathovagal balance in AMI, which could be explained by the possibility that OXR and NAD(PH-derived O

  2. Selective scavenging of intra-mitochondrial superoxide corrects diclofenac-induced mitochondrial dysfunction and gastric injury: A novel gastroprotective mechanism independent of gastric acid suppression.

    Science.gov (United States)

    Mazumder, Somnath; De, Rudranil; Sarkar, Souvik; Siddiqui, Asim Azhar; Saha, Shubhra Jyoti; Banerjee, Chinmoy; Iqbal, Mohd Shameel; Nag, Shiladitya; Debsharma, Subhashis; Bandyopadhyay, Uday

    2016-12-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used to treat multiple inflammatory diseases and pain but severe gastric mucosal damage is the worst outcome of NSAID-therapy. Here we report that mitoTEMPO, a mitochondrially targeted superoxide (O 2 - ) scavenger protected as well as healed gastric injury induced by diclofenac (DCF), the most commonly used NSAID. Common existing therapy against gastric injury involves suppression of gastric acid secretion by proton pump inhibitors and histamine H 2 receptor antagonists; however, dyspepsia, vitamin B12 deficiency and gastric microfloral dysbalance are the major drawbacks of acid suppression. Interestingly, mitoTEMPO did not inhibit gastric acid secretion but offered gastroprotection by preventing DCF-induced generation of O 2 - due to mitochondrial respiratory chain failure and by preventing mitochondrial oxidative stress (MOS)-mediated mitopathology. MitoTEMPO even restored DCF-stimulated reduced fatty acid oxidation, mitochondrial depolarization and bioenergetic crisis in gastric mucosa. MitoTEMPO also prevented the activation of mitochondrial pathway of apoptosis and MOS-mediated proinflammatory signaling through NF-κB by DCF. Furthermore, mitoTEMPO when administered in rats with preformed gastric lesions expedited the healing of gastric injury and the healed stomach exhibited its normal physiology as evident from gastric acid and pepsin secretions under basal or stimulated conditions. Thus, in contrast to the existing antiulcer drugs, mitochondrially targeted O 2 - scavengers like mitoTEMPO may represent a novel class of gastroprotective molecules that does not affect gastric acid secretion and may be used in combination with DCF, keeping its anti-inflammatory action intact, while reducing its gastrodamaging effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. The influence of superoxide dimutase and some other radical scavengers on X-ray resistance, life span and membrane integrity of Sacharomyces cerevisiae

    International Nuclear Information System (INIS)

    Hartwig, V.

    1988-01-01

    Evaluations of various strains of yeast showed these to differ widely in the activities of superoxide dimutase and catalase, X-ray sensitivity, reproductive capacity and malondialdehyde concentration. Higher SOD activities in reponse to increases in oxygen production under extreme physiological conditions were observed for the cells of a haploid strain and just as well seen in those of a diploid strain. There were findings pointing to mutually 'compensatory' effects in respect of the contents of CAT and thiol. When intracellular radical scavengers were 'overstrained' by exposure to high X-ray doses, untoward effects on membrane integrity could be detected after irradiation. The use of the SOD-specific inhibitor DDC led to a reduction of both X-ray resistance and life span as a result of SOD-inhibition. Exogenous SOD was seen to reduce the mean life span. Cu 2+ and Mn 2+ were found to have a dual action in that they not only increased the resistance to X-rays through an augmentation of SOD activity but also had an immediate beneficial effect on radioresistance. Exogenous H202 led to an increase in the cellular CAT contents and an enhancement of X-ray resistance. (orig./MG) [de

  4. Neutrophil superoxide-anion generating capacity in chronic smoking: effect of long-term alpha-tocopherol therapy

    NARCIS (Netherlands)

    Tits, van L.; Waart, de F.; Hak-Lemmers, H.L.M.; Graaf, de J.; Demacker, P.N.; Stalenhoef, A.F.

    2003-01-01

    We investigated whether long-term alpha-tocopherol therapy in chronic smoking affects superoxide generating capacity of neutrophils ex vivo. To this purpose, we randomly assigned 128 male chronic smokers (37 21 pack years of smoking) to treatment with placebo (n = 64) or alpha-tocopherol (400 IU

  5. Myocardial capillary permeability after regional ischemia and reperfusion in the in vivo canine heart. Effect of superoxide dismutase

    DEFF Research Database (Denmark)

    Svendsen, J H; Bjerrum, P J; Haunsø, S

    1991-01-01

    This study assesses the effect of the superoxide anion scavenger superoxide dismutase on myocardial capillary permeability-surface area (PS) products for small hydrophilic molecules after ischemia and reperfusion. Open-chest dogs underwent a 20-minute occlusion of the left anterior descending...... the start of reperfusion. In 13 dogs, no scavenger treatment was given (nonprotected control group), whereas eight dogs were treated systemically with 15,000 units/kg superoxide dismutase during 1 hour, starting 20 minutes before ischemia. In the control group, three dogs developed reperfusion ventricular...

  6. Competitive Deprotonation and Superoxide [O₂⁻•)] Radical-Anion Adduct Formation Reactions of Carboxamides under Negative-Ion Atmospheric-Pressure Helium-Plasma Ionization (HePI) Conditions.

    Science.gov (United States)

    Hassan, Isra; Pinto, Spencer; Weisbecker, Carl; Attygalle, Athula B

    2016-03-01

    Carboxamides bearing an N-H functionality are known to undergo deprotonation under negative-ion-generating mass spectrometric conditions. Herein, we report that N-H bearing carboxamides with acidities lower than that of the hydroperoxyl radical (HO-O(•)) preferentially form superoxide radical-anion (O2(-•)) adducts, rather than deprotonate, when they are exposed to the glow discharge of a helium-plasma ionization source. For example, the spectra of N-alkylacetamides show peaks for superoxide radical-anion (O2(-•)) adducts. Conversely, more acidic amides, such as N-alkyltrifluoroacetamides, preferentially undergo deprotonation under similar experimental conditions. Upon collisional activation, the O2(-•) adducts of N-alkylacetamides either lose the neutral amide or the hydroperoxyl radical (HO-O(•)) to generate the superoxide radical-anion (m/z 32) or the deprotonated amide [m/z (M - H)(-)], respectively. For somewhat acidic carboxamides, the association between the two entities is weak. Thus, upon mildest collisional activation, the adduct dissociates to eject the superoxide anion. Superoxide-adduct formation results are useful for structure determination purposes because carboxamides devoid of a N-H functionality undergo neither deprotonation nor adduct formation under HePI conditions.

  7. Synergism between arsenite and proteasome inhibitor MG132 over cell death in myeloid leukaemic cells U937 and the induction of low levels of intracellular superoxide anion

    International Nuclear Information System (INIS)

    Lombardo, Tomás; Cavaliere, Victoria; Costantino, Susana N.; Kornblihtt, Laura; Alvarez, Elida M.; Blanco, Guillermo A.

    2012-01-01

    Increased oxygen species production has often been cited as a mechanism determining synergism on cell death and growth inhibition effects of arsenic-combined drugs. However the net effect of drug combination may not be easily anticipated solely from available knowledge of drug-induced death mechanisms. We evaluated the combined effect of sodium arsenite with the proteasome inhibitor MG132, and the anti-leukaemic agent CAPE, on growth-inhibition and cell death effect in acute myeloid leukaemic cells U937 and Burkitt's lymphoma-derived Raji cells, by the Chou–Talalay method. In addition we explored the association of cytotoxic effect of drugs with changes in intracellular superoxide anion (O 2 − ) levels. Our results showed that combined arsenite + MG132 produced low levels of O 2 − at 6 h and 24 h after exposure and were synergic on cell death induction in U937 cells over the whole dose range, although the combination was antagonistic on growth inhibition effect. Exposure to a constant non-cytotoxic dose of 80 μM hydrogen peroxide together with arsenite + MG132 changed synergism on cell death to antagonism at all effect levels while increasing O 2 − levels. Arsenite + hydrogen peroxide also resulted in antagonism with increased O 2 − levels in U937 cells. In Raji cells, arsenite + MG132 also produced low levels of O 2 − at 6 h and 24 h but resulted in antagonism on cell death and growth inhibition. By contrast, the combination arsenite + CAPE showed high levels of O 2 − production at 6 h and 24 h post exposure but resulted in antagonism over cell death and growth inhibition effects in U937 and Raji cells. We conclude that synergism between arsenite and MG132 in U937 cells is negatively associated to O 2 − levels at early time points after exposure. -- Highlights: ► Arsenic combined cytotoxic and anti-proliferative effects by Chou–Talalay method. ► Cytotoxic effect associated with superoxide levels as assessed by flow cytometry. ► Synergism

  8. Synergism between arsenite and proteasome inhibitor MG132 over cell death in myeloid leukaemic cells U937 and the induction of low levels of intracellular superoxide anion

    Energy Technology Data Exchange (ETDEWEB)

    Lombardo, Tomás [Laboratorio de Immunotoxicologia (LaITO), IDEHU-CONICET, Hospital de Clínicas, José de San Martín, Universidad de Buenos Aires (UBA), Buenos Aires (Argentina); Cavaliere, Victoria; Costantino, Susana N. [Laboratorio de Inmunología Tumoral (LIT), IDEHU-CONICET, Facultad de Farmacia y Bioquímica, UBA, Buenos Aires (Argentina); Kornblihtt, Laura [Servicio de Hematología, Hospital de Clínicas, José de San Martín (UBA), Buenos Aires (Argentina); Alvarez, Elida M. [Laboratorio de Inmunología Tumoral (LIT), IDEHU-CONICET, Facultad de Farmacia y Bioquímica, UBA, Buenos Aires (Argentina); Blanco, Guillermo A., E-mail: gblanco@ffyb.uba.ar [Laboratorio de Immunotoxicologia (LaITO), IDEHU-CONICET, Hospital de Clínicas, José de San Martín, Universidad de Buenos Aires (UBA), Buenos Aires (Argentina)

    2012-02-01

    Increased oxygen species production has often been cited as a mechanism determining synergism on cell death and growth inhibition effects of arsenic-combined drugs. However the net effect of drug combination may not be easily anticipated solely from available knowledge of drug-induced death mechanisms. We evaluated the combined effect of sodium arsenite with the proteasome inhibitor MG132, and the anti-leukaemic agent CAPE, on growth-inhibition and cell death effect in acute myeloid leukaemic cells U937 and Burkitt's lymphoma-derived Raji cells, by the Chou–Talalay method. In addition we explored the association of cytotoxic effect of drugs with changes in intracellular superoxide anion (O{sub 2}{sup −}) levels. Our results showed that combined arsenite + MG132 produced low levels of O{sub 2}{sup −} at 6 h and 24 h after exposure and were synergic on cell death induction in U937 cells over the whole dose range, although the combination was antagonistic on growth inhibition effect. Exposure to a constant non-cytotoxic dose of 80 μM hydrogen peroxide together with arsenite + MG132 changed synergism on cell death to antagonism at all effect levels while increasing O{sub 2}{sup −} levels. Arsenite + hydrogen peroxide also resulted in antagonism with increased O{sub 2}{sup −} levels in U937 cells. In Raji cells, arsenite + MG132 also produced low levels of O{sub 2}{sup −} at 6 h and 24 h but resulted in antagonism on cell death and growth inhibition. By contrast, the combination arsenite + CAPE showed high levels of O{sub 2}{sup −} production at 6 h and 24 h post exposure but resulted in antagonism over cell death and growth inhibition effects in U937 and Raji cells. We conclude that synergism between arsenite and MG132 in U937 cells is negatively associated to O{sub 2}{sup −} levels at early time points after exposure. -- Highlights: ► Arsenic combined cytotoxic and anti-proliferative effects by Chou–Talalay method. ► Cytotoxic effect

  9. Quantum Chemical Investigation on the Antioxidant Activity of Neutral and Anionic Forms of Juglone: Metal Chelation and Its Effect on Radical Scavenging Activity

    Directory of Open Access Journals (Sweden)

    Aymard Didier Fouegue Tamafo

    2017-01-01

    Full Text Available The chelation ability of divalent Mg, Ca, Fe, Co, Ni, Cu, Zn, and monovalent Cu ions by neutral and anionic forms of juglone has been investigated at DFT/B3LYP/6-31+G(d,p level of theory in gas and aqueous phases. It is noteworthy that only the 1 : 1 stoichiometry was considered herein. The effects of these metals on the radical scavenging activity of neutral juglone were evaluated via the usual descriptors of hydrogen atom transfer. According to our results, metal chelation by the two forms of juglone was spontaneous and exothermic in both media. Based on the binding energies, Cu(II ion showed the highest affinity for the ligands. QTAIM analyses identified the metal-ligand bonds as intermediate type interactions in all the chelates, except those of Ca and Mg. It was also found that the chelates were better radical scavengers than the ligands. In the gas phase, the scavenging activity of the compounds was found to be governed by direct hydrogen atom transfer, the Co(II chelate being the most reactive. In the aqueous phase also, the sequential proton loss electron transfer was preferred by all the molecules, while the Cu(II chelates were the most reactive.

  10. Acetaminophen and aspirin inhibit superoxide anion generation and lipid peroxidation, and protect against 1-methyl-4-phenyl pyridinium-induced dopaminergic neurotoxicity in rats.

    Science.gov (United States)

    Maharaj, D S; Saravanan, K S; Maharaj, H; Mohanakumar, K P; Daya, S

    2004-04-01

    We assessed the antioxidant activity of non-narcotic analgesics, acetaminophen and aspirin in rat brain homogenates and neuroprotective effects in vivo in rats intranigrally treated with 1-methyl-4-phenyl pyridinium (MPP+). Both drugs inhibited cyanide-induced superoxide anion generation, as well as lipid peroxidation in rat brain homogenates, the combination of the agents resulting in a potentiation of this effect. Acetaminophen or aspirin when administered alone or in combination, did not alter dopamine (DA) levels in the forebrain or in the striatum. Intranigral infusion of MPP+ in rats caused severe depletion of striatal DA levels in the ipsilateral striatum in rats by the third day. Systemic post-treatment of acetaminophen afforded partial protection, whereas similar treatment of aspirin resulted in complete blockade of MPP+-induced striatal DA depletion. While these findings suggest usefulness of non-narcotic analgesics in neuroprotective therapy in neurodegenerative diseases, aspirin appears to be a potential candidate in prophylactic as well as in adjuvant therapy in Parkinson's disease.

  11. Acute ethanol intake induces superoxide anion generation and mitogen-activated protein kinase phosphorylation in rat aorta: A role for angiotensin type 1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Yogi, Alvaro; Callera, Glaucia E. [Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario (Canada); Mecawi, André S. [Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP (Brazil); Batalhão, Marcelo E.; Carnio, Evelin C. [Department of General and Specialized Nursing, College of Nursing of Ribeirão Preto, USP, São Paulo (Brazil); Antunes-Rodrigues, José [Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP (Brazil); Queiroz, Regina H. [Department of Clinical, Toxicological and Food Science Analysis, Faculty of Pharmaceutical Sciences, USP, São Paulo (Brazil); Touyz, Rhian M. [Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario (Canada); Tirapelli, Carlos R., E-mail: crtirapelli@eerp.usp.br [Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP (Brazil)

    2012-11-01

    Ethanol intake is associated with increase in blood pressure, through unknown mechanisms. We hypothesized that acute ethanol intake enhances vascular oxidative stress and induces vascular dysfunction through renin–angiotensin system (RAS) activation. Ethanol (1 g/kg; p.o. gavage) effects were assessed within 30 min in male Wistar rats. The transient decrease in blood pressure induced by ethanol was not affected by the previous administration of losartan (10 mg/kg; p.o. gavage), a selective AT{sub 1} receptor antagonist. Acute ethanol intake increased plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, plasma angiotensin I (ANG I) and angiotensin II (ANG II) levels. Ethanol induced systemic and vascular oxidative stress, evidenced by increased plasma thiobarbituric acid-reacting substances (TBARS) levels, NAD(P)H oxidase‐mediated vascular generation of superoxide anion and p47phox translocation (cytosol to membrane). These effects were prevented by losartan. Isolated aortas from ethanol-treated rats displayed increased p38MAPK and SAPK/JNK phosphorylation. Losartan inhibited ethanol-induced increase in the phosphorylation of these kinases. Ethanol intake decreased acetylcholine-induced relaxation and increased phenylephrine-induced contraction in endothelium-intact aortas. Ethanol significantly decreased plasma and aortic nitrate levels. These changes in vascular reactivity and in the end product of endogenous nitric oxide metabolism were not affected by losartan. Our study provides novel evidence that acute ethanol intake stimulates RAS activity and induces vascular oxidative stress and redox-signaling activation through AT{sub 1}-dependent mechanisms. These findings highlight the importance of RAS in acute ethanol-induced oxidative damage. -- Highlights: ► Acute ethanol intake stimulates RAS activity and vascular oxidative stress. ► RAS plays a role in acute ethanol-induced oxidative damage via AT{sub 1} receptor activation.

  12. The pH dependence of the spectral and anion binding properties of iron containing superoxide dismutase from E. coli B

    International Nuclear Information System (INIS)

    Fee, J.A.; McClune, G.J.; Lees, A.C.; Zidovetzki, R.; Pecht, I.

    1981-01-01

    Examination of the optical and EPR properties of the ferric form of the iron containing superoxide dismutase from E.coli B, at pH values ranging from 4.5 to 10.9, has revealed two reversible structural transitions affecting the Fe 3+ ion. The apparent pKsub(a) values of these transitions are 5.1+-0.3 and 9.O+-0.3. The binding of azide has been studied over the pH range 4.5 to 10.7; the affinity of the Fe 3+ for N 3 - is independent of pH from 4.5 to approximately 7.5, after which the dissociation constant decreased by a factor of 10 per unit increase in pH. The apparent pKsub(a) which affects N 3 - binding to the iron is 8.6+-0.2. The association of N 3 - with the iron has been examined using the temperature-jump method at pH 7.4 and 9.3. The kinetics of ligand association were shown to conform to the minimal mechanism: P-Fe 3+ + N 3 - reversible K 1 N 3 - - P-Fe 3+ reversible K 2 P-Fe 3+ - N 3 - . K 1 was found to be essentially unaffected by pH whereas K 2 was much lower at pH 9.3 than at 7.4. The value of K 1 at pH 7.4 (100 M -1 ) corresponds very closely to that obtained for the inhibition constant of azide, 10mM. A scheme is presented in which N 3 - inhibits the iron containing dismutase by competing with O 2 - for an anion binding site near, but not on the Fe 3+ . (author)

  13. MAPK inhibitors, particularly the JNK inhibitor, increase cell death effects in H2O2-treated lung cancer cells via increased superoxide anion and glutathione depletion.

    Science.gov (United States)

    Park, Woo Hyun

    2018-02-01

    Reactive oxygen species (ROS), especially hydrogen peroxide (H2O2), induce apoptosis in cancer cells by regulating mitogen-activated protein kinase (MAPK) signaling pathways. The present study investigated the effects of MAPK inhibitors on cell growth and death as well as changes in ROS and glutathione (GSH) levels in H2O2-treated Calu-6 and A549 lung cancer cells. H2O2 inhibited growth and induced death of Calu-6 and A549 lung cancer cells. All MAPK inhibitors appeared to enhance growth inhibition in H2O2-treated Calu-6 and A549 lung cancer cells and increased the percentage of Annexin V-FITC-positive cells in these cancer cells. Among the MAPK inhibitors, a JNK inhibitor significantly augmented the loss of mitochondrial membrane potential (MMP; ΔΨm) in H2O2-treated Calu-6 and A549 lung cancer cells. Intracellular ROS levels were significantly increased in the H2O2-treated cells at 1 and 24 h. Only the JNK inhibitor increased ROS levels in the H2O2-treated cells at 1 h and all MAPK inhibitors raised superoxide anion levels in these cells at 24 h. In addition, H2O2 induced GSH depletion in Calu-6 and A549 cells and the JNK inhibitor significantly enhanced GSH depletion in H2O2‑treated cells. Each of the MAPK inhibitors altered ROS and GSH levels differently in the Calu-6 and A549 control cells. In conclusion, H2O2 induced growth inhibition and death in lung cancer cells through oxidative stress and depletion of GSH. The enhanced effect of MAPK inhibitors, especially the JNK inhibitor, on cell death in H2O2-treated lung cancer cells was correlated with increased O2•- levels and GSH depletion.

  14. Dual-Ratiometric Fluorescent Nanoprobe for Visualizing the Dynamic Process of pH and Superoxide Anion Changes in Autophagy and Apoptosis.

    Science.gov (United States)

    Yang, Limin; Chen, Yuanyuan; Yu, Zhengze; Pan, Wei; Wang, Hongyu; Li, Na; Tang, Bo

    2017-08-23

    Autophagy and apoptosis are closely associated with various pathological and physiological processes in cell cycles. Investigating the dynamic changes of intracellular active molecules in autophagy and apoptosis is of great significance for clarifying their inter-relationship and regulating mechanism in many diseases. In this study, we develop a dual-ratiometric fluorescent nanoprobe for quantitatively differentiating the dynamic process of superoxide anion (O 2 •- ) and pH changes in autophagy and apoptosis in HeLa cells. A rhodamine B-loaded mesoporous silica core was used as the reference, and fluorescence probes for pH and O 2 •- measurement were doped in the outer layer shell of SiO 2 . Then, chitosan and triphenylphosphonium were modified on the surface of SiO 2 . The experimental results showed that the nanoprobe is able to simultaneously and precisely visualize the changes of mitochondrial O 2 •- and pH in HeLa cells. The kinetics data revealed that the changes of pH and O 2 •- during autophagy and apoptosis in HeLa cells were significantly different. The pH value was decreased at the early stage of apoptosis and autophagy, whereas the O 2 •- level was enhanced at the early stage of apoptosis and almost unchanged at the initial stage of autophagy. At the late stage of apoptosis and autophagy, the concentration of O 2 •- was increased, whereas the pH was decreased at the late stage of autophagy and almost unchanged at the late stage of apoptosis. We hope that the present results provide useful information for studying the effects of O 2 •- and pH in autophagy and apoptosis in various pathological conditions and diseases.

  15. Synthesis of malachite@clay nanocomposite for rapid scavenging of cationic and anionic dyes from synthetic wastewater.

    Science.gov (United States)

    Srivastava, Varsha; Sillanpää, Mika

    2017-01-01

    Synthesis of malachite@clay nanocomposite was successfully carried out for the removal of cationic (Methylene Blue, MB) and anionic dyes (Congo Red, CR) from synthetic wastewater. Nanocomposite was characterized by TEM, SEM, FT-IR, EDS analysis and zeta potential. TEM analysis indicated that the particle diameter of nanocomposite was in the range of 14 to 23nm. Various important parameters viz. contact time, concentration of dyes, nanocomposite dosage, temperature and solution pH were optimized to achieve maximum adsorption capacity. In the case of MB, removal decreased from 99.82% to 93.67% while for CR, removal decreased from 88.55% to 75.69% on increasing dye concentration from 100 to 450mg/L. pH study confirmed the higher removal of CR in acidic range while MB removal was higher in alkaline range. Kinetic study revealed the applicability of pseudo-second-order model for the adsorption of both dyes. Negative values of ΔG 0 for both systems suggested the feasibility of dye removal and support for spontaneous adsorption of CR and MB on nanocomposite. Nanocomposite showed 277.77 and 238.09mg/g Langmuir adsorption capacity for MB and CR respectively. Desorption of dyes from the dye loaded nanocomposite was easily carried out with acetone. The results indicate that the prepared malachite@clay nanocomposite is an efficient adsorbent with high adsorption capacity for the aforementioned dyes. Copyright © 2016. Published by Elsevier B.V.

  16. PH dependence of the spectral and anion binding properties of iron containing superoxide dismutase from E. coli B. An explanation for the azide inhibition of dismutase activity

    Energy Technology Data Exchange (ETDEWEB)

    Fee, J A; McClune, G J; Lees, A C [Michigan Univ., Ann Arbor (USA). Dept. of Biological Chemistry; Zidovetzki, R; Pecht, I [Weizmann Inst. of Science, Rehovoth (Israel). Dept. of Chemical Immunology

    1981-01-01

    Examination of the optical and EPR properties of the ferric form of the iron containing superoxide dismutase from E.coli B, at pH values ranging from 4.5 to 10.9, has revealed two reversible structural transitions affecting the Fe/sup 3 +/ ion. The apparent pKsub(a) values of these transitions are 5.1+-0.3 and 9.O+-0.3. The binding of azide has been studied over the pH range 4.5 to 10.7; the affinity of the Fe/sup 3 +/ for N/sub 3//sup -/ is independent of pH from 4.5 to approximately 7.5, after which the dissociation constant decreased by a factor of 10 per unit increase in pH. The apparent pKsub(a) which affects N/sub 3//sup -/ binding to the iron is 8.6+-0.2. The association of N/sub 3//sup -/ with the iron has been examined using the temperature-jump method at pH 7.4 and 9.3. The kinetics of ligand association were shown to conform to the minimal mechanism: P-Fe/sup 3 +/ + N/sub 3//sup -/reversible K/sub 1/N/sub 3//sup -/ - P-Fe/sup 3 +/reversible K/sub 2/P-Fe/sup 3 +/ - N/sub 3//sup -/. K/sub 1/ was found to be essentially unaffected by pH whereas K/sub 2/ was much lower at pH 9.3 than at 7.4. The value of K/sub 1/ at pH 7.4 (100 M/sup -1/) corresponds very closely to that obtained for the inhibition constant of azide, 10mM. A scheme is presented in which N/sub 3//sup -/ inhibits the iron containing dismutase by competing with O/sub 2//sup -/ for an anion binding site near, but not on the Fe/sup 3 +/.

  17. Multiple free-radical scavenging (MULTIS) capacity in cattle serum.

    Science.gov (United States)

    Sueishi, Yoshimi; Kamogawa, Erisa; Kimura, Anna; Kitahara, Go; Satoh, Hiroyuki; Asanuma, Taketoshi; Oowada, Shigeru

    2017-01-01

    Multiple free-radical scavenging (MULTIS) activity in cattle and human sera was evaluated with electron spin resonance spectroscopy. Scavenging rates against six active species, namely hydroxyl radical, superoxide anion, alkoxyl radical, alkylperoxyl radical, methyl radical, and singlet oxygen were quantified. The difference in the electron spin resonance signal intensity in the presence and absence of the serum was converted into the scavenging rates. Comparative MULTIS measurements were made in sera from eight beef cattle, three fetal calves and fifteen healthy human volunteers. Further, we determined the MULTIS value of albumin, the most abundant component in serum. MULTIS values in cattle sera indicated higher scavenging activity against most free radical species tested than human sera. In particular, cattle serum scavenging activities against superoxide and methyl radical were higher than human serum by 2.6 and 3.7 fold, respectively. In cattle serum, albumin appears to play a dominant role in MULTIS activity, but in human serum that is not the case. Previous data indicated that the abundance of uric acid in bovine blood is nearly 80% less than humans; however, this difference does not explain the deviation in MULTIS profile.

  18. Free radical scavengers and antioxidants from Lemongrass (Cymbopogon citratus (DC.) Stapf.).

    Science.gov (United States)

    Cheel, José; Theoduloz, Cristina; Rodríguez, Jaime; Schmeda-Hirschmann, Guillermo

    2005-04-06

    Methanol, MeOH/water extracts, infusion, and decoction of Cymbopogon citratus were assessed for free radical scavenging effects measured by the bleaching of the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical, scavenging of the superoxide anion, and inhibition of the enzyme xanthine oxidase (XO) and lipid peroxidation in human erythrocytes. The extracts presented effect in the DPPH and superoxide anion assay, with values ranging between 40 and 68% and 15-32% at 33 and 50 microg/mL, respectively, inhibited lipid peroxidation in erythrocytes by 19-71% at 500 microg/mL and were inactive toward the XO at 50 microg/mL. Isoorientin, isoscoparin, swertiajaponin, isoorientin 2' '-O-rhamnoside, orientin, chlorogenic acid, and caffeic acid were isolated and identified by spectroscopic methods. Isoorientin and orientin presented similar activities toward the DPPH (IC(50): 9-10 microM) and inhibited lipid peroxidation by 70% at 100 microg/mL. Caffeic and chlorogenic acid were active superoxide anion scavengers with IC(50) values of 68.8 and 54.2 microM, respectively, and a strong effect toward DPPH. Caffeic acid inhibited lipid peroxidation by 85% at 100 microg/mL.

  19. Immobilization of Superoxide Dismutase on Polyelectrolyte-Functionalized Titania Nanosheets.

    Science.gov (United States)

    Rouster, Paul; Pavlovic, Marko; Szilagyi, Istvan

    2018-02-16

    The superoxide dismutase (SOD) enzyme was successfully immobilized on titania nanosheets (TNS) functionalized with the poly(diallyldimethylammonium chloride) (PDADMAC) polyelectrolyte. The TNS-PDADMAC solid support was prepared by hydrothermal synthesis followed by self-assembled polyelectrolyte layer formation. It was found that SOD strongly adsorbed onto oppositely charged TNS-PDADMAC through electrostatic and hydrophobic interactions. The TNS-PDADMAC-SOD material was characterized by light scattering and microscopy techniques. Colloidal stability studies revealed that the obtained nanocomposites possessed good resistance against salt-induced aggregation in aqueous suspensions. The enzyme kept its functional integrity upon immobilization; therefore, TNS-PDADMAC-SOD showed excellent superoxide radical anion scavenging activity. The developed system is a promising candidate for applications in which suspensions of antioxidant activity are required in the manufacturing processes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The Superoxide Reductase from the Early Diverging Eukaryote Giardia Intestinalis

    International Nuclear Information System (INIS)

    Cabelli, D.E.; Testa, F.; Mastronicola, D.; Bordi, E.; Pucillo, L.P.; Sarti, P.; Saraiva, L.M.; Giuffre, A.; Teixeira, M.

    2011-01-01

    Unlike superoxide dismutases (SODs), superoxidereductases (SORs) eliminate superoxide anion (O 2 # sm b ullet# - ) not through its dismutation, but via reduction to hydrogen peroxide (H 2 O 2 ) in the presence of an electron donor. The microaerobic protist Giardia intestinalis, responsible for a common intestinal disease in humans, though lacking SOD and other canonical reactive oxygen species-detoxifying systems, is among the very few eukaryotes encoding a SOR yet identified. In this study, the recombinant SOR from Giardia (SOR Gi ) was purified and characterized by pulse radiolysis and stopped-flow spectrophotometry. The protein, isolated in the reduced state, after oxidation by superoxide or hexachloroiridate(IV), yields a resting species (T final ) with Fe 3+ ligated to glutamate or hydroxide depending on pH (apparent pK a = 8.7). Although showing negligible SOD activity, reduced SOR Gi reacts with O 2 # sm b ullet# - with a pH-independent second-order rate constant k 1 = 1.0 x 10 9 M -1 s -1 and yields the ferric-(hydro)peroxo intermediate T 1 ; this in turn rapidly decays to the T final state with pH-dependent rates, without populating other detectable intermediates. Immunoblotting assays show that SOR Gi is expressed in the disease-causing trophozoite of Giardia. We propose that the superoxide-scavenging activity of SOR in Giardia may promote the survival of this air-sensitive parasite in the fairly aerobic proximal human small intestine during infection.

  1. 2',3-dihydroxy-5-methoxybiphenyl suppresses fMLP-induced superoxide anion production and cathepsin G release by targeting the β-subunit of G-protein in human neutrophils.

    Science.gov (United States)

    Liao, Hsiang-Ruei; Chen, Ih-Sheng; Liu, Fu-Chao; Lin, Shinn-Zhi; Tseng, Ching-Ping

    2018-06-15

    This study investigates the effect and the underlying mechanism of 2',3-dihydroxy-5-methoxybiphenyl (RIR-2), a lignan extracted from the roots of Rhaphiolepis indica (L.) Lindl. ex Ker var. tashiroi Hayata ex Matsum. & Hayata (Rosaceae), on N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP)-induced respiratory burst and cathepsin G in human neutrophils. Signaling pathways regulated by RIR-2 which modulated fMLP-induced respiratory burst were evaluated by an interaction between β subunit of G-protein (Gβ) with downstream signaling induced by fMLP and by immunoblotting analysis of the downstream targets of Gβ-protein. RIR-2 inhibited fMLP-induced superoxide anion production (IC 50 :2.57 ± 0.22 μM), cathepsin G release (IC 50 :18.72 ± 3.76 μM) and migration in a concentration dependent manner. RIR-2 specifically suppresses fMLP-induced Src family kinases phosphorylation by inhibiting the interaction between Gβ-protein with Src kinases without inhibiting Src kinases activities, therefore, RIR-2 attenuated the downstream targets of Src kinase, such as phosphorylation of Raf/ERK, AKT, P38, PLCγ2, PKC and translocation Tec, p47 ph ° x and P40 ph ° x from the cytosol to the inner leaflet of the plasma membrane. Furthermore, RIR-2 attenuated fMLP-induced intracellular calcium mobilization by inhibiting the interaction between Gβ-protein with PLCβ2. RIR-2 was not a competitive or allosteric antagonist of fMLP. On the contrary, phorbol 12-myristate 13-acetate (PMA)-induced phosphorylation of Src, AKT, P38, PKC and membrane localization of p47 ph ° x and P40 ph ° x remained unaffected. RIR-2 specifically modulates fMLP-mediated neutrophil superoxide anion production and cathepsin G release by inhibiting the interaction between Gβ-protein with downstream signaling which subsequently interferes with the activation of intracellular calcium, PLCγ2, AKT, p38, PKC, ERK, p47 ph ° x and p40 phox . Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Scavenger and antioxidant properties of prenylflavones isolated from Artocarpus heterophyllus.

    Science.gov (United States)

    Ko, F N; Cheng, Z J; Lin, C N; Teng, C M

    1998-07-15

    The antioxidant properties of prenylflavones, isolated from Artocarpus heterophyllus Lam., was evaluated in this study. Among them, artocarpine, artocarpetin, artocarpetin A, and cycloheterophyllin diacetate and peracetate had no effect on iron-induced lipid peroxidation in rat brain homogenate. They also did not scavenge the stable free radical 1,1-diphenyl-2-picrylhydrazyl. In contrast, cycloheterophyllin and artonins A and B inhibited iron-induced lipid peroxidation in rat brain homogenate and scavenged 1,1-diphenyl-2-picrylhydrazyl. They also scavenged peroxyl radicals and hydroxyl radicals that were generated by 2,2'-azobis(2-amidinopropane) dihydrochloride and the Fe3+-ascorbate-EDTA-H2O2 system, respectively. However, they did not inhibit xanthine oxidase activity or scavenge superoxide anion, hydrogen peroxide, carbon radical, or peroxyl radicals derived from 2,2'-azobis(2,4-dimethylvaleronitrile) in hexane. Moreover, cycloheterophyllin and artonins A and B inhibited copper-catalyzed oxidation of human low-density lipoprotein, as measured by fluorescence intensity, thiobarbituric acid-reactive substance and conjugated-diene formations and electrophoretic mobility. It is concluded that cycloheterophyllin and artonins A and B serve as powerful antioxidants against lipid peroxidation when biomembranes are exposed to oxygen radicals.

  3. Radiation-induced formation of 8-hydroxy-2'-deoxyguanosine and its prevention by scavengers

    DEFF Research Database (Denmark)

    Fischer-Nielsen, A; Jeding, I B; Loft, S

    1994-01-01

    measured 8-OHdG formation in calf thymus DNA exposed to ionizing radiation under conditions generating either hydroxyl radicals (OH.), superoxide anions (O2-) or both. Additionally, we investigated the relationship between the scavenger effect of the drug 5-aminosalicylic acid (5-ASA) and increasing OH...... and 100 Gy radiation, i.e. within a wide range of OH. exposure, which is useful information considering clinical applications where the exact amount of ROS formed is unknown. Both 5-ASA and ascorbate at low concentrations (

  4. Design of a New Near-Infrared Ratiometric Fluorescent Nanoprobe for Real-Time Imaging of Superoxide Anions and Hydroxyl Radicals in Live Cells and in Situ Tracing of the Inflammation Process in Vivo.

    Science.gov (United States)

    Liu, Rongjun; Zhang, Liangliang; Chen, Yunyun; Huang, Zirong; Huang, Yong; Zhao, Shulin

    2018-04-03

    The superoxide anion (O 2 •- ) and hydroxyl radical ( • OH) are important reactive oxygen species (ROS) used as biomarkers in physiological and pathological processes. ROS generation is closely related to the development of a variety of inflammatory diseases. However, the changes of ROS are difficult to ascertain with in situ tracing of the inflammation process by real-time monitoring, owing to the short half-lives of ROS and high tissue autofluorescence in vivo. Here we developed a new near-infrared (NIR) ratiometric fluorescence imaging approach by using a Förster resonance energy transfer (FRET)-based ratiometric fluorescent nanoprobe for real-time monitoring of O 2 •- and • OH generation and also by using in situ tracing of the inflammation process in vivo. The proposed nanoprobe was composed of PEG functionalized GQDs as the energy donor connecting to hydroIR783, serving as both the O 2 •- / • OH recognizing ligand and the energy acceptor. The nanoprobe not only exhibited a fast response to O 2 •- and • OH but also presented good biocomapatibility as well as a high photostability and signal-to-noise ratio. We have demonstrated that the proposed NIR ratiometric fluorescent nanoprobe can monitor the changes of O 2 •- and • OH in living RAW 264.7 cells via a drug mediating inflammation model and further realized visual monitoring of the change of O 2 •- and • OH in mice for in situ tracing of the inflammation process. Our design may provide a new paradigm for long-term and real-time imaging applications for in vivo tracing of the pathological process related to the inflammatory diseases.

  5. Scoparone attenuates RANKL-induced osteoclastic differentiation through controlling reactive oxygen species production and scavenging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Hyun; Jang, Hae-Dong, E-mail: haedong@hnu.kr

    2015-02-15

    Scoparone, one of the bioactive components of Artemisia capillaris Thunb, has various biological properties including immunosuppressive, hepatoprotective, anti-allergic, anti-inflammatory, and antioxidant effects. This study aims at evaluating the anti-osteoporotic effect of scoparone and its underlying mechanism in vitro. Scoparone demonstrated potent cellular antioxidant capacity. It was also found that scoparone inhibited the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation and suppressed cathepsin K and tartrate-resistant acid phosphatase (TRAP) expression via c-jun N-terminal kinase (JNK)/extracellular signal-regulated kinase (ERK)/p38-mediated c-Fos–nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) signaling pathway. During osteoclast differentiation, the production of general reactive oxygen species (ROS) and superoxide anions was dose-dependently attenuated by scoparone. In addition, scoparone diminished NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 1 (Nox1) expression and activation via the tumor necrosis factor receptor-associated factor 6 (TRAF6)–cSrc–phosphatidylinositol 3-kinase (PI3k) signaling pathway and prevented the disruption of mitochondrial electron transport chain system. Furthermore, scoparone augmented the expression of superoxide dismutase 1 (SOD1) and catalase (CAT). The overall results indicate that the inhibitory effect of scoparone on RANKL-induced osteoclast differentiation is attributed to the suppressive effect on ROS and superoxide anion production by inhibiting Nox1 expression and activation and protecting the mitochondrial electron transport chain system and the scavenging effect of ROS resulting from elevated SOD1 and CAT expression. - Highlights: • Scoparone dose-dependently inhibited RANKL-induced osteoclast differentiation. • Scoparone diminished general ROS and superoxide anions in a dose-dependent manner. • Scoparone inhibited Nox1 expression and

  6. Physical and chemical stability of different formulations with superoxide dismutase.

    Science.gov (United States)

    Di Mambro, V M; Campos, P M B G Maia; Fonseca, M J V

    2004-10-01

    Topical formulations with superoxide dismutase (SOD), a scavenger of superoxide radicals, have proved to be effective against some skin diseases. Nevertheless, formulations with proteins are susceptible to both chemical and physical instability. Three different formulations (anionic and non-ionic gel and emulsion) were developed and supplemented with SOD in order to determine the most stable formulation that would maintain SOD activity. Physical stability was evaluated by assessing the rheological behavior of the formulations stored at room temperature, 37 and 45 degrees C. Chemical stability was evaluated by the measurement of enzymatic activity in the formulations stored at room temperature and at 45 degrees C. Formulations showed a flow index less than one, characterizing pseudoplastic behavior. There was no significant difference in initial values of flow index, tixotropy or minimum apparent viscosity. Neither gel showed significant changes in minimum apparent viscosity concerning storage time or temperature, as well, SOD presence and its activity. The emulsion showed decreased viscosity by the 28th day, but no significant changes concerning storage temperature or SOD presence, although it showed a decreased activity. The addition of SOD to the formulations studied did not affect their physical stability but gel formulations seem to be better bases for enzyme addition.

  7. [In vitro anti-inflammatory and free radical scavenging activities of flavans from Ilex centrochinensis].

    Science.gov (United States)

    Li, Lu-jun; Yu, Li-juan; Li, Yan-ci; Liu, Meng-yuan; Wu, Zheng-zhi

    2015-04-01

    This study was carried out to evaluate the anti-inflammatory and free radical scavenging activities of flavans from flex centrochinensis S. Y. Hu in vitro and their structure-activity relationship. LPS-stimulated RAW 264.7 macrophage was used as inflammatory model. MTT assay for cell availability, Griess reaction for nitric oxide (NO) production, the content of TNF-alpha, IL-1beta, IL-6 and PGE, were detected with ELISA kits; DPPH, superoxide anion and hydroxyl free radicals scavenging activities were also investigated. According to the result, all flavans tested exhibited anti-inflammatory effect in different levels. Among them, compounds 1, 3, 4 and 6 showed potent anti-inflammatory effect through the inhibition of NO, TNF-alpha, IL-lp and IL-6, of which 1 was the most effective inhibitor, however, 2 and 5 were relatively weak or inactive. The order of free radical scavenging activities was similar to that of anti-inflammatory activities. Therefore, these results suggest that 3, 4 and 6, especially of 1, were,in part responsible for the anti-inflammatory and free radical scavenging activity of Ilex centrochinensis. Hydroxyl group at 4'-position of B-ring plays an important role in the anti-inflammatory and free radical scavenging capacities.

  8. Free radical scavenging potential and HPTLC analysis of Indigofera tinctoria linn (Fabaceae

    Directory of Open Access Journals (Sweden)

    Sakthivel Srinivasan

    2016-04-01

    Full Text Available The objective of this study was to evaluate the free radical scavenging potential and high performance thin layer chromatography (HPTLC fingerprinting of Indigofera tinctoria (I. tinctoria. Phytochemical analysis was carried out using standard methods, and free radical scavenging activity of the plant was determined using 2,2-diphenyl-1-picrylhydrazy (DPPH, nitric oxide (NO and superoxide anion (O2− radical scavenging capacities. HPTLC plate was kept in CAMAG TLC Scanner 3 and the Rf values at fingerprint data were recorded by WINCATS software. Aqueous extract of I. tinctoria reliably showed the total phenolics (267.2±2.42 mg/g, flavonoids (75.43±3.36 mg/g and antioxidants (349.11±8.04 mg/g. The extract was found to have DPPH (52.08%, NO (23.12% and O2− (26.79% scavenging activities at the concentration of 250 μg/mL and the results were statistically significant compared with ascorbic acid standard (p<0.05. HPTLC results confirmed that the extract contained several potential active components such as phenols, flavonoids, saponins and terpenoids as the slides revealed multi-colored bands of varying intensities. This study confirmed that the plant had multipotential antioxidant and free radicals scavenging activities.

  9. 1,4-Anhydro-4-seleno-d-talitol (SeTal) protects endothelial function in the mouse aorta by scavenging superoxide radicals under conditions of acute oxidative stress

    DEFF Research Database (Denmark)

    Ng, Hooi Hooi; Leo, Chen Huei; O'Sullivan, Kelly

    2017-01-01

    and decreased basal nitric oxide (NO) availability. SeTal (1mM) co-treatment prevented high glucose-induced endothelial dysfunction and oxidative stress in the mouse aorta. The presence of a cyclooxygenase inhibitor, indomethacin significantly improved the sensitivity to ACh in high glucose-treated aortae......, but had no effect in SeTal-treated aortae. Our data show that SeTal has potent antioxidant activity in isolated mouse aortae and prevents high glucose-induced endothelial dysfunction by decreasing superoxide levels, increasing basal NO availability and normalising the contribution of vasoconstrictor......Hyperglycaemia increases the generation of reactive oxidants in blood vessels and is a major cause of endothelial dysfunction. A water-soluble selenium-containing sugar (1,4-Anhydro-4-seleno-d-talitol, SeTal) has potent antioxidant activity in vitro and is a promising treatment to accelerate wound...

  10. New derivatives of 3,4-dihydroisoquinoline-3-carboxylic acid with free-radical scavenging, D-amino acid oxidase, acetylcholinesterase and butyrylcholinesterase inhibitory activity.

    Science.gov (United States)

    Solecka, Jolanta; Guśpiel, Adam; Postek, Magdalena; Ziemska, Joanna; Kawęcki, Robert; Lęczycka, Katarzyna; Osior, Agnieszka; Pietrzak, Bartłomiej; Pypowski, Krzysztof; Wyrzykowska, Agata

    2014-09-30

    A series of 3,4-dihydroisoquinoline-3-carboxylic acid derivatives were synthesised and tested for their free-radical scavenging activity using 2,2-diphenyl-1-picrylhydrazyl radical (DPPH·), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS·+), superoxide anion radical (O2·-) and nitric oxide radical (·NO) assays. We also studied d-amino acid oxidase (DAAO), acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activity. Almost each of newly synthesised compounds exhibited radical scavenging capabilities. Moreover, several compounds showed moderate inhibitory activities against DAAO, AChE and BuChE. Compounds with significant free-radical scavenging activity may be potential candidates for therapeutics used in oxidative-stress-related diseases.

  11. DFT Study on Molecular Structures and ROS Scavenging Mechanisms of Novel Antioxidants from Lespedeza Virgata

    Science.gov (United States)

    Li, Min-jie; Zhang, Liang-miao; Liu, Wei-xia; Lu, Wen-cong

    2011-04-01

    The molecular structure and radical scavenging activity of three novel antioxidants from Lespedeza Virgata, lespedezavirgatol, lespedezavirgatal, and lespedezacoumestan, have been studied using density functional theory with the B3LYP and BhandHLYP methods. The optimized geometries of neutral, radical cation, radical and anion forms were obtained at the B3LYP/6-31G(d) level, in which it was found that all the most stable conformations contain intramolecular hydrogen bonds. The same results were obtained from the MP2 method. The homolytic O—H bond dissociation enthalpy and the adiabatic ionization potential of neutral and anion forms for the three new antioxidants and adiabatic electron affinity and H-atom affinity for hydroxyl radical, superoxide anion radical, and hydrogen peroxide radical were determined both in gas phase and in aqueous solution using IEF-PCM and CPCM model with UAHF or Bondi cavity. The antioxidant activities and reactive oxygen species scavenging mechanisms were then discussed, and the results obtained from different methods are consistent. Furthermore, the antioxidant activities are consistent with the experimental findings of the compounds under investigation.

  12. Highly functionalized piperidines: Free radical scavenging, anticancer activity, DNA interaction and correlation with biological activity

    Directory of Open Access Journals (Sweden)

    Suvankar Das

    2018-01-01

    Full Text Available Twenty-five piperidines were studied as potential radical scavengers and antitumor agents. Quantitative interaction of compounds with ctDNA using spectroscopic techniques was also evaluated. Our results demonstrate that the evaluated piperidines possesses different abilities to scavenge the radical 2,2-diphenyl-1-picrylhydrazyl (DPPH and the anion radical superoxide (·O2−. The piperidine 19 was the most potent radical DPPH scavenger, while the most effective to ·O2− scavenger was piperidine 10. In general, U251, MCF7, NCI/ADR-RES, NCI-H460 and HT29 cells were least sensitive to the tested compounds and all compounds were considerably more toxic to the studied cancer cell lines than to the normal cell line HaCaT. The binding mode of the compounds and ctDNA was preferably via intercalation. In addition, these results were confirmed based on theoretical studies. Finally, a linear and exponential correlation between interaction constant (Kb and GI50 for several human cancer cell was observed.

  13. Inhibition of nitric oxide synthase expression in activated microglia and peroxynitrite scavenging activity by Opuntia ficus indica var. saboten.

    Science.gov (United States)

    Lee, Ming Hong; Kim, Jae Yeon; Yoon, Jeong Hoon; Lim, Hyo Jin; Kim, Tae Hee; Jin, Changbae; Kwak, Wie-Jong; Han, Chang-Kyun; Ryu, Jae-Ha

    2006-09-01

    Activated microglia by neuronal injury or inflammatory stimulation overproduce nitric oxide (NO) by inducible nitric oxide synthase (iNOS) and reactive oxygen species (ROS) such as superoxide anion, resulting in neurodegenerative diseases. The toxic peroxynitrite (ONOO-), the reaction product of NO and superoxide anion further contributes to oxidative neurotoxicity. A butanol fraction obtained from 50% ethanol extracts of Opuntia ficus indica var. saboten (Cactaceae) stem (SK OFB901) and its hydrolysis product (SK OFB901H) inhibited the production of NO in LPS-activated microglia in a dose dependent manner (IC50 15.9, 4.2 microg/mL, respectively). They also suppressed the expression of protein and mRNA of iNOS in LPS-activated microglial cells at higher than 30 microg/mL as observed by western blot analysis and RT-PCR experiment. They also inhibited the degradation of I-kappaB-alpha in activated microglia. Moreover, they showed strong activity of peroxynitrite scavenging in a cell free bioassay system. These results imply that Opuntia ficus indica may have neuroprotective activity through the inhibition of NO production by activated microglial cells and peroxynitrite scavenging activity. Copyright (c) 2006 John Wiley & Sons, Ltd.

  14. A multiple free-radical scavenging (MULTIS) study on the antioxidant capacity of a neuroprotective drug, edaravone as compared with uric acid, glutathione, and trolox.

    Science.gov (United States)

    Kamogawa, Erisa; Sueishi, Yoshimi

    2014-03-01

    Edaravone (3-methyl-1-phenyl-2-pyrazoline-5-one) is a neuroprotective drug that has been used for brain ischemia injury treatment. Because its activity is speculated to be due to free radical scavenging activity, we carried out a quantitative determination of edaravone's free radical scavenging activity against multiple free radical species. Electron spin resonance (ESR) spin trapping-based multiple free-radical scavenging (MULTIS) method was employed, where target free radicals were hydroxyl radical, superoxide anion, alkoxyl radical, alkylperoxyl radical, methyl radical, and singlet oxygen. Edaravone showed relatively high scavenging abilities against hydroxyl radical (scavenging rate constant k=2.98×10(11) M(-1) s(-1)), singlet oxygen (k=2.75×10(7) M(-1) s(-1)), and methyl radical (k=3.00×10(7) M(-1) s(-1)). Overall, edaravone's scavenging activity against multiple free radical species is as robust as other known potent antioxidant such as uric acid, glutathione, and trolox. A radar chart illustration of the MULTIS activity relative to uric acid, glutathione, and trolox indicates that edaravone has a high and balanced antioxidant activity with low specificity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Biological Superoxide In Manganese Oxide Formation

    Science.gov (United States)

    Hansel, C.; Learman, D.; Zeiner, C.; Santelli, C. M.

    2011-12-01

    Manganese (Mn) oxides are among the strongest sorbents and oxidants within the environment, controlling the fate and transport of numerous elements and the degradation of recalcitrant carbon. Both bacteria and fungi mediate the oxidation of Mn(II) to Mn(III/IV) oxides but the genetic and biochemical mechanisms responsible remain poorly understood. Furthermore, the physiological basis for microbial Mn(II) oxidation remains an enigma. We have recently reported that a common marine bacterium (Roseobacter sp. AzwK-3b) oxidizes Mn(II) via reaction with extracellular superoxide (O2-) produced during exponential growth. Here we expand this superoxide-mediated Mn(II) oxidation pathway to fungi, introducing a surprising homology between prokaryotic and eukaryotic metal redox processes. For instance, Stibella aciculosa, a common soil Ascomycete filamentous fungus, precipitates Mn oxides at the base of asexual reproductive structures (synnemata) used to support conidia (Figure 1). This distribution is a consequence of localized production of superoxide (and it's dismutation product hydrogen peroxide, H2O2), leading to abiotic oxidation of Mn(II) by superoxide. Disruption of NADPH oxidase activity using the oxidoreductase inhibitor DPI leads to diminished cell differentiation and subsequent Mn(II) oxidation inhibition. Addition of Cu(II) (an effective superoxide scavenger) leads to a concentration dependent decrease in Mn oxide formation. We predict that due to the widespread production of extracellular superoxide within the fungal and likely bacterial kingdoms, biological superoxide may be an important contributor to the cycling of Mn, as well as other metals (e.g., Hg, Fe). Current and future explorations of the genes and proteins involved in superoxide production and Mn(II) oxidation will ideally lend insight into the physiological and biochemical basis for these processes.

  16. Inhibition of platelet aggregation and in vitro free radical scavenging activity of dried fruiting bodies of Pleurotus eous.

    Science.gov (United States)

    Suseem, S R; Saral, Mary

    2015-07-01

    To evaluate the ethyl acetate, methanol and aqueous extracts of dried fruiting bodies of Pleurotus eous for its anti-platelet activity on human volunteer's blood. And also to analyze the free radical scavenging property of the extracts of P.eous by using various in vitro models. Anti-platelet activity of dried fruiting bodies of P.eous was evaluated by in vitro model using blood platelets. Inhibition of platelet aggregation was monitored after pre-incubation of platelets with the crude extracts of mushroom P.eous. Antioxidant activities of extracts of P.eous were evaluated by different in vitro experiments, namely, 1, 1-diphenyl-2-picryl hydrazyl (DPPH), superoxide, hydroxyl radical and lipid peroxide radical models. Crude extracts of mushroom P.eous inhibited platelet aggregation dose-dependently which was induced by adenosine diphosphate (ADP). At a maximum concentration of 10 mg/mL, methanol extract effected 64.02% inhibition of lipid per-oxidation and 50.12% scavenging effect on superoxide anion radical. Aqueous extract of P.eous have shown 69.43% chelating ability on ferrous ions, 24.27% scavenging effect on hydroxyl radical and 49.57% scavenging effect on DPPH radical at 10 mg/mL. Increasing concentrations of the extract were found to cause progressively decreasing of the intensity of absorbance. Anti-platelet effects could be related in part to the polyphenolic compounds present in the extracts. Antioxidant activity results indicated the free radical scavenging property of the extracts of P.eous which might be due to the high content of phenolic compounds and flavonoids.

  17. Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase

    Directory of Open Access Journals (Sweden)

    Abrahim Noor

    2012-11-01

    Full Text Available Abstract Background Breast cancer is the most common form of cancer and the focus on finding chemotherapeutic agents have recently shifted to natural products. Piper betle is a medicinal plant with various biological activities. However, not much data is available on the anti-cancer effects of P. betle on breast cancer. Due to the current interest in the potential effects of antioxidants from natural products in breast cancer treatment, we investigated the antioxidant activities of the leaves of P. betle and its inhibitory effect on the proliferation of the breast cancer cell line, MCF-7. Methods The leaves of P. betle were extracted with solvents of varying polarities (water, methanol, ethyl acetate and hexane and their phenolic and flavonoid content were determined using colorimetric assays. Phenolic composition was characterized using HPLC. Antioxidant activities were measured using FRAP, DPPH, superoxide anion, nitric oxide and hyroxyl radical scavenging assays. Biological activities of the extracts were analysed using MTT assay and antioxidant enzyme (catalase, superoxide dismutase, glutathione peroxidase assays in MCF-7 cells. Results Overall, the ethyl acetate extract showed the highest ferric reducing activity and radical scavenging activities against DPPH, superoxide anion and nitric oxide radicals. This extract also contained the highest phenolic content implying the potential contribution of phenolics towards the antioxidant activities. HPLC analyses revealed the presence of catechin, morin and quercetin in the leaves. The ethyl acetate extract also showed the highest inhibitory effect against the proliferation of MCF-7 cells (IC50=65 μg/ml. Treatment of MCF-7 cells with the plant extract increased activities of catalase and superoxide dismutase. Conclusions Ethyl acetate is the optimal solvent for the extraction of compounds with antioxidant and anti-proliferative activities. The increased activities of catalase and superoxide

  18. Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase.

    Science.gov (United States)

    Abrahim, Noor Nazirahanie; Kanthimathi, M S; Abdul-Aziz, Azlina

    2012-11-15

    Breast cancer is the most common form of cancer and the focus on finding chemotherapeutic agents have recently shifted to natural products. Piper betle is a medicinal plant with various biological activities. However, not much data is available on the anti-cancer effects of P. betle on breast cancer. Due to the current interest in the potential effects of antioxidants from natural products in breast cancer treatment, we investigated the antioxidant activities of the leaves of P. betle and its inhibitory effect on the proliferation of the breast cancer cell line, MCF-7. The leaves of P. betle were extracted with solvents of varying polarities (water, methanol, ethyl acetate and hexane) and their phenolic and flavonoid content were determined using colorimetric assays. Phenolic composition was characterized using HPLC. Antioxidant activities were measured using FRAP, DPPH, superoxide anion, nitric oxide and hyroxyl radical scavenging assays. Biological activities of the extracts were analysed using MTT assay and antioxidant enzyme (catalase, superoxide dismutase, glutathione peroxidase) assays in MCF-7 cells. Overall, the ethyl acetate extract showed the highest ferric reducing activity and radical scavenging activities against DPPH, superoxide anion and nitric oxide radicals. This extract also contained the highest phenolic content implying the potential contribution of phenolics towards the antioxidant activities. HPLC analyses revealed the presence of catechin, morin and quercetin in the leaves. The ethyl acetate extract also showed the highest inhibitory effect against the proliferation of MCF-7 cells (IC50=65 μg/ml). Treatment of MCF-7 cells with the plant extract increased activities of catalase and superoxide dismutase. Ethyl acetate is the optimal solvent for the extraction of compounds with antioxidant and anti-proliferative activities. The increased activities of catalase and superoxide dismutase in the treated cells could alter the antioxidant defense

  19. Isolation and characterisation of in vitro and cellular free radical scavenging peptides from corn peptide fractions.

    Science.gov (United States)

    Wang, Liying; Ding, Long; Wang, Ying; Zhang, Yan; Liu, Jingbo

    2015-02-16

    Corn gluten meal, a corn processing industry by-product, is a good source for the preparation of bioactive peptides due to its special amino acid composition. In the present study, the in vitro and cellular free radical scavenging activities of corn peptide fractions (CPFs) were investigated. Results indicated that CPF1 (molecular weight less than 1 kDa) and CPF2 (molecular weight between 1 and 3 kDa) exhibited good hydroxyl radical, superoxide anion radical and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonicacid) diammonium salt (ABTS) radical scavenging activity and oxygen radical absorbance capacity (ORAC). Meanwhile, the in vitro radical scavenging activity of CPF1 was slightly higher than that of CPF2. Both CPF1 and CPF2 also exhibited significant cytoprotective effects and intracellular reactive oxygen species scavenging activity in Caco-2 cells exposed to hydrogen peroxide (H2O2). The amino acid composition analysis revealed that the CPF were rich in hydrophobic amino acids, which comprised of more than 45% of total amino acids. An antioxidant peptide sequence of Tyr-Phe-Cys-Leu-Thr (YFCLT) was identified from CPF1 using matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI TOF/TOF MS). The YFCLT exhibited excellent ABTS radical scavenging activity with a 50% effective concentration (EC50) value of 37.63 µM, which was much lower than that of Trolox. In conclusion, corn gluten meal might be a good source to prepare antioxidant peptides.

  20. High-performance liquid chromatography coupled with post-column dual-bioactivity assay for simultaneous screening of xanthine oxidase inhibitors and free radical scavengers from complex mixture.

    Science.gov (United States)

    Li, D Q; Zhao, J; Li, S P

    2014-06-06

    Xanthine oxidase (XO) can catalyze hypoxanthine and xanthine to generate uric acid and reactive oxygen species (ROS), including superoxide anion radical (O₂(•-)) and hydrogen peroxide. XO inhibitors and free radical scavengers are beneficial to the treatment of gout and many related diseases. In the present study, an on-line high-performance liquid chromatography (HPLC) coupled with post-column dual-bioactivity assay was established and successfully applied to simultaneously screening of XO inhibitors and free radical scavengers from a complex mixture, Oroxylum indicum extract. The integrated system of HPLC separation, bioactivity screening and mass spectrometry identification was proved to be simple and effective for rapid and sensitive screening of individual bioactive compounds in complex mixtures. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. The scavenging of free radical and oxygen species activities and hydration capacity of collagen hydrolysates from walleye pollock ( Theragra chalcogramma) skin

    Science.gov (United States)

    Zhuang, Yongliang; Li, Bafang; Zhao, Xue

    2009-06-01

    Fish skin collagen hydrolysates (FSCH) were prepared from walleye pollock ( Theragra chalcogramma) using a mixture of enzymes, namely trypsin and flavourzyme. The degree of hydrolysis of the skin collagen was 27.3%. FSCH was mainly composed of low-molecular-weight peptides and the relative proportion of <1000Da fraction was 70.6%. Free radical and oxygen species scavenging activities of FSCH were investigated in four model systems, including diphenylpicrylhy-drazyl radical (DPPH), superoxide anion radical, hydroxyl radical and hydrogen peroxide model, and compared with that of a native antioxidant, reduced glutathione (GSH). FSCH was also evaluated by water-absorbing and water-holding capacity. The results showed that FSCH was able to scavenge free radical and oxygen species significantly and to enhance water-absorbing and water-holding capacity remarkably. Therefore, FSCH may have potential applications in the medicine and food industries.

  2. Radical scavenging activity of crude polysaccharides from Camellia sinensis

    Directory of Open Access Journals (Sweden)

    Yang Fan

    2011-01-01

    Full Text Available A preparation of crude polysaccharides (TPS was isolated from Camellia sinensis by precipitation and ultrafiltration. TPS1, TPS2, and TPS3 had molecular weights of 240, 21.4, and 2.46 kDa, respectively. The radical scavenging activities of TPS were evaluated by DPPH free radical, hydroxyl radical and superoxide radical scavenging. These results revealed that TPS exhibited strong radical scavenging activity in a concentration-dependent manner. TPS3 with lowest molecular weight showed a higher radical scavenging activity.

  3. The Cu,Zn Superoxide Dismutase: not only a dismutase enzyme

    Directory of Open Access Journals (Sweden)

    Paolo Mondola

    2016-11-01

    Full Text Available The Cu,Zn superoxide dismutase (SOD1 is an ubiquitary cytosolic dimeric carbohydrate free molecule, belonging to a family of isoenzymes involved in the scavenger of superoxide anions. This effect certainly represents the main and well known function ascribed to this enzyme. Here we highlight new aspects of SOD1 physiology that point out some inedited effects of this enzyme in addition to the canonic role of oxygen radical enzymatic dismutation. In the last two decades our research group produced many data obtained in in vitro studies performed in many cellular lines, mainly neuroblastoma SK-N-BE cells, indicating that this enzyme is secreted either constitutively or after depolarization induced by high extracellular K+ concentration. In addition, we gave many experimental evidences showing that SOD1 is able to stimulate, through muscarinic M1 receptor, pathways involving ERK1/2 and AKT activation. These effects are accompanied with an intracellular calcium increase. In the last part of this review we describe researches that link deficient extracellular secretion of mutant SOD1G93A to its intracellular accumulation and toxicity in NSC-34 cells. Alternatively, SOD1G93A toxicity has been attributed to a decrease of Km for H2O2 with consequent OH. radical formation. Interestingly, this last inedited effect of SOD1G93A could represent a gain of function that could be involved in the pathogenesis of familial Amyotrophic Lateral Sclerosis (fALS.

  4. Co-Immobilization of Superoxide Dismutase with Catalase on Soft Microparticles Formed by Self-Assembly of Amphiphilic Poly(Aspartic Acid

    Directory of Open Access Journals (Sweden)

    Siyu Mao

    2017-07-01

    Full Text Available Through genetic engineering technology, catalase (CAT and superoxide dismutase (SOD have been separately fused to an elastin-like polypeptide (ELP. Thus, the enzymes can be purified through phase transition. Hexadecylamine-modified poly(aspartic acid (HPASP is able to self-assemble, forming soft microparticles. The HPASP microparticles were used to co-immobilize SOD-ELP and CAT-ELP through amidation reaction. Circular dichroism (CD confirmed that the secondary structures of the co-immobilized enzymes have been preserved. Fluorescence spectra showed that the co-immobilized enzymes exhibited a higher stability than the free enzymes. Dismutation of superoxide by superoxide dismutase (SOD generates hydrogen peroxide. By using the co-immobilized enzymes (SOD-ELP/CAT-ELP@HPASP, the generated hydrogen peroxide of SOD-ELP can be decomposed in situ by CAT-ELP. Activity assay results demonstrated that the superoxide anion (•O2− scavenging ability is 63.15 ± 0.75% for SOD-ELP/CAT-ELP@HPASP. The advantages of the approach of enzyme co-immobilization include the fact that the soft support HPASP itself is a polypeptide in nature, the stability of immobilized enzymes is improved, and a high activity has been achieved. Potentially SOD-ELP/CAT-ELP@HPASP can be applied in the cosmetic industry.

  5. Peroxynitrite scavenging by flavonids.

    NARCIS (Netherlands)

    Haenen, G.R.M.M.; Paquay, J.B.G.; Korthouwer, R.E.M.; Bast, A.

    1997-01-01

    The peroxynitrite scavenging activity of a series of structurally related flavonoids was tested. It was found that flavonoids are excellent scavengers of peroxynitrite. Compared to the known peroxynitrite scavenger ebselen, the most active flavonoids proved to be 10 times more effective. Indications

  6. A multipumping flow system for in vitro screening of peroxynitrite scavengers.

    Science.gov (United States)

    Ribeiro, Marta F T; Dias, Ana C B; Santos, João L M; Fernandes, Eduarda; Lima, José L F C; Zagatto, Elias A G

    2007-09-01

    Peroxynitrite anion is a reactive nitrogen species formed in vivo by the rapid, controlled diffusion reaction between nitric oxide and superoxide radicals. By reacting with several biological molecules, peroxynitrite may cause important cellular and tissue deleterious effects, which have been associated with many diseases. In this work, an automated flow-based procedure for the in vitro generation of peroxynitrite and subsequent screening of the scavenging activity of selected compounds is developed. This procedure involves a multipumping flow system (MPFS) and exploits the ability of compounds such as lipoic acid, dihydrolipoic acid, cysteine, reduced glutathione, oxidized glutathione, sulindac, and sulindac sulfone to inhibit the chemiluminescent reaction of luminol with peroxynitrite under physiological simulated conditions. Peroxynitrite was generated in the MPFS by the online reaction of acidified hydrogen peroxide with nitrite, followed by a subsequent stabilization by merging with a sodium hydroxide solution to rapidly quench the developing reaction. The pulsed flow and the timed synchronized insertion of sample and reagent solutions provided by the MPFS ensure the establishment of the reaction zone only inside the flow cell, thus allowing maximum chemiluminescence emission detection. The results obtained for the assayed compounds show that, with the exception of oxidized glutathione, all are highly potent scavengers of peroxynitrite at the studied concentrations.

  7. Polyphenol contents and radical scavenging capacities of red maple (Acer rubrum L.) extracts.

    Science.gov (United States)

    Royer, Mariana; Diouf, Papa Niokhor; Stevanovic, Tatjana

    2011-09-01

    The crude ethanol and water extracts of different red maple (Acer rubrum L.) tissues: whole branches (WB), wood of branches (BW), bark of branches (BB), stem bark (SB) and whole twigs (T), were examined in order to determine their phenolic contents as well as their radical scavenging capacities. The total phenols (TP), total extractable tanins (TET) and non-precipitable phenols (NPP), were determined by combination of spectrophotometric and precipitation methods, while total flavonoids, hydroxy cinanmic acids and proanthocyanidins were determined spectrophotometrically. The radical scavenging activities of the extracts were determined against five reactive oxygen species (ROS): superoxide anion (O(2)(·-)), hydroxyl radical (HO(·)), peroxyl radical (ROO(·)), hypochlorite ion (ClO(-)), and hydrogen peroxide (H(2)O(2)) and one reactive nitrogen species (RNS): nitric oxide (NO). The extracts of stem bark were significantly more efficient (exhibiting the highest antioxidant efficiencies, AE) than the other studied extracts against all ROS (at p<0.05, Duncan statistical tests), except against NO. The correlation coefficients determined between total phenolic (TP) content and antiradical efficiencies were R(2)=0.12 for O(2)(·-); R(2)=0.29 for HO(·); R(2)=0.40 for H(2)O(2); R(2)=0.86 for ROO(·); R(2)=0.03 for NO(·) and R(2)=0.73 for ClO(-). Our results indicate potential utilisation of extracts as natural antioxidants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Role of nitric oxide and superoxide in Giardia lamblia killing

    Directory of Open Access Journals (Sweden)

    P.D. Fernandes

    1997-01-01

    Full Text Available Giardia lamblia trophozoites were incubated for 2 h with activated murine macrophages, nitric oxide (NO donors or a superoxide anion generator (20 mU/ml xanthine oxidase plus 1 mM xanthine. Activated macrophages were cytotoxic to Giardia trophozoites (~60% dead trophozoites. This effect was inhibited (>90% by an NO synthase inhibitor (200 µM and unaffected by superoxide dismutase (SOD, 300 U/ml. Giardia trophozoites were killed by the NO donors, S-nitroso-acetyl-penicillamine (SNAP and sodium nitroprusside (SNP in a dose-dependent manner (LD50 300 and 50 µM, respectively. A dual NO-superoxide anion donor, 3-morpholino-sydnonimine hydrochloride (SIN-1, did not have a killing effect in concentrations up to 1 mM. However, when SOD (300 U/ml was added simultaneously with SIN-1 to Giardia, a significant trophozoite-killing effect was observed (~35% dead trophozoites at 1 mM. The mixture of SNAP or SNP with superoxide anion, which yields peroxynitrite, abolished the trophozoite killing induced by NO donors. Authentic peroxynitrite only killed trophozoites at very high concentrations (3 mM. These results indicate that NO accounts for Giardia trophozoite killing and this effect is not mediated by peroxynitrite

  9. Botanical Scavenger Hunt

    Science.gov (United States)

    Walker-Livingston, Wendy

    2009-01-01

    Why not combine the use of technology with the excitement of a scavenger hunt that moves middle-level students out into the "wilds" of their school campus to classify plants? In the lesson plan described here, students embark on a botanical scavenger hunt and then document their findings using a digital camera. This project was designed to allow…

  10. Mitochondrial p38β and manganese superoxide dismutase interaction mediated by estrogen in cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Han Liu

    Full Text Available While etiology behind the observed acceleration of ischemic heart disease in postmenopausal women is poorly understood, collective scientific data suggest cardioprotective effects of the endogenous female sex hormone, estrogen. We have previously shown that 17β-estradiol (E2 protects cardiomyocytes exposed to hypoxia-reoxygenation (H/R by inhibiting p38α - p53 signaling in apoptosis and activating pro-survival p38β mitogen activated protein kinase (p38β MAPK, leading to suppression of reactive oxygen species (ROS post H/R. However, little is known about the mechanism behind the antioxidant actions of E2-dependent p38β. The aim of this study is to determine whether the cytoprotection by estrogen involves regulation of manganese superoxide dismutase (MnSOD, a major mitochondrial ROS scavenging enzyme, via cardiac p38β.We identified mitochondrial p38β by immunocytochemistry and by immunoblotting in mitochondria isolated from neonatal cardiomyocytes of Sprague-Dawley rats. E2 facilitated the mitochondrial localization of the active form of the kinase, phosphorylated p38β (p-p38β. E2 also reduced the H/R-induced mitochondrial membrane potential decline, augmented the MnSOD activity and suppressed anion superoxide generation, while the dismutase protein expression remained unaltered. Co-immunoprecipitation studies showed physical association between MnSOD and p38β. p38β phosphorylated MnSOD in an E2-dependent manner in in-vitro kinase assays.This work demonstrates for the first time a mitochondrial pool of active p38β and E2-mediated phosphorylation of MnSOD by the kinase. The results shed light on the mechanism behind the cytoprotective actions of E2 in cardiomyocytes under oxidative stress.

  11. Models of Superoxide Dismutases

    Energy Technology Data Exchange (ETDEWEB)

    Cabelli, Diane E.; Riley, Dennis; Rodriguez, Jorge A.; Valentine, Joan Selverstone; Zhu, Haining

    1998-05-20

    In this review we have focused much of our discussion on the mechanistic details of how the native enzymes function and how mechanistic developments/insights with synthetic small molecule complexes possessing SOD activity have influenced our understanding of the electron transfer processes involved with the natural enzymes. A few overriding themes have emerged. Clearly, the SOD enzymes operate at near diffusion controlled rates and to achieve such catalytic turnover activity, several important physical principles must be operative. Such fast electron transfer processes requires a role for protons; i.e., proton-coupled electron transfer (''H-atom transfer'') solves the dilemma of charge separation developing in the transition state for the electron transfer step. Additionally, outer-sphere electron transfer is likely a most important pathway for manganese and iron dismutases. This situation arises because the ligand exchange rates on these two ions in water never exceed {approx}10{sup +7} s{sup -1}; consequently, 10{sup +9} catalytic rates require more subtle mechanistic insights. In contrast, copper complexes can achieve diffusion controlled (>10{sup +9}) exchange rates in water; thus inner-sphere electron transfer processes are more likely to be operative in the Cu/Zn enzymes. Recent studies have continued to expand our understanding of the mechanism of action of this most important class of redox active enzymes, the superoxide dismutases, which have been critical in the successful adaptation of life on this planet to an oxygen-based metabolism. The design of SOD mimic drugs, synthetic models compounds that incorporate this superoxide dismutase catalytic activity and are capable of functioning in vivo, offers clear potential benefits in the control of diseases, ranging from the control of neurodegenerative conditions, such as Parkinson's or Alzheimer's disease, to cancer.

  12. Scavenging Capacities of Some Wines and Wine Phenolic Extracts

    Directory of Open Access Journals (Sweden)

    Ioannis G. Roussis

    2005-01-01

    Full Text Available The aim of this study was to assess the ability of different wines – a sweet red, a dry red, a sweet white, and a dry white – to scavenge the stable 1,1’-diphenyl-2-picryl-hydrazyl radical (DPPH. and to determine their phenolic composition. Both red wines contained, apart from anthocyanins, also higher concentration of total phenolics, tartaric esters, and flavonols than the two white wines. All wines exhibited scavenging activity analogous to their total phenolic content. However, their phenolics differed in antiradical potency, which was visible in their EC50 values. The dry red wine, Xinomavro, had a lower EC50 value, indicating the higher antiradical potency of its phenolics. The scavenging capacities of phenolic extracts from Xinomavro red wine on hydroxyl radicals, superoxide radicals, and singlet oxygen were also assessed. Wine total extract was fractionated by extraction, and each of the three fractions was then subfractionated by column chromatography into two subfractions. Wine total extract, and its fractions and subfractions exhibited scavenging capacity on hydroxyl radicals, superoxide radicals, and singlet oxygen, indicating the activity of many wine phenolics. The most active wine extracts towards hydroxyl radicals were characterized by the high peaks of flavanols, anthocyanins and flavonols in their HPLC-DAD chromatograms. The most active extract towards superoxide radicals was rich in flavanols and anthocyanins. The characteristic phenolics of the most active wine extracts towards singlet oxygen were flavanols, flavonols and phenolic acids. The ability of all red wine phenolic extracts to scavenge singlet oxygen, along with hydroxyl and superoxide radicals, emphasizes its health functionality.

  13. Free Radical Scavenging Properties of Annona squamosa

    Science.gov (United States)

    Vikas, Biba; Akhil B, S; P, Remani; Sujathan, K

    2017-10-26

    Annona squamosa has extensively been used in the traditional and folkloric medicine and found to possess many biological activities. Different solvents, petroleum ether, chloroform, ethyl acetate and methanol extracts of Annona squamosa seeds (ASPE, ASCH, ASEA, ASME) have been used to prepare plant extracts. The present investigations dealt with the free radical scavenging activity of four extracts using various techniques such as total reducing power estimation, total phenolic count, 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging effect, evaluation of ABTS cation decolorisation capacity, FRAP assay, hdroxyl radical scavenging assay, super oxide assay and Nitric oxide radical scavenging assay of the extracts. The results showed that the four extracts of Annona squamosa showed significant reducing power in four extracts. The total phenolic contents in petroleum ether, chloroform, ethyl acetate, methanol extracts and positive control were 0.64±0.17, 0.54±0.27, 0.49±0.24, 0.57±0.22 and 0.66±0.33. The antioxidant capacity by ABTS assay of ASPE, ASCH, ASEA, ASME and positive control, trolox showed 77.75±0.5,73.25±1.7,78.5± 1.2 , 80 ± 0.8 μg/ml and 94.2 ± 0.9 respectively. The (50 % scavenging activity) SA50 of ASPE and ASCH, ASEA and ASME was found to be 34.4 μg/ml, 43.8 μg/ml 34.7 μg/m and 28.8 μg/ml respectively by DPPH assay. The percentage of hydroxyl radical scavenging increased with the increasing concentration of the extracts. ASPE, ASCH, ASEA and ASME showed superoxide radical scavenging activity, as indicated by their values 66 ± 0.5, 68 ± 1 ,63 ± 1 and 70 ± 0.5 μg/ml respectively compared to gallic acid which was 97 ± 0.5 μg/ml. The values for scavenging of nitric oxide for ASPE, ASCH, ASEA and ASME were 91.0 ± 1.0, 66.75 ± 0.5, 71.75 ± 1.1 and 75.75 ± 1.15 μg/ml while value for standard ascorbic acid was 91.0 ± 1.0 μg/ml. The results revealed strong antioxidants in four extracts may lead to the development of potent

  14. Free radical-scavenging delta-lactones from Boletus calopus.

    Science.gov (United States)

    Kim, Jin-Woo; Yoo, Ick-Dong; Kim, Won-Gon

    2006-12-01

    The methanol extracts from the fruiting body of the mushroom Boletus calopus showed free radical-scavenging activity. Bioactivity-guided fractionation of the methanol extracts led to a new hydroxylated calopin named calopin B, along with the known delta-lactones calopin and cyclocalopin A. The structure of the new calopin analogue was elucidated by spectroscopic methods. All compounds showed potent free radical-scavenging activity against superoxide, DPPH, and ABTS radicals with IC (50) values of 1.2 - 5.4 microg/mL.

  15. Ab initio molecular dynamics of the reaction of quercetin with superoxide radical

    International Nuclear Information System (INIS)

    Lespade, Laure

    2016-01-01

    Highlights: • Ab initio molecular dynamics is performed to describe the reaction of quercetin and superoxide. • The reaction occurs near the sites 4′ and 7 when the system contains sufficiently water molecules. • The difference of reactivity of superoxide compared to commonly used radicals as DPPH · or ABTS ·+ is explained. - Abstract: Superoxide plays an important role in biology but in unregulated concentrations it is implicated in a lot of diseases such as cancer or atherosclerosis. Antioxidants like flavonoids are abundant in plant and are good scavengers of superoxide radical. The modeling of superoxide scavenging by flavonoids from the diet still remains a challenge. In this study, ab initio molecular dynamics of the reaction of the flavonoid quercetin toward superoxide radical has been carried out using Car–Parrinello density functional theory. The study has proven different reactant solvation by modifying the number of water molecules surrounding superoxide. The reaction consists in the gift of a hydrogen atom of one of the hydroxyl groups of quercetin to the radical. When it occurs, it is relatively fast, lower than 100 fs. Calculations show that it depends largely on the environment of the hydroxyl group giving its hydrogen atom, the geometry of the first water layer and the presence of a certain number of water molecules in the second layer, indicating a great influence of the solvent on the reactivity.

  16. Ab initio molecular dynamics of the reaction of quercetin with superoxide radical

    Energy Technology Data Exchange (ETDEWEB)

    Lespade, Laure, E-mail: l.lespade@ism.u-bordeaux1.fr

    2016-08-22

    Highlights: • Ab initio molecular dynamics is performed to describe the reaction of quercetin and superoxide. • The reaction occurs near the sites 4′ and 7 when the system contains sufficiently water molecules. • The difference of reactivity of superoxide compared to commonly used radicals as DPPH{sup ·} or ABTS{sup ·+} is explained. - Abstract: Superoxide plays an important role in biology but in unregulated concentrations it is implicated in a lot of diseases such as cancer or atherosclerosis. Antioxidants like flavonoids are abundant in plant and are good scavengers of superoxide radical. The modeling of superoxide scavenging by flavonoids from the diet still remains a challenge. In this study, ab initio molecular dynamics of the reaction of the flavonoid quercetin toward superoxide radical has been carried out using Car–Parrinello density functional theory. The study has proven different reactant solvation by modifying the number of water molecules surrounding superoxide. The reaction consists in the gift of a hydrogen atom of one of the hydroxyl groups of quercetin to the radical. When it occurs, it is relatively fast, lower than 100 fs. Calculations show that it depends largely on the environment of the hydroxyl group giving its hydrogen atom, the geometry of the first water layer and the presence of a certain number of water molecules in the second layer, indicating a great influence of the solvent on the reactivity.

  17. Glutathione as a radical scavenger and the biological consequences of thiyl radical production

    International Nuclear Information System (INIS)

    Winterbourn, C.C.

    1996-01-01

    A large number of compounds that have toxic effects can be metabolised to free radicals and secondary reactive oxygen species. These may be directly damaging or affect cell function by altering regulatory mechanisms through changing redox status. Protection is provided by an integrated system of antioxidant defenses. This includes reduced glutathione (GSH), one of the functions of which is as a free radical scavenger. For GSH to be an effective radical scavenging antioxidant, therefore, it must act in concert with superoxide dismutase to remove the superoxide so generated. Superoxide is produced in a variety of metabolic processes. It is also a secondary product of radicals reacting with oxygen either directly or through GSH. The biological reactivity of superoxide has been the subject of much debate ever since the discovery of superoxide dismutase in 1968. It has more recently become apparent that its rapid reaction with nitric oxide to give peroxynitrite, and its ability to reversibly oxidise and inactivate iron sulphur enzymes, contribute to the toxicity of superoxide. Another mechanism that could be important involves addition reactions of superoxide with other radicals to give organic peroxides. This reaction, to form a tyrosine peroxide, has come to authors attention through the study of the scavenging of tyrosyl radicals by GSH. It is also shown that a tyrosine peroxide is a major product of the oxidation of tyrosine by neutrophils

  18. Dark production of extracellular superoxide by the coral Porites astreoides and representative symbionts

    Directory of Open Access Journals (Sweden)

    Tong Zhang

    2016-11-01

    Full Text Available The reactive oxygen species (ROS superoxide has been implicated in both beneficial and detrimental processes in coral biology, ranging from pathogenic disease resistance to coral bleaching. Despite the critical role of ROS in coral health, there is a distinct lack of ROS measurements and thus an incomplete understanding of underpinning ROS sources and production mechanisms within coral systems. Here, we quantified in situ extracellular superoxide concentrations at the surfaces of aquaria-hosted Porites astreoides during a diel cycle. High concentrations of superoxide (~10’s of nM were present at coral surfaces, and these levels did not change significantly as a function of time of day. These results indicate that the coral holobiont produces extracellular superoxide in the dark, independent of photosynthesis. As a short-lived anion at physiological pH, superoxide has a limited ability to cross intact biological membranes. Further, removing surface mucus layers from the P. astreoides colonies did not impact external superoxide concentrations. We therefore attribute external superoxide derived from the coral holobiont under these conditions to the activity of the coral host epithelium, rather than mucus-derived epibionts or internal sources such as endosymbionts (e.g., Symbiodinium. However, endosymbionts likely contribute to internal ROS levels via extracellular superoxide production. Indeed, common coral symbionts, including multiple strains of Symbiodinium (clades A to D and the bacterium Endozoicomonas montiporae LMG 24815, produced extracellular superoxide in the dark and at low light levels. Further, representative P. astreoides symbionts, Symbiodinium CCMP2456 (clade A and E. montiporae, produced similar concentrations of superoxide alone and in combination with each other, in the dark and low light, and regardless of time of day. Overall, these results indicate that healthy, non-stressed P. astreoides and representative symbionts produce

  19. A Geospatial Scavenger Hunt

    Science.gov (United States)

    Martinez, Adriana E.; Williams, Nikki A.; Metoyer, Sandra K.; Morris, Jennifer N.; Berhane, Stephen A.

    2009-01-01

    With the use of technology such as Global Positioning System (GPS) units and Google Earth for a simple-machine scavenger hunt, you will transform a standard identification activity into an exciting learning experience that motivates students, incorporates practical skills in technology, and enhances students' spatial-thinking skills. In the…

  20. Measurement of Antioxidant Activity Towards Superoxide in Natural Waters.

    Directory of Open Access Journals (Sweden)

    D. Whitney King

    2016-11-01

    Full Text Available Antioxidants are a class of molecules that provide a protective function against reactive oxygen species (ROS in biological systems by out competing physiologically important molecules for ROS oxidation. In natural waters, the reactivity of antioxidants gives an estimate of oxidative stress and may determine the reactivity and distribution of reactive oxidants. We present an analytical method to measure antioxidant activity in natural waters through the competition between ascorbic acid, an antioxidant, and MCLA, a chemiluminescent probe for superoxide. A numerical kinetic model of the analytical method has been developed to optimize analytical performance. Measurements of antioxidant concentrations in pure and seawater are possible with detection limits below 0.1 nM. Surface seawater samples collected at solar noon contained over 0.4 nM of antioxidants and exhibited first-order decay with a half-life of 3-7 minutes, consistent with a reactive species capable of scavenging photochemically produced superoxide.

  1. The neuroprotective properties of the superoxide dismutase mimetic tempol correlate with its ability to reduce pathological glutamate release in a rodent model of stroke

    Science.gov (United States)

    Dohare, Preeti; Hyzinski-García, María C.; Vipani, Aarshi; Bowens, Nicole H.; Nalwalk, Julia W.; Feustel, Paul J.; Keller, Richard W.; Jourd’heuil, David; Mongin, Alexander A.

    2014-01-01

    The contribution of oxidative stress to ischemic brain damage is well established. Nevertheless, for unknown reasons, several clinically tested antioxidant therapies failed to show benefits in human stroke. Based on our previous in vitro work, we hypothesized that the neuroprotective potency of antioxidants is related to their ability to limit release of the excitotoxic amino acids, glutamate and aspartate. We explored the effects of two antioxidants, tempol and edaravone, on amino acid release in the brain cortex, in a rat model of transient occlusion of the middle cerebral artery (MCAo). Amino acid levels were quantified using a microdialysis approach, with the probe positioned in the ischemic penumbra as verified by a laser Doppler technique. Two-hour MCAo triggered a dramatic increase in the levels of glutamate, aspartate, taurine and alanine. Microdialysate delivery of 10 mM tempol reduced the amino acid release by 60–80%, while matching levels of edaravone had no effect. In line with these latter data, an intracerebroventri-cular injection of tempol but not edaravone (500 nmols each, 15 minutes prior to MCAo) reduced infarction volumes by ~50% and improved neurobehavioral outcomes. In vitro assays showed that tempol was superior in removing superoxide anion, whereas edaravone was more potent in scavenging hydrogen peroxide, hydroxyl radical, and peroxynitrite. Overall, our data suggests that the neuroprotective properties of tempol are likely related to its ability to reduce tissue levels of the superoxide anion and pathological glutamate release, and, in such a way, limit progression of brain infarction within ischemic penumbra. These new findings may be instrumental in developing new antioxidant therapies for treatment of stroke. PMID:25224033

  2. Host lysozyme-mediated lysis of Lactococcus lactis facilitates delivery of colitis-attenuating superoxide dismutase to inflamed colons

    Science.gov (United States)

    Ballal, Sonia A.; Veiga, Patrick; Fenn, Kathrin; Michaud, Monia; Kim, Jason H.; Gallini, Carey Ann; Glickman, Jonathan N.; Quéré, Gaëlle; Garault, Peggy; Béal, Chloé; Derrien, Muriel; Courtin, Pascal; Kulakauskas, Saulius; Chapot-Chartier, Marie-Pierre; van Hylckama Vlieg, Johan; Garrett, Wendy S.

    2015-01-01

    Beneficial microbes that target molecules and pathways, such as oxidative stress, which can negatively affect both host and microbiota, may hold promise as an inflammatory bowel disease therapy. Prior work showed that a five-strain fermented milk product (FMP) improved colitis in T-bet−/− Rag2−/− mice. By varying the number of strains used in the FMP, we found that Lactococcus lactis I-1631 was sufficient to ameliorate colitis. Using comparative genomic analyses, we identified genes unique to L. lactis I-1631 involved in oxygen respiration. Respiration of oxygen results in reactive oxygen species (ROS) generation. Also, ROS are produced at high levels during intestinal inflammation and cause tissue damage. L. lactis I-1631 possesses genes encoding enzymes that detoxify ROS, such as superoxide dismutase (SodA). Thus, we hypothesized that lactococcal SodA played a role in attenuating colitis. Inactivation of the sodA gene abolished L. lactis I-1631’s beneficial effect in the T-bet−/− Rag2−/− model. Similar effects were obtained in two additional colonic inflammation models, Il10−/− mice and dextran sulfate sodium-treated mice. Efforts to understand how a lipophobic superoxide anion (O2−) can be detoxified by cytoplasmic lactoccocal SodA led to the finding that host antimicrobial-mediated lysis is a prerequisite for SodA release and SodA’s extracytoplasmic O2− scavenging. L. lactis I-1631 may represent a promising vehicle to deliver antioxidant, colitis-attenuating SodA to the inflamed intestinal mucosa, and host antimicrobials may play a critical role in mediating SodA’s bioaccessibility. PMID:26056274

  3. Multiple free-radical scavenging capacity in serum

    Science.gov (United States)

    Oowada, Shigeru; Endo, Nobuyuki; Kameya, Hiromi; Shimmei, Masashi; Kotake, Yashige

    2012-01-01

    We have developed a method to determine serum scavenging-capacity profile against multiple free radical species, namely hydroxyl radical, superoxide radical, alkoxyl radical, alkylperoxyl radical, alkyl radical, and singlet oxygen. This method was applied to a cohort of chronic kidney disease patients. Each free radical species was produced with a common experimental procedure; i.e., uv/visible-light photolysis of free-radical precursor/sensitizer. The decrease in free-radical concentration by the presence of serum was quantified with electron spin resonance spin trapping method, from which the scavenging capacity was calculated. There was a significant capacity change in the disease group (n = 45) as compared with the healthy control group (n = 30). The percent values of disease’s scavenging capacity with respect to control group indicated statistically significant differences in all free-radical species except alkylperoxyl radical, i.e., hydroxyl radical, 73 ± 12% (p = 0.001); superoxide radical, 158 ± 50% (p = 0.001); alkoxyl radical, 121 ± 30% (p = 0.005); alkylperoxyl radical, 123 ± 32% (p>0.1); alkyl radical, 26 ± 14% (p = 0.001); and singlet oxygen, 57 ± 18% (p = 0.001). The scavenging capacity profile was illustrated using a radar chart, clearly demonstrating the characteristic change in the disease group. Although the cause of the scavenging capacity change by the disease state is not completely understood, the profile of multiple radical scavenging capacities may become a useful diagnostic tool. PMID:22962529

  4. Manganese Superoxide Dismutase: Guardian of the Powerhouse

    Directory of Open Access Journals (Sweden)

    Daret K. St. Clair

    2011-10-01

    Full Text Available The mitochondrion is vital for many metabolic pathways in the cell, contributing all or important constituent enzymes for diverse functions such as β-oxidation of fatty acids, the urea cycle, the citric acid cycle, and ATP synthesis. The mitochondrion is also a major site of reactive oxygen species (ROS production in the cell. Aberrant production of mitochondrial ROS can have dramatic effects on cellular function, in part, due to oxidative modification of key metabolic proteins localized in the mitochondrion. The cell is equipped with myriad antioxidant enzyme systems to combat deleterious ROS production in mitochondria, with the mitochondrial antioxidant enzyme manganese superoxide dismutase (MnSOD acting as the chief ROS scavenging enzyme in the cell. Factors that affect the expression and/or the activity of MnSOD, resulting in diminished antioxidant capacity of the cell, can have extraordinary consequences on the overall health of the cell by altering mitochondrial metabolic function, leading to the development and progression of numerous diseases. A better understanding of the mechanisms by which MnSOD protects cells from the harmful effects of overproduction of ROS, in particular, the effects of ROS on mitochondrial metabolic enzymes, may contribute to the development of novel treatments for various diseases in which ROS are an important component.

  5. Habitat of in vivo transformation influences the levels of free radical scavengers in Clinostomum complanatum: implications for free radical scavenger based vaccines against trematode infections.

    Science.gov (United States)

    Zafar, Atif; Rizvi, Asim; Ahmad, Irshad; Ahmad, Masood

    2014-01-01

    Since free radical scavengers of parasite origin like glutathione-S-transferase and superoxide dismutase are being explored as prospective vaccine targets, availability of these molecules within the parasite infecting different hosts as well as different sites of infection is of considerable importance. Using Clinostomum complanatum, as a model helminth parasite, we analysed the effects of habitat of in vivo transformation on free radical scavengers of this trematode parasite. Using three different animal models for in vivo transformation and markedly different sites of infection, progenetic metacercaria of C. complanatum were transformed to adult ovigerous worms. Whole worm homogenates were used to estimate the levels of lipid peroxidation, a marker of oxidative stress and free radical scavengers. Site of in vivo transformation was found to drastically affect the levels of free radical scavengers in this model trematode parasite. It was observed that oxygen availability at the site of infection probably influences levels of free radical scavengers in trematode parasites. This is the first report showing that habitat of in vivo transformation affects levels of free radical scavengers in trematode parasites. Since free radical scavengers are prospective vaccine targets and parasite infection at ectopic sites is common, we propose that infections at different sites, may respond differently to free radical scavenger based vaccines.

  6. Superoxide activates mitochondrial uncoupling protein 2 from the matrix side. Studies using targeted antioxidants.

    Science.gov (United States)

    Echtay, Karim S; Murphy, Michael P; Smith, Robin A J; Talbot, Darren A; Brand, Martin D

    2002-12-06

    Superoxide activates nucleotide-sensitive mitochondrial proton transport through the uncoupling proteins UCP1, UCP2, and UCP3 (Echtay, K. S., et al. (2002) Nature 415, 1482-1486). Two possible mechanisms were proposed: direct activation of the UCP proton transport mechanism by superoxide or its products and a cycle of hydroperoxyl radical entry coupled to UCP-catalyzed superoxide anion export. Here we provide evidence for the first mechanism and show that superoxide activates UCP2 in rat kidney mitochondria from the matrix side of the mitochondrial inner membrane: (i) Exogenous superoxide inhibited matrix aconitase, showing that external superoxide entered the matrix. (ii) Superoxide-induced uncoupling was abolished by low concentrations of the mitochondrially targeted antioxidants 10-(6'-ubiquinonyl)decyltriphenylphosphonium (mitoQ) or 2-[2-(triphenylphosphonio)ethyl]-3,4-dihydro-2,5,7,8-tetramethyl-2H-1-benzopyran-6-ol bromide (mitoVit E), which are ubiquinone (Q) or tocopherol derivatives targeted to the matrix by covalent attachment to triphenylphosphonium cation. However, superoxide-induced uncoupling was not affected by similar concentrations of the nontargeted antioxidants Q(o), Q(1), decylubiquinone, vitamin E, or 6-hydroxy-2,5,7,8-tetramethylchroman 2-carboxylic acid (TROLOX) or of the mitochondrially targeted but redox-inactive analogs decyltriphenylphosphonium or 4-chlorobutyltriphenylphosphonium. Thus matrix superoxide appears to be necessary for activation of UCP2 by exogenous superoxide. (iii) When the reduced to oxidized ratio of mitoQ accumulated by mitochondria was increased by inhibiting cytochrome oxidase, it induced nucleotide-sensitive uncoupling that was not inhibited by external superoxide dismutase. Under these conditions quinols are known to produce superoxide, and because mitoQ is localized within the mitochondrial matrix this suggests that production of superoxide in the matrix was sufficient to activate UCP2. Furthermore, the superoxide

  7. Organobasierter Sauerstoff-Scavenger/-Indikator

    OpenAIRE

    Langowski, H.C.; Wanner, T.

    2007-01-01

    WO 2007059901 A1 UPAB: 20070911 NOVELTY - Oxygen scavenger/indicator which contains at least one substance having combined scavenging and indicating functions for oxygen which is capable of absorbing oxygen under the effect of moisture in alkaline conditions, and at least one alkaline compound. The indicator effect is caused by a change in at least one physical property of the substance having combined scavenging and indicating function for oxygen, the change being initiated by the presence o...

  8. Efficient scavenging of β-carotene radical cations by antiinflammatory salicylates

    DEFF Research Database (Denmark)

    Cheng, Hong; Liang, Ran; Han, Rui-Min

    2014-01-01

    by the anion of salicylic acid with 2.2 × 10 L mol s, but still of possible importance for light-exposed tissue. Surprisingly, acetylsalicylate, the aspirin anion, reacts with an intermediate rate in a reaction assigned to the anion of the mixed acetic-salicylic acid anhydride formed through base induced......The radical cation generated during photobleaching of β-carotene is scavenged efficiently by the anion of methyl salicylate from wintergreen oil in a second-order reaction approaching the diffusion limit with k = 3.2 × 10 L mol s in 9:1 v/v chloroform-methanol at 23 °C, less efficiently...... rearrangements. The relative scavenging rate of the β-carotene radical cation by the three salicylates is supported by DFT-calculations....

  9. Ursolic acid inhibits superoxide production in activated neutrophils and attenuates trauma-hemorrhage shock-induced organ injury in rats.

    Directory of Open Access Journals (Sweden)

    Tsong-Long Hwang

    Full Text Available Neutrophil activation is associated with the development of organ injury after trauma-hemorrhagic shock. In the present study, ursolic acid inhibited the superoxide anion generation and elastase release in human neutrophils. Administration of ursolic acid attenuated trauma-hemorrhagic shock-induced hepatic and lung injuries in rats. In addition, administration of ursolic acid attenuated the hepatic malondialdehyde levels and reduced the plasma aspartate aminotransferase and alanine aminotransferase levels after trauma-hemorrhagic shock. In conclusion, ursolic acid, a bioactive natural compound, inhibits superoxide anion generation and elastase release in human neutrophils and ameliorates trauma-hemorrhagic shock-induced organ injury in rats.

  10. Evaluation of radical scavenging activity, intestinal cell viability and antifungal activity of Brazilian propolis by-product.

    Science.gov (United States)

    de Francisco, Lizziane; Pinto, Diana; Rosseto, Hélen; Toledo, Lucas; Santos, Rafaela; Tobaldini-Valério, Flávia; Svidzinski, Terezinha; Bruschi, Marcos; Sarmento, Bruno; Oliveira, M Beatriz P P; Rodrigues, Francisca

    2018-03-01

    Propolis is a natural adhesive resinous compound produced by honeybees to protect hives from bacteria and fungi, being extremely expensive for food industry. During propolis production, a resinous by-product is formed. This resinous waste is currently undervalued and underexploited. Accordingly, in this study the proximate physical and chemical quality, as well as the antioxidant activity, radical scavenging activity and cell viability of this by-product were evaluated and compared with propolis in order to boost new applications in food and pharmaceutical industries. The results revealed that the by-product meets the physical and chemical quality standards expected and showed that the propolis waste contains similar amounts of total phenolic content (TPC) and total flavonoid content (TFC) to propolis. Also, a good scavenging activity against reactive oxygen and nitrogen species (ROS and RNS, respectively) determined by the assays of superoxide anion radical (O 2 - ), hydrogen peroxide (H 2 O 2 ), hypochlorous acid (HOCl), nitric oxide (NO) and peroxyl radical (ROO) were determined. Linear positive correlations were established between the TPC of both samples and the antioxidant activity evaluated by three different methods (DPPH, ABTS and FRAP assays). The extracts were also screened for cell viability assays in two different intestinal cell lines (HT29-MTX and Caco-2), showing a viability concentration-dependent. Similarly, the Artemia salina assay, used to assess toxicity, demonstrated the concentration influence on results. Finally, the antifungal activity against ATCC species of Candida was demonstrated. These results suggest that propolis by-product can be used as a new rich source of bioactive compounds for different areas, such as food or pharmaceutical. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Cell lysis and superoxide dismutase activities of highly radioresistant bacteria

    International Nuclear Information System (INIS)

    Yoshinaka, Taeko; Yano, Keiji; Yamaguchi, Hikoyuki

    1976-01-01

    The highly radioresistant bacterium, Arthrobacter radiotolerans, has been isolated from the radioactive hot spring of Misasa, and it does not sporulate, it is Gram-positive, and its color is pink to red. This bacterium shows the highest resistance to gamma-ray among Gram-positive resistants, but the lytic enzyme capable of lysing the cells of strong radioresistants and the surface structure of the cells are little known except those about Micrococcus radiodurans. The cells of the M. radiodurans can be lysed by Achramobacter lyticus enzyme, and electron microscopic observation and chemical analysis revealed the mutilayered surface structure of the cells consisting of an inner membrane, a mucopeptide wall layer and a very outer layer. The superoxide dismutase (SOD) activity of aerobic and anaerobic bacteria was studied, and the relatively high SOD activity of the M. radiodurans was found. The SOD function acts against the threat posed by the reactive superoxide radical being generated biologically, photochemically and radiochemically in the presence of molecular oxygen. In this paper, it is reported that the lytic enzyme No.2 obtained from Cytophaga sp., containing N-acetyl-muramyl-L-alanine amidase, peptidase and endopeptidase, and showing broad lytic spectra, was able to lyse the cells of A. radiotolerans and four radioresistant micrococci, and the radioresistant bacteria showed relatively high SOD activity except M. sp. 248. It is well known that superoxide anions are generated by aerobic irradiation, and are toxic to microbial cells. (Kako, I.)

  12. Cell lysis and superoxide dismutase activities of highly radioresistant bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinaka, T; Yano, K; Yamaguchi, H [Tokyo Univ. (Japan). Faculty of Agriculture

    1976-01-01

    The highly radioresistant bacterium, Arthrobacter radiotolerans, has been isolated from the radioactive hot spring of Misasa, and it does not sporulate, it is Gram-positive, and its color is pink to red. This bacterium shows the highest resistance to gamma-ray among Gram-positive resistants, but the lytic enzyme capable of lysing the cells of strong radioresistants and the surface structure of the cells are little known except those about Micrococcus radiodurans. The cells of the M. radiodurans can be lysed by Achramobacter lyticus enzyme, and electron microscopic observation and chemical analysis revealed the mutilayered surface structure of the cells consisting of an inner membrane, a mucopeptide wall layer and a very outer layer. The superoxide dismutase (SOD) activity of aerobic and anaerobic bacteria was studied, and the relatively high SOD activity of the M. radiodurans was found. The SOD function acts against the threat posed by the reactive superoxide radical being generated biologically, photochemically and radiochemically in the presence of molecular oxygen. In this paper, it is reported that the lytic enzyme No.2 obtained from Cytophaga sp., containing N-acetyl-muramyl-L-alanine amidase, peptidase and endopeptidase, and showing broad lytic spectra, was able to lyse the cells of A. radiotolerans and four radioresistant micrococci, and the radioresistant bacteria showedrelatively high SOD activity except M. sp. 248. It is well known that superoxide anions are generated by aerobic irradiation, and are toxic to microbial cells.

  13. Mn(II) oxidation by an ascomycete fungus is linked to superoxide production during asexual reproduction.

    Science.gov (United States)

    Hansel, Colleen M; Zeiner, Carolyn A; Santelli, Cara M; Webb, Samuel M

    2012-07-31

    Manganese (Mn) oxides are among the most reactive minerals within the environment, where they control the bioavailability of carbon, nutrients, and numerous metals. Although the ability of microorganisms to oxidize Mn(II) to Mn(III/IV) oxides is scattered throughout the bacterial and fungal domains of life, the mechanism and physiological basis for Mn(II) oxidation remains an enigma. Here, we use a combination of compound-specific chemical assays, microspectroscopy, and electron microscopy to show that a common Ascomycete filamentous fungus, Stilbella aciculosa, oxidizes Mn(II) to Mn oxides by producing extracellular superoxide during cell differentiation. The reactive Mn oxide phase birnessite and the reactive oxygen species superoxide and hydrogen peroxide are colocalized at the base of asexual reproductive structures. Mn oxide formation is not observed in the presence of superoxide scavengers (e.g., Cu) and inhibitors of NADPH oxidases (e.g., diphenylene iodonium chloride), enzymes responsible for superoxide production and cell differentiation in fungi. Considering the recent identification of Mn(II) oxidation by NADH oxidase-based superoxide production by a common marine bacterium (Roseobacter sp.), these results introduce a surprising homology between some prokaryotic and eukaryotic organisms in the mechanisms responsible for Mn(II) oxidation, where oxidation appears to be a side reaction of extracellular superoxide production. Given the versatility of superoxide as a redox reactant and the widespread ability of fungi to produce superoxide, this microbial extracellular superoxide production may play a central role in the cycling and bioavailability of metals (e.g., Hg, Fe, Mn) and carbon in natural systems.

  14. In vitro free radical scavenging activity of ethanolic extract of the whole plant of Evolvulus alsinoides (L.) L.

    Science.gov (United States)

    Gomathi, Duraisamy; Ravikumar, Ganesan; Kalaiselvi, Manokaran; Vidya, Balasubramaniam; Uma, Chandrasekar

    2015-06-01

    To identify the free radical scavenging activity of ethanolic extract of Evolvulus alsinoides. The free radical scavenging activity was evaluated by in vitro methods like reducing power assay, total antioxidant activity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) reduction, superoxide radical scavenging activity, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS(+)) scavenging activity, hydroxyl radical scavenging assay, and nitric oxide radical scavenging assay, which were studied by using ascorbic acid as standard. The extract showed significant activities in all antioxidant assays compared with the reference antioxidant ascorbic acid. The total antioxidant activity as well as the reducing power was also found to increase in a dose-dependent manner. Evolvulus alsinoides may act as a chemopreventive agent, providing antioxidant properties and offering effective protection from free radicals.

  15. Unraveling the role of animal heme peroxidases in superoxide mediated Mn oxide formation

    Science.gov (United States)

    Learman, D. R.; Hansel, C. M.

    2013-12-01

    Manganese(III,IV) oxides are important in the environment as they can impact the fate of a broad range of nutrients (e.g. carbon and phosphate) and contaminates (e.g. lead and chromium). Bacteria play a valuable role in the production of Mn oxides, yet the mechanisms and physiological reasons remain unclear. Roseobacter sp. AzwK-3b, an organism within the abundant and ubiquitous Roseobacter clade, has recently been shown to oxidize Mn(II) via a novel pathway that involves enzymatic extracellular superoxide production. However, in reactions with only Mn(II) and abiotically generated superoxide, we find superoxide alone is not enough to produce Mn(III,IV) oxides. Scavenging of the byproduct hydrogen peroxide (via the addition of catalase) is required to generate Mn oxides via abiotic reaction of Mn(II) with superoxide. Thus, R. AzwK-3b must produce superoxide and also scavenge hydrogen peroxide to form Mn oxides. Further, in-gel Mn(II) oxidation assay revealed a protein band that could generate Mn oxides in the presence of soluble Mn(II). This Mn(II)-oxidizing protein band was excised from the gel and the peptides identified via mass spectrometry. An animal heme peroxidase (AHP) was the predominant protein found in this band. This protein is homologous to the AHPs previously implicated as a Mn(II)-oxidizing enzyme within the Alphaproteobacteria, Erythrobacter SD-21 and Aurantimonas manganoxydans strain SI85-9A1. Currently, protein expression of the AHPs in R. AzwK-3b is being examined to determine if expression is correlated with Mn(II) concentration or oxidative stress. Our data suggests that AHPs do not directly oxidize Mn(II) but rather plays a role in scavenging hydrogen peroxide and/or producing an organic Mn(III) ligand that complexes Mn(III) and likely aids in Mn oxide precipitation.

  16. Anion exchange membrane

    Science.gov (United States)

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  17. Anions in Cometary Comae

    Science.gov (United States)

    Charnley, Steven B.

    2011-01-01

    The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions 0-, OH-, C-, CH- and CN- have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu (Chaizy et al. 1991). Organic molecular anions are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been explored. We present details of the first attempt to model the chemistry of anions in cometary comae. Based on the combined chemical and hydro dynamical model of Rodgers & Charnley (2002), we investigate the role of large carbon-chain anions in cometary coma chemistry. We calculate the effects of these anions on coma thermodynamics, charge balance and examine their impact on molecule formation.

  18. Metalloantibiotic Mn(II)-bacitracin complex mimicking manganese superoxide dismutase

    International Nuclear Information System (INIS)

    Piacham, Theeraphon; Isarankura-Na-Ayudhya, Chartchalerm; Nantasenamat, Chanin; Yainoy, Sakda; Ye Lei; Buelow, Leif; Prachayasittikul, Virapong

    2006-01-01

    Superoxide dismutase (SOD) activities of various metallobacitracin complexes were evaluated using the riboflavin-methionine-nitro blue tetrazolium assay. The radical scavenging activity of various metallobacitracin complexes was shown to be higher than those of the negative controls, e.g., free transition metal ions and metal-free bacitracin. The SOD activity of the complex was found to be in the order of Mn(II) > Cu(II) > Co(II) > Ni(II). Furthermore, the effect of bacitracin and their complexation to metals on various microorganisms was assessed by antibiotic susceptibility testing. Moreover, molecular modeling and quantum chemical calculation of the metallobacitracin complex was performed to evaluate the correlation of electrostatic charge of transition metal ions on the SOD activity

  19. Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate.

    Science.gov (United States)

    Mendis, Eresha; Rajapakse, Niranjan; Kim, Se-Kwon

    2005-02-09

    Hoki (Johnius belengerii) skin gelatin was hydrolyzed with three commercial enzymes to identify radical-scavenging potencies of derived peptides. Peptides derived from tryptic hydrolysate exhibited the highest scavenging activities on superoxide, carbon-centered 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals assessed by ESR spectroscopy. Following consecutive chromatographic separations of tryptic hydroolysate, the peptide sequence His-Gly-Pro-Leu-Gly-Pro-Leu (797 Da) acted as a strong radical scavenger under studied conditions. Further, this peptide could act as an antioxidant against linoleic acid peroxidation and the activity was closer to the highly active synthetic antioxidant butylated hydroxytoluene (BHT). In addition, antioxidative enzyme levels in cultured human hepatoma cells were increased in the presence of this peptide and it was presumed to be the peptide involved in maintaining the redox balance in the cell environment. Present data indicate that free-radical-scavenging activities of hoki skin gelatin peptides substantially contribute to their antioxidant properties measured in different oxidative systems.

  20. Reaction of hypotaurine or taurine with superoxide produces the organic peroxysulfonic acid peroxytaurine.

    Science.gov (United States)

    Grove, Roxanna Q; Karpowicz, Steven J

    2017-07-01

    Hypotaurine and taurine are amino acid derivatives and abundant molecules in many eukaryotes. The biological reaction in which hypotaurine is converted to taurine remains poorly understood. Here, hypotaurine and taurine were observed to react with superoxide anion in vitro to form the novel molecule peroxytaurine. In contrast, hypotaurine reacts with hydrogen peroxide to form taurine, but taurine does not react with hydrogen peroxide in vitro. Mass and NMR spectrometry as well as FTIR and Raman spectroscopy support the molecular characterization of peroxytaurine. Gravitometric and spectroscopy experiments suggest a stoichiometry of two superoxide anions reacting with one hypotaurine or two taurines. The newly identified molecule is a semi-stable, organic peroxysulfonic acid that may be an intermediate metabolite in taurine synthesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Superoxide dismutase of human platelets

    International Nuclear Information System (INIS)

    Kimura, Akiro; Fujimura, Kingo; Kuramoto, Atsushi

    1979-01-01

    Superoxide dismutase (S.O.D.) is the enzyme to protect from destructive effect of superoxide (O 2 -) produced in many metabolic pathways related to oxygen. The purpose of this study was to investigate the possibility that S.O.D. may play an important role in the platelet function. The cytoplasmic and mitochondrial S.O.D. has been investigated spectrophotometrically and gel electrophoretically in human platelets from eleven patients of chronic myelogenous leukemia (CML) and three patients of primary thrombocythemia (P.Th.). Neither deficiency nor abnormality of cytoplasmic and mitochondrial S.O.D. has been found electrophoretically in any case compared to normal platelets. However, the total activity from three of the CML patients and one of the P.Th. patients were above 3 unit/mg platelet protein (normal subject: 2.11 - 2.70 unit/mg protein), suggesting the possibility either that more O 2 -production occurs in the platelets or that rather little O 2 -production due to much O 2 -deprivation by the increased S.O.D. The S.O.D. activity of human platelets has been also investigated in several conditions, where much O 2 -generation might occur in platelets. Sodium fluoride (2 mM), which increases platelet O 2 -production about 3 fold, had no effect on platelet S.O.D. The aggregated platelets induced by ADP (10 -5 M), epinephrin (50 μg/ml), ristocetin (1.5 mg/ml) or collagen (1 - 20 μg/ml) had no increase of S.O.D. activity compared to that from non aggregated platelets. X-ray irradiation (1,000 - 20,000R) had not induced its activity increase or decrease. These findings indicated the induction of platelet S.O.D. was not brought about under these conditions. (author)

  2. Scavenging capacity of strawberry tree (Arbutus unedo L.) leaves on free radicals.

    Science.gov (United States)

    Oliveira, Ivo; Coelho, Valentim; Baltasar, Raquel; Pereira, José Alberto; Baptista, Paula

    2009-07-01

    Despite strawberry tree (Arbutus unedo L.) leaves had a long use in traditional medicine due to its antiseptic, diuretic, astringent and depurative properties, the potential of their antioxidant activity are still lacking. Our study goals to assess the antioxidant and free radical scavenging potential of water, ethanol, methanol and diethyl ether extracts of A. unedo leaves. Total phenols content was achieved spectrophotometrically using Folin-Ciocalteau reagent with gallic acid as standard. Antioxidant activity was evaluated using three different methods: reducing power of iron (III)/ferricyanide complex assay, scavenging effect on DPPH (2,2-diphenyl-1-picrylhydrazyl) radicals and scavenging effect on superoxide radicals by using the PMS-NADH-nitroblue tetrazolium system. Ethanol extracts of A. unedo leaves were the highest in reducing power (IC(50) 232.7 microg/mL) and DPPH scavenging effect (IC(50) 63.2 microg/mL) followed by water extracts (with IC(50) of 287.7 and 73.7 microg/mL, respectively); whereas diethyl ether extracts were the lowest. In the scavenging on superoxide radical assay, methanol extracts obtained the best results (IC(50) 6.9 microg/mL). For all the methods tested the antioxidant activity was concentration dependent. In accordance with antioxidant activity, highest total phenols content were found in ethanol, followed by water, methanol and diethyl ether extract. The results indicated that A. unedo leaves are a potential source of natural antioxidants.

  3. Changes in free-radical scavenging ability of kombucha tea during fermentation.

    Science.gov (United States)

    Jayabalan, R; Subathradevi, P; Marimuthu, S; Sathishkumar, M; Swaminathan, K

    2008-07-01

    Kombucha tea is a fermented tea beverage produced by fermenting sugared black tea with tea fungus (kombucha). Free-radical scavenging abilities of kombucha tea prepared from green tea (GTK), black tea (BTK) and tea waste material (TWK) along with pH, phenolic compounds and reducing power were investigated during fermentation period. Phenolic compounds, scavenging activity on DPPH radical, superoxide radical (xanthine-xanthine oxidase system) and inhibitory activity against hydroxyl radical mediated linoleic acid oxidation (ammonium thiocyanate assay) were increased during fermentation period, whereas pH, reducing power, hydroxyl radical scavenging ability (ascorbic acid-iron EDTA) and anti-lipid peroxidation ability (thiobarbituric assay) were decreased. From the present study, it is obvious that there might be some chances of structural modification of components in tea due to enzymes liberated by bacteria and yeast during kombucha fermentation which results in better scavenging performance on nitrogen and superoxide radicals, and poor scavenging performance on hydroxyl radicals. Copyright © 2007 Elsevier Ltd. All rights reserved.

  4. Superoxide dismutases in chronic gastritis.

    Science.gov (United States)

    Švagelj, Dražen; Terzić, Velimir; Dovhanj, Jasna; Švagelj, Marija; Cvrković, Mirta; Švagelj, Ivan

    2016-04-01

    Human gastric diseases have shown significant changes in the activity and expression of superoxide dismutase (SOD) isoforms. The aim of this study was to detect Mn-SOD activity and expression in the tissue of gastric mucosa, primarily in chronic gastritis (immunohistochemical Helicobacter pylori-negative gastritis, without other pathohistological changes) and to evaluate their possible connection with pathohistological diagnosis. We examined 51 consecutive outpatients undergoing endoscopy for upper gastrointestinal symptoms. Patients were classified based on their histopathological examinations and divided into three groups: 51 patients (archive samples between 2004-2009) with chronic immunohistochemical Helicobacter pylori-negative gastritis (mononuclear cells infiltration were graded as absent, moderate, severe) divided into three groups. Severity of gastritis was graded according to the updated Sydney system. Gastric tissue samples were used to determine the expression of Mn-SOD with anti-Mn-SOD Ab immunohistochemically. The Mn-SOD expression was more frequently present in specimens with severe and moderate inflammation of gastric mucosa than in those with normal mucosa. In patients with normal histological finding, positive immunoreactivity of Mn-SOD was not found. Our results determine the changes in Mn-SOD expression occurring in the normal gastric mucosa that had undergone changes in the intensity of chronic inflammatory infiltrates in the lamina propria. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  5. Superoxide dismutase: an industrial perspective.

    Science.gov (United States)

    Bafana, Amit; Dutt, Som; Kumar, Sanjay; Ahuja, Paramvir S

    2011-03-01

    The application of enzyme technologies to industrial research, development, and manufacturing has become a very important field. Since the production of crude rennet in 1874, several enzymes have been commercialized, and used for therapeutic, supplementary, and other applications. Recent advancements in biotechnology now allow companies to produce safer and less expensive enzymes with enhanced potency and specificity. Antioxidant enzymes are emerging as a new addition to the pool of industrial enzymes and are surpassing all other enzymes in terms of the volume of research and production. In the 1990s, an antioxidant enzyme--superoxide dismutase (SOD)--was introduced into the market. Although the enzyme initially showed great promise in therapeutic applications, it did not perform up to expectations. Consequently, its use was limited to non-drug applications in humans and drug applications in animals. This review summarizes the rise and fall of SOD at the industrial level, the reasons for this, and potential future thrust areas that need to be addressed. The review also focuses on other industrially relevant aspects of SOD such as industrial importance, enzyme engineering, production processes, and process optimization and scale-up.

  6. Free radical scavenging activities of yellow gentian (Gentiana lutea L.) measured by electron spin resonance.

    Science.gov (United States)

    Kusar, A; Zupancic, A; Sentjurc, M; Baricevic, D

    2006-10-01

    Yellow gentian (Gentiana lutea L.) is a herbal species with a long-term use in traditional medicine due to its digestive and stomachic properties. This paper presents an investigation of the free radical scavenging activity of methanolic extracts of yellow gentian leaves and roots in two different systems using electron spin resonance (ESR) spectrometry. Assays were based on the stable free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) and the superoxide radicals (O2*-) generated by the xanthine/xanthine oxidase (X/XO) system. The results of gentian methanolic extracts were compared with the antioxidant capacity of synthetic antioxidant butylated hydroxyanisole (BHA). This study proves that yellow gentian leaves and roots exhibit considerable antioxidant properties, expressed either by their capability to scavenge DPPH or superoxide radicals.

  7. Metal bacteriochlorins which act as dual singlet oxygen and superoxide generators.

    Science.gov (United States)

    Fukuzumi, Shunichi; Ohkubo, Kei; Zheng, Xiang; Chen, Yihui; Pandey, Ravindra K; Zhan, Riqiang; Kadish, Karl M

    2008-03-06

    A series of stable free-base, Zn(II) and Pd(II) bacteriochlorins containing a fused six- or five-member diketo- or imide ring have been synthesized as good candidates for photodynamic therapy sensitizers, and their electrochemical, photophysical, and photochemical properties were examined. Photoexcitation of the palladium bacteriochlorin affords the triplet excited state without fluorescence emission, resulting in formation of singlet oxygen with a high quantum yield due to the heavy atom effect of palladium. Electrochemical studies revealed that the zinc bacteriochlorin has the smallest HOMO-LUMO gap of the investigated compounds, and this value is significantly lower than the triplet excited-state energy of the compound in benzonitrile. Such a small HOMO-LUMO gap of the zinc bacteriochlorin enables intermolecular photoinduced electron transfer from the triplet excited state to the ground state to produce both the radical cation and the radical anion. The radical anion thus produced can transfer an electron to molecular oxygen to produce superoxide anion which was detected by electron spin resonance. The same photosensitizer can also act as an efficient singlet oxygen generator. Thus, the same zinc bacteriochlorin can function as a sensitizer with a dual role in that it produces both singlet oxygen and superoxide anion in an aprotic solvent (benzonitrile).

  8. Rain scavenging of radioactive particles

    International Nuclear Information System (INIS)

    Williams, A.L.

    1975-01-01

    An assessment is made of the rainout of airborne radioactive particles from a nuclear detonation with emphasis on the microphysical removal processes. For submicron particles the scavenging processes examined are Brownian and turbulent diffusion to cloud droplets. For particles larger than 1 μm radius, nucleation scavenging is examined. For various particle size and radioactivity distributions, it is found that from 27 to 99 percent of the radioactivity is attached to cloud droplets and subject to rapid removal by rain. (U.S.)

  9. [Involvement of carbonate/bicarbonate ions in the superoxide-generating reaction of adrenaline autoxidation].

    Science.gov (United States)

    Sirota, T V

    2015-01-01

    An important role of carbonate/bicarbonate ions has been recognized in the superoxide generating reaction of adrenaline autooxidation in an alkaline buffer (a model of quinoid adrenaline oxidation in the body). It is suggested that these ions are directly involved not only in formation of superoxide anion radical (О(2)(-)) but also other radicals derived from the carbonate/bicarbonate buffer. Using various buffers it was shown that the rate of accumulation of adrenochrome, the end product of adrenaline oxidation, and the rate of О(2)(-)· formation depend on concentration of carbonate/bicarbonate ions in the buffer and that these ions significantly accelerate adrenaline autooxidation thus demonstrating prooxidant properties. The detectable amount of diformazan, the product of nitro blue tetrazolium (NBT) reduction, was significantly higher than the amount of adrenochrome formed; taking into consideration the literature data on О(2)(-)· detection by NBT it is suggested that adrenaline autooxidation is accompanied by one-electron reduction not only of oxygen dissolved in the buffer and responsible for superoxide formation but possible carbon dioxide also dissolved in the buffer as well as carbonate/bicarbonate buffer components leading to formation of corresponding radicals. The plots of the dependence of the inhibition of adrenochrome and diformazan formation on the superoxide dismutase concentration have shown that not only superoxide radicals are formed during adrenaline autooxidation. Since carbonate/bicarbonate ions are known to be universally present in the living nature, their involvement in free radical processes proceeding in the organism is discussed.

  10. Precipitation scavenging of aerosol particles

    International Nuclear Information System (INIS)

    Radke, L.F.; Eltgroth, M.W.; Hobbs, P.V.

    1978-01-01

    The paper presents the results of precipitation scavenging measurements of particles in the atmosphere and in plumes which were obtained using an airborne measuring system. Attention is given to the so-called 'Greenfield gap' and collection efficiencies for submicron particles

  11. Attenuation of 6-hydroxydopamine-induced dopaminergic nigrostriatal lesions in superoxide dismutase transgenic mice

    International Nuclear Information System (INIS)

    Cadet, J.L.; Hirata, H.; Asanuma, M.

    1998-01-01

    6-Hydroxydopamine is a neurotoxin that produces degeneration of the nigrostriatal dopaminergic pathway in rodents. Its toxicity is thought to involve the generation of superoxide anion secondary to its autoxidation. To examine the effects of the overexpression of Cu,Zn-superoxide dismutase activity on 6-hydroxydopamine-induced dopaminergic neuronal damage, we have measured the effects of 6-hydroxydopamine on striatal and nigral dopamine transporters and nigral tyrosine hydroxylase-immunoreactive neurons in Cu,Zn-superoxide dismutase transgenic mice. Intracerebroventricular injection of 6-hydroxydopamine (50 μg) in non-transgenic mice produced reductions in the size of striatal area and an enlargement of the cerebral ventricle on both sides of the brains of mice killed two weeks after the injection. In addition, 6-hydroxydopamine caused marked decreases in striatal and nigral [ 125 I]RTI-121-labelled dopamine transporters not only on the injected side but also on the non-injected side of non-transgenic mice; this was associated with decreased cell number and size of tyrosine hydroxylase-immunoreactive dopamine neurons in the substantia nigra pars compacta on both sides in these mice. In contrast, superoxide dismutase transgenic mice were protected against these neurotoxic effects of 6-hydroxydopamine, with the homozygous transgenic mice showing almost complete protection.These results provide further support for a role of superoxide anion in the toxic effects of 6-hydroxydopamine. They also provide further evidence that reactive oxygen species may be the main determining factors in the neurodegenerative effects of catecholamines. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  12. Phagocytosis of mast cell granules results in decreased macrophage superoxide production

    Directory of Open Access Journals (Sweden)

    Bobby A. Shah

    1995-01-01

    Full Text Available The mechanism by which phagocytosed mast cell granules (MCGs inhibit macrophage superoxide production has not been defined. In this study, rat peritoneal macrophages were co-incubated with either isolated intact MCGs or MCG-sonicate, and their respiratory burst capacity and morphology were studied. Co-incubation of macrophages with either intact MCGs or MCG-sonicate resulted in a dose-dependent inhibition of superoxide- mediated cytochrome c reduction. This inhibitory effect was evident within 5 min of incubation and with MCG-sonicate was completely reversed when macrophages were washed prior to activation with PMA. In the case of intact MCGs, the inhibitory effect was only partially reversed by washing after a prolonged co-incubation time. Electron microscopic analyses revealed that MCGs were rapidly phagocytosed by macrophages and were subsequently disintegrated within the phagolysosomes. Assay of MCGs for superoxide dismutase (SOD revealed the presence of significant activity of this enzyme. A comparison of normal macrophages and those containing phagocytosed MCGs did not reveal a significant difference in total SOD activity. It is speculated that, although there was no significant increase in total SOD activity in macrophages containing phagocytosed MCGs, the phagocytosed MCGs might cause a transient increase in SOD activity within the phagolysosomes. This transient rise in SOD results in scavenging of the newly generated superoxide. Alternatively, MCG inhibition of NADPH oxidase would explain the reported observations.

  13. 21 CFR 868.5590 - Scavenging mask.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Scavenging mask. 868.5590 Section 868.5590 Food... DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5590 Scavenging mask. (a) Identification. A scavenging mask is a device positioned over a patient's nose to deliver anesthetic or analgesic gases to the...

  14. Scavenging in the genus Natrix

    Directory of Open Access Journals (Sweden)

    Cesar Ayres

    2012-07-01

    Full Text Available Scavenging is reported as an unusual behaviour of snakes. However, it is likely more common than is supposed. Here I report the use of dead newts as prey source by water snakes of the genus Natrix at a dam in north-western Spain. Juveniles and adults viperine snakes (Natrix maura, and also an adult grass snake (Natrix natrix were found feeding on newt carcasses.

  15. Novel Water Soluble Chitosan Derivatives with 1,2,3-Triazolium and Their Free Radical-Scavenging Activity.

    Science.gov (United States)

    Li, Qing; Sun, Xueqi; Gu, Guodong; Guo, Zhanyong

    2018-03-28

    Chitosan is an abundant and renewable polysaccharide, which exhibits attractive bioactivities and natural properties. Improvement such as chemical modification of chitosan is often performed for its potential of providing high bioactivity and good water solubility. A new class of chitosan derivatives possessing 1,2,3-triazolium charged units by associating "click reaction" with efficient 1,2,3-triazole quaternization were designed and synthesized. Their free radical-scavenging activity against three free radicals was tested. The inhibitory property and water solubility of the synthesized chitosan derivatives exhibited a remarkable improvement over chitosan. It is hypothesized that triazole or triazolium groups enable the synthesized chitosan to possess obviously better radical-scavenging activity. Moreover, the scavenging activity against superoxide radical of chitosan derivatives with triazolium (IC 50 radical-scavenging assay, the same pattern were observed, which should be related to the triazolium grafted at the periphery of molecular chains.

  16. Extracellular production and degradation of superoxide in the coral Stylophora pistillata and cultured Symbiodinium.

    Directory of Open Access Journals (Sweden)

    Eldad Saragosti

    2010-09-01

    Full Text Available Reactive oxygen species (ROS are thought to play a major role in cell death pathways and bleaching in scleractinian corals. Direct measurements of ROS in corals are conspicuously in short supply, partly due to inherent problems with ROS quantification in cellular systems.In this study we characterized the dynamics of the reactive oxygen species superoxide anion radical (O(2(- in the external milieu of the coral Stylophora pistillata. Using a sensitive, rapid and selective chemiluminescence-based technique, we measured extracellular superoxide production and detoxification activity of symbiont (non-bleached and aposymbiont (bleached corals, and of cultured Symbiodinium (from clades A and C. Bleached and non-bleached Stylophora fragments were found to produce superoxide at comparable rates of 10(-11-10(-9 mol O(2(- mg protein(-1 min(-1 in the dark. In the light, a two-fold enhancement in O(2(- production rates was observed in non-bleached corals, but not in bleached corals. Cultured Symbiodinium produced superoxide in the dark at a rate of . Light was found to markedly enhance O(2(- production. The NADPH Oxidase inhibitor Diphenyleneiodonium chloride (DPI strongly inhibited O(2(- production by corals (and more moderately by algae, possibly suggesting an involvement of NADPH Oxidase in the process. An extracellular O(2(- detoxifying activity was found for bleached and non-bleached Stylophora but not for Symbiodinium. The O(2(- detoxifying activity was partially characterized and found to resemble that of the enzyme superoxide dismutase (SOD.The findings of substantial extracellular O(2(- production as well as extracellular O(2(- detoxifying activity may shed light on the chemical interactions between the symbiont and its host and between the coral and its environment. Superoxide production by Symbiodinium possibly implies that algal bearing corals are more susceptible to an internal build-up of O(2(-, which may in turn be linked to oxidative stress

  17. In vitro antioxidant capacity and free radical scavenging evaluation of active metabolite constituents of Newbouldia laevis ethanolic leaf extract.

    Science.gov (United States)

    Habu, Josiah Bitrus; Ibeh, Bartholomew Okechukwu

    2015-03-14

    The aim of the present study was to evaluate the in vitro antioxidant and free radical scavenging capacity of bioactive metabolites present in Newbouldia laevis leaf extract. Chromatographic and spectrophotometric methods were used in the study and modified where necessary in the study. Bioactivity of the extract was determined at 10 μg/ml, 50 μg/ml, 100 μg/ml, 200 μg/ml and 400 μg/ml concentrations expressed in % inhibition. The yield of the ethanolic leaf extract of N.laevis was 30.3 g (9.93%). Evaluation of bioactive metabolic constituents gave high levels of ascorbic acid (515.53 ± 12 IU/100 g [25.7 mg/100 g]), vitamin E (26.46 ± 1.08 IU/100 g), saponins (6.2 ± 0.10), alkaloids (2.20 ± 0.03), cardiac glycosides(1.48 ± 0.22), amino acids and steroids (8.01 ± 0.04) measured in mg/100 g dry weight; moderate levels of vitamin A (188.28 ± 6.19 IU/100 g), tannins (0.09 ± 0.30), terpenoids (3.42 ± 0.67); low level of flavonoids (1.01 ± 0.34 mg/100 g) and absence of cyanogenic glycosides, carboxylic acids and aldehydes/ketones. The extracts percentage inhibition of DPPH, hydroxyl radical (OH.), superoxide anion (O2 .-), iron chelating, nitric oxide radical (NO), peroxynitrite (ONOO-), singlet oxygen (1O2), hypochlorous acid (HOCl), lipid peroxidation (LPO) and FRAP showed a concentration-dependent antioxidant activity with no significant difference with the controls. Though, IC50 of the extract showed significant difference only in singlet oxygen (1O2) and iron chelating activity when compared with the controls. The extract is a potential source of antioxidants/free radical scavengers having important metabolites which maybe linked to its ethno-medicinal use.

  18. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling.

    Science.gov (United States)

    Wang, Ying; Branicky, Robyn; Noë, Alycia; Hekimi, Siegfried

    2018-04-18

    Superoxide dismutases (SODs) are universal enzymes of organisms that live in the presence of oxygen. They catalyze the conversion of superoxide into oxygen and hydrogen peroxide. Superoxide anions are the intended product of dedicated signaling enzymes as well as the byproduct of several metabolic processes including mitochondrial respiration. Through their activity, SOD enzymes control the levels of a variety of reactive oxygen species (ROS) and reactive nitrogen species, thus both limiting the potential toxicity of these molecules and controlling broad aspects of cellular life that are regulated by their signaling functions. All aerobic organisms have multiple SOD proteins targeted to different cellular and subcellular locations, reflecting the slow diffusion and multiple sources of their substrate superoxide. This compartmentalization also points to the need for fine local control of ROS signaling and to the possibility for ROS to signal between compartments. In this review, we discuss studies in model organisms and humans, which reveal the dual roles of SOD enzymes in controlling damage and regulating signaling. © 2018 Wang et al.

  19. Superoxide dismutating molecules rescue the toxic effects of PINK1 and parkin loss.

    Science.gov (United States)

    Biosa, Alice; Sanchez-Martinez, Alvaro; Filograna, Roberta; Terriente-Felix, Ana; Alam, Sarah M; Beltramini, Mariano; Bubacco, Luigi; Bisaglia, Marco; Whitworth, Alexander J

    2018-05-01

    Reactive oxygen species exert important functions in regulating several cellular signalling pathways. However, an excessive accumulation of reactive oxygen species can perturb the redox homeostasis leading to oxidative stress, a condition which has been associated to many neurodegenerative disorders. Accordingly, alterations in the redox state of cells and mitochondrial homeostasis are established hallmarks in both familial and sporadic Parkinson's disease cases. PINK1 and Parkin are two genes which account for a large fraction of autosomal recessive early-onset forms of Parkinson's disease and are now firmly associated to both mitochondria and redox homeostasis. In this study we explored the hypothesis that superoxide anions participate in the generation of the Parkin and PINK1 associated phenotypic effect by testing the capacity of endogenous and exogenous superoxide dismutating molecules to rescue the toxic effects induced by loss of PINK1 or Parkin, in both cellular and fly models. Our results demonstrate the positive effect of an increased level of superoxide dismutase proteins on the pathological phenotypes, both in vitro and in vivo. A more pronounced effectiveness for mitochondrial SOD2 activity points to the superoxide radicals generated in the mitochondrial matrix as the prime suspect in the definition of the observed phenotypes. Moreover, we also demonstrate the efficacy of a SOD-mimetic compound, M40403, to partially ameliorate PINK1/Parkin phenotypes in vitro and in vivo. These results support the further exploration of SOD-mimetic compounds as a therapeutic strategy against Parkinson's disease.

  20. Electrolyte Chemistry for Simultaneous Stabilization of Potassium Metal and Superoxide in K-O₂ Batteries.

    Science.gov (United States)

    Xiao, Neng; Gourdin, Gerald; Wu, Yiying

    2018-05-22

    In the superoxide batteries based on O2/O2- redox chemistry, identifying an electrolyte to stabilize both alkali metal and superoxide remains challenging due to their reactivity towards electrolyte components. Bis(fluorosulfonyl)imide (FSI-) has been recognized as a "magical anion" for passivating alkali metals. Herein, we illustrate the chemical reactions between FSI- and superoxide, and the resultant dilemma when considering an anode-compatible electrolyte vs. a cathode-compatible one in K-O2 batteries. On one side, the KFSI-dimethoxyethane (DME) electrolyte passivates the potassium metal anode via the cleavage of S-F bond and formation of a KF-rich solid electrolyte interface (SEI). Nevertheless, the KFSI salt is chemically unstable due to the nucleophilic attack by superoxide and/or hydroxide species. On the other hand, potassium bis(trifluorosulfonyl)imide (KTFSI) is stable for KO2, but results in mossy deposition and irreversible plating and stripping. In order to circumvent this dilemma, we develop an artificial SEI for K metal anode to achieve long cycle-life K-O2 batteries. This work contributes to the understanding of electrolyte chemistry and guides the development of stable electrolytes and artificial SEI in metal-O2 batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. To scavenge or not to scavenge: that is the question

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Elzbieta; Brzuszkiewicz, Anna [Synchrotron Radiation Research Section, MCL, National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439 (United States); Dauter, Miroslawa [SAIC-Frederick Inc., Basic Research Program, Argonne National Laboratory, Argonne, IL 60439 (United States); Dauter, Zbigniew, E-mail: dauter@anl.gov [Synchrotron Radiation Research Section, MCL, National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439 (United States); Rosenbaum, Gerd, E-mail: dauter@anl.gov [Department of Biochemistry, University of Georgia, SER-CAT at the APS, Argonne, IL 60439 (United States); Synchrotron Radiation Research Section, MCL, National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2009-09-01

    Analysis of a series of diffraction data sets measured from several native as well as nicotinic acid-soaked crystals of trypsin suggests that this potential scavenger does not have any statistically significant effect on the amount of radiation damage incurred in the crystals on X-ray irradiation at 100 K. Analysis of a series of diffraction data sets measured from four native as well as four nicotinic acid-soaked crystals of trypsin at 100 K shows a high variability in radiation-sensitivity among individual crystals for both nicotinic acid-soaked and native crystals. The level of radiation-sensitivity and the extent of its variability is statistically indistinguishable between the two conditions. This suggests that this potential scavenger does not have any statistically significant effect on the amount of radiation damage incurred in the crystals on X-ray irradiation. This is in contrast to previous results [Kauffmann et al. (2006 ▶), Structure, 14, 1099–1105] where only one crystal specimen was used for each condition (native and nicotinic acid-soaked)

  2. Free radical scavenging and COX-2 inhibition by simple colon metabolites of polyphenols: A theoretical approach.

    Science.gov (United States)

    Amić, Ana; Marković, Zoran; Marković, Jasmina M Dimitrić; Jeremić, Svetlana; Lučić, Bono; Amić, Dragan

    2016-12-01

    Free radical scavenging and inhibitory potency against cyclooxygenase-2 (COX-2) by two abundant colon metabolites of polyphenols, i.e., 3-hydroxyphenylacetic acid (3-HPAA) and 4-hydroxyphenylpropionic acid (4-HPPA) were theoretically studied. Different free radical scavenging mechanisms are investigated in water and pentyl ethanoate as a solvent. By considering electronic properties of scavenged free radicals, hydrogen atom transfer (HAT) and sequential proton loss electron transfer (SPLET) mechanisms are found to be thermodynamically probable and competitive processes in both media. The Gibbs free energy change for reaction of inactivation of free radicals indicates 3-HPAA and 4-HPPA as potent scavengers. Their reactivity toward free radicals was predicted to decrease as follows: hydroxyl>alkoxyls>phenoxyl≈peroxyls>superoxide. Shown free radical scavenging potency of 3-HPAA and 4-HPPA along with their high μM concentration produced by microbial colon degradation of polyphenols could enable at least in situ inactivation of free radicals. Docking analysis with structural forms of 3-HPAA and 4-HPPA indicates dianionic ligands as potent inhibitors of COX-2, an inducible enzyme involved in colon carcinogenesis. Obtained results suggest that suppressing levels of free radicals and COX-2 could be achieved by 3-HPAA and 4-HPPA indicating that these compounds may contribute to reduced risk of colon cancer development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Free radical scavenging window of infertile patients with polycystic ovary syndrome: correlation with embryo quality.

    Science.gov (United States)

    Huang, Bo; Li, Zhou; Ren, Xinling; Ai, Jihui; Zhu, Lixia; Jin, Lei

    2017-06-01

    The activity of free radicals in follicular fluid was related to ovarian responsiveness, in vitro fertilization (IVF), and embryo transfer success rate. However, studies analyzing the relationship between the free radical scavenging capacity and embryo quality of infertile women with polycystic ovarian syndrome (PCOS) were lacking. The aim of this study was to evaluate the relationship between the free radical scavenging window of women with PCOS and their embryo quality. The free radical scavenging capacity of follicular fluid from women with PCOS was determined by a,a-diphenyl-b-picrylhydrazyl (DPPH), 2,2-azinobis (3-ethylbenzthiazoline-6-sulphonic acid) assay, superoxide radical, and reactive oxygen species (ROS) assay. In the DPPH and ROS assays, the follicular fluid from grades I and II embryos was significantly higher than the follicular fluid from grades III and IVembryos. The lower control limit of DPPH radical scavenging capacity and upper control limit of ROS level were 13.2% and 109.0 cps, respectively. The calculated lower control limit and upper control limit were further confirmed in the follicular fluid of embryos of all grades. These cut-off values of free radical scavenging activity of follicular fluid could assist embryologists in choosing the development of embryos in PCOS patients undergoing IVF.

  4. Hemoglobin and heme scavenger receptors

    DEFF Research Database (Denmark)

    Nielsen, Marianne Jensby; Møller, Holger Jon; Moestrup, Søren Kragh

    2010-01-01

    Heme, the functional group of hemoglobin, myoglobin, and other hemoproteins, is a highly toxic substance when it appears in the extracellular milieu. To circumvent potential harmful effects of heme from hemoproteins released during physiological or pathological cell damage (such as hemolysis...... and rhabdomyolysis), specific high capacity scavenging systems have evolved in the mammalian organism. Two major systems, which essentially function in a similar way by means of a circulating latent plasma carrier protein that upon ligand binding is recognized by a receptor, are represented by a) the hemoglobin...

  5. Effects of hydroxyl radical scavengers KCN and CO on ultraviolet light-induced activation of crude soluble guanylate cyclase

    International Nuclear Information System (INIS)

    Karlsson, J.O.; Axelsson, K.L.; Andersson, R.G.

    1985-01-01

    The crude soluble guanylate cyclase (GC) from bovine mesenteric artery was stimulated by ultraviolet (UV) light (366 nm). Addition of free radical scavengers, dimethylsulfoxide or superoxide dismutase and/or catalase to the GC assay did not abolish the stimulatory effect of UV light. On the contrary, the UV light-induced activation was enhanced in the presence of these scavengers. KCN (1 mM) did not affect the UV light-induced activation, while 0.1 mM of CO potentiated the activation. These results may indicate that UV light is operating through a direct interaction with the ferrous form of the GC-heme

  6. A Manganese Superoxide Dismutase (SOD2 Gene Polymorphism in Insulin-Dependent Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Flemming Pociot

    1993-01-01

    Full Text Available Interleukin I (lL-I is selectively cytotoxic to the insulin producing beta cell of pancreatic islets. This effect may be due to IL-I induced generation of reactive oxygen species and nitric oxide. Since beta cells contain low amounts of the superoxide radical scavenger enzyme manganese superoxide dismutase (MnSOD, this may leave beta cells more susceptible to IL-I than other cell types. Genetic variation in the MnSOD locus could reflect differences in scavenger potential. We, therefore, studied possible restriction fragment length polymorphisms (RFLPs of this locus in patients with insulin-dependent diabetes mellitus (100M (n= 154 and control individuals (n=178, Taql revealed a double diallelic RFLP in patients as well as in controls. No overall difference in allelic or genotype frequencies were observed between 100M patients and control individuals (p=0.11 and no significant association of any particular RFLP pattern with 100M was found. Structurally polymorphic MnSOD protein variants with altered activities have been reported. If genetic variation results in MnSOD variants with reduced activities, the MnSOD locus may still be a candidate gene for 100M susceptibility. Whether the RFLPs reported in this study reflects differences in gene expression level, protein level and/or specific activity of the protein is yet to be studied.

  7. Sensitization of microorganisms and enzymes by radiation-induced selective inorganic radical anions

    International Nuclear Information System (INIS)

    Schubert, J.; Stegeman, H.

    1981-01-01

    Bacterial survival and enzymatic inactivation were examined following exposure to radiolytically-generated radical anions, X - 2 , where X=Cl, Br, I or CNS - . Depending on pH, radical anions react selectively or specifically with cysteine, tryptophan, tyrosine and histidine. Consequently, when one or more of these amino acids is crucial for enzymatic activity or bacterial survival and is attacked by a radical anion, a high degree or radiosensitization may be realized. Halide radical anions can form free chlorine, bromine or iodine. However, these bactericidal halogens are destroyed by reaction with the hydrated electron, e - sub(aq), or at pHs>9, as occurs, for example, when a medium saturated with nitrous oxide, N 2 O, and e - sub(aq) scavenger, is replaced by nitrogen or oxygen. Increasing concentration of other e - sub(aq) scavengers, such as phosphate buffer, promotes formation of halogen from halides. The conditions producing formation and elimination of halogens in irradiated media must be appreciated to avoid confusing radiosensitization by X 2 to X - 2 . Radiosensitization by radical anions of several microorganisms: S. faecalis, S. typhimurium, E. coli, and M. radiodurens is described. A crucial amino acid for survival of S. faecalis appears to be tyrosine, while both tyrosine and tryptophan seem essential for recovery of S. typhimurium from effects of ionizing radiation. It is postulated that the radiosensitizing action of radical anions involves inhibition of DNA repair of strand-breaks by depriving the cells of energy. In view of the high OH scavenging power of foods, it is concluded that the radiosensitization of bacteria and enzymes in foods by radical anions, except for special cases, is not practical. Rather, radical anions serve to identify crucial amino acids to radiosensitization mechanisms in model systems, and possibly in radiotherapy. (author)

  8. Scavenging and recombination kinetics in radiation chemistry.

    Science.gov (United States)

    Al-Samra, Eyad H; Green, Nicholas J B

    2017-08-02

    This work describes stochastic models developed to study the competition between radical scavenging and recombination for simple model systems typical of radiation chemistry, where the reactive particles are tightly clustered and reactions are assumed fully diffusion limited. Three models are developed: a Monte Carlo random flights model with a periodic boundary condition for scavengers, Monte Carlo simulations in which the scavenging rate is calculated from the Smoluchowski theory for diffusion-limited reactions and a modification of the independent reaction times method where the scavengers close to the spur are explicitly included and the scavengers further away are treated as a continuum. The results indicate that the Smoluchowski theory makes a systematic overestimate of the scavenging rate when such competition is present. A correction for the Smoluchowski rate constant is suggested, an analytical justification is presented and it is tested against the simulations, and shown to be a substantial improvement.

  9. The role of superoxide anions in the development of distant tumour recurrence

    NARCIS (Netherlands)

    M. ten Kate (Miranda); J.B.C. van der Wal; W.J. Sluiter (Wim); L.J. Hofland (Leo); J. Jeekel (Hans); P. Sonneveld (Pieter); C.H.J. van Eijck (Casper)

    2006-01-01

    textabstractWe hypothesise that reactive oxygen species (ROS) released from activated polymorphonuclear leucocytes during surgery play a crucial role in enhanced tumour recurrence seen after surgery. Therefore, the effect of ROS on adhesion of tumour cells to microvascular endothelium in a

  10. Antioxidant activity of melatonin and glutathione interacting with hydroxyl- and superoxide anion radicals

    Directory of Open Access Journals (Sweden)

    T. Y. Kuznetsova

    2017-12-01

    Full Text Available Based on the analysis of the results obtained by quantum chemical modeling of interaction between reduced glutathione (GSH and melatonin (MLT molecules with oxygen radicals (•OH and • OOˉ it was found that this interaction occured following the acid-base mechanism, where MLT and GSH acted as a base in respect of •OH, and as acid in respect of •OOˉ. We have carried out the correlation of the results of quantum chemical calculations (density redistribution, energetic characteristics under the interaction of MLT and GSH molecules with •OH and •OOˉ in changing macroscopic properties of the process of electroreduction of free oxygen radicals in the presence of antioxidants (potential and maximal current wave reduction waves. This was a direct experimental macroscale evidence of the results of theoretical modeling at the nanoscale level that pointed to a marked antioxidant activity of glutathione compared with melatonin.

  11. Quantum chemical modeling of antioxidant activity of glutathione interacting with hydroxyl- and superoxide anion radicals

    Directory of Open Access Journals (Sweden)

    N. V. Solovyova

    2015-04-01

    Full Text Available Following the analysis of the results of quantum chemical simulation of interaction between a GSH molecule and oxygen radicals •ОН and •ООˉ, it was found that it takes place through the acid-base mechanism, where GSH acts as a base towards •ОН, and as an acid towards •ООˉ. The results of quantum chemical calculations (electron density redistribution, energy characteristics were correlated at the time of interaction of a GSH molecule with •ОН and •ООˉ with a change of macroscopic parameters of the process of free oxygen radical electroreduction in the presence of GSH (potential and maximum current of reduction waves, which is a direct experimental macroscale evidence of results of the conducted nanoscale theoretical simulation.

  12. Biomaterial-induced alterations of neutrophil superoxide production.

    Science.gov (United States)

    Kaplan, S S; Basford, R E; Mora, E; Jeong, M H; Simmons, R L

    1992-08-01

    Because periprosthetic infection remains a vexing problem for patients receiving implanted devices, we evaluated the effect of several materials on neutrophil free radical production. Human peripheral blood neutrophils were incubated with several sterile, lipopolysaccharide (LPS)-free biomaterials used in surgically implantable prosthetic devices: polyurethane, woven dacron, and velcro. Free radical formation as the superoxide (O2-) anion was evaluated by cytochrome c reduction in neutrophils that were exposed to the materials and then removed and in neutrophils allowed to remain in association with the materials. Neutrophils exposed to polyurethane or woven dacron for 30 or 60 min and then removed consistently exhibited an enhanced release of O2- after simulation via receptor engagement with formyl methionyl-leucyl-phenylalanine. Enhanced reactivity to stimulation via protein kinase C with phorbol myristate acetate, however, was not consistently observed. The cells evaluated for O2- release during continuous association with the biomaterials showed enhanced metabolic activity during short periods of association (especially with polyurethane and woven dacron). Although O2- release by neutrophils in association with these materials decreased with longer periods of incubation, it was not obliterated. These studies, therefore, show that several commonly used biomaterials activate neutrophils soon after exposure and that this activated state diminishes with prolonged exposure but nevertheless remains measurable. The diminishing level of activity with prolonged exposure, however, suggests that ultimately a depletion of reactivity may occur and may result in increased susceptibility to periprosthetic infection.

  13. Energy scavenging from environmental vibration.

    Energy Technology Data Exchange (ETDEWEB)

    Galchev, Tzeno (University of Michigan); Apblett, Christopher Alan; Najafi, Khalil (University of Michigan)

    2009-10-01

    The goal of this project is to develop an efficient energy scavenger for converting ambient low-frequency vibrations into electrical power. In order to achieve this a novel inertial micro power generator architecture has been developed that utilizes the bi-stable motion of a mechanical mass to convert a broad range of low-frequency (< 30Hz), and large-deflection (>250 {micro}m) ambient vibrations into high-frequency electrical output energy. The generator incorporates a bi-stable mechanical structure to initiate high-frequency mechanical oscillations in an electromagnetic scavenger. This frequency up-conversion technique enhances the electromechanical coupling and increases the generated power. This architecture is called the Parametric Frequency Increased Generator (PFIG). Three generations of the device have been fabricated. It was first demonstrated using a larger bench-top prototype that had a functional volume of 3.7cm3. It generated a peak power of 558{micro}W and an average power of 39.5{micro}W at an input acceleration of 1g applied at 10 Hz. The performance of this device has still not been matched by any other reported work. It yielded the best power density and efficiency for any scavenger operating from low-frequency (<10Hz) vibrations. A second-generation device was then fabricated. It generated a peak power of 288{micro}W and an average power of 5.8{micro}W from an input acceleration of 9.8m/s{sup 2} at 10Hz. The device operates over a frequency range of 20Hz. The internal volume of the generator is 2.1cm{sup 3} (3.7cm{sup 3} including casing), half of a standard AA battery. Lastly, a piezoelectric version of the PFIG is currently being developed. This device clearly demonstrates one of the key features of the PFIG architecture, namely that it is suitable for MEMS integration, more so than resonant generators, by incorporating a brittle bulk piezoelectric ceramic. This is the first micro-scale piezoelectric generator capable of <10Hz operation. The

  14. Americans with Disabilities Act Scavenger Hunt

    Science.gov (United States)

    Ramsey, Ursula

    2018-01-01

    This article describes a scavenger hunt for Business Law students. Specifically, students compete in this scavenger hunt to identify accessible design features on campus to undergird their study of Title III of the Americans with Disabilities Act (ADA). Title III of the ADA prohibits public accommodations from discriminating on the basis of…

  15. Antioxidant and free radical scavenging activities of Gastrodia elata Bl. and Uncaria rhynchophylla (Miq.) Jacks.

    Science.gov (United States)

    Liu, J; Mori, A

    1992-12-01

    Gastrodia elata Bl. (GE) and Uncaria rhynchophylla (Miq.) Jacks (UR) are two traditional Chinese medicinal herbal drugs, used for the treatment of convulsions and epilepsy. Their antioxidant effects in vivo and their free radical scavenging effects in vitro were investigated. Epileptogenic foci in the lateral brain of the rat were induced by the injection of ferric chloride into the lateral cortex. Both extracts significantly inhibited the increase in levels of lipid peroxide in the ipsilateral cortex, at all times observed. In addition, the two extracts also induced an early increase of activity of superoxide dismutase in the mitochondrial fraction of the ipsilateral cortex. In in vitro experiments, the two extracts exhibited significant dose-dependent scavenging effects on free radicals, using electron spin resonance spectroscopy. These results suggest that the proposed antiepileptic effects of GE and UR may be attributable to the antioxidant activity of the active components in these two medicinal herbs.

  16. The role of metals in production and scavenging of reactive oxygen species in photosystem II.

    Science.gov (United States)

    Pospíšil, Pavel

    2014-07-01

    Metal ions play a crucial role in enzymatic reactions in all photosynthetic organisms such as cyanobacteria, algae and plants. It well known that metal ions maintain the binding of substrate in the active site of the metalloenzymes and control the redox activity of the metalloenzyme in the enzymatic reaction. A large pigment-protein complex, PSII, known to serve as a water-plastoquinone oxidoreductase, contains three metal centers comprising non-heme iron, heme iron of Cyt b559 and the water-splitting manganese complex. Metal ions bound to PSII proteins maintain the electron transport from water to plastoquinone and regulate the pro-oxidant and antioxidant activity in PSII. In this review, attention is focused on the role of PSII metal centers in (i) the formation of superoxide anion and hydroxyl radicals by sequential one-electron reduction of molecular oxygen and the formation of hydrogen peroxide by incomplete two-electron oxidation of water; and (ii) the elimination of superoxide anion radical by one-electron oxidation and reduction (superoxide dismutase activity) and of hydrogen peroxide by two-electron oxidation and reduction (catalase activity). The balance between the formation and elimination of reactive oxygen species by PSII metal centers is discussed as an important aspect in the prevention of photo-oxidative damage of PSII proteins and lipids. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Anionic surface binders

    OpenAIRE

    Aljaž-Rožič Mateja; Hočevar Nežka

    2004-01-01

    The MELAMIN Chemical Factory in Kočevje manufactures synthetic resins and binders for the paper industry. Binders based on AKD (alkyl ketene dimer) are produced which are used for binding paper and cardboard in the range of neutral and partially basic pH. Cationic and, lately, anionic binders are mostly used for the bulk binding of paper and board. The possibility of using AKD binders on paper or board surfaces is presented. In this case partially cationic AKD binders may be applied. When opt...

  18. Formation of interstellar anions

    Science.gov (United States)

    Senent, Maria Luisa

    2012-05-01

    Formation of interstellar anions: M.L. Senent. The recent detection of negative charged species in the ISM1 has instigated enthusiasm for anions in the astrophysical community2. Many of these species are new and entail characterization. How they are formed in astrophysical sources is a question of major relevance. The anion presence in ISM was first predicted theoretically on the basis of electron affinities and on the negative linear chain molecular stabilities. Although very early, they were considered in astrochemical models3-4, their discovery is so recent because their abundances seem to be relatively low. These have to be understood in terms of molecular stabilities, reaction probabilities and radiative and collisional excitations. Then, we present our theoretical work on even carbon chains type Cn and CnH (n=2,4,6) focused to the understanding of anion abundances. We use highly correlated ab initio methods. We performed spectroscopic studies of various isomers that can play important roles as intermediates5-8. In previous papers9-10, we compared C2H and C2H- collisional rates responsible for observed line intensities. Actually, we study hydrogen attachment (Cn +H → CnH and Cn- +H → CnH-) and associative detachment processes (Cn- +H → CnH +e-) for 2, 4 and 6 carbon atom chains11. [1] M.C.McCarthy, C.A.Gottlieb, H.Gupta, P.Thaddeus, Astrophys.J, 652, L141 (2006) [2] V.M.Bierbaum, J.Cernicharo, R.Bachiller, eds., 2011, pp 383-389. [3] A. Dalgarno, R.A. Mc Cray, Astrophys.J,, 181, 95 (1973) [4] E. Herbst E., Nature, 289, 656 (1981); [5] H.Massó, M.L.Senent, P.Rosmus, M.Hochlaf, J.Chem.Phys., 124, 234304 (2006) [6] M.L.Senent, M.Hochlaf, Astrophys. J. , 708, 1452(2010) [7] H.Massó, M.L.Senent, J.Phys.Chem.A, 113, 12404 (2009) [8] D. Hammoutene, M.Hochlaf, M.L.Senent, submitted. [9] A. Spielfiedel, N. Feautrier, F. Najar, D. ben Abdallah, F. Dayou, M.L. Senent, F. Lique, Mon.Not.R.Astron.Soc., 421, 1891 (2012) [10] F.Dumouchel, A, Spielfieldel , M

  19. Cytosolic superoxide dismutase can provide protection against Fasciola gigantica.

    Science.gov (United States)

    Jaikua, Wipaphorn; Kueakhai, Pornanan; Chaithirayanon, Kulathida; Tanomrat, Rataya; Wongwairot, Sirima; Riengrojpitak, Suda; Sobhon, Prasert; Changklungmoa, Narin

    2016-10-01

    Superoxide dismutases (SOD), antioxidant metallo-enzymes, are a part of the first line of defense in the trematode parasites which act as the chief scavengers for reactive oxygen species (ROS). A recombinant Fasciola gigantica cytosolic SOD (FgSOD) was expressed in Escherichia coli BL21 (DE3) and used for immunizing rabbits to obtain polyclonal antibodies (anti-rFgSOD). This rabbit anti-rFgSOD reacted with the native FgSOD at a molecular weight of 17.5kDa. The FgSOD protein was expressed at high level in parenchyma, caecal epithelium and egg of the parasite. The rFgSOD reacted with antisera from rabbits infected with F. gigantica metacercariae collected at 2, 5, and 7 weeks after infection, and reacted with sera of infected mice. Anti-rFgSOD exhibited cross reactivity with the other parasites' antigens, including Eurytrema pancreaticum, Cotylophoron cotylophorum, Fischoederius cobboldi, Gastrothylax crumenifer, Paramphistomum cervi, and Setaria labiato papillosa. A vaccination was performed in imprinting control region (ICR) mice by subcutaneous injection with 50μg of rFgSOD combined with Freund's adjuvant. At 2 weeks after the second boost, mice were infected with 15 metacercariae by oral route. IgG1 and IgG2a in the immune sera were determined to indicate Th2 and Th1 immune responses. It was found that the parasite burden was reduced by 45%, and both IgG1 and IgG2a levels showed correlation with the numbers of worm recoveries. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Extraction and free radical scavenging activity of polysaccharide from 'Anji Baicha' (Camellia sinensis (L.) O. Kuntze).

    Science.gov (United States)

    Zhang, Zhongshan; Wang, Xiaomei; Li, Jingfen; Wang, Guozhi; Mao, Genxiang

    2016-03-01

    In this study, the optimization of the extraction conditions of polysaccharide from 'Anji Baicha' (Camellia sinensis (L.) O. Kuntze) (AP) was investigated by response surface methodology (RSM). Three main independent variables (extraction temperature, time, ratio of water to raw material) were taken into consideration. And then the free radical scavenging activities of the sample were investigated including scavenging effects of superoxide and hydroxyl radicals. The RSM analysis showed good correspondence between experimental and predicted values.. The optimal condition to obtain the highest yield of AP was determined as follows: temperature 76.79 °C, time 2.48 h, ratio of water to material 22.53 mL/g. For the free radical scavenging activity, the IC50 values of Vc and AP were 7.78 and 83.25 μg/mL. And for the scavenging effect on hydroxyl radical, that of AP and Vc were 1.80 and 1.69 mg/mL. AP showed excellent antioxidant activity. This exhibited AP had a good potential for antioxidant. The purification and structure needs to be study in further. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Radical scavenging potentials of single and combinatorial herbal formulations in vitro

    Directory of Open Access Journals (Sweden)

    Okey A. Ojiako

    2016-04-01

    Full Text Available Reactive oxygen and nitrogen species (RONS are involved in deleterious/beneficial biological processes. The present study sought to investigate the capacity of single and combinatorial herbal formulations of Acanthus montanus, Emilia coccinea, Hibiscus rosasinensis, and Asystasia gangetica to act as superoxide radicals (SOR, hydrogen peroxide (HP, nitric oxide radical (NOR, hydroxyl radical (HR, and 2,2-diphenyl-1-picrylhydrazyl (DPPH radical antagonists using in vitro models. The herbal extracts were single herbal formulations (SHfs, double herbal formulations (DHfs, triple herbal formulations (THfs, and a quadruple herbal formulation (QHf. The phytochemical composition and radical scavenging capacity index (SCI of the herbal formulations were measured using standard methods. The flavonoids were the most abundant phytochemicals present in the herbal extracts. The SCI50 defined the concentration (μg/mL of herbal formulation required to scavenge 50% of the investigated radicals. The SHfs, DHfs, THfs, and QHf SCI50 against the radicals followed the order HR > SOR > DPPH radical > HP > NOR. Although the various herbal formulations exhibited ambivalent antioxidant activities in terms of their radical scavenging capabilities, a broad survey of the results of the present study showed that combinatorial herbal formulations (DHfs, THfs, and QHf appeared to exhibit lower radical scavenging capacities than those of the SHfs in vitro.

  2. Absence of superoxide dismutase activity causes nuclear DNA fragmentation during the aging process

    International Nuclear Information System (INIS)

    Muid, Khandaker Ashfaqul; Karakaya, Hüseyin Çaglar; Koc, Ahmet

    2014-01-01

    Highlights: • Aging process increases ROS accumulation. • Aging process increases DNA damage levels. • Absence of SOD activity does not cause DNA damage in young cells. • Absence of SOD activity accelerate aging and increase oxidative DNA damages during the aging process. - Abstract: Superoxide dismutases (SOD) serve as an important antioxidant defense mechanism in aerobic organisms, and deletion of these genes shortens the replicative life span in the budding yeast Saccharomyces cerevisiae. Even though involvement of superoxide dismutase enzymes in ROS scavenging and the aging process has been studied extensively in different organisms, analyses of DNA damages has not been performed for replicatively old superoxide dismutase deficient cells. In this study, we investigated the roles of SOD1, SOD2 and CCS1 genes in preserving genomic integrity in replicatively old yeast cells using the single cell comet assay. We observed that extend of DNA damage was not significantly different among the young cells of wild type, sod1Δ and sod2Δ strains. However, ccs1Δ mutants showed a 60% higher amount of DNA damage in the young stage compared to that of the wild type cells. The aging process increased the DNA damage rates 3-fold in the wild type and more than 5-fold in sod1Δ, sod2Δ, and ccs1Δ mutant cells. Furthermore, ROS levels of these strains showed a similar pattern to their DNA damage contents. Thus, our results confirm that cells accumulate DNA damages during the aging process and reveal that superoxide dismutase enzymes play a substantial role in preserving the genomic integrity in this process

  3. The potential of the superoxide dismutase inhibitor, diethyldithiocarbamate as an adjuvant to radiotherapy

    International Nuclear Information System (INIS)

    Kent, C.

    1990-10-01

    Oxygen has the potential to be toxic to biologic systems. This toxicity is not due to oxygen itself, but due to the production of oxygen radicals. One of these potentially toxic radicals, superoxide, can be generated as a result of ionizing radiation, and if not adequately removed can proceed to cause cell damage. Superoxide dismutase (SOD) is one of the key enzymes involved in the defence against oxygen toxicity. SOD activity can be inhibited by diethyldithiocarbamate (DDC), a powerful copper chelator. If inhibition of SOD by DDC increases the lifetime and effectiveness of radiation induced superoxide, it follows that the potential exists for DDC to enhance the effect of radiation. DDC is however also a thiol compound, and thus may act as a radioprotector by modifying tissue oxygenation status or by free radical scavenging. The inhibition of superoxide dismutase by diethyldithiocarbamate in order to sensitize tumours to ionizing radiation was studied. The use of DDC as an inhibitor of SOD has however meant that any sensitization resulting from SOD inhibition could be masked by a radioprotective effect by DDC. The inhibition of SOD by DDC was confirmed in a murine rhabdomyosarcoma, and this inhibition can be maintained for up to twenty-four hours after DDC administration. It was shown that DDC could act as both a radiosensitizer and as a radioprotector in the same experiment. The dominant action of DDC was found to be dependent on the time allowed between DDC administration and irradiation. The time modulation effect of DDC was shown in larger tumours, rather than smaller tumours, which could indicate that tumour oxygenation is an important criterion in determining the response to radiation of DDC treated cells. Some caution should be exercised when DDC is put forward as either a radiosensitizer or a radioprotector in the clinic, but DDC may have potential as a thermosensitizer. 37 figs., 23 tabs., 208 refs

  4. Absence of superoxide dismutase activity causes nuclear DNA fragmentation during the aging process

    Energy Technology Data Exchange (ETDEWEB)

    Muid, Khandaker Ashfaqul; Karakaya, Hüseyin Çaglar; Koc, Ahmet, E-mail: ahmetkoc@iyte.edu.tr

    2014-02-07

    Highlights: • Aging process increases ROS accumulation. • Aging process increases DNA damage levels. • Absence of SOD activity does not cause DNA damage in young cells. • Absence of SOD activity accelerate aging and increase oxidative DNA damages during the aging process. - Abstract: Superoxide dismutases (SOD) serve as an important antioxidant defense mechanism in aerobic organisms, and deletion of these genes shortens the replicative life span in the budding yeast Saccharomyces cerevisiae. Even though involvement of superoxide dismutase enzymes in ROS scavenging and the aging process has been studied extensively in different organisms, analyses of DNA damages has not been performed for replicatively old superoxide dismutase deficient cells. In this study, we investigated the roles of SOD1, SOD2 and CCS1 genes in preserving genomic integrity in replicatively old yeast cells using the single cell comet assay. We observed that extend of DNA damage was not significantly different among the young cells of wild type, sod1Δ and sod2Δ strains. However, ccs1Δ mutants showed a 60% higher amount of DNA damage in the young stage compared to that of the wild type cells. The aging process increased the DNA damage rates 3-fold in the wild type and more than 5-fold in sod1Δ, sod2Δ, and ccs1Δ mutant cells. Furthermore, ROS levels of these strains showed a similar pattern to their DNA damage contents. Thus, our results confirm that cells accumulate DNA damages during the aging process and reveal that superoxide dismutase enzymes play a substantial role in preserving the genomic integrity in this process.

  5. Dielectric polymer: scavenging energy from human motion

    Science.gov (United States)

    Jean-Mistral, Claire; Basrour, Skandar; Chaillout, Jean-Jacques

    2008-03-01

    More and more sensors are embedded in human body for medical applications, for sport. The short lifetime of the batteries, available on the market, reveals a real problem of autonomy of these systems. A promising alternative is to scavenge the ambient energy such as the mechanical one. Up to now, few scavenging structures have operating frequencies compatible with ambient one. And, most of the developed structures are rigid and use vibration as mechanical source. For these reasons, we developed a scavenger that operates in a large frequency spectrum from quasi-static to dynamic range. This generator is fully flexible, light and does not hamper the human motion. Thus, we report in this paper an analytical model for dielectric generator with news electrical and mechanical characterization, and the development of an innovating application: scavenging energy from human motion. The generator is located on the knee and design to scavenge 0.1mJ per scavenging cycle at a frequency of 1Hz, enough to supply a low consumption system and with a poling voltage as low as possible to facilitate the power management. Our first prototype is a membrane with an area of 5*3cm and 31µm in thickness which scavenge 0.1mJ under 170V at constant charge Q.

  6. Peroxynitrite scavenging activity of herb extracts.

    Science.gov (United States)

    Choi, Hye Rhi; Choi, Jae Sue; Han, Yong Nam; Bae, Song Ja; Chung, Hae Young

    2002-06-01

    Peroxynitrite (ONOO(-)) is a cytotoxicant with strong oxidizing properties toward various cellular constituents, including sulphydryls, lipids, amino acids and nucleotides and can cause cell death, lipid peroxidation, carcinogenesis and aging. The aim of this study was to characterize ONOO(-) scavenging constituents from herbs. Twenty-eight herbs were screened for their ONOO(-) scavenging activities with the use of a fluorometric method. The potency of scavenging activity following the addition of authentic ONOO(-) was in the following order: witch hazel bark > rosemary > jasmine tea > sage > slippery elm > black walnut leaf > Queen Anne's lace > Linden flower. The extracts exhibited dose-dependent ONOO(-) scavenging activities. We found that witch hazel (Hamamelis virginiana L.) bark showed the strongest effect for scavenging ONOO(-) of the 28 herbs. Hamamelitannin, the major active component of witch hazel bark, was shown to have a strong ability to scavenge ONOO(-). It is suggested that hamamelitannin might be developed as an effective peroxynitrite scavenger for the prevention of ONOO(-) involved diseases. Copyright 2002 John Wiley & Sons, Ltd.

  7. Superoxide radical formation, superoxide dismutase and glutathione reductase activity in the brain of irradiated rats

    International Nuclear Information System (INIS)

    Stanimirovic, D.; Ivanovic, L.; Simovic, M.; Cernak, I.; Savic, J.

    1989-01-01

    In the forebrain cortex, basal ganglia and hippocampus of irradiated rats (whole body, X-ray, 9 Gy), nitroblue-tetrazolium (NBT) reduction was measured as a probe of superoxide radical formation 1 hr, 6 hrs, 24 hrs and 72 hrs after irradiation. Increased superoxide radical formation was found in parallel with increase of superoxide dismutase (SOD) activity and marked decrease of glutathione reductase (GR) activity which is the most pronounced in basal ganglia. The results indicate that in the postradiation period disproportion among free radical production and capacity of brain antioxidative system occurs. This disbalance is more expressed in the brain regions known as selective vulnerable (basal ganglia, hippocampus). (author). 10 refs.; 2 tabs

  8. Increased expression of native cytosolic Cu/Zn superoxide dismutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava (Manihot esculenta Crantz)

    OpenAIRE

    Xu, Jia; Yang, Jun; Duan, Xiaoguang; Jiang, Yueming; Zhang, Peng

    2014-01-01

    Background Cassava (Manihot esculenta Crantz) is a tropical root crop, and is therefore, extremely sensitive to low temperature; its antioxidative response is pivotal for its survival under stress. Timely turnover of reactive oxygen species (ROS) in plant cells generated by chilling-induced oxidative damages, and scavenging can be achieved by non-enzymatic and enzymatic reactions in order to maintain ROS homeostasis. Results Transgenic cassava plants that co-express cytosolic superoxide dismu...

  9. Irradiation-resistance conferred by superoxide dismutase: possible adaptive role of a natural polymorphism in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Peng, T.X.; Moya, A.; Ayala, F.J.

    1986-01-01

    The toxic effects of ionizing radiation to DNA are thought to be due to the generation of the superoxide radical, 02-. Superoxide dismutase (SOD), which scavenges 02-., has been invoked as a protecting enzyme against ionizing radiation in viruses, bacteria, mammalian cells in culture, and live mice. We now demonstrate that SOD is involved in the resistance of Drosophila melanogaster against irradiation. The protection is greatest when flies carry the S form of the enzyme (which exhibits highest in vitro specific activity), intermediate when they carry the F form of the enzyme, and lowest when they are homozygous for N, an allele that reduces the amount of the enzyme to 3.5% of the normal level. Natural selection experiments show that the fitness of the high-activity S allele is increased in an irradiated population relative to the nonirradiated control. These results point towards a possible adaptive function of the S/F polymorphism found in natural populations of D. melanogaster

  10. EPR detection of cellular and mitochondrial superoxide using cyclic hydroxylamines.

    Science.gov (United States)

    Dikalov, Sergey I; Kirilyuk, Igor A; Voinov, Maxim; Grigor'ev, Igor A

    2011-04-01

    Superoxide (O₂ⁱ⁻) has been implicated in the pathogenesis of many human diseases, but detection of the O(2)(•-) radicals in biological systems is limited due to inefficiency of O₂ⁱ⁻ spin trapping and lack of site-specific information. This work studied production of extracellular, intracellular and mitochondrial O₂ⁱ⁻ in neutrophils, cultured endothelial cells and isolated mitochondria using a new set of cationic, anionic and neutral hydroxylamine spin probes with various lipophilicity and cell permeability. Cyclic hydroxylamines rapidly react with O₂ⁱ⁻, producing stable nitroxides and allowing site-specific cO₂ⁱ⁻ detection in intracellular, extracellular and mitochondrial compartments. Negatively charged 1-hydroxy-4-phosphono-oxy-2,2,6,6-tetramethylpiperidine (PP-H) and positively charged 1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl-trimethylammonium (CAT1-H) detected only extramitochondrial O₂ⁱ⁻. Inhibition of EPR signal by SOD2 over-expression showed that mitochondria targeted mitoTEMPO-H detected intramitochondrial O₂ⁱ⁻ both in isolated mitochondria and intact cells. Both 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine (CP-H) and 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CM-H) detected an increase in cytoplasm O₂ⁱ⁻ stimulated by PMA, but only CM-H and mitoTEMPO-H showed an increase in rotenone-induced mitochondrial O₂ⁱ⁻. These data show that a new set of hydroxylamine spin probes provide unique information about site-specific production of the O₂ⁱ⁻ radical in extracellular or intracellular compartments, cytoplasm or mitochondria.

  11. The many ways of making anionic clays

    Indian Academy of Sciences (India)

    Together with hydrotalcite-like layered double hydroxides, bivalent and trivalent metal hydroxides and their hydroxy salts are actually anionic clays consisting of positively charged hydroxide layers with anions intercalated in the interlayer region. The anionic clays exhibit anion sorption, anion diffusion and exchange ...

  12. Scavenger receptors in homeostasis and immunity.

    Science.gov (United States)

    Canton, Johnathan; Neculai, Dante; Grinstein, Sergio

    2013-09-01

    Scavenger receptors were originally identified by their ability to recognize and to remove modified lipoproteins; however, it is now appreciated that they carry out a striking range of functions, including pathogen clearance, lipid transport, the transport of cargo within the cell and even functioning as taste receptors. The large repertoire of ligands recognized by scavenger receptors and their broad range of functions are not only due to the wide range of receptors that constitute this family but also to their ability to partner with various co-receptors. The ability of individual scavenger receptors to associate with different co-receptors makes their responsiveness extremely versatile. This Review highlights recent insights into the structural features that determine the function of scavenger receptors and the emerging role that these receptors have in immune responses, notably in macrophage polarization and in the pathogenesis of diseases such as atherosclerosis and Alzheimer's disease.

  13. Role of antioxidant scavenging enzymes and extracellular ...

    African Journals Online (AJOL)

    ChithrashreeGS

    2012-08-23

    Aug 23, 2012 ... peroxidase are two important antioxidant scavenging enzymes involved in ... Catalase was assayed using the method of Beers and Sizer. (1951) with .... yeast dextrose calcium carbonate agar (YDC) medium. Catalase and ...

  14. Flavonoids as scavengers of nitric oxide radical.

    NARCIS (Netherlands)

    van Acker, S.A.B.E.; Tromp, M.N.J.L.; Haenen, G.R.M.M.; van der Vijgh, W.J.F.; Bast, A.

    1995-01-01

    Flavonoids are a group of naturally occurring compounds used, e.g., in the treatment of vascular endothelial damage. They are known to be excellent scavengers of oxygen free radicals. Since the nitric oxide radical (

  15. Radiation-induced damage in T4 bacteriophage: the effect of superoxid radicals and molecular oxygen. Progress report, December 1, 1977--November 30, 1978

    International Nuclear Information System (INIS)

    Samuni, A.; Chevion, M.; Halpern, Y.S.; Ilan, Y.A.; Czapski, G.

    1978-01-01

    The sensitivity of T4 bacteriophage towards γ irradiation has been studied in phosphate buffer suspensions. The spectrum of the water radicals was controlled by a careful choice of the appropriate saturating gas and the addition of radical scavengers. Thus, it was possible to distinguish between the effects of molecular oxygen and the superoxide radicals formed through its reactions. About 90 percent of the damage was caused by the water radicals formed in the bulk suspensions. These probably affected the phage proteins; only the remainder of the damage involved the viral DNA. The oxygen enhancement ratio observed was not connected in any way with the formation of the superoxide radicals. The results confirmed that the OH radicals are the reactive species, while e - /sub aq/ as well as the superoxide radical do not contribute to the radiodamage

  16. Radical scavenging activities of Rio Red grapefruits and Sour orange fruit extracts in different in vitro model systems.

    Science.gov (United States)

    Jayaprakasha, G K; Girennavar, Basavaraj; Patil, Bhimanagouda S

    2008-07-01

    Antioxidant fractions from two different citrus species such as Rio Red (Citrus paradise Macf.) and Sour orange (Citrus aurantium L.) were extracted with five different polar solvents using Soxhlet type extractor. The total phenolic content of the extracts was determined by Folin-Ciocalteu method. Ethyl acetate extract of Rio Red and Sour orange was found to contain maximum phenolics. The dried fractions were screened for their antioxidant activity potential using in vitro model systems such as 1,1-diphenyl-2-picryl hydrazyl (DPPH), phosphomolybdenum method and nitroblue tetrazolium (NBT) reduction at different concentrations. The methanol:water (80:20) fraction of Rio Red showed the highest radical scavenging activity 42.5%, 77.8% and 92.1% at 250, 500 and 1000 ppm, respectively, while methanol:water (80:20) fraction of Sour orange showed the lowest radical scavenging activity at all the tested concentrations. All citrus fractions showed good antioxidant capacity by the formation of phosphomolybdenum complex at 200 ppm. In addition, superoxide radical scavenging activity was assayed using non-enzymatic (NADH/phenaxine methosulfate) superoxide generating system. All the extracts showed variable superoxide radical scavenging activity. Moreover, methanol:water (80:20) extract of Rio Red and methanol extract of Sour orange exhibited marked reducing power in potassium ferricyanide reduction method. The data obtained using above in vitro models clearly establish the antioxidant potential of citrus fruit extracts. However, comprehensive studies need to be conducted to ascertain the in vivo bioavailability, safety and efficacy of such extracts in experimental animals. To the best of our knowledge, this is the first report on antioxidant activity of different polar extracts from Rio Red and Sour oranges.

  17. Participation of superoxide generating system, superoxide dismutase and vitamin E in the radiation hazards

    International Nuclear Information System (INIS)

    Aono, Kaname; Yamamoto, Michio; Iida, Sosuke; Utsumi, Kozo

    1978-01-01

    In relation to the mechanism by which hemolysis was induced in radiated human erythrocytes in vitro, several inducements of membrane lipid peroxidation and protective effects of vitamin E (V.E) and superoxide dismutase (SOD) were investigated. (1) K + -release from erythrocytes was accelerated by radiation prior to hemolysis. These accelerated hemolysis and K + -release were protected remarkably by V.E and evidently by SOD. (2) Mitochondrial Fe 2+ induced and Fe 3+ -superoxide generating system -- ADP induced lipid peroxidation, and microsomal superoxide generating system -- induced lipid peroxidation were also protected by V.E and SOD. (3) Radiation of x-ray or 60 Co γ-ray accelerated lipid peroxidation of liver homogenate, microsome and liposome. Some of these accelerated lipid peroxidations were protected effectively by V.E and SOD. These results suggest that superoxide and/or OH generation by radiation induces of membrane lipid peroxidation, which leads deterioration of membrane resulting in the change of ion permeability and then hemolysis. (author)

  18. Fenton-like Degradation of MTBE: Effects of Iron Counter Anion and Radical Scavengers

    Science.gov (United States)

    Fenton-driven oxidation of Methyl tert-butyl ether (MTBE) (0.11-0.16 mM) in batch reactors containing ferric iron (5 mM), hydrogen peroxide (H2O2) (6 mM) (pH=3) was performed to investigate MTBE transformation mechanisms. Independent variables included the form of iron (Fe) (Fe2(...

  19. Phytochemical Analysis and Free Radical Scavenging Activity of Medicinal Plants Gnidia glauca and Dioscorea bulbifera

    Science.gov (United States)

    Ghosh, Sougata; Derle, Abhishek; Ahire, Mehul; More, Piyush; Jagtap, Soham; Phadatare, Suvarna D.; Patil, Ajay B.; Jabgunde, Amit M.; Sharma, Geeta K.; Shinde, Vaishali S.; Pardesi, Karishma; Dhavale, Dilip D.; Chopade, Balu A.

    2013-01-01

    Gnidia glauca and Dioscorea bulbifera are traditional medicinal plants that can be considered as sources of natural antioxidants. Herein we report the phytochemical analysis and free radical scavenging activity of their sequential extracts. Phenolic and flavonoid content were determined. Scavenging activity was checked against pulse radiolysis generated ABTS•+ and OH radical, in addition to DPPH, superoxide and hydroxyl radicals by biochemical methods followed by principal component analysis. G. glauca leaf extracts were rich in phenolic and flavonoid content. Ethyl acetate extract of D. bulbifera bulbs and methanol extract of G. glauca stem exhibited excellent scavenging of pulse radiolysis generated ABTS•+ radical with a second order rate constant of 2.33×106 and 1.72×106, respectively. Similarly, methanol extract of G. glauca flower and ethyl acetate extract of D. bulbifera bulb with second order rate constants of 4.48×106 and 4.46×106 were found to be potent scavengers of pulse radiolysis generated OH radical. G. glauca leaf and stem showed excellent reducing activity and free radical scavenging activity. HPTLC fingerprinting, carried out in mobile phase, chloroform: toluene: ethanol (4: 4: 1, v/v) showed presence of florescent compound at 366 nm as well as UV active compound at 254 nm. GC-TOF-MS analysis revealed the predominance of diphenyl sulfone as major compound in G. glauca. Significant levels of n-hexadecanoic acid and octadecanoic acid were also present. Diosgenin (C27H42O3) and diosgenin (3á,25R) acetate were present as major phytoconstituents in the extracts of D. bulbifera. G. glauca and D. bulbifera contain significant amounts of phytochemicals with antioxidative properties that can be exploited as a potential source for herbal remedy for oxidative stress induced diseases. These results rationalize further investigation in the potential discovery of new natural bioactive principles from these two important medicinal plants. PMID:24367520

  20. Positron Spur Reactions with Excess Electrons and Anions in Liquid Organic Mixtures of Electron Acceptors

    DEFF Research Database (Denmark)

    Lévay, B.; Mogensen, O. E.

    1980-01-01

    By means of the positron lifetime technique we have measured positronium (Ps) yields in mixtures of nonpolar liquids with various electron scavengers which bind the electron fairly weakly (1–2 eV) in stable anions. The results are discussed with reference to recent excess electron works, and new...... experiments on anions and excess electrons are proposed. The minimum of the Ps yield versus CS2 concentration curves caused by partly delocalization of electrons on several scavenger molecules, which was observed previously in saturated aliphatic hydrocarbons occurred also in the saturated cyclic hydrocarbon...... cyclohexane, but did not appear in the aromatic benzene. This might be explained by the weak electron acceptor property of aromatics. In the Ps yield versus SF6 concentration curve in hexane a similar minimum appeared as in the CS2 case, probably by the same reason. By adding 0.8 M CS2 to the system...

  1. Manganese superoxide dismutase and breast cancer recurrence

    DEFF Research Database (Denmark)

    Cronin-Fenton, Deirdre P; Christensen, Mariann; Lash, Timothy L

    2014-01-01

    BACKGROUND: Manganese superoxide dismutase (MnSOD) inhibits oxidative damage and cancer therapy effectiveness. A polymorphism in its encoding gene (SOD2: Val16Ala rs4880) may confer poorer breast cancer survival, but data are inconsistent. We examined the association of SOD2 genotype and breast......-metastatic breast cancer from 1990-2001, received adjuvant Cyclo, and were registered in the Danish Breast Cancer Cooperative Group. We identified 118 patients with BCR and 213 matched breast cancer controls. We genotyped SOD2 and used conditional logistic regression to compute the odds ratio (OR) and associated 95...... cancer recurrence (BCR) among patients treated with cyclophosphamide-based chemotherapy (Cyclo). We compared our findings with published studies using meta-analyses. METHODS: We conducted a population-based case-control study of BCR among women in Jutland, Denmark. Subjects were diagnosed with non...

  2. Phosphazene-promoted anionic polymerization

    KAUST Repository

    Zhao, Junpeng

    2014-01-01

    In the recent surge of metal-free polymerization techniques, phosphazene bases have shown their remarkable potential as organic promoters/catalysts for the anionic polymerization of various types of monomers. By complexation with the counterion (e.g. proton or lithium cation), phosphazene base significantly improve the nucleophilicity of the initiator/chain-end resulting in rapid and usually controlled anionic/quasi-anionic polymerization. In this review, we will introduce the general mechanism, i.e. in situ activation (of initiating sites) and polymerization, and summarize the applications of such a mechanism on macromolecular engineering toward functionalized polymers, block copolymers and complex macromolecular architectures.

  3. Neuronal uptake and intracellular superoxide scavenging of a fullerene (C60)-poly(2-oxazoline)s nanoformulation

    KAUST Repository

    Tong, Jing; Zimmerman, Matthew C.; Li, Shumin; Yi, Xiang; Luxenhofer, Robert; Jordan, Rainer; Kabanov, Alexander V.

    2011-01-01

    and random copolymer to form nano-complexes. These C(60)-polymer complexes were characterized by UV-vis spectroscopy, infrared spectroscopy (IR), dynamic light scattering (DLS), atomic force microscopy (AFM) and transmission electron microscopy (TEM

  4. Cytoplasmic superoxide dismutase and catalase activity and resistance to radiation lethality in murine tumor cells

    International Nuclear Information System (INIS)

    Davy, C.A.; Tesfay, Z.; Jones, J.; Rosenberg, R.C.; McCarthy, C.; Rosenberg, S.O.

    1986-01-01

    Reduced species of molecular oxygen are produced by the interaction of ionizing radiation with aqueous solutions containing molecular oxygen. The enzymes catalase and superoxide dismutase (SOD) are thought to function in vivo as scavengers of metabolically produced peroxide and superoxide respectively. SOD has been shown to protect against the lethal effects of ionizing radiation in vitro and in vivo. The authors have investigated the relationship between the cytosolic SOD catalase content and the sensitivity to radiation lethality of a number of murine cell lines (402AX, EL-4, MB-2T3, MB-4, MEL, P-815, SAI, SP-2, and SV-3T3). K/sub i/(CN - ) for murine Cu-Zn-SOD was determined to be 6.8 x 10 -6 M. No cytosolic Mn-SOD activity was found in any of the cell lines studied. No correlation was found between the cytosolic Cu-Zn-SOD or cytosolic catalase activity and the resistance to radiation lethality or the murine cell lines studied

  5. The Role of Superoxide Dismutase in Inducing of Wheat Seedlings Tolerance to Osmotic Shock

    Directory of Open Access Journals (Sweden)

    Oboznyi A.I.

    2013-08-01

    Full Text Available Influence of short-term hardening osmotic exposure (immersion in 1 M sucrose solution with subsequent transferring to distilled water for 20 min on the hydrogen peroxide generation and superoxide dismutase activity in wheat (Triticum aestivum L., cv. Elegiya seedlings and their tolerance to osmotic shock were investigated. During the initial 30 min after osmotic exposure, the increasing of hydrogen peroxide amount in roots and shoots (to a lesser extent was observed, but the resistance of the seedlings and superoxide dismutase (SOD activity decreased. Sometime later the decrease in hydrogen peroxide amount and the increase of seedlings tolerance to osmotic shock took place. SOD activity increased in 10 min after hardening osmotic exposure. Transient accumulation of hydrogen peroxide induced in this way was suppressed by the treatment of seedlings with sodium diethyldithiocarbamate (DDC, SOD inhibitor. DDC and hydrogen peroxide scavenger dimethylthiourea decreased positive hardening effect of osmotic exposure on the development of seedlings tolerance. It was concluded that SOD providing the generation of signal hydrogen peroxide pool took part in the induction of seedlings tolerance to osmotic shock development caused by preliminary hardening effect.

  6. Boundary scavenging in the Pacific Ocean

    International Nuclear Information System (INIS)

    Anderson, R.F.; Lao, Y.; Broecker, W.S.; Trumbore, S.E.; Hofmann, H.J.; Wolfli, W.

    1990-01-01

    Concentrations of U, Th, 231 Pa and 10 Be were measured in Holocene sediments from two cores collected off the west coast of South America, two cores from the East Pacific Rise, two from the equatorial Pacific and one from the south Pacific central gyre. Our results, together with data from 5 cores reported in the literature, show that boundary scavenging plays a major role in the removal of 10 Be from the Pacific Ocean. Deposition rates of 10 Be at three margin sites are more than an order of magnitude greater than at sites of red clay accumulation in the deep central Pacific. Deposition of 231 Pa is 4 to 5-fold greater at the margin sites. The residence time of 10 Be with respect to chemical scavenging, defined as its inventory in the water column divided by its rate of removal to the sediments, varies regionally from >1000 years at the red-clay sites in the deep central Pacific to ∝100 years at the margin sites. Different factors control boundary scavenging of Pa and Be. For example, scavenging of 231 Pa is enhanced by metal-oxide coatings of particles, whereas this seems to have little influence on the scavenging of 10 Be. (orig.)

  7. Blood Glutamate Scavenging: Insight into Neuroprotection

    Directory of Open Access Journals (Sweden)

    Alexander Zlotnik

    2012-08-01

    Full Text Available Brain insults are characterized by a multitude of complex processes, of which glutamate release plays a major role. Deleterious excess of glutamate in the brain’s extracellular fluids stimulates glutamate receptors, which in turn lead to cell swelling, apoptosis, and neuronal death. These exacerbate neurological outcome. Approaches aimed at antagonizing the astrocytic and glial glutamate receptors have failed to demonstrate clinical benefit. Alternatively, eliminating excess glutamate from brain interstitial fluids by making use of the naturally occurring brain-to-blood glutamate efflux has been shown to be effective in various animal studies. This is facilitated by gradient driven transport across brain capillary endothelial glutamate transporters. Blood glutamate scavengers enhance this naturally occurring mechanism by reducing the blood glutamate concentration, thus increasing the rate at which excess glutamate is cleared. Blood glutamate scavenging is achieved by several mechanisms including: catalyzation of the enzymatic process involved in glutamate metabolism, redistribution of glutamate into tissue, and acute stress response. Regardless of the mechanism involved, decreased blood glutamate concentration is associated with improved neurological outcome. This review focuses on the physiological, mechanistic and clinical roles of blood glutamate scavenging, particularly in the context of acute and chronic CNS injury. We discuss the details of brain-to-blood glutamate efflux, auto-regulation mechanisms of blood glutamate, natural and exogenous blood glutamate scavenging systems, and redistribution of glutamate. We then propose different applied methodologies to reduce blood and brain glutamate concentrations and discuss the neuroprotective role of blood glutamate scavenging.

  8. Antioxidant capacity and radical scavenging effect of polyphenol rich Mallotus philippenensis fruit extract on human erythrocytes: an in vitro study.

    Science.gov (United States)

    Gangwar, Mayank; Gautam, Manish Kumar; Sharma, Amit Kumar; Tripathi, Yamini B; Goel, R K; Nath, Gopal

    2014-01-01

    Mallotus philippinensis is an important source of molecules with strong antioxidant activity widely used medicinal plant. Previous studies have highlighted their anticestodal, antibacterial, wound healing activities, and so forth. So, present investigation was designed to evaluate the total antioxidant activity and radical scavenging effect of 50% ethanol fruit glandular hair extract (MPE) and its role on Human Erythrocytes. MPE was tested for phytochemical test followed by its HPLC analysis. Standard antioxidant assays like DPPH, ABTS, hydroxyl, superoxide radical, nitric oxide, and lipid peroxidation assay were determined along with total phenolic and flavonoids content. Results showed that MPE contains the presence of various phytochemicals, with high total phenolic and flavonoid content. HPLC analysis showed the presence of rottlerin, a polyphenolic compound in a very rich quantity. MPE exhibits significant strong scavenging activity on DPPH and ABTS assay. Reducing power showed dose dependent increase in concentration absorption compared to standard, Quercetin. Superoxide, hydroxyl radical, lipid peroxidation, nitric oxide assay showed a comparable scavenging activity compared to its standard. Our finding further provides evidence that Mallotus fruit extract is a potential natural source of antioxidants which have a protective role on human Erythrocytes exhibiting minimum hemolytic activity and this justified its uses in folklore medicines.

  9. Ethylene formation from methionine as a method to evaluate oxygen free radical scavenging and metal inactivation by cosmetics.

    Science.gov (United States)

    Galey, J B; Millecamps, F; Nguyen, Q L

    1991-04-01

    Synopsis It has been proposed that oxygen free radicals are involved in skin aging. This paper describes a new method for the evaluation of oxygen free radical scavenging by cosmetic products. It is based on the measurement, by gas chromatography, of ethylene produced during the oxidation of methionine by the hydroxyl radical. OH. is produced by an iron catalyzed superoxide-driven Fenton reaction in which superoxide is obtained by photochemical oxygen reduction. The cosmetic is applied, together with methionine, riboflavine, NADH, FeCl(3) and EDTA, on a glass microfibre filter and submitted to UVA exposure through a quartz cell. Ethylene is then measured from aliquots of the atmosphere inside the cell. Catalase or Desferal completely inhibits ethylene production. SOD or high concentrations of hydroxyl radical scavengers (Mannitol, DMSO etc.) afford a partial protection. Thus the efficiency of O(2) (-)., H(2)O(2) and OH. scavengers and iron chelators can be measured. The main advantage of this test is that it is performed in conditions which simulate skin during UV exposure (e.g. air and UV exposed thin layer). Furthermore, as it is non-invasive, it can also be applied to human skin in vivo.

  10. Antioxidant, lipid peroxidation inhibition and free radical scavenging efficacy of a diterpenoid compound sugiol isolated from Metasequoia glyptostroboides.

    Science.gov (United States)

    Bajpai, Vivek K; Sharma, Ajay; Kang, Sun Chul; Baek, Kwang-Hyun

    2014-01-01

    To investigate the antioxidant efficacy of a biologically active diterpenoid compound sugiol isolated from Metasequoia glyptostroboides (M. glyptostroboides) in various antioxidant models. An abietane type diterpenoid sugiol, isolated from ethyl acetate extract of M. glyptostroboides cones, was analyzed for its antioxidant efficacy as reducing power ability and lipid peroxidation inhibition as well as its ability to scavenge free radicals such as 1,1-diphenyl-2-picryl hydrazyl, nitric oxide, superoxide and hydroxyl radicals. The sugiol showed significant and concentration-dependent antioxidant and free radical scavenging activities. Consequently, the sugiol exerted lipid peroxidation inhibitory effect by 76.5% as compared to α-tocopherol (80.13%) and butylated hydroxyanisole (76.59%). In addition, the sugiol had significant scavenging activities of 1,1-diphenyl-2-picryl hydrazyl, nitric oxide, superoxide and hydroxyl free radicals in a concentration-dependent manner by 78.83%, 72.42%, 72.99% and 85.04%, when compared to the standard compound ascorbic acid (81.69%, 74.62%, 73.00% and 73.79%) and α-tocopherol/butylated hydroxyanisole (84.09%, 78.61%, 74.45% and 70.02%), respectively. These findings justify the biological and traditional uses of M. glyptostroboides or its secondary metabolites as confirmed by its promising antioxidant efficacy. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  11. Simultaneous anionic and cationic redox

    Science.gov (United States)

    Jung, Sung-Kyun; Kang, Kisuk

    2017-12-01

    It is challenging to unlock anionic redox activity, accompanied by full utilization of available cationic redox process, to boost capacity of battery cathodes. Now, material design by tuning the metal-oxygen interaction is shown to be a promising solution.

  12. Schlenk Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar; Zhao, Junpeng; Zhang, Hefeng; Hadjichristidis, Nikolaos; Mays, Jimmy

    2015-01-01

    Anionic polymerization-high vacuum techniques (HVTs) are doubtlessly the most prominent and reliable experimental tools to prepare polymer samples with well-defined and, in many cases, complex macromolecular architectures. Due to the high demands

  13. Comparison of taurine, GABA, Glu, and Asp as scavengers of malondialdehyde in vitro and in vivo

    Science.gov (United States)

    Deng, Yan; Wang, Wei; Yu, Pingfeng; Xi, Zhijiang; Xu, Lijian; Li, Xiaolong; He, Nongyue

    2013-04-01

    The purpose of this study is to determine if amino acid neurotransmitters such as gamma-aminobutyric acid (GABA), taurine, glutamate (Glu), and aspartate (Asp) can scavenge activated carbonyl toxicants. In vitro, direct reaction between malondialdehyde (MDA) and amino acids was researched using different analytical methods. The results indicated that scavenging activated carbonyl function of taurine and GABA is very strong and that of Glu and Asp is very weak in pathophysiological situations. The results provided perspective into the reaction mechanism of taurine and GABA as targets of activated carbonyl such as MDA in protecting nerve terminals. In vivo, we studied the effect of taurine and GABA as antioxidants by detecting MDA concentration and superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities. It was shown that MDA concentration was decreased significantly, and the activities of SOD and GSH-Px were increased significantly in the cerebral cortex and hippocampus of acute epileptic state rats, after the administration of taurine and GABA. The results indicated that the peripherally administered taurine and GABA can scavenge free radicals and protect the tissue against activated carbonyl in vivo and in vitro.

  14. Overexpressing the Sedum alfredii Cu/Zn Superoxide Dismutase Increased Resistance to Oxidative Stress in Transgenic Arabidopsis

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2017-06-01

    Full Text Available Superoxide dismutase (SOD is a very important reactive oxygen species (ROS-scavenging enzyme. In this study, the functions of a Cu/Zn SOD gene (SaCu/Zn SOD, from Sedum alfredii, a cadmium (Cd/zinc/lead co-hyperaccumulator of the Crassulaceae, was characterized. The expression of SaCu/Zn SOD was induced by Cd stress. Compared with wild-type (WT plants, overexpression of SaCu/Zn SOD gene in transgenic Arabidopsis plants enhanced the antioxidative defense capacity, including SOD and peroxidase activities. Additionally, it reduced the damage associated with the overproduction of hydrogen peroxide (H2O2 and superoxide radicals (O2•-. The influence of Cd stress on ion flux across the root surface showed that overexpressing SaCu/Zn SOD in transgenic Arabidopsis plants has greater Cd uptake capacity existed in roots. A co-expression network based on microarray data showed possible oxidative regulation in Arabidopsis after Cd-induced oxidative stress, suggesting that SaCu/Zn SOD may participate in this network and enhance ROS-scavenging capability under Cd stress. Taken together, these results suggest that overexpressing SaCu/Zn SOD increased oxidative stress resistance in transgenic Arabidopsis and provide useful information for understanding the role of SaCu/Zn SOD in response to abiotic stress.

  15. Mechanisms and kinetic profiles of superoxide-stimulated nitrosative processes in cells using a diaminofluorescein probe.

    Science.gov (United States)

    Damasceno, Fernando Cruvinel; Facci, Rômulo Rodrigues; da Silva, Thalita Marques; Toledo, José Carlos

    2014-12-01

    In this study, we examined the mechanisms and kinetic profiles of intracellular nitrosative processes using diaminofluorescein (DAF-2) as a target in RAW 264.7 cells. The intracellular formation of the fluorescent, nitrosated product diaminofluorescein triazol (DAFT) from both endogenous and exogenous nitric oxide (NO) was prevented by deoxygenation and by cell membrane-permeable superoxide (O2(-)) scavengers but not by extracellular bovine Cu,Zn-SOD. In addition, the DAFT formation rate decreased in the presence of cell membrane-permeable Mn porphyrins that are known to scavenge peroxynitrite (ONOO(-)) but was enhanced by HCO3(-)/CO2. Together, these results indicate that nitrosative processes in RAW 264.7 cells depend on endogenous intracellular O2(-) and are stimulated by ONOO(-)/CO2-derived radical oxidants. The N2O3 scavenger sodium azide (NaN3) only partially attenuated the DAFT formation rate and only with high NO (>120 nM), suggesting that DAFT formation occurs by nitrosation (azide-susceptible DAFT formation) and predominantly by oxidative nitrosylation (azide-resistant DAFT formation). Interestingly, the DAFT formation rate increased linearly with NO concentrations of up to 120-140 nM but thereafter underwent a sharp transition and became insensitive to NO. This behavior indicates the sudden exhaustion of an endogenous cell substrate that reacts rapidly with NO and induces nitrosative processes, consistent with the involvement of intracellular O2(-). On the other hand, intracellular DAFT formation stimulated by a fixed flux of xanthine oxidase-derived extracellular O2(-) that also occurs by nitrosation and oxidative nitrosylation increased, peaked, and then decreased with increasing NO, as previously observed. Thus, our findings complementarily show that intra- and extracellular O2(-)-dependent nitrosative processes occurring by the same chemical mechanisms do not necessarily depend on NO concentration and exhibit different unusual kinetic profiles with

  16. Effect of Low Level Cadmium Exposure on Superoxide Dismutase ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of low level cadmium (Cd) exposure on the activity of superoxide dismutase ... cancer, aging and a diversity of diseases [5]. Superoxide .... responsible for the long biological half-life of cadmium [12]. ... indicator of the balance between the damaging effects and the ... Scand J Work Environ.

  17. Targeting superoxide dismutase to endothelial caveolae profoundly alleviates inflammation caused by endotoxin.

    Science.gov (United States)

    Shuvaev, Vladimir V; Kiseleva, Raisa Yu; Arguiri, Evguenia; Villa, Carlos H; Muro, Silvia; Christofidou-Solomidou, Melpo; Stan, Radu V; Muzykantov, Vladimir R

    2018-02-28

    Inflammatory mediators binding to Toll-Like receptors (TLR) induce an influx of superoxide anion in the ensuing endosomes. In endothelial cells, endosomal surplus of superoxide causes pro-inflammatory activation and TLR4 agonists act preferentially via caveolae-derived endosomes. To test the hypothesis that SOD delivery to caveolae may specifically inhibit this pathological pathway, we conjugated SOD with antibodies (Ab/SOD, size ~10nm) to plasmalemmal vesicle-associated protein (Plvap) that is specifically localized to endothelial caveolae in vivo and compared its effects to non-caveolar target CD31/PECAM-1. Plvap Ab/SOD bound to endothelial cells in culture with much lower efficacy than CD31 Ab/SOD, yet blocked the effects of LPS signaling with higher efficiency than CD31 Ab/SOD. Disruption of cholesterol-rich membrane domains by filipin inhibits Plvap Ab/SOD endocytosis and LPS signaling, implicating the caveolae-dependent pathway(s) in both processes. Both Ab/SOD conjugates targeted to Plvap and CD31 accumulated in the lungs after IV injection in mice, but the former more profoundly inhibited LPS-induced pulmonary inflammation and elevation of plasma level of interferon-beta and -gamma and interleukin-27. Taken together, these results indicate that targeted delivery of SOD to specific cellular compartments may offer effective, mechanistically precise interception of pro-inflammatory signaling mediated by reactive oxygen species. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Superoxide Dismutase as a Tool for the Mulacular Identification of Plant Parasitic Nematodes

    Directory of Open Access Journals (Sweden)

    S. Molinari

    2004-08-01

    Full Text Available Superoxide dismutase (SOD is a constitutive family of enzymes produced by all aerobic organisms. Varying amounts of SOD activity have been found at all life stages of the most diffused plant parasitic nematodes. SOD is important to aerobic metabolism and parasitism of nematodes in that it catalyzes the first step of the neutralization of the highly toxic superoxide anion (O2 •-, which is largely produced in plant-nematode incompatible reactions. SOD has also been shown to be a significant tool to diagnose root-knot, cyst-, and longidorid nematodes. A high SOD polymorphism has been revealed by Native-Page on gradient polyacrylamide gels for Meloidogyne spp. and by isoelectrofocusing for Globodera, Xiphinema and Longidorus spp. The sensitivity of such procedures has been improved by using the PhastSystem (Amersham Biosciences, Piscata, NJ, USA, an automated equipment for electrophoresis. An accurate discrimination of species of all the nematode genera tested has been achieved and an attempt was made to group populations of the Xiphinema americanum-group and to detect Globodera rostochiensis and G. pallida pathotypes.

  19. Oxygen-dependent radiosensitivity of Escherichia coli and mitigation in lethality by superoxide dismutase

    International Nuclear Information System (INIS)

    Niwa, Taeko; Yamaguchi, Hikoyuki; Yano, Keiji

    1978-01-01

    Oxygen-dependent radiosensitivity of Escherichia coli W3623 his - was confirmed. Regarding cellular superoxide dismutase (SOD), cells grown oxically gained higher activity than those anoxically, however, the reinforced enzyme level could not compensate the oxygen effect, i.e., the enhanced lethal effect of oxic γ-irradiation. Rather, the enhancement of oxygen effect was found in cells grown oxically compared with those anoxically. Oxygen enhanced lethality was mitigated to the extent by the amount of added SOD into the cell suspension to be irradiated. The results supported a proposal that superoxide anion, O 2 - , is involved in the oxygen effect, with the most likely site of the damage in the outer structure of cell but not in the cell matrix. Reverse oxygen effect could be found with lambda phage DNA in transfecting ability. Added SOD protected phage DNA somewhat in oxic irradiation. While considerable protections were found in anoxic one with the added SOD even autoclaved but their function was still unknown. (auth.)

  20. Effect of an inefficient electron scavenger on infrared- and visible-absorbing electrons in an ethanol matrix

    International Nuclear Information System (INIS)

    Noda, S.; Yoshida, K.; Ogasawara, M.; Yoshida, H.

    1980-01-01

    In order to obtain a deeper insight into the initial localization and the subsequent stabilization of electrons and to unravel the detailed mechanism of the electron scavenging reaction in a glassy ethanol matrix, spectrophotometric studies have been made on this matrix with toluene, an inefficient electron scavenger, γ irradiated at 4.2 0 K. Inhomogeneous depletion of the trapped electron spectrum by toluene indicates that IR-absorbing (lambda/sub max/ = 1500 nm) and visible-absorbing (lambda/sub max/ = 640 nm) electrons are initially generated, but that the former are unstable at higher temperature. Toluene scavenges the IR-absorbing electrons more efficiently by a factor of 10 than the visible-absorbing electrons. This selectivity is much higher than that of an efficient scavenger, such as benzyl chloride, as previously reported. The electron scavenging reaction results in the formation of the transient radical anion of toluene, which is readily protonated to yield the methylcyclohexadienyl radical at 77 0 K. 3 figures

  1. Effects of topical vitamin E on corneal superoxide dismutase, glutathione peroxidase activities and polymorphonuclear leucocyte infiltration after photorefractive keratectomy.

    Science.gov (United States)

    Bilgihan, Ayse; Bilgihan, Kamil; Yis, Ozgür; Sezer, Cem; Akyol, Gülen; Hasanreisoglu, Berati

    2003-04-01

    Photorefractive keratectomy (PRK) induces free radical formation and polymorphonuclear (PMN) cell infiltration in the cornea. Vitamin E is a free radical scavenger and protects the cells from reactive oxygen species. We investigated the effects of topical vitamin E on corneal PMN cell infiltration and corneal antioxidant enzyme activities after PRK. We studied four groups, each consisting of seven eyes. Group 1 were control eyes. In group 2 the corneal epithelium was removed by a blunt spatula (epithelial scrape). In group 3, corneal photoablation (59 micro m, 5 dioptres) was performed after epithelial removal (traditional PRK). In group 4 we tested the effects of topical Vitamin E after traditional PRK. Corneal tissues were removed and studied with enzymatic analysis (measurement of corneal superoxide dismutase and glutathione peroxidase activities) and histologically. Stromal PMN leucocyte counts were significantly higher after mechanical epithelial removal and traditional PRK (p < 0.05). Corneal superoxide dismutase and glutathione peroxidase activities decreased significantly after mechanical epithelial removal and traditional PRK (p < 0.05). In group 4, treated with vitamin E, corneal superoxide dismutase activity did not differ significantly from that in the medically non-treated groups, nor did corneal PMN cell infiltration after traditional PRK. The reduction of corneal glutathione peroxidase activity after PRK was reduced significantly after topical vitamin E treatment. Topical vitamin E treatment may be useful for reducing the harmful effects of reactive oxygen radical after epithelial scraping and PRK in that it increases corneal glutathione peroxidase activity.

  2. Nature or Nurture? Gender Roles Scavenger Hunt

    Science.gov (United States)

    Whalen, Shannon; Maurer-Starks, Suanne

    2008-01-01

    The examination of gender roles and stereotypes and their subsequent impact on sexual behavior is a concept for discussion in many sex education courses in college and sex education units in high school. This analysis often leads to a discussion of the impact of nature vs. nurture on gender roles. The gender roles scavenger hunt is an interactive…

  3. Role of antioxidant scavenging enzymes and extracellular ...

    African Journals Online (AJOL)

    In the present work, we studied the role of antioxidant scavenging enzymes of plant pathogenic bacteria: catalase, ascorbate peroxidase and a virulence factor; extracelluar polysaccharide production in determining the virulence of Xanthomonas oryzae pv. oryzae (Xoo) isolates and its differential reaction to rice cultivars.

  4. Antioxidant Capacity, Radical Scavenging Kinetics and Phenolic ...

    African Journals Online (AJOL)

    Antioxidant Capacity, Radical Scavenging Kinetics and Phenolic Profile of Methanol Extracts of Wild Plants of Southern Sonora, Mexico. EF Moran-Palacio, LA Zamora-Álvarez, NA Stephens-Camacho, GA Yáñez- Farías, A Virgen-Ortiz, O Martínez-Cruz, JA Rosas-Rodríguez ...

  5. Phytochemical screening, free radical scavenging and antibacterial ...

    African Journals Online (AJOL)

    Cassia sieberiana is a tropical plant, widely distributed throughout Sudan and Guinea savannah. It is used in traditional medicine for the treatment of malarial, cancer and stomach ache. The study was conducted to screen for phytochemicals, free radical scavenging and antibacterial potentials of the root bark.

  6. Total phenolic contents and free-radical scavenging activities of grape (Vitis vinifera L.) and grape products.

    Science.gov (United States)

    Keser, Serhat; Celik, Sait; Turkoglu, Semra

    2013-03-01

    Grape is one of the world's largest fruit crops, with an approximate annual production of 58 million metric tons, and it is well known that the grape skins, seeds and stems, waste products generated during wine and grape juice processing, are rich sources of polyphenols. It contains flavonoids, phenolic acids and stilbenes. In this study, we tried to determine antioxidant properties and phenolic contents of grape and grape products (fresh fruit, seed, dried fruit, molasses, pestil, vinegar) of ethanol and water extracts. Antioxidant properties of extracts were investigated by DPPH(√), ABTS(√+), superoxide, H(2)O(2) scavenging, reducing power, metal chelating activity and determination of total phenolic contents. The seed extracts revealed highest ABTS(√+), DPPH(√), H(2)O(2) scavenging and reducing power activities. Furthermore, these extracts showed higher total phenolic contents than other grape product extracts.

  7. Scavenging and recombination kinetics in a radiation spur: The successive ordered scavenging events

    Science.gov (United States)

    Al-Samra, Eyad H.; Green, Nicholas J. B.

    2018-03-01

    This study describes stochastic models to investigate the successive ordered scavenging events in a spur of four radicals, a model system based on a radiation spur. Three simulation models have been developed to obtain the probabilities of the ordered scavenging events: (i) a Monte Carlo random flight (RF) model, (ii) hybrid simulations in which the reaction rate coefficient is used to generate scavenging times for the radicals and (iii) the independent reaction times (IRT) method. The results of these simulations are found to be in agreement with one another. In addition, a detailed master equation treatment is also presented, and used to extract simulated rate coefficients of the ordered scavenging reactions from the RF simulations. These rate coefficients are transient, the rate coefficients obtained for subsequent reactions are effectively equal, and in reasonable agreement with the simple correction for competition effects that has recently been proposed.

  8. The oxygen-centered radicals scavenging activity of sulfasalazine and its metabolites. A direct protection of the bowel.

    Science.gov (United States)

    Prónai, L; Yukinobu, I; Láng, I; Fehér, J

    1992-01-01

    Oxygen-centered radicals, such as superoxide (O2-) and hydroxyl radicals (.OH) generated by phagocytes have been suggested to be involved in the pathogenesis of chronic inflammations of the bowel, such as Crohn's disease and colitis ulcerosa. Recently, sulfasalazine (SASP) and its metabolites have been reported to exert their effects as a direct scavenger of oxygen-centered radicals in the bowel. To scavenge oxygen-centered radicals in vivo, however, SASP and its metabolites have to react with O2- and/or .OH in vitro very rapidly, furthermore they have to reach an appropriate (possible millimolar) concentration range at the site of inflammation. To test this possibility, we investigated the direct O2- and .OH scavenging activity of SASP and its metabolites using the specific electron paramagnetic resonance/spin trapping method, and we compared the 50% inhibition rates of SASP and its metabolites with their known concentrations in the bowel and in the human plasma. It was found that SASP and its metabolites, such as 5-amino-salicylic acid (5-ASA), and acetyl-5-amino-salicylic acid (AC-5-ASA), but not sulfapyridine (SP) and acetyl-sulfapyridine (Ac-SP) have a direct O2- and .OH scavenging activity in vitro systems. Among the compounds, SASP and 5-ASA can reach a concentration which is appropriate to scavenge oxygen-centered radicals in the bowel but not in the human plasma. It was concluded that the in vivo antiinflammatory effects of SASP and its metabolites are, at least partly, due to the direct oxygen-centered scavenging activity of these drugs.

  9. Polymorphic ROS scavenging revealed by CCCP in a lizard

    Science.gov (United States)

    Olsson, Mats; Wilson, Mark; Isaksson, Caroline; Uller, Tobias

    2009-07-01

    Ingestion of antioxidants has been argued to scavenge circulating reactive molecules (e.g., free radicals), play a part in mate choice (by mediating access to this important resource), and perhaps increase life span. However, recent work has come to question these relationships. We have shown elsewhere in the polychromatic lizard, Ctenophorus pictus, that diet supplementation of carotenoids as antioxidants does not depress circulating natural reactive oxygen species (ROS) levels and leads to no corresponding improvement of color traits. However, a much stronger test would be to experimentally manipulate the ROS levels themselves and assess carotenoid-induced ROS depression. Here, we achieve this by using carbonyl cyanide 3-chlorophenylhydrazone, which elevates superoxide (SO) formation approximately threefold at 10 μM in this model system. We then look for depressing effects on ROS of the carotenoids in order to assess whether ‘super-production’ of SO makes carotenoid effects on elevated ROS levels detectable. The rationale for this treatment was that if not even such elevated levels of SO are reduced by carotenoid supplementation, the putative link carotenoids, ROS depression, and mate quality (in terms of antioxidant capacity) is highly questionable. We conclude that there is no significant effect of carotenoids on mean SO levels even at the induced ROS levels. However, our results showed a significant interaction effect between carotenoid treatment and male color, with red males having higher ROS levels than yellow males. We suggest that this may be because different pigments are differently involved in the generation of the integumental colors in the two morphs with concomitant effects on ROS depletion depending on carotenoid uptake or allocation to coloration and antioxidation.

  10. Novel Water Soluble Chitosan Derivatives with 1,2,3-Triazolium and Their Free Radical-Scavenging Activity

    Directory of Open Access Journals (Sweden)

    Qing Li

    2018-03-01

    Full Text Available Chitosan is an abundant and renewable polysaccharide, which exhibits attractive bioactivities and natural properties. Improvement such as chemical modification of chitosan is often performed for its potential of providing high bioactivity and good water solubility. A new class of chitosan derivatives possessing 1,2,3-triazolium charged units by associating “click reaction” with efficient 1,2,3-triazole quaternization were designed and synthesized. Their free radical-scavenging activity against three free radicals was tested. The inhibitory property and water solubility of the synthesized chitosan derivatives exhibited a remarkable improvement over chitosan. It is hypothesized that triazole or triazolium groups enable the synthesized chitosan to possess obviously better radical-scavenging activity. Moreover, the scavenging activity against superoxide radical of chitosan derivatives with triazolium (IC50 < 0.01 mg mL−1 was more efficient than that of derivatives with triazole and Vitamin C. In the 1,1-diphenyl-2-picrylhydrazyl (DPPH and hydroxyl radical-scavenging assay, the same pattern were observed, which should be related to the triazolium grafted at the periphery of molecular chains.

  11. Investigation into Seasonal Scavenging Patterns of Raccoons on Human Decomposition.

    Science.gov (United States)

    Jeong, Yangseung; Jantz, Lee Meadows; Smith, Jake

    2016-03-01

    Although raccoons are known as one of the most common scavengers in the U.S., scavenging by these animals has seldom been studied in terms of forensic significance. In this research, the seasonal pattern of raccoon scavenging and its effect on human decomposition was investigated using 178 human cadavers placed at the Anthropological Research Facility (ARF) of the University of Tennessee, Knoxville (UTK) between February 2011 and December 2013. The results reveal that (i) the frequency of scavenging increases during summer, (ii) scavenging occurs relatively immediately and lasts shorter in summer months, and (iii) scavenging influences the decomposition process by hollowing limbs and by disturbing insect activities, both of which eventually increases the chance of mummification on the affected body. This information is expected to help forensic investigators identify raccoon scavenging as well as make a more precise interpretation of the effect of raccoon scavenging on bodies at crime scenes. © 2015 American Academy of Forensic Sciences.

  12. Radiation-induced decomposition of anion exchange resins

    International Nuclear Information System (INIS)

    Baidak, Aliaksandr; LaVerne, Jay A.

    2010-01-01

    Radiation-induced degradation of the strongly basic anion exchange resin Amberlite TM IRA400 in NO 3 - , Cl - and OH - forms has been studied. The research focused on the formation of molecular hydrogen in the gamma-radiolysis of water slurries of these quaternary ammonium resins with varying water content. Extended studies with various electron scavengers (NO 3 - , N 2 O and O 2 ) prove an important role of e solv - in the formation of H 2 from these resins. An excess production of H 2 in these systems at about 85% water weight fraction was found to be due to trimethylamine, dimethylamine and other compounds that leach from the resin to the aqueous phase. Irradiations with 5 MeV 4 He ions were performed to simulate the effects of α-particles.

  13. Oxidative stress and superoxide dismutase activity in brain of rats ...

    African Journals Online (AJOL)

    JTEkanem

    effect of superoxide dismutase (SOD) activity in brain homogenates of Wistar rats. Oxidative stress measured as ..... on the brain and nervous system of humans as handlers and ... environment may be at higher health risk in that their internal ...

  14. Precipitation scavenging of tritiated water vapour (HTO)

    International Nuclear Information System (INIS)

    Ogram, G.L.

    1985-10-01

    Precipitation scavenging (or washout) is an important mechanism for the removal of HTO from the atmosphere. Methods of parameterizing the depletion of a plume of HTO released to the atmosphere are examined. Simple approaches, commonly used for atmospheric transport modelling purposes, such as the use of a constant washout coefficient or washout ratio, or the use of parameters based on equilibrium assumptions, are often not justified. It is shown that these parameters depend strongly on ambient temperature and plume dimensions, as well as rainfall rate. An approximate expression for washout ratio, as a function of these variables, is developed, and it is shown that near equilibrium washout conditions are only expected to hold at long plume travel distances. A possible method of treating scavenging by snow is also suggested

  15. Mobile vapor recovery and vapor scavenging unit

    International Nuclear Information System (INIS)

    Stokes, C.A.; Steppe, D.E.

    1991-01-01

    This patent describes a mobile anti- pollution apparatus, for the recovery of hydrocarbon emissions. It comprises a mobile platform upon which is mounted a vapor recovery unit for recovering vapors including light hydrocarbons, the vapor recovery unit having an inlet and an outlet end, the inlet end adapted for coupling to an external source of hydrocarbon vapor emissions to recover a portion of the vapors including light hydrocarbons emitted therefrom, and the outlet end adapted for connection to a means for conveying unrecovered vapors to a vapor scavenging unit, the vapor scavenging unit comprising an internal combustion engine adapted for utilizing light hydrocarbon in the unrecovered vapors exiting from the vapor recovery unit as supplemental fuel

  16. Senescence marker protein-30/superoxide dismutase 1 double knockout mice exhibit increased oxidative stress and hepatic steatosis

    Directory of Open Access Journals (Sweden)

    Yoshitaka Kondo

    2014-01-01

    Full Text Available Superoxide dismutase 1 (SOD1 is an antioxidant enzyme that converts superoxide anion radicals into hydrogen peroxide and molecular oxygen. The senescence marker protein-30 (SMP30 is a gluconolactonase that functions as an antioxidant protein in mammals due to its involvement in ascorbic acid (AA biosynthesis. SMP30 also participates in Ca2+ efflux by activating the calmodulin-dependent Ca2+-pump. To reveal the role of oxidative stress in lipid metabolism defects occurring in non-alcoholic fatty liver disease pathogenesis, we generated SMP30/SOD1-double knockout (SMP30/SOD1-DKO mice and investigated their survival curves, plasma and hepatic lipid profiles, amounts of hepatic oxidative stress, and hepatic protein levels expressed by genes related to lipid metabolism. While SMP30/SOD1-DKO pups had no growth retardation by 14 days of age, they did have low plasma and hepatic AA levels. Thereafter, 39% and 53% of male and female pups died by 15–24 and 89 days of age, respectively. Compared to wild type, SMP30-KO and SOD1-KO mice, by 14 days SMP30/SOD1-DKO mice exhibited: (1 higher plasma levels of triglyceride and aspartate aminotransferase; (2 severe accumulation of hepatic triglyceride and total cholesterol; (3 higher levels of superoxide anion radicals and thiobarbituric acid reactive substances in livers; and (4 decreased mRNA and protein levels of Apolipoprotein B (ApoB in livers – ApoB is an essential component of VLDL secretion. These results suggest that high levels of oxidative stress due to concomitant deficiency of SMP30 and/or AA, and SOD1 cause abnormal plasma lipid metabolism, hepatic lipid accumulation and premature death resulting from impaired VLDL secretion.

  17. Pu Anion Exchange Process Intensification

    International Nuclear Information System (INIS)

    Taylor-Pashow, Kathryn M. L.

    2017-01-01

    This research is focused on improving the efficiency of the anion exchange process for purifying plutonium. While initially focused on plutonium, the technology could also be applied to other ion-exchange processes. Work in FY17 focused on the improvement and optimization of porous foam columns that were initially developed in FY16. These foam columns were surface functionalized with poly(4-vinylpyridine) (PVP) to provide the Pu specific anion-exchange sites. Two different polymerization methods were explored for maximizing the surface functionalization with the PVP. The open-celled polymeric foams have large open pores and large surface areas available for sorption. The fluid passes through the large open pores of this material, allowing convection to be the dominant mechanism by which mass transport takes place. These materials generally have very low densities, open-celled structures with high cell interconnectivity, small cell sizes, uniform cell size distributions, and high structural integrity. These porous foam columns provide advantages over the typical porous resin beads by eliminating the slow diffusion through resin beads, making the anion-exchange sites easily accessible on the foam surfaces. The best performing samples exceeded the Pu capacity of the commercially available resin, and also offered the advantage of sharper elution profiles, resulting in a more concentrated product, with less loss of material to the dilute heads and tails cuts. An alternate approach to improving the efficiency of this process was also explored through the development of a microchannel array system for performing the anion exchange.

  18. Ionic liquids comprising heteraromatic anions

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, William F.; Brennecke, Joan F.; Maginn, Edward J.; Mindrup, Elaine; Gurkan, Burcu; Price, Erica; Goodrich, Brett

    2018-04-24

    Some embodiments described herein relate to ionic liquids comprising an anion of a heteraromatic compound such as optionally substituted pyrrolide, optionally substituted pyrazolide, optionally substituted indolide, optionally substituted phospholide, or optionally substituted imidazolide. Methods and devices for gas separation or gas absorption related to these ionic liquids are also described herein.

  19. Pu Anion Exchange Process Intensification

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-06

    This research is focused on improving the efficiency of the anion exchange process for purifying plutonium. While initially focused on plutonium, the technology could also be applied to other ion-exchange processes. Work in FY17 focused on the improvement and optimization of porous foam columns that were initially developed in FY16. These foam columns were surface functionalized with poly(4-vinylpyridine) (PVP) to provide the Pu specific anion-exchange sites. Two different polymerization methods were explored for maximizing the surface functionalization with the PVP. The open-celled polymeric foams have large open pores and large surface areas available for sorption. The fluid passes through the large open pores of this material, allowing convection to be the dominant mechanism by which mass transport takes place. These materials generally have very low densities, open-celled structures with high cell interconnectivity, small cell sizes, uniform cell size distributions, and high structural integrity. These porous foam columns provide advantages over the typical porous resin beads by eliminating the slow diffusion through resin beads, making the anion-exchange sites easily accessible on the foam surfaces. The best performing samples exceeded the Pu capacity of the commercially available resin, and also offered the advantage of sharper elution profiles, resulting in a more concentrated product, with less loss of material to the dilute heads and tails cuts. An alternate approach to improving the efficiency of this process was also explored through the development of a microchannel array system for performing the anion exchange.

  20. IMPROVING OF ANION EXCHANGERES REGENERATION

    Directory of Open Access Journals (Sweden)

    Muzher M. Ibrahim

    2013-05-01

    Full Text Available Inthis study, Different basis [NaOH and KOH] of variable concentration are usedto reactivate Anion exchangers employing different schemes .The Laboratoryresults showed large improvement in efficiency of these exchangers ( i.eoperating time was increased from 12 to 42 hours .The results of this work showed that the environmentalload (waste water can be reduced greatly when using the proposed regenerationscheme .

  1. Quantum mechanics of toroidal anions

    International Nuclear Information System (INIS)

    Afanas'ev, G.N.

    1990-01-01

    We consider a toroidal solenoid with an electric charge attached to it. It turns out that statistical properties of the wave function describing interacting toroidal anions depend on both their relative position and orientation. The influence of the particular gauge choice on the exchange properties of the wave function is studied. 30 refs.; 6 figs

  2. Anion binding in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Feiters, Martin C [Department of Organic Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Meyer-Klaucke, Wolfram [EMBL Hamburg Outstation at DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Kostenko, Alexander V; Soldatov, Alexander V [Faculty of Physics, Southern Federal University, Sorge 5, Rostov-na-Donu, 344090 (Russian Federation); Leblanc, Catherine; Michel, Gurvan; Potin, Philippe [Centre National de la Recherche Scientifique and Universite Pierre et Marie Curie Paris-VI, Station Biologique de Roscoff, Place Georges Teissier, BP 74, F-29682 Roscoff cedex, Bretagne (France); Kuepper, Frithjof C [Scottish Association for Marine Science, Dunstaffnage Marine Laboratory, Oban, Argyll PA37 1QA, Scotland (United Kingdom); Hollenstein, Kaspar; Locher, Kaspar P [Institute of Molecular Biology and Biophysics, ETH Zuerich, Schafmattstrasse 20, Zuerich, 8093 (Switzerland); Bevers, Loes E; Hagedoorn, Peter-Leon; Hagen, Wilfred R, E-mail: m.feiters@science.ru.n [Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft (Netherlands)

    2009-11-15

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L{sub 3} (2p{sub 3/2}) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  3. Anion binding in biological systems

    International Nuclear Information System (INIS)

    Feiters, Martin C; Meyer-Klaucke, Wolfram; Kostenko, Alexander V; Soldatov, Alexander V; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Kuepper, Frithjof C; Hollenstein, Kaspar; Locher, Kaspar P; Bevers, Loes E; Hagedoorn, Peter-Leon; Hagen, Wilfred R

    2009-01-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L 3 (2p 3/2 ) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  4. Anion binding in biological systems

    Science.gov (United States)

    Feiters, Martin C.; Meyer-Klaucke, Wolfram; Kostenko, Alexander V.; Soldatov, Alexander V.; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Küpper, Frithjof C.; Hollenstein, Kaspar; Locher, Kaspar P.; Bevers, Loes E.; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2009-11-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L3 (2p3/2) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  5. Scavenger Receptors and Resistance to Inhaled Allergens

    Science.gov (United States)

    2010-02-01

    throughput manner which will enable future studies. We plan to continue two especially interesting aspects of these studies. First, the epigenetic control...directs mod- ified proteins to antigen presentation. Eur. J. Immunol. 29: 512–521. 30. Granucci, F., F. Petralia, M. Urbano , S. Citterio, F. Di Tota, L...11 Suppl:S32-6. 50. Granucci F, Petralia F, Urbano M, Citterio S, Di Tota F, Santambrogio L, Ricciardi-Castagnoli P: The scavenger receptor MARCO

  6. Energy scavenging sources for biomedical sensors

    International Nuclear Information System (INIS)

    Romero, E; Warrington, R O; Neuman, M R

    2009-01-01

    Energy scavenging has increasingly become an interesting option for powering electronic devices because of the almost infinite lifetime and the non-dependence on fuels for energy generation. Moreover, the rise of wireless technologies promises new applications in medical monitoring systems, but these still face limitations due to battery lifetime and size. A trade-off of these two factors has typically governed the size, useful life and capabilities of an autonomous system. Energy generation from sources such as motion, light and temperature gradients has been established as commercially viable alternatives to batteries for human-powered flashlights, solar calculators, radio receivers and thermal-powered wristwatches, among others. Research on energy harvesting from human activities has also addressed the feasibility of powering wearable or implantable systems. Biomedical sensors can take advantage of human-based activities as the energy source for energy scavengers. This review describes the state of the art of energy scavenging technologies for powering sensors and instrumentation of physiological variables. After a short description of the human power and the energy generation limits, the different transduction mechanisms, recent developments and challenges faced are reviewed and discussed. (topical review)

  7. Tripodal receptors for cation and anion sensors

    NARCIS (Netherlands)

    Kuswandi, Bambang; Nuriman, [Unknown; Verboom, Willem; Reinhoudt, David

    2006-01-01

    This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing

  8. Chemistry of superoxide radical in seawater: CDOM associated sink of superoxide in coastal waters

    Energy Technology Data Exchange (ETDEWEB)

    Goldstone, J.V.; Voelker, B.M.

    2000-03-15

    Colored dissolved organic matter (CDOM) and humic substances contain a nonmetallic redox-cycling component capable of catalyzing superoxide (O{sub 2}{sup {minus}}) dismutation. First-order rate coefficients (k{sub pseudo}) measured for this O{sub 2}{sup {minus}} sink in a number of coastal and Chesapeake Bay water samples range up to 1.4s{sup {minus}1}, comparable in magnitude to catalyzed dismutation by Cu species. A significant (r{sup 2}=0.73) correlation is observed between k{sub pseudo} and the optical absorption and salinity of individual coastal water samples, suggesting an association with non-marine-derived CDOM. The activity of this sink is not changed by acidification or boiling of samples but is removed by photooxidation, indicating that it is an organic compound, but that it is neither enzymatic nor likely to consist of tightly bound metals. The stoichiometry of hydrogen peroxide formation from O{sub 2}{sup {minus}} decay indicates that this sink is capable of a redox cycle catalyzing the dismutation of O{sub 2}{sup {minus}}. This CDOM sink combined with the organic copper sink previously described will produce a steady-state superoxide concentration in coastal waters that is 100--1000-fold lower than that predicted from bimolecular dismutation alone. Catalyzed O{sub 2}{sup {minus}} decay was also observed in a variety of humic and fulvic acid samples, possibly occurring through quinone functionalities. Although the presence of quinone moieties in humic and fulvic acids has been demonstrated, there do not appear to be good correlations between several measures of quinone content and the O{sub 2}{sup {minus}} dismutation rates of these samples.

  9. Methods and systems for measuring anions

    KAUST Repository

    Masih, Dilshad; Mohammed, Omar F.; Aly, Shawkat M.; Alarousu, Erkki

    2016-01-01

    Embodiments of the present disclosure provide for methods for detecting the presence and/or concentration of anions in a solution, systems for detecting the presence and/or concentration of anions in a solution, anion sensor systems, and the like.

  10. Methods and systems for measuring anions

    KAUST Repository

    Masih, Dilshad

    2016-08-18

    Embodiments of the present disclosure provide for methods for detecting the presence and/or concentration of anions in a solution, systems for detecting the presence and/or concentration of anions in a solution, anion sensor systems, and the like.

  11. Screening reactive oxygen species scavenging properties of platinum nanoparticles on a microfluidic chip.

    Science.gov (United States)

    Zheng, Wenfu; Jiang, Bo; Hao, Yi; Zhao, Yuyun; Zhang, Wei; Jiang, Xingyu

    2014-09-12

    Hyperglycemia, hyperlipidemia and inflammation are key risk factors for atherosclerosis and can lead to overproduction of reactive oxygen species (ROS), which plays a critical role in vascular endothelial dysfunction and subsequent progress of atherosclerosis. However, there is currently a lack of effective drugs that deal with ROS. Platinum nanoparticles (Pt-NPs) have proven to be promising antioxidant drugs in vitro and in vivo. To optimize the efficacy of Pt-NP based drugs, we synthesized and characterized the ROS scavenging properties of three kinds of small molecules that capped Pt-NPs (Pt-AMP-NPs, Pt-ATT-NPs, Pt-MI-NPs) on a blood vessel-mimicking microfluidic chip. The Pt-NPs showed superior superoxide dismutase (SOD)-like functions and can scavenge ROS and recover compromised cell-cell junctions under hyperglycemic, hyperlipidemic and proinflammatory conditions. Amongst these NPs, Pt-AMP-NPs showed the most superior antioxidant properties, suggesting its potency to serve as a novel drug to treat vascular diseases such as atherosclerosis. Our microfluidic chip, providing physiological hemodynamic conditions for the experiments, is potentially a promising tool for a wide range of biological research on the vascular system.

  12. Simultaneous anion and cation mobility in polypyrrole

    DEFF Research Database (Denmark)

    Skaarup, Steen; Bay, Lasse; Vidanapathirana, K.

    2003-01-01

    and the expulsion of anions; a broad anodic peak centered at ca. - 0.5 V representing the expulsion of cations; and a second broad peak at +0.2 to +0.5 V corresponding to anions being inserted. Although the motion of cations is the most important, as expected, there is a significant anion contribution, thereby...... complicating reproducibility when employing PPy(DBS) polymers as actuators. When the cation is doubly charged, it enters the film less readily, and anions dominate the mobility. Using a large and bulky cation switches the mechanism to apparently total anion motion. The changes in area of the three peaks...

  13. Supramolecular Chemistry of Environmentally Relevant Anions

    International Nuclear Information System (INIS)

    Bowman-James, Kristin; Moyer, B.A.; Sessler, Jonathan L.

    2003-01-01

    The goal of this project is the development of highly selective extractants for anions targeting important and timely problems of critical interest to the EMSP mission. In particular, sulfate poses a special problem in cleaning up the Hanford waste tanks in that it interferes with vitrification, but available technologies for sulfate removal are limited. The basic chemical aspects of anion receptor design of functional pH independent systems as well as design of separations strategies for selective and efficient removal of targeted anions have been probed. Key findings include: (1) some of the first synthetic sulfate-selective anion-binding agents; (2) simple, structure-based methods for modifying the intrinsic anion selectivity of a given class of anion receptors; and (3) the first system capable of extracting sulfate from acidic, nitrate-containing aqueous media. Receptor design, structural influences on anion binding affinities, and findings from liquid-liquid extraction studies will be discussed

  14. Quantification of superoxide radical production in thylakoid membrane using cyclic hydroxylamines.

    Science.gov (United States)

    Kozuleva, Marina; Klenina, Irina; Mysin, Ivan; Kirilyuk, Igor; Opanasenko, Vera; Proskuryakov, Ivan; Ivanov, Boris

    2015-12-01

    Applicability of two lipophilic cyclic hydroxylamines (CHAs), CM-H and TMT-H, and two hydrophilic CHAs, CAT1-H and DCP-H, for detection of superoxide anion radical (O2(∙-)) produced by the thylakoid photosynthetic electron transfer chain (PETC) of higher plants under illumination has been studied. ESR spectrometry was applied for detection of the nitroxide radical originating due to CHAs oxidation by O2(∙-). CHAs and corresponding nitroxide radicals were shown to be involved in side reactions with PETC which could cause miscalculation of O2(∙-) production rate. Lipophilic CM-H was oxidized by PETC components, reducing the oxidized donor of Photosystem I, P700(+), while at the same concentration another lipophilic CHA, TMT-H, did not reduce P700(+). The nitroxide radical was able to accept electrons from components of the photosynthetic chain. Electrostatic interaction of stable cation CAT1-H with the membrane surface was suggested. Water-soluble superoxide dismutase (SOD) was added in order to suppress the reaction of CHA with O2(∙-) outside the membrane. SOD almost completely inhibited light-induced accumulation of DCP(∙), nitroxide radical derivative of hydrophilic DCP-H, in contrast to TMT(∙) accumulation. Based on the results showing that change in the thylakoid lumen pH and volume had minor effect on TMT(∙) accumulation, the reaction of TMT-H with O2(∙-) in the lumen was excluded. Addition of TMT-H to thylakoid suspension in the presence of SOD resulted in the increase in light-induced O2 uptake rate, that argued in favor of TMT-H ability to detect O2(∙-) produced within the membrane core. Thus, hydrophilic DCP-H and lipophilic TMT-H were shown to be usable for detection of O2(∙-) produced outside and within thylakoid membranes. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Nitric oxide and superoxide dismutase modulate endothelial progenitor cell function in type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Brenner Benjamin

    2009-10-01

    Full Text Available Abstract Background The function of endothelial progenitor cells (EPCs, which are key cells in vascular repair, is impaired in diabetes mellitus. Nitric oxide (NO and reactive oxygen species can regulate EPC functions. EPCs tolerate oxidative stress by upregulating superoxide dismutase (SOD, the enzyme that neutralizes superoxide anion (O2-. Therefore, we investigated the roles of NO and SOD in glucose-stressed EPCs. Methods The functions of circulating EPCs from patients with type 2 diabetes were compared to those from healthy individuals. Healthy EPCs were glucose-stressed, and then treated with insulin and/or SOD. We assessed O2- generation, NO production, SOD activity, and their ability to form colonies. Results EPCs from diabetic patients generated more O2-, had higher NAD(PH oxidase and SOD activity, but lower NO bioavailability, and expressed higher mRNA and protein levels of p22-phox, and manganese SOD and copper/zinc SOD than those from the healthy individuals. Plasma glucose and HbA1c levels in the diabetic patients were correlated negatively with the NO production from their EPCs. SOD treatment of glucose-stressed EPCs attenuated O2- generation, restored NO production, and partially restored their ability to form colonies. Insulin treatment of glucose-stressed EPCs increased NO production, but did not change O2- generation and their ability to form colonies. However, their ability to produce NO and to form colonies was fully restored after combined SOD and insulin treatment. Conclusion Our data provide evidence that SOD may play an essential role in EPCs, and emphasize the important role of antioxidant therapy in type 2 diabetic patients.

  16. Nitric oxide and superoxide dismutase modulate endothelial progenitor cell function in type 2 diabetes mellitus.

    Science.gov (United States)

    Hamed, Saher; Brenner, Benjamin; Aharon, Anat; Daoud, Deeb; Roguin, Ariel

    2009-10-30

    The function of endothelial progenitor cells (EPCs), which are key cells in vascular repair, is impaired in diabetes mellitus. Nitric oxide (NO) and reactive oxygen species can regulate EPC functions. EPCs tolerate oxidative stress by upregulating superoxide dismutase (SOD), the enzyme that neutralizes superoxide anion (O2-). Therefore, we investigated the roles of NO and SOD in glucose-stressed EPCs. The functions of circulating EPCs from patients with type 2 diabetes were compared to those from healthy individuals. Healthy EPCs were glucose-stressed, and then treated with insulin and/or SOD. We assessed O2- generation, NO production, SOD activity, and their ability to form colonies. EPCs from diabetic patients generated more O2-, had higher NAD(P)H oxidase and SOD activity, but lower NO bioavailability, and expressed higher mRNA and protein levels of p22-phox, and manganese SOD and copper/zinc SOD than those from the healthy individuals. Plasma glucose and HbA1c levels in the diabetic patients were correlated negatively with the NO production from their EPCs. SOD treatment of glucose-stressed EPCs attenuated O2- generation, restored NO production, and partially restored their ability to form colonies. Insulin treatment of glucose-stressed EPCs increased NO production, but did not change O2- generation and their ability to form colonies. However, their ability to produce NO and to form colonies was fully restored after combined SOD and insulin treatment. Our data provide evidence that SOD may play an essential role in EPCs, and emphasize the important role of antioxidant therapy in type 2 diabetic patients.

  17. Requirements for superoxide-dependent tyrosine hydroperoxide formation in peptides

    DEFF Research Database (Denmark)

    Winterbourn, Christine C; Parsons-Mair, Helena N; Gebicki, Silvia

    2004-01-01

    Superoxide reacts rapidly with other radicals, but these reactions have received little attention in the context of oxidative stress. For tyrosyl radicals, reaction with superoxide is 3-fold faster than dimerization, and forms the addition product tyrosine hydroperoxide. We have explored structural...... requirements for hydroperoxide formation using tyrosine analogues and di- and tri-peptides. Superoxide and phenoxyl radicals were generated using xanthine oxidase, peroxidase and the respective tyrosine derivative, or by gamma-radiation. Peroxides were measured using FeSO4/Xylenol Orange. Tyrosine and tyramine...... formed stable hydroperoxides, but N-acetyltyrosine and p-hydroxyphenylacetic acid did not, demonstrating a requirement for a free amino group. Using [14C]tyrosine, the hydroperoxide and dityrosine were formed at a molar ratio of 1.8:1. Studies with pre-formed hydroperoxides, and measurements of substrate...

  18. A study on superoxide dismutase activity of some model compounds.

    Science.gov (United States)

    Liao, Z; Liu, W; Liu, J; Jiang, Y; Shi, J; Liu, C

    1994-08-15

    The synthesis and characteristics of a binuclear ligand N,N,N',N'-tetrakis (2'-benzimidazolyl methyl)-1,4-diethylene amino glycol ether (EGTB) and its series of coordination compounds containing copper(II), iron(III), and manganese(II) with and without exogenous bridging ligand which was imidazolate ion (Im-), bipyridine (bpy), or 1,10-phenanthroline (phen) are reported. Depending on the redox potentials by cyclic voltammetry, the coordination compounds can act as catalysts for the dismutation of superoxide radicals (O2-). The detection of the rate constant of the reaction of superoxide ion with nitroblue tetrazolium (NBT) which is inhibited by superoxide dismutase (SOD) and its model compounds of the EGTB system has been performed by a modified illumination method. The rate constants kQ of the catalytic dismutation have been obtained.

  19. Superoxide anions and hydrogen peroxide inhibit proliferation of activated rat stellate cells and induce different modes of cell death

    NARCIS (Netherlands)

    Dunning, Sandra; Hannivoort, Rebekka A.; de Boer, Jan Freark; Buist-Homan, Manon; Faber, Klaas Nico; Moshage, Han

    In chronic liver injury, hepatic stellate cells (HSCs) proliferate and produce excessive amounts of connective tissue causing liver fibrosis and cirrhosis. Oxidative stress has been implicated as a driving force of HSC activation and proliferation, although contradictory results have been described.

  20. Measurement of the G values of hydrogen peroxide in the reactions of typical flavonoids with superoxide anion radicals. Pt.2

    International Nuclear Information System (INIS)

    Zhang Fugen; Wu Jilan

    2002-01-01

    γ irradiated rutin-, catechin-and baicalin-HCOONa aqueous solutions saturated with N 2 O:O 2 = 4:1 were eluted through alumina columns and the G values of hydrogen peroxide generated in the solutions were measured. Different results from former works were obtained and the reasons of the difference were discussed. A precise method was established as follows: hydrogen peroxide should be separated from flavonoids by passing the flavonoids solution through alumina columns before the measurement and the amount of hydrogen peroxide generated from self-oxidation of the flavonoids should be deducted. The G values of hydrogen peroxide in γ irradiated rutin-, catechin- and baicalin- aqueous solution saturated with N 2 O:O 2 = 4:1 were determined to be 8.3 +- 0.2, 5.6 +- 0.2, and 7.8 +- 0.2, separately

  1. Relative deficiency of nitric oxide-dependent vasodilation in salt hypertensive Dahl rats: the possible role of superoxide anions

    Czech Academy of Sciences Publication Activity Database

    Zicha, Josef; Dobešová, Zdenka; Kuneš, Jaroslav

    2001-01-01

    Roč. 19, č. 2 (2001), s. 247-254 ISSN 0263-6352 R&D Projects: GA AV ČR IAA7011805; GA AV ČR IAA7011711; GA MŠk LN00A069 Institutional research plan: CEZ:AV0Z5011922 Keywords : blood pressure * salt hypertension * Dahl rats Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 4.210, year: 2001

  2. Anion

    Directory of Open Access Journals (Sweden)

    A. Vadivel Murugan

    2003-01-01

    . Its characterization is investigated by Fourier Transform Infrared Spectroscopy (FT-IR and Scanning Electron Microscopy (SEM. The hybrid material presents predominantly high electronic conductivities of around 2.0 and 7.0 S cm-1 at 300 and 400K respectively.

  3. Carbonate radical anion-induced electron transfer in bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Ravi [Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400 085 (India)]. E-mail: rjudrin@yahoo.com; Mukherjee, T. [Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2006-07-15

    Reaction of native and thermally denatured bovine serum albumin (BSA) with carbonate radical anion (CO{sub 3}{sup -} radical) has been studied using pulse radiolysis technique. Scavenging of CO{sub 3}{sup -} radical by native BSA and consequent electron transfer from tyrosine to tryptophan radical has been observed to occur with almost same rate constant (k{approx}1.7x10{sup 8} dm{sup 3} mol{sup -1} s{sup -1}) at pH 8.8. Effect of structural changes, due to thermal denaturation, on scavenging of CO{sub 3}{sup -} radical and the electron transfer process have been studied and discussed in this paper.

  4. Constraints on superoxide mediated formation of manganese oxides

    Directory of Open Access Journals (Sweden)

    Deric R. Learman

    2013-09-01

    Full Text Available Manganese (Mn oxides are among the most reactive sorbents and oxidants within the environment, where they play a central role in the cycling of nutrients, metals, and carbon. Recent discoveries have identified superoxide (O2- (both of biogenic and abiogenic origin as an effective oxidant of Mn(II leading to the formation of Mn oxides. Here we examined the conditions under which abiotically produced superoxide led to oxidative precipitation of Mn and the solid-phases produced. Oxidized Mn, as both aqueous Mn(III and Mn(III/IV oxides, was only observed in the presence of active catalase, indicating that hydrogen peroxide, a product of the reaction of O2- with Mn(II, inhibits the oxidation process presumably through the reduction of Mn(III. Citrate and pyrophosphate increased the yield of oxidized Mn but decreased the amount of Mn oxide produced via formation of Mn(III-ligand complexes. While complexing ligands played a role in stabilizing Mn(III, they did not eliminate the inhibition of net Mn(III formation by H2O2. The Mn oxides precipitated were highly disordered colloidal hexagonal birnessite, similar to those produced by biotically generated superoxide. Yet, in contrast to the large particulate Mn oxides formed by biogenic superoxide, abiotic Mn oxides did not ripen to larger, more crystalline phases. This suggests that the deposition of crystalline Mn oxides within the environment requires a biological, or at least organic, influence. This work provides the first direct evidence that, under conditions relevant to natural waters, oxidation of Mn(II by superoxide can occur and lead to formation of Mn oxides. For organisms that oxidize Mn(II by producing superoxide, these findings may also point to other microbially mediated processes, in particular enzymatic hydrogen peroxide degradation and/or production of organic ligand metabolites, that allow for Mn oxide formation.

  5. Differential expression of superoxide dismutase genes in aphid-stressed maize (Zea mays L.) seedlings.

    Science.gov (United States)

    Sytykiewicz, Hubert

    2014-01-01

    The aim of this study was to compare the expression patterns of superoxide dismutase genes (sod2, sod3.4, sod9 and sodB) in seedling leaves of the Zea mays L. Tasty Sweet (susceptible) and Ambrozja (relatively resistant) cultivars infested with one of two hemipteran species, namely monophagous Sitobion avenae F. (grain aphid) or oligophagous Rhopalosiphum padi L. (bird cherry-oat aphid). Secondarily, aphid-elicited alternations in the antioxidative capacity towards DPPH (1,1-diphenyl-2-picrylhydrazyl) radical in insect-stressed plants were evaluated. Comprehensive comparison of expression profiles of the four sod genes showed that both insect species evoked significant upregulation of three genes sod2, sod3.4 and sod9). However, aphid infestation affected non-significant fluctuations in expression of sodB gene in seedlings of both maize genotypes. The highest levels of transcript accumulation occurred at 8 h (sod2 and sod3.4) or 24 h (sod9) post-infestation, and aphid-induced changes in the expression of sod genes were more dramatic in the Ambrozja cultivar than in the Tasty Sweet variety. Furthermore, bird cherry-oat aphid colonization had a more substantial impact on levels of DPPH radical scavenging activity in infested host seedlings than grain aphid colonization. Additionally, Ambrozja plants infested by either hemipteran species showed markedly lower antioxidative capacity compared with attacked Tasty Sweet plants.

  6. Differential Expression of Superoxide Dismutase Genes in Aphid-Stressed Maize (Zea mays L.) Seedlings

    Science.gov (United States)

    Sytykiewicz, Hubert

    2014-01-01

    The aim of this study was to compare the expression patterns of superoxide dismutase genes (sod2, sod3.4, sod9 and sodB) in seedling leaves of the Zea mays L. Tasty Sweet (susceptible) and Ambrozja (relatively resistant) cultivars infested with one of two hemipteran species, namely monophagous Sitobion avenae F. (grain aphid) or oligophagous Rhopalosiphum padi L. (bird cherry-oat aphid). Secondarily, aphid-elicited alternations in the antioxidative capacity towards DPPH (1,1-diphenyl-2-picrylhydrazyl) radical in insect-stressed plants were evaluated. Comprehensive comparison of expression profiles of the four sod genes showed that both insect species evoked significant upregulation of three genes sod2, sod3.4 and sod9). However, aphid infestation affected non-significant fluctuations in expression of sodB gene in seedlings of both maize genotypes. The highest levels of transcript accumulation occurred at 8 h (sod2 and sod3.4) or 24 h (sod9) post-infestation, and aphid-induced changes in the expression of sod genes were more dramatic in the Ambrozja cultivar than in the Tasty Sweet variety. Furthermore, bird cherry-oat aphid colonization had a more substantial impact on levels of DPPH radical scavenging activity in infested host seedlings than grain aphid colonization. Additionally, Ambrozja plants infested by either hemipteran species showed markedly lower antioxidative capacity compared with attacked Tasty Sweet plants. PMID:24722734

  7. Modification and inactivation of Cu,Zn-superoxide dismutase by the lipid peroxidation product, acrolein

    Directory of Open Access Journals (Sweden)

    Jung Hoon Kang

    2013-11-01

    Full Text Available Acrolein is the most reactive aldehydic product of lipidperoxidation and is found to be elevated in the brain whenoxidative stress is high. The effects of acrolein on the structureand function of human Cu,Zn-superoxide dismutase (SOD wereexamined. When Cu,Zn-SOD was incubated with acrolein, thecovalent crosslinking of the protein was increased, and the loss ofenzymatic activity was increased in a dose-dependent manner.Reactive oxygen species (ROS scavengers and copper chelatorsinhibited the acrolein-mediated Cu,Zn-SOD modification and theformation of carbonyl compound. The present study shows thatROS may play a critical role in acrolein-induced Cu,Zn-SODmodification and inactivation. When Cu,Zn-SOD that has beenexposed to acrolein was subsequently analyzed by amino acidanalysis, serine, histidine, arginine, threonine and lysine residueswere particularly sensitive. It is suggested that the modificationand inactivation of Cu,Zn-SOD by acrolein could be produced bymore oxidative cell environments. [BMB Reports 2013; 46(11:555-560

  8. Differential Scavenging Among Pig, Rabbit, and Human Subjects.

    Science.gov (United States)

    Steadman, Dawnie Wolfe; Dautartas, Angela; Kenyhercz, Michael W; Jantz, Lee M; Mundorff, Amy; Vidoli, Giovanna M

    2018-04-12

    Different animal species have been used as proxies for human remains in decomposition studies for decades, although few studies have sought to validate their use in research aimed at estimating the postmortem interval. This study examines 45 pig, rabbit, and human subjects placed in three seasonal trials at the Anthropology Research Facility. In an earlier paper, we found that overall decomposition trends did vary between species that could be due to differential insect and scavenger behavior. This study specifically examines if scavenger behavior differs by carrion species. Daily photographs, game camera photographs, written observations, and Total Body Score (TBS) documented scavenging and decomposition changes. Results show that raccoons were the most commonly observed vertebrate scavenger, that scavenging was most extensive in winter, and that certain human subjects were preferred over other humans and all non-human subjects. Finally, scavenging activity greatly reduces the accuracy of postmortem interval estimates based on TBS. © 2018 American Academy of Forensic Sciences.

  9. Cytotoxic and antioxidant capacity of camel milk peptides: Effects of isolated peptide on superoxide dismutase and catalase gene expression

    Directory of Open Access Journals (Sweden)

    Masoud Homayouni-Tabrizi

    2017-07-01

    Full Text Available Peptides from natural sources such as milk are shown to have a wide spectrum of biological activities. In this study, three peptides with antioxidant capacity were identified from camel milk protein hydrolysate. Pepsin and pancreatin were used for hydrolysis of milk proteins. Ultrafiltration and reverse-phase high-performance liquid chromatography were used for the concentration and purification of the hydrolysate, respectively. Sequences of the three peptides, which were determined by matrix-assisted laser desorption/ionization time-of-flight spectrophotometry, were LEEQQQTEDEQQDQL [molecular weight (MW: 1860.85 Da, LL-15], YLEELHRLNAGY (MW: 1477.63 Da, YY-11, and RGLHPVPQ (MW: 903.04 Da, RQ-8. The 3-(4,5-dimethylthia-zol-2-yl-2,5-diphenyltetrazolium bromide assay was used to evaluate the cytotoxicity of these chemically synthesized peptides against HepG2 cells. In vitro analysis showed antioxidant properties and radical scavenging activities of these peptides on 2,2-diphenyl-1-picrylhydrazyl, 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid+, O2–, and OH– free radicals. HepG2 cells were treated with YY-11 peptide for 48 hours, and the expression of superoxide dismutase and catalase genes was examined using real-time polymerase chain reaction. The results revealed a significant increase in the expression of superoxide dismutase and catalase genes in treated HepG2 cells.

  10. Environmental behavior of inorganic anions

    International Nuclear Information System (INIS)

    Garland, T.R.; Cataldo, D.A.; Fellows, R.J.; Wildung, R.E.

    1987-01-01

    Recent efforts have addressed two aspects of anion behavior in the soil/plant system. The first involves evaluation of the gaseous component of the terrestrial iodine cycle in soils and plants. Field analyses of 129 I in soils and vegetation adjacent to a fuels reprocessing facility, which was idle for 10 years prior to the study, indicated that there may be a significant gaseous component to the terrestrial iodine cycle. Soil substrates, including a silt-sand, organic forest soil, quartz sand, and a sterilized soil, were amended with radioiodide, and the rates and quality of the volatile components evaluated

  11. Oxidative stress and superoxide dismutase activity in brain of rats ...

    African Journals Online (AJOL)

    The present study was envisaged to investigate the possible role of oxidative stress in permethrin neurotoxicity and to evaluate the protective effect of superoxide dismutase (SOD) activity in brain homogenates of Wistar rats. Oxidative stress measured as thiobarbituric acid reacting substances (TBARS) was found to ...

  12. Water stress induces overexpression of superoxide dismutases that ...

    African Journals Online (AJOL)

    Water stress is known to induce active oxygen species in plants. The accumulation of these harmful species must be prevented by plants as rapidly as possible to maintain growth and productivity. The aim of this study was to determine the effect of water stress on superoxide dismutase isozymes (SOD, EC 1.15.1.1.) in two ...

  13. Effect of yogic exercise on superoxide dismutase levels in diabetics

    Directory of Open Access Journals (Sweden)

    Mahapure Hemant

    2008-01-01

    Full Text Available Context: Reactive oxygen species are known to aggravate disease progression. To counteract their harmful effects, the body produces various antioxidant enzymes, viz , superoxide dismutase, glutathione reductase etc. Literature reviews revealed that exercises help to enhance antioxidant enzyme systems; hence, yogic exercises may be useful to combat various diseases. Aims: This study aims to record the efficacy of yoga on superoxide dismutase, glycosylated hemoglobin (Hb and fasting blood glucose levels in diabetics. Settings and Design: Forty diabetics aged 40-55 years were assigned to experimental (30 and control (10 groups. The experimental subjects underwent a Yoga program comprising of various Asanas (isometric type exercises and Pranayamas (breathing exercises along with regular anti-diabetic therapy whereas the control group received anti-diabetic therapy only. Methods and Material: Heparinized blood samples were used to determine erythrocyte superoxide dismutase (SOD activity and glycosylated Hb levels and fasting blood specimens collected in fluoride Vacutainers were used for assessing blood glucose. Statistical analysis used: Data were analyzed by using 2 x 2 x 3 Factorial ANOVA followed by Scheffe′s posthoc test. Results: The results revealed that Yogic exercise enhanced the levels of Superoxide dismutase and reduced glycosylated Hb and glucose levels in the experimental group as compared to the control group. Conclusion: The findings conclude that Yogic exercises have enhanced the antioxidant defence mechanism in diabetics by reducing oxidative stress.

  14. Rain scavenging studies. Progress report No. 11

    International Nuclear Information System (INIS)

    Dingle, A.N.

    1975-05-01

    The modeling of convective storm scavenging processes is going forward on two distinct fronts. The first of these relates to the microphysical processes, particularly to the study of their response to micro-dynamical components of the convective circulation. It is found that the droplet size spectra generated are responsive to variations of vertical velocity due to turbulence within the cloud and to humidity variations due to entrainment processes. Both sets of variations give responses that differ for different amplitudes and frequencies, i.e., rapid, small-amplitude eddies appear to enhance small-droplet development, whereas slow, large-amplitude oscillations tend to enhance large-droplet development. An allied study of the assumptions used in the microphysical equations is also being made. The second modeling effort is addressed to the problem of three-dimensional representation of convective dynamics. Equations are presented, and some of the problems under attack are discussed

  15. Schlenk Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar

    2015-09-01

    Anionic polymerization-high vacuum techniques (HVTs) are doubtlessly the most prominent and reliable experimental tools to prepare polymer samples with well-defined and, in many cases, complex macromolecular architectures. Due to the high demands for time and skilled technical personnel, HVTs are currently used in only a few research laboratories worldwide. Instead, most researchers in this filed are attracted to more facile Schlenk techniques. The basic principle of this technique followed in all laboratories is substantially the same, i.e. the use of alternate vacuum and inert gas atmosphere in glass apparatus for the purification/charging of monomer, solvents, additives, and for the manipulation of air-sensitive compounds such as alkyl metal initiators, organometallic or organic catalysts. However, it is executed quite differently in each research group in terms of the structure of Schlenk apparatus (manifolds, connections, purification/storage flasks, reactors, etc.), the use of small supplementary devices (soft tubing, cannulas, stopcocks, etc.) and experimental procedures. The operational methods are partly purpose-oriented while also featured by a high flexibility, which makes it impossible to describe in detail each specific one. In this chapter we will briefly exemplify the application of Schlenk techniques for anionic polymerization by describing the performance of a few experiments from our own work.

  16. Carcass Type Affects Local Scavenger Guilds More than Habitat Connectivity.

    Directory of Open Access Journals (Sweden)

    Zachary H Olson

    Full Text Available Scavengers and decomposers provide an important ecosystem service by removing carrion from the environment. Scavenging and decomposition are known to be temperature-dependent, but less is known about other factors that might affect carrion removal. We conducted an experiment in which we manipulated combinations of patch connectivity and carcass type, and measured responses by local scavenger guilds along with aspects of carcass depletion. We conducted twelve, 1-month trials in which five raccoon (Procyon lotor, Virginia opossum (Didelphis virginiana, and domestic rabbit (Oryctolagus spp. carcasses (180 trials total were monitored using remote cameras in 21 forest patches in north-central Indiana, USA. Of 143 trials with complete data, we identified fifteen species of vertebrate scavengers divided evenly among mammalian (N = 8 and avian species (N = 7. Fourteen carcasses (9.8% were completely consumed by invertebrates, vertebrates exhibited scavenging behavior at 125 carcasses (87.4%, and four carcasses (2.8% remained unexploited. Among vertebrates, mammals scavenged 106 carcasses, birds scavenged 88 carcasses, and mammals and birds scavenged 69 carcasses. Contrary to our expectations, carcass type affected the assemblage of local scavenger guilds more than patch connectivity. However, neither carcass type nor connectivity explained variation in temporal measures of carcass removal. Interestingly, increasing richness of local vertebrate scavenger guilds contributed moderately to rates of carrion removal (≈6% per species increase in richness. We conclude that scavenger-specific differences in carrion utilization exist among carcass types and that reliable delivery of carrion removal as an ecosystem service may depend on robust vertebrate and invertebrate communities acting synergistically.

  17. Carcass Type Affects Local Scavenger Guilds More than Habitat Connectivity

    Science.gov (United States)

    Olson, Zachary H.; Beasley, James C.; Rhodes, Olin E.

    2016-01-01

    Scavengers and decomposers provide an important ecosystem service by removing carrion from the environment. Scavenging and decomposition are known to be temperature-dependent, but less is known about other factors that might affect carrion removal. We conducted an experiment in which we manipulated combinations of patch connectivity and carcass type, and measured responses by local scavenger guilds along with aspects of carcass depletion. We conducted twelve, 1-month trials in which five raccoon (Procyon lotor), Virginia opossum (Didelphis virginiana), and domestic rabbit (Oryctolagus spp.) carcasses (180 trials total) were monitored using remote cameras in 21 forest patches in north-central Indiana, USA. Of 143 trials with complete data, we identified fifteen species of vertebrate scavengers divided evenly among mammalian (N = 8) and avian species (N = 7). Fourteen carcasses (9.8%) were completely consumed by invertebrates, vertebrates exhibited scavenging behavior at 125 carcasses (87.4%), and four carcasses (2.8%) remained unexploited. Among vertebrates, mammals scavenged 106 carcasses, birds scavenged 88 carcasses, and mammals and birds scavenged 69 carcasses. Contrary to our expectations, carcass type affected the assemblage of local scavenger guilds more than patch connectivity. However, neither carcass type nor connectivity explained variation in temporal measures of carcass removal. Interestingly, increasing richness of local vertebrate scavenger guilds contributed moderately to rates of carrion removal (≈6% per species increase in richness). We conclude that scavenger-specific differences in carrion utilization exist among carcass types and that reliable delivery of carrion removal as an ecosystem service may depend on robust vertebrate and invertebrate communities acting synergistically. PMID:26886299

  18. Carcass Type Affects Local Scavenger Guilds More than Habitat Connectivity.

    Science.gov (United States)

    Olson, Zachary H; Beasley, James C; Rhodes, Olin E

    2016-01-01

    Scavengers and decomposers provide an important ecosystem service by removing carrion from the environment. Scavenging and decomposition are known to be temperature-dependent, but less is known about other factors that might affect carrion removal. We conducted an experiment in which we manipulated combinations of patch connectivity and carcass type, and measured responses by local scavenger guilds along with aspects of carcass depletion. We conducted twelve, 1-month trials in which five raccoon (Procyon lotor), Virginia opossum (Didelphis virginiana), and domestic rabbit (Oryctolagus spp.) carcasses (180 trials total) were monitored using remote cameras in 21 forest patches in north-central Indiana, USA. Of 143 trials with complete data, we identified fifteen species of vertebrate scavengers divided evenly among mammalian (N = 8) and avian species (N = 7). Fourteen carcasses (9.8%) were completely consumed by invertebrates, vertebrates exhibited scavenging behavior at 125 carcasses (87.4%), and four carcasses (2.8%) remained unexploited. Among vertebrates, mammals scavenged 106 carcasses, birds scavenged 88 carcasses, and mammals and birds scavenged 69 carcasses. Contrary to our expectations, carcass type affected the assemblage of local scavenger guilds more than patch connectivity. However, neither carcass type nor connectivity explained variation in temporal measures of carcass removal. Interestingly, increasing richness of local vertebrate scavenger guilds contributed moderately to rates of carrion removal (≈6% per species increase in richness). We conclude that scavenger-specific differences in carrion utilization exist among carcass types and that reliable delivery of carrion removal as an ecosystem service may depend on robust vertebrate and invertebrate communities acting synergistically.

  19. Purification and properties of Cu-Zn superoxide dismutase extracted from Brucella abortus strain 19

    Energy Technology Data Exchange (ETDEWEB)

    Tabatabai, L.B. (ARS-USDA, Ames, IA (United States))

    1991-03-11

    Recent work showed that a recombinant 20 kDa protein from Brucella abortus expressed in E. coli is a Cu-Zn superoxide dismutase (SOD). Western blot and ELISA results indicated that cattle with brucellosis have antibody to SOD. Here the authors report the purification and properties of the native B. abortus Cu-Zn SOD. SOD was extracted from methanol-killed Brucella abortus strain 19 with 0.1 M sodium citrate-1.0 M sodium chloride solution. The extract was dialyzed and protein precipitated by ammonium sulfate at 70-100% saturation was collected. The SOD was purified by HPLC anion exchange chromatography. SOD activity was assayed with a coupled enzyme assay using xanthine oxidase-cytochrome C reduction assay. The authors determined that the Brucella SOD is present in two molecular forms both inhibitable with KCN with Ki's of 0.32 mM and 4.98 mM, respectively. No other form of SOD was identified in the extract. Polyclonal antibody to SOD and polyclonal antibody to SOD synthetic peptide residues 134-143 inhibited SOD activity by 50% and 13%, respectively. Both SOD and the synthetic peptide inhibited binding of anti-SOD antibody to SOD by 60% and 20%, respectively. Based on these results the SOD and its amphipathic peptide will be considered as candidates for the design of synthetic multiple peptide vaccines and diagnostic reagents for bovine brucellosis.

  20. A pulse-radiolysis study of the manganese-containing superoxide dismutase from Bacillus stearothermophilus

    International Nuclear Information System (INIS)

    McAdam, M.E.; Lavelle, F.; Fox, R.A.; Fielden, E.M.

    1977-01-01

    The mechanism of catalysis of the manganese-containing superoxide dismutase from Bacillus stearothermophilus has been shown to involve a 'fast cycle' and a 'slow cycle' (McAdam, M.E., Fox, R.A., Lavelle, F., and Fielden, E.M., Biochem. J.; 165:71 (1977)). Further properties of the enzyme are now considered. Pulse-radiolysis studies, under conditions of low substrate concentration to enzyme concentration (i.e. when the fast cycle predominates), showed that enzyme activity decreases as pH increases (6.5 to 10.2). Activity was unaffected by the addition of H 2 O 2 or NaN 3 but slightly decreased by KCN. Both H 2 O 2 and the reducing radical anion CO 2 sup(-.) caused a decrease in A 480 of the native enzyme. The rate of the fast catalytic cycle was independent of temperature (5 to 55 0 C), and as temperature increased the slow catalytic cycle became relatively more important. Arrhenius parameters of the rate constants were estimated. The possible identity of the various forms of the enzyme is considered. (author)

  1. Nitric oxide radical scavenging potential of some Elburz medicinal ...

    African Journals Online (AJOL)

    Some plants scavenge nitric oxide (NO) with high affinity. For this purpose, forty extracts from 26 medicinal plants, growing extensively in Elburz mountains, were evaluated for their NO scavenging activity. Total phenolic and flavonoid contents of these extracts were also measured by Folin Ciocalteu and AlCl3 colorimetric ...

  2. Free Radical Scavenging Activities of Methanol Extract and ...

    African Journals Online (AJOL)

    Michael Horsfall

    fractions were subjected to in vitro antioxidant evaluation using the DPPH free radical scavenging ... The crude extract has IC-50 value for radical scavenging activity of 5μg/mL which was .... effective concentration of the sample that is required.

  3. Modeling of an Integrated Electromagnetic Generator for Energy Scavenging

    NARCIS (Netherlands)

    Lu, J.; Kovalgin, Alexeij Y.; Schmitz, Jurriaan

    2007-01-01

    The ubiquitous deploying of wireless electronic devices due to pervasive computing results in the idea of Energy Scavenging, i.e., harvesting ambient energy from surroundings of the electronic devices. As an approach to possible practical realization of such an energy scavenger, we aim at the

  4. Radical Scavenging Efficacy of Thiol Capped Silver Nanoparticles

    Indian Academy of Sciences (India)

    aSchool of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492 010, India. bDepartment of ... of nanosilver in foods, health care and consumer products as antimi- ... of the radical scavenging behavior of thiolated antiox- idants (alone) and ..... case of GSH@AgNPs; DPPH scavenging activity was found to be ...

  5. Identification of Radical Scavengers in Sweet Grass (Hierochloe odorata)

    NARCIS (Netherlands)

    Pukalskas, A.; Beek, van T.A.; Venskutonis, R.P.; Linssen, J.P.H.; Veldhuizen, van A.; Groot, de Æ.

    2002-01-01

    Extracts from aerial parts of sweet grass (Hierochloe odorata) were active DPPH free radical scavengers, The active compounds were detected in extract fractions using HPLC with on-line radical scavenging detection. After multistep fractionation of the extract, two new natural products possessing

  6. Characterization and DPPH Radical Scavenging Activity of Gallic ...

    African Journals Online (AJOL)

    Characterization and DPPH Radical Scavenging Activity of Gallic Acid-Lecithin Complex. C Liu, C Chen, H Ma, E Yuan, Q Li. Abstract. Purpose: To investigate the physicochemical properties and DPPH radical scavenging activity of gallic acid–lecithin complex. Methods: The complex of gallic acid with lecithin was prepared ...

  7. Investigations of riboflavin photolysis via coloured light in the nitro blue tetrazolium assay for superoxide dismutase activity.

    Science.gov (United States)

    Cheng, Chien-Wei; Chen, Liang-Yü; Chou, Chan-Wei; Liang, Ji-Yuan

    2015-07-01

    Determination of the superoxide dismutase activity is an important issue in the fields of biochemistry and the medical sciences. In the riboflavin/nitro blue tetrazolium (B2/NBT) method, the light sources used for generating superoxide anion radicals from light-excited riboflavin are normally fluorescent lamps. However, the conditions of B2/NBT experiments vary. This study investigated the effect of the light source on the light-excitation of riboflavin. The effectiveness of the photolysis was controlled by the wavelength of the light source. The spectra of fluorescent lamps are composed of multiple colour lights, and the emission spectra of fluorescent lamps made by different manufacturers may vary. Blue light was determined to be the most efficient for the photochemical reaction of riboflavin in visible region. The quality of the blue light in fluorescent lamps is critical to the photo-decomposition of riboflavin. A blue light is better than a fluorescent lamp for the photo-decomposition of riboflavin. The performance of the B2/NBT method is thereby optimized. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Radiation-induced damage in E. coli B: The effect of superoxide radicals and molecular oxygen. Progress report, December 1, 1978--November 30, 1979

    International Nuclear Information System (INIS)

    Samuni, A.; Czapski, G.

    The roles of superoxide radicals and of molecular oxygen in the radiodamage of E. coli B suspended in dilute phosphate buffer were studied. The presence of high concentrations of polyethylene glycol in the γ-irradiated cell suspensions, had no effect on bacterial radiosensitivity. This indicates that the damage was primarily endogenous, i.e. originated intracellularly. Saturation of the cell suspensions with N 2 O doubled the radiosensitivity, thus indicating that OH radicals are responsible for the majority of the damage (indirect radiation effect). The presence of oxygen either in the absence or presence of N 2 O brought about roughly a three-fold increase in the radiosensitivity. Since in the presence of N 2 O all e - /sub aq/ are scavenged by the nitrous oxide rather than by oxygen, this shows that superoxide radicals play no role in the bacterial radiodamage. Our results substantiate the attribution of the oxygen effect to a direct interaction of O 2 with the hydroxyl-radical-damaged sites on vital biomolecules, and exclude any significant contribution of e - /sub aq/ and superoxide radicals to the cellular radiodamage

  9. Molecular Cloning and Biochemical Characterization of the Iron Superoxide Dismutase from the Cyanobacterium Nostoc punctiforme ATCC 29133 and Its Response to Methyl Viologen-Induced Oxidative Stress.

    Science.gov (United States)

    Moirangthem, Lakshmipyari Devi; Ibrahim, Kalibulla Syed; Vanlalsangi, Rebecca; Stensjö, Karin; Lindblad, Peter; Bhattacharya, Jyotirmoy

    2015-12-01

    Superoxide dismutase (SOD) detoxifies cell-toxic superoxide radicals and constitutes an important component of antioxidant machinery in aerobic organisms, including cyanobacteria. The iron-containing SOD (SodB) is one of the most abundant soluble proteins in the cytosol of the nitrogen-fixing cyanobacterium Nostoc punctiforme ATCC 29133, and therefore, we investigated its biochemical properties and response to oxidative stress. The putative SodB-encoding open reading frame Npun_R6491 was cloned and overexpressed in Escherichia coli as a C-terminally hexahistidine-tagged protein. The purified recombinant protein had a SodB specific activity of 2560 ± 48 U/mg protein at pH 7.8 and was highly thermostable. The presence of a characteristic iron absorption peak at 350 nm, and its sensitivity to H2O2 and azide, confirmed that the SodB is an iron-containing SOD. Transcript level of SodB in nitrogen-fixing cultures of N. punctiforme decreased considerably (threefold) after exposure to an oxidative stress-generating herbicide methyl viologen for 4 h. Furthermore, in-gel SOD activity analysis of such cultures grown at increasing concentrations of methyl viologen also showed a loss of SodB activity. These results suggest that SodB is not the primary scavenger of superoxide radicals induced by methyl viologen in N. punctiforme.

  10. Effects of vulture exclusion on carrion consumption by facultative scavengers.

    Science.gov (United States)

    Hill, Jacob E; DeVault, Travis L; Beasley, James C; Rhodes, Olin E; Belant, Jerrold L

    2018-03-01

    Vultures provide an essential ecosystem service through removal of carrion, but globally, many populations are collapsing and several species are threatened with extinction. Widespread declines in vulture populations could increase the availability of carrion to other organisms, but the ways facultative scavengers might respond to this increase have not been thoroughly explored. We aimed to determine whether facultative scavengers increase carrion consumption in the absence of vulture competition and whether they are capable of functionally replacing vultures in the removal of carrion biomass from the landscape. We experimentally excluded 65 rabbit carcasses from vultures during daylight hours and placed an additional 65 carcasses that were accessible to vultures in forested habitat in South Carolina, USA during summer (June-August). We used motion-activated cameras to compare carrion use by facultative scavenging species between the experimental and control carcasses. Scavenging by facultative scavengers did not increase in the absence of competition with vultures. We found no difference in scavenger presence between control carcasses and those from which vultures were excluded. Eighty percent of carcasses from which vultures were excluded were not scavenged by vertebrates, compared to 5% of carcasses that were accessible to vultures. At the end of the 7-day trials, there was a 10.1-fold increase in the number of experimental carcasses that were not fully scavenged compared to controls. Facultative scavengers did not functionally replace vultures during summer in our study. This finding may have been influenced by the time of the year in which the study took place, the duration of the trials, and the spacing of carcass sites. Our results suggest that under the warm and humid conditions of our study, facultative scavengers would not compensate for loss of vultures. Carcasses would persist longer in the environment and consumption of carrion would likely shift from

  11. Test procedure for anion exchange chromatography

    International Nuclear Information System (INIS)

    Cooper, T.D.

    1994-01-01

    Plutonium from stored nitrate solutions will be sorbed onto anion exchange resins and converted to storable plutonium dioxide. Useful information will be simultaneously gained on the thermal stability and ion exchange capacity of four commercially available anion exchange resins over several years and under severe degradative conditions. This information will prove useful in predicting the safe and efficient lifetimes of these resins

  12. Tripodal Receptors for Cation and Anion Sensors

    Directory of Open Access Journals (Sweden)

    David N. Reinhoudt

    2006-08-01

    Full Text Available This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing are emphasised, along with their potential applications in optical sensors or optodes.

  13. Neutral anion receptors: design and application

    NARCIS (Netherlands)

    Antonisse, M.M.G.; Reinhoudt, David

    1998-01-01

    After the development of synthetic cation receptors in the late 1960s, only in the past decade has work started on the development of synthetic neutral anion receptors. Combination and preorganization of different anion binding groups, like amides, urea moieties, or Lewis acidic metal centers lead

  14. Antioxidant and Free Radical Scavenging Activity of Trigonella foenum-graecum L, Murraya koenigii , Coriandrum sativum and Centella asiatica

    Directory of Open Access Journals (Sweden)

    Sanghamitra Dutta

    2016-04-01

    Full Text Available Antioxidants are naturally occurring substances that combat oxidative damage in biological entities. An antioxidant achieves this by slowing or preventing the oxidation process that can damage cells in the body. It does this by getting oxidized itself in place of the cells. The aim of the present study was to evaluate the in vitro antioxidant and free radical scavenging activities of aqueous and 95% methanol leaf extracts of four herbs viz. Trigonella foenum-graecum L, Murraya koenigii, Coriandrum sativum and Centella asiatica which have frequent use in Indian cuisine. Both aqueous and 95% methanol leaf extracts have shown significant amount reducing power. Both aqueous and 95% methanol leaf extracts of Coriandrum sativum had significant DPPH radical scavenging activity with IC50 value of 0.21± 0.3 mg/L and 0.176 ± 0.008 mg/L respectively. The aqueous leaf extract of Trigonella foenum-graecum L showed low scavenging activity. Among all the leaf extracts, the aqueous leaf extract of Centella asiatica has exhibited significantly high NO radical scavenging activity (80% with IC50 value of 0.11 ± 0.17 mg/L. The aqueous leaf extracts of the samples have showed significantly high superoxide radical scavenging activity. The activity was maximum for the aqueous leaf extract of Centella asiatica, IC50 value is 4.36 ± 0.41 mg/L. anti lipid peroxide activities were very high ( 90 % for aqueous leaf extracts of Coriandrum sativum (IC50 = 0.064 ± 0.85 mg/L and Centella asiatica (IC50 = 0.066 ± 0.9mg/L at a concentration of 0.16 mg/L. The aqueous leaf extracts of the samples were found to contain large amounts of flavonoids and phenolic compounds and exhibited high antioxidant and free radical scavenging activities. These in vitro assays indicate that these plant extracts are significant source of natural antioxidants which might be helpful in preventing the progress of various oxidative stresses.

  15. Scavenger receptor-mediated recognition of maleyl bovine plasma albumin and the demaleylated protein in human monocyte macrophages

    International Nuclear Information System (INIS)

    Haberland, M.E.; Fogelman, A.M.

    1985-01-01

    Maleyl bovine plasma albumin competed on an equimolar basis with malondialdehyde low density lipoprotein (LDL) in suppressing the lysosomal hydrolysis of 125 I-labeled malondialdehyde LDL mediated by the scavenger receptor of human monocyte macrophages. Maleyl bovine plasma albumin, in which 94% of the amino groups were modified, exhibited an anodic mobility in agarose electrophoresis 1.7 times that of the native protein. Incubation of maleyl bovine plasma albumin at pH 3.5 regenerated the free amino groups and restored the protein to the same electrophoretic mobility as native albumin. Although ligands recognized by the scavenger receptor typically are anionic, the authors propose that addition of new negative charge achieved by maleylation, rather than directly forming the receptor binding site(s), induces conformational changes in albumin as a prerequisite to expression of the recognition domain(s). They conclude that the primary sequence of albumin, rather than addition of new negative charge, provides the recognition determinant(s) essential for interaction of maleyl bovine plasma albumin with the scavenger receptor

  16. Using superoxide dismutase/catalase mimetics to manipulate the redox environment of neural precursor cells

    International Nuclear Information System (INIS)

    Limoli, C. L.; Giedzinski, E.; Baure, J.; Doctrow, S. R.; Rola, R.; Fike, J. R.

    2006-01-01

    Past work has shown that neural precursor cells are predisposed to redox sensitive changes, and that oxidative stress plays a critical role in the acute and persistent changes that occur within the irradiated CNS. Irradiation leads to a marked rise in reactive oxygen species (ROS) that correlates with oxidative endpoints in vivo and reductions in neuro-genesis. To better understand the impact of oxidative stress on neural precursor cells, and to determine if radiation-induced oxidative damage and precursor cell loss after irradiation could be reduced, a series of antioxidant compounds (EUK-134, EUK-163, EUK-172, EUK-189) were tested, three of which possess both superoxide dismutase (SOD) and catalase activities and one (EUK-163) whose only significant activity is SOD. Our results show that these SOD/catalase mimetics apparently increase the oxidation of a ROS-sensitive fluorescent indicator dye, particularly after short (12 h) treatments, but that longer treatments (24 h) decrease oxidation attributable to radiation-induced ROS. Similarly, other studies found that cells incubated with CuZnSOD showed some increase in intracellular ROS levels. Subsequent data suggested that the dye-oxidising capabilities of the EUK compounds were linked to differences in their catalase activity and, most likely, their ability to catalyse per-oxidative pathways. In unirradiated mice, the EUK-134 analogue induced some decrease of proliferating precursor cells and immature neurons 48 h after radiation, an effect that may be attributable to cytotoxicity and/or inhibition of precursor proliferation. In irradiated mice, a single injection of EUK-134 was not found to be an effective radioprotector at acute times (48 h). The present results support continued development of our in vitro model as a tool for predicting certain in vivo responses, and suggest that in some biological systems the capability to scavenge superoxide but produce excess H 2 O 2 , as is known for CuZnSOD, may be

  17. Superoxide produced by Kupffer cells is an essential effector in concanavalin A-induced hepatitis in mice.

    Science.gov (United States)

    Nakashima, Hiroyuki; Kinoshita, Manabu; Nakashima, Masahiro; Habu, Yoshiko; Shono, Satoshi; Uchida, Takefumi; Shinomiya, Nariyoshi; Seki, Shuhji

    2008-12-01

    Although concanavalin A (Con-A)-induced experimental hepatitis is thought to be induced by activated T cells, natural killer T (NKT) cells, and cytokines, precise mechanisms are still unknown. In the current study, we investigated the roles of Kupffer cells, NKT cells, FasL, tumor necrosis factor (TNF), and superoxide in Con-A hepatitis in C57BL/6 mice. Removal of Kupffer cells using gadolinium chloride (GdCl(3)) from the liver completely inhibited Con-A hepatitis, whereas increased serum TNF and IFN-gamma levels were not inhibited at all. Unexpectedly, anti-FasL antibody pretreatment did not inhibit Con-A hepatitis, whereas it inhibited hepatic injury induced by a synthetic ligand of NKT cells, alpha-galactosylceramide. Furthermore, GdCl(3) pretreatment changed neither the activation-induced down-regulation of NK1.1 antigens as well as T cell receptors of NKT cells nor the increased expression of the CD69 activation antigen of hepatic T cells. CD68(+) Kupffer cells greatly increased in proportion in the early phase after Con-A injection; this increase was abrogated by GdCl(3) pretreatment. Anti-TNF antibody (Ab) pretreatment did not inhibit the increase of Kupffer cells, but it effectively suppressed superoxide/reactive oxygen production from Kupffer cells and the resulting hepatic injury. Conversely, depletion of NKT cells in mice by NK1.1 Ab pretreatment did suppress both the increase of CD68(+) Kupffer cells and Con-A hepatitis. Consistently, the diminution of oxygen radicals produced by Kupffer cells by use of free radical scavengers greatly inhibited Con-A hepatitis without suppressing cytokine production. However, adoptive transfer experiments also indicate that a close interaction/cooperation of Kupffer cells with NKT cells is essential for Con-A hepatitis. Superoxide produced by Kupffer cells may be the essential effector in Con-A hepatitis, and TNF and NKT cells support their activation and superoxide production.

  18. Superoxide reductase from the syphilis spirochete Treponema pallidum: crystallization and structure determination using soft X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Silva, Teresa; Trincão, José; Carvalho, Ana L.; Bonifácio, Cecília; Auchère, Françoise; Moura, Isabel; Moura, José J. G.; Romão, Maria J., E-mail: mromao@dq.fct.unl.pt [REQUIMTE Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2005-11-01

    Superoxide reductase is a non-haem iron-containing protein involved in resistance to oxidative stress. The oxidized form of the protein has been crystallized and its three-dimensional structure solved. A highly redundant X-ray diffraction data set was collected on a rotating-anode generator using Cu Kα X-ray radiation. Four Fe atoms were located in the asymmetric unit corresponding to four protein molecules arranged as a dimer of homodimers. Superoxide reductase is a 14 kDa metalloprotein containing a catalytic non-haem iron centre [Fe(His){sub 4}Cys]. It is involved in defence mechanisms against oxygen toxicity, scavenging superoxide radicals from the cell. The oxidized form of Treponema pallidum superoxide reductase was crystallized in the presence of polyethylene glycol and magnesium chloride. Two crystal forms were obtained depending on the oxidizing agents used after purification: crystals grown in the presence of K{sub 3}Fe(CN){sub 6} belonged to space group P2{sub 1} (unit-cell parameters a = 60.3, b = 59.9, c = 64.8 Å, β = 106.9°) and diffracted beyond 1.60 Å resolution, while crystals grown in the presence of Na{sub 2}IrCl{sub 6} belonged to space group C2 (a = 119.4, b = 60.1, c = 65.6 Å, β = 104.9°) and diffracted beyond 1.55 Å. A highly redundant X-ray diffraction data set from the C2 crystal form collected on a copper rotating-anode generator (λ = 1.542 Å) clearly defined the positions of the four Fe atoms present in the asymmetric unit by SAD methods. A MAD experiment at the iron absorption edge confirmed the positions of the previously determined iron sites and provided better phases for model building and refinement. Molecular replacement using the P2{sub 1} data set was successful using a preliminary trace as a search model. A similar arrangement of the four protein molecules could be observed.

  19. Superoxide reductase from the syphilis spirochete Treponema pallidum: crystallization and structure determination using soft X-rays

    International Nuclear Information System (INIS)

    Santos-Silva, Teresa; Trincão, José; Carvalho, Ana L.; Bonifácio, Cecília; Auchère, Françoise; Moura, Isabel; Moura, José J. G.; Romão, Maria J.

    2005-01-01

    Superoxide reductase is a non-haem iron-containing protein involved in resistance to oxidative stress. The oxidized form of the protein has been crystallized and its three-dimensional structure solved. A highly redundant X-ray diffraction data set was collected on a rotating-anode generator using Cu Kα X-ray radiation. Four Fe atoms were located in the asymmetric unit corresponding to four protein molecules arranged as a dimer of homodimers. Superoxide reductase is a 14 kDa metalloprotein containing a catalytic non-haem iron centre [Fe(His) 4 Cys]. It is involved in defence mechanisms against oxygen toxicity, scavenging superoxide radicals from the cell. The oxidized form of Treponema pallidum superoxide reductase was crystallized in the presence of polyethylene glycol and magnesium chloride. Two crystal forms were obtained depending on the oxidizing agents used after purification: crystals grown in the presence of K 3 Fe(CN) 6 belonged to space group P2 1 (unit-cell parameters a = 60.3, b = 59.9, c = 64.8 Å, β = 106.9°) and diffracted beyond 1.60 Å resolution, while crystals grown in the presence of Na 2 IrCl 6 belonged to space group C2 (a = 119.4, b = 60.1, c = 65.6 Å, β = 104.9°) and diffracted beyond 1.55 Å. A highly redundant X-ray diffraction data set from the C2 crystal form collected on a copper rotating-anode generator (λ = 1.542 Å) clearly defined the positions of the four Fe atoms present in the asymmetric unit by SAD methods. A MAD experiment at the iron absorption edge confirmed the positions of the previously determined iron sites and provided better phases for model building and refinement. Molecular replacement using the P2 1 data set was successful using a preliminary trace as a search model. A similar arrangement of the four protein molecules could be observed

  20. Creating molecular macrocycles for anion recognition

    Directory of Open Access Journals (Sweden)

    Amar H. Flood

    2016-03-01

    Full Text Available The creation and functionality of new classes of macrocycles that are shape persistent and can bind anions is described. The genesis of triazolophane macrocycles emerges out of activity surrounding 1,2,3-triazoles made using click chemistry; and the same triazoles are responsible for anion capture. Mistakes made and lessons learnt in anion recognition provide deeper understanding that, together with theory, now provides for computer-aided receptor design. The lessons are acted upon in the creation of two new macrocycles. First, cyanostars are larger and like to capture large anions. Second is tricarb, which also favors large anions but shows a propensity to self-assemble in an orderly and stable manner, laying a foundation for future designs of hierarchical nanostructures.

  1. Anion channels: master switches of stress responses.

    Science.gov (United States)

    Roelfsema, M Rob G; Hedrich, Rainer; Geiger, Dietmar

    2012-04-01

    During stress, plant cells activate anion channels and trigger the release of anions across the plasma membrane. Recently, two new gene families have been identified that encode major groups of anion channels. The SLAC/SLAH channels are characterized by slow voltage-dependent activation (S-type), whereas ALMT genes encode rapid-activating channels (R-type). Both S- and R-type channels are stimulated in guard cells by the stress hormone ABA, which leads to stomatal closure. Besides their role in ABA-dependent stomatal movement, anion channels are also activated by biotic stress factors such as microbe-associated molecular patterns (MAMPs). Given that anion channels occur throughout the plant kingdom, they are likely to serve a general function as master switches of stress responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. ACTIVITY OF SUPEROXIDE DISMUTASE ENZYME IN YEAST SACCHAROMYCES CEREVISIAE

    Directory of Open Access Journals (Sweden)

    Blažena Lavová

    2014-02-01

    Full Text Available Reactive oxygen species (ROS with reactive nitrogen species (RNS are known to play dual role in biological systems, they can be harmful or beneficial to living systems. ROS can be important mediators of damage to cell structures, including proteins, lipids and nucleic acids termed as oxidative stress. The antioxidant enzymes protect the organism against the oxidative damage caused by active oxygen forms. The role of superoxide dismutase (SOD is to accelerate the dismutation of the toxic superoxide radical, produced during oxidative energy processes, to hydrogen peroxide and molecular oxygen. In this study, SOD activity of three yeast strains Saccharomyces cerevisiae was determined. It was found that SOD activity was the highest (23.7 U.mg-1 protein in strain 612 after 28 hours of cultivation. The lowest SOD activity from all tested strains was found after 56 hours of cultivation of strain Gyöng (0.7 U.mg-1 protein.

  3. Further assessment of scavenging feed resource base

    International Nuclear Information System (INIS)

    Sonaiya, E.B.; Dazogbo, J.S.; Olukosi, O.A.

    2002-01-01

    The scavenging feed resource base (SFRB) was estimated in four villages located in a rainforest ecozone in Nigeria. The average SFRB estimated for the villages was 110 kg dry weight/family flock/year. Productivity of the birds in the villages was low. A low survivability of chicks was detected indicating a lot of wastage of eggs that could have been used for human consumption. The SFRB was low in nutritive value with less than 2 g crude protein (CP) available to each bird daily. To more quantitatively describe the SFRB, the concept of using bird unit in determining what is available to each bird is suggested. This helped in evaluating at first glance the differential accessibility of each class of bird to the SFRB and assisted in strategic supplementation of the SFRB. The use of predictors of the SFRB could help in establishing prediction equation which would help in predicting the carrying capacity of the SFRB and in determining the optimum flock biomass more accurately. (author)

  4. Scavenger hunt in the CERN Computing Centre

    CERN Multimedia

    CERN Bulletin

    2013-01-01

    Hidden among the racks of servers and disks in the CERN Computing Centre, you’ll find Hawaiian dancers, space aliens, gorillas… all LEGO® figurines! These characters were placed about the Centre for the arrival of Google’s Street View team for the world to discover.   PLEASE NOTE THAT THE COMPETITION IS OVER. ONLY FOR REFERENCE, HERE IS THE ORIGINAL ARTICLE. We’re pleased to announce our first global scavenger hunt! Spot three LEGO® figurines using Google’s Street View and you’ll be entered to win a gift of your choice from our CERN Gift Guide. A LEGO® figurine in the CERN Computing Centre, as seen on Google Street View. Here are the details: Find at least three LEGO® figurines hidden around the CERN Computing Centre using Google Street View.   Take screencaps of the figurines and e-mail the pictures to TreasureHunt-ComputingCentre@cern.ch. This email is no longer active.   The...

  5. HUNT: Scavenger Hunt with Augmented Reality

    Directory of Open Access Journals (Sweden)

    Yan Lu

    2015-04-01

    Full Text Available This project shows a creative approach to the familiar scavenger hunt game. It involved the implementation of an iPhone application, HUNT, with Augmented Reality (AR capability for the users to play the game as well as an administrative website that game organizers can use to create and make available games for users to play. Using the HUNT mobile app, users will first make a selection from a list of games, and they will then be shown a list of objects that they must seek. Once the user finds a correct object and scans it with the built-in camera on the smartphone, the application will attempt to verify if it is the correct object and then display associated multi-media AR content that may include images and videos overlaid on top of real world views. HUNT not only provides entertaining activities within an environment that players can explore, but the AR contents can serve as an educational tool. The project is designed to increase user involvement by using a familiar and enjoyable game as a basis and adding an educational dimension by incorporating AR technology and engaging and interactive multimedia to provide users with facts about the objects that they have located

  6. A numerical model of aerosol scavenging

    International Nuclear Information System (INIS)

    Bradley, M.M.; Molenkamp, C.R.

    1991-10-01

    Using a three-dimensional numerical cloud/smoke-plume model, we have simulated the burning of a large, mid-latitude city following a nuclear exchange. The model includes 18 dynamic and microphysical equations that predict the fire-driven airflow, cloud processes, and smoke-cloud interactions. In the simulation, the intense heating from the burning city produces a firestorm with updraft velocities exceeding 60 m/s. Within 15 minutes of ignition, the smoke plume penetrates the tropopause. The updraft triggers a cumulonimbus cloud that produces significant quantities of ice, snow, and hail. These solid hydrometeors, as well as cloud droplets and rain, interact with the smoke particles from the fire. At the end of the one-hour simulation, over 20% of the smoke is in slowly falling snowflakes. If the snow reaches the ground before the flakes completely sublimate (or melt and then evaporate), then only approximately 50% of the smoke will survive the scavenging processes and remain in the atmosphere to affect the global climate

  7. Magnetic graphene based nanocomposite for uranium scavenging

    Energy Technology Data Exchange (ETDEWEB)

    El-Maghrabi, Heba H. [Egyptian Petroleum Research Institute, 11727, Cairo (Egypt); Abdelmaged, Shaimaa M. [Nuclear Materials Authority, 6530 P.O. Box Maadi, Cairo (Egypt); Nada, Amr A. [Egyptian Petroleum Research Institute, 11727, Cairo (Egypt); Zahran, Fouad, E-mail: f.zahran@quim.ucm.es [Faculty of Science, Helwan University, 11795, Cairo (Egypt); El-Wahab, Saad Abd; Yahea, Dena [Faculty of Science, Ain shams University, Cairo (Egypt); Hussein, G.M.; Atrees, M.S. [Nuclear Materials Authority, 6530 P.O. Box Maadi, Cairo (Egypt)

    2017-01-15

    Graphical abstract: Graphical representation of U{sup 6+} adsorption on Magnetic Ferberite-Graphene Nanocomposite. - Highlights: • Synthesis of new magnetic wolframite bimetallic nanostructure on graphene. • A promising adsorption capacity of 455 mg/g was recorded for FG-20 within 60 min at room temperature. • The uranium removal was followed pseudo-second order kinetics and Langmuir isotherm. - Abstract: Magnetic graphene based ferberite nanocomposite was tailored by simple, green, low cost and industrial effective method. The microstructure and morphology of the designed nanomaterials were examined via XRD, Raman, FTIR, TEM, EDX and VSM. The prepared nanocomposites were introduced as a novel adsorbent for uranium ions scavenging from aqueous solution. Different operating conditions of time, pH, initial uranium concentration, adsorbent amount and temperature were investigated. The experimental data shows a promising adsorption capacity. In particular, a maximum value of 455 mg/g was obtained within 60 min at room temperature with adsorption efficiency of 90.5%. The kinetics and isotherms adsorption data were fitted with the pseudo-second order model and Langmuir equation, respectively. Finally, the designed nanocomposites were found to have a great degree of sustainability (above 5 times of profiteering) with a complete maintenance of their parental morphology and adsorption capacity.

  8. High glucose impairs superoxide production from isolated blood neutrophils

    DEFF Research Database (Denmark)

    Perner, A; Nielsen, S E; Rask-Madsen, J

    2003-01-01

    Superoxide (O(2)(-)), a key antimicrobial agent in phagocytes, is produced by the activity of NADPH oxidase. High glucose concentrations may, however, impair the production of O(2)(-) through inhibition of glucose-6-phosphate dehydrogenase (G6PD), which catalyzes the formation of NADPH. This study...... measured the acute effects of high glucose or the G6PD inhibitor dehydroepiandrosterone (DHEA) on the production of O(2)(-) from isolated human neutrophils....

  9. Superoxide radical (O2-) reactivity with respect to glutathione

    International Nuclear Information System (INIS)

    Sekaki, A.; Gardes-Albert, M.; Ferradini, C.

    1984-01-01

    Influence of superoxide radicals formed during gamma irradiation of glutathione in aerated aqueous solutions is examined. Solutions are buffered at pH7 and contain sodium formate for capture of H and OH radicals which are transformed in COO - radicals and then O 2 - radicals. G value of glutathione disparition vs glutathione concentration are given with and without enzyme or catalase. Reaction mechanism are interpreted [fr

  10. Experimental study of antiradiation properties of recombinant superoxide dismutase

    International Nuclear Information System (INIS)

    Derimedvyid', L.V.; Simonova, L.Yi.; Gertman, V.Z.

    2003-01-01

    The study involved 250 mongrel white male mice weighing 18-22 g. It was shown that the superoxide dismutase had a marked radioprotective effect. The experiments on animals exposed to ionizing radiation at a absolute and mean lethal doses demonstrate considerable increase of survival rate, mean life span of the dead animals, shifts in the peaks of lethality to later terms, reduction in the percentage of animals with intestinal syndrome,

  11. Formation and disappearance of superoxide radicals in aqueous solutions

    International Nuclear Information System (INIS)

    Allen, A.O.; Bielski, B.H.J.

    1980-01-01

    A literature review of superoxide radicals in aqueous solutions is presented covering the following: history; methods of formation of aqueous HO 2 /HO 2 - by radiolysis and photolysis, electrolysis, mixing nonaqueous solutions into water, chemical reactions, enzymatic generation of O 2 - , and photosensitization; and properties of HO 2 /O 2 - in aqueous solution, which cover spontaneous dismutation rates, pk and absorption spectra, catalyzed dismutation, thermodynamics and the so-called Haber-Weiss Reaction

  12. Graphdiyne Nanoparticles with High Free Radical Scavenging Activity for Radiation Protection.

    Science.gov (United States)

    Xie, Jiani; Wang, Ning; Dong, Xinghua; Wang, Chengyan; Du, Zhen; Mei, Linqiang; Yong, Yuan; Huang, Changshui; Li, Yuliang; Gu, Zhanjun; Zhao, Yuliang

    2018-03-06

    Numerous carbon networks materials comprised of benzene moieties, such as graphene and fullerene, have held great fascination for radioprotection because of their acknowledged good biocompatibility and strong free radical scavenging activity derived from their delocalized π-conjugated structure. Recently, graphdiyne, a new emerging carbon network material consisting of a unique chemical structure of benzene and acetylenic moieties, has gradually attracted attention in many research fields. Encouraged by its unique structure with strong conjugated π-system and highly reactive diacetylenic linkages, graphdiyne might have free radical activity and can thus be used as a radioprotector, which has not been investigated so far. Herein, for the first time, we synthesized bovine serum albumin (BSA)-modified graphdiyne nanoparticles (graphdiyne-BSA NPs) to evaluate their free radical scavenging ability and investigate their application for radioprotection both in cell and animal models. In vitro studies indicated that the graphdiyne-BSA NPs could effectively eliminate the free-radicals, decrease radiation-induced DNA damage in cells, and improve the viability of cells under ionizing radiation. In vivo experiments showed that the graphdiyne-BSA NPs could protect the bone marrow DNA of mice from radiation-induced damage and make the superoxide dismutase (SOD) and malondialdehyde (MDA) (two kinds of vital indicators of radiation-induced injury) recover back to normal levels. Furthermore, the good biocompatibility and negligible systemically toxicity responses of the graphdiyne-BSA NPs to mice were verified. All these results manifest the good biosafety and radioprotection activity of graphdiyne-BSA NPs to normal tissues. Therefore, our studies not only provide a new radiation protection platform based on graphdiyne for protecting normal tissues from radiation-caused injury but also provide a promising direction for the application of graphdiyne in the biomedicine field.

  13. Anion Gap Blood Test: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... https://medlineplus.gov/labtests/aniongapbloodtest.html Anion Gap Blood Test To use the sharing features on this page, please enable JavaScript. What is an Anion Gap Blood Test? An anion gap blood test is a way ...

  14. The research progress of several kinds of free radical scavengers

    International Nuclear Information System (INIS)

    Qian Liren; Huang Yuecheng; Cai Jianming

    2009-01-01

    Ionization radiation can generate free radicals in biological system, which could induce lipid peroxi-dation, biomacromolecule and biomembrane damage, lost of cell function, cell cycle disturbance, genetic mutation and so on. The scavenging free radicals can protect organism from radiation damage. Many radio-protective agents, such as amylase, hydroxyl-benzene derivatives, hormone, vitamin, have great abilities to protect organism from radiation via scavenging free radicals. In this paper, we mainly review the free radical scavenging effects of several kinds of radio-protective agents. (authors)

  15. Computational Design of Biomimetic Phosphate Scavengers

    DEFF Research Database (Denmark)

    Gruber, Mathias Felix; Wood, Elizabeth Baker; Truelsen, Sigurd Friis

    2015-01-01

    Phosphorus has long been the target of much research, but in recent years the focus has shifted from being limited only to reducing its detrimental environmental impact, to also looking at how it is linked to the global food security. Therefore, the interest in finding novel techniques for phosph......Phosphorus has long been the target of much research, but in recent years the focus has shifted from being limited only to reducing its detrimental environmental impact, to also looking at how it is linked to the global food security. Therefore, the interest in finding novel techniques...... for phosphorus recovery, as well as improving existing techniques, has increased. In this study we apply a hybrid simulation approach of molecular dynamics and quantum mechanics to investigate the binding modes of phosphate anions by a small intrinsically disordered peptide. Our results confirm...... phosphate could be the starting point of new novel technological approaches toward phosphorus recovery, and they represent an excellent model system for investigating the nature and dynamics of functional de novo designed intrinsically disordered proteins....

  16. Evaluation of superoxide dismutase activity and its impact on semen quality parameters of infertile men.

    Directory of Open Access Journals (Sweden)

    Jolanta Saczko

    2008-04-01

    Full Text Available The evaluation of superoxide dismutase (SOD activity, as one of the most important antioxidative defence enzymes, in seminal plasma of patients consulting for male infertility was presented in the article. The study included also the determination of its influence on selected human semen quality parameters. The material represents semen samples obtained from 15 men, which were divided into two groups: Group I (n=10 including patients consulting for infertility and Group II (n=5 containing healthy sperm donors as a control. All of the semen samples were cryopreserved and stored in liquid nitrogen. The frozen samples were thawed at the same time and then SOD activity was determined spectrophotometrically. The analysis of the investigations results indicates a significantly lower semen SOD activity detected in oligoasthenozoospermic patients, comparing to the activity found in normospermic men. The study showed a positive correlation between SOD activity in seminal plasma and semen quality parameters--sperm concentration and overall motility, which are regarded as the most important for normal fertilizing ability of the spermatozoa. Significantly lower SOD activity in seminal plasma of infertile patients, comparing to healthy sperm donors, as well as positive correlation and beneficial impact of SOD activity on human semen quality parameters seem to confirm the observations, that decreased seminal plasma scavenger antioxidant capacity, particularly in form of low SOD activity, can be responsible for male infertility. This trial shows that SOD activity survey in seminal plasma could be a useful tool for determining sperm fertilization potential and could improve the diagnosis of male infertility.

  17. Anion-π Catalysts with Axial Chirality.

    Science.gov (United States)

    Wang, Chao; Matile, Stefan

    2017-09-04

    The idea of anion-π catalysis is to stabilize anionic transition states by anion-π interactions on aromatic surfaces. For asymmetric anion-π catalysis, π-acidic surfaces have been surrounded with stereogenic centers. This manuscript introduces the first anion-π catalysts that operate with axial chirality. Bifunctional catalysts with tertiary amine bases next to π-acidic naphthalenediimide planes are equipped with a bulky aromatic substituent in the imide position to produce separable atropisomers. The addition of malonic acid half thioesters to enolate acceptors is used for evaluation. In the presence of a chiral axis, the selective acceleration of the disfavored but relevant enolate addition was much better than with point chirality, and enantioselectivity could be observed for the first time for this reaction with small-molecule anion-π catalysts. Enantioselectivity increased with the π acidity of the π surface, whereas the addition of stereogenic centers around the aromatic plane did not cause further improvements. These results identify axial chirality of the active aromatic plane generated by atropisomerism as an attractive strategy for asymmetric anion-π catalysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Resveratrol induces acute endothelium-dependent renal vasodilation mediated through nitric oxide and reactive oxygen species scavenging

    Science.gov (United States)

    Gordish, Kevin L.

    2014-01-01

    Resveratrol is suggested to have beneficial cardiovascular and renoprotective effects. Resveratrol increases endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) synthesis. We hypothesized resveratrol acts as an acute renal vasodilator, mediated through increased NO production and scavenging of reactive oxygen species (ROS). In anesthetized rats, we found 5.0 mg/kg body weight (bw) of resveratrol increased renal blood flow (RBF) by 8% [from 6.98 ± 0.42 to 7.54 ± 0.17 ml·min−1·gram of kidney weight−1 (gkw); n = 8; P resveratrol before and after 10 mg/kg bw of the NOS inhibitor N-nitro-l-arginine methyl ester (l-NAME). l-NAME reduced the increase in RBF to resveratrol by 54% (from 0.59 ± 0.05 to 0.27 ± 0.06 ml·min−1·gkw−1; n = 10; P resveratrol before and after 1 mg/kg bw tempol, a superoxide dismutase mimetic. Resveratrol increased RBF 7.6% (from 5.91 ± 0.32 to 6.36 ± 0.12 ml·min−1·gkw−1; n = 7; P resveratrol-induced increase in RBF (from 0.45 ± 0.12 to 0.10 ± 0.05 ml·min−1·gkw−1; n = 7; P Resveratrol-induced vasodilation remained unaffected. We conclude intravenous resveratrol acts as an acute renal vasodilator, partially mediated by increased NO production/NO bioavailability and superoxide scavenging but not by inducing vasodilatory cyclooxygenase products. PMID:24431202

  19. Luminol-and lucigenin-amplified chemiluminescence with rat liver microsomes. Kinetics and influence of ascorbic acid, glutathione, dimethylsulfoxide, N-t-butyl-a-phenyl-nitrone, copper-ions and a copper complex, catalase, superoxide dismutase, hexobarbital and aniline.

    Science.gov (United States)

    Klinger, W; Karge, E; Kretzschmar, M; Rost, M; Schulze, H P; Dargel, R; Reinemann, C; Rein, H

    1996-07-01

    For the investigation of luminol (LM)-and lucigenin (LC)-amplified chemiluminescence (CL) in rat liver microsomes using both a liquid-scintillation counter (LKB/Wallac 1219 Rackbeta) and a Berthold luminometer (AutoLumat LB 953) optimal incubation mixtures and conditions and basic kinetics have been established. Whereas calibration curves for both LM- and LC-CL are performed with hydrogenperoxide (LC quantum yield is 6.25 fold higher as that of LM), distinct differences were revealed with microsomes, indicating that different reactive oxygen species (ROS) are determined: Both LM- and LC-CL follow the kinetics of enzymatic reactions in terms of dependence on protein and NADPH or NADH concentration, time course, temperature etc., but with differences. LM-CL does not work without addition of Fe2+, whereas LC-CL does. Both copper ions and copper bound in a complex abolish CL, LC-CL being much more sensitive. Isolated cytochrome P-450 (P450) and NADPH P450 reductase from liver of pheno-barbital treated rats alone proved to be inactive in LM-and LC-CL production, whereas te combination 1:1 without and with addition of lipid was highly active in both LM-and LC-CL. Ascorbic acid and glutathione as scavengers diminish both LM- and LC-CL in concentrations higher then 10(5). Dimethyl-sulfoxide (DMSO) was ineffective in LM-CL up to concentrations of 0.2 M, the very high concentration of 2 M diminished LM-CL only to 1/3. LC-CL was diminished starting at concentrations of 100 mM and at 2 M only 10% of maximum LC-CL was observed. The trap substance N-t-butyl-a-phenylnitrone (BNP) also diminished LC-CL more effectively than LM-CL. Clearcut differences were revealed by the addition of catalase and superoxide dismutase: both enzymes diminished LM-CL only, without any influence on LC-CL. Hexobarbital, a potent uncoupler of P450, enhances LM-CL fivefold, whereas LC-CL is barely influenced. Aniline (without uncoupling capability) decreased both LM-and LC-CL increasingly with increasing

  20. Loading of free radicals on the functional graphene combined with liquid chromatography-tandem mass spectrometry screening method for the detection of radical-scavenging natural antioxidants.

    Science.gov (United States)

    Wang, Guoying; Shi, Gaofeng; Chen, Xuefu; Chen, Fuwen; Yao, Ruixing; Wang, Zhenju

    2013-11-13

    A novel free radical reaction combined with liquid chromatography electrospray ionization tandem mass spectrometry (FRR-LC-PDA-ESI/APCI-MS/MS) screening method was developed for the detection and identification of radical-scavenging natural antioxidants. Functionalized graphene was prepared by chemical method for loading free radicals (superoxide radical, peroxyl radical and PAHs free radical). Separation was performed with and without a preliminary exposure of the sample to specific free radicals on the functionalized graphene, which can facilitate reaction kinetics (charge transfers) between free radicals and potential antioxidants. The difference in chromatographic peak areas is used to identify potential antioxidants. The structure of the antioxidants in one sample (Swertia chirayita) is identified using MS/MS and comparison with standards. Thirteen compounds were found to possess potential antioxidant activity, and their free radical-scavenging capacities were investigated. The thirteen compounds were identified as 1,3,5-trihydroxyxanthone-8-O-β-D-glucopyranoside (PD1), norswertianin (PD2), 1,3,5,8-tetrahydroxyxanthone (PD3), 3, 3', 4', 5, 8-penta hydroxyflavone-6-β-D-glucopyranosiduronic acid-6'-pentopyranose-7-O-glucopyranoside (PD4), 1,5,8-trihydroxy-3-methoxyxanthone (PD5), swertiamarin (PS1), 2-C-β-D-glucopyranosyl-1,3,7-trihydroxylxanthone (PS2), 1,3,7-trihydroxylxanthone-8-O-β-D-glucopyranoside (PL1), 1,3,8-trihydroxyl xanthone-5-O-β-D-glucopyranoside (PL2), 1,3,7-trihydroxy-8-methoxyxanthone (PL3), 1,2,3-trihydroxy-7,8-dimethoxyxanthone (PL4), 1,8-dihydroxy-2,6-dimethoxy xanthone (PL5) and 1,3,5,8-tetramethoxydecussatin (PL6). The reactivity and SC50 values of those compounds were investigated, respectively. PD4 showed the strongest capability for scavenging PAHs free radical; PL4 showed prominent scavenging capacities in the lipid peroxidation processes; it was found that all components in S. chirayita exhibited weak reactivity in the superoxide

  1. Free Radical Scavenging and Cellular Antioxidant Properties of Astaxanthin.

    Science.gov (United States)

    Dose, Janina; Matsugo, Seiichi; Yokokawa, Haruka; Koshida, Yutaro; Okazaki, Shigetoshi; Seidel, Ulrike; Eggersdorfer, Manfred; Rimbach, Gerald; Esatbeyoglu, Tuba

    2016-01-14

    Astaxanthin is a coloring agent which is used as a feed additive in aquaculture nutrition. Recently, potential health benefits of astaxanthin have been discussed which may be partly related to its free radical scavenging and antioxidant properties. Our electron spin resonance (ESR) and spin trapping data suggest that synthetic astaxanthin is a potent free radical scavenger in terms of diphenylpicryl-hydrazyl (DPPH) and galvinoxyl free radicals. Furthermore, astaxanthin dose-dependently quenched singlet oxygen as determined by photon counting. In addition to free radical scavenging and singlet oxygen quenching properties, astaxanthin induced the antioxidant enzyme paroxoanase-1, enhanced glutathione concentrations and prevented lipid peroxidation in cultured hepatocytes. Present results suggest that, beyond its coloring properties, synthetic astaxanthin exhibits free radical scavenging, singlet oxygen quenching, and antioxidant activities which could probably positively affect animal and human health.

  2. Performance of Chickens under Semi-scavenging Conditions: A ...

    African Journals Online (AJOL)

    Performance of Chickens under Semi-scavenging Conditions: A Case Study of ... per household was lost per year due to diseases, predators, accidents, and theft. ... as well as chicken house construction so as to avoid the risks of predators.

  3. Nitric oxide radical scavenging potential of some Elburz medicinal ...

    African Journals Online (AJOL)

    ONOS

    2010-08-09

    Aug 9, 2010 ... NO is also implicated in inflammation and other pathological ... adhesion and prevention of smooth muscle cell prolife- ... reduce NO levels is making use of NO scavengers. For ..... human nutrition and health are considerable.

  4. Antimicrobial and free radical scavenging activities of five ...

    African Journals Online (AJOL)

    Extracts from five indigenous Palestinian medicinal plants including Rosmarinus officinalis, Pisidium guajava, Punica granatum peel, grape seeds and Teucrium polium were investigated for antimicrobial and free radical scavenging activities against eight microorganisms, using well diffusion method. The microorganisms ...

  5. Shark scavenging behavior in the presence of competition

    Directory of Open Access Journals (Sweden)

    Shannon P. GERRY, Andrea J. SCOTT

    2010-02-01

    Full Text Available The distribution of organisms within a community can often be determined by the degree of plasticity or degree of specialization of resource acquisition. Resource acquisition is often based on the morphology of an organism, behavior, or a combination of both. Performance tests of feeding can identify the possible interactions that allow one species to better exploit a prey item. Scavenging behaviors in the presence or absence of a competitor were investigated by quantifying prey selection in a trophic generalist, spiny dogfish Squalus acanthias, and a trophic specialist, smooth-hounds Mustelus canis, in order to determine if each shark scavenged according to its jaw morphology. The diet of dogfish consists of small fishes, squid, ctenophores, and bivalves; they are expected to be nonselective predators. Smooth-hounds primarily feed on crustaceans; therefore, they are predicted to select crabs over other prey types. Prey selection was quantified by ranking each prey item according to the order it was consumed. Dietary shifts were analyzed by comparing the percentage of each prey item selected during solitary versus competitive scavenging. When scavenging alone, dogfish prefer herring and squid, which are easily handled by the cutting dentition of dogfish. Dogfish shift their diet to include a greater number of prey types when scavenging with a competitor. Smooth-hounds scavenge on squid, herring, and shrimp when alone, but increase the number of crabs in the diet when scavenging competitively. Competition causes smooth-hounds to scavenge according to their jaw morphology and locomotor abilities, which enables them to feed on a specialized resource [Current Zoology 56 (1: 100–108 2010].

  6. Bergenin Content and Free Radical Scavenging Activity of Bergenia Extracts. .

    Science.gov (United States)

    Hendrychová, Helena; Martin, Jan; Tůmová, Lenka; Kočevar-Glavač, Nina

    2015-07-01

    Our research was focused on the evaluation of bergenin content and free radical scavenging activity of extracts prepared from three different species of Bergenia - B. crassifolia (L.) Fritsch., B. ciliata (Haw.) Sternb. and B. x ornata Stein. collected during different seasons. Using an HPLC method, the highest total amount of bergenin was revealed in the leaves of B. x ornata and B. crassifolia (4.9 - 5.1 mg x g(-1)). Free radical scavenging power was determined by two methods--FRAP and NADH. The best free radical scavengers were B. crassifolia (FRAP: 6.7 - 15.9 mg GAE. 100g(-1); NADH: 20.3 - 50.9%) and B. ornata (FRAP: 13.7 - 15.2 mg GAE. 100g(-1); NADH: 29.3 - 31.1%). The lowest content of bergenin and the weakest radical scavenger was B. ciliata (bergenin: 3.1 mg x g(-1); FRAP: 5.5 - 11.0 mg GAE.100g(-1); NADH: 23.2 - 25.6%). The presence of a large percentage of bergenin is responsible for the radical scavenging activity, as shown by the results from the FRAP and NADH assays. Significant, positive correlation was found between bergenin content and radical scavenging activity in both methods.

  7. Weight savings in aerospace vehicles through propellant scavenging

    Science.gov (United States)

    Schneider, Steven J.; Reed, Brian D.

    1988-01-01

    Vehicle payload benefits of scavenging hydrogen and oxygen propellants are addressed. The approach used is to select a vehicle and a mission and then select a scavenging system for detailed weight analysis. The Shuttle 2 vehicle on a Space Station rendezvous mission was chosen for study. The propellant scavenging system scavenges liquid hydrogen and liquid oxygen from the launch propulsion tankage during orbital maneuvers and stores them in well insulated liquid accumulators for use in a cryogenic auxiliary propulsion system. The fraction of auxiliary propulsion propellant which may be scavenged for propulsive purposes is estimated to be 45.1 percent. The auxiliary propulsion subsystem dry mass, including the proposed scavenging system, an additional 20 percent for secondary structure, an additional 5 percent for electrical service, a 10 percent weight growth margin, and 15.4 percent propellant reserves and residuals is estimated to be 6331 kg. This study shows that the fraction of the on-orbit vehicle mass required by the auxiliary propulsion system of this Shuttle 2 vehicle using this technology is estimated to be 12.0 percent compared to 19.9 percent for a vehicle with an earth-storable bipropellant system. This results in a vehicle with the capability of delivering an additional 7820 kg to the Space Station.

  8. An illicit economy: scavenging and recycling of medical waste.

    Science.gov (United States)

    Patwary, Masum A; O'Hare, William Thomas; Sarker, M H

    2011-11-01

    This paper discusses a significant illicit economy, including black and grey aspects, associated with medical waste scavenging and recycling in a megacity, considering hazards to the specific group involved in scavenging as well as hazards to the general population of city dwellers. Data were collected in Dhaka, Bangladesh, using a variety of techniques based on formal representative sampling for fixed populations (such as recycling operatives) and adaptive sampling for roaming populations (such as scavengers). Extremely hazardous items (including date expired medicines, used syringes, knives, blades and saline bags) were scavenged, repackaged and resold to the community. Some HCE employees were also observed to sell hazardous items directly to scavengers, and both employees and scavengers were observed to supply contaminated items to an informal plastics recycling industry. This trade was made possible by the absence of segregation, secure storage and proper disposal of medical waste. Corruption, a lack of accountability and individual responsibility were also found to be contributors. In most cases the individuals involved with these activities did not understand the risks. Although motivation was often for personal gain or in support of substance abuse, participants sometimes felt that they were providing a useful service to the community. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Weight savings in aerospace vehicles through propellant scavenging

    Science.gov (United States)

    Schneider, Steven J.; Reed, Brian D.

    1988-05-01

    Vehicle payload benefits of scavenging hydrogen and oxygen propellants are addressed. The approach used is to select a vehicle and a mission and then select a scavenging system for detailed weight analysis. The Shuttle 2 vehicle on a Space Station rendezvous mission was chosen for study. The propellant scavenging system scavenges liquid hydrogen and liquid oxygen from the launch propulsion tankage during orbital maneuvers and stores them in well insulated liquid accumulators for use in a cryogenic auxiliary propulsion system. The fraction of auxiliary propulsion propellant which may be scavenged for propulsive purposes is estimated to be 45.1 percent. The auxiliary propulsion subsystem dry mass, including the proposed scavenging system, an additional 20 percent for secondary structure, an additional 5 percent for electrical service, a 10 percent weight growth margin, and 15.4 percent propellant reserves and residuals is estimated to be 6331 kg. This study shows that the fraction of the on-orbit vehicle mass required by the auxiliary propulsion system of this Shuttle 2 vehicle using this technology is estimated to be 12.0 percent compared to 19.9 percent for a vehicle with an earth-storable bipropellant system. This results in a vehicle with the capability of delivering an additional 7820 kg to the Space Station.

  10. High Vacuum Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar; Hadjichristidis, Nikolaos; Mays, Jimmy

    2015-01-01

    Anionic polymerization high vacuum techniques (HVTs) are the most suitable for the preparation of polymer samples with well-defined complex macromolecular architectures. Though HVTs require glassblowing skill for designing and making polymerization

  11. Superoxide dismutase levels and peak expiratory flow in asthmatic children

    Directory of Open Access Journals (Sweden)

    Arie Kurniasih

    2016-11-01

    Full Text Available Background Asthma is a chronic inflammatory process which involve variety of cells such as inflammatory mediators, reactive oxygen species (ROS, and cytokines. The inflammatory process would be exacerbated in the presence of oxidative stress. Superoxide dismutase (SOD is the first important enzyme to protect the respiratory tract against oxidative stress. The decreased of SOD has a correlation with increased of airway obstruction and bronchospasm. Objective To assess for a correlation between superoxide dismutase (SOD levels and peak expiratory flow, as well as to determine the impact of SOD levels for predicting asthma attacks. Methods We conducted a prospective cohort study at Dr. Sardjito Hospital, Yogyakarta, between February and April 2011 involving asthmatic children aged 5-18 years. Subjects’ serum SOD levels and peak expiratory flow were measured at the same time point. We then performed a prospective study following up on the same subjects to find out if they had a recurrent asthma attack within one month of the tests. We also reassessed their peak expiratory flow one month after blood specimens were obtained. Results Thirty-nine patients were enrolled in this study. There was no significant correlation between SOD level and peak expiratory flow [r=0.289; 95%CI -0.025 to 0.47; P=0.074]. However, older age was significantly associated with higher peak expiratory flow (=0.5; 95%CI 3.10 to 11.57; P=0.01. Lower levels of SOD increased the risk of asthma attacks in a month following the initial measurements (RR=5.5; 95%CI 1.6 to 18.9; P=0.009. Conclusion Superoxide dismutase (SOD level is not significantly associated with peak expiratory flow. However, we find a relationship between older age and higher peak expiratory flow and a relationship between lower SOD levels and risk of asthma attacks within one month following the tests.

  12. A lithium-oxygen battery based on lithium superoxide.

    Science.gov (United States)

    Lu, Jun; Lee, Yun Jung; Luo, Xiangyi; Lau, Kah Chun; Asadi, Mohammad; Wang, Hsien-Hau; Brombosz, Scott; Wen, Jianguo; Zhai, Dengyun; Chen, Zonghai; Miller, Dean J; Jeong, Yo Sub; Park, Jin-Bum; Fang, Zhigang Zak; Kumar, Bijandra; Salehi-Khojin, Amin; Sun, Yang-Kook; Curtiss, Larry A; Amine, Khalil

    2016-01-21

    Batteries based on sodium superoxide and on potassium superoxide have recently been reported. However, there have been no reports of a battery based on lithium superoxide (LiO2), despite much research into the lithium-oxygen (Li-O2) battery because of its potential high energy density. Several studies of Li-O2 batteries have found evidence of LiO2 being formed as one component of the discharge product along with lithium peroxide (Li2O2). In addition, theoretical calculations have indicated that some forms of LiO2 may have a long lifetime. These studies also suggest that it might be possible to form LiO2 alone for use in a battery. However, solid LiO2 has been difficult to synthesize in pure form because it is thermodynamically unstable with respect to disproportionation, giving Li2O2 (refs 19, 20). Here we show that crystalline LiO2 can be stabilized in a Li-O2 battery by using a suitable graphene-based cathode. Various characterization techniques reveal no evidence for the presence of Li2O2. A novel templating growth mechanism involving the use of iridium nanoparticles on the cathode surface may be responsible for the growth of crystalline LiO2. Our results demonstrate that the LiO2 formed in the Li-O2 battery is stable enough for the battery to be repeatedly charged and discharged with a very low charge potential (about 3.2 volts). We anticipate that this discovery will lead to methods of synthesizing and stabilizing LiO2, which could open the way to high-energy-density batteries based on LiO2 as well as to other possible uses of this compound, such as oxygen storage.

  13. Low-temperature phase transformation in rubidium and cesium superoxides

    International Nuclear Information System (INIS)

    Alikhanov, R.A.; Toshich, B.S.; Smirnov, L.S.

    1980-01-01

    Crystal structures of rubidium and cesium superoxides which are two interpenetrating lattices of metal ions and oxygen molecule ions reveal a number of phase transformations with temperature decrease. Crystal-phase transformations in CsO 2 are 1-2, 2-3 and low temperature one 3-4 at 378, 190 and 10 K. Low temperature transition is considered as the instability of lattice quadrupoles of oxygen molecule ions to phase transformation of the order-disorder type. Calculated temperatures of low temperature phase transformations in PbO 2 and CsO 2 agree with experimental calculations satisfactory [ru

  14. Radioprotective effects of bacterial superoxide dismutase on mice

    International Nuclear Information System (INIS)

    Hu Tianxi

    1992-01-01

    The radioprotective effects of bacterial superoxide dismutase (b-SOD) on the mice irradiated by 8 Gy γ-ray were investigated. The results showed that when b-SOD was injected before and after irradiation, the survival fraction of mice is increased 50% and 30% respectively. The former treatment could increase the DNA synthesis of the myeloid cells and spleen's lymphocytes, decrease the LPO of tissue homogenates and the hemolysis of erythrocytes significantly. The mechanism that b-SOD can drop the radiation injury of the mice was discussed

  15. Free radical scavenging activities measured by electron spin resonance spectroscopy and B16 cell antiproliferative behaviors of seven plants.

    Science.gov (United States)

    Calliste, C A; Trouillas, P; Allais, D P; Simon, A; Duroux, J L

    2001-07-01

    In an effort to discover new antioxidant natural compounds, seven plants that grow in France (most of them in the Limousin countryside) were screened. Among these plants, was the extensively studied Vitis vinifera as reference. For each plant, sequential percolation was realized with five solvents of increasing polarities (hexane, chloroform, ethyl acetate, methanol, and water). Free radical scavenging activities were examined in different systems using electron spin resonance (ESR) spectroscopy. These assays were based on the stable free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH), the hydroxyl radicals generated by a Fenton reaction, and the superoxide radicals generated by the X/XO system. Antiproliferative behavior was studied on B16 melanoma cells. ESR results showed that three plants (Castanea sativa, Filipendula ulmaria, and Betula pendula) possessed, for the most polar fractions (presence of phenolic compounds), high antioxidant activities in comparison with the Vitis vinifera reference. Gentiana lutea was the only one that presented a hydroxyl scavenging activity for the ethyl acetate and chloroform fractions. The antiproliferative test results showed that the same three plants are the most effective, but for the apolar fractions (chloroform and hexane).

  16. Electron scavenging in ethylene glycol-water glass at 4 and 77 K: scavenging of trapped vs mobile electrons. [. gamma. -rays, x radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, D P; Kevan, L [Wayne State Univ., Detroit, Mich. (USA). Dept. of Chemistry; Steen, H B

    1976-01-01

    Electron scavenging efficiencies have been measured at 77 and 4 K in ethylene glycol-water glass for the following scavengers which span a 250-fold range of scavenger efficiencies at 77 K: HCl, NaNO/sub 3/ and K/sub 2/Cr0/sub 4/. The range of scavenging efficiencies decreases to 62 at 4 K with the largest relative change occurring for the less efficient scavengers. These results are suggested to be most consistent with a model in which scavenging occurs by tunneling from shallowly and deeply trapped electrons at 4 and 77 K, respectively.

  17. Photoelectron spectroscopy of the 6-azauracil anion.

    Science.gov (United States)

    Chen, Jing; Buonaugurio, Angela; Dolgounitcheva, Olga; Zakrzewski, V G; Bowen, Kit H; Ortiz, J V

    2013-02-14

    We report the photoelectron spectrum of the 6-azauracil anion. The spectrum is dominated by a broad band exhibiting a maximum at an electron binding energy (EBE) of 1.2 eV. This spectral pattern is indicative of a valence anion. Our calculations were carried out using ab initio electron propagator and other many-body methods. Comparison of the anion and corresponding neutral of 6-azauracil with those of uracil shows that substituting a nitrogen atom for C-H at the C6 position of uracil gives rise to significant changes in the electronic structure of 6-azauracil versus that of uracil. The adiabatic electron affinity (AEA) of the canonical 6-azauracil tautomer is substantially larger than that of canonical uracil. Among the five tautomeric, 6-azauracil anions studied computationally, the canonical structure was found to be the most stable. The vertical detachment energies (VDE) of the canonical, valence-bound anion of 6-azauracil and its closest "very-rare" tautomer have been calculated. Electron propagator calculations on the canonical anion yield a VDE value that is in close agreement with the experimentally determined VDE value of 1.2 eV. The AEA value of 6-azauracil, assessed at the CCSD(T) level of theory to be 0.5 eV, corresponds with the EBE value of the onset of the experimental spectrum.

  18. Quantitative optical measurement of mitochondrial superoxide dynamics in pulmonary artery endothelial cells

    Directory of Open Access Journals (Sweden)

    Zahra Ghanian

    2018-01-01

    Full Text Available Reactive oxygen species (ROS play a vital role in cell signaling and redox regulation, but when present in excess, lead to numerous pathologies. Detailed quantitative characterization of mitochondrial superoxide anion (O2•− production in fetal pulmonary artery endothelia cells (PAECs has never been reported. The aim of this study is to assess mitochondrial O2•− production in cultured PAECs over time using a novel quantitative optical approach. The rate, the sources, and the dynamics of O2•− production were assessed using targeted metabolic modulators of the mitochondrial electron transport chain (ETC complexes, specifically an uncoupler and inhibitors of the various ETC complexes, and inhibitors of extra-mitochondrial sources of O2•−. After stabilization, the cells were loaded with nanomolar mitochondrial-targeted hydroethidine (Mito-HE, MitoSOX online during the experiment without washout of the residual dye. Time-lapse fluorescence microscopy was used to monitor the dynamic changes in O2•− fluorescence intensity over time in PAECs. The transient behaviors of the fluorescence time course showed exponential increases in the rate of O2•− production in the presence of the ETC uncoupler or inhibitors. The most dramatic and the fastest increase in O2•− production was observed when the cells were treated with the uncoupling agent, PCP. We also showed that only the complex IV inhibitor, KCN, attenuated the marked surge in O2•− production induced by PCP. The results showed that mitochondrial respiratory complexes I, III and IV are sources of O2•− production in PAECs, and a new observation that ROS production during uncoupling of mitochondrial respiration is mediated in part via complex IV. This novel method can be applied in other studies that examine ROS production under stress condition and during ROS-mediated injuries in vitro.

  19. Effect of fluticasone propionate on neutrophil chemotaxis, superoxide generation, and extracellular proteolytic activity in vitro.

    Science.gov (United States)

    Llewellyn-Jones, C G; Hill, S L; Stockley, R A

    1994-03-01

    Corticosteroids are widely used in the treatment of many inflammatory conditions but the exact mode of action on neutrophil function is uncertain. Fluticasone propionate is a new topically active synthetic steroid which can be measured in body fluids and which undergoes first pass metabolism. The effects of fluticasone propionate on the function of neutrophils isolated from normal, healthy control subjects and on the chemotactic activity of sputum sol phase were assessed. Preincubation of neutrophils with fluticasone propionate reduced the chemotactic response to 10(-8) mol/l F-Met-Leu-Phe (FMLP) and to a 1:5 dilution of sputum sol phase in a dose dependent manner. Furthermore, when fluticasone propionate was added to sputum from eight patients with stable chronic obstructive bronchitis the chemotactic activity of a 1:5 dilution of the sol phase fell from a mean (SE) value of 22.2 (1.21) cells/field to 19.6 (0.89), 17.1 (0.74), and 11.9 (0.6) cells field at 1 mumol/l, 10 mumol/l, and 100 mumol/l, respectively. In further experiments fluticasone propionate preincubated with neutrophils inhibited fibronectin degradation by resting cells and by cells stimulated by FMLP (15.2% inhibition of resting cells, 5.1% inhibition of stimulated cells with 1 mumol/l fluticasone propionate, 24% and 18.7% inhibition respectively at 100 mumol/l fluticasone propionate. Fluticasone propionate had no effect on generation of superoxide anion by resting or stimulated cells. These results indicate that fluticasone propionate has a direct suppressive effect on several aspects of neutrophil function and may suggest a role for this agent in the modulation of neutrophil mediated damage to connective tissue.

  20. Effects of scavengers of reactive oxygen and radical species on cell survival following photodynamic treatment in vitro: comparison to ionizing radiation

    International Nuclear Information System (INIS)

    Henderson, B.W.; Miller, A.C.

    1986-01-01

    The effects of various scavengers of reactive oxygen and/or radical species on cell survival in vitro of EMT6 and CHO cells following photodynamic therapy (PDT) or gamma irradiation were compared. None of the agents used exhibited major direct cytotoxicity. Likewise, none interfered with cellular porphyrin uptake, and none except tryptophan altered singlet oxygen production during porphyrin illumination. The radioprotector cysteamine (MEA) was equally effective in reducing cell damage in both modalities. In part, this protection seems to have been induced by oxygen consumption in the system due to MEA autoxidation under formation of H 2 O 2 . The addition of catalase, which prevents H 2 O 2 buildup, reduced the effect of MEA to the same extent in both treatments. Whether the remaining protection was due to MEA's radical-reducing action or some remaining oxygen limitation is unclear. The protective action of MEA was not mediated by a doubling of cellular glutathione levels, since addition of buthionine sulfoximine, which prevented glutathione increase, did not diminish the observed MEA protection. The hydroxyl radical scavenger mannitol also afforded protection in both, but it was approximately twice as effective in gamma irradiation as in PDT. This is consistent with the predominant role of OH radicals in ionizing radiation damage and their presumed minor involvement in PDT damage. Superoxide dismutase, a scavenger of O 2 , acted as a radiation protector but was not significantly effective in PDT. Catalase, which scavenges H 2 O 2 , was ineffective in both modalities. Tryptophan, an efficient singlet oxygen scavenger, reduced cell death through PDT by several orders of magnitude while being totally ineffective in gamma irradiation. These data reaffirm the predominant role of 1O2 in the photodynamic cell killing but also indicate some involvement of free radical species

  1. Real-time cytometric assay of nitric oxide and superoxide interaction in peripheral blood monocytes: A no-wash, no-lyse kinetic method.

    Science.gov (United States)

    Balaguer, Susana; Diaz, Laura; Gomes, Angela; Herrera, Guadalupe; O'Connor, José-Enrique; Urios, Amparo; Felipo, Vicente; Montoliu, Carmina

    2017-05-01

    Nitric oxide (NO) and its related reactive nitrogen species (RNS) and reactive oxygen species (ROS) are crucial in monocyte responses against pathogens and also in inflammatory conditions. Central to both processes is the generation of the strong oxidant peroxynitrite (ONOO) by a fast reaction between NO and superoxide anion. ONOO is a biochemical junction for ROS- and RNS cytotoxicity and causes protein nitrosylation. Circulating by-products of protein nitrosylation are early biomarkers of inflammation-based conditions, including minimal hepatic encephalopathy in cirrhotic patients (Montoliu et al., Am J Gastroenterol 2011; 106:1629-1637). In this context, we have designed a novel no-wash, no-lyse real-time flow cytometry assay to detect and follow-up the NO- and superoxide-driven generation of ONOO in peripheral blood monocytes. Whole blood samples were stained with CD45 and CD14 antibodies plus one of a series of fluorescent probes sensitive to RNS, ROS, or glutathione, namely 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate, dihydrorhodamine 123, MitoSOX Red, dihydroethidium, and 5-chloromethylfluorescein diacetate. Samples were exposed sequentially to a NO donor and three different superoxide donors, and analyzed in real time by kinetic flow cytometry. Relevant kinetic descriptors, such as the rate of fluorescence change, were calculated from the kinetic plot. The generation of ONOO, which consumes both NO and superoxide, led to a decrease in the intensity of the cellular fluorescence of the probes sensitive to these molecules. This is a fast and simple assay that may be used to monitor the intracellular generation of ONOO in physiological, pathological, and pharmacological contexts. © 2015 International Clinical Cytometry Society. © 2015 International Clinical Cytometry Society.

  2. Determination of superoxide dismutase mimetic activity in common culinary herbs.

    Science.gov (United States)

    Chohan, Magali; Naughton, Declan P; Opara, Elizabeth I

    2014-01-01

    Under conditions of oxidative stress, the removal of superoxide, a free radical associated with chronic inflammation, is catalysed by superoxide dismutase (SOD). Thus in addition to acting as an antioxidant, SOD may also be utilized as an anti-inflammatory agent. Some plant derived foods have been shown to have SOD mimetic (SODm) activity however it is not known if this activity is possessed by culinary herbs which have previously been shown to possess both antioxidant and anti-inflammatory properties. The aim of the study was to ascertain if the culinary herbs rosemary, sage and thyme possess SODm activity, and to investigate the influence of cooking and digestion on this activity. Transition metal ion content was also determined to establish if it could likely contribute to any SODm activity detected. All extracts of uncooked (U), cooked (C) and cooked and digested (C&D) herbs were shown to possess SODm activity, which was significantly correlated with previously determined antioxidant and anti-inflammatory activities of these herbs. SODm activity was significantly increased following (C) and (C&D) for rosemary and sage only. The impact of (C) and (C&D) on the SODm for thyme may have been influenced by its transition metal ion content. SODm activity may contribute to the herbs' antioxidant and anti-inflammatory activities however the source and significance of this activity need to be established.

  3. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    International Nuclear Information System (INIS)

    Bowman-James, K.; Wilson, G.; Moyer, B. A.

    2004-01-01

    This project involves the design and synthesis of receptors for oxoanions of environmental importance, including emphasis on high level and low activity waste. Target anions have included primarily oxoanions and a study of the basic concepts behind selective binding of target anions. A primary target has been sulfate because of its deleterious influence on the vitrification of tank wastes

  4. Synthesis and Free Radical Scavenging Activity of New Hydroxybenzylidene Hydrazines

    Directory of Open Access Journals (Sweden)

    Frantisek Sersen

    2017-05-01

    Full Text Available Hydroxybenzylidene hydrazines exhibit a wide spectrum of biological activities. Here, we report synthesis and free radical scavenging activity of nine new N-(hydroxybenzylidene-N′-[2,6-dinitro-4-(trifluoromethyl]phenylhydrazines. The chemical structures of these compounds were confirmed by 1H-NMR, 13C-NMR, 19F-NMR, IR spectroscopy, LC-MS, and elemental analysis. The prepared compounds were tested for their activity to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH, galvinoxyl radical (GOR, and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS radicals. The free radical scavenging activity expressed as SC50 values of these compounds varied in a wide range, from a strong to no radical scavenging effect. The most effective radical scavengers were hydroxybenzylidene hydrazines containing three hydroxyl groups in the benzylidene part of their molecules. The prepared compounds were also tested for their activity to inhibit photosynthetic electron transport in spinach chloroplasts. IC50 values of these compounds varied in wide range, from an intermediate to no inhibitory effect.

  5. Synthesis and Free Radical Scavenging Activity of New Hydroxybenzylidene Hydrazines.

    Science.gov (United States)

    Sersen, Frantisek; Gregan, Fridrich; Kotora, Peter; Kmetova, Jarmila; Filo, Juraj; Loos, Dusan; Gregan, Juraj

    2017-05-29

    Hydroxybenzylidene hydrazines exhibit a wide spectrum of biological activities. Here, we report synthesis and free radical scavenging activity of nine new N-(hydroxybenzylidene)-N'-[2,6-dinitro-4-(trifluoromethyl)]phenylhydrazines. The chemical structures of these compounds were confirmed by 1H-NMR, 13C-NMR, 19F-NMR, IR spectroscopy, LC-MS, and elemental analysis. The prepared compounds were tested for their activity to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH), galvinoxyl radical (GOR), and 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulphonic acid (ABTS) radicals. The free radical scavenging activity expressed as SC50 values of these compounds varied in a wide range, from a strong to no radical scavenging effect. The most effective radical scavengers were hydroxybenzylidene hydrazines containing three hydroxyl groups in the benzylidene part of their molecules. The prepared compounds were also tested for their activity to inhibit photosynthetic electron transport in spinach chloroplasts. IC50 values of these compounds varied in wide range, from an intermediate to no inhibitory effect.

  6. Effect of Bothrops alternatus snake venom on macrophage phagocytosis and superoxide production: participation of protein kinase C

    Directory of Open Access Journals (Sweden)

    SS Setubal

    2011-01-01

    Full Text Available Envenomations caused by different species of Bothrops snakes result in severe local tissue damage, hemorrhage, pain, myonecrosis, and inflammation with a significant leukocyte accumulation at the bite site. However, the activation state of leukocytes is still unclear. According to clinical cases and experimental work, the local effects observed in envenenomation by Bothrops alternatus are mainly the appearance of edema, hemorrhage, and necrosis. In this study we investigated the ability of Bothrops alternatus crude venom to induce macrophage activation. At 6 to 100 ¼g/mL, BaV is not toxic to thioglycollate-elicited macrophages; at 3 and 6 ¼g/mL, it did not interfere in macrophage adhesion or detachment. Moreover, at concentrations of 1.5, 3, and 6 ¼g/mL the venom induced an increase in phagocytosis via complement receptor one hour after incubation. Pharmacological treatment of thioglycollate-elicited macrophages with staurosporine, a protein kinase (PKC inhibitor, abolished phagocytosis, suggesting that PKC may be involved in the increase of serum-opsonized zymosan phagocytosis induced by BaV. Moreover, BaV also induced the production of anion superoxide (O2_ by thioglycollate-elicited macrophages. This BaV stimulated superoxide production was abolished after treating the cells with staurosporine, indicating that PKC is an important signaling pathway for the production of this radical. Based on these results, we suggest that phagocytosis and reactive oxygen species are involved in the pathogenesis of local tissue damage characteristic of Bothrops spp. envenomations.

  7. Activation of CuZn superoxide dismutases from Caenorhabditis elegans does not require the copper chaperone CCS.

    Science.gov (United States)

    Jensen, Laran T; Culotta, Valeria Cizewski

    2005-12-16

    Reactive oxygen species are produced as the direct result of aerobic metabolism and can cause damage to DNA, proteins, and lipids. A principal defense against reactive oxygen species involves the superoxide dismutases (SOD) that act to detoxify superoxide anions. Activation of CuZn-SODs in eukaryotic cells occurs post-translationally and is generally dependent on the copper chaperone for SOD1 (CCS), which inserts the catalytic copper cofactor and catalyzes the oxidation of a conserved disulfide bond that is essential for activity. In contrast to other eukaryotes, the nematode Caenorhabditis elegans does not contain an obvious CCS homologue, and we have found that the C. elegans intracellular CuZn-SODs (wSOD-1 and wSOD-5) are not dependent on CCS for activation when expressed in Saccharomyces cerevisiae. CCS-independent activation of CuZn-SODs is not unique to C. elegans; however, this is the first organism identified that appears to exclusively use this alternative pathway. As was found for mammalian SOD1, wSOD-1 exhibits a requirement for reduced glutathione in CCS-independent activation. Unexpectedly, wSOD-1 was inactive even in the presence of CCS when glutathione was depleted. Our investigation of the cysteine residues that form the disulfide bond in wSOD-1 suggests that the ability of wSODs to readily form this disulfide bond may be the key to obtaining high levels of activation through the CCS-independent pathway. Overall, these studies demonstrate that the CuZn-SODs of C. elegans have uniquely evolved to acquire copper without the copper chaperone and this may reflect the lifestyle of this organism.

  8. Targeting the superoxide/nitric oxide ratio by L-arginine and SOD mimic in diabetic rat skin.

    Science.gov (United States)

    Jankovic, Aleksandra; Ferreri, Carla; Filipovic, Milos; Ivanovic-Burmazovic, Ivana; Stancic, Ana; Otasevic, Vesna; Korac, Aleksandra; Buzadzic, Biljana; Korac, Bato

    2016-11-01

    Setting the correct ratio of superoxide anion (O 2 •- ) and nitric oxide ( • NO) radicals seems to be crucial in restoring disrupted redox signaling in diabetic skin and improvement of • NO physiological action for prevention and treatment of skin injuries in diabetes. In this study we examined the effects of L-arginine and manganese(II)-pentaazamacrocyclic superoxide dismutase (SOD) mimic - M40403 in diabetic rat skin. Following induction of diabetes by alloxan (blood glucose level ≥12 mMol l  -1 ) non-diabetic and diabetic male Mill Hill hybrid hooded rats were divided into three subgroups: (i) control, and receiving: (ii) L-arginine, (iii) M40403. Treatment of diabetic animals started after diabetes induction and lasted for 7 days. Compared to control, lower cutaneous immuno-expression of endothelial NO synthase (eNOS), heme oxygenase 1 (HO1), manganese SOD (MnSOD) and glutathione peroxidase (GSH-Px), in parallel with increased NFE2-related factor 2 (Nrf2) and nitrotyrosine levels characterized diabetic skin. L-arginine and M40403 treatments normalized alloxan-induced increase in nitrotyrosine. This was accompanied by the improvement/restitution of eNOS and HO1 or MnSOD and GSH-Px protein expression levels in diabetic skin following L-arginine, i.e. SOD mimic treatments, respectively. The results indicate that L-arginine and M40403 stabilize redox balance in diabetic skin and suggest the underlying molecular mechanisms. Restitution of skin redox balance by L-arginine and M40403 may represent an effective strategy to ameliorate therapy of diabetic skin.

  9. Infrared spectroscopy of anionic hydrated fluorobenzenes

    International Nuclear Information System (INIS)

    Schneider, Holger; Vogelhuber, Kristen M.; Weber, J. Mathias

    2007-01-01

    We investigate the structural motifs of anionic hydrated fluorobenzenes by infrared photodissociation spectroscopy and density functional theory. Our calculations show that all fluorobenzene anions under investigation are strongly distorted from the neutral planar molecular geometries. In the anions, different F atoms are no longer equivalent, providing structurally different binding sites for water molecules and giving rise to a multitude of low-lying isomers. The absorption bands for hexa- and pentafluorobenzene show that only one isomer for the respective monohydrate complexes is populated in our experiment. For C 6 F 6 - ·H 2 O, we can assign these bands to an isomer where water forms a weak double ionic hydrogen bond with two F atoms in the ion, in accord with the results of Bowen et al. [J. Chem. Phys. 127, 014312 (2007), following paper.] The spectroscopic motif of the binary complexes changes slightly with decreasing fluorination of the aromatic anion. For dihydrated hexafluorobenzene anions, several isomers are populated in our experiments, some of which may be due to hydrogen bonding between water molecules

  10. The influence of extracellular superoxide on iron redox chemistry and bioavailability to aquatic microorganisms

    Directory of Open Access Journals (Sweden)

    Andrew eRose

    2012-04-01

    Full Text Available Superoxide, the one-electron reduced form of dioxygen, is produced in the extracellular milieu of aquatic microbes through a range of abiotic chemical processes and also by microbes themselves. Due to its ability to promote both oxidative and reductive reactions, superoxide may have a profound impact on the redox state of iron, potentially influencing iron solubility, complex speciation and bioavailability. The interplay between iron, superoxide and oxygen may also produce a cascade of other highly reactive transients in oxygenated natural waters. For microbes, the overall effect of reactions between superoxide and iron may be deleterious or beneficial, depending on the organism and its chemical environment. Here I critically discuss recent advances in understanding: (i sources of extracellular superoxide in natural waters, with a particular emphasis on microbial generation; (ii the chemistry of reactions between superoxide and iron; and (iii the influence of these processes on iron bioavailability and microbial iron nutrition.

  11. Effects of P25 TiO2 Nanoparticles on the Free Radical-Scavenging Ability of Antioxidants upon Their Exposure to Simulated Sunlight.

    Science.gov (United States)

    Li, Meng; Chong, Yu; Fu, Peter P; Xia, Qingsu; Croley, Timothy R; Lo, Y Martin; Yin, Jun-Jie

    2017-11-15

    Although nanosized ingredients, including TiO 2 nanoparticles (NPs), can be found in a wide range of consumer products, little is known about the effects these particles have on other active compounds in product matrices. These NPs can interact with reactive oxygen species (ROS), potentially disrupting or canceling the benefits expected from antioxidants. We used electron spin resonance spectrometry to assess changes in the antioxidant capacities of six dietary antioxidants (ascorbic acid, α-tocopherol, glutathione, cysteine, epicatechin, and epicatechin gallate) during exposure to P25 TiO 2 and/or simulated sunlight. Specifically, we determined the ability of these antioxidants to scavenge 1-diphenyl-2-picryl-hydrazyl radical, superoxide radical, and hydroxyl radical. Exposure to simulated sunlight alone did not lead to noticeable changes in radical-scavenging abilities; however, in combination with P25 TiO 2 NPs, the scavenging abilities of most antioxidants were weakened. We found glutathione to be the most resistant to treatment with sunlight and NPs among these six antioxidants.

  12. Free radical scavenging and anti-oxidative activities of an ethanol-soluble pigment extract prepared from fermented Zijuan Pu-erh tea.

    Science.gov (United States)

    Fan, Jiang Ping; Fan, Chong; Dong, Wen Min; Gao, Bin; Yuan, Wei; Gong, Jia Shun

    2013-09-01

    An ethanol-soluble pigment extract was separated from fermented Zijuan Pu-erh tea. The compositions of the ethanol soluble pigment extract were analyzed by high-performance liquid chromatography-tandem mass spectroscopy (HPLC-MS/MS). The extract was prepared into a series of ethanol solutions and analyzed for free radical-scavenging activities (against two free radicals: 1,1-diphenyl-2-picrylhydrazyl (DPPH) and (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO)) and in vitro anti-oxidative properties. Electron spin resonance spectroscopy showed that the peaks of DPPH and TEMPO decreased with increasing extract concentration, suggesting that the extract had excellent free radical-scavenging activities. In vitro cell culture suggested that, at 50-200 mg/L, the extract had no measurable effect on the viability of vascular endothelial cells (ECV340) but produced significant protective effects for cells that underwent oxidative injuries due to hydrogen peroxide (H₂O₂) treatment. Compared with the H₂O₂ treatment alone cells group, 200 mg/L of the extract increased the activity of superoxide dismutase (SOD) in cells by 397.3%, and decreased the concentration of malondialdehyde (MDA) and the activity of lactate acid dehydrogenase (LDH) by 47.8% and 69.6%, respectively. These results suggest that the extract has excellent free radical scavenging and anti-oxidative properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Gamma-irradiation produces active chlorine species (ACS) in physiological solutions: Secoisolariciresinol diglucoside (SDG) scavenges ACS - A novel mechanism of DNA radioprotection.

    Science.gov (United States)

    Mishra, Om P; Popov, Anatoliy V; Pietrofesa, Ralph A; Christofidou-Solomidou, Melpo

    2016-09-01

    Secoisolariciresinol diglucoside (SDG), the main lignan in whole grain flaxseed, is a potent antioxidant and free radical scavenger with known radioprotective properties. However, the exact mechanism of SDG radioprotection is not well understood. The current study identified a novel mechanism of DNA radioprotection by SDG in physiological solutions by scavenging active chlorine species (ACS) and reducing chlorinated nucleobases. The ACS scavenging activity of SDG was determined using two highly specific fluoroprobes: hypochlorite-specific 3'-(p-aminophenyl) fluorescein (APF) and hydroxyl radical-sensitive 3'-(p-hydroxyphenyl) fluorescein (HPF). Dopamine, an SDG structural analog, was used for proton (1)H NMR studies to trap primary ACS radicals. Taurine N-chlorination was determined to demonstrate radiation-induced generation of hypochlorite, a secondary ACS. DNA protection was assessed by determining the extent of DNA fragmentation and plasmid DNA relaxation following exposure to ClO(-) and radiation. Purine base chlorination by ClO(-) and γ-radiation was determined by using 2-aminopurine (2-AP), a fluorescent analog of 6-aminopurine. Chloride anions (Cl(-)) consumed >90% of hydroxyl radicals in physiological solutions produced by γ-radiation resulting in ACS formation, which was detected by (1)H NMR. Importantly, SDG scavenged hypochlorite- and γ-radiation-induced ACS. In addition, SDG blunted ACS-induced fragmentation of calf thymus DNA and plasmid DNA relaxation. SDG treatment before or after ACS exposure decreased the ClO(-) or γ-radiation-induced chlorination of 2-AP. Exposure to γ-radiation resulted in increased taurine chlorination, indicative of ClO(-) generation. NMR studies revealed formation of primary ACS radicals (chlorine atoms (Cl) and dichloro radical anions (Cl2¯)), which were trapped by SDG and its structural analog dopamine. We demonstrate that γ-radiation induces the generation of ACS in physiological solutions. SDG treatment scavenged

  14. Cytotoxic mechanisms of hydrosulfide anion and cyanide anion in primary rat hepatocyte cultures

    International Nuclear Information System (INIS)

    Thompson, Rodney W.; Valentine, Holly L.; Valentine, William M.

    2003-01-01

    Hydrogen sulfide and hydrogen cyanide are known to compromise mitochondrial respiration through inhibition of cytochrome c oxidase and this is generally considered to be their primary mechanism of toxicity. Experimental studies and the efficiency of current treatment protocols suggest that H 2 S may exert adverse physiological effects through additional mechanisms. To evaluate the role of alternative mechanisms in H 2 S toxicity, the relative contributions of electron transport inhibition, uncoupling of mitochondrial respiration, and opening of the mitochondrial permeability transition pore (MPTP) to hydrosulfide and cyanide anion cytotoxicity in primary hepatocyte cultures were examined. Supplementation of hepatocytes with the glycolytic substrate, fructose, rescued hepatocytes from cyanide anion induced toxicity, whereas fructose supplementation increased hydrosulfide anion toxicity suggesting that hydrosulfide anion may compromise glycolysis in hepatocytes. Although inhibitors of the MPTP opening were protective for hydrosulfide anion, they had no effect on cyanide anion toxicity, consistent with an involvement of the permeability transition pore in hydrosulfide anion toxicity but not cyanide anion toxicity. Exposure of isolated rat liver mitochondria to hydrosulfide did not result in large amplitude swelling suggesting that if H 2 S induces the permeability transition it does so indirectly through a mechanism requiring other cellular components. Hydrosulfide anion did not appear to be an uncoupler of mitochondrial respiration in hepatocytes based upon the inability of oligomycin and fructose to protect hepatocytes from hydrosulfide anion toxicity. These findings support mechanisms additional to inhibition of cytochrome c oxidase in hydrogen sulfide toxicity. Further investigations are required to assess the role of the permeability transition in H 2 S toxicity, determine whether similar affects occur in other cell types or in vivo and evaluate whether this may

  15. The Evolution of the Scavenger Receptor Cysteine-Rich Domain of the Class A Scavenger Receptors

    Directory of Open Access Journals (Sweden)

    Nicholas eYap

    2015-07-01

    Full Text Available The class A Scavenger Receptor (cA-SR family is a group of five evolutionarily related innate immune receptors. The cA-SRs are known for their promiscuous ligand binding; as they have been shown to bind bacteria such as Streptococcus pneumoniae, and Escherichia coli, as well as different modified forms of low-density lipoprotein. Three of the five family members possess a Scavenger Receptor Cysteine Rich (SRCR domain while the remaining two receptors lack the domain. Previous work has suggested that the Macrophage Associated Receptor with COllagenous structure (MARCO shares a recent common ancestor with the non-SRCR-containing receptors; however the origin of the SRCR domain within the cA-SRs remains unknown. We hypothesize that the SRCR domains of the cA-SRs have a common origin that predates teleost fish. Using the newly available sequence data from sea lamprey and ghost shark genome projects, we have shown that MARCO shares a common ancestor with the SRCR-containing proteins. In addition, we explored the evolutionary relationships within the SRCR domain by reconstructing the ancestral SRCR domains of the cA-SRs. We identified a motif that is highly conserved between the cA-SR SRCR domains and the ancestral SRCR domain that consist of WGTVCDD. We also show that the GRAEVYY motif, a functionally important motif within MARCO, is poorly conserved in the other cA-SRs and in the reconstructed ancestral domain. Further, we identified three sites within MARCO’s SRCR domain which are under positive selection. Two of these sites lie adjacent to the conserved WGTVCDD motif, and may indicate a potential biological function for these sites. Together these findings indicate a common origin of the SRCR domain within the cA-SRs; however different selective pressures between the proteins may have caused MARCOs SRCR domain to evolve to contain different functional motifs when compared to the other SRCR-containing cA-SRs.

  16. In vitro free radical scavenging activity of Ixora coccinea L

    Directory of Open Access Journals (Sweden)

    Moni Rani Saha

    2008-06-01

    Full Text Available Antioxidant activity of the methanol extract of Ixora coccinea L. was determined by DPPH free radical scavenging assay, reducing power and total antioxidant capacity using phosphomolybdenum method. Preliminary phytochemical screening revealed that the extract of the flower of I. coccinea possesses flavonoids, steroids and tannin materials. The extract showed significant activities in all antioxidant assays compared to the standard antioxidant in a dose dependent manner and remarkable activities to scavenge reactive oxygen species (ROS may be attributed to the high amount of hydrophilic phenolics. In DPPH radical scavenging assay the IC50 value of the extract was found to be 100.53 μg/mL while ascorbic acid had the IC50 value 58.92 μg/mL. Moreover, I. coccinea extract showed strong reducing power and total antioxidant capacity.

  17. Scavenging energy from human motion with tubular dielectric polymer

    Science.gov (United States)

    Jean-Mistral, Claire; Basrour, Skandar

    2010-04-01

    Scavenging energy from human motion is a challenge to supply low consumption systems for sport or medical applications. A promising solution is to use electroactive polymers and especially dielectric polymers to scavenge mechanical energy during walk. In this paper, we present a tubular dielectric generator which is the first step toward an integration of these structures into textiles. For a 10cm length and under a strain of 100%, the structure is able to scavenge 1.5μJ for a poling voltage of 200V and up to 40μJ for a poling voltage of 1000V. A 30cm length structure is finally compared to our previous planar structure, and the power management module for those structures is discussed.

  18. Free radical scavenging properties of some wine probes

    International Nuclear Information System (INIS)

    Stasko, A.; Liptakova, M.; Malik, F.

    1999-01-01

    There are preliminary results of investigation of scavenging properties of 8 probes of Slovak wines (consisting of one reference, 3 probes of white wine and 4 probes of red wine). According to the literature so far, wine probes contain paramagnetic species (Mn 2+ , characterised with sextet spectrum, and a singlet line around g=2,00). In our probes we observed Mn 2+ signals, but no significant evidence for a single line of free radical was found. We can conclude that Mn 2+ content in the red wines is generally higher than in the white ones. Further, we investigated the scavenging activities of the probes adding solution of dinitropicryl hydrazyl (DPPH-stable radical) to them. Their ability to terminate free radicals resulted in the decrease of the final DPPH concentrations in the probes. The red wines have significantly higher capability to scavenge free radicals than the probes of white wines. (authors)

  19. Superoxide dismutase amplifies organismal sensitivity to ionizing radiation

    International Nuclear Information System (INIS)

    Scott, M.D.; Meshnick, S.R.; Eaton, J.W.

    1989-01-01

    Although increased superoxide dismutase (SOD) activity is often associated with enhanced resistance of cells and organisms to oxidant challenges, few direct tests of the antioxidant importance of this enzyme have been carried out. To assess the importance of SOD in defending against gamma-radiation, we employed Escherichia coli with deficient, normal, and super-normal enzyme activities. Surprisingly, the radiation sensitivity of E. coli actually increases as bacterial SOD activity increases. Elevated intracellular SOD activity sensitizes E. coli to radiation-induced mortality, whereas SOD-deficient bacteria show normal or decreased radiosensitivity. Toxic effects of activated oxygen species are involved in this phenomenon; bacterial SOD activity has no effect on radiation sensitivity under anaerobic conditions or on the lethality of other, non-oxygen-dependent, toxins such as ultraviolet radiation

  20. Computing Stability Effects of Mutations in Human Superoxide Dismutase 1

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2014-01-01

    Protein stability is affected in several diseases and is of substantial interest in efforts to correlate genotypes to phenotypes. Superoxide dismutase 1 (SOD1) is a suitable test case for such correlations due to its abundance, stability, available crystal structures and thermochemical data......, and physiological importance. In this work, stability changes of SOD1 mutations were computed with five methods, CUPSAT, I-Mutant2.0, I-Mutant3.0, PoPMuSiC, and SDM, with emphasis on structural sensitivity as a potential issue in structure-based protein calculation. The large correlation between experimental...... literature data of SOD1 dimers and monomers (r = 0.82) suggests that mutations in separate protein monomers are mostly additive. PoPMuSiC was most accurate (typical MAE ∼ 1 kcal/mol, r ∼ 0.5). The relative performance of the methods was not very structure-dependent, and the more accurate methods also...

  1. Reduced superoxide dismutase activity in xeroderma pigmentosum fibroblasts

    International Nuclear Information System (INIS)

    Nishigori, C.; Miyachi, Y.; Imamura, S.; Takebe, H.

    1989-01-01

    This study was performed in order to assess the possible protective effect of superoxide dismutase (SOD) on ultraviolet (UV) damage in xeroderma pigmentosum (XP) fibroblasts. SOD activity in fibroblasts originating from seven xeroderma pigmentosum (XP) patients was significantly lower than that in normal cells (p less than 0.005). Average SOD activity in XP cells belonging to complementation group A was 3.68 +/- 0.54 (n = 7) and that in normal human cells was 5.79 +/- 1.59 (n = 6). Addition of SOD before and during UV irradiation (UVB and UVC) to the cells caused no change in the amount of unscheduled DNA synthesis and UV survival. A possible involvement of reduced SOD in XP and a possible protective effect by SOD on UV damage is discussed

  2. Superoxide dismutase in radioresistant PC-3 human prostate carcinoma cells

    International Nuclear Information System (INIS)

    Prokopovic, J.; Adzic M; Niciforovic, A.; Vucic, V.; Zaric, B.; Radojcic, M. B.

    2006-01-01

    The molecular mechanism of gamma-ionizing radiation (IR) resistance of human prostate cancer cells PC-3 is not known. Since low-LET-IR effects are primarily achieved through generation of reactive oxygen species (ROS), IR-induced expression of ROS-metabolizing antioxidant enzymes, Mn- and CuZn-superoxide dismutase (Mn- and CuZnSOD) and catalase (CAT), and their upstream regulator transcription factor NFκB was followed. Significant elevation of both SODs was found in cells irradiated with 10- and 20 Gy, while CAT and NFκB expression was unchanged. Since, such conditions lead to accumulation of H 2 O 2 , it is concluded that radioresistance of PC-3 cells may emerge from positive feed-forward vicious circle established between H 2 O 2 activation of NFκB and elevated MnSOD activity. (author)

  3. High throughput assay for evaluation of reactive carbonyl scavenging capacity.

    Science.gov (United States)

    Vidal, N; Cavaille, J P; Graziani, F; Robin, M; Ouari, O; Pietri, S; Stocker, P

    2014-01-01

    Many carbonyl species from either lipid peroxidation or glycoxidation are extremely reactive and can disrupt the function of proteins and enzymes. 4-hydroxynonenal and methylglyoxal are the most abundant and toxic lipid-derived reactive carbonyl species. The presence of these toxics leads to carbonyl stress and cause a significant amount of macromolecular damages in several diseases. Much evidence indicates trapping of reactive carbonyl intermediates may be a useful strategy for inhibiting or decreasing carbonyl stress-associated pathologies. There is no rapid and convenient analytical method available for the assessment of direct carbonyl scavenging capacity, and a very limited number of carbonyl scavengers have been identified to date, their therapeutic potential being highlighted only recently. In this context, we have developed a new and rapid sensitive fluorimetric method for the assessment of reactive carbonyl scavengers without involvement glycoxidation systems. Efficacy of various thiol- and non-thiol-carbonyl scavenger pharmacophores was tested both using this screening assay adapted to 96-well microplates and in cultured cells. The scavenging effects on the formation of Advanced Glycation End-product of Bovine Serum Albumin formed with methylglyoxal, 4-hydroxynonenal and glucose-glycated as molecular models were also examined. Low molecular mass thiols with an α-amino-β-mercaptoethane structure showed the highest degree of inhibitory activity toward both α,β-unsaturated aldehydes and dicarbonyls. Cysteine and cysteamine have the best scavenging ability toward methylglyoxal. WR-1065 which is currently approved for clinical use as a protective agent against radiation and renal toxicity was identified as the best inhibitor of 4-hydroxynonenal.

  4. High throughput assay for evaluation of reactive carbonyl scavenging capacity

    Directory of Open Access Journals (Sweden)

    N. Vidal

    2014-01-01

    Full Text Available Many carbonyl species from either lipid peroxidation or glycoxidation are extremely reactive and can disrupt the function of proteins and enzymes. 4-hydroxynonenal and methylglyoxal are the most abundant and toxic lipid-derived reactive carbonyl species. The presence of these toxics leads to carbonyl stress and cause a significant amount of macromolecular damages in several diseases. Much evidence indicates trapping of reactive carbonyl intermediates may be a useful strategy for inhibiting or decreasing carbonyl stress-associated pathologies. There is no rapid and convenient analytical method available for the assessment of direct carbonyl scavenging capacity, and a very limited number of carbonyl scavengers have been identified to date, their therapeutic potential being highlighted only recently. In this context, we have developed a new and rapid sensitive fluorimetric method for the assessment of reactive carbonyl scavengers without involvement glycoxidation systems. Efficacy of various thiol- and non-thiol-carbonyl scavenger pharmacophores was tested both using this screening assay adapted to 96-well microplates and in cultured cells. The scavenging effects on the formation of Advanced Glycation End-product of Bovine Serum Albumin formed with methylglyoxal, 4-hydroxynonenal and glucose-glycated as molecular models were also examined. Low molecular mass thiols with an α-amino-β-mercaptoethane structure showed the highest degree of inhibitory activity toward both α,β-unsaturated aldehydes and dicarbonyls. Cysteine and cysteamine have the best scavenging ability toward methylglyoxal. WR-1065 which is currently approved for clinical use as a protective agent against radiation and renal toxicity was identified as the best inhibitor of 4-hydroxynonenal.

  5. The Impact of Flight Hardware Scavenging on Space Logistics

    Science.gov (United States)

    Oeftering, Richard C.

    2011-01-01

    For a given fixed launch vehicle capacity the logistics payload delivered to the moon may be only roughly 20 percent of the payload delivered to the International Space Station (ISS). This is compounded by the much lower flight frequency to the moon and thus low availability of spares for maintenance. This implies that lunar hardware is much more scarce and more costly per kilogram than ISS and thus there is much more incentive to preserve hardware. The Constellation Lunar Surface System (LSS) program is considering ways of utilizing hardware scavenged from vehicles including the Altair lunar lander. In general, the hardware will have only had a matter of hours of operation yet there may be years of operational life remaining. By scavenging this hardware the program, in effect, is treating vehicle hardware as part of the payload. Flight hardware may provide logistics spares for system maintenance and reduce the overall logistics footprint. This hardware has a wide array of potential applications including expanding the power infrastructure, and exploiting in-situ resources. Scavenging can also be seen as a way of recovering the value of, literally, billions of dollars worth of hardware that would normally be discarded. Scavenging flight hardware adds operational complexity and steps must be taken to augment the crew s capability with robotics, capabilities embedded in flight hardware itself, and external processes. New embedded technologies are needed to make hardware more serviceable and scavengable. Process technologies are needed to extract hardware, evaluate hardware, reconfigure or repair hardware, and reintegrate it into new applications. This paper also illustrates how scavenging can be used to drive down the cost of the overall program by exploiting the intrinsic value of otherwise discarded flight hardware.

  6. Gas-Phase Reactivity of Microsolvated Anions

    DEFF Research Database (Denmark)

    Thomsen, Ditte Linde

    the gas-phase α-effect. The experimental studies are performed by means of the flowing after glow selected ion flow tube technique, and these are supplemented by electronic structure calculations. The α-nucleophile employed is the microsolvated hydrogen peroxide anion whose reactivity is compared......Gas-phase studies of ion-molecule reactions shed light on the intrinsic factors that govern reactivity; and even solvent effects can be examined in the gasphase environment by employing microsolvated ions. An area that has received considerable attention with regard to the interplay between...... to that of a series of microsolvated oxygen centered anions. The association of the nucleophiles with a single water or methanol molecule allows the α-effect to be observed in the SN2 reaction with methyl chloride; this effect was not apparent in the reactions of the unsolvated anions. The results suggest...

  7. Patchy proteins, anions and the Hofmeister series

    Energy Technology Data Exchange (ETDEWEB)

    Lund, Mikael; Jungwirth, Pavel [Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo namesti 2, 16610 Prague 6 (Czech Republic); Center for Complex Molecular Systems and Biomolecules, Flemingovo namesti 2, 16610 Prague 6 (Czech Republic)], E-mail: mikael.lund@uochb.cas.cz

    2008-12-10

    We investigate specific anion binding to a range of patchy protein models and use our results to probe protein-protein interactions for aqueous lysozyme solutions. Our molecular simulation studies show that the ion-protein interaction mechanism and strength largely depend on the nature of the interfacial amino acid residues. Via direct ion pairing, small anions interact with charged side-chains while larger anions are attracted to non-polar residues due to several solvent assisted mechanisms. Incorporating ion and surface specificity into a mesoscopic model for protein-protein interactions we calculate the free energy of interaction between lysozyme molecules in aqueous solutions of sodium chloride and sodium iodide. In agreement with experiment, our finding is that 'salting out' follows the reverse Hofmeister series for pH below the iso-electric point and the direct series for pH above pI.

  8. New borohydride anion B6H7-

    International Nuclear Information System (INIS)

    Kuznetsov, I.Yu.; Vinitskij, D.M.; Solntsev, K.A.

    1985-01-01

    The [Ni(Bipy) 3 ] (B 6 H 7 ) 2 , (Ph 4 P)B 6 H 7 , [Ni(Phen) 3 ](B 6 H 7 ) 2 crystals (where Bipy = bipyridine, Phen = phenathroline, Ph = phenyl) are obtained via the exchange reaction with a subsequent recrystallization from aqua-acetonic and acetonic solutions. The structure is studied of a new borohydride anion B 6 H 7 - possessing a four-valence bond unique for polyhedral borohydride anions. A triangular face of boride skeleton coordinating a hydrogen atom is considerably larger than other faces, and the electron density on this hydrogen atom is evidently much higher than at the end hydride hydrogen atoms. The trend of B 6 H 7 - anion to form statistically disordered structurs testifies to a rather slight effect of the seventh hydrogen atom position on the structure pattern of the ionic crystal lattice

  9. Increased superoxide accumulation in pyruvate dehydrogenase complex deficient fibroblasts.

    Science.gov (United States)

    Glushakova, Lyudmyla G; Judge, Sharon; Cruz, Alex; Pourang, Deena; Mathews, Clayton E; Stacpoole, Peter W

    2011-11-01

    The pyruvate dehydrogenase complex (PDC) oxidizes pyruvate to acetyl CoA and is critically important in maintaining normal cellular energy homeostasis. Loss-of-function mutations in PDC give rise to congenital lactic acidosis and to progressive cellular energy failure. However, the subsequent biochemical consequences of PDC deficiency that may contribute to the clinical manifestations of the disorder are poorly understood. We postulated that altered flux through PDC would disrupt mitochondrial electron transport, resulting in oxidative stress. Compared to cells from 4 healthy subjects, primary cultures of skin fibroblasts from 9 patients with variable mutations in the gene encoding the alpha subunit (E1α) of pyruvate dehydrogenase (PDA1) demonstrated reduced growth and viability. Superoxide (O(2)(.-)) from the Qo site of complex III of the electron transport chain accumulated in these cells and was associated with decreased activity of manganese superoxide dismutase. The expression of uncoupling protein 2 was also decreased in patient cells, but there were no significant changes in the expression of cellular markers of protein or DNA oxidative damage. The expression of hypoxia transcription factor 1 alpha (HIF1α) also increased in PDC deficient fibroblasts. We conclude that PDC deficiency is associated with an increase in O(2)(.-) accumulation coupled to a decrease in mechanisms responsible for its removal. Increased HIF1α expression may contribute to the increase in glycolytic flux and lactate production in PDC deficiency and, by trans-activating pyruvate dehydrogenase kinase, may further suppress residual PDC activity through phosphorylation of the E1α subunit. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Electron beam treatment with radical scavengers/enhancers

    International Nuclear Information System (INIS)

    Gehringer, P.

    1994-08-01

    E-beam treatment of low level contaminated groundwater is best apt to demonstrate the role of scavengers and enhancers, respectively because groundwater already contains some scavengers as natural solutes. The action of ionizing radiation to water is known to result in the formation of ions, molecular and free radical species. For low level contaminations of groundwater (pollutant concentration aqu - and H are of interest for pollutant decomposition. The pollutants have to compete for the free radical species with the natural solutes. 10 figures are discussed. (author)

  11. Free radical scavenging injectable hydrogels for regenerative therapy

    International Nuclear Information System (INIS)

    Komeri, Remya; Thankam, Finosh Gnanaprakasam; Muthu, Jayabalan

    2017-01-01

    Pathological free radicals generated from inflamed and infarcted cardiac tissues interferes natural tissue repair mechanisms. Hypoxic microenvironment at the injured zone of non-regenerating cardiac tissues hinders the therapeutic attempts including cell therapy. Here we report an injectable, cytocompatible, free radical scavenging synthetic hydrogel formulation for regenerative therapy. New hydrogel (PEAX-P) is prepared with D-xylitol-co-fumarate-co-poly ethylene adipate-co-PEG comaromer (PEAX) and PEGDiacrylate. PEAX-P hydrogel swells 4.9 times the initial weight and retains 100.07 kPa Young modulus at equilibrium swelling, which is suitable for cardiac applications. PEAX-P hydrogel retains elastic nature even at 60% compressive strain, which is favorable to fit with the dynamic and elastic natural tissue counterparts. PEAX-P hydrogel scavenges 51% DPPH radical, 40% hydroxyl radicals 41% nitrate radicals with 31% reducing power. The presence of hydrogel protects 62% cardiomyoblast cells treated with stress inducing media at LD 50 concentration. The free hydroxyl groups in sugar alcohols of the comacromer influence the free radical scavenging. Comparatively, PEAX-P hydrogel based on xylitol evinces slightly lower scavenging characteristics than with previously reported PEAM-P hydrogel containing mannitol having more hydroxyl groups. The possible free radical scavenging mechanism of the present hydrogel relies on the free π electrons associated with uncrosslinked fumarate bonds, hydrogen atoms associated with sugar alcohols/PEG and radical dilution by free water in the matrix. Briefly, the present PEAX-P hydrogel is a potential injectable system for combined antioxidant and regenerative therapy. - Graphical abstract: Injectable hydrogel with inherent free radical scavenging property for regenerative tissue engineering application. - Highlights: • Novel injectable hydrogel (PEAX-P) is prepared using D-xylitol-co-fumarate-co-poly ethylene adipate-co-PEG comaromer

  12. Free radical scavenging injectable hydrogels for regenerative therapy

    Energy Technology Data Exchange (ETDEWEB)

    Komeri, Remya [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Polymer Science Division, BMT Wing, Thiruvananthapuram 695 012, Kerala State (India); Thankam, Finosh Gnanaprakasam [Dept. of Biomedical Sciences, Creighton University, 2500 California Plaza, Omaha NE68178 (United States); Muthu, Jayabalan, E-mail: mjayabalan52@gmail.com [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Polymer Science Division, BMT Wing, Thiruvananthapuram 695 012, Kerala State (India)

    2017-02-01

    Pathological free radicals generated from inflamed and infarcted cardiac tissues interferes natural tissue repair mechanisms. Hypoxic microenvironment at the injured zone of non-regenerating cardiac tissues hinders the therapeutic attempts including cell therapy. Here we report an injectable, cytocompatible, free radical scavenging synthetic hydrogel formulation for regenerative therapy. New hydrogel (PEAX-P) is prepared with D-xylitol-co-fumarate-co-poly ethylene adipate-co-PEG comaromer (PEAX) and PEGDiacrylate. PEAX-P hydrogel swells 4.9 times the initial weight and retains 100.07 kPa Young modulus at equilibrium swelling, which is suitable for cardiac applications. PEAX-P hydrogel retains elastic nature even at 60% compressive strain, which is favorable to fit with the dynamic and elastic natural tissue counterparts. PEAX-P hydrogel scavenges 51% DPPH radical, 40% hydroxyl radicals 41% nitrate radicals with 31% reducing power. The presence of hydrogel protects 62% cardiomyoblast cells treated with stress inducing media at LD 50 concentration. The free hydroxyl groups in sugar alcohols of the comacromer influence the free radical scavenging. Comparatively, PEAX-P hydrogel based on xylitol evinces slightly lower scavenging characteristics than with previously reported PEAM-P hydrogel containing mannitol having more hydroxyl groups. The possible free radical scavenging mechanism of the present hydrogel relies on the free π electrons associated with uncrosslinked fumarate bonds, hydrogen atoms associated with sugar alcohols/PEG and radical dilution by free water in the matrix. Briefly, the present PEAX-P hydrogel is a potential injectable system for combined antioxidant and regenerative therapy. - Graphical abstract: Injectable hydrogel with inherent free radical scavenging property for regenerative tissue engineering application. - Highlights: • Novel injectable hydrogel (PEAX-P) is prepared using D-xylitol-co-fumarate-co-poly ethylene adipate-co-PEG comaromer

  13. Process for scavenging hydrogen sulfide from hydrocarbon gases

    International Nuclear Information System (INIS)

    Fox, I.

    1981-01-01

    A process for scavenging hydrogen sulfide from hydrocarbon gases utilizes iron oxide particles of unique chemical and physical properties. These particles have large surface area, and are comprised substantially of amorphous Fe 2 O 3 containing a crystalline phase of Fe 2 O 3 , Fe 3 O 4 and combinations thereof. In scavenging hydrogen sulfide, the iron oxide particles are suspended in a liquid which enters into intimate mixing contact with hydrocarbon gases; the hydrogen sulfide is reacted at an exceptional rate and only acid-stable reaction products are formed. Thereafter, the sweetened hydrocarbon gases are collected

  14. Performance of zeolite scavenge column in Xe monitoring system

    International Nuclear Information System (INIS)

    Wang Qian; Wang Hongxia; Li Wei; Bian Zhishang

    2010-01-01

    In order to improve the performance of zeolite scavenge column, its ability of removal of humidity and carbon dioxide was studied by both static and dynamic approaches. The experimental results show that various factors, including the column length and diameter, the mass of zeolite, the content of water in air, the temperature rise during adsorption, and the activation effectiveness all effect the performance of zeolite column in scavenging humanity and carbon dioxide. Based on these results and previous experience, an optimized design of the zeolite column is made for use in xenon monitoring system. (authors)

  15. Free radical scavenging activity of Eagle tea and their flavonoids

    Directory of Open Access Journals (Sweden)

    Qiong Meng

    2012-06-01

    Full Text Available In this study, an online HPLC-DAD-MS coupled with 2,2′-azinobis (3-ethylbenzthiazoline-6-sulfonic acid diammonium salt (ABTS assay was employed for evaluating free radical scavenging activity of Eagle tea and their active components. Twenty-three chromatographic peaks were detected, and nineteen components had free radical scavenging activity. Among them, eight compounds were identified as flavonoids (hyperin, isoquercitrin, quercitrin, quercetin, kaempferol, catechins, chlorogenic acid and epicatechin based on MS data and standard chromatographic characters.

  16. The role of anions on the indoor air quality; De rol van negatieve ionen op de binnenluchtkwaliteit

    Energy Technology Data Exchange (ETDEWEB)

    Havermans, J. [Afdeling Energie, Comfort en Binnenmilieu, TNO Bouw en Onderzoek, Delft (Netherlands)

    2010-11-15

    Anions may contribute to a more comfortable indoor environment. Even a simple apparatus as a lamp with semi conductor technique produces easily anions. Such ions will react with particles forming agglomerates that will precipitate. Also a reaction with oxygen and moist will result in the formation of a superoxide radical and peroxides. These radicals easily react with e.g. organic volatiles and possible also with spores and allergens. Depending on the concentration of the radicals, these compounds can be deteriorated fully. However, as a potential negative side effect the radicals can produce irritating substances by reaction with chemicals in the air. It is not clear yet if all cleaners, based on ionization, will cause this effect. Therefore more research is needed. [Dutch] Negatieve ionen (anionen) in de lucht kunnen een belangrijke bijdrage leveren aan een comfortabeler binnenmilieu en kunnen op een eenvoudige wijze worden geproduceerd. Bijvoorbeeld met lamp waarbij naast verlichting ook via (smd) halfgeleidertechniek negatieve ionen worden gevormd. Negatieve ionen reageren met deeltjes waardoor deze clusteren en deze uit de binnenlucht worden verwijderd. Ook kunnen ze met zuurstof en vocht reageren, waarbij reactief superoxide en peroxides worden gevormd. Deze radicalen zijn verantwoordelijk voor het verwijderen van bijvoorbeeld ongewenste geuren en mogelijk ook allergenen en schimmels. Ze kunnen ook als negatief bijeffect potentieel irriterende stoffen vormen door reactie met chemicalien in de lucht. Of dit het geval is met alle op ionisatie gebaseerde luchtzuiveringsapparaten dient nader te worden onderzocht.

  17. The absorption of plutonium by anion resins

    Energy Technology Data Exchange (ETDEWEB)

    Durham, R. W.; Mills, R.

    1961-10-15

    Equilibrium experiments have shown Pu{sup +4} to be absorbed from nitric acid onto an anion resin as a complex anion Pu(NO{sub 3}){sub 6}{sup -2}. The amount of absorption is dependent on the plutonium and nitric acid concentrations in the equilibrium solution with a maximum at 7N to 8N HNO{sub 3}. A low cross-linked resin has a higher capacity and reaches equilibrium more rapidly than the normally supplied resin. Saturation capacity of one per cent cross-linked Nalcite SBR (Dowex 1), 50 -- 100 mesh, is 385 mg Pu/gram dry resin. (author)

  18. High Vacuum Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar

    2015-09-01

    Anionic polymerization high vacuum techniques (HVTs) are the most suitable for the preparation of polymer samples with well-defined complex macromolecular architectures. Though HVTs require glassblowing skill for designing and making polymerization reactor, it is the best way to avoid any termination of living polymers during the number of steps for the synthesis of polymers with complex structure. In this chapter, we describe the different polymerization reactors and HVTs for the purification of monomers, solvents, and other reagents for anionic polymerization as well as few model reactions for the synthesis of polymers with simple to complex structure.

  19. Dibromine radical anion reactions with heme enzymes

    International Nuclear Information System (INIS)

    Gebicka, L.; Gebicki, J.L.

    1996-01-01

    Reactions of Br 2 radical anion with heme enzymes, catalase horseradish peroxidase, have been studied by pulse radiolysis. It has been found that Br 2 - does not react with the heme centre of investigated enzymes. Dibromine radical anion reacts with tryptophan residues of catalase without any influence on the activity of catalase. It is suggested that in pulse radiolysis studies, where horseradish peroxidase is at about tenfold excess toward Br 2 - , the enzyme is modified rather by Br 2 , than by Br 2 - . (author). 26 refs., 3 figs

  20. Metallochaperone for Cu,Zn-superoxide dismutase (CCS) protein but not mRNA is higher in organs from copper-deficient mice and rats.

    Science.gov (United States)

    Prohaska, Joseph R; Broderius, Margaret; Brokate, Bruce

    2003-09-15

    Cu,Zn-superoxide dismutase (SOD1) is an abundant metalloenzyme important in scavenging superoxide ions. Cu-deficient rats and mice have lower SOD1 activity and protein, possibly because apo-SOD1 is degraded faster than holo-SOD1. SOD1 interacts with and requires its metallochaperone CCS for donating copper. We produced dietary Cu deficiency in rodents to determine if the reduction in SOD1 was related to the level of its specific metallochaperone CCS. CCS levels determined by immunoblot were 2- to 3-fold higher in liver, heart, kidney, and brain from male Cu-deficient rats and mice under a variety of conditions. CCS was also higher in livers of Cu-deficient dams. Interestingly, CCS levels in brain of Cu-deficient mice were also higher even though SOD1 activity and protein were not altered, suggesting that the rise in CCS is correlated with altered Cu status rather than a direct result of lower SOD1. A DNA probe specific for rat CCS detected a single transcript by Northern blot hybridization with liver RNA. CCS mRNA levels in mouse and rat liver were not altered by dietary treatment. These results suggest a posttranscriptional mechanism for higher CCS protein when Cu is limiting in the cell, perhaps due to slower protein turnover. Elevation in CCS level is one of the most dramatic alterations in Cu binding proteins accompanying Cu deficiency and may be useful to assess Cu status.

  1. The Toxiscape Hunt: An Escape Room-Scavenger Hunt for Toxicology Education

    Directory of Open Access Journals (Sweden)

    Megan Boysen-Osborn

    2018-01-01

    Full Text Available Audience: This scavenger hunt/escape room is a didactic activity for emergency medicine residents or fourth-year medical students rotating in emergency medicine. Introduction: Between 2008-2011, 1.1 million patients presented to U.S. emergency departments each year for poisonings,1 including acute ingestions, envenomations, occupational exposures, and overdoses. Toxicologic exposures are considered part of the core curriculum for emergency medicine (EM residents, who must understand the presentation and treatment of such patients.2 Educating residents in a unique, engaging format such as an “escape room” activity provides an alternative to the didactic format of teaching this material, which may build medical knowledge and team rapport amongst residents.3 Objectives: By the end of the activity, learners should be able to: Calculate an anion and osmolal gap. Recognize poisonings amenable to hemodialysis. Interpret EKG changes related to a variety of ingestions, including beta-blockers and calcium channel blockers, digitalis, and tricyclic antidepressants. Recognize poisonous plants and their clinical toxidromes. Calculate loading dose of N-acetylcysteine as antidote for acute acetaminophen ingestion. Collaborate as a team to arrive at solutions of problems. Recognize poisons that have available antidotes Know the clinical effect of various types of snake envenomations. Recognize the toxicity associated with at least four household chemicals. Know the antidotes for six common poisonings. Methods: This didactic exercise is a small group activity, utilizing puzzles to apply toxicology knowledge.

  2. Superoxide radicals mediate heptatoxicity induced by the heat shock protein 90 inhibitors benzoquinone ansamycins

    International Nuclear Information System (INIS)

    Goldstein, S.

    2011-01-01

    Complete text of publication follows. Geldanamycin (GM). a benzoquinone ansamycin antibiotic, is a natural product inhibitor of the heat shock protein 90 (Hsp90) with potent and broad anticancer properties. However, its progression to clinical trials was halted due to unacceptable levels of hepatotoxicity. Consequently, numerous less toxic analogs differing only in their 17-substituent have been synthesized including 17-AAG and the water soluble 17-DMAG (Alvespimycin), which have recently entered clinical trials. The different hepatotoxicity induced by GM and its analogs may reflect the redox active properties of the quinone moiety (Q) and possibly the extent of superoxide radical formation, which may stimulate cellular oxidative injury. Q ·- + Q 2 ↔ O 2 ·- + Q. Eq. 1 is established rapidly, and its actual position is governed by E 7 (Q/Q ·- ) and E 7 (O 2 /O 2 ·- ) and the relative concentrations of Q and O 2 . Using pulse radiolysis, E 7 (Q/Q ·- ) for 17-DMAG has been determined vs. O 2 , 1,4-naphthoquinone or menadione to be -194 ± 6 mV, which is somewhat lower than E 7 (O 2 /O 2 ·- ) = -180 mV (1 M O 2 ). Eq. 1 is well to the left in the case of 1,4-benzoquinone and substitution into the ring by electron-donating or -withdrawing groups reduces or increases, respectively, E 7 (Q/Q ·- ) in a predictable manner, e.g. linearly related to the Hammett sigma value of the substituents. Hence, E 7 (Q/Q ·- ) should follow the order GM 2 is more readily reduced to O 2 ·- by GM. It is demonstrated that O 2 ·- can be efficiently trapped by Tempol during the reduction of GM, 17-AAG and 17-DMAG by NADPH catalyzed by NADPH-cytochrome P450 reductase, and that O 2 ·- formation rate, which reflects the rate of NADPH oxidation, follows the order 17-DMAG > GM > 17-AAG. In the absence of O 2 ·- scavengers, the rate of NADPH oxidation follows the order 17-DMAG > 17-AAG > GM. The order of the drug cytotoxicity toward rat primary hepatocytes, as determined by their

  3. The assessment of pellicular anion-exchange resins for the determination of anions by ion chromatography

    International Nuclear Information System (INIS)

    Pohlandt, C.

    1981-01-01

    Because pellicular anion-exchange resins suitable for the determination, by ion chromatography, of anions with alkaline eluents were unavailable in South Africa at the inception of this work, an attempt was made to prepare such resins. In this study it is shown that the pellicular resins produced are more efficient than the surface-aminated resins used previously. The simultaneous separation and determination of five common anions is demonstrated. The method was applied to the analysis of uranium leach liquors, effluent samples, and a solid sample of ferric oxide (goethite)

  4. Evaluation of Antioxidant and Free Radical Scavenging Abilities of ...

    African Journals Online (AJOL)

    Objective: This study was aimed at determining the antioxidants and free radical scavenging abilities of some packaged fruit juices (PFJ) widely used as source of fluids in Nigeria. Materials and methods: Packaged fruit juice samples produced by The Coca cola Company and Chi company namely: Apple(AP), blackcurrant, ...

  5. Energy scavenging strain absorber: application to kinetic dielectric elastomer generator

    Science.gov (United States)

    Jean-Mistral, C.; Beaune, M.; Vu-Cong, T.; Sylvestre, A.

    2014-03-01

    Dielectric elastomer generators (DEGs) are light, compliant, silent energy scavengers. They can easily be incorporated into clothing where they could scavenge energy from the human kinetic movements for biomedical applications. Nevertheless, scavengers based on dielectric elastomers are soft electrostatic generators requiring a high voltage source to polarize them and high external strain, which constitutes the two major disadvantages of these transducers. We propose here a complete structure made up of a strain absorber, a DEG and a simple electronic power circuit. This new structure looks like a patch, can be attached on human's wear and located on the chest, knee, elbow… Our original strain absorber, inspired from a sailing boat winch, is able to heighten the external available strain with a minimal factor of 2. The DEG is made of silicone Danfoss Polypower and it has a total area of 6cm per 2.5cm sustaining a maximal strain of 50% at 1Hz. A complete electromechanical analytical model was developed for the DEG associated to this strain absorber. With a poling voltage of 800V, a scavenged energy of 0.57mJ per cycle is achieved with our complete structure. The performance of the DEG can further be improved by enhancing the imposed strain, by designing a stack structure, by using a dielectric elastomer with high dielectric permittivity.

  6. Is the scavenger receptor MARCO a new immune checkpoint?

    Science.gov (United States)

    Arredouani, Mohamed S

    2014-11-01

    Whereas macrophages use the scavenger receptor MARCO primarily in antimicrobial immunity by interacting with both exogenous and endogenous environments, in dendritic cells (DCs) MARCO is believed to pleiotropically link innate to adaptive immunity. MARCO exerts a significant modulatory effect on TLR-induced DC activation, thus offering novel avenues in cancer immunotherapy.

  7. Scavenging rate ecoassay: a potential indicator of estuary condition.

    Science.gov (United States)

    Porter, Augustine G; Scanes, Peter R

    2015-01-01

    Monitoring of estuary condition is essential due to the highly productive and often intensely impacted nature of these ecosystems. Assessment of the physico-chemical condition of estuaries is expensive and difficult due to naturally fluctuating water quality and biota. Assessing the vigour of ecosystem processes is an alternative method with potential to overcome much of the variability associated with physico-chemical measures. Indicators of estuary condition should have small spatial and temporal variability, have a predictable response to perturbation and be ecologically relevant. Here, we present tests of the first criterion, the spatio-temporal variability of a potential ecoassay measuring the rate of scavenging in estuaries. We hypothesised that the proposed scavenging ecoassay would not vary significantly among A) sites in an estuary, B) trips separated by weeks, or C) days in a trip. Because not all habitats are present in all estuaries, this test was undertaken in two habitats. When conducted over bare substrate there were occasional significant differences, but no discernible patterns, within levels of the experiment. When conducted over vegetated substrate, days within a trip did not vary significantly, but later trips experienced greater scavenging. This scavenging ecoassay shows potential as a tool for assessing the condition of estuarine ecosystems, and further exploration of this protocol is warranted by implementation in estuaries across a gradient of anthropogenic stress.

  8. Free radical scavenging activity and phenolic contents of ...

    African Journals Online (AJOL)

    Anthocleista djalonensis extract is widely used in Nigerian folk medicine to treat conditions whose pathogenesis implicate oxidative stress, such as diabetes and hepatitis. However, little is known of the mechanism underlying these activities. In this study, the free radical scavenging potential of a methanol extract of A.

  9. 21 CFR 868.5430 - Gas-scavenging apparatus.

    Science.gov (United States)

    2010-04-01

    ...) Identification. A gas-scavenging apparatus is a device intended to collect excess anesthetic, analgesic, or trace gases or vapors from a patient's breathing system, ventilator, or extracorporeal pump-oxygenator, and to conduct these gases out of the area by means of an exhaust system. (b) Classification. Class II...

  10. Reward Your Students with an Online Scavenger Hunt!

    Science.gov (United States)

    Board, Keith

    2013-01-01

    Do you have a class of students who do excellent work and whom you would like to give an enjoyable reward? Try an "Internet scavenger hunt" for a fun and educational change of pace! This article shares how to run the activity.

  11. Scavenger receptor AI/II truncation, lung function and COPD

    DEFF Research Database (Denmark)

    Thomsen, M; Nordestgaard, B G; Tybjaerg-Hansen, A

    2011-01-01

    The scavenger receptor A-I/II (SRA-I/II) on alveolar macrophages is involved in recognition and clearance of modified lipids and inhaled particulates. A rare variant of the SRA-I/II gene, Arg293X, truncates the distal collagen-like domain, which is essential for ligand recognition. We tested whet...

  12. Contrasting Boundary Scavenging in two Eastern Boundary Current Regimes

    Science.gov (United States)

    Anderson, R. F.; Fleisher, M. Q.; Pavia, F. J.; Vivancos, S. M.; Lu, Y.; Zhang, P.; Cheng, H.; Edwards, R. L.

    2016-02-01

    We use data from two US GEOTRACES expeditions to compare boundary scavenging intensity in two eastern boundary current systems: the Canary Current off Mauritania and the Humboldt Current off Peru. Boundary scavenging refers to the enhanced removal of trace elements from the ocean by sorption to sinking particles in regions of greater than average particle abundance. Both regimes experience high rates of biological productivity and generation of biogenic particles, with rates of productivity potentially a little greater off Peru, whereas dust fluxes are an order of magnitude greater off NW Africa (see presentation by Vivancos et al., this meeting). Despite greater productivity off Peru, we find greater intensity of scavenging off NW Africa as measured by the residence time of dissolved 230Th integrated from the surface to a depth of 2500 m (10-11 years off NW Africa vs. 15-17 years off Peru). Dissolved 231Pa/230Th ratios off NW Africa (Hayes et al., Deep Sea Res.-II 116 (2015) 29-41) are nearly twice the values observed off Peru. We attribute this difference to the well-known tendency for lithogenic phases (dust) to strongly fractionate in favor of Th uptake during scavenging and removal, leaving the dissolved phase enriched in Pa. This behavior needs to be considered when interpreting sedimentary 231Pa/230Th ratios as a paleo proxy.

  13. Clustered DNA damage on subcellular level: effect of scavengers

    Czech Academy of Sciences Publication Activity Database

    Pachnerová Brabcová, Kateřina; Sihver, L.; Yasuda, N.; Matuo, Y.; Štěpán, Václav; Davídková, Marie

    2014-01-01

    Roč. 53, č. 4 (2014), s. 705-712 ISSN 0301-634X R&D Projects: GA MŠk LD12008 Institutional support: RVO:61389005 Keywords : clustered damage * indirect effects * haevy ion * plasmid in liquid water * scavenger Subject RIV: BO - Biophysics Impact factor: 1.528, year: 2014

  14. Hydroxyl radical scavenging activity of peptide from sea cucumber ...

    African Journals Online (AJOL)

    enzyme complex, sea cucumber protein hydrolysis was carried out to obtain hydrolysates that have hydroxyl-radical-scavenging activity (HRSA). The hydrolytic process was monitored by HRSA and conditions for this process were optimized as follows: pH 6.5, temperature 35°C, 12 mg enzyme complex in a reaction solution ...

  15. Free Radical Scavenging Activity of Scoparia dulcis Extract.

    Science.gov (United States)

    Babincová, M.; Sourivong, P.

    2001-01-01

    We studied the scavenging capabilities of an extract of Scoparia dulcis (a cosmopolitan weed widespread in Laos and Vietnam) for 1-diphenyl-2-picrylhydrazyl and measured hemoglobin-catalyzed linoleic acid peroxidation with an oxygen electrode. Our results demonstrated strong antioxidant activity corresponding to mitigation of the generation of hydroxyl radicals, a possible rationale for the observed therapeutic effects of this weed.

  16. Scavenger Receptor BI Plays a Role in Facilitating Chylomicron Metabolism

    NARCIS (Netherlands)

    Out, R.; Kruijt, J.K.; Rensen, P.C.N.; Hildebrand, R.B.; Vos, P. de; Eck, M. van; Berkel, T.J.C. van

    2004-01-01

    The function of scavenger receptor class B type I (SR-BI) in mediating the selective uptake of high density lipoprotein (HDL) cholesterol esters is well established. However, the potential role of SR-BI in chylomicron and chylomicron remnant metabolism is largely unknown. In the present

  17. Genetic Variant of the Scavenger Receptor BI in Humans

    NARCIS (Netherlands)

    Vergeer, Menno; Korporaal, Suzanne J. A.; Franssen, Remco; Meurs, Illiana; Out, Ruud; Hovingh, G. Kees; Hoekstra, Menno; Sierts, Jeroen A.; Dallinga-Thie, Geesje M.; Motazacker, Mohammad Mahdi; Holleboom, Adriaan G.; van Berkel, Theo J. C.; Kastelein, John J. P.; van Eck, Miranda; Kuivenhoven, Jan Albert

    2011-01-01

    BACKGROUND In mice, the scavenger receptor class B type I (SR-BI) is essential for the delivery of high-density lipoprotein (HDL) cholesterol to the liver and steroidogenic organs. Paradoxically, elevated HDL cholesterol levels are associated with increased atherosclerosis in SR-BI-knockout mice. It

  18. Genetic variant of the scavenger receptor BI in humans

    NARCIS (Netherlands)

    Vergeer, Menno; Korporaal, Suzanne J A; Franssen, Remco; Meurs, Illiana; Out, Ruud; Hovingh, G Kees; Hoekstra, Menno; Sierts, Jeroen A; Dallinga-Thie, Geesje M; Motazacker, Mohammad Mahdi; Holleboom, Adriaan G; Van Berkel, Theo J C; Kastelein, John J P; Van Eck, Miranda; Kuivenhoven, Jan Albert

    2011-01-01

    BACKGROUND: In mice, the scavenger receptor class B type I (SR-BI) is essential for the delivery of high-density lipoprotein (HDL) cholesterol to the liver and steroidogenic organs. Paradoxically, elevated HDL cholesterol levels are associated with increased atherosclerosis in SR-BI-knockout mice.

  19. Antioxidant and free radical scavenging activities of plant extracts ...

    African Journals Online (AJOL)

    Twenty-two species of medicinal plants collected in the Mexican state of Morelos were selected to evaluate their free radical scavenging and antioxidant activities. The extracts from the aerial parts of the plants were obtained using hexane, acetone and methanol (66 extracts). The initial qualitative screening of antioxidants ...

  20. Free radical scavenging and cytotoxic activity of five commercial ...

    African Journals Online (AJOL)

    Polygonum cuspidatum), and pomegranate (Punica granatum). It shows radical scavenging activity in the following order, according to their median effective concentration (EC

  1. Using Scavenger Hunts to Familiarize Students with Scientific Journal Articles.

    Science.gov (United States)

    Lijek, Rebeccah S; Fankhauser, Sarah C

    2016-03-01

    Primary scientific literature can be difficult to navigate for anyone unfamiliar with its foreign, formal structure. We sought to create a fun, easy learning tool to help familiarize students of all ages with the structure of a scientific article. Our main learning objective was for the student to realize that science writing is formulaic-that specific information is found in predictable locations within an article-and that, with an understanding of the formula, anyone can comfortably navigate any journal article and accurately predict what to expect to find in each section. To this end, we designed a Journal Article Scavenger Hunt that requires the user to find and identify a series of commonplace features of a primary research article. The scavenger hunt activity is quick and easy to implement, and is adaptable to various ages and settings, including the classroom, lab, and at outreach events. The questions in the scavenger hunt can be scaled in difficulty and specificity to suit the instructor's needs. Over many years of using this activity, we have received positive feedback from students of all ages, from elementary school students to lay adult-learners as well as science teachers themselves. By making the unknown seem predictable and approachable, the scavenger hunt helps a variety of audiences feel more comfortable with science and more confident in their ability to engage directly with the scientific literature. Journal of Microbiology & Biology Education.

  2. Ambient RF energy scavenging: GSM and WLAN power density measurements

    NARCIS (Netherlands)

    Visser, H.J.; Reniers, A.C.F.; Theeuwes, J.A.C.

    2009-01-01

    To assess the feasibility of ambient RF energy scavenging, a survey of expected power density levels distant from GSM-900 and GSM-1800 base stations has been conducted and power density measurements have been performed in a WLAN environment. It appears that for distances ranging from 25 m to 100 m

  3. Interstellar dehydrogenated PAH anions: vibrational spectra

    Science.gov (United States)

    Buragohain, Mridusmita; Pathak, Amit; Sarre, Peter; Gour, Nand Kishor

    2018-03-01

    Interstellar polycyclic aromatic hydrocarbon (PAH) molecules exist in diverse forms depending on the local physical environment. Formation of ionized PAHs (anions and cations) is favourable in the extreme conditions of the interstellar medium (ISM). Besides in their pure form, PAHs are also likely to exist in substituted forms; for example, PAHs with functional groups, dehydrogenated PAHs etc. A dehydrogenated PAH molecule might subsequently form fullerenes in the ISM as a result of ongoing chemical processes. This work presents a density functional theory (DFT) calculation on dehydrogenated PAH anions to explore the infrared emission spectra of these molecules and discuss any possible contribution towards observed IR features in the ISM. The results suggest that dehydrogenated PAH anions might be significantly contributing to the 3.3 μm region. Spectroscopic features unique to dehydrogenated PAH anions are highlighted that may be used for their possible identification in the ISM. A comparison has also been made to see the size effect on spectra of these PAHs.

  4. Anion-conducting polymer, composition, and membrane

    Science.gov (United States)

    Pivovar, Bryan S [Los Alamos, NM; Thorn, David L [Los Alamos, NM

    2009-09-01

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  5. Synthesis of azaphenanthridines via anionic ring closure

    DEFF Research Database (Denmark)

    Hansen, Henriette Møller; Lysén, M.; Begtrup, M.

    2005-01-01

    A new and convergent synthesis of azaphenanthridines via an anionic ring closure is reported. Ortho-lithiation/in situ borylation of cyanopyridines produces the corresponding cyanopyridylboronic esters, which undergo a Suzuki-Miyaura cross-coupling to give the key intermediates. Addition of lithium...

  6. Forensically significant scavenging guilds in the southwest of Western Australia.

    Science.gov (United States)

    O'Brien, R Christopher; Forbes, Shari L; Meyer, Jan; Dadour, Ian

    2010-05-20

    Estimation of time since death is an important factor in forensic investigations and the state of decomposition of a body is a prime basis for such estimations. The rate of decomposition is, however, affected by many environmental factors such as temperature, rainfall, and solar radiation as well as by indoor or outdoor location, covering and the type of surface the body is resting upon. Scavenging has the potential for major impact upon the rate of decomposition of a body, but there is little direct research upon its effect. The information that is available relates almost exclusively to North American and European contexts. The Australian faunal assemblage is unique in that it includes no native large predators or large detrivorous avians. This research investigates the animals that scavenge carcasses in natural outdoor settings in southern Western Australia and the factors which can affect each scavenger's activity. The research was conducted at four locations around Perth, Western Australia with different environmental conditions. Pig carcasses, acting as models for the human body, were positioned in an outdoor environment with no protection from scavengers or other environmental conditions. Twenty-four hour continuous time-lapse video capture was used to observe the pattern of visits of all animals to the carcasses. The time of day, length of feeding, material fed upon, area of feeding, and any movement of the carcass were recorded for each feeding event. Some species were observed to scavenge almost continually throughout the day and night. Insectivores visited the carcasses mostly during bloat and putrefaction; omnivores fed during all stages of decomposition and scavenging by carnivores, rare at any time, was most likely to occur during the early stages of decomposition. Avian species, which were the most prolific visitors to the carcasses in all locations, like reptiles, fed only during daylight hours. Only mammals and amphibians, which were seldom seen

  7. Eunicellin-based diterpenoids from the Formosan soft coral Klyxum molle with inhibitory activity on superoxide generation and elastase release by neutrophils.

    Science.gov (United States)

    Lin, Ming-Chang; Chen, Bo-Wei; Huang, Chiung-Yao; Dai, Chang-Feng; Hwang, Tsong-Long; Sheu, Jyh-Horng

    2013-09-27

    Eleven new eunicellin-based diterpenoids possessing a cladiellane skeleton with a C-2, C-9 ether bridge, klymollins I-S (1-11), have been isolated from the EtOAc extract of the soft coral Klyxum molle from Taiwan waters. The structures of compounds 1-11 were elucidated by extensive spectroscopic analysis, including 2D NMR spectroscopy (COSY, HSQC, HMBC, and NOESY). Compound 5 exhibited cytotoxicity toward several cancer cell lines. Compound 5 is the first eunicellin-based metabolite bearing a phenyl group and displays significant inhibition of both superoxide anion generation and elastase release in N-formyl-methionyl-leucyl-phenylalanine/cytochalasin B (fMLP/CB)-induced human neutrophils.

  8. Do Superoxide Dismutase (SOD) and Catalase (CAT) protect Cells from DNA Damage Induced by Active Arsenicals?

    Science.gov (United States)

    Superoxide dismutase (SOD) catalyzes the conversion of superoxide to hydrogen peroxide, which can be converted to water and oxygen through the action of catalase. Heterozygous mice of strain B6: 129S7-SodltmlLeb/J were obtained from Jackson Laboratories and bred to produce offspr...

  9. Free radical scavenging injectable hydrogels for regenerative therapy.

    Science.gov (United States)

    Komeri, Remya; Thankam, Finosh Gnanaprakasam; Muthu, Jayabalan

    2017-02-01

    Pathological free radicals generated from inflamed and infarcted cardiac tissues interferes natural tissue repair mechanisms. Hypoxic microenvironment at the injured zone of non-regenerating cardiac tissues hinders the therapeutic attempts including cell therapy. Here we report an injectable, cytocompatible, free radical scavenging synthetic hydrogel formulation for regenerative therapy. New hydrogel (PEAX-P) is prepared with D-xylitol-co-fumarate-co-poly ethylene adipate-co-PEG comaromer (PEAX) and PEGDiacrylate. PEAX-P hydrogel swells 4.9 times the initial weight and retains 100.07kPa Young modulus at equilibrium swelling, which is suitable for cardiac applications. PEAX-P hydrogel retains elastic nature even at 60% compressive strain, which is favorable to fit with the dynamic and elastic natural tissue counterparts. PEAX-P hydrogel scavenges 51% DPPH radical, 40% hydroxyl radicals 41% nitrate radicals with 31% reducing power. The presence of hydrogel protects 62% cardiomyoblast cells treated with stress inducing media at LD 50 concentration. The free hydroxyl groups in sugar alcohols of the comacromer influence the free radical scavenging. Comparatively, PEAX-P hydrogel based on xylitol evinces slightly lower scavenging characteristics than with previously reported PEAM-P hydrogel containing mannitol having more hydroxyl groups. The possible free radical scavenging mechanism of the present hydrogel relies on the free π electrons associated with uncrosslinked fumarate bonds, hydrogen atoms associated with sugar alcohols/PEG and radical dilution by free water in the matrix. Briefly, the present PEAX-P hydrogel is a potential injectable system for combined antioxidant and regenerative therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Modelling the transport of carbonic acid anions through anion-exchange membranes

    International Nuclear Information System (INIS)

    Nikonenko, V.; Lebedev, K.; Manzanares, J.A.; Pourcelly, G.

    2003-01-01

    Electrodiffusion of carbonate and bicarbonate anions through anion-exchange membranes (AEM) is described on the basis of the Nernst-Planck equations taking into account coupled hydrolysis reactions in the external diffusion boundary layers (DBLs) and internal pore solution. The model supposes local electroneutrality as well as chemical and thermodynamic equilibrium. The transport is considered in three layers being an anion exchange membrane and two adjoining diffusion layers. A mechanism of competitive transport of HCO 3 - and CO 3 2- anions through the membrane which takes into account Donnan exclusion of H + ions is proposed. It is predicted that the pH of the depleting solution decreases and that of the concentrating solution increases during electrodialysis (ED). Eventual deviations from local electroneutrality and local chemical equilibrium are discussed

  11. Kinetics and mechanism of superoxide radical reactions with some biologically important compounds in aqueous solutions. Pulse radiolysis

    Science.gov (United States)

    Revina, A. A.; Amiragova, M. I.; Volod'ko, V. V.; Vannikov, A. V.

    Microsecond pulse radiolysis of oxygenated aqueous solutions containing 0.02 mol dm -3 sodium formate and 2 mmol dm -3 phosphate buffer at pH 7 was used to generate superoxide anion radicals. The influence of some biologically important compounds upon the rate of O ⨪2 decay was monitored spectrophotometrically in the range of 245-300 nm. Hematoporphyrin (HP), hemin C (HC), catalase (Cat), cobalt sulfophthalocyanine (CoTSPc) were studied. Among the investigated compounds only Cat was found to show a high catalytic efficiency towards the self-decay of O ⨪2. A red shift of O ⨪2 absorption band and slowing down of its decay were observed to take place by adding HP or CoTSPc to the solutions containing formate ions in excess. This effect is associated with the formation of a transient superoxo-complex. An appearance of an intermediate species with absorption maxima at 350 nm and half-life of about 2s was observed to accompany the superoxo-complex of CoTSPc decay. In the aerated solution of HP the intensity of absorbance at 260 nm was found to be independent of the presence of formate ions.

  12. Kinetics and mechanism of superoxide radical reactions with some biologically important compounds in aqueous solutions. Pulse radiolysis

    International Nuclear Information System (INIS)

    Revina, A.A.; Volod'ko, V.V.; Vannikov, A.V.

    1989-01-01

    Microsecond pulse radiolysis of oxygenated aqueous solutions containing 0.02 mol dm -3 sodium formate and 2 mmol dm -3 phosphate buffer at pH 7 was used to generate superoxide anion radicals. The influence of some biologically important compounds upon the rate of O 2 .-bar decay as monitored spectrophotometrically in the range of 245-300 nm. Hematoporphyrin (HP), hemin C (HC), catalase (Cat), cobalt sulfophthalocyanine (CoTSPc) were studied. Among the investigated compounds only Cat was found to show a high catalytic efficiency towards the self-decay of O 2 .-bar . A red shift of 0 2 .-bar absorption band and slowing down of its decay were observed to take place by adding HP or CoTSPc to the solutions containing formate ions in excess. This effect is associated with the formation of a transient superoxo-complex. An appearance of an intermediate species with absorption maxima at 350 nm and half-life of about 2 s was observed to accompany the superoxo-complex of CoTSPc decay. In the aerated solution of HP the intensity of absorbance at 260 nm was found to be independent of the presence of formate ions. (author)

  13. Antioxidant mechanism of heme oxygenase-1 involves an increase in superoxide dismutase and catalase in experimental diabetes.

    Science.gov (United States)

    Turkseven, Saadet; Kruger, Adam; Mingone, Christopher J; Kaminski, Pawel; Inaba, Muneo; Rodella, Luigi F; Ikehara, Susumu; Wolin, Michael S; Abraham, Nader G

    2005-08-01

    Increased heme oxygenase (HO)-1 activity attenuates endothelial cell apoptosis and decreases superoxide anion (O2-) formation in experimental diabetes by unknown mechanisms. We examined the effect of HO-1 protein and HO activity on extracellular SOD (EC-SOD), catalase, O2-, inducible nitric oxide synthase (iNOS), and endothelial nitric oxide synthase (eNOS) levels and vascular responses to ACh in control and diabetic rats. Vascular EC-SOD and plasma catalase activities were significantly reduced in diabetic compared with nondiabetic rats (P inhibitor of HO-1 activity, decreased EC-SOD protein. Increased HO-1 activity in diabetic rats was associated with a decrease in iNOS but increases in eNOS and plasma catalase activity. On the other hand, aortic ring segments from diabetic rats exhibited a significant reduction in vascular relaxation to ACh, which was reversed with cobalt protoporphyrin treatment. These data demonstrate that an increase in HO-1 protein and activity, i.e., CO and bilirubin production, in diabetic rats brings about a robust increase in EC-SOD, catalase, and eNOS with a concomitant increase in endothelial relaxation and a decrease in O2-. These observations in experimental diabetes suggest that the vascular cytoprotective mechanism of HO-1 against oxidative stress requires an increase in EC-SOD and catalase.

  14. Superoxide dismutase and catalase conjugated to polyethylene glycol increases endothelial enzyme activity and oxidant resistance

    International Nuclear Information System (INIS)

    Beckman, J.S.; Minor, R.L. Jr.; White, C.W.; Repine, J.E.; Rosen, G.M.; Freeman, B.A.

    1988-01-01

    Covalent conjugation of superoxide dismutase and catalase with polyethylene glycol (PEG) increases the circulatory half-lives of these enzymes from 125 I-PEG-catalase or 125 I-PEG-superoxide dismutase produced a linear, concentration-dependent increase in cellular enzyme activity and radioactivity. Fluorescently labeled PEG-superoxide dismutase incubated with endothelial cells showed a vesicular localization. Mechanical injury to cell monolayers, which is known to stimulate endocytosis, further increased the uptake of fluorescent PEG-superoxide dismutase. Addition of PEG and PEG-conjugated enzymes perturbed the spin-label binding environment, indicative of producing an increase in plasma membrane fluidity. Thus, PEG conjugation to superoxide dismutase and catalase enhances cell association of these enzymes in a manner which increases cellular enzyme activities and provides prolonged protection from partially reduced oxygen species

  15. Regulation of organic anion transport in the liver

    NARCIS (Netherlands)

    Roelofsen, H; Jansen, PLM

    1997-01-01

    In several liver diseases the biliary transport is disturbed, resulting in, for example, jaundice and cholestasis. Many of these symptoms can be attributed to altered regulation of hepatic transporters. Organic anion transport, mediated by the canalicular multispecific organic anion transporter

  16. Changes in plasma osmolality and anion gap: potential predictors of ...

    African Journals Online (AJOL)

    Changes in plasma osmolality and anion gap: potential predictors of ... PROMOTING ACCESS TO AFRICAN RESEARCH ... Objective: To determine the relationship of mortality to plasma osmolality and anion gap inpatients on haemodialysis.

  17. Antioxidant activity of methanol extract of Helichrysum foetidum Moench.

    Science.gov (United States)

    Tirillini, Bruno; Menghini, Luigi; Leporini, Lidia; Scanu, Nadia; Marino, Stefania; Pintore, Giorgio

    2013-01-01

    Methanol extract of Helichrysum foetidum Moench (Asteraceae) was investigated for antioxidative properties. The antioxidant activities were investigated by 2,2'-azinobis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assay, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging, ß-carotene/linoleic acid assay, scavenging of hydrogen peroxide (HRPO test), superoxide anion scavenging (S.A.S. test) and hypochlorous acid scavenging (taurine test). The antioxidant activity was reported as IC50 and reveals Trolox-like antioxidative effects.

  18. Streptomyces sp. MUM212 as a Source of Antioxidants with Radical Scavenging and Metal Chelating Properties

    Directory of Open Access Journals (Sweden)

    Loh Teng-Hern Tan

    2017-05-01

    Full Text Available Reactive oxygen species and other radicals potentially cause oxidative damage to proteins, lipids, and DNA which may ultimately lead to various complications including mutations, carcinogenesis, neurodegeneration, cardiovascular disease, aging, and inflammatory disease. Recent reports demonstrate that Streptomyces bacteria produce metabolites with potent antioxidant activity that may be developed into therapeutic drugs to combat oxidative stress. This study shows that Streptomyces sp. MUM212 which was isolated from mangrove soil in Kuala Selangor, Malaysia, could be a potential source of antioxidants. Strain MUM212 was characterized and determined as belonging to the genus Streptomyces using 16S rRNA gene phylogenetic analysis. The MUM212 extract demonstrated significant antioxidant activity through DPPH, ABTS and superoxide radical scavenging assays and also metal-chelating activity of 22.03 ± 3.01%, 61.52 ± 3.13%, 37.47 ± 1.79%, and 41.98 ± 0.73% at 4 mg/mL, respectively. Moreover, MUM212 extract was demonstrated to inhibit lipid peroxidation up to 16.72 ± 2.64% at 4 mg/mL and restore survival of Vero cells from H2O2-induced oxidative damages. The antioxidant activities from the MUM212 extract correlated well with its total phenolic contents; and this in turn was in keeping with the gas chromatography–mass spectrometry analysis which revealed the presence of phenolic compounds that could be responsible for the antioxidant properties of the extract. Other chemical constituents detected included hydrocarbons, alcohols and cyclic dipeptides which may have contributed to the overall antioxidant capacity of MUM212 extract. As a whole, strain MUM212 seems to have potential as a promising source of novel molecules for future development of antioxidative therapeutic agents against oxidative stress-related diseases.

  19. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    International Nuclear Information System (INIS)

    Sessler, Jonathan L.

    2007-01-01

    The major thrust of this project, led by the University of Kansas (Prof. Kristin Bowman-James), entails an exploration of the basic determinants of anion recognition and their application to the design, synthesis, and testing of novel sulfate extractants. A key scientific inspiration for the work comes from the need, codified in simple-to-appreciate terms by the Oak Ridge National Laboratory component of the team (viz. Dr. Bruce Moyer), for chemical entities that can help in the extractive removal of species that have low solubilities in borosilicate glass. Among such species, sulfate anion, has been identified as particularly insidious. Its presence interferes with the vitrification process, thus rendering the remediation of tank waste from, e.g., the Hanford site far more difficult and expensive. The availability of effective extractants, that would allow for the separation of separating sulfate from the major competing anions in the waste, especially nitrate, could allow for pre-vitrification removal of sulfate via liquid-liquid extraction. The efforts at The University of Texas, the subject of this report, have thus concentrated on the development of new sulfate receptors. These systems are designed to increase our basic understanding of anion recognition events and set the stage for the development of viable sulfate anion extractants. In conjunction with the Oak Ridge National Laboratory (ORNL) members of the research team, several of these new receptors were studied as putative extractants, with two of the systems being shown to act as promising synergists for anion exchange.

  20. Superoxide Dismutase 2 is dispensable for platelet function.

    Science.gov (United States)

    Fidler, Trevor P; Rowley, Jesse W; Araujo, Claudia; Boudreau, Luc H; Marti, Alex; Souvenir, Rhonda; Dale, Kali; Boilard, Eric; Weyrich, Andrew S; Abel, E Dale

    2017-10-05

    Increased intracellular reactive oxygen species (ROS) promote platelet activation. The sources of platelet-derived ROS are diverse and whether or not mitochondrial derived ROS, modulates platelet function is incompletely understood. Studies of platelets from patients with sickle cell disease, and diabetes suggest a correlation between mitochondrial ROS and platelet dysfunction. Therefore, we generated mice with a platelet specific knockout of superoxide dismutase 2 (SOD2-KO) to determine if increased mitochondrial ROS increases platelet activation. SOD2-KO platelets demonstrated decreased SOD2 activity and increased mitochondrial ROS, however total platelet ROS was unchanged. Mitochondrial function and content were maintained in non-stimulated platelets. However SOD2-KO platelets demonstrated decreased mitochondrial function following thrombin stimulation. In vitro platelet activation and spreading was normal and in vivo, deletion of SOD2 did not change tail-bleeding or arterial thrombosis indices. In pathophysiological models mediated by platelet-dependent immune mechanisms such as sepsis and autoimmune inflammatory arthritis, SOD2-KO mice were phenotypically identical to wildtype controls. These data demonstrate that increased mitochondrial ROS does not result in platelet dysfunction.

  1. Biodegradable polycaprolactone (PCL) nanosphere encapsulating superoxide dismutase and catalase enzymes.

    Science.gov (United States)

    Singh, Sushant; Singh, Abhay Narayan; Verma, Anil; Dubey, Vikash Kumar

    2013-12-01

    Biodegradable polycaprolactone (PCL) nanosphere encapsulating superoxide dismutase (SOD) and catalase (CAT) were successfully synthesized using double emulsion (w/o/w) solvent evaporation technique. Characterization of the nanosphere using dynamic light scattering, field emission scanning electron microscope, and Fourier transform infrared spectroscopy revealed a spherical-shaped nanosphere in a size range of 812 ± 64 nm with moderate protein encapsulation efficiency of 55.42 ± 3.7 % and high in vitro protein release. Human skin HaCat cells were used for analyzing antioxidative properties of SOD- and CAT-encapsulated PCL nanospheres. Oxidative stress condition in HaCat cells was optimized with exposure to hydrogen peroxide (H2O2; 1 mM) as external stress factor and verified through reactive oxygen species (ROS) analysis using H2DCFDA dye. PCL nanosphere encapsulating SOD and CAT together indicated better antioxidative defense against H2O2-induced oxidative stress in human skin HaCat cells in comparison to PCL encapsulating either SOD or CAT alone as well as against direct supplement of SOD and CAT protein solution. Increase in HaCat cells SOD and CAT activities after treatment hints toward uptake of PCL nanosphere into the human skin HaCat cells. The result signifies the role of PCL-encapsulating SOD and CAT nanosphere in alleviating oxidative stress.

  2. Free radical scavenging potential, reducing power, phenolic and biochemical constituents of Porphyra species from India

    Digital Repository Service at National Institute of Oceanography (India)

    Pise, N.M.; Jena, K.B.; Maharana, D.; Gaikwad, D.; Jagtap, T.G.

    . Antioxidant potentials of algae were assessed through phenolic content, 2, 2-diphenyl-1- picrylhydrazyl (DPPH) activity, hydrogen peroxide (H sub(2)O sub(2)), scavenging power and reducing potential. A dose-dependent free radical scavenging action against DPPH...

  3. Role of sulfate, chloride, and nitrate anions on the degradation of fluoroquinolone antibiotics by photoelectro-Fenton.

    Science.gov (United States)

    Villegas-Guzman, Paola; Hofer, Florian; Silva-Agredo, Javier; Torres-Palma, Ricardo A

    2017-12-01

    Taking ciprofloxacin (CIP) as a fluoroquinolone antibiotic model, this work explores the role of common anions (sulfate, nitrate, and chloride) during the application of photoelectro-Fenton (PEF) at natural pH to degrade this type of compound in water. The system was composed of an IrO 2 anode, Ti, or gas diffusion electrode (GDE) as cathode, Fe 2+ , and UV (254 nm). To determine the implications of these anions, the degradation pathway and efficiency of the PEF sub-processes (UV photolysis, anodic oxidation, and electro-Fenton at natural pH) were studied in the individual presence of the anions. The results highlight that degradation routes and kinetics are strongly dependent on electrolytes. When chloride and nitrate ions were present, indirect electro-chemical oxidation was identified by electro-generated HOCl and nitrogenated oxidative species, respectively. Additionally, direct photolysis and direct oxidation at the anode surface were identified as degradation routes. As a consequence of the different pathways, six primary CIP by-products were identified. Therefore, a scheme was proposed representing the pathways involved in the degradation of CIP when submitted to PEF in water with chloride, nitrate, and sulfate ions, showing the complexity of this process. Promoted by individual and synergistic actions of this process, the PEF system leads to a complete elimination of CIP with total removal of antibiotic activity against Staphylococcus aureus and Escherichia coli, and significant mineralization. Finally, the role of the anions was tested in seawater containing CIP, in which the positive contributions of the anions were partially suppressed by its OH radical scavenger action. The findings are of interest for the understanding of the degradation of antibiotics via the PEF process in different matrices containing sulfate, nitrate, and chloride ions.

  4. Edaravone, a Free Radical Scavenger, Delayed Symptomatic and Pathological Progression of Motor Neuron Disease in the Wobbler Mouse.

    Directory of Open Access Journals (Sweden)

    Ken Ikeda

    Full Text Available Edaravone, a free radical scavenger is used widely in Japanese patients with acute cerebral infarction. This antioxidant could have therapeutic potentials for other neurological diseases. Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disease that affects the upper and the lower motor neuron, leading to death within 3-5 years after onset. A phase III clinical trial of edaravone suggested no significant effects in ALS patients. However, recent 2nd double-blind trial has demonstrated therapeutic benefits of edaravone in definite patients diagnosed by revised El Escorial diagnostic criteria of ALS. Two previous studies showed that edaravone attenuated motor symptoms or motor neuron degeneration in mutant superoxide dismutase 1-transgenic mice or rats, animal models of familial ALS. Herein we examined whether this radical scavenger can retard progression of motor dysfunction and neuropathological changes in wobbler mice, sporadic ALS-like model. After diagnosis of the disease onset at the postnatal age of 3-4 weeks, wobbler mice received edaravone (1 or 10 mg/kg, n = 10/group or vehicle (n = 10, daily for 4 weeks by intraperitoneal administration. Motor symptoms and neuropathological changes were compared among three groups. Higher dose (10 mg/kg of edaravone treatment significantly attenuated muscle weakness and contracture in the forelimbs, and suppressed denervation atrophy in the biceps muscle and degeneration in the cervical motor neurons compared to vehicle. Previous and the present studies indicated neuroprotective effects of edaravone in three rodent ALS-like models. This drug seems to be worth performing the clinical trial in ALS patients in the United States of American and Europe, in addition to Japan.

  5. Edaravone, a Free Radical Scavenger, Delayed Symptomatic and Pathological Progression of Motor Neuron Disease in the Wobbler Mouse.

    Science.gov (United States)

    Ikeda, Ken; Iwasaki, Yasuo

    2015-01-01

    Edaravone, a free radical scavenger is used widely in Japanese patients with acute cerebral infarction. This antioxidant could have therapeutic potentials for other neurological diseases. Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects the upper and the lower motor neuron, leading to death within 3-5 years after onset. A phase III clinical trial of edaravone suggested no significant effects in ALS patients. However, recent 2nd double-blind trial has demonstrated therapeutic benefits of edaravone in definite patients diagnosed by revised El Escorial diagnostic criteria of ALS. Two previous studies showed that edaravone attenuated motor symptoms or motor neuron degeneration in mutant superoxide dismutase 1-transgenic mice or rats, animal models of familial ALS. Herein we examined whether this radical scavenger can retard progression of motor dysfunction and neuropathological changes in wobbler mice, sporadic ALS-like model. After diagnosis of the disease onset at the postnatal age of 3-4 weeks, wobbler mice received edaravone (1 or 10 mg/kg, n = 10/group) or vehicle (n = 10), daily for 4 weeks by intraperitoneal administration. Motor symptoms and neuropathological changes were compared among three groups. Higher dose (10 mg/kg) of edaravone treatment significantly attenuated muscle weakness and contracture in the forelimbs, and suppressed denervation atrophy in the biceps muscle and degeneration in the cervical motor neurons compared to vehicle. Previous and the present studies indicated neuroprotective effects of edaravone in three rodent ALS-like models. This drug seems to be worth performing the clinical trial in ALS patients in the United States of American and Europe, in addition to Japan.

  6. Inhibition of free radical scavenging enzymes affects mitochondrial membrane permeability transition during growth and aging of yeast cells.

    Science.gov (United States)

    Deryabina, Yulia; Isakova, Elena; Sekova, Varvara; Antipov, Alexey; Saris, Nils-Erik L

    2014-12-01

    In this study, we investigated the change in the antioxidant enzymes activity, cell respiration, reactive oxygen species (ROS), and impairment of membrane mitochondria permeability in the Endomyces magnusii yeasts during culture growth and aging. We showed that the transition into stationary phase is the key tool to understanding interaction of these processes. This growth stage is distinguished by two-fold increase in ROS production and respiration rate as compared to those in the logarithmic phase. It results in induction of alternative oxidase (AO) in the stationary phase, decline of the main antioxidant enzymes activities, ROS-production, and mitochondria membrane permeability. Significant increase in the share of mitochondrial isoform of superoxide dismutase (SOD2) occurred in the stationary phase from 51.8% (24 h of cultivation) to 68.6% (48 h of cultivation). Upon blocking the essential ROS-scavenging enzymes, SODs and catalases (CATs) some heterogeneity of cell population was observed: 80-90% of cells displayed evident signs of early apoptosis (such as disorientation of mitochondria cristae, mitochondrial fragmentation and deformation of nuclear chromatine). However, 10-20% of the population were definitely healthy. It allowed to draw the conclusion that a complete system of cell antioxidant protection underlies normal mitochondria functioning while the E. magnusii yeasts grow and age. Moreover, this system provides unimpaired cell physiology under oxidative stress during culture aging in the stationary phase. Failures in mitochondria functions due to inhibition of ROS-scavenging enzymes of CATs and SODs could lead to damage of the cells and some signs of early apoptosis.

  7. The significance of cooking for early hominin scavenging.

    Science.gov (United States)

    Smith, Alex R; Carmody, Rachel N; Dutton, Rachel J; Wrangham, Richard W

    2015-07-01

    Meat scavenged by early Homo could have contributed importantly to a higher-quality diet. However, it has been suggested that because carrion would normally have been contaminated by bacteria it would have been dangerous and therefore eaten rarely prior to the advent of cooking. In this study, we quantified bacterial loads on two tissues apparently eaten by hominins, meat and bone marrow. We tested the following three hypotheses: (1) the bacterial loads on exposed surfaces of raw meat increase within 24 h to potentially dangerous levels, (2) simple roasting of meat on hot coals kills most bacteria, and (3) fewer bacteria grow on marrow than on meat, making marrow a relatively safe food. Our results supported all three hypotheses. Our experimental data imply that early hominins would have found it difficult to scavenge safely without focusing on marrow, employing strategies of carrion selection to minimize pathogen load, or cooking. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Water permeation through anion exchange membranes

    Science.gov (United States)

    Luo, Xiaoyan; Wright, Andrew; Weissbach, Thomas; Holdcroft, Steven

    2018-01-01

    An understanding of water permeation through solid polymer electrolyte (SPE) membranes is crucial to offset the unbalanced water activity within SPE fuel cells. We examine water permeation through an emerging class of anion exchange membranes, hexamethyl-p-terphenyl poly (dimethylbenzimidazolium) (HMT-PMBI), and compare it against series of membrane thickness for a commercial anion exchange membrane (AEM), Fumapem® FAA-3, and a series of proton exchange membranes, Nafion®. The HMT-PMBI membrane is found to possess higher water permeabilities than Fumapem® FAA-3 and comparable permeability than Nafion (H+). By measuring water permeation through membranes of different thicknesses, we are able to decouple, for the first time, internal and interfacial water permeation resistances through anion exchange membranes. Permeation resistances on liquid/membrane interface is found to be negligible compared to that for vapor/membrane for both series of AEMs. Correspondingly, the resistance of liquid water permeation is found to be one order of magnitude smaller compared to that of vapor water permeation. HMT-PMBI possesses larger effective internal water permeation coefficient than both Fumapem® FAA-3 and Nafion® membranes (60 and 18% larger, respectively). In contrast, the effective interfacial permeation coefficient of HMT-PMBI is found to be similar to Fumapem® (±5%) but smaller than Nafion®(H+) (by 14%).

  9. Naloxone inhibits superoxide but not enzyme release by human neutrophils

    Energy Technology Data Exchange (ETDEWEB)

    Simpkins, C.; Alailima, S.; Tate, E.

    1986-03-01

    The release of toxic oxygen metabolites and enzymes by phagocytic cells is thought to play a role in the multisystemic tissue injury of sepsis. Naloxone protects septic animals. We have found that at concentrations administered to animals (10/sup -7/ to 10/sup -4/M), naloxone inhibited (p < .001) the release of superoxide (O/sub 2//sup -/) by human neutrophils (HN), stimulated with N-formyl methionyl leucyl phenylalanine (FMLP). Naloxone had no effect on cell viability. Maximum inhibition was 65% of the total O/sub 2//sup -/ released (13.1 nMoles/8 min/320,000 cells). FMLP-stimulated release of beta-glucoronidase or lysozyme was not altered by naloxone. Naloxone had no effect on the binding of /sup 3/H FMLP to HN. Using /sup 3/H naloxone and various concentrations of unlabeled naloxone higher affinity (K/sub D/ = 12nM) and lower affinity (K/sub D/ = 4.7 x 10/sup -5/) binding sites were detected. The K/sub D/ of the low affinity site corresponded to the ED/sub 50/ for naloxone inhibition of O/sub 2//sup -/ (1 x 10/sup -5/M). Binding to this low affinity site was decreased by (+) naloxone, beta-endorphin and N acetyl beta-endorphin, but not by leu-enkephalin, thyrotropin releasing factor, prostaglandin D/sub 2/ or E/sub 2/. Conclusions: (1) naloxone inhibits FMLP-stimulated O/sub 2/ but not enzyme release, (2) this inhibition is not due to alteration of FMLP receptor binding, (3) naloxone may act via a low affinity binding site which is ligand specific, and (4) a higher affinity receptor is present on HN.

  10. Radical scavenging compounds from the aerial parts of ...

    African Journals Online (AJOL)

    Results: The ethyl acetate and n-butanol fractions were the most active fractions and contained apigenin, apigenin glucuronide, luteolin, caffeic acid, methyl caffeate, rosmarinic acid and methyl rosmarinate as the radical scavenging compounds with EC50 values of 26.67 ± 0.31, 185.89 ± 1.02, 5.35 ± 0.31, 3.92 ± 0.06, ...

  11. In vitro free radical scavenging activity of platinum nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Aki; Kajita, Masashi; Kim, Juewon; Kanayama, Atsuhiro; Miyamoto, Yusei [Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Bioscience Building 402, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562 (Japan); Takahashi, Kyoko; Mashino, Tadahiko, E-mail: yusei74@k.u-tokyo.ac.j [Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512 (Japan)

    2009-11-11

    A polyacrylic acid (PAA)-protected platinum nanoparticle species (PAA-Pt) was prepared by alcohol reduction of hexachloroplatinate. The PAA-Pt nanoparticles were well dispersed and homogeneous in size with an average diameter of 2.0 {+-} 0.4 nm (n = 200). We used electron spin resonance to quantify the residual peroxyl radical AOO. generated from 2,2-azobis (2-aminopropane) dihydrochloride (AAPH) by thermal decomposition in the presence of O{sub 2} and a spectrophotometric method to quantify the residual 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. PAA-Pt scavenged these two radicals in a dose-dependent manner. Platinum was the functional component. PAA-Pt reduced the rate of oxygen consumption required for linoleic acid peroxidation initiated by AOO. generated from AAPH, indicating inhibition of the propagation of linolate peroxidation. A thiobarbituric acid test also revealed dose-dependent inhibition of the linolate peroxidation by PAA-Pt. Fifty micromolar platinum, as PAA-Pt, completely quenched 250 {mu}M DPPH radical for 5 min. Even when twice diluted in half, the PAA-Pt still quenched 100% of the 250 {mu}M DPPH radical. The scavenging activity of PAA-Pt is durable. These observations suggest that PAA-Pt is an efficient scavenger of free radicals.

  12. Scavenging of radionuclides in the marine environment, (1)

    International Nuclear Information System (INIS)

    Mahara, Yasunori

    1989-01-01

    It is very important to predict diffusion, scavenging and accumulation of the long lives radionuclides which may be discharged from the reprocessing plant in the marine environment, for the purpose of polishing up methods of the radiation does estimation to the high quality stage. This study reports that distribution and behavior of transuranic elements, which are extremely harmful for the human beings and are discharged probably from the reprocessing plant, are investigated in both the survey of bibliography and the in-situ observation. Results of the field observation on the distribution of transuranic elements in the marine show that plutonium and americium are easily scavenged from the sea water and are accumulated on the sea bottom. Transuranic elements, which are originated from fallout and are discharged from the reprocessing plant, have generally the similar distribution in the marine and the same chemical behavior. This facts suggest that the fallout data which are probably and easily collected in the world are available for fabrication of the scavenging model for transuranic elements discharged from the reprocessing plants. (author)

  13. Diet and scavenging habits of the smooth skate Dipturus innominatus.

    Science.gov (United States)

    Forman, J S; Dunn, M R

    2012-04-01

    The diet of smooth skate Dipturus innominatus was determined from examination of stomach contents of 321 specimens of 29·3-152·0 cm pelvic length, sampled from research and commercial trawlers at depths of 231-789 m on Chatham Rise, New Zealand. The diet was dominated by the benthic decapods Metanephrops challengeri and Munida gracilis, the natant decapod Campylonotus rathbunae and fishes from 17 families, of which hoki Macruronus novaezelandiae, sea perch Helicolenus barathri, various Macrouridae and a variety of discarded fishes were the most important. Multivariate analyses indicated the best predictors of diet variability were D. innominatus length and a spatial model. The diet of small D. innominatus was predominantly small crustaceans, with larger crustaceans, fishes and then scavenged discarded fishes increasing in importance as D. innominatus got larger. Scavenged discards were obvious as fish heads or tails only, or skeletal remains after filleting, often from pelagic species. Demersal fish prey were most frequent on the south and west Chatham Rise, in areas where commercial fishing was most active. Dipturus innominatus are highly vulnerable to overfishing, but discarding practices by commercial fishing vessels may provide a positive feedback to populations through improved scavenging opportunities. © 2012 NIWA. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  14. Body Size as a Driver of Scavenging in Theropod Dinosaurs.

    Science.gov (United States)

    Kane, Adam; Healy, Kevin; Ruxton, Graeme D; Jackson, Andrew L

    2016-06-01

    Theropod dinosaurs dominated Earth's terrestrial ecosystem as a diverse group of predators for more than 160 million years, yet little is known about their foraging ecology. Maintaining a balanced energy budget presented a major challenge for therapods, which ranged from the chicken-sized Microraptor up to the whale-sized Giganotosaurus, in the face of intense competition and the demands of ontogenetic growth. Facultative scavenging, a behavior present in almost all modern predators, may have been important in supplementing energetically expensive lifestyles. By using agent-based models based on the allometric relationship between size and foraging behaviors, we show that theropods between 27 and 1,044 kg would have gained a significant energetic advantage over individuals at both the small and large extremes of theropod body mass through their scavenging efficiency. These results were robust to rate of competition, primary productivity, and detection distance. Our models demonstrate the potential importance of facultative scavenging in theropods and the role of body size in defining its prevalence in Mesozoic terrestrial systems.

  15. Scavenger Receptor CD163 and Its Biological Functions

    Directory of Open Access Journals (Sweden)

    Gabriela Onofre

    2009-01-01

    Full Text Available CD163 is a member of scavenger receptor super family class B of the first subgroup. It is mapped to the region p13 on chromosome 12. Five different isoforms of CD163 have been described, which differ in the structure of their cytoplasmic domains and putative phosporylation sites. This scavenger receptor is selectively expressed on cells of monocytes and macrophages lineage exclusively. CD163 immunological function is essentially homeostatic. It also has other functions because participates in adhesion to endothelial cells, in tolerance induction and tissues regeneration. Other very important function of CD163 is the clearance of hemoglobin in its cell-free form and participation in anti-inflammation in its soluble form, exhibiting cytokine-like functions. We review the biological functions of CD163 which have been discovered until now. It seems apparent from this review that CD163 scavenger receptor can be used as biomarker in different diseases and as a valuable diagnostic parameter for prognosis of many diseases especially inflammatory disorders and sepsis.

  16. Shape similarities and differences in the skulls of scavenging raptors.

    Science.gov (United States)

    Guangdi, S I; Dong, Yiyi; Ma, Yujun; Zhang, Zihui

    2015-04-01

    Feeding adaptations are a conspicuous feature of avian evolution. Bill and cranial shape as well as the jaw muscles are closely related to diet choice and feeding behaviors. Diurnal raptors of Falconiformes exhibit a wide range of foraging behaviors and prey preferences, and are assigned to seven dietary groups in this study. Skulls of 156 species are compared from the dorsal, lateral and ventral views, by using geometric morphometric techniques with those landmarks capturing as much information as possible on the overall shape of cranium, bill, orbits, nostrils and attachment area for different jaw muscles. The morphometric data showed that the skull shape of scavengers differ significantly from other raptors, primarily because of different feeding adaptations. As a result of convergent evolution, different scavengers share generalized common morphology, possessing relatively slender and lower skulls, longer bills, smaller and more sideward orbits, and more caudally positioned quadrates. Significant phylogenetic signals suggested that phylogeny also played important role in shape variation within scavengers. New World vultures can be distinguished by their large nostrils, narrow crania and small orbits; Caracaras typically show large palatines, crania and orbits, as well as short, deep and sharp bill.

  17. Separation of nanoparticles: Filtration and scavenging from waste incineration plants.

    Science.gov (United States)

    Förster, Henning; Thajudeen, Thaseem; Funk, Christine; Peukert, Wolfgang

    2016-06-01

    Increased amounts of nanoparticles are applied in products of everyday life and despite material recycling efforts, at the end of their life cycle they are fed into waste incineration plants. This raises the question on the fate of nanoparticles during incineration. In terms of environmental impact the key question is how well airborne nanoparticles are removed by separation processes on their way to the bag house filters and by the existing filtration process based on pulse-jet cleanable fibrous filter media. Therefore, we investigate the scavenging and the filtration of metal nanoparticles under typical conditions in waste incineration plants. The scavenging process is investigated by a population balance model while the nanoparticle filtration experiments are realized in a filter test rig. The results show that depending on the particle sizes, in some cases nearly 80% of the nanoparticles are scavenged by fly ash particles before they reach the bag house filter. For the filtration step dust cakes with a pressure drop of 500Pa or higher are found to be very effective in preventing nanoparticles from penetrating through the filter. Thus, regeneration of the filter must be undertaken with care in order to guarantee highly efficient collection of particles even in the lower nanometre size regime. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The evolution of the class A scavenger receptors

    Directory of Open Access Journals (Sweden)

    Whelan Fiona J

    2012-11-01

    Full Text Available Abstract Background The class A scavenger receptors are a subclass of a diverse family of proteins defined based on their ability to bind modified lipoproteins. The 5 members of this family are strikingly variable in their protein structure and function, raising the question as to whether it is appropriate to group them as a family based on their ligand binding abilities. Results To investigate these relationships, we defined the domain architecture of each of the 5 members followed by collecting and annotating class A scavenger receptor mRNA and amino acid sequences from publicly available databases. Phylogenetic analyses, sequence alignments, and permutation tests revealed a common evolutionary ancestry of these proteins, indicating that they form a protein family. We postulate that 4 distinct gene duplication events and subsequent domain fusions, internal repeats, and deletions are responsible for the diverse protein structures and functions of this family. Despite variation in domain structure, there are highly conserved regions across all 5 members, indicating the possibility that these regions may represent key conserved functional motifs. Conclusions We have shown with significant evidence that the 5 members of the class A scavenger receptors form a protein family. We have indicated that these receptors have a common origin which may provide insight into future functional work with these proteins.

  19. The activity of catalase and superoxide dismutase in isogenous bacteria strains with different radioresistance

    International Nuclear Information System (INIS)

    Vasil'eva, E.I.; Goncharenko, E.N.; Yudz, T.I.; Samojlenko, I.I.

    1984-01-01

    The catalase and superoxide dismutase activity in isogenous bacterial strains with various radiosensitivity is investigated. In micrococcus radiodurans mutants with defects in the DNA repair systems the superoxide dismutase activity is lower than in the wild type cells. In investigated Escherichia coli strains differing in radiosensitivity, no alteration in catalase and superoxide dismutase activity is found. The conclusion is drawn that viability of bacteria subjected to the effect of ionizing radiations is determined by the efficiency of DNA repair systems whose functional reliability is sometimes connected with the catalase and suferoxide dismutase activity

  20. Conjugates of Superoxide Dismutase 1 with Amphiphilic Poly(2-oxazoline) Block Copolymers for Enhanced Brain Delivery: Synthesis, Characterization and Evaluation in Vitro and in Vivo

    KAUST Repository

    Tong, Jing; Yi, Xiang; Luxenhofer, Robert; Banks, William A.; Jordan, Rainer; Zimmerman, Matthew C.; Kabanov, Alexander V.

    2013-01-01

    Superoxide dismutase 1 (SOD1) efficiently catalyzes dismutation of superoxide, but its poor delivery to the target sites in the body, such as brain, hinders its use as a therapeutic agent for superoxide-associated disorders. Here to enhance

  1. Effects of superoxide dismutase, dithiothreitol and formate ion on the inactivation of papain by hydroxyl and superoxide radicals in aerated solutions

    International Nuclear Information System (INIS)

    Lin, W.S.; Armstrong, D.A.

    1978-01-01

    Losses in enzyme activity and sulphydryl content have been studied in aerated papain solutions containing formate, superoxide dismutase and dithiothreitol. Both formate and dithiothreitol converted .OH to .0 2 -, whereas superoxide dismutase completely suppressed the inactivation by .0 2 -. Using results from all systems, the fraction of .0 2 - reactions with papain that caused inactivation of the enzyme was 0.33+-0.07. The results also showed that the fraction of .OH reactions, which cause inactivation of papain, is significantly higher in aerated than in oxygen-free solutions. (author)

  2. Hydration of a Large Anionic Charge Distribution - Naphthalene-Water Cluster Anions

    Science.gov (United States)

    Weber, J. Mathias; Adams, Christopher L.

    2010-06-01

    We report the infrared spectra of anionic clusters of naphthalene with up to three water molecules. Comparison of the experimental infrared spectra with theoretically predicted spectra from quantum chemistry calculations allow conclusions regarding the structures of the clusters under study. The first water molecule forms two hydrogen bonds with the π electron system of the naphthalene moiety. Subsequent water ligands interact with both the naphthalene and the other water ligands to form hydrogen bonded networks, similar to other hydrated anion clusters. Naphthalene-water anion clusters illustrate how water interacts with negative charge delocalized over a large π electron system. The clusters are interesting model systems that are discussed in the context of wetting of graphene surfaces and polyaromatic hydrocarbons.

  3. Spatial complexity of carcass location influences vertebrate scavenger efficiency and species composition.

    Science.gov (United States)

    Smith, Joshua B; Laatsch, Lauren J; Beasley, James C

    2017-08-31

    Scavenging plays an important role in shaping communities through inter- and intra-specific interactions. Although vertebrate scavenger efficiency and species composition is likely influenced by the spatial complexity of environments, heterogeneity in carrion distribution has largely been disregarded in scavenging studies. We tested this hypothesis by experimentally placing juvenile bird carcasses on the ground and in nests in trees to simulate scenarios of nestling bird carrion availability. We used cameras to record scavengers removing carcasses and elapsed time to removal. Carrion placed on the ground was scavenged by a greater diversity of vertebrates and at > 2 times the rate of arboreal carcasses, suggesting arboreal carrion may represent an important resource to invertebrate scavengers, particularly in landscapes with efficient vertebrate scavenging communities. Nonetheless, six vertebrate species scavenged arboreal carcasses. Rat snakes (Elaphe obsolete), which exclusively scavenged from trees, and turkey vultures (Cathartes aura) were the primary scavengers of arboreal carrion, suggesting such resources are potentially an important pathway of nutrient acquisition for some volant and scansorial vertebrates. Our results highlight the intricacy of carrion-derived food web linkages, and how consideration of spatial complexity in carcass distribution (i.e., arboreal) may reveal important pathways of nutrient acquisition by invertebrate and vertebrate scavenging guilds.

  4. Integrated Analysis of the Scavenging Process in Marine Two-Stroke Diesel Engines

    DEFF Research Database (Denmark)

    Andersen, Fredrik Herland

    Large commercial ships such as container vessels and bulk carriers are propelledby low-speed, uniow scavenged two-stroke diesel engines. An integralin-cylinder process in this type of engine is the scavenging process, where the burned gases from the combustion process are evacuated through...... receiver fora two-stroke diesel engine. Time resolved boundary conditions corresponding to measurements obtained from an operating engine as well as realistic initial conditions are used in the simulations. The CFD model provides a detailed description of the in-cylinder ow from exhaust valve opening (EVO...... in the scavenge and exhaust receivers increase while the scavenge port exposure time, tscav, decrease. Further the scavenging pressure is varied while the engine speed is kept constant. From the perspective of the scavenging process this will resemble a load sweep following a generator curve. The scavenge port...

  5. Enzymatic Activity Enhancement of Non-Covalent Modified Superoxide Dismutase and Molecular Docking Analysis

    Directory of Open Access Journals (Sweden)

    Fa-Jun Song

    2012-03-01

    Full Text Available The enzyme activity of superoxide dismutase was improved in the pyrogallol autoxidation system by about 27%, after interaction between hydroxypropyl-β-cyclo- dextrin and superoxide dismutase. Fluorescence spectrometry was used to study the interaction between hydroxypropyl-β-cyclodextrin and superoxide dismutase at different temperatures. By doing this, it can be found that these interactions increase fluorescence sensitivity. In the meantime, the synchronous fluorescence intensity revealed the interaction sites to be close to the tryptophan (Trp and tyrosine (Tyr residues of superoxide dismutase. Furthermore, molecular docking was applied to explore the binding mode between the ligands and the receptor. This suggested that HP-β-CD interacted with the B ring, G ring and the O ring and revealed that the lysine (Lys residues enter the nanocavity. It was concluded that the HP-β-CD caused specific conformational changes in SOD by non-covalent modification.

  6. Endogenous superoxide dismutase and catalase activities and radiation resistance in mouse cell lines

    International Nuclear Information System (INIS)

    Davy, C.A.; Tesfay, Z.; Jones, J.; Rosenberg, R.C.; McCarthy, C.; Ostrand-Rosenberg, S.

    1988-01-01

    The relationship between the endogenous cytoplasmic levels of the enzymes superoxide dismutase and catalase and the inhibition of cell proliferation by γ-radiation has been studied in 11 mouse cell lines. The resistance of these mouse cell lines to radiation was found to vary by over 25-fold. No correlation was found between the cytoplasmic level of CuZn-superoxide dismutase or catalase and the resistance to radiation as measured by extrapolation number (EN), quasi-threshold dose (Dsub(q)), or Dsub(o). None of the cell lines had detectable cytoplasmic Mn-superoxide dismutase. The apparent Ksub(i) of potassium cyanide for mouse CuZn-superoxide dismutase was determined (Ksub(i) = 6.5 μmol dm -3 ). (author)

  7. Graphene-coated polymeric anion exchangers for ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Cao, Minyi; Lou, Chaoyan [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028 (China); Wu, Shuchao, E-mail: wushch2002@163.com [Zhejiang Institute of Geology and Mineral Resources, Hangzhou 310007 (China); Zhang, Peimin [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028 (China); Zhi, Mingyu [Hangzhou Vocational & Technical College, Hangzhou, 310018 (China); Zhu, Yan, E-mail: zhuyan@zju.edu.cn [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028 (China)

    2017-06-01

    Carbonaceous stationary phases have gained much attention for their peculiar selectivity and robustness. Herein we report the fabrication and application of a graphene-coated polymeric stationary phase for anion exchange chromatography. The graphene-coated particles were fabricated by a facile evaporation-reduction method. These hydrophilic particles were proven appropriate substrates for grafting of hyperbranched condensation polymers (HBCPs) to make pellicular anion exchangers. The new phase was characterized by zeta potentials, Fourier transform infrared spectroscopy, thermogravimetry and scanning electron microscope. Frontal displacement chromatography showed that the capacities of the anion exchangers were tuned by both graphene amount and HBCPs layer count. The chromatographic performance of graphene-coated anion exchangers was demonstrated with separation of inorganic anions, organic acids, carbohydrates and amino acids. Good reproducibility was obtained by consecutive injections, indicating high chemical stability of the coating. - Highlights: • Graphene-coated polymeric particles were fabricated by a facile method. • Hyperbranched condensation polymers (HBCPs) were grafted from graphene-coated particles to make anion exchangers. • Graphene amount and HBCPs layer count had significant effects on the anion exchange capacities. • Separation of diverse anionic analytes on the anion exchangers was demonstrated. • The prepared anion exchangers exhibited high stability.

  8. Extraction of Erythrocyte Enzymes for the Preparation of Polyhemoglobin-catalase-superoxide Dismutase

    OpenAIRE

    Gu, Jingsong; Chang, Thomas Ming Swi

    2009-01-01

    In sustained severe ischemia, reperfusion with oxygen carriers may result in ischemia-reperfusion injuries because of the release of damaging oxygen radicals. A nanobiotechnology-based polyhemogloin-calatase-superoxide dismutase can prevent this because the oxygen carrier, polyhemoglobin, is linked to antioxidant enzymes, catalase and superoxide dismutase. However, these antioxidant enzymes come from nonhuman sources and recombinant human enzymes are expensive. This paper describes our study ...

  9. Catalase and Superoxide Dismutase of Root-Colonizing Saprophytic Fluorescent Pseudomonads †

    OpenAIRE

    Katsuwon, Jirasak; Anderson, Anne J.

    1990-01-01

    Root-colonizing, saprophytic fluorescent pseudomonads of the Pseudomonas putida-P. fluorescens group express similar levels of catalase and superoxide dismutase activities during growth on a sucrose- and amino acid-rich medium. Increased specific activities of catalase but not superoxide dismutase were observed during growth of these bacteria on components washed from root surfaces. The specific activities of both enzymes were also regulated during contact of these bacteria with intact bean r...

  10. Superoxide dismutase from Trichuris ovis, inhibiton by benzimidazoles and pyrimidine derivatives

    OpenAIRE

    Sanchez-Moreno, M.; Garcia-Rejon, L.; Salas, I.; Osuna, A.; Monteoliva, M.

    1992-01-01

    Three superoxide dismutase isoenzymes of different cellular location were detected in an homogenate of Thrichuris ovis. Each of these molecular forms was purified by differential centrifugation and precipitation with ammonium sulphate, followed by chromatography on DEAE-cellulose and Sephadex G-75 columns. The activity levels of the two molecular forms detected in the mitochondrial (one cyanide sensitive Cu-Zn-SOD and the other cyanide intensitive Mn-Sod were higher than that of the superoxid...

  11. Effects of chlorogenic acid on capacity of free radicals scavenging and proteomic changes in postharvest fruit of nectarine.

    Directory of Open Access Journals (Sweden)

    Yu Xi

    Full Text Available To study how chlorogenic acid affects changes of reactive oxygen species (ROS and the proteins involved in ROS scavenging of nectarine during storage time, the fruits were treated with chlorogenic acid (CHA then stored at 25°C for further studies. The CHA-treatment significantly reduced O2-· production rate, H2O2 content, and membrane permeability of nectarine fruit during storage. The key proteins related the nectarine fruit senescence during storage were identified by two-dimensional electrophoresis and MALDI-TOF/TOF. Level and enzymatic activity of peroxidase were reduced, while both the protein levels and the enzymatic activities of superoxide dismutase, glutathione reductase, glutathione-s-transferase and monodehydroascorbate reductase were enhanced in nectarine fruit treated with CHA. In addition, levels of several pathogen-related proteins were also enhanced by CHA-treatment. Taking together, the present study showed that CHA could influence changes in defense related proteins and reduced oxidative damage in nectarine fruit during postharvest ripening.

  12. Infrared Spectroscopy of Discrete Uranyl Anion Complexes

    International Nuclear Information System (INIS)

    Groenewold, G. S.; Gianotto, Anita K.; McIIwain, Michael E.; Van Stipdonk, Michael J.; Kullman, Michael; Moore, David T.; Polfer, Nick; Oomens, Jos; Infante, Ivan A.; Visscher, Lucas; Siboulet, Bertrand; De Jong, Wibe A.

    2008-01-01

    The Free-Electron Laser for Infrared Experiments (FELIX) w 1 as used to study the wavelength-resolved multiple photon photodissociation of discrete, gas phase uranyl (UO2 2 2+) complexes containing a single anionic ligand (A), with or without ligated solvent molecules (S). The uranyl antisymmetric and symmetric stretching frequencies were measured for complexes with general formula [UO2A(S)n]+, where A was either hydroxide, methoxide, or acetate; S was water, ammonia, acetone, or acetonitrile; and n = 0-3. The values for the antisymmetric stretching frequency for uranyl ligated with only an anion ([UO2A]+) were as low or lower than measurements for [UO2]2+ ligated with as many as five strong neutral donor ligands, and are comparable to solution phase values. This result was surprising because initial DFT calculations predicted values that were 30-40 cm-1 higher, consistent with intuition but not with the data. Modification of the basis sets and use of alternative functionals improved computational accuracy for the methoxide and acetate complexes, but calculated values for the hydroxide were greater than the measurement regardless of the computational method used. Attachment of a neutral donor ligand S to [UO2A]+ produced [UO2AS]+, which produced only very modest changes to the uranyl antisymmetric stretch frequency, and did not universally shift the frequency to lower values. DFT calculations for [UO2AS]+ were in accord with trends in the data, and showed that attachment of the solvent was accommodated by weakening of the U-anion bond as well as the uranyl. When uranyl frequencies were compared for [UO2AS]+ species having different solvent neutrals, values decreased with increasing neutral nucleophilicity

  13. Differential Effects of Superoxide Dismutase Mimetics after Mechanical Overload of Articular Cartilage

    Directory of Open Access Journals (Sweden)

    Mitchell C. Coleman

    2017-11-01

    Full Text Available Post-traumatic osteoarthritis can develop as a result of the initial mechanical impact causing the injury and also as a result of chronic changes in mechanical loading of the joint. Aberrant mechanical loading initiates excessive production of reactive oxygen species, oxidative damage, and stress that appears to damage mitochondria in the surviving chondrocytes. To probe the benefits of increasing superoxide removal with small molecular weight superoxide dismutase mimetics under severe loads, we applied both impact and overload injury scenarios to bovine osteochondral explants using characterized mechanical platforms with and without GC4403, MnTE-2-PyP, and MnTnBuOE-2-PyP. In impact scenarios, each of these mimetics provides some dose-dependent protection from cell death and loss of mitochondrial content while in repeated overloading scenarios only MnTnBuOE-2-PyP provided a clear benefit to chondrocytes. These results support the hypothesis that superoxide is generated in excess after impact injuries and suggest that superoxide production within the lipid compartment may be a critical mediator of responses to chronic overload. This is an important nuance distinguishing roles of superoxide, and thus superoxide dismutases, in mediating damage to cellular machinery in hyper-acute impact scenarios compared to chronic scenarios.

  14. Durum wheat dehydrin (DHN-5) confers salinity tolerance to transgenic Arabidopsis plants through the regulation of proline metabolism and ROS scavenging system.

    Science.gov (United States)

    Saibi, Walid; Feki, Kaouthar; Ben Mahmoud, Rihem; Brini, Faiçal

    2015-11-01

    The wheat dehydrin (DHN-5) gives birth to salinity tolerance to transgenic Arabidopsis plants by the regulation of proline metabolism and the ROS scavenging system. Dehydrins (DHNs) are involved in plant abiotic stress tolerance. In this study, we reported that salt tolerance of transgenic Arabidopsis plants overexpressing durum wheat dehydrin (DHN-5) was closely related to the activation of the proline metabolism enzyme (P5CS) and some antioxidant biocatalysts. Indeed, DHN-5 improved P5CS activity in the transgenic plants generating a significant proline accumulation. Moreover, salt tolerance of Arabidopsis transgenic plants was accompanied by an excellent activation of antioxidant enzymes like catalase (CAT), superoxide dismutase (SOD) and peroxide dismutase (POD) and generation of a lower level of hydrogen peroxide (H2O2) in leaves compared to the wild-type plants. The enzyme activities were enhanced in these transgenic plants in the presence of exogenous proline. Nevertheless, proline accumulation was slightly reduced in transgenic plants promoting chlorophyll levels. All these results suggest the crucial role of DHN-5 in response to salt stress through the activation of enzymes implicated in proline metabolism and in ROS scavenging enzymes.

  15. Probes for anionic cell surface detection

    Science.gov (United States)

    Smith, Bradley D.

    2013-03-05

    Embodiments of the present invention are generally directed to compositions comprising a class of molecular probes for detecting the presence of anionic cell surfaces. Embodiments include compositions that are enriched for these compositions and preparations, particularly preparations suitable for use as laboratory/clinical reagents and diagnostic indicators, either alone or as part of a kit. An embodiment of the invention provides for a highly selective agent useful in the discernment and identification of dead or dying cells, such as apoptotic cells, in a relatively calcium-free environment. An embodiment of the invention provides a selective agent for the identification of bacteria in a mixed population of bacterial cells and nonbacterial cells.

  16. Scavenging of particulate elemental carbon into stratus cloud

    Energy Technology Data Exchange (ETDEWEB)

    Kaneyasu, Naoki; Maeda, Takahisa [National Inst. for Resources and Environment, Tsukuba (Japan)

    1995-12-31

    The role of atmospheric aerosols on the alternation of cloud radiative properties has widely been recognized since 1977 when Tomey and his coworkers have numerically demonstrated the effect of increased cloud condensation nuclei (CCN). At the same time, cloud processes are one of the most important factor in controlling the residence time of atmospheric aerosols through the wet removal process. The redistribution of the size and the composition of pre-cloud aerosols is also the important role of cloud process on the nature of atmospheric aerosols. In order to study these cloud-aerosol interaction phenomena, the incorporation of aerosols into cloud droplets is the first mechanism to be investigated. Among the several mechanisms for the incorporation of aerosols into cloud droplets, nucleation scavenging, is the potentially important process in the view of cloud-aerosol interactions. This critical supersaturation for a given radius of a particle can be theoretically calculated only for pure species, e.g., NaCl. However, a significant portion of the atmospheric aerosols is in the form of internal mixture of multiple components, such as SO{sub 4}{sup 2-}, NO{sub 3}{sup -}, NH{sub 4}{sup +} and particulate elemental carbon. The knowledge acquired by field measurements is therefore essential on this subject. The present study focuses on the scavenging of major components of urban atmospheric aerosols, in particular the incorporation of particulate elemental carbon into stratus cloud. Particulate elemental carbon is the strongest light absorbing species in visible region, and has potential to change the optical property of cloud. On the basis of the measurements conducted at a mountain located in the suburb of Tokyo Metropolitan area, Japan, some insights on the scavenging of particulate elemental carbon into cloud droplet will be presented

  17. Scavenging of particulate elemental carbon into stratus cloud

    Energy Technology Data Exchange (ETDEWEB)

    Kaneyasu, Naoki; Maeda, Takahisa [National Inst. for Resources and Environment, Tsukuba (Japan)

    1996-12-31

    The role of atmospheric aerosols on the alternation of cloud radiative properties has widely been recognized since 1977 when Tomey and his coworkers have numerically demonstrated the effect of increased cloud condensation nuclei (CCN). At the same time, cloud processes are one of the most important factor in controlling the residence time of atmospheric aerosols through the wet removal process. The redistribution of the size and the composition of pre-cloud aerosols is also the important role of cloud process on the nature of atmospheric aerosols. In order to study these cloud-aerosol interaction phenomena, the incorporation of aerosols into cloud droplets is the first mechanism to be investigated. Among the several mechanisms for the incorporation of aerosols into cloud droplets, nucleation scavenging, is the potentially important process in the view of cloud-aerosol interactions. This critical supersaturation for a given radius of a particle can be theoretically calculated only for pure species, e.g., NaCl. However, a significant portion of the atmospheric aerosols is in the form of internal mixture of multiple components, such as SO{sub 4}{sup 2-}, NO{sub 3}{sup -}, NH{sub 4}{sup +} and particulate elemental carbon. The knowledge acquired by field measurements is therefore essential on this subject. The present study focuses on the scavenging of major components of urban atmospheric aerosols, in particular the incorporation of particulate elemental carbon into stratus cloud. Particulate elemental carbon is the strongest light absorbing species in visible region, and has potential to change the optical property of cloud. On the basis of the measurements conducted at a mountain located in the suburb of Tokyo Metropolitan area, Japan, some insights on the scavenging of particulate elemental carbon into cloud droplet will be presented

  18. Perspective: Electrospray photoelectron spectroscopy: From multiply-charged anions to ultracold anions

    International Nuclear Information System (INIS)

    Wang, Lai-Sheng

    2015-01-01

    Electrospray ionization (ESI) has become an essential tool in chemical physics and physical chemistry for the production of novel molecular ions from solution samples for a variety of spectroscopic experiments. ESI was used to produce free multiply-charged anions (MCAs) for photoelectron spectroscopy (PES) in the late 1990 s, allowing many interesting properties of this class of exotic species to be investigated. Free MCAs are characterized by strong intramolecular Coulomb repulsions, which create a repulsive Coulomb barrier (RCB) for electron emission. The RCB endows many fascinating properties to MCAs, giving rise to meta-stable anions with negative electron binding energies. Recent development in the PES of MCAs includes photoelectron imaging to examine the influence of the RCB on the electron emission dynamics, pump-probe experiments to examine electron tunneling through the RCB, and isomer-specific experiments by coupling PES with ion mobility for biological MCAs. The development of a cryogenically cooled Paul trap has led to much better resolved PE spectra for MCAs by creating vibrationally cold anions from the room temperature ESI source. Recent advances in coupling the cryogenic Paul trap with PE imaging have allowed high-resolution PE spectra to be obtained for singly charged anions produced by ESI. In particular, the observation of dipole-bound excited states has made it possible to conduct vibrational autodetachment spectroscopy and resonant PES, which yield much richer vibrational spectroscopic information for dipolar free radicals than traditional PES

  19. Zero-point energy effects in anion solvation shells.

    Science.gov (United States)

    Habershon, Scott

    2014-05-21

    By comparing classical and quantum-mechanical (path-integral-based) molecular simulations of solvated halide anions X(-) [X = F, Cl, Br and I], we identify an ion-specific quantum contribution to anion-water hydrogen-bond dynamics; this effect has not been identified in previous simulation studies. For anions such as fluoride, which strongly bind water molecules in the first solvation shell, quantum simulations exhibit hydrogen-bond dynamics nearly 40% faster than the corresponding classical results, whereas those anions which form a weakly bound solvation shell, such as iodide, exhibit a quantum effect of around 10%. This observation can be rationalized by considering the different zero-point energy (ZPE) of the water vibrational modes in the first solvation shell; for strongly binding anions, the ZPE of bound water molecules is larger, giving rise to faster dynamics in quantum simulations. These results are consistent with experimental investigations of anion-bound water vibrational and reorientational motion.

  20. Process for removing sulfate anions from waste water

    Science.gov (United States)

    Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.

    1997-01-01

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  1. The chemistry of molecular anions in circumstellar sources

    Energy Technology Data Exchange (ETDEWEB)

    Agúndez, Marcelino [LUTH, Observatoire de Paris-Meudon, 5 Place Jules Janssen, 92190 Meudon (France); Cernicharo, José [Departamento de Astrofísica, CAB, CSIC-INTA, Ctra. de Torrejón a Ajalvir km 4, 28850 Madrid (Spain); Guélin, Michel [Institut de Radioastronomie Millimétrique, 300 rue de la Piscine, 38406 Saint Martin d' Héres (France)

    2015-01-22

    The detection of negatively charged molecules in the interstellar and circumstellar medium in the past four years has been one of the most impacting surprises in the area of molecular astrophysics. It has motivated the interest of astronomers, physicists, and chemists on the study of the spectroscopy, chemical kinetics, and prevalence of molecular anions in the different astronomical regions. Up to six different molecular anions have been discovered in space to date, the last one being the small ion CN{sup −}, which has been observed in the envelope of the carbon star IRC +10216 and which contrary to the other larger anions is not formed by electron attachment to CN, but through reactions of large carbon anions with nitrogen atoms. Here we briefly review the current status of our knowledge of the chemistry of molecular anions in space, with particular emphasis on the circumstellar source IRC +10216, which to date is the astronomical source harboring the largest variety of anions.

  2. In vitro antioxidant properties, free radicals scavenging activities of extracts and polyphenol composition of a non-timber forest product used as spice: Monodora myristica

    Directory of Open Access Journals (Sweden)

    Bruno Moukette Moukette

    2015-01-01

    Full Text Available BACKGROUND: Excessive production of free radicals causes direct damage to biological molecules such as DNA, proteins, lipids, carbohydrates leading to tumor development and progression. Natural antioxidant molecules from phytochemicals of plant origin may directly inhibit either their production or limit their propagation or destroy them to protect the system. In the present study, Monodora myristica a non-timber forest product consumed in Cameroon as spice was screened for its free radical scavenging properties, antioxidant and enzymes protective activities. Its phenolic compound profile was also realized by HPLC. RESULTS: This study demonstrated that M. myristica has scavenging properties against DPPH',OH',NO', and ABTS'radicals which vary in a dose depending manner. It also showed an antioxidant potential that was comparable with that of Butylated Hydroxytoluene (BHT and vitamin C used as standard. The aqueous ethanol extract of M. myristica barks (AEH; showed a significantly higher content in polyphenolic compounds (21.44 ±0.24 mg caffeic acid/g dried extract and flavonoid (5.69 ± 0.07 quercetin equivalent mg/g of dried weight as compared to the other studied extracts. The HPLC analysis of the barks and leaves revealed the presence of several polyphenols. The acids (3,4-OH-benzoic, caffeic, gallic, O- and P- coumaric, syringic, vanillic, alcohols (tyrosol and OH-tyrosol, theobromine, quercetin, rutin, catechine and apigenin were the identified and quantified polyphenols. All the tested extracts demonstrated a high protective potential on the superoxide dismutase (SOD, catalase and peroxidase activities. CONCLUSION: Finally, the different extracts from M. myristica and specifically the aqueous ethanol extract reveal several properties such as higher free radical scavenging properties, significant antioxidant capacities and protective potential effects on liver enzymes.

  3. Over-Expression of Copper/Zinc Superoxide Dismutase in the Median Preoptic Nucleus Attenuates Chronic Angiotensin II-Induced Hypertension in the Rat

    Directory of Open Access Journals (Sweden)

    John P. Collister

    2014-12-01

    Full Text Available The brain senses circulating levels of angiotensin II (AngII via circumventricular organs, such as the subfornical organ (SFO, and is thought to adjust sympathetic nervous system output accordingly via this neuro-hormonal communication. However, the cellular signaling mechanisms involved in these communications remain to be fully understood. Previous lesion studies of either the SFO, or the downstream median preoptic nucleus (MnPO have shown a diminution of the hypertensive effects of chronic AngII, without providing a clear explanation as to the intracellular signaling pathway(s involved. Additional studies have reported that over-expressing copper/zinc superoxide dismutase (CuZnSOD, an intracellular superoxide (O2·− scavenging enzyme, in the SFO attenuates chronic AngII-induced hypertension. Herein, we tested the hypothesis that overproduction of O2·− in the MnPO is an underlying mechanism in the long-term hypertensive effects of chronic AngII. Adenoviral vectors encoding human CuZnSOD (AdCuZnSOD or control vector (AdEmpty were injected directly into the MnPO of rats implanted with aortic telemetric transmitters for recording of arterial pressure. After a 3 day control period of saline infusion, rats were intravenously infused with AngII (10 ng/kg/min for ten days. Rats over-expressing CuZnSOD (n = 7 in the MnPO had a blood pressure increase of only 6 ± 2 mmHg after ten days of AngII infusion while blood pressure increased 21 ± 4 mmHg in AdEmpty-infected rats (n = 9. These results support the hypothesis that production of O2·− in the MnPO contributes to the development of chronic AngII-dependent hypertension.

  4. Manganese-superoxide dismutase (MnSOD), a role player in seahorse (Hippocampus abdominalis) antioxidant defense system and adaptive immune system.

    Science.gov (United States)

    Perera, N C N; Godahewa, G I; Lee, Seongdo; Kim, Myoung-Jin; Hwang, Jee Youn; Kwon, Mun Gyeong; Hwang, Seong Don; Lee, Jehee

    2017-09-01

    Manganese superoxide dismutase (MnSOD) is a metaloenzyme that catalyzes dismutation of the hazardous superoxide radicals into less hazardous H 2 O 2 and H 2 O. Here, we identified a homolog of MnSOD from big belly seahorse (Hippocampus abdominalis; HaMnSOD) and characterized its structural and functional features. HaMnSOD transcript possessed an open reading frame (ORF) of 672 bp which codes for a peptide of 223 amino acids. Pairwise alignment showed that HaMnSOD shared highest identity with rock bream MnSOD. Results of the phylogenetic analysis of HaMnSOD revealed a close proximity with rock bream MnSOD which was consistent with the result of homology alignment. The intense expression of HaMnSOD was observed in the ovary, followed by the heart and the brain. Further, immune related responses of HaMnSOD towards pathogenic stimulation were observed through bacterial and viral challenges. Highest HaMnSOD expression in response to stimulants Edwardsiella tarda, Streptococcus iniae, lipopolysaccharide (LPS), and polyinosinic-polycytidylic acid (Poly I:C) was observed in the late stage in the blood tissue. Xanthine/xanthine oxidase assay (XOD assay) indicated the ROS-scavenging ability of purified recombinant HaMnSOD (rHaMnSOD). The optimum conditions for the SOD activity of rHaMnSOD were pH 9 and the 25 °C. Collectively, the results obtained through the expressional analysis profiles and the functional assays provide insights into potential immune related and antioxidant roles of HaMnSOD in the big belly seahorse. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Anion photoelectron spectroscopy of radicals and clusters

    Energy Technology Data Exchange (ETDEWEB)

    Travis, Taylor R. [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    Anion photoelectron spectroscopy is used to study free radicals and clusters. The low-lying 2Σ and 2π states of C2nH (n = 1--4) have been studied. The anion photoelectron spectra yielded electron affinities, term values, and vibrational frequencies for these combustion and astrophysically relevant species. Photoelectron angular distributions allowed the author to correctly assign the electronic symmetry of the ground and first excited states and to assess the degree of vibronic coupling in C2H and C4H. Other radicals studied include NCN and I3. The author was able to observe the low-lying singlet and triplet states of NCN for the first time. Measurement of the electron affinity of I3 revealed that it has a bound ground state and attachment of an argon atom to this moiety enabled him to resolve the symmetric stretching progression.

  6. Trophic facilitation or limitation? Comparative effects of pumas and black bears on the scavenger community.

    Science.gov (United States)

    Allen, Maximilian L; Elbroch, L Mark; Wilmers, Christopher C; Wittmer, Heiko U

    2014-01-01

    Scavenging is a widespread behaviour and an important process influencing food webs and ecological communities. Large carnivores facilitate the movement of energy across trophic levels through the scavenging and decomposition of their killed prey, but competition with large carnivores is also likely to constrain acquisition of carrion by scavengers. We used an experimental approach based on motion-triggered video cameras at black-tailed deer (Odocoileus hemionus columbianus) carcasses to measure the comparative influences of two large carnivores in the facilitation and limitation of carrion acquisition by scavengers. We found that pumas (Puma concolor) and black bears (Ursus americanus) had different effects on their ecological communities. Pumas, as a top-level predator, facilitated the consumption of carrion by scavengers, despite significantly reducing their observed sum feeding times (165.7 min ± 21.2 SE at puma kills 264.3 min ± 30.1 SE at control carcasses). In contrast, black bears, as the dominant scavenger in the system, limited consumption of carrion by scavengers as evidenced by the observed reduction of scavenger species richness recorded at carcasses where they were present (mean = 2.33 ± 0.28 SE), compared to where they were absent (mean = 3.28 ± 0.23 SE). Black bears also had large negative effects on scavenger sum feeding times (88.5 min ± 19.8 SE at carcasses where bears were present, 372.3 min ± 50.0 SE at carcasses where bears were absent). In addition, we found that pumas and black bears both increased the nestedness (a higher level of order among species present) of the scavenger community. Our results suggest that scavengers have species-specific adaptions to exploit carrion despite large carnivores, and that large carnivores influence the structure and composition of scavenger communities. The interactions between large carnivores and scavengers should be considered in future studies of food webs and ecological communities.

  7. Trophic facilitation or limitation? Comparative effects of pumas and black bears on the scavenger community.

    Directory of Open Access Journals (Sweden)

    Maximilian L Allen

    Full Text Available Scavenging is a widespread behaviour and an important process influencing food webs and ecological communities. Large carnivores facilitate the movement of energy across trophic levels through the scavenging and decomposition of their killed prey, but competition with large carnivores is also likely to constrain acquisition of carrion by scavengers. We used an experimental approach based on motion-triggered video cameras at black-tailed deer (Odocoileus hemionus columbianus carcasses to measure the comparative influences of two large carnivores in the facilitation and limitation of carrion acquisition by scavengers. We found that pumas (Puma concolor and black bears (Ursus americanus had different effects on their ecological communities. Pumas, as a top-level predator, facilitated the consumption of carrion by scavengers, despite significantly reducing their observed sum feeding times (165.7 min ± 21.2 SE at puma kills 264.3 min ± 30.1 SE at control carcasses. In contrast, black bears, as the dominant scavenger in the system, limited consumption of carrion by scavengers as evidenced by the observed reduction of scavenger species richness recorded at carcasses where they were present (mean = 2.33 ± 0.28 SE, compared to where they were absent (mean = 3.28 ± 0.23 SE. Black bears also had large negative effects on scavenger sum feeding times (88.5 min ± 19.8 SE at carcasses where bears were present, 372.3 min ± 50.0 SE at carcasses where bears were absent. In addition, we found that pumas and black bears both increased the nestedness (a higher level of order among species present of the scavenger community. Our results suggest that scavengers have species-specific adaptions to exploit carrion despite large carnivores, and that large carnivores influence the structure and composition of scavenger communities. The interactions between large carnivores and scavengers should be considered in future studies of food webs and ecological communities.

  8. Anion concurrence and anion selectivity in the sorption of radionuclides by organotones

    International Nuclear Information System (INIS)

    Behnsen, Julia G.

    2007-01-01

    Some long-lived and radiologically important nuclear fission products, such as I-129 (half-life t 1/2 = 1,6 . 10 7 a), Tc-99 (t 1/2 = 2,1 . 10 5 a), and Se-79 (t 1/2 = 6,5 . 10 4 a) are anionic in aqueous environments. This study focuses on the adsorption of such anions to organoclays and the understanding of the selectivity of the process. The organoclays used in this study were prepared from a bentonite (MX-80) and a vermiculite clay, and the cationic surfactants hexadcylpyridium, hexadecyltrimethylammonium, and benzethonium. Surfactant adsorption to the bentonite exceeds the cation exchange capacity of the clay, with the surplus positive charge being balanced by the co-adsorption of chloride. The interlayer distance of the bentonites is increased sufficiently to contain bi- and pseudotrimolecular structures of the surfactants. Adsorption experiments were carried out using the batch technique. Anion adsorption of iodide, perrhenate, selenite, nitrate, and sulphate is mainly due to ion exchange with chloride. As an additional adsorption mechanism, the incorporation of inorganic ion pairs into the interlayer space of the clay is proposed as a result of experiments showing differences in the adsorption levels of sodium and potassium iodide. Anion adsorption results show a clear selectivity of the organoclays, with the affinity sequence being: ReO - 4 > I - > NO - 3 > Cl - > SO 2- 4 > SeO 2- 3 . This sequence corresponds to the sequence of increasing hydration energies of the anions, thus selectivity could be due to the process of minimization of free energy of the system. (orig.)

  9. Reactivation of desensitized formyl peptide receptors by platelet activating factor: a novel receptor cross talk mechanism regulating neutrophil superoxide anion production.

    Directory of Open Access Journals (Sweden)

    Huamei Forsman

    Full Text Available Neutrophils express different chemoattractant receptors of importance for guiding the cells from the blood stream to sites of inflammation. These receptors communicate with one another, a cross talk manifested as hierarchical, heterologous receptor desensitization. We describe a new receptor cross talk mechanism, by which desensitized formyl peptide receptors (FPRdes can be reactivated. FPR desensitization is induced through binding of specific FPR agonists and is reached after a short period of active signaling. The mechanism that transfers the receptor to a non-signaling desensitized state is not known, and a signaling pathway has so far not been described, that transfers FPRdes back to an active signaling state. The reactivation signal was generated by PAF stimulation of its receptor (PAFR and the cross talk was uni-directional. LatrunculinA, an inhibitor of actin polymerization, induced a similar reactivation of FPRdes as PAF while the phosphatase inhibitor CalyculinA inhibited reactivation, suggesting a role for the actin cytoskeleton in receptor desensitization and reactivation. The activated PAFR could, however, reactivate FPRdes also when the cytoskeleton was disrupted prior to activation. The receptor cross talk model presented prophesies that the contact on the inner leaflet of the plasma membrane that blocks signaling between the G-protein and the FPR is not a point of no return; the receptor cross-talk from the PAFRs to the FPRdes initiates an actin-independent signaling pathway that turns desensitized receptors back to a signaling state. This represents a novel mechanism for amplification of neutrophil production of reactive oxygen species.

  10. New role for L-arginine in regulation of inducible nitric-oxide-synthase-derived superoxide anion production in Raw 264.7 macrophages

    Czech Academy of Sciences Publication Activity Database

    Pekarová, Michaela; Lojek, Antonín; Martíšková, Hana; Vašíček, Ondřej; Binó, Lucia; Klinke, A.; Lau, D.; Kuchta, R.; Kadlec, J.; Vrba, R.; Kubala, Lukáš

    2011-01-01

    Roč. 11, - (2011), s. 2443-2457 ISSN 1537-744X R&D Projects: GA ČR(CZ) GA524/08/1753 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : macrophage s * L-arginine * inducible nitric oxide synthase Subject RIV: BO - Biophysics Impact factor: 1.524, year: 2010

  11. Inhibition of nuclear waste solutions containing multiple aggressive anions

    International Nuclear Information System (INIS)

    Congdon, J.W.

    1987-01-01

    The inhibition of localized corrosion of carbon steel in caustic, high-level radioactive waste solutions was studied using cyclic potentiodynamic polarization scans, supplemented by partially immersed coupon tests. The electrochemical tests provided a rapid and accurate means of determining the relationship between the minimum inhibitor requirements and the concentration of the aggressive anions in this system. Nitrate, sulfate, chloride, and fluoride were identified as aggressive anions, however, no synergistic effects were observed between these anions. This observation may have important theoretical implications because it tends to contradict the behavior of aggressive anions as predicted by existing theories for localized corrosion. 10 refs., 5 figs., 2 tabs

  12. Increased expression of native cytosolic Cu/Zn superoxide dismutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava (Manihot esculenta Crantz).

    Science.gov (United States)

    Xu, Jia; Yang, Jun; Duan, Xiaoguang; Jiang, Yueming; Zhang, Peng

    2014-08-05

    Cassava (Manihot esculenta Crantz) is a tropical root crop, and is therefore, extremely sensitive to low temperature; its antioxidative response is pivotal for its survival under stress. Timely turnover of reactive oxygen species (ROS) in plant cells generated by chilling-induced oxidative damages, and scavenging can be achieved by non-enzymatic and enzymatic reactions in order to maintain ROS homeostasis. Transgenic cassava plants that co-express cytosolic superoxide dismutase (SOD), MeCu/ZnSOD, and ascorbate peroxidase (APX), MeAPX2, were produced and tested for tolerance against oxidative and chilling stresses. The up-regulation of MeCu/ZnSOD and MeAPX2 expression was confirmed by the quantitative reverse transcriptase-polymerase chain reaction, and enzymatic activity analyses in the leaves of transgenic cassava plant lines with a single-transgene integration site. Upon exposure to ROS-generating agents, 100 μM ROS-generating reagent methyl viologen and 0.5 M H₂O₂, higher levels of enzymatic activities of SOD and APX were detected in transgenic plants than the wild type. Consequently, the oxidative stress parameters, such as lipid peroxidation, chlorophyll degradation and H₂O₂ synthesis, were lower in the transgenic lines than the wild type. Tolerance to chilling stress at 4°C for 2 d was greater in transgenic cassava, as observed by the higher levels of SOD, catalase, and ascorbate-glutathione cycle enzymes (e.g., APX, monodehydroascorbate reductase, dehydroascorbate reducatase and glutathione reductase) and lower levels of malondialdehyde content. These results suggest that the expression of native cytosolic SOD and APX simultaneously activated the antioxidative defense mechanisms via cyclic ROS scavenging, thereby improving its tolerance to cold stress.

  13. Energy scavenging system by acoustic wave and integrated wireless communication

    Science.gov (United States)

    Kim, Albert

    The purpose of the project was developing an energy-scavenging device for other bio implantable devices. Researchers and scientist have studied energy scavenging method because of the limitation of traditional power source, especially for bio-implantable devices. In this research, piezoelectric power generator that activates by acoustic wave, or music was developed. Follow by power generator, a wireless communication also integrated with the device for monitoring the power generation. The Lead Zirconate Titanate (PZT) bimorph cantilever with a proof mass at the free end tip was studied to convert acoustic wave to power. The music or acoustic wave played through a speaker to vibrate piezoelectric power generator. The LC circuit integrated with the piezoelectric material for purpose of wireless monitoring power generation. However, wireless monitoring can be used as wireless power transmission, which means the signal received via wireless communication also can be used for power for other devices. Size of 74 by 7 by 7cm device could generate and transmit 100mVp from 70 mm distance away with electrical resonant frequency at 420.2 kHz..

  14. Phytoconstituents with Radical Scavenging and Cytotoxic Activities from Diospyros shimbaensis

    Directory of Open Access Journals (Sweden)

    Per Aronsson

    2016-01-01

    Full Text Available As part of our search for natural products having antioxidant and anticancer properties, the phytochemical investigation of Diospyros shimbaensis (Ebenaceae, a plant belonging to a genus widely used in East African traditional medicine, was carried out. From its stem and root barks the new naphthoquinone 8,8′-oxo-biplumbagin (1 was isolated along with the known tetralones trans-isoshinanolone (2 and cis-isoshinanolone (3, and the naphthoquinones plumbagin (4 and 3,3′-biplumbagin (5. Compounds 2, 4, and 5 showed cytotoxicity (IC50 520–82.1 μM against MDA-MB-231 breast cancer cells. Moderate to low cytotoxicity was observed for the hexane, dichloromethane, and methanol extracts of the root bark (IC50 16.1, 29.7 and > 100 μg/mL, respectively, and for the methanol extract of the stem bark (IC50 59.6 μg/mL. The radical scavenging activity of the isolated constituents (1–5 was evaluated on the 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging assay. The applicability of the crude extracts and of the isolated constituents for controlling degenerative diseases is discussed.

  15. Phytoconstituents with Radical Scavenging and Cytotoxic Activities from Diospyros shimbaensis.

    Science.gov (United States)

    Aronsson, Per; Munissi, Joan J E; Gruhonjic, Amra; Fitzpatrick, Paul A; Landberg, Göran; Nyandoro, Stephen S; Erdelyi, Mate

    2016-01-15

    As part of our search for natural products having antioxidant and anticancer properties, the phytochemical investigation of Diospyros shimbaensis (Ebenaceae), a plant belonging to a genus widely used in East African traditional medicine, was carried out. From its stem and root barks the new naphthoquinone 8,8'-oxo-biplumbagin ( 1 ) was isolated along with the known tetralones trans -isoshinanolone ( 2 ) and cis -isoshinanolone ( 3 ), and the naphthoquinones plumbagin ( 4 ) and 3,3'-biplumbagin ( 5 ). Compounds 2 , 4 , and 5 showed cytotoxicity (IC 50 520-82.1 μM) against MDA-MB-231 breast cancer cells. Moderate to low cytotoxicity was observed for the hexane, dichloromethane, and methanol extracts of the root bark (IC 50 16.1, 29.7 and > 100 μg/mL, respectively), and for the methanol extract of the stem bark (IC 50 59.6 μg/mL). The radical scavenging activity of the isolated constituents ( 1 - 5 ) was evaluated on the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. The applicability of the crude extracts and of the isolated constituents for controlling degenerative diseases is discussed.

  16. Development of oxygen scavenger additives for jet fuels

    Energy Technology Data Exchange (ETDEWEB)

    Beaver, B.D.; Demunshi, R.; Sharief, V.; Tian, D.; Teng, Y. [Duquesne Univ., Pittsburgh, PA (United States)

    1995-05-01

    Our current research program is in response to the US Air Force`s FY93 New Initiative entitled {open_quotes}Advanced Fuel Composition and Use.{close_quotes} The critical goal of this initiative is to develop aircraft fuels which can operate at supercritical conditions. This is a vital objective since future aircraft designs will transfer much higher heat loads into the fuel as compared with current heat loads. In this paper it is argued that the thermal stability of most jet fuels would be dramatically improved by the efficient in flight-removal of a fuel`s dissolved oxygen. It is proposed herein to stabilize the bulk fuel by the addition of an additive which will be judiciously designed and programmed to react with oxygen and produce an innocuous product. It is envisioned that a thermally activated reaction will occur, between the oxygen scavenging additive and dissolved oxygen, in a controlled and directed manner. Consequently formation of insoluble thermal degradation products will be limited. It is believed that successful completion of this project will result in the development of a new type of jet fuel additive which will enable current conventional jet fuels to obtain sufficient thermal stability to function in significantly higher temperature regimes. In addition, it is postulated that the successful development of thermally activated oxygen scavengers will also provide the sub-critical thermal stability necessary for future development of endothermic fuels.

  17. Species-specific control of external superoxide levels by the coral holobiont during a natural bleaching event

    Science.gov (United States)

    Diaz, Julia M.; Hansel, Colleen M.; Apprill, Amy; Brighi, Caterina; Zhang, Tong; Weber, Laura; McNally, Sean; Xun, Liping

    2016-12-01

    The reactive oxygen species superoxide (O2.-) is both beneficial and detrimental to life. Within corals, superoxide may contribute to pathogen resistance but also bleaching, the loss of essential algal symbionts. Yet, the role of superoxide in coral health and physiology is not completely understood owing to a lack of direct in situ observations. By conducting field measurements of superoxide produced by corals during a bleaching event, we show substantial species-specific variation in external superoxide levels, which reflect the balance of production and degradation processes. Extracellular superoxide concentrations are independent of light, algal symbiont abundance and bleaching status, but depend on coral species and bacterial community composition. Furthermore, coral-derived superoxide concentrations ranged from levels below bulk seawater up to ~120 nM, some of the highest superoxide concentrations observed in marine systems. Overall, these results unveil the ability of corals and/or their microbiomes to regulate superoxide in their immediate surroundings, which suggests species-specific roles of superoxide in coral health and physiology.

  18. Fluorescence anisotropy of tyrosinate anion using one-, two- and three-photon excitation: tyrosinate anion fluorescence.

    Science.gov (United States)

    Kierdaszuk, Borys

    2013-03-01

    We examined the emission spectra and steady-state anisotropy of tyrosinate anion fluorescence with one-photon (250-310 nm), two-photon (570-620 nm) and three-photon (750-930 nm) excitation. Similar emission spectra of the neutral (pH 7.2) and anionic (pH 13) forms of N-acetyl-L-tyrosinamide (NATyrA) (pKa 10.6) were observed for all modes of excitation, with the maxima at 302 and 352 nm, respectively. Two-photon excitation (2PE) and three-photon excitation (3PE) spectra of the anionic form were the same as that for one-photon excitation (1PE). In contrast, 2PE spectrum from the neutral form showed ~30-nm shift to shorter wavelengths relative to 1PE spectrum (λmax 275 nm) at two-photon energy (550 nm), the latter being overlapped with 3PE spectrum, both at two-photon energy (550 nm). Two-photon cross-sections for NATyrA anion at 565-580 nm were 10 % of that for N-acetyl-L-tryptophanamide (NATrpA), and increased to 90 % at 610 nm, while for the neutral form of NATyrA decreased from 2 % of that for NATrpA at 570 nm to near zero at 585 nm. Surprisingly, the fundamental anisotropy of NATyrA anion in vitrified solution at -60 °C was ~0.05 for 2PE at 610 nm as compared to near 0.3 for 1PE at 305 nm, and wavelength-dependence appears to be a basic feature of its anisotropy. In contrast, the 3PE anisotropy at 900 nm was about 0.5, and 3PE and 1PE anisotropy values appear to be related by the cos(6) θ to cos(2) θ photoselection factor (approx. 10/6) independently of excitation wavelength. Attention is drawn to the possible effect of tyrosinate anions in proteins on their multi-photon induced fluorescence emission and excitation spectra as well as excitation anisotropy spectra.

  19. Occurrence and distribution of nitrogen-scavenging bacteria in marine environment

    OpenAIRE

    Sugahara, Isao; Kimura, Toshio; Hayashi, Koichiro

    1987-01-01

    The occurrence and distribution nitrogen-scavenging bacteria in the water of coastal and oceanic of Japan were studied during the Seisui-Maru cruises from 1986 to 1987. Nitroben-scavenging bacteria in the water usually occurred at the level of 10-104 cfu/ml.This value was almost comparable to that of aerobic heterotrophic bacteria. It seems that nitrogen-scavenging bacteria play an important role in the efficient uptake of low levels of nitrogenous compounds in marine enviroment.

  20. Treating infected diabetic wounds with superoxidized water as anti-septic agent: a preliminary experience

    International Nuclear Information System (INIS)

    Hadi, S.F.; Khaliq, T.; Zubair, M.; Saaiq, M.; Sikandar, I.

    2007-01-01

    To evaluate the effectiveness of superoxidized water (MicrocynTM) in diabetic patients with different wounds. One hundred known diabetic patients were enrolled. Half were randomized to the intervention group (those whose wounds were managed with superoxidized water) and half to the control group (whose wounds were treated with normal saline) using a table of random numbers. The two groups were matched for age, gender, duration of diabetes and category of wound. All patients received appropriate surgical treatment for their wounds as required. Local wound treatment was carried out daily using superoxidized water soaked gauzes on twice daily basis in the intervention group and normal saline in the control group. The treatment was continued until wound healing. The main outcome measures were duration of hospital stay, downgrading of the wound category, wound healing time and need for interventions such as amputation. Statistically significant differences were found in favour of the superoxidized water group with respect to duration of hospital stay, downgrading of the wound category and wound healing time. Although the initial results of employing superoxidized water for the management of infected diabetic wounds are encouraging, further multicentre clinical trials are warranted before this antiseptic is recommended for general use. It may offer an economical alternative to other expensive antiseptics with positive impact on the prevailing infection rates, patient outcomes and patient satisfaction. (author)

  1. Deficiency of superoxide dismutase promotes cerebral vascular hypertrophy and vascular dysfunction in hyperhomocysteinemia.

    Directory of Open Access Journals (Sweden)

    Sanjana Dayal

    Full Text Available There is an emerging consensus that hyperhomocysteinemia is an independent risk factor for cerebral vascular disease and that homocysteine-lowering therapy protects from ischemic stroke. However, the mechanisms by which hyperhomocysteinemia produces abnormalities of cerebral vascular structure and function remain largely undefined. Our objective in this study was to define the mechanistic role of superoxide in hyperhomocysteinemia-induced cerebral vascular dysfunction and hypertrophy. Unlike previous studies, our experimental design included a genetic approach to alter superoxide levels by using superoxide dismutase 1 (SOD1-deficient mice fed a high methionine/low folate diet to produce hyperhomocysteinemia. In wild-type mice, the hyperhomocysteinemic diet caused elevated superoxide levels and impaired responses to endothelium-dependent vasodilators in cerebral arterioles, and SOD1 deficiency compounded the severity of these effects. The cross-sectional area of the pial arteriolar wall was markedly increased in mice with SOD1 deficiency, and the hyperhomocysteinemic diet sensitized SOD1-deficient mice to this hypertrophic effect. Analysis of individual components of the vascular wall demonstrated a significant increase in the content of smooth muscle and elastin. We conclude that superoxide is a key driver of both cerebral vascular hypertrophy and vasomotor dysfunction in this model of dietary hyperhomocysteinemia. These findings provide insight into the mechanisms by which hyperhomocysteinemia promotes cerebral vascular disease and ischemic stroke.

  2. Once upon Anion: A Tale of Photodetachment

    Science.gov (United States)

    Lineberger, W. Carl

    2013-04-01

    This contribution is very much a personal history of a journey through the wonderful world of anion chemistry, and a tale of how advances in laser technologies, theoretical methods, and computational capabilities continuously enabled advances in our understanding. It is a story of the excitement and joy that come from the opportunity to add to the fabric of science, and to do so by working as a group of excited explorers with common goals. The participants in this journey include me, my students and postdoctoral associates, my collaborators, and our many generous colleagues. It all happened, in the words of the Beatles, “with a little help from my friends.” Actually, it was so much more than a little help!

  3. Adsorption of an anionic dispersant on lignite

    Energy Technology Data Exchange (ETDEWEB)

    Yavuz, R.; Kucukbayrak, S. [Istanbul Technical University, Istanbul (Turkey). Dept. of Chemical Engineering, Chemical & Metallurgical Engineering Faculty

    2001-12-01

    Since coal is not a homogeneous substance but a mixture of carbonaceous materials and mineral matter, it has a variety of surface properties. Therefore, it is not easy to control the properties of coal suspensions by simply adjusting variables, such as pH and/or electrolyte. A chemical agent needs to be added to control the properties of the coal suspensions. The adsorption behavior of an anionic dispersant in the presence of a wetting agent using some Turkish lignite samples was investigated. The effects of dispersant concentration, temperature and pH on the dispersant adsorption were studied systematically, and the experimental results are presented. Pellupur B69 as a dispersant, commercial mixture of formaldehyde condensate sodium salt of naphthalene sulphonic acid, and Texapon N{sub 2}5 as a wetting agent, a sodium lauryl ether sulfate, have been used.

  4. Structures and properties of anionic clay minerals

    International Nuclear Information System (INIS)

    Koch, Chr. Bender

    1998-01-01

    The Moessbauer spectra of pyroaurite-sjoegrenite-type compounds (PTC) (layered anion exchangers) are discussed with reference to the crystal structure, cation order, and crystallite morphology. It is shown that cation-ordered layers are produced in the synthesis of carbonate and sulphate types of green rust. In contrast, synthetic and natural pyroaurite only occurs as disordered types. The redox chemistry of Fe(III) within the metal hydroxide layer is illustrated with examples of electrochemical oxidation and reversible reduction by boiling glycerol. The chemistry of iron in the interlayer is exemplified by the intercalation of Fe-cyanide complexes in hydrotalcite. This reaction may be used as a probe for the charge distribution in the interlayer

  5. Advanced polymer chemistry of organometallic anions

    International Nuclear Information System (INIS)

    Chamberlin, R.M.; Abney, K.D.; Balaich, G.J.; Fino, S.A.

    1997-01-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of the project was to prepare and characterize new polymers incorporating cobalt dicarbollide. Specific goals were to prepare polymerizable cobalt dicarbollide monomers using the nucleophilic substitution route discovered in laboratories and to establish the reaction conditions required to form polymers from these complexes. This one-year project resulted in two publications (in press), and provided the foundation for further investigations into polymer synthesis and characterization using cobalt dicarbollide and other metallocarboranes. Interest in synthesizing organometallic polymers containing the cobalt bis(dicarbollide) anion is motivated by their possible application as cation exchange materials for the remediation of cesium-137 and strontium-90 from nuclear wastes

  6. Scavenging efficiency and red fox abundance in Mediterranean mountains with and without vultures

    Science.gov (United States)

    Morales-Reyes, Zebensui; Sánchez-Zapata, José A.; Sebastián-González, Esther; Botella, Francisco; Carrete, Martina; Moleón, Marcos

    2017-02-01

    Vertebrate scavenging assemblages include two major functional groups: obligate scavengers (i.e., vultures), which depend totally on carrion and are undergoing severe declines around the globe, and facultative scavengers, which exploit carrion opportunistically and are generally ubiquitous. Our goal was to investigate the hypothesis that vultures can indirectly regulate the abundance of mesopredators (i.e., facultative scavengers) through modulating their access to carrion resources. We studied scavenging efficiency and red fox (Vulpes vulpes) abundance in two neighbouring areas of South-eastern Spain where vultures (mainly griffon vultures Gyps fulvus) are present (Cazorla) and absent (Espuña). To do so, we monitored ungulate carcasses consumption during winter and summer, and counted red fox scats along walking transects as a proxy of fox density. Our results confirmed that scavenging efficiency was higher in Cazorla and in carcasses visited by vultures. This resulted in increasing scavenging opportunities for facultative scavengers where vultures were absent. Accordingly, mean red fox abundance was higher in Espuña. These results suggest the existence of a vulture-mediated mesopredator release (i.e., an increase of mesopredator numbers following vulture loss), which could trigger important indirect ecological effects. Also, our study demonstrates that facultative scavengers are hardly able to functionally replace vultures, mainly because the former exploit carrion on a slower time scale.

  7. Anion binding by biotin[6]uril in water

    DEFF Research Database (Denmark)

    Lisbjerg, Micke; Nielsen, Bjarne Enrico; Milhøj, Birgitte Olai

    2015-01-01

    In this contribution we show that the newly discovered 6 + 6 biotin-formaldehyde macrocycle Biotin[6]uril binds a variety of anionic guest molecules in water. We discuss how and why the anions are bound based on data obtained using NMR spectroscopy, mass spectrometry, isothermal titration...

  8. A colorimetric tetrathiafulvalene-calix 4 pyrrole anion sensor

    DEFF Research Database (Denmark)

    Nielsen, K. A.

    2012-01-01

    The interaction and colorimetric sensing properties of a tetrathiafulvalene substituted calix[4]pyrrole sensor with anions were investigated using H-1 NMR and absorption spectroscopic techniques. Visual color changes were observed upon addition of different anions (Cl-, Br-, CN-, and Ac......O-) to a solution of the sensor. (C) 2012 Elsevier Ltd. All rights reserved....

  9. Diffuse neutron scattering from anion-excess strontium chloride

    DEFF Research Database (Denmark)

    Goff, J.P.; Clausen, K.N.; Fåk, B.

    1992-01-01

    The defect structure and diffusional processes have been studied in the anion-excess fluorite (Sr, Y)Cl2.03 by diffuse neutron scattering techniques. Static cuboctahedral clusters found at ambient temperature break up at temperatures below 1050 K, where the anion disorder is highly dynamic. The a...

  10. Protonation Reaction of Benzonitrile Radical Anion and Absorption of Product

    DEFF Research Database (Denmark)

    Holcman, Jerzy; Sehested, Knud

    1975-01-01

    The rate constant for the protonation of benzonitrile radical anions formed in pulse radiolysis of aqueous benzonitrile solutions is (3.5 ± 0.5)× 1010 dm3 mol–1 s–1. A new 270 nm absorption band is attributed to the protonated benzonitrile anion. The pK of the protonation reaction is determined t...

  11. Calcium and Superoxide-Mediated Pathways Converge to Induce Nitric Oxide-Dependent Apoptosis in Mycobacterium fortuitum-Infected Fish Macrophages.

    Science.gov (United States)

    Datta, Debika; Khatri, Preeti; Banerjee, Chaitali; Singh, Ambika; Meena, Ramavatar; Saha, Dhira Rani; Raman, Rajagopal; Rajamani, Paulraj; Mitra, Abhijit; Mazumder, Shibnath

    2016-01-01

    Mycobacterium fortuitum causes 'mycobacteriosis' in wide range of hosts although the mechanisms remain largely unknown. Here we demonstrate the role of calcium (Ca+2)-signalling cascade on M. fortuitum-induced apoptosis in headkidney macrophages (HKM) of Clarias sp. M. fortuitum could trigger intracellular-Ca+2 influx leading to the activation of calmodulin (CaM), protein kinase C alpha (PKCα) and Calmodulin kinase II gamma (CaMKIIg). Gene silencing and inhibitor studies established the role of CaM in M. fortuitum pathogenesis. We noted that CaMKIIg activation is regulated by CaM as well as PKCα-dependent superoxide anions. This is altogether first report of oxidised CaMKIIg in mycobacterial infections. Our studies with targeted-siRNA and pharmacological inhibitors implicate CaMKIIg to be pro-apoptotic and critical for the activation of extra-cellular signal regulated kinase 1/2 (ERK1/2). Inhibiting the ERK1/2 pathway attenuated nitric oxide synthase 2 (NOS2)-induced nitric oxide (NO) production. Conversely, inhibiting the NOS2-NO axis by specific-siRNA and inhibitors down-regulated ERK1/2 activation suggesting the crosstalk between ERK1/2 and NO is essential for pathogenesis induced by the bacterium. Silencing the NOS2-NO axis enhanced intracellular bacterial survival and attenuated caspase-8 mediated activation of caspase-3 in the infected HKM. Our findings unveil hitherto unknown mechanism of M. fortuitum pathogenesis. We propose that M. fortuitum triggers intracellular Ca+2 elevations resulting in CaM activation and PKCα-mediated superoxide generation. The cascade converges in common pathway mediated by CaMKIIg resulting in the activation of ERK1/2-NOS2 axis. The crosstalk between ERK1/2 and NO shifts the balance in favour of caspase dependent apoptosis of M. fortuitum-infected HKM.

  12. Exogenous melatonin suppresses dark-induced leaf senescence by activating the superoxide dismutase-catalase antioxidant pathway and down-regulating chlorophyll degradation in excised leaves of perennial ryegrass (Lolium perenne L.

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2016-10-01

    Full Text Available Leaf senescence is a typical symptom in plants exposed to dark and may be regulated by plant growth regulators. The objective of this study was to determine whether exogenous application of melatonin (N-acetyl-5-methoxytryptamine suppresses dark-induced leaf senescence and the effects of melatonin on reactive oxygen species (ROS scavenging system and chlorophyll degradation pathway in perennial grass species. Mature perennial ryegrass (Lolium perenne L. cv. ‘Pinnacle’ leaves were excised and incubated in 3 mM 2-(N-morpholino ethanesulfonic buffer (pH 5.8 supplemented with melatonin or water (control and exposed to dark treatment for 8 d. Leaves treated with melatonin maintained significantly higher endogenous melatonin level, chlorophyll content, photochemical efficiency, and cell membrane stability expressed by lower electrolyte leakage and malondialdehyde (MDA content compared to the control. Exogenous melatonin treatment also reduced the transcript level of chlorophyll degradation-associated genes and senescence marker genes (LpSAG12.1, Lph36, and Lpl69 during the dark treatment. The endogenous O2- production rate and H2O2 content were significantly lower in these excised leaves treated with melatonin compared to the water control. Exogenous melatonin treatment caused increases in enzymatic activity and transcript levels of superoxide dismutase and catalase but had no significant effects on ascorbate peroxidase, glutathione reductase, dehydroascorbate reductase, and monohydroascorbate reductase. The content of non-enzymatic antioxidants, such as ascorbate and dehydroascorbate, were decreased by melatonin treatment, while the content of glutathione and oxidized glutathione was not affected by melatonin. These results suggest that the suppression of dark-induced leaf senescence by exogenous melatonin may be associated with its roles in regulating ROS scavenging through activating the superoxide dismutase-catalase enzymatic antioxidant

  13. Multiconfigurational and DFT analyses of the electromeric formulation and UV-vis absorption spectra of the superoxide adduct of ferrous superoxide reductase.

    Science.gov (United States)

    Attia, Amr A A; Cioloboc, Daniela; Lupan, Alexandru; Silaghi-Dumitrescu, Radu

    2016-12-01

    The putative initial adduct of ferrous superoxide reductase (SOR) with superoxide has been alternatively formulated as ferric-peroxo or ferrous-superoxo. The ~600-nm UV-vis absorption band proposed to be assigned to this adduct (either as sole intermediate in the SOR catalytic cycle, or as one of the two intermediates) has recently been interpreted as due to a ligand-to-metal charge transfer, involving thiolate and superoxide in a ferrous complex, contrary to an alternative assignment as a predominantly cysteine thiolate-to-ferric charge transfer in a ferric-peroxo electromer. In an attempt to clarify the electromeric formulation of this adduct, we report a computational study using a multiconfigurational complete active space self-consistent field (MC-CASSCF) wave function approach as well as modelling the UV-vis absorption spectra with time-dependent density functional theory (TD-DFT). The MC-CASSCF calculations disclose a weak interaction between iron and the dioxygenic ligand and a dominant configuration with an essentially ferrous-superoxo character. The computed UV-vis absorption spectra reveal a marked dependence on the choice of density functional - both in terms of location of bands and in terms of orbital contributors. For the main band in the visible region, besides the recently reported thiolate-to-superoxide charge transfer, a more salient, and less functional-dependent, feature is a thiolate-to-ferric iron charge transfer, consistent with a ferric-peroxo electromer. By contrast, the computed UV-vis spectra of a ferric-hydroperoxo SOR model match distinctly better (and with no qualitative dependence on the DFT methodology) the 600-nm band as due to a mainly thiolate-to-ferric character - supporting the assignment of the SOR "600-nm intermediate" as a S=5/2 ferric-hydroperoxo species. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Induction of peroxide and superoxide protective enzymes and physiological cross-protection against peroxide killing by a superoxide generator in Vibrio harveyi.

    Science.gov (United States)

    Vattanaviboon, Paiboon; Panmanee, Warunya; Mongkolsuk, Skorn

    2003-04-11

    Vibrio harveyi is a causative agent of destructive luminous vibriosis in farmed black tiger prawn (Penaeus monodon). V. harveyi peroxide and superoxide stress responses toward elevated levels of a superoxide generated by menadione were investigated. Exposure of V. harveyi to sub-lethal concentrations of menadione induced high expression of genes in both the OxyR regulon (e.g., a monofunctional catalase or KatA and an alkyl hydroperoxide reductase subunit C or AhpC), and the SoxRS regulon (e.g., a superoxide dismutase (SOD) and a glucose-6-phosphate dehydrogenase). V. harveyi expressed two detectable, differentially regulated SOD isozymes, [Mn]-SOD and [Fe]-SOD. [Fe]-SOD was expressed constitutively throughout the growth phase while [Mn]-SOD was expressed at the stationary phase and could be induced by a superoxide generator. Physiologically, pre-treatment of V. harveyi with menadione induced cross-protection against subsequent exposure to killing concentrations of H(2)O(2). This induced cross-protection required newly synthesized proteins. However, the treatment did not induce significant protection against exposures to killing concentrations of menadione itself or cross-protect against an organic hydroperoxide (tert-butyl hydroperoxide). Unexpectedly, growing V. harveyi in high-salinity media induced protection against menadione killing. This protection was independent of SOD induction. Stationary-phase cells were more resistant to menadione killing than exponential-phase cells. The induction of oxidative stress protective enzymes and stress-altered physiological responses could play a role in the survival of this bacterium in the host marine crustaceans.

  15. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    International Nuclear Information System (INIS)

    Moyer, Bruce a.; Bostick, Debra A.; Fowler, Christopher J.; Kang, Hyun-Ah; Ruas, Alexandre; Delmau, Laetitia H.; Haverlock, Tamara J.; Llinares, Jose M.; Hossain, Alamgir; Kang, S. O.; Bowman-James, Kristin; Shriver, James A.; Marquez, Manuel; Sessler, Jonathan L.

    2005-01-01

    The major thrust of this project led by the University of Kansas (Prof. Kristin Bowman-Jones) entails the exploration of the principles of recognition and separation of sulfate by the design, synthesis, and testing of novel sulfate extractants. A key science need for the cleanup of tank wastes at Hanford has been identified in developing methods to separate those bulk waste components that have low solubilities in borosilicate glass. Sulfate has been identified as a particularly difficult and expensive problem in that its concentration in the waste is relatively high, its solubility in glass is especially low, and it interferes with the performance of both vitrification equipment and the glass waste form. The new extractants will be synthesized by the University of Kansas and the University of Texas, Austin. Oak Ridge National Laboratory (ORNL) is subjecting the new extractants to experiments that will determine their properties and effectiveness in separating sulfate from the major competing anions in the waste, especially nitrate. Such experiments will entail primarily liquid-liquid extraction. Current efforts focus on exciting new systems in which the anion receptors act as synergists for anion exchange

  16. AT Base Pair Anions vs. (9-methyl-A)(1-methyl-T) Base Pair Anions

    International Nuclear Information System (INIS)

    Radisic, Dunja; Bowen, Kit H.; Dabkowska, Iwona; Storoniak, Piotr; Rak, Janusz; Gutowski, Maciej S.

    2005-01-01

    The anionic base pairs of adenine and thymine, (AT)-, and 9-methyladenine and 1-methylthymine, (MAMT)-, have been investigated both theoretically and experimentally in a complementary, synergistic study. Calculations on (AT)- found that it had undergone a barrier-free proton transfer (BFPT) similar to that seen in other dimer anion systems and that its structural configuration that was neither Watson-Crick (WC) nor Hoogsteen (HS). The vertical detachment energy (VDE) of (AT)- was determined by anion photoelectron spectroscopy and found to be in agreement with the VDE value predicted by theory for the BFPT mechanism. An AT pair in DNA is structurally immobilized into the WC configuration, in part, by being bonded to the sugars of the double helix. This circumstance was mimicked by methylating the sites on both A and T where these sugars would have been tied, viz., 9-methyladenine and 1-methylthymine. Calculations found no BFPT in (MAMT)- and a resulting (MAMT)- configuration that wa s either HS or WC, with the configurations differing in stability by ca. 2 kcal/mol. The photoelectron spectrum of (MAMT)- occurred at a completely different electron binding energy than had (AT)-. Moreover, the VDE value of (MAMT)- was in agreement with that predicted by theory. The configuration of (MAMT)- and its lack of electron-induced proton transfer are inter-related. While there may be other pathways for electron-induced damage, BFPT in the WC/HS configurations of (AT)- is not feasible

  17. AT base pair anions versus (9-methyl-A)(1-methyl-T) base pair anions.

    Science.gov (United States)

    Radisic, Dunja; Bowen, Kit H; Dabkowska, Iwona; Storoniak, Piotr; Rak, Janusz; Gutowski, Maciej

    2005-05-04

    The anionic base pairs of adenine and thymine, (AT)(-), and 9-methyladenine and 1-methylthymine, (MAMT)(-), have been investigated both theoretically and experimentally in a complementary, synergistic study. Calculations on (AT)(-) found that it had undergone a barrier-free proton transfer (BFPT) similar to that seen in other dimer anion systems and that its structural configuration was neither Watson-Crick (WC) nor Hoogsteen (HS). The vertical detachment energy (VDE) of (AT)(-) was determined by anion photoelectron spectroscopy and found to be in agreement with the VDE value predicted by theory for the BFPT mechanism. An AT pair in DNA is structurally immobilized into the WC configuration, in part, by being bonded to the sugars of the double helix. This circumstance was mimicked by methylating the sites on both A and T where these sugars would have been tied, viz., 9-methyladenine and 1-methylthymine. Calculations found no BFPT in (MAMT)(-) and a resulting (MAMT)(-) configuration that was either HS or WC, with the configurations differing in stability by ca. 2 kcal/mol. The photoelectron spectrum of (MAMT)(-) occurred at a completely different electron binding energy than had (AT)(-). Moreover, the VDE value of (MAMT)(-) was in agreement with that predicted by theory. The configuration of (MAMT)(-) and its lack of electron-induced proton transfer are inter-related. While there may be other pathways for electron-induced DNA alterations, BFPT in the WC/HS configurations of (AT)(-) is not feasible.

  18. Coumarin amide derivatives as fluorescence chemosensors for cyanide anions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qianqian [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China); Liu, Zhiqiang [State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong (China); Cao, Duxia, E-mail: duxiacao@ujn.edu.cn [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China); Guan, Ruifang, E-mail: mse_guanrf@ujn.edu.cn [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China); Wang, Kangnan; Shan, Yanyan; Xu, Yongxiao; Ma, Lin [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China)

    2015-07-01

    Four coumarin amide derivatives with 4-methyl coumarin or pyrene as terminal group have been synthesized. Their photophysical properties and recognition properties for cyanide anions have been examined. The results indicate that the compounds can recognize cyanide anions with obvious absorption and fluorescence spectra change, at the same time, obvious color and fluorescence change can be observed by naked eye. The in situ hydrogen nuclear magnetic resonance spectra and photophysical properties change confirm that Michael additions between the chemosensors and cyanide anions take place at the 4-position of coumarin. - Highlights: • Four coumarin amide derivatives with 4-methyl coumarin or pyrene as terminal group were synthesized. • The compounds can recognize cyanide anions with obvious absorption and fluorescence spectra change. • Michael additions between the chemosensors and cyanide anions take place at the 4-position of coumarin.

  19. The Thermodynamics of Anion Complexation to Nonpolar Pockets.

    Science.gov (United States)

    Sullivan, Matthew R; Yao, Wei; Tang, Du; Ashbaugh, Henry S; Gibb, Bruce C

    2018-02-08

    The interactions between nonpolar surfaces and polarizable anions lie in a gray area between the hydrophobic and Hofmeister effects. To assess the affinity of these interactions, NMR and ITC were used to probe the thermodynamics of eight anions binding to four different hosts whose pockets each consist primarily of hydrocarbon. Two classes of host were examined: cavitands and cyclodextrins. For all hosts, anion affinity was found to follow the Hofmeister series, with associations ranging from 1.6-5.7 kcal mol -1 . Despite the fact that cavitand hosts 1 and 2 possess intrinsic negative electrostatic fields, it was determined that these more enveloping hosts generally bound anions more strongly. The observation that the four hosts each possess specific anion affinities that cannot be readily explained by their structures, points to the importance of counter cations and the solvation of the "empty" hosts, free guests, and host-guest complexes, in defining the affinity.

  20. Copper, Zinc Superoxide Dismutase is Primarily a Cytosolic Protein in Human Cells

    Science.gov (United States)

    Crapo, James D.; Oury, Tim; Rabouille, Catherine; Slot, Jan W.; Chang, Ling-Yi

    1992-11-01

    The intracellular localization of human copper, zinc superoxide dismutase (Cu,Zn-SOD; superoxide:superoxide oxidoreductase, EC 1.15.1.1) was evaluated by using EM immunocytochemistry and both isolated human cell lines and human tissues. Eight monoclonal antibodies raised against either native or recombinant human Cu,Zn-SOD and two polyclonal antibodies raised against either native or recombinant human Cu,Zn-SOD were used. Fixation with 2% paraformaldehyde/0.2% glutaraldehyde was found necessary to preserve normal distribution of the protein. Monoclonal antibodies were less effective than polyclonal antibodies in recognizing the antigen after adequate fixation of tissue. Cu,Zn-SOD was found widely distributed in the cell cytosol and in the cell nucleus, consistent with it being a soluble cytosolic protein. Mitochondria and secretory compartments did not label for this protein. In human cells, peroxisomes showed a labeling density slightly less than that of cytoplasm.