WorldWideScience

Sample records for supernovae ptf discoveries

  1. PTF discovery of PTF10abyy, a young Type II Supernova

    Science.gov (United States)

    Gal-Yam, A.; Yaron, O.; Ben-Ami, S.; Sternberg, A.; Green, Y.; Xu, D.; Arcavi, I.; Kasliwal, M. M.; Quimby, R. M.; Ofek, E. O.; Kulkarni, S. R.; Nugent, H. Ebeling P.; Howell, D. A.; Sullivan, M.; Bloom, J. S.; Law, N. M.

    2010-12-01

    The PTF (ATEL #1964; http://www.astro.caltech.edu/ptf/) reports the discovery of a new supernova, PTF10abyy. The supernova was discovered by Oarical, an autonomous software framework of the PTF collaboration, on December 8 UT at RA(J2000) = 05:16:40.52 and DEC(J2000) = +06:47:53.8 at a magnitude of 18.7 in R-band (calibrated with respect to the USNOB1 catalog). The supernova was not detected down to mag 21 in previous PTF images taken during Dec.

  2. Discovery of a Luminous Supernova, PTF10vqv

    Science.gov (United States)

    Quimby, R. M.; Kulkarni, S.; Ofek, E.; Kasliwal, M. M.; Gal-Yam, A.; Ben-Ami, S.; Badenes, C.; Sternberg, A.; Botyanszki, J.; Nugent, P. E.; Howell, D. A.

    2010-10-01

    We report the discovery of an optical transient, PTF10vqv, in R- band images obtained with the 1.2-m Oschin telescope at Palomar Observatory in the course of the Palomar Transient Factory survey (Law et al., 2009; Rau et al., 2009).

  3. Discovery of a Super-Luminous Supernova, PTF12dam

    Science.gov (United States)

    Quimby, R. M.; Arcavi, I.; Sternberg, A.; Ben-Ami, S.; Yaron, O.; Gal-Yam, A.; Graham, M.; Cenko, S. B.; Filippenko, A. V.; Perley, D.; Cao, Y.; Kulkarni, S. R.

    2012-05-01

    The Palomar Transient Factory (harvard.edu/abs/2009PASP..121.1395L'>Law et al., 2009; harvard.edu/abs/2009PASP..121.1334R'>Rau et al., 2009) reports the discovery of an optical transient, PTF12dam. The source is located at RA = 14:24:46.20, Dec. = +46:13:48.3 (J2000), which is offset from a r=19.15 mag galaxy detected by the SDSS.

  4. Discovery of a Luminous Supernova, PTF11rks

    Science.gov (United States)

    Quimby, R. M.; Gal-Yam, A.; Arcavi, I.; Yaron, O.; Horesh, A.; Mooley, K.

    2011-12-01

    The Palomar Transient Factory (harvard.edu/abs/2009PASP..121.1395L'>Law et al., 2009; harvard.edu/abs/2009PASP..121.1334R'>Rau et al., 2009) reports the discovery of an optical transient, PTF11rks. The source is located at RA = 01:39:45.51, Dec. = +29:55:27.0 (J2000), which is offset from a faint (r~20.9 mag) galaxy detected by the SDSS.

  5. The discovery of the multiply-imaged lensed Type Ia supernova iPTF16geu

    CERN Document Server

    Goobar, A; Kulkarni, S R; Nugent, P E; Johansson, J; Steidel, C; Law, D; Mortsell, E; Quimby, R; Blagorodnova, N; Brandeker, A; Cao, Y; Cooray, A; Ferretti, R; Fremling, C; Hangard, L; Kasliwal, M; Kupfer, T; Lunnan, R; Masci, F; Miller, A A; Nayyeri, H; Neill, J D; Ofek, E O; Papadogiannakis, S; Petrushevska, T; Ravi, V; Sollerman, J; Sullivan, M; Taddia, F; Walters, R; Wilson, D; Yan, L; Yaron, O

    2016-01-01

    We report the discovery of a gravitationally lensed Type Ia supernova (SN Ia) by the intermediate Palomar Transient Factor (iPTF). The light originating from SNIa iPTF16geu, at redshift $z_{SN}=0.409$, is magnified by an intervening galaxy at $z_{l}=0.216$, acting as a gravitational lens. Using Laser Guide Star Adaptive Optics (LGSAO) OSIRIS and NIRC2 observations at the Keck telescope, as well as measurements with the Hubble Space Telescope, we were able to detect the strong bending of the light path, both for iPTF16geu and its host galaxy. We detect four images of the supernova, approximately 0.3" from the center of the lensing galaxy. iPTF16geu is the first \\snia for which multiple images have been observed. From the fits of the multi-color lightcurve we derive a lensing magnification, $\\Delta m = 4.37 \\pm 0.15$ mag, corresponding to a total amplification of the supernova flux by a factor $\\mu \\sim 56$. The discovery of iPTF16geu suggests that lensing by sub-kpc structures may have been greatly underestima...

  6. PTF SN discovery report, April 2012

    Science.gov (United States)

    Gal-Yam, Avishay; Arcavi, I.; Ben-Ami, S.; Yaron, O.; Nugent, P.; Levitam, D.; Simonian, G.; Sesar, B.; Cao, Y.; Horesh, A.; Bellm, E.; Silverman, J.; Miller, A.; Cenko, S. B.; Clubb, K. I.; Filippenko, A. V.; Shivvers, I.; Kasliwal, M.; Parrent, J.; Maguire, K.; Pan, Y.-C.

    2012-05-01

    The PTF (ATEL #1964, #3253; http://www.astro.caltech.edu/ptf/; Law et al. 2009, PASP, 121, 1395; Rau et al. 2009, PASP, 121, 1334) reports the discovery of 19 new supernovae. PTF discoveries are made by autonomous PTF software (Bloom et al. 2011, http://adsabs.harvard.edu/abs/2011arXiv1106.5491B ), as well as by the Galaxy Zoo Supernova Project (Smith et al. 2011, MNRAS, 412, 1309; http://supernova.galaxyzoo.org ).

  7. PTF SN discovery report, August 2012

    Science.gov (United States)

    Arcavi, Iair; Gal-Yam, A.; Ben-Ami, S.; Yaron, O.; Horesh, P. Nugent A.; Cao, Y.; Bellm, E.; Fynbo, J.; Wiis, J.; Olesen, J.; Engedal, L.; Larsen, A.; Kasliwal, M.; Pan, Y.-C.; Graham, M.; Parrent, J.; Quimby, R.; PTF Team

    2012-08-01

    The PTF (ATEL #1964, #3253; http://www.astro.caltech.edu/ptf; Law et al. 2009, PASP, 121, 1395; Rau et al. 2009, PASP, 121, 1334) reports the discovery of 12 new supernovae. PTF discoveries are made by autonomous PTF software (Bloom et al. 2011, http://adsabs.harvard.edu/abs/2011arXiv1106.5491B ), as well as by the Galaxy Zoo Supernova Project (Smith et al. 2011, MNRAS, 412, 1309; http://supernova.galaxyzoo.org ).

  8. PTF SN discovery report, September 8, 2012

    Science.gov (United States)

    Gal-Yam, A.; Nugent, P.; Walker, E.; Cenko, S. B.; Fox, O.

    2012-09-01

    The PTF (ATEL #1964, #3253; http://www.astro.caltech.edu/ptf ; Law et al. 2009, PASP, 121, 1395; Rau et al. 2009, PASP, 121, 1334) reports the discovery of 8 new supernovae. PTF discoveries are made by autonomous PTF software (Bloom et al. 2011, http://adsabs.harvard.edu/abs/2011arXiv1106.5491B ), as well as by the Galaxy Zoo Supernova Project (Smith et al. 2011, MNRAS, 412, 1309; http://supernova.galaxyzoo.org ).

  9. PTF SN discovery report, July 2012

    Science.gov (United States)

    Gal-Yam, Avishay; Ben-Ami, Sagi; Arcavi, I.; Yaron, O.; Nugent, Peter; Sesar, B.; Cao, Y.; Silverman, J.; Clubb, K.; Filippenko, A. V.; Cenko, S. B.; Parrent, J.; Maguire, K.; Sullivan, M.

    2012-08-01

    The PTF (ATEL #1964, #3253; http://www.astro.caltech.edu/ptf/ ; Law et al. 2009, PASP, 121, 1395; Rau et al. 2009, PASP, 121, 1334) reports the discovery of 14 new supernovae. PTF discoveries are made by autonomous PTF software (Bloom et al. 2011, http://adsabs.harvard.edu/abs/2011arXiv1106.5491B ), as well as by the Galaxy Zoo Supernova Project (Smith et al. 2011, MNRAS, 412, 1309; http://supernova.galaxyzoo.org ).

  10. PTF SN discovery report, March 2012

    Science.gov (United States)

    Gal-Yam, Avishay; Arcavi, I.; Ben-Ami, S.; Yaron, O.; Nugent, P.; Levitam, D.; Simonian, G.; Sesar, B.; Cao, Y.; Horesh, A.; Bellm, E.; Silverman, J.; Miller, A.; Cenko, S. B.; Clubb, K. I.; Filippenko, A. V.; Shivvers, I.; Kasliwal, M.; Parrent, J.; Maguire, K.; Pan, Y.-C.

    2012-05-01

    The PTF (ATEL #1964, #3253; http://www.astro.caltech.edu/ptf/; Law et al. 2009, PASP, 121, 1395; Rau et al. 2009, PASP, 121, 1334) reports the discovery of 26 new supernovae. PTF discoveries are made by autonomous PTF software (Bloom et al. 2011, http://adsabs.harvard.edu/abs/2011arXiv1106.5491B ), as well as by the Galaxy Zoo Supernova Project (Smith et al. 2011, MNRAS, 412, 1309; http://supernova.galaxyzoo.org ).

  11. PTF SN discovery report, October 9, 2012

    Science.gov (United States)

    Gal-Yam, A.; Nugent, P.; Cao, Y.; Levitan, D.; Hallinan, G.; Kyne, G.; Silverman, J.; Clubb, K.; Miller, A.; Fox, O.; Suzuki, N.; Quimby, R.

    2012-10-01

    The PTF (ATEL #1964, #3253; http://www.astro.caltech.edu/ptf; Law et al. 2009, PASP, 121, 1395; Rau et al. 2009, PASP, 121, 1334) reports the discovery of 9 new supernovae. PTF discoveries are made by autonomous PTF software (Bloom et al. 2011, http://adsabs.harvard.edu/abs/2011arXiv1106.5491B ), as well as by the Galaxy Zoo Supernova Project (Smith et al. 2011, MNRAS, 412, 1309; http://supernova.galaxyzoo.org ).

  12. DISCOVERY, PROGENITOR AND EARLY EVOLUTION OF A STRIPPED ENVELOPE SUPERNOVA iPTF13bvn

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yi; Horesh, Assaf; Kulkarni, S. R. [Astronomy Department, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Kasliwal, Mansi M. [The Observatories, Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Arcavi, Iair; Gal-Yam, Avishay; Gorbikov, Evgeny; Ofek, Eran O.; Yaron, Ofer [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Hancock, Paul [Sydney Institute for Astronomy (SIfA), School of Physics, The University of Sydney, NSW 2006 (Australia); Valenti, Stefano; Graham, Melissa; Howell, D. Andrew [Las Cumbres Observatory Global Telescope Network, Goleta, CA 93117 (United States); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Sand, David [Department of Physics, Texas Tech University, Lubbock, TX 79409 (United States); Silverman, Jeffrey M.; Wheeler, J. Craig; Marion, G. H. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Walker, Emma S. [Department of Physics, Yale University, New Haven, CT 06511-8499 (United States); Mazzali, Paolo, E-mail: ycao@astro.caltech.edu [INAF-Padova Astronomical Observatory, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); and others

    2013-09-20

    The intermediate Palomar Transient Factory reports our discovery of a young supernova, iPTF13bvn, in the nearby galaxy, NGC 5806 (22.5 Mpc). Our spectral sequence in the optical and infrared suggests a Type Ib classification. We identify a blue progenitor candidate in deep pre-explosion imaging within a 2σ error circle of 80 mas (8.7 pc). The candidate has an M{sub B} luminosity of –5.52 ± 0.39 mag and a B – I color of 0.25 ± 0.25 mag. If confirmed by future observations, this would be the first direct detection for a progenitor of a Type Ib. Fitting a power law to the early light curve, we find an extrapolated explosion date around 0.6 days before our first detection. We see no evidence of shock cooling. The pre-explosion detection limits constrain the radius of the progenitor to be smaller than a few solar radii. iPTF13bvn is also detected in centimeter and millimeter wavelengths. Fitting a synchrotron self-absorption model to our radio data, we find a mass-loading parameter of 1.3×10{sup 12} g cm{sup –1}. Assuming a wind velocity of 10{sup 3} km s{sup –1}, we derive a progenitor mass-loss rate of 3 × 10{sup –5} M {sub ☉} yr{sup –1}. Our observations, taken as a whole, are consistent with a Wolf-Rayet progenitor of the supernova iPTF13bvn.

  13. Discovery, Progenitor & Early Evolution of a Stripped Envelope Supernova iPTF13bvn

    CERN Document Server

    Cao, Yi; Arcavi, Iair; Horesh, Assaf; Hancock, Paul; Valenti, Stefano; Cenko, S Bradley; Kulkarni, S R; Gal-Yam, Avishay; Gorbikov, Evgeny; Ofek, Eran O; Sand, David; Yaron, Ofer; Graham, Melissa; Silverman, Jeffrey M; Wheeler, J Craig; Marion, G H; Walker, Emma; Mazzali, Paolo; Howell, D Andrew; Bloom, Josh; Nugent, Peter E; Surace, Jason; Masci, Frank; Carpenter, John; Degenaar, Nathalie; Gelino, Christopher

    2013-01-01

    The intermediate Palomar Transient Factory reports our discovery of a young supernova, iPTF13bvn, in the nearby galaxy, NGC5806 (22.5Mpc). Our spectral sequence in the optical and infrared suggests a likely Type Ib classification. We identify a single, blue progenitor candidate in deep pre-explosion imaging within a 2sigma error circle of 80 mas (8.7 pc). The candidate has a MB luminosity of -5.2+/-0.4 mag and a B-I color of 0.1+/-0.3 mag. If confirmed by future observations, this would be the first direct detection for a progenitor of a Type Ib. Fitting a power law to the early light curve, we find an extrapolated explosion date around 1.1 days before our first detection. We see no evidence of shock cooling. The pre-explosion detection limits constrain the radius of the progenitor to be smaller than a few solar radii. iPTF13bvn is also detected in cm and mm-wavelengths. Fitting a synchrotron self-absorption model to our radio data, we ?nd a mass loading parameter of 1.3*10^12 g/cm. Assuming a wind velocity o...

  14. PTF weekly SN discovery report, July 1, 2011

    Science.gov (United States)

    Gal-Yam, A.; Ben-Ami, S.; Sternberg, A.; Polishuk, D.; Arcavi, I.; Nugent, P.; Silverman, J.; Cenk, S. B.

    2011-06-01

    The PTF (ATEL #1964, #3253; http://www.astro.caltech.edu/ptf/; Law et al. 2009, PASP, 121, 1395; Rau et al. 2009, PASP, 121, 1334) reports the discovery of 17 new supernovae. PTF discoveries are made by autonomous PTF software (Bloom et al. 2011, http://adsabs.harvard.edu/abs/2011arXiv1106.5491B ), as well as by the Galaxy Zoo Supernova Project (Smith et al. 2011, MNRAS, 412, 1309; http://supernova.galaxyzoo.org ).

  15. PTF weekly SN discovery report, January 21, 2012

    Science.gov (United States)

    Gal-Yam, Avishay; Arcavi, I.; Nugent, Peter; Kasliwal, M.; Walker, E.; Cao, Y.; Levitan, D.

    2012-01-01

    The PTF (ATEL #1964, #3253; http://www.astro.caltech.edu/ptf/ ; Law et al. 2009, PASP, 121, 1395; Rau et al. 2009, PASP, 121, 1334) reports the discovery of 13 new supernovae. PTF discoveries are made by autonomous PTF software (Bloom et al. 2011, http://adsabs.harvard.edu/abs/2011arXiv1106.5491B ), as well as by the Galaxy Zoo Supernova Project (Smith et al. 2011, MNRAS, 412, 1309; http://supernova.galaxyzoo.org ).

  16. PTF weekly SN discovery report, July 28, 2011

    Science.gov (United States)

    Gal-Yam, A.; Nugent, P.; Maguire, K.; Pan, Y.-C.; Sullivan, M.; Howell, A.

    2011-07-01

    The PTF (ATEL #1964, #3253; http://www.astro.caltech.edu/ptf/; Law et al. 2009, PASP, 121, 1395; Rau et al. 2009, PASP, 121, 1334) reports the discovery of 8 new supernovae. PTF discoveries are made by autonomous PTF software (Bloom et al. 2011, http://adsabs.harvard.edu/abs/2011arXiv1106.5491B ), as well as by the Galaxy Zoo Supernova Project (Smith et al. 2011, MNRAS, 412, 1309; http://supernova.galaxyzoo.org ).

  17. PTF weekly SN discovery report, August 13, 2011

    Science.gov (United States)

    Gal-Yam, Avishay; Xu, Dong; Nugent, Peter; Horesh, Assaf; Cao, Yi; Walker, Emma

    2011-08-01

    The PTF (ATEL #1964, #3253; http://www.astro.caltech.edu/ptf/; Law et al. 2009, PASP, 121, 1395; Rau et al. 2009, PASP, 121, 1334) reports the discovery of 8 new supernovae. PTF discoveries are made by autonomous PTF software (Bloom et al. 2011, http://adsabs.harvard.edu/abs/2011arXiv1106.5491B ), as well as by the Galaxy Zoo Supernova Project (Smith et al. 2011, MNRAS, 412, 1309; http://supernova.galaxyzoo.org ).

  18. PTF weekly SN discovery report, March 9, 2012

    Science.gov (United States)

    Gal-Yam, Avishay; Ben-Ami, Sagi; Nugent, Peter; Levitan, D.; Silverman, J.; Morgan, A.; Nugent, P.; Miller, A.; Pan, Y.-C.

    2012-03-01

    The PTF (ATEL #1964, #3253; http://www.astro.caltech.edu/ptf/ ; Law et al. 2009, PASP, 121, 1395; Rau et al. 2009, PASP, 121, 1334) reports the discovery of 11 new supernovae. PTF discoveries are made by autonomous PTF software (Bloom et al. 2011, http://adsabs.harvard.edu/abs/2011arXiv1106.5491B ), as well as by the Galaxy Zoo Supernova Project (Smith et al. 2011, MNRAS, 412, 1309; http://supernova.galaxyzoo.org ).

  19. PTF weekly SN discovery report, Sep. 2, 2011

    Science.gov (United States)

    Gal-Yam, Avishay; Xu, D.; Ben-Ami, S.; Arcavi, I.; Sternberg, A.; Nugent, Peter; Cao, Y.; Konidaris, N.; Levitan, D.; Maguire, K.; Pan, Y.-C.; Cenko, S. B.; Silverman, J.; Kandrashoff, T.; Bloom, J. S.; Walker, E.; Groot, P.

    2011-09-01

    The PTF (ATEL #1964, #3253; http://www.astro.caltech.edu/ptf/ ; Law et al. 2009, PASP, 121, 1395; Rau et al. 2009, PASP, 121, 1334) reports the discovery of 21 new supernovae. PTF discoveries are made by autonomous PTF software (Bloom et al. 2011, http://adsabs.harvard.edu/abs/2011arXiv1106.5491B), as well as by the Galaxy Zoo Supernova Project (Smith et al. 2011, MNRAS, 412, 1309; http://supernova.galaxyzoo.org).

  20. PTF weekly SN discovery report, July 21, 2011

    Science.gov (United States)

    Gal-Yam, A.; Yaron, O.; Arcavi, I.; Howell, A.; Nugen, P.

    2011-07-01

    The PTF (ATEL #1964, #3253; http://www.astro.caltech.edu/ptf/; Law et al. 2009, PASP, 121, 1395; Rau et al. 2009, PASP, 121, 1334) reports the discovery of 2 new supernovae. PTF discoveries are made by autonomous PTF software (Bloom et al. 2011, http://adsabs.harvard.edu/abs/2011arXiv1106.5491B ), as well as by the Galaxy Zoo Supernova Project (Smith et al. 2011, MNRAS, 412, 1309; http://supernova.galaxyzoo.org ).

  1. PTF weekly SN discovery report, December 31, 2011

    Science.gov (United States)

    Gal-Yam, A.; Arcavi, I.; Yaron, O.; Xu, D.; Nugent, P.; Pan, Y.-C.

    2011-12-01

    The PTF (ATEL #1964, #3253; http://www.astro.caltech.edu/ptf/ ; Law et al. 2009, PASP, 121, 1395; Rau et al. 2009, PASP, 121, 1334) reports the discovery of 5 new supernovae. PTF discoveries are made by autonomous PTF software (Bloom et al. 2011, http://adsabs.harvard.edu/abs/2011arXiv1106.5491B ), as well as by the Galaxy Zoo Supernova Project (Smith et al. 2011, MNRAS, 412, 1309; http://supernova.galaxyzoo.org ).

  2. PTF weekly SN discovery report, October 21, 2011

    Science.gov (United States)

    Gal-Yam, Avishay; Ben-Ami, Sagi; Nugent, Peter; Cao, M.; Kasliwal, Y.; Sesar, Branimir; Sesar; Ptf

    2011-10-01

    The PTF (ATEL #1964, #3253; http://www.astro.caltech.edu/ptf/; Law et al. 2009, PASP, 121, 1395; Rau et al. 2009, PASP, 121, 1334) reports the discovery of 7 new supernovae. PTF discoveries are made by autonomous PTF software (Bloom et al. 2011, http://adsabs.harvard.edu/abs/2011arXiv1106.5491B), as well as by the Galaxy Zoo Supernova Project (Smith et al. 2011, MNRAS, 412, 1309; http://supernova.galaxyzoo.org).

  3. PTF weekly SN discovery report, August 27, 2011

    Science.gov (United States)

    Gal-Yam, Avishay; Xu, D.; Ben-Ami, S.; Arcavi, I.; Sternberg, A.; Nugent, Peter; Cao, Y.; Konidaris, N.; Levitan, D.; Maguire, K.; Pan, Y.-C.; Cenko, S. B.; Silverman, J.; Kandrashoff, T.; Bloom, J. S.; Walker, E.; Groot, P.

    2011-09-01

    The PTF (ATEL #1964, #3253; http://www.astro.caltech.edu/ptf/ ; Law et al. 2009, PASP, 121, 1395; Rau et al. 2009, PASP, 121, 1334) reports the discovery of 11 new supernovae. PTF discoveries are made by autonomous PTF software (Bloom et al. 2011, http://adsabs.harvard.edu/abs/2011arXiv1106.5491B), as well as by the Galaxy Zoo Supernova Project (Smith et al. 2011, MNRAS, 412, 1309; http://supernova.galaxyzoo.org).

  4. PTF weekly SN discovery report, July 8, 2011

    Science.gov (United States)

    Gal-Yam, A.; Nugen, P.

    2011-07-01

    The PTF (ATEL #1964, #3253; http://www.astro.caltech.edu/ptf/; Law et al. 2009, PASP, 121, 1395; Rau et al. 2009, PASP, 121, 1334) reports the discovery of 11 new supernovae. PTF discoveries are made by autonomous PTF software (Bloom et al. 2011, http://adsabs.harvard.edu/abs/2011arXiv1106.5491B ), as well as by the Galaxy Zoo Supernova Project (Smith et al. 2011, MNRAS, 412, 1309; http://supernova.galaxyzoo.org ).

  5. PTF weekly SN discovery report, February 4, 2012

    Science.gov (United States)

    Gal-Yam, Avishay; Ben-Ami, Sagi; Arcavi, I.; Nugent, Peter; Levitan, D.; Cao, Y.; Horesh, A.; Bellm, E.; Matheson, T.

    2012-02-01

    The PTF (ATEL #1964, #3253; http://www.astro.caltech.edu/ptf/ ; Law et al. 2009, PASP, 121, 1395; Rau et al. 2009, PASP, 121, 1334) reports the discovery of 20 new supernovae. PTF discoveries are made by autonomous PTF software (Bloom et al. 2011, http://adsabs.harvard.edu/abs/2011arXiv1106.5491B ), as well as by the Galaxy Zoo Supernova Project (Smith et al. 2011, MNRAS, 412, 1309; http://supernova.galaxyzoo.org ).

  6. PTF weekly SN discovery report, November 6, 2011

    Science.gov (United States)

    Gal-Yam, Avishay; Ben-Ami, S.; Yaron, O.; Nugent, P.; Kasliwal, M.; Cao, Y.; Levitan, D.; Sesar, B.; Tandulkar, S.; Groot, P.; Filippenko, A. V.; Cenko, S. B.; Silverman, D. Kasen. J.; Kandrashoff, M.; Blanchard, P.; Foley, R.

    2011-11-01

    The PTF (ATEL #1964, #3253; http://www.astro.caltech.edu/ptf/; Law et al. 2009, PASP, 121, 1395; Rau et al. 2009, PASP, 121, 1334) reports the discovery of 15 new supernovae. PTF discoveries are made by autonomous PTF software (Bloom et al. 2011, http://adsabs.harvard.edu/abs/2011arXiv1106.5491B), as well as by the Galaxy Zoo Supernova Project (Smith et al. 2011, MNRAS, 412, 1309; http://supernova.galaxyzoo.org).

  7. PTF weekly SN discovery report, Sep. 9, 2011

    Science.gov (United States)

    Gal-Yam, Avishay; Arcavi, I.; Polishook, D.; Cao, Y.; Nugen, Peter

    2011-09-01

    The PTF (ATEL #1964, #3253; http://www.astro.caltech.edu/ptf/; Law et al. 2009, PASP, 121, 1395; Rau et al. 2009, PASP, 121, 1334) reports the discovery of 10 new spectroscopically confirmed supernovae. PTF discoveries are made by autonomous PTF software (Bloom et al. 2011, http://adsabs.harvard.edu/abs/2011arXiv1106.5491B ), as well as by the Galaxy Zoo Supernova Project (Smith et al. 2011, MNRAS, 412, 1309; http://supernova.galaxyzoo.org ).

  8. PTF SN discovery report, May-June 2012

    Science.gov (United States)

    Gal-Yam, Avishay; Ben-Ami, Sagi; Yaron, O.; Arcavi, I.; Nugent, Peter; Levitan, D.; Perley, D.; Kulkarni, S. R.; Sesar, B.; Cao, Y.; Bellm, E.; Barlow, T.; Silverman, J.; Clubb, K.; Miller, A.; Fox, O.; Pan, Y.-C.; Maguire, K.; Sullivan, M.; Walker, E.; Kasliwal, M.; White, C. J.; Graham, M.; Parrent, J.

    2012-07-01

    The PTF (ATEL #1964, #3253; http://www.astro.caltech.edu/ptf/ ; Law et al. 2009, PASP, 121, 1395; Rau et al. 2009, PASP, 121, 1334) reports the discovery of 27 new supernovae. PTF discoveries are made by autonomous PTF software (Bloom et al. 2011, http://adsabs.harvard.edu/abs/2011arXiv1106.5491B ), as well as by the Galaxy Zoo Supernova Project (Smith et al. 2011, MNRAS, 412, 1309; http://supernova.galaxyzoo.org ).

  9. PTF weekly SN discovery report, August 6, 2011

    Science.gov (United States)

    Gal-Yam, A.; Xu, D.; Nugent, P.; Hsiao, E.; Levitan, D.; Maguire, K.; Pan, Y.-C.; Sullivan, M.; Groot, P.

    2011-08-01

    The PTF (ATEL #1964, #3253; http://www.astro.caltech.edu/ptf/; Law et al. 2009, PASP, 121, 1395; Rau et al. 2009, PASP, 121, 1334) reports the discovery of 10 new supernovae. PTF discoveries are made by autonomous PTF software (Bloom et al. 2011, http://adsabs.harvard.edu/abs/2011arXiv1106.5491B ), as well as by the Galaxy Zoo Supernova Project (Smith et al. 2011, MNRAS, 412, 1309; http://supernova.galaxyzoo.org ).

  10. PTF weekly SN discovery report, November 18, 2011

    Science.gov (United States)

    Gal-Yam, Avishay; Nugent, Peter; Hook, Isobel; Pan, Yen-Chen

    2011-11-01

    The PTF (ATEL #1964, #3253; http://www.astro.caltech.edu/ptf/ ; Law et al. 2009, PASP, 121, 1395; Rau et al. 2009, PASP, 121, 1334) reports the discovery of 6 new supernovae. PTF discoveries are made by autonomous PTF software (Bloom et al. 2011, http://adsabs.harvard.edu/abs/2011arXiv1106.5491B ), as well as by the Galaxy Zoo Supernova Project (Smith et al. 2011, MNRAS, 412, 1309; http://supernova.galaxyzoo.org ).

  11. PTF weekly SN discovery report, December 8, 2011

    Science.gov (United States)

    Gal-Yam, Avishay; Yaron, O.; Ben-Ami, S.; Nugent, P. E.; Groot, P.; Tandulkar, S.; Horesh, E. Bellm. A.; Cao, Y.; Levitan, D.; Sesar, B.; Hook, I.; Pan, Y.-C.; Kandrashoff, M.; Blanchard, P.; Silverman, J.; Cenko, S. B.; Miller, A.; Filippenko, A. V.; Clubb, K. I.

    2011-12-01

    The PTF (ATEL #1964, #3253; http://www.astro.caltech.edu/ptf/ ; Law et al. 2009, PASP, 121, 1395; Rau et al. 2009, PASP, 121, 1334) reports the discovery of 25 new supernovae. PTF discoveries are made by autonomous PTF software (Bloom et al. 2011, http://adsabs.harvard.edu/abs/2011arXiv1106.5491B), as well as by the Galaxy Zoo Supernova Project (Smith et al. 2011, MNRAS, 412, 1309; http://supernova.galaxyzoo.org).

  12. PTF weekly SN discovery report, Sep. 23, 2011

    Science.gov (United States)

    Gal-Yam, Avishay; Nugent, Peter

    2011-09-01

    The PTF (ATEL #1964, #3253; http://www.astro.caltech.edu/ptf/ ; Law et al. 2009, PASP, 121, 1395; Rau et al. 2009, PASP, 121, 1334) reports the discovery of 2 new supernovae. PTF discoveries are made by autonomous PTF software (Bloom et al. 2011, http://adsabs.harvard.edu/abs/2011arXiv1106.5491B), as well as by the Galaxy Zoo Supernova Project (Smith et al. 2011, MNRAS, 412, 1309; http://supernova.galaxyzoo.org).

  13. PTF weekly SN discovery report, July 15, 2011

    Science.gov (United States)

    Gal-Yam, Avishay; Nugent, Peter; Hsiao, Eric; Graham, Melissa

    2011-07-01

    The PTF (ATEL #1964, #3253; http://www.astro.caltech.edu/ptf/; Law et al. 2009, PASP, 121, 1395; Rau et al. 2009, PASP, 121, 1334) reports the discovery of 2 new supernovae. PTF discoveries are made by autonomous PTF software (Bloom et al. 2011, http://adsabs.harvard.edu/abs/2011arXiv1106.5491B ), as well as by the Galaxy Zoo Supernova Project (Smith et al. 2011, MNRAS, 412, 1309; http://supernova.galaxyzoo.org ).

  14. PTF weekly SN discovery report, October 1, 2011

    Science.gov (United States)

    Gal-Yam, Avishay; Ben-Ami, Sagi; Xu, Dong; Nugent, Peter; Sesar, Branimir; Pan, Y.-C.; Silverman, J.; Cenko, S. B.; Filippenko, A.

    2011-10-01

    The PTF (ATEL #1964, #3253; http://www.astro.caltech.edu/ptf/ ; Law et al. 2009, PASP, 121, 1395; Rau et al. 2009, PASP, 121, 1334) reports the discovery of 11 new supernovae. PTF discoveries are made by autonomous PTF software (Bloom et al. 2011, http://adsabs.harvard.edu/abs/2011arXiv1106.5491B ), as well as by the Galaxy Zoo Supernova Project (Smith et al. 2011, MNRAS, 412, 1309; http://supernova.galaxyzoo.org).

  15. PTF weekly SN discovery report, May 29, 2012 (part 1)

    Science.gov (United States)

    Gal-Yam, Avishay; Yaron, O.; Ben-Ami, S.; Arcavi, I.; Nugent, P.; Cao, Y.; Perley, D.; Kulkarni, S.; Hook, I.; Pan, Y.-C.; Walker, E.; Cenko, S. B.; Silverman, J.; Clubb, K. I.; Miller, A.; Filippenko, A. V.; Parrent, J.; Graham, M.

    2012-05-01

    The PTF (ATEL #1964, #3253; http://www.astro.caltech.edu/ptf/ ; Law et al. 2009, PASP, 121, 1395; Rau et al. 2009, PASP, 121, 1334) reports the discovery of 33 new supernovae (in this 2-part telegram). PTF discoveries are made by autonomous PTF software (Bloom et al. 2011, http://adsabs.harvard.edu/abs/2011arXiv1106.5491B ), as well as by the Galaxy Zoo Supernova Project (Smith et al. 2011, MNRAS, 412, 1309; http://supernova.galaxyzoo.org ).

  16. PTF weekly SN discovery report, May 29, 2012 (Part 2)

    Science.gov (United States)

    Gal-Yam, Avishay; Yaron, O.; Ben-Ami, S.; Arcavi, I.; Nugent, P.; Cao, Y.; Perley, D.; Kulkarni, S.; Hook, I.; Pan, Y.-C.; Walker, E.; Cenko, S. B.; Silverman, J.; Clubb, K. I.; Miller, A.; Filippenko, A. V.; Parrent, J.; Graham, M.

    2012-05-01

    The PTF (ATEL #1964, #3253; http://www.astro.caltech.edu/ptf/ ; Law et al. 2009, PASP, 121, 1395; Rau et al. 2009, PASP, 121, 1334) reports the discovery of 33 new supernovae in this 2-part telegram. PTF discoveries are made by autonomous PTF software (Bloom et al. 2011, http://adsabs.harvard.edu/abs/2011arXiv1106.5491B ), as well as by the Galaxy Zoo Supernova Project (Smith et al. 2011, MNRAS, 412, 1309; http://supernova.galaxyzoo.org ).

  17. PTF11eon/SN2011dh: Discovery of a Type IIb Supernova From a Compact Progenitor in the Nearby Galaxy M51

    CERN Document Server

    Arcavi, Iair; Yaron, Ofer; Sternberg, Assaf; Rabinak, Itay; Waxman, Eli; Kasliwal, Mansi M; Quimby, Robert M; Ofek, Eran O; Horesh, Assaf; Kulkarni, Shrinivas R; Filippenko, Alexei V; Silverman, Jeffrey M; Cenko, S Bradley; Li, Weidong; Bloom, Joshua S; Sullivan, Mark; Fox, Derek B; Nugent, Peter E; Poznanski, Dovi; Gorbikov, Evgeny; Riou, Amedee; Lamotte-Bailey, Stephane; Griga, Thomas; Cohen, Judith G; Polishook, David; Xu, Dong; Ben-Ami, Sagi; Manulis, Ilan; Walker, Emma S; Mazzali, Paulo A; Pian, Elena; Matheson, Thomas; Maquire, Kate; Pan, Yen-Chen; Bersier, David; James, Philip; Marchant, Jonathan M; Smith, Robert J; Mottram, Chris J; Barnsley, Robert M; Kandrashoff, Michael T; Clubb, Kelsey I

    2011-01-01

    On May 31, 2011 UT a supernova (SN) exploded in the nearby galaxy M51 (the Whirlpool Galaxy). We discovered this event using small telescopes equipped with CCD cameras, as well as by the Palomar Transient Factory (PTF) survey, and rapidly confirmed it to be a Type II supernova. Our early light curve and spectroscopy indicates that PTF11eon resulted from the explosion of a relatively compact progenitor star as evidenced by the rapid shock-breakout cooling seen in the light curve, the relatively low temperature in early-time spectra and the prompt appearance of low-ionization spectral features. The spectra of PTF11eon are dominated by H lines out to day 10 after explosion, but initial signs of He appear to be present. Assuming that He lines continue to develop in the near future, this SN is likely a member of the cIIb (compact IIb; Chevalier and Soderberg 2010) class, with progenitor radius larger than that of SN 2008ax and smaller than the eIIb (extended IIb) SN 1993J progenitor. Our data imply that the object...

  18. Discovery and Classification of Five New Supernovae by the Palomar Transient Factory

    Science.gov (United States)

    Arcavi, I.; Horesh, A.; Sesar, B.; Sullivan, M.; Maguire, K.; Ben-Ami, S.; Sternberg, A.; Green, Y.; Gal-Yam, A.; Kulkarni, S. R.; Quimby, R.; Kasliwal, M. M.; Ofek, E. O.; Nugent, P. E.; Howell, D. A.; Bloom, J.; Cooke, J.; Cenko, S. B.; Law, N.

    2010-12-01

    We report the discovery and spectroscopic classification of five new supernovae from PTF (ATel #1964; http://www.astro.caltech.edu/ptf). The supernovae were discovered by Oarical, an autonomous software framework of the PTF collaboration and by the users of Galaxy Zoo Supernovae, a citizen science project (http://supernova.galaxyzoo.org; Smith et al. 2010, arXiv 1011.2199), based on observations made with the Palomar 48-inch Oschin Schmidt telescope.

  19. Supernova discoveries 2010: statistics and trends

    CERN Document Server

    Gal-Yam, Avishay

    2013-01-01

    We have inspected all supernova discoveries reported during 2010, a total of 538 events. This number includes a small number of "supernova impostors" (bright extragalactic eruptions) but not novae or events that turned out to be Galactic stars. We examine the statistics of all discovered objects, as well as those of the subset of spectroscopically-confirmed events. This year shows the rise of wide-field non-targeted supernova surveys to prominence, with the largest numbers of events contributed by the CRTS and PTF surveys (189 and 88 events respectively), followed by the integrated contribution of numerous amateurs (82 events). Among spectroscopically-confirmed events the PTF (88 events) leads, before amateur discoveries (69 events), closely followed by the CRTS and PS1 surveys (67 and 63 events, respectively). Traditional galaxy-targeted surveys such as LOSS and CHASE, maintain a strong contribution (50 and 36 events, respectively) with high spectroscopic completeness (96% for LOSS). It is interesting to not...

  20. Discovery and Classification of Three New Supernovae by the Palomar Transient Factory

    Science.gov (United States)

    Arcavi, I.; Horesh, A.; Cau, Y.; Sternberg, A.; Gal-Yam, A.; Ben-Ami, S.; Kulkarni, S. R.; Quimby, R.; Kasliwal, M. M.; Ofek, E. O.; Nugent, P. E.; Sullivan, M.; Howell, D. A.; Bloom, J.; Cooke, J.; Cenko, S. B.; Law, N.

    2010-12-01

    We report the discovery and spectroscopic classification of three new supernovae from PTF (ATel #1964; http://www.astro.caltech.edu/ptf). The supernovae were discovered by Oarical, an autonomous software framework of the PTF collaboration, based on observations made with the Palomar 48-inch Oschin Schmidt telescope. Spectroscopy was undertaken with the Double-Beam Spectrograph (DBSP; Oke & Gunn 1982, PASP, 94, 586) on the Palomar 5-m Hale telescope on December 13 UT.

  1. A New Supernova Discovery/Classification

    Science.gov (United States)

    Howell, D. A.; Nugent, P. E.; Sullivan, M.; Gal-Yam, A.

    2010-10-01

    The Type Ia supernova science working group of the Palomar Transient Factory (ATEL#1964) reports the discovery of the Type Ia supernova PTF10ygu at RA=09:37:30.30, Dec=+23:09:33.6 (J2000) in the host galaxy NGC 2929 at z=0.025. The supernova was discovered on Oct. 12.5 UT when it was at magnitude 19.2 in R-band (calibrated wrt the USNO catalog). There was nothing at this location on Oct 8.5 UT to a limiting magnitude of 20.3, and a marginal detection (S/N=5) at R=19.6 on Oct.

  2. PTF discovers a young type IIn SN in NGC 151

    Science.gov (United States)

    Parrent, J.; Levitan, D.; Howell, A.; Thomas, R. C.; Nugent, P.; Sullivan, M.; Kasliwal, M.; Ofek, E. O.; Quimby, R.; Ben-Ami, S.; Xu, D.; Arcavi, I.; Gal-Yam, A.; Cenko, C. B.; Li, W.; Filippenko, A. V.

    2011-07-01

    The PTF (ATEL #1964, #3253; www.astro.caltech.edu/ptf; Law et al. 2009, PASP, 121, 1395; Rau et al. 2009, PASP, 121, 1334) reports the discovery of a new supernova in NGC 151. PTF discoveries are made by autonomous PTF software (Bloom et al. 2011, http://adsabs.harvard.edu/abs/2011arXiv1106.5491B ), as well as by the Galaxy Zoo Supernova Project (Smith et al. 2011, MNRAS, 412, 1309; http://supernova.galaxyzoo.org ).

  3. Long-rising Type II supernovae from PTF and CCCP

    CERN Document Server

    Taddia, F; Fremling, C; Migotto, K; Gal-Yam, A; Armen, S; Duggan, G; Ergon, M; Filippenko, A V; Fransson, C; Hosseinzadeh, G; Kasliwal, M M; Laher, R R; Leloudas, G; Leonard, D C; Lunnan, R; Masci, F J; Moon, D -S; Silverman, J M; Wozniak, P R

    2016-01-01

    Supernova (SN) 1987A was a peculiar H-rich event with a long-rising (LR) light curve (LC), stemming from a compact blue supergiant star (BSG). Only a few similar events have been presented in the literature. We present new data for a sample of 6 LR Type II SNe (SNe II), 3 of which were discovered and observed by the Palomar Transient Factory (PTF) and 3 observed by the Caltech Core-Collapse Project (CCCP). Our aim is to enlarge the family of LR SNe II, characterizing their properties. Spectra, LCs, and host-galaxies (HG) of these SNe are presented. Comparisons with known SN 1987A-like events are shown, with emphasis on the absolute magnitudes, colors, expansion velocities, and HG metallicities. Bolometric properties are derived from the multiband LC. By modeling the early-time LCs with scaling relations derived from the SuperNova Explosion Code (SNEC) models of MESA progenitor stars, we estimate the progenitor radii of these SNe and other progenitor parameters. We present PTF12kso, a LR SN II with the largest...

  4. Supernova PTF 09UJ: A Possible Shock Breakout from a Dense Circumstellar Wind

    Science.gov (United States)

    Ofek, E. O.; Rabinak, I.; Neill, J. D.; Arcavi, I.; Cenko, S. B.; Waxman, E.; Kulkarni, S. R.; Gal-Yam, A.; Nugent, P. E.; Bildsten, L.; Bloom, J. S.; Filippenko, A. V.; Forster, K.; Howell, D. A.; Jacobsen, J.; Kasliwal, M. M.; Law, N.; Martin, C.; Poznanski, D.; Quimby, R. M.; Shen, K. J.; Sullivan, M.; Dekany, R.; Rahmer, G.; Hale, D.; Smith, R.; Zolkower, J.; Velur, V.; Walters, R.; Henning, J.; Bui, K.; McKenna, D.

    2010-12-01

    Type-IIn supernovae (SNe IIn), which are characterized by strong interaction of their ejecta with the surrounding circumstellar matter (CSM), provide a unique opportunity to study the mass-loss history of massive stars shortly before their explosive death. We present the discovery and follow-up observations of an SN IIn, PTF 09uj, detected by the Palomar Transient Factory (PTF). Serendipitous observations by Galaxy Evolution Explorer (GALEX) at ultraviolet (UV) wavelengths detected the rise of the SN light curve prior to the PTF discovery. The UV light curve of the SN rose fast, with a timescale of a few days, to a UV absolute AB magnitude of about -19.5. Modeling our observations, we suggest that the fast rise of the UV light curve is due to the breakout of the SN shock through the dense CSM (n ≈ 1010 cm-3). Furthermore, we find that prior to the explosion the progenitor went through a phase of high mass-loss rate (~0.1 M sun yr-1) that lasted for a few years. The decay rate of this SN was fast relative to that of other SNe IIn.

  5. Supernova PTF 09uj: A possible shock breakout from a dense circumstellar wind

    CERN Document Server

    Ofek, E O; Neill, J D; Arcavi, I; Cenko, S B; Waxman, E; Kulkarni, S R; Yam, A Gal; Nugent, P E; Bildsten, L; Bloom, J S; Filippenko, A V; Forster, K; Howell, D A; Jacobsen, J; Kasliwal, M M; Law, N; Martin, C; Poznanski, D; Quimby, R M; Shen, K J; Sullivan, M; Dekany, R; Rahmer, G; Hale, D; Smith, R; Zolkower, J; Velur, V; Walters, R; Henning, J; Bui, K; McKenna, D

    2010-01-01

    Type-IIn supernovae (SNe), which are characterized by strong interaction of their ejecta with the surrounding circumstellar matter (CSM), provide a unique opportunity to study the mass-loss history of massive stars shortly before their explosive death. We present the discovery and follow-up observations of a Type IIn SN, PTF 09uj, detected by the Palomar Transient Factory (PTF). Serendipitous observations by GALEX at ultraviolet (UV) wavelengths detected the rise of the SN light curve prior to the PTF discovery. The UV light curve of the SN rose fast, with a time scale of a few days, to a UV absolute AB magnitude of about -19.5. Modeling our observations, we suggest that the fast rise of the UV light curve is due to the breakout of the SN shock through the dense CSM (n~10^10 cm^-3). Furthermore, we find that prior to the explosion the progenitor went through a phase of high mass-loss rate (~0.1 solar mass per year) that lasted for a few years. The decay rate of this SN was fast relative to that of other SNe I...

  6. Metallicity from Type II Supernovae from the (i)PTF

    CERN Document Server

    Taddia, F; Sollerman, J; Rubin, A; Leloudas, G; Gal-Yam, A; Arcavi, I; Cao, Y; Filippenko, A V; Graham, M L; Mazzali, P A; Nugent, P E; Pan, Y -C; Silverman, J M; Xu, D; Yaron, O

    2016-01-01

    Type IIP supernovae (SNe IIP) have recently been proposed as metallicity ($Z$) probes. The spectral models of Dessart et al. (2014) showed that the pseudo-equivalent width of Fe II $\\lambda$5018 (pEW$_{5018}$) during the plateau phase depends on the primordial $Z$, but there was a paucity of SNe IIP exhibiting pEW$_{5018}$ compatible with $Z < 0.4 {\\rm Z}_{\\odot}$. This lack might be due to some physical property of the SN II population, or to the fact that those SNe were discovered in luminous, metal-rich targeted galaxies. Here we use SN II observations from the untargeted (intermediate) Palomar Transient Factory [(i)PTF] survey, aiming to investigate the pEW$_{5018}$ distribution of this SN population and in particular to look for the presence of SNe II at lower $Z$. We perform pEW$_{5018}$ measurements on the spectra of a sample of 39 (i)PTF SNe II, selected to have well-constrained explosion epochs and light-curve properties (Rubin et al. 2015). Based on the comparison with the pEW$_{5018}$ spectral m...

  7. Discovery and classification of 18 new supernovae by the Palomar Transient Factory

    Science.gov (United States)

    Arcavi, I.; Xu, D.; Matheson, T.; Kulkarni, S. R.; Gal-Yam, A.; Quimby, R.; Kasliwal, M. M.; Ofek, E. O.; Nugent, P. E.; Sullivan, M.; Howell, D. A.; Bloom, J. S.; Ben-Ami, S.; Cooke, J.; Cenko, S. B.; Law, N.

    2010-11-01

    We report the discovery and spectroscopic classification of 18 new supernovae from PTF (ATel #1964; http://www.astro.caltech.edu/ptf). The supernovae were discovered by Oarical, an autonomous software framework of the PTF collaboration, as well as by Galaxy Zoo Supernovae (arXiv:1011.2199), based on observations made with the Palomar 48-inch Oschin Schmidt telescope. Spectroscopy was undertaken with the R-C spectrograph mounted at the Cassegrain focus of the Mayall 4-m telescope at the Kitt Peak National Observatory on UT 2010 November 2-4.

  8. EVLA Observations of an Extremely Young Type Ia Supernova PTF10ygu

    Science.gov (United States)

    Kasliwal, Mansi; Frail, Dale; Nugent, Peter; Howell, Andy; Sullivan, Mark; Gal-Yam, Avishay; Arcavi, Iair; Quimby, Robert; Ofek, Eran; Kulkarni, Shri; Yuan, Fang; Akerlof, Carl; McKay, Tim

    2010-10-01

    We triggered our NRAO Target Of Opportunity program "Exploring Transients in the Local Universe" and used the Expanded Very Large Array (EVLA) to observe PTF10ygu (ATEL#2934), an extremely young Type Ia supernova discovered by the Palomar Transient Factory. The EVLA observations were made on 2010 October 16.68 UT, when this Type Ia supernova was two weeks before maximum light (based on contemporaneous spectroscopy), one of the youngest supernovae to be observed in the radio.

  9. Discovery and classification of 17 new supernovae by the Palomar Transient Factory

    Science.gov (United States)

    Ben-Ami, S.; Badenes, C.; Kulkarni, S. R.; Matheson, T.; Xu, D.; Gal-Yam, A.; Arcavi, I.; Kasliwal, M. M.; Quimby, R.; Yaron, O.; Stenberg, A.; Green, Y.; Nugent, P. E.; Howell, D. A.; Sullivan, M.; Cooke, J.; Cenko, S. B.; Law, N.; Levitan, D.; Ofek, E. O.; Poznanski, D.; Palomar Transient Factory

    2010-10-01

    We report the discovery and spectroscopic classification of 17 new supernovae from the Palomar Transient Factory (PTF; http://www.astro.caltech.edu/ptf ). The supernovae were discovered and classified by Oarical, an autonomous software framework of the PTF collaboration, based on observations made with the Palomar 48-inch Oschin Schmidt telescope. Spectroscopy was undertaken with the R-C spectrograph mounted at the Cassegrain focus of the Mayall 4-m telescope at Kitt Peak Observatory on UT 2010 October 8-10 by Ben- Ami, Badenes, Kulkarni, and Matheson.

  10. PTF12os and iPTF13bvn. Two stripped-envelope supernovae from low-mass progenitors in NGC 5806

    CERN Document Server

    Fremling, C; Taddia, F; Ergon, M; Fraser, M; Karamehmetoglu, E; Valenti, S; Jerkstrand, A; Arcavi, I; Bufano, F; Rosa, N Elias; Filippenko, A V; Fox, D; Gal-Yam, A; Howell, D A; Kotak, R; Mazzali, P; Milisavljevic, D; Nugent, P E; Nyholm, A; Pian, E; Smartt, S

    2016-01-01

    We investigate two stripped-envelope supernovae (SNe) discovered in the nearby galaxy NGC 5806 by the (i)PTF. These SNe, designated PTF12os/SN 2012P and iPTF13bvn, exploded at a similar distance from the host-galaxy center. We classify PTF12os as a Type IIb SN based on our spectral sequence; iPTF13bvn has previously been classified as Type Ib having a likely progenitor with zero age main sequence (ZAMS) mass below ~17 solar masses. Our main objective is to constrain the explosion parameters of iPTF12os and iPTF13bvn, and to put constraints on the SN progenitors. We present comprehensive datasets on the SNe, and introduce a new reference-subtraction pipeline (FPipe) currently in use by the iPTF. We perform a detailed study of the light curves (LCs) and spectral evolution of the SNe. The bolometric LCs are modeled using the hydrodynamical code HYDE. We use nebular models and late-time spectra to constrain the ZAMS mass of the progenitors. We perform image registration of ground-based images of PTF12os to archiv...

  11. The bumpy light curve of Type IIn supernova iPTF13z over 3 years

    Science.gov (United States)

    Nyholm, A.; Sollerman, J.; Taddia, F.; Fremling, C.; Moriya, T. J.; Ofek, E. O.; Gal-Yam, A.; De Cia, A.; Roy, R.; Kasliwal, M. M.; Cao, Y.; Nugent, P. E.; Masci, F. J.

    2017-08-01

    A core-collapse (CC) supernova (SN) of Type IIn is dominated by the interaction of SN ejecta with the circumstellar medium (CSM). Some SNe IIn (e.g. SN 2006jd) have episodes of re-brightening ("bumps") in their light curves. We present iPTF13z, a Type IIn SN discovered on 2013 February 1 by the intermediate Palomar Transient Factory (iPTF). This SN showed at least five bumps in its declining light curve between 130 and 750 days after discovery. We analyse this peculiar behaviour and try to infer the properties of the CSM, of the SN explosion, and the nature of the progenitor star. We obtained multi-band optical photometry for over 1000 days after discovery with the P48 and P60 telescopes at Palomar Observatory. We obtained low-resolution optical spectra during the same period. We did an archival search for progenitor outbursts. We analyse the photometry and the spectra, and compare iPTF13z to other SNe IIn. In particular we derive absolute magnitudes, colours, a pseudo-bolometric light curve, and the velocities of the different components of the spectral lines. A simple analytical model is used to estimate the properties of the CSM. iPTF13z had a light curve peaking at Mr ≲ - 18.3 mag. The five bumps during its decline phase had amplitudes ranging from 0.4 to 0.9 mag and durations between 20 and 120 days. The most prominent bumps appeared in all the different optical bands, when covered. The spectra of this SN showed typical SN IIn characteristics, with emission lines of Hα (with broad component FWHM 103 - 104 km s-1 and narrow component FWHM 102 km s-1) and He i, but also with Fe ii, Ca ii, Na i D and Hβ P Cygni profiles (with velocities of 103km s-1). A pre-explosion outburst was identified lasting ≳ 50 days, with Mr ≈ - 15 mag around 210 days before discovery. Large, variable progenitor mass-loss rates (≳0.01M⊙ yr-1) and CSM densities (≳10-16 g cm-3) are derived. The SN was hosted by a metal-poor dwarf galaxy at redshift z = 0.0328. We suggest that

  12. A multi-wavelength investigation of the radio-loud supernova PTF11qcj and its circumstellar environment

    Energy Technology Data Exchange (ETDEWEB)

    Corsi, A. [Department of Physics, The George Washington University, 725 21st St, NW, Washington, DC 20052 (United States); Ofek, E. O.; Gal-Yam, A.; Xu, D. [Benoziyo Center for Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel); Frail, D. A. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Kulkarni, S. R.; Horesh, A.; Carpenter, J.; Arcavi, I.; Cao, Y.; Mooley, K.; Sesar, B. [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Fox, D. B. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Kasliwal, M. M. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Sullivan, M.; Maguire, K.; Pan, Y.-C. [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Cenko, S. B. [NASA Goddard Space Flight Center, Code 685, Greenbelt, MD 20771 (United States); Sternberg, A. [Max-Planck-Institut fur Astrophysik, D-85741 Garching (Germany); Bersier, D., E-mail: corsi@gwu.edu [Astrophysics Research Institute, Liverpool John Moores University, Liverpool (United Kingdom); and others

    2014-02-10

    We present the discovery, classification, and extensive panchromatic (from radio to X-ray) follow-up observations of PTF11qcj, a supernova (SN) discovered by the Palomar Transient Factory (PTF). Our observations with the Karl G. Jansky Very Large Array show that this event is radio-loud: PTF11qcj reached a radio peak luminosity comparable to that of the famous gamma-ray-burst-associated SN 1998bw (L {sub 5} {sub GHz} ≈ 10{sup 29} erg s{sup –1} Hz{sup –1}). PTF11qcj is also detected in X-rays with the Chandra Observatory, and in the infrared band with Spitzer. Our multi-wavelength analysis probes the SN interaction with circumstellar material. The radio observations suggest a progenitor mass-loss rate of ∼10{sup –4} M {sub ☉} yr{sup –1} × (v{sub w} /1000 km s{sup –1}), and a velocity of ≈0.3-0.5 c for the fastest moving ejecta (at ≈10 days after explosion). However, these estimates are derived assuming the simplest model of SN ejecta interacting with a smooth circumstellar wind, and do not account for possible inhomogeneities in the medium and asphericity of the explosion. The radio data show deviations from such a simple model, as well as a late-time re-brightening. The X-ray flux from PTF11qcj is compatible with the high-frequency extrapolation of the radio synchrotron emission (within the large uncertainties). A light echo from pre-existing dust is in agreement with our infrared data. Our pre-explosion data from the PTF suggest that a precursor eruption of absolute magnitude M{sub r} ≈ –13 mag may have occurred ≈2.5 yr prior to the SN explosion. Overall, PTF11qcj fits the expectations from the explosion of a Wolf-Rayet star. Precursor eruptions may be a feature characterizing the final pre-explosion evolution of such stars.

  13. Early Radio and X-Ray Observations of the Youngest nearby Type Ia Supernova PTF 11kly (SN 2011fe)

    NARCIS (Netherlands)

    Horesh, Assaf; Kulkarni, S. R.; Fox, Derek B.; Carpenter, John; Kasliwal, Mansi M.; Ofek, Eran O.; Quimby, Robert; Gal-Yam, Avishay; Cenko, Bradley; de Bruyn, A. G.; Kamble, Atish; Wijers, Ralph A. M. J.; van der Horst, Alexander J.; Kouveliotou, Chryssa; Podsiadlowski, Philipp; Sullivan, Mark; Maguire, Kate; Howell, D. Andrew; Nugent, Peter E.; Gehrels, Neil; Law, Nicholas M.; Poznanski, Dovi; Shara, Michael

    2012-01-01

    On 2011 August 24 (UT) the Palomar Transient Factory (PTF) discovered PTF11kly (SN 2011fe), the youngest and most nearby Type Ia supernova (SN Ia) in decades. We followed this event up in the radio (centimeter and millimeter bands) and X-ray bands, starting about a day after the estimated explosion

  14. A Triple-energy-source Model for Superluminous Supernova iPTF13ehe

    Science.gov (United States)

    Wang, S. Q.; Liu, L. D.; Dai, Z. G.; Wang, L. J.; Wu, X. F.

    2016-09-01

    Almost all superluminous supernovae (SLSNe) whose peak magnitudes are ≲ -21 mag can be explained by the 56Ni-powered model, the magnetar-powered (highly magnetized pulsar) model, or the ejecta-circumstellar medium (CSM) interaction model. Recently, iPTF13ehe challenged these energy-source models, because the spectral analysis shows that ˜ 2.5{M}⊙ of 56Ni have been synthesized, but are inadequate to power the peak bolometric emission of iPTF13ehe, while the rebrightening of the late-time light curve (LC) and the Hα emission lines indicate that the ejecta-CSM interaction must play a key role in powering the late-time LC. Here we propose a triple-energy-source model, in which a magnetar together with some amount (≲ 2.5{M}⊙ ) of 56Ni may power the early LC of iPTF13ehe, while the late-time rebrightening can be quantitatively explained by an ejecta-CSM interaction. Furthermore, we suggest that iPTF13ehe is a genuine core-collapse supernova rather than a pulsational pair-instability supernova candidate. Further studies on similar SLSNe in the future would eventually shed light on their explosion and energy-source mechanisms.

  15. Automated Supernova Discovery (Abstract)

    Science.gov (United States)

    Post, R. S.

    2015-12-01

    (Abstract only) We are developing a system of robotic telescopes for automatic recognition of Supernovas as well as other transient events in collaboration with the Puckett Supernova Search Team. At the SAS2014 meeting, the discovery program, SNARE, was first described. Since then, it has been continuously improved to handle searches under a wide variety of atmospheric conditions. Currently, two telescopes are used to build a reference library while searching for PSN with a partial library. Since data is taken every night without clouds, we must deal with varying atmospheric and high background illumination from the moon. Software is configured to identify a PSN, reshoot for verification with options to change the run plan to acquire photometric or spectrographic data. The telescopes are 24-inch CDK24, with Alta U230 cameras, one in CA and one in NM. Images and run plans are sent between sites so the CA telescope can search while photometry is done in NM. Our goal is to find bright PSNs with magnitude 17.5 or less which is the limit of our planned spectroscopy. We present results from our first automated PSN discoveries and plans for PSN data acquisition.

  16. PTF12os and iPTF13bvn. Two stripped-envelope supernovae from low-mass progenitors in NGC 5806

    Science.gov (United States)

    Fremling, C.; Sollerman, J.; Taddia, F.; Ergon, M.; Fraser, M.; Karamehmetoglu, E.; Valenti, S.; Jerkstrand, A.; Arcavi, I.; Bufano, F.; Elias Rosa, N.; Filippenko, A. V.; Fox, D.; Gal-Yam, A.; Howell, D. A.; Kotak, R.; Mazzali, P.; Milisavljevic, D.; Nugent, P. E.; Nyholm, A.; Pian, E.; Smartt, S.

    2016-09-01

    Context. We investigate two stripped-envelope supernovae (SNe) discovered in the nearby galaxy NGC 5806 by the (intermediate) Palomar Transient Factory [(i)PTF]. These SNe, designated PTF12os/SN 2012P and iPTF13bvn, exploded within ~520 days of one another at a similar distance from the host-galaxy center. We classify PTF12os as a Type IIb SN based on our spectral sequence; iPTF13bvn has previously been classified as Type Ib having a likely progenitor with zero age main sequence (ZAMS) mass below ~17 M⊙. Because of the shared and nearby host, we are presented with a unique opportunity to compare these two SNe. Aims: Our main objective is to constrain the explosion parameters of iPTF12os and iPTF13bvn, and to put constraints on the SN progenitors. We also aim to spatially map the metallicity in the host galaxy, and to investigate the presence of hydrogen in early-time spectra of both SNe. Methods: We present comprehensive datasets collected on PTF12os and iPTF13bvn, and introduce a new automatic reference-subtraction photometry pipeline (FPipe) currently in use by the iPTF. We perform a detailed study of the light curves (LCs) and spectral evolution of the SNe. The bolometric LCs are modeled using the hydrodynamical code hyde. We analyze early spectra of both SNe to investigate the presence of hydrogen; for iPTF13bvn we also investigate the regions of the Paschen lines in infrared spectra. We perform spectral line analysis of helium and iron lines to map the ejecta structure of both SNe. We use nebular models and late-time spectroscopy to constrain the ZAMS mass of the progenitors. We also perform image registration of ground-based images of PTF12os to archival HST images of NGC 5806 to identify a potential progenitor candidate. Results: We find that our nebular spectroscopy of iPTF13bvn remains consistent with a low-mass progenitor, likely having a ZAMS mass of ~12M⊙. Our late-time spectroscopy of PTF12os is consistent with a ZAMS mass of ~15M⊙. We

  17. Pulsational Pair-instability Model for Superluminous Supernova PTF12dam: Interaction and Radioactive Decay

    Science.gov (United States)

    Tolstov, Alexey; Nomoto, Ken’ichi; Blinnikov, Sergei; Sorokina, Elena; Quimby, Robert; Baklanov, Petr

    2017-02-01

    Being a superluminous supernova, PTF12dam can be explained by a 56Ni-powered model, a magnetar-powered model, or an interaction model. We propose that PTF12dam is a pulsational pair-instability supernova, where the outer envelope of a progenitor is ejected during the pulsations. Thus, it is powered by a double energy source: radioactive decay of 56Ni and a radiative shock in a dense circumstellar medium. To describe multicolor light curves and spectra, we use radiation-hydrodynamics calculations of the STELLA code. We found that light curves are well described in the model with 40 M⊙ ejecta and 20–40 M⊙ circumstellar medium. The ejected 56Ni mass is about 6 M⊙, which results from explosive nucleosynthesis with large explosion energy (2–3) × 1052 erg. In comparison with alternative scenarios of pair-instability supernova and magnetar-powered supernova, in the interaction model, all the observed main photometric characteristics are well reproduced: multicolor light curves, color temperatures, and photospheric velocities.

  18. Optical photometry and spectroscopy of the low-luminosity, broad-lined Ic supernova iPTF15dld

    DEFF Research Database (Denmark)

    Pian, E.; Tomasella, L.; Cappellaro, E.

    2017-01-01

    Core-collapse stripped-envelope supernova (SN) explosions reflect the diversity of physical parameters and evolutionary paths of their massive star progenitors. We have observed the Type Ic SN iPTF15dld (z = 0.047), reported by the Palomar Transient Factory. Spectra were taken starting 20 rest...

  19. Interpreting the Strongly Lensed Supernova iPTF16geu: Time Delay Predictions, Microlensing, and Lensing Rates

    Science.gov (United States)

    More, Anupreeta; Suyu, Sherry H.; Oguri, Masamune; More, Surhud; Lee, Chien-Hsiu

    2017-02-01

    We present predictions for time delays between multiple images of the gravitationally lensed supernova, iPTF16geu, which was recently discovered from the intermediate Palomar Transient Factory (iPTF). As the supernova is of Type Ia where the intrinsic luminosity is usually well known, accurately measured time delays of the multiple images could provide tight constraints on the Hubble constant. According to our lens mass models constrained by the Hubble Space Telescope F814W image, we expect the maximum relative time delay to be less than a day, which is consistent with the maximum of 100 hr reported by Goobar et al. but places a stringent upper limit. Furthermore, the fluxes of most of the supernova images depart from expected values suggesting that they are affected by microlensing. The microlensing timescales are small enough that they may pose significant problems to measure the time delays reliably. Our lensing rate calculation indicates that the occurrence of a lensed SN in iPTF is likely. However, the observed total magnification of iPTF16geu is larger than expected, given its redshift. This may be a further indication of ongoing microlensing in this system.

  20. iPTF15dtg: a double-peaked Type Ic Supernova from a massive progenitor

    CERN Document Server

    Taddia, F; Sollerman, J; Corsi, A; Gal-Yam, A; Karamehmetoglu, E; Lunnan, R; Bue, B; Ergon, M; Kasliwal, M; Vreeswijk, P M; Wozniak, P R

    2016-01-01

    Type Ic supernovae (SNe Ic) arise from the core-collapse of H (and He) poor stars, which could be either single WR stars or lower-mass stars stripped of their envelope by a companion. Their light curves are radioactively powered and usually show a fast rise to peak ($\\sim$10-15 d), without any early (first few days) emission bumps (with the exception of broad-lined SNe Ic) as sometimes seen for other types of stripped-envelope SNe (e.g., Type IIb SN 1993J and Type Ib SN 2008D). We have studied iPTF15dtg, a spectroscopically normal SN Ic with an early excess in the optical light curves followed by a long ($\\sim$30 d) rise to the main peak. It is the first spectroscopically-normal double-peaked SN Ic observed. We aim to determine the properties of this explosion and of its progenitor star. Optical photometry and spectroscopy of iPTF15dtg was obtained with multiple telescopes. The resulting light curves and spectral sequence are analyzed and modelled with hydrodynamical and analytical models, with particular foc...

  1. Explaining the Type Ia Supernova PTF 11kx with the Core Degenerate Scenario

    CERN Document Server

    Soker, Noam; Garcia-Berro, Enrique; Torres, Santiago; Camacho, Judit

    2012-01-01

    We argue that the multiple shells of circumstellar material (CSM) and the supernovae (SN) ejecta interaction with the CSM starting 59 days after the explosion of the Type Ia SN (SN Ia) PTF 11kx, are best described by the core-degenerate (CD) scenario for SN Ia. In the CD scenario the super-Chandrasekhar mass white dwarf (WD) is formed at the termination of the common envelope phase from a merger of a WD companion with the hot core of a massive asymptotic giant branch (AGB) star. In most cases the WD is destructed and accreted onto the more massive core. However, in rare cases where mergers take place when the WD is denser than the core, the core will be destructed and accreted onto the cooler WD. In such cases the explosion might occur with no appreciable delay, i.e., months to years after the termination of the common envelope (CE) phase. This, we propose, is the evolutionary route that lead to the explosion of PTF 11kx. The CD scenario can account for the very massive CSM within ~1000 AU of the exploding PT...

  2. Strong near-infrared carbon in the Type Ia supernova iPTF13ebh

    CERN Document Server

    Hsiao, E Y; Contreras, C; Höflich, P; Sand, D; Marion, G H; Phillips, M M; Stritzinger, M; González-Gaitán, S; Mason, R E; Folatelli, G; Parent, E; Gall, C; Amanullah, R; Anupama, G C; Arcavi, I; Banerjee, D P K; Beletsky, Y; Blanc, G A; Bloom, J S; Brown, P J; Campillay, A; Cao, Y; De Cia, A; Diamond, T; Freedman, W L; Gonzalez, C; Goobar, A; Holmbo, S; Howell, D A; Johansson, J; Kasliwal, M M; Kirshner, R P; Krisciunas, K; Kulkarni, S R; Maguire, K; Milne, P A; Morrell, N; Nugent, P E; Ofek, E O; Osip, D; Palunas, P; Perley, D A; Persson, S E; Piro, A L; Rabus, M; Roth, M; Schiefelbein, J M; Srivastav, S; Sullivan, M; Suntzeff, N B; Surace, J; Woźnia, P R; Yaron, O

    2015-01-01

    We present near-infrared (NIR) time-series spectroscopy, as well as complementary ultraviolet (UV), optical, and NIR data, of the Type Ia supernova (SN Ia) iPTF13ebh, which was discovered within two days from the estimated time of explosion. The first NIR spectrum was taken merely 2.3 days after explosion and may be the earliest NIR spectrum yet obtained of a SN Ia. The most striking features in the spectrum are several NIR C I lines, and the C I {\\lambda}1.0693 {\\mu}m line is the strongest ever observed in a SN Ia. Interestingly, no strong optical C II counterparts were found, even though the optical spectroscopic time series began early and is densely-cadenced. Except at the very early epochs, within a few days from the time of explosion, we show that the strong NIR C I compared to the weaker optical C II appears to be general in SNe Ia. iPTF13ebh is a fast decliner with {\\Delta}m15(B) = 1.79 $\\pm$ 0.01, and its absolute magnitude obeys the linear part of the width-luminosity relation. It is therefore categ...

  3. PTF 11kx: a type Ia supernova with a symbiotic nova progenitor.

    Science.gov (United States)

    Dilday, B; Howell, D A; Cenko, S B; Silverman, J M; Nugent, P E; Sullivan, M; Ben-Ami, S; Bildsten, L; Bolte, M; Endl, M; Filippenko, A V; Gnat, O; Horesh, A; Hsiao, E; Kasliwal, M M; Kirkman, D; Maguire, K; Marcy, G W; Moore, K; Pan, Y; Parrent, J T; Podsiadlowski, P; Quimby, R M; Sternberg, A; Suzuki, N; Tytler, D R; Xu, D; Bloom, J S; Gal-Yam, A; Hook, I M; Kulkarni, S R; Law, N M; Ofek, E O; Polishook, D; Poznanski, D

    2012-08-24

    There is a consensus that type Ia supernovae (SNe Ia) arise from the thermonuclear explosion of white dwarf stars that accrete matter from a binary companion. However, direct observation of SN Ia progenitors is lacking, and the precise nature of the binary companion remains uncertain. A temporal series of high-resolution optical spectra of the SN Ia PTF 11kx reveals a complex circumstellar environment that provides an unprecedentedly detailed view of the progenitor system. Multiple shells of circumstellar material are detected, and the SN ejecta are seen to interact with circumstellar material starting 59 days after the explosion. These features are best described by a symbiotic nova progenitor, similar to RS Ophiuchi.

  4. PTF discovers and follows-up nearby, young, Type II supernova

    Science.gov (United States)

    Kasliwal, M. M.; Quimby, R. M.; Ofek, E. O.; Kulkarni, S. R.; Gal-Yam, A.; Arcavi, I.; Green, Y.; Walker, E.; Mazzali, P.; Nugent, P. E.; Poznanski, D.; Howell, D. A.; Dilday, B.; Fox, D. B.

    2010-09-01

    On UT 2010 Sep 15.243, the Palomar Transient Factory discovered an optical transient, PTF10vdl at RA(J2000) = 23:05:49.001 and DEC(J2000)=03:31:20.50 near NGC 7483. We obtained Target Of Opportunity spectra with Gemini-S/GMOS (PI Kasliwal) on Sep 16.29. The spectrum was extremely blue (f_nu proportional to nu^4.5) and nearly featureless. We further obtained a spectrum with the TNG/DOLORES (PI Walker) on Sep 17.40 and P-Cygni profiles of four Balmer lines were clearly visible, consistent with the redshift of NGC 7483, suggesting this is a Type II supernova.

  5. iPTF15dtg: a double-peaked Type Ic supernova from a massive progenitor

    Science.gov (United States)

    Taddia, F.; Fremling, C.; Sollerman, J.; Corsi, A.; Gal-Yam, A.; Karamehmetoglu, E.; Lunnan, R.; Bue, B.; Ergon, M.; Kasliwal, M.; Vreeswijk, P. M.; Wozniak, P. R.

    2016-08-01

    Context. Type Ic supernovae (SNe Ic) arise from the core-collapse of H- (and He-) poor stars, which could either be single Wolf-Rayet (WR) stars or lower-mass stars stripped of their envelope by a companion. Their light curves are radioactively powered and usually show a fast rise to peak (~10-15 d), without any early (in the first few days) emission bumps (with the exception of broad-lined SNe Ic) as sometimes seen for other types of stripped-envelope SNe (e.g., Type IIb SN 1993J and Type Ib SN 2008D). Aims: We have studied iPTF15dtg, a spectroscopically normal SN Ic with an early excess in the optical light curves followed by a long (~30 d) rise to the main peak. It is the first spectroscopically-normal double-peaked SN Ic to be observed. Our aim is to determine the properties of this explosion and of its progenitor star. Methods: Optical photometry and spectroscopy of iPTF15dtg was obtained with multiple telescopes. The resulting light curves and spectral sequence are analyzed and modeled with hydrodynamical and analytical models, with particular focus on the early emission. Results: iPTF15dtg is a slow rising SN Ic, similar to SN 2011bm. Hydrodynamical modeling of the bolometric properties reveals a large ejecta mass (~10 M⊙) and strong 56Ni mixing. The luminous early emission can be reproduced if we account for the presence of an extended (≳500 R⊙), low-mass (≳0.045 M⊙) envelope around the progenitor star. Alternative scenarios for the early peak, such as the interaction with a companion, a shock-breakout (SBO) cooling tail from the progenitor surface, or a magnetar-driven SBO are not favored. Conclusions: The large ejecta mass and the presence of H- and He-free extended material around the star suggest that the progenitor of iPTF15dtg was a massive (≳35 M⊙) WR star that experienced strong mass loss.

  6. iPTF13beo: The Double-Peaked Light Curve of a Type Ibn Supernova Discovered Shortly after Explosion

    CERN Document Server

    Gorbikov, Evgeny; Ofek, Eran O; Vreeswijk, Paul M; Nugent, Peter E; Chotard, Nicolas; Kulkarni, Shrinivas R; Cao, Yi; De Cia, Annalisa; Yaron, Ofer; Tal, David; Arcavi, Iair; Kasliwal, Mansi M; Cenko, S Bradley; Sullivan, Mark

    2013-01-01

    We present optical photometric and spectroscopic observations of the Type Ibn (SN 2006jc-like) supernova iPTF13beo. Detected by the intermediate Palomar Transient Factory on 2013 May 19.39, ~3 hours after the estimated explosion time, iPTF13beo is the youngest and the most distant (430 Mpc) Type Ibn event ever observed. Type Ibn events are rare, and their early evolution, both photometric and spectroscopic, has not been studied yet. The iPTF13beo light curve is consistent with light curves of other Type Ibn SNe and with light curves of fast Type Ic events, but with a slightly faster rise-time of two days. In addition, the iPTF13beo light curve exhibits a double-peak structure separated by 9 days, not observed before in any Type Ibn SN. Low-resolution spectra were obtained during the two peaks of the iPTF13beo light curve. The spectrum taken during the rising stage (2.4 days after the estimated explosion time) is featureless and similar to early spectra of SNe Ic-BL. The spectrum obtained during the declining ...

  7. PTF10ops - a subluminous, normal-width lightcurve Type Ia supernova in the middle of nowhere

    CERN Document Server

    Maguire, Kate; Thomas, Rollin C; Nugent, Peter E; Howell, D Andrew; Gal-Yam, Avishay; Arcavi, Iair; Ben-Ami, Sagi; Blake, Sarah; Botyanszki, Janos; Buton, Clement; Cooke, Jeffery; Ellis, Richard S; Hook, Isobel M; Kasliwal, Mansi M; Pan, Yen-Chen; Pereira, Rui; Podsiadlowski, Philipp; Sternberg, Assaf; Suzuki, Nao; Xu, Dong; Yaron, Ofer; Bloom, Joshua S; Cenko, S Bradley; Kulkarni, Shrinivas R; Law, Nicholas; Ofek, Eran O; Poznanski, Dovi; Quimby, Robert M

    2011-01-01

    PTF10ops is a Type Ia supernova (SN Ia), whose lightcurve and spectral properties place it outside the current SN Ia subtype classifications. Its spectra display the characteristic lines of subluminous SNe Ia, but it has a normal-width lightcurve with a long rise-time, typical of normal luminosity SNe Ia. The early-time optical spectra of PTF10ops were modelled using a spectral fitting code and found to have all the lines typically seen in subluminous SNe Ia, without the need to invoke more uncommon elements. The host galaxy environment of PTF10ops is also unusual with no galaxy detected at the position of the SN down to an absolute limiting magnitude of r \\geq -12.0 mag, but a very massive galaxy is present at a separation of ~148 kpc and at the same redshift as suggested by the SN spectral features. The progenitor of PTF10ops is most likely a very old star, possibly in a low metallicity environment, which affects its explosion mechanism and observational characteristics. PTF10ops does not easily fit into an...

  8. Interpreting the strongly lensed supernova iPTF16geu: time delay predictions, microlensing, and lensing rates

    CERN Document Server

    More, Anupreeta; Oguri, Masamune; More, Surhud; Lee, Chien-Hsiu

    2016-01-01

    We present predictions for time delays between multiple images of the gravitationally lensed supernova, iPTF16geu, which was recently discovered from the intermediate Palomar Transient Factory (iPTF). As the supernova is of Type Ia where the intrinsic luminosity is usually well-known, accurately measured time delays of the multiple images could provide tight constraints on the Hubble constant. According to our lens mass models constrained by the {\\it Hubble Space Telescope} F814W image, we expect the maximum relative time delay to be less than a day, which is consistent with the maximum of 100 hours reported by Goobar et al. but places a stringent upper limit. Furthermore, the fluxes of most of the supernova images depart from expected values suggesting that they are affected by microlensing. The microlensing timescales are small enough that they may pose significant problems to measure the time delays reliably. Our lensing rate calculation indicates that the occurrence of a lensed SN in iPTF is likely. Howev...

  9. Early Radio and X-Ray Observations of the Youngest Nearby Type Ia Supernova PTF 11kly (SN 2011fe)

    Science.gov (United States)

    Horesh, Assaf; Kulkarni, S. R.; Fox, Derek B.; Carpenter, John; Kasliwal, Mansi M.; Ofek, Eran O.; Quimby, Robert; Gal-Yam, Avishay; Cenko, S. Bradley; deBruyn, A. G.; Kamble, Atish; Wijers, Ralph A. M. J.; vanderHorst, Alexander J.; Kouveliotou, Chryssa; Podsiadlowski, Philipp; Sullivan, Mark; Maguire, Kate; Howell, D. Andrew; Nugent, Peter E.; Gehrels, Neil; Law, Nicolas M.; Poznanski, Dovi; Shara, Michael

    2012-01-01

    On August 24 (UT) the Palomar Transient Factory (PTF) discovered PTF11kly (SN 2011fe), the youngest and most nearby type Ia supernova (SN Ia) in decades. We followed this event up in the radio (centimeter and millimeter bands) and X-ray bands, starting about a day after the estimated explosion time. We present our analysis of the radio and X-ray observations, yielding the tightest constraints yet placed on the pre-explosion mass-loss rate from the progenitor system of this supernova. We find a robust limit of M(raised dot) less than or equal to 10(exp -8) (w /100 kilometers per second ) solar mass yr(exp -1) from sensitive X-ray non-detections, as well as a similar limit from radio data, which depends, however, on assumptions about microphysical parameters. We discuss our results in the context of single-degenerate models for SNe Ia and find that our observations modestly disfavor symbiotic progenitor models involving a red giant donor, but cannot constrain systems accreting from main sequence or sub-giant stars, including the popular supersoft channel. In view of the proximity of PTF11kly and the sensitivity of our prompt observations we would have to wait for a long time (decade or longer) in order to more meaningfully probe the circumstellar matter of Ia supernovae.

  10. Disappearance of the Progenitor of Supernova iPTF13bvn

    CERN Document Server

    Folatelli, Gastón; Kuncarayakti, Hanindyo; Maeda, Keiichi; Bersten, Melina C; Nomoto, Ken'ichi; Pignata, Giuliano; Hamuy, Mario; Quimby, Robert M; Zheng, Weikang; Filippenko, Alexei V; Clubb, Kelsey I; Smith, Nathan; Elias-Rosa, Nancy; Foley, Ryan J; Miller, Adam A

    2016-01-01

    Supernova (SN) iPTF13bvn in NGC 5806 was the first Type Ib SN to have been tentatively associated with a progenitor candidate in pre-explosion images. We performed deep ultraviolet (UV) and optical Hubble Space Telescope (HST) observations of the SN site ~740 days after explosion. We detect an object in the optical bands that is fainter than the pre-explosion object. This dimming is likely not produced by dust absorption in the ejecta; thus, our finding confirms the connection of the progenitor candidate with the SN. The object in our data is likely dominated by the fading SN, which implies that the pre-SN flux is mostly due to the progenitor. We compare our revised pre-SN photometry with previously proposed progenitor models. Although binary progenitors are favored, models need to be refined. In particular, to comply with our deep UV detection limit, any companion star must be less luminous than a late-O star or substantially obscured by newly formed dust. A definitive progenitor characterization will requir...

  11. The Progenitor of Supernova 2011dh/PTF11eon in Messier 51

    CERN Document Server

    Van Dyk, Schuyler D; Cenko, S Bradley; Kasliwal, Mansi M; Horesh, Assaf; Ofek, Eran O; Kraus, Adam L; Silverman, Jeffrey M; Arcavi, Iair; Filippenko, Alexei V; Gal-Yam, Avishay; Quimby, Robert M; Kulkarni, Shrinivas R; Yaron, Ofer; Polishook, David

    2011-01-01

    We have identified the progenitor, or progenitor system, responsible for supernova (SN) 2011dh/PTF11eon, in the nearby, nearly face-on galaxy M51. The available early-time spectra and photometry indicate that it is a stripped-envelope core-collapse SN, of Type IIb or transitional Type II/Ib, possibly similar to the famous SN 1993J in M81. The star was identified in pre-SN archival, multi-band images obtained by the Hubble Space Telescope with the Advanced Camera for Surveys. This identification has been confirmed, to the highest available astrometric precision, using a Keck-II adaptive-optics image. We infer that the extinction to SN 2011dh and its progenitor arises from a low Galactic foreground contribution, and that the SN environment is of solar metallicity. We find that if single, the star is a luminous (absolute V \\approx -7.7 mag) supergiant of effective temperature ~6100 K, bluer than the red supergiants which explode as the more common Type II-Plateau SNe. This requires that the star's hydrogen-rich ...

  12. SN2010jp (PTF10aaxi): A Jet-Driven Type II Supernova

    CERN Document Server

    Smith, Nathan; Butler, Nat; Bloom, Joshua S; Kasliwal, Mansi M; Horesh, Assaf; Kulkarni, Shrinivas R; Law, Nicholas M; Nugent, Peter E; Ofek, Eran O; Poznanski, Dovi; Quimby, Robert M; Sesar, Branimir; Ben-Ami, Sagi; Arcavi, Iair; Gal-Yam, Avishay; Polishook, David; Xu, Dong; Yaron, Ofer; Frail, Dale A; Sullivan, Mark

    2011-01-01

    We present photometry and spectroscopy of the peculiar TypeII supernova (SN) 2010jp, also named PTF10aaxi. The light curve exhibits a linear decline with a relatively low peak absolute magnitude of only -15.9, and a low radioactive decay luminosity at late times that suggests a nickel mass below 0.003 $M_{\\odot}$. Spectra of SN2010jp display an unprecedented triple-peaked H$\\alpha$ line profile, showing: (1) a narrow (800 km/s) central component that suggests shock interaction with dense CSM; (2) high-velocity blue and red emission features centered at -12600 and +15400 km/s; and (3) broad wings extending from -22000 to +25000 km/s. These features persist during 100 days after explosion. We propose that this line profile indicates a bipolar jet-driven explosion, with the central component produced by normal SN ejecta and CSM interaction at mid latitudes, while the high-velocity bumps and broad line wings arise in a nonrelativistic bipolar jet. Two variations of the jet interpretation seem plausible: (1) A fas...

  13. The hydrogen-poor superluminous supernova iPTF13ajg and its host galaxy in absorption and emission

    CERN Document Server

    Vreeswijk, Paul M; Gal-Yam, Avishay; De Cia, Annalisa; Quimby, Robert M; Sullivan, Mark; Cenko, S Bradley; Perley, Daniel A; Filippenko, Alexei V; Clubb, Kelsey I; Taddia, Francesco; Sollerman, Jesper; Leloudas, Giorgos; Arcavi, Iair; Rubin, Adam; Kasliwal, Mansi M; Cao, Yi; Yaron, Ofer; Tal, David; Ofek, Eran O; Capone, John; Kutyrev, Alexander S; Toy, Vicki; Nugent, Peter E; Laher, Russ; Surace, Jason; Kulkarni, Shrinivas R

    2014-01-01

    We present imaging and spectroscopy of a hydrogen-poor superluminous supernova (SLSN) discovered by the intermediate Palomar Transient Factory: iPTF13ajg. At a redshift of z=0.7403, derived from narrow absorption lines, iPTF13ajg peaked at an absolute magnitude M(u,AB)=-22.5, one of the most luminous supernovae to date. The uBgRiz light curves, obtained with the P48, P60, NOT, DCT, and Keck telescopes, and the nine-epoch spectral sequence secured with the Keck and the VLT (covering 3 rest-frame months), are tied together photometrically to provide an estimate of the flux evolution as a function of time and wavelength. The observed bolometric peak luminosity of iPTF13ajg is 3.2x10^44 erg/s, while the estimated total radiated energy is 1.3x10^51 erg. We detect narrow absorption lines of Mg I, Mg II, and Fe II, associated with the cold interstellar medium in the host galaxy, at two different epochs with X-shooter at the VLT. From Voigt-profile fitting, we derive the column densities log N(Mg I)=11.94+-0.06, log ...

  14. DISCOVERY AND REDSHIFT OF AN OPTICAL AFTERGLOW IN 71 deg{sup 2}: iPTF13bxl AND GRB 130702A

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Leo P.; Brown, Duncan A. [LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Bradley Cenko, S.; Gehrels, Neil; McEnery, Julie [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Kasliwal, Mansi M.; Mulchaey, John [Observatories of the Carnegie Institution for Science, 813 Santa Barbara St, Pasadena, CA 91101 (United States); Perley, Daniel A.; Kulkarni, S. R.; Bellm, Eric; Barlow, Tom; Cao, Yi; Horesh, Assaf [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Ofek, Eran O.; Arcavi, Iair [Benoziyo Center for Astrophysics, The Weizmann Institute of Science, Rehovot 76100 (Israel); Nugent, Peter E.; Bloom, Joshua S. [Department of Astronomy, University of California Berkeley, B-20 Hearst Field Annex 3411, Berkeley, CA 94720-3411 (United States); Corsi, Alessandra [George Washington University, Corcoran Hall, Washington, DC 20052 (United States); Frail, Dale A. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Masci, Frank J., E-mail: lsinger@caltech.edu [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); and others

    2013-10-20

    We report the discovery of the optical afterglow of the γ-ray burst (GRB) 130702A, identified upon searching 71 deg{sup 2} surrounding the Fermi Gamma-ray Burst Monitor (GBM) localization. Discovered and characterized by the intermediate Palomar Transient Factory, iPTF13bxl is the first afterglow discovered solely based on a GBM localization. Real-time image subtraction, machine learning, human vetting, and rapid response multi-wavelength follow-up enabled us to quickly narrow a list of 27,004 optical transient candidates to a single afterglow-like source. Detection of a new, fading X-ray source by Swift and a radio counterpart by CARMA and the Very Large Array confirmed the association between iPTF13bxl and GRB 130702A. Spectroscopy with the Magellan and Palomar 200 inch telescopes showed the afterglow to be at a redshift of z = 0.145, placing GRB 130702A among the lowest redshift GRBs detected to date. The prompt γ-ray energy release and afterglow luminosity are intermediate between typical cosmological GRBs and nearby sub-luminous events such as GRB 980425 and GRB 060218. The bright afterglow and emerging supernova offer an opportunity for extensive panchromatic follow-up. Our discovery of iPTF13bxl demonstrates the first observational proof-of-principle for ∼10 Fermi-iPTF localizations annually. Furthermore, it represents an important step toward overcoming the challenges inherent in uncovering faint optical counterparts to comparably localized gravitational wave events in the Advanced LIGO and Virgo era.

  15. Nebular phase observations of the type-Ib supernova iPTF13bvn favour a binary progenitor

    CERN Document Server

    Kuncarayakti, H; Bersten, M C; Folatelli, G; Morrell, N; Hsiao, E Y; González-Gaitán, S; Anderson, J P; Hamuy, M; de Jaeger, T; Gutiérrez, C P; Kawabata, K S

    2015-01-01

    Aims. We present and analyse late-time observations of the type-Ib supernova with possible pre-supernova progenitor detection, iPTF13bvn, taken at $\\sim$300 days after the explosion, and discuss these in the context of constraints on the supernova's progenitor. Previous studies have proposed two possible natures for the progenitor of the supernova, i.e. a massive Wolf-Rayet star or a lower-mass star in close binary system. Methods. Our observations show that the supernova has entered the nebular phase, with the spectrum dominated by Mg~I]$\\lambda\\lambda$4571, [O~I]$\\lambda\\lambda$6300, 6364, and [Ca~II]$\\lambda\\lambda$7291, 7324 emission lines. We measured the emission line fluxes to estimate the core oxygen mass and compare the [O~I]/[Ca~II] line ratio with other supernovae. Results. The core oxygen mass of the supernova progenitor was estimated to be $\\lesssim$0.7 M$_\\odot$, which implies initial progenitor mass not exceeding $\\sim$15 -- 17 M$_\\odot$. Since the derived mass is too small for a single star to...

  16. The hydrogen-poor superluminous supernova iPTF 13ajg and its host galaxy in absorption and emission

    Energy Technology Data Exchange (ETDEWEB)

    Vreeswijk, Paul M.; Gal-Yam, Avishay; De Cia, Annalisa; Rubin, Adam; Yaron, Ofer; Tal, David; Ofek, Eran O. [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 7610001 (Israel); Savaglio, Sandra [Max Planck Institute for Extraterrestrial Physics, D-85748 Garching bei München (Germany); Quimby, Robert M. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8583 (Japan); Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Cenko, S. Bradley; Filippenko, Alexei V.; Clubb, Kelsey I. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Perley, Daniel A.; Cao, Yi [Astronomy Department, California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Taddia, Francesco; Sollerman, Jesper; Leloudas, Giorgos [Department of Astronomy, The Oskar Klein Center, Stockholm University, AlbaNova 10691 Stockholm (Sweden); Arcavi, Iair [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Kasliwal, Mansi M., E-mail: paul.vreeswijk@weizmann.ac.il [The Observatories, Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); and others

    2014-12-10

    We present imaging and spectroscopy of a hydrogen-poor superluminous supernova (SLSN) discovered by the intermediate Palomar Transient Factory, iPTF 13ajg. At a redshift of z = 0.7403, derived from narrow absorption lines, iPTF 13ajg peaked at an absolute magnitude of M {sub u,} {sub AB} = –22.5, one of the most luminous supernovae to date. The observed bolometric peak luminosity of iPTF 13ajg is 3.2 × 10{sup 44} erg s{sup –1}, while the estimated total radiated energy is 1.3 × 10{sup 51} erg. We detect narrow absorption lines of Mg I, Mg II, and Fe II, associated with the cold interstellar medium in the host galaxy, at two different epochs with X-shooter at the Very Large Telescope. From Voigt profile fitting, we derive the column densities log N(Mg I) =11.94 ± 0.06, log N(Mg II) =14.7 ± 0.3, and log N(Fe II) =14.25 ± 0.10. These column densities, as well as the Mg I and Mg II equivalent widths of a sample of hydrogen-poor SLSNe taken from the literature, are at the low end of those derived for gamma-ray bursts (GRBs) whose progenitors are also thought to be massive stars. This suggests that the environments of hydrogen-poor SLSNe and GRBs are different. From the nondetection of Fe II fine-structure absorption lines, we derive a lower limit on the distance between the supernova and the narrow-line absorbing gas of 50 pc. The neutral gas responsible for the absorption in iPTF 13ajg exhibits a single narrow component with a low velocity width, ΔV = 76 km s{sup –1}, indicating a low-mass host galaxy. No host galaxy emission lines are detected, leading to an upper limit on the unobscured star formation rate (SFR) of SFR{sub [O} {sub II]}<0.07M{sub ⊙}yr{sup −1}. Late-time imaging shows the iPTF 13ajg host galaxy to be faint, with g {sub AB} ≈ 27.0 and R {sub AB} ≥ 26.0 mag, corresponding to M {sub B,} {sub Vega} ≳ –17.7 mag.

  17. THE PROGENITOR OF SUPERNOVA 2011dh/PTF11eon IN MESSIER 51

    Energy Technology Data Exchange (ETDEWEB)

    Van Dyk, Schuyler D. [Spitzer Science Center/Caltech, Pasadena CA 91125 (United States); Li, Weidong; Cenko, S. Bradley; Silverman, Jeffrey M.; Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Kasliwal, Mansi M.; Horesh, Assaf; Ofek, Eran O.; Quimby, Robert M.; Kulkarni, Shrinivas R. [Astronomy Department, California Institute of Technology, Pasadena, CA 91125 (United States); Kraus, Adam L. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Arcavi, Iair; Gal-Yam, Avishay; Yaron, Ofer; Polishook, David, E-mail: vandyk@ipac.caltech.edu [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel)

    2011-11-10

    We have identified a luminous star at the position of supernova (SN) 2011dh/PTF11eon, in pre-SN archival, multi-band images of the nearby, nearly face-on galaxy Messier 51 (M51) obtained by the Hubble Space Telescope with the Advanced Camera for Surveys. This identification has been confirmed, to the highest available astrometric precision, using a Keck-II adaptive-optics image. The available early-time spectra and photometry indicate that the SN is a stripped-envelope, core-collapse Type IIb, with a more compact progenitor (radius {approx} 10{sup 11} cm) than was the case for the well-studied SN IIb 1993J. We infer that the extinction to SN 2011dh and its progenitor arises from a low Galactic foreground contribution, and that the SN environment is of roughly solar metallicity. The detected object has absolute magnitude M{sup 0}{sub V} Almost-Equal-To -7.7 and effective temperature {approx}6000 K. The star's radius, {approx}10{sup 13} cm, is more extended than what has been inferred for the SN progenitor. We speculate that the detected star is either an unrelated star very near the position of the actual progenitor, or, more likely, the progenitor's companion in a mass-transfer binary system. The position of the detected star in a Hertzsprung-Russell diagram is consistent with an initial mass of 17-19 M{sub Sun }. The light of this star could easily conceal, even in the ultraviolet, the presence of a stripped, compact, very hot ({approx}10{sup 5} K), nitrogen-rich Wolf-Rayet star progenitor.

  18. Early radio and X-ray observations of the youngest nearby type Ia supernova PTF11kly (SN 2011fe)

    CERN Document Server

    Horesh, Assaf; Fox, Derek B; Carpenter, John; Kasliwal, Mansi M; Ofek, Eran O; Quimby, Robert; Gal-Yam, Avishay; Cenko, S Bradley; de Bruyn, A G; Kamble, Atish; Wijers, Ralph A M J; van der Horst, Alexander J; Kouveliotou, Chryssa; Podsiadlowski, Philipp; Sullivan, Mark; Maguire, Kate; Nugent, Peter E; Gehrels, Neil; Law, Nicholas M; Poznanski, Dovi; Shara, Michael

    2011-01-01

    On August 24 (UT) the Palomar Transient Factory (PTF) discovered PTF11kly (SN 2011fe), the youngest and most nearby type Ia supernova (SN Ia) in decades. We followed this event up in the radio (centimeter and millimeter bands) and X-ray bands, starting about a day after the estimated explosion time. We present our analysis of the radio and X-ray observations, yielding the tightest constraints yet placed on the pre-explosion mass-loss rate from the progenitor system of this supernova. We find a robust limit of dM/dt<10^-8 (w/100 km/s) [M_solar/yr] from sensitive X-ray non-detections, as well as a similar limit from radio data, which depends, however, on assumptions about microphysical parameters. We discuss our results in the context of single-degenerate models for SNe Ia and find that our observations modestly disfavor symbiotic progenitor models involving a red giant donor, but cannot constrain systems accreting from main-sequence or sub-giant stars, including the popular supersoft channel. In view of the...

  19. iPTF14yb: The First Discovery of a GRB Afterglow Independent of a High-Energy Trigger

    CERN Document Server

    Cenko, S Bradley; Perley, Daniel A; Horesh, Assaf; Corsi, Alessandra; Fox, Derek B; Cao, Yi; Kasliwal, Mansi M; Lien, Amy; Arcavi, Iair; Bloom, Joshua S; Butler, Nat R; Cucchiara, Antonino; de Diego, Jose A; Filippenko, Alexei V; Gal-Yam, Avishay; Gehrels, Neil; Georgiev, Leonid; Gonzalez, J Jesus; Graham, John F; Greiner, Jochen; Kann, D Alexander; Klein, Christopher R; Knust, Fabian; Kulkarni, S R; Kutyrev, Alexander; Laher, Russ; Lee, William H; Nugent, Peter E; Prochaska, J Xavier; Ramirez-Ruiz, Enrico; Richer, Michael G; Rubin, Adam; Urata, Yuji; Varela, Karla; Watson, Alan M; Wozniak, Przemek R

    2015-01-01

    We report here the discovery by the Intermediate Palomar Transient Factory (iPTF) of iPTF14yb, a luminous ($M_{r}\\approx-27.8$ mag), cosmological (redshift 1.9733), rapidly fading optical transient. We demonstrate, based on probabilistic arguments and a comparison with the broader population, that iPTF14yb is the optical afterglow of the long-duration gamma-ray burst GRB 140226A. This marks the first unambiguous discovery of a GRB afterglow prior to (and thus entirely independent of) an associated high-energy trigger. We estimate the rate of iPTF14yb-like sources (i.e., cosmologically distant relativistic explosions) based on iPTF observations, inferring an all-sky value of $\\Re_{\\mathrm{rel}}=610$ yr$^{-1}$ (68% confidence interval of 110-2000 yr$^{-1}$). Our derived rate is consistent (within the large uncertainty) with the all-sky rate of on-axis GRBs derived by the Swift satellite. Finally, we briefly discuss the implications of the nondetection to date of bona fide "orphan" afterglows (i.e., those lackin...

  20. THE DETECTION RATE OF EARLY UV EMISSION FROM SUPERNOVAE: A DEDICATED GALEX/PTF SURVEY AND CALIBRATED THEORETICAL ESTIMATES

    Energy Technology Data Exchange (ETDEWEB)

    Ganot, Noam; Gal-Yam, Avishay; Ofek, Eran O.; Sagiv, Ilan; Waxman, Eli; Lapid, Ofer [Department of Particle Physics and Astrophysics, Faculty of Physics, The Weizmann Institute of Science, Rehovot 76100 (Israel); Kulkarni, Shrinivas R.; Kasliwal, Mansi M. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Ben-Ami, Sagi [Smithsonian Astrophysical Observatory, Harvard-Smithsonian Ctr. for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chelouche, Doron; Rafter, Stephen [Physics Department, Faculty of Natural Sciences, University of Haifa, 31905 Haifa (Israel); Behar, Ehud; Laor, Ari [Physics Department, Technion Israel Institute of Technology, 32000 Haifa (Israel); Poznanski, Dovi; Nakar, Ehud; Maoz, Dan [School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv (Israel); Trakhtenbrot, Benny [Institute for Astronomy, ETH Zurich, Wolfgang-Pauli-Strasse 27 Zurich 8093 (Switzerland); Neill, James D.; Barlow, Thomas A.; Martin, Christofer D., E-mail: noam.ganot@gmail.com [California Institute of Technology, 1200 East California Boulevard, MC 278-17, Pasadena, CA 91125 (United States); Collaboration: ULTRASAT Science Team; WTTH consortium; GALEX Science Team; Palomar Transient Factory; and others

    2016-03-20

    The radius and surface composition of an exploding massive star, as well as the explosion energy per unit mass, can be measured using early UV observations of core-collapse supernovae (SNe). We present the first results from a simultaneous GALEX/PTF search for early ultraviolet (UV) emission from SNe. Six SNe II and one Type II superluminous SN (SLSN-II) are clearly detected in the GALEX near-UV (NUV) data. We compare our detection rate with theoretical estimates based on early, shock-cooling UV light curves calculated from models that fit existing Swift and GALEX observations well, combined with volumetric SN rates. We find that our observations are in good agreement with calculated rates assuming that red supergiants (RSGs) explode with fiducial radii of 500 R{sub ⊙}, explosion energies of 10{sup 51} erg, and ejecta masses of 10 M{sub ⊙}. Exploding blue supergiants and Wolf–Rayet stars are poorly constrained. We describe how such observations can be used to derive the progenitor radius, surface composition, and explosion energy per unit mass of such SN events, and we demonstrate why UV observations are critical for such measurements. We use the fiducial RSG parameters to estimate the detection rate of SNe during the shock-cooling phase (<1 day after explosion) for several ground-based surveys (PTF, ZTF, and LSST). We show that the proposed wide-field UV explorer ULTRASAT mission is expected to find >85 SNe per year (∼0.5 SN per deg{sup 2}), independent of host galaxy extinction, down to an NUV detection limit of 21.5 mag AB. Our pilot GALEX/PTF project thus convincingly demonstrates that a dedicated, systematic SN survey at the NUV band is a compelling method to study how massive stars end their life.

  1. Discovery Prospects for a Biogenic Supernova Signature

    CERN Document Server

    Bishop, Shawn

    2010-01-01

    Within the universe, the astrophysical sites responsible for the production of radioactive 60Fe, of half life 2.62 Myr, are primarily confined to two: Type 1a supernovae and massive stars that end their lives as Type II supernovae. Approximately 2.8 Myr before the present, our planet was subjected to the debris of a supernova explosion. The terrestrial proxy for this event was the discovery of live atoms of 60Fe in a deep sea ferromanganese crust, from which the terrestrial flux of supernova 60Fe was deduced. The signature for this supernova event should also be contained in microfossils produced by magnetotactic bacteria extant at the time of the Earth-supernova interaction. Using estimates for the terrestrial supernova 60Fe flux, combined with our empirically derived microfossil concentrations of a deep sea drill core, we deduce a conservative estimate of the 60Fe fraction as 60Fe/Fe = 3.6 x 10^{-15}; this value sits comfortably within the sensitivity limit of present accelerator mass spectrometry capabilit...

  2. Optical photometry and spectroscopy of the low-luminosity, broad-lined Ic supernova iPTF15dld

    Science.gov (United States)

    Pian, E.; Tomasella, L.; Cappellaro, E.; Benetti, S.; Mazzali, P. A.; Baltay, C.; Branchesi, M.; Brocato, E.; Campana, S.; Copperwheat, C.; Covino, S.; D'Avanzo, P.; Ellman, N.; Grado, A.; Melandri, A.; Palazzi, E.; Piascik, A.; Piranomonte, S.; Rabinowitz, D.; Raimondo, G.; Smartt, S. J.; Steele, I. A.; Stritzinger, M.; Yang, S.; Ascenzi, S.; Della Valle, M.; Gal-Yam, A.; Getman, F.; Greco, G.; Inserra, C.; Kankare, E.; Limatola, L.; Nicastro, L.; Pastorello, A.; Pulone, L.; Stamerra, A.; Stella, L.; Stratta, G.; Tartaglia, L.; Turatto, M.

    2017-04-01

    Core-collapse stripped-envelope supernova (SN) explosions reflect the diversity of physical parameters and evolutionary paths of their massive star progenitors. We have observed the Type Ic SN iPTF15dld (z = 0.047), reported by the Palomar Transient Factory. Spectra were taken starting 20 rest-frame days after maximum luminosity and are affected by a young stellar population background. Broad spectral absorption lines associated with the SN are detected over the continuum, similar to those measured for broad-lined, highly energetic SNe Ic. The light curve and maximum luminosity are instead more similar to those of low luminosity, narrow-lined Ic SNe. This suggests a behaviour whereby certain highly stripped-envelope SNe do not produce a large amount of 56Ni, but the explosion is sufficiently energetic that a large fraction of the ejecta is accelerated to higher than usual velocities. We estimate SN iPTF15dld had a main-sequence progenitor of 20-25 M⊙, produced a 56Ni mass of ∼0.1-0.2 M⊙, had an ejecta mass of [2-10] M⊙, and a kinetic energy of [1-18] × 1051 erg.

  3. VizieR Online Data Catalog: BVRI LCs of type Ib supernova iPTF13bvn (Folatelli+, 2016)

    Science.gov (United States)

    Folatelli, G.; van Dyk, S. D.; Kuncarayakti, H.; Maeda, K.; Bersten, M. C.; Nomoto, K.; Pignata, G.; Hamuy, M.; Quimby, R. M.; Zheng, W.; Filippenko, A. V.; Clubb, K. I.; Smith, N.; Elias-Rosa, N.; Foley, R. J.; Miller, A. A.

    2016-09-01

    We obtained deep imaging of the field of iPTF13bvn ~740 days after explosion using HST through Cycle 22 programs GO-13684 and GO-13822. Program GO-13684 was executed between 2015 June 26.37 and 26.60 (UT dates are used herein) with the Wide Field Camera 3 (WFC3) UVIS channel. Program GO-13822 comprised observations obtained on 2015 June 30.63 with WFC3/UVIS (F225W filter) and on June 30.90 UT with the Advanced Camera for Surveys (ACS; F814W filter). The supernova (SN) location in the pre- and post-explosion images was found by aligning them relative to a F555W image obtained through program GO-12888 with WFC3/UVIS on 2013 September 2.37 when the SN was still very bright. We also obtained BVRI imaging of iPTF13bvn until ~280 days with the Katzman Automatic Imaging Telescope (KAIT) and the 1m Nickel telescope at Lick Observatory (see table 3). Apparent magnitudes were first measured in the KAIT4 natural system and then transformed to the standard system using local calibrators and color terms as given in Table 4 of Ganeshalingam et al. (2010, J/ApJS/190/418). (1 data file).

  4. The disappearance of the helium-giant progenitor of the type Ib supernova iPTF13bvn and constraints on its companion

    CERN Document Server

    Eldridge, J J

    2016-01-01

    We report and discuss post-explosion observations of supernova iPTF13bvn. We find that the brightness of the SN at +740 days is below the level of the pre-explosion source and thus confirm that the progenitor star has gone. We estimate that the late-time brightness is still dominated by the supernova, which constrains the magnitude and thus mass of a possible companion star to below approximately 10Msun. In turn this implies that the progenitor's initial mass is constrained to a narrow range of between 10 to 12Msun. The progenitor of iPTF13bvn would have been a helium giant rather than a Wolf-Rayet star. In addition, we suggest that sufficiently deep observations acquired in 2016 would now stand a chance to directly observe the companion star.

  5. iPTF13bvn: The first evidence of a binary progenitor for a type Ib supernova

    Energy Technology Data Exchange (ETDEWEB)

    Bersten, Melina C.; Folatelli, Gastón; Nomoto, Ken' ichi; Quimby, Robert [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Benvenuto, Omar G. [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, B1900FWA La Plata (Argentina); Kuncarayakti, Hanindyo [Millennium Institute of Astrophysics, Casilla 36-D, Santiago (Chile); Srivastav, Shubham; Anupama, G. C.; Sahu, Devendra K., E-mail: melina.bersten@ipmu.jp [Indian Institute of Astrophysics, Koramangala, Bangalore 560034 (India)

    2014-10-01

    The recent detection in archival Hubble Space Telescope images of an object at the location of supernova (SN) iPTF13bvn may represent the first direct evidence of the progenitor of a Type Ib SN. The object's photometry was found to be compatible with a Wolf-Rayet pre-SN star mass of ≈11 M {sub ☉}. However, based on hydrodynamical models, we show that the progenitor had a pre-SN mass of ≈3.5 M {sub ☉} and that it could not be larger than ≈8 M {sub ☉}. We propose an interacting binary system as the SN progenitor and perform evolutionary calculations that are able to self-consistently explain the light curve shape, the absence of hydrogen, and the pre-SN photometry. We further discuss the range of allowed binary systems and predict that the remaining companion is a luminous O-type star of significantly lower flux in the optical than the pre-SN object. A future detection of such a star may be possible and would provide the first robust identification of a progenitor system for a Type Ib SN.

  6. The detection rate of early UV emission from supernovae: A dedicated GALEX/PTF survey and calibrated theoretical estimates

    CERN Document Server

    Ganot, Noam; Ofek, Eran O; Sagiv, Ilan; Waxman, Eli; Lapid, Ofer; Kulkarni, Shrinivas R; Ben-Ami, Sagi; Kasliwal, Mansi M; Chelouche, Doron; Rafter, Stephen; Behar, Ehud; Laor, Ari; Poznanski, Dovi; Nakar, Udi; Maoz, Dan; Trakhtenbrot, Benny; Neill, James D; Barlow, Thomas A; Martin, Christofer D; Gezari, Suvi; Arcavi, Iair; Bloom, Joshua s; Nugent, Peter E; Sullivan, Mark

    2014-01-01

    The radius and surface composition of an exploding massive star, as well as the explosion energy per unit mass, can be measured using early UV observations of core collapse supernovae (SNe). We present the first results from a simultaneous GALEX/PTF search for early UV emission from SNe. Six Type II SNe and one Type II superluminous SN (SLSN-II) are clearly detected in the GALEX NUV data. We compare our detection rate with theoretical estimates based on early, shock-cooling UV light curves calculated from models that fit existing Swift and GALEX observations well, combined with volumetric SN rates. We find that our observations are in good agreement with calculated rates assuming that red supergiants (RSGs) explode with fiducial radii of 500 R_solar, explosion energies of 10^51 erg, and ejecta masses of 10 M_solar. Exploding blue supergiants and Wolf-Rayet stars are poorly constrained. We describe how such observations can be used to derive the progenitor radius, surface composition and explosion energy per u...

  7. Constraints on the Progenitor System of the Type Ia Supernova SN 2011fe/PTF11kly

    CERN Document Server

    Li, Weidong; Podsiadlowski, Philipp; Miller, Adam A; Cenko, S Bradley; Jha, Saurabh W; Sullivan, Mark; Howell, D Andrew; Nugent, Peter E; Butler, Nathaniel R; Ofek, Eran O; Kasliwal, Mansi M; Richards, Joseph W; Stockton, Alan; Shih, Hsin-Yi; Bildsten, Lars; Shara, Michael M; Bibby, Joanne; Filippenko, Alexei V; Ganeshalingam, Mohan; Silverman, Jeffrey M; Kulkarni, S R; Law, Nicholas M; Poznanski, Dovi; Quimby, Robert M; McCully, Curtis; Patel, Brandon; Maguire, Kate

    2011-01-01

    Type Ia supernovae (SNe) serve as a fundamental pillar of modern cosmology, owing to their large luminosity and a well-defined relationship between light-curve shape and peak brightness. The precision distance measurements enabled by SNe Ia first revealed the accelerating expansion of the universe, now widely believed (though hardly understood) to require the presence of a mysterious "dark" energy. General consensus holds that Type Ia SNe result from thermonuclear explosions of a white dwarf (WD) in a binary system; however, little is known of the precise nature of the companion star and the physical properties of the progenitor system. Here we make use of extensive historical imaging obtained at the location of SN 2011fe/PTF11kly, the closest SN Ia discovered in the digital imaging era, to constrain the visible-light luminosity of the progenitor to be 10-100 times fainter than previous limits on other SN Ia progenitors. This directly rules out luminous red giants and the vast majority of helium stars as the ...

  8. iPTF 13bvn: The First Evidence of a Binary Progenitor for a Type Ib Supernova

    CERN Document Server

    Bersten, Melina C; Folatelli, Gaston; Nomoto, Ken'ichi; Kuncarayakti, Hanindyo; Srivastav, Shubham; Anupama, G C; Quimby, Robert; Sahu, Devendra K

    2014-01-01

    The recent detection in archival HST images of an object at the the location of supernova (SN) iPTF~13bvn may represent the first direct evidence of the progenitor of a Type~Ib SN. The object's photometry was found to be compatible with a Wolf-Rayet pre-SN star mass of ~11 Msun. However, based on hydrodynamical models we show that the progenitor had a pre-SN mass of ~3.5 Msun and that it could not be larger than ~8 Msun. We propose an interacting binary system as the SN progenitor and perform evolutionary calculations that are able to self-consistently explain the light-curve shape, the absence of hydrogen, and the pre-SN photometry. We further discuss the range of allowed binary systems and predict that the remaining companion is a luminous O-type star of significantly lower flux in the optical than the pre-SN object. A future detection of such star may be possible and would provide the first robust progenitor identification for a Type-Ib SN.

  9. Discovery and redshift of an optical afterglow in 71 square degrees iPTF13bxl and GRB 130702A

    CERN Document Server

    Singer, Leo P; Kasliwal, Mansi M; Perley, Daniel A; Ofek, Eran O; Brown, Duncan A; Nugent, Peter E; Kulkarni, S R; Corsi, Alessandra; Frail, Dale A; Bellm, Eric; Mulchaey, John; Arcavi, Iair; Barlow, Tom; Bloom, Joshua S; Cao, Yi; Gehrels, Neil; Horesh, Assaf; Masci, Frank J; McEnery, Julie; Rau, Arne; Surace, Jason A; Yaron, Ofer

    2013-01-01

    We report the discovery of the optical afterglow of the gamma-ray burst (GRB) 130702A, identified upon searching 71 square degrees surrounding the Fermi Gamma-ray Burst Monitor (GBM) localization. Discovered and characterized by the intermediate Palomar Transient Factory (iPTF), iPTF13bxl is the first afterglow discovered solely based on a GBM localization. Real-time image subtraction, machine learning, human vetting, and rapid response multi-wavelength follow-up enabled us to quickly narrow a list of 27,004 optical transient candidates to a single afterglow-like source. Detection of a new, fading X-ray source by Swift and a radio counterpart by CARMA and the VLA confirmed the association between iPTF13bxl and GRB 130702A. Spectroscopy with the Magellan and Palomar 200-inch telescopes showed the afterglow to be at a redshift of z=0.145, placing GRB 130702A among the lowest redshift GRBs detected to date. The prompt gamma-ray energy release and afterglow luminosity are intermediate between typical cosmological...

  10. iPTF Discovery of the Rapid “Turn-on” of a Luminous Quasar

    Science.gov (United States)

    Gezari, S.; Hung, T.; Cenko, S. B.; Blagorodnova, N.; Yan, Lin; Kulkarni, S. R.; Mooley, K.; Kong, A. K. H.; Cantwell, T. M.; Yu, P. C.; Cao, Y.; Fremling, C.; Neill, J. D.; Ngeow, C.-C.; Nugent, P. E.; Wozniak, P.

    2017-02-01

    We present a radio-quiet quasar at z = 0.237 discovered “turning on” by the intermediate Palomar Transient Factory (iPTF). The transient, iPTF 16bco, was detected by iPTF in the nucleus of a galaxy with an archival Sloan Digital Sky Survey spectrum with weak narrow-line emission characteristic of a low-ionization nuclear emission-line region (LINER). Our follow-up spectra show the dramatic appearance of broad Balmer lines and a power-law continuum characteristic of a luminous ({L}{bol}≈ {10}45 erg s‑1) type 1 quasar 12 yr later. Our photometric monitoring with PTF from 2009–2012 and serendipitous X-ray observations from the XMM-Newton Slew Survey in 2011 and 2015 constrain the change of state to have occurred less than 500 days before the iPTF detection. An enhanced broad Hα/[O iii] λ5007 line ratio in the type 1 state relative to other changing-look quasars also is suggestive of the most rapid change of state yet observed in a quasar. We argue that the >10 increase in Eddington ratio inferred from the brightening in UV and X-ray continuum flux is more likely due to an intrinsic change in the accretion rate of a preexisting accretion disk than an external mechanism such as variable obscuration, microlensing, or the tidal disruption of a star. However, further monitoring will be helpful in better constraining the mechanism driving this change of state. The rapid “turn-on” of the quasar is much shorter than the viscous infall timescale of an accretion disk and requires a disk instability that can develop around a ∼ {10}8 {M}ȯ black hole on timescales less than 1 yr.

  11. The Red Supergiant Progenitor of Supernova 2012aw (PTF12bvh) in Messier 95

    CERN Document Server

    Van Dyk, Schuyler D; Poznanski, Dovi; Arcavi, Iair; Gal-Yam, Avishay; Filippenko, Alexei V; Silverio, Kathryn; Stockton, Alan; Cuillandre, Jean-Charles; Marcy, Geoffrey W; Howard, Andrew W; Isaacson, Howard

    2012-01-01

    We report on the direct detection and characterization of the probable red supergiant progenitor of the intermediate-luminosity Type II-Plateau (II-P) supernova (SN) 2012aw in the nearby (10.0 Mpc) spiral galaxy Messier 95 (M95; NGC 3351). We have identified the star in both Hubble Space Telescope images of the host galaxy, obtained 17-18 yr prior to the explosion, and near-infrared ground-based images, obtained 6-12 yr prior to the SN. The luminous supergiant showed evidence for substantial circumstellar dust, manifested as excess line-of-sight extinction. The effective total-to-selective ratio of extinction to the star was R'_V \\approx 4.35, which is significantly different from that of diffuse interstellar dust (i.e., R_V=3.1), and the total extinction to the star was therefore, on average, A_V \\approx 3.1 mag. We find that the observed spectral energy distribution for the progenitor star is consistent with an effective temperature of 3600 K (spectral type M3), and that the star therefore had a bolometric ...

  12. Optical Follow-Up Observations of PTF10qts, a Luminous Broad-Lined Type Ic Supernova Found by the Palomar Transient Factory

    Science.gov (United States)

    Walker, E. S.; Mazzali, P. A.; Pian, E.; Hurley, K.; Arcavi, I.; Cenko, S. B.; Gal-Yam, A.; Horesh, A.; Kasliwal, M.; Poznanski, D.; Silverman, J. M.; Barthelmy, S.

    2014-01-01

    We present optical photometry and spectroscopy of the broad-lined Type Ic supernova (SN Ic-BL) PTF10qts, which was discovered as part of the Palomar Transient Factory. The supernova was located in a dwarf galaxy of magnitude r = 21.1 at a redshift z = 0.0907.We find that the R-band light curve is a poor proxy for bolometric data and use photometric and spectroscopic data to construct and constrain the bolometric light curve. The derived bolometric magnitude at maximum light is Mbol = -18.51 +/- 0.2 mag, comparable to that of SN1998bw (Mbol = -18.7 mag) which was associated with a gamma-ray burst (GRB). PTF10qts is one of the most luminous SN Ic-BL observed without an accompanying GRB. We estimate the physical parameters of the explosion using data from our programme of follow-up observations, finding that it produced a larger mass of radioactive nickel compared to other SNeIc-BL with similar inferred ejecta masses and kinetic energies. The progenitor of the event was likely a approximately 20 solar mass star.

  13. Optical Follow-Up Observations of PTF10qts, a Luminous Broad-Lined Type Ic Supernova Found by the Palomar Transient Factory

    CERN Document Server

    Walker, E S; Pian, E; Hurley, K; Arcavi, I; Cenko, S B; Gal-Yam, A; Horesh, A; Kasliwal, M; Poznanski, D; Silverman, J M; Sullivan, M; Bloom, J S; Filippenko, A V; Kulkarni, S R; Nugent, P E; Ofek, E; Barthelmy, S; Boynton, W; Goldsten, J; Golenetskii, S; Ohno, M; Tashiro, M S; Yamaoka, K; Zhang, X L-

    2014-01-01

    We present optical photometry and spectroscopy of the broad-lined Type Ic supernova (SNIc-BL) PTF10qts, which was discovered as part of the Palomar Transient Factory. The supernova was located in a dwarf galaxy of magnitude $r=21.1$ at a redshift $z=0.0907$. We find that the $R$-band light curve is a poor proxy for bolometric data and use photometric and spectroscopic data to construct and constrain the bolometric light curve. The derived bolometric magnitude at maximum light is $M_{\\rm bol} = -18.51\\pm0.2$ mag, comparable to that of SN 1998bw ($M_{\\rm bol} = -18.7$ mag) which was associated with a gamma-ray burst (GRB). PTF10qts is one of the most luminous SNIc-BL observed without an accompanying GRB. We estimate the physical parameters of the explosion using data from our programme of follow-up observations, finding that it produced a larger mass of radioactive nickel compared to other SNeIc-BL with similar inferred ejecta masses and kinetic energies. The progenitor of the event was likely a $\\sim20$M$_{\\od...

  14. VizieR Online Data Catalog: Photometry of supernova iPTF13z (Nyholm+, 2017)

    Science.gov (United States)

    Nyholm, A.; Sollerman, J.; Taddia, F.; Fremling, C.; Moriya, T. J.; Ofek, E. O.; Gal-Yam, A.; De Cia, A.; Roy, R.; Kasliwal, M. M.; Cao, Y.; Nugent, P. E.; Masci, F. J.

    2017-06-01

    The 1.2m Samuel Oschin telescope (also called P48) was equipped with the CFH12K (12Kx8K pixel) CCD camera and a Mould R filter. The 1.52m telescope (also called P60) was equipped with a 2048x2048 pixel CCD camera and Sloan Digital Sky Survey (SDSS) gri and Johnson B filters. We present AB magnitudes from PSF photometry (relative photometry based on SDSS) on host subtracted images. The magnitudes are given along with their statistical errors (1 sigma). The photometry was done using the FPipe pipeline (2016A&A...593A..68F). The times of the measurements are given both as MJD and relative to time of SN discovery (JD 2456324.98). For the dates given in Table 3, measurements made within 1 day are considered to be simultaneous. The observations were made during 2013 Feb - 2016 Jan. (2 data files).

  15. The Rise and Fall of the Type Ib Supernova iPTF13bvn Not a Massive Wolf-Rayet Star

    Science.gov (United States)

    Fremling, C.; Sollerman, J.; Taddia, F.; Ergon, M.; Valenti, S.; Arcavi, I.; Ben-Ami, S.; Cao, Y.; Cenko, S. B.; Filippenko, A. V.; Gal-Yam, A.; Howell, D. A.

    2014-01-01

    Context. We investigate iPTF13bvn, a core-collapse (CC) supernova (SN) in the nearby spiral galaxy NGC 5806. This object was discovered by the intermediate Palomar Transient Factory (iPTF) very close to the estimated explosion date and was classified as a stripped-envelope CC SN, likely of Type Ib. Furthermore, a possible progenitor detection in pre-explosion Hubble Space Telescope (HST) images was reported, making this the only SN Ib with such an identification. Based on the luminosity and color of the progenitor candidate, as well as on early-time spectra and photometry of the SN, it was argued that the progenitor candidate is consistent with a single, massive Wolf-Rayet (WR) star. Aims. We aim to confirm the progenitor detection, to robustly classify the SN using additional spectroscopy, and to investigate if our follow-up photometric and spectroscopic data on iPTF13bvn are consistent with a single-star WR progenitor scenario. Methods. We present a large set of observational data, consisting of multi-band light curves (UBVRI, g'r'i'z') and optical spectra. We perform standard spectral line analysis to track the evolution of the SN ejecta. We also construct a bolometric light curve and perform hydrodynamical calculations to model this light curve to constrain the synthesized radioactive nickel mass and the total ejecta mass of the SN. Late-time photometry is analyzed to constrain the amount of oxygen. Furthermore, image registration of pre- and post-explosion HST images is performed. Results. Our HST astrometry confirms the location of the progenitor candidate of iPTF13bvn, and follow-up spectra securely classify this as a SN Ib. We use our hydrodynamical model to fit the observed bolometric light curve, estimating the total ejecta mass to be 1.9 solar mass and the radioactive nickel mass to be 0.05 solar mass. The model fit requires the nickel synthesized in the explosion to be highly mixed out in the ejecta. We also find that the late-time nebular r

  16. Progenitors of supernova Ibc: a single Wolf-Rayet star as the possible progenitor of the SN Ib iPTF13bvn

    CERN Document Server

    Groh, Jose H; Ekstrom, Sylvia

    2013-01-01

    Core-collapse supernova (SN) explosions mark the end of the tumultuous life of massive stars. Determining the nature of their progenitors is a crucial step towards understanding the properties of SNe. Until recently, no progenitor has been directly detected for SN of type Ibc, which are believed to come from massive stars that lose their Hydrogen envelope through stellar winds and from binary systems where the companion has stripped the H envelope from the primary. Here we analyze recently-reported observations of iPTF13bvn, which could possibly be the first detection of a SN Ib progenitor based on pre-explosion images. Very interestingly, the recently published Geneva models of single stars can reproduce the observed photometry of the progenitor candidate and its mass-loss rate, confirming the scenario from Cao et al 2013. We find that a single WR star with initial mass in the range 31-35 Msun fits the observed photometry of the progenitor of iPTF13bvn. The progenitor likely has a luminosity of log (L/Lsun)~...

  17. Palomar Transient Factory Discovers Another Possible super- Chandrasekhar Type Ia Supernova

    Science.gov (United States)

    Nugent, P. E.; Howell, D. A.; Sullivan, M.; Suzuki, N.; Cucchiara, A.; Botyanszki, J.; Hsiao, E. Y.

    2010-10-01

    The Type Ia supernova science working group of the Palomar Transient Factory (ATEL#1964) reports the discovery of a possible super-Chandrasekhar mass supernova, PTF10xgx. The supernova is at RA = 00:12:23.15, Dec = +02:30:44.1 (J2000) in the galaxy identified as APMUKS(BJ) B000949.39+021401.7 (Maddox et al. 1990, MNRAS, 243, 692). The supernova was discovered and classified by Oarical, an autonomous software framework of the PTF collaboration, based on observations made with the Palomar 48-inch Oschin Schmidt telescope.

  18. PTF11iqb: Cool supergiant mass loss that bridges the gap between Type IIn and normal supernovae

    CERN Document Server

    Smith, Nathan; Cenko, S Bradley; Kasliwal, Mansi M; Silverman, Jeffrey M; Filippenko, Alexei V; Gal-Yam, Avishay; Clubb, Kelsey I; Graham, Melissa L; Leonard, Douglas C; Horst, J Chuck; Williams, G Grant; Andrews, Jennifer E; Kulkarni, Shrinivas R; Nugent, Peter; Sullivan, Mark; Maguire, Kate; Xu, Dong; Ben-Ami, Sagi

    2015-01-01

    PTF11iqb was initially classified as a TypeIIn event caught very early after explosion. It showed narrow Wolf-Rayet (WR) spectral features on day 2, but the narrow emission weakened quickly and the spectrum morphed to resemble those of Types II-L and II-P. At late times, Halpha emission exhibited a complex, multipeaked profile reminiscent of SN1998S. In terms of spectroscopic evolution, we find that PTF11iqb was a near twin of SN~1998S, although with weaker interaction with circumstellar material (CSM) at early times, and stronger CSM interaction at late times. We interpret the spectral changes as caused by early interaction with asymmetric CSM that is quickly (by day 20) enveloped by the expanding SN ejecta photosphere, but then revealed again after the end of the plateau when the photosphere recedes. The light curve can be matched with a simple model for weak CSM interaction added to the light curve of a normal SN~II-P. This plateau requires that the progenitor had an extended H envelope like a red supergia...

  19. Spectroscopic Discovery of the Supernova Associated with GRB 030329

    CERN Document Server

    Stanek, K Z; Garnavich, P M; Martini, P; Caldwell, P B N; Challis, P M; Brown, W; Schild, R; Krisciunas, K; Calkins, M L; Lee, J C; Hathi, N; Jansen, R; Windhorst, R A; Echevarria, L; Eisenstein, D J; Pindor, B; Olszewski, E W; Harding, P; Bersier, D F

    2003-01-01

    We present early observations of the afterglow of the Gamma-Ray Burst (GRB) 030329 and the spectroscopic discovery of its associated supernova. We obtained spectra of the afterglow of GRB 030329 each night from March 30.12 (0.6 days after the burst) to April 8.13 (UT) (9.6 days after the burst). The spectra cover a wavelength range of 350 nm to 850 nm. The early spectra consist of a power-law continuum (F_{nu} ~ nu^{-0.9}) with narrow emission lines originating from HII regions in the host galaxy, indicating a low redshift of z=0.1687. However, our spectra taken after 2003 Apr. 5 show broad peaks in flux characteristic of a supernova. Correcting for the afterglow emission, we find the spectrum of the supernova is remarkably similar to the type Ic `hypernova' SN 1998bw. While the presence of supernovae have been inferred from the light curves and colors of GRB afterglows in the past, this is the first direct, spectral confirmation that a subset of classical gamma-ray bursts originate from supernovae.

  20. PTF10fqs: A Luminous Red Nova in the Spiral Galaxy Messier 99

    CERN Document Server

    Kasliwal, Mansi M; Quimby, Robert M; Ofek, Eran O; Nugent, Peter; Jacobsen, Janet; Gal-Yam, Avishay; Green, Yoav; Arcavi, Iair; Yaron, Ofer; Howell, Jacob L; Fox, Derek B; Cenko, S Bradley; Kleiser, Io; Bloom, Joshua S; Miller, Adam; Poznanski, Dovi; Li, Weidong; Filippenko, Alexei V; Starr, Dan; Law, Nicholas M; Helou, George; Frail, Dale A; Neill, James D; Forster, Karl; Martin, D Christopher; Tendulkar, Shriharsh P; Gehrels, Neil; Kennea, Jamie; Sullivan, Mark; Dekany, Richard; Rahmer, Gustavo; Hale, David; Smith, Roger; Zolkower, Jeff; Velur, Viswa; Walters, Richard; Henning, John; Bui, Kahnh; McKenna, Dan; Blake, Cullen

    2010-01-01

    The Palomar Transient Factory (PTF) is systematically charting the optical transient and variable sky. A primary science driver of PTF is building a complete inventory of transients in the local Universe (distance less than 200 Mpc). Here, we report the discovery of PTF10fqs, a transient in the luminosity "gap" between novae and supernovae. Located in the spiral arm of Messier 99, PTF10fqs is red, slowly evolving and has a spectrum dominated by intermediate width Halpha and Calcium lines. The explosion signature is similar to M85OT2006-1, SN2008S and NGC300-OT. The origin of these events is shrouded in mystery, controversy (and in some cases, in dust). PTF10fqs shows some evidence of a broad feature (around 8600A) that may suggest very large velocities in this explosion (~10000 km/s). Ongoing surveys can be expected to find a few such events per year. Sensitive spectroscopy and statistics (disk versus bulge) will eventually make it possible for astronomers to unravel the nature of these mysterious explosions.

  1. Spectropolarimetry of the Type Ib Supernova iPTF 13bvn: Revealing the complex explosion geometry of a stripped-envelope core-collapse supernova

    CERN Document Server

    Reilly, Emma; Baade, Dietrich; Wheeler, J Craig; Silverman, Jeffrey M; Clocchiatti, Alejandro; Patat, Ferdinando; Höflich, Peter; Spyromilio, Jason; Wang, Lifan; Zelaya, Paula

    2015-01-01

    We present six epochs of spectropolarimetric observations and one epoch of spectroscopy of the Type Ib SN iPTF 13bvn. The epochs of these observations correspond to $-$10 to $+$61 days with respect to the {\\it r}-band light curve maximum. The continuum is intrinsically polarised to the $0.2-0.4\\%$ level throughout the observations, implying asphericities of $\\sim10\\%$ in the shape of the photosphere. We observe significant line polarisation associated with the spectral features of Ca II IR3, He I/Na I D, He I {\\lambda}{\\lambda}6678, 7065, Fe II {\\lambda}4924 and O I {\\lambda}7774. We propose that an absorption feature at $\\sim 6200\\mathrm{\\AA}$, usually identified as Si II $\\lambda 6355$, is most likely to be high velocity $\\mathrm{H\\alpha}$ at $-16,400$ $\\mathrm{km \\; s^{-1}}$. Two distinctly polarised components, separated in velocity, are detected for both He I/Na I D and Ca II IR3, indicating the presence of two discrete line forming regions in the ejecta in both radial velocity space and in the plane of ...

  2. Galaxy Zoo Supernovae

    CERN Document Server

    Smith, A M; Sullivan, M; Lintott, C J; Nugent, P E; Botyanszki, J; Kasliwal, M; Quimby, R; Bamford, S P; Fortson, L F; Schawinski, K; Hook, I; Blake, S; Podsiadlowski, P; Joensson, J; Gal-Yam, A; Arcavi, I; Howell, D A; Bloom, J S; Jacobsen, J; Kulkarni, S R; Law, N M; Ofek, E O; Walters, R

    2010-01-01

    This paper presents the first results from a new citizen science project: Galaxy Zoo Supernovae. This proof of concept project uses members of the public to identify supernova candidates from the latest generation of wide-field imaging transient surveys. We describe the Galaxy Zoo Supernovae operations and scoring model, and demonstrate the effectiveness of this novel method using imaging data and transients from the Palomar Transient Factory (PTF). We examine the results collected over the period April-July 2010, during which nearly 14,000 supernova candidates from PTF were classified by more than 2,500 individuals within a few hours of data collection. We compare the transients selected by the citizen scientists to those identified by experienced PTF scanners, and find the agreement to be remarkable - Galaxy Zoo Supernovae performs comparably to the PTF scanners, and identified as transients 93% of the ~130 spectroscopically confirmed SNe that PTF located during the trial period (with no false positive iden...

  3. AGN Luminosity and Stellar Age: Two Missing Ingredients for AGN Unification as Seen with iPTF Supernovae

    Science.gov (United States)

    Villarroel, Beatriz; Nyholm, Anders; Karlsson, Torgny; Comerón, Sébastien; Korn, Andreas J.; Sollerman, Jesper; Zackrisson, Erik

    2017-03-01

    Active galactic nuclei (AGNs) are extremely powerful cosmic objects, driven by accretion of hot gas upon super-massive black holes. The zoo of AGN classes is divided into two major groups, with Type-1 AGNs displaying broad Balmer emission lines and Type-2 narrow ones. For a long time it was believed that a Type-2 AGN is a Type-1 AGN viewed through a dusty kiloparsec-sized torus, but an emerging body of observations suggests more than just the viewing angle matters. Here we report significant differences in supernova (SN) counts and classes in the first study to date of SNe near Type-1 and Type-2 AGN host galaxies, using data from the intermediate Palomar Transient Factory, the Sloan Digital Sky Survey Data Release 7, and Galaxy Zoo. We detect many more SNe in Type-2 AGN hosts (size of effect ˜5.1σ) compared to Type-1 hosts, which shows that the two classes of AGN are located inside host galaxies with different properties. In addition, Type-1 and Type-2 AGNs that are dominated by star formation according to Wide-field Infrared Survey Explorer colors {m}W1-{m}W2< 0.5 and are matched in 22 μm absolute magnitude differ by a factor of ten in L[O iii] λ5007 luminosity, suggesting that when residing in similar types of host galaxies Type-1 AGNs are much more luminous. Our results demonstrate two more factors that play an important role in completing the current picture: the age of stellar populations and the AGN luminosity. This has immediate consequences for understanding the many AGN classes and galaxy evolution.

  4. SN2002es-like Supernovae From Different Viewing Angles

    CERN Document Server

    Cao, Yi; Gal-Yam, Avishay; Papadogiannakis, S; Nugent, P E; Masci, Frank J; Bue, Brian D

    2016-01-01

    In this letter, we compare optical light curves of two SN2002es-like Type Ia supernovae, iPTF14atg and iPTF14dpk, from the intermediate Palomar Transient Factory. Although the two light curves resemble each other around and after maximum, they show distinct early-phase rise behavior in the $\\textit{r}$-band. On the one hand, iPTF14atg revealed a slow and steady rise which lasted for 22 days with a mean rise rate of $0.2\\sim0.3\\,\\textrm{mag}\\,\\textrm{day}^{-1}$, before it reached the $R$-band peak ($-18.05\\,$mag). On the other hand, iPTF14dpk rose rapidly to $-17\\,$mag within a day of discovery with a rise rate $>1.8\\,\\textrm{mag}\\,\\textrm{day}^{-1}$, and then rose slowly to its peak ($-18.19\\,$mag) with a rise rate similar to iPTF14atg. The apparent total rise time of iPTF14dpk is therefore only 16 days. We show that emission from iPTF14atg before $-17\\,$days with respect to its maximum can be entirely attributed to radiation produced by collision between the SN and its companion star. Such emission is absent...

  5. KISS: Discovery and Spectroscopic Classification of a Type Ia Supernova KISS15q

    Science.gov (United States)

    Morokuma, Tomoki; Tominaga, Nozomu; Tanaka, Masaomi; Jiang, Ji-an; Shibata, Takumi; Kokubo, Mitsuru; Hashiba, Yasuhito; Mitsuda, Kazuma; Doi, Mamoru; Sako, Shigeyuki; Kikuchi, Yuki; Takahashi, Hidenori; Tateuchi, Ken; Kuncarayakti, Hanindyo; Watanabe, Makoto; Nakao, Hikaru; Itoh, Yoichi; Morihana, Kumiko; Honda, Satoshi; Takagi, Yuhei; Takahashi, Jun; Takeishi, Masanori

    2015-05-01

    We report the discovery and spectroscopic identification of a Type Ia supernova, KISS15q. In Kiso Supernova Survey (KISS; Morokuma et al. 2014, PASJ, 66, 118), we found a transient object KISS15q of g=20.6 on May 19.60, 2015 UT in the g-band image.

  6. Discovery of GRB 020405 and its Underlying Supernova

    CERN Document Server

    Price, P A; Berger, E; Fox, D W; Bloom, J S; Djorgovski, S G; Frail, D A; Galama, T J; Harrison, F A; McCarthy, P; Reichart, D E; Sari, R; Yost, S A; Jerjen, H; Flint, K; Phillips, A; Warren, B E; Axelrod, T S; Chevalier, R A; Halpern, J P; Holtzmann, J A; Kimble, R A; Schmidt, B P; Wheeler, J C; Frontera, F; Costa, E; Piro, L; Hurley, K; Cline, T; Guidorzi, C; Montanari, E; Mazets, E; Golenetskii, S V; Mitrofanov, I G; Anfimov, D; Kozyrev, A B; Litvak, M; Sanin, A; Boynton, W; Fellows, C; Harshman, K; Shinohara, C; Gal-Yam, A; Ofek, E O; Lipkin, Yu M

    2002-01-01

    We present the discovery of GRB 020405 made with the Inter-Planetary Network (IPN). With a duration of 60 s, the burst appears to be a typical long duration event. We observed the 75-square acrminute IPN error region with the Mount Stromlo Observatory's 50-inch robotic telescope and discovered a transient source which subsequently decayed and was also associated with a variable radio source. We identify this source as the afterglow of GRB 020405. Subsequent observations by other groups found varying polarized flux and established a redshift of 0.690 to the host galaxy. Motivated by the low redshift we triggered observations with WFPC2 on-board the Hubble Space Telescope (HST). Modeling the early ground-based data with a jet model, we find a clear red excess over the decaying optical lightcurves that is present between day 10 and day 50 (the last HST epoch). This "bump" has the spectral and temporal features expected of an underlying supernova (SN). In particular, the red color of the putative SN is similar to...

  7. Supernovae

    Science.gov (United States)

    March, Marisa

    2014-03-01

    We live in a Universe that is getting bigger faster. This astonishing discovery of Universal acceleration was made in the late 1990s by two teams who made observations of a special type of exploded star known as a `Supernova Type Ia'. (SNeIa) Since the discovery of the accelerating Universe, one of the biggest questions in modern cosmology has been to determine the cause of that acceleration - the answer to this question will have far reaching implications for our theories of cosmology and fundamental physics more broadly. The two main competing explanations for this apparent late time acceleration of the Universe are modified gravity and dark energy. The Dark Energy Survey (DES) has been designed and commissioned to find to find answers to these questions about the nature of dark energy and modified gravity. The new 570 megapixel Dark Energy Camera is currently operating with the Cerro-Tololo Inter American Observatory's 4m Blanco teleccope, carrying out a systematic search for SNeIa, and mapping out the large scale structure of the Universe by making observations of galaxies. The DES science program program which saw first light in September 2013 will run for five years in total. DES SNeIa data in combination with the other DES observations of large scale structure will enable us to put increasingly accurate constraints on the expansion history of the Universe and will help us distinguish between competing theories of dark energy and modified gravity. As we draw to the close of the first observing season of DES in March 2014, we will report on the current status of the DES supernova survey, presenting first year supernovae data, preliminary results, survey strategy, discovery pipeline, spectroscopic target selection and data quality. This talk will give the first glimpse of the DES SN first year data and initial results as we begin our five year survey in search of dark energy. On behalf of the Dark Energy Survey collaboration.

  8. Discovery of a Supernova Explosion at Half the Age of the Universe and its Cosmological Implications

    CERN Document Server

    Perlmutter, S; Valle, M D; Deustua, S; Ellis, Richard S; Fabbro, S; Fruchter, A S; Goldhaber, Gerson; Goobar, A; Groom, D E; Hook, I M; Kim, A G; Kim, M Y; Knop, R A; Lidman, C E; McMahon, R G; Nugent, P; Pain, R; Panagia, N; Pennypacker, C R; Ruiz-Lapuente, P; Schaefer, B; Walton, N A; Nugent, Peter

    1998-01-01

    The ultimate fate of the universe, infinite expansion or a big crunch, can be determined by measuring the redshifts, apparent brightnesses, and intrinsic luminosities of very distant supernovae. Recent developments have provided tools that make such a program practicable: (1) Studies of relatively nearby Type Ia supernovae (SNe Ia) have shown that their intrinsic luminosities can be accurately determined; (2) New research techniques have made it possible to schedule the discovery and follow-up observations of distant supernovae, producing well over 50 very distant (z = 0.3 -- 0.7) SNe Ia to date. These distant supernovae provide a record of changes in the expansion rate over the past several billion years. By making precise measurements of supernovae at still greater distances, and thus extending this expansion history back far enough in time, we can distinguish the slowing caused by the gravitational attraction of the universe's mass density Omega_M from the effect of a possibly inflationary pressure caused ...

  9. TAROT Discovery of the Ia supernova PSN J11290437+1714095 in UGC 6483

    Science.gov (United States)

    Turpin, D.; Klotz, A.; Vachier, F.; Sautot, G.

    2013-12-01

    From images taken on 2013 December 11.09 with the TAROT Calern telescope D. Turpin reports the discovery of a supernova in UGC 6483, R=16.0. The presence of the supernova was confirmed from images taken by F. Vachier, G. Sautot with the 1 meter telescope at Pic du Midi Observatory and they locate the supernova at R.A. = 11h29m04s.44, Decl. = +17o14'08".9 (equinox 2000.0) which is offset of 30" E and 15" N from the nucleus of UGC 6483.

  10. LEGUS Discovery of a Light Echo Around Supernova 2012aw

    NARCIS (Netherlands)

    Van Dyk, S.D.; Lee, J.C.; Anderson, J.; Andrews, J.E.; Calzetti, D.; Bright, S.N.; Ubeda, L.; Smith, L.J.; Sabbi, E.; Grebel, E.K.; Herrero, A.; de Mink, S.E.

    2015-01-01

    We have discovered a luminous light echo around the normal Type II-Plateau Supernova (SN) 2012aw in Messier 95 (M95; NGC 3351), detected in images obtained approximately two years after explosion with the Wide Field Channel 3 on board the Hubble Space Telescope by the Legacy ExtraGalactic

  11. Discovery of a Supernova Explosion at Half the Age of the Universe and its Cosmological Implications

    Science.gov (United States)

    Perlmutter, S.; Aldering, G.; Della Valle, M.; Deustua, S.; Ellis, R. S.; Fabbro, S.; Fruchter, A.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hook, I. M.; Kim, A. G.; Kim, M. Y.; Knop, R. A.; Lidman, C.; McMahon, R. G.; Nugent, P.; Pain, R.; Panagia, N.; Pennypacker, C. R.; Ruiz-Lapuente, P.; Schaefer, B.; Walton, N.

    1997-12-16

    The ultimate fate of the universe, infinite expansion or a big crunch, can be determined by measuring the redshifts, apparent brightnesses, and intrinsic luminosities of very distant supernovae. Recent developments have provided tools that make such a program practicable: (1) Studies of relatively nearby Type la supernovae (SNe la) have shown that their intrinsic luminosities can be accurately determined; (2) New research techniques have made it possible to schedule the discovery and follow-up observations of distant supernovae, producing well over 50 very distant (z = 0.3-0.7) SNe Ia to date. These distant supernovae provide a record of changes in the expansion rate over the past several billion years. By making precise measurements of supernovae at still greater distances, and thus extending this expansion history back far enough in time, we can even distinguish the slowing caused by the gravitational attraction of the universe's mass density {Omega}{sub M} from the effect of a possibly inflationary pressure caused by a cosmological constant {Lambda}. We report here the first such measurements, with our discovery of a Type Ia supernova (SN 1997ap) at z = 0.83. Measurements at the Keck II 10-m telescope make this the most distant spectroscopically confirmed supernova. Over two months of photometry of SN 1997ap with the Hubble Space Telescope and ground-based telescopes, when combined with previous measurements of nearer SNe la, suggests that we may live in a low mass-density universe. Further supernovae at comparable distances are currently scheduled for ground and space-based observations.

  12. Patient Treatment File (PTF)

    Data.gov (United States)

    Department of Veterans Affairs — This database is part of the National Medical Information System (NMIS). The Patient Treatment File (PTF) contains a record for each inpatient care episode provided...

  13. Type Ia Supernovae and the discovery of the Cosmic Acceleration

    CERN Document Server

    Clocchiatti, Alejandro

    2011-01-01

    I present a review of the research and analysis paths that converged to make Type Ia SNe the most mature cosmological distance estimator of the present time. The narrative starts with the first works in the early decades of the 20th century and finishes with the more recent results. The review was written by a member of the High Z Supernova Search Team, the international group of astronomers that discovered Cosmic Acceleration in 1998. This result, confirmed by the Supernova Cosmology Project in 1999, received an impressive string of recognition culminating with the current Nobel prize in Physics. The review is presented thinking of physicists with a strong interest in Cosmology, who might have pondered why was that, after decades of not being able to agree upon the rate of cosmic expansion, astronomers were so quick to concur on cosmic acceleration.

  14. Discovery of A Large Cavity around the Tycho's Supernova Remnant

    CERN Document Server

    Chen, Xuepeng; Yang, Ji

    2016-01-01

    We present large-field (3x2 deg^2) and high-sensitivity CO(1-0) molecular line observations toward the Tycho's supernova remnant, using the 13.7-meter radio telescope of the Purple Mountain Observatory. Based on the CO observations, we discover a large cavity around the remnant, with radii of about 0.3x0.6 deg (or ~13x27 pc at a distance of 2.5 kpc), which is further supported by the complementary infrared images from the space telescopes. The observed CO line broadenings and asymmetries in the surrounding clouds, the infrared pillar-like structures found around the remnant, in concert with enhanced 12CO(2-1)/(1-0) intensity ratio detected in previous studies, indicate strong interaction of the large cavity with a wind in the region. After excluding the scenario of a large bubble produced by bright massive stars, we consider that the large cavity could be most likely explained by the accretion wind from the progenitor system of the Tycho's supernova. The CO gas kinematics indicates that the large cavity is ex...

  15. Galaxy Zoo Supernovae

    Science.gov (United States)

    Smith, A. M.; Lynn, S.; Sullivan, M.; Lintott, C. J.; Nugent, P. E.; Botyanszki, J.; Kasliwal, M.; Quimby, R.; Bamford, S. P.; Fortson, L. F.; Schawinski, K.; Hook, I.; Blake, S.; Podsiadlowski, P.; Jönsson, J.; Gal-Yam, A.; Arcavi, I.; Howell, D. A.; Bloom, J. S.; Jacobsen, J.; Kulkarni, S. R.; Law, N. M.; Ofek, E. O.; Walters, R.

    2011-04-01

    This paper presents the first results from a new citizen science project: Galaxy Zoo Supernovae. This proof-of-concept project uses members of the public to identify supernova candidates from the latest generation of wide-field imaging transient surveys. We describe the Galaxy Zoo Supernovae operations and scoring model, and demonstrate the effectiveness of this novel method using imaging data and transients from the Palomar Transient Factory (PTF). We examine the results collected over the period 2010 April-July, during which nearly 14 000 supernova candidates from the PTF were classified by more than 2500 individuals within a few hours of data collection. We compare the transients selected by the citizen scientists to those identified by experienced PTF scanners and find the agreement to be remarkable - Galaxy Zoo Supernovae performs comparably to the PTF scanners and identified as transients 93 per cent of the ˜130 spectroscopically confirmed supernovae (SNe) that the PTF located during the trial period (with no false positive identifications). Further analysis shows that only a small fraction of the lowest signal-to-noise ratio detections (r > 19.5) are given low scores: Galaxy Zoo Supernovae correctly identifies all SNe with ≥8σ detections in the PTF imaging data. The Galaxy Zoo Supernovae project has direct applicability to future transient searches, such as the Large Synoptic Survey Telescope, by both rapidly identifying candidate transient events and via the training and improvement of existing machine classifier algorithms. This publication has been made possible by the participation of more than 10 000 volunteers in the Galaxy Zoo Supernovae project ().

  16. Discovery and Observations of the Unusually Bright Type-Defying II-P/II-L Supernova ASASSN-13co

    CERN Document Server

    Holoien, T W -S; Pejcha, O; Stanek, K Z; Kochanek, C S; Shappee, B J; Grupe, D; Morrell, N; Thorstensen, J R; Basu, U; Beacom, J F; Bersier, D; Brimacombe, J; Davis, A B; Pojmanski, G; Szczygiel, D M

    2014-01-01

    We present photometric and spectroscopic observations of ASASSN-13co, an unusually luminous Type II supernova and the first core-collapse supernova discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN). First detection of the supernova was on UT 2013 August 29 and the data presented span roughly 3.5 months after discovery. We use the recently developed model from Pejcha & Prieto (2014) to model the multi-band light curves of ASASSN-13co and derive the bolometric luminosity curve. We compare ASASSN-13co to other Type II supernovae to show that it was a unique event that was not only unusually bright for a Type II supernova but also exhibited an atypical light curve shape that does not cleanly match that of either a standard Type II-L or Type II-P supernova.

  17. Discovery of optical candidate supernova remnants in Sagittarius

    Science.gov (United States)

    Alikakos, J.; Boumis, P.; Christopoulou, P. E.; Goudis, C. D.

    2012-08-01

    During an [O III] survey of planetary nebulae, we identified a region in Sagittarius containing several candidate supernova remants (SNRs) and obtained deep optical narrow-band images and spectra to explore their nature. We obtained images of the area of interest by acquiring observations in the emission lines of Hα + [N II], [S II] and [O III]. The resulting mosaic covers an area of 1.4° × 1.0°, where both filamentary and diffuse emission was discovered, suggesting that there is more than one SNR in the area. Deep long-slit spectra were also taken of eight different regions. Both the flux-calibrated images and the spectra show that the emission from the filamentary structures originates from shock-heated gas, while the photo-ionization mechanism is responsible for the diffuse emission. Part of the optical emission is found to be correlated with the radio at 4850 MHz suggesting that they are related, while the infrared emission found in the area at 12 μm and 22 μm marginally correlates with the optical. The presence of the [O III] emission line in one of the candidate SNRs implies that the shock velocities in the interstellar "clouds" are between 120 km s-1 and 200 km s-1, while its absence in the other candidate SNRs indicates that the shock velocities there are slower. For all candidate remnants, the [S II] λλ 6716/6731 ratio indicates that the electron densities are below 240 cm-3, while the Hα emission is measured to be between 0.6 and 41 × 10-17 erg s-1 cm-2 arcsec-2. The existence of eight pulsars within 1.5° of the center of the candidate SNRs also implies that there are many SNRs in the area as well as that the detected optical emission could be part of a number of supernovae explosions.

  18. Discovery of the progenitor of the type Ia supernova 2007on.

    Science.gov (United States)

    Voss, Rasmus; Nelemans, Gijs

    2008-02-14

    Type Ia supernovae are exploding stars that are used to measure the accelerated expansion of the Universe and are responsible for most of the iron ever produced. Although there is general agreement that the exploding star is a white dwarf in a binary system, the exact configuration and trigger of the explosion is unclear, which could hamper their use for precision cosmology. Two families of progenitor models have been proposed. In the first, a white dwarf accretes material from a companion until it exceeds the Chandrasekhar mass, collapses and explodes. Alternatively, two white dwarfs merge, again causing catastrophic collapse and an explosion. It has hitherto been impossible to determine if either model is correct. Here we report the discovery of an object in pre-supernova archival X-ray images at the position of the recent type Ia supernova (2007on) in the elliptical galaxy NGC 1404. Deep optical images (also archival) show no sign of this object. From this we conclude that the X-ray source is the progenitor of the supernova, which favours the accretion model for this supernova, although the host galaxy is older (6-9 Gyr) than the age at which the explosions are predicted in the accreting models.

  19. Spectroscopic Discovery of the Supernova 2003dh Associated with GRB 030329

    CERN Document Server

    Stanek, K Z; Garnavich, P M; Martini, P; Berlind, P; Caldwell, N; Challis, P M; Brown, W; Schild, R; Krisciunas, K; Calkins, M L; Lee, J C; Hathi, N; Jansen, R; Windhorst, R A; Echevarria, L; Eisenstein, D J; Pindor, B; Olszewski, E W; Harding, P; Holland, S T; Bersier, D F

    2003-01-01

    We present early observations of the afterglow of the Gamma-Ray Burst (GRB) 030329 and the spectroscopic discovery of its associated supernova 2003dh. We obtained spectra of the afterglow of GRB 030329 each night from March 30.12 (0.6 days after the burst) to April 8.13 (UT) (9.6 days after the burst). The spectra cover a wavelength range of 350 nm to 850 nm. The early spectra consist of a power-law continuum (F_{nu} ~ nu^{-0.9}) with narrow emission lines originating from HII regions in the host galaxy, indicating a low redshift of z=0.1687. However, our spectra taken after 2003 Apr. 5 show broad peaks in flux characteristic of a supernova. Correcting for the afterglow emission, we find the spectrum of the supernova is remarkably similar to the type Ic `hypernova' SN 1998bw. While the presence of supernovae have been inferred from the light curves and colors of GRB afterglows in the past, this is the first direct, spectroscopic confirmation that a subset of classical gamma-ray bursts originate from supernova...

  20. Discovery of an Apparent High Latitude Galactic Supernova Remnant

    CERN Document Server

    Fesen, Robert; Black, Christine; Koeppel, Ari

    2015-01-01

    Deep H$\\alpha$ images of a faint emission complex 4.0 x 5.5 degrees in angular extent and located far off the Galactic plane at l = 70.0 degrees, b=-21.5 degrees reveal numerous thin filaments suggestive of a supernova remnant's shock emission. Low dispersion optical spectra covering the wavelength range 4500 - 7500 A show only Balmer line emissions for one filament while three others show a Balmer dominated spectrum along with weak [N I] 5198, 5200 A, [O I] 6300, 6364 A, [N II] 6583 A, [S II] 6716, 6731 A and in one case [O III] 5007 A line emission. Many of the brighter H$\\alpha$ filaments are visible in near UV GALEX images presumably due to C III] 1909 A line emission. ROSAT All Sky Survey images of this region show a faint crescent shaped X-ray emission nebula coincident with the portion of the H$\\alpha$ nebulosity closest to the Galactic plane. The presence of long, thin Balmer dominated emission filaments with associated UV emission and coincident X-ray emission suggests this nebula is a high latitude ...

  1. LEGUS Discovery of a Light Echo Around Supernova 2012aw

    CERN Document Server

    Van Dyk, Schuyler D; Anderson, Jay; Andrews, Jennifer E; Calzetti, Daniela; Bright, Stacey N; Ubeda, Leonardo; Smith, Linda J; Sabbi, Elena; Grebel, Eva K; Herrero, Artemio; de Mink, Selma E

    2015-01-01

    We have discovered a luminous light echo around the normal Type II-Plateau Supernova (SN) 2012aw in Messier 95 (M95; NGC 3351), detected in images obtained approximately two years after explosion with the Wide Field Channel 3 on-board the Hubble Space Telescope (HST) by the Legacy ExtraGalactic Ultraviolet Survey (LEGUS). The multi-band observations span from the near-ultraviolet through the optical (F275W, F336W, F438W, F555W, and F814W). The apparent brightness of the echo at the time was ~21--22 mag in all of these bands. The echo appears circular, although less obviously as a ring, with an inhomogeneous surface brightness, in particular, a prominent enhanced brightness to the southeast. The SN itself was still detectable, particularly in the redder bands. We are able to model the light echo as the time-integrated SN light scattered off of diffuse interstellar dust in the SN environment. We have assumed that this dust is analogous to that in the Milky Way with R_V=3.1. The SN light curves that we consider ...

  2. iPTF13ehe in the context of Quark-Novae in massive binaries: double-humped, hydrogen-poor, superluminous Supernovae as standard candles

    CERN Document Server

    Ouyed, Rachid; Koning, Nico

    2015-01-01

    A Quark-Nova (QN; the explosive transition of a Neutron star to a Quark star) occurring in the second common envelope (CE) phase of a massive binary, as described in Ouyed et al. (2015a&b), gives excellent fits to super-luminous, hydrogen-poor, Supernovae (SLSNe) with double-humped light curves including DES13S2cmm, SN 2006oz and LSQ14bdq (see {\\it http://www.quarknova.ca/LCGallery.html}). In our model, the hydrogen envelope of the less massive companion is ejected during the first CE phase while the QN explosion occurs deep inside the He-rich second CE phase after it has expanded to its equilibrium configuration at ~1200Rsun; this yields the first hump in our model. The subsequent merging of the quark star with the CO core leads to black hole formation and accretion explaining the second long-lasting hump in our model, while the collision of the QN-ejected He-rich CE with the H-rich (i.e. first) CE accounts for late emission. Here we show that our model provides an excellent fit to the recently discovere...

  3. VizieR Online Data Catalog: PTF 12dam & iPTF 13dcc follow-up (Vreeswijk+, 2017)

    Science.gov (United States)

    Vreeswijk, P. M.; Leloudas, G.; Gal-Yam, A.; De Cia, A.; Perley, D. A.; Quimby, R. M.; Waldman, R.; Sullivan, M.; Yan, L.; Ofek, E. O.; Fremling, C.; Taddia, F.; Sollerman, J.; Valenti, S.; Arcavi, I.; Howell, D. A.; Filippenko, A. V.; Cenko, S. B.; Yaron, O.; Kasliwal, M. M.; Cao, Y.; Ben-Ami, S.; Horesh, A.; Rubin, A.; Lunnan, R.; Nugent, P. E.; Laher, R.; Rebbapragada, U. D.; Wozniak, P.; Kulkarni, S. R.

    2017-08-01

    Spectroscopic follow-up observations of PTF 12dam were performed with the Kast Spectrograph at the Lick 3m Shane telescope, and the Low Resolution Imaging Spectrograph (LRIS) at the Keck-I 10m telescope (on Mauna Kea, Hawaii) on 2012 May 20, 21, and 22. The full spectroscopic sequence of PTF 12dam will be presented by R. M. Quimby et al. (2016, in preparation). PTF 12dam was imaged with the Palomar Oschin 48 inch (P48) (i)PTF survey telescope in the Mould R filter, the Palomar 60 inch (P60) and CCD camera in Johnson B and Sloan Digital Sky Survey (SDSS) gri, the Las Cumbres Observatory Global Telescope Network (LCOGT) in SDSS r, and LRIS mounted on the 10m Keck-I telescope in Rs. iPTF 13dcc has not had any exposure in the literature yet. It was flagged as a transient source on 2013 August 29. Spectroscopic follow-up observations spanning 2013 Nov 26 to 2014 Jan 16 were performed with the Double Spectrograph (DBSP) at the Palomar 200 inch (P200), LRIS at Keck-I, and the Inamori-Magellan Areal Camera & Spectrograph (IMACS) at the Magellan Baade telescope, showing iPTF 13dcc to be an SLSN at z=0.4305. iPTF 13dcc was imaged with the P48 Oschin (i)PTF survey telescope in the Mould R filter, the P60 in SDSS gri, the 4.3m Discovery Channel Telescope (DCT, at Lowell Observatory, Arizona) with the Large Monolithic Imager (LMI) in SDSS ri, and finally with the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) Wide-Field Camera using filter F625W (under program GO-13858; P.I. A. De Cia). (3 data files).

  4. Discovery and Follow-up Observations of the Young Type Ia Supernova 2016coj

    CERN Document Server

    Zheng, WeiKang; Mauerhan, Jon; Graham, Melissa L; Yuk, Heechan; Hosseinzadeh, Griffin; Silverman, Jeffrey M; Rui, Liming; Arbour, Ron; Foley, Ryan J; Abolfathi, Bela; Abramson, Louis E; Arcavi, Iair; Barth, Aaron J; Bennert, Vardha N; Brandel, Andrew P; Cooper, Michael C; Cosens, Maren; Fillingham, Sean P; Fulton, Benjamin J; Halevi, Goni; Howell, D Andrew; Hsyu, Tiffany; Kelly, Patrick L; Kumar, Sahana; Li, Linyi; Li, Wenxiong; Malkan, Matthew A; Manzano-King, Christina; McCully, Curtis; Nugent, Peter E; Pan, Yen-Chen; Pei, Liuyi; Scott, Bryan; Sexton, Remington Oliver; Shivvers, Isaac; Stahl, Benjamin; Treu, Tommaso; Valenti, Stefano; Vogler, H Alexander; Walsh, Jonelle L; Wang, Xiaofeng

    2016-01-01

    The Type~Ia supernova (SN~Ia) 2016coj in NGC 4125 (redshift $z=0.004523$) was discovered by the Lick Observatory Supernova Search 4.9 days after the fitted first-light time (FFLT; 11.1 days before $B$-band maximum). Our first detection (pre-discovery) is merely $0.6\\pm0.5$ day after the FFLT, making SN 2016coj one of the earliest known detections of a SN Ia. A spectrum was taken only 3.7 hr after discovery (5.0 days after the FFLT) and classified as a normal SN Ia. We performed high-quality photometry, low- and high-resolution spectroscopy, and spectropolarimetry, finding that SN 2016coj is a spectroscopically normal SN Ia, but with a high velocity of \\ion{Si}{2} $\\lambda$6355 ($\\sim 12,600$\\,\\kms\\ around peak brightness). The \\ion{Si}{2} $\\lambda$6355 velocity evolution can be well fit by a broken-power-law function for up to a month after the FFLT. SN 2016coj has a normal peak luminosity ($M_B \\approx -18.9 \\pm 0.2$ mag), and it reaches a $B$-band maximum \\about16.0~d after the FFLT. We estimate there to be...

  5. Discovery of a very highly extinguished supernova in a luminous infrared galaxy

    CERN Document Server

    Kankare, E; Ryder, S; Perez-Torres, M -A; Alberdi, A; Romero-Canizales, C; Diaz-Santos, T; Väisänen, P; Efstathiou, A; Alonso-Herrero, A; Colina, L; Kotilainen, J

    2008-01-01

    We report the discovery of a confirmed supernova (SN) and a supernova-candidate in near-infrared images from the ALTAIR/NIRI adaptive optics system on the Gemini-North Telescope and NICMOS on the Hubble Space Telescope. The Gemini images were obtained as part of a near-infrared K-band search for highly-obscured SNe in the nuclear regions of luminous infrared galaxies. SN 2008cs apparent in the Gemini images is the first SN discovered using laser guide star adaptive optics. It is located at 1500 pc projected distance from the nucleus of the luminous infrared galaxy IRAS 17138-1017. The SN luminosity, JHK colors and light curve are consistent with a core-collapse event suffering from a very high host galaxy extinction of 15.7 +- 0.8 magnitudes in V-band which is to our knowledge the highest one measured for a SN. The core-collapse nature of SN 2008cs is confirmed by its radio detection at 22.4 GHz using our Very Large Array observations 28 days after the SN discovery, indicating a prominent interaction of the S...

  6. Discovery of a Rapid, Luminous Nova in NGC 300 by the KMTNet Supernova Program

    Science.gov (United States)

    Antoniadis, John; Moon, Dae-Sik; Ni, Yuan Qi; Kim, Dong-Jin; Lee, Yongseok; Neilson, Hilding

    2017-08-01

    We present the discovery of a rapidly evolving transient by the Korean Microlensing Telescope Network Supernova Program (KSP). KSP is a novel high-cadence supernova survey that offers deep (˜21.5 mag in BV I bands), nearly continuous wide-field monitoring for the discovery of early and/or fast optical transients. KSP-OT-201509a, reported here, was discovered on 2015 September 27 during the KSP commissioning run in the direction of the nearby galaxy NGC 300, and stayed above detection limit for ˜22 days. We use our BV I light curves to constrain the ascent rate, -3.7(7) mag day-1 in V, decay timescale, {t}2V=1.7(6) days, and peak absolute magnitude, -9.65≤slant {M}V≤slant -9.25 mag. We also find evidence for a short-lived pre-maximum halt in all bands. The peak luminosity and light-curve evolution make KSP-OT-201509a consistent with a bright, rapidly decaying nova outburst. We discuss constraints on the nature of the progenitor and its environment using archival Hubble Space Telescope (HST)/ACS images and conclude with a broad discussion on the nature of the system.

  7. Discovery of the Ultra-Bright Type II-L Supernova 2008es

    CERN Document Server

    Gezari, S; Grupe, D; Yuan, F; Quimby, R; McKay, T; Chamarro, D; Sisson, M D; Akerlof, C; Wheeler, J C; Brown, P J; Cenko, S B; Rau, A; Djordjevic, J O; Terndrup, D M

    2008-01-01

    We report the discovery by the ROTSE-IIIb telescope of SN 2008es, an overluminous supernova at z=0.205 with a peak visual magnitude of -22.2. We present multiwavelength follow-up observations with the Swift satellite and several ground-based optical telescopes. The ROTSE-IIIb observations constrain the time of explosion to be 23 rest-frame days before maximum. The linear decay of the optical light curve, and the combination of a symmetric broad H\\alpha emission line profile along with broad P Cygni H\\beta and Na I \\lambda5892 profiles, are properties reminiscent of the bright Type II-L SNe 1979C and 1980K, although SN 2008es is > 10 times more luminous. The host galaxy is undetected in pre-supernova SDSS images, and similarly to Type II-L SN 2005ap (the most luminous SN ever observed), the host is most likely a dwarf galaxy with M_r > -17. We see suggestive evidence for a transition in the light curve ~65 rest-frame days after maximum to the radioactive decay rate of 56Co. Swift UVOT observations in combinati...

  8. Discovery of Recombining Plasma in the Supernova Remnant 3C 391

    CERN Document Server

    Sato, Tamotsu; Takahashi, Tadayuki; Odaka, Hirokazu; Nakashima, Shinya

    2014-01-01

    Recent X-ray study of middle-aged supernova remnants (SNRs) reveals strong radiative recombination continua (RRCs) associated with overionized plasmas, of which the origin still remains uncertain. We report our discovery of an RRC in the middle-aged SNR 3C 391. If the X-ray spectrum is fitted with a two-temperature plasma model in collisional ionization equilibrium (CIE), residuals of Si XIV Ly alpha line at 2.006 keV, S XVI Ly alpha line at 2.623 keV and the edge of RRC of Si XIII at 2.666 keV are found. The X-ray spectrum is better described by a composite model consisting of a CIE plasma and a recombining plasma (RP). The abundance pattern suggests that the RP is associated to the ejecta from a core-collapse supernova with a progenitor star of 15 solar mass. There is no significant difference of the recombining plasma parameters between the southeast region and the northwest region surrounded by dense molecular clouds. We also find a hint of Fe I K alpha line at 6.4 keV (~2.4 sigma detection) from the sout...

  9. The Discovery of the Most Distant Known Type Ia Supernova at Redshift 1.914

    CERN Document Server

    Jones, David O; Riess, Adam G; Mobasher, Bahram; Dahlen, Tomas; McCully, Curtis; Frederiksen, Teddy F; Casertano, Stefano; Hjorth, Jens; Keeton, Charles R; Koekemoer, Anton; Strolger, Louis-Gregory; Wiklind, Tommy G; Challis, Peter; Graur, Or; Hayden, Brian; Patel, Brandon; Weiner, Benjamin J; Filippenko, Alexei V; Garnavich, Peter; Jha, Saurabh W; Kirshner, Robert P; Ferguson, Henry C; Grogin, Norman A; Kocevski, Dale

    2013-01-01

    We present the discovery of a Type Ia supernova (SN) at redshift $z = 1.914$ from the CANDELS multi-cycle treasury program on the \\textit{Hubble Space Telescope (HST)}. This SN was discovered in the infrared using the Wide-Field Camera 3, and it is the highest-redshift Type Ia SN yet observed. We classify this object as a SN\\,Ia by comparing its light curve and spectrum with those of a large sample of Type Ia and core-collapse supernovae (SNe). Its apparent magnitude is consistent with that expected from the $\\Lambda$CDM concordance cosmology. We discuss the use of spectral evidence for classification of $z > 1.5$ SNe\\,Ia using {\\it HST} grism simulations, finding that spectral data alone can frequently rule out SNe\\,II, but distinguishing between SNe\\,Ia and SNe\\,Ib/c can require prohibitively long exposures. In such cases, a quantitative analysis of the light curve may be necessary for classification. Our photometric and spectroscopic classification methods can aid the determination of SN rates and cosmolog...

  10. Discovery of TeV Gamma Ray Emission from Tycho's Supernova Remnant

    CERN Document Server

    Acciari, V A; Arlen, T; Aune, T; Beilicke, M; Benbow, W; Bradbury, S M; Buckley, J H; Bugaev, V; Byrum, K; Cannon, A; Cesarini, A; Ciupik, L; Collins-Hughes, E; Cui, W; Dickherber, R; Duke, C; Errando, M; Finley, J P; Finnegan, G; Fortson, L; Furniss, A; Galante, N; Gall, D; Gillanders, G H; Godambe, S; Griffin, S; Grube, J; Guenette, R; Gyuk, G; Hanna, D; Holder, J; Hughes, J P; Hui, C M; Humensky, T B; Kaaret, P; Karlsson, N; Kertzman, M; Kieda, D; Krawczynski, H; Krennrich, F; Lang, M J; LeBohec, S; Madhavan, A S; Maier, G; Majumdar, P; McArthur, S; McCann, A; Moriarty, P; Mukherjee, R; Ong, R A; Orr, M; Otte, A N; Pandel, D; Park, N; Perkins, J S; Pohl, M; Quinn, J; Ragan, K; Reyes, L C; Reynolds, P T; Roache, E; Rose, H J; Saxon, D B; Schroedter, M; Sembroski, G H; Senturk, G Demet; Slane, P; Smith, A W; Tešić, G; Theiling, M; Thibadeau, S; Tsurusaki, K; Varlotta, A; Vassiliev, V V; Vincent, S; Vivier, M; Wakely, S P; Ward, J E; Weekes, T C; Weinstein, A; Weisgarber, T; Williams, D A; Wood, M; Zitzer, B

    2011-01-01

    We report the discovery of TeV gamma-ray emission from the Type Ia supernova remnant (SNR) G120.1+1.4, known as Tycho's supernova remnant. Observations performed in the period 2008-2010 with the VERITAS ground-based gamma-ray observatory reveal weak emission coming from the direction of the remnant, compatible with a point source located at $00^{\\rm h} \\ 25^{\\rm m} \\ 27.0^{\\rm s},\\ +64^{\\circ} \\ 10^{\\prime} \\ 50^{\\prime\\prime}$ (J2000). The TeV photon spectrum measured by VERITAS can be described with a power-law $dN/dE = C(E/3.42\\;\\textrm{TeV})^{-\\Gamma}$ with $\\Gamma = 1.95 \\pm 0.51_{stat} \\pm 0.30_{sys}$ and $C = (1.55 \\pm 0.43_{stat} \\pm 0.47_{sys}) \\times 10^{-14}$ cm$^{-2}$s$^{-1}$TeV$^{-1}$. The integral flux above 1 TeV corresponds to $\\sim 0.9%$ percent of the steady Crab Nebula emission above the same energy, making it one of the weakest sources yet detected in TeV gamma rays. We present both leptonic and hadronic models which can describe the data. The lowest magnetic field allowed in these models ...

  11. The Search for Faint Radio Supernova Remnants in the Outer Galaxy: Five New Discoveries

    CERN Document Server

    Gerbrandt, Stephanie; Kothes, Roland; Geisbuesch, Joern; Tung, Albert

    2014-01-01

    High resolution and sensitivity large-scale radio surveys of the Milky Way are critical in the discovery of very low surface brightness supernova remnants (SNRs), which may constitute a significant portion of the Galactic SNRs still unaccounted for (ostensibly the Missing SNR problem). The overall purpose here is to present the results of a systematic, deep data-mining of the Canadian Galactic Plane Survey (CGPS) for faint, extended non-thermal and polarized emission structures that are likely the shells of uncatalogued supernova remnants. We examine 5$\\times$5 degree mosaics from the entire 1420 MHz continuum and polarization dataset of the CGPS after removing unresolved point sources and subsequently smoothing them. Newly revealed extended emission objects are compared to similarly-prepared CGPS 408 MHz continuum mosaics, as well as to source-removed mosaics from various existing radio surveys at 4.8 GHz, 2.7 GHz, and 327 MHz, to identify candidates with non-thermal emission characteristics. We integrate fl...

  12. DISCOVERY OF TWO SUPERNOVAE IN THE NUCLEAR REGIONS OF THE LUMINOUS INFRARED GALAXY IC 883

    Energy Technology Data Exchange (ETDEWEB)

    Kankare, E.; Mattila, S.; Takalo, A. [Tuorla Observatory, Department of Physics and Astronomy, University of Turku, Vaeisaelaentie 20, FI-21500 Piikkioe (Finland); Ryder, S. [Australian Astronomical Observatory, P.O. Box 296, Epping, NSW 1710 (Australia); Vaeisaenen, P. [South African Astronomical Observatory, P.O. Box 9, Observatory 7935 (South Africa); Alberdi, A.; Perez-Torres, M.-A.; Romero-Canizales, C. [Instituto de Astrofsica de Andalucia, IAA-CSIC, Apartado 3004, 18080 Granada (Spain); Alonso-Herrero, A.; Colina, L. [Departamento de Astrofisica, Centro de Astrobiologia, CSIC/INTA, Carretera de Torrejon a Ajalvir, km 4, 28850, Torrejon de Ardoz, Madrid (Spain); Efstathiou, A. [School of Sciences, European University Cyprus, Diogenes Street, Engomi, 1516 Nicosia (Cyprus); Kotilainen, J. [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Vaeisaelaentie 20, FI-21500 Piikkioe (Finland); Melinder, J., E-mail: erkki.kankare@utu.fi [Department of Astronomy, Oskar Klein Centre, Stockholm University, AlbaNova University Centre, 106 91 Stockholm (Sweden)

    2012-01-10

    We report the discovery of two consecutive supernovae (SNe), 2010cu and 2011hi, located at 0.''37 (180 pc) and 0.''79 (380 pc) projected distance, respectively, from the center of the K-band nucleus of the luminous infrared galaxy (LIRG) IC 883. The SNe were discovered in an ongoing near-infrared K-band search for core-collapse SNe in such galaxies using the ALTAIR/NIRI adaptive optics system with laser guide star at the Gemini-North Telescope. These are thus the closest SNe yet discovered to an LIRG nucleus in optical or near-infrared wavelengths. The near-infrared light curves and colors of both SNe are consistent with core-collapse events. Both SNe seem to suffer from relatively low host galaxy extinction suggesting that regardless of their low projected galactocentric distances, they are not deeply buried in the nuclear regions of the host galaxy.

  13. Discovery of Two Supernovae in the Nuclear Regions of the Luminous Infrared Galaxy IC 883

    CERN Document Server

    Kankare, E; Ryder, S; Vaisanen, P; Alberdi, A; Alonso-Herrero, A; Colina, L; Efstathiou, A; Kotilainen, J; Melinder, J; Perez-Torres, M -A; Romero-Canizales, C; Takalo, A

    2011-01-01

    We report the discovery of two consecutive supernovae (SNe), 2010cu and 2011hi, located at 0.37" (180 pc) and 0.79" (380 pc) projected distance respectively from the centre of the K-band nucleus of the luminous infrared galaxy IC 883. The SNe were discovered in an ongoing near-infrared K-band search for core-collapse SNe in such galaxies using the ALTAIR/NIRI adaptive optics system with laser guide star at the Gemini-North Telescope. These are thus the closest SNe yet discovered to a LIRG nucleus in optical or near-infrared wavelengths. The near-infrared light curves and colours of both SNe are consistent with core-collapse events. Both SNe seem to suffer from relatively low host galaxy extinction suggesting that regardless of their low projected galactocentric distances, they are not deeply buried in the nuclear regions of the host galaxy.

  14. Discovery of the Ultraluminous Type IIn Supernova PS1-11vo

    Science.gov (United States)

    McKinnon, Ryan; Soderberg, A. M.; Berger, E.; Chornock, R.; Czekala, I.; Milisavljevic, D.; Margutti, R.; Drout, M.; Challis, P.; Gezari, S.; Huber, M.; Burgett, W. S.; Chambers, K. C.; Grav, T.; Heasley, J. N.; Hodapp, K. W.; Jedicke, R.; Kaiser, N.; Kudritzki, R.; Luppino, G.; Lupton, R.; Magnier, E. A.; Monet, D. G.; Morgan, J. S.; Onaka, P.; Price, P. A.; Stubbs, C.; Tonry, J. L.; Wainscoat, R. J.

    2013-01-01

    We report the discovery by the Panoramic Survey Telescope and Rapid Response System 1 (Pan-STARRS1 or PS1) of PS1-11vo, a Type IIn supernova (SN) at z = 0.116 with a peak r-band absolute magnitude of M = -20.4. We also present optical spectroscopic observations from the Apache Point Observatory Echelle Spectrograph, the Gemini Multi-Object Spectrograph, and the MMT Blue Channel Spectrograph over a period of roughly 1 year after detection. PS1-11vo is one of the longest lived, most luminous supernovae (SNe) ever discovered and the highest quality SN IIn documented by Pan-STARRS1. The Pan-STARRS1 photometric observations indicate maximum was reached roughly 50 days after the time of explosion, during which the SN rose by approximately 5 mag. Spectra of PS1-11vo display a prominent hydrogen alpha emission line and P Cygni profile, typical of SNe IIn. We compare the photometric and spectroscopic observations of PS1-11vo to those of other SNe II, including several recent ultraluminous SNe IIn. Finally, we examine its spectral energy distribution to model various parameters of the SN and its host environment at 5 days past maximum, estimating a peak luminosity of L = 4.5E43 erg/s and an initial Nickel-56 mass of 4.5 solar masses. This work is supported in part by the NSF REU and DOD ASSURE programs under NSF grant no. 0754568 and by the Smithsonian Institution.

  15. Type Ibn Supernovae Show Photometric Homogeneity and Spectral Diversity at Maximum Light

    OpenAIRE

    Hosseinzadeh, Griffin; Arcavi, Iair; Valenti, Stefano; McCully, Curtis; Howell, D. Andrew; Johansson, Joel; Sollerman, Jesper; Pastorello, Andrea; Benetti, Stefano; Cao, Yi; Cenko, S Bradley; Clubb, Kelsey; Corsi, Alessandra; Duggan, Gina; Elias-Rosa, Nancy

    2016-01-01

    Type Ibn supernovae (SNe) are a small yet intriguing class of explosions whose spectra are characterized by low-velocity helium emission lines with little to no evidence for hydrogen. The prevailing theory has been that these are the core-collapse explosions of very massive stars embedded in helium-rich circumstellar material (CSM). We report optical observations of six new SNe Ibn: PTF11rfh, PTF12ldy, iPTF14aki, iPTF15ul, SN 2015G, and iPTF15akq. This brings the sample size of such objects i...

  16. FIRE Classification of iPTF13bvn

    Science.gov (United States)

    Kasliwal, M. M.; Degenaar, N.; Polishook, D.

    2013-06-01

    We observed iPTF13bvn (ATEL#5137) with the Folded-port InfraRed Echellette (FIRE; Simcoe et al. 2010) spectrograph on the Magellan Baade telescope on UT 2013 Jun 19.04. The spectrum covers 0.8 to 2.5um and shows prominent P Cygni profile of Helium I at 1.083 um at avelocity of 23000 km/s. We note that the 2um Helium I line is relatively weak. Confirming the tentative classification based on the optical spectrum (ATEL#5142), we conclude this is a supernova of Type Ib.

  17. ASASSN-16kz: Discovery of A Probable Supernova in ESO 555-G029

    Science.gov (United States)

    Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Brimacombe, J.

    2016-09-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy ESO 555-G029.

  18. ASASSN-17ek: Discovery of A Probable Supernova in LCRS B035620.1-420206

    Science.gov (United States)

    Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Brimacombe, J.

    2017-04-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy LCRS B035620.1-420206.

  19. ASASSN-17hp: Discovery of A Probable Supernova in ESO 575-G066

    Science.gov (United States)

    Fernandez, J. M.; Cacella, P.; Brimacombe, J.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Nicholls, B.

    2017-06-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy ESO 575-G066.

  20. Multi-Epoch Spectroscopy of Hydrogen-Poor Superluminous Supernovae

    Science.gov (United States)

    Quimby, Robert; De Cia, Annalisa; Gal-Yam, Avishay; Leloudas, Giorgos; Lunnan, Ragnhild; Perley, Daniel A.; Vreeswijk, Paul; Yan, Lin

    2016-06-01

    A growing sample of intrinsically rare supernovae is being uncovered by wide-field synoptic surveys, such as the Palomar Transient Factory (PTF). A fraction of these events have been labeled "superluminous supernovae" due to their peak luminosities, which can exceed normal supernovae by factors of 10 to 100. The power sources for these events and thus their connection to normal luminosity supernovae remains uncertain. Here we present results from 134 spectroscopic observations of 17 hydrogen-poor superluminous supernovae (SLSN-I) discovered by PTF. We select our targets from the full PTF sample using only spectroscopic information; we do not employ the traditional cut in absolute magnitude (e.g. M physical insights into the nature of these explosions offered by this unique dataset.

  1. ASASSN-16mv: Discovery of A Probable Supernova in ESO 563- G 035

    Science.gov (United States)

    Nicholls, B.; Shields, J.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Holoien, T. W.-S.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Brimacombe, J.; Stone, G.; Post, R. S.; Masi, G.; Koff, R. A.

    2016-11-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy ESO 563- G 035. ASASSN-16mv was discovered in images obtained on UT 2016-11-04.31 at V 16.8 mag. We also detect the object in images obtained on several previous epochs.

  2. Supernova explosions

    CERN Document Server

    Branch, David

    2017-01-01

    Targeting advanced students of astronomy and physics, as well as astronomers and physicists contemplating research on supernovae or related fields, David Branch and J. Craig Wheeler offer a modern account of the nature, causes and consequences of supernovae, as well as of issues that remain to be resolved. Owing especially to (1) the appearance of supernova 1987A in the nearby Large Magellanic Cloud, (2) the spectacularly successful use of supernovae as distance indicators for cosmology, (3) the association of some supernovae with the enigmatic cosmic gamma-ray bursts, and (4) the discovery of a class of superluminous supernovae, the pace of supernova research has been increasing sharply. This monograph serves as a broad survey of modern supernova research and a guide to the current literature. The book’s emphasis is on the explosive phases of supernovae. Part 1 is devoted to a survey of the kinds of observations that inform us about supernovae, some basic interpreta tions of such data, and an overview of t...

  3. Real-Time Detection and Rapid Multiwavelength Follow-up Observations of a Highly Subluminous Type II-P Supernova from the Palomar Transient Factory Survey

    CERN Document Server

    Gal-Yam, Avishay; Arcavi, Iair; Green, Yoav; Yaron, Ofer; Ben-Ami, Sagi; Xu, Dong; Sternberg, Assaf; Quimby, Robert M; Kulkarni, Shrinivas R; Ofek, Eran O; Walters, Richard; Nugent, Peter E; Poznanski, Dovi; Bloom, Joshua S; Cenko, S Bradley; Filippenko, Alexei V; Li, Weidong; Silverman, J; Walker, Emma S; Sullivan, Mark; Maguire, K; Howell, D Andrew; Mazzali, Paolo A; Frail, Dale A; Bersier, David; James, Phil A; Akerlof, C W; Yuan, Fang; Fox, Derek B; Law, Nicholas; Gehrels, Neil

    2011-01-01

    The Palomar Transient Factory (PTF) is an optical wide-field variability survey carried out using a camera with a 7.8 square degree field of view mounted on the 48-in Oschin Schmidt telescope at Palomar Observatory. One of the key goals of this survey is to conduct high-cadence monitoring of the sky in order to detect optical transient sources shortly after they occur. Here, we describe the real-time capabilities of the PTF and our related rapid multiwavelength follow-up programs, extending from the radio to the gamma-ray bands. We present as a case study observations of the optical transient PTF10vdl (SN 2010id), revealed to be a very young core-collapse (Type II-P) supernova having a remarkably low luminosity. Our results demonstrate that the PTF now provides for optical transients the real-time discovery and rapid-response follow-up capabilities previously reserved only for high-energy transients like gamma-ray bursts.

  4. Discovery potential for supernova relic neutrinos with slow liquid scintillator detectors

    CERN Document Server

    Wei, Hanyu; Chen, Shaomin

    2016-01-01

    The detection of supernova relic neutrinos would provide a key support for our current understanding of stellar and cosmological evolution, and precise measurements of them would further give us an insight of the profound universe. In this paper we study the potential to detect supernova relic neutrinos using linear alkyl benzene, LAB, as a slow liquid scintillator, which features a good separation of Cherenkov and scintillation lights, thus providing a new ability in particle identification. We also address key issues of current experiments, including 1) the charged current background of atmospheric neutrinos in water Cherenkov detectors, and 2) the neutral current background of atmospheric neutrinos in typical liquid scintillator detectors. With LAB, a kiloton-scale detector, like the SNO, KamLAND, and the future Jinping neutrino detectors, with $\\mathcal{O}$(10) years of data, would have the sensitivity to discover supernova relic neutrinos, which is comparable to large-volume water Cherenkov, typical liqu...

  5. Discovery potential for supernova relic neutrinos with slow liquid scintillator detectors

    Science.gov (United States)

    Wei, Hanyu; Wang, Zhe; Chen, Shaomin

    2017-06-01

    Detection of supernova relic neutrinos could provide key support for our current understanding of stellar and cosmological evolution, and precise measurements of these neutrinos could yield novel insights into the universe. In this paper, we studied the detection potential of supernova relic neutrinos using linear alkyl benzene (LAB) as a slow liquid scintillator. The linear alkyl benzene features good separation of Cherenkov and scintillation lights, thereby providing a new route for particle identification. We further addressed key issues in current experiments, including (1) the charged current background of atmospheric neutrinos in water Cherenkov detectors and (2) the neutral current background of atmospheric neutrinos in typical liquid scintillator detectors. A kiloton-scale LAB detector at Jinping with O(10) years of data could discover supernova relic neutrinos with a sensitivity comparable to that of large-volume water Cherenkov detectors, typical liquid scintillator detectors, and liquid argon detectors.

  6. ASASSN-17ka: Discovery of A Probable Supernova in ESO 244-G 019

    Science.gov (United States)

    Monard, L. A. G.; Brimacombe, J.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Bock, G.; Fernandez, J. M.; Kiyota, S.; Masi, G.; Post, R. S.

    2017-07-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy ESO 244-G 019. ASASSN-17ka (AT 2017frr) was discovered in images obtained on UT 2017-07-27.23 at V 16.5 mag. We also detect the object in images obtained on UT 2017-07-24.24 (V 16.6), UT 2017-07-29.23 (V 16.0), and UT 2017-07-30.23 (V 16.5).

  7. ASASSN-17bu: Discovery of A Probable Supernova in ESO 375-G 018

    Science.gov (United States)

    Bock, G.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Brimacombe, J.; Cruz, I.; Fernandez, J. M.; Kiyota, S.; Koff, R. A.; Krannich, G.; Masi, G.; Nicholls, B.; Post, R. S.; Stone, G.

    2017-02-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy ESO 375-G 018. ASASSN-17bu (AT 2017yv) was discovered in images obtained on UT 2017-01-31.19 at V 16.6 mag. We also detect the object in images obtained on UT 2017-01-29.21 (V 17.1).

  8. ASASSN-16lg: Discovery of A Probable Supernova in ARK 530

    Science.gov (United States)

    Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Brimacombe, J.

    2016-10-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy ARK 530. ASASSN-16lg (AT 2016gye) was discovered in images obtained on UT 2016-10-06.20 at V~16.2 mag. We also detect the object in images obtained on UT 2016-10-07.21 (V~16.0).

  9. How to Find Gravitationally Lensed Type Ia Supernovae

    CERN Document Server

    Goldstein, Daniel A

    2016-01-01

    Type Ia supernovae (SNe Ia) that are multiply imaged by gravitational lensing can extend the SN Ia Hubble diagram to very high redshifts ($z\\gtrsim 2$), probe potential SN Ia evolution, and deliver high-precision constraints on $H_0$, $w$, and $\\Omega_m$ via time delays. However, only one, iPTF16geu, has been found to date, and many more are needed to achieve these goals. To increase the multiply imaged SN Ia discovery rate we present a simple algorithm for identifying gravitationally lensed SN Ia candidates in cadenced, wide-field optical imaging surveys. The technique is to look for supernovae that appear to have an elliptical galaxy as their host with an absolute magnitude implied by the host's photometric redshift that is far brighter than the absolute magnitude of a normal SN Ia (the brightest type of supernova found in elliptical galaxies). Importantly, this purely photometric method does not require the ability to resolve the lensed images for discovery. The primary sources of contamination that affect...

  10. The Search for Lensed Supernovae

    Science.gov (United States)

    Kohler, Susanna

    2017-01-01

    Type Ia supernovae that have multiple images due to gravitational lensing can provide us with a wealth of information both about the supernovae themselves and about our surrounding universe. But how can we find these rare explosions?Clues from Multiple ImagesWhen light from a distant object passes by a massive foreground galaxy, the galaxys strong gravitational pull can bend the light, distorting our view of the backgroundobject. In severe cases, this process can cause multiple images of the distant object to appear in the foreground lensing galaxy.An illustration of gravitational lensing. Light from the distant supernova is bent as it passes through a giant elliptical galaxy in the foreground, causing multiple images of the supernova to appear to be hosted by the elliptical galaxy. [Adapted from image by NASA/ESA/A. Feild (STScI)]Observations of multiply-imaged Type Ia supernovae (explosions that occur when white dwarfs in binary systems exceed their maximum allowed mass) could answer a number of astronomical questions. Because Type Ia supernovae are standard candles, distant, lensed Type Ia supernovae can be used to extend the Hubble diagram to high redshifts. Furthermore, the lensing time delays from the multiply-imaged explosion can provide high-precision constraints on cosmological parameters.The catch? So far, weve only found one multiply-imaged Type Ia supernova: iPTF16geu, discovered late last year. Were going to need a lot more of them to develop a useful sample! So how do we identify themutiply-imaged Type Ias among the many billions of fleeting events discovered in current and future surveys of transients?Searching for AnomaliesAbsolute magnitudes for Type Ia supernovae in elliptical galaxies. None are expected to be above -20 in the B band, so if we calculate a magnitude for a Type Ia supernova thats larger than this, its probably not hosted by the galaxy we think it is! [Goldstein Nugent 2017]Two scientists from University of California, Berkeley and

  11. ASASSN-16km: Discovery of A Supernova in ESO 197-G 010

    Science.gov (United States)

    Brown, J. S.; Prieto, J. L.; Ricci, C.; Oh, K.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Shappee, B. J.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Brimacombe, J.

    2016-09-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a Type Ia supernova in the galaxy ESO 197-G 010. ASASSN-16km (AT 2016ggb) was discovered in images obtained on UT 2016-09-12.34 at V~16.3 mag. We also detect the object in images obtained on UT 2016-09-13.15 (V~16.2), UT 2016-09-10.15 (V~16.3), UT 2016-09-09.15 (V~16.6), UT 2016-09-05.110 (V~17.1), and UT 2016-09-02.41 (V~17.6).

  12. ASASSN-16of: Discovery of A Probable Supernova in ESO 087-IG 041

    Science.gov (United States)

    Kiyota, S.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Brimacombe, J.; Masi, G.; Post, R. S.; Stone, G.

    2016-12-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy ESO 087-IG 041. ASASSN-16of (AT 2016iqx) was discovered in images obtained on UT 2016-12-01.28 at V 16.7 mag. We also detect the object in images obtained on UT 2016-11-30.35 (V 16.8), UT 2016-11-28.28 (V 16.7), UT 2016-11-24.27 (V 17.0), UT 2016-11-22.23 (V 16.6), and UT 2016-11-19.34 (V 17.1).

  13. Fermi LAT Discovery of Extended Gamma-Ray Emissions in the Vicinity of the HB3 Supernova Remnant

    CERN Document Server

    Katagiri, H; Ballet, J; Grondin, M H; Hanabata, Y; Hewitt, J W; Kubo, H; Lemoine-Goumard, M

    2016-01-01

    We report the discovery of extended gamma-ray emission measured by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope in the region of the supernova remnant (SNR) HB3 (G132.7+1.3) and the W3 HII complex adjacent to the southeast of the remnant. W3 is spatially associated with bright 12CO (J=1-0) emission. The gamma-ray emission is spatially correlated with this gas and the SNR. We discuss the possibility that gamma rays originate in interactions between particles accelerated in the SNR and interstellar gas or radiation fields. The decay of neutral pions produced in nucleon-nucleon interactions between accelerated hadrons and interstellar gas provides a reasonable explanation for the gamma-ray emission. The emission from W3 is consistent with irradiation of the CO clouds by the cosmic rays accelerated in HB3.

  14. FERMI LAT DISCOVERY OF EXTENDED GAMMA-RAY EMISSIONS IN THE VICINITY OF THE HB 3 SUPERNOVA REMNANT

    Energy Technology Data Exchange (ETDEWEB)

    Katagiri, H.; Yoshida, K. [College of Science, Ibaraki University, 2-1-1, Bunkyo, Mito 310-8512 (Japan); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d’Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Grondin, M.-H.; Lemoine-Goumard, M. [Centre d’Études Nucléaires de Bordeaux Gradignan, IN2P3/CNRS, Université Bordeaux 1, BP120, F-33175 Gradignan Cedex (France); Hanabata, Y. [Institute for Cosmic-Ray Research, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8582 (Japan); Hewitt, J. W. [Department of Physics and Center for Space Sciences and Technology, University of Maryland Baltimore County, Baltimore, MD 21250 (United States); Kubo, H., E-mail: hideaki.katagiri.sci@vc.ibaraki.ac.jp, E-mail: 13nm169s@gmail.com [Department of Physics, Graduate School of Science, Kyoto University, Kyoto (Japan)

    2016-02-20

    We report the discovery of extended gamma-ray emission measured by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope in the region of the supernova remnant (SNR) HB 3 (G132.7+1.3) and the W3 II complex adjacent to the southeast of the remnant. W3 is spatially associated with bright {sup 12}CO (J = 1–0) emission. The gamma-ray emission is spatially correlated with this gas and the SNR. We discuss the possibility that gamma rays originate in interactions between particles accelerated in the SNR and interstellar gas or radiation fields. The decay of neutral pions produced in nucleon–nucleon interactions between accelerated hadrons and interstellar gas provides a reasonable explanation for the gamma-ray emission. The emission from W3 is consistent with irradiation of the CO clouds by the cosmic rays accelerated in HB 3.

  15. A DOUBLE NEUTRON STAR MERGER ORIGIN FOR THE COSMOLOGICAL RELATIVISTIC FADING SOURCE PTF11agg?

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xue-Feng; Gao, He; Ding, Xuan [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Zhang, Bing [Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, NV 89154 (United States); Dai, Zi-Gao [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Wei, Jian-Yan, E-mail: xfwu@pmo.ac.cn [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2014-01-20

    The Palomar Transient Factory (PTF) team recently reported the discovery of a rapidly fading optical transient source, PTF11agg. A long-lived scintillating radio counterpart was identified, but the search for a high-energy counterpart showed negative results. The PTF team speculated that PTF11agg may represent a new class of relativistic outbursts. Here we suggest that a neutron star (NS)-NS merger system with a supra-massive magnetar central engine could be a possible source to power such a transient, if our line of sight is not on the jet axis direction of the system. These systems are also top candidates for gravitational wave sources to be detected in the advanced LIGO/Virgo era. We find that the PTF11agg data could be explained well with such a model, suggesting that at least some gravitational wave bursts due to NS-NS mergers may be associated with such a bright electromagnetic counterpart without a γ-ray trigger.

  16. Discovery of the Low-Redshift Afterglow of GRB 011121 and Its Progenitor Supernova 2001ke

    Science.gov (United States)

    Garnavich, P. M.; Stanek, K. Z.; Wyrzykowski, L.; Infante, L.; Bendek, E.; Holland, S. T.; Bersier, D.; Jha, S.; Matheson, T.; Kirshner, R. P.; Phillips, M. M.; Krisciunas, K.; Carlberg, R.

    2002-05-01

    We identify and present the first optical observations of the afterglow of the Gamma-Ray Burst (GRB) 011121. Images were obtained with the OGLE 1.3m telescope in BVRI passbands, starting 10.3;hours after the burst. The temporal analysis of our data indicates a steep decay, independent of wavelength with Fν t{-1.72+/- 0.05}. There is no evidence for a break in the light curve earlier than 2.5 days after the burst. The spectral energy distribution determined from the early broad-band photometry is a power-law with Fν ν {-0.46+/- 0.10} after correcting for a large Galactic extinction. Spectra, obtained with the Magellan 6.5m Baade telescope, reveal narrow emission lines from the host galaxy and these provide a redshift of z=0.36, which is the lowest measured redshift for an optical afterglow. We also present late R and J-band observations of the afterglow ~ 14;days after the burst. The late-time photometry shows a large deviation from the initial decline and our data combined with Hubble Space Telescope photometry provide strong evidence for a supernova peaking less than 10 rest-frame days after the GRB. This is the best evidence to date that classical, long gamma-ray bursts are generated by core-collapse supernovae. This work is partially supported by NASA LTSA grant NAG5-9364.

  17. Analysis list: Ptf1a [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Ptf1a Embryo,Pancreas + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Ptf1...a.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Ptf1a.5.tsv http://dbarchive.biosciencedbc....jp/kyushu-u/mm9/target/Ptf1a.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Ptf1a.Embryo.tsv,htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Ptf1a.Pancreas.tsv http://dbarch

  18. Fermi-LAT Discovery of Extended Gamma-Ray Emission in the Direction of Supernova Remnant W51C

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A.A.; /Naval Research Lab, Wash., D.C. /Federal City Coll.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Ajello, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, G.; /INFN, Trieste /Trieste U.; Baring, M.G.; /Rice U.; Bastieri, D.; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Blandford, R.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, E.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bouvier, A.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique /Washington U., Seattle /Padua U. /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /Milan Polytechnic /DAPNIA, Saclay /INFN, Perugia /Perugia U. /NASA, Goddard /NASA, Goddard /CSST, Baltimore /Naval Research Lab, Wash., D.C. /George Mason U. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Sonoma State U. /Stockholm U. /Stockholm U., OKC /ASDC, Frascati /Naval Research Lab, Wash., D.C. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /UC, Santa Cruz /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Ecole Polytechnique; /more authors..

    2012-03-30

    The discovery of bright gamma-ray emission coincident with supernova remnant (SNR) W51C is reported using the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope. W51C is a middle-aged remnant ({approx}10{sup 4} yr) with intense radio synchrotron emission in its shell and known to be interacting with a molecular cloud. The gamma-ray emission is spatially extended, broadly consistent with the radio and X-ray extent of SNR W51C. The energy spectrum in the 0.2-50 GeV band exhibits steepening toward high energies. The luminosity is greater than 1 x 10{sup 36} erg s{sup -1} given the distance constraint of D > 5.5 kpc, which makes this object one of the most luminous gamma-ray sources in our Galaxy. The observed gamma-rays can be explained reasonably by a combination of efficient acceleration of nuclear cosmic rays at supernova shocks and shock-cloud interactions. The decay of neutral p mesons produced in hadronic collisions provides a plausible explanation for the gamma-ray emission. The product of the average gas density and the total energy content of the accelerated protons amounts to {bar n}{sub H} W{sub p} {approx_equal} 5 x 10{sup 51} (D/6 kpc){sup 2} erg cm{sup -3}. Electron density constraints from the radio and X-ray bands render it difficult to explain the LAT signal as due to inverse Compton scattering. The Fermi LAT source coincident with SNR W51C sheds new light on the origin of Galactic cosmic rays.

  19. VizieR Online Data Catalog: Light curves of four transients from PTF & SNLS (Arcavi+, 2016)

    Science.gov (United States)

    Arcavi, I.; Wolf, W. M.; Howell, D. A.; Bildsten, L.; Leloudas, G.; Hardin, D.; Prajs, S.; Perley, D. A.; Svirski, G.; Gal-Yam, A.; Katz, B.; McCully, C.; Cenko, S. B.; Lidman, C.; Sullivan, M.; Valenti, S.; Astier, P.; Balland, C.; Carlberg, R. G.; Conley, A.; Fouchez, D.; Guy, J.; Pain, R.; Palanque-Delabrouille, N.; Perrett, K.; Pritchet, C. J.; Regnault, N.; Rich, J.; Ruhlmann-Kleider, V.

    2016-05-01

    PTF10iam was discovered by the Palomar 48 inch Oschin Schmidt telescope (P48) as part of the PTF survey. The three Supernova Legacy Survey (SNLS; Astier et al. 2006A&A...447...31A) events (SNLS04D4ec, SNLS05D2bk and SNLS06D1hc) were discovered by the deep survey of the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS 2002), using the CFHT 3.6m telescope. The SNLS host-galaxy magnitudes were obtained from the SNLS five-year imaging data set (D. Hardin et al. 2016, in preparation), following the general method described in Kronborg et al. (2010A&A...514A..44K). In short, photometry was performed on deep image stacks in the ugriz CFHT/Megacam filters. (2 data files).

  20. Discovery of molecular shells associated with supernova remnants. (II) Kesteven 75

    CERN Document Server

    Su, Yang; Yang, Ji; Koo, Bon-Chul; Zhou, Xin; Jeong, Il-Gyo; Zhang, Chun-Guang

    2008-01-01

    The young composite supernova remnant (SNR) Kesteven 75, with a pulsar wind nebula at its center, has an unusual morphology with a bright southern half-shell structure in multiwavelengths. The distance to Kes 75 has long been uncertain. Aiming to address these issues, we have made millimeter spectroscopic observations of the molecular gas toward the remnant. The V_{LSR}~83--96 km/s molecular clouds (MCs) are found to overlap a large north-western region of the remnant and are suggested to be located in front of the SNR along the line of sight. Also in the remnant area, the V_{LSR}= 45--58 km/s MC shows a blue-shifted broadening in the 12CO (J=1-0) line profile and a perturbed position-velocity structure near the edge of the remnant, with the intensity centroid sitting in the northern area of the remnant. In particular, a cavity surrounded by a molecular shell is unveiled in the intensity map in the broadened blue wing (45--51 km/s), and the southern molecular shell follows the bright partial SNR shell seen in...

  1. Discovery of TeV Gamma-ray Emission Toward Supernova Remnant SNR G78.2+2.1

    CERN Document Server

    Aliu, E; Arlen, T; Aune, T; Beilicke, M; Benbow, W; Bird, R; Bouvier, A; Bradbury, S M; Buckley, J H; Bugaev, V; Byrum, K; Cannon, A; Cesarini, A; Ciupik, L; Collins-Hughes, E; Connolly, M P; Cui, W; Dickherber, R; Duke, C; Dumm, J; Dwarkadas, V V; Errando, M; Falcone, A; Federici, S; Feng, Q; Finley, J P; Finnegan, G; Fortson, L; Furniss, A; Galante, N; Gall, D; Gillanders, G H; Godambe, S; Gotthelf, E V; Griffin, S; Grube, J; Gyuk, G; Hanna, D; Holder, J; Huan, H; Hughes, G; Humensky, T B; Kaaret, P; Karlsson, N; Kertzman, M; Khassen, Y; Kieda, D; Krawczynski, H; Krennrich, F; Lang, M J; Lee, K; Madhavan, A S; Maier, G; Majumdar, P; McArthur, S; McCann, A; Millis, J; Moriarty, P; Mukherjee, R; Nelson, T; de Bhróithe, A O'Faoláin; Ong, R A; Orr, M; Otte, A N; Pandel, D; Park, N; Perkins, J S; Pohl, M; Popkow, A; Prokoph, H; Quinn, J; Ragan, K; Reyes, L C; Reynolds, P T; Roache, E; Rose, H J; Ruppel, J; Saxon, D B; Schroedter, M; Sembroski, G H; Şentürk, G D; Skole, C; Telezhinsky, I; Tešić, G; Theiling, M; Thibadeau, S; Tsurusaki, K; Tyler, J; Varlotta, A; Vassiliev, V V; Vincent, S; Wakely, S P; Ward, J E; Weekes, T C; Weinstein, A; Weisgarber, T; Welsing, R; Williams, D A; Zitzer, B

    2013-01-01

    We report the discovery of an unidentified, extended source of very-high-energy (VHE) gamma-ray emission, VER J2019+407, within the radio shell of the supernova remnant SNR G78.2+2.1, using 21.4 hours of data taken by the VERITAS gamma-ray observatory in 2009. These data confirm the preliminary indications of gamma-ray emission previously seen in a two-year (2007-2009) blind survey of the Cygnus region by VERITAS. VER J2019+407, which is detected at a post-trials significance of 7.5 standard deviations in the 2009 data, is localized to the northwestern rim of the remnant in a region of enhanced radio and X-ray emission. It has an intrinsic extent of 0.23^{\\circ} \\pm 0.03^{\\circ} (stat)+0.04^{\\circ}_{-0.02}^{\\circ}(sys) and its spectrum is well-characterized by a differential power law (dN/dE = N_0 \\times (E/TeV)^{-\\Gamma}) with a photon index of {\\Gamma} = 2.37 \\pm 0.14 (stat) \\pm 0.20 (sys) and a flux normalization of N0 = 1.5 \\pm 0.2 (stat) \\pm 0.4(sys) \\times 10^-12 ph TeV^{-1} cm^{-2} s^{-1}. This yields ...

  2. Molecular environment of the supernova remnant IC 443: Discovery of the molecular shells surrounding the remnant

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yang; Fang, Min; Yang, Ji [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Zhou, Ping; Chen, Yang [Department of Astronomy, Nanjing University, Nanjing 210093 (China)

    2014-06-20

    We have carried out {sup 12}CO, {sup 13}CO, and C{sup 18}O observations toward the mixed morphology supernova remnant (SNR) IC 443. The observations cover a 1.°5 × 1.°5 area and allow us to investigate the overall molecular environment of the remnant. Some northern and northeastern partial shell structure of CO gas is around the remnant. One of the partial shells, about 5' extending beyond the northeastern border of the remnant's bright radio shell, seems to just confine the faint radio halo. On the other hand, some faint CO clumps can be discerned along the eastern boundary of the faint remnant's radio halo. Connecting the eastern CO clumps, the northeastern partial shell structures, and the northern CO partial shell, we can see that a half molecular ring structure appears to surround the remnant. The LSR velocity of the half-ring structure is in the range of –5 km s{sup –1} to –2 km s{sup –1}, which is consistent with that of the –4 km s{sup –1} molecular clouds. We suggest that the half-ring structure of the CO emission at V {sub LSR} ∼ –4 km s{sup –1} is associated with the SNR. The structures are possibly swept up by the stellar winds of SNR IC 443's massive progenitor. Based on the Wide-field Infrared Survey Explorer and the Two Micron All Sky Survey near-IR database, 62 young stellar object (YSO) candidates are selected within the radio halo of the remnant. These YSO candidates concentrated along the boundary of the remnant's bright radio shell are likely to be triggered by the stellar winds from the massive progenitor of SNR IC 443.

  3. Discovery of gamma-ray emission from the shell-type supernova remnant RCW86 with HESS

    NARCIS (Netherlands)

    Vink, J.; Aharonian, F.

    2009-01-01

    The shell-type supernova remnant (SNR) RCW 86, possibly associated with the historical supernova SN 185, with its relatively large size (about 40' in diameter) and the presence of nonthermal X-rays is a promising target for γ-ray observations. The high sensitivity, good angular resolution of a few a

  4. Scheduled discoveries of 7+ high-Redshift supernovae: First cosmology results and bounds on q{sub 0}

    Energy Technology Data Exchange (ETDEWEB)

    Perlmutter, S., FNAL

    1998-09-01

    Our search for high-redshift Type Ia supernovae discovered, in its first years, a sample of seven supernovae. Using a ``batch`` search strategy, almost all were discovered before maximum light and were observed over the peak of their light curves. The spectra and light curves indicate that almost all were Type Ia supernovae at redshifts z = 0.35 - 0.5. These high-redshift supernovae can provide a distance indicator and ``standard clock`` to study the cosmological parameters q{sub 0} , {Lambda}, {Omega}{sub 0} , and H{sub 0}. This presentation and the following presentations of Kim et al. (1996), Goldhaber et al. (1996), and Pain et al. (1996) will discuss observation strategies and rates, analysis and calibration issues, the sources of measurement uncertainty, and the cosmological implications, including bounds on q{sub 0} , of these first high-redshift supernovae from our ongoing search.

  5. Discovery of an unusual new radio source in the star-forming galaxy M82: Faint supernova, supermassive blackhole, or an extra-galactic microquasar?

    CERN Document Server

    Muxlow, T W B; Garrington, S T; Pedlar, A; Fenech, D M; Argo, M K; van Eymeren, J; Ward, M; Zezas, A; Brunthaler, A

    2010-01-01

    A faint new radio source has been detected in the nuclear region of the starburst galaxy M82 using MERLIN radio observations designed to monitor the flux density evolution of the recent bright supernova SN2008iz. This new source was initially identified in observations made between 1-5th May 2009 but had not been present in observations made one week earlier, or in any previous observations of M82. In this paper we report the discovery of this new source and monitoring of its evolution over its first 9 months of existence. The true nature of this new source remains unclear, and we discuss whether this source may be an unusual and faint supernova, a supermassive blackhole associated with the nucleus of M82, or intriguingly the first detection of radio emission from an extragalactic microquasar.

  6. Rapidly Decaying Supernova 2010X: A Candidate ".Ia" Explosion

    CERN Document Server

    Kasliwal, Mansi M; Gal-Yam, Avishay; Yaron, Ofer; Quimby, Robert M; Ofek, Eran O; Nugent, Peter; Poznanski, Dovi; Jacobsen, Janet; Sternberg, Assaf; Arcavi, Iair; Howell, D Andrew; Sullivan, Mark; Rich, Douglas J; Burke, Paul F; MD, Joseph Brimacombe MB ChB FRCA; Milisavljevic, Dan; Fesen, Robert; Bildsten, Lars; Shen, Ken; Cenko, S Bradley; Bloom, Joshua S; Hsiao, Eric; Law, Nicholas M; Gehrels, Neil; Immler, Stefan; Dekany, Richard; Rahmer, Gustavo; Hale, David; Smith, Roger; Zolkower, Jeff; Velur, Viswa; Walters, Richard; Henning, John; Bui, Kahnh; McKenna, Dan

    2010-01-01

    We present the discovery, photometric and spectroscopic follow-up observations of SN 2010X (PTF 10bhp). This supernova decays exponentially with tau_d=5 days, and rivals the current recordholder in speed, SN 2002bj. SN 2010X peaks at M_r=-17mag and has mean velocities of 10,000 km/s. Our light curve modeling suggests a radioactivity powered event and an ejecta mass of 0.16 Msun. If powered by Nickel, we show that the Nickel mass must be very small (0.02 Msun) and that the supernova quickly becomes optically thin to gamma-rays. Our spectral modeling suggests that SN 2010X and SN 2002bj have similar chemical compositions and that one of Aluminum or Helium is present. If Aluminum is present, we speculate that this may be an accretion induced collapse of an O-Ne-Mg white dwarf. If Helium is present, all observables of SN 2010X are consistent with being a thermonuclear Helium shell detonation on a white dwarf, a ".Ia" explosion. With the 1-day dynamic-cadence experiment on the Palomar Transient Factory, we expect ...

  7. Rapidly Decaying Supernova 2010X: A Candidate ".Ia" Explosion

    Science.gov (United States)

    Kasliwal, Mansi M.; Kulkarni, S. R.; Gal-Yam, Avishay; Yaron, Ofer; Quimby, Robert M.; Ofek, Eran O.; Nugent, Peter; Poznanski, Dovi; Jacobsen, Janet; Sternberg, Assaf; Arcavi, Iair; Howell, D. Andrew; Sullivan, Mark; Rich, Douglas J.; Burke, Paul F.; Brimacombe, Joseph; Milisavljevic, Dan; Fesen, Robert; Bildsten, Lars; Shen, Ken; Cenko, S. Bradley; Bloom, Joshua S.; Hsiao, Eric; Law, Nicholas M.; Gehrels, Neil; Immler, Stefan; Dekany, Richard; Rahmer, Gustavo; Hale, David; Smith, Roger; Zolkower, Jeff; Velur, Viswa; Walters, Richard; Henning, John; Bui, Kahnh; McKenna, Dan

    2010-11-01

    We present the discovery, photometric, and spectroscopic follow-up observations of SN 2010X (PTF 10bhp). This supernova decays exponentially with τ d = 5 days and rivals the current recordholder in speed, SN 2002bj. SN 2010X peaks at M r = -17 mag and has mean velocities of 10,000 km s-1. Our light curve modeling suggests a radioactivity-powered event and an ejecta mass of 0.16 M sun. If powered by Nickel, we show that the Nickel mass must be very small (≈0.02 M sun) and that the supernova quickly becomes optically thin to γ-rays. Our spectral modeling suggests that SN 2010X and SN 2002bj have similar chemical compositions and that one of aluminum or helium is present. If aluminum is present, we speculate that this may be an accretion-induced collapse of an O-Ne-Mg white dwarf. If helium is present, all observables of SN 2010X are consistent with being a thermonuclear helium shell detonation on a white dwarf, a ".Ia" explosion. With the 1 day dynamic-cadence experiment on the Palomar Transient Factory, we expect to annually discover a few such events.

  8. How to Find Gravitationally Lensed Type Ia Supernovae

    Science.gov (United States)

    Goldstein, Daniel A.; Nugent, Peter E.

    2017-01-01

    Type Ia supernovae (SNe Ia) that are multiply imaged by gravitational lensing can extend the SN Ia Hubble diagram to very high redshifts (z ≳ 2), probe potential SN Ia evolution, and deliver high-precision constraints on H0, w, and Ωm via time delays. However, only one, iPTF16geu, has been found to date, and many more are needed to achieve these goals. To increase the multiply imaged SN Ia discovery rate, we present a simple algorithm for identifying gravitationally lensed SN Ia candidates in cadenced, wide-field optical imaging surveys. The technique is to look for supernovae that appear to be hosted by elliptical galaxies, but that have absolute magnitudes implied by the apparent hosts’ photometric redshifts that are far brighter than the absolute magnitudes of normal SNe Ia (the brightest type of supernovae found in elliptical galaxies). Importantly, this purely photometric method does not require the ability to resolve the lensed images for discovery. Active galactic nuclei, the primary sources of contamination that affect the method, can be controlled using catalog cross-matches and color cuts. Highly magnified core-collapse SNe will also be discovered as a byproduct of the method. Using a Monte Carlo simulation, we forecast that the Large Synoptic Survey Telescope can discover up to 500 multiply imaged SNe Ia using this technique in a 10 year z-band search, more than an order of magnitude improvement over previous estimates. We also predict that the Zwicky Transient Facility should find up to 10 multiply imaged SNe Ia using this technique in a 3 year R-band search—despite the fact that this survey will not resolve a single system.

  9. DISCOVERY OF TeV GAMMA-RAY EMISSION TOWARD SUPERNOVA REMNANT SNR G78.2+2.1

    Energy Technology Data Exchange (ETDEWEB)

    Aliu, E. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Archambault, S. [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Arlen, T.; Aune, T. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Bird, R.; Cannon, A.; Collins-Hughes, E. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Bouvier, A. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Bradbury, S. M. [School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT (United Kingdom); Byrum, K. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Cesarini, A.; Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Cui, W. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Duke, C., E-mail: amandajw@iastate.edu [Department of Physics, Grinnell College, Grinnell, IA 50112-1690 (United States); and others

    2013-06-20

    We report the discovery of an unidentified, extended source of very-high-energy gamma-ray emission, VER J2019+407, within the radio shell of the supernova remnant SNR G78.2+2.1, using 21.4 hr of data taken by the VERITAS gamma-ray observatory in 2009. These data confirm the preliminary indications of gamma-ray emission previously seen in a two-year (2007-2009) blind survey of the Cygnus region by VERITAS. VER J2019+407, which is detected at a post-trials significance of 7.5 standard deviations in the 2009 data, is localized to the northwestern rim of the remnant in a region of enhanced radio and X-ray emission. It has an intrinsic extent of 0.23 Degree-Sign .23 {+-} 0. Degree-Sign 03{sub stat-0 Degree-Sign .02sys}{sup +0 Degree-Sign .04} and its spectrum is well-characterized by a differential power law (dN/dE = N{sub 0} Multiplication-Sign (E/TeV){sup -{Gamma}}) with a photon index of {Gamma} = 2.37 {+-} 0.14{sub stat} {+-} 0.20{sub sys} and a flux normalization of N{sub 0} = 1.5 {+-} 0.2{sub stat} {+-} 0.4{sub sys} Multiplication-Sign 10{sup -12} photon TeV{sup -1} cm{sup -2} s{sup -1}. This yields an integral flux of 5.2 {+-} 0.8{sub stat} {+-} 1.4{sub sys} Multiplication-Sign 10{sup -12} photon cm{sup -2} s{sup -1} above 320 GeV, corresponding to 3.7% of the Crab Nebula flux. We consider the relationship of the TeV gamma-ray emission with the GeV gamma-ray emission seen from SNR G78.2+2.1 as well as that seen from a nearby cocoon of freshly accelerated cosmic rays. Multiple scenarios are considered as possible origins for the TeV gamma-ray emission, including hadronic particle acceleration at the SNR shock.

  10. On the Source of the Dust Extinction in Type Ia Supernovae and the Discovery of Anomalously Strong Na I Absorption

    CERN Document Server

    Phillips, M M; Morrell, Nidia; Burns, Christopher R; Cox, Nick L J; Foley, Ryan J; Karakas, Amanda I; Patat, F; Sternberg, A; Williams, R E; Gal-Yam, A; Hsiao, E Y; Leonard, D C; Persson, Sven E; Stritzinger, Maximilian; Thompson, I B; Campillay, Abdo; Contreras, Carlos; Folatelli, Gastón; Freedman, Wendy L; Hamuy, Mario; Roth, Miguel; Shields, Gregory A; Suntzeff, Nicholas B; Chomiuk, Laura; Ivans, Inese I; Madore, Barry F; Penprase, B E; Perley, Daniel; Preston, G Pignata G; Soderberg, Alicia M

    2013-01-01

    High-dispersion observations of the Na I D 5890, 5896 and K I 7665, 7699 interstellar lines, and the diffuse interstellar band at 5780 Angstroms in the spectra of 32 Type Ia supernovae are used as an independent means of probing dust extinction. We show that the dust extinction of the objects where the diffuse interstellar band at 5780 Angstroms is detected is consistent with the visual extinction derived from the supernova colors. This strongly suggests that the dust producing the extinction is predominantly located in the interstellar medium of the host galaxies and not in circumstellar material associated with the progenitor system. One quarter of the supernovae display anomalously large Na I column densities in comparison to the amount of dust extinction derived from their colors. Remarkably, all of the cases of unusually strong Na I D absorption correspond to "Blueshifted" profiles in the classification scheme of Sternberg et al. (2011). This coincidence suggests that outflowing circumstellar gas is resp...

  11. On the source of the dust extinction in type Ia supernovae and the discovery of anomalously strong Na I absorption

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M. M.; Morrell, Nidia; Hsiao, E. Y.; Campillay, Abdo; Contreras, Carlos [Carnegie Observatories, Las Campanas Observatory, Casilla 601, La Serena (Chile); Simon, Joshua D.; Burns, Christopher R.; Persson, Sven E.; Thompson, I. B.; Freedman, Wendy L. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101 (United States); Cox, Nick L. J. [Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D bus 2401, 3001 Leuven (Belgium); Foley, Ryan J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Karakas, Amanda I. [Research School of Astronomy and Astrophysics, The Australian National University, Weston, ACT 2611 (Australia); Patat, F. [European Southern Observatory (ESO), Karl Schwarschild Strasse 2, D-85748, Garching bei München (Germany); Sternberg, A. [Max Planck Institute for Astrophysics, Karl Schwarzschild Strasse 1, D-85741 Garching bei München (Germany); Williams, R. E. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Gal-Yam, A. [Benoziyo Center for Astrophysics, Faculty of Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Leonard, D. C. [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); Stritzinger, Maximilian [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Folatelli, Gastón, E-mail: mmp@lco.cl [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa 277-8583 (Japan); and others

    2013-12-10

    High-dispersion observations of the Na I D λλ5890, 5896 and K I λλ7665, 7699 interstellar lines, and the diffuse interstellar band at 5780 Å in the spectra of 32 Type Ia supernovae are used as an independent means of probing dust extinction. We show that the dust extinction of the objects where the diffuse interstellar band at 5780 Å is detected is consistent with the visual extinction derived from the supernova colors. This strongly suggests that the dust producing the extinction is predominantly located in the interstellar medium of the host galaxies and not in circumstellar material associated with the progenitor system. One quarter of the supernovae display anomalously large Na I column densities in comparison to the amount of dust extinction derived from their colors. Remarkably, all of the cases of unusually strong Na I D absorption correspond to 'Blueshifted' profiles in the classification scheme of Sternberg et al. This coincidence suggests that outflowing circumstellar gas is responsible for at least some of the cases of anomalously large Na I column densities. Two supernovae with unusually strong Na I D absorption showed essentially normal K I column densities for the dust extinction implied by their colors, but this does not appear to be a universal characteristic. Overall, we find the most accurate predictor of individual supernova extinction to be the equivalent width of the diffuse interstellar band at 5780 Å, and provide an empirical relation for its use. Finally, we identify ways of producing significant enhancements of the Na abundance of circumstellar material in both the single-degenerate and double-degenerate scenarios for the progenitor system.

  12. Follow-up photometry of iPTF16geu

    Science.gov (United States)

    Lee, C.-H.

    2016-10-01

    We report follow-up photometry of the strongly lensed SNIa iPTF16geu (ATel #9603, #9626). We observed iPTF16geu on 2016/10/17 with the 2.5-m Isaac Newton Telescope (INT) + WFC at La Palma, under ~0.9" seeing condition.

  13. Revealing the binary origin of Type Ic superluminous supernovae through nebular hydrogen emission

    Science.gov (United States)

    Moriya, Takashi J.; Liu, Zheng-Wei; Mackey, Jonathan; Chen, Ting-Wan; Langer, Norbert

    2015-12-01

    We propose that nebular Hα emission, as detected in the Type Ic superluminous supernova iPTF13ehe, stems from matter that is stripped from a companion star when the supernova ejecta collide with it. The temporal evolution, the line broadening, and the overall blueshift of the emission are consistent with this interpretation. We scale the nebular Hα luminosity predicted for Type Ia supernovae in single-degenerate systems to derive the stripped mass required to explain the Hα luminosity of iPTF13ehe. We find a stripped mass of 0.1-0.9 solar masses, assuming that the supernova luminosity is powered by radioactivity or magnetar spin down. Because a central heating source is required to excite the Hα emission, an interaction-powered model is not favored for iPTF13ehe if the Hα emission is from stripped matter. We derive a companion mass of more than 20 solar masses and a binary separation of less than about 20 companion radii based on the stripping efficiency during the collision, indicating that the supernova progenitor and the companion formed a massive close binary system. If Type Ic superluminous supernovae generally occur in massive close binary systems, the early brightening observed previously in several Type Ic superluminous supernovae may also be due to the collision with a close companion. Observations of nebular hydrogen emission in future Type Ic superluminous supernovae will enable us to test this interpretation.

  14. Discovery of a highly energetic pulsar associated with IGR J14003-6326 and a young uncataloged Galactic supernova remnant G310.6-1.6

    CERN Document Server

    Renaud, M; Gotthelf, E V; Rodríguez, J; Terrier, R; Mattana, F; Lebrun, F; Tomsick, J A; Manchester, R N

    2009-01-01

    We report the discovery of 31.18 ms pulsations from the INTEGRAL source IGR J14003-6326 using the Rossi X-ray Timing Explorer (RXTE). This pulsar is most likely associated with the bright Chandra X-ray source lying at the center of G310.6-1.6, a previously uncataloged Galactic composite supernova remnant with a bright central non-thermal radio and X-ray nebula, taken to be the pulsar wind nebula. PSR J1400-6325 is amongst the most energetic rotation-powered pulsars in the Galaxy, with a spin-down luminosity of Edot = 5.1E37 erg/s. In the rotating dipole model, the surface dipole magnetic field strength is B_s = 1.1E12 G and the characteristic age tau_c = P/2Pdot = 12.7 kyr. Such a high spin-down power is consistent with the hard spectral indexes of the pulsar and the nebula of 1.22+/-0.15 and 1.83+/-0.08, respectively, and a 2-10 keV flux ratio F_PWN/F_PSR ~ 8. A multi-wavelength study of this new composite supernova remnant, from radio to very-high energy gamma-rays, suggests a very young ( 6 kpc), formed by...

  15. Discovery of a Be/X-ray pulsar binary and associated supernova remnant in the Wing of the SMC

    CERN Document Server

    Hénault-Brunet, V; Guerrero, M A; Sun, W; Chu, Y -H; Evans, C J; Gallagher, J S; Gruendl, R A; Reyes-Iturbide, J

    2011-01-01

    We report on a new Be/X-ray pulsar binary located in the Wing of the Small Magellanic Cloud (SMC). The strong pulsed X-ray source was discovered with the Chandra and XMM-Newton X-ray observatories. The X-ray pulse period of 1062 s is consistently determined from both Chandra and XMM-Newton observations, revealing one of the slowest rotating X-ray pulsars known in the SMC. The optical counterpart of the X-ray source is the emission-line star 2dFS 3831. Its B0-0.5(III)e+ spectral type is determined from VLT-FLAMES and 2dF optical spectroscopy, establishing the system as a Be/X-ray binary (Be-XRB). The hard X-ray spectrum is well fitted by a power-law with additional thermal and blackbody components, the latter reminiscent of persistent Be-XRBs. This system is the first evidence of a recent supernova in the low density surroundings of NGC 602. We detect a shell nebula around 2dFS 3831 in H-alpha and [O III] images and conclude that it is most likely a supernova remnant. If it is linked to the supernova explosion...

  16. The Very Young Type Ia Supernova 2013dy: Discovery, and Strong Carbon Absorption in Early-Time Spectra

    CERN Document Server

    Zheng, WeiKang; Filippenko, Alexei V; Kasen, Daniel; Nugent, Peter E; Graham, Melissa; Wang, Xiaofeng; Valenti, Stefano; Ciabattari, Fabrizio; Kelly, Patrick L; Fox, Ori D; Shivvers, Isaac; Clubb, Kelsey I; Cenko, S Bradley; Balam, Dave; Howell, D Andrew; Hsiao, Eric; Li, Weidong; Marion, G Howie; Sand, David; Vinko, Jozsef; Wheeler, J Craig; Zhang, JuJia

    2013-01-01

    The Type Ia supernova (SN Ia) 2013dy in NGC 7250 (d ~ 13.7 Mpc) was discovered by the Lick Observatory Supernova Search. Combined with a prediscovery detection by the Italian Supernova Search Project, we are able to constrain the first-light time of SN 2013dy to be only 0.10 +/- 0.05 d (2.4 +/- 1.2 hr) before the first detection. This makes SN 2013dy the earliest known detection of an SN Ia. We infer an upper limit on the radius of the progenitor star of R_0 < 0.25 R_sun, consistent with that of a white dwarf. The light curve exhibits a broken power law with exponents of 0.88 and then 1.80. A spectrum taken 1.63 d after first light reveals a C II absorption line comparable in strength to Si II. This is the strongest C II feature ever detected in a normal SN Ia, suggesting that the progenitor star had significant unburned material. The C II line in SN 2013dy weakens rapidly and is undetected in a spectrum 7 days later, indicating that C II is detectable for only a very short time in some SNe Ia. SN 2013dy r...

  17. Supernova Forensics

    Science.gov (United States)

    Soderberg, Alicia M.

    2014-01-01

    For decades, the study of stellar explosions -- supernovae -- have focused almost exclusively on the strong optical emission that dominates the bolometric luminosity in the days following the ultimate demise of the star. Yet many of the leading breakthroughs in our understanding of stellar death have been enabled by obtaining data at other wavelengths. For example, I have shown that 1% of all supernovae give rise to powerful relativistic jets, representing the biggest bangs in the Universe since the Big Bang. My recent serendipitous X-ray discovery of a supernova in the act of exploding (“in flagrante delicto”) revealed a novel technique to discover new events and provide clues on the shock physics at the heart of the explosion. With the advent of sensitive new radio telescopes, my research group combines clues from across the electromagnetic spectrum (radio to gamma-ray), leading us to a holistic study of stellar death, the physics of the explosions, and their role in fertilizing the Universe with new elements, by providing the community with cosmic autopsy reports.

  18. Rapidly Rising Transients in the Supernova - Superluminous Supernova Gap

    CERN Document Server

    Arcavi, Iair; Howell, D Andrew; Bildsten, Lars; Leloudas, Giorgos; Hardin, Delphine; Prajs, Szymon; Perley, Daniel A; Svirski, Gilad; Gal-Yam, Avishay; Katz, Boaz; McCully, Curtis; Cenko, S Bradley; Lidman, Chris; Sullivan, Mark; Valenti, Stefano; Astier, Pierre; Balland, Cristophe; Carlberg, Ray G; Conley, Alex; Fouchez, Dominique; Guy, Julien; Pain, Reynald; Palanque-Delabrouille, Nathalie; Perrett, Kathy; Pritchet, Chris J; Regnault, Nicolas; Rich, James; Ruhlmann-Kleider, Vanina

    2015-01-01

    We present observations of four rapidly rising (t_{rise}~10d) transients with peak luminosities between those of supernovae (SNe) and superluminous SNe (M_{peak}~-20) - one discovered and followed by the Palomar Transient Factory (PTF) and three by the Supernova Legacy Survey (SNLS). The light curves resemble those of SN 2011kl, recently shown to be associated with an ultra-long-duration gamma ray burst (GRB), though no GRB was seen to accompany our SNe. The rapid rise to a luminous peak places these events in a unique part of SN phase space, challenging standard SN emission mechanisms. Spectra of the PTF event formally classify it as a Type II SN due to broad Halpha emission, but an unusual absorption feature, which can be interpreted as either high velocity Halpha (though deeper than in previously known cases) or Si II (as seen in Type Ia SNe), is also observed. We find that existing models of white dwarf detonations, CSM interaction, shock breakout in a wind (or steeper CSM) and magnetar spindown can not r...

  19. Type Ibn Supernovae Show Photometric Homogeneity and Evidence for Two Spectral Subclasses

    CERN Document Server

    Hosseinzadeh, Griffin; Valenti, Stefano; McCully, Curtis; Howell, D Andrew; Johansson, Joel; Sollerman, Jesper; Pastorello, Andrea; Benetti, Stefano; Cao, Yi; Cenko, S Bradley; Clubb, Kelsey; Corsi, Alessandra; Duggan, Gina; Elias-Rosa, Nancy; Filippenko, Alexei V; Fox, Ori D; Fremling, Christoffer; Horesh, Assaf; Karamehmetoglu, Emir; Kasliwal, Mansi; Marion, G H; Ofek, Eran; Sand, David; Taddia, Francesco; Zheng, WeiKang; Fraser, Morgan; Gal-Yam, Avishay; Inserra, Cosimo; Laher, Russ; Masci, Frank; Rebbapragada, Umaa; Smartt, Stephen; Smith, Ken W; Sullivan, Mark; Surace, Jason; Wozniak, Przemek

    2016-01-01

    Type Ibn supernovae are a small yet intriguing class of explosions whose spectra are characterized by low-velocity helium emission lines with little to no evidence for hydrogen. The prevailing theory has been that these are the core-collapse explosions of very massive stars embedded in helium-rich circumstellar material. We report optical observations of six new Type Ibn supernovae: PTF11rfh, PTF12ldy, iPTF14aki, iPTF15ul, SN 2015G, and iPTF15akq. This brings the sample size of such objects in the literature to 22. We also report new data, including a near-infrared spectrum, on the Type Ibn SN 2015U. In order to characterize the class as a whole, we analyze the photometric and spectroscopic properties of the full Type Ibn sample. We find that, despite the expectation that CSM interaction would generate a heterogeneous set of light curves, as seen in Type IIn supernovae, most Type Ibn light curves are quite similar in shape, declining at rates around 0.1 mag/day during the first month after maximum light. Earl...

  20. PTF 13efv - An outburst 500 days prior to the SNHunt 275 explosion and its radiative efficiency

    CERN Document Server

    Ofek, E O; Shaviv, N J; Duggan, G; Strotjohann, N -L; Rubin, A; Kulkarni, S R; Gal-Yam, A; Sullivan, M; Cao, Y; Nugent, P E; Kasliwal, M M; Sollerman, J; Fransson, C; Filippenko, A V; Perley, D A; Yaron, O; Laher, R

    2016-01-01

    The progenitors of some supernovae (SNe) exhibit outbursts with super-Eddington luminosities prior to their final explosions. This behavior is common among Type IIn SNe, but the driving mechanisms of these precursors are not yet well understood. SNHunt 275 was announced as a possible new SN during May 2015. Here we report on pre-explosion observations of the location of this event by the Palomar Transient Factory (PTF) and report the detection of a precursor about 500 days prior to the 2015 May activity (PTF 13efv). The observed velocities in the 2015 transient and its 2013 precursor absorption spectra are low (1000-2000 km/s), so it is not clear yet if the recent activity indeed marks the final disruption of the progenitor. Regardless of the nature of this event, we use the PTF photometric and spectral observations, as well as Swift-UVOT observations, to constrain the efficiency of the radiated energy relative to the total kinetic energy of the precursor. We find that, using an order-of-magnitude estimate an...

  1. Fermi-LAT Discovery of GeV Gamma-ray Emission from the Young Supernova Remnant Cassiopeia A

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A.A.

    2011-08-19

    We report on the first detection of GeV high-energy gamma-ray emission from a young supernova remnant with the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope. These observations reveal a source with no discernible spatial extension detected at a significance level of 12.2{sigma} above 500 MeV at a location that is consistent with the position of the remnant of the supernova explosion that occurred around 1680 in the Cassiopeia constellation - Cassiopeia A. The gamma-ray flux and spectral shape of the source are consistent with a scenario in which the gamma-ray emission originates from relativistic particles accelerated in the shell of this remnant. The total content of cosmic rays (electrons and protons) accelerated in Cas A can be estimated as W{sub CR} {approx_equal} (1-4) x 10{sup 49} erg thanks to the well-known density in the remnant assuming that the observed gamma-ray originates in the SNR shell(s). The magnetic field in the radio-emitting plasma can be robustly constrained as B {ge} 0.1 mG, providing new evidence of the magnetic field amplification at the forward shock and the strong field in the shocked ejecta.

  2. On the Early-Time Excess Emission in Hydrogen-Poor Superluminous Supernovae

    Science.gov (United States)

    Vreeswijk, Paul M.; Leloudas, Giorgos; Gal-Yam, Avishay; De Cia, Annalisa; Perley, Daniel A.; Quimby, Robert M.; Waldman, Roni; Sullivan, Mark; Yan, Lin; Ofek, Eran O.; hide

    2017-01-01

    We present the light curves of the hydrogen-poor super-luminous supernovae (SLSNe I) PTF 12dam and iPTF 13dcc, discovered by the (intermediate) Palomar Transient Factory. Both show excess emission at early times and a slowly declining light curve at late times. The early bump in PTF 12dam is very similar in duration (approximately 10 days) and brightness relative to the main peak (23 mag fainter) compared to that observed in other SLSNe I. In contrast, the long-duration (greater than 30 days) early excess emission in iPTF 13dcc, whose brightness competes with that of the main peak, appears to be of a different nature. We construct bolometric light curves for both targets, and fit a variety of light-curve models to both the early bump and main peak in an attempt to understand the nature of these explosions. Even though the slope of the late-time decline in the light curves of both SLSNe is suggestively close to that expected from the radioactive decay of 56Ni and 56Co, the amount of nickel required to power the full light curves is too large considering the estimated ejecta mass. The magnetar model including an increasing escape fraction provides a reasonable description of the PTF 12dam observations. However, neither the basic nor the double-peaked magnetar model is capable of reproducing the light curve of iPTF 13dcc. A model combining a shock breakout in an extended envelope with late-time magnetar energy injection provides a reasonable fit to the iPTF 13dcc observations. Finally, we find that the light curves of both PTF 12dam and iPTF 13dcc can be adequately fit with the model involving interaction with the circumstellar medium.

  3. VLA and Swift XRT Observations of PTF12os in NGC 5806

    Science.gov (United States)

    Stockdale, C. J.; Immler, S.; Horesh, A.; Kasliwal, M.; Ryder, S. D.; Weiler, K. W.; Van Dyk, S. D.; Panagia, N.; Bauer, F. E.; Marcaide, J. M.; Pooley, D.; Sramek, R. A.; Williams, C. L.

    2012-01-01

    We report the detection of radio emission near the position of the type-IIb supernova PTF2012os (ATEL #3881) with the Karl G. Jansky Very Large Array radio telescope in the DnC configuration: A flux density of 0.44 ± 0.05 mJy was measured at 5.02 GHz (wavelength 6.0 cm) on 2012 Jan. 22.42 UT. The measured position of the radio emission of R.A. = 14h59m59.s12, Decl. = +01d53m23s.3, equinox 2000.0 is in good agreement with the measured optical position of (ending digits) R.A.

  4. PTF11agg AS THE FIRST EVIDENCE FOR REVERSE SHOCK EMISSION FROM A POST-MERGER MILLISECOND MAGNETAR

    Energy Technology Data Exchange (ETDEWEB)

    Wang Lingjun; Dai Zigao, E-mail: dzg@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing (China)

    2013-09-10

    Based on the stiff equations of state of neutron stars (NS) and the discovery of high-mass NSs, it is highly probable that a NS-NS merger will result in a rapidly rotating massive magnetar. The central magnetar will dissipate its rotational energy to the outflow by injecting Poynting flux, which will become lepton-dominated so that a long-lasting reverse shock (RS) develops. We calculate the emission of the RS as well as the emission of forward shock (FS) and find that, in most cases, the RS emission is stronger than FS emission. It is found that the recently discovered transient, PTF11agg, can be neatly accounted for by the RS emission powered by a millisecond magnetar. Other alternative models have been considered and cannot explain the observed light curves well. We therefore suggest that PTF11agg is the first evidence for RS emission from a post-merger millisecond magnetar.

  5. Progress on multi-waveband observations of supernova remnants

    OpenAIRE

    Yang, Xuejuan; Lu, Fangjun; Tian, Wenwu

    2008-01-01

    The development of observational techniques has inriched our knowledge of supernova remnants. In this paper, we review the main progresses in the last decade, including new discoveries of supernova remnants and the associated (rare type of) pulsars, nucleosynthesis, the interaction between supernova remnants and molecular clouds, dust in the supernova remnants, shock physics, and cosmic ray accelerations.

  6. Supernova detection

    Energy Technology Data Exchange (ETDEWEB)

    Nakahata, Masayuki [Kamioka Observatory, Institute for Cosmic Ray research, University of Tokyo, Higashi-Mozumi, Kamioka-cho, Hida-shi, Gifu, Japan, 506-1205 (Japan)], E-mail: nakahata@suketto.icrr.u-tokyo.ac.jp

    2008-11-01

    The detection of supernova neutrinos is reviewed, focusing on the current status of experiments to detect supernova burst neutrinos and supernova relic neutrinos. The capabilities of each detector currently operating and in development are assessed and the likely neutrino yield for a future supernova is estimated. It is expected that much more information will be obtained if a supernova burst were to occur in our Galaxy than was obtained for supernova SN1987A. The detection of supernova relic neutrinos is considered and it is concluded that a large volume detector with a neutron tagging technique is necessary.

  7. Discovery of new TeV supernova remnant shells in the Galactic plane with H.E.S.S

    CERN Document Server

    Gottschall, D; Deil, C; Djannati-Atai, A; Donath, A; Eger, P; Marandon, V; Maxted, N; Pühlhofer, G; Renaud, M; Sasaki, M; Terrier, R; Vink, J

    2016-01-01

    Supernova remnants (SNRs) are prime candidates for efficient particle acceleration up to the knee in the cosmic ray particle spectrum. In this work we present a new method for a systematic search for new TeV-emitting SNR shells in 2864 hours of H.E.S.S. phase I data used for the H.E.S.S. Galactic Plane Survey. This new method, which correctly identifies the known shell morphologies of the TeV SNRs covered by the survey, HESS J1731-347, RX 1713.7-3946, RCW 86, and Vela Junior, reveals also the existence of three new SNR candidates. All three candidates were extensively studied regarding their morphological, spectral, and multi-wavelength (MWL) properties. HESS J1534-571 was associated with the radio SNR candidate G323.7-1.0, and thus is classified as an SNR. HESS J1912+101 and HESS J1614-518, on the other hand, do not have radio or X-ray counterparts that would permit to identify them firmly as SNRs, and therefore they remain SNR candidates, discovered first at TeV energies as such. Further MWL follow up obser...

  8. SN 2011dh: DISCOVERY OF A TYPE IIb SUPERNOVA FROM A COMPACT PROGENITOR IN THE NEARBY GALAXY M51

    Energy Technology Data Exchange (ETDEWEB)

    Arcavi, Iair; Gal-Yam, Avishay; Yaron, Ofer; Sternberg, Assaf; Rabinak, Itay; Waxman, Eli [Department of Particle Physics and Astrophysics, The Weizmann Institute of Science, Rehovot 76100 (Israel); Kasliwal, Mansi M.; Quimby, Robert M.; Ofek, Eran O.; Horesh, Assaf; Kulkarni, Shrinivas R. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Filippenko, Alexei V.; Silverman, Jeffrey M.; Cenko, S. Bradley; Li, Weidong; Bloom, Joshua S.; Nugent, Peter E.; Poznanski, Dovi [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Sullivan, Mark [Department of Physics (Astrophysics), University of Oxford, Keble Road, Oxford, OX1 3RH (United Kingdom); Gorbikov, Evgeny, E-mail: iair.arcavi@weizmann.ac.il [The Wise Observatory and the Raymond and Beverly Sackler School of Physics and Astronomy, the Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); and others

    2011-12-15

    On 2011 May 31 UT a supernova (SN) exploded in the nearby galaxy M51 (the Whirlpool Galaxy). We discovered this event using small telescopes equipped with CCD cameras and also detected it with the Palomar Transient Factory survey, rapidly confirming it to be a Type II SN. Here, we present multi-color ultraviolet through infrared photometry which is used to calculate the bolometric luminosity and a series of spectra. Our early-time observations indicate that SN 2011dh resulted from the explosion of a relatively compact progenitor star. Rapid shock-breakout cooling leads to relatively low temperatures in early-time spectra, compared to explosions of red supergiant stars, as well as a rapid early light curve decline. Optical spectra of SN 2011dh are dominated by H lines out to day 10 after explosion, after which He I lines develop. This SN is likely a member of the cIIb (compact IIb) class, with progenitor radius larger than that of SN 2008ax and smaller than the eIIb (extended IIb) SN 1993J progenitor. Our data imply that the object identified in pre-explosion Hubble Space Telescope images at the SN location is possibly a companion to the progenitor or a blended source, and not the progenitor star itself, as its radius ({approx}10{sup 13} cm) would be highly inconsistent with constraints from our post-explosion spectra.

  9. Discovery of supernova remnants in the Sino-German 6cm polarization survey of the Galactic plane

    CERN Document Server

    Gao, X Y; Han, J L; Reich, W; Reich, P; Wielebinski, R

    2013-01-01

    The Sino-German 6cm polarization survey has mapped in total intensity and polarization intensity over an area of approximately 2200 square degrees in the Galactic disk. This survey provides an opportunity to search for Galactic supernova remnants (SNRs) that were previously unknown. We discovered the new SNRs G178.2-4.2 and G25.1-2.3 which have non-thermal spectra, using the 6cm data together with the observations with the Effelsberg telescope at 11 cm and 21 cm. Both G178.2-4.2 and G25.1-2.3 are faint and have an apparent diameter greater than 1deg. G178.2-4.2 shows a polarized shell. HI data suggest that G25.1-2.3 might have a distance of about 3 kpc. The 6cm survey data were also very important to identify two other new SNRs, G152.4-2.1 and G190.9-2.2.

  10. Discovery of a pre-existing molecular filament associated with supernova remnant G127.1+0.5

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xin; Yang, Ji; Fang, Min; Su, Yang, E-mail: xinzhou@pmo.ac.cn [Purple Mountain Observatory, CAS, 2 West Beijing Road, Nanjing 210008 (China)

    2014-08-20

    We performed millimeter observations in CO lines toward the supernova remnant (SNR) G127.1+0.5. We found a molecular filament at 4-13 km s{sup –1} consisting of two distinct parts: a straight part coming out of the remnant region and a curved part in the remnant region. The curved part is coincides well with the bright SNR shell detected in 1420 MHz radio continuum and mid-infrared observations in the northeastern region. In addition, redshifted line wing broadening is found only in the curved part of the molecular filament, which indicates a physical interaction. These provide strong evidences, for the first time, to confirm the association between an SNR and a pre-existing long molecular filament. Multi-band observations in the northeastern remnant shell could be explained by the interaction between the remnant shock and the dense molecular filament. RADEX radiative transfer modeling of the quiet and shocked components yield physical conditions consistent with the passage of a non-dissociative J-type shock. We argue that the curved part of the filament is fully engulfed by the remnant's forward shock. A spatial correlation between aggregated young stellar objects (YSOs) and the adjacent molecular filament close to the SNR is also found, which could be related to the progenitor's activity.

  11. Optical discovery and multiwavelength investigation of supernova remnant MCSNR J0512-6707 in the Large Magellanic Cloud

    CERN Document Server

    Reid, Warren A; Bozzetto, Luke M; Parker, Quentin A; Filipovic, Miroslav D

    2015-01-01

    We present optical, radio and X-ray data that confirm a new supernova remnant (SNR) in the Large Magellanic Cloud (LMC) discovered using our deep H-alpha imagery. Optically, the new SNR has a somewhat filamentary morphology and a diameter of 56 x 64 arcsec (13.5 x 15.5 pc at the 49.9 kpc distance of the LMC). Spectroscopic follow-up of multiple regions show high [SII]/H-alpha emission-line ratios ranging from 0.66+/-0.02 to 0.93+/-0.01, all of which are typical of an SNR. We found radio counterparts for this object using our new Australia Telescope Compact Array (ATCA) 6cm pointed observations as well as a number of available radio surveys at 8 640 MHz, 4 850 MHz, 1 377 MHz and 843 MHz. With these combined data we provide a spectral index (alpha) = -0.5 between 843 and 8640 MHz. Both spectral line analysis and the magnetic field strength, ranging from 124 - 184 mG, suggest a dynamical age between 2,200 and 4,700 yrs. The SNR has a previously catalogued X-ray counterpart listed as HP 483 in the ROSAT Position ...

  12. Optical Variability of AGNs in the PTF/iPTF Survey

    Science.gov (United States)

    Caplar, Neven; Lilly, Simon J.; Trakhtenbrot, Benny

    2017-01-01

    We characterize the optical variability of quasars in the Palomar Transient Factory and intermediate Palomar Transient Factory (PTF/iPTF) surveys. We re-calibrate the r-band light curves for ∼28,000 luminous, broad-line active galactic nuclei from the SDSS, producing a total of ∼2.4 million photometric data points. We utilize both the structure function (SF) and power spectrum density (PSD) formalisms to search for links between the optical variability and the physical parameters of the accreting supermassive black holes that power the quasars. The excess variance (SF2) of the quasar sample tends to zero at very short time separations, validating our re-calibration of the time-series data. We find that the the amplitude of variability at a given time-interval, or equivalently the timescale of variability to reach a certain amplitude, is most strongly correlated with luminosity with weak or no dependence on black hole mass and redshift. For a variability level of SF(τ) = 0.07 mag, the timescale has a dependency of τ \\propto {L}0.4. This is broadly consistent with the expectation from a simple Keplerian accretion disk model, which provides τ \\propto {L}0.5. The PSD analysis also reveals that many quasar light curves are steeper than a damped random walk. We find a correlation between the steepness of the PSD slopes, specifically the fraction of slopes steeper than 2.5, and black hole mass, although we cannot exclude the possibility that luminosity or Eddington ratio are the drivers of this effect. This effect is also seen in the SF analysis of the (i)PTF data, and in a PSD analysis of quasars in the SDSS Stripe 82.

  13. Discovery of Broad Molecular lines and of Shocked Molecular Hydrogen from the Supernova Remnant G357.7+0.3: HHSMT, APEX, Spitzer and SOFIA Observations

    CERN Document Server

    Rho, J; Hewitt, J; Andersen, M; Reach, W T; Guesten, R

    2016-01-01

    We report a discovery of shocked gas from the supernova remnant (SNR) G357.7+0.3. Our millimeter and submillimeter observations reveal broad molecular lines of CO(2-1), CO(3-2), CO(4-3), 13CO (2-1) and 13CO (3-2), HCO^+ and HCN using HHSMT, Arizona 12-Meter Telescope, APEX and MOPRA Telescope. The widths of the broad lines are 15-30 kms, and the detection of such broad lines is unambiguous, dynamic evidence showing that the SNR G357.7+0.3 is interacting with molecular clouds. The broad lines appear in extended regions (>4.5'x5'). We also present detection of shocked H2 emission in mid-infrared but lacking ionic lines using the Spitzer IRS observations to map a few arcmin area. The H2 excitation diagram shows a best-fit with a two-temperature LTE model with the temperatures of ~200 and 660 K. We observed [C II] at 158um and high-J CO(11-10) with the GREAT on SOFIA. The GREAT spectrum of [C II], a 3 sigma detection, shows a broad line profile with a width of 15.7 km/s that is similar to those of broad CO molecu...

  14. Discovery of a 105 ms X-ray Pulsar in Kesteven 79: On the Nature of Compact Central Objects in Supernova Remnants

    CERN Document Server

    Gotthelf, E V; Seward, F D

    2003-01-01

    We report the discovery of 105-ms X-ray pulsations from the compact central object (CCO) in the supernova remnant Kes 79 using data acquired with the Newton X-Ray Multi-Mirror Mission. Two observations of the pulsar taken 6 days apart yield an upper limit on its spin-down rate of dP/dt 24 kyr. The latter exceeds the remnant's estimated age, suggesting that the pulsar was born spinning near its current period. The X-ray spectrum of PSR J1852+0040 is best characterized by a blackbody model of temperature kT_BB = 0.44 +/- 0.03 keV, radius R_BB approx. 0.9 km, and L_bol = 3.7E33 ergs/s at d = 7.1 kpc. The sinusoidal light curve is modulated with a pulsed fraction of >45%, suggestive of a small hot spot on the surface of the rotating neutron star. The lack of a discernible pulsar wind nebula is consistent with an interpretation of PSR J1852+0040 as a rotation-powered pulsar whose spin-down luminosity falls below the empirical threshold for generating bright wind nebulae, dE/dt_c approx. 4E36 ergs/s. The age discr...

  15. DISCOVERY OF X-RAY EMISSION FROM THE GALACTIC SUPERNOVA REMNANT G32.8-0.1 WITH SUZAKU

    Energy Technology Data Exchange (ETDEWEB)

    Bamba, Aya; Sawada, Makoto [Department of Physics and Mathematics, Aoyama Gakuin University 5-10-1 Fuchinobe Chuo-ku, Sagamihara, Kanagawa 252-5258 (Japan); Terada, Yukikatsu [Department of Physics, Science, Saitama University, Sakura, Saitama 338-8570 (Japan); Hewitt, John; Petre, Robert; Angelini, Lorella [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Safi-Harb, Samar [Department of Physics and Astronomy, University of Manitoba, Winnipeg MB R3T 2N2 (Canada); Zhou, Ping [Department of Astronomy, Nanjing University, Nanjing 210093 (China); Bocchino, Fabrizio [INAF—Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90134, Palermo (Italy)

    2016-02-10

    We present the first dedicated X-ray study of the supernova remnant (SNR) G32.8−0.1 (Kes 78) with Suzaku. X-ray emission from the whole SNR shell has been detected for the first time. The X-ray morphology is well correlated with the emission from the radio shell, while anti-correlated with the molecular cloud found in the SNR field. The X-ray spectrum shows not only conventional low-temperature (kT ∼ 0.6 keV) thermal emission in a non-equilibrium ionization state, but also a very high-temperature (kT ∼ 3.4 keV) component with a very low ionization timescale (∼2.7 × 10{sup 9} cm{sup −3} s), or a hard nonthermal component with a photon index Γ ∼ 2.3. The average density of the low-temperature plasma is rather low, of the order of 10{sup −3}–10{sup −2} cm{sup −3}, implying that this SNR is expanding into a low-density cavity. We discuss the X-ray emission of the SNR, also detected in TeV with H.E.S.S., together with multi-wavelength studies of the remnant and other gamma-ray emitting SNRs, such as W28 and RCW 86. Analysis of a time-variable source, 2XMM J185114.3−000004, found in the northern part of the SNR, is also reported for the first time. Rapid time variability and a heavily absorbed hard-X-ray spectrum suggest that this source could be a new supergiant fast X-ray transient.

  16. Low-Cost Planar PTF Sensors for the Identity Verification of Smartcard Holders

    NARCIS (Netherlands)

    Henderson, N.J.; Papakostas, T.V.; White, N.M.; Hartel, P.H.

    2002-01-01

    The properties of mechanical flexibility, low-cost and planar geometry make polymer thick film (PTF) sensors attractive for embedded smartcard biometrics. PTF piezoelectric and piezoresistive pressure sensors are investigated for their potential to capture spatial human characteristics. However, it

  17. Optical variability of AGN in the PTF/iPTF survey

    CERN Document Server

    Caplar, Neven; Trakhtenbrot, Benny

    2016-01-01

    We characterize the optical variability of quasars in the intermediate Palomar Transient Factory (iPTF) and Palomar Transient Factory (PTF) surveys. We re-calibrate the $r$-band light curves for $\\sim$28,000 luminous, broad-line AGNs from the SDSS, producing a total of $\\sim$2.4 million photometric data points. We utilize both the structure function (SF) and power spectrum density (PSD) formalisms to search for links between the optical variability and the physical parameters of the accreting supermassive black holes that power the quasars. The excess variance (SF$^{2}$) of the quasar sample tends to zero at very short time separations, validating our re-calibration of the time-series data. We find that the the amplitude of variability at a given time-interval, or equivalently the time-scale of variability to reach a certain amplitude, is most strongly correlated with luminosity with weak or no dependence on black hole mass and redshift. For a variability level of SF($\\tau$)=0.07 mag, the time-scale has a dep...

  18. Revealing the binary origin of Type Ic superluminous supernovae through nebular hydrogen emission

    CERN Document Server

    Moriya, Takashi J; Mackey, Jonathan; Chen, Ting-Wan; Langer, Norbert

    2015-01-01

    We propose that nebular Halpha emission as detected in the Type Ic superluminous supernova iPTF13ehe stems from matter which is stripped from a companion star when the supernova ejecta collide with it. The temporal evolution, the line broadening, and the overall blueshift of the emission are consistent with this interpretation. We scale the nebular Halpha luminosity predicted for Type Ia supernovae in single-degenerate systems to derive the stripped mass required to explain the Halpha luminosity of iPTF13ehe. We find a stripped mass of 0.1 - 0.9 solar masses, assuming that the supernova luminosity is powered by radioactivity or magnetar spin down. Because a central heating source is required to excite the Halpha emission, an interaction-powered model is not favored for iPTF13ehe. We derive a companion mass of more than 20 solar masses and a binary separation of less than about 20 companion radii based on the stripping efficiency during the collision, indicating that the supernova progenitor and the companion ...

  19. An Intermediate Type Ia Supernova Between Normal And Super-Chandrasekhar

    CERN Document Server

    Cao, Yi; Nugent, Peter E; Goobar, A; Nordin, Jakob; Kulkarni, S R; Cenko, S Bradley; Fox, Ori; Kasliwal, Mansi M; Fremling, C; Amanullah, R; Hsiao, E Y; Perley, D A; Bue, Brian D; Masci, Frank J; Lee, William H; Chotard, Nicolas

    2016-01-01

    While recent observations provide evidence that super-Chandrasekhar Type Ia supernovae and at least a fraction of normal Type Ia supernovae probably originate from double-degenerate systems, these two subclasses show distinct characteristics observationally. Here we report an intermediate supernova iPTF13asv that may bridge this gap. On the one hand, similar to normal Type Ia supernovae, the over-luminous iPTF13asv follows the empirical relation between the peak magnitude, the lightcurve shape and its intrinsic color, and shows a near-IR secondary maximum like normal supernovae. On the other hand, similar to super-Chandrasekhar events, it has strong UV emission around maximum, low expansion velocities and persistent carbon absorption. We estimate a $^{56}$Ni mass of $0.81^{+0.10}_{-0.18}M_\\odot$ and a total ejecta mass of $1.44^{+0.44}_{-0.12}M_\\odot$. Despite these similarities, iPTF13asv lacks iron absorption in its early-phase spectra, indicating a stratified ejecta structure with weak mixing. Based on the...

  20. VizieR Online Data Catalog: Imaging observations of iPTF 13ajg (Vreeswijk+, 2014)

    Science.gov (United States)

    Vreeswijk, P. M.; Savaglio, S.; Gal-Yam, A.; De Cia, A.; Quimby, R. M.; Sullivan, M.; Cenko, S. B.; Perley, D. A.; Filippenko, A. V.; Clubb, K. I.; Taddia, F.; Sollerman, J.; Leloudas, G.; Arcavi, I.; Rubin, A.; Kasliwal, M. M.; Cao, Y.; Yaron, O.; Tal, D.; Ofek, E. O.; Capone, J.; Kutyrev, A. S.; Toy, V.; Nugent, P. E.; Laher, R.; Surace, J.; Kulkarni, S. R.

    2017-08-01

    iPTF 13ajg was imaged with the Palomar 48 inch (P48) Oschin iPTF survey telescope equipped with a 12kx8k CCD mosaic camera (Rahmer et al. 2008SPIE.7014E..4YR) in the Mould R filter, the Palomar 60 inch and CCD camera (Cenko et al. 2006PASP..118.1396C) in Johnson B and Sloan Digital Sky Survey (SDSS) gri, the 2.56 m Nordic Optical Telescope (on La Palma, Canary Islands) with the Andalucia Faint Object Spectrograph and Camera (ALFOSC) in SDSS ugriz, the 4.3 m Discovery Channel Telescope (at Lowell Observatory, Arizona) with the Large Monolithic Imager (LMI) in SDSS r, and with LRIS (Oke et al. 1995PASP..107..375O) and the Multi-Object Spectrometer for Infrared Exploration (MOSFIRE; McLean et al. 2012SPIE.8446E..0JM), both mounted on the 10 m Keck-I telescope (on Mauna Kea, Hawaii), in g and Rs with LRIS and J and Ks with MOSFIRE. (1 data file).

  1. Discovery of a z = 0.65 post-starburst BAL quasar in the DES supernova fields

    Science.gov (United States)

    Mudd, Dale; Martini, Paul; Tie, Suk Sien; Lidman, Chris; McMahon, Richard; Banerji, Manda; Davis, Tamara; Peterson, Bradley; Sharp, Rob; Seymour, Nicholas; Childress, Michael; Lewis, Geraint; Tucker, Brad; Yuan, Fang; Abbot, Tim; Abdalla, Filipe; Allam, Sahar; Benoit-Lévy, Aurélien; Bertin, Emmanuel; Brooks, David; Camero Rosell, A.; Carrasco Kind, Matias; Carretero, Jorge; da Costa, Luiz N.; Desai, Shantanu; Diehl, Thomas; Eifler, Tim; Finley, David; Flaugher, Brenna; Glazebrook, Karl; Gruen, Daniel; Gruendl, Robert; Gutierrez, Gaston; Hinton, Samuel; Honscheid, Klaus; James, David; Kuehn, Kyler; Kuropatkin, Nikolav; Macaulay, Edward; Maia, Marcio A. G.; Miquel, Ramon; Ogando, Ricardo; Plazas, Andres; Riel, Kevin; Sanchez, Eusebio; Santiago, Basillio; Schubnell, Michael; Sevilla-Noarbe, Ignacio; Smith, Robert C.; Soares-Santos, Marcelle; Sobreira, Flavia; Suchyta, Eric; Swanson, Molly; Tarle, Gregory; Thomas, Daniel; Uddin, Syed; Walker, Alistair; Zhang, Bonnie

    2017-07-01

    We present the discovery of a z = 0.65 low-ionization broad absorption line (LoBAL) quasar in a post-starburst galaxy in data from the Dark Energy Survey (DES) and spectroscopy from the Australian Dark Energy Survey (OzDES). LoBAL quasars are a minority of all BALs, and rarer still is that this object also exhibits broad Fe II (an FeLoBAL) and Balmer absorption. This is the first BAL quasar that has signatures of recently truncated star formation, which we estimate ended about 40 Myr ago. The characteristic signatures of an FeLoBAL require high column densities, which could be explained by the emergence of a young quasar from an early, dust-enshrouded phase, or by clouds compressed by a blast wave. The age of the starburst component is comparable to estimates of the lifetime of quasars, so if we assume the quasar activity is related to the truncation of the star formation, this object is better explained by the blast wave scenario.

  2. Discovery of a z=0.65 Post-Starburst BAL Quasar in the DES Supernova Fields

    CERN Document Server

    Mudd, Dale; Tie, Suk Sien; Lidman, Chris; McMahon, Richard; Banerji, Manda; Davis, Tamara; Peterson, Bradley; Sharp, Rob; Childress, Michael; Lewis, Geraint; Tucker, Brad; Yuan, Fang; Abbot, Tim; Abdalla, Filipe; Allam, Sahar; Benoit-Levy, Aurelien; Bertin, Emmanuel; Brooks, David; Rosell, A Camero; Kind, Matias Carrasco; Carretero, Jorge; da Costa, Luiz N; Desai, Shantanu; Diehl, Thomas; Eifler, Tim; Finley, David; Flaugher, Brenna; Glazebrook, Karl; Gruen, Daniel; Gruendl, Robert; Gutierrez, Gaston; Hinton, Samuel; Honscheid, Klaus; James, David; Kuehn, Kyler; Kuropatkin, Nikolav; Macaulay, Edward; Maia, M A G; Miquel, Ramon; Ogando, Ricardo; Plazas, Andres; Riel, Kevin; Sanchez, Eusebio; Santiago, Basillio; Schubnell, Michael; Sevilla-Noarbe, Ignacio; Smith, R C; Soares-Santos, Marcelle; Sobreira, Flavia; Suchyta, Eric; Swanson, Molly; Tarle, Gregory; Thomas, Daniel; Uddin, Sved; Walker, Alistair; Zhang, Bonnie

    2016-01-01

    We present the discovery of a z=0.65 low-ionization broad absorption line (LoBAL) quasar in a post-starburst galaxy in data from the Dark Energy Survey (DES) and spectroscopy from the Australian Dark Energy Survey (OzDES). LoBAL quasars are a minority of all BALs, and rarer still is that this object also exhibits broad FeII (an FeLoBAL) and Balmer absorption. This is the first BAL quasar that has signatures of recently truncated star formation, which we estimate ended about 40 Myr ago. The characteristic signatures of an FeLoBAL require high column densities, which could be explained by the emergence of a young quasar from an early, dust-enshrouded phase, or by clouds compressed by a blast wave. The age of the starburst component is comparable to estimates of the lifetime of quasars, so if we assume the quasar activity is related to the truncation of the star formation, this object is better explained by the blast wave scenario.

  3. Discovery of a z=0.65 Post-Starburst BAL Quasar in the DES Supernova Fields

    Energy Technology Data Exchange (ETDEWEB)

    Mudd, Dale; et al.

    2016-06-08

    We present the discovery of a z=0.65 low-ionization broad absorption line (LoBAL) quasar in a post-starburst galaxy in data from the Dark Energy Survey (DES) and spectroscopy from the Australian Dark Energy Survey (OzDES). LoBAL quasars are a minority of all BALs, and rarer still is that this object also exhibits broad FeII (an FeLoBAL) and Balmer absorption. This is the first BAL quasar that has signatures of recently truncated star formation, which we estimate ended about 40 Myr ago. The characteristic signatures of an FeLoBAL require high column densities, which could be explained by the emergence of a young quasar from an early, dust-enshrouded phase, or by clouds compressed by a blast wave. The age of the starburst component is comparable to estimates of the lifetime of quasars, so if we assume the quasar activity is related to the truncation of the star formation, this object is better explained by the blast wave scenario.

  4. Discovery of a Highly Energetic X-Ray Pulsar Powering HESS J1813-178 in the Young Supernova Remnant G12.82-0.02

    Science.gov (United States)

    Gotthelf, E. V.; Halpern, J. P.

    2009-08-01

    We report the discovery of 44.7 ms pulsations from the X-ray source CXOU J181335.1-174957 using data obtained with the XMM-Newton Observatory. PSR J1813-1749 lies near the center of the young radio supernova remnant G12.82-0.02, which overlaps the compact TeV source HESS J1813-178. This rotation-powered pulsar is the second most energetic in the Galaxy, with a spin-down luminosity of \\dot{E} = (6.8± 2.7) × 10^{37} erg s-1. In the rotating dipole model, the surface dipole magnetic field strength is Bs = (2.7 ± 0.6) × 1012 G and the spin-down age τ_c ≡ P/2\\dot{P} = 3.3-7.5 kyr, consistent with the location in the small, shell-type radio remnant. At an assumed distance of 4.7 kpc by association with an adjacent young stellar cluster, the efficiency of PSR J1813-1749 in converting spin-down luminosity to radiation is ≈0.03% for its 2-10 keV flux, ≈0.1% for its 20-100 keV INTEGRAL flux, and ≈0.07% for the >200 GeV emission of HESS J1813-178, making it a likely power source for the latter. The nearby young stellar cluster is possibly the birthplace of the pulsar progenitor, as well as an additional source of seed photons for inverse Compton scattering to TeV energies.

  5. Supernova VLBI

    Science.gov (United States)

    Bartel, N.

    2009-08-01

    We review VLBI observations of supernovae over the last quarter century and discuss the prospect of imaging future supernovae with space VLBI in the context of VSOP-2. From thousands of discovered supernovae, most of them at cosmological distances, ˜50 have been detected at radio wavelengths, most of them in relatively nearby galaxies. All of the radio supernovae are Type II or Ib/c, which originate from the explosion of massive progenitor stars. Of these, 12 were observed with VLBI and four of them, SN 1979C, SN 1986J, SN 1993J, and SN 1987A, could be imaged in detail, the former three with VLBI. In addition, supernovae or young supernova remnants were discovered at radio wavelengths in highly dust-obscured galaxies, such as M82, Arp 299, and Arp 220, and some of them could also be imaged in detail. Four of the supernovae so far observed were sufficiently bright to be detectable with VSOP-2. With VSOP-2 the expansion of supernovae can be monitored and investigated with unsurpassed angular resolution, starting as early as the time of the supernova's transition from its opaque to transparent stage. Such studies can reveal, in a movie, the aftermath of a supernova explosion shortly after shock break out.

  6. PS1-10afx AT z = 1.388: PAN-STARRS1 DISCOVERY OF A NEW TYPE OF SUPERLUMINOUS SUPERNOVA

    Energy Technology Data Exchange (ETDEWEB)

    Chornock, R.; Berger, E.; Milisavljevic, D.; Lunnan, R.; Foley, R. J.; Soderberg, A. M.; Challis, P.; Czekala, I.; Drout, M.; Fong, W.; Kirshner, R. P.; McLeod, B.; Marion, G. H.; Narayan, G. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Rest, A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Smartt, S. J. [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University Belfast, Belfast, BT7 1NN (United Kingdom); Burgasser, A. J. [Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093 (United States); Chomiuk, L. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Huber, M. E. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Leibler, C., E-mail: rchornock@cfa.harvard.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95060 (United States); and others

    2013-04-20

    We present the Pan-STARRS1 discovery of PS1-10afx, a unique hydrogen-deficient superluminous supernova (SLSN) at redshift z = 1.388. The light curve peaked at z{sub P1} = 21.7 mag, making PS1-10afx comparable to the most luminous known SNe, with M{sub u} = -22.3 mag. Our extensive optical and near-infrared observations indicate that the bolometric light curve of PS1-10afx rose on the unusually fast timescale of {approx}12 days to the extraordinary peak luminosity of 4.1 Multiplication-Sign 10{sup 44} erg s{sup -1} (M{sub bol} = -22.8 mag) and subsequently faded rapidly. Equally important, the spectral energy distribution is unusually red for an SLSN, with a color temperature of {approx}6800 K near maximum light, in contrast to previous hydrogen-poor SLSNe, which are bright in the ultraviolet (UV). The spectra more closely resemble those of a normal SN Ic than any known SLSN, with a photospheric velocity of {approx}11, 000 km s{sup -1} and evidence for line blanketing in the rest-frame UV. Despite the fast rise, these parameters imply a very large emitting radius ({approx}> 5 Multiplication-Sign 10{sup 15} cm). We demonstrate that no existing theoretical model can satisfactorily explain this combination of properties: (1) a nickel-powered light curve cannot match the combination of high peak luminosity with the fast timescale; (2) models powered by the spindown energy of a rapidly rotating magnetar predict significantly hotter and faster ejecta; and (3) models invoking shock breakout through a dense circumstellar medium cannot explain the observed spectra or color evolution. The host galaxy is well detected in pre-explosion imaging with a luminosity near L*, a star formation rate of {approx}15 M{sub Sun} yr{sup -1}, and is fairly massive ({approx}2 Multiplication-Sign 10{sup 10} M{sub Sun }), with a stellar population age of {approx}10{sup 8} yr, also in contrast to the young dwarf hosts of known hydrogen-poor SLSNe. PS1-10afx is distinct from known examples of

  7. DISCOVERY OF THE TRANSIENT MAGNETAR 3XMM J185246.6+003317 NEAR SUPERNOVA REMNANT KESTEVEN 79 WITH XMM-NEWTON

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ping; Chen, Yang; Li, Xiang-Dong; Sun, Wei [Department of Astronomy, Nanjing University, Nanjing 210093 (China); Safi-Harb, Samar [Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2 (Canada); Mendez, Mariano [Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen (Netherlands); Terada, Yukikatsu [Graduate School of Science and Engineering, Saitama University, 255 Simo-Ohkubo, Sakura-ku, Saitama 338-8570 (Japan); Ge, Ming-Yu [Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2014-01-20

    We report the serendipitous discovery with XMM-Newton that 3XMM J185246.6+003317 is an 11.56 s X-ray pulsar located 1' away from the southern boundary of supernova remnant Kes 79. The spin-down rate of 3XMM J185246.6+003317 is <1.1 × 10{sup –13} s s{sup –1}, which, together with the long period P = 11.5587126(4) s, indicates a dipolar surface magnetic field of <3.6 × 10{sup 13} G, a characteristic age of >1.7 Myr, and a spin-down luminosity of <2.8 × 10{sup 30} erg s{sup –1}. Its X-ray spectrum is best-fitted with a resonant Compton scattering model and also can be adequately described by a blackbody model. The observations covering a seven-month span from 2008 to 2009 show variations in the spectral properties of the source, with the luminosity decreasing from 2.7 × 10{sup 34} erg s{sup –1} to 4.6 × 10{sup 33} erg s{sup –1}, along with a decrease of the blackbody temperature from kT ≈ 0.8 keV to ≈0.6 keV. The X-ray luminosity of the source is higher than its spin-down luminosity, ruling out rotation as a power source. The combined timing and spectral properties, the non-detection of any optical or infrared counterpart, together with the lack of detection of the source in archival X-ray data prior to the 2008 XMM-Newton observation, point to 3XMM J185246.6+003317 being a newly discovered transient low-B magnetar undergoing an outburst decay during the XMM-Newton observations. The non-detection by Chandra in 2001 sets an upper limit of 4 × 10{sup 32} erg s{sup –1} to the quiescent luminosity of 3XMM J185246.6+003317. Its period is the longest among currently known transient magnetars. The foreground absorption toward 3XMM J185246.6+003317 is similar to that of Kes 79, suggesting a similar distance of ∼7.1 kpc.

  8. Discovery of an X-Ray Synchrotron Nebula Associated with the Radio Pulsar PSR B1853+01 in the Supernova Remnant W44

    Science.gov (United States)

    Harrus, Ilana M.; Hughes, John P.; Helfand, David J.

    1996-06-01

    We report the detection, using data from the Advanced Satellite for Cosmology and Astrophysics (ASCA), of a hard X-ray source in the vicinity of the radio pulsar PSR B1853+01, which is located within the supernova remnant (SNR) W44. PSR B1853+01, a 267 ms pulsar, has to date been detected only in the radio band. Previous observations at soft X-ray energies (e.g., with ROSAT HRI) have failed to detect any significant X-ray emission (pulsed or unpulsed) from the pulsar. In addition, no high-energy emission (>~4 keV) has been detected previously from W44. Over the 0.5--4.0 keV band, the ASCA data show soft thermal emission from W44, with a morphology very similar to that observed earlier by Einstein and ROSAT. In the high-energy band (4.0--9.5 keV), the SNR is, for the most part, invisible, although a source coincident with the position of PSR B1853+01 is evident. The observed ASCA spectra are consistent with a power-law origin (photon index ~2.3) for the X-ray emission from this source at a flux level (flux density ~0.5 mu Jy at 1 keV) consistent with previous upper limits. The maximum allowed size for the source is determined directly from the ASCA data (~30"). Timing analysis of the hard X-ray source failed to detect pulsations at the pulsar's period. Based on these lines of evidence, we conclude that the new hard source in W44 represents an X-ray synchrotron nebula associated with PSR B1853+01, rather than the beamed output of the pulsar itself. This discovery adds W44 to the small group of previously known plerionic SNRs. This nebula lies at the low end of, but is consistent with, the correlation between X-ray luminosity and pulsar spin-down energy loss found for such objects, lending further support to our interpretation.

  9. Aspherical supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Kasen, Daniel Nathan [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    Although we know that many supernovae are aspherical, the exact nature of their geometry is undetermined. Because all the supernovae we observe are too distant to be resolved, the ejecta structure can't be directly imaged, and asymmetry must be inferred from signatures in the spectral features and polarization of the supernova light. The empirical interpretation of this data, however, is rather limited--to learn more about the detailed supernova geometry, theoretical modeling must been undertaken. One expects the geometry to be closely tied to the explosion mechanism and the progenitor star system, both of which are still under debate. Studying the 3-dimensional structure of supernovae should therefore provide new break throughs in our understanding. The goal of this thesis is to advance new techniques for calculating radiative transfer in 3-dimensional expanding atmospheres, and use them to study the flux and polarization signatures of aspherical supernovae. We develop a 3-D Monte Carlo transfer code and use it to directly fit recent spectropolarimetric observations, as well as calculate the observable properties of detailed multi-dimensional hydrodynamical explosion simulations. While previous theoretical efforts have been restricted to ellipsoidal models, we study several more complicated configurations that are tied to specific physical scenarios. We explore clumpy and toroidal geometries in fitting the spectropolarimetry of the Type Ia supernova SN 2001el. We then calculate the observable consequences of a supernova that has been rendered asymmetric by crashing into a nearby companion star. Finally, we fit the spectrum of a peculiar and extraordinarily luminous Type Ic supernova. The results are brought to bear on three broader astrophysical questions: (1) What are the progenitors and the explosion processes of Type Ia supernovae? (2) What effect does asymmetry have on the observational diversity of Type Ia supernovae, and hence their use in cosmology? (3

  10. Aspherical supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Kasen, Daniel Nathan

    2004-05-21

    Although we know that many supernovae are aspherical, the exact nature of their geometry is undetermined. Because all the supernovae we observe are too distant to be resolved, the ejecta structure can't be directly imaged, and asymmetry must be inferred from signatures in the spectral features and polarization of the supernova light. The empirical interpretation of this data, however, is rather limited--to learn more about the detailed supernova geometry, theoretical modeling must been undertaken. One expects the geometry to be closely tied to the explosion mechanism and the progenitor star system, both of which are still under debate. Studying the 3-dimensional structure of supernovae should therefore provide new break throughs in our understanding. The goal of this thesis is to advance new techniques for calculating radiative transfer in 3-dimensional expanding atmospheres, and use them to study the flux and polarization signatures of aspherical supernovae. We develop a 3-D Monte Carlo transfer code and use it to directly fit recent spectropolarimetric observations, as well as calculate the observable properties of detailed multi-dimensional hydrodynamical explosion simulations. While previous theoretical efforts have been restricted to ellipsoidal models, we study several more complicated configurations that are tied to specific physical scenarios. We explore clumpy and toroidal geometries in fitting the spectropolarimetry of the Type Ia supernova SN 2001el. We then calculate the observable consequences of a supernova that has been rendered asymmetric by crashing into a nearby companion star. Finally, we fit the spectrum of a peculiar and extraordinarily luminous Type Ic supernova. The results are brought to bear on three broader astrophysical questions: (1) What are the progenitors and the explosion processes of Type Ia supernovae? (2) What effect does asymmetry have on the observational diversity of Type Ia supernovae, and hence their use in cosmology? (3

  11. Detection of a Type IIn Supernova in Optical Follow-up Observations of IceCube Neutrino Events

    OpenAIRE

    Aartsen, M. G.; Abraham, K; Ackermann, M; Adams, J; Aguilar, J. A.(Département de physique nucléaire et corpusculaire, Université de Genève, 1211, Geneva, Switzerland); Ahlers, M.; Ahrens, M.; Altmann, D; Anderson, T.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.

    2015-01-01

    The IceCube neutrino observatory pursues a follow-up program selecting interesting neutrino events in real-time and issuing alerts for electromagnetic follow-up observations. In March 2012, the most significant neutrino alert during the first three years of operation was issued by IceCube. In the follow-up observations performed by the Palomar Transient Factory (PTF), a Type IIn supernova (SN) PTF12csy was found $0.2^\\circ$ away from the neutrino alert direction, with an error radius of $0.54...

  12. SN 2000cx and SN 2013bh: Extremely Rare, Nearly Twin Type Ia Supernovae

    CERN Document Server

    Silverman, Jeffrey M; Kasliwal, Mansi M; Fox, Ori D; Cao, Yi; Johansson, Joel; Perley, Daniel A; Tal, David; Wheeler, J Craig; Amanullah, Rahman; Arcavi, Iair; Bloom, Joshua S; Gal-Yam, Avishay; Goobar, Ariel; Kulkarni, Shrinivas R; Laher, Russ; Lee, William H; Marion, G H; Nugent, Peter E; Shivvers, Isaac

    2013-01-01

    The Type Ia supernova (SN Ia) SN 2000cx was one of the most peculiar transients ever discovered. While its rise to maximum brightness was typical for a SN Ia, its decline was slower, causing standard light curve fitting algorithms to fail; its spectra indicated a high photospheric temperature. Thirteen years later SN 2013bh (aka iPTF13abc), the first near identical twin of SN 2000cx, was discovered. We obtained optical and near-IR photometry and low-resolution optical spectroscopy of this object from discovery until about 1 month past r-band maximum brightness. The spectra of both objects indicate the presence of iron-group elements (Co II, Ni II, Fe II, Fe III, and high-velocity features [HVFs] of Ti II), intermediate-mass elements (Si II, Si III, and S II), in addition to separate normal velocity features (~12000 km/s) and HVFs (~24000 km/s) of Ca II. Persistent absorption from Fe III and Si III, along with the colour evolution, imply relatively high blackbody temperatures for SNe 2013bh and 2000cx (~12000 ...

  13. iPTF Search for an Optical Counterpart to Gravitational Wave Trigger GW150914

    CERN Document Server

    Kasliwal, M M; Singer, L P; Corsi, A; Cao, Y; Barlow, T; Bhalerao, V; Bellm, E; Cook, D; Duggan, G E; Ferretti, R; Frail, D A; Horesh, A; Kendrick, R; Kulkarni, S R; Lunnan, R; Palliyaguru, N; Laher, R; Masci, F; Manulis, I; Miller, A A; Nugent, P E; Perley, D; Prince, T A; Rana, J; Rebbapragada, U; Sesar, B; Singhal, A; Surace, J; Van Sistine, A

    2016-01-01

    The intermediate Palomar Transient Factory (iPTF) autonomously responded to and promptly tiled the error region of the first gravitational wave event GW150914 to search for an optical counterpart. Only a small fraction of the total localized region was immediately visible in the Northern night sky, due both to sun-angle and elevation constraints. Here, we report on the transient candidates identified and rapid follow-up undertaken to determine the nature of each candidate. Even in the small area imaged of 135 sq. deg., after extensive filtering, 8 candidates were deemed worthy of additional follow-up. Within two hours, all 8 were spectroscopically classified by the Keck II telescope. Curiously, even though such events are rare, one of our candidates was a superluminous supernova. We obtained radio data with the Very Large Array and X-ray follow-up with the Swift satellite for this transient. None of our candidates appear to be associated with the gravitational wave trigger, which is unsurprising given that GW...

  14. Distinct enhancers of ptf1a mediate specification and expansion of ventral pancreas in zebrafish.

    Science.gov (United States)

    Pashos, Evanthia; Park, Joon Tae; Leach, Steven; Fisher, Shannon

    2013-09-15

    Development of the pancreas and cerebellum require Pancreas-specific transcription factor-1a (Ptf1a), which encodes a subunit of the transcription factor complex PTF1. Ptf1a is required in succession for specification of the pancreas, proper allocation of pancreatic progenitors to endocrine and exocrine fates, and the production of digestive enzymes from the exocrine acini. In several neuronal structures, including the cerebellum, hindbrain, retina and spinal cord, Ptf1a is transiently expressed and promotes inhibitory neuron fates at the expense of excitatory fates. Transcription of Ptf1a in mouse is maintained in part by PTF1 acting on an upstream autoregulatory enhancer. However, the transcription factors and enhancers that initially activate Ptf1a expression in the pancreas and in certain structures of the nervous system have not yet been identified. Here we describe a zebrafish autoregulatory element, conserved among teleosts, with activity similar to that described in mouse. In addition, we performed a comprehensive survey of all non-coding sequences in a 67kb interval encompassing zebrafish ptf1a, and identified several neuronal enhancers, and an enhancer active in the ventral pancreas prior to activation of the autoregulatory enhancer. To test the requirement for autoregulatory control during pancreatic development, we restored ptf1a function through BAC transgenesis in ptf1a morphants, either with an intact BAC or one lacking the autoregulatory enhancer. We find that ptf1a autoregulation is required for development of the exocrine pancreas and full rescue of the ptf1a morphant phenotype. Similarly, we demonstrate that a ptf1a locus lacking the early enhancer region is also capable of rescue, but only supports formation of a hypoplastic exocrine pancreas. Through our dissection of the complex regulatory control of ptf1a, we identified separate cis-regulatory elements that underlie different aspects of its expression and function, and further demonstrated

  15. A solar-type star polluted by calcium-rich supernova ejecta inside the supernova remnant RCW 86

    Science.gov (United States)

    Gvaramadze, Vasilii V.; Langer, Norbert; Fossati, Luca; Bock, Douglas C.-J.; Castro, Norberto; Georgiev, Iskren Y.; Greiner, Jochen; Johnston, Simon; Rau, Arne; Tauris, Thomas M.

    2017-06-01

    When a massive star in a binary system explodes as a supernova, its companion star may be polluted with heavy elements from the supernova ejecta. Such pollution has been detected in a handful of post-supernova binaries 1 , but none of them is associated with a supernova remnant. We report the discovery of a binary G star strongly polluted with calcium and other elements at the position of the candidate neutron star [GV2003] N within the young galactic supernova remnant RCW 86. Our discovery suggests that the progenitor of the supernova that produced RCW 86 could have been a moving star, which exploded near the edge of its wind bubble and lost most of its initial mass because of common-envelope evolution shortly before core collapse, and that the supernova explosion might belong to the class of calcium-rich supernovae — faint and fast transients 2,3 , the origin of which is strongly debated 4-6 .

  16. Progress in multi-waveband observations of supernova remnants

    Institute of Scientific and Technical Information of China (English)

    Xuejuan Yang; Fangjun Lu; Wenwu Tian

    2008-01-01

    The development of observational techniques has enriched our knowledge of supernova remnants.In this paper,we review the main progresses in the last decade,including new discoveries of supernova remnants and the associated(rare type of pulsars,nucleosynthesis,the interaction between supernova remnants and molecular clouds,dust in the supernova remnants,shock physics,and cosmic ray accelerations.

  17. The PTF Orion Project: Eclipsing Binaries and Young Stellar Objects

    CERN Document Server

    van Eyken, Julian C; Rebull, Luisa M; Stauffer, John R; Akeson, Rachel L; Beichman, Charles A; Boden, Andrew F; von Braun, Kaspar; Gelino, Dawn M; Hoard, D W; Howell, Steve B; Kane, Stephen R; Plavchan, Peter; Ramírez, Solange V; Bloom, Joshua S; Cenko, S Bradley; Kasliwal, Mansi M; Kulkarni, Shrinivas R; Law, Nicholas M; Nugent, Peter E; Ofek, Eran O; Poznanski, Dovi; Quimby, Robert M; Grillmair, Carl J; Laher, Russ; Levitan, David; Mattingly, Sean; Surace, Jason A

    2011-01-01

    The Palomar Transient Factory (PTF) Orion project is an experiment within the broader PTF survey, a systematic automated exploration of the sky for optical transients. Taking advantage of the wide field of view available using the PTF camera at the Palomar 48" telescope, 40 nights were dedicated in December 2009-January 2010 to perform continuous high-cadence differential photometry on a single field containing the young (7-10Myr) 25 Ori association. The primary motivation for the project is to search for planets around young stars in this region. The unique data set also provides for much ancillary science. In this first paper we describe the survey and data reduction pipeline, and present initial results from an inspection of the most clearly varying stars relating to two of the ancillary science objectives: detection of eclipsing binaries and young stellar objects. We find 82 new eclipsing binary systems, 9 of which we are candidate 25 Ori- or Orion OB1a-association members. Of these, 2 are potential young...

  18. Radio Supernovae in the Local Universe

    CERN Document Server

    Kamble, Atish; Berger, Edo; Zauderer, Ashley; Chakraborti, Sayan; Williams, Peter

    2014-01-01

    In the last three decades, about 50 radio supernovae have been detected as a result of targeted searches of optically discovered supernovae in the local universe. Despite this relatively small number some diversity among them has already been identified which is an indication of the underlying richness of radio supernovae waiting to be discovered. For example, comparison of star formation and supernova discovery rate imply that as many as half of the supernovae remain undetected in the traditional optical searches, either because of intrinsic dimness or due to dust obscuration. This has far reaching consequences to the models of stellar and galaxy evolution. A radio sky survey would be ideal to uncover larger supernova population. Transient radio sky would benefit significantly from such a survey. With the advent of advanced gravitational wave detectors a new window is set to open on the local Universe. Localization of these gravitational detectors is poor to identify electromagnetic counterparts of the gravi...

  19. Nurseries of Supernovae

    DEFF Research Database (Denmark)

    Frederiksen, Teddy

    Type Ia supernovae (SNe) have long been the gold standard for precision cosmology and after several decades of intense research the supernova (SN) community was in 2011 honored by giving the Nobel Prize in physics for the discovery of Dark Energy to the leaders of the two big SN collaborations...... the gasphase metallicity, stellar mass and stellar age for this z = 1.55 host galaxy. I am also able to rule out the presence of any AGN though emission-line ratios. The host is classified as a highly star forming, low mass, low metallicity galaxy. It is a clear outlier in star formation and stellar mass...... compared to most low redshift (z 1) redshift SNe. This is mainly due to the change in specific star-formation rate as a function of redshift. This can potentially impact the use of high redshift SN Ia as standard candels...

  20. PTF10nvg: An Outbursting Class I Protostar in the Pelican/North American Nebula

    CERN Document Server

    Covey, Kevin R; Miller, Adam A; Poznanski, Dovi; Cenko, S Bradley; Silverman, Jeffrey M; Bloom, Joshua S; Kasliwal, Mansi M; Fischer, William; Rayner, John; Rebull, Luisa M; Butler, Nathaniel R; Filippenko, Alexei V; Law, Nicholas M; Ofek, Eran O; Agueros, Marcel; Dekany, Richard G; Rahmer, Gustavo; Hale, David; Smith, Roger; Quimby, Robert M; Nugent, Peter; Jacobsen, Janet; Zolkower, Jeff; Velur, Viswa; Walters, Richard; Henning, John; Bui, Khanh; McKenna, Dan; Kulkarni, Shrinivas R; Klein, Christopher

    2010-01-01

    During a synoptic survey of the North American Nebula region, the Palomar Transient Factory (PTF) detected an optical outburst (dubbed PTF10nvg) associated with the previously unstudied flat or rising spectrum infrared source IRAS 20496+4354. The PTF R-band light curve reveals that PTF10nvg brightened by more than 5 mag during the current outburst, rising to a peak magnitude of R~13.5 in 2010 Sep. Follow-up observations indicate PTF10nvg has undergone a similar ~5 mag brightening in the K band, and possesses a rich emission-line spectrum, including numerous lines commonly assumed to trace mass accretion and outflows. Many of these lines are blueshifted by ~175 km/s from the North American Nebula's rest velocity, suggesting that PTF10nvg is driving an outflow. Optical spectra of PTF10nvg show several TiO/VO bandheads fully in emission, indicating the presence of an unusual amount of dense (> 10^10 cm^-3), warm (1500-4000 K) circumstellar material. Near-infrared spectra of PTF10nvg appear quite similar to a spe...

  1. PTF10iya: A short-lived, luminous flare from the nuclear region of a star-forming galaxy

    CERN Document Server

    Cenko, S Bradley; Kulkarni, S R; Strubbe, Linda E; Miller, Adam A; Butler, Nathaniel R; Quimby, Robert M; Gal-Yam, Avishay; Ofek, Eran O; Quataert, Eliot; Bildsten, Lars; Poznanski, Dovi; Perley, Daniel A; Morgan, Adam N; Filippenko, Alexei V; Arcavi, Iair; Ben-Ami, Sagi; Cucchiara, Antonio; Fassnacht, Christopher D; Green, Yoav; Hook, Isobel M; Howell, D Andrew; Lagattuta, David J; Law, Nicholas M; Kasliwal, Mansi M; Nugent, Peter E; Silverman, Jeffrey M; Sullivan, Mark; Tendulkar, Shriharsh P; Yaron, Ofer

    2011-01-01

    We present the discovery and characterisation of PTF10iya, a short-lived (dt ~ 10 d, with an optical decay rate of ~ 0.3 mag per d), luminous (M_g ~ -21 mag) transient source found by the Palomar Transient Factory. The ultraviolet/optical spectral energy distribution is reasonably well fit by a blackbody with T ~ 1-2 x 10^4 K and peak bolometric luminosity L_BB ~ 10^44 -10^45 erg per s (depending on the details of the extinction correction). A comparable amount of energy is radiated in the X-ray band that appears to result from a distinct physical process. The location of PTF10iya is consistent with the nucleus of a star-forming galaxy (z = 0.22405 +/- 0.00006) to within 350 mas (99.7 per cent confidence radius), or a projected distance of less than 1.2 kpc. At first glance, these properties appear reminiscent of the characteristic "big blue bump" seen in the near-ultraviolet spectra of many active galactic nuclei (AGNs). However, emission-line diagnostics of the host galaxy, along with a historical light cur...

  2. Smoking Supernovae

    CERN Document Server

    Gomez, H L; Dunne, L

    2007-01-01

    The question "Are supernovae important sources of dust?" is a contentious one. Observations with the Infrared Astronomical Satellite (IRAS) and the Infrared Space Observatory (ISO) only detected very small amounts of hot dust in supernova remnants. Here, we review observations of two young Galactic remnants with the Submillimetre Common User Bolometer Array (SCUBA), which imply that large quantities of dust are produced by supernovae. The association of dust with the Cassiopeia A remnant is in question due to the contamination of foreground material. In this article, we compare the emission from cold dust with CO emission towards Kepler's supernova remnant. We detect very little CO at the location of the submillimetre peaks. A comparison of masses from the CO and the dust clouds are made, and we estimate the 3 sigma upper limit on the gas-to-dust ratios to range from 25 - 65 suggesting that we cannot yet rule out freshly-formed or swept up circumstellar dust in Kepler's supernova remnant.

  3. On the early-time excess emission in hydrogen-poor superluminous supernovae

    CERN Document Server

    Vreeswijk, Paul M; Gal-Yam, Avishay; De Cia, Annalisa; Perley, Daniel A; Quimby, Robert M; Waldman, Roni; Sullivan, Mark; Yan, Lin; Ofek, Eran O; Fremling, Christoffer; Taddia, Francesco; Sollerman, Jesper; Valenti, Stefano; Arcavi, Iair; Howell, D Andrew; Filippenko, Alexei V; Cenko, S Bradley; Yaron, Ofer; Kasliwal, Mansi M; Cao, Yi; Ben-Ami, Sagi; Horesh, Assaf; Rubin, Adam; Lunnan, Ragnhild; Nugent, Peter E; Laher, Russ; Rebbapragada, Umaa D; Woźniak, Przemysław; Kulkarni, Shrinivas R

    2016-01-01

    We present the light curves of the hydrogen-poor superluminous supernovae (SLSNe-I) PTF12dam and iPTF13dcc, discovered by the (intermediate) Palomar Transient Factory. Both show excess emission at early times and a slowly declining light curve at late times. The early bump in PTF12dam is very similar in duration (~10 days) and brightness relative to the main peak (2-3 mag fainter) compared to those observed in other SLSNe-I, such as SN2006oz, LSQ14bdq and DES14X3taz. In contrast, the long-duration (>30 days) early excess emission in iPTF13dcc, whose brightness competes with that of the main peak, appears to be of a different nature. We construct bolometric light curves for both targets, and fit a variety of light-curve models to both the early bump and main peak in an attempt to understand the nature of these explosions. Even though the slope of the late-time light-curve decline in both SLSNe is suggestively close to that expected from the radioactive decay of $^{56}$Ni and $^{56}$Co, the amount of nickel req...

  4. The Young and Bright Type Ia Supernova ASASSN-14lp: Discovery, Early-Time Observations, First-Light Time, Distance to NGC 4666, and Progenitor Constraints

    CERN Document Server

    Shappee, B J; Holoien, T W -S; Prieto, J L; Contreras, C; Itagaki, K; Burns, C R; Kochanek, C S; Stanek, K Z; Alper, E; Basu, U; Beacom, J F; Bersier, D; Brimacombe, J; Conseil, E; Danilet, A B; Dong, Subo; Falco, E; Grupe, D; Hsiao, E Y; Kiyota, S; Morrell, N; Nicolas, J; Phillips, M M; Pojmanski, G; Simonian, G; Stritzinger, M; Szczygieł, D M; Thompson, T A; Thorstensen, J; Wagner, M; Woźniak, P R

    2015-01-01

    On 2014 Dec. 9.61, the All-Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin") discovered ASASSN-14lp just $\\sim2$ days after first light using a global array of 14-cm diameter telescopes. ASASSN-14lp went on to become a bright supernova ($V = 11.94$ mag), second only to SN 2014J for the year. We present prediscovery photometry (with a detection less than a day after first light) and ultraviolet through near-infrared photometric and spectroscopic data covering the rise and fall of ASASSN-14lp for more than 100 days. We find that ASASSN-14lp had a broad light curve ($\\Delta m_{15}(B) = 0.796 \\pm 0.001_{\\textrm{stat}}$), a $B$-band maximum at $2457015.823 \\pm 0.030_{\\textrm{stat}}$, a rise time of $16.94^{+ 0.11 }_{- 0.11 }$ days, and moderate host--galaxy extinction ($E(B-V)_{\\textrm{host}} = 0.329 \\pm 0.001_{\\textrm{stat}}$). Using ASASSN-14lp we derive a distance modulus for NGC 4666 of $\\mu = 30.834 \\pm 0.003_{\\textrm{stat}} \\pm 0.16_{\\textrm{syst}}$ corresponding to a distance of $14.68 \\pm 0.02_{\\...

  5. Supernova Classification Using Swift UVOT Photometry

    Science.gov (United States)

    Smith, Madison; Brown, Peter J.

    2017-01-01

    With the great influx of supernova discoveries over the past few years, the observation time needed to acquire the spectroscopic data needed to classify supernova by type has become unobtainable. Instead, using the photometry of supernovae could greatly reduce the amount of time between discovery and classification. For this project we looked at the relationship between colors and supernova types through machine learning packages in Python. Using data from the Swift Ultraviolet/Optical Telescope (UVOT), each photometric point was assigned values corresponding to colors, absolute magnitudes, and the relative times from the peak brightness in several filters. These values were fed into three classifying methods, the nearest neighbors, decision tree, and random forest methods. We will discuss the success of these classification systems, the optimal filters for photometric classification, and ways to improve the classification.

  6. SOUSA's Swift Supernova Siblings

    CERN Document Server

    Brown, Peter J

    2015-01-01

    Swift has observed over three hundred supernovae in its first ten years. Photometry from the Ultra-Violet Optical Telescope (UVOT) is being compiled in the Swift Optical/Ultraviolet Supernovae Archive (SOUSA). The diversity of supernovae leads to a wide dynamic range of intrinsic properties. The intrinsic UV brightness of supernovae as a function of type and epoch allows one to understand the distance ranges at which Swift can reliably detect supernovae. The large Swift sample also includes supernovae from the same galaxy as other Swift supernovae. Through the first ten years, these families include 34 supernovae from 16 host galaxies (two galaxies have each hosted three Swift supernovae).

  7. RAPIDLY RISING TRANSIENTS IN THE SUPERNOVA—SUPERLUMINOUS SUPERNOVA GAP

    Energy Technology Data Exchange (ETDEWEB)

    Arcavi, Iair; Howell, D. Andrew [Las Cumbres Observatory Global Telescope, 6740 Cortona Dr., Suite 102, Goleta, CA 93111 (United States); Wolf, William M. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Bildsten, Lars; McCully, Curtis; Valenti, Stefano [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States); Leloudas, Giorgos; Gal-Yam, Avishay; Katz, Boaz [Department of Particle Physics and Astrophysics, The Weizmann Institute of Science, Rehovot, 76100 (Israel); Hardin, Delphine; Astier, Pierre; Balland, Cristophe [LPNHE, CNRS-IN2P3 and University of Paris VI and VII, F-75005 Paris (France); Prajs, Szymon; Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Perley, Daniel A. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Svirski, Gilad [Racah Institute for Physics, The Hebrew University, Jerusalem 91904 (Israel); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Lidman, Chris [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia); Carlberg, Ray G. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H8 (Canada); Conley, Alex, E-mail: iarcavi@lcogt.net [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309-389 (United States); and others

    2016-03-01

    We present observations of four rapidly rising (t{sub rise} ≈ 10 days) transients with peak luminosities between those of supernovae (SNe) and superluminous SNe (M{sub peak} ≈ −20)—one discovered and followed by the Palomar Transient Factory (PTF) and three by the Supernova Legacy Survey. The light curves resemble those of SN 2011kl, recently shown to be associated with an ultra-long-duration gamma-ray burst (GRB), though no GRB was seen to accompany our SNe. The rapid rise to a luminous peak places these events in a unique part of SN phase space, challenging standard SN emission mechanisms. Spectra of the PTF event formally classify it as an SN II due to broad Hα emission, but an unusual absorption feature, which can be interpreted as either high velocity Hα (though deeper than in previously known cases) or Si ii (as seen in SNe Ia), is also observed. We find that existing models of white dwarf detonations, CSM interaction, shock breakout in a wind (or steeper CSM), and magnetar spin down cannot readily explain the observations. We consider the possibility that a “Type 1.5 SN” scenario could be the origin of our events. More detailed models for these kinds of transients and more constraining observations of future such events should help to better determine their nature.

  8. Standardization of type Ia supernovae

    CERN Document Server

    Coelho, Rodrigo C V; Reis, Ribamar R R; Siffert, Beatriz B

    2014-01-01

    Type Ia supernovae (SNe Ia) have been intensively investigated due to its great homogeneity and high luminosity, which make it possible to use them as standardizable candles for the determination of cosmological parameters. In 2011, the physics Nobel prize was awarded for the discovery of the accelerating expansion of the Universe through observations of distant supernovae. This is a pedagogical article, aimed at those starting their study of that subject, in which we dwell on some topics related to the analysis of SNe Ia and their use in luminosity distance estimators. Here we investigate their spectral properties and light curve standardization, paying careful attention to the fundamental quantities directly related to the SNe Ia observables. Finally, we describe our own step-by-step implementation of a classical light curve fi?tter, the stretch, applying it to real data from the Carnegie Supernova Project.

  9. Simulating Supernova Light Curves

    Energy Technology Data Exchange (ETDEWEB)

    Even, Wesley Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dolence, Joshua C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-05

    This report discusses supernova light simulations. A brief review of supernovae, basics of supernova light curves, simulation tools used at LANL, and supernova results are included. Further, it happens that many of the same methods used to generate simulated supernova light curves can also be used to model the emission from fireballs generated by explosions in the earth’s atmosphere.

  10. The Nearby Supernova Factory

    CERN Document Server

    Wood-Vasey, W M; Lee Byung Cheol; Loken, S; Nugent, P; Perlmutter, S; Siegrist, J L; Wang, L; Antilogus, P; Astier, Pierre; Hardin, D; Pain, R; Copin, Y; Smadja, G; Gangler, E; Castera, A; Adam, G; Bacon, R; Lemonnier, J P; Pecontal, A; Pécontal, E; Kessler, R

    2004-01-01

    The Nearby Supernova Factory (SNfactory) is an ambitious project to find and study in detail approximately 300 nearby Type Ia supernovae (SNe~Ia) at redshifts 0.03discovery. The pipeline uses images from the asteroid search conducted by the Near Earth Asteroid Tracking group at JPL. Improvements in our subtraction techniques and analysis have allowed us to increase our effective SN discovery rate to ~12 SNe/month in 2003.

  11. The CHilean Automatic Supernova sEarch

    DEFF Research Database (Denmark)

    Hamuy, M.; Pignata, G.; Maza, J.

    2012-01-01

    The CHilean Automatic Supernova sEarch (CHASE) project began in 2007 with the goal to discover young, nearby southern supernovae in order to (1) better understand the physics of exploding stars and their progenitors, and (2) refine the methods to derive extragalactic distances. During the first...... four years of operation, CHASE has produced more than 130 supernovae, being the most successful project of its type in the southern hemisphere. Here we describe the project and present illustrative examples of CHASE discoveries of particular relevance....

  12. Echoes from Ancient supernovae in the Large Magellanic Cloud

    Energy Technology Data Exchange (ETDEWEB)

    Rest, A; Suntzeff, N B; Olsen, K; Prieto, J L; Smith, R C; Welch, D L; Becker, A; Bergmann, M; Clocchiatti, A; Cook, K; Garg, A; Huber, M; Miknaitis, G; Minniti, D; Nikolaev, S; Stubbs, C

    2005-06-15

    In principle, historical supernovae could still be visible as scattered-light echoes even centuries later [1, 2]. Searches for surface brightness variations using photographic plates have not recovered any echoes in the regions of historical Galactic supernovae [3]. Using differenced images, our SuperMACHO collaboration has discovered three faint new variable surface brightness complexes with high apparent proper motion pointing back to well-defined positions in the Large Magellanic Cloud (LMC). These correspond to three of the six smallest (and likely youngest) supernova remnants believed to be due to thermonuclear (Type Ia) supernovae [4]. A lower limit to the age of these remnants and echoes is 200 years given the lack of any reported LMC supernovae until 1987. The discovery of historical supernova echoes in the LMC suggests that similar echoes for Galactic supernovae such as Tycho, Kepler, Cas A, or SN1006 could be visible using standard image differencing techniques.

  13. A Turkish newborn infant with cerebellar agenesis/neonatal diabetes mellitus and PTF1A mutation.

    Science.gov (United States)

    Tutak, E; Satar, M; Yapicioğlu, H; Altintaş, A; Narli, N; Hergüner, O; Bayram, Y

    2009-01-01

    Classical neonatal diabetes mellitus is defined as hyperglycemia that occurs within the first month of life in term infants. It can be either permanent or transient. Cerebellar agenesis and permanent neonatal diabetes has been previously reported as a new autosomal recessive disorder. Pancreas Transcription Factor 1 Alpha (PTF1A) mutations have been related with this constellation of abnormalities. Here we report a new case of cerebellar agenesis and neonatal diabetes mellitus whose parents are PTF1A mutation carriers.

  14. Type Ibn Supernovae Show Photometric Homogeneity and Spectral Diversity at Maximum Light

    Science.gov (United States)

    Hosseinzadeh, Griffin; Arcavi, Iair; Valenti, Stefano; McCully, Curtis; Howell, D. Andrew; Johansson, Joel; Sollerman, Jesper; Pastorello, Andrea; Benetti, Stefano; Cao, Yi; Cenko, S. Bradley; Clubb, Kelsey I.; Corsi, Alessandra; Duggan, Gina; Elias-Rosa, Nancy; Filippenko, Alexei V.; Fox, Ori D.; Fremling, Christoffer; Horesh, Assaf; Karamehmetoglu, Emir; Kasliwal, Mansi; Marion, G. H.; Ofek, Eran; Sand, David; Taddia, Francesco; Zheng, WeiKang; Fraser, Morgan; Gal-Yam, Avishay; Inserra, Cosimo; Laher, Russ; Masci, Frank; Rebbapragada, Umaa; Smartt, Stephen; Smith, Ken W.; Sullivan, Mark; Surace, Jason; Woźniak, Przemek

    2017-02-01

    Type Ibn supernovae (SNe) are a small yet intriguing class of explosions whose spectra are characterized by low-velocity helium emission lines with little to no evidence for hydrogen. The prevailing theory has been that these are the core-collapse explosions of very massive stars embedded in helium-rich circumstellar material (CSM). We report optical observations of six new SNe Ibn: PTF11rfh, PTF12ldy, iPTF14aki, iPTF15ul, SN 2015G, and iPTF15akq. This brings the sample size of such objects in the literature to 22. We also report new data, including a near-infrared spectrum, on the Type Ibn SN 2015U. In order to characterize the class as a whole, we analyze the photometric and spectroscopic properties of the full Type Ibn sample. We find that, despite the expectation that CSM interaction would generate a heterogeneous set of light curves, as seen in SNe IIn, most Type Ibn light curves are quite similar in shape, declining at rates around 0.1 mag day‑1 during the first month after maximum light, with a few significant exceptions. Early spectra of SNe Ibn come in at least two varieties, one that shows narrow P Cygni lines and another dominated by broader emission lines, both around maximum light, which may be an indication of differences in the state of the progenitor system at the time of explosion. Alternatively, the spectral diversity could arise from viewing-angle effects or merely from a lack of early spectroscopic coverage. Together, the relative light curve homogeneity and narrow spectral features suggest that the CSM consists of a spatially confined shell of helium surrounded by a less dense extended wind.

  15. New Hubble Space Telescope Discoveries of Type Ia Supernovae at z > 1: Narrowing Constraints on the Early Behavior of Dark Energy

    CERN Document Server

    Riess, A G; Casertano, S; Ferguson, H C; Mobasher, B; Gold, B; Challis, P J; Filippenko, A V; Jha, S; Li, W; Tonry, J; Foley, R; Kirshner, R P; Dickinson, M; MacDonald, E; Eisenstein, D; Livio, M; Younger, J; Xu, C; Dahlen, T; Stern, D; Riess, Adam G.; Strolger, Louis-Gregory; Casertano, Stefano; Ferguson, Henry C.; Mobasher, Bahram; Gold, Ben; Challis, Peter J.; Filippenko, Alexei V.; Jha, Saurabh; Li, Weidong; Tonry, John; Foley, Ryan; Kirshner, Robert P.; Dickinson, Mark; Donald, Emily Mac; Eisenstein, Daniel; Livio, Mario; Younger, Josh; Xu, Chun; Dahlen, Tomas; Stern, Daniel

    2006-01-01

    We have discovered 21 new Type Ia supernovae (SNe Ia) with the Hubble Space Telescope (HST) and have used them to trace the history of cosmic expansion over the last 10 billion years. These objects, which include 13 spectroscopically confirmed SNe Ia at z > 1, were discovered during 14 epochs of reimaging of the GOODS fields North and South over two years with the Advanced Camera for Surveys on HST. Together with a recalibration of our previous HST-discovered SNe Ia, the full sample of 23 SNe Ia at z > 1 provides the highest-redshift sample known. Combined with previous SN Ia datasets, we measured H(z) at discrete, uncorrelated epochs, reducing the uncertainty of H(z>1) from 50% to under 20%, strengthening the evidence for a cosmic jerk--the transition from deceleration in the past to acceleration in the present. The unique leverage of the HST high-redshift SNe Ia provides the first meaningful constraint on the dark energy equation-of-state parameter at z >1. The result remains consistent with a cosmological ...

  16. MULTI-WAVELENGTH OBSERVATIONS OF THE RADIO MAGNETAR PSR J1622-4950 AND DISCOVERY OF ITS POSSIBLY ASSOCIATED SUPERNOVA REMNANT

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Gemma E.; Gaensler, B. M. [Sydney Institute for Astronomy, School of Physics A29, The University of Sydney, NSW 2006 (Australia); Slane, Patrick O.; Drake, Jeremy J. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Rea, Nanda [Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB, Facultat de Ciencies, Torre C5-parell, 2a planta, 08193, Bellaterra, Barcelona (Spain); Kaplan, David L. [Department of Physics, University of Wisconsin, Milwaukee, WI 53201 (United States); Posselt, Bettina [Department of Astronomy and Astrophysics, Pennsylvania State University, PA 16802 (United States); Levin, Lina; Bailes, Matthew; Ramesh Bhat, N. D. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, VIC 3122 (Australia); Johnston, Simon; Burke-Spolaor, Sarah [Australia Telescope National Facility, CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710 (Australia); Murray, Stephen S. [Department of Physics and Astronomy, John Hopkins University, Baltimore, MD 21218 (United States); Brogan, Crystal L. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Bates, Samuel [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Benjamin, Robert A. [Department of Physics, University of Wisconsin, Whitewater, WI 53190 (United States); Burgay, Marta; D' Amico, Nichi; Esposito, Paolo [INAF/Osservatorio Astronomico di Cagliari, 09012 Capoterra (Italy); Chakrabarty, Deepto, E-mail: g.anderson@physics.usyd.edu.au [MIT Kavli Institute for Astrophysics and Space Research and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); and others

    2012-05-20

    We present multi-wavelength observations of the radio magnetar PSR J1622-4950 and its environment. Observations of PSR J1622-4950 with Chandra (in 2007 and 2009) and XMM (in 2011) show that the X-ray flux of PSR J1622-4950 has decreased by a factor of {approx}50 over 3.7 years, decaying exponentially with a characteristic time of {tau} = 360 {+-} 11 days. This behavior identifies PSR J1622-4950 as a possible addition to the small class of transient magnetars. The X-ray decay likely indicates that PSR J1622-4950 is recovering from an X-ray outburst that occurred earlier in 2007, before the 2007 Chandra observations. Observations with the Australia Telescope Compact Array show strong radio variability, including a possible radio flaring event at least one and a half years after the 2007 X-ray outburst that may be a direct result of this X-ray event. Radio observations with the Molonglo Observatory Synthesis Telescope reveal that PSR J1622-4950 is 8' southeast of a diffuse radio arc, G333.9+0.0, which appears non-thermal in nature and which could possibly be a previously undiscovered supernova remnant (SNR). If G333.9+0.0 is an SNR then the estimates of its size and age, combined with the close proximity and reasonable implied velocity of PSR J1622-4950, suggest that these two objects could be physically associated.

  17. First supernova companion star found

    Science.gov (United States)

    2004-01-01

    discovery possible.” Supernovae occur when a star of more than about eight times the mass of the Sun reaches the end of its nuclear fuel reserves and can no longer produce enough energy to keep the star from collapsing under its own immense weight. The core of the star collapses, and the outer layers are ejected in a fast-moving shock wave. This huge energy release causes the visible supernova we see. While astronomers are convinced that observations will match this theoretical model, they are in the embarrassing position that they have confidently identified only two stars that later exploded as supernovae - the precursors of supernovae 1987A and 1993J. There have been more than 2000 supernovae discovered in galaxies beyond the Milky Way and there appear to be about eight distinct sub-classes. However identifying which stars produce which flavours has proved incredibly difficult. This team has now embarked on a parallel project with the Hubble Space Telescope to image a large number of galaxies and then wait patiently for a supernova to explode. Supernovae appear in spiral galaxies like M81 on average once every 100 years or so. The team, led by Stephen Smartt, hope to increase the numbers of supernova progenitors known from 2 to 20 over the next five years. Notes for editors The team is composed of Stephen J. Smartt and Justyn R. Maund (University of Cambridge, UK), Rolf. P. Kudritzki (University of Hawaii, USA), Philipp Podsiadlowski (University of Oxford, UK) and Gerry F. Gilmore (University of Cambridge, UK). Animations of the discovery and general Hubble Space Telescope background footage are available from http://www.spacetelescope.org/video/heic0401_vnr.html

  18. VizieR Online Data Catalog: Photometry of SN 2013gh and iPTF13dge (Ferretti+, 2016)

    Science.gov (United States)

    Ferretti, R.; Amanullah, R.; Goobar, A.; Johansson, J.; Vreeswijk, P.; Butler, R. P.; Cao, Y.; Cenko, S. B.; Doran, G.; Filippenko, A. V.; Freeland, E.; Hosseinzadeh, G.; Howell, D. A.; Lundqvist, P.; Mattila, S.; Nordin, J.; Nugent, P. E.; Petrushevska, T.; Valenti, S.; Vogt, S.; Wozniak, P.

    2016-06-01

    Measured photometry of type Ia supernovae 2013gh and iPTF13dge are presented. Furthermore, the effective light-curve-width-corrected phase and the natural magnitude in specified filters have been computed. Thereby, the corresponding Galactic absorption (Ax_MW) and the filter corrections (Kx) to the corresponding rest-frame filter for SN 2011fe as described by Amanullah et al. (2015MNRAS.453.3300A) are presented. The corrected magnitude can be obtained as X-AXMW-KX. All corrections have been calculated after the SN 2011fe template has been reddened with the best-fit Fitzpatrick (1999PASP..111...63F) law, for each SN. Furthermore, the V magnitude and corrections for each phase phase are included. The V magnitude was either measured (M) or calculated (D) using the SNooPy model. The V magnitude is only shown for data points used in the colour analysis, with phases between -10 and +35-days. The corrected colour can be obtained as (X-AXMW-KX)-(V-AVMW-KV) and can be compared with the corresponding colour of SN 2011fe in order to study the reddening laws of the SNe. (3 data files).

  19. How Bright Can Supernovae Get?

    Science.gov (United States)

    Kohler, Susanna

    2016-04-01

    Supernovae enormous explosions associated with the end of a stars life come in a variety of types with different origins. A new study has examined how the brightest supernovae in the Universe are produced, and what limits might be set on their brightness.Ultra-Luminous ObservationsRecent observations have revealed many ultra-luminous supernovae, which haveenergies that challenge our abilities to explain them usingcurrent supernova models. An especially extreme example is the 2015 discovery of the supernova ASASSN-15lh, which shone with a peak luminosity of ~2*1045 erg/s, nearly a trillion times brighter than the Sun. ASASSN-15lh radiated a whopping ~2*1052 erg in the first four months after its detection.How could a supernova that bright be produced? To explore the answer to that question, Tuguldur Sukhbold and Stan Woosley at University of California, Santa Cruz, have examined the different sources that could produce supernovae and calculated upper limits on the potential luminosities ofeach of these supernova varieties.Explosive ModelsSukhbold and Woosley explore multiple different models for core-collapse supernova explosions, including:Prompt explosionA stars core collapses and immediately explodes.Pair instabilityElectron/positron pair production at a massive stars center leads to core collapse. For high masses, radioactivity can contribute to delayed energy output.Colliding shellsPreviously expelled shells of material around a star collide after the initial explosion, providing additional energy release.MagnetarThe collapsing star forms a magnetar a rapidly rotating neutron star with an incredibly strong magnetic field at its core, which then dumps energy into the supernova ejecta, further brightening the explosion.They then apply these models to different types of stars.Setting the LimitThe authors show that the light curve of ASASSN-15lh (plotted in orange) can be described by a model (black curve) in which a magnetar with an initial spin period of 0.7 ms

  20. Correlation Study of PtfV1 with Heart-Qi Deficiency Syndrome in Patients with Hypertensive Left Ventricular Hypertrophy

    Institute of Scientific and Technical Information of China (English)

    杨传华; 陆峰

    2002-01-01

    @@ It is generally believed that the change of p-wave terminal force in lead V1 (PtfV1) is associated with the inner diameter of left atrium, left ventricular compliance,and ventricular diastolic function. The increase of negative value of PtfV1 in essential hypertensive (EH) patients with left ventricular hypertrophy (LVH) indicates the cardiac function may be damaged. In order to explore the relationship between Heart-Qi Deficiency Syndrome (HQDS) of TCM and PtfV1 level in hypertensive LVH patients, correlation analysis of scores of Heart-Qi Deficiency Syndrome and negative value of PtfV1 was made by the authors.

  1. Program Specificity for Ptf1a in Pancreas versus Neural Tube Development Correlates with Distinct Collaborating Cofactors and Chromatin Accessibility

    Science.gov (United States)

    Meredith, David M.; Borromeo, Mark D.; Deering, Tye G.; Casey, Bradford H.; Savage, Trisha K.; Mayer, Paul R.; Hoang, Chinh; Tung, Kuang-Chi; Kumar, Manonmani; Shen, Chengcheng; Swift, Galvin H.

    2013-01-01

    The lineage-specific basic helix-loop-helix transcription factor Ptf1a is a critical driver for development of both the pancreas and nervous system. How one transcription factor controls diverse programs of gene expression is a fundamental question in developmental biology. To uncover molecular strategies for the program-specific functions of Ptf1a, we identified bound genomic regions in vivo during development of both tissues. Most regions bound by Ptf1a are specific to each tissue, lie near genes needed for proper formation of each tissue, and coincide with regions of open chromatin. The specificity of Ptf1a binding is encoded in the DNA surrounding the Ptf1a-bound sites, because these regions are sufficient to direct tissue-restricted reporter expression in transgenic mice. Fox and Sox factors were identified as potential lineage-specific modifiers of Ptf1a binding, since binding motifs for these factors are enriched in Ptf1a-bound regions in pancreas and neural tube, respectively. Of the Fox factors expressed during pancreatic development, Foxa2 plays a major role. Indeed, Ptf1a and Foxa2 colocalize in embryonic pancreatic chromatin and can act synergistically in cell transfection assays. Together, these findings indicate that lineage-specific chromatin landscapes likely constrain the DNA binding of Ptf1a, and they identify Fox and Sox gene families as part of this process. PMID:23754747

  2. Physiochemical characterization and antimicrobial evaluation of phenylthiourea-formaldehyde polymer (PTF) based polymeric ligand and its polymer metal complexes

    Science.gov (United States)

    Ahamad, Tansir; Alshehri, Saad M.

    2013-05-01

    Phenylthiourea-formaldehyde polymer (PTF) has been synthesized via polycondensation of phenylthiourea and formaldehyde in basic medium and its corresponding metal complexes [PTF-M(II)] were prepared with Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) ions. The synthesized polymers have been characterized by elemental analysis, magnetic susceptibility, UV-visible, FT-IR, 1H NMR, 13C NMR, ESR spectroscopy and thermogravimetric analysis (TGA). Elemental analysis, electronic spectra and magnetic moment measurement indicate that PTF-Mn(II), PTF-Co(II) and PTF-Ni(II) show octahedral geometry, while PTF-Cu(II) and PTF-Zn(II) show square planar and tetrahedral geometry, respectively. The results of TGA ascribed that all the PTF-M(II) showed better heat-resistance properties than PTF resin. In vitro antimicrobial activities were performed against several bacteria and fungi using agar well diffusion method. The results of microbial activity were compared with Kanamycin and Miconazole as standard antibiotics for antibacterial and antifungal activities respectively.

  3. Ptf1a triggers GABAergic neuronal cell fates in the retina

    Directory of Open Access Journals (Sweden)

    Parain Karine

    2007-10-01

    Full Text Available Abstract Background In recent years, considerable knowledge has been gained on the molecular mechanisms underlying retinal cell fate specification. However, hitherto studies focused primarily on the six major retinal cell classes (five types of neurons of one type of glial cell, and paid little attention to the specification of different neuronal subtypes within the same cell class. In particular, the molecular machinery governing the specification of the two most abundant neurotransmitter phenotypes in the retina, GABAergic and glutamatergic, is largely unknown. In the spinal cord and cerebellum, the transcription factor Ptf1a is essential for GABAergic neuron production. In the mouse retina, Ptf1a has been shown to be involved in horizontal and most amacrine neurons differentiation. Results In this study, we examined the distribution of neurotransmitter subtypes following Ptf1a gain and loss of function in the Xenopus retina. We found cell-autonomous dramatic switches between GABAergic and glutamatergic neuron production, concomitant with profound defects in the genesis of amacrine and horizontal cells, which are mainly GABAergic. Therefore, we investigated whether Ptf1a promotes the fate of these two cell types or acts directly as a GABAergic subtype determination factor. In ectodermal explant assays, Ptf1a was found to be a potent inducer of the GABAergic subtype. Moreover, clonal analysis in the retina revealed that Ptf1a overexpression leads to an increased ratio of GABAergic subtypes among the whole amacrine and horizontal cell population, highlighting its instructive capacity to promote this specific subtype of inhibitory neurons. Finally, we also found that within bipolar cells, which are typically glutamatergic interneurons, Ptf1a is able to trigger a GABAergic fate. Conclusion Altogether, our results reveal for the first time in the retina a major player in the GABAergic versus glutamatergic cell specification genetic pathway.

  4. Detection of Supernova Neutrinos

    OpenAIRE

    Bekman, B.; Holeczek, J.; Kisiel, J4

    2004-01-01

    Matter effects on neutrino oscillations in both, a supernova and the Earth, change the observed supernova neutrino spectra. We calculate the expected number of supernova neutrino interactions for ICARUS, SK and SNO detectors as a function of the distance which they traveled in the Earth. Calculations are performed for supernova type II at 10kpc from the Earth, using standard supernova neutrino fluxes described by thermal Fermi--Dirac distributions and the PREM I Earth matter density profile.

  5. Diffuse supernova neutrinos at underground laboratories

    Science.gov (United States)

    Lunardini, Cecilia

    2016-06-01

    I review the physics of the Diffuse Supernova Neutrino flux (or Background, DSNB), in the context of future searches at the next generation of neutrino observatories. The theory of the DSNB is discussed in its fundamental elements, namely the cosmological rate of supernovae, neutrino production inside a core collapse supernova, redshift, and flavor oscillation effects. The current upper limits are also reviewed, and results are shown for the rates and energy distributions of the events expected at future liquid argon and liquid scintillator detectors of O(10) kt mass, and water Cherenkov detectors up to a 0.5 Mt mass. Perspectives are given on the significance of future observations of the DSNB, both at the discovery and precision phases, for the investigation of the physics of supernovae and of the properties of the neutrino.

  6. Fingerprinting Hydrogen in Core-Collapse Supernovae

    Science.gov (United States)

    Nance, Sarafina; Parrent, Jerod; Soderberg, Alicia Margarita

    2016-01-01

    This is a preliminary report on the mass of remaining hydrogen envelopes for stars massive enough to explode under core collapse. Using the stellar evolution code, MESA, our initial findings suggest that a significant fraction of massive stars with M_ZAMS = 20-60 Msun lose all but 10^-3 Msun -10^-1 Msun as they near eventual core collapse. This result is dependent on the mass-loss prescription, degree of rotation, metallicity, rates of nuclear burning in the core, and the final stellar configuration. Nevertheless, each of our test cases include a few stars that retain trace amounts of surface hydrogen, which would then be detected as faint H in type IIb/Ib/Ic supernova spectra. We also compare our findings to the progenitor candidate identified for iPTF13bvn using the most recent photometric corrections. We agree with the previous conclusion found by Groh et al. (2013) that the progenitor had an initial mass of 32 Msun, but now with an additional condition of 0.06 Msun of hydrogen on its surface just prior to the explosion. We demonstrate through our study that not all Type Ib supernovae are fully devoid of hydrogen at the time of explosion, which has implications for the nature of the progenitor star and thus provides impetus for a revised classification scheme for 'stripped envelope' supernovae. This work was supported in part by the NSF REU and DoD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution.

  7. Discovery of Recombining Plasma in G166.0+4.3: A Mixed-Morphology Supernova Remnant with an Unusual Structure

    Science.gov (United States)

    Matsumura, H.; Uchida, H.; Tsuru, T. G.; Tanaka, T.; Itou, M.; Nobukawa, M.; Nobukawa, K. K.

    2016-06-01

    Mixed-morphology supernova remnants (MM-SNRs) have center-filled thermal X-ray emissions in a synchrotron radio shell. From the X-ray spectra of several MM-SNRs (e.g., W49B: Ozawa et al. 2009; IC 443: Yamaguchi et al. 2009), the Suzaku satellite has recently discovered recombining plasmas (RPs) characterized by a higher ionization temperature (kTz) than an electron temperature (kTe), while most of shell-like SNRs are explained as collisional ionization equilibrium (CIE: kTz = kTe) or ionizing plasma (IP: kTz < kTe). The formation process of the RPs have not been understood yet. G166.0+4.3 is a Galactic SNR whose synchrotron radio emission is extremely asymmetric: A large bipolar structure in southwest (Wing region) with a smaller semicircle shell in northeast (Shell region). From a previous X-ray observation with XMM-Newton, Bocchino et al. (2009) classified G166.0+4.3 as a MM-SNR and reported that the plasma is explained by a typical IP model. However, the origin of the unusual structure is still unclear. We have performed a long-time (totally 230 ks) observation of G166.0+4.3 with the Suzaku satellite in 2014. From the spectral analysis of the Wing region, we confirmed that the plasma is well represented by an IP model with kTe of 0.85 keV. Applying a similar IP model to the Shell region, however, we found excesses at ˜2.0 keV and ˜2.6 keV corresponding to SiXIII Lyα (2.0 keV) and the edge of a radiative recombining continuum of SiXIII (2.67 keV) + SXIV Lyα (2.63 keV), respectively. This fact indicates a sign of an RP in the Shell region of G166.0+4.3. We explained the spectrum as an RP model whose electron temperature is 0.46 keV which is smaller than that of the IP model in Wing region. We also found that the Fe-rich ejecta asymmetrically spread over the Wing region. These results suggest an inhomogeneous ambient medium in the vicinity of G166.0+4.3 which provides a clue to the cause of the unusual morphology. A supportive evidence is shown by a recent

  8. Automating Discovery and Classification of Transients and Variable Stars in the Synoptic Survey Era

    CERN Document Server

    Bloom, J S; Nugent, P E; Quimby, R M; Kasliwal, M M; Starr, D L; Poznanski, D; Ofek, E O; Cenko, S B; Butler, N R; Kulkarni, S R; Gal-Yam, A; Law, N

    2011-01-01

    The rate of image acquisition in modern synoptic imaging surveys has already begun to outpace the feasibility of keeping astronomers in the real-time discovery and classification loop. Here we present the inner workings of a framework, based on machine-learning algorithms, that captures expert training and ground-truth knowledge about the variable and transient sky to automate 1) the process of discovery on image differences and, 2) the generation of preliminary science-type classifications of discovered sources. Since follow-up resources for extracting novel science from fast-changing transients are precious, self-calibrating classification probabilities must be couched in terms of efficiencies for discovery and purity of the samples generated. We estimate the purity and efficiency in identifying real sources with a two-epoch image-difference discovery algorithm for the Palomar Transient Factory (PTF) survey. Once given a source discovery, using machine-learned classification trained on PTF data, we distingu...

  9. The Acceleration of the Universe in the Light of Supernovae: The Key Role of CTIO

    Science.gov (United States)

    Hamuy, M.; Suntzeff, N. B.

    2015-05-01

    The discovery of acceleration and dark energy arguably constitutes the most revolutionary discovery in astrophysics in recent years. The Cerro Tololo Inter-American Observatory (CTIO) played a key role in this amazing discovery through three systematic surveys organized by staff astronomers: the “Tololo Supernova Program“ (1986-2000), the Calán/Tololo Project (1989-1993), and the “High-Z Supernova Search Team” (1994-1998). CTIO's state of the art instruments also were fundamental in the independent discovery of acceleration by the “Supernova Cosmology Project” (1992-1999). Here I summarize the work on supernovae carried out from CTIO that led to the discovery of acceleration and dark energy and provide a brief historical summary on the use of Type Ia supernovae in cosmology in order to provide context for the CTIO contribution.

  10. A novel subset of enteric neurons revealed by ptf1a:GFP in the developing zebrafish enteric nervous system.

    Science.gov (United States)

    Uribe, Rosa A; Gu, Tiffany; Bronner, Marianne E

    2016-03-01

    The enteric nervous system, the largest division of the peripheral nervous system, is derived from vagal neural crest cells that invade and populate the entire length of the gut to form diverse neuronal subtypes. Here, we identify a novel population of neurons within the enteric nervous system of zebrafish larvae that express the transgenic marker ptf1a:GFP within the midgut. Genetic lineage analysis reveals that enteric ptf1a:GFP(+) cells are derived from the neural crest and that most ptf1a:GFP(+) neurons express the neurotransmitter 5HT, demonstrating that they are serotonergic. This transgenic line, Tg(ptf1a:GFP), provides a novel neuronal marker for a subpopulation of neurons within the enteric nervous system, and highlights the possibility that Ptf1a may act as an important transcription factor for enteric neuron development.

  11. Discovery of a Cosmological, Relativistic Outburst via its Rapidly Fading Optical Emission

    CERN Document Server

    Cenko, S Bradley; Horesh, Assaf; Corsi, Alessandra; Fox, Derek B; Carpenter, John; Frail, Dale A; Nugent, Peter E; Perley, Daniel A; Gruber, D; Gal-Yam, Avishay; Groot, Paul J; Hallinan, G; Ofek, Eran O; Rau, Arne; MacLeod, Chelsea L; Miller, Adam A; Bloom, Joshua S; Filippenko, Alexei V; Kasliwal, Mansi M; Law, Nicholas M; Morgan, Adam N; Polishook, David; Poznanski, Dovi; Quimby, Robert M; Sesar, Branimir; Shen, Ken J; Silverman, Jeffrey M; Sternberg, Assaf

    2013-01-01

    We report the discovery by the Palomar Transient Factory (PTF) of the transient source PTF11agg, which is distinguished by three primary characteristics: (1) bright, rapidly fading optical transient emission; (2) a faint, blue quiescent optical counterpart; and (3) an associated year-long, scintillating radio transient. We argue that these observed properties are inconsistent with any known class of Galactic transients, and instead suggest a cosmological origin. The detection of incoherent radio emission at such distances implies a large emitting region, from which we infer the presence of relativistic ejecta. The observed properties are all consistent with the population of long-duration gamma-ray bursts (GRBs), marking the first time such an outburst has been discovered in the distant universe independent of a high-energy trigger. We searched for possible high-energy counterparts to PTF11agg, but found no evidence for associated prompt emission. We therefore consider three possible scenarios to account for ...

  12. Luminous Supernovae

    CERN Document Server

    Gal-Yam, Avishay

    2012-01-01

    Supernovae (SNe), the luminous explosions of stars, were observed since antiquity, with typical peak luminosity not exceeding 1.2x10^{43} erg/s (absolute magnitude >-19.5 mag). It is only in the last dozen years that numerous examples of SNe that are substantially super-luminous (>7x10^{43} erg/s; <-21 mag absolute) were well-documented. Reviewing the accumulated evidence, we define three broad classes of super-luminous SN events (SLSNe). Hydrogen-rich events (SLSN-II) radiate photons diffusing out from thick hydrogen layers where they have been deposited by strong shocks, and often show signs of interaction with circumstellar material. SLSN-R, a rare class of hydrogen-poor events, are powered by very large amounts of radioactive 56Ni and arguably result from explosions of very massive stars due to the pair instability. A third, distinct group of hydrogen-poor events emits photons from rapidly-expanding hydrogen-poor material distributed over large radii, and are not powered by radioactivity (SLSN-I). Thes...

  13. More Supernova Surprises

    Science.gov (United States)

    2010-09-24

    SEP 2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE More Supernova Surprises 5a. CONTRACT NUMBER 5b. GRANT...PERSPECTIVES More Supernova Surprises ASTRONOMY J. Martin Laming Spectroscopic observations of the supernova SN1987A are providing a new window into high...a core-collapse supernova ) have stretched and motivated research that has expanded our knowledge of astrophysics. The brightest such event in

  14. SNO and Supernovae

    CERN Document Server

    Virtue, C J

    2001-01-01

    The Sudbury Neutrino Observatory (SNO) has unique capabilities as a supernova detector. In the event of a galactic supernova there are opportunities, with the data that SNO would collect, to constrain certain intrinsic neutrino properties significantly, to test details of the various models of supernova dynamics, and to provide prompt notification to the astronomical community through the Supernova Early Warning System (SNEWS). This paper consists of a discussion of these opportunities illustrated by some preliminary Monte Carlo results.

  15. Investigations of supernovae and supernova remnants in the era of SKA

    CERN Document Server

    Wang, Lingzhi; Zhu, Hui; Tian, Wenwu; Wang, Xiaofeng

    2015-01-01

    Two main physical mechanisms are used to explain supernova explosions: thermonuclear explosion of a white dwarf(Type Ia) and core collapse of a massive star (Type II and Type Ib/Ic). Type Ia supernovae serve as distance indicators that led to the discovery of the accelerating expansion of the Universe. The exact nature of their progenitor systems however remain unclear. Radio emission from the interaction between the explosion shock front and its surrounding CSM or ISM provides an important probe into the progenitor star's last evolutionary stage. No radio emission has yet been detected from Type Ia supernovae by current telescopes. The SKA will hopefully detect radio emission from Type Ia supernovae due to its much better sensitivity and resolution. There is a 'supernovae rate problem' for the core collapse supernovae because the optically dim ones are missed due to being intrinsically faint and/or due to dust obscuration. A number of dust-enshrouded optically hidden supernovae should be discovered via SKA1-...

  16. PTF, a new facility for pulse field testing of large scale superconducting cables and joints

    NARCIS (Netherlands)

    Smith, Bradford A.; Hale, J. Richard; Zhukovsky, Alex; Michael, Philip C.; Minervini, Joseph V.; Olmstead, Michael M.; Dekow, Gary L.; Rosati, James; Camille, Richard J.; Gung, Chen-yu; Gwinn, David; Silva, Frank; Fairfax, Stephen A.; Shen, Stewart; Knoopers, H.G.; Wessel, S.; Krooshoop, H.J.G.; Shevchenko, O.A.; Godeke, A.; Kate, ten H.H.J.

    1997-01-01

    A magnetic Pulse Test Facility (PTF), in which samples of CICC electrical joints from each ITER home team will be tested, has been fabricated at the MIT Plasma Fusion Center under an ITER task agreement. Construction of this facility has recently been completed, and an initial test phase on the firs

  17. PTF; a new facility for pulse field testing of large scale superconducting

    NARCIS (Netherlands)

    Smith, Bradford A.; Hale, J. Richard; Zhukovsky, Alex; Michael, Philip C.; Minervini, Joseph V.; Olmstead, Michael M.; Dekow, Gary L.; Rosati, James; Camille, Richard J.; Gung, Chen-yu; Gwinn, David; Silva, Frank; Fairfax, Stephen A.; Shen, Stewart; Knoopers, H.G.; Wessel, Wilhelm A.J.; Krooshoop, Hendrikus J.G.; Chevtchenko, O.A.; Godeke, A.; ten Kate, Herman H.J.

    1997-01-01

    A magnetic Pulse Test Facility (PTF), in which samples of CICC electrical joints from each ITER home team will be tested, has been fabricated at the MIT Plasma Fusion Center under an ITER task agreement. Construction of this facility has recently been completed, and an initial test phase on the

  18. How supernovae became the basis of observational cosmology

    CERN Document Server

    Pruzhinskaya, Maria Victorovna

    2016-01-01

    This paper is dedicated to the discovery of one of the most important relationships in supernova cosmology - the relation between the peak luminosity of Type Ia supernovae and their luminosity decline rate after maximum light. The history of this relationship is quite long and interesting. The relationship was independently discovered by the American statistician and astronomer Bert Woodard Rust and the Soviet astronomer Yury Pavlovich Pskovskii in the 1970s. Using a limited sample of Type I supernovae they were able to show that the brighter the supernova is, the slower its luminosity declines after maximum. Only with the appearance of CCD cameras could Mark Phillips re-inspect this relationship on a new level of accuracy using a better sample of supernovae. His investigations confirmed the idea proposed earlier by Rust and Pskovskii.

  19. Initial Hubble Diagram Results from the Nearby Supernova Factory

    CERN Document Server

    Bailey, S; Antilogus, P; Aragon, C; Baltay, C; Bongard, S; Buton, C; Childress, M; Copin, Y; Gangler, E; Loken, S; Nugent, P; Pain, R; Pécontal, E; Pereira, R; Perlmutter, S; Rabinowitz, D; Rigaudier, G; Ripoche, P; Runge, K; Scalzo, R; Smadja, G; Tao, C; Thomas, R C; Wu, C

    2008-01-01

    The use of Type Ia supernovae as distance indicators led to the discovery of the accelerating expansion of the universe a decade ago. Now that large second generation surveys have significantly increased the size and quality of the high-redshift sample, the cosmological constraints are limited by the currently available sample of ~50 cosmologically useful nearby supernovae. The Nearby Supernova Factory addresses this problem by discovering nearby supernovae and observing their spectrophotometric time development. Our data sample includes over 2400 spectra from spectral timeseries of 185 supernovae. This talk presents results from a portion of this sample including a Hubble diagram (relative distance vs. redshift) and a description of some analyses using this rich dataset.

  20. On the progenitor of the Type Ic supernova 2002ap

    NARCIS (Netherlands)

    Smartt, SJ; Ramirez-Ruiz, E; Gilmore, GF; Meikle, WPS; Ferguson, AMN; Knapen, JH

    2002-01-01

    This Letter presents wide-field optical and near-IR (UBVRIHalphaK') images of the galaxy M74 that were taken between 0.6 and 8.3 yr before the discovery of the Type Ic supernova 2002ap. We have located the position of the supernova on these images with an accuracy of 0."3. We find no sign of a proge

  1. Supernova Physics at DUNE

    CERN Document Server

    Ankowski, Artur; Benhar, Omar; Chen, Sun; Cherry, John; Cui, Yanou; Friedland, Alexander; Gil-Botella, Ines; Haghighat, Alireza; Horiuchi, Shunsaku; Huber, Patrick; Kneller, James; Laha, Ranjan; Li, Shirley; Link, Jonathan; Lovato, Alessandro; Macias, Oscar; Mariani, Camillo; Mezzacappa, Anthony; O'Connor, Evan; O'Sullivan, Erin; Rubbia, Andre; Scholberg, Kate; Takeuchi, Tatsu

    2016-01-01

    The DUNE/LBNF program aims to address key questions in neutrino physics and astroparticle physics. Realizing DUNE's potential to reconstruct low-energy particles in the 10-100 MeV energy range will bring significant benefits for all DUNE's science goals. In neutrino physics, low-energy sensitivity will improve neutrino energy reconstruction in the GeV range relevant for the kinematics of DUNE's long-baseline oscillation program. In astroparticle physics, low-energy capabilities will make DUNE's far detectors the world's best apparatus for studying the electron-neutrino flux from a supernova. This will open a new window to unrivaled studies of the dynamics and neutronization of a star's central core in real time, the potential discovery of the neutrino mass hierarchy, provide new sensitivity to physics beyond the Standard Model, and evidence of neutrino quantum-coherence effects. The same capabilities will also provide new sensitivity to `boosted dark matter' models that are not observable in traditional direc...

  2. Ectopic Ptf1a expression in murine ESCs potentiates endocrine differentiation and models pancreas development in vitro.

    Science.gov (United States)

    Nair, Gopika G; Vincent, Robert K; Odorico, Jon S

    2014-05-01

    Besides its role in exocrine differentiation, pancreas-specific transcription factor 1a (PTF1a) is required for pancreas specification from the foregut endoderm and ultimately for endocrine cell formation. Examining the early role of PTF1a in pancreas development has been challenging due to limiting amounts of embryonic tissue material for study. Embryonic stem cells (ESCs) which can be differentiated in vitro, and without limit to the amount of experimental material, can serve as a model system to study these early developmental events. To this end, we derived and characterized a mouse ESC line with tetracycline-inducible expression of PTF1a (tet-Ptf1a mESCs). We found that transient ectopic expression of PTF1a initiated the pancreatic program in differentiating ESCs causing cells to activate PDX1 expression in bud-like structures resembling pancreatic primordia in vivo. These bud-like structures also expressed progenitor markers characteristic of a developing pancreatic epithelium. The epithelium differentiated to generate a wave of NGN3+ endocrine progenitors, and further formed cells of all three pancreatic lineages. Notably, the insulin+ cells in the cultures were monohormonal, and expressed PDX1 and NKX6.1. PTF1a-induced cultures differentiated into significantly more endocrine and exocrine cells and the ratio of endocrine-to-exocrine cell differentiation could be regulated by retinoic acid (RA) and nicotinamide (Nic) signaling. Moreover, induced cultures treated with RA and Nic exhibited a modest glucose response. Thus, this tet-Ptf1a ESC-based in vitro system is a valuable new tool for interrogating the role of PTF1a in pancreas development and in directing differentiation of ESCs to endocrine cells.

  3. Supernovae neutrino pasta interaction

    Science.gov (United States)

    Lin, Zidu; Horowitz, Charles; Caplan, Matthew; Berry, Donald; Roberts, Luke

    2017-01-01

    In core-collapse supernovae, the neutron rich matter is believed to have complex structures, such as spherical, slablike, and rodlike shapes. They are collectively called ``nuclear pasta''. Supernovae neutrinos may scatter coherently on the ``nuclear pasta'' since the wavelength of the supernovae neutrinos are comparable to the nuclear pasta scale. Consequently, the neutrino pasta scattering is important to understand the neutrino opacity in the supernovae. In this work we simulated the ``nuclear pasta'' at different temperatures and densities using our semi-classical molecular dynamics and calculated the corresponding static structure factor that describes ν-pasta scattering. We found the neutrino opacities are greatly modified when the ``pasta'' exist and may have influence on the supernovae neutrino flux and average energy. Our neutrino-pasta scattering effect can finally be involved in the current supernovae simulations and we present preliminary proto neutron star cooling simulations including our pasta opacities.

  4. Supernova Neutrino Detection

    Energy Technology Data Exchange (ETDEWEB)

    Gil-Botella, Ines, E-mail: ines.gil@ciemat.es [CIEMAT, Basic Research Department, Avenida Complutense, 22, 28040 Madrid (Spain)

    2011-07-25

    The neutrino burst from a core collapse supernova can provide information about the explosion mechanism and the mechanisms of proto neutron star cooling but also about the intrinsic properties of the neutrino such as flavor oscillations. One important question is to understand to which extend can the supernova and the neutrino physics be decoupled in the observation of a single supernova. The possibility to probe the neutrino mixing angle {theta}{sub 13} and the type of mass hierarchy from the detection of supernova neutrinos with liquid argon detectors is discussed in this paper. Moreover, a quantitatively study about the possibility to constrain the supernova parameters is presented. A very massive liquid argon detector ({approx} 100 kton) is needed to perform accurate measurements of these parameters. Finally the possible detection of the diffuse supernova neutrino background in liquid argon detectors is also described.

  5. An extremely luminous X-ray outburst at the birth of a supernova.

    Science.gov (United States)

    Soderberg, A M; Berger, E; Page, K L; Schady, P; Parrent, J; Pooley, D; Wang, X-Y; Ofek, E O; Cucchiara, A; Rau, A; Waxman, E; Simon, J D; Bock, D C-J; Milne, P A; Page, M J; Barentine, J C; Barthelmy, S D; Beardmore, A P; Bietenholz, M F; Brown, P; Burrows, A; Burrows, D N; Bryngelson, G; Byrngelson, G; Cenko, S B; Chandra, P; Cummings, J R; Fox, D B; Gal-Yam, A; Gehrels, N; Immler, S; Kasliwal, M; Kong, A K H; Krimm, H A; Kulkarni, S R; Maccarone, T J; Mészáros, P; Nakar, E; O'Brien, P T; Overzier, R A; de Pasquale, M; Racusin, J; Rea, N; York, D G

    2008-05-22

    Massive stars end their short lives in spectacular explosions--supernovae--that synthesize new elements and drive galaxy evolution. Historically, supernovae were discovered mainly through their 'delayed' optical light (some days after the burst of neutrinos that marks the actual event), preventing observations in the first moments following the explosion. As a result, the progenitors of some supernovae and the events leading up to their violent demise remain intensely debated. Here we report the serendipitous discovery of a supernova at the time of the explosion, marked by an extremely luminous X-ray outburst. We attribute the outburst to the 'break-out' of the supernova shock wave from the progenitor star, and show that the inferred rate of such events agrees with that of all core-collapse supernovae. We predict that future wide-field X-ray surveys will catch each year hundreds of supernovae in the act of exploding.

  6. The historical supernovae

    CERN Document Server

    Clark, David H

    1977-01-01

    The Historical Supernovae is an interdisciplinary study of the historical records of supernova. This book is composed of 12 chapters that particularly highlight the history of the Far East. The opening chapter briefly describes the features of nova and supernova, stars which spontaneously explode with a spectacular and rapid increase in brightness. The succeeding chapter deals with the search for the historical records of supernova from Medieval European monastic chronicles, Arabic chronicles, astrological works etc., post renaissance European scientific writings, and Far Eastern histories and

  7. Atomic and molecular supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.

    1997-12-01

    Atomic and molecular physics of supernovae is discussed with an emphasis on the importance of detailed treatments of the critical atomic and molecular processes with the best available atomic and molecular data. The observations of molecules in SN 1987A are interpreted through a combination of spectral and chemical modelings, leading to strong constraints on the mixing and nucleosynthesis of the supernova. The non-equilibrium chemistry is used to argue that carbon dust can form in the oxygen-rich clumps where the efficient molecular cooling makes the nucleation of dust grains possible. For Type Ia supernovae, the analyses of their nebular spectra lead to strong constraints on the supernova explosion models.

  8. An Unusually Fast-Evolving Supernova

    OpenAIRE

    Poznanski, Dovi; Chornock, Ryan; Nugent, Peter E.; Bloom, Joshua S.; Filippenko, Alexei V.; Ganeshalingam, Mohan; Leonard, Douglas C.; Li, Weidong; Thomas, Rollin C.

    2009-01-01

    Analyses of supernovae (SNe) have revealed two main types of progenitors: exploding white dwarfs and collapsing massive stars. We present SN2002bj, which stands out as different from any SN reported to date. Its light curve rises and declines very rapidly, yet reaches a peak intrinsic brightness greater than -18 mag. A spectrum obtained 7 days after discovery shows the presence of helium and intermediate-mass elements, yet no clear hydrogen or iron-peak elements. The spectrum only barely rese...

  9. Specification of spatial identities of cerebellar neuron progenitors by ptf1a and atoh1 for proper production of GABAergic and glutamatergic neurons.

    Science.gov (United States)

    Yamada, Mayumi; Seto, Yusuke; Taya, Shinichiro; Owa, Tomoo; Inoue, Yukiko U; Inoue, Takayoshi; Kawaguchi, Yoshiya; Nabeshima, Yo-Ichi; Hoshino, Mikio

    2014-04-01

    In the cerebellum, the bHLH transcription factors Ptf1a and Atoh1 are expressed in distinct neuroepithelial regions, the ventricular zone (VZ) and the rhombic lip (RL), and are required for producing GABAergic and glutamatergic neurons, respectively. However, it is unclear whether Ptf1a or Atoh1 is sufficient for specifying GABAergic or glutamatergic neuronal fates. To test this, we generated two novel knock-in mouse lines, Ptf1a(Atoh1) and Atoh1(Ptf1a), that are designed to express Atoh1 and Ptf1a ectopically in the VZ and RL, respectively. In Ptf1a(Atoh1) embryos, ectopically Atoh1-expressing VZ cells produced glutamatergic neurons, including granule cells and deep cerebellar nuclei neurons. Correspondingly, in Atoh1(Ptf1a) animals, ectopically Ptf1a-expressing RL cells produced GABAergic populations, such as Purkinje cells and GABAergic interneurons. Consistent results were also obtained from in utero electroporation of Ptf1a or Atoh1 into embryonic cerebella, suggesting that Ptf1a and Atoh1 are essential and sufficient for GABAergic versus glutamatergic specification in the neuroepithelium. Furthermore, birthdating analyses with BrdU in the knock-in mice or with electroporation studies showed that ectopically produced fate-changed neuronal types were generated at temporal schedules closely simulating those of the wild-type RL and VZ, suggesting that the VZ and RL share common temporal information. Observations of knock-in brains as well as electroporated brains revealed that Ptf1a and Atoh1 mutually negatively regulate their expression, probably contributing to formation of non-overlapping neuroepithelial domains. These findings suggest that Ptf1a and Atoh1 specify spatial identities of cerebellar neuron progenitors in the neuroepithelium, leading to appropriate production of GABAergic and glutamatergic neurons, respectively.

  10. Early identification of Type I supernova light curves

    CERN Document Server

    Arnett, W David; Matheson, Thomas

    2016-01-01

    We compare analytic light curves for SNIabc supernovae with recent high quality data from (1)) SN2011fe \\citep{sn2011fe}, (2) KSN2011b \\citep{keplersn}, (3) the Palomar Transient Factory (PTF) and the La Silla-QUEST variability survey (LSQ) \\citep{firth}, and (4) a type Ib, SN2008D \\citep{modjaz,soderberg}. We establish a reasonable bolometric conversion between Kepler supernovae and SN2011fe, a crude but instructive one for SN2008D, and discuss the implications of the smoothness of the light-curve for KSN2011b, as well as the meaning of the deviation of early luminosity from $t^2$ behavior. The good agreement of the analytic light curves (which necessarily assume mixing and which can reproduce the Phillips relation) and the observations of highest cadence and stability, are consistent with the occurrence of significant large-scale mixing during the explosion, possibly due to 3D effects (e.g., Rayleigh-Taylor and Richtmeyer-Meshkov instabilities) and consistent with spectrapolarimetry \\citep{amber}. We illust...

  11. Matching Supernovae to Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2016-12-01

    One of the major challenges for modern supernova surveys is identifying the galaxy that hosted each explosion. Is there an accurate and efficient way to do this that avoids investing significant human resources?Why Identify Hosts?One problem in host galaxy identification. Here, the supernova lies between two galaxies but though the centroid of the galaxy on the right is closer in angular separation, this may be a distant background galaxy that is not actually near the supernova. [Gupta et al. 2016]Supernovae are a critical tool for making cosmological predictions that help us to understand our universe. But supernova cosmology relies on accurately identifying the properties of the supernovae including their redshifts. Since spectroscopic followup of supernova detections often isnt possible, we rely on observations of the supernova host galaxies to obtain redshifts.But how do we identify which galaxy hosted a supernova? This seems like a simple problem, but there are many complicating factors a seemingly nearby galaxy could be a distant background galaxy, for instance, or a supernovas host could be too faint to spot.The authors algorithm takes into account confusion, a measure of how likely the supernova is to be mismatched. In these illustrations of low (left) and high (right) confusion, the supernova is represented by a blue star, and the green circles represent possible host galaxies. [Gupta et al. 2016]Turning to AutomationBefore the era of large supernovae surveys, searching for host galaxies was done primarily by visual inspection. But current projects like the Dark Energy Surveys Supernova Program is finding supernovae by the thousands, and the upcoming Large Synoptic Survey Telescope will likely discover hundreds of thousands. Visual inspection will not be possible in the face of this volume of data so an accurate and efficient automated method is clearly needed!To this end, a team of scientists led by Ravi Gupta (Argonne National Laboratory) has recently

  12. VizieR Online Data Catalog: Rotation periods of asteroids using iPTF (Chang+, 2016)

    Science.gov (United States)

    Chang, C.-K.; Lin, H.-W.; Ip, W.-H.; Prince, T. A.; Kulkarni, S. R.; Levitan, D.; Laher, R.; Surace, J.

    2017-01-01

    To explore the transient and variable sky synoptically, the PTF/iPTF employs the Palomar 48-inch Oschin Schmidt Telescope to create a field of view of ~7.26deg2 and a pixel scale of 1.01". The available filters include the Mould-R band, with which most exposures were taken, Gunn-g', and two different Hα-bands. The exposure time is fixed at 60 seconds, which can reach a median limiting magnitude of R~21mag at the 5σ level. In order to look for large super-fast rotators, we conducted five asteroid rotation-period surveys during 2014 October 29-31 and November 10-13, and 2015 January 18-19, February 20-21 and 25-26. Each survey continuously scanned six consecutive PTF fields over the ecliptic plane in the R-band, with a cadence of 10min. We ended up with a total sky coverage of ~188deg2. (3 data files).

  13. A Machine-learning Model to Separate Stars and Galaxies in iPTF Images

    Science.gov (United States)

    Miller, Adam; Kulkarni, Maya; Prince, Thomas A.; Intermediate Palomar Transient Factory

    2016-01-01

    The Intermediate Palomar Transient Factory (iPTF) is a dedicated time-domain survey optimized for the rapid characterization of fast transients. While significant efforts have been devoted to the development of software that quickly and reliably identifies new transients, there are currently no mechanisms to automatically classify these sources. The first component in deriving a classification is understanding whether or not the newly discovered transient is galactic or extragalactic in its origin. Here, we present our development of a new framework for classifying sources in iPTF reference images as either stars or galaxies. The framework utilizes the random forest algorithm and is trained with nearly 3 million sources that have Sloan Digital Sky Survey (SDSS) spectra. The final optimized model achieves a cross-validation accuracy of ~96%, which represents a significant improvement over the automated classification provided by the SExtractor algorithm. This accuracy, while slightly worse than that provided by the SDSS photometric classifier, can be extended over the entire iPTF footprint, which covers >5000 deg^2 that have not been imaged by SDSS. Associating transients with galactic or extragalactic origin is the first step in delivering automated classifications of newly discovered transients.

  14. Neutrinos from Supernovae

    CERN Document Server

    Choubey, S; Choubey, Sandhya; Kar, Kamales

    2002-01-01

    In this review, the effect of flavor oscillations on the neutrinos released during supernova explosion after core collapse is described. In some scenarios there are large enhancement of the number of events compared to the no oscillation case. Various other features associated with supernova neutrinos are also discussed.

  15. Molecules in supernova ejecta

    CERN Document Server

    Cherchneff, Isabelle

    2011-01-01

    The first molecules detected at infrared wavelengths in the ejecta of a Type II supernova, namely SN1987A, consisted of CO and SiO. Since then, confirmation of the formation of these two species in several other supernovae a few hundred days after explosion has been obtained. However, supernova environments appear to hamper the synthesis of large, complex species due to the lack of microscopically-mixed hydrogen deep in supernova cores. Because these environments also form carbon and silicate dust, it is of importance to understand the role played by molecules in the depletion of elements and how chemical species get incorporated into dust grains. In the present paper, we review our current knowledge of the molecular component of supernova ejecta, and present new trends and results on the synthesis of molecules in these harsh, explosive events.

  16. Selections from 2015: Two Kinds of Type Ia Supernovae

    Science.gov (United States)

    Kohler, Susanna

    2015-03-01

    Editors Note:In these last two weeks of 2015, well be looking at a few selections from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume after the AAS winter meeting.The Changing Fractions of Type Ia Supernova NUVOptical Subclasses with RedshiftPublished April2015Main takeaway:A team of scientists led by Peter Milne (University of Arizona) used ultraviolet observations from the Swift spacecraft to determine that type Ia supernovae, stellar explosions previously thought to all belong in the same class, actually fall into two subgroups: those that are slightly redder in NUV wavelengths and those that are slightly bluer.Plot of the percentage of supernovae that are NUV-blue (rather than NUV-red), as a function of redshift. NUV-blue supernovae dominate at higher redshifts. [Milne et al. 2015]Why its interesting:It turns out that the fraction of supernovae in each of these two groups is redshift-dependent. At low redshifts (i.e., nearby), the population of type Ia supernovae is dominated by NUV-red supernovae. At high redshifts (i.e., far away), the population is dominated by NUV-blue supernovae. Since cosmological distances are measured using Type Ia supernovae as standard candles, the fact that weve been modeling these supernovae all the same way (rather than treating them as two separate subclasses) means we may have been systematically misinterpreting distances.What this means for the universes expansion:This seemingly simple discovery carries hefty repercussions in fact, our estimates of the expansion rate of the universe may be incorrect! The authors believe that if we correct for this error, well find that the universe is not expanding as quickly as we thought.CitationPeter A. Milne et al 2015 ApJ 803 20. doi:10.1088/0004-637X/803/1/20

  17. Software Based Supernova Recognition

    Science.gov (United States)

    Walters, Stephen M.

    2014-05-01

    This paper describes software for detecting Supernova (SN) in images. The software can operate in real-time to discover SN while data is being collected so the instrumentation can immediately be re-tasked to perform spectroscopy or photometry of a discovery. Because the instrumentation captures two images per minute, the realtime budget is constrained to 30 seconds per target, a challenging goal. Using a set of two to four images, the program creates a "Reference" (REF) image and a "New" (NEW) image where all images are used in both NEW and REF but any SN survives the combination process only in the NEW image. This process produces good quality images having similar noise characteristics but without artifacts that might be interpreted as SN. The images are then adjusted for seeing and brightness differences using a variant of Tomaney and Crotts method of Point Spread Function (PSF) matching after which REF is subtracted from NEW to produce a Difference (DIF) image. A Classifier is then trained on a grid of artificial SN to estimate the statistical properties of four attributes and used in a process to mask false positives that can be clearly identified as such. Further training to avoid any remaining false positives sets the range, in standard deviations for each attribute, that the Classifier will accept as a valid SN. This training enables the Classifier to discriminate between SN and most subtraction residue. Lastly, the DIF image is scanned and measured by the Classifier to find locations where all four properties fall within their acceptance ranges. If multiple locations are found, the one best conforming to the training estimates is chosen. This location is then declared as a Candidate SN, the instrumentation re-tasked and the operator notified.

  18. VLBI observations of SN2011dh: imaging of the youngest radio supernova

    CERN Document Server

    Marti-Vidal, I; Paragi, Z; Yang, J; Marcaide, J M; Guirado, J C; Ros, E; Alberdi, A; Perez-Torres, M A; Argo, M K; van der Horst, A J; Garrett, M A; Stockdale, C J; Weiler, K W

    2011-01-01

    We report on the VLBI detection of supernova SN2011dh at 22GHz using a subset of the EVN array. The observations took place 14 days after the discovery of the supernova, thus resulting in a VLBI image of the youngest radio-loud supernova ever. We provide revised coordinates for the supernova with milli-arcsecond precision, linked to the ICRF. The recovered flux density is a factor 2 below the EVLA flux density reported by other authors at the same frequency and epoch of our observations. This discrepancy could be due to extended emission detected with the EVLA or to calibration problems in the VLBI and/or EVLA observations.

  19. Mass extinctions and supernova explosions

    CERN Document Server

    Korschinek, Gunther

    2016-01-01

    A nearby supernova (SN) explosion could have negatively influenced life on Earth, maybe even been responsible for mass extinctions. Mass extinction poses a significant extinction of numerous species on Earth, as recorded in the paleontologic, paleoclimatic, and geological record of our planet. Depending on the distance between the Sun and the SN, different types of threats have to be considered, such as ozone depletion on Earth, causing increased exposure to the Sun's ultraviolet radiation, or the direct exposure of lethal x-rays. Another indirect effect is cloud formation, induced by cosmic rays in the atmosphere which result in a drop in the Earth's temperature, causing major glaciations of the Earth. The discovery of highly intensive gamma ray bursts (GRBs), which could be connected to SNe, initiated further discussions on possible life-threatening events in Earth's history. The probability that GRBs hit the Earth is very low. Nevertheless, a past interaction of Earth with GRBs and/or SNe cannot be exclude...

  20. PHotometry Assisted Spectral Extraction (PHASE) and identification of SNLS supernovae

    CERN Document Server

    Baumont, S; Astier, Pierre; Guy, J; Hardin, D; Howell, D A; Lidman, C; Mouchet, M; Pain, R; Regnault, N

    2008-01-01

    Aim: We present new extraction and identification techniques for supernova (SN) spectra developed within the Supernova Legacy Survey (SNLS) collaboration. Method: The new spectral extraction method takes full advantage of photometric information from the Canada-France-Hawai telescope (CFHT) discovery and reference images by tracing the exact position of the supernova and the host signals on the spectrogram. When present, the host spatial profile is measured on deep multi-band reference images and is used to model the host contribution to the full (supernova + host) signal. The supernova is modelled as a Gaussian function of width equal to the seeing. A chi-square minimisation provides the flux of each component in each pixel of the 2D spectrogram. For a host-supernova separation greater than <~ 1 pixel, the two components are recovered separately and we do not use a spectral template in contrast to more standard analyses. This new procedure permits a clean extraction of the supernova separately from the ho...

  1. The expansion of the universe observed with supernovae.

    Science.gov (United States)

    Astier, Pierre

    2012-11-01

    Over the last 20 years, supernovae have become a key tool to constrain the expansion history of the Universe through the construction of Hubble diagrams, using luminosity distances to supernovae belonging to the 'Ia' subtype. This technique was key for the discovery that the expansion of the Universe is now accelerating. We review the principle and difficulties of the measurements, the classification and diversity of supernovae, and the physics of explosion. We discuss the systematic uncertainties affecting the cosmological conclusions with some emphasis on photometric calibration. We describe the major supernova cosmology surveys, the presented analyses and their conclusions, together with the present status of the field. We conclude on the expectations for the near future.

  2. Pre-Supernova Evolution of Massive Single and Binary Stars

    CERN Document Server

    Langer, N

    2012-01-01

    Massive stars are essential to understand a variety of branches of astronomy including galaxy and star cluster evolution, nucleosynthesis and supernovae, pulsars and black holes. It has become evident that massive star evolution is very diverse, being sensitive to metallicity, binarity, rotation, and possibly magnetic fields. While the problem to obtain a good statistical observational database is alleviated by current large spectroscopic surveys, it remains a challenge to model these diverse paths of massive stars towards their violent end stage. We show that the main sequence stage offers the best opportunity to gauge the relevance of the various possible evolutionary scenarios. This also allows to sketch the post-main sequence evolution of massive stars, for which observations of Wolf-Rayet stars give essential clues. Recent supernova discoveries due to the current boost in transient searches allow tentative mappings of progenitor models with supernova types, including pair instability supernovae and gamma...

  3. VizieR Online Data Catalog: PTF obs. of a precursor to SNHunt 275 2015 May event (Ofek+, 2016)

    Science.gov (United States)

    Ofek, E. O.; Cenko, S. B.; Shaviv, N. J.; Duggan, G.; Strotjohann, N.-L.; Rubin, A.; Kulkarni, S. R.; Gal-Yam, A.; Sullivan, M.; Cao, Y.; Nugent, P. E.; Kasliwal, M. M.; Sollerman, J.; Fransson, C.; Filippenko, A. V.; Perley, D. A.; Yaron, O.; Laher, R.

    2016-08-01

    The Palomar Transient Factory (PTF and iPTF; Law et al. 2009PASP..121.1395L; Rau et al. 2009PASP..121.1334R), using the 48inch Oschin Schmidt telescope, observed the field of SNHunt 275 starting in 2009 March. On 2013 December 12, PTF detected a new source at the location of the event, and the transient was named PTF 13efv (see Figure 1). Three images obtained between 2014 January 23 and April 25 were used as a reference. The PTF R-band photometry is listed in Table1. Most of the optical spectra were obtained with the Low Resolution Imaging Spectrometer (LRIS) on the Keck I 10m telescope, although a few spectra were also taken with the DEep Imaging Multi-Object Spectrograph (DEIMOS) on the Keck II 10m telescope, the Kast spectrograph on the Shane 3m telescope at Lick Observatory, and the Gemini-North Multiobject Spectrograph (GMOS) on the 8m Gemini-N telescope. The first spectrum was obtained during the 2013 December outburst. We used the Swift/UVOT observations of SNHunt 275, since 2008, to construct the bolometric light curve of the transient. The log of Swift-XRT observations, along with the source and background X-ray counts in the individual observations, is given in Table 5. (3 data files).

  4. Automated search for supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Kare, J.T.

    1984-11-15

    This thesis describes the design, development, and testing of a search system for supernovae, based on the use of current computer and detector technology. This search uses a computer-controlled telescope and charge coupled device (CCD) detector to collect images of hundreds of galaxies per night of observation, and a dedicated minicomputer to process these images in real time. The system is now collecting test images of up to several hundred fields per night, with a sensitivity corresponding to a limiting magnitude (visual) of 17. At full speed and sensitivity, the search will examine some 6000 galaxies every three nights, with a limiting magnitude of 18 or fainter, yielding roughly two supernovae per week (assuming one supernova per galaxy per 50 years) at 5 to 50 percent of maximum light. An additional 500 nearby galaxies will be searched every night, to locate about 10 supernovae per year at one or two percent of maximum light, within hours of the initial explosion.

  5. Supernova electron capture rates

    CERN Document Server

    Martínez-Pinedo, G

    1999-01-01

    We have calculated the Gamow-Teller strength distributions for the ground states and low lying states of several nuclei that play an important role in the precollapse evolution of supernova. The calculations reproduce the experimental GT distributions nicely. The GT distribution are used to calculate electron capture rates for typical presupernova conditions. The computed rates are noticeably smaller than the presently adopted rates. The possible implications for the supernova evolution are discussed.

  6. An Unusually Fast-Evolving Supernova

    CERN Document Server

    Poznanski, Dovi; Nugent, Peter E; Bloom, Joshua S; Ganeshalingam, Mohan; Leonard, Douglas C; Li, Weidong; Thomas, Rollin C

    2009-01-01

    Analyses of supernovae (SNe) have revealed two main types of progenitors: exploding white dwarfs and collapsing massive stars. We present SN2002bj, which stands out as different from any SN reported to date. Its light curve rises and declines very rapidly, yet reaches a peak intrinsic brightness greater than -18 mag. A spectrum obtained 7 days after discovery shows the presence of helium and intermediate-mass elements, yet no clear hydrogen or iron-peak elements. The spectrum only barely resembles that of a Type Ia supernova, with added carbon and helium. Its properties suggest that SN2002bj may be representative of a class of progenitors that previously has been only hypothesized: a helium detonation on a white dwarf, ejecting a small envelope of material. New surveys should find many such objects, despite their scarcity.

  7. The supernova cosmology cookbook: Bayesian numerical recipes

    CERN Document Server

    Karpenka, N V

    2015-01-01

    Theoretical and observational cosmology have enjoyed a number of significant successes over the last two decades. Cosmic microwave background measurements from the Wilkinson Microwave Anisotropy Probe and Planck, together with large-scale structure and supernova (SN) searches, have put very tight constraints on cosmological parameters. Type Ia supernovae (SNIa) played a central role in the discovery of the accelerated expansion of the Universe, recognised by the Nobel Prize in Physics in 2011. The last decade has seen an enormous increase in the amount of high quality SN observations, with SN catalogues now containing hundreds of objects. This number is expected to increase to thousands in the next few years, as data from next-generation missions, such as the Dark Energy Survey and Large Synoptic Survey Telescope become available. In order to exploit the vast amount of forthcoming high quality data, it is extremely important to develop robust and efficient statistical analysis methods to answer cosmological q...

  8. Reverse-Shock in Tycho's Supernova Remnant

    CERN Document Server

    Lu, F J; Zheng, S J; Zhang, S N; Long, X; Aschenbach, B

    2015-01-01

    Thermal X-ray emission from young supernova remnants (SNRs) is usually dominated by the emission lines of the supernova (SN) ejecta, which are widely believed being crossed and thus heated by the inwards propagating reverse shock (RS). Previous works using imaging X-ray data have shown that the ejecta are heated by the RS by locating the peak emission region of the most recently ionized matter, which is found well separated towards the inside from the outermost boundary. Here we report the discovery of a systematic increase of the Sulfur (S) to Silicon (Si) K$\\alpha$ line flux ratio with radius in Tycho's SNR. This allows us, for the first time, to present continuous radial profiles of the ionization age and, furthermore, the elapsed ionization time since the onset of the ionization, which tells the propagation history of the ionization front into the SNR ejecta.

  9. THE 1999aa-LIKE TYPE Ia SUPERNOVA IPTF14BDN IN THE ULTRAVIOLET AND OPTICAL

    Energy Technology Data Exchange (ETDEWEB)

    Smitka, Michael T.; Brown, Peter J.; Suntzeff, Nicholas B. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, Department of Physics and Astronomy, 4242 TAMU, College Station, TX 77843 (United States); Zhang, Jujia; Zhai, Qian [Yunnan Observatories (YNAO), Chinese Academy of Sciences, Kunming 650011 (China); Wang, Xiaofeng; Mo, Jun [Physics Department and Tsinghua Center for Astrophysics (THCA), Tsinghua University, Beijing 100084 (China); Zhang, Tianmeng, E-mail: mikesmitka@gmail.com [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2015-11-01

    We present ultraviolet (UV) and optical photometry and spectra of the 1999aa-like supernova (SN) iPTF14bdn. The UV data were observed using the Swift Ultraviolet/Optical Telescope and constitute the first UV spectral series of a 1999aa-like SN. From the photometry, we measure Δm{sub 15}(B) = 0.84 ± 0.05 mag and blue UV colors at epochs earlier than −5 days. The spectra show that the early-time blue colors are the result of less absorption between 2800−3200 Å than is present in normal SNe Ia. Using model spectra fits of the data at −10 and +10 days, we identify the origin of this spectral feature to be a temperature effect in which doubly ionized iron group elements create an opacity “window.” We determine that the detection of high temperatures and large quantities of iron group elements at early epochs imply the mixing of a high Ni mass into the outer layers of the SN ejecta. We also identify the source of the I-band secondary maximum in iPTF14bdn to be the decay of Fe iii to Fe ii, as is seen in normal SNe Ia.

  10. Infrared Light Curves of Type Ia Supernovae

    Science.gov (United States)

    Friedman, Andrew Samuel

    2012-05-01

    This thesis presents the CfAIR2 data set, which includes over 4000 near-Infrared (NIR) JHK8-band measurements of 104 Type Ia Supernovae (SN Ia) observed from 2005-2011 using PAIRITEL, the 1.3-m Peters Automated InfraRed Imaging TELescope at the Fred Lawrence Whipple Observatory (FLWO) on Mount Hopkins, Arizona. While the discovery of dark energy and most subsequent supernova cosmology has been performed using optical and Ultraviolet wavelength observations of SN Ia, a growing body of evidence suggests that NIR SN Ia observations will be crucial for future cosmological studies. Whereas SN Ia observed at optical wavelengths have been shown to be excellent standardizeable candles, using empirical correlations between luminosity, light curve shape, and color, the CfAIR2 data set strengthens the evidence that SN Ia at NIR wavelengths are essentially standard candles, even without correction for light-curve shape or for reddening. CfAIR2 was obtained as part of the CfA Supernova Program, an ongoing multi-wavelength follow-up effort at FLWO designed to observe high-quality, densely sampled light curves and spectra of hundreds of low-redshift SN Ia. CfAIR2 is the largest homogeneously observed and processed NIR data set of its kind to date, nearly tripling the number of individual JHK8-band observations and nearly doubling the set of SN Ia with published NIR light curves in the literature. Matched only by the recently published Carnegie Supernova Project sample, CfAIR2 complements the large and growing set of low-redshift optical and NIR SN Ia observations obtained by the CfA and other programs, making this data set a unique and particularly valuable local universe anchor for future supernova cosmology.

  11. Simulation of herbicide degradation in different soils by use of Pedo-transfer functions (PTF) and non-linear kinetics.

    Science.gov (United States)

    von Götz, N; Richter, O

    1999-03-01

    The degradation behaviour of bentazone in 14 different soils was examined at constant temperature and moisture conditions. Two soils were examined at different temperatures. On the basis of these data the influence of soil properties and temperature on degradation was assessed and modelled. Pedo-transfer functions (PTF) in combination with a linear and a non-linear model were found suitable to describe the bentazone degradation in the laboratory as related to soil properties. The linear PTF can be combined with a rate related to the temperature to account for both soil property and temperature influence at the same time.

  12. Cosmic Supernova Rate History and Type Ia Supernova Progenitors

    OpenAIRE

    Kobayashi, Chiaki; Nomoto, Ken'ichi; Tsujimoto, Takuji

    2001-01-01

    Adopting a single degenerate scenario for Type Ia supernova progenitors with the metallicity effect, we make a prediction of the cosmic supernova rate history as a composite of the supernova rates in spiral and elliptical galaxies, and compare with the recent observational data up to z ~ 0.55.

  13. Time-Varying Sodium Absorption in the Type Ia Supernova 2013gh

    CERN Document Server

    Ferretti, R; Goobar, A; Johansson, J; Vreeswijk, P M; Butler, R P; Cao, Y; Cenko, S B; Doran, G; Filippenko, A V; Freeland, E; Hosseinzadeh, G; Howell, D A; Lundqvist, P; Mattila, S; Nordin, J; Nugent, P E; Petrushevska, T; Valenti, S; Vogt, S; Wozniak, P

    2016-01-01

    Temporal variability of narrow absorption lines in high-resolution spectra of Type Ia supernovae (SNe Ia) is studied to search for circumstellar matter. Time series which resolve the profiles of absorption lines such as Na I D or Ca II H&K are expected to reveal variations due to photoionisation and subsequent recombination of the gases. The presence, composition, and geometry of circumstellar matter may hint at the elusive progenitor system of SNe Ia and could also affect the observed reddening law. To date, there are few known cases of time-varying Na I D absorption in SNe Ia, all of which occurred during relatively late phases of the supernova evolution. Photoionisation, however, is predicted to occur during the early phases of SNe Ia, when the supernova peaks in the ultraviolet. We therefore attempt to observe early-time absorption-line variations by obtaining high-resolution spectra of SNe before maximum light. We have obtained photometry and high-resolution spectroscopy of SNe Ia 2013gh and iPTF 13d...

  14. Pair-instability supernovae in the local universe

    Energy Technology Data Exchange (ETDEWEB)

    Whalen, Daniel J. [Zentrum für Astronomie, Institut für Theoretische Astrophysik, Universität Heidelberg, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Smidt, Joseph [CCS-2, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Heger, Alexander [Monash Centre for Astrophysics, Monash University, Victoria 3800 (Australia); Hirschi, Raphael [Astrophysics Group, EPSAM, University of Keele, Lennard-Jones Labs, Keele ST5 5BG (United Kingdom); Yusof, Norhasliza [Department of Physics, University of Malaysia, 50603 Kuala Lampur (Malaysia); Even, Wesley; Fryer, Chris L. [T-2, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Stiavelli, Massimo [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Chen, Ke-Jung [Department of Astronomy and Astrophysics, UCSC, Santa Cruz, CA 95064 (United States); Joggerst, Candace C. [XTD-3, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2014-12-10

    The discovery of 150-300 M {sub ☉} stars in the Local Group and pair-instability supernova candidates at low redshifts has excited interest in this exotic explosion mechanism. Realistic light curves for pair-instability supernovae at near-solar metallicities are key to identifying and properly interpreting these events as more are found. We have modeled pair-instability supernovae of 150-500 M {sub ☉} Z ∼ 0.1-0.4 Z {sub ☉} stars. These stars lose up to 80% of their mass to strong line-driven winds and explode as bare He cores. We find that their light curves and spectra are quite different from those of Population III pair-instability explosions, which therefore cannot be used as templates for low-redshift events. Although non-zero metallicity pair-instability supernovae are generally dimmer than their Population III counterparts, in some cases they will be bright enough to be detected at the earliest epochs at which they can occur, the formation of the first galaxies at z ∼ 10-15. Others can masquerade as dim, short duration supernovae that are only visible in the local universe and that under the right conditions could be hidden in a wide variety of supernova classes. We also report for the first time that some pair-instability explosions can create black holes with masses of ∼100 M {sub ☉}.

  15. ANALYTICAL LIGHT CURVE MODELS OF SUPERLUMINOUS SUPERNOVAE: {chi}{sup 2}-MINIMIZATION OF PARAMETER FITS

    Energy Technology Data Exchange (ETDEWEB)

    Chatzopoulos, E.; Wheeler, J. Craig; Vinko, J. [Department of Astronomy, University of Texas at Austin, Austin, TX (United States); Horvath, Z. L.; Nagy, A., E-mail: manolis@astro.as.utexas.edu [Department of Optics and Quantum Electronics, University of Szeged (Hungary)

    2013-08-10

    We present fits of generalized semi-analytic supernova (SN) light curve (LC) models for a variety of power inputs including {sup 56}Ni and {sup 56}Co radioactive decay, magnetar spin-down, and forward and reverse shock heating due to supernova ejecta-circumstellar matter (CSM) interaction. We apply our models to the observed LCs of the H-rich superluminous supernovae (SLSN-II) SN 2006gy, SN 2006tf, SN 2008am, SN 2008es, CSS100217, the H-poor SLSN-I SN 2005ap, SCP06F6, SN 2007bi, SN 2010gx, and SN 2010kd, as well as to the interacting SN 2008iy and PTF 09uj. Our goal is to determine the dominant mechanism that powers the LCs of these extraordinary events and the physical conditions involved in each case. We also present a comparison of our semi-analytical results with recent results from numerical radiation hydrodynamics calculations in the particular case of SN 2006gy in order to explore the strengths and weaknesses of our models. We find that CS shock heating produced by ejecta-CSM interaction provides a better fit to the LCs of most of the events we examine. We discuss the possibility that collision of supernova ejecta with hydrogen-deficient CSM accounts for some of the hydrogen-deficient SLSNe (SLSN-I) and may be a plausible explanation for the explosion mechanism of SN 2007bi, the pair-instability supernova candidate. We characterize and discuss issues of parameter degeneracy.

  16. Modeling Core Collapse Supernovae

    Science.gov (United States)

    Mezzacappa, Anthony

    2017-01-01

    Core collapse supernovae, or the death throes of massive stars, are general relativistic, neutrino-magneto-hydrodynamic events. The core collapse supernova mechanism is still not in hand, though key components have been illuminated, and the potential for multiple mechanisms for different progenitors exists. Core collapse supernovae are the single most important source of elements in the Universe, and serve other critical roles in galactic chemical and thermal evolution, the birth of neutron stars, pulsars, and stellar mass black holes, the production of a subclass of gamma-ray bursts, and as potential cosmic laboratories for fundamental nuclear and particle physics. Given this, the so called ``supernova problem'' is one of the most important unsolved problems in astrophysics. It has been fifty years since the first numerical simulations of core collapse supernovae were performed. Progress in the past decade, and especially within the past five years, has been exponential, yet much work remains. Spherically symmetric simulations over nearly four decades laid the foundation for this progress. Two-dimensional modeling that assumes axial symmetry is maturing. And three-dimensional modeling, while in its infancy, has begun in earnest. I will present some of the recent work from the ``Oak Ridge'' group, and will discuss this work in the context of the broader work by other researchers in the field. I will then point to future requirements and challenges. Connections with other experimental, observational, and theoretical efforts will be discussed, as well.

  17. The Most Luminous Supernovae

    Science.gov (United States)

    Sukhbold, Tuguldur; Woosley, S. E.

    2016-04-01

    Recent observations have revealed a stunning diversity of extremely luminous supernovae, seemingly increasing in radiant energy without bound. We consider simple approximate limits for what existing models can provide for the peak luminosity and total radiated energy for non-relativistic, isotropic stellar explosions. The brightest possible supernova is a Type I explosion powered by a sub-millisecond magnetar with field strength B ∼ few × {10}13 G. In extreme cases, such models might reach a peak luminosity of 2× {10}46 {erg} {{{s}}}-1 and radiate a total energy of up to 4× {10}52 {erg}. Other less luminous models are also explored, including prompt hyper-energetic explosions in red supergiants, pulsational-pair instability supernovae, pair-instability supernovae, and colliding shells. Approximate analytic expressions and limits are given for each case. Excluding magnetars, the peak luminosity is near 3× {10}44 {erg} {{{s}}}-1 for the brightest models and the corresponding limit on total radiated energy is 3× {10}51 {erg}. Barring new physics, supernovae with a light output over 3× {10}51 erg must be rotationally powered, either during the explosion itself or after, the most obvious candidate being a rapidly rotating magnetar. A magnetar-based model for the recent transient event, ASASSN-15lh is presented that strains, but does not exceed the limits of what the model can provide.

  18. A population of short-period variable quasars from PTF as supermassive black hole binary candidates

    Science.gov (United States)

    Charisi, M.; Bartos, I.; Haiman, Z.; Price-Whelan, A. M.; Graham, M. J.; Bellm, E. C.; Laher, R. R.; Márka, S.

    2016-12-01

    Supermassive black hole binaries (SMBHBs) at sub-parsec separations should be common in galactic nuclei, as a result of frequent galaxy mergers. Hydrodynamical simulations of circum-binary discs predict strong periodic modulation of the mass accretion rate on time-scales comparable to the orbital period of the binary. As a result, SMBHBs may be recognized by the periodic modulation of their brightness. We conducted a statistical search for periodic variability in a sample of 35 383 spectroscopically confirmed quasars in the photometric data base of the Palomar Transient Factory (PTF). We analysed Lomb-Scargle periodograms and assessed the significance of our findings by modelling each individual quasar's variability as a damped random walk (DRW). We identified 50 quasars with significant periodicity beyond the DRW model, typically with short periods of a few hundred days. We find 33 of these to remain significant after a re-analysis of their periodograms including additional optical data from the intermediate-PTF and the Catalina Real-Time Transient Survey. Assuming that the observed periods correspond to the redshifted orbital periods of SMBHBs, we conclude that our findings are consistent with a population of unequal-mass SMBHBs, with a typical mass ratio as low as q ≡ M2/M1 ≈ 0.01.

  19. The PTF Orion Project: a Possible Planet Transiting a T-Tauri Star

    CERN Document Server

    van Eyken, Julian C; von Braun, Kaspar; Kane, Stephen R; Plavchan, Peter; Bender, Chad F; Brown, Timothy M; Crepp, Justin; Fulton, Benjamin J; Howard, Andrew W; Howell, Steve B; Mahadevan, Suvrath; Marcy, Geoffrey W; Shporer, Avi; Szkody, Paula; Akeson, Rachel L; Beichman, Charles A; Boden, Andrew F; Gelino, Dawn M; Hoard, D W; Ramírez, Solange V; Rebull, Luisa M; Stauffer, John R; Bloom, Joshua S; Cenko, S Bradley; Kasliwal, Mansi M; Kulkarni, Shrinivas R; Law, Nicholas M; Nugent, Peter E; Ofek, Eran O; Poznanski, Dovi; Quimby, Robert M; Walters, Richard; Grillmair, Carl J; Laher, Russ; Levitan, David B; Sesar, Branimir; Surace, Jason A

    2012-01-01

    We report observations of a possible young transiting planet orbiting a previously known weak-lined T-Tauri star in the 7-10Myr-old Orion-OB1a/25-Ori region. The candidate was found as part of the Palomar Transient Factory (PTF) Orion project. It has a photometric transit period of 0.448413 \\pm 0.000040 days, and appears in both 2009 and 2010 PTF data. Follow-up low-precision radial velocity observations and adaptive-optics imaging suggest that the star is not an eclipsing binary, and that it is unlikely that a background source is blended with the target and mimicking the observed transit. Radial-velocity observations with the Hobby-Eberly and Keck telescopes yield a radial velocity that has the same period as the photometric event, but is offset in phase from the transit center by \\approx -0.22 periods. The amplitude (half range) of the radial velocity variations is 2.4 km/s and is comparable with the expected radial velocity amplitude that stellar spots could induce. The radial velocity curve is likely dom...

  20. Rbms3, an RNA-binding protein, mediates the expression of Ptf1a by binding to its 3'UTR during mouse pancreas development.

    Science.gov (United States)

    Lu, Chung-Kuang; Lai, Yi-Chyi; Chen, Hau-Ren; Chiang, Ming-Ko

    2012-07-01

    The development of the pancreas is a complicated process that is regulated on several levels. Pancreas transcription factor 1, alpha subunit (Ptf1a), also known as p48, is a pancreas-specific basic helix-loop-helix transcription factor that is critical for both exocrine pancreas development and maintenance of acinar cell differentiation. Based on a differential screening assay, we identified Rbms3, a gene encoding a glycine-rich RNA-binding protein, to be specifically expressed in the neural tube and the pancreatic rudiment of e10.5 embryos. The presence of Rbms3 in the early developing pancreas suggests that specific post-transcriptional regulation mechanisms play an important role in controlling pancreas development. In this study, we show that Rbms3 binds to the 3'UTR of Ptf1a mRNA, but not the 3'UTR of Pdx1, which is another pancreatic transcription factor. The ectopic expression of Rbms3 stimulates the translation of a reporter gene carrying the Ptf1a 3'UTR. In addition, when Rbms3 expression is suppressed in the AR42J-B13 pancreatic exocrine cell line, the expression of Ptf1a is also down-regulated. These results suggest that binding of Rbms3 to the 3'UTR of Ptf1a regulates the production of the Ptf1a protein and, thereby, indirectly regulates the expression of the Ptf1a downstream target genes.

  1. Nearby supernova factory announces 34 supernovae in one year'; best Rookie year ever for supernova search

    CERN Multimedia

    2003-01-01

    The Nearby Supernova Factory (SNfactory), an international collaboration based at Lawrence Berkeley National Laboratory, announced that it had discovered 34 supernovae during the first year of the prototype system's operation (2 pages).

  2. ASTRO-H White Paper - Young Supernova Remnants

    CERN Document Server

    Hughes, J P; Bamba, A; Katsuda, S; Leutenegger, M; Long, K S; Maeda, Y; Mori, K; Nakajima, H; Sawada, M; Tanaka, T; Uchida, H; Yamaguchi, H; Aharonian, F; Funk, S; Hiraga, J; Ishida, M; Koyama, K; Matsumoto, H; Nobukawa, M; Ozaki, M; Tamagawa, T; Tsunemi, H; Tomida, H; Uchiyama, Y; Uno, S

    2014-01-01

    Thanks to the unprecedented spectral resolution and sensitivity of the Soft X-ray Spectrometer (SXS) to soft thermal X-ray emission, ASTRO-H will open a new discovery window for understanding young, ejecta-dominated, supernova remnants (SNRs). In particular we study how ASTRO-H observations will address, comprehensively, three key topics in SNR research: (1) using abundance measurements to unveil SNR progenitors, (2) using spatial and velocity distribution of the ejecta to understand supernova explosion mechanisms, (3) revealing the link between the thermal plasma state of SNRs and the efficiency of their particle acceleration.

  3. Cosmology with Superluminous Supernovae

    CERN Document Server

    Scovacricchi, Dario; Bacon, David; Sullivan, Mark; Prajs, Szymon

    2015-01-01

    We predict cosmological constraints for forthcoming surveys using Superluminous Supernovae (SLSNe) as standardisable candles. Due to their high peak luminosity, these events can be observed to high redshift (z~3), opening up new possibilities to probe the Universe in the deceleration epoch. We describe our methodology for creating mock Hubble diagrams for the Dark Energy Survey (DES), the "Search Using DECam for Superluminous Supernovae" (SUDSS) and a sample of SLSNe possible from the Large Synoptic Survey Telescope (LSST), exploring a range of standardisation values for SLSNe. We include uncertainties due to gravitational lensing and marginalise over possible uncertainties in the magnitude scale of the observations (e.g. uncertain absolute peak magnitude, calibration errors). We find that the addition of only ~100 SLSNe from SUDSS to 3800 Type Ia Supernovae (SNe Ia) from DES can improve the constraints on w and Omega_m by at least 20% (assuming a flat wCDM universe). Moreover, the combination of DES SNe Ia a...

  4. Adaptive Optics and planned HST follow-up observations of the strongly lensed SNIa iPTF16geu

    Science.gov (United States)

    Goobar, Ariel; Amanullah, Rahman; Kulkarni, Shri; Steidel, Charles; Law, David

    2016-10-01

    Adaptive optics (AO) observations of iPTF16geu (ATel #9603) were carried out on October 11 with NACO in Natural Guide Star (NGS) mode on VLT. A bright star 30" SE of the SN position provided for the AO corrections.

  5. Physics of supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Woosley, S.E.; Weaver, T.A.

    1985-12-13

    Presupernova models of massive stars are presented and their explosion by ''delayed neutrino transport'' examined. A new form of long duration Type II supernova model is also explored based upon repeated encounter with the electron-positron pair instability in stars heavier than about 60 Msub solar. Carbon deflagration in white dwarfs is discussed as the probable explanation of Type I supernovae and special attention is paid to the physical processes whereby a nuclear flame propagates through degenerate carbon. 89 refs., 12 figs.

  6. Demonstrating Supernova Remnant Evolution

    Science.gov (United States)

    Leahy, Denis A.; Williams, Jacqueline

    2017-01-01

    We have created a software tool to calculate at display supernova remnant evolution which includes all stages from early ejecta dominated phase to late-time merging with the interstellar medium. The software was created using Python, and can be distributed as Python code, or as an executable file. The purpose of the software is to demonstrate the different phases and transitions that a supernova remnant undergoes, and will be used in upper level undergraduate astrophysics courses as a teaching tool. The usage of the software and its graphical user interface will be demonstrated.

  7. BVRI Photometry of Supernovae

    OpenAIRE

    Ho, Wynn C. G.; Van Dyk, Schuyler D.; Peng, Chien Y.; Filippenko, Alexei V.; Leonard, Douglas C.; Matheson, Thomas; Treffers, Richard R.; Richmond, Michael W.

    2001-01-01

    We present optical photometry of one Type IIn supernova (1994Y) and nine Type Ia supernovae (1993Y, 1993Z, 1993ae, 1994B, 1994C, 1994M, 1994Q, 1994ae, and 1995D). SN 1993Y and SN 1993Z appear to be normal SN Ia events with similar rates of decline, but we do not have data near maximum brightness. The colors of SN 1994C suggest that it suffers from significant reddening or is intrinsically red. The light curves of SN 1994Y are complicated; they show a slow rise and gradual decline near maximum...

  8. Stellar forensics with the supernova-GRB connection

    Science.gov (United States)

    Modjaz, M.

    2011-06-01

    Long-duration gamma-ray bursts (GRBs) and type Ib/c supernovae (SNe Ib/c) are amongst nature's most magnificent explosions. While GRBs launch relativistic jets, SNe Ib/c are core-collapse explosions whose progenitors have been stripped of their hydrogen and helium envelopes. Yet for over a decade, one of the key outstanding questions is what conditions lead to each kind of explosion in massive stars. Determining the fates of massive stars is not only a vibrant topic in itself, but also impacts using GRBs as star formation indicators over distances up to 13 billion light-years and for mapping the chemical enrichment history of the universe. This article reviews a number of comprehensive observational studies that probe the progenitor environments, their metallicities and the explosion geometries of SN with and without GRBs, as well as the emerging field of SN environmental studies. Furthermore, it discusses SN 2008D/XRT 080109, which was discovered serendipitously with the Swift satellite via its X-ray emission from shock breakout and which generated great interest amongst both observers and theorists while illustrating a novel technique for stellar forensics. The article concludes with an outlook on how the most promising venues of research - with the many existing and upcoming large-scale surveys such as PTF and LSST - will shed new light on the diverse deaths of massive stars. Ludwig Biermann Award Lecture 2010

  9. The IPAC Image Subtraction and Discovery Pipeline for the Intermediate Palomar Transient Factory

    Science.gov (United States)

    Masci, Frank J.; Laher, Russ R.; Rebbapragada, Umaa D.; Doran, Gary B.; Miller, Adam A.; Bellm, Eric; Kasliwal, Mansi; Ofek, Eran O.; Surace, Jason; Shupe, David L.; Grillmair, Carl J.; Jackson, Ed; Barlow, Tom; Yan, Lin; Cao, Yi; Cenko, S. Bradley; Storrie-Lombardi, Lisa J.; Helou, George; Prince, Thomas A.; Kulkarni, Shrinivas R.

    2017-01-01

    We describe the near real-time transient-source discovery engine for the intermediate Palomar Transient Factory (iPTF), currently in operations at the Infrared Processing and Analysis Center (IPAC), Caltech. We coin this system the IPAC/iPTF Discovery Engine (or IDE). We review the algorithms used for PSF-matching, image subtraction, detection, photometry, and machine-learned (ML) vetting of extracted transient candidates. We also review the performance of our ML classifier. For a limiting signal-to-noise ratio of 4 in relatively unconfused regions, bogus candidates from processing artifacts and imperfect image subtractions outnumber real transients by ≃10:1. This can be considerably higher for image data with inaccurate astrometric and/or PSF-matching solutions. Despite this occasionally high contamination rate, the ML classifier is able to identify real transients with an efficiency (or completeness) of ≃97% for a maximum tolerable false-positive rate of 1% when classifying raw candidates. All subtraction-image metrics, source features, ML probability-based real-bogus scores, contextual metadata from other surveys, and possible associations with known Solar System objects are stored in a relational database for retrieval by the various science working groups. We review our efforts in mitigating false-positives and our experience in optimizing the overall system in response to the multitude of science projects underway with iPTF.

  10. The IPAC Image Subtraction and Discovery Pipeline for the Intermediate Palomar Transient Factory

    Science.gov (United States)

    Masci, Frank J.; Laher, Russ R.; Rebbapragada, Umaa D.; Doran, Gary B.; Miller, Adam A.; Bellm, Eric; Kasliwal, Mansi; Ofek, Eran O.; Surace, Jason; Shupe, David L.; hide

    2016-01-01

    We describe the near real-time transient-source discovery engine for the intermediate Palomar Transient Factory (iPTF), currently in operations at the Infrared Processing and Analysis Center (IPAC), Caltech. We coin this system the IPAC/iPTF Discovery Engine (or IDE). We review the algorithms used for PSF-matching, image subtraction, detection, photometry, and machine-learned (ML) vetting of extracted transient candidates. We also review the performance of our ML classifier. For a limiting signal-to-noise ratio of 4 in relatively unconfused regions, bogus candidates from processing artifacts and imperfect image subtractions outnumber real transients by approximately equal to 10:1. This can be considerably higher for image data with inaccurate astrometric and/or PSF-matching solutions. Despite this occasionally high contamination rate, the ML classifier is able to identify real transients with an efficiency (or completeness) of approximately equal to 97% for a maximum tolerable false-positive rate of 1% when classifying raw candidates. All subtraction-image metrics, source features, ML probability-based real-bogus scores, contextual metadata from other surveys, and possible associations with known Solar System objects are stored in a relational database for retrieval by the various science working groups. We review our efforts in mitigating false-positives and our experience in optimizing the overall system in response to the multitude of science projects underway with iPTF.

  11. Theoretical models for supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Woosley, S.E.; Weaver, T.A.

    1981-09-21

    The results of recent numerical simulations of supernova explosions are presented and a variety of topics discussed. Particular emphasis is given to (i) the nucleosynthesis expected from intermediate mass (10sub solar less than or equal to M less than or equal to 100 Msub solar) Type II supernovae and detonating white dwarf models for Type I supernovae, (ii) a realistic estimate of the ..gamma..-line fluxes expected from this nucleosynthesis, (iii) the continued evolution, in one and two dimensions, of intermediate mass stars wherein iron core collapse does not lead to a strong, mass-ejecting shock wave, and (iv) the evolution and explosion of vary massive stars (M greater than or equal to 100 Msub solar of both Population I and III. In one dimension, nuclear burning following a failed core bounce does not appear likely to lead to a supernova explosion although, in two dimensions, a combination of rotation and nuclear burning may do so. Near solar proportions of elements from neon to calcium and very brilliant optical displays may be created by hypernovae, the explosions of stars in the mass range 100 M/sub solar/ to 300 M/sub solar/. Above approx. 300 M/sub solar/ a black hole is created by stellar collapse following carbon ignition. Still more massive stars may be copious producers of /sup 4/He and /sup 14/N prior to their collapse on the pair instability.

  12. Supernova 2013by

    DEFF Research Database (Denmark)

    Valenti, S.; Sand, D.; Stritzinger, M.

    2015-01-01

    We present multiband ultraviolet and optical light curves, as well as visual-wavelength and near-infrared spectroscopy of the Type II linear (IIL) supernova (SN) 2013by. We show that SN 2013by and other SNe IIL in the literature, after their linear decline phase that start after maximum, have...

  13. QCD and Supernovas

    Science.gov (United States)

    Barnes, T.

    2005-12-01

    In this contribution we briefly summarize aspects of the physics of QCD which are relevant to the supernova problem. The topic of greatest importance is the equation of state (EOS) of nuclear and strongly-interacting matter, which is required to describe the physics of the proto-neutron star (PNS) and the neutron star remnant (NSR) formed during a supernova event. Evaluation of the EOS in the regime of relevance for these systems, especially the NSR, requires detailed knowledge of the spectrum and strong interactions of hadrons of the accessible hadronic species, as well as other possible phases of strongly interacting matter, such as the quark-gluon plasma (QGP). The forces between pairs of baryons (both nonstrange and strange) are especially important in determining the EOS at NSR densities. Predictions for these forces are unfortunately rather model dependent where not constrained by data, and there are several suggestions for the QCD mechanism underlying these short-range hadronic interactions. The models most often employed for determining these strong interactions are broadly of two types, 1) meson exchange models (usually assumed in the existing neutron star and supernova literature), and 2) quark-gluon models (mainly encountered in the hadron, nuclear and heavy-ion literature). Here we will discuss the assumptions made in these models, and discuss how they are applied to the determination of hadronic forces that are relevant to the supernova problem.

  14. The Most Luminous Supernovae

    CERN Document Server

    Sukhbold, Tuguldur

    2016-01-01

    Recent observations have revealed an amazing diversity of extremely luminous supernovae, seemingly increasing in radiant energy without bound. We consider here the physical limits of what existing models can provide for the peak luminosity and total radiated energy for non-relativistic, isotropic stellar explosions. The brightest possible supernova is a Type I explosion powered by a sub-millisecond magnetar. Such models can reach a peak luminosity of $\\rm 2\\times10^{46}\\ erg\\ s^{-1}$ and radiate a total energy of $\\rm 4 \\times10^{52}\\ erg$. Other less luminous models are also explored, including prompt hyper-energetic explosions in red supergiants, pulsational-pair instability supernovae, and pair-instability supernovae. Approximate analytic expressions and limits are given for each case. Excluding magnetars, the peak luminosity is near $\\rm 1\\times10^{44}\\ erg\\ s^{-1}$ for the brightest models. The corresponding limits on total radiated power are $\\rm3 \\times 10^{51}\\ erg$ (Type I) and $\\rm1 \\times 10^{51}\\ ...

  15. Supernovae and Dark Energy

    Science.gov (United States)

    Domínguez, I.; Bravo, E.; Piersanti, L.; Straniero, O.; Tornambé, A.

    2009-08-01

    A decade ago the observations of thermonuclear supernovae at high-redhifts showed that the expansion rate of the Universe is accelerating and since then, the evidence for cosmic acceleration has gotten stronger. This acceleration requires that the Universe is dominated by dark energy, an exotic component characterized by its negative pressure. Nowadays all the available astronomical data (i.e. thermonuclear supernovae, cosmic microwave background, barionic acoustic oscillations, large scale structure, etc.) agree that our Universe is made of about 70% of dark energy, 25% of cold dark matter and only 5% of known, familiar matter. This Universe is geometrically flat, older than previously thought, its destiny is no longer linked to its geometry but to dark energy, and we ignore about 95% of its components. To understand the nature of dark energy is probably the most fundamental problem in physics today. Current astronomical observations are compatible with dark energy being the vacuum energy. Supernovae have played a fundamental role in modern Cosmology and it is expected that they will contribute to unveil the dark energy. In order to do that it is mandatory to understand the limits of supernovae as cosmological distance indicators, improving their precision by a factor 10.

  16. The sloan digital sky survey-II supernova survey

    DEFF Research Database (Denmark)

    Frieman, Joshua A.; Bassett, Bruce; Becker, Andrew

    2008-01-01

    The Sloan Digital Sky Survey-II (SDSS-II) has embarked on a multi-year project to identify and measure light curves for intermediate-redshift (0.05 supernovae (SNe Ia) using repeated five-band (ugriz) imaging over an area of 300 sq. deg. The survey region is a stripe 2.5° wide...... centered on the celestial equator in the Southern Galactic Cap that has been imaged numerous times in earlier years, enabling construction of a deep reference image for the discovery of new objects. Supernova imaging observations are being acquired between September 1 and November 30 of 2005-7. During...... the first two seasons, each region was imaged on average every five nights. Spectroscopic follow-up observations to determine supernova type and redshift are carried out on a large number of telescopes. In its first two three-month seasons, the survey has discovered and measured light curves for 327...

  17. ASASSN-15lh: The Most Luminous Supernova Ever Discovered

    CERN Document Server

    Dong, Subo; Prieto, J L; Jha, S W; Stanek, K Z; Holoien, T W -S; Kochanek, C S; Thompson, T A; Morrell, N; Thompson, I B; Basu, U; Beacom, J F; Bersier, D; Brimacombe, J; Brown, J S; Chen, Ping; Conseil, E; Danilet, A B; Falco, E; Grupe, D; Kiyota, S; Masi, G; Nicholls, B; Olivares, F; Pignata, G; Pojmanski, G; Simonian, G V; Szczygiel, D M; Wozniak, P R

    2015-01-01

    We report the discovery and early evolution of ASASSN-15lh, the most luminous supernova ever found. At redshift z=0.2326, ASASSN-15lh reached an absolute magnitude of M_{u,AB} ~ -23.5 and bolometric luminosity L_bol ~ 2.2x10^45 ergs/s, which is >~ 2 times more luminous than any previously known supernova. Its spectra match the hydrogen-poor sub-class of super-luminous supernovae (SLSNe-I), whose energy sources and progenitors are poorly understood. In contrast to known SLSNe-I, most of which reside in star-forming, dwarf galaxies, its host appears to be a luminous galaxy (M_V ~ -22; M_K ~ -25.1) with little star formation. In the two months since its first detection, ASASSN-15lh has radiated ~7.5x10^51 ergs, challenging the popular magnetar model for the engine of SLSNe-I.

  18. Type Ia supernovae: explosions and progenitors

    Science.gov (United States)

    Kerzendorf, Wolfgang Eitel

    2011-08-01

    Supernovae are the brightest explosions in the universe. Supernovae in our Galaxy, rare and happening only every few centuries, have probably been observed since the beginnings of mankind. At first they were interpreted as religious omens but in the last half millennium they have increasingly been used to study the cosmos and our place in it. Tycho Brahe deduced from his observations of the famous supernova in 1572, that the stars, in contrast to the widely believe Aristotelian doctrine, were not immutable. More than 400 years after Tycho made his paradigm changing discovery using SN 1572, and some 60 years after supernovae had been identified as distant dying stars, two teams changed the view of the world again using supernovae. The found that the Universe was accelerating in its expansion, a conclusion that could most easily be explained if more than 70% of the Universe was some previously un-identified form of matter now often referred to as `Dark Energy'. Beyond their prominent role as tools to gauge our place in the Universe, supernovae themselves have been studied well over the past 75 years. We now know that there are two main physical causes of these cataclysmic events. One of these channels is the collapse of the core of a massive star. The observationally motivated classes Type II, Type Ib and Type Ic have been attributed to these events. This thesis, however is dedicated to the second group of supernovae, the thermonuclear explosions of degenerate carbon and oxygen rich material and lacking hydrogen - called Type Ia supernovae (SNe Ia). White dwarf stars are formed at the end of a typical star's life when nuclear burning ceases in the core, the outer envelope is ejected, with the degenerate core typically cooling for eternity. Theory predicts that such stars will self ignite when close to 1.38 Msun (called the Chandrasekhar Mass). Most stars however leave white dwarfs with 0.6 Msun, and no star leaves a remnant as heavy as 1.38 M! sun, which suggests

  19. The Detection of a Type IIn Supernova in Optical Follow-up Observations of IceCube Neutrino Events

    Science.gov (United States)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Classen, L.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fahey, S.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Fuchs, T.; Glagla, M.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Gretskov, P.; Groh, J. C.; Gross, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hellwig, D.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfe, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jero, K.; Jurkovic, M.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Koob, A.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Middlemas, E.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Saba, S. M.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schimp, M.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Seckel, D.; Seunarine, S.; Shanidze, R.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Strahler, E. A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; van Eijndhoven, N.; Vandenbroucke, J.; van Santen, J.; Vanheule, S.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wichary, C.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.; IceCube Collaboration; Ofek, Eran O.; Kasliwal, Mansi M.; Nugent, Peter E.; Arcavi, Iair; Bloom, Joshua S.; Kulkarni, Shrinivas R.; Perley, Daniel A.; Barlow, Tom; Horesh, Assaf; Gal-Yam, Avishay; Howell, D. A.; Dilday, Ben; PTF Collaboration; Evans, Phil A.; Kennea, Jamie A.; Swift Collaboration; Burgett, W. S.; Chambers, K. C.; Kaiser, N.; Waters, C.; Flewelling, H.; Tonry, J. L.; Rest, A.; Smartt, S. J.; Pan-STARRS1 Science Consortium

    2015-09-01

    The IceCube neutrino observatory pursues a follow-up program selecting interesting neutrino events in real-time and issuing alerts for electromagnetic follow-up observations. In 2012 March, the most significant neutrino alert during the first three years of operation was issued by IceCube. In the follow-up observations performed by the Palomar Transient Factory (PTF), a Type IIn supernova (SN IIn) PTF12csy was found 0.°2 away from the neutrino alert direction, with an error radius of 0.°54. It has a redshift of z = 0.0684, corresponding to a luminosity distance of about 300 Mpc and the Pan-STARRS1 survey shows that its explosion time was at least 158 days (in host galaxy rest frame) before the neutrino alert, so that a causal connection is unlikely. The a posteriori significance of the chance detection of both the neutrinos and the SN at any epoch is 2.2σ within IceCube's 2011/12 data acquisition season. Also, a complementary neutrino analysis reveals no long-term signal over the course of one year. Therefore, we consider the SN detection coincidental and the neutrinos uncorrelated to the SN. However, the SN is unusual and interesting by itself: it is luminous and energetic, bearing strong resemblance to the SN IIn 2010jl, and shows signs of interaction of the SN ejecta with a dense circumstellar medium. High-energy neutrino emission is expected in models of diffusive shock acceleration, but at a low, non-detectable level for this specific SN. In this paper, we describe the SN PTF12csy and present both the neutrino and electromagnetic data, as well as their analysis.

  20. A Population of Short-Period Variable Quasars from PTF as Supermassive Black Hole Binary Candidates

    CERN Document Server

    Charisi, M; Haiman, Z; Price-Whelan, A M; Graham, M J; Bellm, E C; Laher, R R; Marka, S

    2016-01-01

    Supermassive black hole binaries (SMBHBs) at sub-parsec separations should be common in galactic nuclei, as a result of frequent galaxy mergers. Hydrodynamical simulations of circumbinary discs predict strong periodic modulation of the mass accretion rate on time-scales comparable to the orbital period of the binary. As a result, SMBHBs may be recognized by the periodic modulation of their brightness. We conducted a statistical search for periodic variability in a sample of 35,383 spectroscopically confirmed quasars in the photometric database of the Palomar Transient Factory (PTF). We analysed Lomb-Scargle periodograms and assessed the significance of our findings by modeling each individual quasar's variability as a damped random walk (DRW). We identified 50 quasars with significant periodicity beyond the DRW model, typically with short periods of a few hundred days. We find 33 of these to remain significant after a re-analysis of their periodograms including additional optical data from the intermediate-PT...

  1. Light Curves of Five Type Ia Supernovae at Intermediate Redshift

    CERN Document Server

    Amanullah, R; Goobar, A; Schahmaneche, K; Astier, Pierre; Balland, C; Ellis, Richard S; Fabbro, S; Hardin, D; Hook, I M; Irwin, M J; McMahon, R G; Mendez, J M; Mouchet, M; Pain, R; Ruiz-Lapuente, P; Walton, N A

    2007-01-01

    We present multi-band light curves and redshift-luminosity distances for five type Ia supernovae at intermediate redshifts, 0.18discovery and follow-up of type Ia supernovae in the g' and r' filters. Supernova fluxes were measured by simultaneously fitting a supernova and host galaxy model to the data, and then calibrated using star catalogues from the Sloan Digital Sky Survey. The light curve peak luminosities, corrected for light curve shape and colour, are consistent with the expectations for a flat LambdaCDM universe at the 1.5-sigma level. One supernova in the sample, SN1999dr, shows surprisingly large reddening, considering that it is both located at a significant distance from the core of its host (~4 times the fitted exponential radius) and that the galaxy can be spectroscopically classified as early-type with no signs of on-going star formation.

  2. Flash Spectroscopy: Emission Lines from the Ionized Circumstellar Material around $<10$-Day-Old Type II Supernovae

    CERN Document Server

    Khazov, D; Gal-Yam, A; Manulis, I; Rubin, A; Kulkarni, S R; Arcavi, I; Kasliwal, M M; Ofek, E O; Cao, Y; Perley, D; Sollerman, J; Horesh, A; Sullivan, M; Filippenko, A V; Nugent, P E; Howell, D A; Cenko, S B; Silverman, J M; Ebeling, H; Taddia, F; Johansson, J; Laher, R R; Surace, J; Rebbapragada, U D; Wozniak, P R; Matheson, T

    2015-01-01

    Supernovae (SNe) embedded in dense circumstellar material (CSM) may show prominent emission lines in their early-time spectra ($\\leq 10$ days after the explosion), owing to recombination of the CSM ionized by the shock-breakout flash. From such spectra ("flash spectroscopy"), we can measure various physical properties of the CSM, as well as the mass-loss rate of the progenitor during the year prior to its explosion. Searching through the Palomar Transient Factory (PTF and iPTF) SN spectroscopy databases from 2009 through 2014, we found 12 Type II SNe showing flash-ionized (FI) signatures in their first spectra. All are younger than 10 days. These events constitute 14\\% of all 84 SNe in our sample having a spectrum within 10 days from explosion, and 18\\% of SNe~II observed at ages $<5$ days, thereby setting lower limits on the fraction of FI events. We classified as "blue/featureless" (BF) those events having a first spectrum which is similar to that of a black body, without any emission or absorption signa...

  3. Core-Collapse Supernovae from the Palomar Transient Factory: Indications for a Different Population in Dwarf Galaxies

    CERN Document Server

    Arcavi, Iair; Kasliwal, Mansi M; Quimby, Robert M; Ofek, Eran O; Kulkarni, Shrinivas R; Nugent, Peter E; Cenko, S Bradley; Bloom, Joshua S; Sullivan, Mark; Howell, D Andrew; Poznanski, Dovi; Filippenko, Alexei V; Law, Nicholas; Hook, Isobel; Jonsson, Jakob; Blake, Sarah; Cooke, Jeff; Dekany, Richard; Rahmer, Gustavo; Hale, David; Smith, Roger; Zolkower, Jeff; Velur, Viswa; Walters, Richard; Henning, John; Bui, Kahn; McKenna, Dan; Jacobsen, Janet

    2010-01-01

    We use the first compilation of 72 core-collapse supernovae (SNe) from the Palomar Transient Factory (PTF) to study their observed subtype distribution in dwarf galaxies compared to giant galaxies. The nature of the PTF survey provides a minimally biased sample, rich in SNe from dwarf hosts, with spectroscopic classifications. With 15 events detected in dwarf galaxies, our results are still limited by small-number statistics. However, several interesting trends emerge. We find more core-collapse SNe in dwarf galaxies than expected, with a similar N(Ib/c)/N(II) ratio in dwarf and giant hosts (0.25_{-0.15}^{+0.3} and 0.23_{-0.08}^{+0.11}, respectively), although our uncertainties (1 sigma) are still too large to distinguish between these results and those of previous studies and theoretical predictions. We use detailed subclassifications of stripped-envelope core-collapse SNe and find that all Type I core-collapse events occurring in dwarf galaxies are either SNe Ib or broad-lined SNe Ic (SNe Ic-BL), while "nor...

  4. Detection of a Type IIn Supernova in Optical Follow-up Observations of IceCube Neutrino Events

    CERN Document Server

    Aartsen, M G; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Anderson, T; Archinger, M; Arguelles, C; Arlen, T C; Auffenberg, J; Bai, X; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; Beiser, E; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Börner, M; Bos, F; Bose, D; Böser, S; Botner, O; Braun, J; Brayeur, L; Bretz, H -P; Brown, A M; Buzinsky, N; Casey, J; Casier, M; Cheung, E; Chirkin, D; Christov, A; Christy, B; Clark, K; Classen, L; Coenders, S; Cowen, D F; Silva, A H Cruz; Daughhetee, J; Davis, J C; Day, M; de André, J P A M; De Clercq, C; Dembinski, H; De Ridder, S; Desiati, P; de Vries, K D; de Wasseige, G; de With, M; DeYoung, T; Díaz-Vélez, J C; Dumm, J P; Dunkman, M; Eagan, R; Eberhardt, B; Ehrhardt, T; Eichmann, B; Euler, S; Evenson, P A; Fadiran, O; Fahey, S; Fazely, A R; Fedynitch, A; Feintzeig, J; Felde, J; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Fuchs, T; Glagla, M; Gaisser, T K; Gaior, R; Gallagher, J; Gerhardt, L; Ghorbani, K; Gier, D; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Góra, D; Grant, D; Gretskov, P; Groh, J C; Groß, A; Ha, C; Haack, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hansmann, B; Hanson, K; Hebecker, D; Heereman, D; Helbing, K; Hellauer, R; Hellwig, D; Hickford, S; Hignight, J; Hill, G C; Hoffman, K D; Hoffmann, R; Holzapfe, K; Homeier, A; Hoshina, K; Huang, F; Huber, M; Huelsnitz, W; Hulth, P O; Hultqvist, K; In, S; Ishihara, A; Jacobi, E; Japaridze, G S; Jero, K; Jurkovic, M; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kauer, M; Keivani, A; Kelley, J L; Kemp, J; Kheirandish, A; Kiryluk, J; Kläs, J; Klein, S R; Kohnen, G; Koirala, R; Kolanoski, H; Konietz, R; Koob, A; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krings, K; Kroll, G; Kroll, M; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Lanfranchi, J L; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Leuner, J; Lünemann, J; Madsen, J; Maggi, G; Mahn, K B M; Maruyama, R; Mase, K; Matis, H S; Maunu, R; McNally, F; Meagher, K; Medici, M; Meli, A; Menne, T; Merino, G; Meures, T; Miarecki, S; Middell, E; Middlemas, E; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Olivas, A; Omairat, A; O'Murchadha, A; Palczewski, T; Pandya, H; Paul, L; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Pütz, J; Quinnan, M; Rädel, L; Rameez, M; Rawlins, K; Redl, P; Reimann, R; Relich, M; Resconi, E; Rhode, W; Richman, M; Richter, S; Riedel, B; Robertson, S; Rongen, M; Rott, C; Ruhe, T; Ryckbosch, D; Saba, S M; Sabbatini, L; Sander, H -G; Sandrock, A; Sandroos, J; Sarkar, S; Schatto, K; Scheriau, F; Schimp, M; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Seckel, D; Seunarine, S; Shanidze, R; Smith, M W E; Soldin, D; Spiczak, G M; Spiering, C; Stahlberg, M; Stamatikos, M; Stanev, T; Stanisha, N A; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Strotjohann, N L; Sullivan, G W; Sutherland, M; Taavola, H; Taboada, I; Ter-Antonyan, S; Terliuk, A; Tešić, G; Tilav, S; Toale, P A; Tobin, M N; Tosi, D; Tselengidou, M; Turcati, A; Unger, E; Usner, M; Vallecorsa, S; van Eijndhoven, N; Vandenbroucke, J; van Santen, J; Vanheule, S; Veenkamp, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallraff, M; Wandkowsky, N; Weaver, Ch; Wendt, C; Westerhoff, S; Whelan, B J; Whitehorn, N; Wichary, C; Wiebe, K; Wiebusch, C H; Wille, L; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Xu, Y; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Zoll, M; Ofek, Eran O; Kasliwal, Mansi M; Nugent, Peter E; Arcavi, Iair; Bloom, Joshua S; Kulkarni, Shrinivas R; Perley, Daniel A; Barlow, Tom; Horesh, Assaf; Gal-Yam, Avishay; Howell, D A; Evans, Phil A; Burgett, W S; Chambers, K C; Kaiser, N; Waters, C; Flewelling, H; Tonry, J L; Rest, A

    2015-01-01

    The IceCube neutrino observatory pursues a follow-up program selecting interesting neutrino events in real-time and issuing alerts for electromagnetic follow-up observations. In March 2012, the most significant neutrino alert during the first three years of operation was issued by IceCube. In the follow-up observations performed by the Palomar Transient Factory (PTF), a Type IIn supernova (SN) PTF12csy was found $0.2^\\circ$ away from the neutrino alert direction, with an error radius of $0.54^\\circ$. It has a redshift of $z=0.0684$, corresponding to a luminosity distance of about $300 \\, \\mathrm{Mpc}$ and the Pan-STARRS1 survey shows that its explosion time was at least 158 days (in host galaxy rest frame) before the neutrino alert, so that a causal connection is unlikely. The a posteriori significance of the chance detection of both the neutrinos and the SN at any epoch is $2.2 \\, \\sigma$ within IceCube's 2011/12 data acquisition season. Also, a complementary neutrino analysis reveals no long-term signal ove...

  5. Supernova Photometric Classification Challenge

    CERN Document Server

    Kessler, Richard; Jha, Saurabh; Kuhlmann, Stephen

    2010-01-01

    We have publicly released a blinded mix of simulated SNe, with types (Ia, Ib, Ic, II) selected in proportion to their expected rate. The simulation is realized in the griz filters of the Dark Energy Survey (DES) with realistic observing conditions (sky noise, point spread function and atmospheric transparency) based on years of recorded conditions at the DES site. Simulations of non-Ia type SNe are based on spectroscopically confirmed light curves that include unpublished non-Ia samples donated from the Carnegie Supernova Project (CSP), the Supernova Legacy Survey (SNLS), and the Sloan Digital Sky Survey-II (SDSS-II). We challenge scientists to run their classification algorithms and report a type for each SN. A spectroscopically confirmed subset is provided for training. The goals of this challenge are to (1) learn the relative strengths and weaknesses of the different classification algorithms, (2) use the results to improve classification algorithms, and (3) understand what spectroscopically confirmed sub-...

  6. Collective supernova neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Mirizzi, Alessandro [Max Planck Institute for Physics, Munich (Germany)

    2009-07-01

    Neutrinos emitted by core-collapse supernovae (SNe) represent an important laboratory for both particle physics and astrophysics. While propagating in the dense SN environment, they can feel not only the presence of background matter (via ordinary Mikheev-Smirnov-Wolfenstein effects) but also of the gas of neutrinos and antineutrinos (via neutrino-neutrino interaction effects). The neutrino-neutrino interactions appear to modify the flavor evolution of SN neutrinos in a collective way, completely different from the ordinary matter effects. In these conditions, the flavor evolution equations become highly nonlinear, sometimes resulting in surprising phenomena when the entire neutrino system oscillates coherently as a single collective mode. In this talk, I present the recent results on collective supernova neutrino flavor conversions and I discuss about the sensitivity of these effects to the ordering of the neutrino mass spectrum.

  7. ADIDAS SUPERNOVA CTR10

    Institute of Scientific and Technical Information of China (English)

    刘楠

    2008-01-01

    ADIDAS SUPERNOVA CTR10作为ADIDAS控制型跑鞋中的佼佼者,鞋款结合了如立体FORMOTION,大面积的PRO-MODERATOR特殊材质,以及强化型的07款鞋模(EL-07),前脚掌大块ADIPRENE+等诸多ADIDAS的当家技术,但在实际的跑步过程中,这些技术点能否真正为跑步者带来明显的感受?请随我们进入到ADIDAS SUPERNOVA CONTROL10评测环节。

  8. Galaxy Outflows Without Supernovae

    CERN Document Server

    Sur, Sharanya; Ostriker, Eve C

    2016-01-01

    High surface density, rapidly star-forming galaxies are observed to have $\\approx 50-100\\,{\\rm km\\,s^{-1}}$ line-of-sight velocity dispersions, which are much higher than expected from supernova driving alone, but may arise from large-scale gravitational instabilities. Using three-dimensional simulations of local regions of the interstellar medium, we explore the impact of high velocity dispersions that arise from these disk instabilities. Parametrizing disks by their surface densities and epicyclic frequencies, we conduct a series of simulations that probe a broad range of conditions. Turbulence is driven purely horizontally and on large scales, neglecting any energy input from supernovae. We find that such motions lead to strong global outflows in the highly-compact disks that were common at high redshifts, but weak or negligible mass loss in the more diffuse disks that are prevalent today. Substantial outflows are generated if the one-dimensional horizontal velocity dispersion exceeds $\\approx 35\\,{\\rm km\\...

  9. Supernova Science Center

    Energy Technology Data Exchange (ETDEWEB)

    S. E. Woosley

    2008-05-05

    The Supernova Science Center (SNSC) was founded in 2001 to carry out theoretical and computational research leading to a better understanding of supernovae and related transients. The SNSC, a four-institutional collaboration, included scientists from LANL, LLNL, the University of Arizona (UA), and the University of California at Santa Cruz (UCSC). Intitially, the SNSC was funded for three years of operation, but in 2004 an opportunity was provided to submit a renewal proposal for two years. That proposal was funded and subsequently, at UCSC, a one year no-cost extension was granted. The total operational time of the SNSC was thus July 15, 2001 - July 15, 2007. This document summarizes the research and findings of the SNSC and provides a cummulative publication list.

  10. VizieR Online Data Catalog: Metallicity from Type II SN from (i)PTF (Taddia+, 2016)

    Science.gov (United States)

    Taddia, F.; Moquist, P.; Sollerman, J.; Rubin, A.; Leloudas, G.; Gal-Yam, A.; Arcavi, I.; Cao, Y.; Filippenko, A. V.; Graham, M. L.; Mazzali, P. A.; Nugent, P. E.; Pan, Y.-C.; Silverman, J. M.; Xu, D.; Yaron, O.

    2016-06-01

    We collected the optical spectra of the 57 SNe II presented by R15, as obtained by the (i)PTF collaboration. The selected spectra were obtained with many different telescopes and instruments, as summarized in Table A.1. For each spectrum where FeIIλ5018 was identified, we established the phase, based on the explosion date reported by Rubin et al. (2016ApJ...820...33R). (2 data files).

  11. The superluminous supernova PS1-11ap: bridging the gap between low and high redshift

    CERN Document Server

    McCrum, M; Kotak, R; Rest, A; Jerkstrand, A; Inserra, C; Rodney, S A; Chen, T -W; Howell, D A; Huber, M E; Pastorello, A; Tonry, J L; Bresolin, F; Kudritzki, R -P; Chornock, R; Berger, E; Smith, K; Botticella, M T; Foley, R J; Fraser, M; Milisavljevic, D; Nicholl, M; Riess, A G; Stubbs, C W; Valenti, S; Wood-Vasey, W M; Wright, D; Young, D R; Drout, M; Czekala, I; Burgett, W S; Chambers, K C; Draper, P; Flewelling, H; Hodapp, K W; Kaiser, N; Magnier, E A; Metcalfe, N; Sweeney, W; Wainscoat, R J

    2013-01-01

    We present optical photometric and spectroscopic coverage of the superluminous supernova (SLSN) PS1-11ap, discovered with the Pan-STARRS1 Medium Deep Survey at z = 0.524. This intrinsically blue transient rose slowly to reach a peak magnitude of M_u = -21.4 mag and bolometric luminosity of 8 x 10^43 ergs^-1 before settling onto a relatively shallow gradient of decline. The observed decline is significantly slower than those of the superluminous type Ic SNe which have been the focus of much recent attention. Spectroscopic similarities with the lower redshift SN2007bi and a decline rate similar to 56Co decay timescale initially indicated that this transient could be a candidate for a pair instability supernova (PISN) explosion. Overall the transient appears quite similar to SN2007bi and the lower redshift object PTF12dam. The extensive data set, from 30 days before peak to 230 days after, allows a detailed and quantitative comparison with published models of PISN explosions. We find that the PS1-11ap data do no...

  12. PTF1 J071912.13+485834.0: An outbursting AM CVn system discovered by a synoptic survey

    CERN Document Server

    Levitan, David; Groot, Paul J; Kulkarni, Shrinivas R; Ofek, Eran O; Prince, Thomas A; Shporer, Avi; Bloom, Joshua S; Cenko, S Bradley; Kasliwal, Mansi M; Law, Nicholas M; Nugent, Peter E; Poznanski, Dovi; Quimby, Robert M; Horesh, Assaf; Sesar, Branimir; Sternberg, Assaf

    2011-01-01

    We present extensive photometric and spectroscopic observations of PTF1 J071912.13+485834.0, an outbursting AM CVn system discovered by the Palomar Transient Factory (PTF). AM CVn systems are stellar binaries with some of the smallest separations known and orbital periods ranging from 5 to 65 minutes. They are believed to be composed of a white dwarf accretor and a (semi)-degenerate He-rich donor and are considered to be the helium equivalents of Cataclysmic Variables. We have spectroscopically and photometrically identified an orbital period of 26.77 \\pm 0.02 minutes for PTF1 J071912.13+485834.0 and found a super-outburst recurrence time of greater than 65 days along with the presence of "normal" outbursts - rarely seen in AM CVn systems but well known in super-outbursting Cataclysmic Variables. We present a long-term light curve over two super-cycles as well as high cadence photometry of both outburst and quiescent stages, both of which show clear variability. We also compare both the outburst and quiescent...

  13. Observations and Theory of Supernovae

    CERN Document Server

    Wheeler, J C

    2003-01-01

    This Resource Letter provides a guide to the literature on the observations of supernovae and the theory of their explosion mechanisms. Journal articles and books are cited for the following topics: observations of the spectra, spectropolarimetry, and light curves of supernovae of various types, theory of thermonuclear explosions, core collapse, and radioactive decay, applications to cosmology, and possible connections to gamma-ray bursts.

  14. Collective neutrino oscillations in supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Huaiyu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States)

    2014-06-24

    In a dense neutrino medium neutrinos can experience collective flavor transformation through the neutrino-neutrino forward scattering. In this talk we present some basic features of collective neutrino flavor transformation in the context in core-collapse supernovae. We also give some qualitative arguments for why and when this interesting phenomenon may occur and how it may affect supernova nucleosynthesis.

  15. Mass Varying Neutrinos in Supernovae

    CERN Document Server

    Rossi-Torres, F; de Holanda, P C; Peres, O L G

    2010-01-01

    We study limits for the mass varying neutrino model, using constrains from supernova neutrinos placed by the r-process condition, $Y_e<0.5$. Also, we use this model in a supernova environment to study the regions of survival probability in the oscillation space parameter ($\\tan^2\\theta$ and $\\Delta m^2_0$), considering the channel $\

  16. Guided Discoveries.

    Science.gov (United States)

    Ehrlich, Amos

    1991-01-01

    Presented are four mathematical discoveries made by students on an arithmetical function using the Fibonacci sequence. Discussed is the nature of the role of the teacher in directing the students' discovery activities. (KR)

  17. Volatility Discovery

    DEFF Research Database (Denmark)

    Dias, Gustavo Fruet; Scherrer, Cristina; Papailias, Fotis

    The price discovery literature investigates how homogenous securities traded on different markets incorporate information into prices. We take this literature one step further and investigate how these markets contribute to stochastic volatility (volatility discovery). We formally show...... that the realized measures from homogenous securities share a fractional stochastic trend, which is a combination of the price and volatility discovery measures. Furthermore, we show that volatility discovery is associated with the way that market participants process information arrival (market sensitivity...

  18. Cosmological and supernova neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Balantekin, A. B. [Department of Physics, University of Wisconsin - Madison, Wisconsin 53706 (United States); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Kusakabe, M. [School of Liberal Arts and Science, Korea Aerospace University, Goyang 412-791 (Korea, Republic of); Mathews, G. J. [Department of Physics, University of Notre Dame, IN 46556 (United States); Nakamura, K. [Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Pehlivan, Y. [Mimar Sinan GSÜ, Department of Physics, Şişli, İstanbul 34380 (Turkey); Suzuki, T. [Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

    2014-06-24

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial {sup 7}Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and {sup 7}Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ{sub 13} with predicted and observed supernova-produced abundance ratio {sup 11}B/{sup 7}Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  19. Cosmology with superluminous supernovae

    Science.gov (United States)

    Scovacricchi, D.; Nichol, R. C.; Bacon, D.; Sullivan, M.; Prajs, S.

    2016-02-01

    We predict cosmological constraints for forthcoming surveys using superluminous supernovae (SLSNe) as standardizable candles. Due to their high peak luminosity, these events can be observed to high redshift (z ˜ 3), opening up new possibilities to probe the Universe in the deceleration epoch. We describe our methodology for creating mock Hubble diagrams for the Dark Energy Survey (DES), the `Search Using DECam for Superluminous Supernovae' (SUDSS) and a sample of SLSNe possible from the Large Synoptic Survey Telescope (LSST), exploring a range of standardization values for SLSNe. We include uncertainties due to gravitational lensing and marginalize over possible uncertainties in the magnitude scale of the observations (e.g. uncertain absolute peak magnitude, calibration errors). We find that the addition of only ≃100 SLSNe from SUDSS to 3800 Type Ia Supernovae (SNe Ia) from DES can improve the constraints on w and Ωm by at least 20 per cent (assuming a flat wCDM universe). Moreover, the combination of DES SNe Ia and 10 000 LSST-like SLSNe can measure Ωm and w to 2 and 4 per cent, respectively. The real power of SLSNe becomes evident when we consider possible temporal variations in w(a), giving possible uncertainties of only 2, 5 and 14 per cent on Ωm, w0 and wa, respectively, from the combination of DES SNe Ia, LSST-like SLSNe and Planck. These errors are competitive with predicted Euclid constraints, indicating a future role for SLSNe for probing the high-redshift Universe.

  20. GALAXY OUTFLOWS WITHOUT SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Sur, Sharanya [Indian Institute of Astrophysics, 2nd Block, Koramangala, Bangalore 560034 (India); Scannapieco, Evan [School of Earth and Space Exploration, Arizona State University, P.O. Box 876004, Tempe-85287 (United States); Ostriker, Eve C., E-mail: sharanya.sur@iiap.res.in, E-mail: sharanya.sur@asu.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2016-02-10

    High surface density, rapidly star-forming galaxies are observed to have ≈50–100 km s{sup −1} line of sight velocity dispersions, which are much higher than expected from supernova driving alone, but may arise from large-scale gravitational instabilities. Using three-dimensional simulations of local regions of the interstellar medium, we explore the impact of high velocity dispersions that arise from these disk instabilities. Parametrizing disks by their surface densities and epicyclic frequencies, we conduct a series of simulations that probe a broad range of conditions. Turbulence is driven purely horizontally and on large scales, neglecting any energy input from supernovae. We find that such motions lead to strong global outflows in the highly compact disks that were common at high redshifts, but weak or negligible mass loss in the more diffuse disks that are prevalent today. Substantial outflows are generated if the one-dimensional horizontal velocity dispersion exceeds ≈35 km s{sup −1}, as occurs in the dense disks that have star-formation rate (SFR) densities above ≈0.1 M{sub ⊙} yr{sup −1} kpc{sup −2}. These outflows are triggered by a thermal runaway, arising from the inefficient cooling of hot material coupled with successive heating from turbulent driving. Thus, even in the absence of stellar feedback, a critical value of the SFR density for outflow generation can arise due to a turbulent heating instability. This suggests that in strongly self-gravitating disks, outflows may be enhanced by, but need not caused by, energy input from supernovae.

  1. Supernovae anisotropy power spectrum

    CERN Document Server

    Ghodsi, Hoda; Habibi, Farhang

    2016-01-01

    We contribute another anisotropy study to this field of research using Supernovae Type Ia (SNe Ia). In this work, we utilise the power spectrum calculation method and apply it to both the current SNe Ia data and simulation. Our simulations are constructed with the characteristics of the upcoming survey of the Large Synoptic Survey Telescope (LSST), which shall bring us the largest SNe Ia collection to date. We make predictions for the amplitude of a possible dipole anisotropy or anisotropy in higher multipole moments that would be detectable by the LSST.

  2. X-Ray Supernovae

    CERN Document Server

    Immler, S; Immler, Stefan; Lewin, Walter H.G.

    2002-01-01

    We present a review of X-ray observations of supernovae (SNe). By observing the (~0.1--100 keV) X-ray emission from young SNe, physical key parameters such as the circumstellar matter (CSM) density, mass-loss rate of the progenitor and temperature of the outgoing and reverse shock can be derived as a function of time. Despite intensive search over the last ~25 years, only 15 SNe have been detected in X-rays. We review the individual X-ray observations of these SNe and discuss their implications as to our understanding of the physical processes giving rise to the X-ray emission.

  3. Host-galaxy Properties of 32 Low-redshift Superluminous Supernovae from the Palomar Transient Factory

    Science.gov (United States)

    Perley, D. A.; Quimby, R. M.; Yan, L.; Vreeswijk, P. M.; De Cia, A.; Lunnan, R.; Gal-Yam, A.; Yaron, O.; Filippenko, A. V.; Graham, M. L.; Laher, R.; Nugent, P. E.

    2016-10-01

    We present ultraviolet through near-infrared photometry and spectroscopy of the host galaxies of all superluminous supernovae (SLSNe) discovered by the Palomar Transient Factory prior to 2013 and derive measurements of their luminosities, star formation rates, stellar masses, and gas-phase metallicities. We find that Type I (hydrogen-poor) SLSNe (SLSNe I) are found almost exclusively in low-mass ({M}* \\lt 2× {10}9 {M}ȯ ) and metal-poor (12 + log10[O/H] \\lt 8.4) galaxies. We compare the mass and metallicity distributions of our sample to nearby galaxy catalogs in detail and conclude that the rate of SLSNe I as a fraction of all SNe is heavily suppressed in galaxies with metallicities ≳ 0.5 {Z}ȯ . Extremely low metallicities are not required and indeed provide no further increase in the relative SLSN rate. Several SLSN I hosts are undergoing vigorous starbursts, but this may simply be a side effect of metallicity dependence: dwarf galaxies tend to have bursty star formation histories. Type II (hydrogen-rich) SLSNe (SLSNe II) are found over the entire range of galaxy masses and metallicities, and their integrated properties do not suggest a strong preference for (or against) low-mass/low-metallicity galaxies. Two hosts exhibit unusual properties: PTF 10uhf is an SLSN I in a massive, luminous infrared galaxy at redshift z = 0.29, while PTF 10tpz is an SLSN II located in the nucleus of an early-type host at z = 0.04.

  4. New Galactic supernova remnants discovered with IPHAS

    CERN Document Server

    Sabin, L; Contreras, M E; Olguín, L; Frew, D J; Stupar, M; Vázquez, R; Wright, N J; Corradi, R L M; Morris, R A H

    2013-01-01

    As part of a systematic search programme of a 10-degree wide strip of the Northern Galactic plane we present preliminary evidence for the discovery of four (and possibly five) new supernova remnants (SNRs). The pilot search area covered the 19-20 hour right ascension zone sampling from +20 to +55 degrees in declination using binned mosaic images from the INT Photometric H-alpha Survey (IPHAS). The optical identification of the candidate SNRs was based mainly on their filamentary and arc-like emission morphologies, their apparently coherent, even if fractured structure and clear disconnection from any diffuse neighbouring HII region type nebulosity. Follow-up optical spectroscopy was undertaken, sampling carefully across prominent features of these faint sources. The resulting spectra revealed typical emission line ratios for shock excited nebulae which are characteristic of SNRs, which, along with the latest diagnostic diagrams, strongly support the likely SNR nature of these sources: G038.7-1.3 (IPHASX J1906...

  5. Could a nearby supernova explosion have caused a mass extinction?

    CERN Document Server

    Ellis, Jonathan Richard

    1995-01-01

    We examine the possibility that a nearby supernova explosion could have caused one or more of the mass extinctions identified by palaeontologists. We discuss the likely rate of such events in the light of the recent identification of Geminga as a supernova remnant less than 100 pc away and the discovery of a millisecond pulsar about 150 pc away, and observations of SN 1987A. The fluxes of $\\gamma$ radiation and charged cosmic rays on the Earth are estimated, and their effects on the Earth's ozone layer discussed. A supernova explosion of the order of 10 pc away could be expected every few hundred million years, and could destroy the ozone layer for hundreds of years, letting in potentially lethal solar ultraviolet radiation. In addition to effects on land ecology, this could entail mass destruction of plankton and reef communities, with disastrous consequences for marine life as well. A supernova extinction should be distinguishable from a meteorite impact such as the one that presumably killed the dinosaurs.

  6. GRB-supernovae: a new spin on gravitational waves

    CERN Document Server

    Van Putten, M H P M

    2005-01-01

    The discovery of the GRB-supernova association poses the question on the nature of the inner engine as the outcome of Type Ib/c supernovae. These events are believed to represent core-collapse of massive stars, probably in low-period stellar binaries and similar but not identical to the Type II event SN1987A. The branching ratio of Type Ib/c supernovae into GRB-supernovae has the remarkably small value of less than 0.5%. These observational constraints point towards a rapidly rotating black hole formed at low probability with low kick velocity. The putative black hole hereby remains centered, and matures into a high-mass object with large rotational energy in angular momentum. As the MeV-neutrino emissions from SN1987A demonstrate, the most powerful probe of the inner workings of core-collapse events are radiation channels to which the remnant envelope is optically thin. We here discuss the prospect of gravitational-wave emissions powered by a rapidly rotating central black hole which, in contrast to MeV-neut...

  7. Astrophysics. Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens.

    Science.gov (United States)

    Kelly, Patrick L; Rodney, Steven A; Treu, Tommaso; Foley, Ryan J; Brammer, Gabriel; Schmidt, Kasper B; Zitrin, Adi; Sonnenfeld, Alessandro; Strolger, Louis-Gregory; Graur, Or; Filippenko, Alexei V; Jha, Saurabh W; Riess, Adam G; Bradac, Marusa; Weiner, Benjamin J; Scolnic, Daniel; Malkan, Matthew A; von der Linden, Anja; Trenti, Michele; Hjorth, Jens; Gavazzi, Raphael; Fontana, Adriano; Merten, Julian C; McCully, Curtis; Jones, Tucker; Postman, Marc; Dressler, Alan; Patel, Brandon; Cenko, S Bradley; Graham, Melissa L; Tucker, Bradley E

    2015-03-06

    In 1964, Refsdal hypothesized that a supernova whose light traversed multiple paths around a strong gravitational lens could be used to measure the rate of cosmic expansion. We report the discovery of such a system. In Hubble Space Telescope imaging, we have found four images of a single supernova forming an Einstein cross configuration around a redshift z = 0.54 elliptical galaxy in the MACS J1149.6+2223 cluster. The cluster's gravitational potential also creates multiple images of the z = 1.49 spiral supernova host galaxy, and a future appearance of the supernova elsewhere in the cluster field is expected. The magnifications and staggered arrivals of the supernova images probe the cosmic expansion rate, as well as the distribution of matter in the galaxy and cluster lenses.

  8. Supernova olivine from cometary dust

    Science.gov (United States)

    Messenger, Scott; Keller, Lindsay P.; Lauretta, Dante S.

    2005-01-01

    An interplanetary dust particle contains a submicrometer crystalline silicate aggregate of probable supernova origin. The grain has a pronounced enrichment in 18O/16O (13 times the solar value) and depletions in 17O/16O (one-third solar) and 29Si/28Si (olivine (forsterite 83) grains olivine grain could have formed by equilibrium condensation from cooling supernova ejecta if several different nucleosynthetic zones mixed in the proper proportions. The supernova grain is also partially encased in nitrogen-15-rich organic matter that likely formed in a presolar cold molecular cloud.

  9. Supernova Acceleration Probe: Studying Dark Energy with Type Ia Supernovae

    CERN Document Server

    Albert, J; Allam, S; Althouse, W E; Amanullah, R; Annis, J; Astier, Pierre; Aumeunier, M; Bailey, S; Baltay, C; Barrelet, E; Basa, S; Bebek, C; Bergström, L; Bernstein, G; Bester, M; Besuner, B; Bigelow, B; Blandford, R; Bohlin, R; Bonissent, A; Bower, C; Brown, M; Campbell, M; Carithers, W; Cole, D; Commins, Eugene D; Craig, W; Davis, T; Dawson, K; Day, C; De Harveng, M; De Jongh, F; Deustua, S; Diehl, H; Dobson, T; Dodelson, S; Ealet, A; Ellis, R; Emmet, W; Figer, D; Fouchez, D; Frerking, M; Frieman, J A; Fruchter, A; Gerdes, D; Gladney, L; Goldhaber, G; Goobar, A; Groom, D; Heetderks, H; Hoff, M; Holland, S; Huffer, M; Hui, L; Huterer, D; Jain, B; Jelinsky, P; Juramy, C; Karcher, A; Kent, S; Kahn, S; Kim, A; Kolbe, W; Krieger, B; Kushner, G; Kuznetsova, N; Lafever, R; Lamoureux, J; Lampton, M; Lefèvre, O; Lebrun, V; Levi, M; Limon, P; Lin, H; Linder, E; Loken, S; Lorenzon, W; Malina, R; Marian, L; Marriner, J P; Marshall, P; Massey, R; Mazure, A; McGinnis, B; McKay, T; McKee, S; Miquel, R; Mobasher, B; Morgan, N; Mortsell, E; Mostek, N; Mufson, S; Musser, J; Nakajima, R; Nugent, P; Olus, H; Pain, R; Palaio, N; Pankow, D; Peoples, John; Perlmutter, S; Peterson, D; Prieto, E; Rabinowitz, D; Réfrégier, A; Rhodes, J; Roe, N; Rusin, D; Scarpine, V; Schubnell, M; Seiffert, M; Sholl, M; Shukla, H; Smadja, G; Smith, R M; Smoot, George F; Snyder, J; Spadafora, A; Stabenau, F; Stebbins, A; Stoughton, C; Szymkowiak, A; Tarle, G; Taylor, K; Tilquin, A; Tomasch, A; Tucker, D; Vincent, D; Von der Lippe, H; Walder, J P; Wang, G; Weinstein, A; Wester, W; White, M

    2005-01-01

    The Supernova Acceleration Probe (SNAP) will use Type Ia supernovae (SNe Ia) as distance indicators to measure the effect of dark energy on the expansion history of the Universe. (SNAP's weak-lensing program is described in a companion White Paper.) The experiment exploits supernova distance measurements up to their fundamental systematic limit; strict requirements on the monitoring of each supernova's properties lead to the need for a space-based mission. Results from pre-SNAP experiments, which characterize fundamental SN Ia properties, will be used to optimize the SNAP observing strategy to yield data, which minimize both systematic and statistical uncertainties. SNAP has achieved technological readiness and the collaboration is poised to begin construction.

  10. Photometric redshifts for supernovae Ia in the Supernova Legacy Survey

    CERN Document Server

    Palanque-Delabrouille, Nathalie; Pascal, S; Rich, J; Guy, J; Bazin, G; Astier, P; Balland, C; Basa, S; Carlberg, R G; Conley, A; Fouchez, D; Hardin, D; Hook, I M; Howell, D A; Pain, R; Perrett, K; Pritchet, C J; Regnault, N; Sullivan, M

    2009-01-01

    We present a method using the SALT2 light curve fitter to determine the redshift of Type Ia supernovae in the Supernova Legacy Survey (SNLS) based on their photometry in g', r', i' and z'. On 289 supernovae of the first three years of SNLS data, we obtain a precision $\\sigma_{\\Delta z/(1+z)} = 0.022$ on average up to a redshift of 1.0, with a higher precision of 0.016 for z0.45. The rate of events with $|\\Delta z|/(1+z)>0.15$ (catastrophic errors) is 1.4%. Both the precision and the rate of catastrophic errors are better than what can be currently obtained using host galaxy photometric redshifts. Photometric redshifts of this precision may be useful for future experiments which aim to discover up to millions of supernovae Ia but without spectroscopy for most of them.

  11. Supernova 1987A: The Supernova of a Lifetime

    Science.gov (United States)

    Kirshner, Robert

    2017-01-01

    Supernova 1987A, the brightest supernova since Kepler's in 1604, was detected 30 years ago at a distance of 160 000 light years in the Large Magellanic Cloud, a satellite galaxy of the Milky Way. Visible with the naked eye and detected with the full range of technology constructed since Kepler's time, SN 1987A has continued to be a rich source of empirical information to help understand supernova explosions and their evolution into supernova remnants. While the light output has faded by a factor of 10 000 000 over those 30 years, instrumentation, like the Hubble Space Telescope, the Chandra X-ray Observatory, and the Atacama Large Millimeter Array has continued to improve so that this supernova continues to be visible in X-rays, ultraviolet light, visible light, infrared light and in radio emission. In this review, I will sketch what has been learned from these observations about the pre-supernova star and its final stages of evolution, the explosion physics, the energy sources for emission, and the shock physics as the expanding debris encounters the circumstellar ring that was created about 20 000 years before the explosion. Today, SN 1987A is making the transition to a supernova remnant- the energetics are no longer dominated by the radioactive elements produced in the explosion, but by the interaction of the expanding debris with the surrounding gas. While we are confident that the supernova explosion had its origin in gravitational collapse, careful searches for a compact object at the center of the remnant place upper limits of a few solar luminosities on that relic. Support for HST GO programs 13401 and 13405 was provided by NASA through grants from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  12. Magnetar-Powered Supernovae in Two Dimensions. I. Superluminous Supernovae

    OpenAIRE

    Chen, Ke-Jung; Woosley, S. E.; Sukhbold, Tuguldur

    2016-01-01

    Previous studies have shown that the radiation emitted by a rapidly rotating magnetar embedded in a young supernova can greatly amplify its luminosity. These one-dimensional studies have also revealed the existence of an instability arising from the piling up of radiatively accelerated matter in a thin dense shell deep inside the supernova. Here we examine the problem in two dimensions and find that, while instabilities cause mixing and fracture this shell into filamentary structures that red...

  13. X-ray upper limits on the progenitor of the Type Ia supernova 2017cbv

    Science.gov (United States)

    Kong, A. K. H.

    2017-04-01

    Following the discovery of the Type Ia supernova 2017cbv (ATel #10158), we examined a combined archival Chandra observation of the host galaxy NGC 5643 taken in 2015 May 21 and Dec 26 to search for the X-ray progenitor.

  14. JHKs photometry of the supernova candidate detected by the VVV Survey

    Science.gov (United States)

    Kuncarayakti, H.; Mattila, S.; Kangas, T.; Nyholm, A.; Barbarino, C.; Anderson, J. P.; Galbany, L.; Maguire, K.; Smartt, S. J.; Kankare, E.; Smith, K. W.; Young, D.; Inserra, C.; Sullivan, M.; Valenti, S.; Yaron, O.

    2017-03-01

    The VVV survey reported the discovery of an infrared-bright supernova candidate that peaked in 2013 (ATEL #10140). In 2017 March 7.25 UT, PESSTO, the Public ESO Spectroscopic Survey for Transient Objects (see Smartt et al. 2015, A & A, 579, 40, http://www.pessto.org) observed the transient with the ESO New Technology Telescope at La Silla equipped with SOFI.

  15. Multi-wavelength Observations of the Enduring Type IIn Supernovae 2005ip and 2006jd

    DEFF Research Database (Denmark)

    Stritzinger, Maximilian; Taddia, Francesco; Fransson, Claes;

    2012-01-01

    We present an observational study of the Type IIn supernovae (SNe IIn) 2005ip and 2006jd. Broadband UV, optical, and near-IR photometry, and visual-wavelength spectroscopy of SN 2005ip complement and extend upon published observations to 6.5 years past discovery. Our observations of SN 2006jd ext...

  16. The Vela Supernova Remnant

    Science.gov (United States)

    Raymond, John C.

    We wish to obtain both emission and absorption line observations of the Vela Supernova remnant. The filament we wish to study in emission is the brightest filament in the SNR, so it will provide a spectrum twice the quality of any in existence. It is also located at the edge of an unusual bulge in the SNR, and it can be used to test the level of departure from pressure equilibrium in the remnant, which is useful as a test of evaporative models of SNR evolution. The absorption line studies will look for evidence of the drastically unstable behavior of shocks above 150 km/s predicted by Innes and Giddings. Four of the stars studied by Jenkins, Silk and Wallerstein showed marginal evidence for two positive or two negative high velocity components. If these multiple velocity components are confirmed, they support the secondary shock predictions of Innes and Giddings.

  17. Neutrinos and nucleosynthesis in supernova

    Energy Technology Data Exchange (ETDEWEB)

    Solis, U [Instituto de Ciencias Nucleares, Departamento de Fisica de Altas EnergIas, Universidad Nacional Autonoma de Mexico (ICN-UNAM). Apartado Postal 70-543, 04510 Mexico, D.F. (Mexico); D' Olivo, J C [Instituto de Ciencias Nucleares, Departamento de Fisica de Altas EnergIas, Universidad Nacional Autonoma de Mexico (ICN-UNAM). Apartado Postal 70-543, 04510 Mexico, D.F. (Mexico); Cabral-Rosetti, L G [Departamento de Posgrado, Centro Interdisciplinario de Investigacion y Docencia en Educacion Tecnica (CIIDET), Av. Universidad 282 Pte., Col. Centro, A. Postal 752, C.P. 76000, Santiago de Queretaro, Qro. (Mexico)

    2006-05-15

    The type II supernova is considered as a candidate site for the production of heavy elements. The nucleosynthesis occurs in an intense neutrino flux, we calculate the electron fraction in this environment.

  18. The Diffuse Supernova Neutrino Background

    CERN Document Server

    Beacom, John F

    2010-01-01

    The Diffuse Supernova Neutrino Background (DSNB) is the weak glow of MeV neutrinos and antineutrinos from distant core-collapse supernovae. The DSNB has not been detected yet, but the Super-Kamiokande (SK) 2003 upper limit on the electron antineutrino flux is close to predictions, now quite precise, based on astrophysical data. If SK is modified with dissolved gadolinium to reduce detector backgrounds and increase the energy range for analysis, then it should detect the DSNB at a rate of a few events per year, providing a new probe of supernova neutrino emission and the cosmic core-collapse rate. If the DSNB is not detected, then new physics will be required. Neutrino astronomy, while uniquely powerful, has proven extremely difficult -- only the Sun and the nearby Supernova 1987A have been detected to date -- so the promise of detecting new sources soon is exciting indeed.

  19. Toward a Standard Model of Core Collapse Supernovae

    OpenAIRE

    Mezzacappa, A.

    2000-01-01

    In this paper, we discuss the current status of core collapse supernova models and the future developments needed to achieve significant advances in understanding the supernova mechanism and supernova phenomenology, i.e., in developing a supernova standard model.

  20. Supernovae and Gamma Ray Bursts

    Directory of Open Access Journals (Sweden)

    M. Della Valle

    2007-01-01

    Full Text Available Se revisa el estatus observacional de la conexi on Supernova (SN/Estallido de Rayos-Gamma (GRB. Recientes (y no tan recientes observaciones de GRBs largos sugieren que una fracci on signi cativa de ellos (pero no todos est an asociados con supernovas brillantes del tipo Ib/c. Estimaciones actuales de las tasas de producci on de GRBs y SNs dan una raz on para GRB/SNe-Ibc en el rango 0:4%

  1. Ozone Depletion from Nearby Supernovae

    CERN Document Server

    Gehrels, N; Jackman, C H; Cannizzo, J K; Mattson, B J; Chen, W; Gehrels, Neil; Laird, Claude M.; Jackman, Charles H.; Cannizzo, John K.; Mattson, Barbara J.; Chen, Wan

    2003-01-01

    Estimates made in the 1970's indicated that a supernova occurring within tens of parsecs of Earth could have significant effects on the ozone layer. Since that time, improved tools for detailed modeling of atmospheric chemistry have been developed to calculate ozone depletion, and advances have been made in theoretical modeling of supernovae and of the resultant gamma-ray spectra. In addition, one now has better knowledge of the occurrence rate of supernovae in the galaxy, and of the spatial distribution of progenitors to core-collapse supernovae. We report here the results of two-dimensional atmospheric model calculations that take as input the spectral energy distribution of a supernova, adopting various distances from Earth and various latitude impact angles. In separate simulations we calculate the ozone depletion due to both gamma-rays and cosmic rays. We find that for the combined ozone depletion roughly to double the ``biologically active'' UV flux received at the surface of the Earth, the supernova mu...

  2. Ozone Depletion from Nearby Supernovae

    Science.gov (United States)

    Gehrels, Neil; Laird, Claude M.; Jackman, Charles H.; Cannizzo, John K.; Mattson, Barbara J.; Chen, Wan; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Estimates made in the 1970's indicated that a supernova occurring within tens of parsecs of Earth could have significant effects on the ozone layer. Since that time improved tools for detailed modeling of atmospheric chemistry have been developed to calculate ozone depletion, and advances have been made also in theoretical modeling of supernovae and of the resultant gamma ray spectra. In addition, one now has better knowledge of the occurrence rate of supernovae in the galaxy, and of the spatial distribution of progenitors to core-collapse supernovae. We report here the results of two-dimensional atmospheric model calculations that take as input the spectral energy distribution of a supernova, adopting various distances from Earth and various latitude impact angles. In separate simulations we calculate the ozone depletion due to both gamma rays and cosmic rays. We find that for the combined ozone depletion from these effects roughly to double the 'biologically active' UV flux received at the surface of the Earth, the supernova must occur at approximately or less than 8 parsecs.

  3. Distant Supernovae Indicate Ever-Expanding Universe

    Science.gov (United States)

    1998-12-01

    ESO Astronomers Contribute towards Resolution of Cosmic Puzzle Since the discovery of the expansion of the Universe by American astronomer Edwin Hubble in the 1920's, by measurement of galaxy velocities, astronomers have tried to learn how this expansion changes with time. Until now, most scientists have been considering two possibilities: the expansion rate is slowing down and will ultimately either come to a halt - whereafter the Universe would start to contract, or it will continue to expand forever. However, new studies by two independent research teams, based on observations of exploding stars ( supernovae ) by ESO astronomers [1] with astronomical telescopes at the La Silla Observatory as well as those of their colleagues at other institutions, appear to show that the expansion of the Universe is accelerating . The results take the discovery of the cosmological expansion one step further and challenge recent models of the Universe. If the new measurements are indeed correct, they show that the elusive "cosmological constant" , as proposed by Albert Einstein , contributes significantly to the evolution of the Universe. The existence of a non-zero cosmological constant implies that a repulsive force, counter-acting gravity, currently dominates the universal expansion , and consequently leads to an ever-expanding Universe. This new research is being named as the "Breakthrough of the Year" by the renowned US science journal Science in the December 18, 1998, issue. A Press Release is published by the journal on this occasion. "Fundamental Parameters" of the Universe Three fundamental parameters govern all cosmological models based on the theory of General Relativity. They are 1. the current expansion rate as described by Hubble's constant , i.e. the proportionality factor between expansion velocity and distance 2. the average matter density in the Universe, and 3. the amount of "other energy" present in space. From the measured values of these fundamental

  4. Near-Infrared observations of the type Ib Supernova SN2006jc: evidence of interactions with dust

    CERN Document Server

    Di Carlo, E; Arkharov, A A; Massi, F; Larionov, V M; Efimova, N V; Dolci, M; Napoleone, N; Di Paola, A

    2007-01-01

    In the framework of a program for the monitoring of Supernovae in the Near-Infrared (NIR) carried out by the Teramo, Rome and Pulkovo observatories with the AZT-24 telescope, we observed the Supernova SN2006jc in the J,H,K photometric bands during a period of 7 months, starting ~36 days after its discovery. Our observations evidence a NIR re-brightening, peaking ~70 days after discovery, along with a reddening of H-K and J-H colors until 120 days from discovery. After that date, J-H seems to evolve towards bluer colors. Our data, complemented by IR, optical, UV and X-ray observations found in the literature, show that the re-brightening is produced by hot dust surrounding the supernova, formed in the interaction of the ejecta with dense circumstellar matter.

  5. Tycho Brahe's 1572 supernova as a standard typeIa as revealed by its light-echo spectrum

    Science.gov (United States)

    Krause, Oliver; Tanaka, Masaomi; Usuda, Tomonori; Hattori, Takashi; Goto, Miwa; Birkmann, Stephan; Nomoto, Ken'ichi

    2008-12-01

    TypeIa supernovae are thermonuclear explosions of white dwarf stars in close binary systems. They play an important role as cosmological distance indicators and have led to the discovery of the accelerated expansion of the Universe. Among the most important unsolved questions about supernovae are how the explosion actually proceeds and whether accretion occurs from a companion or by the merging of two white dwarfs. Tycho Brahe's supernova of 1572 (SN1572) is thought to be one of the best candidates for a typeIa supernova in the Milky Way. The proximity of the SN1572 remnant has allowed detailed studies, such as the possible identification of the binary companion, and provides a unique opportunity to test theories of the explosion mechanism and the nature of the progenitor. The determination of the hitherto unknown spectroscopic type of this supernova is crucial in relating these results to the diverse population of typeIa supernovae. Here we report an optical spectrum of Tycho's supernova near maximum brightness, obtained from a scattered-light echo more than four centuries after the direct light from the explosion swept past the Earth. We find that SN1572 belongs to the majority class of normal typeIa supernovae.

  6. Tycho Brahe's 1572 supernova as a standard type Ia as revealed by its light-echo spectrum.

    Science.gov (United States)

    Krause, Oliver; Tanaka, Masaomi; Usuda, Tomonori; Hattori, Takashi; Goto, Miwa; Birkmann, Stephan; Nomoto, Ken'ichi

    2008-12-04

    Type Ia supernovae are thermonuclear explosions of white dwarf stars in close binary systems. They play an important role as cosmological distance indicators and have led to the discovery of the accelerated expansion of the Universe. Among the most important unsolved questions about supernovae are how the explosion actually proceeds and whether accretion occurs from a companion or by the merging of two white dwarfs. Tycho Brahe's supernova of 1572 (SN 1572) is thought to be one of the best candidates for a type Ia supernova in the Milky Way. The proximity of the SN 1572 remnant has allowed detailed studies, such as the possible identification of the binary companion, and provides a unique opportunity to test theories of the explosion mechanism and the nature of the progenitor. The determination of the hitherto unknown spectroscopic type of this supernova is crucial in relating these results to the diverse population of type Ia supernovae. Here we report an optical spectrum of Tycho's supernova near maximum brightness, obtained from a scattered-light echo more than four centuries after the direct light from the explosion swept past the Earth. We find that SN 1572 belongs to the majority class of normal type Ia supernovae.

  7. The ultraviolet properties of supernovae

    Science.gov (United States)

    Brown, Peter J.

    2009-09-01

    Ultraviolet (UV) observations of supernovae (SNe) probe an important wavelength region where hot temperatures, extinction, and metallicity have strong effects. In addition, they provide a comparison set against which to compare and better understand rest frame UV observations of high redshift SNe observed in the optical. UV observations, however, are rare due to the need for telescopes above the atmosphere and the difficulty in observing transient objects with space based observatories. Limited observations with space based observatories, primarily the International Ultraviolet Explorer and the Hubble Space Telescope, are reviewed, after which the Ultra-Violet/Optical Telescope (UVOT) on the Swift spacecraft is introduced. With Swift we have observed more SNe than all previous UV missions combined. Case studies of two individual SNe are first presented: SNe 2005am and 2005cs. SN 2005am is the first young SN observed with Swift, and the near-UV (uvw1: central wavelength ~ 2600 λ) light curve is consistent with the previous "template" derived from IUE and HST observations of SNe 1990N and 1992A. SN 2005cs is the first plateau-type II (IIP) with a well observed UV light curve. UVOT observations show a dramatic drop in the UV brightness and shift in the spectral energy distribution from blue to red caused by the dropping temperature and resulting line blanketing in the UV. These case studies demonstrate the information available from the UV data for individual SNe. A photometry method for proper accounting of coincidence loss, aperture corrections, and subtraction of the underlying galaxy is detailed. This method is then applied to a large sample of SNe observed with UVOT. We present 25 light curves and compare SNe by type and across types. The SNe Ia, with a few exceptions, are shown to have very similar light curves in the near UV, whereas, the three SNe Ib/c we have observed are very different. The SNe IIP all have rapidly fading UV light curves, though with

  8. The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry

    Energy Technology Data Exchange (ETDEWEB)

    Miknaitis, Gajus; Pignata, G.; Rest, A.; Wood-Vasey, W.M.; Blondin, S.; Challis, P.; Smith, R.C.; Stubbs, C.W.; Suntzeff, N.B.; Foley, R.J.; Matheson, T.; Tonry, J.L.; Aguilera, C.; Blackman, J.W.; Becker, A.C.; Clocchiatti, A.; Covarrubias, R.; Davis, T.M.; Filippenko, A.V.; Garg, A.; Garnavich, P.M.; /Fermilab /Chile U., Catolica /Cerro-Tololo

    2007-01-08

    We describe the implementation and optimization of the ESSENCE supernova survey, which we have undertaken to measure the equation of state parameter of the dark energy. We present a method for optimizing the survey exposure times and cadence to maximize our sensitivity to the dark energy equation of state parameter w = P/{rho}c{sup 2} for a given fixed amount of telescope time. For our survey on the CTIO 4m telescope, measuring the luminosity distances and redshifts for supernovae at modest redshifts (z {approx} 0.5 {+-} 0.2) is optimal for determining w. We describe the data analysis pipeline based on using reliable and robust image subtraction to find supernovae automatically and in near real-time. Since making cosmological inferences with supernovae relies crucially on accurate measurement of their brightnesses, we describe our efforts to establish a thorough calibration of the CTIO 4m natural photometric system. In its first four years, ESSENCE has discovered and spectroscopically confirmed 102 type Ia SNe, at redshifts from 0.10 to 0.78, identified through an impartial, effective methodology for spectroscopic classification and redshift determination. We present the resulting light curves for the all type Ia supernovae found by ESSENCE and used in our measurement of w, presented in Wood-Vasey et al. (2007).

  9. An Early & Comprehensive Millimeter and Centimeter Wave and X-ray Study of Supernova 2011dh: A Non-Equipartition Blastwave Expanding into A Massive Stellar Wind

    CERN Document Server

    Horesh, Assaf; Fox, Derek B; Frail, Dale A; Carpenter, John; Kulkarni, S R; Ofek, Eran O; Gal-Yam, Avishay; Kasliwal, Mansi M; Arcavi, Iair; Quimby, Robert; Cenko, S Bradley; Nugent, Peter E; Bloom, Joshua S; Law, Nicholas M; Poznanski, Dovi; Gorbikov, Evgeny; Polishook, David; Yaron, Ofer; Ryder, Stuart; Weiler, Kurt W; Bauer, Franz; Van Dyk, Schuyler D; Immler, Stefan; Panagia, Nino; Pooley, Dave; Kassim, Namir

    2012-01-01

    Only a handful of supernovae (SNe) have been studied in multi-wavelength from radio to X-rays, starting a few days after explosion. The early detection and classification of the nearby type IIb SN2011dh/PTF11eon in M51 provides a unique opportunity to conduct such observations. We present detailed data obtained at the youngest phase ever of a core-collapse supernova (days 3 to 12 after explosion) in the radio, millimeter and X-rays; when combined with optical data, this allows us to explore the early evolution of the SN blast wave and its surroundings. Our analysis shows that the expanding supernova shockwave does not exhibit equipartition (e_e/e_B ~ 1000), and is expanding into circumstellar material that is consistent with a density profile falling like R^-2. Within modeling uncertainties we find an average velocity of the fast parts of the ejecta of 15,000 +/- 1800 km/s, contrary to previous analysis. This velocity places SN 2011dh in an intermediate blast-wave regime between the previously defined compact...

  10. Constraints on Type IIn Supernova Progenitor Outbursts from the Lick Observatory Supernova Search

    CERN Document Server

    Bilinski, Christopher; Li, Weidong; Williams, G Grant; Zheng, WeiKang; Filippenko, Alexei V

    2015-01-01

    We searched through roughly 12 years of archival survey data acquired by the Katzman Automatic Imaging Telescope (KAIT) as part of the Lick Observatory Supernova Search (LOSS) in order to detect or place limits on possible progenitor outbursts of Type IIn supernovae (SNe~IIn). The KAIT database contains multiple pre-SN images for 5 SNe~IIn (plus one ambiguous case of a SN IIn/imposter) within 50 Mpc. No progenitor outbursts are found using the false discovery rate (FDR) statistical method in any of our targets. Instead, we derive limiting magnitudes (LMs) at the locations of the SNe. These limiting magnitudes (typically reaching $m_R \\approx 19.5\\,\\mathrm{mag}$) are compared to outbursts of SN 2009ip and $\\eta$ Car, plus additional simulated outbursts. We find that the data for SN 1999el and SN 2003dv are of sufficient quality to rule out events $\\sim40$ days before the main peak caused by initially faint SNe from blue supergiant (BSG) precursor stars, as in the cases of SN 2009ip and SN 2010mc. These SNe~IIn...

  11. The Carnegie Supernova Project: Second Photometry Data Release of Low-Redshift Type Ia Supernovae

    CERN Document Server

    Stritzinger, Maximilian; S., Luis Boldt; Burns, Chris; Campillay, Abdo; Contreras, Carlos; Gonzalez, Sergio; Folatelli, Gaston; Morrell, Nidia; Krzeminski, Wojtek; Roth, Miguel; Salgado, Francisco; Depoy, Darren L; Hamuy, Mario; Freedman, Wendy L; Madore, Barry; Marshall, Jennifer L; Persson, Sven E; Rheault, Jean-Philippe; Suntzeff, Nicholas; Villanueva, Steven; Li, Weidong; Filippenko, Alexei V

    2011-01-01

    The Carnegie Supernova Project (CSP) was a five-year observational survey conducted at Las Campanas Observatory that obtained, among other things, high-quality light curves of ~100 low-redshift Type Ia supernovae (SNe Ia). Presented here is the second data release of nearby SN Ia photometry consisting of 50 objects, with a subset of 45 having near-infrared follow-up observations. Thirty-three objects have optical pre-maximum coverage with a subset of 15 beginning at least 5 days before maximum light. In the near-infrared, 27 objects have coverage beginning before the epoch of B-band maximum, with a subset of 13 beginning at least 5 days before maximum. In addition, we present results of a photometric calibration program to measure the CSP optical (uBgVri)bandpasses with an accuracy of ~1%. Finally, we report the discovery of a second SN Ia, SN 2006ot, similar in its characteristics to the peculiar SN 2006bt.

  12. Light-echo spectroscopy of historic Supernovae

    Science.gov (United States)

    Krause, Oliver

    Young Galactic supernova remnants are unique laboratories for supernova physics. Due to their proximity they provide us with the most detailed view of the outcome of a supernova. However, the exact spectroscopic types of their original explosions have been undetermined so far -hindering to link the wealth of multi-wavelength knowledge about their remnants with the diverse population of supernovae. Light echoes, reflektions of the brilliant supernova burst of light by interstellar dust, provide a unique opportunity to reobserve today -with powerful scientific instruments of the 21st century -historic supernova exlosions even after hundreds of years and to conclude on their nature. We report on optical light-echo spectroscopy of two famous Galactic supernovae: Tycho Brahe's SN 1572 and the supernova that created the Cassiopeia A remnant around the year 1680. These observations finally recovered the missing spectroscopic classifications and provide new constraints on explosion models for future studies.

  13. A Wolf-Rayet-like progenitor of supernova SN 2013cu from spectral observations of a wind

    CERN Document Server

    Gal-Yam, Avishay; Ofek, E O; Ben-Ami, S; Cenko, S B; Kasliwal, M M; Cao, Y; Yaron, O; Tal, D; Silverman, J M; Horesh, A; De Cia, A; Taddia, F; Sollerman, J; Perley, D; Vreeswijk, P M; Kulkarni, S R; Nugent, P E; Filippenko, A V; Wheeler, J C

    2014-01-01

    The explosive fate of massive stripped Wolf-Rayet (W-R) stars is a key open question in stellar physics. An appealing option is that hydrogen-deficient W-R stars are the progenitors of some H-poor supernova (SN) explosions of Types IIb, Ib, and Ic. A blue object, having luminosity and colors consistent with those of some W-R stars, has been recently identified at the location of a SN~Ib in pre-explosion images but has not yet been conclusively determined to have been the progenitor. Similar previous works have so far only resulted in nondetections. Comparison of early photometric observations of Type Ic supernovae with theoretical models suggests that the progenitor stars had radii <10^12 cm, as expected for some W-R stars. However, the hallmark signature of W-R stars, their emission-line spectra, cannot be probed by such studies. Here, we report the detection of strong emission lines in an early-time spectrum of SN 2013cu (iPTF13ast; Type IIb) obtained ~15.5 hr after explosion ("flash spectroscopy"). We i...

  14. A Supernova's Shockwaves

    Science.gov (United States)

    2007-01-01

    Supernovae are the explosive deaths of the universe's most massive stars. In death, these volatile creatures blast tons of energetic waves into the cosmos, destroying much of the dust surrounding them. This false-color composite from NASA's Spitzer Space Telescope and NASA's Chandra X-ray Observatory shows the remnant of one such explosion. The remnant, called N132D, is the wispy pink shell of gas at the center of this image. The pinkish color reveals a clash between the explosion's high-energy shockwaves and surrounding dust grains. In the background, small organic molecules called polycyclic aromatic hydrocarbons are shown as tints of green. The blue spots represent stars in our galaxy along this line of sight. N132D is located 163,000 light-years away in a neighboring galaxy called, the Large Magellanic Cloud. In this image, infrared light at 4.5 microns is mapped to blue, 8.0 microns to green and 24 microns to red. Broadband X-ray light is mapped purple. The infrared data were taken by Spitzer's infrared array camera and multiband imaging photometer, while the X-ray data were captured by Chandra.

  15. The Shape of Superluminous Supernovae

    Science.gov (United States)

    Kohler, Susanna

    2016-11-01

    What causes the tremendous explosions of superluminous supernovae? New observations reveal the geometry of one such explosion, SN 2015bn, providing clues as to its source.A New Class of ExplosionsImage of a type Ia supernova in the galaxy NGC 4526. [NASA/ESA]Supernovae are powerful explosions that can briefly outshine the galaxies that host them. There are several different classifications of supernovae, each with a different physical source such as thermonuclear instability in a white dwarf, caused by accretion of too much mass, or the exhaustion of fuel in the core of a massive star, leading to the cores collapse and expulsion of its outer layers.In recent years, however, weve detected another type of supernovae, referred to as superluminous supernovae. These particularly energetic explosions last longer months instead of weeks and are brighter at their peaks than normal supernovae by factors of tens to hundreds.The physical cause of these unusual explosions is still a topic of debate. Recently, however, a team of scientists led by Cosimo Inserra (Queens University Belfast) has obtained new observations of a superluminous supernova that might help address this question.The flux and the polarization level (black lines) along the dominant axis of SN 2015bn, 24 days before peak flux (left) and 28 days after peak flux (right). Blue lines show the authors best-fitting model. [Inserra et al. 2016]Probing GeometryInserra and collaborators obtained two sets of observations of SN 2015bn one roughly a month before and one a month after the superluminous supernovas peak brightness using a spectrograph on the Very Large Telescope in Chile. These observations mark the first spectropolarimetric data for a superluminous supernova.Spectropolarimetry is the practice of obtaining information about the polarization of radiation from an objects spectrum. Polarization carries information about broken spatial symmetries in the object: only if the object is perfectly symmetric can it

  16. Analytical Expressions For Light-curves of Supernovae Type Ia

    CERN Document Server

    Dado, Shlomo

    2013-01-01

    A simple analytical model is used to derive the main properties of supernovae type Ia (SNe Ia), which are produced by the thermonuclear explosion of accreting C-O white dwarfs that cross the Chandrasekhar mass limit. The few underlying physical assumptions of the model yield analytical expressions that reproduce quite well the observed bolometric light-curves of SNe Ia and the empirical brighter-slower and brighter-bluer relationships that were used to standardize SNe Ia for their use as distance indicators, which led to the discovery of the accelerating expansion of the universe.

  17. Can a changing $\\alpha$ explain the Supernovae results?

    CERN Document Server

    Barrow, John D; Barrow, John D.; Magueijo, Joao

    1999-01-01

    We show that the Supernovae results, implying evidence for an accelerating Universe, may be closely related to the recent discovery of redshift dependence in the fine structure constant $\\alpha$. The link is a class of varying speed of light (VSL) theories which contain cosmological solutions similar to quintessence. During the radiation dominated epoch the cosmological constant In the matter epoch the varying c effects switch off, allowing $\\Lambda$ to eventually surface and lead to an accelerating Universe. By the time this happens the residual variations in c imply a changing $\\alpha$ at a rate that is in agreement with observations.

  18. Characterising Dark Energy through supernovae

    CERN Document Server

    Davis, Tamara M

    2016-01-01

    Type Ia supernovae are a powerful cosmological probe, that gave the first strong evidence that the expansion of the universe is accelerating. Here we provide an overview of how supernovae can go further to reveal information about what is causing the acceleration, be it dark energy or some modification to our laws of gravity. We first summarise the many different approaches used to explain or test the acceleration, including parametric models (like the standard model, LambdaCDM), non-parametric models, dark fluid models such as quintessence, and extensions to standard gravity. We also show how supernova data can be used beyond the Hubble diagram, to give information on gravitational lensing and peculiar velocities that can be used to distinguish between models that predict the same expansion history. Finally, we review the methods of statistical inference that are commonly used, making a point of separating parameter estimation from model selection.

  19. Featured Image: Modeling Supernova Remnants

    Science.gov (United States)

    Kohler, Susanna

    2016-05-01

    This image shows a computer simulation of the hydrodynamics within a supernova remnant. The mixing between the outer layers (where color represents the log of density) is caused by turbulence from the Rayleigh-Taylor instability, an effect that arises when the expanding core gas of the supernova is accelerated into denser shell gas. The past standard for supernova-evolution simulations was to perform them in one dimension and then, in post-processing, manually smooth out regions that undergo Rayleigh-Taylor turbulence (an intrinsically multidimensional effect). But in a recent study, Paul Duffell (University of California, Berkeley) has explored how a 1D model could be used to reproduce the multidimensional dynamics that occur in turbulence from this instability. For more information, check out the paper below!CitationPaul C. Duffell 2016 ApJ 821 76. doi:10.3847/0004-637X/821/2/76

  20. Dynamics of Kepler's supernova remnant

    Science.gov (United States)

    Borkowski, Kazimierz J.; Blondin, John M.; Sarazin, Craig L.

    1992-01-01

    Observations of Kepler's SNR have revealed a strong interaction with the ambient medium, far in excess of that expected at a distance of about 600 pc away from the Galactic plane where Kepler's SNR is located. This has been interpreted as a result of the interaction of supernova ejecta with the dense circumstellar medium (CSM). Based on the bow-shock model of Bandiera (1985), we study the dynamics of this interaction. The CSM distribution consists of an undisturbed stellar wind of a moving supernova progenitor and a dense shell formed in its interaction with a tenuous interstellar medium. Supernova ejecta drive a blast wave through the stellar wind which splits into the transmitted and reflected shocks upon hitting this bow-shock shell. We identify the transmitted shock with the nonradiative, Balmer-dominated shocks found recently in Kepler's SNR. The transmitted shock most probably penetrated the shell in the vicinity of the stagnation point.

  1. 超新星宇宙学的观测与研究进展%Supernova Cosmology: Observations and Progress

    Institute of Scientific and Technical Information of China (English)

    吴潮; 张天萌; 王晓峰; 裘予雷

    2013-01-01

    超新星在宇宙学研究中起着重要的作用,2011年的诺贝尔物理学奖就颁给了利用Ia型超新星为探针发现宇宙加速膨胀的天文学家.首先,通过详细介绍超新星宇宙学研究的物理原理和发现宇宙加速膨胀的观测与研究,讨论了宇宙加速膨胀发现过程给予当前研究工作的启示.然后,回顾超新星宇宙学研究在近10多年来的进展和主要成果,分析了当前所面临的主要问题与挑战.最后,对国内外超新星宇宙学研究中超新星观测研究的大型项目情况进行了全面回顾与介绍,讨论和展望了超新星宇宙学研究工作的方向.%Supernova Ia serving as a standard candle, plays an important role in the cos-mological probes. Along this line, the pioneer studies which discovered the accelerating expansion of the Universe, won the 2011 Nobel Prize in Physics. In this paper, we give a detailed review on this topic including the histories, recent progresses and future prospects as well as the related studies in China. We first present the cosmological principles that are related to the expansion of the Universe and the role of Supernova Ia as a standard candle in probing this expansion. The pioneer observational studies carried out by the Supernova Cosmology Project and High-z Supernova Search Team, which won the Nobel Prize are then reviewed in detail. After these, we outline the recent progresses, especially the various supernova search projects from local universe to high redshift, such as the CfA, SNFactory, PTF, panStarrs, SDSS, Essence, SNLS and HST. These projects reveal similar conclusions about the accelerating expansion of the Universe, while as expected with higher precisions. The up-to-dated sample of Union 2.1 is introduced and the related constraints are discussed as well. Apart from these, we also give a brief introduction to the related investigations and projects being or to be carried out in China. And finally short discussions about the

  2. Spectroscopy of SN 2016hnk (= ATLAS16dpc) with SOAR and SALT: A Peculiar Type-Ia Supernova Similar to PTF09dav

    Science.gov (United States)

    Pan, Y.-C.; Duarte, A. S.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.; Kniazev, A.

    2016-11-01

    We obtained spectroscopic observations of SN 2016hnk (= ATLAS16dpc) with the Goodman spectrograph on the Southern Astrophysical Research (SOAR) telescope on UT 2016 Oct 30.3 and with the Robert Stobie Spectrograph (RSS) on the Southern African Large Telescope (SALT) on UT 2016 Oct 31.0.

  3. Dust around Type Ia supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lifan

    2005-10-20

    An explanation is given of the low value of R lambda triple bond A lambda/E(B - V), the ratio of absolute to selective extinction deduced from Type Ia supernova observations. The idea involves scattering by dust clouds located in the circumstellar environment, or at the highest velocity shells of the supernova ejecta. The scattered light tends to reduce the effective R lambda in the optical, but has an opposite effect in the ultraviolet. The presence of circumstellar dust can be tested by ultraviolet to near infrared observations and by multi-epoch spectropolarimetry of SNe Ia.

  4. FLASH SPECTROSCOPY: EMISSION LINES FROM THE IONIZED CIRCUMSTELLAR MATERIAL AROUND <10-DAY-OLD TYPE II SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Khazov, D.; Yaron, O.; Gal-Yam, A.; Manulis, I.; Rubin, A.; Ofek, E. O.; Horesh, A. [Benoziyo Center for Astrophysics, Faculty of Physics, The Weizmann Institute for Science, Rehovot 76100 (Israel); Kulkarni, S. R.; Kasliwal, M. M.; Cao, Y.; Perley, D. [Astronomy Department, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Arcavi, I.; Howell, D. A. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93111 (United States); Sollerman, J. [The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-10691 Stockholm (Sweden); Sullivan, M. [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Filippenko, A. V.; Nugent, P. E. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Cenko, S. B. [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Silverman, J. M. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Ebeling, H. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); and others

    2016-02-10

    Supernovae (SNe) embedded in dense circumstellar material (CSM) may show prominent emission lines in their early-time spectra (≤10 days after the explosion), owing to recombination of the CSM ionized by the shock-breakout flash. From such spectra (“flash spectroscopy”), we can measure various physical properties of the CSM, as well as the mass-loss rate of the progenitor during the year prior to its explosion. Searching through the Palomar Transient Factory (PTF and iPTF) SN spectroscopy databases from 2009 through 2014, we found 12 SNe II showing flash-ionized (FI) signatures in their first spectra. All are younger than 10 days. These events constitute 14% of all 84 SNe in our sample having a spectrum within 10 days from explosion, and 18% of SNe II observed at ages <5 days, thereby setting lower limits on the fraction of FI events. We classified as “blue/featureless” (BF) those events having a first spectrum that is similar to that of a blackbody, without any emission or absorption signatures. It is possible that some BF events had FI signatures at an earlier phase than observed, or that they lack dense CSM around the progenitor. Within 2 days after explosion, 8 out of 11 SNe in our sample are either BF events or show FI signatures. Interestingly, we found that 19 out of 21 SNe brighter than an absolute magnitude M{sub R} = −18.2 belong to the FI or BF groups, and that all FI events peaked above M{sub R} = −17.6 mag, significantly brighter than average SNe II.

  5. Core-collapse Supernovae from the Palomar Transient Factory: Indications for a Different Population in Dwarf Galaxies

    Science.gov (United States)

    Arcavi, Iair; Gal-Yam, Avishay; Kasliwal, Mansi M.; Quimby, Robert M.; Ofek, Eran O.; Kulkarni, Shrinivas R.; Nugent, Peter E.; Cenko, S. Bradley; Bloom, Joshua S.; Sullivan, Mark; Howell, D. Andrew; Poznanski, Dovi; Filippenko, Alexei V.; Law, Nicholas; Hook, Isobel; Jönsson, Jakob; Blake, Sarah; Cooke, Jeff; Dekany, Richard; Rahmer, Gustavo; Hale, David; Smith, Roger; Zolkower, Jeff; Velur, Viswa; Walters, Richard; Henning, John; Bui, Kahnh; McKenna, Dan; Jacobsen, Janet

    2010-09-01

    We use the first compilation of 72 core-collapse supernovae (SNe) from the Palomar Transient Factory (PTF) to study their observed subtype distribution in dwarf galaxies compared to giant galaxies. Our sample is the largest single-survey, untargeted, spectroscopically classified, homogeneous collection of core-collapse events ever assembled, spanning a wide host-galaxy luminosity range (down to Mr ≈ -14 mag) and including a substantial fraction (>20%) of dwarf (Mr >= -18 mag) hosts. We find more core-collapse SNe in dwarf galaxies than expected and several interesting trends emerge. We use detailed subclassifications of stripped-envelope core-collapse SNe and find that all Type I core-collapse events occurring in dwarf galaxies are either SNe Ib or broad-lined SNe Ic (SNe Ic-BL), while "normal" SNe Ic dominate in giant galaxies. We also see a significant excess of SNe IIb in dwarf hosts. We hypothesize that in lower metallicity hosts, metallicity-driven mass loss is reduced, allowing massive stars that would have appeared as "normal" SNe Ic in metal-rich galaxies to retain some He and H, exploding as Ib/IIb events. At the same time, another mechanism allows some stars to undergo extensive stripping and explode as SNe Ic-BL (and presumably also as long-duration gamma-ray bursts). Our results are still limited by small-number statistics, and our measurements of the observed N(Ib/c)/N(II) number ratio in dwarf and giant hosts (0.25+0.3 -0.15 and 0.23+0.11 -0.08, respectively; 1σ uncertainties) are consistent with previous studies and theoretical predictions. As additional PTF data accumulate, more robust statistical analyses will be possible, allowing the evolution of massive stars to be probed via the dwarf-galaxy SN population.

  6. Extremely fast acceleration of cosmic rays in a supernova remnant.

    Science.gov (United States)

    Uchiyama, Yasunobu; Aharonian, Felix A; Tanaka, Takaaki; Takahashi, Tadayuki; Maeda, Yoshitomo

    2007-10-04

    Galactic cosmic rays (CRs) are widely believed to be accelerated by shock waves associated with the expansion of supernova ejecta into the interstellar medium. A key issue in this long-standing conjecture is a theoretical prediction that the interstellar magnetic field can be substantially amplified at the shock of a young supernova remnant (SNR) through magnetohydrodynamic waves generated by cosmic rays. Here we report a discovery of the brightening and decay of X-ray hot spots in the shell of the SNR RX J1713.7-3946 on a one-year timescale. This rapid variability shows that the X-rays are produced by ultrarelativistic electrons through a synchrotron process and that electron acceleration does indeed take place in a strongly magnetized environment, indicating amplification of the magnetic field by a factor of more than 100. The X-ray variability also implies that we have witnessed the ongoing shock-acceleration of electrons in real time. Independently, broadband X-ray spectrometric measurements of RX J1713.7-3946 indicate that electron acceleration proceeds in the most effective ('Bohm-diffusion') regime. Taken together, these two results provide a strong argument for acceleration of protons and nuclei to energies of 1 PeV (10(15) eV) and beyond in young supernova remnants.

  7. Extremely Fast Acceleration of Cosmic Rays in a Supernova Remnant

    Energy Technology Data Exchange (ETDEWEB)

    Uchiyama, Y.; Aharonian, F.A.; Tanaka, T.; Takahashi, T.; Maeda, Y.; /JAERI, Tokai /Dublin Inst. /Heidelberg, Max Planck Inst. /SLAC

    2007-10-23

    Galactic cosmic rays (CRs) are widely believed to be accelerated by shock waves associated with the expansion of supernova ejecta into the interstellar medium. A key issue in this long-standing conjecture is a theoretical prediction that the interstellar magnetic field can be substantially amplified at the shock of a young supernova remnant (SNR) through magnetohydrodynamic waves generated by cosmic rays. Here we report a discovery of the brightening and decay of X-ray hot spots in the shell of theSNRRXJ1713.723946 on a one-year timescale. This rapid variability shows that the X-rays are produced by ultrarelativistic electrons through a synchrotron process and that electron acceleration does indeed take place in a strongly magnetized environment, indicating amplification of the magnetic field by a factor of more than 100. The X-ray variability also implies that we have witnessed the ongoing shock-acceleration of electrons in real time. Independently, broadband X-ray spectrometric measurements of RXJ1713.723946 indicate that electron acceleration proceeds in the most effective ('Bohm-diffusion') regime. Taken together, these two results provide a strong argument for acceleration of protons and nuclei to energies of 1 PeV (10{sup 15} eV) and beyond in young supernova remnants.

  8. Extreme Supernova Models for the Superluminous Transient ASASSN-15lh

    CERN Document Server

    Chatzopoulos, E; Vinko, J; Nagy, A P; Wiggins, B K; Even, W P

    2016-01-01

    The recent discovery of the unprecedentedly superluminous transient ASASSN-15lh (or SN 2015L) challenges all the power-input models that have been proposed for superluminous supernovae. Here we examine some of the few viable interpretations of ASASSN-15lh in the context of a stellar explosion, involving combinations of one or more power inputs. We model the lightcurve of ASASSN-15lh with a hybrid model that includes contributions from magnetar spin-down energy and hydrogen-poor circumstellar interaction. We also investigate models of pure circumstellar interaction with a massive hydrogen-deficient shell and discuss about the lack of interaction features in the observed spectra. We find that ASASSN-15lh can be best modeled by the energetic core-collapse of a ~40 Msun supernova interacting with a hydrogen-poor shell of ~20 Msun. The circumstellar shell and progenitor mass are consistent with a rapidly rotating pulsational pair-instability supernova progenitor as required for strong interaction following the fin...

  9. Astronomy. ASASSN-15lh: A highly super-luminous supernova.

    Science.gov (United States)

    Dong, Subo; Shappee, B J; Prieto, J L; Jha, S W; Stanek, K Z; Holoien, T W-S; Kochanek, C S; Thompson, T A; Morrell, N; Thompson, I B; Basu, U; Beacom, J F; Bersier, D; Brimacombe, J; Brown, J S; Bufano, F; Chen, Ping; Conseil, E; Danilet, A B; Falco, E; Grupe, D; Kiyota, S; Masi, G; Nicholls, B; Olivares E, F; Pignata, G; Pojmanski, G; Simonian, G V; Szczygiel, D M; Woźniak, P R

    2016-01-15

    We report the discovery of ASASSN-15lh (SN 2015L), which we interpret as the most luminous supernova yet found. At redshift z = 0.2326, ASASSN-15lh reached an absolute magnitude of Mu ,AB = -23.5 ± 0.1 and bolometric luminosity Lbol = (2.2 ± 0.2) × 10(45) ergs s(-1), which is more than twice as luminous as any previously known supernova. It has several major features characteristic of the hydrogen-poor super-luminous supernovae (SLSNe-I), whose energy sources and progenitors are currently poorly understood. In contrast to most previously known SLSNe-I that reside in star-forming dwarf galaxies, ASASSN-15lh appears to be hosted by a luminous galaxy (MK ≈ -25.5) with little star formation. In the 4 months since first detection, ASASSN-15lh radiated (1.1 ± 0.2) × 10(52) ergs, challenging the magnetar model for its engine. Copyright © 2016, American Association for the Advancement of Science.

  10. Supernova explosions and the birth of neutron stars

    CERN Document Server

    Janka, H -Th; Müller, B; Scheck, L

    2007-01-01

    We report here on recent progress in understanding the birth conditions of neutron stars and the way how supernovae explode. More sophisticated numerical models have led to the discovery of new phenomena in the supernova core, for example a generic hydrodynamic instability of the stagnant supernova shock against low-mode nonradial deformation and the excitation of gravity-wave activity in the surface and core of the nascent neutron star. Both can have supportive or decisive influence on the inauguration of the explosion, the former by improving the conditions for energy deposition by neutrino heating in the postshock gas, the latter by supplying the developing blast with a flux of acoustic power that adds to the energy transfer by neutrinos. While recent two-dimensional models suggest that the neutrino-driven mechanism may be viable for stars from about 8 solar masses to at least 15 solar masses, acoustic energy input has been advocated as an alternative if neutrino heating fails. Magnetohydrodynamic effects ...

  11. Magnetar-Powered Supernovae in Two Dimensions. I. Superluminous Supernovae

    CERN Document Server

    Chen, Ke-Jung; Sukhbold, Tuguldur

    2016-01-01

    Previous studies have shown that the radiation emitted by a rapidly rotating magnetar embedded in a young supernova can greatly amplify its luminosity. These one-dimensional studies have also revealed the existence of an instability arising from the piling up of radiatively accelerated matter in a thin dense shell deep inside the supernova. Here we examine the problem in two dimensions and find that, while instabilities cause mixing and fracture this shell into filamentary structures that reduce the density contrast, the concentration of matter in a hollow shell persists. The extent of the mixing depends upon the relative energy input by the magnetar and the kinetic energy of the inner ejecta. The light curve and spectrum of the resulting supernova will be appreciably altered, as will the appearance of the supernova remnant, which will be shellular and filamentary. A similar pile up and mixing might characterize other events where energy is input over an extended period by a centrally concentrated source, e.g...

  12. The IPAC Image Subtraction and Discovery Pipeline for the intermediate Palomar Transient Factory

    CERN Document Server

    Masci, Frank; Rebbapragada, Umaa; Doran, Gary; Miller, Adam; Bell, Eric; Kasliwal, Mansi; Ofek, Eran; Surace, Jason; Shupe, David; Grillmair, Carl; Jackson, Ed; Barlow, Tom; Yan, Lin; Cao, Yi; Cenko, S Bradley; Storrie-Lombardi, Lisa; Helou, George; Prince, Thomas; Kulkarni, Shrinivas

    2016-01-01

    We describe the near real-time transient-source discovery engine for the intermediate Palomar Transient Factory (iPTF), currently in operations at the Infrared Processing and Analysis Center (IPAC), Caltech. We coin this system the IPAC/iPTF Discovery Engine (or IDE). We review the algorithms used for PSF-matching, image subtraction, detection, photometry, and machine-learned (ML) vetting of extracted transient candidates. We also review the performance of our ML classifier. For a limiting signal-to-noise ratio of 4 in relatively unconfused regions, "bogus" candidates from processing artifacts and imperfect image subtractions outnumber real transients by ~ 10:1. This can be considerably higher for image data with inaccurate astrometric and/or PSF-matching solutions. Despite this occasionally high contamination rate, the ML classifier is able to identify real transients with an efficiency (or completeness) of ~ 97% for a maximum tolerable false-positive rate of 1% when classifying raw candidates. All subtracti...

  13. A Swift Look at SN 2011fe: The Earliest Ultraviolet Observations of a Type Ia Supernova

    Science.gov (United States)

    Oates, Samantha; Holland, Stephen; Immler, Stefan; Brown, Peter J.; Dawson, Kyle S.; DePasquale, Massimiliano; Gronwall, Caryl; Kuin, Paul; Mazzali, Paolo; Miline, Peter; Siegel, Michael

    2012-01-01

    We present the earliest ultraviolet (UV) observations of the bright Type Ia supernova SN 2011fe/PTF11kly in the nearby galaxy M101 at a distance of only 6.4 Mpc. It was discovered shortly after explosion by the Palomar Transient Factory and first observed by Swift/UVOT about a day after explosion. The early UV light is well-defined, with approx. 20 data points per filter in the 5 days after explosion. With these early UV observations, we extend the near-UV template of SNe Ia to earlier times for comparison with observations at low and high redshift and report fits from semiempirical models of the explosion. We find the early UV count rates to be well fit by the superposition of two parabolic curves. Finally, we use the early UV flux measurements to examine a possible shock interaction with a non-degenerate companion. We find that even a solar mass companion at a distance of a few solar radii is unlikely at more than 95% confidence.

  14. Supernova 2011fe from an Exploding Carbon-Oxygen White Dwarf Star

    CERN Document Server

    Nugent, Peter E; Cenko, S Bradley; Thomas, Rollin C; Kasen, Daniel; Howell, D Andrew; Bersier, David; Bloom, Joshua S; Kulkarni, S R; Kandrashoff, Michael T; Filippenko, Alexei V; Silverman, Jeffrey M; Marcy, Geoffrey W; Howard, Andrew W; Isaacson, Howard T; Maguire, Kate; Suzuki, Nao; Tarlton, James E; Pan, Yen-Chen; Bildsten, Lars; Fulton, Benjamin J; Parrent, Jerod T; Sand, David; Podsiadlowski, Philipp; Bianco, Federica B; Dilday, Benjamin; Graham, Melissa L; Lyman, Joe; James, Phil; Kasliwal, Mansi M; Law, Nicholas M; Quimby, Robert M; Hook, Isobel M; Walker, Emma S; Mazzali, Paolo; Pian, Elena; Ofek, Eran O; Gal-Yam, Avishay; Poznanski, Dovi

    2011-01-01

    Type Ia supernovae (SNe Ia) have been used empirically as standardized candles to reveal the accelerating universe even though fundamental details, such as the nature of the progenitor system and how the star explodes, remained a mystery. There is consensus that a white dwarf star explodes after accreting matter in a binary system, but the secondary could be anything from a main sequence star to a red giant, or even another white dwarf. The uncertainty stems from the fact that no recent SN Ia has been discovered close enough to detect the stars before explosion. Here we report early observations of SN 2011fe (PTF11kly) in M101 at a distance of 6.4 Mpc, the closest SN Ia in the past 25 years. We find that the exploding star was likely a carbon-oxygen white dwarf, and from the lack of an early shock we conclude that the companion was most likely a main sequence star. Early spectroscopy shows high-velocity oxygen that varies on a time scale of hours and extensive mixing of newly synthesized intermediate mass ele...

  15. Host-Galaxy Properties of 32 Low-Redshift Superluminous Supernovae from the Palomar Transient Factory

    CERN Document Server

    Perley, Daniel A; Yan, Lin; Vreeswijk, Paul; De Cia, Annalisa; Lunnan, Ragnhild; Gal-Yam, Avishay; Yaron, Ofer; Filippenko, Alexei V; Graham, Melissa L; Nugent, Peter E

    2016-01-01

    We present ultraviolet through near-infrared photometry and spectroscopy of the host galaxies of all superluminous supernovae (SLSNe) discovered by the Palomar Transient Factory prior to 2013, and derive measurements of their luminosities, star-formation rates, stellar masses, and gas-phase metallicities. We find that Type I (hydrogen-poor) SLSNe are found almost exclusively in low-mass (M 0.5 Z_sun. Extremely low metallicities are not required, and indeed provide no further increase in the relative SLSN rate. Several SLSN-I hosts are undergoing vigorous starbursts, but this may simply be a side effect of metallicity dependence: dwarf galaxies tend to have bursty star-formation histories. Type-II (hydrogen-rich) SLSNe are found over the entire range of galaxy masses and metallicities, and their integrated properties do not suggest a strong preference for (or against) low-mass/low-metallicity galaxies. Two hosts exhibit unusual properties: PTF 10uhf is a Type I SLSN in a massive, luminous infrared galaxy at re...

  16. A binary scenario for the pre-explosion outburst of the supernova 2010mc

    CERN Document Server

    Soker, Noam

    2013-01-01

    I raise the possibility that the pre-explosion outburst (PEO) of the type IIn supernova 2010mc (PTF 10tel) was energized by mass accretion onto an O main-sequence stellar companion. According to this suggestion the SN progenitor suffered a rapid expansion within months before explosion. The expansion was driven by leakage of energy from the core where vigorous oxygen nuclear burning takes place within a year prior to explosion. This expansion triggered mass transfer onto the secondary star. Most of the extra energy of the outburst comes from the accretion of ~0.1Mo onto the secondary star. As well, the gas outflowing at v~2000 km/s was launched from the accreting secondary star, most likely in a bipolar outflow. The binary model can account for the slower circumstellar medium that was ejected at earlier times, and explain the red-shifted peak of the Halpha emission at 5.8 days past explosion. I compare some properties of the PEO of SN 2010mc to those of other stellar eruptions, such as the stellar merger even...

  17. The superluminous supernova PS1-11ap: bridging the gap between low and high redshift

    Science.gov (United States)

    McCrum, M.; Smartt, S. J.; Kotak, R.; Rest, A.; Jerkstrand, A.; Inserra, C.; Rodney, S. A.; Chen, T.-W.; Howell, D. A.; Huber, M. E.; Pastorello, A.; Tonry, J. L.; Bresolin, F.; Kudritzki, R.-P.; Chornock, R.; Berger, E.; Smith, K.; Botticella, M. T.; Foley, R. J.; Fraser, M.; Milisavljevic, D.; Nicholl, M.; Riess, A. G.; Stubbs, C. W.; Valenti, S.; Wood-Vasey, W. M.; Wright, D.; Young, D. R.; Drout, M.; Czekala, I.; Burgett, W. S.; Chambers, K. C.; Draper, P.; Flewelling, H.; Hodapp, K. W.; Kaiser, N.; Magnier, E. A.; Metcalfe, N.; Price, P. A.; Sweeney, W.; Wainscoat, R. J.

    2014-01-01

    We present optical photometric and spectroscopic coverage of the superluminous supernova (SLSN) PS1-11ap, discovered with the Pan-STARRS1 Medium Deep Survey at z = 0.524. This intrinsically blue transient rose slowly to reach a peak magnitude of Mu = -21.4 mag and bolometric luminosity of 8 × 1043 erg s-1 before settling on to a relatively shallow gradient of decline. The observed decline is significantly slower than those of the SLSNe-Ic which have been the focus of much recent attention. Spectroscopic similarities with the lower redshift SN2007bi and a decline rate similar to 56Co decay time-scale initially indicated that this transient could be a candidate for a pair instability supernova (PISN) explosion. Overall the transient appears quite similar to SN2007bi and the lower redshift object PTF12dam. The extensive data set, from 30 d before peak to 230 d after, allows a detailed and quantitative comparison with published models of PISN explosions. We find that the PS1-11ap data do not match these model explosion parameters well, supporting the recent claim that these SNe are not pair instability explosions. We show that PS1-11ap has many features in common with the faster declining SLSNe-Ic, and the light-curve evolution can also be quantitatively explained by the magnetar spin-down model. At a redshift of z = 0.524, the observer-frame optical coverage provides comprehensive rest-frame UV data and allows us to compare it with the SLSNe recently found at high redshifts between z = 2 and 4. While these high-z explosions are still plausible PISN candidates, they match the photometric evolution of PS1-11ap and hence could be counterparts to this lower redshift transient.

  18. The Host Galaxies of Type Ia Supernovae Discovered by the Palomar Transient Factory

    Science.gov (United States)

    Pan, Y.-C.; Sullivan, M.; McGuire, K.; Hook, I. M.; Nugent, P. E.; Howell, D. A.; Arcavi, I.; Botyanszki, J.; Cenko, Stephen Bradley; DeRose, J.

    2013-01-01

    We present spectroscopic observations of the host galaxies of 82 low-redshift type Ia supernovae (SNe Ia) discovered by the Palomar Transient Factory (PTF). We determine star-formation rates, gas-phase stellar metallicities, and stellar masses and ages of these objects. As expected, strong correlations between the SN Ia light-curve width (stretch) and the host age mass metallicity are found: fainter, faster-declining events tend to be hosted by older massive metal-rich galaxies. There is some evidence that redder SNe Ia explode in higher metallicity galaxies, but we found no relation between the SN colour and host galaxy extinction based on the Balmer decrement, suggesting that the colour variation of these SNe does not primarily arise from this source. SNe Ia in higher-mass metallicity galaxies also appear brighter after stretch colour corrections than their counterparts in lower mass hosts, and the stronger correlation is with gas-phase metallicity suggesting this may be the more important variable. We also compared the host stellar mass distribution to that in galaxy targeted SN surveys and the high-redshift untargeted Supernova Legacy Survey (SNLS). SNLS has many more low mass galaxies, while the targeted searches have fewer. This can be explained by an evolution in the galaxy stellar mass function, coupled with a SN delay-time distribution proportional to t1. Finally, we found no significant difference in the mass--metallicity relation of our SN Ia hosts compared to field galaxies, suggesting any metallicity effect on the SN Ia rate is small.

  19. Are Supernovae Recorded in Indigenous Astronomical Traditions?

    CERN Document Server

    Hamacher, Duane W

    2014-01-01

    Novae and supernovae are rare astronomical events that would have had an influence on the sky-watching peoples who witnessed them. Although several bright novae/supernovae have been visible during recorded human history, there are many proposed but no confirmed accounts of supernovae in oral traditions or material culture. Criteria are established for confirming novae/supernovae in oral and material culture, and claims from around the world are discussed to determine if they meet these criteria. Australian Aboriginal traditions are explored for possible descriptions of novae/supernovae. Although representations of supernovae may exist in Indigenous traditions, and an account of a nova in Aboriginal traditions has been confirmed, there are currently no confirmed accounts of supernovae in Indigenous oral or material traditions.

  20. Recent Progress on Ascertaining the Core Collapse Supernova Explosion Mechanism

    CERN Document Server

    Mezzacappa, Anthony; Lentz, Eric J; Hix, W Raphael; Harris, J Austin; Messer, O E Bronson; Endeve, Eirik; Chertkow, Merek A; Blondin, John M; Marronetti, Pedro; Yakunin, Konstantin N

    2015-01-01

    We have been working within the fundamental paradigm that core collapse supernovae (CCSNe) may be neutrino driven, since the first suggestion of this by Colgate and White nearly five decades ago. Computational models have become increasingly sophisticated, first in one spatial dimension assuming spherical symmetry, then in two spatial dimensions assuming axisymmetry, and now in three spatial dimensions with no imposed symmetries. The increase in the number of spatial dimensions has been accompanied by an increase in the physics included in the models, and an increase in the sophistication with which this physics has been modeled. Computation has played an essential role in the development of CCSN theory, not simply for the obvious reason that such multidimensional, multi-physics, nonlinear events cannot possibly be fully captured analytically, but for its role in discovery. In particular, the discovery of the standing accretion shock instability (SASI) through computation about a decade ago has impacted all s...

  1. Supernova neutrinos and explosive nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J.; Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Mathews, G. J. [Center for Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Nakamura, K. [Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Suzuki, T. [Department of Physics, College of Humanities and Sciences, Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

    2014-05-09

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and θ{sub 13}, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements {sup 11}B and {sup 7}Li encapsulated in the presolar grains. Combining the recent experimental constraints on θ{sub 13}, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  2. The Supernova - A Stellar Spectacle.

    Science.gov (United States)

    Straka, W. C.

    This booklet is part of an American Astronomical Society curriculum project designed to provide teaching materials to teachers of secondary school chemistry, physics, and earth science. The following topics concerning supernovae are included: the outburst as observed and according to theory, the stellar remnant, the nebular remnant, and a summary…

  3. Strange matter, detonations and supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, O.G.; Horvath, J.E.; Vucetich, H.

    1989-01-01

    The authors present a possible scenario driven by QCD deconfinement in a high density nuclear matter medium. Some expected consequences for type II supernovae explosions are also given, particularly, the output energy that might be enough to account for the observed events.

  4. Beyond Discovery

    DEFF Research Database (Denmark)

    Korsgaard, Steffen; Sassmannshausen, Sean Patrick

    2015-01-01

    as their central concepts and conceptualization of the entrepreneurial function. On this basis we discuss three central themes that cut across the four alternatives: process, uncertainty, and agency. These themes provide new foci for entrepreneurship research and can help to generate new research questions......In this chapter we explore four alternatives to the dominant discovery view of entrepreneurship; the development view, the construction view, the evolutionary view, and the Neo-Austrian view. We outline the main critique points of the discovery presented in these four alternatives, as well...

  5. Precision Measurement of The Most Distant Spectroscopically-Confirmed Supernova Ia with the Hubble Space Telescope

    CERN Document Server

    Rubin, D; Rykoff, E; Aldering, G; Amanullah, R; Barbary, K; Burns, M S; Conley, A; Connolly, N; Deustua, S; Fadeyev, V; Fakhouri, H K; Fruchter, A S; Gibbons, R A; Goldhaber, G; Goobar, A; Hsiao, E Y; Huang, X; Kowalski, M; Lidman, C; Meyers, J; Nordin, J; Perlmutter, S; Saunders, C; Spadafora, A L; Stanishev, V; Suzuki, N; Wang, L

    2012-01-01

    We report the discovery of a redshift 1.71 supernova in the GOODS North field. The Hubble Space Telescope (HST) ACS spectrum has almost negligible contamination from the host or neighboring galaxies, allowing us to confirm it as a Type Ia. A serendipitous HST WFC3 IR spectrum, taken after the supernova had faded, gives a host-galaxy redshift of 1.713 +/- 0.007 which matches the SN redshift. In addition to being the most distant SN Ia with spectroscopic confirmation, this is the most distant Ia with a precision color measurement. We present the ACS WFC and NICMOS 2 photometry and ACS and WFC3 spectroscopy. Our derived supernova distance is in agreement with the prediction of LambdaCDM.

  6. Multiple Images of a Highly Magnified Supernova Formed by an Early-Type Cluster Galaxy Lens

    CERN Document Server

    Kelly, Patrick L; Treu, Tommaso; Foley, Ryan J; Brammer, Gabriel; Schmidt, Kasper B; Zitrin, Adi; Sonnenfeld, Alessandro; Strolger, Louis-Gregory; Graur, Or; Filippenko, Alexei V; Jha, Saurabh W; Riess, Adam G; Bradac, Marusa; Weiner, Benjamin J; Scolnic, Daniel; Malkan, Matthew A; von der Linden, Anja; Trenti, Michele; Hjorth, Jens; Gavazzi, Raphael; Fontana, Adriano; Merten, Julian; McCully, Curtis; Jones, Tucker; Postman, Marc; Dressler, Alan; Patel, Brandon; Cenko, S Bradley; Graham, Melissa L; Tucker, Bradley E

    2014-01-01

    We report the discovery of the first multiply-imaged gravitationally-lensed supernova. The four images form an Einstein cross with over 2" diameter around a z=0.544 elliptical galaxy that is a member of the cluster MACSJ1149.6+2223. The supernova appeared in Hubble Space Telescope exposures taken on 3-20 November 2014 UT, as part of the Grism Lens-Amplified Survey from Space. The images of the supernova coincide with the strongly lensed arm of a spiral galaxy at z=1.491, which is itself multiply imaged by the cluster potential. A measurement of the time delays between the multiple images and their magnification will provide new unprecedented constraints on the distribution of luminous and dark matter in the lensing galaxy and in the cluster, as well as on the cosmic expansion rate.

  7. LRH-1 and PTF1-L coregulate an exocrine pancreas-specific transcriptional network for digestive function.

    Science.gov (United States)

    Holmstrom, Sam R; Deering, Tye; Swift, Galvin H; Poelwijk, Frank J; Mangelsdorf, David J; Kliewer, Steven A; MacDonald, Raymond J

    2011-08-15

    We have determined the cistrome and transcriptome for the nuclear receptor liver receptor homolog-1 (LRH-1) in exocrine pancreas. Chromatin immunoprecipitation (ChIP)-seq and RNA-seq analyses reveal that LRH-1 directly induces expression of genes encoding digestive enzymes and secretory and mitochondrial proteins. LRH-1 cooperates with the pancreas transcription factor 1-L complex (PTF1-L) in regulating exocrine pancreas-specific gene expression. Elimination of LRH-1 in adult mice reduced the concentration of several lipases and proteases in pancreatic fluid and impaired pancreatic fluid secretion in response to cholecystokinin. Thus, LRH-1 is a key regulator of the exocrine pancreas-specific transcriptional network required for the production and secretion of pancreatic fluid.

  8. PTF1 J191905.19+481506.2 - A Partially Eclipsing AM CVn System Discovered in the Palomar Transient Factory

    CERN Document Server

    Levitan, David; Groot, Paul J; Margon, Bruce; Prince, Thomas A; Kulkarni, Shrinivas R; Hallinan, Gregg; Harding, Leon K; Kyne, Gillian; Laher, Russ; Ofek, Eran O; Rutten, René G M; Sesar, Branimir; Surace, Jason

    2014-01-01

    We report on PTF1 J191905.19+481506.2, a newly discovered, partially eclipsing, outbursting AM CVn system found in the Palomar Transient Factory synoptic survey. This is only the second known eclipsing AM CVn system. We use high-speed photometric observations and phase-resolved spectroscopy to establish an orbital period of 22.4559(3) min. We also present a long-term light curve and report on the normal and super-outbursts regularly seen in this system, including a super-outburst recurrence time of 36.8(4) d. We use the presence of the eclipse to place upper and lower limits on the inclination of the system and discuss the number of known eclipsing AM CVn systems versus what would be expected.

  9. Nearby Supernova Factory Observations of SN 2005gj: Another TypeIa Supernova in a Massive Circumstellar Envelope

    Energy Technology Data Exchange (ETDEWEB)

    Aldering, G.; Antilogus, P.; Bailey, S.; Baltay, C.; Bauer, A.; Blanc, N.; Bongard, S.; Copin, Y.; Gangler, E.; Gilles, S.; Kessler, R.; Kocevski, D.; Lee, B.C.; Loken, S.; Nugent, P.; Pain, R.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigaudier, G.; Scalzo, R.; Smadja, G.; Thomas, R.C.; Wang, L.; Weaver, B.A.; Rabinowitz, D.; Bauer, A.

    2006-06-01

    We report the independent discovery and follow-up observations of supernova 2005gj by the Nearby Supernova Factory. This is the second confirmed case of a ''hybrid'' Type Ia/IIn supernova, which like the prototype SN 2002ic, we interpret as the explosion of a white dwarf interacting with a circumstellar medium. Our early-phase photometry of SN 2005gj shows that the strength of the interaction between the supernova ejecta and circumstellar material is much stronger than for SN 2002ic. Our .rst spectrum shows a hot continuum with broad and narrow H{alpha} emission. Later spectra, spanning over 4 months from outburst, show clear Type Ia features combined with broad and narrow H{gamma}, H{beta},H{alpha} and He I {lambda}{lambda}5876,7065 in emission. At higher resolution, P Cygni profiles are apparent. Surprisingly, we also observe an inverted P Cygni profile for [O III] {lambda}5007. We find that the lightcurve and measured velocity of the unshocked circumstellar material imply mass loss as recently as 8 years ago. This is in contrast to SN 2002ic, for which an inner cavity in the circumstellar material was inferred. Within the context of the thin-shell approximation, the early lightcurve is well-described by a flat radial density profile for the circumstellar material. However, our decomposition of the spectra into Type Ia and shock emission components allows for little obscuration of the supernova, suggesting an aspherical or clumpy distribution for the circumstellar material. We suggest that the emission line velocity profiles arise from electron scattering rather than the kinematics of the shock. This is supported by the inferred high densities, and the lack of evidence for evolution in the line widths. Ground- and space-based photometry, and Keck spectroscopy, of the host galaxy are used to ascertain that the host galaxy has low metallicity (Z/Z{sub {circle_dot}} < 0.3; 95% confidence) and that this galaxy is undergoing a significant star

  10. The most powerful explosions in the Universe: genesis and evolution of Supernova and Gamma-Ray Burst Italian programs at ESO

    CERN Document Server

    Pian, Elena

    2012-01-01

    The Italian communities engaged in Gamma-Ray Burst (GRB) and supernova research have been using actively the ESO telescopes and have contributed to improve and refine the observing techniques and even to guide the characteristics and performances of the instruments that were developed. Members of these two communities have recently found ground for a close collaboration on the powerful supernovae that underlie some GRBs. I will review the programs that have led to some important discoveries and milestones on thermonuclear and core-collapse supernovae and on GRBs.

  11. X-Ray Studies of Supernova Remnants: A Different View of Supernova Explosions

    CERN Document Server

    Badenes, Carles

    2010-01-01

    The unprecedented spatial and spectral resolutions of Chandra have revolutionized our view of the X-ray emission from supernova remnants. The excellent data sets accumulated on young, ejecta dominated objects like Cas A or Tycho present a unique opportunity to study at the same time the chemical and physical structure of the explosion debris and the characteristics of the circumstellar medium sculpted by the progenitor before the explosion. Supernova remnants can thus put strong constraints on fundamental aspects of both supernova explosion physics and stellar evolution scenarios for supernova progenitors. This view of the supernova phenomenon is completely independent of, and complementary to, the study of distant extragalactic supernovae at optical wavelengths. The calibration of these two techniques has recently become possible thanks to the detection and spectroscopic follow-up of supernova light echoes. In this paper, I will review the most relevant results on supernova remnants obtained during the first...

  12. A relativistic type Ibc supernova without a detected gamma-ray burst.

    Science.gov (United States)

    Soderberg, A M; Chakraborti, S; Pignata, G; Chevalier, R A; Chandra, P; Ray, A; Wieringa, M H; Copete, A; Chaplin, V; Connaughton, V; Barthelmy, S D; Bietenholz, M F; Chugai, N; Stritzinger, M D; Hamuy, M; Fransson, C; Fox, O; Levesque, E M; Grindlay, J E; Challis, P; Foley, R J; Kirshner, R P; Milne, P A; Torres, M A P

    2010-01-28

    Long duration gamma-ray bursts (GRBs) mark the explosive death of some massive stars and are a rare sub-class of type Ibc supernovae. They are distinguished by the production of an energetic and collimated relativistic outflow powered by a central engine (an accreting black hole or neutron star). Observationally, this outflow is manifested in the pulse of gamma-rays and a long-lived radio afterglow. Until now, central-engine-driven supernovae have been discovered exclusively through their gamma-ray emission, yet it is expected that a larger population goes undetected because of limited satellite sensitivity or beaming of the collimated emission away from our line of sight. In this framework, the recovery of undetected GRBs may be possible through radio searches for type Ibc supernovae with relativistic outflows. Here we report the discovery of luminous radio emission from the seemingly ordinary type Ibc SN 2009bb, which requires a substantial relativistic outflow powered by a central engine. A comparison with our radio survey of type Ibc supernovae reveals that the fraction harbouring central engines is low, about one per cent, measured independently from, but consistent with, the inferred rate of nearby GRBs. Independently, a second mildly relativistic supernova has been reported.

  13. SLOW-SPEED SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY: TWO CHANNELS

    Energy Technology Data Exchange (ETDEWEB)

    White, Christopher J. [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 (United States); Kasliwal, Mansi M.; Piro, Anthony L. [The Observatories, Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Nugent, Peter E. [Computational Cosmology Center, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Gal-Yam, Avishay; Ofek, Eran O.; Ben-Ami, Sagi [Benoziyo Center for Astrophysics, The Weizmann Institute of Science, Rehovot 76100 (Israel); Howell, D. Andrew [Department of Physics, University of California, Santa Barbara, Broida Hall, Mail Code 9530, Santa Barbara, CA 93106-9530 (United States); Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Goobar, Ariel [The Oskar Klein Centre, Department of Physics, AlbaNova, Stockholm University, SE-106 91 Stockholm (Sweden); Bloom, Joshua S. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Kulkarni, Shrinivas R.; Cao, Yi [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Laher, Russ R.; Masci, Frank; Surace, Jason [Spitzer Science Center, California Institute of Technology, M/S 314-6, Pasadena, CA 91125 (United States); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Hook, Isobel M. [Department of Physics (Astrophysics), University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Jönsson, Jakob [Savantic AB, Rosenlundsgatan 50, SE-118 63 Stockholm (Sweden); Matheson, Thomas [National Optical Astronomy Observatory, Tucson, AZ 85719-4933 (United States); and others

    2015-01-20

    Since the discovery of the unusual prototype SN 2002cx, the eponymous class of Type I (hydrogen-poor) supernovae with low ejecta speeds has grown to include approximately two dozen members identified from several heterogeneous surveys, in some cases ambiguously. Here we present the results of a systematic study of 1077 Type I supernovae discovered by the Palomar Transient Factory, leading to nine new members of this peculiar class. Moreover, we find there are two distinct subclasses based on their spectroscopic, photometric, and host galaxy properties: ''SN 2002cx-like'' supernovae tend to be in later-type or more irregular hosts, have more varied and generally dimmer luminosities, have longer rise times, and lack a Ti II trough when compared to ''SN 2002es-like'' supernovae. None of our objects show helium, and we counter a previous claim of two such events. We also find that the occurrence rate of these transients relative to Type Ia supernovae is 5.6{sub −3.8}{sup +22}% (90% confidence), lower compared to earlier estimates. Combining our objects with the literature sample, we propose that these subclasses have two distinct physical origins.

  14. An Extremely Luminous X-ray Outburst Marking the Birth of a Normal Supernova

    CERN Document Server

    Soderberg, A M; Page, K; Schady, P; Parrent, J; Pooley, D; Wang, X -Y; Ofek, E; Cucchiara, A; Rau, A; Waxman, E; Simón, J; Bock, D; Milne, P; Page, M; Barthelmy, S; Beardmore, A; Bietenholz, M; Brown, P; Burrows, A; Burrows, D N; Byrngelson, G; Cenko, S B; Chandra, P; Cummings, J; Fox, D B; Gal-Yam, A; Gehrels, N; Immler, S; Kasliwal, M; Kong, A; Krimm, H; Kulkarni, S R; Mészáros, P; Nakar, E; O'Brien, P; de Pasquale, M; Racusin, J; Rea, N

    2008-01-01

    The most massive stars in the universe end their lives in luminous supernova explosions that lead to the formation of neutron stars and black holes and impact star formation and galaxy evolution. For nearly a century, supernovae have been discovered solely through their bright optical emission, delaying initial observations to several days after the explosion. As a result, the details of the core collapse explosion mechanism, as well as the nature of some supernova progenitors, remain a matter of intense debate. Here we report our serendipitous discovery of a normal type Ibc supernova at the time of explosion, marked by an extremely luminous X-ray outburst. We interpret the outburst as the break-out of the supernova shock through a dense wind surrounding the compact (radius of ~10^11 cm) progenitor star. This conclusion is supported by our extensive radio and ultraviolet/optical observations from 0.1 to 30 days post-explosion. Equally important, the inferred rate of X-ray outbursts agrees with the core-collap...

  15. Scattered-Light Echoes from the Historical Galactic Supernovae Cassiopeia A and Tycho (SN 1572)

    Energy Technology Data Exchange (ETDEWEB)

    Rest, A; Welch, D L; Suntzeff, N B; Oaster, L; Lanning, H; Olsen, K; Smith, R C; Becker, A C; Bergmann, M; Challis, P; Clocchiatti, A; Cook, K H; Damke, G; Garg, A; Huber, M E; Matheson, T; Minniti, D; Prieto, J L; Wood-Vasey, W M

    2008-05-06

    We report the discovery of an extensive system of scattered light echo arclets associated with the recent supernovae in the local neighborhood of the Milky Way: Tycho (SN 1572) and Cassiopeia A. Existing work suggests that the Tycho SN was a thermonuclear explosion while the Cas A supernova was a core collapse explosion. Precise classifications according to modern nomenclature require spectra of the outburst light. In the case of ancient SNe, this can only be done with spectroscopy of their light echo, where the discovery of the light echoes from the outburst light is the first step. Adjacent light echo positions suggest that Cas A and Tycho may share common scattering dust structures. If so, it is possible to measure precise distances between historical Galactic supernovae. On-going surveys that alert on the development of bright scattered-light echo features have the potential to reveal detailed spectroscopic information for many recent Galactic supernovae, both directly visible and obscured by dust in the Galactic plane.

  16. Supernova neutrino detection in LAr TPCs

    Energy Technology Data Exchange (ETDEWEB)

    Gil-Botella, Ines, E-mail: ines.gil@ciemat.es [CIEMAT, Basic Research Department, Avenida Complutense, 22, 28040 Madrid (Spain)

    2011-08-10

    The neutrino burst from a core collapse supernova can provide information about the explosion mechanism and the mechanisms of proto neutron star cooling but also about the intrinsic properties of the neutrino such as flavor oscillations. One important question is to understand to which extent can the supernova and the neutrino physics be decoupled in the observation of a single supernova. The possibility to probe the neutrino mixing angle {theta}{sub 13} and the type of mass hierarchy from the detection of supernova neutrinos with liquid argon detectors is summarized in this paper. Moreover, a quantitative study about the possibility to constrain the supernova parameters is presented. A very massive liquid argon detector ({approx} 100 kton) is needed to perform accurate measurements of these parameters. In addition, these detectors could also provide information on the {nu}{sub e} component of the diffuse supernova neutrino background.

  17. Finding Distances to Type Ia Supernovae

    Science.gov (United States)

    Kohler, Susanna

    2016-03-01

    Type Ia supernovae are known as standard candles due to their consistency, allowing us to measure distances based on their brightness. But what if these explosions arent quite as consistent as we thought? Due scientific diligence requires careful checks, so a recent study investigates whether the metallicity of a supernovas environment affects the peak luminosity of the explosion.Metallicity Dependence?Type Ia supernovae are incredibly powerful tools for determining distances in our universe. Because these supernovae are formed by white dwarfs that explode when they reach a uniform accreted mass, the supernova peak luminosity is thought to be very consistent. This consistency allows these supernovae to be used as standard candles to measure distances to their host galaxies.But what if that peak luminosity is affected by a factor that we havent taken into account? Theorists have proposed that the luminosities of Type Ia supernovae might depend on the metallicity of their environments with high-metallicity environments suppressing supernova luminosities. If this is true, then we could be systematically mis-measuring cosmological distances using these supernovae.Testing AbundancesSupernova brightnesses vs. the metallicity of their environments. Low-metallicity supernovae (blue shading) and high-metallicity supernovae (red shading) have an average magnitude difference of ~0.14. [Adapted from Moreno-Raya et al. 2016]A team led by Manuel Moreno-Raya, of the Center for Energy, Environment and Technology (CIEMAT) in Spain, has observed 28 Type Ia supernovae in an effort to test for such a metallicity dependence. These supernovae each have independent distance measurements (e.g., from Cepheids or the Tully-Fisher relation).Moreno-Raya and collaborators used spectra from the 4.2-m William Herschel Telescope to estimate oxygen abundances in the region where each of these supernovae exploded. They then used these measurements to determine if metallicity of the local region

  18. VLBI observations of young Type II supernovae

    CERN Document Server

    Pérez-Torres, M A; Marcaide, J M

    2005-01-01

    We give an overview of circumstellar interaction in young Type II supernovae, as seen through the eyes of very-long-baseline interferometry (VLBI) observations. The resolution attained by such observations (best than 1 mas) is a powerful tool to probe the interaction that takes place after a supernova goes off. The direct imaging of a supernova permits, in principle, to estimate the deceleration of its expansion, and to obtain information on the eject and circumstellar density profiles, as well as estimates of the magnetic field intensity and relativistic particle energy density in the supernova. Unfortunately, only a handful of radio supernovae are close and bright enough as to permit their study with VLBI. We present results from our high-resolution observations of the nearby Type II radio supernovae SN1986J and SN2001gd.

  19. Improvements to type Ia supernova models

    Science.gov (United States)

    Saunders, Clare M.

    Type Ia Supernovae provided the first strong evidence of dark energy and are still an important tool for measuring the accelerated expansion of the universe. However, future improvements will be limited by systematic uncertainties in our use of Type Ia supernovae as standard candles. Using Type Ia supernovae for cosmology relies on our ability to standardize their absolute magnitudes, but this relies on imperfect models of supernova spectra time series. This thesis is focused on using data from the Nearby Supernova Factory both to understand current sources of uncertainty in standardizing Type Ia supernovae and to develop techniques that can be used to limit uncertainty in future analyses. (Abstract shortened by ProQuest.).

  20. The Scientific Potential of Supernova Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Pagliaroli, G.; Vissani, F.

    2013-04-15

    Thanks to recent theoretical progresses and to the test bench of SN1987A, it has been possible to improve our ability to extract information from the future observations. In this paper we discuss a parameterized model of the neutrino emission. Two applications of this model are considered: 1) the investigation of the scientific potential of a future supernova for the study of the astrophysical parameters; 2) the expectations regarding the diffuse supernova neutrino background, namely, the relic supernova neutrinos.

  1. Magnetares como fuentes para potenciar supernovas superluminosas

    Science.gov (United States)

    Bersten, M. C.; Benvenuto, O. G.

    2016-08-01

    Magnetars have been proposed as one of the possible sources to power the light curve of super-luminous supernovae. We have included the energy deposited by a hypothetical magnetar in our one-dimensional hydrodynamical code, and analyzed the dynamical effect on the supernova ejecta. In particular, we present a model for SN 2011kl, the first object associated with a ultra-long-duration gamma-ray burst. Finally, we show its effect on the light curves of hydrogen rich supernovae.

  2. Magnetar Powered Ordinary Type IIP Supernovae

    OpenAIRE

    Sukhbold, Tuguldur; Thompson, Todd A.

    2017-01-01

    We investigate the properties of Type IIP supernovae that are dominantly powered by the rotational kinetic energy of the newly born neutron star. While the spin-down of a magnetar has previously been proposed as a viable energy source in the context of super-luminous supernovae, we show that a similar mechanism could produce both normal and peculiar Type IIP supernova light curves from red supergiant progenitors for a range of initial spin periods and equivalent dipole magnetic field strength...

  3. Interface dynamos in supernova progenitors

    CERN Document Server

    Blackman, E G; Thomas, J H; Blackman, Eric G.; Nordhaus, Jason T.; Thomas, John H.

    2004-01-01

    Observational evidence for anisotropy in supernovae (SN) and their phenomenological connection to jetted sources such as gamma-ray bursts^Mhave revived considerations of the role magnetohydrodynamic outflows might play therein. Understanding the types of dynamos that might operate in supernova progenitors is therefore relevant. In contrast to previous work, here we study an ``interface dynamo'' for the conditions of a rapidly rotating neutron star surrounded by a convective envelope. Such dynamos have been studied for the Sun, naked white dwarfs,and post-AGB stars, where analogous configurations of strong shear layers surrounded by convective envelopes are present. The interface dynamo provides estimates of large-scale poloidal and toroidal fields, whose product enters the Poynting flux. Because the poloidal field is much weaker than the toroidal magnetic field, the actual average Poynting flux is lower than rough estimates which invoke the only the magnitude of the total magnetic energy. The lower value is s...

  4. Cosmology from Type Ia Supernovae

    CERN Document Server

    Perlmutter, S; Deustua, S; Fabbro, S; Goldhaber, Gerson; Groom, D E; Kim, A G; Kim, M Y; Knop, R A; Nugent, P; Pennypacker, C R; Goobar, A; Pain, R; Hook, I M; Lidman, C E; Ellis, Richard S; Irwin, M J; McMahon, R G; Ruiz-Lapuente, P; Walton, N A; Schaefer, B; Boyle, B J; Filippenko, A V; Matheson, T; Fruchter, A S; Panagia, N; Newberg, H J M; Couch, W J

    1997-01-01

    This presentation reports on first evidence for a low-mass-density/positive-cosmological-constant universe that will expand forever, based on observations of a set of 40 high-redshift supernovae. The experimental strategy, data sets, and analysis techniques are described. More extensive analyses of these results with some additional methods and data are presented in the more recent LBNL report #41801 (Perlmutter et al., 1998; accepted for publication in Ap.J.), astro-ph/9812133 . This Lawrence Berkeley National Laboratory reprint is a reduction of a poster presentation from the Cosmology Display Session #85 on 9 January 1998 at the American Astronomical Society meeting in Washington D.C. It is also available on the World Wide Web at http://supernova.LBL.gov/ This work has also been referenced in the literature by the pre-meeting abstract citation: Perlmutter et al., B.A.A.S., volume 29, page 1351 (1997).

  5. Environmental impact of Supernova Remnants

    CERN Document Server

    Dubner, Gloria

    2015-01-01

    The explosion of a supernovae (SN) represents the sudden injection of about 10^51 ergs of thermal and mechanical energy in a small region of space, causing the formation of powerful shock waves that propagate through the interstellar medium at speeds of several thousands of km/s. These waves sweep, compress and heat the interstellar material that they encounter, forming the supernova remnants. Their evolution over thousands of years change forever, irreversibly, not only the physical but also the chemical properties of a vast region of space that can span hundreds of parsecs. This contribution briefly analyzes the impact of these explosions, discussing the relevance of some phenomena usually associated with SNe and their remnants in the light of recent theoretical and observational results.

  6. Connecting supernovae with their environments

    Science.gov (United States)

    Galbany, L.

    2017-03-01

    We present MUSE observations of galaxy NGC 7469 from its Science Verification to show how powerful is the combination of high-resolution wide-field integral field spectroscopy with both photometric and spectroscopic observations of supernova (SN) explosions. Using STARLIGHT and H II explorer, we selected all H II regions of the galaxy and produced 2-dimensional maps of the Hα equivalent width, average luminosity-weighted stellar age, and oxygen abundance. We measured deprojected galactocentric distances for all H II regions, and radial gradients for all above-mentioned parameters. We positioned the type Ia SN2008ec in the Branch et al. diagram, and finally discussed the characteristics of the SN parent H II region compared to all other H II regions in the galaxy. In a near future, the AMUSING survey will be able to reproduce this analysis and construct statistical samples to enable the characterization of the progenitors of different supernova types.

  7. An Update on Radio Supernovae

    Science.gov (United States)

    van Dyk, Schuyler D.; Sramek, Richard A.; Weiler, Kurt W.; Montes, Marcos J.; Panagia, Nino

    The radio emission from supernovae (SNe) is nonthermal synchrotron radiation of high brightness temperature, with a ``turn-on'' delay at longer wavelengths, power-law decline after maximum with index beta, and spectral index alpha asymptotically decreasing with time to a final, optically thin value. Radio supernovae (RSNe) are best described by the Chevalier (1982) ``mini-shell'' model, with modifications by Weiler \\etal\\ (1990). RSNe observations provide a valuable probe of the SN circumstellar environment and constraints on progenitor masses. We present a progress report on a number of recent RSNe, as well as on new behavior from RSNe 1979C and 1980K, and on RSNe as potential distance indicators. In particular, we present updated radio light curves for SN 1993J in M81.

  8. Evidence for Nearby Supernova Explosions

    CERN Document Server

    Benítez, N; Canelles, M; Benitez, Narciso; Maiz-Apellaniz, Jesus; Canelles, Matilde

    2002-01-01

    Supernova explosions are one of the most energetic--and potentially lethal--phenomena in the Universe. Scientists have speculated for decades about the possible consequences for life on Earth of a nearby supernova, but plausible candidates for such an event were lacking. Here we show that the Scorpius-Centaurus OB association, a group of young stars currently located at~130 parsecs from the Sun, has generated 20 SN explosions during the last 11 Myr, some of them probably as close as 40 pc to our planet. We find that the deposition on Earth of 60Fe atoms produced by these explosions can explain the recent measurements of an excess of this isotope in deep ocean crust samples. We propose that ~2 Myr ago, one of the SNe exploded close enough to Earth to seriously damage the ozone layer, provoking or contributing to the Pliocene-Pleistocene boundary marine extinction.

  9. Convection in Type 2 supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D.S.

    1993-10-15

    Results are presented here from several two dimensional numerical calculations of events in Type II supernovae. A new 2-D hydrodynamics and neutrino transport code has been used to compute the effect on the supernova explosion mechanism of convection between the neutrinosphere and the shock. This convection is referred to as exterior convection to distinguish it from convection beneath the neutrinosphere. The model equations and initial and boundary conditions are presented along with the simulation results. The 2-D code was used to compute an exterior convective velocity to compare with the convective model of the Mayle and Wilson 1-D code. Results are presented from several runs with varying sizes of initial perturbation, as well as a case with no initial perturbation but including the effects of rotation. The M&W code does not produce an explosion using the 2-D convective velocity. Exterior convection enhances the outward propagation of the shock, but not enough to ensure a successful explosion. Analytic estimates of the growth rate of the neutron finger instability axe presented. It is shown that this instability can occur beneath the neutrinosphere of the proto-neutron star in a supernova explosion with a growth time of {approximately} 3 microseconds. The behavior of the high entropy bubble that forms between the shock and the neutrinosphere in one dimensional calculations of supernova is investigated. It has been speculated that this bubble is a site for {gamma}-process generation of heavy elements. Two dimensional calculations are presented of the time evolution of the hot bubble and the surrounding stellar material. Unlike one dimensional calculations, the 2D code fails to achieve high entropies in the bubble. When run in a spherically symmetric mode the 2-D code reaches entropies of {approximately} 200. When convection is allowed, the bubble reaches {approximately} 60 then the bubble begins to move upward into the cooler, denser material above it.

  10. Understanding Core-Collapse Supernovae

    CERN Document Server

    Burrows, A

    2004-01-01

    I summarize, in the form of an extended abstract, the ongoing efforts at the University of Arizona (and in collaboration) to understand core-collapse supernovae theoretically. Included are short discussions of 1D (SESAME) and 2D (VULCAN/2D) codes and results, as well as discussions of the possible role of rotation. Highlighted are recent developments in multi-dimensional radiation hydrodynamics and the essential physics of the neutrino-driven mechanism.

  11. Convection in Type 2 supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Douglas Scott [Univ. of California, Davis, CA (United States)

    1993-10-15

    Results are presented here from several two dimensional numerical calculations of events in Type II supernovae. A new 2-D hydrodynamics and neutrino transport code has been used to compute the effect on the supernova explosion mechanism of convection between the neutrinosphere and the shock. This convection is referred to as exterior convection to distinguish it from convection beneath the neutrinosphere. The model equations and initial and boundary conditions are presented along with the simulation results. The 2-D code was used to compute an exterior convective velocity to compare with the convective model of the Mayle and Wilson 1-D code. Results are presented from several runs with varying sizes of initial perturbation, as well as a case with no initial perturbation but including the effects of rotation. The M&W code does not produce an explosion using the 2-D convective velocity. Exterior convection enhances the outward propagation of the shock, but not enough to ensure a successful explosion. Analytic estimates of the growth rate of the neutron finger instability axe presented. It is shown that this instability can occur beneath the neutrinosphere of the proto-neutron star in a supernova explosion with a growth time of ~ 3 microseconds. The behavior of the high entropy bubble that forms between the shock and the neutrinosphere in one dimensional calculations of supernova is investigated. It has been speculated that this bubble is a site for γ-process generation of heavy elements. Two dimensional calculations are presented of the time evolution of the hot bubble and the surrounding stellar material. Unlike one dimensional calculations, the 2D code fails to achieve high entropies in the bubble. When run in a spherically symmetric mode the 2-D code reaches entropies of ~ 200. When convection is allowed, the bubble reaches ~60 then the bubble begins to move upward into the cooler, denser material above it.

  12. Cosmic Ray Acceleration in Supernova Remnants

    CERN Document Server

    Blasi, Pasquale

    2010-01-01

    We review the main observational and theoretical facts about acceleration of Galactic cosmic rays in supernova remnants, discussing the arguments in favor and against a connection between cosmic rays and supernova remnants, the so-called supernova remnant paradigm for the origin of Galactic cosmic rays. Recent developments in the modeling of the mechanism of diffusive shock acceleration are discussed, with emphasis on the role of 1) magnetic field amplification, 2) acceleration of nuclei heavier than hydrogen, 3) presence of neutrals in the circumstellar environment. The status of the supernova-cosmic ray connection in the time of Fermi-LAT and Cherenkov telescopes is also discussed.

  13. Pulsational-Pair Instability Supernovae

    CERN Document Server

    Woosley, S E

    2016-01-01

    The final evolution of stars in the mass range 60 - 150 solar masses is explored. Depending upon their mass loss and rotation rates, many of these stars will end their lives as pulsational pair-instability supernovae. Even a non-rotating 70 solar mass star is pulsationally unstable during oxygen shell burning and can power a sub-luminous supernova. Rotation decreases the limit further. For more massive stars, the pulsations are less frequent, span a longer time, and are more powerful. Violent pulsations eject not only any residual low density envelope, but also that fraction of the helium core mass outside about 35 - 50 solar masses. The remaining core of helium and heavy elements continues to evolve, ultimately forming an iron core of about 2.5 solar masses that probably collapses to a black hole. A variety of observational transients result with total durations ranging from days to 10,000 years, and luminosities from 10$^{41}$ to 10$^{44}$ erg s$^{-1}$. Many transients resemble ordinary Type IIp supernovae,...

  14. Dark Energy and Termonuclear Supernovae

    Science.gov (United States)

    Domíngez, I.; Bravo, E.; Piersanti, L.; Tornambé, A.; Straniero, O.; Höflich, P.

    2008-12-01

    Nowadays it is widely accepted that the current Universe is dominated by dark energy and exotic matter, the so called StandardModel of Cosmoloy or CDM model. All the available data (Thermonuclear Supernovae, Cosmic Microwave Background, Baryon Acoustic Oscillations, Large Scale Structure, etc.) are compatible with a flat Universe made by ~70% of dark energy. Up to now observations agree that dark energy may be the vacuum energy (or cosmological constant) although improvements are needed to constrain further its equation of state. In this context, the cosmic destiny of the Universe is no longer linked to its geometry but to the nature of dark energy; it may be flat and expand forever or collapse. To understand the nature of dark energy is probably the most fundamental problem in physics today; it may open new roads of knowledge and led to unify gravity with the other fundamental interactions in nature. It is expected that astronomical data will continue to provide directions to theorists and experimental physicists. Type Ia supernovae (SNe Ia) have played a fundamental role, showing the acceleration of the expansion rate of the Universe a decade ago, and up to now they are the only astronomical observations that provide a direct evidence of the acceleration. However, in order to determine the source of the dark energy term it is mandatory to improve the precision of supernovae as distance indicators on cosmological scale.

  15. OH Masers and Supernova Remnants

    CERN Document Server

    Wardle, Mark

    2012-01-01

    OH(1720 MHz) masers are created by the interaction of supernova remnants with molecular clouds. These masers are pumped by collisions in warm, shocked molecular gas with OH column densities in the range 10^{16}--10^{17} cm^{-2}. Excitation calculations suggest that inversion of the 6049 MHz OH line may occur at the higher column densities that have been inferred from main-line absorption studies of supernova remnants with the Green Bank Telescope. OH(6049 MHz) masers have therefore been proposed as a complementary indicator of remnant-cloud interaction. This motivated searches for 6049 MHz maser emission from supernova remnants using the Parkes 63 m and Effelsberg 100 m telescopes, and the Australia Telescope Compact Array. A total of forty-one remnants have been examined by one or more of these surveys, but without success. To check the accuracy of the OH column densities inferred from the single-dish observations we modelled OH absorption at 1667 MHz observed with the Very Large Array towards three supernov...

  16. A spitzer space telescope study of SN 2002hh: An infrared echo from a type llP supernova

    DEFF Research Database (Denmark)

    Meikle, W. P. S.; Mattila, S.; Gerardy, C. L.;

    2006-01-01

    Stars: Supernovae: General, supernovae: individual (NGC 6946), Stars: Supernovae: Individual: Alphanumeric: SN 2002hh Udgivelsesdato: May 22......Stars: Supernovae: General, supernovae: individual (NGC 6946), Stars: Supernovae: Individual: Alphanumeric: SN 2002hh Udgivelsesdato: May 22...

  17. The VLT Measures the Shape of a Type Ia Supernova

    Science.gov (United States)

    2003-08-01

    First Polarimetric Detection of Explosion Asymmetry has Cosmological Implications Summary An international team of astronomers [2] has performed new and very detailed observations of a supernova in a distant galaxy with the ESO Very Large Telescope (VLT) at the Paranal Observatory (Chile). They show for the first time that a particular type of supernova, caused by the explosion of a "white dwarf", a dense star with a mass around that of the Sun, is asymmetric during the initial phases of expansion . The significance of this observation is much larger than may seem at a first glance . This particular kind of supernova, designated "Type Ia", plays a very important role in the current attempts to map the Universe. It has for long been assumed that Type Ia supernovae all have the same intrinsic brightness , earning them a nickname as "standard candles". If so, differences in the observed brightness between individual supernovae of this type simply reflect their different distances. This, and the fact that the peak brightness of these supernovae rivals that of their parent galaxy, has allowed to measure distances of even very remote galaxies . Some apparent discrepancies that were recently found have led to the discovery of cosmic acceleration . However, this first clearcut observation of explosion asymmetry in a Type Ia supernova means that the exact brightness of such an object will depend on the angle from which it is seen. Since this angle is unknown for any particular supernova, this obviously introduces an amount of uncertainty into this kind of basic distance measurements in the Universe which must be taken into account in the future. Fortunately, the VLT data also show that if you wait a little - which in observational terms makes it possible to look deeper into the expanding fireball - then it becomes more spherical. Distance determinations of supernovae that are performed at this later stage will therefore be more accurate. PR Photo 24a/03 : Spiral galaxy NGC

  18. Cygnus Loop Supernova Blast Wave

    Science.gov (United States)

    1993-01-01

    This is an image of a small portion of the Cygnus Loop supernova remnant, which marks the edge of a bubble-like, expanding blast wave from a colossal stellar explosion, occurring about 15,000 years ago. The HST image shows the structure behind the shock waves, allowing astronomers for the first time to directly compare the actual structure of the shock with theoretical model calculations. Besides supernova remnants, these shock models are important in understanding a wide range of astrophysical phenomena, from winds in newly-formed stars to cataclysmic stellar outbursts. The supernova blast is slamming into tenuous clouds of insterstellar gas. This collision heats and compresses the gas, causing it to glow. The shock thus acts as a searchlight revealing the structure of the interstellar medium. The detailed HST image shows the blast wave overrunning dense clumps of gas, which despite HST's high resolution, cannot be resolved. This means that the clumps of gas must be small enough to fit inside our solar system, making them relatively small structures by interstellar standards. A bluish ribbon of light stretching left to right across the picture might be a knot of gas ejected by the supernova; this interstellar 'bullet' traveling over three million miles per hour (5 million kilometres) is just catching up with the shock front, which has slowed down by ploughing into interstellar material. The Cygnus Loop appears as a faint ring of glowing gases about three degrees across (six times the diameter of the full Moon), located in the northern constellation, Cygnus the Swan. The supernova remnant is within the plane of our Milky Way galaxy and is 2,600 light-years away. The photo is a combination of separate images taken in three colors, oxygen atoms (blue) emit light at temperatures of 30,000 to 60,000 degrees Celsius (50,000 to 100,000 degrees Farenheit). Hydrogen atoms (green) arise throughout the region of shocked gas. Sulfur atoms (red) form when the gas cools to

  19. See Change: the Supernova Sample from the Supernova Cosmology Project High Redshift Cluster Supernova Survey

    Science.gov (United States)

    Hayden, Brian; Perlmutter, Saul; Boone, Kyle; Nordin, Jakob; Rubin, David; Lidman, Chris; Deustua, Susana E.; Fruchter, Andrew S.; Aldering, Greg Scott; Brodwin, Mark; Cunha, Carlos E.; Eisenhardt, Peter R.; Gonzalez, Anthony H.; Jee, James; Hildebrandt, Hendrik; Hoekstra, Henk; Santos, Joana; Stanford, S. Adam; Stern, Daniel; Fassbender, Rene; Richard, Johan; Rosati, Piero; Wechsler, Risa H.; Muzzin, Adam; Willis, Jon; Boehringer, Hans; Gladders, Michael; Goobar, Ariel; Amanullah, Rahman; Hook, Isobel; Huterer, Dragan; Huang, Xiaosheng; Kim, Alex G.; Kowalski, Marek; Linder, Eric; Pain, Reynald; Saunders, Clare; Suzuki, Nao; Barbary, Kyle H.; Rykoff, Eli S.; Meyers, Joshua; Spadafora, Anthony L.; Sofiatti, Caroline; Wilson, Gillian; Rozo, Eduardo; Hilton, Matt; Ruiz-Lapuente, Pilar; Luther, Kyle; Yen, Mike; Fagrelius, Parker; Dixon, Samantha; Williams, Steven

    2017-01-01

    The Supernova Cosmology Project has finished executing a large (174 orbits, cycles 22-23) Hubble Space Telescope program, which has measured ~30 type Ia Supernovae above z~1 in the highest-redshift, most massive galaxy clusters known to date. Our SN Ia sample closely matches our pre-survey predictions; this sample will improve the constraint by a factor of 3 on the Dark Energy equation of state above z~1, allowing an unprecedented probe of Dark Energy time variation. When combined with the improved cluster mass calibration from gravitational lensing provided by the deep WFC3-IR observations of the clusters, See Change will triple the Dark Energy Task Force Figure of Merit. With the primary observing campaign completed, we present the preliminary supernova sample and our path forward to the supernova cosmology results. We also compare the number of SNe Ia discovered in each cluster with our pre-survey expectations based on cluster mass and SFR estimates. Our extensive HST and ground-based campaign has already produced unique results; we have confirmed several of the highest redshift cluster members known to date, confirmed the redshift of one of the most massive galaxy clusters at z~1.2 expected across the entire sky, and characterized one of the most extreme starburst environments yet known in a z~1.7 cluster. We have also discovered a lensed SN Ia at z=2.22 magnified by a factor of ~2.7, which is the highest spectroscopic redshift SN Ia currently known.

  20. Detection of Broad H$\\alpha$ Emission Lines in the Late-time Spectra of a Hydrogen-poor Superluminous Supernova

    CERN Document Server

    Yan, Lin; Ofek, E; Gal-Yam, A; Mazzali, P; Perley, D; Vreeswijk, P; Leloudas, G; de Cia, A; Masci, F; Cenko, S B; Cao, Y; Kulkarni, S R; Nugent, P E; Rebbapragada, Umaa D; Woźniak, P R; Yaron, O

    2015-01-01

    iPTF13ehe is a hydrogen-poor superluminous supernova (SLSN) at z=0.3434, with properties similar to SN2007bi. It rises within (83-148)days (rest-frame) to reach a peak bolometric luminosity of 1.3x$10^{44}$erg/s, then decays very slowly at 0.015mag. per day. The measured ejecta velocity is 13000km/s. The inferred explosion characteristics, such as the ejecta mass (67-220$M_\\odot$), the total radiative and kinetic energy ($10^{51}$ & 2x$10^{53}$erg respectively), is typical of SLSN-R events. However, the late-time spectrum taken at +251days reveals a Balmer Halpha emission feature with broad and narrow components, which has never been detected before among other H-poor SLSNe. The broad component has a velocity width of ~4500km/s and has a ~300km/s blue-ward shift relative to the narrow component. We interpret this broad Halpha emission line as the interaction between the supernova ejecta and a H-rich circumstellar medium (CSM) shell, located at a distance of ~4x$10^{16}$cm from the explosion site. This eje...

  1. The Prdm13 histone methyltransferase encoding gene is a Ptf1a-Rbpj downstream target that suppresses glutamatergic and promotes GABAergic neuronal fate in the dorsal neural tube.

    Science.gov (United States)

    Hanotel, Julie; Bessodes, Nathalie; Thélie, Aurore; Hedderich, Marie; Parain, Karine; Van Driessche, Benoit; Brandão, Karina De Oliveira; Kricha, Sadia; Jorgensen, Mette C; Grapin-Botton, Anne; Serup, Palle; Van Lint, Carine; Perron, Muriel; Pieler, Tomas; Henningfeld, Kristine A; Bellefroid, Eric J

    2014-02-15

    The basic helix-loop-helix (bHLH) transcriptional activator Ptf1a determines inhibitory GABAergic over excitatory glutamatergic neuronal cell fate in progenitors of the vertebrate dorsal spinal cord, cerebellum and retina. In an in situ hybridization expression survey of PR domain containing genes encoding putative chromatin-remodeling zinc finger transcription factors in Xenopus embryos, we identified Prdm13 as a histone methyltransferase belonging to the Ptf1a synexpression group. Gain and loss of Ptf1a function analyses in both frog and mice indicates that Prdm13 is positively regulated by Ptf1a and likely constitutes a direct transcriptional target. We also showed that this regulation requires the formation of the Ptf1a-Rbp-j complex. Prdm13 knockdown in Xenopus embryos and in Ptf1a overexpressing ectodermal explants lead to an upregulation of Tlx3/Hox11L2, which specifies a glutamatergic lineage and a reduction of the GABAergic neuronal marker Pax2. It also leads to an upregulation of Prdm13 transcription, suggesting an autonegative regulation. Conversely, in animal caps, Prdm13 blocks the ability of the bHLH factor Neurog2 to activate Tlx3. Additional gain of function experiments in the chick neural tube confirm that Prdm13 suppresses Tlx3(+)/glutamatergic and induces Pax2(+)/GABAergic neuronal fate. Thus, Prdm13 is a novel crucial component of the Ptf1a regulatory pathway that, by modulating the transcriptional activity of bHLH factors such as Neurog2, controls the balance between GABAergic and glutamatergic neuronal fate in the dorsal and caudal part of the vertebrate neural tube.

  2. Discovery Mondays

    CERN Multimedia

    2003-01-01

    Many people don't realise quite how much is going on at CERN. Would you like to gain first-hand knowledge of CERN's scientific and technological activities and their many applications? Try out some experiments for yourself, or pick the brains of the people in charge? If so, then the «Lundis Découverte» or Discovery Mondays, will be right up your street. Starting on May 5th, on every first Monday of the month you will be introduced to a different facet of the Laboratory. CERN staff, non-scientists, and members of the general public, everyone is welcome. So tell your friends and neighbours and make sure you don't miss this opportunity to satisfy your curiosity and enjoy yourself at the same time. You won't have to listen to a lecture, as the idea is to have open exchange with the expert in question and for each subject to be illustrated with experiments and demonstrations. There's no need to book, as Microcosm, CERN's interactive museum, will be open non-stop from 7.30 p.m. to 9 p.m. On the first Discovery M...

  3. Supernova remnants: the X-ray perspective

    NARCIS (Netherlands)

    Vink, J.

    2012-01-01

    Supernova remnants are beautiful astronomical objects that are also of high scientific interest, because they provide insights into supernova explosion mechanisms, and because they are the likely sources of Galactic cosmic rays. X-ray observations are an important means to study these objects. And i

  4. Single Degenerate Progenitors of Type Ia Supernovae

    Science.gov (United States)

    Bours, Madelon; Toonen, Silvia; Nelemans, Gijs

    2013-01-01

    There is a general agreement that Type Ia supernovae correspond to the thermonuclear runaway of a white dwarf (WD) in a compact binary. The details of these progenitor systems are still unclear. Using the population synthesis code SeBa and several assumption for the WD retention efficiency, we estimate the delay times and supernova rates for the single degenerate scenario.

  5. Supernova constraints on neutrino mass and mixing

    Indian Academy of Sciences (India)

    Srubabati Goswami

    2000-01-01

    In this article I review the constraints on neutrino mass and mixing coming from type-II supernovae. The bounds obtained on these parameters from shock reheating, -process nucleosynthesis and from SN1987A are discussed. Given the current constraints on neutrino mass and mixing the effect of oscillations of neutrinos from a nearby supernova explosion in future detectors will also be discussed.

  6. The CHilean Automatic Supernova sEarch

    DEFF Research Database (Denmark)

    Hamuy, M.; Pignata, G.; Maza, J.

    2012-01-01

    The CHilean Automatic Supernova sEarch (CHASE) project began in 2007 with the goal to discover young, nearby southern supernovae in order to (1) better understand the physics of exploding stars and their progenitors, and (2) refine the methods to derive extragalactic distances. During the first...

  7. Cosmic-ray acceleration in supernova remnants

    NARCIS (Netherlands)

    Helder, E.A.

    2010-01-01

    Supernovae are among the most energetic events in the Universe. During the event, they expel their material with enormous speeds into the surroundings. In addition, supernovae are thought to transfer a sizable fraction of their energy into just a few particles: cosmic rays. These cosmic rays acquire

  8. Rates and progenitors of type Ia supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Wood-Vasey, William Michael [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    The remarkable uniformity of Type Ia supernovae has allowed astronomers to use them as distance indicators to measure the properties and expansion history of the Universe. However, Type Ia supernovae exhibit intrinsic variation in both their spectra and observed brightness. The brightness variations have been approximately corrected by various methods, but there remain intrinsic variations that limit the statistical power of current and future observations of distant supernovae for cosmological purposes. There may be systematic effects in this residual variation that evolve with redshift and thus limit the cosmological power of SN Ia luminosity-distance experiments. To reduce these systematic uncertainties, we need a deeper understanding of the observed variations in Type Ia supernovae. Toward this end, the Nearby Supernova Factory has been designed to discover hundreds of Type Ia supernovae in a systematic and automated fashion and study them in detail. This project will observe these supernovae spectrophotometrically to provide the homogeneous high-quality data set necessary to improve the understanding and calibration of these vital cosmological yardsticks. From 1998 to 2003, in collaboration with the Near-Earth Asteroid Tracking group at the Jet Propulsion Laboratory, a systematic and automated searching program was conceived and executed using the computing facilities at Lawrence Berkeley National Laboratory and the National Energy Research Supercomputing Center. An automated search had never been attempted on this scale. A number of planned future large supernovae projects are predicated on the ability to find supernovae quickly, reliably, and efficiently in large datasets. A prototype run of the SNfactory search pipeline conducted from 2002 to 2003 discovered 83 SNe at a final rate of 12 SNe/month. A large, homogeneous search of this scale offers an excellent opportunity to measure the rate of Type Ia supernovae. This thesis presents a new method for

  9. Snapping Supernovae at z>1.7

    CERN Document Server

    Aldering, G; Kowalski, M; Linder, E V; Perlmutter, S; Aldering, Greg; Kim, Alex G.; Kowalski, Marek; Linder, Eric V.; Perlmutter, Saul

    2006-01-01

    We examine the utility of very high redshift Type Ia supernovae for cosmology and systematic uncertainty control. Next generation space surveys such as the Supernova/Acceleration Probe (SNAP) will obtain thousands of supernovae at z>1.7, beyond the design redshift for which the supernovae will be exquisitely characterized. We find that any z\\gtrsim2 standard candles' use for cosmological parameter estimation is quite modest and subject to pitfalls; we examine gravitational lensing, redshift calibration, and contamination effects in some detail. The very high redshift supernovae - both thermonuclear and core collapse - will provide copious interesting information on star formation, environment, and evolution. However, the new observational systematics that must be faced, as well as the limited expansion of SN-parameter space afforded, does not point to high value for 1.7

  10. Supernova shock breakout from a red supergiant.

    Science.gov (United States)

    Schawinski, Kevin; Justham, Stephen; Wolf, Christian; Podsiadlowski, Philipp; Sullivan, Mark; Steenbrugge, Katrien C; Bell, Tony; Röser, Hermann-Josef; Walker, Emma S; Astier, Pierre; Balam, Dave; Balland, Christophe; Carlberg, Ray; Conley, Alex; Fouchez, Dominique; Guy, Julien; Hardin, Delphine; Hook, Isobel; Howell, D Andrew; Pain, Reynald; Perrett, Kathy; Pritchet, Chris; Regnault, Nicolas; Yi, Sukyoung K

    2008-07-11

    Massive stars undergo a violent death when the supply of nuclear fuel in their cores is exhausted, resulting in a catastrophic "core-collapse" supernova. Such events are usually only detected at least a few days after the star has exploded. Observations of the supernova SNLS-04D2dc with the Galaxy Evolution Explorer space telescope reveal a radiative precursor from the supernova shock before the shock reached the surface of the star and show the initial expansion of the star at the beginning of the explosion. Theoretical models of the ultraviolet light curve confirm that the progenitor was a red supergiant, as expected for this type of supernova. These observations provide a way to probe the physics of core-collapse supernovae and the internal structures of their progenitor stars.

  11. Supernovae and Cosmology with Future European Facilities

    CERN Document Server

    Hook, I M

    2012-01-01

    Prospects for future supernova surveys are discussed, focusing on the ESA Euclid mission and the European Extremely Large Telescope(E-ELT), both expected to be in operation around the turn of the decade. Euclid is a 1.2m space survey telescope that will operate at visible and near-infrared wavelengths, and has the potential to find and obtain multi-band lightcurves for thousands of distant supernovae. The E-ELT is a planned general-purpose ground-based 40m-class optical-IR telescope with adaptive optics built in, which will be capable of obtaining spectra of Type Ia supernovae to redshifts of at least four. The contribution to supernova cosmology with these facilities will be discussed in the context of other future supernova programs such as those proposed for DES, JWST, LSST and WFIRST.

  12. Spectroscopy of Type Ia Supernovae by the Carnegie Supernova Project

    CERN Document Server

    Folatelli, Gastón; Phillips, Mark M; Hsiao, Eric; Campillay, Abdo; Contreras, Carlos; Castellón, Sergio; Hamuy, Mario; Krzeminski, Wojtek; Roth, Miguel; Stritzinger, Maximilian; Burns, Christopher R; Freedman, Wendy L; Madore, Barry F; Murphy, David; Persson, S E; Prieto, José L; Suntzeff, Nicholas B; Krisciunas, Kevin; Anderson, Joseph P; Förster, Francisco; Maza, José; Pignata, Giuliano; Rojas, P Andrea; Boldt, Luis; Salgado, Francisco; Wyatt, Pamela; E., Felipe Olivares; Gal-Yam, Avishay; Sako, Masao

    2013-01-01

    This is the first release of optical spectroscopic data of low-redshift Type Ia supernovae (SNe Ia) by the Carnegie Supernova Project including 604 previously unpublished spectra of 93 SNe Ia. The observations cover a range of phases from 12 days before to over 150 days after the time of B-band maximum light. With the addition of 228 near-maximum spectra from the literature we study the diversity among SNe Ia in a quantitative manner. For that purpose, spectroscopic parameters are employed such as expansion velocities from spectral line blueshifts, and pseudo-equivalent widths (pW). The values of those parameters at maximum light are obtained for 78 objects, thus providing a characterization of SNe Ia that may help to improve our understanding of the properties of the exploding systems and the thermonuclear flame propagation. Two objects, namely SNe 2005M and 2006is, stand out from the sample by showing peculiar Si II and S II velocities but otherwise standard velocities for the rest of the ions. We further s...

  13. Carnegie Supernova Project: Observations of Type IIn Supernovae

    CERN Document Server

    Taddia, F; Sollerman, J; Phillips, M M; Anderson, J P; Boldt, L; Campillay, A; Castellón, S; Contreras, C; Folatelli, G; Hamuy, M; Heinrich-Josties, E; Krzeminski, W; Morrell, N; Burns, C R; Freedman, W L; Madore, B F; Persson, S E; Suntzeff, N B

    2013-01-01

    The observational diversity displayed by various Type IIn supernovae (SNe IIn) is explored and quantified. In doing so a more coherent picture ascribing the variety of observed SNe IIn types to particular progenitor scenarios is sought. Carnegie Supernova Project (CSP) optical and near-infrared light curves and visual-wavelength spectroscopy of the Type IIn SNe 2005kj, 2006aa, 2006bo, 2006qq and 2008fq are presented. Combined with previously published observations of the Type IIn SNe 2005ip and 2006jd (Stritzinger et al. 2012), the full CSP sample is used to derive physical parameters which describe the nature of the interaction between the expanding SN ejecta and the circum-stellar material (CSM). For each SN of our sample we find counterparts, identifying objects similar to SNe 1994W (SN 2006bo), 1998S (SN 2008fq) and 1988Z (SN 2006qq). We present the unprecedented initial u-band plateau of SN 2006aa, and its peculiar late-time luminosity and temperature evolution. For each SN, assuming the CSM was formed b...

  14. Statistics of Galactic Supernova Remnants

    Institute of Scientific and Technical Information of China (English)

    Jian-Wen Xu; Xi-Zhen Zhang; Jin-Lin Han

    2005-01-01

    We collected the basic parameters of 231 supernova remnants (SNRs) in our Galaxy, namely, distances (d) from the Sun, linear diameters (D), Galactic heights (Z), estimated ages (t), luminosities (L), surface brightness (∑) and flux densities (Si) at 1-GHz frequency and spectral indices (α). We tried to find possible correlations between these parameters. As expected, the linear diameters were found to increase with ages for the shell-type remnants, and also to have a tendency to increase with the Galactic heights. Both the surface brightness and luminosity of SNRs at 1-GHz tend to decrease with the linear diameter and with age. No other relations between the parameters were found.

  15. Petascale Supernova Simulation with CHIMERA

    Energy Technology Data Exchange (ETDEWEB)

    Messer, Bronson [ORNL; Bruenn, S. W. [Florida Atlantic University; Blondin, J. M. [North Carolina State University; Mezzacappa, Anthony [ORNL; Hix, William Raphael [ORNL; Dirk, Charlotte [Florida Atlantic University

    2007-01-01

    CHIMERA is a multi-dimensional radiation hydrodynamics code designed to study core-collapse supernovae. The code is made up of three essentially independent parts: a hydrodynamics module, a nuclear burning module, and a neutrino transport solver combined within an operator-split approach. We describe some ma jor algorithmic facets of the code and briefly discuss some recent results. The multi-physics nature of the problem, and the specific implementation of that physics in CHIMERA, provide a rather straightforward path to effective use of multi-core platforms in the near future.

  16. Petascale supernova simulation with CHIMERA

    Energy Technology Data Exchange (ETDEWEB)

    Messer, O E B [National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6008 (United States); Bruenn, S W [Department of Physics, Florida Atlantic University, 777 W Glades Road, Boca Raton, FL 33431-0991 (United States); Blondin, J M [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States); Hix, W R [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6354 (United States); Mezzacappa, A [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6354 (United States); Dirk, C J [Department of Physics, Florida Atlantic University, 777 W Glades Road, Boca Raton, FL 33431-0991 (United States)

    2007-07-15

    CHIMERA is a multi-dimensional radiation hydrodynamics code designed to study core-collapse supernovae. The code is made up of three essentially independent parts: a hydrodynamics module, a nuclear burning module, and a neutrino transport solver combined within an operator-split approach. We describe some major algorithmic facets of the code and briefly discuss some recent results. The multi-physics nature of the problem, and the specific implementation of that physics in CHIMERA, provide a rather straightforward path to effective use of multi-core platforms in the near future.

  17. Shell-type Supernova Remnants

    OpenAIRE

    Völk, H.

    2006-01-01

    The role of Supernova Remnants (SNRs) for the production of the Galactic Cosmic Rays is reviewed from the point of view of theory and very high energy gamma-ray experiments. The point is made that theory can describe young SNRs very well, if the evidence from the synchrotron emission is used to empirically determine several parameters of the theory, and thus theory can predict the relative contributions of hadronic and leptonic gamma rays at TeV energies. This is exemplified for several objec...

  18. Ascl1 as a novel player in the Ptf1a transcriptional network for GABAergic cell specification in the retina.

    Science.gov (United States)

    Mazurier, Nicolas; Parain, Karine; Parlier, Damien; Pretto, Silvia; Hamdache, Johanna; Vernier, Philippe; Locker, Morgane; Bellefroid, Eric; Perron, Muriel

    2014-01-01

    In contrast with the wealth of data involving bHLH and homeodomain transcription factors in retinal cell type determination, the molecular bases underlying neurotransmitter subtype specification is far less understood. Using both gain and loss of function analyses in Xenopus, we investigated the putative implication of the bHLH factor Ascl1 in this process. We found that in addition to its previously characterized proneural function, Ascl1 also contributes to the specification of the GABAergic phenotype. We showed that it is necessary for retinal GABAergic cell genesis and sufficient in overexpression experiments to bias a subset of retinal precursor cells towards a GABAergic fate. We also analysed the relationships between Ascl1 and a set of other bHLH factors using an in vivo ectopic neurogenic assay. We demonstrated that Ascl1 has unique features as a GABAergic inducer and is epistatic over factors endowed with glutamatergic potentialities such as Neurog2, NeuroD1 or Atoh7. This functional specificity is conferred by the basic DNA binding domain of Ascl1 and involves a specific genetic network, distinct from that underlying its previously demonstrated effects on catecholaminergic differentiation. Our data show that GABAergic inducing activity of Ascl1 requires the direct transcriptional regulation of Ptf1a, providing therefore a new piece of the network governing neurotransmitter subtype specification during retinogenesis.

  19. Ascl1 as a novel player in the Ptf1a transcriptional network for GABAergic cell specification in the retina.

    Directory of Open Access Journals (Sweden)

    Nicolas Mazurier

    Full Text Available In contrast with the wealth of data involving bHLH and homeodomain transcription factors in retinal cell type determination, the molecular bases underlying neurotransmitter subtype specification is far less understood. Using both gain and loss of function analyses in Xenopus, we investigated the putative implication of the bHLH factor Ascl1 in this process. We found that in addition to its previously characterized proneural function, Ascl1 also contributes to the specification of the GABAergic phenotype. We showed that it is necessary for retinal GABAergic cell genesis and sufficient in overexpression experiments to bias a subset of retinal precursor cells towards a GABAergic fate. We also analysed the relationships between Ascl1 and a set of other bHLH factors using an in vivo ectopic neurogenic assay. We demonstrated that Ascl1 has unique features as a GABAergic inducer and is epistatic over factors endowed with glutamatergic potentialities such as Neurog2, NeuroD1 or Atoh7. This functional specificity is conferred by the basic DNA binding domain of Ascl1 and involves a specific genetic network, distinct from that underlying its previously demonstrated effects on catecholaminergic differentiation. Our data show that GABAergic inducing activity of Ascl1 requires the direct transcriptional regulation of Ptf1a, providing therefore a new piece of the network governing neurotransmitter subtype specification during retinogenesis.

  20. Exploring the Outer Solar System with the ESSENCE Supernova Survey

    Energy Technology Data Exchange (ETDEWEB)

    Becker, A.C.; /Washington U., Seattle, Astron. Dept.; Arraki, K.; /Washington U., Seattle, Astron. Dept.; Kaib, N.A.; /Washington U., Seattle, Astron. Dept.; Wood-Vasey, W.M.; /Harvard-Smithsonian Ctr. Astrophys.; Aguilera, C.; /Cerro-Tololo InterAmerican Obs.; Blackman, J.W.; /Australian Natl. U., Canberra; Blondin, S.; /Harvard-Smithsonian Ctr. Astrophys.; Challis, P.; /Harvard-Smithsonian Ctr. Astrophys.; Clocchiatti, A.; /Rio de Janeiro, Pont. U. Catol.; Covarrubias, R.; /Kyushu Sangyo U.; Damke, G.; /Cerro-Tololo InterAmerican Obs.; Davis, T.M.; /Bohr Inst. /Queensland U.; Filippenko, A.V.; /UC, Berkeley; Foley, R.J.; /UC, Berkeley; Garg, A.; /Harvard-Smithsonian Ctr. Astrophys. /Harvard U.; Garnavich, P.M.; /Notre Dame U.; Hicken, M.; /Harvard-Smithsonian Ctr. Astrophys. /Harvard U.; Jha, S.; /Harvard U. /SLAC; Kirshner, R.P.; /Harvard-Smithsonian Ctr. Astrophys.; Krisciunas, K.; /Notre Dame U. /Texas A-M; Leibundgut, B.; /Munich, Tech. U. /UC, Berkeley /NOAO, Tucson /Washington U., Seattle, Astron. Dept. /Fermilab /Harvard-Smithsonian Ctr. Astrophys. /Harvard U. /Chile U., Santiago /Ohio State U. /Cerro-Tololo InterAmerican Obs. /Harvard U. /Baltimore, Space Telescope Sci. /Johns Hopkins U. /Australian Natl. U., Canberra /Australian Natl. U., Canberra /Cerro-Tololo InterAmerican Obs. /Munich, Tech. U. /Harvard-Smithsonian Ctr. Astrophys. /Harvard U. /Cerro-Tololo InterAmerican Obs. /Texas A-M /Cerro-Tololo InterAmerican Obs.

    2011-11-10

    We report the discovery and orbital determination of 14 trans-Neptunian objects (TNOs) from the ESSENCE Supernova Survey difference imaging data set. Two additional objects discovered in a similar search of the SDSS-II Supernova Survey database were recovered in this effort. ESSENCE repeatedly observed fields far from the solar system ecliptic (-21{sup o} < {beta} < -5{sup o}), reaching limiting magnitudes per observation of I {approx} 23.1 and R {approx} 23.7. We examine several of the newly detected objects in detail, including 2003 UC{sub 414}, which orbits entirely between Uranus and Neptune and lies very close to a dynamical region that would make it stable for the lifetime of the solar system. 2003 SS{sub 422} and 2007 TA{sub 418} have high eccentricities and large perihelia, making them candidate members of an outer class of TNOs. We also report a new member of the 'extended' or 'detached' scattered disk, 2004 VN{sub 112}, and verify the stability of its orbit using numerical simulations. This object would have been visible to ESSENCE for only {approx}2% of its orbit, suggesting a vast number of similar objects across the sky. We emphasize that off-ecliptic surveys are optimal for uncovering the diversity of such objects, which in turn will constrain the history of gravitational influences that shaped our early solar system.

  1. LSQ14bdq: A Type Ic super-luminous supernova with a double-peaked light curve

    CERN Document Server

    Nicholl, M; Jerkstrand, A; Sim, S A; Inserra, C; Anderson, J P; Baltay, C; Benetti, S; Chambers, K; Chen, T -W; Elias-Rosa, N; Feindt, U; Flewelling, H A; Fraser, M; Gal-Yam, A; Galbany, L; Huber, M E; Kangas, T; Kankare, E; Kotak, R; Krühler, T; Maguire, K; McKinnon, R; Rabinowitz, D; Rostami, S; Schulze, S; Smith, K W; Sullivan, M; Tonry, J L; Valenti, S; Young, D R

    2015-01-01

    We present data for LSQ14bdq, a hydrogen-poor super-luminous supernova (SLSN) discovered by the La Silla QUEST survey and classified by the Public ESO Spectroscopic Survey of Transient Objects. The spectrum and light curve are very similar to slow-declining SLSNe such as PTF12dam. However, detections within $\\sim1$ day after explosion show a bright and relatively fast initial peak, lasting for $\\sim15$ days, prior to the usual slow rise to maximum light. The broader, main peak can be fit with either central engine or circumstellar interaction models. We discuss the implications of the precursor peak in the context of these models. It is too bright and narrow to be explained as a normal \\Ni-powered SN, and we suggest that interaction models may struggle to fit the precursor and main peak simultaneously. We propose that the initial peak is from the post-shock cooling of an extended stellar envelope, and reheating by a central engine drives the second peak. In this picture, we show that an explosion energy of $\\...

  2. Search for Early Gamma-ray Production in Supernovae Located in a Dense Circumstellar Medium with the Fermi LAT

    CERN Document Server

    ,

    2015-01-01

    Supernovae (SNe) exploding in a dense circumstellar medium (CSM) are hypothesized to accelerate cosmic rays in collisionless shocks and emit GeV gamma rays and TeV neutrinos on a time scale of several months. We perform the first systematic search for gamma-ray emission in Fermi LAT data in the energy range from 100 MeV to 300 GeV from the ensemble of 147 SNe Type IIn exploding in dense CSM. We search for a gamma-ray excess at each SNe location in a one year time window. In order to enhance a possible weak signal, we simultaneously study the closest and optically brightest sources of our sample in a joint-likelihood analysis in three different time windows (1 year, 6 months and 3 months). For the most promising source of the sample, SN 2010jl (PTF10aaxf), we repeat the analysis with an extended time window lasting 4.5 years. We do not find a significant excess in gamma rays for any individual source nor for the combined sources and provide model-independent flux upper limits for both cases. In addition, we de...

  3. Runaway Stars in Supernova Remnants

    Science.gov (United States)

    Pannicke, Anna; Neuhaeuser, Ralph; Dinçel, Baha

    2016-07-01

    Half of all stars and in particular 70 % of the massive stars are a part of a multiple system. A possible development for the system after the core collapse supernova (SN) of the more massive component is as follows: The binary is disrupted by the SN. The formed neutron star is ejected by the SN kick whereas the companion star either remains within the system and is gravitationally bounded to the neutron star, or is ejected with a spatial velocity comparable to its former orbital velocity (up to 500 km/s). Such stars with a large peculiar space velocity are called runaway stars. We present our observational results of the supernova remnants (SNRs) G184.6-5.8, G74.0-8.5 and G119.5+10.2. The focus of this project lies on the detection of low mass runaway stars. We analyze the spectra of a number of candidates and discuss their possibility of being the former companions of the SN progenitor stars. The spectra were obtained with INT in Tenerife, Calar Alto Astronomical Observatory and the University Observatory Jena. Also we investigate the field stars in the neighborhood of the SNRs G74.0-8.5 and G119.5+10.2 and calculate more precise distances for these SNRs.

  4. Dark Matter Triggers of Supernovae

    CERN Document Server

    Graham, Peter W; Varela, Jaime

    2015-01-01

    The transit of primordial black holes through a white dwarf causes localized heating around the trajectory of the black hole through dynamical friction. For sufficiently massive black holes, this heat can initiate runaway thermonuclear fusion causing the white dwarf to explode as a supernova. The shape of the observed distribution of white dwarfs with masses up to $1.25 M_{\\odot}$ rules out primordial black holes with masses $\\sim 10^{19}$ gm - $10^{20}$ gm as a dominant constituent of the local dark matter density. Black holes with masses as large as $10^{24}$ gm will be excluded if recent observations by the NuStar collaboration of a population of white dwarfs near the galactic center are confirmed. Black holes in the mass range $10^{20}$ gm - $10^{22}$ gm are also constrained by the observed supernova rate, though these bounds are subject to astrophysical uncertainties. These bounds can be further strengthened through measurements of white dwarf binaries in gravitational wave observatories. The mechanism p...

  5. How supernovae launch galactic winds?

    Science.gov (United States)

    Fielding, Drummond; Quataert, Eliot; Martizzi, Davide; Faucher-Giguère, Claude-André

    2017-09-01

    We use idealized three-dimensional hydrodynamic simulations of global galactic discs to study the launching of galactic winds by supernovae (SNe). The simulations resolve the cooling radii of the majority of supernova remnants (SNRs) and thus self-consistently capture how SNe drive galactic winds. We find that SNe launch highly supersonic winds with properties that agree reasonably well with expectations from analytic models. The energy loading (η _E= \\dot{E}_wind/ \\dot{E}_SN) of the winds in our simulations are well converged with spatial resolution while the wind mass loading (η _M= \\dot{M}_wind/\\dot{M}_\\star) decreases with resolution at the resolutions we achieve. We present a simple analytic model based on the concept that SNRs with cooling radii greater than the local scaleheight break out of the disc and power the wind. This model successfully explains the dependence (or lack thereof) of ηE (and by extension ηM) on the gas surface density, star formation efficiency, disc radius and the clustering of SNe. The winds our simulations are weaker than expected in reality, likely due to the fact that we seed SNe preferentially at density peaks. Clustering SNe in time and space substantially increases the wind power.

  6. Type Ia Supernova Carbon Footprints

    CERN Document Server

    Thomas, R C; Aragon, C; Antilogus, P; Bailey, S; Baltay, C; Bongard, S; Buton, C; Canto, A; Childress, M; Chotard, N; Copin, Y; Fakhouri, H K; Gangler, E; Hsiao, E Y; Kerschhaggl, M; Kowalski, M; Loken, S; Nugent, P; Paech, K; Pain, R; Pecontal, E; Pereira, R; Perlmutter, S; Rabinowitz, D; Rigault, M; Rubin, D; Runge, K; Scalzo, R; Smadja, G; Tao, C; Weaver, B A; Wu, C; Brown, P J; Milne, P A

    2011-01-01

    We present convincing evidence of unburned carbon at photospheric velocities in new observations of 5 Type Ia supernovae (SNe Ia) obtained by the Nearby Supernova Factory. These SNe are identified by examining 346 spectra from 124 SNe obtained before +2.5 d relative to maximum. Detections are based on the presence of relatively strong C II 6580 absorption "notches" in multiple spectra of each SN, aided by automated fitting with the SYNAPPS code. Four of the 5 SNe in question are otherwise spectroscopically unremarkable, with ions and ejection velocities typical of SNe Ia, but spectra of the fifth exhibits high-velocity (v > 20,000 km/s) Si II and Ca II features. On the other hand, the light curve properties are preferentially grouped, strongly suggesting a connection between carbon-positivity and broad band light curve/color behavior: Three of the 5 have relatively narrow light curves but also blue colors, and a fourth may be a dust-reddened member of this family. Accounting for signal-to-noise and phase, we ...

  7. A unified explanation for the supernova rate-galaxy mass dependency based on supernovae discovered in Sloan galaxy spectra

    CERN Document Server

    Graur, Or; Modjaz, Maryam

    2014-01-01

    Using a method to discover and classify supernovae (SNe) in galaxy spectra, we detect 91 Type Ia SNe (SNe Ia) and 16 Type II SNe (SNe II) among ~740,000 galaxies of all types and ~215,000 star-forming galaxies without active galactic nuclei, respectively, in Data Release 9 of the Sloan Digital Sky Survey. Of these SNe, 22 SNe Ia and 8 SNe II are new discoveries reported here for the first time. We use our SN samples to measure SN rates per unit mass as a function of galaxy stellar mass, star-formation rate (SFR), and specific SFR (sSFR), as derived by the MPA-JHU Galspec pipeline. We confirm the rate-mass correlations, first discovered by the Lick Observatory Supernova Search, for both SNe Ia and SNe II at median redshifts of ~0.1 and ~0.075, respectively. The mass-normalized SN Ia and SN II rates, averaged over all masses and redshifts in their respective galaxy samples, are 0.10 +/- 0.01 (stat) +/- 0.01 (sys) X 10^-12 Msol^-1 yr^-1 and 0.52 +0.16 -0.13 (stat) +0.02 -0.05 (sys) X 10^-12 Msol^-1 yr^-1, respec...

  8. An Open Catalog for Supernova Data

    CERN Document Server

    Guillochon, James; Margutti, Raffaella

    2016-01-01

    We present the Open Supernova Catalog, an online collection of observations and metadata for presently 20,000+ supernovae and related candidates. The catalog is freely available on the web (https://sne.space), with its main interface having been designed to be a user-friendly, rapidly-searchable table accessible on desktop and mobile devices. In addition to the primary catalog table containing supernova metadata, an individual page is generated for each supernova which displays its available metadata, light curves, and spectra spanning X-ray to radio frequencies. The data presented in the catalog is automatically rebuilt on a daily basis and is constructed by parsing several dozen sources, including the data presented in the supernova literature and from secondary sources such as other web-based catalogs. Individual supernova data is stored in the hierarchical, human- and machine-readable JSON format, with the entirety of each supernova's data being contained within a single JSON file bearing its name. The se...

  9. Type Ia Supernova Modeling with Spectrophotometric Data from the Nearby Supernova Factory

    Science.gov (United States)

    Saunders, Clare; Nearby Supernova Factory

    2017-01-01

    Type Ia supernova cosmology is currently limited by dispersion in standardized magnitudes, driven by a combination of calibration uncertainty and so-called ‘intrinsic dispersion.' This intrinsic dispersion is caused by supernova behavior that the current lightcurve fitters do not account for, and it can involve systematic trends. Using data from the Nearby Supernova Factory, we have developed an empirical model that captures a wider range of Type Ia supernova behavior and can be used to improve standardized magnitude dispersion. To do this, Gaussian Processes and Expectation Maximization Factor Analysis are used to generate spectral time series templates that can be combined linearly. Variations of this model are optimized, alternatively for supernova standardization or for maximum accuracy in the description of supernova spectral features. We present these models along with interpretation of the model components. Methods are discussed for the most efficient application of the models in cosmological surveys.

  10. First Results from the La Silla-QUEST Supernova Survey and the Carnegie Supernova Project

    CERN Document Server

    Walker, E S; Campillay, A; Citrenbaum, C; Contreras, C; Ellman, N; Feindt, U; Gonzalez, C; Graham, M L; Hadjiyska, E; Hsiao, E Y; Krisciunas, K; McKinnon, R; Ment, K; Morrell, N; Nugent, P; Phillips, M; Rabinowitz, D; Rostami, S; Seron, J; Stritzinger, M; Sullivan, M; Tucker, B E

    2016-01-01

    The LaSilla/QUEST Variability Survey (LSQ) and the Carnegie Supernova Project (CSP II) are collaborating to discover and obtain photometric light curves for a large sample of low redshift (z < 0.1) Type Ia supernovae. The supernovae are discovered in the LSQ survey using the 1 m ESO Schmidt telescope at the La Silla Observatory with the 10 square degree QUEST camera. The follow-up photometric observations are carried out using the 1 m Swope telescope and the 2.5 m du Pont telescopes at the Las Campanas Observatory. This paper describes the survey, discusses the methods of analyzing the data and presents the light curves for the first 31 Type Ia supernovae obtained in the survey. The SALT 2.4 supernova light curve fitter was used to analyze the photometric data, and the Hubble diagram for this first sample is presented. The measurement errors for these supernovae averaged 4%, and their intrinsic spread was 14%.

  11. Slow-Speed Supernovae from the Palomar Transient Factory: Two Channels

    CERN Document Server

    White, Christopher J; Nugent, Peter E; Gal-Yam, Avishay; Howell, D Andrew; Sullivan, Mark; Goobar, Ariel; Piro, Anthony L; Bloom, Joshua S; Kulkarni, Shrinivas R; Laher, Russ R; Masci, Frank; Ofek, Eran O; Surace, Jason; Ben-Ami, Sagi; Cao, Yi; Cenko, S Bradley; Hook, Isobel M; Jönsson, Jakob; Matheson, Thomas; Sternberg, Assaf; Quimby, Robert M; Yaron, Ofer

    2014-01-01

    Since the discovery of the unusual prototype SN 2002cx, the eponymous class of low-velocity, hydrogen-poor supernovae has grown to include at most another two dozen members identified from several heterogeneous surveys, in some cases ambiguously. Here we present the results of a systematic study of 1077 hydrogen-poor supernovae discovered by the Palomar Transient Factory, leading to nine new members of this peculiar class. Moreover we find there are two distinct subclasses based on their spectroscopic, photometric, and host galaxy properties: The "SN 2002cx-like" supernovae tend to be in later-type or more irregular hosts, have more varied and generally dimmer luminosities, have longer rise times, and lack a Ti II trough when compared to the "SN 2002es-like" supernovae. None of our objects show helium, and we counter a previous claim of two such events. We also find that these transients comprise 5.6+17-3.7% (90% confidence) of all SNe Ia, lower compared to earlier estimates. Combining our objects with the li...

  12. Slow-Speed Supernovae from the Palomar Transient Factory: Two Channels

    Science.gov (United States)

    White, Christopher J.; Kasliwal, Mansi M.; Nugent, Peter E.; Gal-Yam, Avishay; Howell, D. Andrew; Sullivan, Mark; Goobar, Ariel; Piro, Anthony L.; Kulkarni, Shrinivas R.; Bloom, Joshua S.; Cenko, Stephen Bradley

    2014-01-01

    Since the discovery of the unusual prototype SN 2002cx, the eponymous class of low-velocity, hydrogen-poor supernovae has grown to include at most another two dozen members identified from several heterogeneous surveys, in some cases ambiguously. Here we present the results of a systematic study of 1077 hydrogen-poor supernovae discovered by the Palomar Transient Factory, leading to nine new members of this peculiar class. Moreover we find there are two distinct subclasses based on their spectroscopic, photometric, and host galaxy properties: The "SN 2002cx-like" supernovae tend to be in later-type or more irregular hosts, have more varied and generally dimmer luminosities, have longer rise times, and lack a Ti II trough when compared to the \\SN 2002es-like" supernovae. None of our objects show helium, and we counter a previous claim of two such events. We also find that these transients comprise 5.6+17 -3:7% (90% confidence) of all SNe Ia, lower compared to earlier estimates. Combining our objects with the literature sample, we propose that these subclasses have two distinct physical origins.

  13. Search for supernova produced {sup 60}Fe in Earth's microfossil record

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Peter; Bishop, Shawn; Chernenko, Valentyna; Faestermann, Thomas; Fimiani, Leticia; Gomez, Jose; Hain, Karin; Korschinek, Gunther [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Egli, Ramon [Central Institute for Meteorology and Geodynamics, Vienna (Austria)

    2013-07-01

    The detection of supernova debris on Earth can be achieved by use of accelerator mass spectrometry (AMS) to search for radionuclides like {sup 60}Fe. This long-lived isotope (T{sub 1/2}=2.6 Myr) is produced in massive stars and is expected to be present in the debris of type II supernovae. The discovery of {sup 60}Fe in a ferromanganese crust from the Pacific ocean (Knie et al., 2004) was interpreted as the input of a supernova explosion about 2.2 Myr ago. Currently, several projects are aiming for the confirmation of the signature of {sup 60}Fe in terrestrial and lunar samples. In this talk, the search for this {sup 60}Fe signature in Earth's microfossil record is presented. The sample material for this study is marine sediment from the eastern equatorial Pacific. A specific kind of secondary (formed in situ) magnetite mineral contained in the sample material are magnetofossils, which are the remains of magnetotactic bacteria, which are the target for extraction. The chemical extraction technique used to produce AMS samples has been characterized using newly developed magnetic analysis methods and has been shown to be extremely selective towards secondary magnetite. The AMS samples produced in this way are uniquely suited for the search for supernova {sup 60}Fe. Preliminary AMS results are presented.

  14. A supernova origin for dust in a high-redshift quasar.

    Science.gov (United States)

    Maiolino, R; Schneider, R; Oliva, E; Bianchi, S; Ferrara, A; Mannucci, F; Pedani, M; Sogorb, M Roca

    2004-09-30

    Interstellar dust plays a crucial role in the evolution of the Universe by assisting the formation of molecules, by triggering the formation of the first low-mass stars, and by absorbing stellar ultraviolet-optical light and subsequently re-emitting it at infrared/millimetre wavelengths. Dust is thought to be produced predominantly in the envelopes of evolved (age >1 Gyr), low-mass stars. This picture has, however, recently been brought into question by the discovery of large masses of dust in the host galaxies of quasars at redshift z > 6, when the age of the Universe was less than 1 Gyr. Theoretical studies, corroborated by observations of nearby supernova remnants, have suggested that supernovae provide a fast and efficient dust formation environment in the early Universe. Here we report infrared observations of a quasar at redshift 6.2, which are used to obtain directly its dust extinction curve. We then show that such a curve is in excellent agreement with supernova dust models. This result demonstrates a supernova origin for dust in this high-redshift quasar, from which we infer that most of the dust at high redshifts probably has the same origin.

  15. High-redshift supernova rates measured with the gravitational telescope A1689

    CERN Document Server

    Petrushevska, Tanja; Goobar, Ariel; Fabbro, Sebastien; Johansson, Joel; Kjellsson, Tor; Lidman, Chris; Paech, Kerstin; Richard, Johan; Dahle, Hakon; Ferretti, Raphael; Kneib, Jean-Paul; Limousin, Marceau; Nordin, Jakob; Stanishev, Vallery

    2016-01-01

    We present a ground-based near-infrared search for lensed supernovae behind the massive cluster Abell 1689 at z=0.18, one of the most powerful gravitational telescopes that nature provides. Our survey was based on multi-epoch $J$-band observations with the HAWK-I instrument on VLT, with supporting optical data from the Nordic Optical Telescope. Our search resulted in the discovery of five high-redshift, $0.671supernovae with magnifications in the range $\\Delta m$ = $-0.31$ to $-1.58$ mag, as calculated from lensing models in the literature. Thanks to the power of the lensing cluster, the survey had the sensitivity to detect supernovae up to very high-redshifts, $z$$\\sim$$3$, albeit for a limited region of space. We present a study of the core-collapse supernova rates for $0.4\\leq z< 2.9$, and find good agreement with both previous estimates, and the predictions from the star formation history. During our survey, we also discovered 2 type Ia supernov...

  16. An Open Catalog for Supernova Data

    Science.gov (United States)

    Guillochon, James; Parrent, Jerod; Kelley, Luke Zoltan; Margutti, Raffaella

    2017-01-01

    We present the Open Supernova Catalog, an online collection of observations and metadata for presently 36,000+ supernovae and related candidates. The catalog is freely available on the web (https://sne.space), with its main interface having been designed to be a user-friendly, rapidly searchable table accessible on desktop and mobile devices. In addition to the primary catalog table containing supernova metadata, an individual page is generated for each supernova, which displays its available metadata, light curves, and spectra spanning X-ray to radio frequencies. The data presented in the catalog is automatically rebuilt on a daily basis and is constructed by parsing several dozen sources, including the data presented in the supernova literature and from secondary sources such as other web-based catalogs. Individual supernova data is stored in the hierarchical, human- and machine-readable JSON format, with the entirety of each supernova’s data being contained within a single JSON file bearing its name. The setup we present here, which is based on open-source software maintained via git repositories hosted on github, enables anyone to download the entirety of the supernova data set to their home computer in minutes, and to make contributions of their own data back to the catalog via git. As the supernova data set continues to grow, especially in the upcoming era of all-sky synoptic telescopes, which will increase the total number of events by orders of magnitude, we hope that the catalog we have designed will be a valuable tool for the community to analyze both historical and contemporary supernovae.

  17. Interaction Between The Broad-lined Type Ic Supernova 2012ap and Carriers of Diffuse Interstellar Bands

    CERN Document Server

    Milisavljevic, D; Crabtree, K N; Foster, J B; Soderberg, A M; Fesen, R A; Parrent, J T; Sanders, N E; Drout, M R; Kamble, A; Chakraborti, S; Pickering, T E; Cenko, S B; Silverman, J M; Filippenko, A V; Kirshner, R P; Mazzali, P; Maeda, K; Marion, G H; Vinko, J; Wheeler, J C

    2014-01-01

    The diffuse interstellar bands (DIBs) are absorption features observed in optical and near-infrared spectra that are thought to be associated with carbon-rich polyatomic molecules in interstellar gas. However, because the central wavelengths of these bands do not correspond with electronic transitions of any known atomic or molecular species, their nature has remained uncertain since their discovery almost a century ago. Here we report on unusually strong DIBs in optical spectra of the broad-lined Type Ic supernova SN 2012ap that exhibit changes in equivalent width over short (~30 days) timescales. The 4428 and 6283 Angstrom DIB features get weaker with time, whereas the 5780 Angstrom feature shows a marginal increase. These nonuniform changes suggest that the supernova is interacting with a nearby source of the DIBs and that the DIB carriers possess high ionization potentials, such as small cations or charged fullerenes. We conclude that moderate-resolution spectra of supernovae with DIB absorptions obtained...

  18. The core-degenerate scenario for the progenitors of Type Ia supernovae

    Science.gov (United States)

    Wang, B.; Zhou, W.-H.; Zuo, Z.-Y.; Li, Y.-B.; Luo, X.; Zhang, J.-J.; Liu, D.-D.; Wu, C.-Y.

    2017-02-01

    The origin of the progenitors of Type Ia supernovae (SNe Ia) is still uncertain. The core-degenerate (CD) scenario has been proposed as an alternative way for the production of SNe Ia. In this scenario, SNe Ia are formed at the final stage of common-envelope evolution from a merger of a carbon-oxygen white dwarf (CO WD) with the CO core of an asymptotic giant branch companion. However, the birthrates of SNe Ia from this scenario are still not well determined. In this work, we performed a detailed investigation on the CD scenario based on a binary population synthesis approach. The SN Ia delay times from this scenario are basically in the range of 90-2500 Myr, mainly contributing to the observed SNe Ia with short and intermediate delay times, although this scenario can also produce some old SNe Ia. Meanwhile, our work indicates that the Galactic birthrates of SNe Ia from this scenario are not more than 20 per cent of total SNe Ia due to more careful treatment of mass transfer. Although the SN Ia birthrates in this work are lower than those in Ilkov & Soker, the CD scenario cannot be ruled out as a viable mechanism for the formation of SNe Ia. Especially, SNe Ia with circumstellar material from this scenario contribute to 0.7-10 per cent of total SNe Ia, which means that the CD scenario can reproduce the observed birthrates of SNe Ia like PTF 11kx. We also found that SNe Ia happen systemically earlier for a high value of metallicity and their birthrates increase with metallicity.

  19. Postexplosion hydrodynamics of supernovae in red supergiants

    Science.gov (United States)

    Herant, Marc; Woosley, S. E.

    1994-01-01

    Shock propagation, mixing, and clumping are studied in the explosion of red supergiants as Type II supernovae using a two-dimensional smooth particle hydrodynamic (SPH) code. We show that extensive Rayleigh-Talor instabilities develop in the ejecta in the wake of the reverse shock wave. In all cases, the shell structure of the progenitor is obliterated to leave a clumpy, well-mixed supernova remnant. However, the occurrence of mass loss during the lifetime of the progenitor can significantly reduce the amount of mixing. These results are independent of the Type II supernova explosion mechanism.

  20. Chiral transport of neutrinos in supernovae

    Directory of Open Access Journals (Sweden)

    Yamamoto Naoki

    2017-01-01

    Full Text Available The conventional neutrino transport theory for core-collapse supernovae misses one key property of neutrinos: the left-handedness. The chirality of neutrinos modifies the hydrodynamic behavior at the macroscopic scale and leads to topological transport phenomena. We argue that such transport phenomena should play important roles in the evolution of core-collapse supernovae, and, in particular, lead to a tendency toward the inverse energy cascade from small to larger scales, which may be relevant to the origin of the supernova explosion.

  1. Object Classification at the Nearby Supernova Factory

    Energy Technology Data Exchange (ETDEWEB)

    Aragon, Cecilia R.; Bailey, Stephen; Aragon, Cecilia R.; Romano, Raquel; Thomas, Rollin C.; Weaver, B. A.; Wong, D.

    2007-12-21

    We present the results of applying new object classification techniques to the supernova search of the Nearby Supernova Factory. In comparison to simple threshold cuts, more sophisticated methods such as boosted decision trees, random forests, and support vector machines provide dramatically better object discrimination: we reduced the number of nonsupernova candidates by a factor of 10 while increasing our supernova identification efficiency. Methods such as these will be crucial for maintaining a reasonable false positive rate in the automated transient alert pipelines of upcoming large optical surveys.

  2. Chiral transport of neutrinos in supernovae

    CERN Document Server

    Yamamoto, Naoki

    2016-01-01

    The conventional neutrino transport theory for core-collapse supernovae misses one key property of neutrinos: the left-handedness. The chirality of neutrinos modifies the hydrodynamic behavior at the macroscopic scale and leads to topological transport phenomena. We argue that such transport phenomena should play important roles in the evolution of core-collapse supernovae, and, in particular, lead to a tendency toward the inverse energy cascade from small to larger scales, which may be relevant to the origin of the supernova explosion.

  3. Supernovae and Gamma-Ray Bursts

    Science.gov (United States)

    Livio, Mario; Panagia, Nino; Sahu, Kailash

    2001-07-01

    Participants; Preface; Gamma-ray burst-supernova relation B. Paczynski; Observations of gamma-ray bursts G. Fishman; Fireballs T. Piran; Gamma-ray mechanisms M. Rees; Prompt optical emission from gamma-ray bursts R. Kehoe, C. Akerlof, R. Balsano, S. Barthelmy, J. Bloch, P. Butterworth, D. Casperson, T. Cline, S. Fletcher, F. Frontera, G. Gisler, J. Heise, J. Hills, K. Hurley, B. Lee, S. Marshall, T. McKay, A. Pawl, L. Piro, B. Priedhorsky, J. Szymanski and J. Wren; X-ray afterglows of gamma-ray bursts L. Piro; The first year of optical-IR observations of SN1998bw I. Danziger, T. Augusteijn, J. Brewer, E. Cappellaro, V. Doublier, T. Galama, J. Gonzalez, O. Hainaut, B. Leibundgut, C. Lidman, P. Mazzali, K. Nomoto, F. Patat, J. Spyromilio, M. Turatto, J. Van Paradijs, P. Vreeswijk and J. Walsh; X-ray emission of Supernova 1998bw in the error box of GRB980425 E. Pian; Direct analysis of spectra of type Ic supernovae D. Branch; The interaction of supernovae and gamma-ray bursts with their surroundings R. Chevalier; Magnetars, soft gamma-ray repeaters and gamma-ray bursts A. Harding; Super-luminous supernova remnants Y. -H. Chu, C. -H. Chen and S. -P. Lai; The properties of hypernovae: SNe Ic 1998bw, 1997ef, and SN IIn 1997cy K. Nomoto, P. Mazzali, T. Nakamura, K. Iwanmoto, K. Maeda, T. Suzuki, M. Turatto, I. Danziger and F. Patat; Collapsars, Gamma-Ray Bursts, and Supernovae S. Woosley, A. MacFadyen and A. Heger; Pre-supernova evolution of massive stars N. Panagia and G. Bono; Radio supernovae and GRB 980425 K. Weiler, N. Panagia, R. Sramek, S. Van Dyk, M. Montes and C. Lacey; Models for Ia supernovae and evolutionary effects P. Hoflich and I. Dominguez; Deflagration to detonation A. Khokhlov; Universality in SN Iae and the Phillips relation D. Arnett; Abundances from supernovae F. -K. Thielemann, F. Brachwitz, C. Freiburghaus, S. Rosswog, K. Iwamoto, T. Nakamura, K. Nomoto, H. Umeda, K. Langanke, G. Martinez-Pinedo, D. Dean, W. Hix and M. Strayer; Sne, GRBs, and the

  4. A Comprehensive Investigation Into Modeling Supernovae Spectra

    Science.gov (United States)

    Hillier, Desmond

    Supernovae are a rich source of information. By studying their light curves and spectra we gain insights into stellar evolution, the nature of the progenitor star, surface abundances at the time of the explosion, whether previous mass-loss episodes have occurred, the physics of the explosion including the amount and type of elements synthesized, and whether the explosion has produced significant mixing between shells of different chemical composition. To maximize the information that can be gleaned from observations of supernovae it is essential that we have the necessary spectroscopic tools. To this end, we are developing a code, CMFGEN, capable of modeling supernova light curves and spectra. The code is currently being used, to study core-collapse supernovae as well as those arising from the nuclear detonation of a White Dwarf star. We wish to extend CMFGEN's capabilities by developing a procedure to handle non-monotonic velocity flows so that we can treat shock breakout and the interaction of supernova ejecta with circumstellar material. We will also investigate magnetar-powered SNe, and explore the connection between Type Ib and Type Ic supernovae and those supernovae associated with long-duration gamma-ray bursters. Through detailed studies of individual supernova, and through the construction of model grids, we are able to infer deficiencies in our modeling, in our atomic data, and in the progenitor models, and hence make refinements so that we can improve our understanding of all SNe classes. Previous (IUE), current (HST, Chandra, GALEX), and future NASA missions (James Webb Telescope) do/will provide a wealth of data on supernovae. The proposed research is related to strategic subgoal 3D: "Discover the origin, structure, evolution, and destiny of the universe, and search for Earth-like planets." Supernovae are inherently coupled to the evolution of the universe and life: They can trigger star formation and they provide the raw materials (e.g., oxygen

  5. Neutrino scattering and flavor transformation in supernovae

    CERN Document Server

    Cherry, John F; Friedland, Alexander; Fuller, George M; Vlasenko, Alexey

    2012-01-01

    We argue that the small fraction of neutrinos that undergo direction-changing scattering outside of the neutrinosphere could have significant influence on neutrino flavor transformation in core-collapse supernova environments. We show that the standard treatment for collective neutrino flavor transformation is adequate at late times, but could be inadequate in the crucial shock revival/explosion epoch of core-collapse supernovae, where the potentials that govern neutrino flavor evolution are affected by the scattered neutrinos. Taking account of this effect, and the way it couples to entropy and composition, will require a new paradigm in supernova modeling.

  6. RNA profiling and chromatin immunoprecipitation-sequencing reveal that PTF1a stabilizes pancreas progenitor identity via the control of MNX1/HLXB9 and a network of other transcription factors

    DEFF Research Database (Denmark)

    Thompson, Nancy; Gésina, Emilie; Scheinert, Peter;

    2012-01-01

    Pancreas development is initiated by the specification and expansion of a small group of endodermal cells. Several transcription factors are crucial for progenitor maintenance and expansion, but their interactions and the downstream targets mediating their activity are poorly understood. Among...... those factors, PTF1a, a basic helix-loop-helix (bHLH) transcription factor which controls pancreas exocrine cell differentiation, maintenance, and functionality, is also needed for the early specification of pancreas progenitors. We used RNA profiling and chromatin immunoprecipitation (ChIP) sequencing...... to identify a set of targets in pancreas progenitors. We demonstrate that Mnx1, a gene that is absolutely required in pancreas progenitors, is a major direct target of PTF1a and is regulated by a distant enhancer element. Pdx1, Nkx6.1, and Onecut1 are also direct PTF1a targets whose expression is promoted...

  7. Radio Supernovae: Circum-Stellar Investigation (C.S.I.) of Supernova Progenitor Stars

    Science.gov (United States)

    2009-02-24

    ar X iv :0 90 2. 40 59 v1 [ as tr o- ph .H E ] 2 4 Fe b 20 09 Radio Supernovae : Circum-Stellar Investigation (C.S.I.) of Supernova Progenitor...FEB 2009 2. REPORT TYPE 3. DATES COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Radio Supernovae : Circum-Stellar Investigation (C.S.I...of Supernova Progenitor Stars 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f

  8. Observational data on Galactic supernova remnants: II. The supernova remnants within l = 90°-270°

    Directory of Open Access Journals (Sweden)

    Guseinov O.H.

    2004-01-01

    Full Text Available We have collected all the available data on Galactic supernova remnants given in the literature. The data of Galactic supernova remnants located in the Galactic longitude interval l=90° - 270° in all spectral bands are represented in this work. We have adopted distance values for the SNRs by examining these data. The data of various types on neutron stars connected to these supernova remnants are also represented. Remarks of some authors and by ourselves regarding the data and some properties of both the supernova remnants and the point sources are given.

  9. X-ray studies of supernova remnants: a different view of supernova explosions.

    Science.gov (United States)

    Badenes, Carles

    2010-04-20

    The unprecedented spatial and spectral resolutions of Chandra have revolutionized our view of the X-ray emission from supernova remnants. The excellent datasets accumulated on young, ejecta-dominated objects like Cas A or Tycho present a unique opportunity to study at the same time the chemical and physical structure of the explosion debris and the characteristics of the circumstellar medium sculpted by the progenitor before the explosion. Supernova remnants can thus put strong constraints on fundamental aspects of both supernova explosion physics and stellar evolution scenarios for supernova progenitors. This view of the supernova phenomenon is completely independent of, and complementary to, the study of distant extragalactic supernovae at optical wavelengths. The calibration of these two techniques has recently become possible thanks to the detection and spectroscopic follow-up of supernova light echoes. In this paper, I review the most relevant results on supernova remnants obtained during the first decade of Chandra and the impact that these results have had on open issues in supernova research.

  10. Follow-Up Discovery Channel Telescope Observations of Transients and Variables from Optical Time Domain Surveys

    Science.gov (United States)

    Gezari, Suvi; Liu, Tingting; Hung, Tiara

    2017-01-01

    We highlight the capabilities of the Discovery Channel Telescope (DCT) for follow-up observations of transients and variables discovered by optical time-domain surveys. We present two DCT programs: 1) extended-baseline imaging with the Large Monolithic Imager of periodically variable quasars from the Pan-STARRS1 survey to identify binary supermassive black hole candidates, and 2) spectroscopic classification with the DeVeny spectrograph of nuclear transients from the iPTF survey to identify tidal disruption event candidates. We demonstrate that DCT is well-matched to the magnitude ranges of the transients and variables discovered by these surveys, and has played an important role in their classification and characterization.

  11. Confirmation with the SALT telescope of a young Type Ia supernova at z=0.046 discovered during the "Deeper Wider Faster" program

    Science.gov (United States)

    Andreoni, I.; Cooke, J.; Pritchard, T. A.; Kotze, M.; Miszalski, B.; Shara, M.; Mestric, U.; Tucker, B.; Plant, K.; Spiewak, R.; Ryder, S.; Abbott, T.; Allen, Rebecca; Anderson, G.; Asher, A.; Baglio, M. C.; Bannister, K.; Bell, M.; Bernard, S.; Bhandari, S.; Caleb, M.; Campana, S.; Coward, D.; Curtin, C.; D'Avanzo, P.; Deller, A.; Devlin, J. F.; Farah, W.; Fluke, C.; Flynn, C.; Foran, G.; Fugazza, D.; Gawin, B.; Hegarty, S.; Hodgson, R.; Hodgson, S.; Horst, J.; Howell, E.; Hussaini, I.; Jacobs, C.; Ko, M.; Lien, A.; Meade, B.; Melandri, A.; Moller, A.; Murphy, M. T.; Nanayakkara, T.; O'Neill, M.; Oslowski, S.; Peng, B.; Petroff, E.; Rest, A.; Robert, F.; Valdes, F.; Vohl, D.

    2017-02-01

    Further to ATel #10072, we report an additional discovery of a young Type Ia supernova from imaging on February 03.5, 2017 UT with the Dark Energy Camera (DECam) at CTIO during the recent & ldquo;Deeper, Wider, Faster & rdquo; program observations.

  12. Radio emision from supernova remnants

    Science.gov (United States)

    Dubner, G.

    2016-06-01

    The vast majority of supernova remnants (SNRs) in our Galaxy and nearby galaxies have been discovered through radio observations, and only a very small number of the SNRs catalogued in the Milky Way have not been detected in the radio band, or are poorly defined by current radio observations. The study of the radio emission from SNRs is an excellent tool to investigate morphological characteristics, marking the location of shock fronts and contact discontinuities; the presence, orientation and intensity of the magnetic field; the energy spectrum of the emitting particles; and the dynamical consequences of the interaction with the circumstellar and interstellar medium. I will review the present knowledge of different important aspects of radio remnants and their impact on the interstellar gas. Also, new radio studies of the Crab Nebula carried out with the Karl Jansky Very Large Array (JVLA) at 3 GHz and with ALMA at 100 GHz, will be presented.

  13. Supernova 1987A at 30

    Science.gov (United States)

    Spyromilio, J.; Leibundgut, B.; Fransson, C.; Larsson, J.; Migotto, K.; Girard, J.

    2017-03-01

    Thirty years on, SN 1987A continues to develop and, over the last decade in particular, has: revealed the presence of a large centrally concentrated reservoir of dust; shown the presence of molecular species within the ejecta; expanded such that the ejecta structure is angularly resolved; begun the destruction of the circumstellar ring and transitioned to being dominated by energy sources external to the ejecta. We are participating in a live experiment in the creation of a supernova remnant and here the recent progress is briefly overviewed. Exciting developments can be expected as the ejecta and the reverse shock continue their interaction, the X-rays penetrate into the cold molecular core and we observe the return of the material into the interstellar medium. We anticipate that the nature of the remnant of the leptonisation event in the centre will also be revealed.

  14. Progenitors of Supernovae Type Ia

    CERN Document Server

    Toonen, S; Bours, M; Zwart, S Portegies; Claeys, J; Mennekens, N; Ruiter, A

    2013-01-01

    Despite the significance of Type Ia supernovae (SNeIa) in many fields in astrophysics, SNeIa lack a theoretical explanation. The standard scenarios involve thermonuclear explosions of carbon/oxygen white dwarfs approaching the Chandrasekhar mass; either by accretion from a companion or by a merger of two white dwarfs. We investigate the contribution from both channels to the SNIa rate with the binary population synthesis (BPS) code SeBa in order to constrain binary processes such as the mass retention efficiency of WD accretion and common envelope evolution. We determine the theoretical rates and delay time distribution of SNIa progenitors and in particular study how assumptions affect the predicted rates.

  15. ANTIPROTONS PRODUCED IN SUPERNOVA REMNANTS

    Energy Technology Data Exchange (ETDEWEB)

    Berezhko, E. G.; Ksenofontov, L. T., E-mail: ksenofon@ikfia.sbras.ru [Yu. G. Shafer Institute of Cosmophysical Research and Aeronomy, 31 Lenin Avenue, 677891 Yakutsk (Russian Federation)

    2014-08-20

    We present the energy spectrum of an antiproton cosmic ray (CR) component calculated on the basis of the nonlinear kinetic model of CR production in supernova remnants (SNRs). The model includes the reacceleration of antiprotons already existing in the interstellar medium as well as the creation of antiprotons in nuclear collisions of accelerated protons with gas nuclei and their subsequent acceleration by SNR shocks. It is shown that the production of antiprotons in SNRs produces a considerable effect in their resultant energy spectrum, making it essentially flatter above 10 GeV so that the spectrum at TeV energies increases by a factor of 5. The calculated antiproton spectrum is consistent with the PAMELA data, which correspond to energies below 100 GeV. As a consistency check, we have also calculated within the same model the energy spectra of secondary nuclei and show that the measured boron-to-carbon ratio is consistent with the significant SNR contribution.

  16. Progenitors of type Ia supernovae

    CERN Document Server

    Maeda, Keiichi

    2016-01-01

    Natures of progenitors of type Ia Supernovae (SNe Ia) have not yet been clarified. There has been long and intensive discussion on whether the so-called single degenerate (SD) scenario or the double degenerate (DD) scenario, or anything else, could explain a major population of SNe Ia, but the conclusion has not yet been reached. With rapidly increasing observational data and new theoretical ideas, the field of studying the SN Ia progenitors has been quickly developing, and various new insights have been obtained in recent years. This article aims at providing a summary of the current situation regarding the SN Ia progenitors, both in theory and observations. It seems difficult to explain the emerging diversity seen in observations of SNe Ia by a single population, and we emphasize that it is important to clarify links between different progenitor scenarios and different sub-classes of SNe Ia.

  17. Astrophysics: Echo from an ancient supernova

    Science.gov (United States)

    Pastorello, Andrea; Patat, Ferdinando

    2008-12-01

    Light reflected off a dust cloud in the vicinity of the relic of Tycho Brahe's supernova, whose light first swept past Earth more than four centuries ago, literally sheds light on the nature of this cosmic explosion.

  18. The Supernova Impostor SN 2010da

    Science.gov (United States)

    Binder, Breanna A.; Williams, Benjamin F.; Kong, Albert K. H.; Plucinsky, Paul P.; Gaetz, Terrance J.; Skillman, Evan D.; Dolphin, Andrew E.

    2016-01-01

    Supernova impostors are optical transients that, despite being assigned a supernova designation, do not signal the death of a massive star or accreting white dwarf. Instead, many impostors are thought to be major eruptions from luminous blue variables. Although the physical cause of these eruptions is still debated, tidal interactions from a binary companion has recently gained traction as a possible explanation for observations of some supernova impostors. In this talk, I will discuss the particularly interesting impostor SN 2010da, which exhibits high-luminosity, variable X-ray emission. The X-ray emission is consistent with accretion onto a neutron star, making SN 2010da a likely high mass X-ray binary in addition to a supernova impostor. SN 2010da is a unique laboratory for understanding both binary interactions as drivers of massive star eruptions and the evolutionary processes that create high mass X-ray binaries.

  19. Physical processes in collapse driven supernova

    Energy Technology Data Exchange (ETDEWEB)

    Mayle, R.W.

    1985-11-01

    A model of the supernova explosion is discussed. The method of neutrino transport is discussed, since the explosive mechanism depends on neutrino heating of the material behind the accretion shock. The core region of these exploding stars becomes unstable to convective motions during the supernova evolution. Convective mixing allows more neutrinos to escape from under the neutrinosphere, and thus increases the amount of heating by neutrinos. An approximate method of incorporating convection is described, and some results of including convection in a computer model is presented. Another phenomena is seen in computer simulations of supernova, oscillations in the neutrino luminosity and mass accretion rate onto the protoneutron star. The last topic discussed in this thesis describes the attempt to understand this oscillation by perturbation of the steady state solution to equations approximating the complex physical processes occurring in the late time supernova. 42 refs., 31 figs.

  20. Inside the supernova a powerful convective engine

    CERN Document Server

    Herant, M; Hix, W R; Fryer, C F; Colgate, S A; Marc Herant; Willy Benz; Chris F Fryer; Stirling Colgate

    1994-01-01

    We present an extensive study of the inception of supernova explosions by following the evolution of the cores of two massive stars (15 Msun and 25 Msun) in two dimensions. Our calculations begin at the onset of core collapse and stop several 100 ms after the bounce, at which time successful explosions of the appropriate magnitude have been obtained. (...) Guided by our numerical results, we have developed a paradigm for the supernova explosion mechanism. We view a supernova as an open cycle thermodynamic engine in which a reservoir of low-entropy matter (the envelope) is thermally coupled and physically connected to a hot bath (the protoneutron star) by a neutrino flux, and by hydrodynamic instabilities. (...) In essence, a Carnot cycle is established in which convection allows out-of-equilibrium heat transfer mediated by neutrinos to drive low entropy matter to higher entropy and therefore extracts mechanical energy from the heat generated by gravitational collapse. We argue that supernova explosions are ne...