WorldWideScience

Sample records for supernova-driven plasma flows

  1. Two-dimensional PIC simulations of ion beam instabilities in Supernova-driven plasma flows

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, M E; Shukla, P K [Institut fuer Theoretische Physik IV, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Meli, A; Mastichiadis, A [Department of Physics, National University of Athens, Panepistimiopolis, Zografos 15783 (Greece); Drury, L O C [Dublin Institute for Advanced Studies, Dublin 2 (Ireland)], E-mail: markd@tp4.rub.de

    2008-06-15

    Supernova remnant blast shells can reach the flow speed v{sub s} = 0.1c and shocks form at its front. Instabilities driven by shock-reflected ion beams heat the plasma in the foreshock, which may inject particles into diffusive acceleration. The ion beams can have the speed v{sub b} {approx} v{sub s}. For v{sub b} << v{sub s} the Buneman or upper-hybrid instabilities dominate, while for v{sub b} >> v{sub s} the filamentation and mixed modes grow faster. Here the relevant waves for v{sub b} {approx} v{sub s} are examined and how they interact nonlinearly with the particles. The collision of two plasma clouds at the speed v{sub s} is modelled with particle-in-cell simulations, which convect with them magnetic fields oriented perpendicular to their flow velocity vector. One simulation models equally dense clouds and the other one uses a density ratio of 2. Both simulations show upper-hybrid waves that are planar over large spatial intervals and that accelerate electrons to {approx}10 keV. The symmetric collision yields only short oscillatory wave pulses, while the asymmetric collision also produces large-scale electric fields, probably through a magnetic pressure gradient. The large-scale fields destroy the electron phase space holes and they accelerate the ions, which facilitates the formation of a precursor shock.

  2. BRIEF COMMUNICATION: On the drift kinetic equation driven by plasma flows

    Science.gov (United States)

    Shaing, K. C.

    2010-07-01

    A drift kinetic equation that is driven by plasma flows has previously been derived by Shaing and Spong 1990 (Phys. Fluids B 2 1190). The terms that are driven by particle speed that is parallel to the magnetic field B have been neglected. Here, such terms are discussed to examine their importance to the equation and to show that these terms do not contribute to the calculations of plasma viscosity in large aspect ratio toroidal plasmas, e.g. tokamaks and stellarators.

  3. Analysis of IBW-driven plasma flows in tokamaks

    International Nuclear Information System (INIS)

    Berry, L.A.; Jaeger, E.F.; D'Azevedo, E.F.; Batchelor, D.B.; Carlsson, J.A.; Carter, M.D.; Cesario, R.

    2001-01-01

    Both theory and experiment have suggested that damping of Ion Bernstein Waves (IBWs) at ion cyclotron frequency harmonics could drive poloidal flows and lead to enhanced confinement for tokamaks. However, the early analyses were based on Reynolds stress closures of moment equations. More rigorous, finite Larmor radius (FLR) expansions of the radio frequency (RF) kinetic pressure for low harmonic interactions indicated that the Reynolds stress approximation was not generally valid, and resulted in significant changes in the plasma flow response. These changes were largest for wave interactions driven by finite Larmour radius effects. To provide a better assessment of higher harmonic interactions and IBW flow drive prospects, the electromagnetic (E and M) and RF kinetic force models are extended with no assumptions regarding the smallness of the ion Larmor radius. For both models, a spectral-width approximation was used to make the numerical analysis tractable. In addition, it was necessary to include the effects of plasma equilibrium gradients on the plasma conductivity and the RF-induced momentum in order to conserve energy and momentum. The analysis of high-harmonic IBW interactions for TFTR and FTU parameters indicates significant poloidal flow shears (relative to turbulence correlation times) for power levels available in present experiments. Recent advances in all-orders calculations of E and M fields in 2-D are also discussed. (author)

  4. Neutrinos from type-II supernovae and the neutrino-driven supernova mechanism

    International Nuclear Information System (INIS)

    Janka, H.T.

    1996-01-01

    Supernova 1987A has confirmed fundamental aspects of our theoretical view of type-II supernovae: Type-II supernovae are a consequence of the collapse of the iron core of a massive evolved star and lead to the formation of a neutron star or black hole. This picture is most strongly supported by the detection of electron antineutrinos in the IMB and Kamiokande II experiments in connection with SN 1987A. However, the mechanism causing the supernova explosion is not yet satisfactorily understood. In this paper the properties of the neutrino emission from supernovae and protoneutron stars will be reviewed; analytical estimates will be derived and results of numerical simulations will be shown. It will be demonstrated that the spectral distributions of the emitted neutrinos show clear and systematic discrepancies compared with thermal (black body-type) emission. This must be taken into account when neutrino observations from supernovae are to be interpreted, or when implications of the neutrino emission on nucleosynthesis processes in mantle and envelope of the progenitor star are to be investigated. Furthermore, the influence of neutrinos on the supernova dynamics will be discussed, in particular their crucial role in causing the explosion by Wilson's neutrino-driven delayed mechanism. Possible implications of convection inside the newly born neutron star and between surface and the supernova shock will be addressed and results of multi-dimensional simulations will be presented. (author) 7 figs., 1 tab., refs

  5. Neutrinos from type-II supernovae and the neutrino-driven supernova mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Janka, H T [Max-Planck-Institut fuer Astrophysik, Garching (Germany)

    1996-11-01

    Supernova 1987A has confirmed fundamental aspects of our theoretical view of type-II supernovae: Type-II supernovae are a consequence of the collapse of the iron core of a massive evolved star and lead to the formation of a neutron star or black hole. This picture is most strongly supported by the detection of electron antineutrinos in the IMB and Kamiokande II experiments in connection with SN 1987A. However, the mechanism causing the supernova explosion is not yet satisfactorily understood. In this paper the properties of the neutrino emission from supernovae and protoneutron stars will be reviewed; analytical estimates will be derived and results of numerical simulations will be shown. It will be demonstrated that the spectral distributions of the emitted neutrinos show clear and systematic discrepancies compared with thermal (black body-type) emission. This must be taken into account when neutrino observations from supernovae are to be interpreted, or when implications of the neutrino emission on nucleosynthesis processes in mantle and envelope of the progenitor star are to be investigated. Furthermore, the influence of neutrinos on the supernova dynamics will be discussed, in particular their crucial role in causing the explosion by Wilson`s neutrino-driven delayed mechanism. Possible implications of convection inside the newly born neutron star and between surface and the supernova shock will be addressed and results of multi-dimensional simulations will be presented. (author) 7 figs., 1 tab., refs.

  6. Neutrino oscillations in magnetically driven supernova explosions

    Energy Technology Data Exchange (ETDEWEB)

    Kawagoe, Shio; Kotake, Kei [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan); Takiwaki, Tomoya, E-mail: shio.k@nao.ac.jp, E-mail: takiwaki.tomoya@nao.ac.jp, E-mail: kkotake@th.nao.ac.jp [Center for Computational Astrophysics, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan)

    2009-09-01

    We investigate neutrino oscillations from core-collapse supernovae that produce magnetohydrodynamic (MHD) explosions. By calculating numerically the flavor conversion of neutrinos in the highly non-spherical envelope, we study how the explosion anisotropy has impacts on the emergent neutrino spectra through the Mikheyev-Smirnov-Wolfenstein effect. In the case of the inverted mass hierarchy with a relatively large θ{sub 13} (sin{sup 2} 2θ{sub 13} ∼> 10{sup −3}), we show that survival probabilities of ν-bar {sub e} and ν{sub e} seen from the rotational axis of the MHD supernovae (i.e., polar direction), can be significantly different from those along the equatorial direction. The event numbers of ν-bar {sub e} observed from the polar direction are predicted to show steepest decrease, reflecting the passage of the magneto-driven shock to the so-called high-resonance regions. Furthermore we point out that such a shock effect, depending on the original neutrino spectra, appears also for the low-resonance regions, which could lead to a noticeable decrease in the ν{sub e} signals. This reflects a unique nature of the magnetic explosion featuring a very early shock-arrival to the resonance regions, which is in sharp contrast to the neutrino-driven delayed supernova models. Our results suggest that the two features in the ν-bar {sub e} and ν{sub e} signals, if visible to the Super-Kamiokande for a Galactic supernova, could mark an observational signature of the magnetically driven explosions, presumably linked to the formation of magnetars and/or long-duration gamma-ray bursts.

  7. Neutrino oscillations in magnetically driven supernova explosions

    Science.gov (United States)

    Kawagoe, Shio; Takiwaki, Tomoya; Kotake, Kei

    2009-09-01

    We investigate neutrino oscillations from core-collapse supernovae that produce magnetohydrodynamic (MHD) explosions. By calculating numerically the flavor conversion of neutrinos in the highly non-spherical envelope, we study how the explosion anisotropy has impacts on the emergent neutrino spectra through the Mikheyev-Smirnov-Wolfenstein effect. In the case of the inverted mass hierarchy with a relatively large θ13 (sin2 2θ13 gtrsim 10-3), we show that survival probabilities of bar nue and νe seen from the rotational axis of the MHD supernovae (i.e., polar direction), can be significantly different from those along the equatorial direction. The event numbers of bar nue observed from the polar direction are predicted to show steepest decrease, reflecting the passage of the magneto-driven shock to the so-called high-resonance regions. Furthermore we point out that such a shock effect, depending on the original neutrino spectra, appears also for the low-resonance regions, which could lead to a noticeable decrease in the νe signals. This reflects a unique nature of the magnetic explosion featuring a very early shock-arrival to the resonance regions, which is in sharp contrast to the neutrino-driven delayed supernova models. Our results suggest that the two features in the bar nue and νe signals, if visible to the Super-Kamiokande for a Galactic supernova, could mark an observational signature of the magnetically driven explosions, presumably linked to the formation of magnetars and/or long-duration gamma-ray bursts.

  8. Global characteristics of zonal flows generated by ion temperature gradient driven turbulence in tokamak plasmas

    International Nuclear Information System (INIS)

    Miyato, Naoaki; Kishimoto, Yasuaki; Li, Jiquan

    2004-08-01

    Global structure of zonal flows driven by ion temperature gradient driven turbulence in tokamak plasmas is investigated using a global electromagnetic Landau fluid code. Characteristics of the coupled system of the zonal flows and the turbulence change with the safety factor q. In a low q region stationary zonal flows are excited and suppress the turbulence effectively. Coupling between zonal flows and poloidally asymmetric pressure perturbations via a geodesic curvature makes the zonal flows oscillatory in a high q region. Also we identify energy transfer from the zonal flows to the turbulence via the poloidally asymmetric pressure perturbations in the high q region. Therefore in the high q region the zonal flows cannot quench the turbulent transport completely. (author)

  9. Weibel instability mediated collisionless shocks using intense laser-driven plasmas

    Science.gov (United States)

    Palaniyappan, Sasikumar; Fiuza, Federico; Huang, Chengkun; Gautier, Donald; Ma, Wenjun; Schreiber, Jorg; Raymer, Abel; Fernandez, Juan; Shimada, Tom; Johnson, Randall

    2017-10-01

    The origin of cosmic rays remains a long-standing challenge in astrophysics and continues to fascinate physicists. It is believed that ``collisionless shocks'' - where the particle Coulomb mean free path is much larger that the shock transition - are a dominant source of energetic cosmic rays. These shocks are ubiquitous in astrophysical environments such as gamma-ray bursts, supernova remnants, pulsar wind nebula and coronal mass ejections from the sun. A particular type of electromagnetic plasma instability known as Weibel instability is believed to be the dominant mechanism behind the formation of these collisionless shocks in the cosmos. The understanding of the microphysics behind collisionless shocks and their particle acceleration is tightly related with nonlinear basic plasma processes and remains a grand challenge. In this poster, we will present results from recent experiments at the LANL Trident laser facility studying collisionless shocks using intense ps laser (80J, 650 fs - peak intensity of 1020 W/cm2) driven near-critical plasmas using carbon nanotube foam targets. A second short pulse laser driven protons from few microns thick gold foil is used to radiograph the main laser-driven plasma. Work supported by the LDRD program at LANL.

  10. Wave-driven countercurrent plasma centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Fetterman, Abraham J; Fisch, Nathaniel J [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08540 (United States)

    2009-11-15

    A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the {alpha} channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided.

  11. Wave-driven countercurrent plasma centrifuge

    International Nuclear Information System (INIS)

    Fetterman, Abraham J; Fisch, Nathaniel J

    2009-01-01

    A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the α channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided.

  12. Wave-driven Countercurrent Plasma Centrifuge

    International Nuclear Information System (INIS)

    Fetterman, A.J.; Fisch, N.J.

    2009-01-01

    A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the α channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided

  13. An Experimental Study of Continuous Plasma Flows Driven by a Confined Arc in a Transverse Magnetic Field

    Science.gov (United States)

    Barger, R. L.; Brooks, J. D.; Beasley, W. D.

    1961-01-01

    A crossed-field, continuous-flow plasma accelerator has been built and operated. The highest measured velocity of the flow, which was driven by the interaction of the electric and magnetic fields, was about 500 meters per second. Some of the problems discussed are ion slip, stability and uniformity of the discharge, effect of the magnetic field on electron emission, use of preionization, and electrode contamination.

  14. NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE SUPERNOVAE: HIGH-RESOLUTION SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Radice, David; Ott, Christian D. [TAPIR, Walter Burke Institute for Theoretical Physics, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Abdikamalov, Ernazar [Department of Physics, School of Science and Technology, Nazarbayev University, Astana 010000 (Kazakhstan); Couch, Sean M. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Haas, Roland [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, D-14476 Golm (Germany); Schnetter, Erik, E-mail: dradice@caltech.edu [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada)

    2016-03-20

    We present results from high-resolution semiglobal simulations of neutrino-driven convection in core-collapse supernovae. We employ an idealized setup with parameterized neutrino heating/cooling and nuclear dissociation at the shock front. We study the internal dynamics of neutrino-driven convection and its role in redistributing energy and momentum through the gain region. We find that even if buoyant plumes are able to locally transfer heat up to the shock, convection is not able to create a net positive energy flux and overcome the downward transport of energy from the accretion flow. Turbulent convection does, however, provide a significant effective pressure support to the accretion flow as it favors the accumulation of energy, mass, and momentum in the gain region. We derive an approximate equation that is able to explain and predict the shock evolution in terms of integrals of quantities such as the turbulent pressure in the gain region or the effects of nonradial motion of the fluid. We use this relation as a way to quantify the role of turbulence in the dynamics of the accretion shock. Finally, we investigate the effects of grid resolution, which we change by a factor of 20 between the lowest and highest resolution. Our results show that the shallow slopes of the turbulent kinetic energy spectra reported in previous studies are a numerical artifact. Kolmogorov scaling is progressively recovered as the resolution is increased.

  15. NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE SUPERNOVAE: HIGH-RESOLUTION SIMULATIONS

    International Nuclear Information System (INIS)

    Radice, David; Ott, Christian D.; Abdikamalov, Ernazar; Couch, Sean M.; Haas, Roland; Schnetter, Erik

    2016-01-01

    We present results from high-resolution semiglobal simulations of neutrino-driven convection in core-collapse supernovae. We employ an idealized setup with parameterized neutrino heating/cooling and nuclear dissociation at the shock front. We study the internal dynamics of neutrino-driven convection and its role in redistributing energy and momentum through the gain region. We find that even if buoyant plumes are able to locally transfer heat up to the shock, convection is not able to create a net positive energy flux and overcome the downward transport of energy from the accretion flow. Turbulent convection does, however, provide a significant effective pressure support to the accretion flow as it favors the accumulation of energy, mass, and momentum in the gain region. We derive an approximate equation that is able to explain and predict the shock evolution in terms of integrals of quantities such as the turbulent pressure in the gain region or the effects of nonradial motion of the fluid. We use this relation as a way to quantify the role of turbulence in the dynamics of the accretion shock. Finally, we investigate the effects of grid resolution, which we change by a factor of 20 between the lowest and highest resolution. Our results show that the shallow slopes of the turbulent kinetic energy spectra reported in previous studies are a numerical artifact. Kolmogorov scaling is progressively recovered as the resolution is increased

  16. Galactic Winds Driven by Supernovae and Radiation Pressure: Theory and Simulations

    Science.gov (United States)

    Zhang, Dong; Davis, Shane

    2018-01-01

    Galactic winds are ubiquitous in most rapidly star-forming galaxies. They are crucial to the process of galaxy formation and evolution, regulating star formation, shaping the stellar mass function and the mass-metallicity relation, and enriching the intergalactic medium with metals. Although important, the physics of galactic winds is still unclear. Winds may be driven by many mechanisms including overlapping supernovae explosions, radiation pressure of starlight on dust grains, and cosmic rays. However, the growing observations of multiphase structure in galactic winds in a large number of galaxies have not been well explained by any models. In this talk I will focus on the models of supernova- and radiation-pressure-driven winds. Using the state-of-the-art numerical simulations, I will assess the relative merits of these driving mechanisms for accelerating cold and warm clouds to observed velocities, and momentum flux boost during wind propagation.

  17. Current delivery and radiation yield in plasma flow switch-driven implosions

    International Nuclear Information System (INIS)

    Baker, W.L.; Degnan, J.H.; Beason, J.D.

    1995-01-01

    Vacuum inductive-store, plasma flow switch-driven implosion experiments have been performed using the Shiva Star capacitor bank (1300 μf, 3 nH, 120 kV, 9.4 MJ). A coaxial plasma gun arrangement is employed to store magnetic energy in the vacuum volume upstream of a dynamic discharge during the 3- to 4-μs rise of current from the capacitor bank. Motion of the discharge off the end of the inner conductor of the gun releases this energy to implode a coaxial cylindrical foil. The implosion loads are 5-cm-radius, 2-cm-long, 200 to 400 μg/cm 2 cylinders of aluminum or aluminized Formvar. With 5 MJ stored initially in the capacitor bank, more than 9 MA are delivered to the implosion load with a rise time of nearly 200 ns. The subsequent implosion results in a radiation output of 0.95 MJ at a power exceeding 5 TW (assuming isotropic emission). Experimental results and related two-dimensional magnetohydrodynamic simulations are discussed. 10 refs., 12 figs

  18. Radiation yield from SHIVA Star plasma flow switch driven fast liner implosions

    International Nuclear Information System (INIS)

    Degnan, J.H.; Baker, W.L.; Beason, J.D.

    1987-01-01

    A 2.5 Terawatt 0.5 MJ isotropic equivalent radiation yield was obtained in a SHIVA Star plasma flow switch driven fast liner implosion. The 1313 μF 80 kV discharge delivered 13 MA to a coaxial vacuum inductive store with a plasma armature. Over 9.4 MA current was plasma flow switched to the implosion load (>90% of the gun muzzle current at that time). The load wa a 5 cm radius, 2 cm tall, 200 μg/cm/sup 2/ aluminum plated Formvar cylindrical foil. The radiation pulse was measured with an array of seven X-ray diodes (XRDs). The XRDs all had aluminum photocathodes, a variety of filters and nickel mesh to reduce the incident X-ray photon flux to avoid Child-Langmuir saturation. The filters were chosen so that the authors had seven different diode response functions covering the energy range from 15 eV to about 3 keV. The filters were mounted remote (about 30 cm) from the XRDs. The anode mesh served as part of the mesh array. The distance between meshes was greater than 10 cm. Each XRD had a 5 cm diameter cathode with an aperture limited to a 2 cm diameter. The XRD anode-cathode gap was 1 cm and the bias was 5 kV. The theoretical Child-Langmuir saturation signal was 125 V with 50 Ω termination. The maximum observed signal was 75 V

  19. QUICK-FIRE: Plasma flow driven implosion experiments

    International Nuclear Information System (INIS)

    Baker, W.L.; Bigelow, W.S.; Degnan, J.H.

    1985-01-01

    High speed plasma implosions involving megajoules of energy, and sub-microsecond implosion times are expected to require additional stages of power conditioning between realistic primary energy sources and the implosion system. Plasma flow switches and vacuum inductive stores represent attractive alternates to the high speed fuse and atmospheric store techniques which have been previously reported for powering such plasma experiments. In experiments being conducted at the Air Force Weapons Lab, a washer shaped plasma accelerated to 7-10 cm/microsecond in a coaxial plasma gun configuration, represents the moving element in a vacuum store/power conditioning system of 16.5 nH inductance which stores 1-1.5 MJ at 12-14 MA. At the end of the coaxial gun, the moving element transits the 2cm axial length of the cylindrical implosion gap in 200-400 nS, delivering the magnetic energy to the implosion foil, accelerating the imploding plasma to speeds of 30-40 cm/microsecond in 350-450 nS, and delivering a projected 400 KJ of kinetic energy to the implosion

  20. Evolution of an electron-positron plasma produced by induced gravitational collapse in binary-driven hypernovae

    Directory of Open Access Journals (Sweden)

    Melon Fuksman J. D.

    2018-01-01

    Full Text Available The binary-driven hypernova (BdHN model has been introduced in the past years, to explain a subfamily of gamma-ray bursts (GRBs with energies Eiso ≥ 1052 erg associated with type Ic supernovae. Such BdHNe have as progenitor a tight binary system composed of a carbon-oxigen (CO core and a neutron star undergoing an induced gravitational collapse to a black hole, triggered by the CO core explosion as a supernova (SN. This collapse produces an optically-thick e+e- plasma, which expands and impacts onto the SN ejecta. This process is here considered as a candidate for the production of X-ray flares, which are frequently observed following the prompt emission of GRBs. In this work we follow the evolution of the e+e- plasma as it interacts with the SN ejecta, by solving the equations of relativistic hydrodynamics numerically. Our results are compatible with the Lorentz factors estimated for the sources that produce the flares, of typically Γ ≲ 4.

  1. THE DOMINANCE OF NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE SUPERNOVAE

    International Nuclear Information System (INIS)

    Murphy, Jeremiah W.; Dolence, Joshua C.; Burrows, Adam

    2013-01-01

    Multi-dimensional instabilities have become an important ingredient in core-collapse supernova (CCSN) theory. Therefore, it is necessary to understand the driving mechanism of the dominant instability. We compare our parameterized three-dimensional CCSN simulations with other buoyancy-driven simulations and propose scaling relations for neutrino-driven convection. Through these comparisons, we infer that buoyancy-driven convection dominates post-shock turbulence in our simulations. In support of this inference, we present four major results. First, the convective fluxes and kinetic energies in the neutrino-heated region are consistent with expectations of buoyancy-driven convection. Second, the convective flux is positive where buoyancy actively drives convection, and the radial and tangential components of the kinetic energy are in rough equipartition (i.e., K r ∼ K θ + K φ ). Both results are natural consequences of buoyancy-driven convection, and are commonly observed in simulations of convection. Third, buoyant driving is balanced by turbulent dissipation. Fourth, the convective luminosity and turbulent dissipation scale with the driving neutrino power. In all, these four results suggest that in neutrino-driven explosions, the multi-dimensional motions are consistent with neutrino-driven convection.

  2. Explosive nucleosynthesis in a neutrino-driven core collapse supernova

    International Nuclear Information System (INIS)

    Fujimoto, Shin-ichiro; Kotake, Kei; Hashimoto, Masa-aki; Ono, Masaomi; Ohnishi, Naofumi

    2010-01-01

    We investigate explosive nucleosynthesis in a delayed neutrino-driven, supernova explosion aided by standing accretion shock instability (SASI), based on two-dimensional hydrodynamic simulations of the explosion of a 15 M · star. We take into accounts neutrino heating and cooling as well as change in electron fraction due to weak interactions appropriately, in the two-dimensional simulations. We assume the isotropic emission of neutrinos from the neutrino spheres with given luminosities. and the Fermi-Dirac distribution of given temperatures. We find that the stalled shock revives due to the neutrino heating aided by SASI for cases with L νe ≥3.9x10 52 ergss -1 and the as-pherical shock passes through the outer layers of the star (≥10,000 km), with the explosion energies of ∼10 51 ergs.Next we examine abundances and masses of the supernova ejecta. We find that masses of the ejecta and 56 Ni correlate with the neutrino luminosity, and 56 Ni mass is comparable to that observed in SN 1987A. We also find that abundance pattern of the supernova ejecta is similar to that of the solar system, for cases with high explosion energies of >10 51 ergs. We emphasize that 64 Zn, which is underproduced in the spherical case, is abundantly produced in slightly neutron-rich ejecta.

  3. Measuring the cosmological bulk flow using the peculiar velocities of supernovae

    International Nuclear Information System (INIS)

    Dai, De-Chang; Kinney, William H.; Stojkovic, Dejan

    2011-01-01

    We study large-scale coherent motion in our universe using the existing Type IA supernovae data. If the recently observed bulk flow is real, then some imprint must be left on supernovae motion. We perform a Bayesian Monte Carlo Markov Chain analysis in various redshift bins and find a sharp contrast between the z 0.05 data. The z +39 −31 °,20 +32 −32 °) with a magnitude of v bulk = 188 +119 −103 km/s at 68% confidence. The significance of detection (compared to the null hypothesis) is 95%. In contrast, z > 0.05 data (which contains 425 of the 557 supernovae in the Union2 data set) show no evidence for the bulk flow. While the direction of the bulk flow agrees very well with previous studies, the magnitude is significantly smaller. For example, the Kashlinsky, et al.'s original bulk flow result of v bulk > 600km/s is inconsistent with our analysis at greater than 99.7% confidence level. Furthermore, our best-fit bulk flow velocity is consistent with the expectation for the ΛCDM model, which lies inside the 68% confidence limit

  4. Structure of the radial electric field and toroidal/poloidal flow in high temperature toroidal plasma

    International Nuclear Information System (INIS)

    Ida, Katsumi

    2001-01-01

    The structure of the radial electric field and toroidal/poloidal flow is discussed for the high temperature plasma in toroidal systems, tokamak and Heliotron type magnetic configurations. The spontaneous toroidal and poloidal flows are observed in the plasma with improved confinement. The radial electric field is mainly determined by the poloidal flow, because the contribution of toroidal flow to the radial electric field is small. The jump of radial electric field and poloidal flow are commonly observed near the plasma edge in the so-called high confinement mode (H-mode) plasmas in tokamaks and electron root plasma in stellarators including Heliotrons. In general the toroidal flow is driven by the momentum input from neutral beam injected toroidally. There is toroidal flow not driven by neutral beam in the plasma and it will be more significant in the plasma with large electric field. The direction of these spontaneous toroidal flows depends on the symmetry of magnetic field. The spontaneous toroidal flow driven by the ion temperature gradient is in the direction to increase the negative radial electric field in tokamak. The direction of spontaneous toroidal flow in Heliotron plasmas is opposite to that in tokamak plasma because of the helicity of symmetry of the magnetic field configuration. (author)

  5. Physical processes in collapse driven supernova

    International Nuclear Information System (INIS)

    Mayle, R.W.

    1985-11-01

    A model of the supernova explosion is discussed. The method of neutrino transport is discussed, since the explosive mechanism depends on neutrino heating of the material behind the accretion shock. The core region of these exploding stars becomes unstable to convective motions during the supernova evolution. Convective mixing allows more neutrinos to escape from under the neutrinosphere, and thus increases the amount of heating by neutrinos. An approximate method of incorporating convection is described, and some results of including convection in a computer model is presented. Another phenomena is seen in computer simulations of supernova, oscillations in the neutrino luminosity and mass accretion rate onto the protoneutron star. The last topic discussed in this thesis describes the attempt to understand this oscillation by perturbation of the steady state solution to equations approximating the complex physical processes occurring in the late time supernova. 42 refs., 31 figs

  6. Physical processes in collapse driven supernova

    Energy Technology Data Exchange (ETDEWEB)

    Mayle, R.W.

    1985-11-01

    A model of the supernova explosion is discussed. The method of neutrino transport is discussed, since the explosive mechanism depends on neutrino heating of the material behind the accretion shock. The core region of these exploding stars becomes unstable to convective motions during the supernova evolution. Convective mixing allows more neutrinos to escape from under the neutrinosphere, and thus increases the amount of heating by neutrinos. An approximate method of incorporating convection is described, and some results of including convection in a computer model is presented. Another phenomena is seen in computer simulations of supernova, oscillations in the neutrino luminosity and mass accretion rate onto the protoneutron star. The last topic discussed in this thesis describes the attempt to understand this oscillation by perturbation of the steady state solution to equations approximating the complex physical processes occurring in the late time supernova. 42 refs., 31 figs.

  7. Quick-fire: Plasma flow driven implosion experiments

    International Nuclear Information System (INIS)

    Baker, W.L.; Bigelow, W.S.; Degnan, J.H.

    1985-01-01

    High speed plasma implosions involving megajoules of energy, and sub-microsecond implosion times are expected to require additional stages of power conditioning between realistic primary energy sources and the implosion system. Plasma flow switches and vacuum inductive stores represent attractive alternates to the high speed fuse and atmospheric store techniques which have been previously reported for powering such plasma experiments. In experiments being conducted at the Air Force Weapons Lab, a washer shaped plasma accelerated to 7-10 cm/microsecond in a coaxial plasma gun configuration, represents the moving element in a vacuum store/power conditioning system of 16.5 nH inductance which stores 1-1.5 MJ at 12-14 MA. At the end of the coaxial gun, the moving element transits the 2cm axial length of the cylindrical implosion gap in 200-400 nS, delivering the magnetic energy to the implosion foil, accelerating the imploding plasma to speeds of 30-40 cm/microsecond in 350-450 nS, and delivering a projected 400 KJ of kinetic energy to the implosion. Experiments have been conducted using the SHIVA STAR capacitor bank operating at 6 MJ stored energy in which performance has been monitored by electrical diagnostics, magnetic probes, and axial and radial viewing high speed visible and X-Ray photographs to assess the performance of the coaxial run and coaxial to radial transition. Time and spectrally resolved X-Ray diagnostics are used to assess implosion quality and performance and results are compared to kinematic and MHD models

  8. Analysis of plasma equilibrium based on orbit-driven current density profile in steady-state plasma on QUEST

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, K., E-mail: nakamura@triam.kyushu-u.ac.jp [RIAM, Kyushu University, Kasuga 816-8580 (Japan); Alam, M.M. [IGSES, Kyushu University, Kasuga 816-8580 (Japan); Jiang, Y.Z. [Tsinghua University, Beijing 100084 (China); Mitarai, O. [Tokai University, Kumamoto 862-8652 (Japan); Kurihara, K.; Kawamata, Y.; Sueoka, M.; Takechi, M. [Japan Atomic Energy Agency, Naka 311-0193 (Japan); Hasegawa, M.; Tokunaga, K.; Araki, K.; Zushi, H.; Hanada, K.; Fujisawa, A.; Idei, H.; Nagashima, Y.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Nagata, T. [RIAM, Kyushu University, Kasuga 816-8580 (Japan); and others

    2016-11-01

    Highlights: • High energy particle guiding center orbit is calculated as a contour plot of conserved variable. • Current density profile is analyzed based on the orbit-driven current. • Plasma equilibrium is reconstructed by considering the hollow current profile. - Abstract: In the present RF-driven (ECCD) steady-state plasma on QUEST (B{sub t} = 0.25 T, R = 0.68 m, a = 0.40 m), plasma current seems to flow in the open magnetic surface outside of the closed magnetic surface in the low-field region according to plasma current fitting (PCF) method. We consider that the current in the open magnetic surface is due to orbit-driven current by high-energy particles in RF-driven plasma. So based on the analysis of current density profile based on the orbit-driven current, plasma equilibrium is to be calculated. We calculated high energy particles guiding center orbits as a contour plot of conserved variable in Hamiltonian formulation and considered particles initial position with different levels of energy and pitch angles that satisfy resonance condition. Then the profile of orbit-driven current is estimated by multiplying the particle density on the resonance surface and the velocity on the orbits. This analysis shows negative current near the magnetic axis and hollow current profile is expected even if pressure driven current is considered. Considering the hollow current profile shifted toward the low-field region, the equilibrium is fitted by J-EFIT coded by MATLAB.

  9. THE MORPHOLOGY AND DYNAMICS OF JET-DRIVEN SUPERNOVA REMNANTS: THE CASE OF W49B

    Energy Technology Data Exchange (ETDEWEB)

    González-Casanova, Diego F.; De Colle, Fabio [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A. P. 70-543, 04510 D. F. (Mexico); Ramirez-Ruiz, Enrico [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Lopez, Laura A. [MIT-Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, 37-664H, Cambridge, MA 02139 (United States)

    2014-02-01

    The circumstellar medium (CSM) of a massive star is modified by its winds before a supernova (SN) explosion occurs, and thus the evolution of the resulting supernova remnant (SNR) is influenced by both the geometry of the explosion as well as the complex structure of the CSM. Motivated by recent work suggesting the SNR W49B was a jet-driven SN expanding in a complex CSM, we explore how the dynamics and the metal distributions in a jet-driven explosion are modified by the interaction with the surrounding environment. In particular, we perform hydrodynamical calculations to study the dynamics and explosive nucleosynthesis of a jet-driven SN triggered by the collapse of a 25 M {sub ☉} Wolf-Rayet star and its subsequent interaction with the CSM up to several hundred years following the explosion. We find that although the CSM has small-scale effects on the structure of the SNR, the overall morphology and abundance patterns are reflective of the initial asymmetry of the SN explosion. Thus, we predict that jet-driven SNRs, such as W49B, should be identifiable based on morphology and abundance patterns at ages up to several hundred years, even if they expand into a complex CSM environment.

  10. Current-driven turbulence in plasmas

    International Nuclear Information System (INIS)

    Kluiver, H. de.

    1977-10-01

    Research on plasma heating in linear and toroidal systems using current-driven turbulence is reviewed. The motivation for this research is presented. Relations between parameters describing the turbulent plasma state and macroscopic observables are given. Several linear and toroidal devices used in current-driven turbulence studies are described, followed by a discussion of special diagnostic methods used. Experimental results on the measurement of electron and ion heating, anomalous plasma conductivity and associated turbulent fluctuation spectra are reviewed. Theories on current-driven turbulence are discussed and compared with experiments. It is demonstrated from the experimental results that current-driven turbulence occurs not only for extreme values of the electric field but also for an experimentally much more accessible and wide range of parameters. This forms a basis for a discussion on possible future applications in fusion-oriented plasma research

  11. Numerical simulation of plasma processes driven by transverse ion heating

    Science.gov (United States)

    Singh, Nagendra; Chan, C. B.

    1993-01-01

    The plasma processes driven by transverse ion heating in a diverging flux tube are investigated with numerical simulation. The heating is found to drive a host of plasma processes, in addition to the well-known phenomenon of ion conics. The downward electric field near the reverse shock generates a doublestreaming situation consisting of two upflowing ion populations with different average flow velocities. The electric field in the reverse shock region is modulated by the ion-ion instability driven by the multistreaming ions. The oscillating fields in this region have the possibility of heating electrons. These results from the simulations are compared with results from a previous study based on a hydrodynamical model. Effects of spatial resolutions provided by simulations on the evolution of the plasma are discussed.

  12. Ab Initio Simulations of a Supernova-driven Galactic Dynamo in an Isolated Disk Galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Butsky, Iryna [Astronomy Department, University of Washington, Seattle, WA 98195 (United States); Zrake, Jonathan; Kim, Ji-hoon; Yang, Hung-I; Abel, Tom [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Menlo Park, CA 94025 (United States)

    2017-07-10

    We study the magnetic field evolution of an isolated spiral galaxy, using isolated Milky Way–mass galaxy formation simulations and a novel prescription for magnetohydrodynamic (MHD) supernova feedback. Our main result is that a galactic dynamo can be seeded and driven by supernova explosions, resulting in magnetic fields whose strength and morphology are consistent with observations. In our model, supernovae supply thermal energy and a low-level magnetic field along with their ejecta. The thermal expansion drives turbulence, which serves a dual role by efficiently mixing the magnetic field into the interstellar medium and amplifying it by means of a turbulent dynamo. The computational prescription for MHD supernova feedback has been implemented within the publicly available ENZO code and is fully described in this paper. This improves upon ENZO 's existing modules for hydrodynamic feedback from stars and active galaxies. We find that the field attains microgauss levels over gigayear timescales throughout the disk. The field also develops a large-scale structure, which appears to be correlated with the disk’s spiral arm density structure. We find that seeding of the galactic dynamo by supernova ejecta predicts a persistent correlation between gas metallicity and magnetic field strength. We also generate all-sky maps of the Faraday rotation measure from the simulation-predicted magnetic field, and we present a direct comparison with observations.

  13. Proton Radiography of Spontaneous Fields, Plasma Flows and Dynamics in X-Ray Driven Inertial-Confinement Fusion Implosions

    Science.gov (United States)

    Li, C. K.; Seguin, F. H.; Frenje, J. A.; Rosenberg, M.; Zylstra, A. B.; Rinderknecht, H. G.; Petrasso, R. D.; Amendt, P. A.; Landen, O. L.; Town, R. P. J.; Betti, R.; Knauer, J. P.; Meyerhofer, D. D.; Back, C. A.; Kilkenny, J. D.; Nikroo, A.

    2010-11-01

    Backlighting of x-ray-driven implosions in empty hohlraums with mono-energetic protons on the OMEGA laser facility has allowed a number of important phenomena to be observed. Several critical parameters were determined, including plasma flow, three types of spontaneous electric fields and megaGauss magnetic fields. These results provide insight into important issues in indirect-drive ICF. Even though the cavity is effectively a Faraday cage, the strong, local fields inside the hohlraum can affect laser-plasma instabilities, electron distributions and implosion symmetry. They are of fundamental scientific importance for a range of new experiments at the frontiers of high-energy-density physics. Future experiments designed to characterize the field formation and evolution in low-Z gas fill hohlraums will be discussed.

  14. Development of a plasma driven permeation experiment for TPE

    Energy Technology Data Exchange (ETDEWEB)

    Buchenauer, Dean, E-mail: dabuche@sandia.gov [Sandia National Laboratories, Livermore, CA (United States); Kolasinski, Robert [Sandia National Laboratories, Livermore, CA (United States); Shimada, Masa [Idaho National Laboratory, Idaho Falls, ID (United States); Donovan, David [Sandia National Laboratories, Livermore, CA (United States); Youchison, Dennis [Sandia National Laboratories, Albuquerque, NM (United States); Merrill, Brad [Idaho National Laboratory, Idaho Falls, ID (United States)

    2014-10-15

    Highlights: • We have designed and fabricated a novel tritium permeation membrane holder for use in the Tritium Plasma Experiment (TPE). • The membrane temperature is controlled by varying the cooling flow rate and proximity of a spiral cooling channel. • Sealing tests have demonstrated adequate helium leak rates up to temperatures of 1000 °C. • Flow modeling indicates a minimal helium pressure drop across the membrane holder (<700 Pa). • Thermal modeling shows good heat removal and minimal membrane temperature variation (±2%) even up to peak TPE ion fluxes. - Abstract: Experiments on retention of hydrogen isotopes (including tritium) at temperatures less than 800 °C have been carried out in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory [1,2]. To provide a direct measurement of plasma driven permeation in plasma facing materials at temperatures reaching 1000 °C, a new TPE membrane holder has been built to hold test specimens (≤1 mm in thickness) at high temperature while measuring tritium permeating through the membrane from the plasma facing side. This measurement is accomplished by employing a carrier gas that transports the permeating tritium from the backside of the membrane to ion chambers giving a direct measurement of the plasma driven tritium permeation rate. Isolation of the membrane cooling and sweep gases from TPE's vacuum chamber has been demonstrated by sealing tests performed up to 1000 °C of a membrane holder design that provides easy change out of membrane specimens between tests. Simulations of the helium carrier gas which transports tritium to the ion chamber indicate a very small pressure drop (∼700 Pa) with good flow uniformity (at 1000 sccm). Thermal transport simulations indicate that temperatures up to 1000 °C are expected at the highest TPE fluxes.

  15. Development of a plasma driven permeation experiment for TPE

    International Nuclear Information System (INIS)

    Buchenauer, Dean; Kolasinski, Robert; Shimada, Masa; Donovan, David; Youchison, Dennis; Merrill, Brad

    2014-01-01

    Highlights: • We have designed and fabricated a novel tritium permeation membrane holder for use in the Tritium Plasma Experiment (TPE). • The membrane temperature is controlled by varying the cooling flow rate and proximity of a spiral cooling channel. • Sealing tests have demonstrated adequate helium leak rates up to temperatures of 1000 °C. • Flow modeling indicates a minimal helium pressure drop across the membrane holder (<700 Pa). • Thermal modeling shows good heat removal and minimal membrane temperature variation (±2%) even up to peak TPE ion fluxes. - Abstract: Experiments on retention of hydrogen isotopes (including tritium) at temperatures less than 800 °C have been carried out in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory [1,2]. To provide a direct measurement of plasma driven permeation in plasma facing materials at temperatures reaching 1000 °C, a new TPE membrane holder has been built to hold test specimens (≤1 mm in thickness) at high temperature while measuring tritium permeating through the membrane from the plasma facing side. This measurement is accomplished by employing a carrier gas that transports the permeating tritium from the backside of the membrane to ion chambers giving a direct measurement of the plasma driven tritium permeation rate. Isolation of the membrane cooling and sweep gases from TPE's vacuum chamber has been demonstrated by sealing tests performed up to 1000 °C of a membrane holder design that provides easy change out of membrane specimens between tests. Simulations of the helium carrier gas which transports tritium to the ion chamber indicate a very small pressure drop (∼700 Pa) with good flow uniformity (at 1000 sccm). Thermal transport simulations indicate that temperatures up to 1000 °C are expected at the highest TPE fluxes

  16. PROGENITORS OF RECOMBINING SUPERNOVA REMNANTS

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Takashi J., E-mail: takashi.moriya@ipmu.jp [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8583 (Japan)

    2012-05-01

    Usual supernova remnants have either ionizing plasma or plasma in collisional ionization equilibrium, i.e., the ionization temperature is lower than or equal to the electron temperature. However, the existence of recombining supernova remnants, i.e., supernova remnants with ionization temperature higher than the electron temperature, has been recently confirmed. One suggested way to have recombining plasma in a supernova remnant is to have a dense circumstellar medium at the time of the supernova explosion. If the circumstellar medium is dense enough, collisional ionization equilibrium can be established in the early stage of the evolution of the supernova remnant and subsequent adiabatic cooling, which occurs after the shock wave gets out of the dense circumstellar medium, makes the electron temperature lower than the ionization temperature. We study the circumstellar medium around several supernova progenitors and show which supernova progenitors can have a circumstellar medium dense enough to establish collisional ionization equilibrium soon after the explosion. We find that the circumstellar medium around red supergiants (especially massive ones) and the circumstellar medium dense enough to make Type IIn supernovae can establish collisional ionization equilibrium soon after the explosion and can evolve to become recombining supernova remnants. Wolf-Rayet stars and white dwarfs have the possibility to be recombining supernova remnants but the fraction is expected to be very small. As the occurrence rate of the explosions of red supergiants is much higher than that of Type IIn supernovae, the major progenitors of recombining supernova remnants are likely to be red supergiants.

  17. Nucleosynthesis in neutrino-driven, aspherical supernova explosion of a massive star

    International Nuclear Information System (INIS)

    Fujimoto, S.; Hashimoto, M.; Ono, M.; Kotake, K.; Ohnishi, N.

    2011-01-01

    We examine explosive nucleosynthesis of p-nuclei during a delayed neutrino-driven, aspherical supernova explosion aided by standing accretion shock instability, based on two-dimensional hydrodynamic simulations of the explosion of a 15M · star. We find that p-nuclei are mainly produced through γ-processes, and that the nuclei lighter than 92 Mo are abundantly synthesized in slightly neutron-rich bubbles with electron fractions of Y e ≤0.48. 94 Mo, 96 Ru, and 98 Ru, are underproduced compared with the solar system, as in the spherical model.

  18. The supernova-regulated ISM. III. Generation of vorticity, helicity, and mean flows

    Science.gov (United States)

    Käpylä, M. J.; Gent, F. A.; Väisälä, M. S.; Sarson, G. R.

    2018-03-01

    Context. The forcing of interstellar turbulence, driven mainly by supernova (SN) explosions, is irrotational in nature, but the development of significant amounts of vorticity and helicity, accompanied by large-scale dynamo action, has been reported. Aim. Several earlier investigations examined vorticity production in simpler systems; here all the relevant processes can be considered simultaneously. We also investigate the mechanisms for the generation of net helicity and large-scale flow in the system. Methods: We use a three-dimensional, stratified, rotating and shearing local simulation domain of the size 1 × 1 × 2 kpc3, forced with SN explosions occurring at a rate typical of the solar neighbourhood in the Milky Way. In addition to the nominal simulation run with realistic Milky Way parameters, we vary the rotation and shear rates, but keep the absolute value of their ratio fixed. Reversing the sign of shear vs. rotation allows us to separate the rotation- and shear-generated contributions. Results: As in earlier studies, we find the generation of significant amounts of vorticity, the rotational flow comprising on average 65% of the total flow. The vorticity production can be related to the baroclinicity of the flow, especially in the regions of hot, dilute clustered supernova bubbles. In these regions, the vortex stretching acts as a sink of vorticity. In denser, compressed regions, the vortex stretching amplifies vorticity, but remains sub-dominant to baroclinicity. The net helicities produced by rotation and shear are of opposite signs for physically motivated rotation laws, with the solar neighbourhood parameters resulting in the near cancellation of the total net helicity. We also find the excitation of oscillatory mean flows, the strength and oscillation period of which depend on the Coriolis and shear parameters; we interpret these as signatures of the anisotropic-kinetic-α (AKA) effect. We use the method of moments to fit for the turbulent transport

  19. Ion temperature gradient driven mode in presence of transverse velocity shear in magnetized plasmas

    DEFF Research Database (Denmark)

    Chakrabarti, N.; Juul Rasmussen, J.; Michelsen, Poul

    2005-01-01

    The effect of sheared poloidal flow on the toroidal branch of the ion temperature gradient driven mode of magnetized nonuniform plasma is studied. A novel "nonmodal" calculation is used to analyze the problem. It is shown that the transverse shear flow considerably reduced the growth...

  20. Plasma extraction by centrifugo-pneumatically induced gating of flow

    International Nuclear Information System (INIS)

    Burger, Robert; Ducrée, Jens; Reis, Nuno; Da Fonseca, João Garcia

    2013-01-01

    We present a novel valving mechanism to implement plasma extraction from whole blood on a centrifugal microfluidic ‘lab-on-a-disc’ platform. The new scheme is based on pressure-induced deflection of a liquid membrane which gates the centrifugally driven flow through a microfluidic structure. Compared to conventional concepts such as capillary burst valves, siphons or sacrificial materials, the valving structure presented here is represented by a compact, small-footprint design which obviates the need for (local) surface functionalization or hybrid materials integration, thus significantly reducing the complexity (and hence cost) of manufacture. As a pilot study of this new centrifugal flow control element, we demonstrate here the efficient separation of metered plasma from whole blood. While the flow is stopped, blood is separated into plasma and its cellular constituents by centrifugally induced sedimentation. After completion, the flow resumes by elevating the spinning frequency, providing up to 80% of the original plasma content to an overflow chamber within a short, 2 min interval. The amount of residual cells in the plasma amounts to less than 20 cells μl −1 . (paper)

  1. Nonlinear vortex structures and Rayleigh instability condition in shear flow plasmas

    International Nuclear Information System (INIS)

    Haque, Q.; Saleem, H.; Mirza, A.M.

    2009-01-01

    Full text: It is shown that the shear flow produced by externally applied electric field can unstable the drift waves. Due to shear flow, the Rayleigh instability condition is modified, which is obtained for both electron-ion and electron-positron-ion plasmas. These shear flow driven drift waves can be responsible for large amplitude electrostatic fluctuations in tokamak edges. In the nonlinear regime, the stationary structures may appear in electron-positron-ion plasmas similar to electron-ion plasmas. The nonlinear vortex structures like counter rotating dipole vortices and vortex chains can be formed with the aid of special type of shear flows. The positrons can be used as a probe in laboratory plasmas, which make it a multi-component plasma. The presence of positrons in electron-ion plasma system can affect the speed and amplitude of the nonlinear vortex structures. This investigation can have application in both laboratory and astrophysical plasmas. (author)

  2. Heat flow during sawtooth collapse in tokamak plasmas

    International Nuclear Information System (INIS)

    Hanada, Kazuaki

    1994-01-01

    Heat flow during sawtooth collapse was studied on the WT-3 tokamak by using temporal evolution of soft X-ray intensity profile in the poloidal cross section in a lower hybrid current driven plasma as well as an electron cyclotron heated plasma. Two phase in sawtooth collapses were observed. In the first phases, the hottest spot that is the peak of the soft X-ray distribution approaches the inversion surface and heat flows out through a narrow gate on the inversion surface. In the second phase, the hottest spot stays on the inversion surface, and heat flows out through the whole inversion surface. This suggests that magnetic reconnection as predicted by Kadomtsev's model occurs in the first phase, but in the second phase, a different mechanism dominates heat flow. (author)

  3. Sheared-flow induced confinement transition in a linear magnetized plasma

    Science.gov (United States)

    Zhou, S.; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Carter, T. A.; Vincena, S.; Friedman, B.; Schaffner, D.

    2012-01-01

    A magnetized plasma cylinder (12 cm in diameter) is induced by an annular shape obstacle at the Large Plasma Device [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)]. Sheared azimuthal flow is driven at the edge of the plasma cylinder through edge biasing. Strong fluctuations of density and potential (δn /n~eδφ/kTe~0.5) are observed at the plasma edge, accompanied by a large density gradient (Ln=|∇lnn |-1~2cm) and shearing rate (γ ~300kHz). Edge turbulence and cross-field transport are modified by changing the bias voltage (Vbias) on the obstacle and the axial magnetic field (Bz) strength. In cases with low Vbias and large Bz, improved plasma confinement is observed, along with steeper edge density gradients. The radially sheared flow induced by E ×B drift dramatically changes the cross-phase between density and potential fluctuations, which causes the wave-induced particle flux to reverse its direction across the shear layer. In cases with higher bias voltage or smaller Bz, large radial transport and rapid depletion of the central plasma density are observed. Two-dimensional cross-correlation measurement shows that a mode with azimuthal mode number m =1 and large radial correlation length dominates the outward transport in these cases. Linear analysis based on a two-fluid Braginskii model suggests that the fluctuations are driven by both density gradient (drift wave like) and flow shear (Kelvin-Helmholtz like) at the plasma edge.

  4. Sheared-flow induced confinement transition in a linear magnetized plasma

    International Nuclear Information System (INIS)

    Zhou, S.; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Carter, T. A.; Vincena, S.; Friedman, B.; Schaffner, D.

    2012-01-01

    A magnetized plasma cylinder (12 cm in diameter) is induced by an annular shape obstacle at the Large Plasma Device [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)]. Sheared azimuthal flow is driven at the edge of the plasma cylinder through edge biasing. Strong fluctuations of density and potential (δn/n∼eδφ/kT e ∼0.5) are observed at the plasma edge, accompanied by a large density gradient (L n =∇lnn -1 ∼2cm) and shearing rate (γ∼300kHz). Edge turbulence and cross-field transport are modified by changing the bias voltage (V bias ) on the obstacle and the axial magnetic field (B z ) strength. In cases with low V bias and large B z , improved plasma confinement is observed, along with steeper edge density gradients. The radially sheared flow induced by ExB drift dramatically changes the cross-phase between density and potential fluctuations, which causes the wave-induced particle flux to reverse its direction across the shear layer. In cases with higher bias voltage or smaller B z , large radial transport and rapid depletion of the central plasma density are observed. Two-dimensional cross-correlation measurement shows that a mode with azimuthal mode number m=1 and large radial correlation length dominates the outward transport in these cases. Linear analysis based on a two-fluid Braginskii model suggests that the fluctuations are driven by both density gradient (drift wave like) and flow shear (Kelvin-Helmholtz like) at the plasma edge.

  5. X-RAY STRIPES IN TYCHO'S SUPERNOVA REMNANT: SYNCHROTRON FOOTPRINTS OF A NONLINEAR COSMIC-RAY-DRIVEN INSTABILITY

    International Nuclear Information System (INIS)

    Bykov, Andrei M.; Osipov, Sergei M.; Uvarov, Yury A.; Ellison, Donald C.; Pavlov, George G.

    2011-01-01

    High-resolution Chandra observations of Tycho's supernova remnant (SNR) have revealed several sets of quasi-steady, high-emissivity, nearly parallel X-ray stripes in some localized regions of the SNR. These stripes are most likely the result of cosmic-ray (CR) generated magnetic turbulence at the SNR blast wave. However, for the amazingly regular pattern of these stripes to appear, simultaneous action of a number of shock-plasma phenomena is required, which is not predicted by most models of magnetic field amplification. A consistent explanation of these stripes yields information on the complex nonlinear plasma processes connecting efficient CR acceleration and magnetic field fluctuations in strong collisionless shocks. The nonlinear diffusive shock acceleration (NL-DSA) model described here, which includes magnetic field amplification from a CR-current-driven instability, does predict stripes consistent with the synchrotron observations of Tycho's SNR. We argue that the local ambient mean magnetic field geometry determines the orientation of the stripes and therefore it can be reconstructed with the high-resolution X-ray imaging. The estimated maximum energy of the CR protons responsible for the stripes is ∼10 15 eV. Furthermore, the model predicts that a specific X-ray polarization pattern, with a polarized fraction ∼50%, accompanies the stripes, which can be tested with future X-ray polarimeter missions.

  6. Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    International Nuclear Information System (INIS)

    Gilmore, Mark Allen

    2017-01-01

    Turbulence, and turbulence-driven transport are ubiquitous in magnetically confined plasmas, where there is an intimate relationship between turbulence, transport, instability driving mechanisms (such as gradients), plasma flows, and flow shear. Though many of the detailed physics of the interrelationship between turbulence, transport, drive mechanisms, and flow remain unclear, there have been many demonstrations that transport and/or turbulence can be suppressed or reduced via manipulations of plasma flow profiles. This is well known in magnetic fusion plasmas [e.g., high confinement mode (H-mode) and internal transport barriers (ITB's)], and has also been demonstrated in laboratory plasmas. However, it may be that the levels of particle transport obtained in such cases [e.g. H-mode, ITB's] are actually lower than is desirable for a practical fusion device. Ideally, one would be able to actively feedback control the turbulent transport, via manipulation of the flow profiles. The purpose of this research was to investigate the feasibility of using both advanced model-based control algorithms, as well as non-model-based algorithms, to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles. The University of New Mexico was responsible for the experimental portion of the project, while our collaborators at the University of Montana provided plasma transport modeling, and collaborators at Lehigh University developed and explored control methods.

  7. Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Mark Allen [Univ. of New Mexico, Albuquerque, NM (United States)

    2017-02-05

    Turbulence, and turbulence-driven transport are ubiquitous in magnetically confined plasmas, where there is an intimate relationship between turbulence, transport, instability driving mechanisms (such as gradients), plasma flows, and flow shear. Though many of the detailed physics of the interrelationship between turbulence, transport, drive mechanisms, and flow remain unclear, there have been many demonstrations that transport and/or turbulence can be suppressed or reduced via manipulations of plasma flow profiles. This is well known in magnetic fusion plasmas [e.g., high confinement mode (H-mode) and internal transport barriers (ITB’s)], and has also been demonstrated in laboratory plasmas. However, it may be that the levels of particle transport obtained in such cases [e.g. H-mode, ITB’s] are actually lower than is desirable for a practical fusion device. Ideally, one would be able to actively feedback control the turbulent transport, via manipulation of the flow profiles. The purpose of this research was to investigate the feasibility of using both advanced model-based control algorithms, as well as non-model-based algorithms, to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles. The University of New Mexico was responsible for the experimental portion of the project, while our collaborators at the University of Montana provided plasma transport modeling, and collaborators at Lehigh University developed and explored control methods.

  8. Nonlinear drift waves in a dusty plasma with sheared flows

    Energy Technology Data Exchange (ETDEWEB)

    Vranjes, J. [K.U. Leuven (Belgium). Center for Plasma Astrophysics; Shukla, R.K. [Ruhr-Univ. Bochum (Germany). Inst. fuer Theoretische Physik IV

    2002-01-01

    Nonlinear properties of dust-modified drift waves and dust-drift waves in a dusty magnetoplasma with equilibrium sheared flows are examined. For this purpose, the relevant nonlinear equations for drift waves are analyzed for various profiles of the perpendicular and parallel plasma flows, and a variety of nonlinear solutions (viz. single and double vortex chains accompanied with zonal flows, tripolar and global vortices), which are driven by nommiform shear flows and nommiform dust density, is presented.

  9. Nonlinear drift waves in a dusty plasma with sheared flows

    International Nuclear Information System (INIS)

    Vranjes, J.; Shukla, R.K.

    2002-01-01

    Nonlinear properties of dust-modified drift waves and dust-drift waves in a dusty magnetoplasma with equilibrium sheared flows are examined. For this purpose, the relevant nonlinear equations for drift waves are analyzed for various profiles of the perpendicular and parallel plasma flows, and a variety of nonlinear solutions (viz. single and double vortex chains accompanied with zonal flows, tripolar and global vortices), which are driven by nommiform shear flows and nommiform dust density, is presented

  10. Viscosity estimation utilizing flow velocity field measurements in a rotating magnetized plasma

    International Nuclear Information System (INIS)

    Yoshimura, Shinji; Tanaka, Masayoshi Y.

    2008-01-01

    The importance of viscosity in determining plasma flow structures has been widely recognized. In laboratory plasmas, however, viscosity measurements have been seldom performed so far. In this paper we present and discuss an estimation method of effective plasma kinematic viscosity utilizing flow velocity field measurements. Imposing steady and axisymmetric conditions, we derive the expression for radial flow velocity from the azimuthal component of the ion fluid equation. The expression contains kinematic viscosity, vorticity of azimuthal rotation and its derivative, collision frequency, azimuthal flow velocity and ion cyclotron frequency. Therefore all quantities except the viscosity are given provided that the flow field can be measured. We applied this method to a rotating magnetized argon plasma produced by the Hyper-I device. The flow velocity field measurements were carried out using a directional Langmuir probe installed in a tilting motor drive unit. The inward ion flow in radial direction, which is not driven in collisionless inviscid plasmas, was clearly observed. As a result, we found the anomalous viscosity, the value of which is two orders of magnitude larger than the classical one. (author)

  11. Rational surfaces, ExB sheared flows and transport interplay in fusion plasmas

    International Nuclear Information System (INIS)

    Hidalgo, Carlos; Pedrosa, Maria A.; Erents, Kevin

    2001-01-01

    Experimental evidence of a strong interplay between magnetic topology (rational surfaces) and the generation of ExB sheared flows has been observed in the plasma edge region of stellarator (TJ-II) and tokamak (JET) devices. Constant and varying in time ExB sheared flows are close to the critical value to trigger the transition to improved confinement regimes. The plasma conditions where this has been observed are clearly below the power threshold to trigger the formation of transport barriers. Flows driven by fluctuations are candidates to explain these experimental results. (author)

  12. Neutron star kicks and asymmetric supernovae

    International Nuclear Information System (INIS)

    Lai, D.

    2001-01-01

    Observational advances over the last decade have left little doubt that neutron stars received a large kick velocity (of order a few hundred to a thousand km s -1 ) at birth. The physical origin of the kicks and the related supernova asymmetry is one of the central unsolved mysteries of supernova research. We review the physics of different kick mechanisms, including hydrodynamically driven, neutrino - magnetic field driven, and electromagnetically driven kicks. The viabilities of the different kick mechanisms are directly related to the other key parameters characterizing nascent neutron stars, such as the initial magnetic field and the initial spin. Recent observational constraints on kick mechanisms are also discussed. (orig.)

  13. Shear flow driven counter rotating vortices in an inhomogeneous dusty magnetoplasma

    Science.gov (United States)

    Masood, W.; Mirza, Arshad M.; Ijaz, Aisha; Haque, Q.

    2014-02-01

    The coupling of Shukla-Varma (SV) and convective cell modes is discussed in the presence of non-Boltzmannian electron response and parallel equilibrium shear flow. In the linear case, a new dispersion relation is derived and analyzed. It is found that the coupled SV and convective cell modes destabilize in the presence of electron shear flow. On the other hand, in the nonlinear regime, it is shown that Shukla-Varma mode driven counter rotating vortices can be formed for the system under consideration. It is found that these vortices move slowly by comparison with the ion acoustic or electron drift-wave driven counter rotating vortices. The relevance of the present investigation with regard to space plasmas is also pointed out.

  14. The effect of sheared toroidal rotation on pressure driven magnetic islands in toroidal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hegna, C. C. [Departments of Engineering Physics and Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2016-05-15

    The impact of sheared toroidal rotation on the evolution of pressure driven magnetic islands in tokamak plasmas is investigated using a resistive magnetohydrodynamics model augmented by a neoclassical Ohm's law. Particular attention is paid to the asymptotic matching data as the Mercier indices are altered in the presence of sheared flow. Analysis of the nonlinear island Grad-Shafranov equation shows that sheared flows tend to amplify the stabilizing pressure/curvature contribution to pressure driven islands in toroidal tokamaks relative to the island bootstrap current contribution. As such, sheared toroidal rotation tends to reduce saturated magnetic island widths.

  15. Effects of plasma current on nonlinear interactions of ITG turbulence, zonal flows and geodesic acoustic modes

    International Nuclear Information System (INIS)

    Angelino, P; Bottino, A; Hatzky, R; Jolliet, S; Sauter, O; Tran, T M; Villard, L

    2006-01-01

    The mutual interactions of ion temperature gradient (ITG) driven modes, zonal flows and geodesic acoustic modes (GAM) in tokamak plasmas are investigated using a global nonlinear gyrokinetic formulation with totally unconstrained evolution of temperature gradient and profile. A series of numerical simulations with the same initial temperature and density profile specifications is performed using a sequence of ideal MHD equilibria differing only in the value of the total plasma current, in particular with identical magnetic shear profiles and shapes of magnetic surfaces. On top of a bursty or quasi-steady state behaviour the zonal flows oscillate at the GAM frequency. The amplitude of these oscillations increases with the value of the safety factor q, resulting in a less effective suppression of ITG turbulence by zonal flows at a lower plasma current. The turbulence-driven volume-averaged radial heat transport is found to scale inversely with the total plasma current

  16. Trapped Electron Mode Turbulence Driven Intrinsic Rotation in Tokamak Plasmas

    International Nuclear Information System (INIS)

    Wang, W.X.; Hahm, T.S.; Ethier, S.; Zakharov, L.E.

    2011-01-01

    Recent progress from global gyrokinetic simulations in understanding the origin of intrinsic rotation in toroidal plasmas is reported with emphasis on electron thermal transport dominated regimes. The turbulence driven intrinsic torque associated with nonlinear residual stress generation by the fluctuation intensity and the intensity gradient in the presence of zonal flow shear induced asymmetry in the parallel wavenumber spectrum is shown to scale close to linearly with plasma gradients and the inverse of the plasma current. These results qualitatively reproduce empirical scalings of intrinsic rotation observed in various experiments. The origin of current scaling is found to be due to enhanced kll symmetry breaking induced by the increased radial variation of the safety factor as the current decreases. The physics origin for the linear dependence of intrinsic torque on pressure gradient is that both turbulence intensity and the zonal flow shear, which are two key ingredients for driving residual stress, increase with the strength of turbulence drive, which is R0/LTe and R0/Lne for the trapped electron mode.

  17. Numerical study of two-fluid flowing equilibria of helicity-driven spherical torus plasmas

    International Nuclear Information System (INIS)

    Kanki, T.; Nagata, M.; Uyama, T.

    2004-01-01

    Two-fluid flowing equilibrium configurations of a helicity-driven spherical torus (HD-ST) are numerically determined by using the combination of the finite difference and the boundary element methods. It is found from the numerical results that electron fluids near the central conductor are tied to an external toroidal field and ion fluids are not. The magnetic configurations change from the high-q HD-ST (q>1) with paramagnetic toroidal field and low-β (volume average β value, ∼ 2%) through the helicity-driven spheromak and RFP (reverse field pinch) to the ultra low-q HD-ST (0 ∼ 18%) as the external toroidal field at the inner edge regions decreases and reverses the sign. The two-fluid effects are more significant in this equilibrium transition when the ion diamagnetic drift is dominant in the flowing two-fluid. (authors)

  18. Dimming of supernovae by photon-pseudoscalar conversion and the intergalactic plasma

    International Nuclear Information System (INIS)

    Deffayet, Cedric; Harari, Diego; Uzan, Jean-Philippe; Zaldarriaga, Matias

    2002-01-01

    It has been suggested recently that the observed dimming of distant type Ia supernovae may be a consequence of mixing of the photons with very light axions. We point out that the effect of the plasma, in which the photons are propagating, must be taken into account. This effect changes the oscillation probability and renders the dimming frequency dependent, contrary to observations. One may hope to accommodate the data by averaging the oscillations over many different coherence domains. We estimate the effect of coherence loss, either due to the inhomogeneities of the magnetic field or of the intergalactic plasma. These estimates indicate that the achromaticity problem can be resolved only with very specific, and probably unrealistic, properties of the intergalactic medium

  19. Thermoelectric-Driven Liquid-Metal Plasma-Facing Structures (TELS) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Ruzic, David [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2016-12-17

    The Thermoelectric-Driven Liquid-Metal Plasma-Facing Structures (TELS) project was able to establish the experimental conditions necessary for flowing liquid metal surfaces in order to be utilized as surfaces facing fusion relevant energetic plasma flux. The work has also addressed additional developments along with progressing along the timeline detailed in the proposal. A no-cost extension was requested to conduct other relevant experiment- specifically regarding the characterization droplet ejection during energetic plasma flux impact. A specially designed trench module, which could accommodate trenches with different aspect ratios was fabricated and installed in the TELS setup and plasma gun experiments were performed. Droplet ejection was characterized using high speed image acquisition and also surface mounted probes were used to characterize the plasma. The Gantt chart below had been provided with the original proposal, indicating the tasks to be performed in the third year of funding. These tasks are listed above in the progress report outline, and their progress status is detailed below.

  20. Effect of Energetic Plasma Flux on Flowing Liquid Lithium Surfaces

    Science.gov (United States)

    Kalathiparambil, Kishor; Jung, Soonwook; Christenson, Michael; Fiflis, Peter; Xu, Wenyu; Szott, Mathew; Ruzic, David

    2014-10-01

    An operational liquid lithium system with steady state flow driven by thermo-electric magneto-hydrodynamic force and capable of constantly refreshing the plasma exposed surface have been demonstrated at U of I. To evaluate the system performance in reactor relevant conditions, specifically to understand the effect of disruptive plasma events on the performance of the liquid metal PFCs, the setup was integrated to a pulsed plasma generator. A coaxial plasma generator drives the plasma towards a theta pinch which preferentially heats the ions, simulating ELM like flux, and the plasma is further guided towards the target chamber which houses the flowing lithium system. The effect of the incident flux is examined using diagnostic tools including triple Langmuir probe, calorimeter, rogowski coils, Ion energy analyzers, and fast frame spectral image acquisition with specific optical filters. The plasma have been well characterized and a density of ~1021 m-3, with electron temperature ~10 - 20 eV is measured, and final plasma velocities of 34 - 74 kms-1 have been observed. Calorimetric measurements using planar molybdenum targets indicate a maximum plasma energy (with 6 kV plasma gun and 20 kV theta pinch) of 0.08 MJm-2 with plasma divergence effects resulting in marginal reduction of 40 +/- 23 J in plasma energy. Further results from the other diagnostic tools, using the flowing lithium targets and the planar targets coated with lithium will be presented. DOE DE-SC0008587.

  1. Proton-driven Plasma Wakefield Acceleration

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The construction of ever larger and costlier accelerator facilities has a limited future, and new technologies will be needed to push the energy frontier. Plasma wakefield acceleration is a rapidly developing field and is a promising candidate technology for future high energy colliders. We focus on the recently proposed idea of proton-driven plasma wakefield acceleration and describe the current status and plans for this approach.

  2. Multi-dimensional simulations of core-collapse supernova explosions with CHIMERA

    Science.gov (United States)

    Messer, O. E. B.; Harris, J. A.; Hix, W. R.; Lentz, E. J.; Bruenn, S. W.; Mezzacappa, A.

    2018-04-01

    Unraveling the core-collapse supernova (CCSN) mechanism is a problem that remains essentially unsolved despite more than four decades of effort. Spherically symmetric models with otherwise high physical fidelity generally fail to produce explosions, and it is widely accepted that CCSNe are inherently multi-dimensional. Progress in realistic modeling has occurred recently through the availability of petascale platforms and the increasing sophistication of supernova codes. We will discuss our most recent work on understanding neutrino-driven CCSN explosions employing multi-dimensional neutrino-radiation hydrodynamics simulations with the Chimera code. We discuss the inputs and resulting outputs from these simulations, the role of neutrino radiation transport, and the importance of multi-dimensional fluid flows in shaping the explosions. We also highlight the production of 48Ca in long-running Chimera simulations.

  3. Momentum-energy transport from turbulence driven by parallel flow shear

    International Nuclear Information System (INIS)

    Dong, J.Q.; Horton, W.; Bengtson, R.D.; Li, G.X.

    1994-04-01

    The low frequency E x B turbulence driven by the shear in the mass flow velocity parallel to the magnetic field is studied using the fluid theory in a slab configuration with magnetic shear. Ion temperature gradient effects are taken into account. The eigenfunctions of the linear instability are asymmetric about the mode rational surfaces. Quasilinear Reynolds stress induced by such asymmetric fluctuations produces momentum and energy transport across the magnetic field. Analytic formulas for the parallel and perpendicular Reynolds stress, viscosity and energy transport coefficients are given. Experimental observations of the parallel and poloidal plasma flows on TEXT-U are presented and compared with the theoretical models

  4. Pressure Driven Poiseuille Flow

    DEFF Research Database (Denmark)

    Stotz, Ingo Leonardo; Iaffaldano, Giampiero; Davies, D. Rhodri

    2018-01-01

    The Pacific plate is thought to be driven mainly by slab pull, associated with subduction along the Aleutians–Japan, Marianas–Izu–Bonin and Tonga–Kermadec trenches. This implies that viscous flow within the sub–Pacific asthenosphere is mainly generated by overlying plate motion (i.e. Couette flow...

  5. Hydrodynamics of piston-driven laminar pulsating flow: Part 2. Fully developed flow

    International Nuclear Information System (INIS)

    Aygun, Cemalettin; Aydin, Orhan

    2014-01-01

    Highlights: • The piston-driven laminar pulsating flow in a pipe is studied. • Fully developed flow is examined analytically, numerically and experimentally. • An increase in F results an increase in the amplitude of the centerline velocity. • The characters of the radial velocity profiles critically depend on both the frequency and the phase angle. • The near/off-wall flow reversals are observed for F = 105, 226 and 402. - Abstract: Piston-driven pulsating flow is a specific type of pressure-driven pulsating flows. In this study, piston-driven laminar pulsating flow in a pipe is studied. This study mainly exists of two parts: developing flow and fully developed flow. In this part, hydrodynamically fully developed flow is examined analytically, numerically and experimentally. A constant value of the time-averaged Reynolds number is considered, Re = 1000. In the theoretical studies, both analytical and numerical, an inlet velocity profile representing the experimental case, i.e., the piston driven flow, is assumed. In the experiments, in the hydrodynamically fully developed region, radial velocity distribution and pressure drop are obtained using hot-wire anemometer and pressure transmitter, respectively. The effect pulsation frequency on the friction coefficient as well as velocity profiles are obtained. A good agreement is observed among analytical, numerical and experimental results

  6. Thomson scattering measurements of ion interpenetration in cylindrically converging, supersonic magnetized plasma flows

    Science.gov (United States)

    Swadling, George

    2015-11-01

    Ion interpenetration driven by high velocity plasma collisions is an important phenomenon in high energy density environments such as the interiors of ICF vacuum hohlraums and fast z-pinches. The presence of magnetic fields frozen into these colliding flows further complicates the interaction dynamics. This talk focuses on an experimental investigation of ion interpenetration in collisions between cylindrically convergent, supersonic, magnetized flows (M ~10, Vflow ~ 100km/s, ni ~ 1017cm-3) . The flows used in this study were plasma ablation streams produced by tungsten wire array z-pinches, driven by the 1.4MA, 240ns Magpie facility at Imperial College, and diagnosed using a combination of optical Thomson scattering, Faraday rotation and interferometry. Optical Thomson scattering (TS) provides time-resolved measurements of local flow velocity and plasma temperature across multiple (7 to 14) spatial positions. TS spectra are recorded simultaneously from multiple directions with respect to the probing beam, resulting in separate measurements of the rates of transverse diffusion and slowing-down of the ion velocity distribution. The measurements demonstrate flow interpenetration through the array axis at early time, and also show an axial deflection of the ions towards the anode. This deflection is induced by a toroidal magnetic field (~ 10T), frozen into the plasma that accumulates near the axis. Measurements obtained later in time show a change in the dynamics of the stream interactions, transitioning towards a collisional, shock-like interaction of the streams, and rapid radial collapse of the magnetized plasma column. The quantitative nature of the spatial profiles of the density, flow velocities and ion temperatures measured in these experiments will allow detailed verification of MHD and PIC codes used by the HEDP community. Work Supported by EPSRC (Grant No. EP/G001324/1), DOE (Cooperative Agreement Nos. DE-F03-02NA00057 & DE-SC-0001063) & Sandia National

  7. The supernova-gamma-ray burst-jet connection.

    Science.gov (United States)

    Hjorth, Jens

    2013-06-13

    The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bipolar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star, whereas the (56)Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper, I summarize the observational status of the supernova-gamma-ray burst connection in the context of the 'engine' picture of jet-driven supernovae and highlight SN 2012bz/GRB 120422A--with its luminous supernova but intermediate high-energy luminosity--as a possible transition object between low-luminosity and jet gamma-ray bursts. The jet channel for supernova explosions may provide new insights into supernova explosions in general.

  8. Flow visualization in science and mathematics

    Energy Technology Data Exchange (ETDEWEB)

    Max, Nelson; Correa, Carlos; Muelder, Chris; Yan Shi; Chen, Cheng-Kai; Ma, Kwan-Liu, E-mail: max@cs.ucdavis.ed [Department of Computer Science, University of California, Davis 1 Shields Ave., Davis California, 95616 (United States)

    2009-07-01

    We present several methods for visualizing motion, vector fields, and flows, including polygonal surface advection, visibility driven transfer functions, feature extraction and tracking, and motion frequency analysis and enhancement. They are applied to chaotic attractors, turbulent vortices, supernovae, and seismic data.

  9. Positron Survival in Type II Supernovae

    Science.gov (United States)

    1989-05-01

    B: Computer Program and Flow Diagram 53 References 59 I. Introduction Since the discovery of Supernova 1987A (a Type II supernova) in February of 1987...the fewer number of decays depositing energy within the supernova. The rate of this cooling is unknown because it is uncertain whether a pulsar was

  10. Laser driven supersonic flow over a compressible foam surface on the Nike lasera)

    Science.gov (United States)

    Harding, E. C.; Drake, R. P.; Aglitskiy, Y.; Plewa, T.; Velikovich, A. L.; Gillespie, R. S.; Weaver, J. L.; Visco, A.; Grosskopf, M. J.; Ditmar, J. R.

    2010-05-01

    A laser driven millimeter-scale target was used to generate a supersonic shear layer in an attempt to create a Kelvin-Helmholtz (KH) unstable interface in a high-energy-density (HED) plasma. The KH instability is a fundamental fluid instability that remains unexplored in HED plasmas, which are relevant to the inertial confinement fusion and astrophysical environments. In the experiment presented here the Nike laser [S. P. Obenschain et al., Phys. Plasmas 3, 2098 (1996)] was used to create and drive Al plasma over a rippled foam surface. In response to the supersonic Al flow (Mach=2.6±1.1) shocks should form in the Al flow near the perturbations. The experimental data were used to infer the existence and location of these shocks. In addition, the interface perturbations show growth that has possible contributions from both KH and Richtmyer-Meshkov instabilities. Since compressible shear layers exhibit smaller growth, it is important to use the KH growth rate derived from the compressible dispersion relation.

  11. Laser driven supersonic flow over a compressible foam surface on the Nike laser

    International Nuclear Information System (INIS)

    Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Visco, A.; Grosskopf, M. J.; Ditmar, J. R.; Aglitskiy, Y.; Velikovich, A. L.; Weaver, J. L.; Plewa, T.

    2010-01-01

    A laser driven millimeter-scale target was used to generate a supersonic shear layer in an attempt to create a Kelvin-Helmholtz (KH) unstable interface in a high-energy-density (HED) plasma. The KH instability is a fundamental fluid instability that remains unexplored in HED plasmas, which are relevant to the inertial confinement fusion and astrophysical environments. In the experiment presented here the Nike laser [S. P. Obenschain et al., Phys. Plasmas 3, 2098 (1996)] was used to create and drive Al plasma over a rippled foam surface. In response to the supersonic Al flow (Mach=2.6±1.1) shocks should form in the Al flow near the perturbations. The experimental data were used to infer the existence and location of these shocks. In addition, the interface perturbations show growth that has possible contributions from both KH and Richtmyer-Meshkov instabilities. Since compressible shear layers exhibit smaller growth, it is important to use the KH growth rate derived from the compressible dispersion relation.

  12. Progress of Laser-Driven Plasma Accelerators

    International Nuclear Information System (INIS)

    Nakajima, Kazuhisa

    2007-01-01

    There is a great interest worldwide in plasma accelerators driven by ultra-intense lasers which make it possible to generate ultra-high gradient acceleration and high quality particle beams in a much more compact size compared with conventional accelerators. A frontier research on laser and plasma accelerators is focused on high energy electron acceleration and ultra-short X-ray and Tera Hertz radiations as their applications. These achievements will provide not only a wide range of sciences with benefits of a table-top accelerator but also a basic science with a tool of ultrahigh energy accelerators probing an unknown extremely microscopic world.Harnessing the recent advance of ultra-intense ultra-short pulse lasers, the worldwide research has made a tremendous breakthrough in demonstrating high-energy high-quality particle beams in a compact scale, so called ''dream beams on a table top'', which represents monoenergetic electron beams from laser wakefield accelerators and GeV acceleration by capillary plasma-channel laser wakefield accelerators. This lecture reviews recent progress of results on laser-driven plasma based accelerator experiments to quest for particle acceleration physics in intense laser-plasma interactions and to present new outlook for the GeV-range high-energy laser plasma accelerators

  13. Transition to Collisionless Ion-Temperature-Gradient-Driven Plasma Turbulence: A Dynamical Systems Approach

    International Nuclear Information System (INIS)

    Kolesnikov, R.A.; Krommes, J.A.

    2005-01-01

    The transition to collisionless ion-temperature-gradient-driven plasma turbulence is considered by applying dynamical systems theory to a model with 10 degrees of freedom. The study of a four-dimensional center manifold predicts a 'Dimits shift' of the threshold for turbulence due to the excitation of zonal flows and establishes (for the model) the exact value of that shift

  14. Properties of the electrostatically driven helical plasma state

    Science.gov (United States)

    Akçay, Cihan; Finn, John M.; Nebel, Richard A.; Barnes, Daniel C.; Martin, Neal

    2018-02-01

    A novel plasma state has been found [Akçay et al., Phys. Plasmas 24, 052503 (2017)] in the presence of a uniform applied axial magnetic field in periodic cylindrical geometry. This state is driven by external electrostatic fields provided by helical electrodes with a (m =1 ,n =1 ) (helical) symmetry where m and n represent the poloidal and axial harmonics. The resulting plasma is a function of the cylinder radius r safety factor q0(r ) just above the pitch of the electrodes m /n =1 in the interior, where the plasma is nearly force-free. However, at the edge the current density has a component perpendicular to the magnetic field B. This perpendicular current density drives nearly Alfvénic helical plasma flows, a notable feature of these states. This state is being studied for its possible application in DC electrical transformers. We present results on several issues of importance for these applications: the transient leading to the steady state; the twist and writhe of the field lines and their relation with the current density; the properties of the current density streamlines and length of the current density lines connected to the electrodes; the sensitivity to changes in the velocity boundary conditions; the effect of varying the radial resistivity profile; and the effects of a concentrated electrode potential.

  15. How the First Stars Regulated Star Formation. II. Enrichment by Nearby Supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ke-Jung [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, Tokyo 181-8588 (Japan); Whalen, Daniel J. [Institute of Cosmology and Gravitation, Portsmouth University, Portsmouth (United Kingdom); Wollenberg, Katharina M. J.; Glover, Simon C. O.; Klessen, Ralf S., E-mail: ken.chen@nao.ac.jp [Zentrum für Astronomie, Institut für Theoretische Astrophysik, Universität Heidelberg (Germany)

    2017-08-01

    Metals from Population III (Pop III) supernovae led to the formation of less massive Pop II stars in the early universe, altering the course of evolution of primeval galaxies and cosmological reionization. There are a variety of scenarios in which heavy elements from the first supernovae were taken up into second-generation stars, but cosmological simulations only model them on the largest scales. We present small-scale, high-resolution simulations of the chemical enrichment of a primordial halo by a nearby supernova after partial evaporation by the progenitor star. We find that ejecta from the explosion crash into and mix violently with ablative flows driven off the halo by the star, creating dense, enriched clumps capable of collapsing into Pop II stars. Metals may mix less efficiently with the partially exposed core of the halo, so it might form either Pop III or Pop II stars. Both Pop II and III stars may thus form after the collision if the ejecta do not strip all the gas from the halo. The partial evaporation of the halo prior to the explosion is crucial to its later enrichment by the supernova.

  16. Electric field measurements in a kHz-driven He jet - The influence of the gas flow speed

    NARCIS (Netherlands)

    Sobota, A.; Guaitella, O.; Sretenović, G.B.; Krstić, I.B.; Kovačević, V.V.; Obrusník, A.; Nguyen, Y.N.; Zajíčková, L.; Obradović, B.M.; Kuraica, M.M.

    2016-01-01

    This report focuses on the dependence of electric field strength in the effluent of a vertically downwards-operated plasma jet freely expanding into room air as a function of the gas flow speed. A 30 kHz AC-driven He jet was used in a coaxial geometry, with an amplitude of 2 kV and gas flow between

  17. Plasma-driven liners

    International Nuclear Information System (INIS)

    Kilic, H.; Linhart, J.G.; Bortolotti, A.; Nardi, V.

    1992-01-01

    The deposition of thermal energy by laser or ion beams in an ablator is capable of producing a very large acceleration of the adjacent pusher - for power densities of 100 Terrawatts/cm 2 , ablator pressure in the range of 10 Mbar is attainable. In the case of a plasma drive such driving pressures and accelerations are not directly possible. When a snowplough (SP) is used to accelerate a thin liner, the driving pressure is that of the magnetic piston pushing the SP, i.e. at most 0.1 Mbar. However, the initial radius r 0 of the liner can be a few centimeters, instead of 1 (mm) as in the case in direct pellet implosions. In order to compete with the performance of the beam-driven liners, the plasma drive must demonstrate that a) thin liner retains a high density during the implosion (lasting a fraction of a μsec); b) radial compression ratio r 0 /r min of the order of 100 can be attained. It is also attractive to consider the staging of two or more liners in order to get sharpening and amplifications of the pressure and/or radiation pulse. If a) and b) are verified then the final pressures produced will be comparable with those of the beam-driven implosions. (author) 5 refs., 3 figs

  18. Dust in flowing magnetized plasma

    International Nuclear Information System (INIS)

    Pandey, Birendra P.; Samarian, Alex A.; Vladimirov, Sergey V.

    2009-01-01

    Plasma flows occur in almost every laboratory device and interactions of flowing plasmas with near-wall impurities and/or dust significantly affects the efficiency and lifetime of such devices. The charged dust inside the magnetized flowing plasma moves primarily under the influence of the plasma drag and electric forces. Here, the charge on the dust, plasma potential, and plasma density are calculated self-consistently. The electrons are assumed non-Boltzmannian and the effect of electron magnetization and electron-atom collisions on the dust charge is calculated in a self-consistent fashion. For various plasma magnetization parameters viz. the ratio of the electron and ion cyclotron frequencies to their respective collision frequencies, plasma-atom and ionization frequencies, the evolution of the plasma potential and density in the flow region is investigated. The variation of the dust charge profile is shown to be a sensitive function of plasma parameters. (author)

  19. Rational surfaces, ExB sheared flows and transport interplay in fusion plasmas

    International Nuclear Information System (INIS)

    Hidalgo, C.; Pedrosa, M.A.; Erents, K.

    2002-01-01

    Experimental evidence of a strong interplay between magnetic topology (rational surfaces) and the generation of ExB sheared flows has been observed in the plasma edge region of stellarator (TJ-II) and tokamak (JET) devices. Both constant and varying in time ExB sheared flows are close to the critical value to trigger the transition to improved confinement regimes, but below the power threshold to trigger the formation of transport barriers. Flows driven by fluctuations are candidates to explain these experimental results. (author)

  20. Plasma flow driven by fusion-generated alpha particles

    International Nuclear Information System (INIS)

    Ikuta, Kazunari.

    1978-05-01

    The confinement of fusion-generated alpha particles will affect the transports of the background plasma particles by the momentum transfer from the energetic alphas. The ions tend to migrate towards the center of plasma (i.e. fuel injection) and electrons towards the plasma periphery. This means the existence of a mechanism which enable to pump out the ashes in the fuel plasma because of the momentum conservation of whole plasma particles. (author)

  1. Regulation of ETG turbulence by TEM driven zonal flows

    Science.gov (United States)

    Asahi, Yuuichi; Ishizawa, Akihiro; Watanabe, Tomohiko; Tsutsui, Hiroaki; Tsuji-Iio, Shunji

    2013-10-01

    Anomalous heat transport driven by electron temperature gradient (ETG) turbulence is investigated by means of gyrokinetic simulations. It is found that the ETG turbulence can be suppressed by zonal flows driven by trapped electron modes (TEMs). The TEMs appear in a statistically steady state of ETG turbulence and generate zonal flows, while its growth rate is much smaller than those of ETGs. The TEM-driven zonal flows with lower radial wave numbers are more strongly generated than those driven by ETG modes, because of the higher zonal flow response to a density source term. An ExB shearing rate of the TEM-driven zonal flows is strong enough to suppress the long-wavelength ETG modes which make the main contribution to the turbulent transport.

  2. Transport barriers with and without shear flows in a magnetized plasma

    International Nuclear Information System (INIS)

    Martinell, Julio J.

    2014-01-01

    Different ways of producing a transport barrier in a toroidal magnetized plasma are discussed and the properties of the barriers are analyzed. The first mechanism is associated with the presence of a sheared plasma flow that is present in a limited region of the plasma, which creates a zonal flow. In contrast to the usual paradigm stating that the sheared flow reduces the turbulence correlation length and leads to suppression of the fluctuation driven transport in the region of highest shear, it is shown that from the perspective of chaotic transport of plasma particles in the fluctuation fields, the transport barrier is formed in the region of zero shear and it can be destroyed when the fluctuation level is high enough. It is also shown that finite gyroradius effects modify the dynamics and introduces new conditions for barrier formation. The second mechanism considers a method in which radio-frequency waves injected into the plasma can stabilize the drift waves and therefore the anomalous transport is reduced, creating a barrier. This process does not involve the presence of sheared flows and depends only on the effect of the RF wave field on the drift waves. The stabilizing effect in this case is due to the nonlinear ponderomotive force which acts in a way that offsets the pressure gradient destabilization. Finally, a mechanism based on the ponderomotive force of RF waves is described which produces poloidal plasma rotation around the resonant surface due to the asymmetry of induced transport; it creates a transport barrier by shear flow stabilization of turbulence

  3. Final Report. Hydrodynamics by high-energy-density plasma flow and hydrodynamics and radiative hydrodynamics with astrophysical application

    International Nuclear Information System (INIS)

    R Paul Drake

    2004-01-01

    OAK-B135 This is the final report from the project Hydrodynamics by High-Energy-Density Plasma Flow and Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications. This project supported a group at the University of Michigan in the invention, design, performance, and analysis of experiments using high-energy-density research facilities. The experiments explored compressible nonlinear hydrodynamics, in particular at decelerating interfaces, and the radiation hydrodynamics of strong shock waves. It has application to supernovae, astrophysical jets, shock-cloud interactions, and radiative shock waves

  4. Numerical Study on Blast Wave Propagation Driven by Unsteady Ionization Plasma

    International Nuclear Information System (INIS)

    Ogino, Yousuke; Sawada, Keisuke; Ohnishi, Naofumi

    2008-01-01

    Understanding the dynamics of laser-produced plasma is essential for increasing the available thrust and energy conversion efficiency from a pulsed laser to a blast wave in a gas-driven laser-propulsion system. The performance of a gas-driven laser-propulsion system depends heavily on the laser-driven blast wave dynamics as well as on the ionizing and/or recombining plasma state that sustains the blast wave. In this study, we therefore develop a numerical simulation code for a laser-driven blast wave coupled with time-dependent rate equations to explore the formation of unsteady ionizing plasma produced by laser irradiation. We will also examine the various properties of blast waves and unsteady ionizing plasma for different laser input energies

  5. Helium-driven r-process in supernovae

    International Nuclear Information System (INIS)

    Truran, J.W.; Cowan, J.J.; Cameron, A.G.W.

    1978-01-01

    The discovery of r-process anomalies in two inclusions in the Allende meteorite, together with their associated oxygen and magnesium anomalies, has caused us to examine the consequences of supernova shocks in the helium zones of massive stars. We find that powerful r-processes can operate under such conditions. The details of these processes will vary in different stellar masses. The studied Allende inclusions apparently did not receive material which had been very extensively r-processed

  6. Oblique Alfvén instabilities driven by compensated currents

    Energy Technology Data Exchange (ETDEWEB)

    Malovichko, P. [Main Astronomical Observatory, NASU, Kyiv (Ukraine); Voitenko, Y.; De Keyser, J., E-mail: voitenko@oma.be [Solar-Terrestrial Centre of Excellence, Space Physics Division, Belgian Institute for Space Aeronomy, Ringlaan-3-Avenue Circulaire, B-1180 Brussels (Belgium)

    2014-01-10

    Compensated-current systems created by energetic ion beams are widespread in space and astrophysical plasmas. The well-known examples are foreshock regions in the solar wind and around supernova remnants. We found a new oblique Alfvénic instability driven by compensated currents flowing along the background magnetic field. Because of the vastly different electron and ion gyroradii, oblique Alfvénic perturbations react differently on the currents carried by the hot ion beams and the return electron currents. Ultimately, this difference leads to a non-resonant aperiodic instability at perpendicular wavelengths close to the beam ion gyroradius. The instability growth rate increases with increasing beam current and temperature. In the solar wind upstream of Earth's bow shock, the instability growth time can drop below 10 proton cyclotron periods. Our results suggest that this instability can contribute to the turbulence and ion acceleration in space and astrophysical foreshocks.

  7. Oblique Alfvén instabilities driven by compensated currents

    International Nuclear Information System (INIS)

    Malovichko, P.; Voitenko, Y.; De Keyser, J.

    2014-01-01

    Compensated-current systems created by energetic ion beams are widespread in space and astrophysical plasmas. The well-known examples are foreshock regions in the solar wind and around supernova remnants. We found a new oblique Alfvénic instability driven by compensated currents flowing along the background magnetic field. Because of the vastly different electron and ion gyroradii, oblique Alfvénic perturbations react differently on the currents carried by the hot ion beams and the return electron currents. Ultimately, this difference leads to a non-resonant aperiodic instability at perpendicular wavelengths close to the beam ion gyroradius. The instability growth rate increases with increasing beam current and temperature. In the solar wind upstream of Earth's bow shock, the instability growth time can drop below 10 proton cyclotron periods. Our results suggest that this instability can contribute to the turbulence and ion acceleration in space and astrophysical foreshocks.

  8. Neutrino Emission from Supernovae

    Science.gov (United States)

    Janka, Hans-Thomas

    Supernovae are the most powerful cosmic sources of MeV neutrinos. These elementary particles play a crucial role when the evolution of a massive star is terminated by the collapse of its core to a neutron star or a black hole and the star explodes as supernova. The release of electron neutrinos, which are abundantly produced by electron captures, accelerates the catastrophic infall and causes a gradual neutronization of the stellar plasma by converting protons to neutrons as dominant constituents of neutron star matter. The emission of neutrinos and antineutrinos of all flavors carries away the gravitational binding energy of the compact remnant and drives its evolution from the hot initial to the cold final state. The absorption of electron neutrinos and antineutrinos in the surroundings of the newly formed neutron star can power the supernova explosion and determines the conditions in the innermost supernova ejecta, making them an interesting site for the nucleosynthesis of iron-group elements and trans-iron nuclei.

  9. Recombining Plasma and Gamma-Ray Emission in the Mixed-morphology Supernova Remnant 3C 400.2

    Energy Technology Data Exchange (ETDEWEB)

    Ergin, T. [TUBITAK Space Technologies Research Institute, ODTU Campus, 06800, Ankara (Turkey); Sezer, A. [Department of Electrical-Electronics Engineering, Avrasya University, 61250 Trabzon (Turkey); Sano, H.; Fukui, Y. [Department of Physics, Nagoya University, Chikusa-ku, Nagoya, Aichi 464–8601 (Japan); Yamazaki, R., E-mail: ergin.tulun@gmail.com, E-mail: aytap.sezer@avrasya.edu.tr, E-mail: sano@a.phys.nagoya-u.ac.jp [Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara 252–5258 (Japan)

    2017-06-10

    3C 400.2 belongs to the mixed-morphology supernova remnant class, showing center-filled X-ray and shell-like radio morphology. We present a study of 3C 400.2 with archival Suzaku and Fermi -LAT observations. We find recombining plasma (RP) in the Suzaku spectra of north–east and south–east regions. The spectra of these regions are well described by two-component thermal plasma models: the hard component is in RP, while the soft component is in collisional ionization equilibrium (CIE) conditions. The RP has enhanced abundances, indicating that the X-ray emission has an ejecta origin, while the CIE has solar abundances associated with the interstellar material. The X-ray spectra of north–west and south–west regions are best fitted by a two-component thermal plasma model: an ionizing and a CIE plasma. We have detected GeV gamma-ray emission from 3C 400.2 at the level of ∼5 σ , assuming a point-like source model with a power-law (PL) type spectrum. We have also detected a new GeV source at the level of ∼13 σ, assuming a Gaussian extension model with a PL-type spectrum in the neighborhood of the supernova remnant. We report the analysis results of 3C 400.2 and the new extended gamma-ray source, and discuss the nature of gamma-ray emission of 3C 400.2 in the context of existing NANTEN CO data, Dominion Radio Astrophysical Observatory H i data, and the Suzaku X-ray analysis results.

  10. 2. Basis of measurement of plasma flow. 2.3 Plasma flow measurements. Spectroscopic methods

    International Nuclear Information System (INIS)

    Kado, Shinichiro

    2007-01-01

    The construction of optical system, optical fiber incident system, reciprocal linear dispersion, grating smile and astigmatism of the reflection plane diffraction grating spectrometer are explained in order to measure the plasma flow. The specification of flow measurement and evaluation of 0 point of velocity are stated. For examples of measurements, the fine structures of He II (Δn = 3 - 4) in material and plasma(MAP)-II of Tokyo University, plasma flow measurement by the charge exchange recombination spectroscopy using Large Helical Device and by Zeeman spectroscopy using TRIAM-1M tokamak plasma are stated. (S.Y.)

  11. Self-separation of blood plasma from whole blood during the capillary flow in microchannel

    Science.gov (United States)

    Nunna, Bharath Babu; Zhuang, Shiqiang; Lee, Eon Soo

    2017-11-01

    Self-separation of blood plasma from whole blood in microchannels is of great importance due to the enormous range of applications in healthcare and diagnostics. Blood is a multiphase complex fluid, composed of cells suspended in blood plasma. RBCs are the suspended particles whose shape changes during the flow of blood. The primary constituents of blood are erythrocytes or red blood cells (RBCs), leukocytes or white blood cells (WBCs), thrombocytes or platelets and blood plasma. The existence of RBCs in blood makes the blood a non-Newtonian fluid. The current study of separation of blood plasma from whole blood during self-driven flows in a single microchannel without bifurcation, by enhancing the capillary effects. The change in the capillary effect results in a change in contact angle which directly influences the capillary flow. The flow velocity directly influences the net force acting on the RBCs and influence the separation process. The experiments are performed on the PDMS microchannels with different contact angles by altering the surface characteristics using plasma treatment. The change in the separation length is studied during the capillary flow of blood in microchannel. Bharath Babu Nunna is a researcher in mechanical engineering and implementing the novel and innovative technologies in the biomedical devices to enhance the sensitivity of the disease diagnosis.

  12. Production of {sup 44}Ti in neutrino-driven aspherical supernova explosions

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Shin-ichiro [Kumamoto National College of Technology, 2659-2 Suya, Goshi 861-1102 (Japan); Ono, Masaomi; Hashimoto, Masa-aki [Department of Physics, School of Sciences, Kyushu University, Fukuoka 810-8560 (Japan); Kotake, Kei [National Astronomical Observatory Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan)

    2014-05-02

    We examine the synthesis of {sup 44}Ti in a neutrino-driven aspherical supernova (SN), focusing on reaction rates related to {sup 44}Ti and rotation of a progenitor. We have performed 2D hydrodynamic simulations of SN of a 15M{sub ⊙} progenitor, whose angular velocity is manually set to be a cylindrical distribution and have followed explosive nucleosynthesis in the ejecta. We find that the faster rates of {sup 40}Ca(α,γ){sup 44}Ti and the slower rate of {sup 44}Ti(α,p){sup 47}V lead to more massive ejection of {sup 44}Ti and {sup 56}Ni and larger ratios <{sup 44}Ti/{sup 56}Ni>. Faster rotation also results in more massive ejection of {sup 44}Ti and {sup 56}Ni. Ratios <{sup 44}Ti/{sup 56}Ni> are however independent from rotation. Large masses of {sup 44}Ti and large ratios observed in SN 1987A and Cas A (> 1O{sup −4}M{sub ⊙} and 1-2 respectively) are not realized in all the models.

  13. Charged dust structures in plasmas

    International Nuclear Information System (INIS)

    Cramer, N.F.; Vladimirov, S.V.

    1999-01-01

    We report here on theoretical investigations of the mechanical-electrostatic modes of vibration of a dust-plasma crystal, extending earlier work on the transverse modes of a horizontal line of grains (where the ions flow vertically downward to a plane horizontal cathode), the modes of two such lines of grains, and the modes of a vertical string of grains. The last two arrangements have the unique feature that the effect of the background plasma on the mutual grain interaction is asymmetric because of the wake downstream of the grains studied in. The characteristic frequencies of the vibrations are dependent on the parameters of the plasma and the dust grains, such as the Debye length and the grain charge, and so measurement of the frequencies could provide diagnostics of these quantities. Although the current boom in dusty plasma research is driven mainly by such industrial applications as plasma etching, sputtering and deposition, the physical outcomes of investigations in this rapidly expanding field cover many important topics in space physics and astrophysics as well. Examples are the interaction of dust with spacecraft, the structure of planetary rings, star formation, supernova explosions and shock waves. In addition, the study of the influence of dust in environmental research, such as in the Earth's ionosphere and atmosphere, is important. The unique binding of dust particles in a plasma opens possibilities for so-called super-chemistry, where the interacting bound elements are not atoms but dust grains

  14. Instabilities and vortex dynamics in shear flow of magnetized plasmas

    International Nuclear Information System (INIS)

    Tajima, T.; Horton, W.; Morrison, P.J.; Schutkeker, J.; Kamimura, T.; Mima, K.; Abe, Y.

    1990-03-01

    Gradient-driven instabilities and the subsequent nonlinear evolution of generated vortices in sheared E x B flows are investigated for magnetized plasmas with and without gravity (magnetic curvature) and magnetic shear by using theory and implicit particle simulations. In the linear eigenmode analysis, the instabilities considered are the Kelvin-Helmholtz (K-H) instability and the resistive interchange instability. The presence of the shear flow can stabilize these instabilities. The dynamics of the K-H instability and the vortex dynamics can be uniformly described by the initial flow pattern with a vorticity localization parameter ε. The observed growth of the K-H modes is exponential in time for linearly unstable modes, secular for marginal mode, and absent until driven nonlinearly for linearly stable modes. The distance between two vortex centers experiences rapid merging while the angle θ between the axis of vortices and the external shear flow increases. These vortices proceed toward their overall coalescence, while shedding small-scale vortices and waves. The main features of vortex dynamics of the nonlinear coalescence and the tilt or the rotational instabilities of vortices are shown to be given by using a low dimension Hamiltonian representation for interacting vortex cores in the shear flow. 24 refs., 19 figs., 1 tab

  15. Thermonuclear dynamo inside ultracentrifuge with supersonic plasma flow stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Winterberg, F. [University of Nevada, Reno, Reno, Nevada (United States)

    2016-01-15

    Einstein's general theory of relativity implies the existence of virtual negative masses in the rotational reference frame of an ultracentrifuge with the negative mass density of the same order of magnitude as the positive mass density of a neutron star. In an ultracentrifuge, the repulsive gravitational field of this negative mass can simulate the attractive positive mass of a mini-neutron star, and for this reason can radially confine a dense thermonuclear plasma placed inside the centrifuge, very much as the positive mass of a star confines its plasma by its own attractive gravitational field. If the centrifuge is placed in an externally magnetic field to act as the seed field of a magnetohydrodynamic generator, the configuration resembles a magnetar driven by the release of energy through nuclear fusion, accelerating the plasma to supersonic velocities, with the magnetic field produced by the thermomagnetic Nernst effect insulating the hot plasma from the cold wall of the centrifuge. Because of the supersonic flow and the high plasma density the configuration is stable.

  16. Thermonuclear dynamo inside ultracentrifuge with supersonic plasma flow stabilization

    Science.gov (United States)

    Winterberg, F.

    2016-01-01

    Einstein's general theory of relativity implies the existence of virtual negative masses in the rotational reference frame of an ultracentrifuge with the negative mass density of the same order of magnitude as the positive mass density of a neutron star. In an ultracentrifuge, the repulsive gravitational field of this negative mass can simulate the attractive positive mass of a mini-neutron star, and for this reason can radially confine a dense thermonuclear plasma placed inside the centrifuge, very much as the positive mass of a star confines its plasma by its own attractive gravitational field. If the centrifuge is placed in an externally magnetic field to act as the seed field of a magnetohydrodynamic generator, the configuration resembles a magnetar driven by the release of energy through nuclear fusion, accelerating the plasma to supersonic velocities, with the magnetic field produced by the thermomagnetic Nernst effect insulating the hot plasma from the cold wall of the centrifuge. Because of the supersonic flow and the high plasma density the configuration is stable.

  17. Thermonuclear dynamo inside ultracentrifuge with supersonic plasma flow stabilization

    International Nuclear Information System (INIS)

    Winterberg, F.

    2016-01-01

    Einstein's general theory of relativity implies the existence of virtual negative masses in the rotational reference frame of an ultracentrifuge with the negative mass density of the same order of magnitude as the positive mass density of a neutron star. In an ultracentrifuge, the repulsive gravitational field of this negative mass can simulate the attractive positive mass of a mini-neutron star, and for this reason can radially confine a dense thermonuclear plasma placed inside the centrifuge, very much as the positive mass of a star confines its plasma by its own attractive gravitational field. If the centrifuge is placed in an externally magnetic field to act as the seed field of a magnetohydrodynamic generator, the configuration resembles a magnetar driven by the release of energy through nuclear fusion, accelerating the plasma to supersonic velocities, with the magnetic field produced by the thermomagnetic Nernst effect insulating the hot plasma from the cold wall of the centrifuge. Because of the supersonic flow and the high plasma density the configuration is stable

  18. Role of compressibility on driven magnetic reconnection

    International Nuclear Information System (INIS)

    Sato, T.; Hayashi, T.; Watanabe, K.; Horiuchi, R.; Tanaka, M.; Sawairi, N.; Kusano, K.

    1991-08-01

    Whether it is induced by an ideal (current driven) instability or by an external force, plasma flow causes a change in the magnetic field configuration and often gives rise to a current intensification locally, thereby a fast driven reconnection being driven there. Many dramatic phenomena in magnetically confined plasmas such as magnetospheric substorms, solar flares, MHD self-organization and tokamak sawtooth crash, may be attributed to this fast driven reconnection. Using a fourth order MHD simulation code it is confirmed that compressibility of the plasma plays a crucial role in leading to a fast (MHD time scale) driven reconnection. This indicates that the incompressible representation is not always applicable to the study of a global dynamical behavior of a magnetically confined plasma. (author)

  19. Rayleigh-Taylor mixing in supernova experiments

    International Nuclear Information System (INIS)

    Swisher, N. C.; Abarzhi, S. I.; Kuranz, C. C.; Arnett, D.; Hurricane, O.; Remington, B. A.; Robey, H. F.

    2015-01-01

    We report a scrupulous analysis of data in supernova experiments that are conducted at high power laser facilities in order to study core-collapse supernova SN1987A. Parameters of the experimental system are properly scaled to investigate the interaction of a blast-wave with helium-hydrogen interface, and the induced Rayleigh-Taylor instability and Rayleigh-Taylor mixing of the denser and lighter fluids with time-dependent acceleration. We analyze all available experimental images of the Rayleigh-Taylor flow in supernova experiments and measure delicate features of the interfacial dynamics. A new scaling is identified for calibration of experimental data to enable their accurate analysis and comparisons. By properly accounting for the imprint of the experimental conditions, the data set size and statistics are substantially increased. New theoretical solutions are reported to describe asymptotic dynamics of Rayleigh-Taylor flow with time-dependent acceleration by applying theoretical analysis that considers symmetries and momentum transport. Good qualitative and quantitative agreement is achieved of the experimental data with the theory and simulations. Our study indicates that in supernova experiments Rayleigh-Taylor flow is in the mixing regime, the interface amplitude contributes substantially to the characteristic length scale for energy dissipation; Rayleigh-Taylor mixing keeps order

  20. Zonal Flows Driven by Small-Scale Drift-Alfven Modes

    International Nuclear Information System (INIS)

    Li Dehui; Zhou Deng

    2011-01-01

    Generation of zonal flows by small-scale drift-Alfven modes is investigated by adopting the approach of parametric instability with the electron polarization drift included. The zonal mode can be excited by primary modes propagating at both electron and ion diamagnetic drift directions in contrast to the assertion in previous studies that only primary modes propagating in the ion diamagnetic drift directions can drive zonal instabilities. Generally, the growth rate of the driven zonal mode is in the same order as that in previous study. However, different from the previous work, the growth rate is no longer proportional to the difference between the diamagnetic drift frequencies of electrons and ions. (magnetically confined plasma)

  1. No evidence for bulk velocity from type Ia supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Huterer, Dragan; Shafer, Daniel L. [Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, MI 48109 (United States); Schmidt, Fabian, E-mail: huterer@umich.edu, E-mail: dlshafer@umich.edu, E-mail: fabians@mpa-garching.mpg.de [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching (Germany)

    2015-12-01

    We revisit the effect of peculiar velocities on low-redshift type Ia supernovae. Velocities introduce an additional guaranteed source of correlations between supernova magnitudes that should be considered in all analyses of nearby supernova samples but has largely been neglected in the past. Applying a likelihood analysis to the latest compilation of nearby supernovae, we find no evidence for the presence of these correlations, although, given the significant noise, the data is also consistent with the correlations predicted for the standard ΛCDM model. We then consider the dipolar component of the velocity correlations—the frequently studied ''bulk velocity''—and explicitly demonstrate that including the velocity correlations in the data covariance matrix is crucial for drawing correct and unambiguous conclusions about the bulk flow. In particular, current supernova data is consistent with no excess bulk flow on top of what is expected in ΛCDM and effectively captured by the covariance. We further clarify the nature of the apparent bulk flow that is inferred when the velocity covariance is ignored. We show that a significant fraction of this quantity is expected to be noise bias due to uncertainties in supernova magnitudes and not any physical peculiar motion.

  2. No evidence for bulk velocity from type Ia supernovae

    International Nuclear Information System (INIS)

    Huterer, Dragan; Shafer, Daniel L.; Schmidt, Fabian

    2015-01-01

    We revisit the effect of peculiar velocities on low-redshift type Ia supernovae. Velocities introduce an additional guaranteed source of correlations between supernova magnitudes that should be considered in all analyses of nearby supernova samples but has largely been neglected in the past. Applying a likelihood analysis to the latest compilation of nearby supernovae, we find no evidence for the presence of these correlations, although, given the significant noise, the data is also consistent with the correlations predicted for the standard ΛCDM model. We then consider the dipolar component of the velocity correlations—the frequently studied ''bulk velocity''—and explicitly demonstrate that including the velocity correlations in the data covariance matrix is crucial for drawing correct and unambiguous conclusions about the bulk flow. In particular, current supernova data is consistent with no excess bulk flow on top of what is expected in ΛCDM and effectively captured by the covariance. We further clarify the nature of the apparent bulk flow that is inferred when the velocity covariance is ignored. We show that a significant fraction of this quantity is expected to be noise bias due to uncertainties in supernova magnitudes and not any physical peculiar motion

  3. Pulsar Wind Bubble Blowout from a Supernova

    Energy Technology Data Exchange (ETDEWEB)

    Blondin, John M. [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States); Chevalier, Roger A., E-mail: blondin@ncsu.edu [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States)

    2017-08-20

    For pulsars born in supernovae, the expansion of the shocked pulsar wind nebula is initially in the freely expanding ejecta of the supernova. While the nebula is in the inner flat part of the ejecta density profile, the swept-up, accelerating shell is subject to the Rayleigh–Taylor instability. We carried out two- and three-dimensional simulations showing that the instability gives rise to filamentary structure during this initial phase but does not greatly change the dynamics of the expanding shell. The flow is effectively self-similar. If the shell is powered into the outer steep part of the density profile, the shell is subject to a robust Rayleigh–Taylor instability in which the shell is fragmented and the shocked pulsar wind breaks out through the shell. The flow is not self-similar in this phase. For a wind nebula to reach this phase requires that the deposited pulsar energy be greater than the supernova energy, or that the initial pulsar period be in the ms range for a typical 10{sup 51} erg supernova. These conditions are satisfied by some magnetar models for Type I superluminous supernovae. We also consider the Crab Nebula, which may be associated with a low energy supernova for which this scenario applies.

  4. Laser-Driven Hydrodynamic Experiments in the Turbulent Plasma Regime: from OMEGA to NIF

    International Nuclear Information System (INIS)

    Robey, H F; Miles, A R; Hansen, J F; Blue, B E; Drake, R P

    2003-01-01

    There is a great deal of interest in studying the evolution of hydrodynamic phenomena in high energy density plasmas that have transitioned beyond the initial phases of instability into an Ely developed turbulent state. Motivation for this study arises both in fusion plasmas as well as in numerous astrophysical applications where the understanding of turbulent mixing is essential. Double-shell ignition targets, for example, are subject to large growth of short wavelength perturbations on both surfaces of the high-Z inner shell. These perturbations, initiated by Richtmyer-Meshkov and Rayleigh-Taylor instabilities, can transition to a turbulent state and will lead to deleterious mixing of the cooler shell material with the hot burning fuel. In astrophysical plasmas, due to the extremely large scale, turbulent hydrodynamic mixing is also of wide-spread interest. The radial mixing that occurs in the explosion phase of core-collapse supernovae is an example that has received much attention in recent years and yet remains only poorly understood. In all of these cases, numerical simulation of the flow field is very difficult due to the large Reynolds number and corresponding wide range of spatial scales characterizing the plasma. Laboratory experiments on high energy density facilities that can access this regime are therefore of great interest. Experiments exploring the transition to turbulence that are currently being conducted on the Omega laser will be described. We will also discuss experiments being planned for the initial commissioning phases of the NIF as well as the enhanced experimental parameter space that will become available, as additional quads are made operational

  5. DC-driven plasma gun: self-oscillatory operation mode of atmospheric-pressure helium plasma jet comprised of repetitive streamer breakdowns

    Science.gov (United States)

    Wang, Xingxing; Shashurin, Alexey

    2017-02-01

    This paper presents and studies helium atmospheric pressure plasma jet comprised of a series of repetitive streamer breakdowns, which is driven by pure DC high voltage (self-oscillatory behavior). The repetition frequency of the breakdowns is governed by the geometry of discharge electrodes/surroundings and gas flow rate. Each next streamer is initiated when the electric field on the anode tip recovers after the previous breakdown and reaches the breakdown threshold value of about 2.5 kV cm-1. One type of the helium plasma gun designed using this operational principle is demonstrated. The gun operates on about 3 kV DC high voltage and is comprised of the series of the repetitive streamer breakdowns at a frequency of about 13 kHz.

  6. Laboratory observation of magnetic field growth driven by shear flow

    Energy Technology Data Exchange (ETDEWEB)

    Intrator, T. P., E-mail: intrator@lanl.gov; Feng, Y.; Sears, J.; Weber, T. [Los Alamos National Laboratory, M.S. E526, Los Alamos, New Mexico 87545 (United States); Dorf, L. [Applied Materials, Inc., Santa Clara, CA 95054 (United States); Sun, X. [University of Science and Technology, Hefei (China)

    2014-04-15

    Two magnetic flux ropes that collide and bounce have been characterized in the laboratory. We find screw pinch profiles that include ion flow v{sub i}, magnetic field B, current density J, and plasma pressure. The electron flow v{sub e} can be inferred, allowing the evaluation of the Hall J×B term in a two fluid magnetohydrodynamic Ohm's Law. Flux ropes that are initially cylindrical are mutually attracted and compress each other, which distorts the cylindrical symmetry. Magnetic field is created via the ∇×v{sub e}×B induction term in Ohm's Law where in-plane (perpendicular) shear of parallel flow (along the flux rope) is the dominant feature, along with some dissipation and magnetic reconnection. We predict and measure the growth of a quadrupole out-of-plane magnetic field δB{sub z}. This is a simple and coherent example of a shear flow driven dynamo. There is some similarity with two dimensional reconnection scenarios, which induce a current sheet and thus out-of-plane flow in the third dimension, despite the customary picture that considers flows only in the reconnection plane. These data illustrate a general and deterministic mechanism for large scale sheared flows to acquire smaller scale magnetic features, disordered structure, and possibly turbulence.

  7. Density and energy of supernova remnants

    Energy Technology Data Exchange (ETDEWEB)

    Canto, J [Manchester Univ. (UK). Dept. of Astronomy

    1977-12-01

    The effects of an interstellar magnetic field on the gas flow behind a strong shock front are considered. The ambient density and energy of supernova remnants are estimated from the intensity ratio of sulphur lines I(6717)/I(6731). It is found that, on average, the ambient density around galactic supernova remnants is 4 cm/sup -3/. The total energy appears to be the same for all supernova remnants (to within a factor = approximately 5). A mean value of 4 10/sup 51/ erg is found.

  8. Stability of plasma cylinder with current in a helical plasma flow

    Science.gov (United States)

    Leonovich, Anatoly S.; Kozlov, Daniil A.; Zong, Qiugang

    2018-04-01

    Stability of a plasma cylinder with a current wrapped by a helical plasma flow is studied. Unstable surface modes of magnetohydrodynamic (MHD) oscillations develop at the boundary of the cylinder enwrapped by the plasma flow. Unstable eigenmodes can also develop for which the plasma cylinder is a waveguide. The growth rate of the surface modes is much higher than that for the eigenmodes. It is shown that the asymmetric MHD modes in the plasma cylinder are stable if the velocity of the plasma flow is below a certain threshold. Such a plasma flow velocity threshold is absent for the symmetric modes. They are unstable in any arbitrarily slow plasma flows. For all surface modes there is an upper threshold for the flow velocity above which they are stable. The helicity index of the flow around the plasma cylinder significantly affects both the Mach number dependence of the surface wave growth rate and the velocity threshold values. The higher the index, the lower the upper threshold of the velocity jump above which the surface waves become stable. Calculations have been carried out for the growth rates of unstable oscillations in an equilibrium plasma cylinder with current serving as a model of the low-latitude boundary layer (LLBL) of the Earth's magnetic tail. A tangential discontinuity model is used to simulate the geomagnetic tail boundary. It is shown that the magnetopause in the geotail LLBL is unstable to a surface wave (having the highest growth rate) in low- and medium-speed solar wind flows, but becomes stable to this wave in high-speed flows. However, it can remain weakly unstable to the radiative modes of MHD oscillations.

  9. Final Technical Report: Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Eugenio

    2014-05-02

    The strong coupling between the different physical variables involved in the plasma transport phenomenon and the high complexity of its dynamics call for a model-based, multivariable approach to profile control where those predictive models could be exploited. The overall objective of this project has been to extend the existing body of work by investigating numerically and experimentally active control of unstable fluctuations, including fully developed turbulence and the associated cross-field particle transport, via manipulation of flow profiles in a magnetized laboratory plasma device. Fluctuations and particle transport can be monitored by an array of electrostatic probes, and Ex B flow profiles can be controlled via a set of biased concentric ring electrodes that terminate the plasma column. The goals of the proposed research have been threefold: i- to develop a predictive code to simulate plasma transport in the linear HELCAT (HELicon-CAThode) plasma device at the University of New Mexico (UNM), where the experimental component of the proposed research has been carried out; ii- to establish the feasibility of using advanced model-based control algorithms to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles, iii- to investigate the fundamental nonlinear dynamics of turbulence and transport physics. Lehigh University (LU), including Prof. Eugenio Schuster and one full-time graduate student, has been primarily responsible for control-oriented modeling and model-based control design. Undergraduate students have also participated in this project through the National Science Foundation Research Experience for Undergraduate (REU) program. The main goal of the LU Plasma Control Group has been to study the feasibility of controlling turbulence-driven transport by shaping the radial poloidal flow profile (i.e., by controlling flow shear) via biased concentric ring electrodes.

  10. Degenerate four-wave mixing mediated by ponderomotive-force-driven plasma gratings

    International Nuclear Information System (INIS)

    Lee, K.-H.; Lin, M.-W.; Pai, C.-H.; Ha, L.-C.; Lin, J.-Y.; Wang, J.; Chen, S.-Y.

    2007-01-01

    Degenerate four-wave mixing mediated by ponderomotive-force-driven plasma gratings is demonstrated in the near-infrared regime. The quadratic dependence of the reflectivity of the probe pulse on plasma density indicates that the mixing is caused by the quasineutral plasma grating driven by the laser ponderomotive force. The experiment verifies that ponderomotive force is an effective means to produce a large-amplitude short-period plasma grating, which has many important applications in ultrahigh-intensity optics. In particular, such a grating is a crucial element for the development of plasma phase-conjugate mirrors that can be used to restore the wave-front distortion that is ubiquitous in nonlinear propagation

  11. Ion acceleration in non-equilibrium plasmas driven by fast drifting electron

    Energy Technology Data Exchange (ETDEWEB)

    Castro, G. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S.Sofia 64, 95123 Catania (Italy); Di Bartolo, F., E-mail: fdibartolo@unime.it [Università di Messina, V.le F. Stagno D’Alcontres 31, 98166, Messina (Italy); Gambino, N. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Metodologie Fisiche e Chimiche per L’ingegneria, Viale A.Doria 6, 95125 Catania (Italy); Mascali, D. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); CSFNSM, Viale A. Doria 6, 95125 Catania (Italy); Romano, F.P. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); CNR-IBAM Via Biblioteca 4, 95124 Catania (Italy); Anzalone, A.; Celona, L.; Gammino, S. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Di Giugno, R. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S.Sofia 64, 95123 Catania (Italy); Lanaia, D. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Miracoli, R. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S.Sofia 64, 95123 Catania (Italy); Serafino, T. [CSFNSM, Viale A. Doria 6, 95125 Catania (Italy); Tudisco, S. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); CSFNSM, Viale A. Doria 6, 95125 Catania (Italy)

    2013-05-01

    We hereby present results on ion acceleration mechanisms in non equilibrium plasmas generated by microwaves or high intensity laser pulses. Experiments point out that in magnetized plasmas X–B conversion takes place for under resonance values of the magnetic field, i.e. an electromagnetic mode is converted into an electrostatic wave. The strong self-generated electric field, of the order of 10{sup 7} V/m, causes a E × B drift which accelerates both ions and electrons, as it is evident by localized sputtering in the plasma chamber. These fields are similar (in magnitude) to the ones obtainable in laser generated plasmas at intensity of 10{sup 12} W/cm{sup 2}. In this latter case, we observe that the acceleration mechanism is driven by electrons drifting much faster than plasma bulk, thus generating an extremely strong electric field ∼10{sup 7} V/m. The two experiments confirm that ions acceleration at low energy is possible with table-top devices and following complementary techniques: i.e. by using microwave-driven (producing CW beams) plasmas, or non-equilibrium laser-driven plasmas (producing pulsed beams). Possible applications involve ion implantation, materials surface modifications, ion beam assisted lithography, etc.

  12. AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN

    CERN Document Server

    Gschwendtner, E.; Amorim, L.; Apsimon, R.; Assmann, R.; Bachmann, A.M.; Batsch, F.; Bauche, J.; Berglyd Olsen, V.K.; Bernardini, M.; Bingham, R.; Biskup, B.; Bohl, T.; Bracco, C.; Burrows, P.N.; Burt, G.; Buttenschon, B.; Butterworth, A.; Caldwell, A.; Cascella, M.; Chevallay, E.; Cipiccia, S.; Damerau, H.; Deacon, L.; Dirksen, P.; Doebert, S.; Dorda, U.; Farmer, J.; Fedosseev, V.; Feldbaumer, E.; Fiorito, R.; Fonseca, R.; Friebel, F.; Gorn, A.A.; Grulke, O.; Hansen, J.; Hessler, C.; Hofle, W.; Holloway, J.; Huther, M.; Jaroszynski, D.; Jensen, L.; Jolly, S.; Joulaei, A.; Kasim, M.; Keeble, F.; Li, Y.; Liu, S.; Lopes, N.; Lotov, K.V.; Mandry, S.; Martorelli, R.; Martyanov, M.; Mazzoni, S.; Mete, O.; Minakov, V.A.; Mitchell, J.; Moody, J.; Muggli, P.; Najmudin, Z.; Norreys, P.; Oz, E.; Pardons, A.; Pepitone, K.; Petrenko, A.; Plyushchev, G.; Pukhov, A.; Rieger, K.; Ruhl, H.; Salveter, F.; Savard, N.; Schmidt, J.; Seryi, A.; Shaposhnikova, E.; Sheng, Z.M.; Sherwood, P.; Silva, L.; Soby, L.; Sosedkin, A.P.; Spitsyn, R.I.; Trines, R.; Tuev, P.V.; Turner, M.; Verzilov, V.; Vieira, J.; Vincke, H.; Wei, Y.; Welsch, C.P.; Wing, M.; Xia, G.; Zhang, H.

    2016-01-01

    The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the world's first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. The first experiments will focus on the self-modulation instability of the long (rms ~12 cm) proton bunch in the plasma. These experiments are planned for the end of 2016. Later, in 2017/2018, low energy (~15 MeV) electrons will be externally injected to sample the wakefields and be accelerated beyond 1 GeV. The main goals of the experiment will be summarized. A summary of the AWAKE design and construction status will be presented.

  13. The Transition to Collisionless Ion-temperature-gradient-driven Plasma Turbulence: A Dynamical Systems Approach

    International Nuclear Information System (INIS)

    Kolesnikov, R.A.; Krommes, J.A.

    2004-01-01

    The transition to collisionless ion-temperature-gradient-driven plasma turbulence is considered by applying dynamical systems theory to a model with ten degrees of freedom. Study of a four-dimensional center manifold predicts a ''Dimits shift'' of the threshold for turbulence due to the excitation of zonal flows and establishes the exact value of that shift in terms of physical parameters. For insight into fundamental physical mechanisms, the method provides a viable alternative to large simulations

  14. Cutting-edge issues of core-collapse supernova theory

    International Nuclear Information System (INIS)

    Kotake, Kei; Nakamura, Ko; Kuroda, Takami; Takiwaki, Tomoya

    2014-01-01

    Based on multi-dimensional neutrino-radiation hydrodynamic simulations, we report several cutting-edge issues about the long-veiled explosion mechanism of core-collapse supernovae (CCSNe). In this contribution, we pay particular attention to whether three-dimensional (3D) hydrodynamics and/or general relativity (GR) would or would not help the onset of explosions. By performing 3D simulations with spectral neutrino transport, we show that it is more difficult to obtain an explosion in 3D than in 2D. In addition, our results from the first generation of full general relativistic 3D simulations including approximate neutrino transport indicate that GR can foster the onset of neutrino-driven explosions. Based on our recent parametric studies using a light-bulb scheme, we discuss impacts of nuclear energy deposition behind the supernova shock and stellar rotation on the neutrino-driven mechanism, both of which have yet to be included in the self-consistent 3D supernova models. Finally we give an outlook with a summary of the most urgent tasks to extract the information about the explosion mechanisms from multi-messenger CCSN observables

  15. The Current-Driven, Ion-Acoustic Instability in a Collisionless Plasma

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1979-01-01

    The current-driven, ion-acoustic instability was investigated by means of an experiment performed in a collisionless plasma produced in a single-ended Q-machine. Reflections at the ends of the plasma column gave rise to a standing wave. Parameters of the instability were investigated, and it was ......, and it was demonstrated that the fluctuations in the plasma column behave as a classical Van der Pol oscillator. Accurate measurements of the growth rate of the instability can be performed by making explicit use of the particular properties of such a system.......The current-driven, ion-acoustic instability was investigated by means of an experiment performed in a collisionless plasma produced in a single-ended Q-machine. Reflections at the ends of the plasma column gave rise to a standing wave. Parameters of the instability were investigated...

  16. Core-Collapse Supernovae, Neutrinos, and Gravitational Waves

    Energy Technology Data Exchange (ETDEWEB)

    Ott, C.D. [TAPIR, California Institute of Technology, Pasadena, California (United States); Kavli Institute for the Physics and Mathematics of the Universe, Kashiwa, Chiba (Japan); O' Connor, E.P. [Canadian Institute for Theoretical Astrophysics, Toronto, Ontario (Canada); Gossan, S.; Abdikamalov, E.; Gamma, U.C.T. [TAPIR, California Institute of Technology, Pasadena, California (United States); Drasco, S. [Grinnell College, Grinnell, Iowa (United States); TAPIR, California Institute of Technology, Pasadena, California (United States)

    2013-02-15

    Core-collapse supernovae are among the most energetic cosmic cataclysms. They are prodigious emitters of neutrinos and quite likely strong galactic sources of gravitational waves. Observation of both neutrinos and gravitational waves from the next galactic or near extragalactic core-collapse supernova will yield a wealth of information on the explosion mechanism, but also on the structure and angular momentum of the progenitor star, and on aspects of fundamental physics such as the equation of state of nuclear matter at high densities and low entropies. In this contribution to the proceedings of the Neutrino 2012 conference, we summarize recent progress made in the theoretical understanding and modeling of core-collapse supernovae. In this, our emphasis is on multi-dimensional processes involved in the explosion mechanism such as neutrino-driven convection and the standing accretion shock instability. As an example of how supernova neutrinos can be used to probe fundamental physics, we discuss how the rise time of the electron antineutrino flux observed in detectors can be used to probe the neutrino mass hierarchy. Finally, we lay out aspects of the neutrino and gravitational-wave signature of core-collapse supernovae and discuss the power of combined analysis of neutrino and gravitational wave data from the next galactic core-collapse supernova.

  17. Core-Collapse Supernovae, Neutrinos, and Gravitational Waves

    International Nuclear Information System (INIS)

    Ott, C.D.; O'Connor, E.P.; Gossan, S.; Abdikamalov, E.; Gamma, U.C.T.; Drasco, S.

    2013-01-01

    Core-collapse supernovae are among the most energetic cosmic cataclysms. They are prodigious emitters of neutrinos and quite likely strong galactic sources of gravitational waves. Observation of both neutrinos and gravitational waves from the next galactic or near extragalactic core-collapse supernova will yield a wealth of information on the explosion mechanism, but also on the structure and angular momentum of the progenitor star, and on aspects of fundamental physics such as the equation of state of nuclear matter at high densities and low entropies. In this contribution to the proceedings of the Neutrino 2012 conference, we summarize recent progress made in the theoretical understanding and modeling of core-collapse supernovae. In this, our emphasis is on multi-dimensional processes involved in the explosion mechanism such as neutrino-driven convection and the standing accretion shock instability. As an example of how supernova neutrinos can be used to probe fundamental physics, we discuss how the rise time of the electron antineutrino flux observed in detectors can be used to probe the neutrino mass hierarchy. Finally, we lay out aspects of the neutrino and gravitational-wave signature of core-collapse supernovae and discuss the power of combined analysis of neutrino and gravitational wave data from the next galactic core-collapse supernova

  18. Electrical Processes in a Flowing Plasma with Cold Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Distefano, E.; Fraidenraich, N. [Facultad de Ciencias Fisicas y Matematicas, University of Chile, Santiago (Chile)

    1968-11-15

    The voltage-current characteristics of a flowing plasma between two electrodes is of interest for MHD power generation because of the high voltage drop necessary to make a current flow through the cool boundary layer of the plasma, lowering the efficiency of the MHD generator when the duct walls are cooled. The V-I characteristics are obtained for a combustion driven shock-tube generated plasma, and the voltage distribution is measured by probes inserted across the plasma. The gas used is argon and the plasma parameters are: T = 9000 Degree-Sign K, p = 130 mmHg, u = 2500 m/sec, n{sub e} = 1.60 x 10{sup 15} cm{sup -3}. The probe technique has allowed experimental confirmation of the high voltage drop obtained in the vicinity of the cathode. A theoretical model has been set up in order to explain the main features of this phenomenon. The model considers the voltage drop along the following regions: the turbulent boundary layer and the viscous sublayer. The structure of the first two regions are taken into account according to the Coles transformation theory. The model considers three fluids, ions, electrons and neutrals: the mass and momentum particle conservation together with the Poisson equation and continuity of electric current allows us to set up a system of four differential equations with four unknowns. Pair production is taken into account in order to explain the necessary change over from electron current in the main body of the plasma to the predominantly ionic current in the neighbourhood of the cathode wall. Numerical computation of the system of equations has been done and the main features of the experimental results are explained. (author)

  19. Neutrinos in supernovae

    International Nuclear Information System (INIS)

    Cooperstein, J.

    1986-10-01

    The role of neutrinos in Type II supernovae is discussed. An overall view of the neutrino luminosity as expected theoretically is presented. The different weak interactions involved are assessed from the standpoint of how they exchange energy, momentum, and lepton number. Particular attention is paid to entropy generation and the path to thermal and chemical equilibration, and to the phenomenon of trapping. Various methods used to calculate the neutrino flows are considered. These include trapping and leakage schemes, distribution-averaged transfer, and multi-energy group methods. The information obtained from the neutrinos caught from Supernova 1987a is briefly evaluated. 55 refs., 7 figs

  20. X-Ray Emission Properties of Supernova Remnants

    NARCIS (Netherlands)

    Vink, J.; Alsabti, A.W.; Murdin, P.

    2016-01-01

    X-ray emission from supernova remnants can be broadly divided into thermal X-ray emission from the shock-heated plasmas and in nonthermal (synchrotron) emission caused by very high-energy (10–100 TeV) electrons moving in the magnetic fields of the hot plasmas. The thermal X-ray emission of young

  1. Probing of flowing electron plasmas

    International Nuclear Information System (INIS)

    Himura, H.; Nakashima, C.; Saito, H.; Yoshida, Z.

    2001-01-01

    Probing of streaming electron plasmas with finite temperature is studied. For the first time, a current-voltage characteristic of an electric probe is measured in electron plasmas. Due to the fast flow of the electron plasmas, the characteristic curve spreads out significantly and exhibits a long tail. This feature can be explained calculating the currents collected to the probe. In flowing electron plasmas, the distribution function observed in the laboratory frame is non-Maxwellian even if the plasmas come to a state of thermal equilibrium. Another significant feature of the characteristic is that it determines a floating potential where the current equals zero, despite there being very few ions in the electron plasma. A high impedance probe, which is popularly used to determine the space potential of electron plasmas, outputs the potential. The method is available only for plasmas with density much smaller than the Brillouin limit

  2. Nonlinear mechanism for the suppression of error field magnetic islands by plasma flow

    International Nuclear Information System (INIS)

    Parker, R.D.

    1992-01-01

    Non-axisymmetric magnetic field perturbations generated, for example, by errors in the alignment of the field coils are known to lead to reduced confinement in a tokamak. By inducing the formation of small, stationary, magnetic islands on all rational surfaces they can enhance radial transport and under certain circumstances interact with MHD instabilities to trigger the onset of locked modes leading, in some cases, to disruption of the plasma discharge. Given the stationary nature of the error field islands it is natural to consider whether they can be reduced significantly by the viscous drag of a sheared flow resulting from a bulk rotation of the plasma. In this paper, we examine this interaction by modelling the nonlinear growth and saturation of force-reconnected magnetic islands driven by a corrugated boundary in a slab plasma with an initially uniform flow. A systematic parameter study is made of the time asymptotic steady state. (author) 3 figs., 5 refs

  3. Supernova-driven outflows and chemical evolution of dwarf spheroidal galaxies.

    Science.gov (United States)

    Qian, Yong-Zhong; Wasserburg, G J

    2012-03-27

    We present a general phenomenological model for the metallicity distribution (MD) in terms of [Fe/H] for dwarf spheroidal galaxies (dSphs). These galaxies appear to have stopped accreting gas from the intergalactic medium and are fossilized systems with their stars undergoing slow internal evolution. For a wide variety of infall histories of unprocessed baryonic matter to feed star formation, most of the observed MDs can be well described by our model. The key requirement is that the fraction of the gas mass lost by supernova-driven outflows is close to unity. This model also predicts a relationship between the total stellar mass and the mean metallicity for dSphs in accord with properties of their dark matter halos. The model further predicts as a natural consequence that the abundance ratios [E/Fe] for elements such as O, Mg, and Si decrease for stellar populations at the higher end of the [Fe/H] range in a dSph. We show that, for infall rates far below the net rate of gas loss to star formation and outflows, the MD in our model is very sharply peaked at one [Fe/H] value, similar to what is observed in most globular clusters. This result suggests that globular clusters may be end members of the same family as dSphs.

  4. Research status of fast flows and shocks in laboratory plasmas. Supersonic plasma flow and shock waves in various magnetic channels

    International Nuclear Information System (INIS)

    Inutake, Masaaki; Ando, Akira

    2007-01-01

    Fast plasma flow is produced by Magneto-Plasma-Dynamic Arcjet (MPDA). The properties of fast flow and shock wave in various magnetic channels are reported by the experiment results. Fast plasma flow by MPDA, shocked flow in the magnetic channel, supersonic plasma flow in the divergence magnetic nozzle, ion acoustic wave in the mirror field, transonic flow and sonic throat in the magnetic Laval nozzle, fast flow in the helical magnetic channel, and future subjects are reported. Formation of the supersonic plasma flow by the divergence magnetic nozzle and effects of background gas, helical-kink instability in the fast plasma jet, and formation of convergence magnetic nozzle near outlet are described. From the phase difference of azimuthal and axial probe array signals, the plasma has twisted structure and it rotates in the same direction of the twist. Section of MPDA, principle of magnetic acceleration of MPDA, HITOP, relation among velocities, temperature, and Mach number of He ion and atom and the discharge current, distribution of magnetic-flux density in the direction of electromagnetic field, measurement of magnetic field near MPDA exit are illustrated. (S.Y.)

  5. Observation of the L-H confinement bifurcation triggered by a turbulence-driven shear flow in a tokamak plasma.

    Science.gov (United States)

    Yan, Z; McKee, G R; Fonck, R; Gohil, P; Groebner, R J; Osborne, T H

    2014-03-28

    Comprehensive 2D turbulence and eddy flow velocity measurements on DIII-D demonstrate a rapidly increasing turbulence-driven shear flow that develops ∼100  μs prior to the low-confinement (L mode) to high-confinement (H mode) transition and appears to trigger it. These changes are localized to a narrow layer 1-2 cm inside the magnetic boundary. Increasing heating power increases the Reynolds stress, the energy transfer from turbulence to the poloidal flow, and the edge flow shearing rate that then exceeds the decorrelation rate, suppressing turbulence and triggering the transition.

  6. Effect of Equilibrium Flow on Plasma Parameters

    International Nuclear Information System (INIS)

    Mukhopadhyay, S.; Lahiri, S.; Sakanaka, P.H.; Dasgupta, B.

    2003-01-01

    The transition to high confinement modes have been identified with the occurrence of strong shear flow near the plasma boundary. Plasma flow has also been associated with various instabilities, heating and other physical processes. As a result, it has become very important to study the effect of such flows on various plasma parameters. In this paper, we present the numerical solution of plasma equilibrium with incompressible toroidal and poloidal flows in several magnetic confinement configurations including tokamaks. The code, which was reported in the last conference, has been used to solve the problem in both circular and D-shaped devices. A parametric study on the generation of shear flow due to radial electric fields has been carried out. Through this study, it has been possible to generate plasma equilibria having sharp pressure gradients which are remarkably close to those reported in various H-mode experiments. The effects of flow on reverse shear equilibria and on the position of the magnetic axis has been studied. Finally, a detailed study has been carried out to understand the effect of flows on important plasma parameters, such as the poloidal flux function, β, energy confinement time

  7. Field aligned flows driven by neutral puffing at MAST

    Science.gov (United States)

    Waters, I.; Frerichs, H.; Silburn, S.; Feng, Y.; Harrison, J.; Kirk, A.; Schmitz, O.

    2018-06-01

    Neutral deuterium gas puffing at the high field side of the mega ampere spherical tokamak (MAST) is shown to drive carbon impurity flows that are aligned with the trajectory of the magnetic field lines in the plasma scrape-off-layer. These impurity flows were directly imaged with emissions from C2+ ions at MAST by coherence imaging spectroscopy and were qualitatively reproduced in deuterium plasmas by modeling with the EMC3-EIRENE plasma edge fluid and kinetic neutral transport code. A reduced one-dimensional momentum and particle balance shows that a localized increase in the static plasma pressure in front of the neutral gas puff yields an acceleration of the plasma due to local ionization. Perpendicular particle transport yields a decay from which a parallel length scale can be determined. Parameter scans in EMC3-EIRENE were carried out to determine the sensitivity of the deuterium plasma flow phenomena to local fueling and diffusion parameters and it is found that these flows robustly form across a wide variety of plasma conditions. Finally, efforts to couple this behavior in the background plasma directly to the impurity flows observed experimentally in MAST using a trace impurity model are discussed. These results provide insight into the fueling and exhaust features at this pivotal point of the radial and parallel particle flux balance, which is a major part of the plasma fueling and exhaust characteristics in a magnetically confined fusion device.

  8. Self-organized Te Redistribution during Driven Reconnection Processes in High Temperature Plasmas

    International Nuclear Information System (INIS)

    Park, H.K.; Mazzucato, E.; Luhmann, N.C. Jr.; Domier, C.W.; Xia, Z.; Munsat, T.; Donne, A.J.H.; Classen, I.G.J.; van de Pol, M.J.

    2005-01-01

    Two-dimensional (2-D) images of electron temperature fluctuations with a high temporal and spatial resolution were employed to study the sawtooth oscillation in TEXTOR tokamak plasmas. The new findings are: (1) 2-D images revealed that the reconnection is localized and permitted the determination of the physical dimensions of the reconnection zone in the poloidal and toroidal planes. (2) The combination of a pressure driven mode and a kink instability leads to an 'X-point' reconnection process. (3) Reconnection can take place anywhere along the q∼1 rational magnetic surface (both high and low field sides). (4) Heat flow from the core to the outside of the inversion radius during the reconnection time is highly asymmetric and the behavior is collective. These new findings are compared with the characteristics of various theoretical models and experimental results for the study of the sawtooth oscillation in tokamak plasmas

  9. Schlieren Cinematography of Current Driven Plasma Jet Dynamics

    Science.gov (United States)

    Loebner, Keith; Underwood, Thomas; Cappelli, Mark

    2016-10-01

    Schlieren cinematography of a pulsed plasma deflagration jet is presented and analyzed. An ultra-high frame rate CMOS camera coupled to a Z-type laser Schlieren apparatus is used to obtain flow-field refractometry data for the continuous flow Z-pinch formed within the plasma deflagration jet. The 10 MHz frame rate for 256 consecutive frames provides high temporal resolution, enabling turbulent fluctuations and plasma instabilities to be visualized over the course of a single pulse (20 μs). The Schlieren signal is radiometrically calibrated to obtain a two dimensional mapping of the refraction angle of the axisymmetric pinch plasma, and this mapping is then Abel inverted to derive the plasma density distribution as a function radius, axial coordinate, and time. Analyses of previously unknown discharge characteristics and comparisons with prior work are discussed.

  10. Radio emission from embryonic superluminous supernova remnants

    Science.gov (United States)

    Omand, Conor M. B.; Kashiyama, Kazumi; Murase, Kohta

    2018-02-01

    It has been widely argued that Type-I superluminous supernovae (SLSNe-I) are driven by powerful central engines with a long-lasting energy injection after the core-collapse of massive progenitors. One of the popular hypotheses is that the hidden engines are fast-rotating pulsars with a magnetic field of B ˜ 1013-1015 G. Murase, Kashiyama & Mészáros proposed that quasi-steady radio/submm emission from non-thermal electron-positron pairs in nascent pulsar wind nebulae can be used as a relevant counterpart of such pulsar-driven supernovae (SNe). In this work, focusing on the nascent SLSN-I remnants, we examine constraints that can be placed by radio emission. We show that the Atacama Large Millimeter/submillimetre Array can detect the radio nebula from SNe at DL ˜ 1 Gpc in a few years after the explosion, while the Jansky Very Large Array can also detect the counterpart in a few decades. The proposed radio follow-up observation could solve the parameter degeneracy in the pulsar-driven SN model for optical/UV light curves, and could also give us clues to young neutron star scenarios for SLSNe-I and fast radio bursts.

  11. r-Process nucleosynthesis from three-dimensional jet-driven core-collapse supernovae with magnetic misalignments

    Science.gov (United States)

    Halevi, Goni; Mösta, Philipp

    2018-06-01

    We investigate r-process nucleosynthesis in three-dimensional general relativistic magnetohydrodynamic simulations of jet-driven supernovae resulting from rapidly rotating, strongly magnetized core-collapse. We explore the effect of misaligning the pre-collapse magnetic field with respect to the rotation axis by performing four simulations: one aligned model and models with 15°, 30°, and 45° misalignments. The simulations we present employ a microphysical finite-temperature equation of state and a leakage scheme that captures the overall energetics and lepton number exchange due to post-bounce neutrino emission and absorption. We track the thermodynamic properties of the ejected material with Lagrangian tracer particles and analyse its composition with the nuclear reaction network SKYNET. By using different neutrino luminosities in post-processing the tracer data with SKYNET, we constrain the impact of uncertainties in neutrino luminosities. We find that, for the aligned model considered here, the use of an approximate leakage scheme results in neutrino luminosity uncertainties corresponding to a factor of 100-1000 uncertainty in the abundance of third peak r-process elements. Our results show that for misalignments of 30° or less, r-process elements are robustly produced as long as neutrino luminosities are reasonably low (≲ 5 × 1052 erg s-1). For a more extreme misalignment of 45°, we find the production of r-process elements beyond the second peak significantly reduced. We conclude that robust r-process nucleosynthesis in magnetorotational supernovae requires a progenitor stellar core with a large poloidal magnetic field component that is at least moderately (within ˜30°) aligned with the rotation axis.

  12. Hydrodynamic bifurcation in electro-osmotically driven periodic flows

    Science.gov (United States)

    Morozov, Alexander; Marenduzzo, Davide; Larson, Ronald G.

    2018-06-01

    In this paper, we report an inertial instability that occurs in electro-osmotically driven channel flows. We assume that the charge motion under the influence of an externally applied electric field is confined to a small vicinity of the channel walls that, effectively, drives a bulk flow through a prescribed slip velocity at the boundaries. Here, we study spatially periodic wall velocity modulations in a two-dimensional straight channel numerically. At low slip velocities, the bulk flow consists of a set of vortices along each wall that are left-right symmetric, while at sufficiently high slip velocities, this flow loses its stability through a supercritical bifurcation. Surprisingly, the flow state that bifurcates from a left-right symmetric base flow has a rather strong mean component along the channel, which is similar to pressure-driven velocity profiles. The instability sets in at rather small Reynolds numbers of about 20-30, and we discuss its potential applications in microfluidic devices.

  13. Kinetic instability of electrostatic ion cyclotron waves in inter-penetrating plasmas

    Science.gov (United States)

    Bashir, M. F.; Ilie, R.; Murtaza, G.

    2018-05-01

    The Electrostatic Ion Cyclotron (EIC) instability that includes the effect of wave-particle interaction is studied owing to the free energy source through the flowing velocity of the inter-penetrating plasmas. It is shown that the origin of this current-less instability is different from the classical current driven EIC instability. The threshold conditions applicable to a wide range of plasma parameters and the estimate of the growth rate are determined as a function of the normalized flowing velocity ( u0/vt f e ), the temperature ( Tf/Ts ) and the density ratios ( nf 0/ns 0 ) of flowing component to static one. The EIC instability is driven by either flowing electrons or flowing ions, depending upon the different Doppler shifted frequency domains. It is found that the growth rate for electron-driven instability is higher than the ion-driven one. However, in both cases, the denser (hotter) is the flowing plasma, the lesser (greater) is the growth rate. The possible applications related to the terrestrial solar plasma environment are also discussed.

  14. Relation between plasma plume density and gas flow velocity in atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Yambe, Kiyoyuki; Taka, Shogo; Ogura, Kazuo

    2014-01-01

    We have studied atmospheric pressure plasma generated using a quartz tube, helium gas, and copper foil electrode by applying RF high voltage. The atmospheric pressure plasma in the form of a bullet is released as a plume into the atmosphere. To study the properties of the plasma plume, the plasma plume current is estimated from the difference in currents on the circuit, and the drift velocity is measured using a photodetector. The relation of the plasma plume density n plu , which is estimated from the current and the drift velocity, and the gas flow velocity v gas is examined. It is found that the dependence of the density on the gas flow velocity has relations of n plu ∝ log(v gas ). However, the plasma plume density in the laminar flow is higher than that in the turbulent flow. Consequently, in the laminar flow, the density increases with increasing the gas flow velocity

  15. Plasma flow in the DIII-D divertor

    International Nuclear Information System (INIS)

    Boedo, J.A.; Porter, G.D.; Schaffer, M.J.

    1998-07-01

    Indications that flows in the divertor can exhibit complex behavior have been obtained from 2-D modeling but so far remain mostly unconfirmed by experiment. An important feature of flow physics is that of flow reversal. Flow reversal has been predicted analytically and it is expected when the ionization source arising from neutral or impurity ionization in the divertor region is large, creating a high pressure zone. Plasma flows arise to equilibrate the pressure. A radiative divertor regime has been proposed in order to reduce the heat and particle fluxes to the divertor target plates. In this regime, the energy and momentum of the plasma are dissipated into neutral gas introduced in the divertor region, cooling the plasma by collisional, radiative and other atomic processes so that the plasma becomes detached from the target plates. These regimes have been the subject of extensive studies in DIII-D to evaluate their energy and particle transport properties, but only recently it has been proposed that the energy transport over large regions of the divertor must be dominated by convection instead of conduction. It is therefore important to understand the role of the plasma conditions and geometry on determining the region of convection-dominated plasma in order to properly control the heat and particle fluxes to the target plates and hence, divertor performance. The authors have observed complex structures in the deuterium ion flows in the DIII-D divertor. Features observed include reverse flow, convective flow over a large volume of the divertor and stagnant flow. They have measured large gradients in the plasma potential across the separatrix in the divertor and determined that these gradients induce poloidal flows that can potentially affect the particle balance in the divertor

  16. Multigroup models of the convective epoch in core collapse supernovae

    International Nuclear Information System (INIS)

    Swesty, F Douglas; Myra, Eric S

    2005-01-01

    Understanding the explosion mechanism of core collapse supernovae is a problem that has plagued nuclear astrophysicists since the first computational models of this phenomenon were carried out in the 1960s. Our current theories of this violent phenomenon center around multi-dimensional effects involving radiation-hydrodynamic flows of hot, dense matter and neutrinos. Modeling these multi-dimensional radiative flows presents a computational challenge that will continue to stress high-performance computing beyond the teraflops to the petaflop level. In this paper we describe a few of the scientific discoveries that we have made via terascale computational simulations of supernovae under the auspices of the SciDAC-funded Terascale Supernova Initiative

  17. Direct Numerical Simulation of Driven Cavity Flows

    NARCIS (Netherlands)

    Verstappen, R.; Wissink, J.G.; Veldman, A.E.P.

    Direct numerical simulations of 2D driven cavity flows have been performed. The simulations exhibit that the flow converges to a periodically oscillating state at Re=11,000, and reveal that the dynamics is chaotic at Re=22,000. The dimension of the attractor and the Kolmogorov entropy have been

  18. Mean and oscillating plasma flows and turbulence interactions across the L-H confinement transition.

    Science.gov (United States)

    Conway, G D; Angioni, C; Ryter, F; Sauter, P; Vicente, J

    2011-02-11

    A complex interaction between turbulence driven E × B zonal flow oscillations, i.e., geodesic acoustic modes (GAMs), the turbulence, and mean equilibrium flows is observed during the low to high (L-H) plasma confinement mode transition in the ASDEX Upgrade tokamak. Below the L-H threshold at low densities a limit-cycle oscillation forms with competition between the turbulence level and the GAM flow shearing. At higher densities the cycle is diminished, while in the H mode the cycle duration becomes too short to sustain the GAM, which is replaced by large amplitude broadband flow perturbations. Initially GAM amplitude increases as the H-mode transition is approached, but is then suppressed in the H mode by enhanced mean flow shear.

  19. Plasma rotation under a driven radial current in a tokamak

    International Nuclear Information System (INIS)

    Chang, C.S.

    1999-01-01

    The neoclassical behaviour of plasma rotation under a driven radial electrical current is studied in a tokamak geometry. An ambipolar radial electric field develops instantly in such a way that the driven current is balanced by a return current j p in the plasma. The j p x B torque pushes the plasma into a new rotation state both toroidally and poloidally. An anomalous toroidal viscosity is needed to avoid an extreme toroidal rotation speed. It is shown that the poloidal rotation relaxes to a new equilibrium speed, which is in general smaller than the E x B poloidal speed, and that the timescale for the relaxation of poloidal rotation is the same as that of toroidal rotation generation, which is usually much longer than the ion-ion collision time. (author)

  20. Cosmic Ray Acceleration in Supernova Remnants

    International Nuclear Information System (INIS)

    O'C Drury, Luke

    2005-01-01

    This paper describes some recent developments in our understanding of cosmic ray acceleration in supernova remnant shocks. It is pointed out that while good agreement now exists as to steady nonlinear modifications to the shock structure, there is also growing evidence that the mesoscopic scales may not in fact be steady and that significant instabilities associated with magnetic field amplification may be a feature of strong collisionless plasma shocks. There is strong observational evidence for such magnetic field amplification, and it appears to solve a number of long-standing issues concerned with acceleration of cosmic rays in supernova remnants

  1. RF Electron Gun with Driven Plasma Cathode

    CERN Document Server

    Khodak, Igor

    2005-01-01

    It's known that RF guns with plasma cathodes based on solid-state dielectrics are able to generate an intense electron beam. In this paper we describe results of experimental investigation of the single cavity S-band RF gun with driven plasma cathode. The experimental sample of the cathode based on ferroelectric ceramics has been designed. Special design of the cathode permits to separate spatially processes of plasma development and electron acceleration. It has been obtained at RF gun output electron beam with particle energy ~500 keV, pulse current of 4 A and pulse duration of 80 ns. Results of experimental study of beam parameters are referred in. The gun is purposed to be applied as the intense electron beam source for electron linacs.

  2. Plasma flow in toroidal systems with a separatrix

    International Nuclear Information System (INIS)

    Gribkov, V.M.; Morozov, D.Kh.; Pogutse, O.P.

    1984-01-01

    A hydrodynamic plasma flow in toroidal systems is considered. Rlasma flow lines for various magnetic configurations are calculated. A particular attention is given to studying plasma flow in configurations with two magnetic a axes and a separatrix. The flow picture i the toroidal case is shown to qualita ity to penetrate through the separatrix - the latter becomes ''perforated''. Th he pictkre of these flows is calculated. The plasma diffusion coefficient with account for the separatrix is calculated and is shown not to turn into the infin nity in the toroidal case as well. The plasma flow is analytically considered in the model with distributed current as well as in the model with current conce entrated at the oroidal system axis. In the first case the existence of ''stagnant'' regions near the magnetic axis is established from which the plasma a does not flow out

  3. Relaxed states with plasma flow

    International Nuclear Information System (INIS)

    Avinash, K.; Taylor, J.B.

    1991-01-01

    In the theory of relaxation, a turbulent plasma reaches a state of minimum energy subject to constant magnetic helicity. In this state the plasma velocity is zero. Attempts have been made by introducing a number of different constraints, to obtain relaxed states with plasma flow. It is shown that these alternative constraints depend on two self-helicities, one for ions, and one for electrons. However, whereas there are strong arguments for the effective invariance of the original magnetic-helicity, these arguments do not apply to the self-helicities. Consequently the existence of relaxed states with flow remains in doubt. (author)

  4. Interacting supernovae and supernova impostors

    Science.gov (United States)

    Tartaglia, Leonardo

    2016-02-01

    Massive stars are thought to end their lives with spectacular explosions triggered by the gravitational collapse of their cores. Interacting supernovae are generally attributed to supernova explosions occurring in dense circumstellar media, generated through mass-loss which characterisie the late phases of the life of their progenitors. In the last two decades, several observational evidences revealed that mass-loss in massive stars may be related to violent eruptions involving their outer layers, such as the luminous blue variables. Giant eruptions of extragalactic luminous blue variables, similar to that observed in Eta Car in the 19th century, are usually labelled 'SN impostors', since they mimic the behaviour of genuine SNe, but are not the final act of the life of the progenitor stars. The mechanisms producing these outbursts are still not understood, although the increasing number of observed cases triggered the efforts of the astronomical community to find possible theoretical interpretations. More recently, a number of observational evidences suggested that also lower-mass stars can experience pre-supernova outbursts, hence becoming supernova impostors. Even more interestingly, there is growing evidence of a connection among massive stars, their outbursts and interacting supernovae. All of this inspired this research, which has been focused in particular on the characterisation of supernova impostors and the observational criteria that may allow us to safely discriminate them from interacting supernovae. Moreover, the discovery of peculiar transients, motivated us to explore the lowest range of stellar masses that may experience violent outbursts. Finally, the quest for the link among massive stars, their giant eruptions and interacting supernovae, led us to study the interacting supernova LSQ13zm, which possibly exploded a very short time after an LBV-like major outburst.

  5. Non-equilibrium in flowing atmospheric plasmas

    International Nuclear Information System (INIS)

    Haas, J.C.M. de.

    1986-01-01

    This thesis deals with the fundamental aspects of two different plasmas applied in technological processes. The first one is the cesium seeded argon plasma in a closed cycle Magnetohydrodynamic (MHD) generator, the second is the thermal argon plasma in a cascade arc with an imposed flow. In Chapter 2 the influence of non-equilibrium on the mass and energy balances of a plasma is worked out. The general theory presented there can be applied to both the plasma in an MHD generator and to the cascade arc with imposed flow. Introductions to these plasmas are given in the Chapters 3 and 6 respectively. These chapters are both followed by two chapters which treat the theoretical and the experimental investigations. The results are summarized in Chapter 9. (Auth.)

  6. The nearby supernova factory

    International Nuclear Information System (INIS)

    Wood-Vasey, W.M.; Aldering, G.; Lee, B.C.; Loken, S.; Nugent, P.; Perlmutter, S.; Siegrist, J.; Wang, L.; Antilogus, P.; Astier, P.; Hardin, D.; Pain, R.; Copin, Y.; Smadja, G.; Gangler, E.; Castera, A.; Adam, G.; Bacon, R.; Lemonnier, J.-P.; Pecontal, A.; Pecontal, E.; Kessler, R.

    2004-01-01

    The Nearby Supernova Factory (SNfactory) is an ambitious project to find and study in detail approximately 300 nearby Type Ia supernovae (SNe Ia) at redshifts 0.03 < z < 0.08. This program will provide an exceptional data set of well-studied SNe in the nearby smooth Hubble flow that can be used as calibration for the current and future programs designed to use SNe to measure the cosmological parameters. The first key ingredient for this program is a reliable supply of Hubble-flow SNe systematically discovered in unprecedented numbers using the same techniques as those used in distant SNe searches. In 2002, 35 SNe were found using our test-bed pipeline for automated SN search and discovery. The pipeline uses images from the asteroid search conducted by the Near Earth Asteroid Tracking group at JPL. Improvements in our subtraction techniques and analysis have allowed us to increase our effective SN discovery rate to ∼12 SNe/month in 2003

  7. Supernova explosions

    CERN Document Server

    Branch, David

    2017-01-01

    Targeting advanced students of astronomy and physics, as well as astronomers and physicists contemplating research on supernovae or related fields, David Branch and J. Craig Wheeler offer a modern account of the nature, causes and consequences of supernovae, as well as of issues that remain to be resolved. Owing especially to (1) the appearance of supernova 1987A in the nearby Large Magellanic Cloud, (2) the spectacularly successful use of supernovae as distance indicators for cosmology, (3) the association of some supernovae with the enigmatic cosmic gamma-ray bursts, and (4) the discovery of a class of superluminous supernovae, the pace of supernova research has been increasing sharply. This monograph serves as a broad survey of modern supernova research and a guide to the current literature. The book’s emphasis is on the explosive phases of supernovae. Part 1 is devoted to a survey of the kinds of observations that inform us about supernovae, some basic interpreta tions of such data, and an overview of t...

  8. Plasma profiles and flows in the high-field side scrape-off layer in Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Smick, N. [MIT Plasma Science and Fusion Center, NW17-170, 175 Albany St., Cambridge, MA 02139 (United States)]. E-mail: nsmick@mit.edu; LaBombard, B. [MIT Plasma Science and Fusion Center, NW17-170, 175 Albany St., Cambridge, MA 02139 (United States); Pitcher, C.S. [132 Bowood Ave., Toronto, M4N1Y5 (Canada)

    2005-03-01

    A novel, magnetically-driven swing probe was recently installed near the midplane on the high-field side SOL in Alcator C-Mod. The probe collects plasma from co- and counter-current directions during its respective 0-90 deg and 90-180 deg of motion, thus providing profiles of density, electron temperature and plasma flow parallel to magnetic field lines (Mach number, M{sub parallel}) up to the separatrix. Results are reported from discharges with different magnetic topologies: lower single-null, upper single-null, and double-null. In single-null, a strong parallel flow (vertical bar M{sub parallel} vertical bar {approx} 1) is detected, which is always directed from the low- to high-field SOL. In double-null discharges, e-folding lengths in the high-field SOL are a factor of {approx}4 shorter than the low-field SOL. Thus, plasma appears to 'fill-in' the high-field SOL in single-null plasmas, not by cross-field transport but by parallel flow from the low-field SOL - a picture consistent with a very strong ballooning-like component to the cross-field transport.

  9. Energy confinement in JT-60 lower hybrid current driven plasmas

    International Nuclear Information System (INIS)

    Ushigusa, K.; Imai, T.; Naito, O.; Ikeda, Y.; Tsuji, S.; Uehara, K.

    1990-01-01

    The energy confinement in high power lower hybrid current driven (LHCD) plasmas has been studied in the JT-60 tokamak. At a plasma current of 1 MA, the diamagnetically estimated energy confinement time in LHCD plasmas has almost the same value as the confinement time in ohmically heated plasmas at n-bar e ∼ 1.0x10 19 m -3 . The confinement time of high power LHCD plasmas (P LH E varies as to P LH α n e β I p 0 with α + β ∼ -0.3. (author). Letter-to-the-editor. 12 refs, 5 figs

  10. Related Progenitor Models for Long-duration Gamma-Ray Bursts and Type Ic Superluminous Supernovae

    Science.gov (United States)

    Aguilera-Dena, David R.; Langer, Norbert; Moriya, Takashi J.; Schootemeijer, Abel

    2018-05-01

    We model the late evolution and mass loss history of rapidly rotating Wolf–Rayet stars in the mass range 5 M ⊙…100 M ⊙). We find that quasi-chemically homogeneously evolving single stars computed with enhanced mixing retain very little or no helium and are compatible with Type Ic supernovae. The more efficient removal of core angular momentum and the expected smaller compact object mass in our lower-mass models lead to core spins in the range suggested for magnetar-driven superluminous supernovae. Our higher-mass models retain larger specific core angular momenta, expected for long-duration gamma-ray bursts in the collapsar scenario. Due to the absence of a significant He envelope, the rapidly increasing neutrino emission after core helium exhaustion leads to an accelerated contraction of the whole star, inducing a strong spin-up and centrifugally driven mass loss at rates of up to {10}-2 {M}ȯ {yr}}-1 in the last years to decades before core collapse. Because the angular momentum transport in our lower-mass models enhances the envelope spin-up, they show the largest relative amounts of centrifugally enforced mass loss, i.e., up to 25% of the expected ejecta mass. Our most massive models evolve into the pulsational pair-instability regime. We would thus expect signatures of interaction with a C/O-rich circumstellar medium for Type Ic superluminous supernovae with ejecta masses below ∼10 M ⊙ as well as for the most massive engine-driven explosions with ejecta masses above ∼30 M ⊙. Signs of such interaction should be observable at early epochs of the supernova explosion; they may be related to bumps observed in the light curves of superluminous supernovae, or to the massive circumstellar CO-shell proposed for Type Ic superluminous supernova Gaia16apd.

  11. Dielectric barrier discharge plasma actuator for flow control

    Science.gov (United States)

    Opaits, Dmitry Florievich

    Electrohydrodynamic (EHD) and magnetohydrodynamic phenomena are being widely studied for aerodynamic applications. The major effects of these phenomena are heating of the gas, body force generation, and enthalpy addition or extraction, [1, 2, 3]. In particular, asymmetric dielectric barrier discharge (DBD) plasma actuators are known to be effective EHD device in aerodynamic control, [4, 5]. Experiments have demonstrated their effectiveness in separation control, acoustic noise reduction, and other aeronautic applications. In contrast to conventional DBD actuators driven by sinusoidal voltages, we proposed and used a voltage profile consisting of nanosecond pulses superimposed on dc bias voltage. This produces what is essentially a non-self-sustained discharge: the plasma is generated by repetitive short pulses, and the pushing of the gas occurs primarily due to the bias voltage. The advantage of this non-self-sustained discharge is that the parameters of ionizing pulses and the driving bias voltage can be varied independently, which adds flexibility to control and optimization of the actuators performance. Experimental studies were conducted of a flow induced in a quiescent room air by a single DBD actuator. A new approach for non-intrusive diagnostics of plasma actuator induced flows in quiescent gas was proposed, consisting of three elements coupled together: the Schlieren technique, burst mode of plasma actuator operation, and 2-D numerical fluid modeling. During the experiments, it was found that DBD performance is severely limited by surface charge accumulation on the dielectric. Several ways to mitigate the surface charge were found: using a reversing DC bias potential, three-electrode configuration, slightly conductive dielectrics, and semi conductive coatings. Force balance measurements proved the effectiveness of the suggested configurations and advantages of the new voltage profile (pulses+bias) over the traditional sinusoidal one at relatively low

  12. Magnetohydrodynamic simulation of kink instability and plasma flow during sustainment of a coaxial gun spheromak

    International Nuclear Information System (INIS)

    Kanki, Takashi; Nagata, Masayoshi; Kagei, Yasuhiro

    2010-01-01

    Kink instability and the subsequent plasma flow during the sustainment of a coaxial gun spheromak are investigated by three-dimensional nonlinear magnetohydrodynamic simulations. Analysis of the parallel current density λ profile in the central open column revealed that the n = 1 mode structure plays an important role in the relaxation and current drive. The toroidal flow (v t ≈ 37 km/s) is driven by magnetic reconnection occurring as a result of the helical kink distortion of the central open column during repetitive plasmoid ejection and merging. (author)

  13. Flowing dusty plasma experiments: generation of flow and measurement techniques

    Science.gov (United States)

    Jaiswal, S.; Bandyopadhyay, P.; Sen, A.

    2016-12-01

    A variety of experimental techniques for the generation of subsonic/supersonic dust fluid flows and means of measuring such flow velocities are presented. The experiments have been carried out in a \\Pi -shaped dusty plasma experimental device with micron size kaolin/melamine formaldehyde particles embedded in a background of argon plasma created by a direct current glow discharge. A stationary dust cloud is formed over the cathode region by precisely balancing the pumping speed and gas flow rate. A flow of dust particles/fluid is generated by additional gas injection from a single or dual locations or by altering the dust confining potential. The flow velocity is then estimated by three different techniques, namely, by super particle identification code, particle image velocimetry analysis and the excitation of dust acoustic waves. The results obtained from these three different techniques along with their merits and demerits are discussed. An estimation of the neutral drag force responsible for the generation as well as the attenuation of the dust fluid flow is made. These techniques can be usefully employed in laboratory devices to investigate linear and non-linear collective excitations in a flowing dusty plasma.

  14. Multidimensional simulations of core-collapse supernovae with CHIMERA

    Science.gov (United States)

    Lentz, Eric J.; Bruenn, S. W.; Yakunin, K.; Endeve, E.; Blondin, J. M.; Harris, J. A.; Hix, W. R.; Marronetti, P.; Messer, O. B.; Mezzacappa, A.

    2014-01-01

    Core-collapse supernovae are driven by a multidimensional neutrino radiation hydrodynamic (RHD) engine, and full simulation requires at least axisymmetric (2D) and ultimately symmetry-free 3D RHD simulation. We present recent and ongoing work with our multidimensional RHD supernova code CHIMERA to understand the nature of the core-collapse explosion mechanism and its consequences. Recently completed simulations of 12-25 solar mass progenitors(Woosley & Heger 2007) in well resolved (0.7 degrees in latitude) 2D simulations exhibit robust explosions meeting the observationally expected explosion energy. We examine the role of hydrodynamic instabilities (standing accretion shock instability, neutrino driven convection, etc.) on the explosion dynamics and the development of the explosion energy. Ongoing 3D and 2D simulations examine the role that simulation resolution and the removal of the imposed axisymmetry have in the triggering and development of an explosion from stellar core collapse. Companion posters will explore the gravitational wave signals (Yakunin et al.) and nucleosynthesis (Harris et al.) of our simulations.

  15. Overview of the nearby supernova factory

    International Nuclear Information System (INIS)

    Aldering, Greg; Adam, Gilles; Antilogus, Pierre; Astier, Pierre; Bacon, Roland; Bongard, S.; Bonnaud, C.; Copin, Yannick; Hardin, D.; Howell, D. Andy; Lemmonnier, Jean-Pierre; Levy, J.-M.; Loken, S.; Nugent, Peter; Pain, Reynald; Pecontal, Arlette; Pecontal, Emmanuel; Perlmutter, Saul; Quimby, Robert; Schahmaneche, Kyan; Smadja, Gerard; Wood-Vasey, W. Michael

    2002-01-01

    The Nearby Supernova Factory (SNfactory) is an international experiment designed to lay the foundation for the next generation of cosmology experiments (such as CFHTLS, wP, SNAP and LSST) which will measure the expansion history of the Universe using Type Ia supernovae. The SNfactory will discover and obtain frequent lightcurve spectrophotometry covering 3200-10000 (angstrom) for roughly 300 Type Ia supernovae at the loW--redshift end of the smooth Hubble flow. The quantity, quality, breadth of galactic environments, and homogeneous nature of the SNfactory dataset will make it the premier source of calibration for the Type Ia supernova width-brightness relation and the intrinsic supernova colors used for K-correction and correction for extinction by host-galaxy dust. This dataset will also allow an extensive investigation of additional parameters which possibly influence the quality of Type Ia supernovae as cosmological probes. The SNfactory search capabilities and folloW--up instrumentation include wide-field CCD imagers on two 1.2-m telescopes (via collaboration with the Near Earth Asteroid Tracking team at JPL and the QUEST team at Yale), and a two-channel integral-field-unit optical spectrograph/imager being fabricated for the University of Hawaii 2.2-m telescope. In addition to ground-based folloW--up, UV spectra for a subsample of these supernovae will be obtained with HST. The pipeline to obtain, transfer via wireless and standard internet, and automatically process the search images is in operation. Software and hardware development is now underway to enable the execution of folloW--up spectroscopy of supernova candidates at the Hawaii 2.2-m telescope via automated remote control of the telescope and the IFU spectrograph/imager

  16. Structure of parallel-velocity-shear-driven mode in toroidal plasmas

    International Nuclear Information System (INIS)

    Dong, J.Q.; Xu, W.B.; Zhang, Y.Z.; Horton, W.

    1998-01-01

    It is shown that the Fourier-ballooning representation is appropriate for the study of short-wavelength drift-like perturbation in toroidal plasmas with a parallel velocity shear (PVS). The radial structure of the mode driven by a PVS is investigated in a torus. The Reynolds stress created by PVS turbulence, and proposed as one of the sources for a sheared poloidal plasma rotation, is analyzed. It is demonstrated that a finite ion temperature may strongly enhance the Reynolds stress creation ability from PVS-driven turbulence. The correlation of this observation with the requirement that ion heating power be higher than a threshold value for the formation of an internal transport barrier is discussed. copyright 1998 American Institute of Physics

  17. Radial structure of curvature-driven instabilities in a hot-electron plasma

    International Nuclear Information System (INIS)

    Spong, D.A.; Berk, H.L.; Van Dam, J.W.

    1984-01-01

    A nonlocal analysis of curvature-driven instabilities for a hot-electron ring interacting with a warm background plasma has been made. Four different instability modes characteristic of hot-electron plasmas have been examined: the high-frequency hot-electron interchange (at frequencies larger than the ion-cyclotron frequency), the compressional Alfven instability, the interacting background pressure-driven interchange, and the conventional hot-electron interchange (at frequencies below the ion-cyclotron frequency). The decoupling condition between core and hot-electron plasmas has also been examined, and its influence on the background and hot-electron interchange stability boundaries has been studied. The assumed equilibrium plasma profiles and resulting radial mode structure differ somewhat from those used in previous local analytic estimates; however, when the analysis is calibrated to the appropriate effective radial wavelength of the nonlocal calculation, reasonable agreement is obtained. Comparison with recent experimental measurements indicates that certain of these modes may play a role in establishing operating boundaries for the ELMO Bumpy Torus-Scale (EBT-S) experiment. The calculations given here indicate the necessity of having core plasma outside the ring to prevent the destabilizing wave resonance of the precessional mode with a cold plasma

  18. Supernova 1604, Kepler’s Supernova, and Its Remnant

    NARCIS (Netherlands)

    Vink, J.; Alsabti, A.W.; Murdin, P.

    2016-01-01

    Supernova 1604 is the last galactic supernova for which historical records exist. Johannes Kepler’s name is attached to it, as he published a detailed account of the observations made by himself and European colleagues. Supernova 1604 was very likely a type Ia supernova, which exploded 350–750 pc

  19. High energy density Z-pinch plasmas using flow stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Shumlak, U., E-mail: shumlak@uw.edu; Golingo, R. P., E-mail: shumlak@uw.edu; Nelson, B. A., E-mail: shumlak@uw.edu; Bowers, C. A., E-mail: shumlak@uw.edu; Doty, S. A., E-mail: shumlak@uw.edu; Forbes, E. G., E-mail: shumlak@uw.edu; Hughes, M. C., E-mail: shumlak@uw.edu; Kim, B., E-mail: shumlak@uw.edu; Knecht, S. D., E-mail: shumlak@uw.edu; Lambert, K. K., E-mail: shumlak@uw.edu; Lowrie, W., E-mail: shumlak@uw.edu; Ross, M. P., E-mail: shumlak@uw.edu; Weed, J. R., E-mail: shumlak@uw.edu [Aerospace and Energetics Research Program, University of Washington, Seattle, Washington, 98195-2250 (United States)

    2014-12-15

    The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes – Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. A sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results and

  20. Turbulent mixed buoyancy driven flow and heat transfer in lid driven enclosure

    International Nuclear Information System (INIS)

    Mishra, Ajay Kumar; Sharma, Anil Kumar

    2015-01-01

    Turbulent mixed buoyancy driven flow and heat transfer of air in lid driven rectangular enclosure has been investigated for Grashof number in the range of 10 8 to 10 11 and for Richardson number 0.1, 1 and 10. Steady two dimensional Reynolds-Averaged-Navier-Stokes equations and conservation equations of mass and energy, coupled with the Boussinesq approximation, are solved. The spatial derivatives in the equations are discretized using the finite-element method. The SIMPLE algorithm is used to resolve pressure-velocity coupling. Turbulence is modeled with the k-ω closure model with physical boundary conditions along with the Boussinesq approximation, for the flow and heat transfer. The predicted results are validated against benchmark solutions reported in literature. The results include stream lines and temperature fields are presented to understand flow and heat transfer characteristics. There is a marked reduction in mean Nusselt number (about 58%) as the Richardson number increases from 0.1 to 10 for the case of Ra=10 10 signifying the effect of reduction of top lid velocity resulting in reduction of turbulent mixing. (author)

  1. VERTICAL STRUCTURE OF A SUPERNOVA-DRIVEN TURBULENT, MAGNETIZED INTERSTELLAR MEDIUM

    International Nuclear Information System (INIS)

    Hill, Alex S.; Matthew Haffner, L.; Ryan Joung, M.; Mac Low, Mordecai-Mark; Benjamin, Robert A.; Klingenberg, Christian; Waagan, Knut

    2012-01-01

    Stellar feedback drives the circulation of matter from the disk to the halo of galaxies. We perform three-dimensional magnetohydrodynamic simulations of a vertical column of the interstellar medium with initial conditions typical of the solar circle in which supernovae drive turbulence and determine the vertical stratification of the medium. The simulations were run using a stable, positivity-preserving scheme for ideal MHD implemented in the FLASH code. We find that the majority (≈90%) of the mass is contained in thermally stable temperature regimes of cold molecular and atomic gas at T 4.2 K, with strong peaks in probability distribution functions of temperature in both the cold and warm regimes. The 200-10 4.2 K gas fills 50%-60% of the volume near the plane, with hotter gas associated with supernova remnants (30%-40%) and cold clouds ( 5 K) gas accounts for most of the mass and volume, while hot gas dominates at |z| > 3 kpc. The magnetic field in our models has no significant impact on the scale heights of gas in each temperature regime; the magnetic tension force is approximately equal to and opposite the magnetic pressure, so the addition of the field does not significantly affect the vertical support of the gas. The addition of a magnetic field does reduce the fraction of gas in the cold ( 4 K) gas. However, our models lack rotational shear and thus have no large-scale dynamo, which reduces the role of the field in the models compared to reality. The supernovae drive oscillations in the vertical distribution of halo gas, with the period of the oscillations ranging from ≈30 Myr in the T 6 K gas, in line with predictions by Walters and Cox.

  2. Perspectives on continuum flow models for force-driven nano-channel liquid flows

    Science.gov (United States)

    Beskok, Ali; Ghorbanian, Jafar; Celebi, Alper

    2017-11-01

    A phenomenological continuum model is developed using systematic molecular dynamics (MD) simulations of force-driven liquid argon flows confined in gold nano-channels at a fixed thermodynamic state. Well known density layering near the walls leads to the definition of an effective channel height and a density deficit parameter. While the former defines the slip-plane, the latter parameter relates channel averaged density with the desired thermodynamic state value. Definitions of these new parameters require a single MD simulation performed for a specific liquid-solid pair at the desired thermodynamic state and used for calibration of model parameters. Combined with our observations of constant slip-length and kinematic viscosity, the model accurately predicts the velocity distribution and volumetric and mass flow rates for force-driven liquid flows in different height nano-channels. Model is verified for liquid argon flow at distinct thermodynamic states and using various argon-gold interaction strengths. Further verification is performed for water flow in silica and gold nano-channels, exhibiting slip lengths of 1.2 nm and 15.5 nm, respectively. Excellent agreements between the model and the MD simulations are reported for channel heights as small as 3 nm for various liquid-solid pairs.

  3. Curvature-driven instabilities in a hot-electron plasma: radial analysis

    International Nuclear Information System (INIS)

    Berk, H.L.; Van Dam, J.W.; Rosenbluth, M.N.; Spong, D.A.

    1981-12-01

    The theory of unfavorable curvature-driven instabilities is developed for a plasma interacting with a hot electron ring whose drift frequencies are larger than the growth rates predicted from conventional magnetohydrodynamic theory. A z-pinch model is used to emphasize the radial structure of the problem. Stability criteria are obtained for the five possible modes of instability: the conventional hot electron interchange, a high-frequency hot electron interchange (at frequencies larger than the ion cyclotron frequency), a compressional instability, a background pressure-driven interchange, and an interacting pressure-driven interchange

  4. Generation of sheared poloidal flows via Reynolds stress and transport barrier physics

    International Nuclear Information System (INIS)

    Hidalgo, C.; Pedrosa, M.A.; Sanchez, E.; Balbin, R.; Lopez-Fraguas, A.; Milligen, B. van; Silva, C.; Fernandes, H.; Varandas, C.A.F.; Riccardi, C.; Carrozza, R.; Fontanesi, M.; Carreras, B.A.; Garcia, L.

    2000-01-01

    A view of the latest experimental results and progress in the understanding of the role of poloidal flows driven by fluctuations via Reynolds stress is given. Reynolds stress shows a radial gradient close to the velocity shear layer location in tokamaks and stellarators, indicating that this mechanism may drive significant poloidal flows in the plasma boundary. Observation of the generation of ExB sheared flows via Reynolds stress at the ion Bernstein resonance layer has been noticed in toroidal magnetized plasmas. The experimental evidence of sheared ExB flows linked to the location of rational surfaces in stellarator plasmas might be interpreted in terms of Reynolds stress sheared driven flows. These results show that ExB sheared flows driven by fluctuations can play an important role in the generation of transport barriers. (author)

  5. Experimental Investigation of Hypersonic Flow and Plasma Aerodynamic Actuation Interaction

    International Nuclear Information System (INIS)

    Sun Quan; Cheng Bangqin; Li Yinghong; Cui Wei; Yu Yonggui; Jie Junhun

    2013-01-01

    For hypersonic flow, it was found that the most effective plasma actuator is derived from an electromagnetic perturbation. An experimental study was performed between hypersonic flow and plasma aerodynamic actuation interaction in a hypersonic shock tunnel, in which a Mach number of 7 was reached. The plasma discharging characteristic was acquired in static flows. In a hypersonic flow, the flow field can affect the plasma discharging characteristics. DC discharging without magnetic force is unstable, and the discharge channel cannot be maintained. When there is a magnetic field, the energy consumption of the plasma source is approximately three to four times larger than that without a magnetic field, and at the same time plasma discharge can also affect the hypersonic flow field. Through schlieren pictures and pressure measurement, it was found that plasma discharging could induce shockwaves and change the total pressure and wall pressure of the flow field

  6. On the Origin of Hard X-ray Structures in the VELA Supernova Remnant

    Science.gov (United States)

    Gvaramadze, V. V.

    1998-12-01

    We propose an alternative explanation for the origin of two hard X-ray structures recently discovered in the central part of the Vela supernova remnant (SNR) by Willmore et al. (1992, MNRAS, 254, 139) and Markwardt & Ogelman (1995, Nature, 375, 40; 1997, ApJ, 480, L13), and interpreted as a plerion and a pulsar jet respectively. We suggest that the first structure is a dense material shed by the supernova progenitor star during the red supergiant stage, and reheated after the supernova exploded, while the "jet" is simply a dense filament in the Vela SNR's general shell, whose origin is connected with the Rayleigh-Taylor instability in the (main-sequence) wind-driven shell reaccelerated by the supernova blast wave.

  7. Supernova VLBI

    Science.gov (United States)

    Bartel, N.

    2009-08-01

    We review VLBI observations of supernovae over the last quarter century and discuss the prospect of imaging future supernovae with space VLBI in the context of VSOP-2. From thousands of discovered supernovae, most of them at cosmological distances, ˜50 have been detected at radio wavelengths, most of them in relatively nearby galaxies. All of the radio supernovae are Type II or Ib/c, which originate from the explosion of massive progenitor stars. Of these, 12 were observed with VLBI and four of them, SN 1979C, SN 1986J, SN 1993J, and SN 1987A, could be imaged in detail, the former three with VLBI. In addition, supernovae or young supernova remnants were discovered at radio wavelengths in highly dust-obscured galaxies, such as M82, Arp 299, and Arp 220, and some of them could also be imaged in detail. Four of the supernovae so far observed were sufficiently bright to be detectable with VSOP-2. With VSOP-2 the expansion of supernovae can be monitored and investigated with unsurpassed angular resolution, starting as early as the time of the supernova's transition from its opaque to transparent stage. Such studies can reveal, in a movie, the aftermath of a supernova explosion shortly after shock break out.

  8. Plasma Flows in Crossed Magnetic and Electric Fields

    International Nuclear Information System (INIS)

    Belikov, A.G.

    2005-01-01

    The effect of the magnitude and direction of an external electric field on the plasma flowing through a magnetic barrier is studied by numerically solving two-fluid MHD equations. The drift velocity of the plasma flow and the distribution of the flow electrons over transverse velocities are found to depend on the magnitude and direction of the electric field. It is shown that the direction of the induced longitudinal electric field is determined by the direction of the external field and that the electric current generated by the plasma flow significantly disturbs the barrier field

  9. Stationary shear flows in CGL anisotropic toroidal plasmas

    International Nuclear Information System (INIS)

    Pastukhov, V.P.; Ilgisonis, V.I.

    1996-01-01

    Recently a general structure of stationary shear flows in toroidal plasmas was obtained in the frame of ideal isotropic-pressure MHD model. The structure of the stationary plasma flows was shown to be determined by a hidden symmetry of MHD equations inherent in the toroidal systems with nested magnetic surfaces. However, the characteristic frequencies of the stationary plasma motion can considerably exceed the collisional frequencies in real plasma experiments. In this case the CGL collisionless MHD model seems to be more adequate than the simplified isotropic-pressure MHD model to describe the stationary plasma flows. In this paper we have generalized our approach to analyze the stationary plasma flows in the frame of the collisionless CGL model. We have found again that the hidden symmetry inherent in the toroidal topology results in two integral invariants which depend on two independent surface functions. The structure of stationary flows for CGL model is still the same as for isotropic MHD, however, the pressure tensor components satisfy a appreciably modifies the steady state force-balance equation. These results are applied to analyze the generalized equilibrium in axisymmetric (tokamak-like) magnetic confinement systems

  10. Generator of the low-temperature heterogeneous plasma flow

    Science.gov (United States)

    Yusupov, D. I.; Gadzhiev, M. Kh; Tyuftyaev, A. S.; Chinnov, V. F.; Sargsyan, M. A.

    2018-01-01

    A generator of low-temperature dc plasma with an expanding channel of an output electrode for gas-thermal spraying was designed and constructed. The delivery of the sprayed powder into the cathode and anode arc-binding zones or into the plasma jet below the anode binding was realized. The electrophysical characteristics of both the plasma torch and the heterogeneous plasma flow with Al2O3 powder are studied. It is shown that the current-voltage characteristic (CVC) of a plasma torch depends on the gas flow rate. If the flow rate varies from 1 to 3 g/s, the falling CVC becomes gradually increasing. The speed and temperature of the sprayed powder are determined.

  11. Introduction of fusion driven subcritical system plasma design

    International Nuclear Information System (INIS)

    Bin Wu

    2003-01-01

    Fusion driven subcritical nuclear system (FDS) is a multifunctional hybrid reactor, which could breed nuclear fuel, transmute long-lived wastes, producing tritium and so on. This paper presents an introduction of FDS plasma design. Several different advance equilibrium configurations have been proposed and a 1.5-D discharge simulation of FDS was also present

  12. Individual renal plasma flow determination in 2 minutes

    International Nuclear Information System (INIS)

    Schlegel, J.U.; Hamway, S.A.

    1976-01-01

    A method is described for determining effective renal plasma flow, using the renal counts 1 to 2 minutes after injection and applying background subtraction as a ratio to the total amount of radioactivity injected intravenously with appropriate correction for kidney depth. It appears that this simple approach for determination of effective renal plasma flow within a matter of 2 minutes is accurate and reliable, and should be useful for a number of applications when it is important to determine total and individual renal plasma flow. The approach is recommended as a screening procedure in lieu of the determination of blood urea nitrogen and serum creatinine, with the additional advantages of gross morphology and determination of individual renal plasma flow in an absolute as well as relative manner

  13. Plasma Turbulence Suppression and Transport Barrier Formation by Externally Driven RF Waves in Spherical Tokamaks

    International Nuclear Information System (INIS)

    Bruma, C.; Cuperman, S.C.; Komoshvili, K.

    2002-01-01

    Turbulent transport of heat and particles is the principle obstacle confronting controlled fusion today. Thus, we investigate quantitatively the suppression of turbulence and formation of transport barriers in spherical tokamaks by sheared electric fields generated by externally driven radio-frequency (RF) waves, in the frequency range o)A n o] < o)ci (e)A and o)ci are the Alfven and ion cyclotron frequencies). This investigation consists of the solution of the full-wave equation for a spherical tokamak in the presence of externally driven fast waves and the evaluation of the power dissipation by the mode-converted Alfven waves. This in turn, provides a radial flow shear responsible for the suppression of plasma turbulence. Thus, a strongly non-linear equation for the radial sheared electric field is solved, the turbulent transport suppression rate is evaluated and compared with the ion temperature gradient (ITG) instability increment. For illustration, the case of START-like device (Sykes 2000) is treated. Thus, (i) the exact D-shape cross-section is considered; (ii) additional kinetic (including Landau damping) and particle trapping effects are added to the resistive two-fluid dielectric tensor operator; (iii) a finite extension antenna located on the low-field-side of the plasma is considered; (iv) a rigorous 2.5 finite elements numerical code (Sewell 1993) is used; and (v) the turbulence and transport barrier generated as a result of wave-plasma interaction is evaluated

  14. On generation of Alfvenic-like fluctuations by drift wave-zonal flow system in large plasma device experiments

    International Nuclear Information System (INIS)

    Horton, W.; Correa, C.; Chagelishvili, G. D.; Avsarkisov, V. S.; Lominadze, J. G.; Perez, J. C.; Kim, J.-H.; Carter, T. A.

    2009-01-01

    According to recent experiments, magnetically confined fusion plasmas with ''drift wave-zonal flow turbulence'' (DW-ZF) give rise to broadband electromagnetic waves. Sharapov et al. [Europhysics Conference Abstracts, 35th EPS Conference on Plasma Physics, Hersonissos, 2008, edited by P. Lalousis and S. Moustaizis (European Physical Society, Switzerland, 2008), Vol. 32D, p. 4.071] reported an abrupt change in the magnetic turbulence during L-H transitions in Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)] plasmas. A broad spectrum of Alfvenic-like (electromagnetic) fluctuations appears from ExB flow driven turbulence in experiments on the large plasma device (LAPD) [W. Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] facility at UCLA. Evidence of the existence of magnetic fluctuations in the shear flow region in the experiments is shown. We present one possible theoretical explanation of the generation of electromagnetic fluctuations in DW-ZF systems for an example of LAPD experiments. The method used is based on generalizing results on shear flow phenomena from the hydrodynamics community. In the 1990s, it was realized that fluctuation modes of spectrally stable nonuniform (sheared) flows are non-normal. That is, the linear operators of the flows modal analysis are non-normal and the corresponding eigenmodes are not orthogonal. The non-normality results in linear transient growth with bursts of the perturbations and the mode coupling, which causes the generation of electromagnetic waves from the drift wave-shear flow system. We consider shear flow that mimics tokamak zonal flow. We show that the transient growth substantially exceeds the growth of the classical dissipative trapped-particle instability of the system.

  15. Electron Parametric Instabilities Driven by Relativistically Intense Laser Light in Plasma

    Science.gov (United States)

    Barr, H. C.; Mason, P.; Parr, D. M.

    1999-08-01

    A unified treatment of electron parametric instabilities driven by ultraintense laser light in plasma is described. It is valid for any intensity, polarization, plasma density, and scattering geometry. The method is applied to linearly polarized light in both underdense plasma and overdense plasma accessible by self-induced transparency. New options arise which are hybrids of stimulated Raman scattering, the two plasmon decay, the relativistic modulational and filamentation instabilities, and stimulated harmonic generation. There is vigorous growth over a wide range of wave numbers and harmonics.

  16. Plasma flow switch characterization for the Los Alamos Foil Implosion Project

    International Nuclear Information System (INIS)

    Bowers, R.L.; Brownell, J.H.; Greene, A.E.; Peterson, D.L.

    1990-01-01

    The next system design under consideration for the Los Alamos Foil Implosion Project is projected to deliver tens of mega-amperes of electrical current produced by high-explosive driven flux compression generators on a time scale of about one microsecond to a load foil. The use of such generators, with time scales of order several tenths of a millisecond, leads to considerable pulse shaping problems. Previously it was noted that a commutating switch might serve as an efficient alternative to a closing switch in transferring current from a coaxial transmission line to a cylindrically imploding load. Research at the Air Force Weapons Laboratory (AFWL) has met with considerable success in efficiently transferring currents of order 10 MA to an imploding liner using the plasma flow switch concept (PFS). Besides efficiently transferring current, the plasma flow switch protects the load region from high voltages generated by an opening switch until the current is present to provide magnetic insulation. For these reasons, a PFS is being investigated as the final pulse shaping step in the design. A series of capacitor bank experiments is also being fielded to help investigate physics issues and to benchmark the codes

  17. Modeling particle emission and power flow in pulsed-power driven, nonuniform transmission lines

    Directory of Open Access Journals (Sweden)

    Nichelle Bruner

    2008-04-01

    Full Text Available Pulsed-power driven x-ray radiographic systems are being developed to operate at higher power in an effort to increase source brightness and penetration power. Essential to the design of these systems is a thorough understanding of electron power flow in the transmission line that couples the pulsed-power driver to the load. In this paper, analytic theory and fully relativistic particle-in-cell simulations are used to model power flow in several experimental transmission-line geometries fielded on Sandia National Laboratories’ upgraded Radiographic Integrated Test Stand [IEEE Trans. Plasma Sci. 28, 1653 (2000ITPSBD0093-381310.1109/27.901250]. Good agreement with measured electrical currents is demonstrated on a shot-by-shot basis for simulations which include detailed models accounting for space-charge-limited electron emission, surface heating, and stimulated particle emission. Resonant cavity modes related to the transmission-line impedance transitions are also shown to be excited by electron power flow. These modes can drive oscillations in the output power of the system, degrading radiographic resolution.

  18. Unraveling the Origin of Overionized Plasma in the Galactic Supernova Remnant W49B

    Science.gov (United States)

    Pearson, Sarah; Lopez, L. A.; Ramirez-Ruiz, E.; Castro, D.; Yamaguchi, H.; Slane, P. O.; Smith, R. K.

    2013-04-01

    In this presentation, I present maps of overionized plasma in the Galactic supernova remnant (SNR) W49B based on a recent 220 ks Chandra Advanced CCD Imaging Spectrometer observation. Overionized plasmas (those where ions are stripped of more electrons than they should be for a given electron temperature) have been found recently in several SNRs, and the physical origin of the rapid cooling necessary to produce them remains uncertain. To assess the cooling scenario responsible for overionization, we performed a spatially-resolved spectroscopic analysis of W49B, measuring the elec- tron temperature by modeling the bremsstrahlung continuum and comparing it to the temperature given by the flux ratio of He-like to H-like lines of sulfur, argon, and calcium. Using these results, we find that the west region of W49B is the most overionized, with a gradient of increasing overionization from East to West. As the ejecta expansion is impeded by molecular material in the east but not in the west, our overionization maps suggest the dominant cooling mechanism is adiabatic expansion of the hot plasma instead of thermal conduction. Furthermore, we find calcium has the greatest degree of overionization relative to argon and sulfur; this result arises because calcium has a longer recombination timescale. Thus, we caution that measurement of overionization is dependent on which elements one employs in their line ratio analysis.

  19. Atmospheric pressure plasma jet's characterization and surface wettability driven by neon transformer

    Science.gov (United States)

    Elfa, R. R.; Nafarizal, N.; Ahmad, M. K.; Sahdan, M. Z.; Soon, C. F.

    2017-03-01

    Atmospheric pressure plasma driven by Neon transformer power supply argon is presented in this paper. Atmospheric pressure plasma system has attracted researcher interest over low pressure plasma as it provides a flexibility process, cost-efficient, portable device and vacuum-free device. Besides, another golden key of this system is the wide promising application in the field of work cover from industrial and engineering to medical. However, there are still numbers of fundamental investigation that are necessary such as device configuration, gas configuration and its effect. Dielectric barrier discharge which is also known as atmospheric pressure plasma discharge is created when there is gas ionization process occur which enhance the movement of atom and electron and provide energetic particles. These energetic particles can provide modification and cleaning property to the sample surface due to the bombardment of the high reactive ion and radicals to the sample surface. In order to develop atmospheric pressure plasma discharge, a high voltage and high frequency power supply is needed. In this work, we used a neon transformer power supply as the power supply. The flow of the Ar is feed into 10 mm cylinder quartz tube with different treatment time in order to investigate the effect of the plasma discharge. The analysis of each treatment time is presented by optical emission spectroscopy (OES) and water contact angle (WCA) measurement. The increase of gas treatment time shows increases intensity of reactive Ar and reduces the angle of water droplets in water contact angle. Treatment time of 20 s microslide glass surface shows that the plasma needle discharges have modified the sample surface from hydrophilic surface to superhydrophilic surface. Thus, this leads to another interesting application in reducing sample surface adhesion to optimize productivity in the industry of paintings, semiconductor and more.

  20. Shedding New Light on Exploding Stars: Tera-Scale Simulation of Neutrino-Driven Supernovae and their Nucleosynthesis. Final Report

    International Nuclear Information System (INIS)

    Fuller, George M.

    2006-01-01

    Goals: I took seriously the charge to SciDAC P.I.'s to go after outstanding and key physics problems with cutting-edge numerical science. I proposed solving a key problem in core collapse supernova physics: the evolution of neutrino flavors in the supernova environment. A great deal may be riding on the solution to this problem. First, laboratory physics outstripped the supernova theorists, providing us with neutrino mass-squared differences and two of the three vacuum mixing angles. This data had not been incorporated into core collapse supernova models before, but it clearly pointed to the possibility of major changes to our existing supernova neutrino paradigm. Second, knowing how the neutrino and antineutrino energy spectra and fluxes evolved through flavor inter-conversion could be crucial for determining and understanding the supernova neutrino signal, light p-process, and r-process nucleosynthesis, and possibly even the shock re-heating problem. Moreover, much about fundamental neutrino properties remains unresolved by terrestrial experiment (e.g., the neutrino mass hierarchy, θ 13 , etc.). Unraveling the supernova neutrino flavor evolution problem coupled with a future Galactic supernova signal could allow determination of these unknown neutrino properties. Results and Findings: We solved the problem of coherent neutrino flavor evolution (both 2 x 2 and 3 x 3) in the supernova environment, for the first time incorporating self-consistently the nonlinear geometric and quantum trajectory coupling outlined above. The results were unexpected and surprising. These results hold out the possibility that a future Galactic supernova neutrino signal could give us significant insights into both fundamental neutrino physics, otherwise inacces- sible in the lab (e.g., the neutrino mass hierarchy, θ 13 ), and key issues in supernova physics (e.g., distinguishing between Fe core collapse and O-Ne-Mg core collapse events). First, the numerical solution to this problem

  1. Solar Dynamo Driven by Periodic Flow Oscillation

    Science.gov (United States)

    Mayr, Hans G.; Hartle, Richard E.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    We have proposed that the periodicity of the solar magnetic cycle is determined by wave mean flow interactions analogous to those driving the Quasi Biennial Oscillation in the Earth's atmosphere. Upward propagating gravity waves would produce oscillating flows near the top of the radiation zone that in turn would drive a kinematic dynamo to generate the 22-year solar magnetic cycle. The dynamo we propose is built on a given time independent magnetic field B, which allows us to estimate the time dependent, oscillating components of the magnetic field, (Delta)B. The toroidal magnetic field (Delta)B(sub phi) is directly driven by zonal flow and is relatively large in the source region, (Delta)(sub phi)/B(sub Theta) much greater than 1. Consistent with observations, this field peaks at low latitudes and has opposite polarities in both hemispheres. The oscillating poloidal magnetic field component, (Delta)B(sub Theta), is driven by the meridional circulation, which is difficult to assess without a numerical model that properly accounts for the solar atmosphere dynamics. Scale-analysis suggests that (Delta)B(sub Theta) is small compared to B(sub Theta) in the dynamo region. Relative to B(sub Theta), however, the oscillating magnetic field perturbations are expected to be transported more rapidly upwards in the convection zone to the solar surface. As a result, (Delta)B(sub Theta) (and (Delta)B(sub phi)) should grow relative to B(sub Theta), so that the magnetic fields reverse at the surface as observed. Since the meridional and zonai flow oscillations are out of phase, the poloidal magnetic field peaks during times when the toroidal field reverses direction, which is observed. With the proposed wave driven flow oscillation, the magnitude of the oscillating poloidal magnetic field increases with the mean rotation rate of the fluid. This is consistent with the Bode-Blackett empirical scaling law, which reveals that in massive astrophysical bodies the magnetic moment tends

  2. Multiscale gyrokinetics for rotating tokamak plasmas: fluctuations, transport and energy flows.

    Science.gov (United States)

    Abel, I G; Plunk, G G; Wang, E; Barnes, M; Cowley, S C; Dorland, W; Schekochihin, A A

    2013-11-01

    This paper presents a complete theoretical framework for studying turbulence and transport in rapidly rotating tokamak plasmas. The fundamental scale separations present in plasma turbulence are codified as an asymptotic expansion in the ratio ε = ρi/α of the gyroradius to the equilibrium scale length. Proceeding order by order in this expansion, a set of coupled multiscale equations is developed. They describe an instantaneous equilibrium, the fluctuations driven by gradients in the equilibrium quantities, and the transport-timescale evolution of mean profiles of these quantities driven by the interplay between the equilibrium and the fluctuations. The equilibrium distribution functions are local Maxwellians with each flux surface rotating toroidally as a rigid body. The magnetic equilibrium is obtained from the generalized Grad-Shafranov equation for a rotating plasma, determining the magnetic flux function from the mean pressure and velocity profiles of the plasma. The slow (resistive-timescale) evolution of the magnetic field is given by an evolution equation for the safety factor q. Large-scale deviations of the distribution function from a Maxwellian are given by neoclassical theory. The fluctuations are determined by the 'high-flow' gyrokinetic equation, from which we derive the governing principle for gyrokinetic turbulence in tokamaks: the conservation and local (in space) cascade of the free energy of the fluctuations (i.e. there is no turbulence spreading). Transport equations for the evolution of the mean density, temperature and flow velocity profiles are derived. These transport equations show how the neoclassical and fluctuating corrections to the equilibrium Maxwellian act back upon the mean profiles through fluxes and heating. The energy and entropy conservation laws for the mean profiles are derived from the transport equations. Total energy, thermal, kinetic and magnetic, is conserved and there is no net turbulent heating. Entropy is produced

  3. Self-generated zonal flows in the plasma turbulence driven by trapped-ion and trapped-electron instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Drouot, T.; Gravier, E.; Reveille, T.; Collard, M. [Institut Jean Lamour, UMR 7198 CNRS - Université de Lorraine, 54 506 Vandoeuvre-lès-Nancy Cedex (France)

    2015-10-15

    This paper presents a study of zonal flows generated by trapped-electron mode and trapped-ion mode micro turbulence as a function of two plasma parameters—banana width and electron temperature. For this purpose, a gyrokinetic code considering only trapped particles is used. First, an analytical equation giving the predicted level of zonal flows is derived from the quasi-neutrality equation of our model, as a function of the density fluctuation levels and the banana widths. Then, the influence of the banana width on the number of zonal flows occurring in the system is studied using the gyrokinetic code. Finally, the impact of the temperature ratio T{sub e}/T{sub i} on the reduction of zonal flows is shown and a close link is highlighted between reduction and different gyro-and-bounce-average ion and electron density fluctuation levels. This reduction is found to be due to the amplitudes of gyro-and-bounce-average density perturbations n{sub e} and n{sub i} gradually becoming closer, which is in agreement with the analytical results given by the quasi-neutrality equation.

  4. Magnetized Target Fusion Driven by Plasma Liners

    Science.gov (United States)

    Thio, Y. C. Francis; Cassibry, Jason; Eskridge, Richard; Kirkpatrick, Ronald C.; Knapp, Charles E.; Lee, Michael; Martin, Adam; Smith, James; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    For practical applications of magnetized target fusion, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Quasi-spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a quasi-spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC). Theoretical analysis and computer modeling of the concept are presented. It is shown that, with the appropriate choice of the flow parameters in the liner and the target, the impact between the liner and the target plasma can be made to be shockless in the liner or to generate at most a very weak shock in the liner. Additional information is contained in the original extended abstract.

  5. Kelvin-Helmholtz instability in a bounded plasma flow

    International Nuclear Information System (INIS)

    Burinskaya, T. M.

    2008-01-01

    Kelvin-Helmholtz instability in a three-layer plane geometry is investigated theoretically. It is shown that, in a three-layer system (in contrast to the traditionally considered case in which instability develops at the boundary between two plasma flows), instability can develop at an arbitrary ratio of the plasma flow velocity to the ion-acoustic velocity. Perturbations with wavelengths on the order of the flow thickness or longer can increase even at a zero temperature. The system can also be unstable against long-wavelength perturbations if the flow velocity at one of the boundaries is lower than the sum of the Alfven velocities in the flow and the ambient plasma. The possibility of applying the results obtained to interpret the experimental data acquired in the framework of the CLUSTER multisatellite project is discussed. It follows from these data that, in many cases, the propagation of an accelerated particle flow in the plasma-sheet boundary layer of the Earth's magnetotail is accompanied by the generation of magnetic field oscillations propagating with a velocity on the order of the local Alfven velocity.

  6. Plasma flow healing of magnetic islands in stellarators

    International Nuclear Information System (INIS)

    Hegna, C. C.

    2012-01-01

    Recent experiments from the large helical device (LHD) demonstrate a correlation between the “healing” of vacuum magnetic islands in stellarators and changes in the plasma flow. A model explaining this phenomenon is developed based on self-consistent torque balance and island evolution equations. In conventional stellarators, neoclassical flow damping physics plays an important role in establishing the flow profiles. The balance of neoclassical damping and cross-field viscosity produces a radial boundary layer for the plasma rotation profile outside the separatrix of a locked magnetic island. The width of this boundary layer decreases as the plasma becomes less collisional. Associated with these flow effects are plasma currents flowing in the island region that attempt to suppress island formation. These currents are enhanced as the collisionality drops making magnetic island healing occur more readily in high temperature conventional stellarators. The analytic theory produces a critical β for healing that scales monotonically with collisionality and is in qualitative agreement with LHD observations.

  7. Self-consistent Langmuir waves in resonantly driven thermal plasmas

    Science.gov (United States)

    Lindberg, R. R.; Charman, A. E.; Wurtele, J. S.

    2007-12-01

    The longitudinal dynamics of a resonantly driven Langmuir wave are analyzed in the limit that the growth of the electrostatic wave is slow compared to the bounce frequency. Using simple physical arguments, the nonlinear distribution function is shown to be nearly invariant in the canonical particle action, provided both a spatially uniform term and higher-order spatial harmonics are included along with the fundamental in the longitudinal electric field. Requirements of self-consistency with the electrostatic potential yield the basic properties of the nonlinear distribution function, including a frequency shift that agrees closely with driven, electrostatic particle simulations over a range of temperatures. This extends earlier work on nonlinear Langmuir waves by Morales and O'Neil [G. J. Morales and T. M. O'Neil, Phys. Rev. Lett. 28, 417 (1972)] and Dewar [R. L. Dewar, Phys. Plasmas 15, 712 (1972)], and could form the basis of a reduced kinetic treatment of plasma dynamics for accelerator applications or Raman backscatter.

  8. Self-consistent Langmuir waves in resonantly driven thermal plasmas

    International Nuclear Information System (INIS)

    Lindberg, R. R.; Charman, A. E.; Wurtele, J. S.

    2007-01-01

    The longitudinal dynamics of a resonantly driven Langmuir wave are analyzed in the limit that the growth of the electrostatic wave is slow compared to the bounce frequency. Using simple physical arguments, the nonlinear distribution function is shown to be nearly invariant in the canonical particle action, provided both a spatially uniform term and higher-order spatial harmonics are included along with the fundamental in the longitudinal electric field. Requirements of self-consistency with the electrostatic potential yield the basic properties of the nonlinear distribution function, including a frequency shift that agrees closely with driven, electrostatic particle simulations over a range of temperatures. This extends earlier work on nonlinear Langmuir waves by Morales and O'Neil [G. J. Morales and T. M. O'Neil, Phys. Rev. Lett. 28, 417 (1972)] and Dewar [R. L. Dewar, Phys. Plasmas 15, 712 (1972)], and could form the basis of a reduced kinetic treatment of plasma dynamics for accelerator applications or Raman backscatter

  9. Transport hysteresis and zonal flow stimulation in magnetized plasmas

    Science.gov (United States)

    Gravier, E.; Lesur, M.; Reveille, T.; Drouot, T.; Médina, J.

    2017-12-01

    A hysteresis in the relationship between zonal flows and electron heating is observed numerically by using gyrokinetic simulations in fusion plasmas. As the electron temperature increases, a first transition occurs, at a given electron/ion temperature ratio, above which zonal flows are much weaker than before the transition, leading to a poorly confined plasma. Beyond this transition, even if the electron temperature is lowered to a moderate value, the plasma fails to recover a dynamic state with strong zonal flows. Then, as the electron temperature decreases further, a new transition appears, at a temperature lower than the first transition, below which the zonal flows are stronger than they were initially. The confinement of the plasma and the heat flux are thus found to be sensitive to the history of the magnetized plasma. These transitions are associated with large exchanges of energy between the modes corresponding to instabilities ( m> 0 ) and zonal flows ( m = 0 ). We also observe that up to the first transition it is possible to use a control method to stimulate the appearance of zonal flows and therefore the confinement of the plasma. Beyond that transition, this control method is no longer effective.

  10. Aspherical supernovae

    International Nuclear Information System (INIS)

    Kasen, Daniel Nathan

    2004-01-01

    Although we know that many supernovae are aspherical, the exact nature of their geometry is undetermined. Because all the supernovae we observe are too distant to be resolved, the ejecta structure can't be directly imaged, and asymmetry must be inferred from signatures in the spectral features and polarization of the supernova light. The empirical interpretation of this data, however, is rather limited--to learn more about the detailed supernova geometry, theoretical modeling must been undertaken. One expects the geometry to be closely tied to the explosion mechanism and the progenitor star system, both of which are still under debate. Studying the 3-dimensional structure of supernovae should therefore provide new break throughs in our understanding. The goal of this thesis is to advance new techniques for calculating radiative transfer in 3-dimensional expanding atmospheres, and use them to study the flux and polarization signatures of aspherical supernovae. We develop a 3-D Monte Carlo transfer code and use it to directly fit recent spectropolarimetric observations, as well as calculate the observable properties of detailed multi-dimensional hydrodynamical explosion simulations. While previous theoretical efforts have been restricted to ellipsoidal models, we study several more complicated configurations that are tied to specific physical scenarios. We explore clumpy and toroidal geometries in fitting the spectropolarimetry of the Type Ia supernova SN 2001el. We then calculate the observable consequences of a supernova that has been rendered asymmetric by crashing into a nearby companion star. Finally, we fit the spectrum of a peculiar and extraordinarily luminous Type Ic supernova. The results are brought to bear on three broader astrophysical questions: (1) What are the progenitors and the explosion processes of Type Ia supernovae? (2) What effect does asymmetry have on the observational diversity of Type Ia supernovae, and hence their use in cosmology? (3) And

  11. Toward the Understanding of the Physical Origin of Recombining Plasma in the Supernova Remnant IC 443

    Science.gov (United States)

    Matsumura, Hideaki; Tanaka, Takaaki; Uchida, Hiroyuki; Okon, Hiromichi; Tsuru, Takeshi Go

    2017-12-01

    We perform a spatially resolved spectroscopic analysis of X-ray emission from the supernova remnant (SNR) IC 443 with Suzaku. All of the spectra are well reproduced by a model consisting of a collisional ionization equilibrium (CIE) and two recombining plasma (RP) components. Although previous X-ray studies found an RP in the northeastern region, this is the first report on RPs in the other parts of the remnant. The electron temperature, kT e , of the CIE component is almost uniform at ∼0.2 keV across the remnant. The CIE plasma has metal abundances consistent with solar and is concentrated toward the rim of the remnant, suggesting that it is of shocked interstellar medium origin. The two RP components have different kT e : one in the range of 0.16–0.28 keV and the other in the range of 0.48–0.67 keV. The electron temperatures of both RP components decrease toward the southeast, where the SNR shock is known to be interacting with a molecular cloud. We also find the normalization ratio of the lower-kT e RP to higher-kT e RP components increases toward the southeast. Both results suggest the X-ray emitting plasma in the southeastern region is significantly cooled by some mechanism. One of the plausible cooling mechanisms is a thermal conduction between the hot plasma and the molecular cloud. If the cooling proceeds faster than the recombination timescale of the plasma, the same mechanism can account for the recombining plasma as well.

  12. On The Origin Of Two-Shell Supernova Remnants

    Science.gov (United States)

    Gvaramadze, Vasilii

    2007-07-01

    The proper motion of massive stars could cause them to explode far from the geometric centers of their wind-driven bubbles and thereby could affect the symmetry of the resulting diffuse supernova remnants (SNRs). We use this fact to explain the origin of SNRs consisting of two partially overlapping shells (e.g. Cygnus Loop, 3C 400.2, etc.).

  13. Estimation of Flow Channel Parameters for Flowing Gas Mixed with Air in Atmospheric-pressure Plasma Jets

    Science.gov (United States)

    Yambe, Kiyoyuki; Saito, Hidetoshi

    2017-12-01

    When the working gas of an atmospheric-pressure non-equilibrium (cold) plasma flows into free space, the diameter of the resulting flow channel changes continuously. The shape of the channel is observed through the light emitted by the working gas of the atmospheric-pressure plasma. When the plasma jet forms a conical shape, the diameter of the cylindrical shape, which approximates the conical shape, defines the diameter of the flow channel. When the working gas flows into the atmosphere from the inside of a quartz tube, the gas mixes with air. The molar ratio of the working gas and air is estimated from the corresponding volume ratio through the relationship between the diameter of the cylindrical plasma channel and the inner diameter of the quartz tube. The Reynolds number is calculated from the kinematic viscosity of the mixed gas and the molar ratio. The gas flow rates for the upper limit of laminar flow and the lower limit of turbulent flow are determined by the corresponding Reynolds numbers estimated from the molar ratio. It is confirmed that the plasma jet length and the internal plasma length associated with strong light emission increase with the increasing gas flow rate until the rate for the upper limit of laminar flow and the lower limit of turbulent flow, respectively. Thus, we are able to explain the increasing trend in the plasma lengths with the diameter of the flow channel and the molar ratio by using the cylindrical approximation.

  14. Intermittency and transition to chaos in the cubical lid-driven cavity flow

    Energy Technology Data Exchange (ETDEWEB)

    Loiseau, J-Ch [Department of Mechanics, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Robinet, J-Ch [Laboratoire DynFluid, Arts et Métiers ParisTech, F-75013 Paris (France); Leriche, E, E-mail: loiseau@mech.kth.se [Laboratoire de Mécanique de Lille, Université Lille 1, F-59655 Villeneuve d’Ascq (France)

    2016-12-15

    Transition from steady state to intermittent chaos in the cubical lid-driven cavity flow is investigated numerically. Fully three-dimensional stability analyses have revealed that the flow experiences an Andronov–Poincaré–Hopf bifurcation at a critical Reynolds number Re {sub c} = 1914. As for the 2D-periodic lid-driven cavity flows, the unstable mode originates from a centrifugal instability of the primary vortex core. A Reynolds–Orr analysis reveals that the unstable perturbation relies on a combination of the lift-up and anti lift-up mechanisms to extract its energy from the base flow. Once linearly unstable, direct numerical simulations show that the flow is driven toward a primary limit cycle before eventually exhibiting intermittent chaotic dynamics. Though only one eigenpair of the linearized Navier–Stokes operator is unstable, the dynamics during the intermittencies are surprisingly well characterized by one of the stable eigenpairs. (paper)

  15. Supersonic shear flows in laser driven high-energy-density plasmas created by the Nike laser

    Science.gov (United States)

    Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Grosskopf, M. J.; Ditmar, J. R.; Aglitskiy, Y.; Weaver, J. L.; Velikovich, A. L.; Plewa, T.

    2008-11-01

    In high-energy-density (HED) plasmas the Kelvin-Helmholtz (KH) instability plays an important role in the evolution of Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) unstable interfaces, as well as material interfaces that experience the passage one or multiple oblique shocks. Despite the potentially important role of the KH instability few experiments have been carried out to explore its behavior in the high-energy-density regime. We report on the evolution of a supersonic shear flow that is generated by the release of a high velocity (>100 km/s) aluminum plasma onto a CRF foam (ρ = 0.1 g/cc) surface. In order to seed the Kelvin-Helmholtz (KH) instability various two-dimensional sinusoidal perturbations (λ = 100, 200, and 300 μm with peak-to-valley amplitudes of 10, 20, and 30 μm respectively) have been machined into the foam surface. This experiment was performed using the Nike laser at the Naval Research Laboratory.

  16. Observing the Next Galactic Supernova with the NOvA Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Vasel, Justin A. [Indiana U.; Sheshukov, Andrey [Dubna, JINR; Habig, Alec [Minnesota U., Duluth

    2017-10-02

    The next galactic core-collapse supernova will deliver a wealth of neutrinos which for the first time we are well-situated to measure. These explosions produce neutrinos with energies between 10 and 100 MeV over a period of tens of seconds. Galactic supernovae are relatively rare events, occurring with a frequency of just a few per century. It is therefore essential that all neutrino detectors capable of detecting these neutrinos are ready to trigger on this signal when it occurs. This poster describes a data-driven trigger which is designed to detect the neutrino signal from a galactic core-collapse supernova with the NOvA detectors. The trigger analyzes 5ms blocks of detector activity and applies background rejection algorithms to detect the signal time structure over the background. This background reduction is an essential part of the process, as the NOvA detectors are designed to detect neutrinos from Fermilab's NuMI beam which have an average energy of 2GeV--well above the average energy of supernova neutrinos.

  17. High-quality electron beam generation in a proton-driven hollow plasma wakefield accelerator

    Science.gov (United States)

    Li, Y.; Xia, G.; Lotov, K. V.; Sosedkin, A. P.; Hanahoe, K.; Mete-Apsimon, O.

    2017-10-01

    Simulations of proton-driven plasma wakefield accelerators have demonstrated substantially higher accelerating gradients compared to conventional accelerators and the viability of accelerating electrons to the energy frontier in a single plasma stage. However, due to the strong intrinsic transverse fields varying both radially and in time, the witness beam quality is still far from suitable for practical application in future colliders. Here we demonstrate the efficient acceleration of electrons in proton-driven wakefields in a hollow plasma channel. In this regime, the witness bunch is positioned in the region with a strong accelerating field, free from plasma electrons and ions. We show that the electron beam carrying the charge of about 10% of 1 TeV proton driver charge can be accelerated to 0.6 TeV with a preserved normalized emittance in a single channel of 700 m. This high-quality and high-charge beam may pave the way for the development of future plasma-based energy frontier colliders.

  18. Energy distribution and transfer in flowing hydrogen microwave plasmas

    International Nuclear Information System (INIS)

    Chapman, R.A.

    1987-01-01

    This thesis is an experimental investigation of the physical and chemical properties of a hydrogen discharge in a flowing microwave plasma system. The plasma system is the mechanisms utilized in an electrothermal propulsion concept to convert electromagnetic energy into the kinetic energy of flowing hydrogen gas. The plasmas are generated inside a 20-cm ID resonant cavity at a driving frequency of 2.45 GHz. The flowing gas is contained in a coaxially positioned 22-mm ID quartz discharge tube. The physical and chemical properties are examined for absorbed powers of 20-100 W, pressures of 0.5-10 torr, and flow rates of 0-10,000 μ-moles/sec. A calorimetry system enclosing the plasma system to accurately measure the energy inputs and outputs has been developed. The rate of energy that is transferred to the hydrogen gas as it flows through the plasma system is determined as a function of absorbed power, pressure, and flow rate to +/-1.8 W from an energy balance around the system. The percentage of power that is transferred to the gas is found to increase with increasing flow rate, decrease with increasing pressure, and to be independent of absorbed power

  19. supernovae: Photometric classification of supernovae

    Science.gov (United States)

    Charnock, Tom; Moss, Adam

    2017-05-01

    Supernovae classifies supernovae using their light curves directly as inputs to a deep recurrent neural network, which learns information from the sequence of observations. Observational time and filter fluxes are used as inputs; since the inputs are agnostic, additional data such as host galaxy information can also be included.

  20. A flowing plasma model to describe drift waves in a cylindrical helicon discharge

    International Nuclear Information System (INIS)

    Chang, L.; Hole, M. J.; Corr, C. S.

    2011-01-01

    A two-fluid model developed originally to describe wave oscillations in the vacuum arc centrifuge, a cylindrical, rapidly rotating, low temperature, and confined plasma column, is applied to interpret plasma oscillations in a RF generated linear magnetized plasma [WOMBAT (waves on magnetized beams and turbulence)], with similar density and field strength. Compared to typical centrifuge plasmas, WOMBAT plasmas have slower normalized rotation frequency, lower temperature, and lower axial velocity. Despite these differences, the two-fluid model provides a consistent description of the WOMBAT plasma configuration and yields qualitative agreement between measured and predicted wave oscillation frequencies with axial field strength. In addition, the radial profile of the density perturbation predicted by this model is consistent with the data. Parameter scans show that the dispersion curve is sensitive to the axial field strength and the electron temperature, and the dependence of oscillation frequency with electron temperature matches the experiment. These results consolidate earlier claims that the density and floating potential oscillations are a resistive drift mode, driven by the density gradient. To our knowledge, this is the first detailed physics model of flowing plasmas in the diffusion region away from the RF source. Possible extensions to the model, including temperature nonuniformity and magnetic field oscillations, are also discussed.

  1. Plasma flow in a pressure pulsed argon cascade arc

    NARCIS (Netherlands)

    de Haas, J.C.M.; Bol, L.; Kroesen, G.M.W.; Timmermans, C.J.; Timmermans, C.J.

    1985-01-01

    Flowing thermal plasmas are frequently used e . g. in welding, cutting, plasma deposition and testing materials at high temperatures . In most of the applications the geometry is complex . In the cascade arc the argon plasma flows through a straight circular channel with a constant area. The study

  2. INJECTION OF PLASMA INTO THE NASCENT SOLAR WIND VIA RECONNECTION DRIVEN BY SUPERGRANULAR ADVECTION

    International Nuclear Information System (INIS)

    Yang Liping; He Jiansen; Tu Chuanyi; Chen Wenlei; Zhang Lei; Wang Linghua; Yan Limei; Peter, Hardi; Marsch, Eckart; Feng, Xueshang

    2013-01-01

    To understand the origin of the solar wind is one of the key research topics in modern solar and heliospheric physics. Previous solar wind models assumed that plasma flows outward along a steady magnetic flux tube that reaches continuously from the photosphere through the chromosphere into the corona. Inspired by more recent comprehensive observations, Tu et al. suggested a new scenario for the origin of the solar wind, in which it flows out in a magnetically open coronal funnel and mass is provided to the funnel by small-scale side loops. Thus mass is supplied by means of magnetic reconnection that is driven by supergranular convection. To validate this scenario and simulate the processes involved, a 2.5 dimensional (2.5D) numerical MHD model is established in the present paper. In our simulation a closed loop moves toward an open funnel, which has opposite polarity and is located at the edge of a supergranulation cell, and magnetic reconnection is triggered and continues while gradually opening up one half of the closed loop. Its other half connects with the root of the open funnel and forms a new closed loop which is submerged by a reconnection plasma stream flowing downward. Thus we find that the outflowing plasma in the newly reconnected funnel originates not only from the upward reconnection flow but also from the high-pressure leg of the originally closed loop. This implies an efficient supply of mass from the dense loop to the dilute funnel. The mass flux of the outflow released from the funnel considered in our study is calculated to be appropriate for providing the mass flux at the coronal base of the solar wind, though additional heating and acceleration mechanisms are necessary to keep the velocity at the higher location. Our numerical model demonstrates that in the funnel the mass for the solar wind may be supplied from adjacent closed loops via magnetic reconnection as well as directly from the footpoints of open funnels.

  3. Supernovae

    International Nuclear Information System (INIS)

    Petschek, A.

    1990-01-01

    This book offers papers incorporating the latest results and understanding about supernovae, including SN1987A. There are several chapters reviewing all the radio through infrared, visible, and ultraviolet to X-rays and gamma-rays but also neutrinos. Other chapters deal with the classification of supernovae, depending on their spectra and light curves. Three chapters treat supernovae theory, including an idea of a fractal burning front and another on the behavior of neutron stars

  4. Final Report for DOE Grant DE-FG02-00ER41149 ''Nuclear Physics of Core-Collapse Supernovae''

    International Nuclear Information System (INIS)

    Yong-Zhong Qian

    2004-01-01

    During the funding period from August 15, 2000 to August 14, 2004, the main foci of my research have been implications of abundances in metal-poor stars for nucleosynthetic yields of supernovae and chemical evolution of the universe, effects of neutrino oscillations and neutrino-nucleus interactions on r-process nucleosynthesis, physical conditions in neutrino-driven winds from proto-neutron stars, neutrino driven mechanism of supernova explosion, supernova neutrino signals in terrestrial detectors, and constraints on variations of fundamental couplings and astrophysical conditions from properties of nuclear reactions. Personnel (three graduate students and a postdoctoral research associate) involved in my research are listed in section 2. Completed research projects are discussed in section 3. Publications during the funding period are listed in section 4 and oral presentations in section 5. Remarks about the budget are given in section 6

  5. Emission of electromagnetic radiation from beam driven plasmas

    International Nuclear Information System (INIS)

    Newman, D.L.

    1985-01-01

    Two production mechanisms for electromagnetic radiation from a plasma containing electron-beam-driven weak Langmuir turbulence are studied: induced Compton conversion and two-Langmuir-wave coalescence. Induced Compton conversion in which a Langmuir wave scatters off a relativistic electron while converting into a transversely polarized electromagnetic wave is considered as a means for producing amplified electromagnetic radiation from a beam-plasma system at frequencies well above the electron plasma frequency. The induced emission growth rates of the radiation produced by a monoenergetic ultrarelativistic electron beam are determined as a function of the Langmuir turbulence spectrum in the background plasma and are numerically evaluated for a range of model Langmuir spectra. Induced Compton conversion can play a role in emission from astrophysical beam-plasma systems if the electron beam is highly relativistic and sufficiently narrow. However, it is found that the growth rates for this process are too small in all cases studied to account for the intense high-frequency radiation observed in laboratory experiments. Two-Langmuir-wave coalescence as a means of producing radiation at 2omega/sub p/ is investigated in the setting of the earth's foreshock

  6. On steady poloidal and toroidal flows in tokamak plasmas

    International Nuclear Information System (INIS)

    McClements, K. G.; Hole, M. J.

    2010-01-01

    The effects of poloidal and toroidal flows on tokamak plasma equilibria are examined in the magnetohydrodynamic limit. ''Transonic'' poloidal flows of the order of the sound speed multiplied by the ratio of poloidal magnetic field to total field B θ /B can cause the (normally elliptic) Grad-Shafranov (GS) equation to become hyperbolic in part of the solution domain. It is pointed out that the range of poloidal flows for which the GS equation is hyperbolic increases with plasma beta and B θ /B, thereby complicating the problem of determining spherical tokamak plasma equilibria with transonic poloidal flows. It is demonstrated that the calculation of the hyperbolicity criterion can be easily modified when the assumption of isentropic flux surfaces is replaced with the more tokamak-relevant one of isothermal flux surfaces. On the basis of the latter assumption, a simple expression is obtained for the variation of density on a flux surface when poloidal and toroidal flows are simultaneously present. Combined with Thomson scattering measurements of density and temperature, this expression could be used to infer information on poloidal and toroidal flows on the high field side of a tokamak plasma, where direct measurements of flows are not generally possible. It is demonstrated that there are four possible solutions of the Bernoulli relation for the plasma density when the flux surfaces are assumed to be isothermal, corresponding to four distinct poloidal flow regimes. Finally, observations and first principles-based theoretical modeling of poloidal flows in tokamak plasmas are briefly reviewed and it is concluded that there is no clear evidence for the occurrence of supersonic poloidal flows.

  7. NEUTRINO-DRIVEN TURBULENT CONVECTION AND STANDING ACCRETION SHOCK INSTABILITY IN THREE-DIMENSIONAL CORE-COLLAPSE SUPERNOVAE

    International Nuclear Information System (INIS)

    Abdikamalov, Ernazar; Ott, Christian D.; Radice, David; Roberts, Luke F.; Haas, Roland; Reisswig, Christian; Mösta, Philipp; Klion, Hannah; Schnetter, Erik

    2015-01-01

    We conduct a series of numerical experiments into the nature of three-dimensional (3D) hydrodynamics in the postbounce stalled-shock phase of core-collapse supernovae using 3D general-relativistic hydrodynamic simulations of a 27 M ⊙ progenitor star with a neutrino leakage/heating scheme. We vary the strength of neutrino heating and find three cases of 3D dynamics: (1) neutrino-driven convection, (2) initially neutrino-driven convection and subsequent development of the standing accretion shock instability (SASI), and (3) SASI-dominated evolution. This confirms previous 3D results of Hanke et al. and Couch and Connor. We carry out simulations with resolutions differing by up to a factor of ∼4 and demonstrate that low resolution is artificially favorable for explosion in the 3D convection-dominated case since it decreases the efficiency of energy transport to small scales. Low resolution results in higher radial convective fluxes of energy and enthalpy, more fully buoyant mass, and stronger neutrino heating. In the SASI-dominated case, lower resolution damps SASI oscillations. In the convection-dominated case, a quasi-stationary angular kinetic energy spectrum E(ℓ) develops in the heating layer. Like other 3D studies, we find E(ℓ) ∝ℓ −1 in the “inertial range,” while theory and local simulations argue for E(ℓ) ∝ ℓ −5/3 . We argue that current 3D simulations do not resolve the inertial range of turbulence and are affected by numerical viscosity up to the energy-containing scale, creating a “bottleneck” that prevents an efficient turbulent cascade

  8. Effect of toroidal plasma flow and flow shear on global MHD modes

    International Nuclear Information System (INIS)

    Chu, M.S.; Greene, J.M.; Jensen, T.H.; Miller, R.L.; Bondeson, A.; Johnson, R.W.; Mauel, M.E.

    1995-01-01

    The effect of a subsonic toroidal flow on the linear magnetohydrodynamic stability of a tokamak plasma surrounded by an external resistive wall is studied. A complex non-self-adjoint eigenvalue problem for the stability of general kink and tearing modes is formulated, solved numerically, and applied to high β tokamaks. Results indicate that toroidal plasma flow, in conjunction with dissipation in the plasma, can open a window of stability for the position of the external wall. In this window, stable plasma beta values can significantly exceed those predicted by the Troyon scaling law with no wall. Computations utilizing experimental data indicate good agreement with observations

  9. Prospects for observing the magnetorotational instability in the plasma Couette experiment

    Science.gov (United States)

    Flanagan, K.; Clark, M.; Collins, C.; Cooper, C. M.; Khalzov, I. V.; Wallace, J.; Forest, C. B.

    2015-08-01

    Many astrophysical disks, such as protoplanetary disks, are in a regime where non-ideal, plasma-specific magnetohydrodynamic (MHD) effects can significantly influence the behaviour of the magnetorotational instability (MRI). The possibility of studying these effects in the plasma Couette experiment (PCX) is discussed. An incompressible, dissipative global stability analysis is developed to include plasma-specific two-fluid effects and neutral collisions, which are inherently absent in analyses of Taylor-Couette flows (TCFs) in liquid metal experiments. It is shown that with boundary driven flows, a ion-neutral collision drag body force significantly affects the azimuthal velocity profile, thus limiting the flows to regime where the MRI is not present. Electrically driven flow (EDF) is proposed as an alternative body force flow drive in which the MRI can destabilize at more easily achievable plasma parameters. Scenarios for reaching MRI relevant parameter space and necessary hardware upgrades are described.

  10. Anisotropic plasma with flows in tokamak: Steady state and stability

    International Nuclear Information System (INIS)

    Ilgisonis, V.I.

    1996-01-01

    An adequate description of equilibrium and stability of anisotropic plasma with macroscopic flows in tokamaks is presented. The Chew-Goldberger-Low (CGL) approximation is consistently used to analyze anisotropic plasma dynamics. The admissible structure of a stationary flow is found to be the same as in the ideal magnetohydrodynamics with isotropic pressure (MHD), which means an allowance for the same relabeling symmetry as in ideal MHD systems with toroidally nested magnetic surfaces. A generalization of the Grad-Shafranov equation for the case of anisotropic plasma with flows confined in the axisymmetric magnetic field is derived. A variational principle was obtained, which allows for a stability analysis of anisotropic pressure plasma with flows, and takes into account the conservation laws resulting from the relabeling symmetry. This principle covers the previous stability criteria for static CGL plasma and for ideal MHD flows in isotropic plasma as well. copyright 1996 American Institute of Physics

  11. Interaction of Supernova Blast Waves with Wind-Driven Shells: Formation of "Jets", "Bullets", "Ears", Etc.

    Science.gov (United States)

    Gvaramadze, V. V.

    Most of middle-aged supernova remnants (SNRs) have a distorted and complicated appearance which cannot be explained in the framework of the Sedov-Taylor model. We consider three typical examples of such SNRs (Vela SNR, MSH15-52, G309.2-00.6) and show that their structure could be explained as a result of interaction of a supernova (SN) blast wave with the ambient medium preprocessed by the action of the SN progenitor's wind and ionized emission.

  12. The `Henry Problem' of `density-driven' groundwater flow versus Tothian `groundwater flow systems' with variable density: A review of the influential Biscayne aquifer data.

    Science.gov (United States)

    Weyer, K. U.

    2017-12-01

    Coastal groundwater flow investigations at the Biscayne Bay, south of Miami, Florida, gave rise to the concept of density-driven flow of seawater into coastal aquifers creating a saltwater wedge. Within that wedge, convection-driven return flow of seawater and a dispersion zone were assumed by Cooper et al. (1964) to be the cause of the Biscayne aquifer `sea water wedge'. This conclusion was based on the chloride distribution within the aquifer and on an analytical model concept assuming convection flow within a confined aquifer without taking non-chemical field data into consideration. This concept was later labelled the `Henry Problem', which any numerical variable density flow program must be able to simulate to be considered acceptable. Both, `density-driven flow' and Tothian `groundwater flow systems' (with or without variable density conditions) are driven by gravitation. The difference between the two are the boundary conditions. 'Density-driven flow' occurs under hydrostatic boundary conditions while Tothian `groundwater flow systems' occur under hydrodynamic boundary conditions. Revisiting the Cooper et al. (1964) publication with its record of piezometric field data (heads) showed that the so-called sea water wedge has been caused by discharging deep saline groundwater driven by gravitational flow and not by denser sea water. Density driven flow of seawater into the aquifer was not found reflected in the head measurements for low and high tide conditions which had been taken contemporaneously with the chloride measurements. These head measurements had not been included in the flow interpretation. The very same head measurements indicated a clear dividing line between shallow local fresh groundwater flow and saline deep groundwater flow without the existence of a dispersion zone or a convection cell. The Biscayne situation emphasizes the need for any chemical interpretation of flow pattern to be supported by head data as energy indicators of flow fields

  13. Flow morphing by coaxial type plasma actuator

    Science.gov (United States)

    Toyoizumi, S.; Aono, H.; Ishikawa, H.

    2017-04-01

    The purpose of study is to achieve the fluid drag reduction of a circular disk by Dielectric Barrier Discharge Plasma Actuator (DBD-PA). We here introduced “Flow Morphing” concept that flow around the body was changed by DBD-PA jet, such as the body shape morphing. Coaxial type DBD-PA injected axisymmetric jet, generating the vortex region on the pressure side of the circular disk. The vortex generated by axisymmetric plasma jet and flow around circular disk were visualized by tracer particles method. The fluid drag was measured by compression type load cell. In addition streamwise velocity was measured by an X-type hot wire probe. The extent of fluid drag reduction by coaxial type DBD-PA jet was influenced by the volume of vortex region and the diameter of plasma electrode.

  14. Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics

    International Nuclear Information System (INIS)

    Assmann, R; Gross, M; Bingham, R; Holloway, J; Bohl, T; Bracco, C; Butterworth, A; Feldbaumer, E; Goddard, B; Gschwendtner, E; Buttenschön, B; Caldwell, A; Chattopadhyay, S; Cipiccia, S; Jaroszynski, D; Fonseca, R A; Grulke, O; Kempkes, P; Huang, C; Jolly, S

    2014-01-01

    New acceleration technology is mandatory for the future elucidation of fundamental particles and their interactions. A promising approach is to exploit the properties of plasmas. Past research has focused on creating large-amplitude plasma waves by injecting an intense laser pulse or an electron bunch into the plasma. However, the maximum energy gain of electrons accelerated in a single plasma stage is limited by the energy of the driver. Proton bunches are the most promising drivers of wakefields to accelerate electrons to the TeV energy scale in a single stage. An experimental program at CERN—the AWAKE experiment—has been launched to study in detail the important physical processes and to demonstrate the power of proton-driven plasma wakefield acceleration. Here we review the physical principles and some experimental considerations for a future proton-driven plasma wakefield accelerator. (paper)

  15. Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics

    CERN Document Server

    Assmann, R.; Bohl, T.; Bracco, C.; Buttenschon, B.; Butterworth, A.; Caldwell, A.; Chattopadhyay, S.; Cipiccia, S.; Feldbaumer, E.; Fonseca, R.A.; Goddard, B.; Gross, M.; Grulke, O.; Gschwendtner, E.; Holloway, J.; Huang, C.; Jaroszynski, D.; Jolly, S.; Kempkes, P.; Lopes, N.; Lotov, K.; Machacek, J.; Mandry, S.R.; McKenzie, J.W.; Meddahi, M.; Militsyn, B.L.; Moschuering, N.; Muggli, P.; Najmudin, Z.; Noakes, T.C.Q.; Norreys, P.A.; Oz, E.; Pardons, A.; Petrenko, A.; Pukhov, A.; Rieger, K.; Reimann, O.; Ruhl, H.; Shaposhnikova, E.; Silva, L.O.; Sosedkin, A.; Tarkeshian, R.; Trines, R.M.G.N.; Tuckmantel, T.; Vieira, J.; Vincke, H.; Wing, M.; Xia, G.

    2014-01-01

    New acceleration technology is mandatory for the future elucidation of fundamental particles and their interactions. A promising approach is to exploit the properties of plasmas. Past research has focused on creating large-amplitude plasma waves by injecting an intense laser pulse or an electron bunch into the plasma. However, the maximum energy gain of electrons accelerated in a single plasma stage is limited by the energy of the driver. Proton bunches are the most promising drivers of wakefields to accelerate electrons to the TeV energy scale in a single stage. An experimental program at CERN -- the AWAKE experiment -- has been launched to study in detail the important physical processes and to demonstrate the power of proton-driven plasma wakefield acceleration. Here we review the physical principles and some experimental considerations for a future proton-driven plasma wakefield accelerator.

  16. Editorial: Focus on Laser- and Beam-Driven Plasma Accelerators

    Science.gov (United States)

    Joshi, Chan; Malka, Victor

    2010-04-01

    The ability of short but intense laser pulses to generate high-energy electrons and ions from gaseous and solid targets has been well known since the early days of the laser fusion program. However, during the past decade there has been an explosion of experimental and theoretical activity in this area of laser-matter interaction, driven by the prospect of realizing table-top plasma accelerators for research, medical and industrial uses, and also relatively small and inexpensive plasma accelerators for high-energy physics at the frontier of particle physics. In this focus issue on laser- and beam-driven plasma accelerators, the latest advances in this field are described. Focus on Laser- and Beam-Driven Plasma Accelerators Contents Slow wave plasma structures for direct electron acceleration B D Layer, J P Palastro, A G York, T M Antonsen and H M Milchberg Cold injection for electron wakefield acceleration X Davoine, A Beck, A Lifschitz, V Malka and E Lefebvre Enhanced proton flux in the MeV range by defocused laser irradiation J S Green, D C Carroll, C Brenner, B Dromey, P S Foster, S Kar, Y T Li, K Markey, P McKenna, D Neely, A P L Robinson, M J V Streeter, M Tolley, C-G Wahlström, M H Xu and M Zepf Dose-dependent biological damage of tumour cells by laser-accelerated proton beams S D Kraft, C Richter, K Zeil, M Baumann, E Beyreuther, S Bock, M Bussmann, T E Cowan, Y Dammene, W Enghardt, U Helbig, L Karsch, T Kluge, L Laschinsky, E Lessmann, J Metzkes, D Naumburger, R Sauerbrey, M. Scḧrer, M Sobiella, J Woithe, U Schramm and J Pawelke The optimum plasma density for plasma wakefield excitation in the blowout regime W Lu, W An, M Zhou, C Joshi, C Huang and W B Mori Plasma wakefield acceleration experiments at FACET M J Hogan, T O Raubenheimer, A Seryi, P Muggli, T Katsouleas, C Huang, W Lu, W An, K A Marsh, W B Mori, C E Clayton and C Joshi Electron trapping and acceleration on a downward density ramp: a two-stage approach R M G M Trines, R Bingham, Z Najmudin

  17. Experimental investigations of driven Alfven wave resonances in a tokamak plasma using carbon dioxide laser interferometry

    International Nuclear Information System (INIS)

    Evans, T.E.

    1984-09-01

    The first direct observation of the internal structure of driven global Alfven eigenmodes in a tokamak plasma is presented. A carbon dioxide laser scattering/interferometer has been designed, built, and installed on the PRETEXT tokamak. By using this diagnostic system in the interferometer configuration, we have for the first time, thoroughly investigated the resonance conditions required for, and the spatial wave field structure of, driven plasma eigenmodes at frequencies below the ion cyclotron frequency in a confined, high temperature, tokamak plasma

  18. Stability aspects of plasmas penetrated by neutral gas with respect to velocity driven modes

    International Nuclear Information System (INIS)

    Ohlsson, D.

    1978-08-01

    A study of the stability properties of dense partially ionized plasmas immersed in strong magnetic fields with respect to velocity driven modes are presented. First we consider modes driven by mass motion perpendicular to the lines of force and the unperturbed density and temperature gradients. The presence of a third fluid, neutral gas, gives under certain conditions rise to unstable modes. This type of instability arises independently or whether the applied electric field transverse to the lines of force, driving the mass motion, being parallel or antiparallel to the unperturbed density and temperature gradient. The presence of neutral gas also corresponds to stabilizing effects which, in certain parameter regions, result in a quenching of this instability. It is shown that modes driven by velocity shear perpendicular to the lines of force are effectively stabilized by viscous and resistive effects. These effects are in certain parameter ranges strongly enhanced on account of plasma-neutral gas interaction effects. In collisionless plasmas, modes driven by velocity shear parallel to the lines of force are stabilized by compressibility effects parallel to the magnetic field and by finite Larmor radius effects. (author)

  19. The role of the sheath in magnetized plasma turbulence and flows

    International Nuclear Information System (INIS)

    Loizu, J.

    2013-01-01

    Controlled nuclear fusion could provide our society with a clean, safe, and virtually inexhaustible source of electric power production. The tokamak has proven to be capable of producing large amounts of fusion reactions by conning magnetically the fusion fuel at sufficiently high density and temperature, thus in the plasma state. Because of turbulence, however, high temperature plasma reaches the outermost region of the tokamak, the Scrape-Off Layer (SOL), which features open magnetic field lines that channel particles and heat into a dedicated region of the vacuum vessel. The plasma dynamics in the SOL is crucial in determining the performance of tokamak devices, and constitutes one of the greatest uncertainties in the success of the fusion program. In the last few years, the development of numerical codes based on reduced fluid models has provided a tool to study turbulence in open field line configurations. In particular, the GBS (Global Braginskii Solver) code has been developed at CRPP and is used to perform global, three-dimensional, full-n, flux-driven simulations of plasma turbulence in open field lines. Reaching predictive capabilities is an outstanding challenge that involves a proper treatment of the plasma-wall interactions at the end of the field lines, to well describe the particle and energy losses. This involves the study of plasma sheaths, namely the layers forming at the interface between plasmas and solid surfaces, where the drift and quasi neutrality approximations break down. This is an investigation of general interest, as sheaths are present in all laboratory plasmas. This thesis presents progress in the understanding of plasma sheaths and their coupling with the turbulence in the main plasma. A kinetic code is developed to study the magnetized plasma-wall transition region and derive a complete set of analytical boundary conditions that supply the sheath physics to fluid codes. These boundary conditions are implemented in the GBS code and

  20. 11th International Conference on Numerical Modeling of Space Plasma Flows: ASTRONUM-2016

    International Nuclear Information System (INIS)

    2017-01-01

    PREFACEThe Center for Space Plasma and Aeronomic Research (CSPAR) at the University of Alabama in Huntsville (UAH) and Maison de la Simulation at the French Alternative Energies and Atomic Energy Commission (Commissariat a l’energie atomique et aux energies alternatives, CEA) organized the 11th annual International Conference on Numerical Modeling of Space Plasma Flows (ASTRONUM-2016) on June 6—10, 2016 in Monterey, California, USA.The Program Committee consisted of Tahar Amari (CNRS Ecole Polytechnique, France), Edouard Audit (CEA/CNRS Maison de la Simulation, Gif-sur-Yvette, France, co-chair), Amitava Bhattacharjee (Princeton University, USA), Phillip Colella (Lawrence Berkeley National Laboratory, USA), Anthony Mezzacappa (University of Tennessee, Knoxville, USA), Ewald Müller (Max-Planck-Institute for Astrophysics, Garching, Germany), Nikolai Pogorelov (University of Alabama in Huntsville/CSPAR, USA, chair), Kazunari Shibata (Kyoto University, Japan), James Stone (Princeton University, USA), Jon Linker (Predictive Science, Inc., USA), and Gary P. Zank (University of Alabama in Huntsville, USA).The conference attracted 92 scientists representing different branches of the plasma simulation community. The distinctive feature of this conference is a combination of diverse research topics, all of which are essential for performing high-resolution, continuum mechanics and particle, simulations of physical phenomena in space physics and astrophysics. Among such topics were software packages for modeling and analyzing plasma flows; advanced numerical methods for space and astrophysical flows; large-scale fluid-based, kinetic, and hybrid simulations; turbulence and cosmic ray transport; and magnetohydrodynamics. The applications discussed included cosmology and galaxy formation, supernova explosions, physics of the Sun-heliosphere-magnetosphere environments, the interstellar medium and star formation, stellar physics, experimental plasma physics, astrophysical

  1. GALAXY OUTFLOWS WITHOUT SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Sur, Sharanya [Indian Institute of Astrophysics, 2nd Block, Koramangala, Bangalore 560034 (India); Scannapieco, Evan [School of Earth and Space Exploration, Arizona State University, P.O. Box 876004, Tempe-85287 (United States); Ostriker, Eve C., E-mail: sharanya.sur@iiap.res.in, E-mail: sharanya.sur@asu.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2016-02-10

    High surface density, rapidly star-forming galaxies are observed to have ≈50–100 km s{sup −1} line of sight velocity dispersions, which are much higher than expected from supernova driving alone, but may arise from large-scale gravitational instabilities. Using three-dimensional simulations of local regions of the interstellar medium, we explore the impact of high velocity dispersions that arise from these disk instabilities. Parametrizing disks by their surface densities and epicyclic frequencies, we conduct a series of simulations that probe a broad range of conditions. Turbulence is driven purely horizontally and on large scales, neglecting any energy input from supernovae. We find that such motions lead to strong global outflows in the highly compact disks that were common at high redshifts, but weak or negligible mass loss in the more diffuse disks that are prevalent today. Substantial outflows are generated if the one-dimensional horizontal velocity dispersion exceeds ≈35 km s{sup −1}, as occurs in the dense disks that have star-formation rate (SFR) densities above ≈0.1 M{sub ⊙} yr{sup −1} kpc{sup −2}. These outflows are triggered by a thermal runaway, arising from the inefficient cooling of hot material coupled with successive heating from turbulent driving. Thus, even in the absence of stellar feedback, a critical value of the SFR density for outflow generation can arise due to a turbulent heating instability. This suggests that in strongly self-gravitating disks, outflows may be enhanced by, but need not caused by, energy input from supernovae.

  2. A cosmogonical analogy between the Big Bang and a supernova

    International Nuclear Information System (INIS)

    Brown, W.K.

    1981-01-01

    The Big Bang may be discussed most easily in analogy with an expanding spherical shell. An expanding spherical shell, in turn, is quite similar to an ejected supernova shell. In both the Big Bang and the supernova, fragmentation is postulated to occur, where each fragment of the universe becomes a galaxy, and each fragment of supernova shell becomes a solar system. By supporting the presence of shearing flow at the time of fragmentation, a model has been constructed to examine the results in both cases. It has been shown that the model produces a good description of reality on both the galactic and solar system scales. (Auth.)

  3. Compact disposal of high-energy electron beams using passive or laser-driven plasma decelerating stage

    Energy Technology Data Exchange (ETDEWEB)

    Bonatto, A.; Schroeder, C. B.; Vay, J. -L.; Geddes, C. R.; Benedetti, C.; Esarey and, E.; Leemans, W. P.

    2014-07-13

    A plasma decelerating stage is investigated as a compact alternative for the disposal of high-energy beams (beam dumps). This could benefit the design of laser-driven plasma accelerator (LPA) applications that require transportability and or high-repetition-rate operation regimes. Passive and laser-driven (active) plasma-based beam dumps are studied analytically and with particle-in-cell (PIC) simulations in a 1D geometry. Analytical estimates for the beam energy loss are compared to and extended by the PIC simulations, showing that with the proposed schemes a beam can be efficiently decelerated in a centimeter-scale distance.

  4. Strongest gravitational waves from neutrino oscillations at supernova core bounce

    International Nuclear Information System (INIS)

    Mosquera Cuesta, H.J.; Fiuza, K.

    2004-01-01

    Resonant active-to-active (ν a →ν a ), as well as active-to-sterile (ν a →ν s ) neutrino (ν) oscillations can take place during the core bounce of a supernova collapse. Besides, over this phase, weak magnetism increases the antineutrino (anti ν) mean free path, and thus its luminosity. Because the oscillation feeds mass-energy into the target ν species, the large mass-squared difference between the species (ν a →ν s ) implies a huge amount of energy to be given off as gravitational waves (L GW ∝10 49 erg s -1 ), due to anisotropic but coherent ν flow over the oscillation length. This asymmetric ν-flux is driven by both the spin-magnetic and the universal spin-rotation coupling. The novel contribution of this paper stems from (1) the new computation of the anisotropy parameter α∝0.1-0.01, and (2) the use of the tight constraints from neutrino experiments as SNO and KamLAND, and the cosmic probe WMAP, to compute the gravitational-wave emission during neutrino oscillations in supernovae core collapse and bounce. We show that the mass of the sterile neutrino ν s that can be resonantly produced during the flavor conversions makes it a good candidate for dark matter as suggested by Fuller et al., Phys. Rev. D 68, 103002 (2003). The new spacetime strain thus estimated is still several orders of magnitude larger than those from ν diffusion (convection and cooling) or quadrupole moments of neutron star matter. This new feature turns these bursts into the more promising supernova gravitational-wave signals that may be detected by observatories as LIGO, VIRGO, etc., for distances far out to the VIRGO cluster of galaxies. (orig.)

  5. Handbook of supernovae

    CERN Document Server

    Murdin, Paul

    2017-01-01

    This reference work gathers all of the latest research in the supernova field areas to create a definitive source book on supernovae, their remnants and related topics. It includes each distinct subdiscipline, including stellar types, progenitors, stellar evolution, nucleosynthesis of elements, supernova types, neutron stars and pulsars, black holes, swept up interstellar matter, cosmic rays, neutrinos from supernovae, supernova observations in different wavelengths, interstellar molecules and dust. While there is a great deal of primary and specialist literature on supernovae, with a great many scientific groups around the world focusing on the phenomenon and related subdisciplines, nothing else presents an overall survey. This handbook closes that gap at last. As a comprehensive and balanced collection that presents the current state of knowledge in the broad field of supernovae, this is to be used as a basis for further work and study by graduate students, astronomers and astrophysicists working in close/r...

  6. A relativistic type Ibc supernova without a detected gamma-ray burst.

    Science.gov (United States)

    Soderberg, A M; Chakraborti, S; Pignata, G; Chevalier, R A; Chandra, P; Ray, A; Wieringa, M H; Copete, A; Chaplin, V; Connaughton, V; Barthelmy, S D; Bietenholz, M F; Chugai, N; Stritzinger, M D; Hamuy, M; Fransson, C; Fox, O; Levesque, E M; Grindlay, J E; Challis, P; Foley, R J; Kirshner, R P; Milne, P A; Torres, M A P

    2010-01-28

    Long duration gamma-ray bursts (GRBs) mark the explosive death of some massive stars and are a rare sub-class of type Ibc supernovae. They are distinguished by the production of an energetic and collimated relativistic outflow powered by a central engine (an accreting black hole or neutron star). Observationally, this outflow is manifested in the pulse of gamma-rays and a long-lived radio afterglow. Until now, central-engine-driven supernovae have been discovered exclusively through their gamma-ray emission, yet it is expected that a larger population goes undetected because of limited satellite sensitivity or beaming of the collimated emission away from our line of sight. In this framework, the recovery of undetected GRBs may be possible through radio searches for type Ibc supernovae with relativistic outflows. Here we report the discovery of luminous radio emission from the seemingly ordinary type Ibc SN 2009bb, which requires a substantial relativistic outflow powered by a central engine. A comparison with our radio survey of type Ibc supernovae reveals that the fraction harbouring central engines is low, about one per cent, measured independently from, but consistent with, the inferred rate of nearby GRBs. Independently, a second mildly relativistic supernova has been reported.

  7. A relativistic type Ibc supernova without a detected γ-ray burst

    Science.gov (United States)

    Soderberg, A. M.; Chakraborti, S.; Pignata, G.; Chevalier, R. A.; Chandra, P.; Ray, A.; Wieringa, M. H.; Copete, A.; Chaplin, V.; Connaughton, V.; Barthelmy, S. D.; Bietenholz, M. F.; Chugai, N.; Stritzinger, M. D.; Hamuy, M.; Fransson, C.; Fox, O.; Levesque, E. M.; Grindlay, J. E.; Challis, P.; Foley, R. J.; Kirshner, R. P.; Milne, P. A.; Torres, M. A. P.

    2010-01-01

    Long duration γ-ray bursts (GRBs) mark the explosive death of some massive stars and are a rare sub-class of type Ibc supernovae. They are distinguished by the production of an energetic and collimated relativistic outflow powered by a central engine (an accreting black hole or neutron star). Observationally, this outflow is manifested in the pulse of γ-rays and a long-lived radio afterglow. Until now, central-engine-driven supernovae have been discovered exclusively through their γ-ray emission, yet it is expected that a larger population goes undetected because of limited satellite sensitivity or beaming of the collimated emission away from our line of sight. In this framework, the recovery of undetected GRBs may be possible through radio searches for type Ibc supernovae with relativistic outflows. Here we report the discovery of luminous radio emission from the seemingly ordinary type Ibc SN 2009bb, which requires a substantial relativistic outflow powered by a central engine. A comparison with our radio survey of type Ibc supernovae reveals that the fraction harbouring central engines is low, about one per cent, measured independently from, but consistent with, the inferred rate of nearby GRBs. Independently, a second mildly relativistic supernova has been reported.

  8. Nucleosynthesis in Core-Collapse Supernovae

    Science.gov (United States)

    Stevenson, Taylor Shannon; Viktoria Ohstrom, Eva; Harris, James Austin; Hix, William R.

    2018-01-01

    The nucleosynthesis which occurs in core-collapse supernovae (CCSN) is one of the most important sources of elements in the universe. Elements from Oxygen through Iron come predominantly from supernovae, and contributions of heavier elements are also possible through processes like the weak r-process, the gamma process and the light element primary process. The composition of the ejecta depends on the mechanism of the explosion, thus simulations of high physical fidelity are needed to explore what elements and isotopes CCSN can contribute to Galactic Chemical Evolution. We will analyze the nucleosynthesis results from self-consistent CCSN simulations performed with CHIMERA, a multi-dimensional neutrino radiation-hydrodynamics code. Much of our understanding of CCSN nucleosynthesis comes from parameterized models, but unlike CHIMERA these fail to address essential physics, including turbulent flow/instability and neutrino-matter interaction. We will present nucleosynthesis predictions for the explosion of a 9.6 solar mass first generation star, relying both on results of the 160 species nuclear reaction network used in CHIMERA within this model and on post-processing with a more extensive network. The lowest mass iron core-collapse supernovae, like this model, are distinct from their more massive brethren, with their explosion mechanism and nucleosynthesis being more like electron capture supernovae resulting from Oxygen-Neon white dwarves. We will highlight the differences between the nucleosynthesis in this model and more massive supernovae. The inline 160 species network is a feature unique to CHIMERA, making this the most sophisticated model to date for a star of this type. We will discuss the need and mechanism to extrapolate the post-processing to times post-simulation and analyze the uncertainties this introduces for supernova nucleosynthesis. We will also compare the results from the inline 160 species network to the post-processing results to study further

  9. A simple estimation of the renal plasma flow

    International Nuclear Information System (INIS)

    Shinpo, Takako

    1987-01-01

    The renal plasma flow was determined conventionally by the excretive ratio to urine using a 131 I-Hippuran renogram. In this report, we proposed the renal clearance, the product of the disappearance rate coefficient and the maximum counts of the bladder, for the simple quantitative value of renal plasma flow. The disappearance rate coefficient was calculated by approximating the exponential function of the initial slope from the disappearance curve of the heart. The renal clearances was compared with the renal plasma flow calculated by the conventional method. The results gave a high correlation coefficient of r = 0.91. The renal clearances can be calculated easily and it offers useful renogram information. (author)

  10. MTF Driven by Plasma Liner Dynamically Formed by the Merging of Plasma Jets: An Overview

    Science.gov (United States)

    Thio, Y. C. Francis; Eskridge, Richard; Martin, Adam; Smith, James; Lee, Michael; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    One approach for standoff delivery of the momentum flux for compressing the target in MTF consists of using a spherical array of plasma jets to form a spherical plasma shell imploding towards the center of a magnetized plasma, a compact toroid (Figure 1). A 3-year experiment (PLX-1) to explore the physics of forming a 2-D plasma liner (shell) by merging plasma jets is described. An overview showing how this 3-year project (PLX-1) fits into the program plan at the national and international level for realizing MTF for energy and propulsion is discussed. Assuming that there will be a parallel program in demonstrating and establishing the underlying physics principles of MTF using whatever liner is appropriate (e.g. a solid liner) with a goal of demonstrating breakeven by 2010, the current research effort at NASA MSFC attempts to complement such a program by addressing the issues of practical embodiment of MTF for propulsion. Successful conclusion of PLX-1 will be followed by a Physics Feasibility Experiment (PLX-2) for the Plasma Liner Driven MTF.

  11. Bluff Body Flow Control Using Dielectric Barrier Discharge Plasma Actuators

    Science.gov (United States)

    Thomas, Flint; Kozlov, Alexey

    2008-11-01

    The results of an experimental investigation involving the use of dielectric barrier discharge plasma actuators to control bluff body flow is presented. The motivation for the work is plasma landing gear noise control for commercial transport aircraft. For these flow control experiments, the cylinder in cross-flow is chosen for study since it represents a generic flow geometry that is similar in all essential aspects to a landing gear strut. The current work is aimed both at extending the plasma flow control concept to Reynolds numbers typical of landing approach and take-off and on the development of optimum plasma actuation strategies. The cylinder wake flow with and without actuation are documented in detail using particle image velocimetry (PIV) and constant temperature hot-wire anemometry. The experiments are performed over a Reynolds number range extending to ReD=10^5. Using either steady or unsteady plasma actuation, it is demonstrated that even at the highest Reynolds number Karman shedding is totally eliminated and turbulence levels in the wake decrease by more than 50%. By minimizing the unsteady flow separation from the cylinder and associated large-scale wake vorticity, the radiated aerodynamic noise is also reduced.

  12. NEUTRINO-DRIVEN TURBULENT CONVECTION AND STANDING ACCRETION SHOCK INSTABILITY IN THREE-DIMENSIONAL CORE-COLLAPSE SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Abdikamalov, Ernazar; Ott, Christian D.; Radice, David; Roberts, Luke F.; Haas, Roland; Reisswig, Christian; Mösta, Philipp; Klion, Hannah [TAPIR, Walter Burke Institute for Theoretical Physics, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Schnetter, Erik, E-mail: cott@tapir.caltech.edu [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada)

    2015-07-20

    We conduct a series of numerical experiments into the nature of three-dimensional (3D) hydrodynamics in the postbounce stalled-shock phase of core-collapse supernovae using 3D general-relativistic hydrodynamic simulations of a 27 M{sub ⊙} progenitor star with a neutrino leakage/heating scheme. We vary the strength of neutrino heating and find three cases of 3D dynamics: (1) neutrino-driven convection, (2) initially neutrino-driven convection and subsequent development of the standing accretion shock instability (SASI), and (3) SASI-dominated evolution. This confirms previous 3D results of Hanke et al. and Couch and Connor. We carry out simulations with resolutions differing by up to a factor of ∼4 and demonstrate that low resolution is artificially favorable for explosion in the 3D convection-dominated case since it decreases the efficiency of energy transport to small scales. Low resolution results in higher radial convective fluxes of energy and enthalpy, more fully buoyant mass, and stronger neutrino heating. In the SASI-dominated case, lower resolution damps SASI oscillations. In the convection-dominated case, a quasi-stationary angular kinetic energy spectrum E(ℓ) develops in the heating layer. Like other 3D studies, we find E(ℓ) ∝ℓ{sup −1} in the “inertial range,” while theory and local simulations argue for E(ℓ) ∝ ℓ{sup −5/3}. We argue that current 3D simulations do not resolve the inertial range of turbulence and are affected by numerical viscosity up to the energy-containing scale, creating a “bottleneck” that prevents an efficient turbulent cascade.

  13. Spectroscopic studies of a high Mach-number rotating plasma flow

    International Nuclear Information System (INIS)

    Ando, Akira; Ashino, Masashi; Sagi, Yukiko; Inutake, Masaaki; Hattori, Kunihiko; Yoshinuma, Mikirou; Imasaki, Atsushi; Tobari, Hiroyuki; Yagai, Tsuyoshi

    2001-01-01

    Characteristics of an axially-magnetized rotating plasma are investigated by spectroscopy in the HITOP device of Tohoku University. A He plasma flows our axially and rotates azimuthally near the muzzle region of the MPD arcjet. Flow and rotational velocities and temperature of He ions and atoms are measured by Doppler shift and broadening of the HeII (γ=468.58 nm) and HeI (γ=587.56 nm) lines. Rotational velocity increases with the increase of axially-applied magnetic field strength and discharge current. As discharge current increases and mass flow rate decreases, the plasma flow velocity increases and T i increases. Ion acoustic Mach number of the plasma flow also increases, but tends to saturate at near 1. Radial profile of space potential is calculated from the obtained rotational velocity. The potential profile in the core region is parabolic corresponding to the observed rigid-body rotation of the core plasma. (author)

  14. Spectroscopic studies of a high Mach-number rotating plasma flow

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Akira; Ashino, Masashi; Sagi, Yukiko; Inutake, Masaaki; Hattori, Kunihiko; Yoshinuma, Mikirou; Imasaki, Atsushi; Tobari, Hiroyuki; Yagai, Tsuyoshi [Tohoku Univ., Dept. of Electrical Engineering, Sendai, Miyagi (Japan)

    2001-07-01

    Characteristics of an axially-magnetized rotating plasma are investigated by spectroscopy in the HITOP device of Tohoku University. A He plasma flows our axially and rotates azimuthally near the muzzle region of the MPD arcjet. Flow and rotational velocities and temperature of He ions and atoms are measured by Doppler shift and broadening of the HeII ({gamma}=468.58 nm) and HeI ({gamma}=587.56 nm) lines. Rotational velocity increases with the increase of axially-applied magnetic field strength and discharge current. As discharge current increases and mass flow rate decreases, the plasma flow velocity increases and T{sub i} increases. Ion acoustic Mach number of the plasma flow also increases, but tends to saturate at near 1. Radial profile of space potential is calculated from the obtained rotational velocity. The potential profile in the core region is parabolic corresponding to the observed rigid-body rotation of the core plasma. (author)

  15. Plasma flow and transport on the tokamak ISTTOK boundary plasma

    International Nuclear Information System (INIS)

    Figueiredo, H.; Silva, C.; Goncalves, B.; Duarte, P.; Fernandes, H.

    2011-01-01

    The ISTTOK boundary plasma velocity near the outer midplane is measured on the parallel and perpendicular directions in four different configurations by reversing independently the toroidal magnetic field and the plasma current directions. The parallel flow is found to not depend significantly on both the toroidal magnetic field and plasma current directions, being always directed towards the nearest limiter in the scrape-off layer. On the contrary, the perpendicular flow is found to follow the E r x B drift direction. The poloidal velocity has also been derived from the correlation of floating potential signals measured on poloidally separated probes and a good agreement with the value derived with the Gundestrup probe is found. Finally, the dynamical interplay between parallel momentum and turbulent particle flux has been investigated and a clear dynamical coupling between these quantities is found in the region inside the limiter.

  16. Backward flow in a surface tension driven micropump

    International Nuclear Information System (INIS)

    Ju, Jongil; Park, Joong Yull; Lee, Sang-Hoon; Kim, Kyung Chun; Kim, Hyundong; Berthier, Erwin; Beebe, David J

    2008-01-01

    A surface tension driven micropump harnessing the pressure difference generated by drops of different curvature radii proves to be a simple and attractive passive method to drive fluid flow in microdevices. Here we observed the appearance of backward flow when the initial sizes of the droplets at the inlet and outlet ports are similar. To explain this phenomenon several hypotheses have been investigated. Consideration of the inertia of the fluid in the channel revealed that it alone is insufficient to explain the observed backward flow. We discovered that rotational flow inside the outlet droplet could be a source of inertia, explaining the generation of the backward flow. In addition, we have experimentally determined that the ratio of the volumes of the initial outlet drop and inlet drop correlates with the occurrence of the backward flow. (note)

  17. Optimization of plasma flow parameters of the magnetoplasma compressor

    International Nuclear Information System (INIS)

    Dojcinovic, I P; Kuraica, M M; Obradovc, B M; Cvetanovic, N; Puric, J

    2007-01-01

    Optimization of the working conditions of the magnetoplasma compressor (MPC) has been performed through analysing discharge and compression plasma flow parameters in hydrogen, nitrogen and argon at different pressures. Energy conversion rate, volt-ampere curve exponent and plasma flow velocities have been studied to optimize the efficiency of energy transfer from the supply source to the plasma. It has been found that the most effective energy transfer from the supply to the plasma is in hydrogen as a working gas at 1000 Pa pressure. It was found that the accelerating regime exists for hydrogen up to 3000 Pa pressures, in nitrogen up to 2000 Pa and in argon up to 1000 Pa pressure. At higher pressures MPC in all the gases works in the decelerating regime. At pressures lower than 200 Pa, high cathode erosion is observed. MPC plasma flow parameter optimization is very important because this plasma accelerating system may be of special interest for solid surface modification and other technology applications

  18. Self-organizing magnetohydrodynamic plasma

    International Nuclear Information System (INIS)

    Sato, T.; Horiuchi, R.; Watanabe, K.; Hayashi, T.; Kusano, K.

    1990-09-01

    In a resistive magnetohydrodynamic (MHD) plasma, both the magnetic energy and the magnetic helicity dissipate with the resistive time scale. When sufficiently large free magnetic energy does exist, however, an ideal current driven instability is excited whereby magnetic reconnection is driven at a converging point of induced plasma flows which does exist in a bounded compressible plasma. At a reconnection point excess free energy (entropy) is rapidly dissipated by ohmic heating and lost by radiation, while magnetic helicity is completely conserved. The magnetic topology is largely changed by reconnection and a new ordered structure with the same helicity is created. It is discussed that magnetic reconnection plays a key role in the MHD self-organization process. (author)

  19. Study on low temperature plasma driven permeation of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Takizawa, Masayuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    It is one of the most important problem in PWI of fusion devices from the point of view of tritium leakage that hydrogen diffuses in the wall of the device and permeates through it, which results in hydrogen being released to the coolant side. In this study, plasma driven permeation experiments were carried out with several kinds of metal membranes in the low temperature plasma where ionic and atomic hydrogen as well as electron existed in order to survey PDP mechanism from the many view points. In addition, incident flux rate from the plasma to the membrane surface was evaluated by calculation analysis. As a result the mechanism of low temperature PDP was found out and described as PDP models. The simulation of the membrane pump system was executed and the system performance was estimated with the models. (author). 135 refs.

  20. Study on low temperature plasma driven permeation of hydrogen

    International Nuclear Information System (INIS)

    Takizawa, Masayuki

    1998-03-01

    It is one of the most important problem in PWI of fusion devices from the point of view of tritium leakage that hydrogen diffuses in the wall of the device and permeates through it, which results in hydrogen being released to the coolant side. In this study, plasma driven permeation experiments were carried out with several kinds of metal membranes in the low temperature plasma where ionic and atomic hydrogen as well as electron existed in order to survey PDP mechanism from the many view points. In addition, incident flux rate from the plasma to the membrane surface was evaluated by calculation analysis. As a result the mechanism of low temperature PDP was found out and described as PDP models. The simulation of the membrane pump system was executed and the system performance was estimated with the models. (author). 135 refs

  1. Detonability of turbulent white dwarf plasma: Hydrodynamical models at low densities

    Science.gov (United States)

    Fenn, Daniel

    The origins of Type Ia supernovae (SNe Ia) remain an unsolved problem of contemporary astrophysics. Decades of research indicate that these supernovae arise from thermonuclear runaway in the degenerate material of white dwarf stars; however, the mechanism of these explosions is unknown. Also, it is unclear what are the progenitors of these objects. These missing elements are vital components of the initial conditions of supernova explosions, and are essential to understanding these events. A requirement of any successful SN Ia model is that a sufficient portion of the white dwarf plasma must be brought under conditions conducive to explosive burning. Our aim is to identify the conditions required to trigger detonations in turbulent, carbon-rich degenerate plasma at low densities. We study this problem by modeling the hydrodynamic evolution of a turbulent region filled with a carbon/oxygen mixture at a density, temperature, and Mach number characteristic of conditions found in the 0.8+1.2 solar mass (CO0812) model discussed by Fenn et al. (2016). We probe the ignition conditions for different degrees of compressibility in turbulent driving. We assess the probability of successful detonations based on characteristics of the identified ignition kernels, using Eulerian and Lagrangian statistics of turbulent flow. We found that material with very short ignition times is abundant in the case that turbulence is driven compressively. This material forms contiguous structures that persist over many ignition time scales, and that we identify as prospective detonation kernels. Detailed analysis of the kernels revealed that their central regions are densely filled with material characterized by short ignition times and contain the minimum mass required for self-sustained detonations to form. It is conceivable that ignition kernels will be formed for lower compressibility in the turbulent driving. However, we found no detonation kernels in models driven 87.5 percent

  2. Diagnostic methods of thermal dusty plasma flows

    International Nuclear Information System (INIS)

    Nefedov, A.P.

    1995-01-01

    The presence in the high-temperature flows of condensed disperse phase (CDP) particles may lead either to an increase of the electron number density n e if the particles assume a positive charge or to its decrease if the charge is negative. The existence of CDP also may effect on optical parameters of the thermal dusty plasma flows, on heat and radiative transfer in the plasma. The entire range of states, from a Debye plasma to a highly nonideal system of charged particles, is realized in a thermal dusty plasma under standard conditions T=2000-3000 K, n e =10 8 - 10 14 cm -3 . The advanced probe and optical diagnostic instruments are needed to study the optical and electrophysical properties of thermal dusty plasma flows. The diagnostic techniques must give the data about such parameters of gas and dispersed phase as temperatures of gas and particles, number densities of electrons, atoms and ions of alkali metals, sizes, velocities and concentrations of CDP particles. It should be noted that number density of alkali metal atoms and gas temperature may be measured by the well known full absorption and generalized reversal methods. This paper describes the probe and optical techniques for diagnostic of dusty plasma flows developed in High Energy Density Research Center of Russian Academy of Sciences. The Forward Angle Scattering Transmissometer (FAST) allows measurement of the average size (Sauter diameter), mass number density, and refractive index of particles in the 0.5-15.0 gm size range. The basis of the method is a dependence of the measured extinction of radiation upon an angular acceptance aperture of the photo detector. The FAST instrument allows one to determine the mass density and the Sauter diameter of a polydispersion of particles without a priori specification of the particle size distribution model and exact data about the article refractive index

  3. Diagnostic methods of thermal dusty plasma flows

    International Nuclear Information System (INIS)

    Nefedov, A.P.

    1995-01-01

    The presence in the high-temperature flows of condensed disperse phase (CDP) particles may lead either to an increase of the electron number density n e if the particles assume a positive charge or to its decrease if the charge is negative. The existence of CDP also may effect on optical parameters of the thermal dusty plasma flows, on heat and radiative transfer in the plasma. The entire range of states, from a Debye plasma to a highly nonideal system of charged particles, is realized in a thermal dusty plasma under standard conditions T=2000-3000 K, n e =10 8 -10 14 cm -3 . The advanced probe and optical diagnostic instruments are needed to study the optical and electrophysical properties of thermal dusty plasma flows. The diagnostic techniques must give the data about such parameters of gas and dispersed phase as temperatures of gas and particles, number densities of electrons, atoms and ions of alkali metals, sizes, velocities and concentrations of CDP particles. It should be noted that number density of alkali metal atoms and gas temperature may be measured by the well known full absorption and generalized reversal methods. This paper describes the probe and optical techniques for diagnostic of dusty plasma flows developed in High Energy Density Research Center of Russian Academy of Sciences. The Forward Angle Scattering Transmissometer (FAST) allows measurement of the average size (Sauter diameter), mass number density, and refractive index of particles in the 0.5-15.0 μm size range. The basis of the method is a dependence of the measured extinction of radiation upon an angular acceptance aperture of the photo detector. The FAST instrument allows one to determine the mass density and the Sauter diameter of a polydispersion of particles without a priori specification of the particle size distribution model and exact data about the particle refractive index

  4. PHOTOIONIZATION OF HIGH-ALTITUDE GAS IN A SUPERNOVA-DRIVEN TURBULENT INTERSTELLAR MEDIUM

    International Nuclear Information System (INIS)

    Wood, Kenneth; Hill, Alex S.; Haffner, L. Matthew; Reynolds, R. J.; Joung, M. Ryan; Mac Low, Mordecai-Mark; Benjamin, Robert A.; Madsen, G. J.

    2010-01-01

    We investigate models for the photoionization of the widespread diffuse ionized gas (DIG) in galaxies. In particular, we address the long standing question of the penetration of Lyman continuum photons from sources close to the galactic midplane to large heights in the galactic halo. We find that recent hydrodynamical simulations of a supernova-driven interstellar medium (ISM) have low-density paths and voids that allow for ionizing photons from midplane OB stars to reach and ionize gas many kiloparsecs above the midplane. We find that ionizing fluxes throughout our simulation grids are larger than predicted by one-dimensional slab models, thus allowing for photoionization by O stars of low altitude neutral clouds in the Galaxy that are also detected in Hα. In previous studies of such clouds, the photoionization scenario had been rejected and the Hα had been attributed to enhanced cosmic ray ionization or scattered light from midplane H II regions. We do find that the emission measure distributions in our simulations are wider than those derived from Hα observations in the Milky Way. In addition, the horizontally averaged height dependence of the gas density in the hydrodynamical models is lower than inferred in the Galaxy. These discrepancies are likely due to the absence of magnetic fields in the hydrodynamic simulations and we discuss how magnetohydrodynamic effects may reconcile models and observations. Nevertheless, we anticipate that the inclusion of magnetic fields in the dynamical simulations will not alter our primary finding that midplane OB stars are capable of producing high-altitude DIG in a realistic three-dimensional ISM.

  5. Statistical study of high-latitude plasma flow during magnetospheric substorms

    Directory of Open Access Journals (Sweden)

    G. Provan

    2004-11-01

    Full Text Available We have utilised the near-global imaging capabilities of the Northern Hemisphere SuperDARN radars, to perform a statistical superposed epoch analysis of high-latitude plasma flows during magnetospheric substorms. The study involved 67 substorms, identified using the IMAGE FUV space-borne auroral imager. A substorm co-ordinate system was developed, centred on the magnetic local time and magnetic latitude of substorm onset determined from the auroral images. The plasma flow vectors from all 67 intervals were combined, creating global statistical plasma flow patterns and backscatter occurrence statistics during the substorm growth and expansion phases. The commencement of the substorm growth phase was clearly observed in the radar data 18-20min before substorm onset, with an increase in the anti-sunward component of the plasma velocity flowing across dawn sector of the polar cap and a peak in the dawn-to-dusk transpolar voltage. Nightside backscatter moved to lower latitudes as the growth phase progressed. At substorm onset a flow suppression region was observed on the nightside, with fast flows surrounding the suppressed flow region. The dawn-to-dusk transpolar voltage increased from ~40kV just before substorm onset to ~75kV 12min after onset. The low-latitude return flow started to increase at substorm onset and continued to increase until 8min after onset. The velocity flowing across the polar-cap peaked 12-14min after onset. This increase in the flux of the polar cap and the excitation of large-scale plasma flow occurred even though the IMF Bz component was increasing (becoming less negative during most of this time. This study is the first to statistically prove that nightside reconnection creates magnetic flux and excites high-latitude plasma flow in a similar way to dayside reconnection and that dayside and nightside reconnection, are two separate time-dependent processes.

  6. Simulating Supernova Light Curves

    Energy Technology Data Exchange (ETDEWEB)

    Even, Wesley Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dolence, Joshua C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-05

    This report discusses supernova light simulations. A brief review of supernovae, basics of supernova light curves, simulation tools used at LANL, and supernova results are included. Further, it happens that many of the same methods used to generate simulated supernova light curves can also be used to model the emission from fireballs generated by explosions in the earth’s atmosphere.

  7. Simulating Supernova Light Curves

    International Nuclear Information System (INIS)

    Even, Wesley Paul; Dolence, Joshua C.

    2016-01-01

    This report discusses supernova light simulations. A brief review of supernovae, basics of supernova light curves, simulation tools used at LANL, and supernova results are included. Further, it happens that many of the same methods used to generate simulated supernova light curves can also be used to model the emission from fireballs generated by explosions in the earth's atmosphere.

  8. Production of hydrogen and deuterium negative ions in an electron cyclotron resonance driven plasma

    Energy Technology Data Exchange (ETDEWEB)

    Dougar-Jabon, V.D. [Industrial Univ. of Santander, Bucaramanga (Colombia)

    2001-04-01

    An electron cyclotron resonance source with driven plasma rings for hydrogen isotope ion production is studied. Extracted currents of positive and negative ions depending on gas pressure, microwave power value and extraction voltage are obtained. The study shows that the negative ion yield is an order of magnitude higher than the yield of positive particles when a driven ring is in contact with the surface of the plasma electrode. The production of negative ions of deuterium, D{sup -}, is close to the production of negative ions of light hydrogen isotope, H{sup -}. The comparison of the experimental data with the calculated ones shows that the most probable process of the H{sup -} and D{sup -} ion formation in the electron cyclotron driven plasma is dissociative attachment of electrons to molecules in high Rydberg states. For hydrogen ions and ions of deuterium, the negative current at a microwave power of 200 W through a 3-mm aperture and 8 kV extraction voltage are 4.7 mA and 3.1 mA respectively. (orig.)

  9. Production of hydrogen and deuterium negative ions in an electron cyclotron resonance driven plasma

    International Nuclear Information System (INIS)

    Dougar-Jabon, V.D.

    2001-01-01

    An electron cyclotron resonance source with driven plasma rings for hydrogen isotope ion production is studied. Extracted currents of positive and negative ions depending on gas pressure, microwave power value and extraction voltage are obtained. The study shows that the negative ion yield is an order of magnitude higher than the yield of positive particles when a driven ring is in contact with the surface of the plasma electrode. The production of negative ions of deuterium, D - , is close to the production of negative ions of light hydrogen isotope, H - . The comparison of the experimental data with the calculated ones shows that the most probable process of the H - and D - ion formation in the electron cyclotron driven plasma is dissociative attachment of electrons to molecules in high Rydberg states. For hydrogen ions and ions of deuterium, the negative current at a microwave power of 200 W through a 3-mm aperture and 8 kV extraction voltage are 4.7 mA and 3.1 mA respectively. (orig.)

  10. Plasma flow discharge researches at the PIRIT-2000 facility

    International Nuclear Information System (INIS)

    Popkov, N.F.; Ryaslov, E.A.; Kargin, V.I.; Pikar', A.S.; Vorontsov, V.I.; Kotel'nikov, D.V.; Melkozerov, A.V.

    1996-01-01

    Investigation of a plasma flow switch at the PIRIT-2000 fast operating capacitor bank is reported. The maximum current of the plasma flow discharge (PFD) reaches 5 MA, the current rise time being as low as 100 ns. The magnetic field strength of the plasma flow switch (0.15 T) is about 15 times higher than that of the plasma erosion switch used earlier. Both magnetic probe and optical methods were used in the experiments. From the magnetic probes data the propagating velocity of a current carrying shell (205 cm/s) has been derived, while the optical method is used for determining the velocity of a glowing plasma layer. At varying the operation delay in the range 2-10 s the PFD load current rise time increases up to 150-200 ns, the prepulse increment reaching its maximum at the delays higher than 6 s. (J.U.). 5 figs., 5 refs

  11. Plasma flow discharge researches at the PIRIT-2000 facility

    Energy Technology Data Exchange (ETDEWEB)

    Popkov, N F; Ryaslov, E A; Kargin, V I; Pikar` , A S; Vorontsov, V I; Kotel` nikov, D V; Melkozerov, A V [All-Russian Scientific Research Inst. of Experimental Physics, Sarov (Russian Federation)

    1997-12-31

    Investigation of a plasma flow switch at the PIRIT-2000 fast operating capacitor bank is reported. The maximum current of the plasma flow discharge (PFD) reaches 5 MA, the current rise time being as low as 100 ns. The magnetic field strength of the plasma flow switch (0.15 T) is about 15 times higher than that of the plasma erosion switch used earlier. Both magnetic probe and optical methods were used in the experiments. From the magnetic probes data the propagating velocity of a current carrying shell (205 cm/s) has been derived, while the optical method is used for determining the velocity of a glowing plasma layer. At varying the operation delay in the range 2-10 s the PFD load current rise time increases up to 150-200 ns, the prepulse increment reaching its maximum at the delays higher than 6 s. (J.U.). 5 figs., 5 refs.

  12. Generation of zonal flows in rotating fluids and magnetized plasmas

    DEFF Research Database (Denmark)

    Juul Rasmussen, J.; Garcia, O.E.; Naulin, V.

    2006-01-01

    The spontaneous generation of large-scale flows by the rectification of small-scale turbulent fluctuations is of great importance both in geophysical flows and in magnetically confined plasmas. These flows regulate the turbulence and may set up effective transport barriers. In the present....... The analogy to large-scale flow generation in drift-wave turbulence dynamics in magnetized plasma is briefly discussed....

  13. An $ep$ collider based on proton-driven plasma wakefield acceleration

    CERN Document Server

    Wing, M.; Mete, O.; Aimidula, A.; Welsch, C.; Chattopadhyay, S.; Mandry, S.

    2014-01-01

    Recent simulations have shown that a high-energy proton bunch can excite strong plasma wakefields and accelerate a bunch of electrons to the energy frontier in a single stage of acceleration. This scheme could lead to a future $ep$ collider using the LHC for the proton beam and a compact electron accelerator of length 170 m, producing electrons of energy up to 100 GeV. The parameters of such a collider are discussed as well as conceptual layouts within the CERN accelerator complex. The physics of plasma wakefield acceleration will also be introduced, with the AWAKE experiment, a proof of principle demonstration of proton-driven plasma wakefield acceleration, briefly reviewed, as well as the physics possibilities of such an $ep$ collider.

  14. Masses of supernova progenitors

    International Nuclear Information System (INIS)

    Tinsley, B.M.

    1977-01-01

    The possible nature and masses of supernovae progenitors, and the bearing of empirical results on some unsolved theoretical problems concerning the origin of supernovae, are discussed. The author concentrates on two main questions: what is the lower mass limit for stars to die explosively and what stars initiate type I supernovae. The evidence considered includes local supernova rates, empirical estimates of msub(w) (the upper mass limit for death as a white dwarf), the distributions of supernovae among stellar populations in galaxies and the colors of supernova producing galaxies. (B.D.)

  15. Pulsed radiobiology with laser-driven plasma accelerators

    Science.gov (United States)

    Giulietti, Antonio; Grazia Andreassi, Maria; Greco, Carlo

    2011-05-01

    Recently, a high efficiency regime of acceleration in laser plasmas has been discovered, allowing table top equipment to deliver doses of interest for radiotherapy with electron bunches of suitable kinetic energy. In view of an R&D program aimed to the realization of an innovative class of accelerators for medical uses, a radiobiological validation is needed. At the present time, the biological effects of electron bunches from the laser-driven electron accelerator are largely unknown. In radiobiology and radiotherapy, it is known that the early spatial distribution of energy deposition following ionizing radiation interactions with DNA molecule is crucial for the prediction of damages at cellular or tissue levels and during the clinical responses to this irradiation. The purpose of the present study is to evaluate the radio-biological effects obtained with electron bunches from a laser-driven electron accelerator compared with bunches coming from a IORT-dedicated medical Radio-frequency based linac's on human cells by the cytokinesis block micronucleus assay (CBMN). To this purpose a multidisciplinary team including radiotherapists, biologists, medical physicists, laser and plasma physicists is working at CNR Campus and University of Pisa. Dose on samples is delivered alternatively by the "laser-linac" operating at ILIL lab of Istituto Nazionale di Ottica and an RF-linac operating for IORT at Pisa S. Chiara Hospital. Experimental data are analyzed on the basis of suitable radiobiological models as well as with numerical simulation based on Monte Carlo codes. Possible collective effects are also considered in the case of ultrashort, ultradense bunches of ionizing radiation.

  16. Parametric study of flow patterns behind the standing accretion shock wave for core-collapse supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Iwakami, Wakana; Nagakura, Hiroki [Yukawa Institute for Theoretical Physics, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Yamada, Shoichi, E-mail: wakana@heap.phys.waseda.ac.jp [Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555 (Japan)

    2014-05-10

    In this study, we conduct three-dimensional hydrodynamic simulations systematically to investigate the flow patterns behind the accretion shock waves that are commonly formed in the post-bounce phase of core-collapse supernovae. Adding small perturbations to spherically symmetric, steady, shocked accretion flows, we compute the subsequent evolutions to find what flow pattern emerges as a consequence of hydrodynamical instabilities such as convection and standing accretion shock instability for different neutrino luminosities and mass accretion rates. Depending on these two controlling parameters, various flow patterns are indeed realized. We classify them into three basic patterns and two intermediate ones; the former includes sloshing motion (SL), spiral motion (SP), and multiple buoyant bubble formation (BB); the latter consists of spiral motion with buoyant-bubble formation (SPB) and spiral motion with pulsationally changing rotational velocities (SPP). Although the post-shock flow is highly chaotic, there is a clear trend in the pattern realization. The sloshing and spiral motions tend to be dominant for high accretion rates and low neutrino luminosities, and multiple buoyant bubbles prevail for low accretion rates and high neutrino luminosities. It is interesting that the dominant pattern is not always identical between the semi-nonlinear and nonlinear phases near the critical luminosity; the intermediate cases are realized in the latter case. Running several simulations with different random perturbations, we confirm that the realization of flow pattern is robust in most cases.

  17. Thomson scattering measurements from asymmetric interpenetrating plasma flows

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J. S., E-mail: ross36@llnl.gov; Moody, J. D.; Fiuza, F.; Ryutov, D.; Divol, L.; Huntington, C. M.; Park, H.-S. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

    2014-11-15

    Imaging Thomson scattering measurements of collective ion-acoustic fluctuations have been utilized to determine ion temperature and density from laser produced counter-streaming asymmetric flows. Two foils are heated with 8 laser beams each, 500 J per beam, at the Omega Laser facility. Measurements are made 4 mm from the foil surface using a 60 J 2ω probe laser with a 200 ps pulse length. Measuring the electron density and temperature from the electron-plasma fluctuations constrains the fit of the multi-ion species, asymmetric flows theoretical form factor for the ion feature such that the ion temperatures, ion densities, and flow velocities for each plasma flow are determined.

  18. Micro Coriolis mass flow sensor driven by external piezo ceramic

    NARCIS (Netherlands)

    Zeng, Yaxiang; Groenesteijn, Jarno; Alveringh, Dennis; Wiegerink, Remco J.; Lötters, Joost Conrad

    2017-01-01

    We have realized a micro Coriolis mass flow meter driven with an external piezo ceramic. The piezoelec tric ceramic is glued on top of sensor chip with a inertial weight on top of the piezo ceramic. Its ability to measure mass flow is characterized by a laser Doppler vibrometer. Our measurement with

  19. Spectrum and light curve of a supernova shock breakout through a thick Wolf-Rayet wind

    Energy Technology Data Exchange (ETDEWEB)

    Svirski, Gilad; Nakar, Ehud, E-mail: swirskig@post.tau.ac.il [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel)

    2014-06-20

    Wolf-Rayet stars are known to eject winds. Thus, when a Wolf-Rayet star explodes as a supernova, a fast (≳ 40, 000 km s{sup –1}) shock is expected to be driven through a wind. We study the signal expected from a fast supernova shock propagating through an optically thick wind and find that the electrons behind the shock driven into the wind are efficiently cooled by inverse Compton over soft photons that were deposited by the radiation-mediated shock that crossed the star. Therefore, the bolometric luminosity is comparable to the kinetic energy flux through the shock, and the spectrum is found to be a power law, whose slope and frequency range depend on the number flux of soft photons available for cooling. Wolf-Rayet supernovae that explode through a thick wind have a high flux of soft photons, producing a flat spectrum, νF {sub ν} = Const, in the X-ray range of 0.1 ≲ T ≲ 50 keV. As the shock expands into an optically thin wind, the soft photons are no longer able to cool the shock that plows through the wind, and the bulk of the emission takes the form of a standard core-collapse supernova (without a wind). However, a small fraction of the soft photons is upscattered by the shocked wind and produces a transient unique X-ray signature.

  20. Spectrum and light curve of a supernova shock breakout through a thick Wolf-Rayet wind

    International Nuclear Information System (INIS)

    Svirski, Gilad; Nakar, Ehud

    2014-01-01

    Wolf-Rayet stars are known to eject winds. Thus, when a Wolf-Rayet star explodes as a supernova, a fast (≳ 40, 000 km s –1 ) shock is expected to be driven through a wind. We study the signal expected from a fast supernova shock propagating through an optically thick wind and find that the electrons behind the shock driven into the wind are efficiently cooled by inverse Compton over soft photons that were deposited by the radiation-mediated shock that crossed the star. Therefore, the bolometric luminosity is comparable to the kinetic energy flux through the shock, and the spectrum is found to be a power law, whose slope and frequency range depend on the number flux of soft photons available for cooling. Wolf-Rayet supernovae that explode through a thick wind have a high flux of soft photons, producing a flat spectrum, νF ν = Const, in the X-ray range of 0.1 ≲ T ≲ 50 keV. As the shock expands into an optically thin wind, the soft photons are no longer able to cool the shock that plows through the wind, and the bulk of the emission takes the form of a standard core-collapse supernova (without a wind). However, a small fraction of the soft photons is upscattered by the shocked wind and produces a transient unique X-ray signature.

  1. Reactive hydroxyl radical-driven oral bacterial inactivation by radio frequency atmospheric plasma

    International Nuclear Information System (INIS)

    Kang, Sung Kil; Lee, Jae Koo; Choi, Myeong Yeol; Koo, Il Gyo; Kim, Paul Y.; Kim, Yoonsun; Kim, Gon Jun; Collins, George J.; Mohamed, Abdel-Aleam H.

    2011-01-01

    We demonstrated bacterial (Streptococcus mutans) inactivation by a radio frequency power driven atmospheric pressure plasma torch with H 2 O 2 entrained in the feedstock gas. Optical emission spectroscopy identified substantial excited state OH generation inside the plasma and relative OH formation was verified by optical absorption. The bacterial inactivation rate increased with increasing OH generation and reached a maximum 5-log 10 reduction with 0.6%H 2 O 2 vapor. Generation of large amounts of toxic ozone is drawback of plasma bacterial inactivation, thus it is significant that the ozone concentration falls within recommended safe allowable levels with addition of H 2 O 2 vapor to the plasma.

  2. Recombining plasma in the gamma-ray-emitting mixed-morphology supernova remnant 3C 391

    Energy Technology Data Exchange (ETDEWEB)

    Ergin, T.; Sezer, A. [TUBITAK Space Technologies Research Institute, ODTU Campus, 06531 Ankara (Turkey); Saha, L.; Majumdar, P.; Chatterjee, A. [Saha Institute of Nuclear Physics, Kolkata, West Bengal 700064 (India); Bayirli, A.; Ercan, E. N., E-mail: tulun.ergin@tubitak.gov.tr [Physics Department, Bogazici University, Bebek, 34342 Istanbul (Turkey)

    2014-07-20

    A group of middle-aged mixed-morphology (MM) supernova remnants (SNRs) interacting with molecular clouds (MCs) has been discovered to be strong GeV gamma-ray emitters by the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope (Fermi-LAT). The recent observations of the Suzaku X-ray satellite have revealed that some of these interacting gamma-ray-emitting SNRs, such as IC443, W49B, W44, and G359.1-0.5, have overionized plasmas. 3C 391 (G31.9+0.0) is another Galactic MM SNR interacting with MCs. It was observed in GeV gamma rays by Fermi-LAT as well as in the 0.3-10.0 keV X-ray band by Suzaku. In this work, 3C 391 was detected in GeV gamma rays with a significance of ∼18σ and we showed that the GeV emission is point-like in nature. The GeV gamma-ray spectrum was shown to be best explained by the decay of neutral pions assuming that the protons follow a broken power-law distribution. We revealed radiative recombination structures of silicon and sulfur from 3C 391 using Suzaku data. In this paper, we discuss the possible origin of this type of radiative plasma and hadronic gamma rays.

  3. Summary Report of Working Group 5: Electron Beam Driven Plasma Accelerators

    International Nuclear Information System (INIS)

    Hogan, Mark J.; Conde, Manoel E.

    2009-01-01

    Electron beam driven plasma accelerators have seen rapid progress over the last decade. Recent efforts have built on this success by constructing a concept for a plasma wakefield accelerator based linear collider. The needs for any future collider to deliver both energy and luminosity have substantial implications for interpreting current experiments and setting priorities for the future. This working group reviewed current experiments and ideas in the context of the demands of a future collider. The many discussions and presentations are summarized here.

  4. Heating of plasmas in tokamaks by current-driven turbulence

    International Nuclear Information System (INIS)

    Kluiver, H. de.

    1985-10-01

    Investigations of current-driven turbulence have shown the potential to heat plasmas to elevated temperatures in relatively small cross-section devices. The fundamental processes are rather well understood theoretically. Even as it is shown to be possible to relax the technical requirements on the necessary electric field and the pulse length to acceptable values, the effect of energy generation near the plasma edge, the energy transport, the impurity influx and the variation of the current profile are still unknown for present-day large-radius tokamaks. Heating of plasmas by quasi-stationary weakly turbulent states caused by moderate increases of the resistivity due to higher loop voltages could be envisaged. Power supplies able to furnish power levels 5-10 times higher than the usual values could be used for a demonstration of those regimes. At several institutes and university laboratories the study of turbulent heating in larger tokamaks and stellarators is pursued

  5. Curvature and temperature gradient driven instabilities in tokomak edge plasmas with SOL

    International Nuclear Information System (INIS)

    Novakovskii, S.V.; Guzdar, P.N.; Drake, J.F.; Liu, C.S.

    1996-01-01

    Curvature driven resistive ballooning modes (RBM) as well as the electron temperature gradient (ETG) modes have been investigated in the tokomak edge region and the SOL, with the help of the numerical code open-quotes 2D-BALLOONclose quotes. This is an initial value code, which determines the stability properties and estimates the quasi-linear transport for given density, temperature, the magnetic and electric field profiles, taking into account the SOL geometry as well as a closed flux region. The results related to the following issues will be presented: (1) Comparative analysis of the ETG and the RBM instabilities in the SOL and their influence on the transport in the edge region (inside the Last Closed Magnetic Surface). (2) The influence of the effective Debye sheath current. (3) Different poloidal positions of the toroidal limiter and their effect on the instabilities. Other aspects of the edge plasma turbulence, such as finite β effects, flow-shear of the poloidal rotation etc. will also be discussed

  6. Summary report : working group 5 on 'electron beam-driven plasma and structure based acceleration concepts'

    International Nuclear Information System (INIS)

    Conde, M. E.; Katsouleas, T.

    2000-01-01

    The talks presented and the work performed on electron beam-driven accelerators in plasmas and structures are summarized. Highlights of the working group include new experimental results from the E-157 Plasma Wakefield Experiment, the E-150 Plasma Lens Experiment and the Argonne Dielectric Structure Wakefield experiments. The presentations inspired discussion and analysis of three working topics: electron hose instability, ion channel lasers and the plasma afterburner

  7. Interaction of counter-streaming plasma flows in dipole magnetic field

    OpenAIRE

    Shaikhislamov, I F; Posukh, V G; Melekhov, A V; Prokopov, P A; Boyarintsev, E L; Zakharov, Yu P; Ponomarenko, A G

    2017-01-01

    Transient interaction of counter-streaming super-sonic plasma flows in dipole magnetic dipole is studied in laboratory experiment. First quasi-stationary flow is produced by teta-pinch and forms a magnetosphere around the magnetic dipole while laser beams focused at the surface of the dipole cover launch second explosive plasma expanding from inner dipole region outward. Laser plasma is energetic enough to disrupt magnetic field and to sweep through the background plasma for large distances. ...

  8. Plasma turbulence driven by transversely large-scale standing shear Alfvén waves

    International Nuclear Information System (INIS)

    Singh, Nagendra; Rao, Sathyanarayan

    2012-01-01

    Using two-dimensional particle-in-cell simulations, we study generation of turbulence consisting of transversely small-scale dispersive Alfvén and electrostatic waves when plasma is driven by a large-scale standing shear Alfvén wave (LS-SAW). The standing wave is set up by reflecting a propagating LS-SAW. The ponderomotive force of the standing wave generates transversely large-scale density modifications consisting of density cavities and enhancements. The drifts of the charged particles driven by the ponderomotive force and those directly caused by the fields of the standing LS-SAW generate non-thermal features in the plasma. Parametric instabilities driven by the inherent plasma nonlinearities associated with the LS-SAW in combination with the non-thermal features generate small-scale electromagnetic and electrostatic waves, yielding a broad frequency spectrum ranging from below the source frequency of the LS-SAW to ion cyclotron and lower hybrid frequencies and beyond. The power spectrum of the turbulence has peaks at distinct perpendicular wave numbers (k ⊥ ) lying in the range d e −1 -6d e −1 , d e being the electron inertial length, suggesting non-local parametric decay from small to large k ⊥ . The turbulence spectrum encompassing both electromagnetic and electrostatic fluctuations is also broadband in parallel wave number (k || ). In a standing-wave supported density cavity, the ratio of the perpendicular electric to magnetic field amplitude is R(k ⊥ ) = |E ⊥ (k ⊥ )/|B ⊥ (k ⊥ )| ≪ V A for k ⊥ d e A is the Alfvén velocity. The characteristic features of the broadband plasma turbulence are compared with those available from satellite observations in space plasmas.

  9. SPECTRA OF MAGNETIC FLUCTUATIONS AND RELATIVISTIC PARTICLES PRODUCED BY A NONRESONANT WAVE INSTABILITY IN SUPERNOVA REMNANT SHOCKS

    International Nuclear Information System (INIS)

    Vladimirov, Andrey E.; Ellison, Donald C.; Bykov, Andrei M.

    2009-01-01

    We model strong forward shocks in young supernova remnants with efficient particle acceleration where a nonresonant instability driven by the cosmic ray current amplifies magnetic turbulence in the shock precursor. Particle injection, magnetic field amplification (MFA), and the nonlinear feedback of particles and fields on the bulk flow are derived consistently. The shock structure depends critically on the efficiency of turbulence cascading. If cascading is suppressed, MFA is strong, the shock precursor is stratified, and the turbulence spectrum contains several discrete peaks. These peaks, as well as the amount of MFA, should influence synchrotron X-rays, allowing observational tests of cascading and other assumptions intrinsic to the nonlinear model of nonresonant wave growth.

  10. PROGENITOR-EXPLOSION CONNECTION AND REMNANT BIRTH MASSES FOR NEUTRINO-DRIVEN SUPERNOVAE OF IRON-CORE PROGENITORS

    Energy Technology Data Exchange (ETDEWEB)

    Ugliano, Marcella; Janka, Hans-Thomas; Marek, Andreas [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); Arcones, Almudena [Institut fuer Kernphysik, Technische Universitaet Darmstadt, Schlossgartenstr. 2, D-64289 Darmstadt (Germany)

    2012-09-20

    We perform hydrodynamic supernova (SN) simulations in spherical symmetry for over 100 single stars of solar metallicity to explore the progenitor-explosion and progenitor-remnant connections established by the neutrino-driven mechanism. We use an approximative treatment of neutrino transport and replace the high-density interior of the neutron star (NS) by an inner boundary condition based on an analytic proto-NS core-cooling model, whose free parameters are chosen such that explosion energy, nickel production, and energy release by the compact remnant of progenitors around 20 M{sub Sun} are compatible with SN 1987A. Thus, we are able to simulate the accretion phase, initiation of the explosion, subsequent neutrino-driven wind phase for 15-20 s, and the further evolution of the blast wave for hours to days until fallback is completed. Our results challenge long-standing paradigms. We find that remnant mass, launch time, and properties of the explosion depend strongly on the stellar structure and exhibit large variability even in narrow intervals of the progenitors' zero-age main-sequence mass. While all progenitors with masses below {approx}15 M{sub Sun} yield NSs, black hole (BH) as well as NS formation is possible for more massive stars, where partial loss of the hydrogen envelope leads to weak reverse shocks and weak fallback. Our NS baryonic masses of {approx}1.2-2.0 M{sub Sun} and BH masses >6 M{sub Sun} are compatible with a possible lack of low-mass BHs in the empirical distribution. Neutrino heating accounts for SN energies between some 10{sup 50} erg and {approx}2 Multiplication-Sign 10{sup 51} erg but can hardly explain more energetic explosions and nickel masses higher than 0.1-0.2 M{sub Sun }. These seem to require an alternative SN mechanism.

  11. Thin film plasma coatings from dielectric free-flowing materials

    International Nuclear Information System (INIS)

    Timofeeva, L.A.; Katrich, S.A.; Solntsev, L.A.

    1994-01-01

    Fabrication of thin film plasma coatings from insulating free-flowing materials is considered. Molybdenum-tart ammonium coating of 3...5 μ thickness deposited on glassy carbon, aluminium, silicon, nickel, cast iron and steel substrates in 'Bulat-ZT' machine using insulating free-flowing materials cathod was found to form due to adsorption, absorption and dissuasion processes. The use of insulating free-flowing materials coatings allow to exclude pure metals cathods in plasma-plating process

  12. Regulation of electron temperature gradient turbulence by zonal flows driven by trapped electron modes

    Science.gov (United States)

    Asahi, Y.; Ishizawa, A.; Watanabe, T.-H.; Tsutsui, H.; Tsuji-Iio, S.

    2014-05-01

    Turbulent transport caused by electron temperature gradient (ETG) modes was investigated by means of gyrokinetic simulations. It was found that the ETG turbulence can be regulated by meso-scale zonal flows driven by trapped electron modes (TEMs), which are excited with much smaller growth rates than those of ETG modes. The zonal flows of which radial wavelengths are in between the ion and the electron banana widths are not shielded by trapped ions nor electrons, and hence they are effectively driven by the TEMs. It was also shown that an E × B shearing rate of the TEM-driven zonal flows is larger than or comparable to the growth rates of long-wavelength ETG modes and TEMs, which make a main contribution to the turbulent transport before excitation of the zonal flows.

  13. Modeling of Perpendicularly Driven Dual-Frequency Capacitively Coupled Plasma

    International Nuclear Information System (INIS)

    Wang Hongyu; Sun Peng; Zhao Shuangyun; Li Yang; Jiang Wei

    2016-01-01

    We analyzed perpendicularly configured dual-frequency (DF) capacitively coupled plasmas (CCP). In this configuration, two pairs of electrodes are arranged oppositely, and the discharging is perpendicularly driven by two radio frequency (RF) sources. Particle-in-cell/Monte Carlo (PIC/MC) simulation showed that the configuration had some advantages as this configuration eliminated some dual frequency coupling effects. Some variation and potential application of the discharging configuration is discussed briefly. (paper)

  14. The role of current sheet formation in driven plasmoid reconnection in laser-produced plasma bubbles

    Science.gov (United States)

    Lezhnin, Kirill; Fox, William; Bhattacharjee, Amitava

    2017-10-01

    We conduct a multiparametric study of driven magnetic reconnection relevant to recent experiments on colliding magnetized laser produced plasmas using the PIC code PSC. Varying the background plasma density, plasma resistivity, and plasma bubble geometry, the results demonstrate a variety of reconnection behavior and show the coupling between magnetic reconnection and global fluid evolution of the system. We consider both collision of two radially expanding bubbles where reconnection is driven through an X-point, and collision of two parallel fields where reconnection must be initiated by the tearing instability. Under various conditions, we observe transitions between fast, collisionless reconnection to a Sweet-Parker-like slow reconnection to complete stalling of the reconnection. By varying plasma resistivity, we observe the transition between fast and slow reconnection at Lundquist number S 103 . The transition from plasmoid reconnection to a single X-point reconnection also happens around S 103 . We find that the criterion δ /di < 1 is necessary for fast reconnection onset. Finally, at sufficiently high background density, magnetic reconnection can be suppressed, leading to bouncing motion of the magnetized plasma bubbles.

  15. Linear and nonlinear dynamics of current-driven waves in dusty plasmas

    Science.gov (United States)

    Ahmad, Ali; Ali Shan, S.; Haque, Q.; Saleem, H.

    2012-09-01

    The linear and nonlinear dynamics of a recently proposed plasma mode of dusty plasma is studied using kappa distribution for electrons. This electrostatic wave can propagate in the plasma due to the sheared flow of electrons and ions parallel to the external magnetic field in the presence of stationary dust. The coupling of this wave with the usual drift wave and ion acoustic wave is investigated. D'Angelo's mode is also modified in the presence of superthermal electrons. In the nonlinear regime, the wave can give rise to dipolar vortex structures if the shear in flow is weaker and tripolar vortices if the flow has steeper gradient. The results have been applied to Saturn's magnetosphere corresponding to negatively charged dust grains. But the theoretical model is applicable for positively charged dust as well. This work will be useful for future observations and studies of dusty environments of planets and comets.

  16. High explosive driven plasma opening switches

    International Nuclear Information System (INIS)

    Greene, A.E.; Bowers, R.L.; Brownell, J.H.; Goforth, J.H.; Oliphant, T.A.; Weiss, D.L.

    1983-01-01

    A joint theoretical and experimental effort is underway to understand and improve upon the performance of high explosive driven plasma opening switches such as those first described by Pavlovskii et al. We have modeled these switches in both planar and cylindrical geometry using a one dimensional Lagrangian MHD code. This one-dimensional analysis is now essentially complete. It has shown that simple, one-dimensional, compression of the current-carrying channel can explain the observed resistance increases during the time of flight of the HE detonation products. Our calculations imply that ionization plays an important role as an energy sink and the performance of these switches might be improved by a judicious choice of gases. We also predict improved performance by lowering the pressure in the plasma channel. The bulk of our experimental effort to date has been with planar switches. We have worked with current densities of 0.25 to 0.4 MA/cm and have observed resistance increases of 40 to 60 mΩ. Significant resistance increases are observed later than the time of flight of the HE detonation products. We suggest that these resistance increases are due to mixing between the hot plasma and the relatively cooler detonation products. Such mixing is not included in the 1-D, Lagrangian code. We are presently beginning a computational effort with a 2-D Eulerian code. The status of this effort is discussed. Experimentally we have designed an apparatus that will permit us to test the role of different gases and pressures. This system is also in a planar geometry, but the plasma channel is doughnut shaped, permitting us to avoid edge effects associated with the planar rectangular geometry. The first experiments with this design are quite encouraging and the status of this effort is also discussed

  17. Coupling of the Okuda-Dawson model with a shear current-driven wave and the associated instability

    Science.gov (United States)

    Masood, W.; Saleem, H.; Saleem

    2013-12-01

    It is pointed out that the Okuda-Dawson mode can couple with the newly proposed current-driven wave. It is also shown that the Shukla-Varma mode can couple with these waves if the density inhomogeneity is taken into account in a plasma containing stationary dust particles. A comparison of several low-frequency electrostatic waves and instabilities driven by shear current and shear plasma flow in an electron-ion plasma with and without stationary dust is also presented.

  18. Off-Axis Driven Current Effects on ETB and ITB Formations based on Bifurcation Concept

    Science.gov (United States)

    Pakdeewanich, J.; Onjun, T.; Chatthong, B.

    2017-09-01

    This research studies plasma performance in fusion Tokamak system by investigating parameters such as plasma pressure in the presence of an edge transport barrier (ETB) and an internal transport barrier (ITB) as the off-axis driven current position is varied. The plasma is modeled based on the bifurcation concept using a suppression function that can result in formation of transport barriers. In this model, thermal and particle transport equations, including both neoclassical and anomalous effects, are solved simultaneously in slab geometry. The neoclassical coefficients are assumed to be constant while the anomalous coefficients depend on gradients of local pressure and density. The suppression function, depending on flow shear and magnetic shear, is assumed to affect only on the anomalous channel. The flow shear can be calculated from the force balance equation, while the magnetic shear is calculated from the given plasma current. It is found that as the position of driven current peak is moved outwards from the plasma center, the central pressure is increased. But at some point it stars to decline, mostly when the driven current peak has reached the outer half of the plasma. The higher pressure value results from the combination of ETB and ITB formations. The drop in central pressure occurs because ITB stats to disappear.

  19. Smoking supernovae

    OpenAIRE

    Gomez, Haley Louise; Eales, Stephen Anthony; Dunne, L.

    2007-01-01

    The question ‘Are supernovae important sources of dust?’ is a contentious one. Observations with the Infrared Astronomical Satellite (IRAS) and the Infrared Space Observatory (ISO) only detected very small amounts of hot dust in supernova remnants. Here, we review observations of two young Galactic remnants with the Submillimetre Common User Bolometer Array (SCUBA), which imply that large quantities of dust are produced by supernovae. The association of dust with the Cassiopeia A remnant is i...

  20. The historical supernovae

    CERN Document Server

    Clark, David H

    1977-01-01

    The Historical Supernovae is an interdisciplinary study of the historical records of supernova. This book is composed of 12 chapters that particularly highlight the history of the Far East. The opening chapter briefly describes the features of nova and supernova, stars which spontaneously explode with a spectacular and rapid increase in brightness. The succeeding chapter deals with the search for the historical records of supernova from Medieval European monastic chronicles, Arabic chronicles, astrological works etc., post renaissance European scientific writings, and Far Eastern histories and

  1. Numerical and Experimental Study of Electromagnetically Driven Vortical Flows

    NARCIS (Netherlands)

    Kenjeres, S.; Verdoold, J.; Tummers, M.J.; Hanjalic, K.; Kleijn, C.R.

    2009-01-01

    The paper reports on numerical and experimental investigations of electromagnetically driven vortical flows of an electrically conductive fluid in a generic setup. Two different configurations of permanent magnets are considered: a 3-magnet configuration in which the resulting Lorentz force is

  2. Pulsar-Driven Jets in Supernovae, Gamma-Ray Bursts, and the Universe

    Directory of Open Access Journals (Sweden)

    John Middleditch

    2012-01-01

    Full Text Available The bipolarity of Supernova 1987A can be understood through its very early light curve from the CTIO 0.4 m telescope and IUE FES and following speckle observations of the “Mystery Spot”. These indicate a beam/jet of light/particles, with initial collimation factors >104 and velocities >0.95 c, involving up to 10−5 M⊙ interacting with circumstellar material. These can be produced by a model of pulsar emission from polarization currents induced/(modulated faster than c beyond the pulsar light cylinder by the periodic electromagnetic field (supraluminally induced polarization currents (SLIP. SLIP accounts for the disruption of supernova progenitors and their anomalous dimming at cosmological distances, jets from Sco X-1 and SS 433, the lack/presence of pulsations from the high-/low-luminosity low-mass X-ray binaries, and long/short gamma-ray bursts, and it predicts that their afterglows are the pulsed optical-/near-infrared emission associated with these pulsars. SLIP may also account for the TeV e+/e− results from PAMELA and ATIC, the WMAP “Haze”/Fermi “Bubbles,” and the r-process. SLIP jets from SNe of the first stars may allow galaxies to form without dark matter and explain the peculiar nongravitational motions between pairs of distant galaxies observed by GALEX.

  3. Study on dynamics of the influence exerted by plasma on gas flow field in non-thermal atmospheric pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Qaisrani, M. Hasnain; Xian, Yubin, E-mail: yubin.xian@hotmail.com; Li, Congyun; Pei, Xuekai; Ghasemi, Maede; Lu, Xinpei [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2016-06-15

    In this paper, first, steady state of the plasma jet at different operating conditions is investigated through Schlieren photography with and without applying shielding gas. Second, the dynamic process for the plasma impacting on the gas flow field is studied. When the discharge is ignited, reduction in laminar flow occurs. However, when the gas flow rate is too low or too high, this phenomenon is not obvious. What is more, both frequency and voltage have significant impact on the effect of plasma on the gas flow, but the former is more significant. Shielding gas provides a curtain for plasma to propagate further. High speed camera along with Schlieren photography is utilized to study the impact of plasma on the gas flow when plasma is switched on and off. The transition of the gas flow from laminar to turbulent or vice versa happens right after the turbulent front. It is concluded that appearance and propagation of turbulence front is responsible for the transition of the flow state.

  4. Neutrino beam plasma instability

    Indian Academy of Sciences (India)

    positron or electron–proton plasma in the context of early universe, stars and supernova ... proper. Of course, in their later work on kinetic theory (KT) [5] of neutrino plasma inter- .... for electron also with additional electric potential term.

  5. Geometric scalings for the electrostatically driven helical plasma state

    Science.gov (United States)

    Akçay, Cihan; Finn, John M.; Nebel, Richard A.; Barnes, Daniel C.

    2017-12-01

    A new plasma state has been investigated [Akcay et al., Phys. Plasmas 24, 052503 (2017)], with a uniform applied axial magnetic field in a periodic cylinder of length L = 2 π R , driven by helical electrodes. The drive is single helicity, depending on m θ + k z = m θ - n ζ , where ζ = z / R and k = - n / R . For strong ( m , n ) = ( 1 , 1 ) drive, the state was found to have a strong axial mean current density, with a mean-field safety factor q 0 ( r ) just above the pitch of the electrodes m / n = 1 in the interior. This state has possible applications to DC electrical transformers and tailoring of the current profile in tokamaks. We study two geometric issues of interest for these applications: (i) scaling of properties with the plasma length or aspect ratio and (ii) behavior for different helicities, specifically ( m , n ) = ( 1 , n ) for n > 1 and ( m , n ) = ( 2 , 1 ) .

  6. Critical gradients and plasma flows in the edge plasma of Alcator C-Moda)

    Science.gov (United States)

    Labombard, B.; Hughes, J. W.; Smick, N.; Graf, A.; Marr, K.; McDermott, R.; Reinke, M.; Greenwald, M.; Lipschultz, B.; Terry, J. L.; Whyte, D. G.; Zweben, S. J.; Alcator C-Mod Team

    2008-05-01

    Recent experiments have led to a fundamental shift in our view of edge transport physics; transport near the last-closed flux surface may be more appropriately described in terms of a critical gradient phenomenon rather than a diffusive and/or convective paradigm. Edge pressure gradients, normalized by the square of the poloidal magnetic field strength, appear invariant in plasmas with the same normalized collisionality, despite vastly different currents and magnetic fields—a behavior that connects with first-principles electromagnetic plasma turbulence simulations. Near-sonic scrape-off layer (SOL) flows impose a cocurrent rotation boundary condition on the confined plasma when B ×∇B points toward the active x-point, suggesting a link to the concomitant reduction in input power needed to attain high-confinement modes. Indeed, low-confinement mode plasmas are found to attain higher edge pressure gradients in this configuration, independent of the direction of B, evidence that SOL flows may affect transport and "critical gradient" values in the edge plasma.

  7. Matching Supernovae to Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2016-12-01

    One of the major challenges for modern supernova surveys is identifying the galaxy that hosted each explosion. Is there an accurate and efficient way to do this that avoids investing significant human resources?Why Identify Hosts?One problem in host galaxy identification. Here, the supernova lies between two galaxies but though the centroid of the galaxy on the right is closer in angular separation, this may be a distant background galaxy that is not actually near the supernova. [Gupta et al. 2016]Supernovae are a critical tool for making cosmological predictions that help us to understand our universe. But supernova cosmology relies on accurately identifying the properties of the supernovae including their redshifts. Since spectroscopic followup of supernova detections often isnt possible, we rely on observations of the supernova host galaxies to obtain redshifts.But how do we identify which galaxy hosted a supernova? This seems like a simple problem, but there are many complicating factors a seemingly nearby galaxy could be a distant background galaxy, for instance, or a supernovas host could be too faint to spot.The authors algorithm takes into account confusion, a measure of how likely the supernova is to be mismatched. In these illustrations of low (left) and high (right) confusion, the supernova is represented by a blue star, and the green circles represent possible host galaxies. [Gupta et al. 2016]Turning to AutomationBefore the era of large supernovae surveys, searching for host galaxies was done primarily by visual inspection. But current projects like the Dark Energy Surveys Supernova Program is finding supernovae by the thousands, and the upcoming Large Synoptic Survey Telescope will likely discover hundreds of thousands. Visual inspection will not be possible in the face of this volume of data so an accurate and efficient automated method is clearly needed!To this end, a team of scientists led by Ravi Gupta (Argonne National Laboratory) has recently

  8. Pressure-driven occlusive flow of a confined red blood cell.

    Science.gov (United States)

    Savin, Thierry; Bandi, M M; Mahadevan, L

    2016-01-14

    When red blood cells (RBCs) move through narrow capillaries in the microcirculation, they deform as they flow. In pathophysiological processes such as sickle cell disease and malaria, RBC motion and flow are severely restricted. To understand this threshold of occlusion, we use a combination of experiment and theory to study the motion of a single swollen RBC through a narrow glass capillary of varying inner diameter. By tracking the movement of the squeezed cell as it is driven by a controlled pressure drop, we measure the RBC velocity as a function of the pressure gradient as well as the local capillary diameter, and find that the effective blood viscosity in this regime increases with both decreasing RBC velocity and tube radius by following a power-law that depends upon the length of the confined cell. Our observations are consistent with a simple elasto-hydrodynamic model and highlight the role of lateral confinement in the occluded pressure-driven slow flow of soft confined objects.

  9. Evolution of Supernova Remnants

    Science.gov (United States)

    Arbutina, B.

    2017-12-01

    This book, both a monograph and a graduate textbook, is based on my original research and partly on the materials prepared earlier for the 2007 and 2008 IARS Astrophysics Summer School in Istanbul, AstroMundus course 'Supernovae and Their Remnants' that was held for the first time in 2011 at the Department of Astronomy, Faculty of Mathematics, University of Belgrade, and a graduate course 'Evolution of Supernova Remnants' that I teach at the aforementioned university. The first part Supernovae (introduction, thermonuclear supernovae, core-collapse supernovae) provides introductory information and explains the classification and physics of supernova explosions, while the second part Supernova remnants (introduction, shock waves, cosmic rays and particle acceleration, magnetic fields, synchrotron radiation, hydrodynamic and radio evolution of supernova remnants), which is the field I work in, is more detailed in scope i.e. technical/mathematical. Special attention is paid to details of mathematical derivations that often cannot be found in original works or available literature. Therefore, I believe it can be useful to both, graduate students and researchers interested in the field.

  10. Supernova neutrinos

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    In the first part of his in-depth article on the 1987 supernova, David Schramm of the University of Chicago and the NASA/Fermilab Astrophysics Centre reviewed the background to supernovae, the composition of massive stars and the optical history of SN 1987A, and speculated on what the 1987 remnant might be. In such a Type II supernova, gravitational pressure crushes the atoms of the star's interior producing neutron matter, or even a black hole, and releasing an intense burst of neutrinos. 1987 was the first time that physicists were equipped (but not entirely ready!) to intercept these particles, and in the second part of his article, David Schramm covers the remarkable new insights from the science of supernova neutrino astronomy, born on 23 February 1987

  11. Supernovae and neutrinos

    International Nuclear Information System (INIS)

    Totsuka, Y.

    1991-01-01

    On February 25, 1987, a sheet of telefax came to us from S. A. Bludman, saying Supernova went off in Large Magellanic Clouds. Can you see it? This is what we have been waiting 350 years for exclamation point In few hours, more information arrived. But it was still too early to definitely identify the supernova as type I or type II. This paper reports that the type I supernova is an explosion of a complete star due to uncontrolled nuclear fusion, while the type II supernova is triggered by gravitational collapse of the Fe core of a massive star (≥8 solar mass). It is this type II supernova that would leave a neutron star or a black hole after the liberation of an enormous amount of energy (3 x 10 53 erg) in the form of neutrinos. Therefore only the type II supernova is a relevant place to look for neutrino signals. It was also frustrating that the time when the stellar collapse actually took place was not definitely determined, because it was believed that the supernova brightened up about a day after the collapse and there was an ambiguity in a time lag of the optical observation. There was a possibility that it had happened well before February 24

  12. Dust in Supernovae and Supernova Remnants II: Processing and Survival

    Science.gov (United States)

    Micelotta, E. R.; Matsuura, M.; Sarangi, A.

    2018-03-01

    Observations have recently shown that supernovae are efficient dust factories, as predicted for a long time by theoretical models. The rapid evolution of their stellar progenitors combined with their efficiency in precipitating refractory elements from the gas phase into dust grains make supernovae the major potential suppliers of dust in the early Universe, where more conventional sources like Asymptotic Giant Branch (AGB) stars did not have time to evolve. However, dust yields inferred from observations of young supernovae or derived from models do not reflect the net amount of supernova-condensed dust able to be expelled from the remnants and reach the interstellar medium. The cavity where the dust is formed and initially resides is crossed by the high velocity reverse shock which is generated by the pressure of the circumstellar material shocked by the expanding supernova blast wave. Depending on grain composition and initial size, processing by the reverse shock may lead to substantial dust erosion and even complete destruction. The goal of this review is to present the state of the art about processing and survival of dust inside supernova remnants, in terms of theoretical modelling and comparison to observations.

  13. Marangoni flows induced by atmospheric-pressure plasma jets

    International Nuclear Information System (INIS)

    Berendsen, C W J; Van Veldhuizen, E M; Kroesen, G M W; Darhuber, A A

    2015-01-01

    We studied the interaction of atmospheric-pressure plasma jets of Ar or air with liquid films of an aliphatic hydrocarbon on moving solid substrates. The hydrodynamic jet-liquid interaction induces a track of lower film thickness. The chemical plasma-surface interaction oxidizes the liquid, leading to a local increase of the surface tension and a self-organized redistribution of the liquid film. We developed a numerical model that qualitatively reproduces the formation, instability and coarsening of the flow patterns observed in the experiments. Monitoring the liquid flow has potential as an in-situ, spatially and temporally resolved, diagnostic tool for the plasma-liquid surface interaction. (paper)

  14. Investigations on interactions between the flowing liquid lithium limiter and plasmas

    International Nuclear Information System (INIS)

    Ren, J.; Zuo, G.Z.; Hu, J.S.; Sun, Z.; Li, J.G.; Zakharov, L.E.; Ruzic, D.N.; Xu, W.Y.

    2016-01-01

    Two different designs of flowing liquid lithium limiter were first tested for power exhaust and particle removal in HT-7 in 2012 autumn campaign. During the experiments, the reliability and compatibility of the limiters within Tokamak were experimentally demonstrated, and some positive results were achieved. It was found that the flowing liquid lithium limiter was effective for suppressing H concentration and led to a low ratio of H/(H + D). O impurity was slightly decreased by using limiters as well as when using a Li coating. A significant increase of the wall retention ratio was also observed which resulted from the outstanding D particles pumping ability of flowing liquid lithium limiters. The strong interaction between plasma and lithium surface could cause lithium ejection into plasma and lead to disruptions. The stable plasmas produced by uniform Li flow were in favor of lithium control. While the limiters were applied with a uniform Li flow, the normal plasma was easy to be obtained, and the energy confinement time increased from ∼0.025 s to 0.04 s. Furthermore, it was encouraging to note that the application of flowing liquid lithium limiters could further improve the confinement of plasma by ∼10% on the basis of Li coating. These remarkable results will help for the following design of flowing liquid lithium limiter in EAST to improve the plasma operation.

  15. Control of open end plasma flow utilizing orbital stochasticity

    International Nuclear Information System (INIS)

    Hojo, Hitoshi

    1995-01-01

    It has been known that the control of plasma outside the confinement region of diverter plasma and others in a magnetic field confinement device is very important for improveing the confinement of bulk plasma. The control of plasma outside a confinement region bears two roles, one is the reduction of the thermal load on a diverter plate and others due to the plasma particles lost from the confinement region, and another is the restriction of the back flow of cold plasma and impurities generated outside the confinement region to a bulk plasma region. In this study, the new method of controlling plasma outside a confinement region called magnetic diverter is considered. To the plasma particles advancing along magnetic force lines, the reflection and capture of the plasma particles occur in the region of orbital stochasticity, and the thermal load on an end plate and the reverse flow to a bulk plasma region are restricted. The numerical computation model used regarding the particle control utilizing the orbital stochasticity and the results of calculating the orbit of plasma particles in a magnetic field are reported. (K.I.)

  16. Linear and nonlinear dynamics of current-driven waves in dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Ali [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan); Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); Ali Shan, S.; Haque, Q. [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); Saleem, H. [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan)

    2012-09-15

    The linear and nonlinear dynamics of a recently proposed plasma mode of dusty plasma is studied using kappa distribution for electrons. This electrostatic wave can propagate in the plasma due to the sheared flow of electrons and ions parallel to the external magnetic field in the presence of stationary dust. The coupling of this wave with the usual drift wave and ion acoustic wave is investigated. D'Angelo's mode is also modified in the presence of superthermal electrons. In the nonlinear regime, the wave can give rise to dipolar vortex structures if the shear in flow is weaker and tripolar vortices if the flow has steeper gradient. The results have been applied to Saturn's magnetosphere corresponding to negatively charged dust grains. But the theoretical model is applicable for positively charged dust as well. This work will be useful for future observations and studies of dusty environments of planets and comets.

  17. Ideal stability of cylindrical plasma in the presence of mass flow

    International Nuclear Information System (INIS)

    Bondeson, A.; Iacono, R.

    1988-11-01

    The ideal stability of cylindrical plasma with mass flows is investigated using the guiding centre plasma (GCP) model of Grad. For rotating plasmas, the kinetic treatment of the parallel motion in GCP gives significantly different results than fluid models, where the pressures are obtained from equations of state. In particular, GCP removes the resonance with slow magnetoacoustic waves and the loss of stability that results in magnetohydrodynamics (MHD) for near-soni flows. Because of the strong kinetic damping of the sound waves in an isothermal plasma, the slow waves have little influence on plasma stability in GCP at low β. In the large aspect ratio, low-β tokamak ordering, Alfvenic flows are needed to change the ideal GCP stability significantly. At lowest order in the inverse aspect ratio, flow can be favorable or unfavorable for stability of local modes depending on the profiles, but external kinks are always destilized by flow if the velocity vanishes at the edge. For high-β, reversed field pinch equilibria, numerical computations show that flow can be stabilizing for local modes, but external modes are destabilized by flow. It is shown that in three dimensions, the MHD equilibrium problem becomes hyperbolic for arbitrarily small flows across the magnetic field, whereas in GCP the equilibrium remains elliptic for sub-Alfvenic flows. (author) 7 figs., 1 tab, 32 refs

  18. Nearby supernova factory announces 34 supernovae in one year'; best Rookie year ever for supernova search

    CERN Multimedia

    2003-01-01

    The Nearby Supernova Factory (SNfactory), an international collaboration based at Lawrence Berkeley National Laboratory, announced that it had discovered 34 supernovae during the first year of the prototype system's operation (2 pages).

  19. Cross-field flow and electric potential in a plasma slab

    Directory of Open Access Journals (Sweden)

    J. De Keyser

    2013-08-01

    Full Text Available We consider cross-field plasma flow inside a field-aligned plasma slab embedded in a uniform background in a 1-dimensional geometry. This situation may arise, for instance, when long-lasting reconnection pulses inject plasma into the inner magnetosphere. The present paper presents a detailed analysis of the structure of the interfaces that separate the slab from the background plasma on either side; a fully kinetic model is used to do so. Since the velocity shear across both interfaces has opposite signs, and given the typical gyroradius differences between injected and background ions and electrons, the structure of both interfaces can be very different. The behaviour of the slab and its interfaces depends critically on the flow of the plasma transverse to the magnetic field; in particular, it is shown that there are bounds to the flow speed that can be supported by the magnetised plasma. Further complicating the picture is the effect of the potential difference between the slab and its environment.

  20. Cross-tail velocity component in the plasma sheet fast flows

    Directory of Open Access Journals (Sweden)

    N. P. Dmitrieva

    2008-06-01

    Full Text Available The flux transfer in the magnetotail plasma sheet is mainly provided by the tail-aligned fast plasma flows (Bursty Bulk Flows – BBFs. In this paper we study the events with a large cross-tail velocity component, including their occurrence and relationship to the standard BBFs. We found out that a significant part of large Vy events are a subgroup connected with the BBFs propagation. The maximal deviation of the velocity vector from the X direction (about 40–50 degrees, on average is observed near the BBFs' leading front in the sheath, where the fast flow interacts with surrounding plasma. The average variation of the velocity direction in the vicinity of the BBF resembles a plasma vortex. Our results support the model, in which the BBF represents a polarized, bubble-like flux tube, propagating through the plasma sheet.

  1. On the interplay between turbulence and poloidal flows in plasmas

    International Nuclear Information System (INIS)

    Hidalgo, C.; Pedrosa, M.A.; Garcia-Cortes, I.

    1999-01-01

    The radial profile of Reynolds stress has been measured in the plasma boundary region of tokamaks and stellarator plasmas. The electrostatic Reynolds stress (proportional to r E-tilde θ >) shows a radial gradient close to the velocity shear layer location, showing that this mechanism can drive significant poloidal flows in the plasma boundary region of fusion plasmas. The generation of poloidal flows by Ion Bernstein Wave (IBW) is under investigation in toroidal plasmas. The radial gradient in the Reynolds stress increases with RF power and radial electric fields are modified at the RF resonance layer. (author)

  2. Dynamos driven by poloidal flows in untwisted, curved and flat Riemannian diffusive flux tubes

    International Nuclear Information System (INIS)

    De Andrade, L.C.G.

    2010-01-01

    Recently Vishik anti-fast dynamo theorem has been tested against non-stretching flux tubes (Phys. Plasmas, 15 (2008)). In this paper, another anti dynamo theorem, called Cowling's theorem, which states that axisymmetric magnetic fields cannot support dynamo action, is carefully tested against thick tubular and curved Riemannian untwisted flows, as well as thin flux tubes in diffusive and diffusion less media. In the non-diffusive media Cowling's theorem is not violated in thin Riemann-flat untwisted flux tubes, where the Frenet curvature is negative. Nevertheless the diffusion action in the thin flux tube leads to a dynamo action driven by poloidal flows as shown by Love and Gubbins (Geophysical Res., 23 (1996) 857) in the context of geo dynamos. Actually it is shown that a slow dynamo action is obtained. In this case the Frenet and Riemann curvature still vanishes. In the case of magnetic filaments in diffusive media dynamo action is obtained when the Frenet scalar curvature is negative. Since the Riemann curvature tensor can be expressed in terms of the Frenet curvature of the magnetic flux tube axis, this result can be analogous to a recent result obtained by Chicone, Latushkin and Smith, which states that geodesic curvature in compact Riemannian manifolds can drive dynamo action in the manifold. It is also shown that in the absence of diffusion, magnetic energy does not grow but magnetic toroidal magnetic field can be generated by the poloidal field, what is called a plasma dynamo.

  3. Control of supersonic axisymmetric base flows using passive splitter plates and pulsed plasma actuators

    Science.gov (United States)

    Reedy, Todd Mitchell

    influenced considerably, the area-integrated pressure was only slightly affected. Normalized RMS levels indicate that base pressure fluctuations were significantly reduced with the addition of the splitter plates. Power-spectral-density estimates revealed a spectral broadening of fluctuating energy for the 1/2 cylinder configuration and a bimodal distribution for the 1/3 and 1/4 cylinder configurations. It was concluded that the recirculation region is not the most sensitive location to apply flow control; rather, the shear layer may be a more influential site for implementing flow control methodologies. For active flow control, pulsed plasma-driven fluidic actuators were investigated. Initially, the performance of two plasma actuator designs was characterized to determine their potential as supersonic flow control devices. For the first actuator considered, the pulsed plasma jet, electro-thermal heating from an electric discharge heats and pressurizes gas in a small cavity which is exhausted through a circular orifice forming a synthetic jet. Depending on the electrical energy addition, peak jet velocities ranged between 130 to nearly 500 m/s when exhausted to quiescent, ambient conditions. The second plasma actuator investigated is the localized arc filament plasma actuator (LAFPA), which created fluidic perturbations through the rapid, local thermal heating, generated from an electric arc discharge between two electrodes within a shallow open cavity. Electrical and emission properties of the LAFPA were first documented as a function of pressure in a quiescent, no-flow environment. Rotational and vibrational temperatures from N2 spectra were obtained for select plasma conditions and ambient pressures. Results further validate that the assumption of optically thin conditions for these electric arc plasmas is not necessary valid, even at low ambient pressure. Breakdown voltage, sustained plasma voltage, power, and energy per pulse were demonstrated to decrease with

  4. Self-driven particles in linear flows and trapped in a harmonic potential

    Science.gov (United States)

    Sandoval, Mario; Hidalgo-Gonzalez, Julio C.; Jimenez-Aquino, Jose I.

    2018-03-01

    We present analytical expressions for the mean-square displacement of self-driven particles in general linear flows and trapped in a harmonic potential. The general expressions are applied to three types of linear flows, namely, shear flow, solid-body rotation flow, and extensional flow. By using Brownian dynamics simulations, the effect of trapping and external linear flows on the particles' distribution is also elucidated. These simulations also enabled us to validate our theoretical results.

  5. Jet flow and premixed jet flame control by plasma swirler

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gang, E-mail: ligang@iet.cn [Key laboratory of light duty gas turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Jiang, Xi [School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Zhao, Yujun [School of Mechanism, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Liu, Cunxi [Key laboratory of light duty gas turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Chen, Qi [School of Mechanism, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Xu, Gang; Liu, Fuqiang [Key laboratory of light duty gas turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-04-04

    A swirler based on dielectric barrier discharge plasma actuators is designed and its effectiveness in both jet flow and premixed jet flame control is demonstrated. In contrast to traditional spanwise-oriented actuators, plasma actuators are placed along the axial direction of the injector to induce a circumferential velocity to the main flow and create a swirl flow without any insertion or moving part. In the DBD plasma swirl injector, the discharge does not ignite the mixture nor does it induce flashback. Flame visualization is obtained by cameras while velocity profiles are obtained by Laser Doppler Anemometry measurements. The results obtained indicate the effectiveness of the new design. - Highlights: • The discharge does not ignite the mixture nor does it induce flashback. • The prominent advantage of this novel plasma swirler is its swirl number adjustable without any mechanical movement. • The frequency of the plasma swirler is adjustable. • The plasma swirler can be used as an oscillator to the reactants. • The plasma swirler can be used alone or combine with other traditional swirlers.

  6. Shear flow stabilization of the hydromagnetic Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Roderick, N.F.; Shumlak, U.; Douglas, M.; Peterkin, R.E. Jr.; Ruden, E.

    1997-01-01

    Numerical simulations have indicated that shear flow may help stabilize the hydromagnetic Rayleigh-Taylor instability in imploding plasma z-pinches. A simple extension to a model presented in Chandrasekhar has been developed to study the linear stability of incompressible plasma subjected to both a shear flow and acceleration. The model has been used to investigate the stability plasma implosion schemes using externally imposed velocity shear which develops from the plasma flow itself. Specific parameters were chosen to represent plasma implosions driven by the Saturn and PBFA-Z, pulsed power generators at Sandia National Laboratories. Results indicate a high shear is necessary to stabilize the z-pinch implosions studied

  7. Electron temperature gradient driven instability in the tokamak boundary plasma

    International Nuclear Information System (INIS)

    Xu, X.Q.; Rosenbluth, M.N.; Diamond, P.H.

    1992-01-01

    A general method is developed for calculating boundary plasma fluctuations across a magnetic separatrix in a tokamak with a divertor or a limiter. The slab model, which assumes a periodic plasma in the edge reaching the divertor or limiter plate in the scrape-off layer(SOL), should provide a good estimate, if the radial extent of the fluctuation quantities across the separatrix to the edge is small compared to that given by finite particle banana orbit. The Laplace transform is used for solving the initial value problem. The electron temperature gradient(ETG) driven instability is found to grow like t -1/2 e γmt

  8. Discovery of recombining plasma from the faintest GeV supernova remnant HB 21 and a possible scenario for cosmic rays escaping from supernova remnant shocks

    Science.gov (United States)

    Suzuki, Hiromasa; Bamba, Aya; Nakazawa, Kazuhiro; Furuta, Yoshihiro; Sawada, Makoto; Yamazaki, Ryo; Koyama, Katsuji

    2018-06-01

    We present an X-ray study of the GeV gamma-ray supernova remnant (SNR) HB 21 with Suzaku. HB 21 is interacting with molecular clouds, and is the faintest in the GeV band among known GeV SNRs. We discovered strong radiative recombination continua of Si and S from the center of the remnant, which provide direct evidence of a recombining plasma (RP). The total emission can be explained with the RP and ionizing plasma components. The electron temperature and recombination timescale of the RP component were estimated as 0.17 (0.15-0.18) keV and 3.2 (2.0-4.8) × 1011 s cm-3, respectively. The estimated age of the RP (˜170 kyr) is the longest among known recombining GeV SNRs, because of a very low density of electrons (˜0.05 cm-3). We have examined the dependencies of GeV spectral indices on each of RP ages and SNR diameters for nine recombining GeV SNRs. Both showed possible positive correlations, indicating that both the parameters can be good indicators of properties of accelerated protons, for instance the degree of escape from SNR shocks. A possible scenario for a process of proton escape is introduced: interaction with molecular clouds makes weaker magnetic turbulence and cosmic-ray protons escape, simultaneously cooling down the thermal electrons and generating an RP.

  9. Dynamics of a multiple-pulse-driven x-ray laser plasma

    International Nuclear Information System (INIS)

    Wan, A.S.; Da Silva, L.B.; Moreno, J.C.; Cauble, R.; Celliers, P.; Dalhed, H.E. Jr.; Koch, J.A.; Nilsen, J.

    1996-01-01

    In this paper we describe experimental and computational studies of multiple-pulse-driven laser plasma, which is the gain medium for a neon-like yttrium x-ray laser. Near-field emission profiles have been measured both with and without reinjection of the x-ray laser photons to couple with the amplifying medium created by later pulses using an external multilayer mirror. From the temporal and spatial evolution of the near-field emission profiles we can examine the pulse-to-pulse variation of the x-ray laser plasma due to changes in the hydrodynamics, laser deposition, and the injecting of x-ray laser photons back into an amplifying x-ray laser plasma. Using a combination of radiation hydrodynamics, atomic kinetics, and ray propagation codes, reasonable agreement has been obtained between simulations and the experimental results. copyright 1996 American Institute of Physics

  10. Supernova cosmology

    International Nuclear Information System (INIS)

    Leibundgut, B.

    2005-01-01

    Supernovae have developed into a versatile tool for cosmology. Their impact on the cosmological model has been profound and led to the discovery of the accelerated expansion. The current status of the cosmological model as perceived through supernova observations will be presented. Supernovae are currently the only astrophysical objects that can measure the dynamics of the cosmic expansion during the past eight billion years. Ongoing experiments are trying to determine the characteristics of the accelerated expansion and give insight into what might be the physical explanation for the acceleration. (author)

  11. Supernova models

    International Nuclear Information System (INIS)

    Woosley, S.E.; Weaver, T.A.

    1980-01-01

    Recent progress in understanding the observed properties of Type I supernovae as a consequence of the thermonuclear detonation of white dwarf stars and the ensuing decay of the 56 Ni produced therein is reviewed. Within the context of this model for Type I explosions and the 1978 model for Type II explosions, the expected nucleosynthesis and gamma-line spectra from both kinds of supernovae are presented. Finally, a qualitatively new approach to the problem of massive star death and Type II supernovae based upon a combination of rotation and thermonuclear burning is discussed

  12. Transport in zonal flows in analogous geophysical and plasma systems

    Science.gov (United States)

    del-Castillo-Negrete, Diego

    1999-11-01

    Zonal flows occur naturally in the oceans and the atmosphere of planets. Important examples include the zonal flows in Jupiter, the stratospheric polar jet in Antarctica, and oceanic jets like the Gulf Stream. These zonal flows create transport barriers that have a crucial influence on mixing and confinement (e.g. the ozone depletion in Antarctica). Zonal flows also give rise to long-lasting vortices (e.g. the Jupiter red spot) by shear instability. Because of this, the formation and stability of zonal flows and their role on transport have been problems of great interest in geophysical fluid dynamics. On the other hand, zonal flows have also been observed in fusion plasmas and their impact on the reduction of transport has been widely recognized. Based on the well-known analogy between Rossby waves in quasigeostrophic flows and drift waves in magnetically confined plasmas, I will discuss the relevance to fusion plasmas of models and experiments recently developed in geophysical fluid dynamics. Also, the potential application of plasma physics ideas to geophysical flows will be discussed. The role of shear in the suppression of transport and the effect of zonal flows on the statistics of transport will be studied using simplified models. It will be shown how zonal flows induce large particle displacements that can be characterized as Lévy flights, and that the trapping effect of vortices combined with the zonal flows gives rise to anomalous diffusion and Lévy (non-Gaussian) statistics. The models will be compared with laboratory experiments and with atmospheric and oceanographic qualitative observations.

  13. Modelling of flow stabilization by the swirl of a peripheral flow as applied to plasma reactors

    International Nuclear Information System (INIS)

    Volchkov, E.P.; Lebedev, V.P.; Terekhov, V.I.; Shishkin, N.E.

    2000-01-01

    The gas-swirl stabilization of plasma jets is one of effective methods of its retention in the near-axial area of channels in generators of low-temperature plasma. Except the effect of gas-dynamic compression, the peripheral swirl allows to solve another urgent problem - to protect the reactor walls from the heat influence of the plasma jet. Swirl flows are also used for the flow structure formation and control of the heat and gas-dynamic characteristics of different power devices and apparatuses, using high-temperature working media: in swirl furnaces and burners, in aviation engines, etc. Investigations show that during swirl stabilization the gas-dynamic structure of the flow influences significantly the spatial stability of the plasma column and its characteristics

  14. Plasma actuators for bluff body flow control

    Science.gov (United States)

    Kozlov, Alexey V.

    The aerodynamic plasma actuators have shown to be efficient flow control devices in various applications. In this study the results of flow control experiments utilizing single dielectric barrier discharge plasma actuators to control flow separation and unsteady vortex shedding from a circular cylinder in cross-flow are reported. This work is motivated by the need to reduce landing gear noise for commercial transport aircraft via an effective streamlining created by the actuators. The experiments are performed at Re D = 20,000...164,000. Circular cylinders in cross-flow are chosen for study since they represent a generic flow geometry that is similar in all essential aspects to a landing gear oleo or strut. The minimization of the unsteady flow separation from the models and associated large-scale wake vorticity by using actuators reduces the radiated aerodynamic noise. Using either steady or unsteady actuation at ReD = 25,000, Karman shedding is totally eliminated, turbulence levels in the wake decrease significantly and near-field sound pressure levels are reduced by 13.3 dB. Unsteady actuation at an excitation frequency of St D = 1 is found to be most effective. The unsteady actuation also has the advantage that total suppression of shedding is achieved for a duty cycle of only 25%. However, since unsteady actuation is associated with an unsteady body force and produces a tone at the actuation frequency, steady actuation is more suitable for noise control applications. Two actuation strategies are used at ReD = 82,000: spanwise and streamwise oriented actuators. Near field microphone measurements in an anechoic wind tunnel and detailed study of the near wake using LDA are presented in the study. Both spanwise and streamwise actuators give nearly the same noise reduction level of 11.2 dB and 14.2 dB, respectively, and similar changes in the wake velocity profiles. The contribution of the actuator induced noise is found to be small compared to the natural shedding

  15. Tidally-driven Surface Flow in a Georgia Estuarine Saltmarsh

    Science.gov (United States)

    Young, D.; Bruder, B. L.; Haas, K. A.; Webster, D. R.

    2016-02-01

    Estuarine saltmarshes are diverse, valuable, and productive ecosystems. Vegetation dampens wave and current energy, thereby allowing the estuaries to serve as a nursery habitat for shellfish and fish species. Tidally-driven flow transports nutrients into and out of the estuary, nourishing inshore and offshore vegetation and animals. The effects of vegetation on the marsh hydrodynamics and on the estuary creek and channel flow are, unfortunately, poorly understood, and the knowledge that does exist primarily originates from modeling studies. Field studies addressing marsh surface flows are limited due to the difficulty of accurately measuring the water surface elevation and acquiring concurrent velocity measurements in the dense marsh vegetation. This study partially bridges the gap between the model observations of marsh flow driven by water surface elevation gradients and flume studies of flow through vegetation. Three current meters and three pressure transducers were deployed for three days along a transect perpendicular to the main channel (Little Ogeechee River) in a saltmarsh adjacent to Rose Dhu Island (Savannah, Georgia, USA). The pressure transducer locations were surveyed daily with static GPS yielding highly accurate water surface elevation data. During flood and ebb tide, water surface elevation differences between the marsh and Little Ogeechee River were observed up to 15 cm and pressure gradients were observed up to 0.0017 m of water surface elevation drop per m of linear distance. The resulting channel-to-saltmarsh pressure gradients substantially affected tidal currents at all current meters. At one current meter, the velocity was nearly perpendicular to the Little Ogeechee River bank. The velocity at this location was effectively modeled as a balance between the pressure gradient and marsh vegetation-induced drag force using the Darcy-Weisbach/Lindner's equations developed for flow-through-vegetation analysis in open channel flow.

  16. Flow rate measurement of buoyancy-driven exchange flow by laser Doppler velocimeter

    International Nuclear Information System (INIS)

    Fumizawa, Motoo

    1993-01-01

    An experimental investigation was carried out for the buoyancy-driven exchange flow in a narrow vented cylinder concerning the air ingress process during a standing pipe rupture in a high-temperature gas-cooled reactor. In the present study, the evaluation method of exchange flow was developed by measuring the velocity distribution in the cylinder using a laser Doppler velocimeter. The experiments were performed under atmospheric pressure with nitrogen as a working fluid. Rayleigh numbers ranged from 2.0x10 4 to 2.1x10 5 . The exchange flow fluctuated irregularly with time and space in the cylinder. It was found that the exchange velocity distribution along the horizontal axis changed from one-hump to two-hump distribution with increasing Rayleigh number. In the case that the hemisphere wall was cooler than the heated disk, the volumetric exchange flow rate was smaller than that in the case where the hemisphere wall and the heated disk were at the same temperature. (author)

  17. Flow structure formation in an ion-unmagnetized plasma: The HYPER-II experiments

    Science.gov (United States)

    Terasaka, K.; Tanaka, M. Y.; Yoshimura, S.; Aramaki, M.; Sakamoto, Y.; Kawazu, F.; Furuta, K.; Takatsuka, N.; Masuda, M.; Nakano, R.

    2015-01-01

    The HYPER-II device has been constructed in Kyushu University to investigate the flow structure formation in an ion-unmagnetized plasma, which is an intermediate state of plasma and consists of unmagnetized ions and magnetized electrons. High density plasmas are produced by electron cyclotron resonance heating, and the flow field structure in an inhomogeneous magnetic field is investigated with a directional Langmuir probe method and a laser-induced fluorescence method. The experimental setup has been completed and the diagnostic systems have been installed to start the experiments. A set of coaxial electrodes will be introduced to control the azimuthal plasma rotation, and the effect of plasma rotation to generation of rectilinear flow structure will be studied. The HYPER-II experiments will clarify the overall flow structure in the inhomogeneous magnetic field and contribute to understanding characteristic feature of the intermediate state of plasma.

  18. On plasma flows along vortex lines

    International Nuclear Information System (INIS)

    Bagewadi, C.S.; Prasanna Kumar, K.N.

    1989-01-01

    The plasma flows are discussed and various intrinsic relations along the vortex lines and their principal normals and binormals are obtained. The effects of rotations on Bernoulli surfaces are also studied. (M.K.V.)

  19. Self-driven filter-based blood plasma separator microfluidic chip for point-of-care testing

    International Nuclear Information System (INIS)

    Madadi, Hojjat; Casals-Terré, Jasmina; Mohammadi, Mahdi

    2015-01-01

    There is currently a growing need for lab-on-a-chip devices for use in clinical analysis and diagnostics, especially in the area of patient care. The first step in most blood assays is plasma extraction from whole blood. This paper presents a novel, self-driven blood plasma separation microfluidic chip, which can extract more than 0.1 μl plasma from a single droplet of undiluted fresh human blood (∼5 μl). This volume of blood plasma is extracted from whole blood with high purity (more than 98%) in a reasonable time frame (3 to 5 min), and without the need for any external force. This would be the first step towards the realization of a single-use, self-blood test that does not require any external force or power source to deliver and analyze a fresh whole-blood sample, in contrast to the existing time-consuming conventional blood analysis. The prototypes are manufactured in polydimethylsiloxane that has been modified with a strong nonionic surfactant (Silwet L-77) to achieve hydrophilic behavior. The main advantage of this microfluidic chip design is the clogging delay in the filtration area, which results in an increased amount of extracted plasma (0.1 μl). Moreover, the plasma can be collected in one or more 10 μm-deep channels to facilitate the detection and readout of multiple blood assays. This high volume of extracted plasma is achieved thanks to a novel design that combines maximum pumping efficiency without disturbing the red blood cells’ trajectory through the use of different hydrodynamic principles, such as a constriction effect and a symmetrical filtration mode. To demonstrate the microfluidic chip’s functionality, we designed and fabricated a novel hybrid microdevice that exhibits the benefits of both microfluidics and lateral flow immunochromatographic tests. The performance of the presented hybrid microdevice is validated using rapid detection of thyroid stimulating hormone within a single droplet of whole blood. (paper)

  20. Characteristics of an under-expanded supersonic flow in arcjet plasmas

    Science.gov (United States)

    Namba, Shinichi; Shikama, Taiichi; Sasano, Wataru; Tamura, Naoki; Endo, Takuma

    2018-06-01

    A compact apparatus to produce arcjet plasma was fabricated to investigate supersonic flow dynamics. Periodic bright–dark emission structures were formed in the arcjets, depending on the plasma source and ambient gas pressures in the vacuum chamber. A directional Langmuir probe (DLP) and emission spectroscopy were employed to characterize plasma parameters such as the Mach number of plasma flows and clarify the mechanism for the generation of the emission pattern. In particular, in order to investigate the influence of the Mach number on probe size, we used two DLPs of different probe size. The results indicated that the arcjets could be classified into shock-free expansion and under-expansion, and the behavior of plasma flow could be described by compressible fluid dynamics. Comparison of the Langmuir probe results with emission and laser absorption spectroscopy showed that the small diameter probe was reliable to determine the Mach number, even for the supersonic jet.

  1. Nonlinear entropy transfer in ETG-TEM turbulence via TEM driven zonal flows

    International Nuclear Information System (INIS)

    Asahi, Yuuichi; Tsutsui, Hiroaki; Tsuji-Iio, Shunji; Ishizawa, Akihiro; Sugama, Hideo; Watanabe, Tomohiko

    2015-01-01

    Nonlinear interplay of the electron temperature gradient (ETG) modes and the trapped electron modes (TEMs) was investigated by means of gyrokinetic simulation. Focusing on the situation where both TEMs and ETG modes are linearly unstable, the effects of TEM-driven zonal flows on ETG turbulence were examined by means of entropy transfer analysis. In a statistically steady turbulence where the TEM driven zonal flows are dominant, it turned out that the zonal flows meditate the entropy transfer of the ETG modes from the low to high radial wavenumber regions. The successive entropy transfer broadens the potential fluctuation spectrum in the radial wavenumber direction. In contrast, in the situation where ETG modes are unstable but TEMs are stable, the pure ETG turbulence does not produce strong zonal flows, leading to a rather narrow spectrum in the radial wavenumber space and a higher transport level. (author)

  2. Non-diffusive transport in 3-D pressure driven plasma turbulence

    International Nuclear Information System (INIS)

    Del-Castillo-Negrete, D.; Carreras, B.A.; Lynch, V.

    2005-01-01

    Numerical evidence of non-diffusive transport in 3-dimensional, resistive, pressure-gradient-driven plasma turbulence is presented. It is shown that the probability density function (pdf) of tracers is strongly non-Gaussian and exhibits algebraic decaying tails. To describe these results, a transport model using fractional derivative operators in proposed. The model incorporates in a unified way non-locality (i.e., non-Fickian transport), memory effects (i.e., non-Markovian transport), and non-diffusive scaling features known to be present in fusion plasmas. There is quantitative agreement between the model and the turbulent transport numerical calculations. In particular, the model reproduces the shape and space-time scaling of the pdf, and the super-diffusive scaling of the moments. (author)

  3. Three Flow Features behind the Flow Control Authority of DBD Plasma Actuator: Result of High-Fidelity Simulations and the Related Experiments

    Directory of Open Access Journals (Sweden)

    Kozo Fujii

    2018-04-01

    Full Text Available Both computational and experimental studies are conducted for understanding of the flow separation control mechanism of a DBD (dielectric barrier discharge plasma actuator. Low speed flows over an airfoil are considered. A DBD plasma actuator is attached near the leading edge of an airfoil and the mechanism of flow control of this small device is discussed. The DBD plasma actuator, especially in burst mode, is shown to be very effective for controlling flow separation at Reynolds number of 6.3 × 104, when applied to the flows at an angle of attack higher than the stall. The analysis reveals that the flow structure includes three remarkable features that provide good authority for flow separation control with the appropriate actuator parameters. With proper setting of the actuator parameters to enhance the effective flow features for the application, good flow control can be achieved. Based on the analysis, guidelines for the effective use of DBD plasma actuators are proposed. A DBD plasma actuator is also applied to the flows under cruise conditions. With the DBD plasma actuator attached, a simple airfoil turns out to show higher lift-to-drag ratio than a well-designed airfoil.

  4. Exploring the Diffuse X-ray Emission of Supernova Remnant Kesteven 69 with XMM-Newton

    Directory of Open Access Journals (Sweden)

    Kyoung-Ae Seo

    2013-06-01

    Full Text Available We have investigated the X-ray emission from the shock-heated plasma of the Galactic supernova remnant Kesteven 69 with XMM-Newton. Assuming the plasma is at collisional ionization equilibrium, a plasma temperature and a column absorption are found to be kT ~ 0.62 keV and NH ~ 2.85 ×1022 cm-2 respectively by imaging spectroscopy. Together with the deduced emission measure, we place constraints on its Sedov parameters.

  5. Hydrogen-Poor Core-Collapse Supernovae

    Science.gov (United States)

    Pian, Elena; Mazzali, Paolo A.

    Hydrogen-poor core-collapse supernovae (SNe) signal the explosive death of stars more massive than the progenitors of hydrogen-rich core-collapse supernovae, i.e., approximately in the range 15-50 M⊙ in main sequence. Since hydrogen-poor core-collapse supernovae include those that accompany gamma-ray bursts (GRBs), which were all rigorously identified with type Ic supernovae, their explosion energies cover almost two decades. The light curves and spectra are consequently very heterogeneous and often bear the signature of an asymmetric, i.e., aspherical, explosion. Asphericity is best traced by early-time (within days of the explosion) optical spectropolarimetry and by late-epoch (more than ˜ 100 days after explosion) low-resolution spectroscopy. While the relationship between hydrogen-poor core-collapse supernovae to hydrogen-poor super-luminous supernovae is not understood, a known case of association between an ultra-long gamma-ray burst and a very luminous hydrogen-poor supernova may help unraveling the connection. This is tantalizingly pointing to a magnetar powering source for both phenomena, although this scenario is still highly speculative. Host galaxies of hydrogen-poor supernovae are always star forming; in those of completely stripped supernovae and gamma-ray burst supernovae, the spatial distribution of the explosions follows the blue/ultraviolet light, with a correlation that is more than linear.

  6. Peculiar Supernovae

    Science.gov (United States)

    Milisavljevic, Dan; Margutti, Raffaella

    2018-06-01

    What makes a supernova truly "peculiar?" In this review we attempt to address this question by tracing the history of the use of "peculiar" as a descriptor of non-standard supernovae back to the original binary spectroscopic classification of Type I vs. Type II proposed by Minkowski (Publ. Astron. Soc. Pac., 53:224, 1941). A handful of noteworthy examples are highlighted to illustrate a general theme: classes of supernovae that were once thought to be peculiar are later seen as logical branches of standard events. This is not always the case, however, and we discuss ASASSN-15lh as an example of a transient with an origin that remains contentious. We remark on how late-time observations at all wavelengths (radio-through-X-ray) that probe 1) the kinematic and chemical properties of the supernova ejecta and 2) the progenitor star system's mass loss in the terminal phases preceding the explosion, have often been critical in understanding the nature of seemingly unusual events.

  7. Pyrolysis of methane in flowing microwave plasma. Pt. 1, 2

    International Nuclear Information System (INIS)

    Carmi, U.; Inor, A.A.; Avni, R.; Nickel, H.

    1978-04-01

    The flowing microwave (2.45 G Hz) plasmas of methane and methane-argon mixtures were analyzed by the electrical double floating probe system (DFPS), along the flow stream. The measured electric variables of the microwave plasma were: current, current density, electric field strength, electron temperature, positive ion and electron concentrations. They indicate an irreversible process, of the polymerization of CH 4 and CH 4 +Ar mixtures, taking place in the plasma. The polymerization process reaches its maximum 'down stream'. after the position of the microwave cavity. The polymerization was correlated to the concentration of ions and electrons in the plasma. (orig.) [de

  8. Introduction to Plasma Dynamo, Reconnection and Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Intrator, Thomas P. [Los Alamos National Laboratory

    2012-08-30

    In our plasma universe, most of what we can observe is composed of ionized gas, or plasma. This plasma is a conducting fluid, which advects magnetic fields when it flows. Magnetic structure occurs from the smallest planetary to the largest cosmic scales. We introduce at a basic level some interesting features of non linear magnetohydrodynamics (MHD). For example, in our plasma universe, dynamo creates magnetic fields from gravitationally driven flow energy in an electrically conducting medium, and conversely magnetic reconnection annihilates magnetic field and accelerates particles. Shocks occur when flows move faster than the local velocity (sonic or Alfven speed) for the propagation of information. Both reconnection and shocks can accelerate particles, perhaps to gigantic energies, for example as observed with 10{sup 20} eV cosmic rays.

  9. Energy transport in a shear flow of particles in a two-dimensional dusty plasma.

    Science.gov (United States)

    Feng, Yan; Goree, J; Liu, Bin

    2012-11-01

    A shear flow of particles in a laser-driven two-dimensional (2D) dusty plasma is observed in a study of viscous heating and thermal conduction. Video imaging and particle tracking yields particle velocity data, which we convert into continuum data, presented as three spatial profiles: mean particle velocity (i.e., flow velocity), mean-square particle velocity, and mean-square fluctuations of particle velocity. These profiles and their derivatives allow a spatially resolved determination of each term in the energy and momentum continuity equations, which we use for two purposes. First, by balancing these terms so that their sum (i.e., residual) is minimized while varying viscosity η and thermal conductivity κ as free parameters, we simultaneously obtain values for η and κ in the same experiment. Second, by comparing the viscous heating and thermal conduction terms, we obtain a spatially resolved characterization of the viscous heating.

  10. Finite toroidal flow generated by unstable tearing mode in a toroidal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hao, G. Z., E-mail: haogz@swip.ac.cn; Wang, A. K.; Xu, Y. H.; He, H. D.; Xu, M.; Qu, H. P.; Peng, X. D.; Xu, J. Q.; Qiu, X. M. [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041 (China); Liu, Y. Q. [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Sun, Y. [Institute of Plasma Physics, Chinese Academic of Sciences, P.O. Box 1126, Hefei 230031 (China); Cui, S. Y. [School of Mathematics and Statistics Science, Ludong University, Yantai 264025 (China)

    2014-12-15

    The neoclassical toroidal plasma viscosity torque and electromagnetic torque, generated by tearing mode (TM) in a toroidal plasma, are numerically investigated using the MARS-Q code [Liu et al., Phys. Plasmas 20, 042503 (2013)]. It is found that an initially unstable tearing mode can intrinsically drive a toroidal plasma flow resulting in a steady state solution, in the absence of the external momentum input and external magnetic field perturbation. The saturated flow is in the order of 0.5%ω{sub A} at the q=2 rational surface in the considered case, with q and ω{sub A} being the safety factor and the Alfven frequency at the magnetic axis, respectively. The generation of the toroidal flow is robust, being insensitive to the given amplitude of the perturbation at initial state. On the other hand, the flow amplitude increases with increasing the plasma resistivity. Furthermore, the initially unstable tearing mode is fully stabilized by non-linear interaction with the self-generated toroidal flow.

  11. Computer simulation of a plasma focus device driven by a magnetic pulser

    Energy Technology Data Exchange (ETDEWEB)

    Georgescu, N; Zoita, V [Inst. of Physics and Technology of Radiation Devices, Bucharest (Romania); Larour, J [Ecole Polytechnique, Palaiseau (France). Lab. de Physique des Milieux Ionises

    1997-12-31

    A plasma focus device, driven by a magnetic pulse compression circuit, is simulated by using a PSPICE proffam. The elaborated program is much simpler than the other existing ones, which analyse the circuit by directly solving a system of integral-differential equations. The pre-pulse voltage and the high-voltage rise-times are obtained for a set of values of the bypass impedance (R or L). The optimum bypass impedance turns out to be an inductance. During the discharge period, the plasma load is considered as an LR impedance, each component being time dependent. A method is presented for giving us the possibility to introduce the time varying impedances in a PSPICE program. Finally, a set of simulation results (plasma current and voltage, plasma magnetic energy, plasma sheath mechanical energy, pinch voltage) is shown. The results are in good agreement with the classical experimental data. (author). 2 figs., 4 refs.

  12. Study of Plasma Flow Modes in Imploding Nested Arrays

    Science.gov (United States)

    Mitrofanov, K. N.; Aleksandrov, V. V.; Gritsuk, A. N.; Branitsky, A. V.; Frolov, I. N.; Grabovski, E. V.; Sasorov, P. V.; Ol'khovskaya, O. G.; Zaitsev, V. I.

    2018-02-01

    Results from experimental studies of implosion of nested wire and fiber arrays at currents of up to 4 MA at the Angara-5-1 facility are presented. Depending on the ratio between the radii of the inner and outer arrays, different modes of the plasma flow in the space between the inner and outer arrays were implemented: the sub-Alfvénic ( V r V A ) modes and a mode with the formation of the transition shock wave (SW) region between the cascades. By varying the material of the outer array (tungsten wires or kapron fibers), it is shown that the plasma flow mode between the inner and outer arrays depends on the ratio between the plasma production rates ṁ in / ṁ out in the inner and outer arrays. The obtained experimental results are compared with the results of one-dimensional MHD simulation of the plasma flow between the arrays. Stable implosion of the inner array plasma was observed in experiments with combined nested arrays consisting of a fiber outer array and a tungsten inner array. The growth rates of magnetic Rayleigh-Taylor (MRT) instability in the inner array plasma at different numbers of fibers in the outer array and different ratios between the radii of the inner and outer arrays are compared. Suppression of MRT instability during the implosion of the inner array plasma results in the formation of a stable compact Z-pinch and generation of a soft X-ray pulse. A possible scenario of interaction between the plasmas of the inner and outer arrays is offered. The stability of the inner array plasma in the stage of final compression depends on the character of interaction of plasma jets from the outer array with the magnetic field of the inner array.

  13. Analysis of plasma instabilities and verification of the BOUT code for the Large Plasma Device

    International Nuclear Information System (INIS)

    Popovich, P.; Carter, T. A.; Friedman, B.; Umansky, M. V.

    2010-01-01

    The properties of linear instabilities in the Large Plasma Device [W. Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] are studied both through analytic calculations and solving numerically a system of linearized collisional plasma fluid equations using the three-dimensional fluid code BOUT[M. Umansky et al., Contrib. Plasma Phys. 180, 887 (2009)], which has been successfully modified to treat cylindrical geometry. Instability drive from plasma pressure gradients and flows is considered, focusing on resistive drift waves and the Kelvin-Helmholtz and rotational interchange instabilities. A general linear dispersion relation for partially ionized collisional plasmas including these modes is derived and analyzed. For Large Plasma Device relevant profiles including strongly driven flows, it is found that all three modes can have comparable growth rates and frequencies. Detailed comparison with solutions of the analytic dispersion relation demonstrates that BOUT accurately reproduces all characteristics of linear modes in this system.

  14. Kelvin-Helmholtz instability for a bounded plasma flow in a longitudinal magnetic field

    International Nuclear Information System (INIS)

    Burinskaya, T. M.; Shevelev, M. M.; Rauch, J.-L.

    2011-01-01

    Kelvin-Helmholtz MHD instability in a plane three-layer plasma is investigated. A general dispersion relation for the case of arbitrarily orientated magnetic fields and flow velocities in the layers is derived, and its solutions for a bounded plasma flow in a longitudinal magnetic field are studied numerically. Analysis of Kelvin-Helmholtz instability for different ion acoustic velocities shows that perturbations with wavelengths on the order of or longer than the flow thickness can grow in an arbitrary direction even at a zero temperature. Oscillations excited at small angles with respect to the magnetic field exist in a limited range of wavenumbers even without allowance for the finite width of the transition region between the flow and the ambient plasma. It is shown that, in a low-temperature plasma, solutions resulting in kink-like deformations of the plasma flow grow at a higher rate than those resulting in quasi-symmetric (sausage-like) deformations. The transverse structure of oscillatory-damped eigenmodes in a low-temperature plasma is analyzed. The results obtained are used to explain mechanisms for the excitation of ultra-low-frequency long-wavelength oscillations propagating along the magnetic field in the plasma sheet boundary layer of the Earth’s magnetotail penetrated by fast plasma flows.

  15. High resolution X-ray spectroscopy of thermal plasmas

    International Nuclear Information System (INIS)

    Canizares, C.R.

    1990-01-01

    This paper concentrates on reviewing highlights of the Focal Plane Crystal Spectrometer (FPCS) results on thermal plasmas, particularly supernova remnants (SNRs) and clusters of galaxies from the Einstein observatory. During Einstein's short but happy life, we made over 400 observations with the FPCS of 40 different objects. Three quarters of these were objects in which the emission was primarily from optically thin thermal plasma, primarily supernova remnants (SNRs) and clusters of galaxies. Thermal plasmas provide an excellent illustration of how spectral data, particularly high resolution spectral data, can be an important tool for probing the physical properties of astrophysical objects. (author)

  16. Gas flow dependence for plasma-needle disinfection of S. mutans bacteria

    International Nuclear Information System (INIS)

    Goree, J; Liu Bin; Drake, David

    2006-01-01

    The role of gas flow and transport mechanisms are studied for a small low-power impinging jet of weakly-ionized helium at atmospheric pressure. This plasma needle produces a non-thermal glow discharge plasma that kills bacteria. A culture of Streptococcus mutans (S. mutans) was plated onto the surface of agar, and spots on this surface were then treated with plasma. Afterwards, the sample was incubated and then imaged. These images, which serve as a biological diagnostic for characterizing the plasma, show a distinctive spatial pattern for killing that depends on the gas flow rate. As the flow is increased, the killing pattern varies from a solid circle to a ring. Images of the glow reveal that the spatial distribution of energetic electrons corresponds to the observed killing pattern. This suggests that a bactericidal species is generated in the gas phase by energetic electrons less than a millimetre from the sample surface. Mixing of air into the helium plasma is required to generate the observed O and OH radicals in the flowing plasma. Hydrodynamic processes involved in this mixing are buoyancy, diffusion and turbulence

  17. Gas flow dependence for plasma-needle disinfection of S. mutans bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Goree, J [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Liu Bin [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Drake, David [Dows Institute for Dental Research, Dept. of Endodontics, College of Dentistry, University of Iowa, Iowa City, IA 52242 (United States)

    2006-08-21

    The role of gas flow and transport mechanisms are studied for a small low-power impinging jet of weakly-ionized helium at atmospheric pressure. This plasma needle produces a non-thermal glow discharge plasma that kills bacteria. A culture of Streptococcus mutans (S. mutans) was plated onto the surface of agar, and spots on this surface were then treated with plasma. Afterwards, the sample was incubated and then imaged. These images, which serve as a biological diagnostic for characterizing the plasma, show a distinctive spatial pattern for killing that depends on the gas flow rate. As the flow is increased, the killing pattern varies from a solid circle to a ring. Images of the glow reveal that the spatial distribution of energetic electrons corresponds to the observed killing pattern. This suggests that a bactericidal species is generated in the gas phase by energetic electrons less than a millimetre from the sample surface. Mixing of air into the helium plasma is required to generate the observed O and OH radicals in the flowing plasma. Hydrodynamic processes involved in this mixing are buoyancy, diffusion and turbulence.

  18. Plasma sheet fast flows and auroral dynamics during substorm: a case study

    Directory of Open Access Journals (Sweden)

    N. L. Borodkova

    2002-03-01

    Full Text Available Interball-1 observations of a substorm development in the mid-tail on 16 December 1998 are compared with the auroral dynamics obtained from the Polar UV imager. Using these data, the relationship between plasma flow directions in the tail and the location of the auroral activation is examined. Main attention is given to tailward and earth-ward plasma flows, interpreted as signatures of a Near Earth Neutral Line (NENL. It is unambiguously shown that in the mid-plasma sheet the flows were directed tailward when the auroral bulge developed equatorward of the spacecraft ionospheric footprint. On the contrary, when active auroras moved poleward of the Interball-1 projection, earthward fast flow bursts were observed. This confirms the concept that the NENL (or flow reversal region is the source of auroras forming the poleward edge of the auroral bulge. The observed earthward flow bursts have all typical signatures of Bursty Bulk Flows (BBFs, described by Angelopolous et al. (1992. These BBFs are related to substorm activations starting at the poleward edge of the expanded auroral bulge. We interpret the BBFs as a result of reconnection pulses occurring tail-ward of Interball-1. In addition, some non-typically observed phenomena were detected in the plasma sheet during this substorm: (i tailward/earthward flows were superimposed on a very strong duskward flow, and (ii wavy structures of both magnetic field and plasma density were registered. The latter observation is probably linked to the filamentary structure of the current sheet.Key words. Magnetospheric physics (auroral phenomena; plasma sheet; storms and substorms

  19. THE ROLE OF TURBULENCE IN NEUTRINO-DRIVEN CORE-COLLAPSE SUPERNOVA EXPLOSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Couch, Sean M. [Flash Center for Computational Science, Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Ott, Christian D., E-mail: smc@flash.uchichago.edu, E-mail: cott@tapir.caltech.edu [TAPIR, Walter Burke Institute for Theoretical Physics, MC 350-17, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-01-20

    The neutrino-heated ''gain layer'' immediately behind the stalled shock in a core-collapse supernova is unstable to high-Reynolds-number turbulent convection. We carry out and analyze a new set of 19 high-resolution three-dimensional (3D) simulations with a three-species neutrino leakage/heating scheme and compare with spherically symmetric (one-dimensional, 1D) and axisymmetric (two-dimensional, 2D) simulations carried out with the same methods. We study the postbounce supernova evolution in a 15 M {sub ☉} progenitor star and vary the local neutrino heating rate, the magnitude and spatial dependence of asphericity from convective burning in the Si/O shell, and spatial resolution. Our simulations suggest that there is a direct correlation between the strength of turbulence in the gain layer and the susceptibility to explosion. 2D and 3D simulations explode at much lower neutrino heating rates than 1D simulations. This is commonly explained by the fact that nonradial dynamics allows accreting material to stay longer in the gain layer. We show that this explanation is incomplete. Our results indicate that the effective turbulent ram pressure exerted on the shock plays a crucial role by allowing multi-dimensional models to explode at a lower postshock thermal pressure and thus with less neutrino heating than 1D models. We connect the turbulent ram pressure with turbulent energy at large scales and in this way explain why 2D simulations are erroneously exploding more easily than 3D simulations.

  20. THE ROLE OF TURBULENCE IN NEUTRINO-DRIVEN CORE-COLLAPSE SUPERNOVA EXPLOSIONS

    International Nuclear Information System (INIS)

    Couch, Sean M.; Ott, Christian D.

    2015-01-01

    The neutrino-heated ''gain layer'' immediately behind the stalled shock in a core-collapse supernova is unstable to high-Reynolds-number turbulent convection. We carry out and analyze a new set of 19 high-resolution three-dimensional (3D) simulations with a three-species neutrino leakage/heating scheme and compare with spherically symmetric (one-dimensional, 1D) and axisymmetric (two-dimensional, 2D) simulations carried out with the same methods. We study the postbounce supernova evolution in a 15 M ☉ progenitor star and vary the local neutrino heating rate, the magnitude and spatial dependence of asphericity from convective burning in the Si/O shell, and spatial resolution. Our simulations suggest that there is a direct correlation between the strength of turbulence in the gain layer and the susceptibility to explosion. 2D and 3D simulations explode at much lower neutrino heating rates than 1D simulations. This is commonly explained by the fact that nonradial dynamics allows accreting material to stay longer in the gain layer. We show that this explanation is incomplete. Our results indicate that the effective turbulent ram pressure exerted on the shock plays a crucial role by allowing multi-dimensional models to explode at a lower postshock thermal pressure and thus with less neutrino heating than 1D models. We connect the turbulent ram pressure with turbulent energy at large scales and in this way explain why 2D simulations are erroneously exploding more easily than 3D simulations

  1. The Effect of Ion Motion on Laser-Driven Plasma Wake in Capillary

    International Nuclear Information System (INIS)

    Zhou Suyun; Li Yanfang; Chen Hui

    2016-01-01

    The effect of ion motion in capillary-guided laser-driven plasma wake is investigated through rebuilding a two-dimensional analytical model. It is shown that laser pulse with the same power can excite more intense wakefield in the capillary of a smaller radius. When laser intensity exceeds a critical value, the effect of ion motion reducing the wakefield rises, which becomes significant with a decrease of capillary radius. This phenomenon can be attributed to plasma ions in smaller capillary obtaining more energy from the plasma wake. The dependence of the difference value between maximal scalar potential of wake for two cases of ion rest and ion motion on the radius of the capillary is discussed. (paper)

  2. Neutrino-driven supernovae: An accretion instability in a nuclear physics controlled environment

    International Nuclear Information System (INIS)

    Janka, H.-T.; Buras, R.; Kitaura Joyanes, F.S.; Marek, A.; Rampp, M.; Scheck, L.

    2005-01-01

    New simulations demonstrate that low-mode, nonradial hydrodynamic instabilities of the accretion shock help starting hot-bubble convection in supernovae and thus support explosions by the neutrino-heating mechanism. The prevailing conditions depend on the high-density equation of state which governs stellar core collapse, core bounce, and neutron star formation. Tests of this sensitivity to nuclear physics variations are shown for spherically symmetric models. Implications of current explosion models for r-process nucleosynthesis are addressed

  3. Numerical simulation in plasma physics

    International Nuclear Information System (INIS)

    Samarskii, A.A.

    1980-01-01

    Plasma physics is not only a field for development of physical theories and mathematical models but also an object of application of the computational experiment comprising analytical and numerical methods adapted for computers. The author considers only MHD plasma physics problems. Examples treated are dissipative structures in plasma; MHD model of solar dynamo; supernova explosion simulation; and plasma compression by a liner. (Auth.)

  4. Excitation of nonlinear wave patterns in flowing complex plasmas

    Science.gov (United States)

    Jaiswal, S.; Bandyopadhyay, P.; Sen, A.

    2018-01-01

    We describe experimental observations of nonlinear wave structures excited by a supersonic mass flow of dust particles over an electrostatic potential hill in a dusty plasma medium. The experiments have been carried out in a Π- shaped experimental (DPEx) device in which micron sized Kaolin particles are embedded in a DC glow discharge Argon plasma. An equilibrium dust cloud is formed by maintaining the pumping speed and gas flow rate and the dust flow is induced either by suddenly reducing the height of a potential hill or by suddenly reducing the gas flow rate. For a supersonic flow of the dust fluid precursor solitons are seen to propagate in the upstream direction while wake structures propagate in the downstream direction. For flow speeds with a Mach number greater than 2 the dust particles flowing over the potential hill give rise to dispersive dust acoustic shock waves. The experimental results compare favorably with model theories based on forced K-dV and K-dV Burger's equations.

  5. Boltzmann-equation simulations of radio-frequency-driven, low-temperature plasmas

    International Nuclear Information System (INIS)

    Drallos, P.J.; Riley, M.E.

    1995-01-01

    We present a method for the numerical solution of the Boltzmann equation (BE) describing plasma electrons. We apply the method to a capacitively-coupled, radio-frequency-driven He discharge in parallel-plate (quasi-1D) geometry which contains time scales for physical processes spanning six orders of magnitude. Our BE solution procedure uses the method of characteristics for the Vlasov operator with interpolation in phase space at early time, allowing storage of the distribution function on a fixed phase-space grid. By alternating this BE method with a fluid description of the electrons, or with a novel time-cycle-average equation method, we compute the periodic steady state of a He plasma by time evolution from startup conditions. We find that the results compare favorably with measured current-voltage, plasma density, and ''cited state densities in the ''GEC'' Reference Cell. Our atomic He model includes five levels (some are summed composites), 15 electronic transitions, radiation trapping, and metastable-metastable collisions

  6. Boltzmann-equation simulations of radio-frequency-driven, low-temperature plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Drallos, P.J.; Riley, M.E.

    1995-01-01

    We present a method for the numerical solution of the Boltzmann equation (BE) describing plasma electrons. We apply the method to a capacitively-coupled, radio-frequency-driven He discharge in parallel-plate (quasi-1D) geometry which contains time scales for physical processes spanning six orders of magnitude. Our BE solution procedure uses the method of characteristics for the Vlasov operator with interpolation in phase space at early time, allowing storage of the distribution function on a fixed phase-space grid. By alternating this BE method with a fluid description of the electrons, or with a novel time-cycle-average equation method, we compute the periodic steady state of a He plasma by time evolution from startup conditions. We find that the results compare favorably with measured current-voltage, plasma density, and ``cited state densities in the ``GEC`` Reference Cell. Our atomic He model includes five levels (some are summed composites), 15 electronic transitions, radiation trapping, and metastable-metastable collisions.

  7. Free-electron laser driven by the LBNL laser-plasma accelerator

    International Nuclear Information System (INIS)

    Schroeder, C.B.; Fawley, W.M.; Gruner, F.; Bakeman, M.; Nakamura, K.; Robinson, K.E.; Toth, Cs.; Esarey, E.; Leemans, W.P.

    2008-01-01

    A design of a compact free-electron laser (FEL), generating ultra-fast, high-peak flux, XUV pulses is presented. The FEL is driven by ahigh-current, 0.5 GeV electron beam from the Lawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator, whose active acceleration length is only a few centimeters. The proposed ultra-fast source (∼10 fs) would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science. Owing to the high current (>10 kA) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially greater than 10 13 photons/pulse. Devices based both on self-amplified spontaneous emission and high-harmonic generated input seeds, to reduce undulator length and fluctuations, are considered.

  8. Type Ia Supernova Cosmology

    Science.gov (United States)

    Leibundgut, B.; Sullivan, M.

    2018-03-01

    The primary agent for Type Ia supernova cosmology is the uniformity of their appearance. We present the current status, achievements and uncertainties. The Hubble constant and the expansion history of the universe are key measurements provided by Type Ia supernovae. They were also instrumental in showing time dilation, which is a direct observational signature of expansion. Connections to explosion physics are made in the context of potential improvements of the quality of Type Ia supernovae as distance indicators. The coming years will see large efforts to use Type Ia supernovae to characterise dark energy.

  9. Intense laser driven collision-less shock and ion acceleration in magnetized plasmas

    Science.gov (United States)

    Mima, K.; Jia, Q.; Cai, H. B.; Taguchi, T.; Nagatomo, H.; Sanz, J. R.; Honrubia, J.

    2016-05-01

    The generation of strong magnetic field with a laser driven coil has been demonstrated by many experiments. It is applicable to the magnetized fast ignition (MFI), the collision-less shock in the astrophysics and the ion shock acceleration. In this paper, the longitudinal magnetic field effect on the shock wave driven by the radiation pressure of an intense short pulse laser is investigated by theory and simulations. The transition of a laminar shock (electro static shock) to the turbulent shock (electromagnetic shock) occurs, when the external magnetic field is applied in near relativistic cut-off density plasmas. This transition leads to the enhancement of conversion of the laser energy into high energy ions. The enhancement of the conversion efficiency is important for the ion driven fast ignition and the laser driven neutron source. It is found that the total number of ions reflected by the shock increases by six time when the magnetic field is applied.

  10. Development of supersonic plasma flows by use of a magnetic nozzle and an ICRF heating

    Energy Technology Data Exchange (ETDEWEB)

    Inutake, M.; Ando, A.; Hattori, K.; Tobari, H.; Hosokawa, Y.; Sato, R.; Hatanaka, M.; Harata, K. [Tohoku Univ., Dept. of Electrical Engineering, Sendai (Japan)

    2004-07-01

    A high-beta, supersonic plasma flow plays a crucial role in MHD phenomena in space and fusion plasmas. There are a few experimental researches on production and control of a fast flowing plasma in spite of a growing significance in the magnetized-plasma flow dynamics. A magneto-plasma-dynamic arc-jet (MPDA) is one of promising devices to produce a supersonic plasma flow and has been utilized as an electric propulsion device with a higher specific impulse and a relatively larger thrust. We have improved the performance of an MPDA to produce a quasi-steady plasma flow with a transonic and supersonic Mach number in a highly-ionized state. There are two methods in order to control an ion-acoustic Mach number of the plasma flow exhausted from an MPDA: one is to use a magnetic Laval nozzle to convert a thermal energy to a flow energy and the other is a combined system of an ion heating and a divergent magnetic nozzle. The former is an analogous method to a compressible air flow and the latter is the method proposed in an advanced thruster for a manned interplanetary space mission. We have clarified the plasma flow characteristics in various shapes of a magnetic field configuration. It was demonstrated that the Mach number of the plasma flow could increase up to almost 3 in a divergent magnetic nozzle field. This paper reports recent results on the flow field improvements: one is on a magnetic-Laval-nozzle effects observed at the muzzle region of the MPDA, and the other is on ICRF (ion-cyclotron-range of frequency) heating of a supersonic plasma by use of a helical antenna. (authors)

  11. Critical condition for current-driven instability excited in turbulent heating of TRIAM-1 tokamak plasma

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Y; Watanabe, T; Nagao, A; Nakamura, K; Kikuchi, M; Aoki, T; Hiraki, N; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Mitarai, O

    1982-02-01

    Critical condition for current-driven instability excited in turbulently heated TRIAM-1 tokamak plasma is investigated experimentally. Resistive hump in loop voltage, plasma density fluctuation and rapid increase of electron temperature in a skin layer are simultaneously observed at the time when the electron drift velocity amounts to the critical drift velocity for low-frequency ion acoustic instability.

  12. Supernova blast wave within a stellar cluster outflow

    Science.gov (United States)

    Rodríguez-Ramírez, J. C.; Raga, A. C.; Velázquez, P. F.; Rodríguez-González, A.; Toledo-Roy, J. C.

    2014-11-01

    In this paper, we develop a semi-analytic model of a supernova which goes off in the centre of a stellar cluster. The supernova remnant interacts with a stratified, pre-existent outflow produced by the winds of the cluster stars. We compare our semi-analytic model with numerical simulations using the spherically symmetric Euler equations with appropriate mass and energy source terms. We find good agreement between these two approaches, and we find that for typical parameters the blast wave is likely to reach the Taylor-Sedov regime outside the cluster radius. We also calculate the predicted X-ray luminosity of the flow as a function of time, and we obtain its dependence on the outer radius and the number of stars of the cluster.

  13. NUMERICAL STUDY OF THE VISHNIAC INSTABILITY IN SUPERNOVA REMNANTS

    International Nuclear Information System (INIS)

    Michaut, C.; Cavet, C.; Bouquet, S. E.; Roy, F.; Nguyen, H. C.

    2012-01-01

    The Vishniac instability is thought to explain the complex structure of radiative supernova remnants in their Pressure-Driven Thin Shell (PDTS) phase after a blast wave (BW) has propagated from a central explosion. In this paper, the propagation of the BW and the evolution of the PDTS stage are studied numerically with the two-dimensional (2D) code HYDRO-MUSCL for a finite-thickness shell expanding in the interstellar medium (ISM). Special attention is paid to the adiabatic index, γ, and three distinct values are taken for the cavity (γ 1 ), the shell (γ 2 ), and the ISM (γ 3 ) with the condition γ 2 1 , γ 3 . This low value of γ 2 accounts for the high density in the shell achieved by a strong radiative cooling. Once the spherical background flow is obtained, the evolution of a 2D-axisymmetric perturbation is computed from the linear to the nonlinear regime. The overstable mechanism, previously demonstrated theoretically by E. T. Vishniac in 1983, is recovered numerically in the linear stage and is expected to produce and enhance anisotropies and clumps on the shock front, leading to the disruption of the shell in the nonlinear phase. The period of the increasing oscillations and the growth rate of the instability are derived from several points of view (the position of the perturbed shock front, mass fluxes along the shell, and density maps), and the most unstable mode differing from the value given by Vishniac is computed. In addition, the influence of several parameters (the Mach number, amplitude and wavelength of the perturbation, and adiabatic index) is examined and for wavelengths that are large enough compared to the shell thickness, the same conclusion arises: in the late stage of the evolution of the radiative supernova remnant, the instability is dampened and the angular initial deformation of the shock front is smoothed while the mass density becomes uniform with the angle. As a result, our model shows that the supernova remnant returns to a

  14. Relaxation of plasma potential and poloidal flows in the boundary of tokamak plasmas

    International Nuclear Information System (INIS)

    Hron, M.; Duran, I.; Stoeckel, J.; Hidalgo, C.; Gunn, J.

    2003-01-01

    The relaxation times of plasma parameters after a sudden change of electrode voltage have been measured in the plasma boundary during polarization experiments on the CASTOR tokamak (R = 0.4 m, a = 75 mm, B t = 1 T, I p ∼ 9 kA, q a ∼ 10). The time evolution of the floating potential after the biasing voltage switch-off can be well fitted by an exponential decay with characteristic time in the range of 10 - 20 μs. The poloidal flow shows a transient behaviour with a time scale of about 10 - 30 μs. These time scales are smaller than the expected damping time based on neoclassical parallel viscosity (which is in the range of 100 νs) and atomic physics via charge exchange (in the range of 100 - 1000 νs). But, they are larger than the correlation time of plasma turbulence (about 5 μs). These findings suggest that anomalous damping rate mechanisms for radial electric fields and poloidal flows may play a role in the boundary of tokamak plasmas. (authors)

  15. Lattice Boltzmann simulations of three-dimensional incompressible flows in a four-sided lid driven cavity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Cheng Gong [National Engineering Laboratory for MTO, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Maa, Jerome P-Y, E-mail: chenggongli@dicp.ac.cn [Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA 23062 (United States)

    2017-04-15

    Numerical study on three-dimensional (3D), incompressible, four-sided lid (FSL) driven cavity flows has been conducted to show the effects of the transverse aspect ratio, K , on the flow field by using a multiple relaxation time lattice Boltzmann equation. The top wall is driven from left to right, the left wall is moved downward, whereas the right wall is driven upward, and the bottom wall is moved from right to left, all the four moving walls have the same speed and the others boundaries are fixed. Numerical computations are performed for several Reynolds numbers for laminar flows, up to 1000, with various transverse aspect ratios. The flow can reach a steady state and the flow pattern is symmetric with respect to the two cavity diagonals (i.e., the center of the cavity). At Reynolds number = 300, the flow structures of the 3D FSL cavity flow at steady state with various transverse aspect ratio, i.e., 3, 2, 1, 0.75, 0.5 and 0.25 only show the unstable symmetrical flow pattern. The stable asymmetrical flow pattern could be reproduced only by increasing the Reynolds number that is above a critical value which is dependent on the aspect ratio. It is found that an aspect ratio of more than 5 is needed to reproduce flow patterns, both symmetric and asymmetric flows, simulated by using 2D numerical models. (paper)

  16. Modeling plasma flow in straight and curved solenoids

    International Nuclear Information System (INIS)

    Boercker, D.B.; Sanders, D.M.; Storer, J.; Falabella, S.

    1991-01-01

    The ''flux-tube'' model originated by Morozov is a very simple and numerically efficient method for simulating ion motion in plasma filters. In order to test its utility as a design tool, we compare the predictions of the model to recent experimental measurements of plasma flow in both straight and curved solenoids

  17. Thermonuclear-driven fast magnetosonic-wave heating in tokamak plasmas

    International Nuclear Information System (INIS)

    Sutton, W.R. III.

    1982-01-01

    A thermonuclear driven fast magnetosonic wave instability is investigated in tokamak plasmas for propagation transverse to the external magnetic field at frequencies of several times the alpha particle gyro rate: ω approx. = L Ω/sub α/ = k/sub perpendicular/ v/sub A/, L approx. 4 to 8, k/sub parallel/ << k/sub perpendicular/. The 2-D differential quasi-linear diffusion equation is derived in circular cylindrical, v/sub perpendicular/-v/sub parallel/ geometry. We perform an expansion in the small parameter k/sub parallel/k/sub perpendicucular/ of the quasi-linear diffusion coefficients

  18. Interpenetration and deflection phenomena in collisions between supersonic, magnetized, tungsten plasma flows diagnosed using high resolution optical Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Swadling, G. F.; Lebedev, S. V.; Burdiak, G.; Suttle, L.; Patankar, S.; Smith, R. A.; Bennett, M.; Hall, G. N.; Suzuki-Vidal, F.; Bland, S. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Harvey-Thompson, A. J. [Sandia National Laboratories, PO Box 5800, Albuquerque, New Mexico 87185-1193 (United States); Rozmus, W. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); Yuan, J. [Key Laboratory of Pulsed Power, Institute of Fluid Physics, CAE, Mianyang 621900 (China)

    2015-07-15

    An optical Thomson scattering diagnostic has been used to investigate collisions between supersonic, magnetized plasma flows, in particular the transition from collisionless to collisional interaction dynamics. These flows were produced using tungsten wire array z-pinches, driven by the 1.4 MA 240 ns Magpie generator at Imperial College London. Measurements of the collective-mode Thomson scattering ion-feature clearly indicate that the ablation flows are interpenetrating at 100 ns (after current start), and this interpenetration continues until at least 140 ns. The Thomson spectrum at 150 ns shows a clear change in the dynamics of the stream interactions, transitioning towards a collisional, shock-like interaction of the streams near the axis. The Thomson scattering data also provide indirect evidence of the presence of a significant toroidal magnetic field embedded in the “precursor” plasma near the axis of the array over the period 100–140 ns; these observations are in agreement with previous measurements [Swadling et al., Phys. Rev. Lett. 113, 035003 (2014)]. The Thomson scattering measurements at 150 ns suggest that this magnetic field must collapse at around the time the dense precursor column begins to form.

  19. A solar-type star polluted by calcium-rich supernova ejecta inside the supernova remnant RCW 86

    Science.gov (United States)

    Gvaramadze, Vasilii V.; Langer, Norbert; Fossati, Luca; Bock, Douglas C.-J.; Castro, Norberto; Georgiev, Iskren Y.; Greiner, Jochen; Johnston, Simon; Rau, Arne; Tauris, Thomas M.

    2017-06-01

    When a massive star in a binary system explodes as a supernova, its companion star may be polluted with heavy elements from the supernova ejecta. Such pollution has been detected in a handful of post-supernova binaries 1 , but none of them is associated with a supernova remnant. We report the discovery of a binary G star strongly polluted with calcium and other elements at the position of the candidate neutron star [GV2003] N within the young galactic supernova remnant RCW 86. Our discovery suggests that the progenitor of the supernova that produced RCW 86 could have been a moving star, which exploded near the edge of its wind bubble and lost most of its initial mass because of common-envelope evolution shortly before core collapse, and that the supernova explosion might belong to the class of calcium-rich supernovae — faint and fast transients 2,3 , the origin of which is strongly debated 4-6 .

  20. Improvement of Flow Characteristics for an Advanced Plasma Thruster

    International Nuclear Information System (INIS)

    Inutake, M.; Hosokawa, Y.; Sato, R.; Ando, A.; Tobari, H.; Hattori, K.

    2005-01-01

    A higher specific impulse and a larger thrust are required for a manned interplanetary space thruster. Until the realization of a fusion-plasma thruster, a magneto-plasma-dynamic arcjet (MPDA) powered by a fission reactor is one of the promising candidates for a manned Mars space thruster. The MPDA plasma is accelerated axially by a self-induced j x B force. Thrust performance of the MPDA is expected to increase by applying a magnetic nozzle instead of a solid nozzle. In order to get a much higher thruster performance, two methods have been investigated in the HITOP device, Tohoku University. One is to use a magnetic Laval nozzle in the vicinity of the MPDA muzzle for converting the high ion thermal energy to the axial flow energy. The other is to heat ions by use of an ICRF antenna in the divergent magnetic nozzle. It is found that by use of a small-sized Laval-type magnetic nozzle, the subsonic flow near the muzzle is converted to be supersonic through the magnetic Laval nozzle. A fast-flowing plasma is successfully heated by use of an ICRF antenna in the magnetic beach configuration

  1. Nucleosynthesis in Supernovae

    Science.gov (United States)

    Thielemann, Friedrich-Karl; Isern, Jordi; Perego, Albino; von Ballmoos, Peter

    2018-04-01

    We present the status and open problems of nucleosynthesis in supernova explosions of both types, responsible for the production of the intermediate mass, Fe-group and heavier elements (with the exception of the main s-process). Constraints from observations can be provided through individual supernovae (SNe) or their remnants (e.g. via spectra and gamma-rays of decaying unstable isotopes) and through surface abundances of stars which witness the composition of the interstellar gas at their formation. With a changing fraction of elements heavier than He in these stars (known as metallicity) the evolution of the nucleosynthesis in galaxies over time can be determined. A complementary way, related to gamma-rays from radioactive decays, is the observation of positrons released in β+-decays, as e.g. from ^{26}Al, ^{44}Ti, ^{56,57}Ni and possibly further isotopes of their decay chains (in competition with the production of e+e- pairs in acceleration shocks from SN remnants, pulsars, magnetars or even of particle physics origin). We discuss (a) the role of the core-collapse supernova explosion mechanism for the composition of intermediate mass, Fe-group (and heavier?) ejecta, (b) the transition from neutron stars to black holes as the final result of the collapse of massive stars, and the relation of the latter to supernovae, faint supernovae, and gamma-ray bursts/hypernovae, (c) Type Ia supernovae and their nucleosynthesis (e.g. addressing the ^{55}Mn puzzle), plus (d) further constraints from galactic evolution, γ-ray and positron observations. This is complemented by the role of rare magneto-rotational supernovae (related to magnetars) in comparison with the nucleosynthesis of compact binary mergers, especially with respect to forming the heaviest r-process elements in galactic evolution.

  2. Advanced plasma flow simulations of cathodic-arc and ferroelectric plasma sources for neutralized drift compression experiments

    Directory of Open Access Journals (Sweden)

    Adam B. Sefkow

    2008-07-01

    Full Text Available Large-space-scale and long-time-scale plasma flow simulations are executed in order to study the spatial and temporal evolution of plasma parameters for two types of plasma sources used in the neutralized drift compression experiment (NDCX. The results help assess the charge neutralization conditions for ion beam compression experiments and can be employed in more sophisticated simulations, which previously neglected the dynamical evolution of the plasma. Three-dimensional simulations of a filtered cathodic-arc plasma source show the coupling efficiency of the plasma flow from the source to the drift region depends on geometrical factors. The nonuniform magnetic topology complicates the well-known general analytical considerations for evaluating guiding-center drifts, and particle-in-cell simulations provide a self-consistent evaluation of the physics in an otherwise challenging scenario. Plasma flow profiles of a ferroelectric plasma source demonstrate that the densities required for longitudinal compression experiments involving ion beams are provided over the drift length, and are in good agreement with measurements. Simulations involving azimuthally asymmetric plasma creation conditions show that symmetric profiles are nevertheless achieved at the time of peak on-axis plasma density. Also, the ferroelectric plasma expands upstream on the thermal expansion time scale, and therefore avoids the possibility of penetration into the acceleration gap and transport sections, where partial neutralization would increase the beam emittance. Future experiments on NDCX will investigate the transverse focusing of an axially compressing intense charge bunch to a sub-mm spot size with coincident focal planes using a strong final-focus solenoid. In order to fill a multi-tesla solenoid with the necessary high-density plasma for beam charge neutralization, the simulations predict that supersonically injected plasma from the low-field region will penetrate and

  3. Convection flows driven by laser heating of a liquid layer

    OpenAIRE

    Rivière , David; Selva , Bertrand; Chraibi , Hamza; Delabre , Ulysse; Delville , Jean-Pierre

    2016-01-01

    International audience; When a fluid is heated by the absorption of a continuous laser wave, the fluid density decreases in the heated area. This induces a pressure gradient that generates internal motion of the fluid. Due to mass conservation, convection eddies emerge in the sample. To investigate these laser-driven bulk flows at the microscopic scale, we built a setup to perform temperature measurements with a fluorescent-sensitive dye on the one hand, and measured the flow pattern at diffe...

  4. A Microwave Driven Ion Source for Continuous-Flow AMS (Abstract)

    International Nuclear Information System (INIS)

    Wills, J.; Schneider, R.J.; Reden, K.F. von; Hayes, J.M.; Roberts, M.L.; Benthien, A.

    2005-01-01

    A microwave-driven, gas-fed ion source originally developed as a high-current positive ion injector for a Tandem accelerator at Chalk River has been the subject of a three-year development program at the Woods Hole Oceanographic Institution NOSAMS facility. Off-line tests have demonstrated positive carbon currents of 1 mA and negative carbon currents of 80 μA from CO2 gas feed. This source and a magnesium charge-exchange canal were coupled to the recombinator of the NOSAMS Tandetron for on-line tests, with the source fed with reference gasses and a combustion device.The promising results obtained have prompted the redesign of the microwave source for use as an on-line, continuous-flow injector for a new AMS facility under construction at NOSAMS. The new design is optimized for best transmission of the extracted positive-ion beam through the charge-exchange canal and for reliable operation at 40 kV extraction voltage. Other goals of the re-design include improved lifetime of the microwave window and the elimination of dead volumes in the plasma generator that increase sample hold-up time.This talk will include a summary of results obtained to date at NOSAMS with the Chalk River source and a detailed description of the new design

  5. Magnetization Transfer Effects on the Efficiency of Flow-driven Adiabatic Fast Passage Inversion of Arterial Blood

    OpenAIRE

    Hernandez-Garcia, Luis; Lewis, David P.; Moffat, Bradford; Branch, Craig A.

    2007-01-01

    Continuous arterial spin labeling experiments typically use flow-driven adiabatic fast passage (AFP) inversion of the arterial blood water protons. In this article, we measure the effect of magnetization transfer in blood and how it affects the inversion label. We use modified Bloch equations to model flow-driven adiabatic inversion in the presence of magnetization transfer in blood flowing at velocities from 1 to 30 cm/s in order to explain our findings. Magnetization transfer results in a r...

  6. T-junction cross-flow mixing with thermally driven density stratification

    Energy Technology Data Exchange (ETDEWEB)

    Kickhofel, John, E-mail: jkickhofel@gmail.com [Laboratory of Nuclear Energy Systems, ETH Zurich, Sonneggstrasse 3, 8057 Zurich (Switzerland); Prasser, Horst-Michael, E-mail: prasser@lke.mavt.ethz.ch [Laboratory of Nuclear Energy Systems, ETH Zurich, Sonneggstrasse 3, 8057 Zurich (Switzerland); Selvam, P. Karthick, E-mail: karthick.selvam@ike.uni-stuttgart.de [Institute of Nuclear Technology and Energy Systems (IKE), University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart (Germany); Laurien, Eckart, E-mail: eckart.laurien@ike.uni-stuttgart.de [Institute of Nuclear Technology and Energy Systems (IKE), University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart (Germany); Kulenovic, Rudi, E-mail: rudi.kulenovic@ike.uni-stuttgart.de [Institute of Nuclear Technology and Energy Systems (IKE), University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart (Germany)

    2016-12-01

    Highlights: • Mesh sensor for realistic nuclear thermal hydraulic scenarios is demonstrated. • Flow temperature behavior across a wide range of Richardson numbers measured. • Upstream stratified flow in the T-junction results in a thermal shock scenario. • Large, stable near-wall thermal gradients exist in spite of turbulent flows. - Abstract: As a means of further elucidating turbulence- and stratification-driven thermal fatigue in the vicinity of T-junctions in nuclear power plants, a series of experiments have been conducted at the high temperature high pressure fluid–structure interaction T-junction facility of the University of Stuttgart with novel fluid measurement instrumentation. T-junction mixing with large fluid temperature gradients results in complex flow behavior, the result of density driven effects. Deionized water mixing at temperature differences of up to 232 K at 7 MPa pressure have been investigated in a T-junction with main pipe diameter 71.8 mm and branch line diameter 38.9 mm. The experiments have been performed with fixed flow rates of 0.4 kg/s in the main pipe and 0.1 kg/s in the branch line. A novel electrode-mesh sensor compatible with the DN80 PN100 pipeline upstream and downstream of the T-junction has been utilized as a temperature sensor providing a high density information in the pipe cross-section in both space and time. Additionally, in-flow and in-wall thermocouples quantify the damping of thermal fluctuations by the wall material. The results indicate that large inflow temperature differences lead to strong turbulence damping, and ultimately stable stratification extending both downstream and upstream of the T-junction resulting in large local thermal gradients.

  7. Direct Numerical Simulations of turbulent flow in a driven cavity

    NARCIS (Netherlands)

    Verstappen, R.; Wissink, J.G.; Cazemier, W.; Veldman, A.E.P.

    Direct numerical simulations (DNS) of 2 and 3D turbulent flows in a lid-driven cavity have been performed. DNS are numerical solutions of the unsteady (here: incompressible) Navier-Stokes equations that compute the evolution of all dynamically significant scales of motion. In view of the large

  8. Sawtooth events and O+ in the plasma sheet and boundary layer: CME- and SIR-driven events

    Science.gov (United States)

    Lund, E. J.; Nowrouzi, N.; Kistler, L. M.; Cai, X.; Liao, J.

    2017-12-01

    The role of ionospheric ions in sawtooth events is an open question. Simulations[1,2,3] suggest that O+ from the ionosphere produces a feedback mechanism for driving sawtooth events. However, observational evidence[4,5] suggest that the presence of O+ in the plasma sheet is neither necessary nor sufficient. In this study we investigate whether the solar wind driver of the geomagnetic storm has an effect on the result. Building on an earlier study[4] that used events for which Cluster data is available in the plasma sheet and boundary layer, we perform a superposed epoch analysis for coronal mass ejection (CME) driven storms and streaming interaction region (SIR) driven storms separately, to investigate the hypothesis that ionospheric O+ is an important contributor for CME-driven storms but not SIR-driven storms[2]. [1]O. J. Brambles et al. (2011), Science 332, 1183.[2]O. J. Brambles et al. (2013), JGR 118, 6026.[3]R. H. Varney et al. (2016), JGR 121, 9688.[4]J. Liao et al. (2014), JGR 119, 1572.[5]E. J. Lund et al. (2017), JGR, submitted.

  9. Investigation on Plasma Jet Flow Phenomena During DC Air Arc Motion in Bridge-Type Contacts

    Science.gov (United States)

    Zhai, Guofu; Bo, Kai; Chen, Mo; Zhou, Xue; Qiao, Xinlei

    2016-05-01

    Arc plasma jet flow in the air was investigated under a bridge-type contacts in a DC 270 V resistive circuit. We characterized the arc plasma jet flow appearance at different currents by using high-speed photography, and two polished contacts were used to search for the relationship between roughness and plasma jet flow. Then, to make the nature of arc plasma jet flow phenomena clear, a simplified model based on magnetohydrodynamic (MHD) theory was established and calculated. The simulated DC arc plasma was presented with the temperature distribution and the current density distribution. Furthermore, the calculated arc flow velocity field showed that the circular vortex was an embodiment of the arc plasma jet flow progress. The combined action of volume force and contact surface was the main reason of the arc jet flow. supported by National Natural Science Foundation of China (Nos. 51307030, 51277038)

  10. Observations of plasma vortices in the vicinity of flow-braking: a case study

    Directory of Open Access Journals (Sweden)

    K. Keika

    2009-08-01

    Full Text Available We examine fast plasma flows and magnetic field fluctuations observed by THEMIS at 03:00–03:30 UT on 12 December 2007. All THEMIS probes are situated in the near-Earth plasma sheet (XSM>−10 RE with 1–2 RE spacecraft separations in azimuthal and radial directions. We focus on the observations of plasma convective flows made simultaneously by more than one THEMIS probe. At about 03:10 UT and 03:14 UT, the THEMIS P2 probe observed earthward flows of >100 km/s. The THEMIS P1 probe, located duskward and earthward of P2, observed tailward flows under a positive Bz. The inner most probe THEMIS P4, located at almost the same MLT as THEMIS P1 and P2, did not see any clear flow. We examine the convective flow patterns for the THEMIS observations. We conclude that plasma vortices are formed near the region where the earthward flows slow down and turn in azimuthal directions.

  11. Discharge characteristics and hydrodynamics behaviors of atmospheric plasma jets produced in various gas flow patterns

    Science.gov (United States)

    Setsuhara, Yuichi; Uchida, Giichiro; Nakajima, Atsushi; Takenaka, Kosuke; Koga, Kazunori; Shiratani, Masaharu

    2015-09-01

    Atmospheric nonequilibrium plasma jets have been widely employed in biomedical applications. For biomedical applications, it is an important issue to understand the complicated mechanism of interaction of the plasma jet with liquid. In this study, we present analysis of the discharge characteristics of a plasma jet impinging onto the liquid surface under various gas flow patterns such as laminar and turbulence flows. For this purpose, we analyzed gas flow patters by using a Schlieren gas-flow imaging system in detail The plasma jet impinging into the liquid surface expands along the liquid surface. The diameter of the expanded plasma increases with gas flow rate, which is well explained by an increase in the diameter of the laminar gas-flow channel. When the gas flow rate is further increased, the gas flow mode transits from laminar to turbulence in the gas flow channel, which leads to the shortening of the plasm-jet length. Our experiment demonstrated that the gas flow patterns strongly affect the discharge characteristics in the plasma-jet system. This study was partly supported by a Grant-in-Aid for Scientific Research on Innovative Areas ``Plasma Medical Innovation'' (24108003) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT).

  12. ON THE ANALYSIS OF IMPEDANCE-DRIVEN REVERSE FLOW DYNAMICS

    Directory of Open Access Journals (Sweden)

    LEE V. C.-C.

    2017-02-01

    Full Text Available Impedance pump is a simple valve-less pumping mechanism, where an elastic tube is joined to a more rigid tube, at both ends. By inducing a periodic asymmetrical compression on the elastic tube will produce a unidirectional flow within the system. This pumping concept offers a low energy, low noise alternative, which makes it an effective driving mechanism, especially for micro-fluidic systems. In addition, the wave-based mechanism through which pumping occurs infers many benefits in terms of simplicity of design and manufacturing. Adjustment of simple parameters such as the excitation frequencies or compression locations will reverse the direction of flow, providing a very versatile range of flow outputs. This paper describes the experimental analysis of such impedance-driven flow with emphasis on the dynamical study of the reverse flow in open-loop environment. In this study, tapered section with converging steps is introduced at both ends of the elastic tube to amplify the magnitude of reverse flow. Study conducted shows that the reverse peak flow is rather significant with estimate of 23% lower than the forward peak flow. The flow dynamics on the other hand has shown to exhibit different characteristics as per the forward peak flow. The flow characteristics is then studied and showed that the tapered sections altered the impedance within the system and hence induce a higher flow in the reverse direction.

  13. A compact and continuously driven supersonic plasma and neutral source

    Energy Technology Data Exchange (ETDEWEB)

    Asai, T.; Itagaki, H.; Numasawa, H.; Terashima, Y.; Hirano, Y. [Department of Physics, College of Science and Technology, Nihon University, Tokyo 101-8308 (Japan); Hirose, A. [Plasma Physics Laboratory, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2 (Canada)

    2010-10-15

    A compact and repetitively driven plasma source has been developed by utilizing a magnetized coaxial plasma gun (MCPG) for diagnostics requiring deep penetration of a large amount of neutral flux. The system consists of a MCPG 95mm in length with a DN16 ConFlat connection port and an insulated gate bipolar transistor (IGBT) inverter power unit. The power supply consists of an array of eight IGBT units and is able to switch the discharge on and off at up to 10 kV and 600 A with a maximum repetitive frequency of 10 kHz. Multiple short duration discharge pulses maximize acceleration efficiency of the plasmoid. In the case of a 10 kHz operating frequency, helium-plasmoids in the velocity range of 20 km/s can be achieved.

  14. A compact and continuously driven supersonic plasma and neutral source.

    Science.gov (United States)

    Asai, T; Itagaki, H; Numasawa, H; Terashima, Y; Hirano, Y; Hirose, A

    2010-10-01

    A compact and repetitively driven plasma source has been developed by utilizing a magnetized coaxial plasma gun (MCPG) for diagnostics requiring deep penetration of a large amount of neutral flux. The system consists of a MCPG 95mm in length with a DN16 ConFlat connection port and an insulated gate bipolar transistor (IGBT) inverter power unit. The power supply consists of an array of eight IGBT units and is able to switch the discharge on and off at up to 10 kV and 600 A with a maximum repetitive frequency of 10 kHz. Multiple short duration discharge pulses maximize acceleration efficiency of the plasmoid. In the case of a 10 kHz operating frequency, helium-plasmoids in the velocity range of 20 km/s can be achieved.

  15. Lattice Boltzmann equation calculation of internal, pressure-driven turbulent flow

    International Nuclear Information System (INIS)

    Hammond, L A; Halliday, I; Care, C M; Stevens, A

    2002-01-01

    We describe a mixing-length extension of the lattice Boltzmann approach to the simulation of an incompressible liquid in turbulent flow. The method uses a simple, adaptable, closure algorithm to bound the lattice Boltzmann fluid incorporating a law-of-the-wall. The test application, of an internal, pressure-driven and smooth duct flow, recovers correct velocity profiles for Reynolds number to 1.25 x 10 5 . In addition, the Reynolds number dependence of the friction factor in the smooth-wall branch of the Moody chart is correctly recovered. The method promises a straightforward extension to other curves of the Moody chart and to cylindrical pipe flow

  16. GLOBAL GALACTIC DYNAMO DRIVEN BY COSMIC RAYS AND EXPLODING MAGNETIZED STARS

    International Nuclear Information System (INIS)

    Hanasz, Michal; Woltanski, Dominik; Kowalik, Kacper

    2009-01-01

    We report the first results of the first global galactic-scale cosmic ray (CR)-MHD simulations of CR-driven dynamo. We investigate the dynamics of magnetized interstellar medium (ISM), which is dynamically coupled with CR gas. We assume that exploding stars deposit small-scale, randomly oriented, dipolar magnetic fields into the differentially rotating ISM, together with a portion of CRs, accelerated in supernova shocks. We conduct numerical simulations with the aid of a new parallel MHD code PIERNIK. We find that the initial magnetization of galactic disks by exploding magnetized stars forms favorable conditions for the CR-driven dynamo. We demonstrate that dipolar magnetic fields supplied on small supernova remnant scales can be amplified exponentially by the CR-driven dynamo, to the present equipartition values, and transformed simultaneously to large galactic scales. The resulting magnetic field structure in an evolved galaxy appears spiral in the face-on view and reveals the so-called X-shaped structure in the edge-on view.

  17. On the geometry of field lines in plasma flows

    International Nuclear Information System (INIS)

    Bagewadi, C.S.; Prasanna Kumar, K.N.

    1988-01-01

    Many research investigators have applied differential geometry to plasma. Intrinsic properties of fluid flows in streamline, vortex line geometries are we ll known under certain set of geometric conditions. Though this approach has yielded some interesting results but the most general properties of flows can be obtained, using eight geometric parameters ksub(s), tsub(s) θsub(ns), θsub(bs), phisub(s), Ωsub(s), div n, div b and the basic necessary conditions to be satisfied by the flow in general anholonomic co-ordinate system together with the conditions to be satisfied by the geometric parameters of triply orthogonal spatial curves of congruences. Adopting the above techniques for triply orthogonal spatial curves of congruences related to the lines of forces, Purushottam has studied the geometric properties of spatial hydromagnetic fluid flows. Again these results have been studied by him in general along the field lines. These results have been studied for plasma along field lines and the basic equations of plasma have been expressed in intrinsic decomposition forms. Furthe r complex lamellar magnetic field have been studied by introducing Lie surface. (a uthor)

  18. Toward connecting core-collapse supernova theory with observations

    Science.gov (United States)

    Handy, Timothy A.

    We study the evolution of the collapsing core of a 15 solar mass blue supergiant supernova progenitor from the moment shortly after core bounce until 1.5 seconds later. We present a sample of two- and three-dimensional hydrodynamic models parameterized to match the explosion energetics of supernova SN 1987A. We focus on the characteristics of the flow inside the gain region and the interplay between hydrodynamics, self-gravity, and neutrino heating, taking into account uncertainty in the nuclear equation of state. We characterize the evolution and structure of the flow behind the shock in terms the accretion flow dynamics, shock perturbations, energy transport and neutrino heating effects, and convective and turbulent motions. We also analyze information provided by particle tracers embedded in the flow. Our models are computed with a high-resolution finite volume shock capturing hydrodynamic code. The code includes source terms due to neutrino-matter interactions from a light-bulb neutrino scheme that is used to prescribe the luminosities and energies of the neutrinos emerging from the core of the proto-neutron star. The proto-neutron star is excised from the computational domain, and its contraction is modeled by a time-dependent inner boundary condition. We find the spatial dimensionality of the models to be an important contributing factor in the explosion process. Compared to two-dimensional simulations, our three-dimensional models require lower neutrino luminosities to produce equally energetic explosions. We estimate that the convective engine in our models is 4% more efficient in three dimensions than in two dimensions. We propose that this is due to the difference of morphology of convection between two- and three-dimensional models. Specifically, the greater efficiency of the convective engine found in three-dimensional simulations might be due to the larger surface-to-volume ratio of convective plumes, which aids in distributing energy deposited by

  19. The impact of magnetic fields on the chemical evolution of the supernova-driven ISM

    Czech Academy of Sciences Publication Activity Database

    Pardi, A.; Girichidis, P.; Naab, T.; Walch, S.; Peters, T.; Heitsch, F.; Glover, S.C.O.; Klessen, R.S.; Wünsch, Richard; Gatto, A.

    2017-01-01

    Roč. 465, č. 4 (2017), s. 4611-4633 ISSN 0035-8711 R&D Projects: GA ČR GA15-06012S Institutional support: RVO:67985815 Keywords : turbulent interstellar-medium * molecular cloud formation * ISM: supernova remnants Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 4.961, year: 2016

  20. Type Ia supernova rate studies from the SDSS-II Supernova Study

    Energy Technology Data Exchange (ETDEWEB)

    Dilday, Benjamin [Univ. of Chicago, IL (United States)

    2008-08-01

    The author presents new measurements of the type Ia SN rate from the SDSS-II Supernova Survey. The SDSS-II Supernova Survey was carried out during the Fall months (Sept.-Nov.) of 2005-2007 and discovered ~ 500 spectroscopically confirmed SNe Ia with densely sampled (once every ~ 4 days), multi-color light curves. Additionally, the SDSS-II Supernova Survey has discovered several hundred SNe Ia candidates with well-measured light curves, but without spectroscopic confirmation of type. This total, achieved in 9 months of observing, represents ~ 15-20% of the total SNe Ia discovered worldwide since 1885. The author describes some technical details of the SN Survey observations and SN search algorithms that contributed to the extremely high-yield of discovered SNe and that are important as context for the SDSS-II Supernova Survey SN Ia rate measurements.

  1. Electric force on plasma ions and the momentum of the ion-neutrals flow

    Science.gov (United States)

    Makrinich, G.; Fruchtman, A.; Zoler, D.; Boxman, R. L.

    2018-05-01

    The electric force on ions in plasma and the momentum flux carried by the mixed ion-neutral flow were measured and found to be equal. The experiment was performed in a direct-current gas discharge of cylindrical geometry with applied radial electric field and axial magnetic field. The unmagnetized plasma ions, neutralized by magnetized electrons, were accelerated radially outward transferring part of the gained momentum to neutrals. Measurements were taken for various argon gas flow rates between 13 and 100 Standard Cubic Centimeter per Minute, for a discharge current of 1.9 A and a magnetic field intensity of 136 G. The plasma density, electron temperature, and plasma potential were measured at various locations along the flow. These measurements were used to determine the local electric force on the ions. The total electric force on the plasma ions was then determined by integrating radially the local electric force. In parallel, the momentum flux of the mixed ion-neutral flow was determined by measuring the force exerted by the flow on a balance force meter (BFM). The maximal plasma density was between 6 × 1010 cm-3 and 5 × 1011 cm-3, the maximal electron temperature was between 8 eV and 25 eV, and the deduced maximal electric field was between 2200 V/m and 5800 V/m. The force exerted by the mixed ion-neutral flow on the BFM agreed with the total electric force on the plasma ions. This agreement showed that it is the electric force on the plasma ions that is the source of the momentum acquired by the mixed ion-neutral flow.

  2. Explaining the morphology of supernova remnant (SNR) 1987A with the jittering jets explosion mechanism

    Science.gov (United States)

    Bear, Ealeal; Soker, Noam

    2018-04-01

    We find that the remnant of supernova (SN) 1987A shares some morphological features with four supernova remnants (SNRs) that have signatures of shaping by jets, and from that we strengthen the claim that jets played a crucial role in the explosion of SN 1987A. Some of the morphological features appear also in planetary nebulae (PNe) where jets are observed. The clumpy ejecta bring us to support the claim that the jittering jets explosion mechanism can account for the structure of the remnant of SN 1987A, i.e., SNR 1987A. We conduct a preliminary attempt to quantify the fluctuations in the angular momentum of the mass that is accreted on to the newly born neutron star via an accretion disk or belt. The accretion disk/belt launches the jets that explode core collapse supernovae (CCSNe). The relaxation time of the accretion disk/belt is comparable to the duration of a typical jet-launching episode in the jittering jets explosion mechanism, and hence the disk/belt has no time to relax. We suggest that this might explain two unequal opposite jets that later lead to unequal sides of the elongated structures in some SNRs of CCSNe. We reiterate our earlier call for a paradigm shift from neutrino-driven explosion to a jet-driven explosion of CCSNe.

  3. Oscillation effects and time variation of the supernova neutrino signal

    Science.gov (United States)

    Kneller, James P.; McLaughlin, Gail C.; Brockman, Justin

    2008-02-01

    The neutrinos detected from the next galactic core-collapse supernova will contain valuable information on the internal dynamics of the explosion. One mechanism leading to a temporal evolution of the neutrino signal is the variation of the induced neutrino flavor mixing driven by changes in the density profile. With one and two-dimensional hydrodynamical simulations we identify the behavior and properties of prominent features of the explosion. Using these results we demonstrate the time variation of the neutrino crossing probabilities due to changes in the Mikheyev-Smirnov-Wolfenstein (MSW) neutrino transformations as the star explodes by using the S-matrix—Monte Carlo—approach to neutrino propagation. After adopting spectra for the neutrinos emitted from the proto-neutron star we calculate for a galactic supernova the evolution of the positron spectra within a water Cerenkov detector and find that this signal allows us to probe of a number of explosion features.

  4. Management of complex data flows in the ASDEX Upgrade plasma control system

    International Nuclear Information System (INIS)

    Treutterer, Wolfgang; Neu, Gregor; Raupp, Gerhard; Zasche, Dieter; Zehetbauer, Thomas; Cole, Richard; Lüddecke, Klaus

    2012-01-01

    Highlights: ► Control system architectures with data-driven workflows are efficient, flexible and maintainable. ► Signal groups provide coherence of interrelated signals and increase the efficiency of process synchronisation. ► Sample tags indicating sample quality form the fundament of a local event handling strategy. ► A self-organising workflow benefits from sample tags consisting of time stamp and stream activity. - Abstract: Establishing adequate technical and physical boundary conditions for a sustained nuclear fusion reaction is a challenging task. Phased feedback control and monitoring for heating, fuelling and magnetic shaping is mandatory, especially for fusion devices aiming at high performance plasmas. Technical and physical interrelations require close collaboration of many components in sequential as well as in parallel processing flows. Moreover, handling of asynchronous, off-normal events has become a key element of modern plasma performance optimisation and machine protection recipes. The manifoldness of plasma states and events, the variety of plant system operation states and the diversity in diagnostic data sampling rates can hardly be mastered with a rigid control scheme. Rather, an adaptive system topology in combination with sophisticated synchronisation and process scheduling mechanisms is suited for such an environment. Moreover, the system is subject to real-time control constraints: response times must be deterministic and adequately short. Therefore, the experimental tokamak device ASDEX Upgrade employs a discharge control system DCS, whose core has been designed to meet these requirements. In the paper we will compare the scheduling schemes for the parallelised realisation of a control workflow and show the advantage of a data-driven workflow over a managed workflow. The data-driven workflow as used in DCS is based on signals connecting process outputs and inputs. These are implemented as real-time streams of data samples

  5. Neutron Generation by Laser-Driven Spherically Convergent Plasma Fusion

    Science.gov (United States)

    Ren, G.; Yan, J.; Liu, J.; Lan, K.; Chen, Y. H.; Huo, W. Y.; Fan, Z.; Zhang, X.; Zheng, J.; Chen, Z.; Jiang, W.; Chen, L.; Tang, Q.; Yuan, Z.; Wang, F.; Jiang, S.; Ding, Y.; Zhang, W.; He, X. T.

    2017-04-01

    We investigate a new laser-driven spherically convergent plasma fusion scheme (SCPF) that can produce thermonuclear neutrons stably and efficiently. In the SCPF scheme, laser beams of nanosecond pulse duration and 1 014- 1 015 W /cm2 intensity uniformly irradiate the fuel layer lined inside a spherical hohlraum. The fuel layer is ablated and heated to expand inwards. Eventually, the hot fuel plasmas converge, collide, merge, and stagnate at the central region, converting most of their kinetic energy to internal energy, forming a thermonuclear fusion fireball. With the assumptions of steady ablation and adiabatic expansion, we theoretically predict the neutron yield Yn to be related to the laser energy EL, the hohlraum radius Rh, and the pulse duration τ through a scaling law of Yn∝(EL/Rh1.2τ0.2 )2.5. We have done experiments at the ShengGuangIII-prototype facility to demonstrate the principle of the SCPF scheme. Some important implications are discussed.

  6. Behavior of Excited Argon Atoms in Inductively Driven Plasmas

    CERN Document Server

    Hebner, G A

    1999-01-01

    Laser induced fluorescence has been used to measure the spatial distribution of the two lowest energy argon excited states, 1s sub 5 and 1s sub 4 , in inductively driven plasmas containing argon, chlorine and boron trichloride. The behavior of the two energy levels with plasma conditions was significantly different, probably because the 1s sub 5 level is metastable and the 1s sub 4 level is radiatively coupled to the ground state but is radiation trapped. The argon data is compared with a global model to identify the relative importance of processes such as electron collisional mixing and radiation trapping. The trends in the data suggest that both processes play a major role in determining the excited state density. At lower rfpower and pressure, excited state spatial distributions in pure argon were peaked in the center of the discharge, with an approximately Gaussian profile. However, for the highest rfpowers and pressures investigated, the spatial distributions tended to flatten in the center of the disch...

  7. MAGNETAR-POWERED SUPERNOVAE IN TWO DIMENSIONS. I. SUPERLUMINOUS SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ke-Jung [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, Tokyo 181-8588 (Japan); Woosley, S. E.; Sukhbold, Tuguldur, E-mail: ken.chen@nao.ac.jp [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2016-11-20

    Previous studies have shown that the radiation emitted by a rapidly rotating magnetar embedded in a young supernova can greatly amplify its luminosity. These one-dimensional studies have also revealed the existence of an instability arising from the piling up of radiatively accelerated matter in a thin dense shell deep inside the supernova. Here, we examine the problem in two dimensions and find that, while instabilities cause mixing and fracture this shell into filamentary structures that reduce the density contrast, the concentration of matter in a hollow shell persists. The extent of the mixing depends upon the relative energy input by the magnetar and the kinetic energy of the inner ejecta. The light curve and spectrum of the resulting supernova will be appreciably altered, as will the appearance of the supernova remnant, which will be shellular and filamentary. A similar pile up and mixing might characterize other events where energy is input over an extended period by a centrally concentrated source, e.g., a pulsar, radioactive decay, a neutrino-powered wind, or colliding shells. The relevance of our models to the recent luminous transient ASASSN-15lh is briefly discussed.

  8. AWAKE Design Report: A Proton-Driven Plasma Wakefield Acceleration Experiment at CERN

    CERN Document Server

    Caldwell, A; Lotov, K; Muggli, P; Wing, M

    2013-01-01

    The AWAKE Collaboration has been formed in order to demonstrate proton driven plasma wakefield acceleration for the first time. This technology could lead to future colliders of high energy but of a much reduced length compared to proposed linear accelerators. The SPS proton beam in the CNGS facility will be injected into a 10m plasma cell where the long proton bunches will be modulated into significantly shorter micro-bunches. These micro-bunches will then initiate a strong wakefield in the plasma with peak fields above 1 GV/m that will be harnessed to accelerate a bunch of electrons from about 20MeV to the GeV scale within a few meters. The experimental program is based on detailed numerical simulations of beam and plasma interactions. The main accelerator components, the experimental area and infrastructure required as well as the plasma cell and the diagnostic equipment are discussed in detail. First protons to the experiment are expected at the end of 2015 and this will be followed by an initial 3–4 ye...

  9. Radially sheared azimuthal flows and turbulent transport in a cylindrical helicon plasma device

    International Nuclear Information System (INIS)

    Tynan, G R; Burin, M J; Holland, C; Antar, G; Diamond, P H

    2004-01-01

    A radially sheared azimuthal flow is observed in a cylindrical helicon plasma device. The shear flow is roughly azimuthally symmetric and contains both time-stationary and slowly varying components. The turbulent radial particle flux is found to peak near the density gradient maximum and vanishes at the shear layer location. The shape of the radial plasma potential profile associated with the azimuthal E x B flow is predicted accurately by theory. The existence of the mean shear flow in a plasma with finite flow damping from ion-neutral collisions and no external momentum input implies the existence of radial angular momentum transport from the turbulent Reynolds-stress

  10. Magnetorotational and Parker instabilities in magnetized plasma Dean flow as applied to centrifugally confined plasmas

    International Nuclear Information System (INIS)

    Huang Yimin; Hassam, A.B.

    2003-01-01

    The ideal magnetohydrodynamics stability of a Dean flow plasma supported against centrifugal forces by an axial magnetic field is studied. Only axisymmetric perturbations are allowed for simplicity. Two distinct but coupled destabilization mechanisms are present: flow shear (magnetorotational instability) and magnetic buoyancy (Parker instability). It is shown that the flow shear alone is likely insufficient to destabilize the plasma, but the magnetic buoyancy instability could occur. For a high Mach number (M S ), high Alfven Mach number (M A ) system with M S M A > or approx. πR/a (R/a is the aspect ratio), the Parker instability is unstable for long axial wavelength modes. Implications for the centrifugal confinement approach to magnetic fusion are also discussed

  11. Change of Zonal Flow Spectra in the JIPP T-IIU Tokamak Plasmas

    International Nuclear Information System (INIS)

    Hamada, Y.; Watari, T.; Yamagishi, O.; Nishizawa, A.; Narihara, K.; Kawasumi, Y.; Ido, T.; Kojima, M.; Toi, K.

    2007-01-01

    When Ohmically heated low-density plasmas are additionally heated by higher-harmonics ion-cyclotron-range-of frequency heating, heated by neutral beam injection, or strongly gas puffed, the intensity of zonal flows in the geodesic acoustic mode frequency range in the tokamak core plasma decreases sharply and that of low-frequency zonal flow grows drastically. This is accompanied by a damping of the drift wave propagating in the electron diamagnetic drift direction, turbulence by trapped electron mode (TEM), and the increase of the mode propagating to ion diamagnetic drift direction (ITG). In the half-radius region, TEM and high-frequency zonal flows remain intense in both OH and heated phases. ITG and low-frequency zonal flows grow in heated plasmas, suggesting a strong coupling between ITG and low-frequency zonal flow

  12. Relaxation of potential, flows, and density in the edge plasma of Castor tokamak

    International Nuclear Information System (INIS)

    Hron, M.; Weinzettl, V.; Dufkova, E.; Duran, I.; Stoeckel, J.; Hidalgo, C.

    2004-01-01

    Decay times of plasma flows and plasma profiles have been measured after a sudden biasing switch-off in experiments on the Castor tokamak. A biased electrode has been used to polarize the edge plasma. The edge plasma potential and flows have been characterized by means of Langmuir and Mach probes, the radiation was measured using an array of bolometers. Potential profiles and poloidal flows can be well fitted by an exponential decay time in the range of 10 - 30 μs when the electrode biasing is turned off in the Castor tokamak. The radiation shows a slower time scale (about 1 ms), which is linked to the evolution in the plasma density and particle confinement. (authors)

  13. Metal droplet erosion and shielding plasma layer under plasma flows typical of transient processes in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Martynenko, Yu. V., E-mail: Martynenko-YV@nrcki.ru [National Research Nuclear University “MEPhI” (Russian Federation)

    2017-03-15

    It is shown that the shielding plasma layer and metal droplet erosion in tokamaks are closely interrelated, because shielding plasma forms from the evaporated metal droplets, while droplet erosion is caused by the shielding plasma flow over the melted metal surface. Analysis of experimental data and theoretical models of these processes is presented.

  14. The Magnetar Model of the Superluminous Supernova GAIA16apd and the Explosion Jet Feedback Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Soker, Noam, E-mail: soker@physics.technion.ac.il [Department of Physics, Technion—Israel Institute of Technology, Haifa 32000 (Israel)

    2017-04-10

    Under the assumption that jets explode core collapse supernovae (CCSNe) in a negative jet feedback mechanism (JFM), this paper shows that rapidly rotating neutron stars are likely to be formed when the explosion is very energetic. Under the assumption that an accretion disk or an accretion belt around the just-formed neutron star launch jets and that the accreted gas spins-up the just-formed neutron star, I derive a crude relation between the energy that is stored in the spinning neutron star and the explosion energy. This relation is ( E {sub NS-spin}/ E {sub exp}) ≈ E {sub exp}/10{sup 52} erg; It shows that within the frame of the JFM explosion model of CCSNe, spinning neutron stars, such as magnetars, might have significant energy in super-energetic explosions. The existence of magnetars, if confirmed, such as in the recent super-energetic supernova GAIA16apd, further supports the call for a paradigm shift from neutrino-driven to jet-driven CCSN mechanisms.

  15. Supernova Explosions Stay In Shape

    Science.gov (United States)

    2009-12-01

    At a very early age, children learn how to classify objects according to their shape. Now, new research suggests studying the shape of the aftermath of supernovas may allow astronomers to do the same. A new study of images from NASA's Chandra X-ray Observatory on supernova remnants - the debris from exploded stars - shows that the symmetry of the remnants, or lack thereof, reveals how the star exploded. This is an important discovery because it shows that the remnants retain information about how the star exploded even though hundreds or thousands of years have passed. "It's almost like the supernova remnants have a 'memory' of the original explosion," said Laura Lopez of the University of California at Santa Cruz, who led the study. "This is the first time anyone has systematically compared the shape of these remnants in X-rays in this way." Astronomers sort supernovas into several categories, or "types", based on properties observed days after the explosion and which reflect very different physical mechanisms that cause stars to explode. But, since observed remnants of supernovas are leftover from explosions that occurred long ago, other methods are needed to accurately classify the original supernovas. Lopez and colleagues focused on the relatively young supernova remnants that exhibited strong X-ray emission from silicon ejected by the explosion so as to rule out the effects of interstellar matter surrounding the explosion. Their analysis showed that the X-ray images of the ejecta can be used to identify the way the star exploded. The team studied 17 supernova remnants both in the Milky Way galaxy and a neighboring galaxy, the Large Magellanic Cloud. For each of these remnants there is independent information about the type of supernova involved, based not on the shape of the remnant but, for example, on the elements observed in it. The researchers found that one type of supernova explosion - the so-called Type Ia - left behind relatively symmetric, circular

  16. Multimessengers from Core-Collapse Supernovae: Multidimensionality as a Key to Bridge Theory and Observation

    Directory of Open Access Journals (Sweden)

    Kei Kotake

    2012-01-01

    Full Text Available Core-collapse supernovae are dramatic explosions marking the catastrophic end of massive stars. The only means to get direct information about the supernova engine is from observations of neutrinos emitted by the forming neutron star, and through gravitational waves which are produced when the hydrodynamic flow or the neutrino flux is not perfectly spherically symmetric. The multidimensionality of the supernova engine, which breaks the sphericity of the central core such as convection, rotation, magnetic fields, and hydrodynamic instabilities of the supernova shock, is attracting great attention as the most important ingredient to understand the long-veiled explosion mechanism. Based on our recent work, we summarize properties of gravitational waves, neutrinos, and explosive nucleosynthesis obtained in a series of our multidimensional hydrodynamic simulations and discuss how the mystery of the central engines can be unraveled by deciphering these multimessengers produced under the thick veils of massive stars.

  17. Three-dimensional rotational plasma flows near solid surfaces in an axial magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Gorshunov, N. M., E-mail: gorshunov-nm@nrcki.ru; Potanin, E. P., E-mail: potanin45@yandex.ru [National Research Center Kurchatov Institute (Russian Federation)

    2016-11-15

    A rotational flow of a conducting viscous medium near an extended dielectric disk in a uniform axial magnetic field is analyzed in the magnetohydrodynamic (MHD) approach. An analytical solution to the system of nonlinear differential MHD equations of motion in the boundary layer for the general case of different rotation velocities of the disk and medium is obtained using a modified Slezkin–Targ method. A particular case of a medium rotating near a stationary disk imitating the end surface of a laboratory device is considered. The characteristics of a hydrodynamic flow near the disk surface are calculated within the model of a finite-thickness boundary layer. The influence of the magnetic field on the intensity of the secondary flow is studied. Calculations are performed for a weakly ionized dense plasma flow without allowance for the Hall effect and plasma compressibility. An MHD flow in a rotating cylinder bounded from above by a retarding cap is considered. The results obtained can be used to estimate the influence of the end surfaces on the main azimuthal flow, as well as the intensities of circulating flows in various devices with rotating plasmas, in particular, in plasma centrifuges and laboratory devices designed to study instabilities of rotating plasmas.

  18. Berkeley automated supernova search

    Energy Technology Data Exchange (ETDEWEB)

    Kare, J.T.; Pennypacker, C.R.; Muller, R.A.; Mast, T.S.; Crawford, F.S.; Burns, M.S.

    1981-01-01

    The Berkeley automated supernova search employs a computer controlled 36-inch telescope and charge coupled device (CCD) detector to image 2500 galaxies per night. A dedicated minicomputer compares each galaxy image with stored reference data to identify supernovae in real time. The threshold for detection is m/sub v/ = 18.8. We plan to monitor roughly 500 galaxies in Virgo and closer every night, and an additional 6000 galaxies out to 70 Mpc on a three night cycle. This should yield very early detection of several supernovae per year for detailed study, and reliable premaximum detection of roughly 100 supernovae per year for statistical studies. The search should be operational in mid-1982.

  19. Berkeley automated supernova search

    International Nuclear Information System (INIS)

    Kare, J.T.; Pennypacker, C.R.; Muller, R.A.; Mast, T.S.

    1981-01-01

    The Berkeley automated supernova search employs a computer controlled 36-inch telescope and charge coupled device (CCD) detector to image 2500 galaxies per night. A dedicated minicomputer compares each galaxy image with stored reference data to identify supernovae in real time. The threshold for detection is m/sub v/ = 18.8. We plan to monitor roughly 500 galaxies in Virgo and closer every night, and an additional 6000 galaxies out to 70 Mpc on a three night cycle. This should yield very early detection of several supernovae per year for detailed study, and reliable premaximum detection of roughly 100 supernovae per year for statistical studies. The search should be operational in mid-1982

  20. Observation of plasma rotation driven by static nonaxisymmetric magnetic fields in a tokamak.

    Science.gov (United States)

    Garofalo, A M; Burrell, K H; DeBoo, J C; deGrassie, J S; Jackson, G L; Lanctot, M; Reimerdes, H; Schaffer, M J; Solomon, W M; Strait, E J

    2008-11-07

    We present the first evidence for the existence of a neoclassical toroidal rotation driven in a direction counter to the plasma current by nonaxisymmetric, nonresonant magnetic fields. At high beta and with large injected neutral beam momentum, the nonresonant field torque slows down the plasma toward the neoclassical "offset" rotation rate. With small injected neutral beam momentum, the toroidal rotation is accelerated toward the offset rotation, with resulting improvement in the global energy confinement time. The observed magnitude, direction, and radial profile of the offset rotation are consistent with neoclassical theory predictions.

  1. Controlling hydrophilicity of polymer film by altering gas flow rate in atmospheric-pressure homogeneous plasma

    International Nuclear Information System (INIS)

    Kang, Woo Seok; Hur, Min; Lee, Jae-Ok; Song, Young-Hoon

    2014-01-01

    Graphical abstract: - Highlights: • Controlling hydrophilicity of polymer film by varying gas flow rate is proposed in atmospheric-pressure homogeneous plasma treatment. • Without employing additional reactive gas, requiring more plasma power and longer treatment time, hydrophilicity of polyimide films was improved after the low-gas-flow plasma treatment. • The gas flow rate affects the hydrophilic properties of polymer surface by changing the discharge atmosphere in the particular geometry of the reactor developed. • Low-gas-flow induced wettability control suggests effective and economical plasma treatment. - Abstract: This paper reports on controlling the hydrophilicity of polyimide films using atmospheric-pressure homogeneous plasmas by changing only the gas flow rate. The gas flow changed the discharge atmosphere by mixing the feed gas with ambient air because of the particular geometry of the reactor developed for the study, and a low gas flow rate was found to be favorable because it generated abundant nitrogen or oxygen species that served as sources of hydrophilic functional groups over the polymer surface. After low-gas-flow plasma treatment, the polymer surface exhibited hydrophilic characteristics with increased surface roughness and enhanced chemical properties owing to the surface addition of functional groups. Without adding any reactive gases or requiring high plasma power and longer treatment time, the developed reactor with low-gas-flow operation offered effective and economical wettability control of polyimide films

  2. Observed Type II supernova colours from the Carnegie Supernova Project-I

    Science.gov (United States)

    de Jaeger, T.; Anderson, J. P.; Galbany, L.; González-Gaitán, S.; Hamuy, M.; Phillips, M. M.; Stritzinger, M. D.; Contreras, C.; Folatelli, G.; Gutiérrez, C. P.; Hsiao, E. Y.; Morrell, N.; Suntzeff, N. B.; Dessart, L.; Filippenko, A. V.

    2018-06-01

    We present a study of observed Type II supernova (SN II) colours using optical/near-infrared photometric data from the Carnegie Supernovae Project-I. We analyse four colours (B - V, u - g, g - r, and g - Y) and find that SN II colour curves can be described by two linear regimes during the photospheric phase. The first (s1, colour) is steeper and has a median duration of ˜40 d. The second, shallower slope (s2, colour) lasts until the end of the `plateau' (˜80 d). The two slopes correlate in the sense that steeper initial colour curves also imply steeper colour curves at later phases. As suggested by recent studies, SNe II form a continuous population of objects from the colour point of view as well. We investigate correlations between the observed colours and a range of photometric and spectroscopic parameters including the absolute magnitude, the V-band light-curve slopes, and metal-line strengths. We find that less luminous SNe II appear redder, a trend that we argue is not driven by uncorrected host-galaxy reddening. While there is significant dispersion, we find evidence that redder SNe II (mainly at early epochs) display stronger metal-line equivalent widths. Host-galaxy reddening does not appear to be a dominant parameter, neither driving observed trends nor dominating the dispersion in observed colours. Intrinsic SN II colours are most probably dominated by photospheric temperature differences, with progenitor metallicity possibly playing a minor role. Such temperature differences could be related to differences in progenitor radius, together with the presence or absence of circumstellar material close to the progenitor stars.

  3. MHD equilibrium of toroidal fusion plasma with stationary flows

    International Nuclear Information System (INIS)

    Galkowski, A.

    1994-01-01

    Non-linear ideal MHD equilibria in axisymmetric system with flows are examined, both in 1st and 2nd ellipticity regions. Evidence of the bifurcation of solutions is provided and numerical solutions of several problems in a tokamak geometry are given, exhibiting bifurcation phenomena. Relaxation of plasma in the presence of zero-order flows is studied in a realistic toroidal geometry. The field aligned flow allows equilibria with finite pressure gradient but with homogeneous temperature distribution. Numerical calculations have been performed for the 1st and 2nd ellipticity regimes of the extended Grad-Shafranov-Schlueter equation. Numerical technique, alternative to the well-known Grad's ADM methods has been proposed to deal with slow adiabatic evolution of toroidal plasma with flows. The equilibrium problem with prescribed adiabatic constraints may be solved by simultaneous calculations of flux surface geometry and original profile functions. (author). 178 refs, 37 figs, 5 tabs

  4. Turbulence spectra, transport, and E × B flows in helical plasmas

    International Nuclear Information System (INIS)

    Watanabe, T.-H.; Nunami, M.; Sugama, H.; Satake, S.; Matsuoka, S.; Ishizawa, A.; Tanaka, K.; Maeyama, Shinya

    2012-11-01

    Gyrokinetic simulation of ion temperature gradient turbulence and zonal flows for helical plasmas has been validated against the Large Helical Device experiments with high ion temperature, where a reduced modeling of ion heat transport is also considered. It is confirmed by the entropy transfer analysis that the turbulence spectrum elongated in the radial wavenumber space is associated with successive interactions with zonal flows. A novel multi-scale simulation for turbulence and zonal flows in poloidally-rotating helical plasmas has demonstrated strong zonal flow generation by turbulence, which implies that turbulent transport processes in non-axisymmetric systems are coupled to neoclassical transport through the macroscopic E × B flows determined by the ambipolarty condition for neoclassical particle fluxes. (author)

  5. Nurseries of Supernovae

    DEFF Research Database (Denmark)

    Frederiksen, Teddy

    Type Ia supernovae (SNe) have long been the gold standard for precision cosmology and after several decades of intense research the supernova (SN) community was in 2011 honored by giving the Nobel Prize in physics for the discovery of Dark Energy to the leaders of the two big SN collaborations: S...

  6. SEARCHING FOR OVERIONIZED PLASMA IN THE GAMMA-RAY-EMITTING SUPERNOVA REMNANT G349.7+0.2

    Energy Technology Data Exchange (ETDEWEB)

    Ergin, T.; Sezer, A. [TUBITAK Space Technologies Research Institute, ODTU Campus, 06531, Ankara (Turkey); Saha, L.; Majumdar, P. [Saha Institute of Nuclear Physics, Kolkata, West Bengal 700064 (India); Gök, F. [Akdeniz University, Faculty of Education, Department of Secondary Science and Mathematics Education, Antalya, 07058 (Turkey); Ercan, E. N., E-mail: tulun.ergin@tubitak.gov.tr [Bogazici University, Physics Department, Bebek, 34342, Istanbul (Turkey)

    2015-05-10

    G349.7+0.2 is a supernova remnant (SNR) expanding in a dense medium of molecular clouds and interacting with clumps of molecular material emitting gamma-rays. We analyzed the gamma-ray data of the Large Area Telescope on board the Fermi Gamma-Ray Space Telescope and detected G349.7+0.2 in the energy range of 0.2–300 GeV with a significance of ∼13σ, showing no extended morphology. Modeling of the gamma-ray spectrum revealed that the GeV gamma-ray emission dominantly originates from the decay of neutral pions, where the protons follow a broken power-law distribution with a spectral break at ∼12 GeV. To search for features of radiative recombination continua in the eastern and western regions of the remnant, we analyzed the Suzaku data of G349.7+0.2 and found no evidence for overionized plasma. In this paper, we discuss possible scenarios to explain the hadronic gamma-ray emission in G349.7+0.2 and the mixed morphology nature of this SNR.

  7. Plasma physics for controlled fusion

    CERN Document Server

    Miyamoto, Kenro

    2016-01-01

    This new edition presents the essential theoretical and analytical methods needed to understand the recent fusion research of tokamak and alternate approaches. The author describes magnetohydrodynamic and kinetic theories of cold and hot plasmas in detail. The book covers new important topics for fusion studies such as plasma transport by drift turbulence, which depend on the magnetic configuration and zonal flows. These are universal phenomena of microturbulence. They can modify the onset criterion for turbulent transport, instabilities driven by energetic particles as well as alpha particle generation and typical plasma models for computer simulation. The fusion research of tokamaks with various new versions of H modes are explained. The design concept of ITER, the international tokamak experimental reactor, is described for inductively driven operations as well as steady-state operations using non-inductive drives. Alternative approaches of reversed-field pinch and its relaxation process, stellator includi...

  8. Prompt effects of supernovae

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1975-01-01

    Conflicting theories on the mechanisms of supernova production are examined. Supernova as sources of other phenomena such as comic rays, gamma rays, x-rays, and electromagnetic pulses are considered. 32 references

  9. From the advective-acoustic instability to the asymmetric explosions of Core Collapse Supernovae

    International Nuclear Information System (INIS)

    Galletti, Pascal

    2005-01-01

    The advective-acoustic cycle is a hydrodynamical mechanism fed by the coupling between advected waves (entropy, vorticity) and an acoustic feedback. Already studied in physics (rumble instability in ramjet, whistling tea kettle), it was introduced in astrophysics in the frame of the instability of the Bondi-Hoyle-Lyttleton accretion flow. In this thesis, we propose this cycle as an explanation for the asymmetry of the explosion of Core Collapse Supernovae. The evaluation of Eigenmodes for the classical accretion above a solid surface (white dwarfs, neutron stars) and the use of a toy-model reveal the importance of the advective-acoustic cycle in such an instable accretion flow. Following these results and the comparison with numerical simulations, a modelization of the flow when the shock stalls during a Core Collapse Supernova, shows that the advective-acoustic cycle is a natural mechanism to explain the non-spherical instability of the shock. The domination of l = 1 modes may be responsible for the observed pulsar kicks. (author) [fr

  10. Plasma microinstabilities driven by loss-cone distributions

    International Nuclear Information System (INIS)

    Summers, D.; Thorne, R.M.

    1995-01-01

    Electromagnetic and electrostatic instabilities driven by loss-cone particle distributions have been invoked to explain a variety of plasma phenomena observed in space and in the laboratory. In this paper we analyse how the loss-cone feature (as determined by the loss-cone index or indices) influences the growth of such instabilities in a fully ionized, homogeneous, hot plasma in a uniform magnetic field. Specifically, we consider three loss-cone distributions: a generalized Lorentzian (kappa) loss-cone distribution, the Dory-Guest-Harris distribution and the Ashour-Abdalla-Kennel distribution (involving a subtracted Maxwellian). Our findings are common to all three distributions. We find that, for parallel propagation, electromagnetic instabilities are only affected by the loss-cone indices in terms of their occurrence in the temperature anisotropy. However, for oblique propagation, even including propagation at small angles to the ambient magnetic field, the loss-cone indices do independently affect the growth of instabilities for electromagnetic waves, in contrast to certain claims in the literature. For electrostatic waves such that 1/2(κ perpendicular to ρ L σ 2 L σ is the Larmor radius for particle species σ, we find that the loss-cone indices only enter the dispersion equation via the temperature anisotropy, and so in this case the loss-cone feature and perpendicular effective thermal speed do not independently affect wave growth. (Author)

  11. High Mach flow associated with plasma detachment in JT-60U

    International Nuclear Information System (INIS)

    Hatayama, A.; Hoshino, K.; Miyamoto, K.

    2003-01-01

    Recent new results of the high Mach flows associated with plasma detachment are presented on the basis of numerical simulations by a 2-D edge simulation code (the B2-Eirene code) and their comparisons with experiments in JT-60U W-shaped divertor plasma. High Mach flows appear near the ionization front away from the target plate. The plasma static pressure rapidly drops, while the total pressure is kept almost constant near the ionization front, because the ionization front near the X-point is clearly separated from the momentum loss region near the target plate. Redistribution from static to dynamic pressure without a large momentum loss is confirmed to be a possible mechanism of the high Mach flows. It has been also shown that the radial structure of the high Mach flow near the X point away from the target plate has a strong correlation with the DOD (Degree of Detachment) at the target plate. Also, we have made systematic analyses on the high Mach flows for both the 'Open' geometry and the 'W-shaped' geometry of JT-60U in order to clarify the geometric effects on the flows. (author)

  12. Asymmetrical flow field-flow fractionation coupled with multiple detections: A complementary approach in the characterization of egg yolk plasma.

    Science.gov (United States)

    Dou, Haiyang; Li, Yueqiu; Choi, Jaeyeong; Huo, Shuying; Ding, Liang; Shen, Shigang; Lee, Seungho

    2016-09-23

    The capability of asymmetrical flow field-flow fractionation (AF4) coupled with UV/VIS, multiangle light scattering (MALS) and quasi-elastic light scattering (QELS) (AF4-UV-MALS-QELS) for separation and characterization of egg yolk plasma was evaluated. The accuracy of hydrodynamic radius (Rh) obtained from QELS and AF4 theory (using both simplified and full expression of AF4 retention equations) was discussed. The conformation of low density lipoprotein (LDL) and its aggregates in egg yolk plasma was discussed based on the ratio of radius of gyration (Rg) to Rh together with the results from bio-transmission electron microscopy (Bio-TEM). The results indicate that the full retention equation is more relevant than simplified version for the Rh determination at high cross flow rate. The Rh from online QELS is reliable only at a specific range of sample concentration. The effect of programmed cross flow rate (linear and exponential decay) on the analysis of egg yolk plasma was also investigated. It was found that the use of an exponentially decaying cross flow rate not only reduces the AF4 analysis time of the egg yolk plasma, but also provides better resolution than the use of either a constant or linearly decaying cross flow rate. A combination of an exponentially decaying cross flow AF4-UV-MALS-QELS and the utilization of full retention equation was proved to be a useful method for the separation and characterization of egg yolk plasma. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. MAGNETOROTATIONAL CORE-COLLAPSE SUPERNOVAE IN THREE DIMENSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mösta, Philipp; Richers, Sherwood; Ott, Christian D.; Haas, Roland; Piro, Anthony L.; Boydstun, Kristen; Abdikamalov, Ernazar; Reisswig, Christian [TAPIR, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Schnetter, Erik, E-mail: pmoesta@tapir.caltech.edu [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada)

    2014-04-20

    We present results of new three-dimensional (3D) general-relativistic magnetohydrodynamic simulations of rapidly rotating strongly magnetized core collapse. These simulations are the first of their kind and include a microphysical finite-temperature equation of state and a leakage scheme that captures the overall energetics and lepton number exchange due to postbounce neutrino emission. Our results show that the 3D dynamics of magnetorotational core-collapse supernovae are fundamentally different from what was anticipated on the basis of previous simulations in axisymmetry (2D). A strong bipolar jet that develops in a simulation constrained to 2D is crippled by a spiral instability and fizzles in full 3D. While multiple (magneto-)hydrodynamic instabilities may be present, our analysis suggests that the jet is disrupted by an m = 1 kink instability of the ultra-strong toroidal field near the rotation axis. Instead of an axially symmetric jet, a completely new, previously unreported flow structure develops. Highly magnetized spiral plasma funnels expelled from the core push out the shock in polar regions, creating wide secularly expanding lobes. We observe no runaway explosion by the end of the full 3D simulation 185 ms after bounce. At this time, the lobes have reached maximum radii of ∼900 km.

  14. MAGNETOROTATIONAL CORE-COLLAPSE SUPERNOVAE IN THREE DIMENSIONS

    International Nuclear Information System (INIS)

    Mösta, Philipp; Richers, Sherwood; Ott, Christian D.; Haas, Roland; Piro, Anthony L.; Boydstun, Kristen; Abdikamalov, Ernazar; Reisswig, Christian; Schnetter, Erik

    2014-01-01

    We present results of new three-dimensional (3D) general-relativistic magnetohydrodynamic simulations of rapidly rotating strongly magnetized core collapse. These simulations are the first of their kind and include a microphysical finite-temperature equation of state and a leakage scheme that captures the overall energetics and lepton number exchange due to postbounce neutrino emission. Our results show that the 3D dynamics of magnetorotational core-collapse supernovae are fundamentally different from what was anticipated on the basis of previous simulations in axisymmetry (2D). A strong bipolar jet that develops in a simulation constrained to 2D is crippled by a spiral instability and fizzles in full 3D. While multiple (magneto-)hydrodynamic instabilities may be present, our analysis suggests that the jet is disrupted by an m = 1 kink instability of the ultra-strong toroidal field near the rotation axis. Instead of an axially symmetric jet, a completely new, previously unreported flow structure develops. Highly magnetized spiral plasma funnels expelled from the core push out the shock in polar regions, creating wide secularly expanding lobes. We observe no runaway explosion by the end of the full 3D simulation 185 ms after bounce. At this time, the lobes have reached maximum radii of ∼900 km

  15. Propagation of atmospheric pressure helium plasma jet into ambient air at laminar gas flow

    Science.gov (United States)

    Pinchuk, M.; Stepanova, O.; Kurakina, N.; Spodobin, V.

    2017-05-01

    The formation of an atmospheric pressure plasma jet (APPJ) in a gas flow passing through the discharge gap depends on both gas-dynamic properties and electrophysical parameters of the plasma jet generator. The paper presents the results of experimental and numerical study of the propagation of the APPJ in a laminar flow of helium. A dielectric-barrier discharge (DBD) generated inside a quartz tube equipped with a coaxial electrode system, which provided gas passing through it, served as a plasma source. The transition of the laminar regime of gas flow into turbulent one was controlled by the photography of a formed plasma jet. The corresponding gas outlet velocity and Reynolds numbers were revealed experimentally and were used to simulate gas dynamics with OpenFOAM software. The data of the numerical simulation suggest that the length of plasma jet at the unvarying electrophysical parameters of DBD strongly depends on the mole fraction of ambient air in a helium flow, which is established along the direction of gas flow.

  16. Electromagnetically Driven Plasma-Field Dynamics in Modified Ionosphere

    Science.gov (United States)

    Kochetov, Andrey; Terina, Galina

    Under sounding of an artificial ionospheric turbulence by short probing radio pulses of ordinary polarization the two types of scattered signals were observed: a "caviton" signal (CS) and a "plasma" signal (PS), which appeared with the heating transmitter switching on and disap-peared after its switching off (G.I. Terina J. Atm. Terr. Phys, 57, 1995, 273, Izv. VUZov, Radiofizika, 39, 1998, 203). The scattered signal of PS type was revealed also after the heating switching off. It was called an "aftereffect plasma signal" (AEPS) (G.I. Terina Izv .VUZov, Radiofizika, 43, 2000, 958). This signal had large time and spatial delays and appeared mostly when corresponding PS had envelope fluctuations. The aftereffect phenomenon was expressed at time on CS by amplitude increasing at once after the heating transmitter turning off. The theoretical model of this phenomenon is proposed in and some peculiarities of the aftereffect phenomena of the scattered signals in modified ionospheric plasma are considered and discussed. For theoretical interpretation of the characteristics of CS and AEPS the numerical solution of nonlinear Shrüdinger equation (NSE) with driven extension were carried out in inhomogeneous plasma layer with linear electron density profile (A.V. Kochetov, V.A. Mironov, G.I. Terina, Adv. Space Reseacrh, 29, 2002, 1369) and for the one with prescribed density depletion (and A.V. Kochetov, G.I. Terina, Adv. Space Reseacrh, 38, 2006, 2490). The simulation results obtained for linear inhomogeneous plasma layer and for plasma one with density depletion al-low us to interpret the aftereffect of CS and PS qualitatively. The field amplitude increase at relaxation stage displayed at calculations allows us to interpret of CS aftereffect. The large time delays of AEPS can be explained as a result of powerful radio waves trapping in the forming at the plasma resonance regions density depletions (E. Mjøhus, J. Geophys. Res. 103, 1998, 14711; B. Eliasson and L. Stenflo, J

  17. Hall-magnetohydrodynamic waves in flowing ideal incompressible solar-wind plasmas

    International Nuclear Information System (INIS)

    Zhelyazkov, I

    2010-01-01

    It is well established now that the solar atmosphere, from the photosphere to the corona and the solar wind, is a highly structured medium. Satellite observations have confirmed the presence of steady flows there. Here, we investigate the propagation of magnetohydrodynamic (MHD) eigenmodes (kink and sausage surface waves) travelling along an ideal incompressible flowing plasma cylinder (flux tube) surrounded by a flowing plasma environment in the framework of the Hall magnetohydrodynamics. The propagation characteristics of the waves are studied in a reference frame moving with the mass flow outside the tube. In general, the flows change the waves' phase velocities compared with their magnitudes in a static MHD flux tube and the Hall effect extends the number of the possible wave dispersion curves. It turns out that while the kink waves, considered in the context of the standard magnetohydrodynamics, are unstable against the Kelvin-Helmholtz instability, they become stable when the Hall term in the generalized Ohm's law is taken into account. The sausage waves are stable in both considerations. All results concerning the waves' propagation and their stability/instability status are obtained on the basis of the linearized Hall-magnetohydrodynamic equations and are applicable mainly to the solar wind plasmas.

  18. Analysis of the flow structure of a turbulent thermal plasma jet

    International Nuclear Information System (INIS)

    Spores, R.A.

    1989-01-01

    The goal of this research project is to attain a better understanding of the fluid mechanics associated with the high temperature jet of a thermal plasma torch. The analysis of a plasma, which has the ability to vaporize anything placed inside it without proper cooling, presents a unique research challenge. Several types of non-intrusive diagnostic techniques has been used to examine the jet from different perspectives. To actually map out the mean gas velocities and turbulence intensities throughout the jet, laser Doppler anemometry has been employed. The plasma gas and entrained air him been seeded separately in order to conditionally sample the two fluids and attain information about the gas mixing process. Both radial and axial turbulence levels have been measured in order to analyze the non-isotropic nature of the jet. A parabolic numerical code has been modified and compared with the obtained experimental results. A new diagnostic technique for plasma torches, which involves the spectral analysis of voltage, optical (temperature), and acoustical (pressure) fluctuations, has been implemented. The acoustical spectrum can provide information about the existence of coherent structures in the flow while the cross correlation of the acoustical signal with the voltage fluctuations can tell one to what extent perturbations of the internal arc affect the external flow. Since temperature is a scalar that is dependent on the flow field, observing temperature fluctuations can likewise help one to understand the mechanics of the flow. Flow visualization of the plasma jet using a high speed video camera has also been undertaken in order to better understand the entrainment process

  19. Sheared Rotation Effects on Kinetic Stability in Enhanced Confinement Tokamak Plasmas, and Nonlinear Dynamics of Fluctuations and Flows in Axisymmetric Plasmas

    International Nuclear Information System (INIS)

    Beer, M.A.; Chance, M.S.; Hahm, T.S.; Lin, Z.; Rewoldt, G.; Tang, W.M.

    1997-01-01

    Sheared rotation dynamics are widely believed to have signficant influence on experimentally observed confinement transitions in advanced operating modes in major tokamak experiments, such as the Tokamak Fusion Test Reactor (TFTR) [D.J. Grove and D.M. Meade, Nuclear Fusion 25, 1167 (1985)], with reversed magnetic shear regions in the plasma interior. The high-n toroidal drift modes destabilized by the combined effects of ion temperature gradients and trapped particles in toroidal geometry can be strongly affected by radially sheared toroidal and poloidal plasma rotation. In previous work with the FULL linear microinstability code, a simplified rotation model including only toroidal rotation was employed, and results were obtained. Here, a more complete rotation model, that includes contributions from toroidal and poloidal rotation and the ion pressure gradient to the total radial electric field, is used for a proper self-consistent treatment of this key problem. Relevant advanced operating mode cases for TFTR are presented. In addition, the complementary problem of the dynamics of fluctuation-driven E x B flow is investigated by an integrated program of gyrokinetic simulation in annulus geometry and gyrofluid simulation in flux tube geometry

  20. Production of free radical by magnetized sheet plasma with vertical gas-flow

    International Nuclear Information System (INIS)

    Tonegawa, Akira; Takatori, Masahiko; Kawamura, Kazutaka

    1995-01-01

    Free radicals play an important role in plasma processing, environment problem, and space plasma and so on because of their outstanding physical properties. Although much work has been done on the free radicals in the reactive plasma, very little is known about the production mechanism of the free radicals against various plasma parameters. To overcome this problem, we have proposed to do a new system of a magnetized sheet plasma with vertical gas-flow. The sheet plasma is a special type of strongly magnetized highly ionized slab plasma. This system is controlled to the parameters of radicals and plasma independently. Therefore, it is possible to make a quantitative analysis of free radicals as the simple one. In this paper, we describe the magnetized sheet plasma with vertical gas-flow system and report the preliminary results of production of the free radical. In particular, we show to produce and control the OH free radical which has been the most commonly studied combustion species

  1. Finite element simulation of an electroosmotic-driven flow division at a T-junction of microscale dimensions

    Science.gov (United States)

    Bianchi; Ferrigno; Girault

    2000-05-01

    A finite element formulation is developed for the simulation of an electroosmotic flow in rectangular microscale channel networks. The distribution of the flow at a decoupling T-junction is investigated from a hydrodynamic standpoint in the case of a pressure-driven and an electroosmotically driven flow. The calculations are carried out in two steps: first solving the potential distribution arising from the external electric field and from the inherent zeta potential. These distributions are then injected in the Navier Stokes equation for the calculation of the velocity profile. The influence of the various parameters such as the zeta potential distribution, the Reynolds number, and the relative channel widths on the flow distribution is investigated.

  2. Pressure-driven sound turbulence in a high-β plasma

    International Nuclear Information System (INIS)

    Stenzel, R.L.

    1990-01-01

    In a large laboratory plasma [1 m diamx2 m, n e ≤10 12 cm -3 , β 0 ≅15 G, β e =nkT e /(β 0 2 /2μ 0 )≅0.5], strong density fluctuations (δn/n≅50%) near the lower hybrid frequency (ω ce ω ci ) 1/2 are identified as cross-field sound waves (k perpendicular much-gt k parallel , ω/k perpendicular ≅c s ) driven unstable by the electron diamagnetic drift v d =∇pxB/neβ 2 , v d >c s . Wave steepening and refraction saturate the instability. Wave-enhanced transport but insignificant particle acceleration are observed

  3. [FeII] as a tracer supernova rate

    International Nuclear Information System (INIS)

    Rosenberg, M J F; Van der Werf, P P; Israel, F P

    2012-01-01

    Supernovae play an integral role in the feedback of processed material into the ISM of galaxies and are responsible for most of the chemical enrichment of the universe. The rate of supernovae can also reveal the star formation histories. Supernova rate is usually measured through the non-thermal radio continuum luminosity, but in this paper we establish a quantitative relationship between the [FeII] 1.26 luminosity and supernova rate in a sample of 11 near-by starburst galaxies. SINFONI data cubes are used to perform a pixel pixel analysis of this correlation. Using Bry equivalent width and luminosity as the only observational inputs into Starburst 99, the supernova rate is derived at each pixel and a map of supernova rate is created. This is then compared morphologically and quantitatively to [FeII] 1.26 luminosity map. We find a strong linear and morphological correlation between supernova rate and [FeII] 1.26 on a pixel-pixel basis. The Starburst 99 derived supernova rates are also in good agreement with the radio derived supernova rates, which further demonstrates the strength of [FeII] as a tracer of supernova rate. With the strong correlation found in this sample of galaxies, we now qualitatively use [FeII] 1.26 to derive supernova rate on either a pixel-pixel or integrated galactic basis.

  4. Improvement of stability of sinusoidally driven atmospheric pressure plasma jet using auxiliary bias voltage

    Directory of Open Access Journals (Sweden)

    Hyun-Jin Kim

    2015-12-01

    Full Text Available In this study, we have proposed the auxiliary bias pulse scheme to improve the stability of atmospheric pressure plasma jets driven by an AC sinusoidal waveform excitation source. The stability of discharges can be significantly improved by the compensation of irregular variation in memory voltage due to the effect of auxiliary bias pulse. From the parametric study, such as the width, voltage, and onset time of auxiliary bias pulse, it has been demonstrated that the auxiliary bias pulse plays a significant role in suppressing the irregular discharges caused by the irregular variation in memory voltage and stable discharge can be initiated with the termination of the auxiliary bias pulse. As a result of further investigating the effects of the auxiliary pulse scheme on the jet stability under various process conditions such as the distance between the jet head and the counter electrode, and carrier gas flow, the jet stability can be improved by adjusting the amplitude and number of the bias pulse depending on the variations in the process conditions.

  5. ELM triggering by energetic particle driven mode in wall-stabilized high-β plasmas

    International Nuclear Information System (INIS)

    Matsunaga, G.; Aiba, N.; Shinohara, K.; Asakura, N.; Isayama, A.; Oyama, N.

    2013-01-01

    In the JT-60U high-β plasmas above the no-wall β limit, a triggering of an edge localized mode (ELM) by an energetic particle (EP)-driven mode has been observed. This EP-driven mode is thought to be driven by trapped EPs and it has been named EP-driven wall mode (EWM) on JT-60U (Matsunaga et al 2009 Phys. Rev. Lett. 103 045001). When the EWM appears in an ELMy H-mode phase, ELM crashes are reproducibly synchronized with the EWM bursts. The EWM-triggered ELM has a higher repetition frequency and less energy loss than those of the natural ELM. In order to trigger an ELM by the EP-driven mode, some conditions are thought to be needed, thus an EWM with large amplitude and growth rate, and marginal edge stability. In the scrape-off layer region, several measurements indicate an ion loss induced by the EWM. The ion transport is considered as the EP transport through the edge region. From these observations, the EP contributions to edge stability are discussed as one of the ELM triggering mechanisms. (paper)

  6. Synoptic sky surveys and the diffuse supernova neutrino background: Removing astrophysical uncertainties and revealing invisible supernovae

    International Nuclear Information System (INIS)

    Lien, Amy; Fields, Brian D.; Beacom, John F.

    2010-01-01

    The cumulative (anti)neutrino production from all core-collapse supernovae within our cosmic horizon gives rise to the diffuse supernova neutrino background (DSNB), which is on the verge of detectability. The observed flux depends on supernova physics, but also on the cosmic history of supernova explosions; currently, the cosmic supernova rate introduces a substantial (±40%) uncertainty, largely through its absolute normalization. However, a new class of wide-field, repeated-scan (synoptic) optical sky surveys is coming online, and will map the sky in the time domain with unprecedented depth, completeness, and dynamic range. We show that these surveys will obtain the cosmic supernova rate by direct counting, in an unbiased way and with high statistics, and thus will allow for precise predictions of the DSNB. Upcoming sky surveys will substantially reduce the uncertainties in the DSNB source history to an anticipated ±5% that is dominated by systematics, so that the observed high-energy flux thus will test supernova neutrino physics. The portion of the universe (z < or approx. 1) accessible to upcoming sky surveys includes the progenitors of a large fraction (≅87%) of the expected 10-26 MeV DSNB event rate. We show that precision determination of the (optically detected) cosmic supernova history will also make the DSNB into a strong probe of an extra flux of neutrinos from optically invisible supernovae, which may be unseen either due to unexpected large dust obscuration in host galaxies, or because some core-collapse events proceed directly to black hole formation and fail to give an optical outburst.

  7. Simulation of rarefied low pressure RF plasma flow around the sample

    Science.gov (United States)

    Zheltukhin, V. S.; Shemakhin, A. Yu

    2017-01-01

    The paper describes a mathematical model of the flow of radio frequency plasma at low pressure. The hybrid mathematical model includes the Boltzmann equation for the neutral component of the RF plasma, the continuity and the thermal equations for the charged component. Initial and boundary conditions for the corresponding equations are described. The electron temperature in the calculations is 1-4 eV, atoms temperature in the plasma clot is (3-4) • 103 K, in the plasma jet is (3.2-10) • 102 K, the degree of ionization is 10-7-10-5, electron density is 1015-1019 m-3. For calculations plasma parameters is developed soft package on C++ program language, that uses the OpenFOAM library package. Simulations for the vacuum chamber in the presence of a sample and the free jet flow were carried out.

  8. The numerical simulation of plasma flow in cylindrical resonant cavity of microwave plasma thruster

    International Nuclear Information System (INIS)

    Tang, J.-L.; He, H.-Q; Mao, G.-W.

    2004-01-01

    Microwave Plasma Thruster (MPT) is an electro-thermal propulsive device. MPT consists of microwave generator, gas storing and supplying system, resonant cavity and accelerative nozzle. It generates free-floating plasma brought by the microwave discharge breakdown gas in the resonant cavity, and the plasma exhausted from nozzle produces thrust. MPT has prospective application in spacecraft because of its advantages of high thrust, moderate specific impulse and high efficiency. In this paper, the numerical simulation of the coupling flow field of microwave plasma in resonant cavity under different frequencies will be discussed. The results of numerical simulation are as follows: 1) When the resonant model TM 011 was used, the higher the microwave frequency was, the smaller the size of MPT. The distribution of the electromagnetic field in small cavity, however, remain unchanged. 2) When the resonant model was used, the distribution of the temperature, the pressure and the electronic density in the resonant cavity remained unchanged under different resonant frequencies. 3) When the resonant frequency was increased with a fixed pressure distribution in a small cavity, compare to the MPT with lower frequency, the gas flow rate, the microwave power and the nozzle throat diameter of MPT all decreased. 4) The electromagnetic field in the cylindrical resonant cavity for all MPT with different frequencies was disturbed by the plasma formation. The strong disturbance happened in the region close to the plasma. (author)

  9. Understanding the SOL flow in L-mode plasma on divertor tokamaks, and its influence on the plasma transport

    International Nuclear Information System (INIS)

    Asakura, Nobuyuki

    2007-01-01

    Significant progress has been made in understanding the driving mechanisms in SOL mass transport along the magnetic field lines (SOL flow). SOL flow measurements by Mach probes and impurity plume have been performed in L-mode plasma at various poloidal locations in divertor tokamaks. All results showed common SOL flow patterns: subsonic flow with parallel Mach number (M parallel ) of 0.2-1 was generated from the Low-Field-Side (LFS) SOL to the High-Field-Side (HFS) divertor for the ion ∇B drift towards the divertor. The SOL flow pattern was formed mainly by LFS-enhanced asymmetry in diffusion and by classical drifts. In addition, divertor detachment and/or intense puffing-and-pump enhanced the HFS SOL flow. Most codes have incorporated drift effects, and asymmetric diffusion was modelled to simulate the fast SOL flow. Influences of the fast SOL flow on the impurity flow in the SOL, shielding from core plasma, and deposition profile, were directly observed in experiments

  10. Shear flow effects on ion thermal transport in tokamaks

    International Nuclear Information System (INIS)

    Tajima, T.; Horton, W.; Dong, J.Q.; Kishimoto, Y.

    1995-03-01

    From various laboratory and numerical experiments, there is clear evidence that under certain conditions the presence of sheared flows in a tokamak plasma can significantly reduce the ion thermal transport. In the presence of plasma fluctuations driven by the ion temperature gradient, the flows of energy and momentum parallel and perpendicular to the magnetic field are coupled with each other. This coupling manifests itself as significant off-diagonal coupling coefficients that give rise to new terms for anomalous transport. The authors derive from the gyrokinetic equation a set of velocity moment equations that describe the interaction among plasma turbulent fluctuations, the temperature gradient, the toroidal velocity shear, and the poloidal flow in a tokamak plasma. Four coupled equations for the amplitudes of the state variables radially extended over the transport region by toroidicity induced coupling are derived. The equations show bifurcations from the low confinement mode without sheared flows to high confinement mode with substantially reduced transport due to strong shear flows. Also discussed is the reduced version with three state variables. In the presence of sheared flows, the radially extended coupled toroidal modes driven by the ion temperature gradient disintegrate into smaller, less elongated vortices. Such a transition to smaller spatial correlation lengths changes the transport from Bohm-like to gyrobohm-like. The properties of these equations are analyzed. The conditions for the improved confined regime are obtained as a function of the momentum-energy deposition rates and profiles. The appearance of a transport barrier is a consequence of the present theory

  11. Active Control of Flow around NACA 0015 Airfoil by Using DBD Plasma Actuator

    Directory of Open Access Journals (Sweden)

    Şanlısoy A.

    2013-04-01

    Full Text Available In this study, effect of plasma actuator on a flat plate and manipulation of flow separation on NACA0015 airfoil with plasma actuator at low Reynolds numbers were experimentally investigated. In the first section of the study, plasma actuator which consists of positive and grounded electrode couple and dielectric layer, located on a flat plate was actuated at different frequencies and peak to peak voltages in range of 3-5 kHz and 6-12 kV respectively. Theinduced air flow velocity on the surface of flat plate was measured by pitot tube at different locations behind the actuator. The influence of dielectricthickness and unsteady actuation with duty cycle was also examined. In the second section, the effect of plasma actuator on NACA0015 airfoil was studied atReynolds number 15000 and 30000. Four plasma actuators were placed at x/C = 0.1, 0.3, 0.5 and 0.9, and different electrode combinations were activated by sinusoidal signal. Flow visualizations were done when the attack angles were 0°, 5°, 10°, 15° and 20°. The results indicate that up to the 15° attack angle, the separated flow was reattached by plasma actuator at 12kV peak to peak voltage and 4 kHz frequency. However, 12 kVpp voltage was insufficient to reattach the flow at 20° angle of attack. The separated flow could be reattached by increasing the voltage up to 13 kV. Lift coefficient was also increased by the manipulated flow over the airfoil. Results showed that even high attack angles, the actuators can control the flow separation and prevent the airfoil from stall at low Reynolds numbers.

  12. Separation of ions in nanofluidic channels with combined pressure-driven and electro-osmotic flow.

    Science.gov (United States)

    Gillespie, Dirk; Pennathur, Sumita

    2013-03-05

    Separation of ionic species with the same electrophoretic mobility but different valence in electrolyte systems can occur within nanometer-scale channels with finite electrical double layers (EDLs). This is because EDL thicknesses are a significant fraction of slit height in such channels and can create transverse analyte concentration profiles that allow for unique separation modalities when combined with axial fluid flow. Previous work has shown such separation to occur using either pressure-driven flow or electro-osmotic flow separately. Here, we develop a Poisson-Boltzmann model to compare the separation of such ions using the combination of both pressure-driven and electro-osmotic flow. Applying a pressure gradient in the opposite direction of electro-osmotic flow can allow for zero or infinite retention of analyte species, which we investigate using three different wall boundary conditions. Furthermore, we determine conditions in fused silica nanochannels with which to generate optimal separation between two analytes of different charge but the same mobility. We also give simple rules of thumb to achieve the best separation efficacy in nanochannel systems.

  13. Low-z Type Ia Supernova Calibration

    Science.gov (United States)

    Hamuy, Mario

    The discovery of acceleration and dark energy in 1998 arguably constitutes one of the most revolutionary discoveries in astrophysics in recent years. This paradigm shift was possible thanks to one of the most traditional cosmological tests: the redshift-distance relation between galaxies. This discovery was based on a differential measurement of the expansion rate of the universe: the current one provided by nearby (low-z) type Ia supernovae and the one in the past measured from distant (high-z) supernovae. This paper focuses on the first part of this journey: the calibration of the type Ia supernova luminosities and the local expansion rate of the universe, which was made possible thanks to the introduction of digital CCD (charge-coupled device) digital photometry. The new technology permitted us in the early 1990s to convert supernovae as precise tools to measure extragalactic distances through two key surveys: (1) the "Tololo Supernova Program" which made possible the critical discovery of the "peak luminosity-decline rate" relation for type Ia supernovae, the key underlying idea today behind precise cosmology from supernovae, and (2) the Calán/Tololo project which provided the low - z type Ia supernova sample for the discovery of acceleration.

  14. Effect of Dielectric Barrier Discharge Plasma Actuators on Non-equilibrium Hypersonic Flows

    Science.gov (United States)

    2014-10-28

    results for MIG with the US3D code devel- oped at the University of Minnesota.61 US3D is an unstruc- tured CFD code for hypersonic flow solution used...Effect of dielectric barrier discharge plasma actuators on non-equilibrium hypersonic flows Ankush Bhatia,1 Subrata Roy,1 and Ryan Gosse2 1Applied...a cylindrical body in Mach 17 hypersonic flow is presented. This application focuses on using sinusoidal dielectric barrier discharge plasma actuators

  15. Relaxation and self-organization in two-dimensional plasma and neutral fluid flow systems

    International Nuclear Information System (INIS)

    Das, Amita

    2008-01-01

    Extensive numerical studies in the framework of a simplified two-dimensional model for neutral and plasma fluid for a variety of initial configurations and for both decaying and driven cases are carried out to illustrate relaxation toward a self-organized state. The dynamical model equation constitutes a simple choice for this purpose, e.g., the vorticity equation of the Navier-Stokes dynamics for the incompressible neutral fluids and the Hasegawa-Mima equation for plasma fluid flow system. Scatter plots are employed to observe a development of functional relationship, if any, amidst the generalized vorticity and its Laplacian. It is seen that they do not satisfy a linear relationship as the well known variational approach of enstrophy minimization subject to constancy of the energy integral for the two-dimensional (2D) system suggests. The observed nonlinear functional relationship is understood by separating the contribution to the scatter plot from spatial regions with intense vorticity patches and those of the background flow region where the background vorticity is weak or absent altogether. It is shown that such a separation has close connection with the known exact analytical solutions of the system. The analytical solutions are typically obtained by assuming a finite source of vorticity for the inner core of the localized structure, which is then matched with the solution in the outer region where vorticity is chosen to be zero. The work also demonstrates that the seemingly ad hoc choice of the linear vorticity source function for the inner region is in fact consistent with the self-organization paradigm of the 2D systems

  16. Study of the fast electron distribution function in lower hybrid and electron cyclotron current driven plasmas in the WT-3 tokamak

    International Nuclear Information System (INIS)

    Ogura, K.; Tanaka, H.; Ide, S.

    1991-01-01

    The distribution function f(p-vector) of fast electrons produced by lower hybrid current drive (LHCD) is investigated in the WT-3 tokamak, using a combination of measurements of the hard X-ray (HXR) angular distribution with respect to the toroidal magnetic field and observations of the HXR radial profile. The data obtained indicate the formation of a plateau-like region in f(p-vector) which corresponds to a region of resonant interaction between the lower hybrid (LH) wave and the electrons. The energy of the fast electrons in the peripheral plasma region is observed to be higher than that in the central plasma region under operational conditions with a high plasma current (I p ≥ 80 kA). At low current (I p < or approx. 50 kA), however, the energy of fast electrons is constant along the plasma radius. In the current ramp-up phase, fast electrons are generated in the directions normal to and opposite to the LH wave propagation. The latter case is ascribed to a negatively biased toroidal electric field induced by the current ramp-up. To study the characteristic change of f(p-vector) for various current drive mechanisms, HXR measurements are performed in electron cyclotron current driven (ECCD) plasma and in Ohmic heating (OH) plasma. In ECCD plasma, the perpendicular energy of fast electrons increases, which indicates that fast electrons are accelerated perpendicularly by electron cyclotron heating. In both LHCD and ECCD plasmas, fast electrons flow in the direction opposite to the wave propagation, while no such fast electrons are formed in OH plasma. (author). 33 refs, 16 figs, 1 tab

  17. Spatially resolved ozone densities and gas temperatures in a time modulated RF driven atmospheric pressure plasma jet: an analysis of the production and destruction mechanisms

    International Nuclear Information System (INIS)

    Zhang Shiqiang; Van Gessel, Bram; Hofmann, Sven; Van Veldhuizen, Eddie; Bruggeman, Peter; Van Gaens, Wouter; Bogaerts, Annemie

    2013-01-01

    In this work, a time modulated RF driven DBD-like atmospheric pressure plasma jet in Ar + 2%O 2 , operating at a time averaged power of 6.5 W is investigated. Spatially resolved ozone densities and gas temperatures are obtained by UV absorption and Rayleigh scattering, respectively. Significant gas heating in the core of the plasma up to 700 K is found and at the position of this increased gas temperature a depletion of the ozone density is found. The production and destruction reactions of O 3 in the jet effluent as a function of the distance from the nozzle are obtained from a zero-dimensional chemical kinetics model in plug flow mode which considers relevant air chemistry due to air entrainment in the jet fluent. A comparison of the measurements and the models show that the depletion of O 3 in the core of the plasma is mainly caused by an enhanced destruction of O 3 due to a large atomic oxygen density. (paper)

  18. Tripolar vortices of dust-drift waves in dusty plasma with shear flow

    International Nuclear Information System (INIS)

    Chen Yinhua; Wang Ge

    2002-01-01

    Nonlinear equations governing dust-drift waves in magnetized dusty plasma with transverse shear flow are derived. For the specific profiles of flow and the plasma equilibrium density, a new type of solution in the form of tripolar vortices is found. The results show that the peak magnitude of tripolar vortices increases with increasing shear intensity and dust content

  19. Observations of current flow to a positively polarized electrode in a quiescent magnetoplasma

    International Nuclear Information System (INIS)

    Ferreira, J.L.; Urrutia, J.M.; Stenzel, R.L.

    1988-05-01

    This work reports experimental studies on the current flow to an electrode immersed in a quiescent magnetized plasma. The observed intense current driven instabilities during the current flow were found to be related with an anomalous current transport. (author)

  20. Propagation of atmospheric pressure helium plasma jet into ambient air at laminar gas flow

    International Nuclear Information System (INIS)

    Pinchuk, M; Kurakina, N; Spodobin, V; Stepanova, O

    2017-01-01

    The formation of an atmospheric pressure plasma jet (APPJ) in a gas flow passing through the discharge gap depends on both gas-dynamic properties and electrophysical parameters of the plasma jet generator. The paper presents the results of experimental and numerical study of the propagation of the APPJ in a laminar flow of helium. A dielectric-barrier discharge (DBD) generated inside a quartz tube equipped with a coaxial electrode system, which provided gas passing through it, served as a plasma source. The transition of the laminar regime of gas flow into turbulent one was controlled by the photography of a formed plasma jet. The corresponding gas outlet velocity and Reynolds numbers were revealed experimentally and were used to simulate gas dynamics with OpenFOAM software. The data of the numerical simulation suggest that the length of plasma jet at the unvarying electrophysical parameters of DBD strongly depends on the mole fraction of ambient air in a helium flow, which is established along the direction of gas flow. (paper)

  1. Cluster observation of plasma flow reversal in the magnetotail during a substorm

    Directory of Open Access Journals (Sweden)

    A. T. Y. Lui

    2006-08-01

    Full Text Available We investigate in detail a reversal of plasma flow from tailward to earthward detected by Cluster at the downstream distance of ~19 RE in the midnight sector of the magnetotail on 22 August 2001. This flow reversal was accompanied by a sign reversal of the Bz component and occurred during the late substorm expansion phase as revealed by simultaneous global view of auroral activity from IMAGE. We examine the associated Hall current system signature, current density, electric field, Lorentz force, and current dissipation/dynamo term, the last two parameters being new features that have not been studied previously for plasma flow reversals. It is found that (1 there was no clear quadrupole Hall current system signature organized by the flow reversal time, (2 the x-component of the Lorentz force did not change sign while the other two did, (3 the timing sequence of flow reversal from the Cluster configuration did not match tailward motion of a single plasma flow source, (4 the electric field was occasionally dawnward, producing a dynamo effect, and (5 the electric field was occasionally larger at the high-latitude plasma sheet than near the neutral sheet. These observations are consistent with the current disruption model for substorms in which these disturbances are due to shifting dominance of multiple current disruption sites and turbulence at the observing location.

  2. C/NOFS Satellite Electric Field and Plasma Density Observations of Plasma Instabilities Below the Equatorial F-Peak -- Evidence for Approximately 500 km-Scale Spread-F "Precursor" Waves Driven by Zonal Shear Flow and km-Scale, Narrow-Banded Irregularities

    Science.gov (United States)

    Pfaff, R.; Freudenreich, H.; Klenzing, J.; Liebrecht, C.; Valladares, C.

    2011-01-01

    As solar activity has increased, the ionosphere F-peak has been elevated on numerous occasions above the C/NOFS satellite perigee of 400km. In particular, during the month of April, 2011, the satellite consistently journeyed below the F-peak whenever the orbit was in the region of the South Atlantic anomaly after sunset. During these passes, data from the electric field and plasma density probes on the satellite have revealed two types of instabilities which had not previously been observed in the C/NOFS data set (to our knowledge): The first is evidence for 400-500km-scale bottomside "undulations" that appear in the density and electric field data. In one case, these large scale waves are associated with a strong shear in the zonal E x B flow, as evidenced by variations in the meridional (outward) electric fields observed above and below the F-peak. These undulations are devoid of smaller scale structures in the early evening, yet appear at later local times along the same orbit associated with fully-developed spread-F with smaller scale structures. This suggests that they may be precursor waves for spread-F, driven by a collisional shear instability, following ideas advanced previously by researchers using data from the Jicamarca radar. A second new result (for C/NOFS) is the appearance of km-scale irregularities that are a common feature in the electric field and plasma density data that also appear when the satellite is below the F -peak at night. The vector electric field instrument on C/NOFS clearly shows that the electric field component of these waves is strongest in the zonal direction. These waves are strongly correlated with simultaneous observations of plasma density oscillations and appear both with, and without, evidence of larger-scale spread-F depletions. These km-scale, quasi-coherent waves strongly resemble the bottomside, sinusoidal irregularities reported in the Atmosphere Explorer satellite data set by Valladares et al. [JGR, 88, 8025, 1983

  3. A new facility for studying plasma interacting with flowing liquid lithium surface

    International Nuclear Information System (INIS)

    Cao, X.; Ou, W.; Tian, S.; Wang, C.; Zhu, Z.; Wang, J.; Gou, F.; Yang, D.; Chen, S.

    2014-01-01

    A new facility to study plasmas interacting with flowing liquid lithium surface was designed and is constructing in Sichuan University. The integrated setup includes the liquid lithium circulating part and linear high density plasma generator. The circulating part is consisted of main loop, on-line monitor system, lithium purification system and temperature programmed desorption system. In our group a linear high density plasma generator was built in 2012. Three coils were mounted along the vessel to produce an axial magnetic field inside. The magnetic field strength is up to 0.45 T and work continuously. Experiments on plasmas interacting with free flowing liquid lithium surface will be performed

  4. Ion collection by probing objects in flowing magnetized plasmas

    International Nuclear Information System (INIS)

    Kyu-Sun, Chung.

    1989-04-01

    A new one-dimensional collisionless kinetic model is developed for the flow of ions to probing structures in drifting plasmas. The cross-field flow into the presheath is modelled by accounting consistently for particle exchange between the collection flux tube and the outer plasma. Numerical solutions of the self-consistent plasma/sheath equations are obtained with arbitrary external ion temperature and parallel plasma flow velocity. Results are presented of the spatial dependence of the ion distribution function as well as its moments (density, particle flux, temperature, and power flux). The ion current to the probe is obtained and the ratio of the upstream to downstream currents is found to be well represented by the form R = exp[Ku d ], where K = 1.66 for T i = T e and u d is the drift velocity in units of (T e /m i ) 1/2 . The results agree well with comparable recent fluid calculations but show substantial deviations from other models which ignore particle exchange out of the presheath. No evidence is found of the formation of shocks in the downstream wake, contrary to the implications of some fluid theories. We have also extended the previous kinetic model by generalizing cross-field transport and adding ionization to the source of the Boltzmann equation along the presheath. Ion sheath current density and ratio(R) of upstream to downstream current are obtained as a function of plasma drift velocity, equivalent viscosity, ion temperature, and ionization rate. Constants(K) in the form R = exp[Ku d ] are obtained in terms of viscosity, ion temperature, and ionization rate. The effect of an electrical bias applied to the object on the presheath characteristics is discussed

  5. Simulation of rarefied low pressure RF plasma flow around the sample

    International Nuclear Information System (INIS)

    Zheltukhin, V S; Shemakhin, A Yu

    2017-01-01

    The paper describes a mathematical model of the flow of radio frequency plasma at low pressure. The hybrid mathematical model includes the Boltzmann equation for the neutral component of the RF plasma, the continuity and the thermal equations for the charged component. Initial and boundary conditions for the corresponding equations are described. The electron temperature in the calculations is 1-4 eV, atoms temperature in the plasma clot is (3-4) • 10 3 K, in the plasma jet is (3.2-10) • 10 2 K, the degree of ionization is 10 -7 -10 -5 , electron density is 10 15 -10 19 m -3 . For calculations plasma parameters is developed soft package on C++ program language, that uses the OpenFOAM library package. Simulations for the vacuum chamber in the presence of a sample and the free jet flow were carried out. (paper)

  6. Management of complex data flows in the ASDEX Upgrade plasma control system

    Energy Technology Data Exchange (ETDEWEB)

    Treutterer, Wolfgang, E-mail: Wolfgang.Treutterer@ipp.mpg.de [Max-Planck Institut fuer Plasmaphysik, EURATOM Association, Garching (Germany); Neu, Gregor; Raupp, Gerhard; Zasche, Dieter; Zehetbauer, Thomas [Max-Planck Institut fuer Plasmaphysik, EURATOM Association, Garching (Germany); Cole, Richard; Lueddecke, Klaus [Unlimited Computer Systems, Iffeldorf (Germany)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Control system architectures with data-driven workflows are efficient, flexible and maintainable. Black-Right-Pointing-Pointer Signal groups provide coherence of interrelated signals and increase the efficiency of process synchronisation. Black-Right-Pointing-Pointer Sample tags indicating sample quality form the fundament of a local event handling strategy. Black-Right-Pointing-Pointer A self-organising workflow benefits from sample tags consisting of time stamp and stream activity. - Abstract: Establishing adequate technical and physical boundary conditions for a sustained nuclear fusion reaction is a challenging task. Phased feedback control and monitoring for heating, fuelling and magnetic shaping is mandatory, especially for fusion devices aiming at high performance plasmas. Technical and physical interrelations require close collaboration of many components in sequential as well as in parallel processing flows. Moreover, handling of asynchronous, off-normal events has become a key element of modern plasma performance optimisation and machine protection recipes. The manifoldness of plasma states and events, the variety of plant system operation states and the diversity in diagnostic data sampling rates can hardly be mastered with a rigid control scheme. Rather, an adaptive system topology in combination with sophisticated synchronisation and process scheduling mechanisms is suited for such an environment. Moreover, the system is subject to real-time control constraints: response times must be deterministic and adequately short. Therefore, the experimental tokamak device ASDEX Upgrade employs a discharge control system DCS, whose core has been designed to meet these requirements. In the paper we will compare the scheduling schemes for the parallelised realisation of a control workflow and show the advantage of a data-driven workflow over a managed workflow. The data-driven workflow as used in DCS is based on signals

  7. Flow injection analysis in inductively coupled plasma spectrometry

    International Nuclear Information System (INIS)

    Rosias, Maria F.G.G.

    1995-10-01

    The main features of flow injection analysis (FIA) as contribution to the inductively coupled plasma (Icp) spectrometry are described. A systematic review of researches using the combined FIA-Icp and the benefits of this association are presented. Flow systems were proposed to perform on-line Icp solution management for multielemental determination by atomic emission spectrometry (Icp-AES) or mass spectrometry. The inclusion of on-line ion exchangers in flow systems for matrix separation and/or analyte preconcentration are presented. Together with those applications the new advent of instruments with facilities for multielement detection on flow injection signals are described. (author). 75 refs., 19 figs

  8. An Open Catalog for Supernova Data

    International Nuclear Information System (INIS)

    Guillochon, James; Parrent, Jerod; Kelley, Luke Zoltan; Margutti, Raffaella

    2017-01-01

    We present the Open Supernova Catalog , an online collection of observations and metadata for presently 36,000+ supernovae and related candidates. The catalog is freely available on the web (https://sne.space), with its main interface having been designed to be a user-friendly, rapidly searchable table accessible on desktop and mobile devices. In addition to the primary catalog table containing supernova metadata, an individual page is generated for each supernova, which displays its available metadata, light curves, and spectra spanning X-ray to radio frequencies. The data presented in the catalog is automatically rebuilt on a daily basis and is constructed by parsing several dozen sources, including the data presented in the supernova literature and from secondary sources such as other web-based catalogs. Individual supernova data is stored in the hierarchical, human- and machine-readable JSON format, with the entirety of each supernova’s data being contained within a single JSON file bearing its name. The setup we present here, which is based on open-source software maintained via git repositories hosted on github, enables anyone to download the entirety of the supernova data set to their home computer in minutes, and to make contributions of their own data back to the catalog via git. As the supernova data set continues to grow, especially in the upcoming era of all-sky synoptic telescopes, which will increase the total number of events by orders of magnitude, we hope that the catalog we have designed will be a valuable tool for the community to analyze both historical and contemporary supernovae.

  9. An Open Catalog for Supernova Data

    Energy Technology Data Exchange (ETDEWEB)

    Guillochon, James; Parrent, Jerod; Kelley, Luke Zoltan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Margutti, Raffaella, E-mail: jguillochon@cfa.harvard.edu [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astrophysics, Northwestern University, Evanston, IL 60208 (United States)

    2017-01-20

    We present the Open Supernova Catalog , an online collection of observations and metadata for presently 36,000+ supernovae and related candidates. The catalog is freely available on the web (https://sne.space), with its main interface having been designed to be a user-friendly, rapidly searchable table accessible on desktop and mobile devices. In addition to the primary catalog table containing supernova metadata, an individual page is generated for each supernova, which displays its available metadata, light curves, and spectra spanning X-ray to radio frequencies. The data presented in the catalog is automatically rebuilt on a daily basis and is constructed by parsing several dozen sources, including the data presented in the supernova literature and from secondary sources such as other web-based catalogs. Individual supernova data is stored in the hierarchical, human- and machine-readable JSON format, with the entirety of each supernova’s data being contained within a single JSON file bearing its name. The setup we present here, which is based on open-source software maintained via git repositories hosted on github, enables anyone to download the entirety of the supernova data set to their home computer in minutes, and to make contributions of their own data back to the catalog via git. As the supernova data set continues to grow, especially in the upcoming era of all-sky synoptic telescopes, which will increase the total number of events by orders of magnitude, we hope that the catalog we have designed will be a valuable tool for the community to analyze both historical and contemporary supernovae.

  10. Observation of ion cyclotron range of frequencies mode conversion plasma flow drive on Alcator C-Moda)

    Science.gov (United States)

    Lin, Y.; Rice, J. E.; Wukitch, S. J.; Greenwald, M. J.; Hubbard, A. E.; Ince-Cushman, A.; Lin, L.; Marmar, E. S.; Porkolab, M.; Reinke, M. L.; Tsujii, N.; Wright, J. C.; Alcator C-Mod Team

    2009-05-01

    At modest H3e levels (n3He/ne˜8%-12%), in relatively low density D(H3e) plasmas, n¯e≤1.3×1020 m-3, heated with 50 MHz rf power at Bt0˜5.1 T, strong (up to 90 km/s) toroidal rotation (Vϕ) in the cocurrent direction has been observed by high-resolution x-ray spectroscopy on Alcator C-Mod. The change in central Vϕ scales with the applied rf power (≤30 km s-1 MW-1), and is generally at least a factor of 2 higher than the empirically determined intrinsic plasma rotation scaling. The rotation in the inner plasma (r /a≤0.3) responds to the rf power more quickly than that of the outer region (r /a≥0.7), and the rotation profile is broadly peaked for r /a≤0.5. Localized poloidal rotation (0.3≤r/a≤0.6) in the ion diamagnetic drift direction (˜2 km/s at 3 MW) is also observed, and similarly increases with rf power. Changing the toroidal phase of the antenna does not affect the rotation direction, and it only weakly affects the rotation magnitude. The mode converted ion cyclotron wave (MC ICW) has been detected by a phase contrast imaging system and the MC process is confirmed by two-dimensional full wave TORIC simulations. The simulations also show that the MC ICW is strongly damped on H3e ions in the vicinity of the MC layer, approximately on the same flux surfaces where the rf driven flow is observed. The flow shear in our experiment is marginally sufficient for plasma confinement enhancement based on the comparison of the E ×B shearing rate and gyrokinetic linear stability analysis.

  11. Supernova observations at McDonald Observatory

    International Nuclear Information System (INIS)

    Wheeler, J.C.

    1984-01-01

    The programs to obtain high quality spectra and photometry of supernovae at McDonald Observatory are reviewed. Spectra of recent Type I supernovae in NGC 3227, NGC 3625, and NGC 4419 are compared with those of SN 1981b in NGC 4536 to quantitatively illustrate both the homogeneity of Type I spectra at similar epochs and the differences in detail which will serve as a probe of the physical processes in the explosions. Spectra of the recent supernova in NGC 0991 give for the first time quantitative confirmation of a spectrally homogeneous, but distinct subclass of Type I supernovae which appears to be less luminous and to have lower excitation at maximum light than classical Type I supernovae

  12. The analysis of repository-heat-driven hydrothermal flow at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Nitao, J.J.

    1993-01-01

    To safely and permanently store high-level nuclear waste, the potential Yucca Mountain repository site must mitigate the release and transport of radionuclides for tens of thousands of years. In the failure scenario of greatest concern, water would contact the waste package (WP), accelerate its failure rate, and eventually transport radionuclides to the water table. In a concept called the ''extended-dry repository,'' decay heat arising from radioactive waste extends the time before liquid water can contact a WP. Recent modeling and theoretical advances in nonisothermal, multiphase fracture-matrix flow have demonstrated (1) the critical importance of capillary pressure disequilibrium between fracture and matrix flow, and (2) that radioactive decay heat plays a dominant role in the ability of the engineered and natural barriers to contain and isolate radionuclides. Our analyses indicate that the thermo-hydrological performance of both the unsaturated zone (UZ) and saturated zone (SZ) will be dominated by repository-heat-driven hydrothermal flow for tens of thousands of years. For thermal loads resulting in extended-dry repository conditions, UZ performance is primarily sensitive to the thermal properties and thermal loading conditions and much less sensitive to the highly spatially and temporally variable ambient hydrologic properties and conditions. The magnitude of repository-heat-driven buoyancy flow in the SZ is far more dependent on the total mass of emplaced spent nuclear fuel (SNF) than on the details of SNF emplacement, such as the Areal Power Density [(APD) expressed in kill/acre] or SNF age

  13. Plasma equilibria and stationary flows in axisymmetric systems. Pt. 1

    International Nuclear Information System (INIS)

    Zelazny, R.; Stankiewicz, R.; Potempski, S.

    1988-05-01

    During discharges within a tokamak device such as JET fluctuations are observed in the plasma, of plasma density, temperature, electric potential and of the magnetic field. These fluctuations have complicated structure and are linked with different kinds of instabilities. However, it is not clear which instabilities are most important in determining the behaviour of the plasma. A comprehensive numerical theory which can predict the effect of the instabilities on the transport of plasma in axisymmetric systems has been sought using the static Grad-Shafranov-Schlueter (SGSS) equation as a basis. However, the static equation was over simplified for the situation in JET with additional heating giving rise to large toroidal flows, and an extended equation (EGSS) was developed. The results of the study include the discovery of algebraic branches of solutions to the EGSS equation even for very small poloidal flows, solutions to the inverse problem for the SGSS and EGSS equations using Fourier decomposition, classification of the boundary condition at the magnetic axis, demonstration of a visible effect of the poloidal flow on the separation of the density surface and the magnetic surface an indication of the existence of multiple branches of solutions to the EGSS and SGSS equations and their relation to stability properties. (U.K.)

  14. Supernova real-time monitor system in Kamiokande

    International Nuclear Information System (INIS)

    Oyama, Y.; Yamada, M.; Ishida, T.; Yamaguchi, T.; Yokoyama, H.

    1994-01-01

    A data-analysis program to discover possible supernova neutrino bursts has been installed in the online data-acquisition computer of the Kamiokande experiment. The program automatically analyzes data within 20 min and gives an alarm to collaborators if a possible supernova neutrino burst is found. The detection efficiency of the program is 96% for a typical supernova located 50 kpc from Earth. After a careful analysis by the Kamiokande collaborators, it will be possible to inform all optical observatories in the world about the occurrence of a supernova within 3 h from the time of first detecting the neutrino burst. Information concerning the celestial position of a supernova will also be available for supernovae having a distance less than ∼ 10 kpc. This information will be helpful for observing the first optical emissions from the newly born supernova. (orig.)

  15. Plasma flow to a surface using the iterative Monte Carlo method

    International Nuclear Information System (INIS)

    Pitcher, C.S.

    1994-01-01

    The iterative Monte Carlo (IMC) method is applied to a number of one-dimensional plasma flow problems, which encompass a wide range of conditions typical of those present in the boundary of magnetic fusion devices. The kinetic IMC method of solving plasma flow to a surface consists of launching and following particles within a grid of 'bins' into which weights are left according to the time a particle spends within a bin. The density and potential distributions within the plasma are iterated until the final solution is arrived at. The IMC results are compared with analytical treatments of these problems and, in general, good agreement is obtained. (author)

  16. The Magnetar Model of the Superluminous Supernova GAIA16apd and the Explosion Jet Feedback Mechanism

    International Nuclear Information System (INIS)

    Soker, Noam

    2017-01-01

    Under the assumption that jets explode core collapse supernovae (CCSNe) in a negative jet feedback mechanism (JFM), this paper shows that rapidly rotating neutron stars are likely to be formed when the explosion is very energetic. Under the assumption that an accretion disk or an accretion belt around the just-formed neutron star launch jets and that the accreted gas spins-up the just-formed neutron star, I derive a crude relation between the energy that is stored in the spinning neutron star and the explosion energy. This relation is ( E _N_S_-_s_p_i_n/ E _e_x_p) ≈ E _e_x_p/10"5"2 erg; It shows that within the frame of the JFM explosion model of CCSNe, spinning neutron stars, such as magnetars, might have significant energy in super-energetic explosions. The existence of magnetars, if confirmed, such as in the recent super-energetic supernova GAIA16apd, further supports the call for a paradigm shift from neutrino-driven to jet-driven CCSN mechanisms.

  17. The manipulation of an unstarting supersonic flow by plasma actuator

    International Nuclear Information System (INIS)

    Im, S; Cappelli, M A; Do, H

    2012-01-01

    The manipulation of an unstarting supersonic flow is demonstrated using a dielectric barrier discharge (DBD). Experiments are carried out in a Mach 4.7 model inlet flow. Flow features, such as boundary layers and shockwaves at low freestream static pressure (1 kPa) and temperature (60 K) are visualized with Rayleigh scattering from condensed CO 2 particles. Flow unstart, initiated by mass injection, is studied for three model inlet flow configurations, distinguished by the initial conditions (untripped or tripped, plasma actuated or not) of the boundary layers. Unstart in the presence of thick, tripped boundary layers is characterized by the formation of an oblique unstart shock just upstream of a separating and propagating boundary layer. The presence of plasma actuation of this tripped boundary layer seems to arrest the boundary layer separation and leads to the formation of a quasi-stationary pseudo-shock, delaying unstart. The flow generated with DBD actuation is more characteristic of what is seen when unstart is generated in a model flow in which thin boundary layers grow naturally. Planar laser Rayleigh scattering visualizations suggest that the DBD actuation thins the tripped boundary layer over the exposed electrode region.

  18. Nearby supernova host galaxies from the CALIFA survey. II. Supernova environmental metallicity

    NARCIS (Netherlands)

    Galbany, L.; Stanishev, V.; Mourão, A. M.; Rodrigues, M.; Flores, H.; Walcher, C. J.; Sánchez, S. F.; García-Benito, R.; Mast, D.; Badenes, C.; González Delgado, R. M.; Kehrig, C.; Lyubenova, M.; Marino, R. A.; Mollá, M.; Meidt, S.; Pérez, E.; van de Ven, G.; Vílchez, J. M.

    2016-01-01

    The metallicity of a supernova progenitor, together with its mass, is one of the main parameters that can rule the progenitor's fate. We present the second study of nearby supernova (SN) host galaxies (0.005 ⊙) > 10 dex) by targeted searches. We neither found evidence that the metallicity at the SN

  19. Laboratory Observation of a Plasma-Flow-State Transition from Diverging to Stretching a Magnetic Nozzle.

    Science.gov (United States)

    Takahashi, Kazunori; Ando, Akira

    2017-06-02

    An axial magnetic field induced by a plasma flow in a divergent magnetic nozzle is measured when injecting the plasma flow from a radio frequency (rf) plasma source located upstream of the nozzle. The source is operated with a pulsed rf power of 5 kW, and the high density plasma flow is sustained only for the initial ∼100  μsec of the discharge. The measurement shows a decrease in the axial magnetic field near the source exit, whereas an increase in the field is detected at the downstream side of the magnetic nozzle. These results demonstrate a spatial transition of the plasma-flow state from diverging to stretching the magnetic nozzle, where the importance of both the Alfvén and ion Mach numbers is shown.

  20. On fluid flow driven by topography in a librating body

    Science.gov (United States)

    Wu, C.; Roberts, P. H.

    2009-12-01

    Currently considerable effort and resources are being devoted to studies of Mercury, the Moon and Europa. Measuring the libration of these bodies can provide significant knowledge about their internal structures and physical properties; see Williams et al., 2001, Peale et al., 2002, Wu et al., 2007. To interpret such observations, it is important to understand better how libration affects the motion of the fluid in their interiors. To this end, Noir et al. (2009) investigated, via laboratory experiments and numerical simulations, the flow in a fluid filling a rotating spherical cavity driven by an axial oscillation of the container about a diameter. More realistically, the cavity is better represented by a triaxial ellipsoid. We may then distinguish between topographic and axisymmetricli libration. The latter refers to libration about a symmetry axis of the container which is therefore only viscously coupled to the fluid. In topographic libration, pressure forces on the boundary also affect the fluid motions in the cavity. We describe results from preliminary studies of topographic libration obtained through numerical simulation of incompressible fluid motion in an oblate spheroidal cavity with a libration axis perpendicular to the symmetry axis of the container. The computer code is a modification of one recently developed to study precessionally-driven flows in a spheroidal body of fluid (Wu and Roberts, 2009). It advances the flow in time using finite differences on overlapping grids; in this way the numerical difficulty known as the pole problem, is completely avoided.

  1. Understanding Core-Collapse Supernovae

    Science.gov (United States)

    Hix, W. R.; Lentz, E. J.; Baird, M.; Messer, O. E. B.; Mezzacappa, A.; Lee, C.-T.; Bruenn, S. W.; Blondin, J. M.; Marronetti, P.

    2010-03-01

    Our understanding of core-collapse supernovae continues to improve as better microphysics is included in increasingly realistic neutrino-radiationhydrodynamic simulations. Recent multi-dimensional models with spectral neutrino transport, which slowly develop successful explosions for a range of progenitors between 12 and 25 solar mass, have motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of how supernovae explode. Recent progresses on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.

  2. Plasma-Assisted Chemistry in High-Speed Flow

    International Nuclear Information System (INIS)

    Leonov, Sergey B.; Yarantsev, Dmitry A.; Napartovich, Anatoly P.; Kochetov, Igor V.

    2007-01-01

    Fundamental problems related to the high-speed combustion are analyzed. The result of plasma-chemical modeling is presented as a motivation of experimental activity. Numerical simulations of the effect of uniform non-equilibrium discharge on the premixed hydrogen and ethylene-air mixture in supersonic flow demonstrate an advantage of such a technique over a heating. Experimental results on multi-electrode non-uniform discharge maintenance behind wallstep and in cavity of supersonic flow are presented. The model test on hydrogen and ethylene ignition is demonstrated at direct fuel injection to low-temperature high-speed airflow

  3. Presupernova models and supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, D [Tokyo Univ. (Japan). Dept. of Earth Science and Astronomy; Nomoto, K I [Ibaraki Univ., Mito (Japan). Dept. of Physics

    1980-02-01

    Present status of the theories for presupernova evolution and triggering mechanisms of supernova explosions are summarized and discussed from the standpoint of the theory of stellar structure and evolution. It is not intended to collect every detail of numerical results thus far obtained, but to extract physically clear-cut understanding from complexities of the numerical stellar models. For this purpose the evolution of stellar cores is discussed in a generalized fashion. The following types of the supernova explosions are discussed. The carbon deflagration supernova of intermediate mass star which results in the total disruption of the star. Massive star evolves into a supernova triggered by photo-dissociation of iron nuclei which results in a formation of a neutron star or a black hole depending on its mass. These two are typical types of the supernova. Between them there remains a range of mass for which collapse of the stellar core is triggered by electron captures, which has been recently shown to leave a neutron star despite oxygen deflagration competing with the electron captures. Also discussed are combustion and detonation of helium or carbon which take place in accreting white dwarfs, and the collapse which is triggered by electron-pair creation in very massive stars.

  4. Laboratory simulation of energetic flows of magnetospheric planetary plasma

    International Nuclear Information System (INIS)

    Shaikhislamov, I F; Posukh, V G; Melekhov, A V; Boyarintsev, E L; Zakharov, Yu P; Prokopov, P A; Ponomarenko, A G

    2017-01-01

    Dynamic interaction of super-sonic counter-streaming plasmas moving in dipole magnetic dipole is studied in laboratory experiment. First, a quasi-stationary flow is produced by plasma gun which forms a magnetosphere around the magnetic dipole. Second, explosive plasma expanding from inner dipole region outward is launch by laser beams focused at the surface of the dipole cover. Laser plasma is energetic enough to disrupt magnetic field and to sweep through the background plasma for large distances. Probe measurements showed that far from the initially formed magnetosphere laser plasma carries within itself a magnetic field of the same direction but order of magnitude larger in value than the vacuum dipole field at considered distances. Because no compression of magnetic field at the front of laser plasma was observed, the realized interaction is different from previous experiments and theoretical models of laser plasma expansion into uniform magnetized background. It was deduced based on the obtained data that laser plasma while expanding through inner magnetosphere picks up a magnetized shell formed by background plasma and carries it for large distances beyond previously existing magnetosphere. (paper)

  5. A Review of Some Recent Studies on Buoyancy Driven Flows in an Urban Environment

    OpenAIRE

    Bodhisatta Hajra

    2014-01-01

    This paper reviews some recent studies (after 2000) pertaining to buoyancy driven flows in nature and thier use in reducing air pollution levels in a city (city ventilation). Natural convection flows occur due to the heating and cooling of various urban surfaces (e.g., mountain slopes), leading to upslope and downslope flows. Such flows can have a significant effect on city ventilation which has been the subject of study in the recent times due to increased pollution levels in a city. A major...

  6. Progress towards experimental realization of extreme-velocity flow-dominated magnetized plasmas

    Science.gov (United States)

    Weber, T. E.; Adams, C. S.; Welch, D. R.; Kagan, G.; Bean, I. A.; Henderson, B. R.; Klim, A. J.

    2017-10-01

    Interactions of flow-dominated plasmas with other plasmas, neutral gases, magnetic fields, solids etc., take place with sufficient velocity that kinetic energy dominates the dynamics of the interaction (as opposed to magnetic or thermal energy, which dominates in most laboratory plasma experiments). Building upon progress made by the Magnetized Shock Experiment (MSX) at LANL, we are developing the experimental and modeling capability to increase our ultimate attainable plasma velocities well in excess of 1000 km/s. Ongoing work includes designing new pulsed power switches, triggering, and inductive adder topologies; development of novel high-speed optical diagnostics; and exploration of new numerical techniques to specifically model the unique physics of translating/stagnating flow-dominated plasmas. Furthering our understanding of the physical mechanisms of energy conversion from kinetic to other forms, such as thermal energy, non-thermal tails/accelerated populations, enhanced magnetic fields, and radiation (both continuum and line), has wide-ranging significance in basic plasma science, astrophysics, and plasma technology applications such as inertial confinement fusion and intense radiation sources. This work is supported by the U.S. Department of Energy, National Nuclear Security Administration. LA-UR-17-25786.

  7. Asymmetry reversal of ion collection by mach probes in flowing unmagnetized plasmas

    International Nuclear Information System (INIS)

    Ko, E; Hershkowitz, N

    2006-01-01

    Measurements of ion current in flowing unmagnetized plasmas were performed with planar and spherical Mach probes in two different devices, one a dc multi-dipole plasma device for subsonic flow within a presheath region and the other a double plasma device for supersonic flow. Asymmetry reversal, which is higher ion current to the downstream side of the probe compared with the upstream side current, was observed for high probe bias compared with the electron temperature, relatively low ion drift velocity and Debye length comparable to probe radius. These data are in qualitative agreement with a recent numerical calculation by Hutchinson. As suggested by Hutchinson, it was found that the current ratio depended on the plasma parameters, especially for finite Debye length and high probe bias. Asymmetry reversal emphasizes the lack of validity of using the current ratio except for narrow parameter ranges. This study is the first experiment to demonstrate the non-intuitive phenomenon predicted by Hutchinson's numerical calculation

  8. Transitional inertialess instabilities in driven multilayer channel flows

    Science.gov (United States)

    Papaefthymiou, Evangelos; Papageorgiou, Demetrios

    2016-11-01

    We study the nonlinear stability of viscous, immiscible multilayer flows in channels driven both by a pressure gradient and/or gravity in a slightly inclined channel. Three fluid phases are present with two internal interfaces. Novel weakly nonlinear models of coupled evolution equations are derived and we concentrate on inertialess flows with stably stratified fluids, with and without surface tension. These are 2 × 2 systems of second-order semilinear parabolic PDEs that can exhibit inertialess instabilities due to resonances between the interfaces - mathematically this is manifested by a transition from hyperbolic to elliptic behavior of the nonlinear flux functions. We consider flows that are linearly stable (i.e the nonlinear fluxes are hyperbolic initially) and use the theory of nonlinear systems of conservation laws to obtain a criterion (which can be verified easily) that can predict nonlinear stability or instability (i.e. nonlinear fluxes encounter ellipticity as they evolve spatiotemporally) at large times. In the former case the solution decays asymptotically to its base state, and in the latter nonlinear traveling waves emerge. EPSRC Grant Numbers EP/K041134 and EP/L020564.

  9. The study of waves, instabilities, and turbulence using Thomson scattering in laser plasmas

    International Nuclear Information System (INIS)

    Drake, R.P.

    1995-01-01

    Much basic work in plasma physics has been devoted to the study of wave properties in plasmas, one of the nonlinear development of driven waves, and of the instabilities in which such waves may participate. The use of laser-plasma techniques has allowed one to extend such studies into new regimes. Such techniques and their results are the subject here. Once one chooses a physical problem within this subject area, it is now possible to design a laser-plasma experiment that is optimized for the study of that problem. The plasma can be designed to have a variety of density and flow-velocity profiles, the damping of ion acoustic waves and of electron plasma waves can be independently controlled, and the waves can be driven weakly or strongly. By using Nd-glass lasers and their harmonics one can non-invasively drive and diagnose the waves, using separate laser beams to produce the plasma, drive the waves, and diagnose their properties. The author uses as examples some recent work with his collaborators, including the first experimental detection of ion plasma waves and the first direct observation of the plasma wave driven by the acoustic decay of laser light

  10. Automated search for supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Kare, J.T.

    1984-11-15

    This thesis describes the design, development, and testing of a search system for supernovae, based on the use of current computer and detector technology. This search uses a computer-controlled telescope and charge coupled device (CCD) detector to collect images of hundreds of galaxies per night of observation, and a dedicated minicomputer to process these images in real time. The system is now collecting test images of up to several hundred fields per night, with a sensitivity corresponding to a limiting magnitude (visual) of 17. At full speed and sensitivity, the search will examine some 6000 galaxies every three nights, with a limiting magnitude of 18 or fainter, yielding roughly two supernovae per week (assuming one supernova per galaxy per 50 years) at 5 to 50 percent of maximum light. An additional 500 nearby galaxies will be searched every night, to locate about 10 supernovae per year at one or two percent of maximum light, within hours of the initial explosion.

  11. Automated search for supernovae

    International Nuclear Information System (INIS)

    Kare, J.T.

    1984-01-01

    This thesis describes the design, development, and testing of a search system for supernovae, based on the use of current computer and detector technology. This search uses a computer-controlled telescope and charge coupled device (CCD) detector to collect images of hundreds of galaxies per night of observation, and a dedicated minicomputer to process these images in real time. The system is now collecting test images of up to several hundred fields per night, with a sensitivity corresponding to a limiting magnitude (visual) of 17. At full speed and sensitivity, the search will examine some 6000 galaxies every three nights, with a limiting magnitude of 18 or fainter, yielding roughly two supernovae per week (assuming one supernova per galaxy per 50 years) at 5 to 50 percent of maximum light. An additional 500 nearby galaxies will be searched every night, to locate about 10 supernovae per year at one or two percent of maximum light, within hours of the initial explosion

  12. Decays of supernova neutrinos

    International Nuclear Information System (INIS)

    Lindner, Manfred; Ohlsson, Tommy; Winter, Walter

    2002-01-01

    Supernova neutrinos could be well-suited for probing neutrino decay, since decay may be observed even for very small decay rates or coupling constants. We will introduce an effective operator framework for the combined description of neutrino decay and neutrino oscillations for supernova neutrinos, which can especially take into account two properties: one is the radially symmetric neutrino flux, allowing a decay product to be re-directed towards the observer even if the parent neutrino had a different original direction of propagation. The other is decoherence because of the long baselines for coherently produced neutrinos. We will demonstrate how to use this effective theory to calculate the time-dependent fluxes at the detector. In addition, we will show the implications of a Majoron-like decay model. As a result, we will demonstrate that for certain parameter values one may observe some effects which could also mimic signals similar to the ones expected from supernova models, making it in general harder to separate neutrino and supernova properties

  13. Cluster observation of plasma flow reversal in the magnetotail during a substorm

    Directory of Open Access Journals (Sweden)

    A. T. Y. Lui

    2006-08-01

    Full Text Available We investigate in detail a reversal of plasma flow from tailward to earthward detected by Cluster at the downstream distance of ~19 RE in the midnight sector of the magnetotail on 22 August 2001. This flow reversal was accompanied by a sign reversal of the Bz component and occurred during the late substorm expansion phase as revealed by simultaneous global view of auroral activity from IMAGE. We examine the associated Hall current system signature, current density, electric field, Lorentz force, and current dissipation/dynamo term, the last two parameters being new features that have not been studied previously for plasma flow reversals. It is found that (1 there was no clear quadrupole Hall current system signature organized by the flow reversal time, (2 the x-component of the Lorentz force did not change sign while the other two did, (3 the timing sequence of flow reversal from the Cluster configuration did not match tailward motion of a single plasma flow source, (4 the electric field was occasionally dawnward, producing a dynamo effect, and (5 the electric field was occasionally larger at the high-latitude plasma sheet than near the neutral sheet. These observations are consistent with the current disruption model for substorms in which these disturbances are due to shifting dominance of multiple current disruption sites and turbulence at the observing location.

  14. Air-Flow-Driven Triboelectric Nanogenerators for Self-Powered Real-Time Respiratory Monitoring.

    Science.gov (United States)

    Wang, Meng; Zhang, Jiahao; Tang, Yingjie; Li, Jun; Zhang, Baosen; Liang, Erjun; Mao, Yanchao; Wang, Xudong

    2018-06-04

    Respiration is one of the most important vital signs of humans, and respiratory monitoring plays an important role in physical health management. A low-cost and convenient real-time respiratory monitoring system is extremely desirable. In this work, we demonstrated an air-flow-driven triboelectric nanogenerator (TENG) for self-powered real-time respiratory monitoring by converting mechanical energy of human respiration into electric output signals. The operation of the TENG was based on the air-flow-driven vibration of a flexible nanostructured polytetrafluoroethylene (n-PTFE) thin film in an acrylic tube. This TENG can generate distinct real-time electric signals when exposed to the air flow from different breath behaviors. It was also found that the accumulative charge transferred in breath sensing corresponds well to the total volume of air exchanged during the respiration process. Based on this TENG device, an intelligent wireless respiratory monitoring and alert system was further developed, which used the TENG signal to directly trigger a wireless alarm or dial a cell phone to provide timely alerts in response to breath behavior changes. This research offers a promising solution for developing self-powered real-time respiratory monitoring devices.

  15. The Efficiency of Quartz Particles Evaporation in the Argon Plasma Flow of the RF Inductively Coupled Plasma Torch

    Directory of Open Access Journals (Sweden)

    Yu. M. Grishin

    2017-01-01

    Full Text Available Owing to high-power density and high-purity plasma, a RF inductively coupled plasma torch (ICPT is widely used both in research laboratory and in industry. The potential RF ICPT application areas are powders spheroidisation, waste treatment, thermal spraying, etc.In the last decade the investigation was focused on the treatment processes of quartz into polycrystalline silicon. An analysis of these results has shown that the increasing productivity and producing high-purity silicon can be achieved only when using the electrodeless radio-frequency induction plasma torches and in case the optimum conditions for evaporation of SiO2solid particles are realized.Optimization of the RF ICPT design and power parameters calls for a wide range of computational studies. In spite of the fact that to date a large number of efforts to calculate the evaporation efficiency of powder materials have been made, a number of issues, as applied to the problem of obtaining silicon, require further research.In this paper, we present the results of a two-dimensional numerical simulation of the heating and evaporation of quartz particles in the RF ICPT channel with axial flow of gases. The main aim is to determine how the axial position of the central tube (through which the particles are injected into the discharge zone, the dispersion of the quartz powder, the amplitude of the discharge current (and, respectively, flow regimes impact on the evaporation efficiency of quartz particles.The paper presented the numerical modeling results of heating and evaporation processes of quartz particles supplied by transporting gas to the RF ICPT channel with axial gas flow (argon. Defined the impact of the axial position of the central tube, the plasma flow regime, the discharge current, the flow rate of transporting gas, and other parameters on the evaporation efficiency of quartz particles.It is shown that the evaporation efficiency of particles reaches its maximum when their

  16. Measurement of the evolution of type Ia supernovae explosion rate as a function of redshift in the SuperNovae Legacy Survey

    International Nuclear Information System (INIS)

    Ripoche, Pascal

    2007-01-01

    This research thesis reports works performed within the frame of the SuperNovae Legacy Survey (SNLS) which is one of the second-generation experiment exploiting Ia supernovae as cosmological source, and allows 8 billions or years of universe expansion to be observed by means of the Canada France Hawaii Telescope and a systematic detection of supernovae. The first part addresses cosmology and supernovae, and notably shows how Ia supernovae can used as cosmological probe to constraint cosmological parameters. Other methods of measurement of these parameters are briefly explained. The SNLS experiment is then presented: description of the experiment and of the supernovae detection chain, image processing. The author then presents a detailed simulation which has been developed to simulate Ia supernovae on the experiment images. He also presents associated tools and tests. This simulation is then used to study the efficiencies and weaknesses of supernovae detection by the SNLS. The measurement of the Ia supernovae explosion rate is then measured with respect to cosmic evolution [fr

  17. Characteristics of pulsed plasma synthetic jet and its control effect on supersonic flow

    Directory of Open Access Journals (Sweden)

    Di Jin

    2015-02-01

    Full Text Available The plasma synthetic jet is a novel flow control approach which is currently being studied. In this paper its characteristic and control effect on supersonic flow is investigated both experimentally and numerically. In the experiment, the formation of plasma synthetic jet and its propagation velocity in quiescent air are recorded and calculated with time resolved schlieren method. The jet velocity is up to 100 m/s and no remarkable difference has been found after changing discharge parameters. When applied in Mach 2 supersonic flow, an obvious shockwave can be observed. In the modeling of electrical heating, the arc domain is not defined as an initial condition with fixed temperature or pressure, but a source term with time-varying input power density, which is expected to better describe the influence of heating process. Velocity variation with different heating efficiencies is presented and discussed and a peak velocity of 850 m/s is achieved in still air with heating power density of 5.0 × 1012 W/m3. For more details on the interaction between plasma synthetic jet and supersonic flow, the plasma synthetic jet induced shockwave and the disturbances in the boundary layer are numerically researched. All the results have demonstrated the control authority of plasma synthetic jet onto supersonic flow.

  18. Laser Induced Fluorescence Diagnostic for the Plasma Couette Experiment

    Science.gov (United States)

    Katz, Noam; Skiff, Fred; Collins, Cami; Weisberg, Dave; Wallace, John; Clark, Mike; Garot, Kristine; Forest, Cary

    2010-11-01

    The Plasma Couette Experiment (PCX) at U. Wisconsin-Madison consists of a rotating high-beta plasma and is well-suited to the study of flow-driven, astrophysically-relevant plasma phenomena. PCX confinement relies on alternating rings of 1kG permanent magnets and the rotation is driven by electrode rings, interspersed between the magnets, which provide an azimuthal ExB. I will discuss the development of a laser-induced fluorescence diagnostic (LIF) to characterize the ion distribution function of argon plasmas in PCX. The LIF system--which will be scanned radially--will be used to calibrate internal Mach probes, as well as to measure the time-resolved velocity profile, ion temperature and density non-perturbatively. These diagnostics will be applied to study the magneto-rotational instability in a plasma, as well as the buoyancy instability thought to be involved in producing the solar magnetic field. This work is supported by NSF and DOE.

  19. Flow Driven by an Archimedean Helical Permanent Magnetic Field. Part I: Flow Patterns and Their Transitions

    Science.gov (United States)

    Wang, Bo; Wang, Xiaodong; Etay, Jacqueline; Na, Xianzhao; Zhang, Xinde; Fautrelle, Yves

    2016-04-01

    In this study, an Archimedean helical permanent magnetic field was constructed and its driving effects on liquid metal were examined. A magnetic stirrer was constructed using a series of arc-like magnets. The helical distribution of its magnetic field, which was confirmed via Gauss probe measurements and numerical simulations, can be considered a combination of rotating and traveling magnetic fields. The characteristics of the flow patterns, particularly the transitions between the meridian secondary flow (two vortices) and the global axial flow (one vortex), driven by this magnetic field were quantitatively measured using ultrasonic Doppler velocimetry. The transient and modulated flow behaviors will be presented in a companion article. The D/ H dimension ratio was used to characterize the transitions of these two flow patterns. The results demonstrated that the flow patterns depend on not only the intrinsic structure of the magnetic field, e.g., the helix lead angle, but also the performance parameters, e.g., the dimensional ratio of the liquid bulk. The notable opposing roles of these two flow patterns in the improvement of macrosegregations when imposing such magnetic fields near the solidifying front were qualitatively addressed.

  20. Dimming supernovae without cosmic acceleration

    International Nuclear Information System (INIS)

    Csaki, Csaba; Terning, John; Kaloper, Nemanja

    2002-01-01

    We present a simple model where photons propagating in extragalactic magnetic fields can oscillate into very light axions. The oscillations may convert some of the photons, departing a distant supernova, into axions, making the supernova appear dimmer and hence more distant than it really is. Averaging over different configurations of the magnetic field we find that the dimming saturates at about one-third of the light from the supernovae at very large redshifts. This results in a luminosity distance versus redshift curve almost indistinguishable from that produced by the accelerating Universe, if the axion mass and coupling scale are m∼10 -16 eV , M∼4x10 11 GeV . This phenomenon may be an alternative to the accelerating Universe for explaining supernova observations

  1. Electron heating of voltage-driven and matched dual frequency discharges

    International Nuclear Information System (INIS)

    Lieberman, M A; Lichtenberg, A J

    2010-01-01

    In a dual frequency capacitive sheath, a high frequency uniform sheath motion is coupled with a low frequency Child law sheath motion. For current-driven high and low frequency sheaths, the high frequency sheath motion generates most of the ohmic and stochastic heating of the discharge electrons. The low frequency motion, in addition to its primary purpose of establishing the ion bombarding energy, also increases the heating by widening the sheath width and transporting the oscillating electrons to regions of lower plasma density, and hence higher sheath velocity. In this work, we show that for voltage-driven high and low frequency sheaths, increasing the low frequency voltage reduces the heating, due to the reduced high frequency current that flows through the sheath under voltage-driven conditions. We determine the dependence of the heating on various parameters and compare the results with the current-driven case. Particle-in-cell simulations are used to confirm this result. Discharges generally employ a matching network to maximize the power transmitted to the plasma. We obtain analytic expressions for the effect of the low frequency source under matched conditions and, again, find that the low frequency source reduces the heating.

  2. Critique of atomic physics instability mechanisms: Ionization-driven and radiative microinstabilities in the tokamak edge plasma

    International Nuclear Information System (INIS)

    Ross, D.W.

    1994-01-01

    The theory of atomic-process driven microinstabilities in the tokamak edge plasma is reexamined. It is found that these instabilities, as they are usually presented, do not exist. This assertion applies both to ionization-driven modes and to radiative condensation, or thermal-driven modes. The problem is that there exists no separation of time scales between the approach to equilibrium and the growth rate of the purported instabilities. Therefore, to describe the perturbation of an inhomogeneous plasma, it is essential either to establish an equilibrium that includes both perpendicular transport and the proposed source, or, alternatively, to follow the background evolution simultaneously with the growth of the modes. Neither has been done in theoretical or numerical studies of microinstabilities driven by atomic effects in tokamaks. Very near the density limit, macroscopic modes may be unstable, leading to marfes or disruptions, but perturbations of the equilibrium transport fluxes, when taken into account, are sufficient to stabilize the microscopic modes. If the equilibrium fluxes are not included a priori, the ordering breakdown persists into the nonlinear regime. Since the atomic driving terms are the same as in the linear limit, radial decorrelation lengths would have to approach background scale lengths to yield transport of significant magnitude. Under ordinary tokamak conditions, therefore, atomic processes are unlikely to provide an important driving mechanism for the microturbulence that is presumed to cause anomalous transport

  3. A note on supersonic flow control with nanosecond plasma actuator

    Science.gov (United States)

    Zheng, J. G.; Cui, Y. D.; Li, J.; Khoo, B. C.

    2018-04-01

    A concept study on supersonic flow control using nanosecond pulsed plasma actuator is conducted by means of numerical simulation. The nanosecond plasma discharge is characterized by the generation of a micro-shock wave in ambient air and a residual heat in the discharge volume arising from the rapid heating of near-surface gas by the quick discharge. The residual heat has been found to be essential for the flow separation control over aerodynamic bodies like airfoil and backward-facing step. In this study, novel experiment is designed to utilize the other flow feature from discharge, i.e., instant shock wave, to control supersonic flow through shock-shock interaction. Both bow shock in front of a blunt body and attached shock anchored at the tip of supersonic projectile are manipulated via the discharged-induced shock wave in an appropriate manner. It is observed that drag on the blunt body is reduced appreciably. Meanwhile, a lateral force on sharp-edged projectile is produced, which can steer the body and give it an effective angle of attack. This opens a promising possibility for extending the applicability of this flow control technique in supersonic flow regime.

  4. Fluid Instabilities of Magnetar-Powered Supernovae

    Science.gov (United States)

    Chen, Ke-Jung

    2017-05-01

    Magnetar-powered supernova explosions are competitive models for explaining very luminous optical transits. Until recently, these explosion models were mainly calculated in 1D. Radiation emitted from the magnetar snowplows into the previous supernovae ejecta and causes a nonphysical dense shell (spike) found in previous 1D studies. This suggests that strong fluid instabilities may have developed within the magnetar-powered supernovae. Such fluid instabilities emerge at the region where luminous transits later occur, so they can affect the consequent observational signatures. We examine the magnetar-powered supernovae with 2D hydrodynamics simulations and find that the 1D dense shell transforms into the development of Rayleigh-Taylor and thin shell instabilities in 2D. The resulting mixing is able to fragment the entire shell and break the spherical symmetry of supernovae ejecta.

  5. Plasma tubes becoming collimated as a result of magnetohydrodynamic pumping

    International Nuclear Information System (INIS)

    Yun, Gunsu S.; Bellan, Paul M.

    2010-01-01

    Collimated magnetized plasma structures are commonly observed on galactic, stellar, and laboratory scales. The Caltech plasma gun produces magnetically driven plasma jets bearing a striking resemblance to astrophysical jets and solar coronal loops by imposing boundary conditions analogous to those plasmas. This paper presents experimental observations of gun-produced plasma jets that support a previously proposed magnetohydrodynamic (MHD) pumping model [P. M. Bellan, Phys. Plasmas 10, 1999 (2003)] as a universal collimation mechanism. For any initially flared, magnetized plasma tube with a finite axial current, the model predicts (i) magnetic pumping of plasma particles from a constricted region into a bulged region and (ii) tube collimation if the flow slows down at the bulged region leading to accumulation of mass and thus concentrating the azimuthal magnetic flux frozen in the mass flow (i.e., increasing the pinch force). Time- and space-resolved spectroscopic measurements of gun-produced plasmas have confirmed the highly dynamic nature of the process leading to a collimated state, namely, (i) suprathermal Alfvenic flow (30-50 km/s), (ii) large density amplification from ∼10 17 to ∼10 22 m -3 in an Alfvenic time scale (5-10 μs), and (iii) flow slowing down and mass accumulation at the flow front, the place where the tube collimation occurs according to high-speed camera imaging. These observations are consistent with the predictions of the MHD pumping model, and offer valuable insight into the formation mechanism of laboratory, solar, and astrophysical plasma structures.

  6. Plasma kinetics around a dust grain in an ion flow

    International Nuclear Information System (INIS)

    Maiorov, S.A.; Vladimirov, S.V.; Cramer, N.F.

    2000-01-01

    Full text: In a typical laboratory discharge, dust particles are negatively charged and usually levitate in the sheath or pre-sheath region under the balance of gravitational, electrostatic (due to the sheath electric field) and plasma (such as the ion drag) forces. The ion flow provides not only a direct (dragging) influence, but is also responsible for the generation of associated collective plasma processes which can strongly affect the vertical arrangement of the dust grains. The complete problem of the plasma dynamics around a macroscopic body in the presence of plasma flows is highly nonlinear and therefore its numerical analysis is of major importance. Among various numerical methods, direct integration of the equations of motion of the plasma particles represents a numerical experiment whose significance approaches experiments in the laboratory. Here, we present for the first time the results of a self-consistent molecular dynamics (MD) three-dimensional (3D) simulation of the kinetics of plasma particles (electrons and ions) around a dust grain, taking into account the dust charging. The core of the method includes consideration of the time evolution of the system consisting of positively ('ions') and negatively ('electrons') charged particles confined in a simulation box together with a macroscopic absorbing grain ('dust particle') with infinite mass and an initial (negative) charge. The ions are introduced in the system as a uniform flow defined by its Mach number and the ion temperature. The paths of the ions and electrons are determined through numerical integration of the equations of motion. We demonstrate that the plasma kinetics around a dust grain in the presence of an ion flow involves a strong ion focusing behind the grain. We have also confirmed that the most important of the processes involved is the ion time-scale; the kinetics of the electrons follows a Boltzmann distribution with good agreement. We note that the time constraints involved

  7. Plasma flow measurements in the Prototype-Material Plasma Exposure eXperiment (Proto-MPEX) and comparison with B2.5-Eirene modeling

    Science.gov (United States)

    Kafle, N.; Owen, L. W.; Caneses, J. F.; Biewer, T. M.; Caughman, J. B. O.; Donovan, D. C.; Goulding, R. H.; Rapp, J.

    2018-05-01

    The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory is a linear plasma device that combines a helicon plasma source with additional microwave and radio frequency heating to deliver high plasma heat and particle fluxes to a target. Double Langmuir probes and Thomson scattering are being used to measure local electron temperature and density at various radial and axial locations. A recently constructed Mach-double probe provides the added capability of simultaneously measuring electron temperatures ( T e), electron densities ( n e), and Mach numbers (M). With this diagnostic, it is possible to infer the plasma flow, particle flux, and heat flux at different locations along the plasma column in Proto-MPEX. Preliminary results show Mach numbers of 0.5 (towards the dump plate) and 1.0 (towards the target plate) downstream from the helicon source, and a stagnation point (no flow) near the source for the case where the peak magnetic field was 1.3 T. Measurements of particle flow and ne and Te profiles are discussed. The extensive coverage provided by these diagnostics permits data-constrained B2.5-Eirene modeling of the entire plasma column, and comparison with results of modeling in the high-density helicon plasmas will be presented.

  8. Rates and progenitors of type Ia supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Wood-Vasey, William Michael [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    The remarkable uniformity of Type Ia supernovae has allowed astronomers to use them as distance indicators to measure the properties and expansion history of the Universe. However, Type Ia supernovae exhibit intrinsic variation in both their spectra and observed brightness. The brightness variations have been approximately corrected by various methods, but there remain intrinsic variations that limit the statistical power of current and future observations of distant supernovae for cosmological purposes. There may be systematic effects in this residual variation that evolve with redshift and thus limit the cosmological power of SN Ia luminosity-distance experiments. To reduce these systematic uncertainties, we need a deeper understanding of the observed variations in Type Ia supernovae. Toward this end, the Nearby Supernova Factory has been designed to discover hundreds of Type Ia supernovae in a systematic and automated fashion and study them in detail. This project will observe these supernovae spectrophotometrically to provide the homogeneous high-quality data set necessary to improve the understanding and calibration of these vital cosmological yardsticks. From 1998 to 2003, in collaboration with the Near-Earth Asteroid Tracking group at the Jet Propulsion Laboratory, a systematic and automated searching program was conceived and executed using the computing facilities at Lawrence Berkeley National Laboratory and the National Energy Research Supercomputing Center. An automated search had never been attempted on this scale. A number of planned future large supernovae projects are predicated on the ability to find supernovae quickly, reliably, and efficiently in large datasets. A prototype run of the SNfactory search pipeline conducted from 2002 to 2003 discovered 83 SNe at a final rate of 12 SNe/month. A large, homogeneous search of this scale offers an excellent opportunity to measure the rate of Type Ia supernovae. This thesis presents a new method for

  9. Rates and progenitors of type Ia supernovae

    International Nuclear Information System (INIS)

    Wood-Vasey, William Michael

    2004-01-01

    The remarkable uniformity of Type Ia supernovae has allowed astronomers to use them as distance indicators to measure the properties and expansion history of the Universe. However, Type Ia supernovae exhibit intrinsic variation in both their spectra and observed brightness. The brightness variations have been approximately corrected by various methods, but there remain intrinsic variations that limit the statistical power of current and future observations of distant supernovae for cosmological purposes. There may be systematic effects in this residual variation that evolve with redshift and thus limit the cosmological power of SN Ia luminosity-distance experiments. To reduce these systematic uncertainties, we need a deeper understanding of the observed variations in Type Ia supernovae. Toward this end, the Nearby Supernova Factory has been designed to discover hundreds of Type Ia supernovae in a systematic and automated fashion and study them in detail. This project will observe these supernovae spectrophotometrically to provide the homogeneous high-quality data set necessary to improve the understanding and calibration of these vital cosmological yardsticks. From 1998 to 2003, in collaboration with the Near-Earth Asteroid Tracking group at the Jet Propulsion Laboratory, a systematic and automated searching program was conceived and executed using the computing facilities at Lawrence Berkeley National Laboratory and the National Energy Research Supercomputing Center. An automated search had never been attempted on this scale. A number of planned future large supernovae projects are predicated on the ability to find supernovae quickly, reliably, and efficiently in large datasets. A prototype run of the SNfactory search pipeline conducted from 2002 to 2003 discovered 83 SNe at a final rate of 12 SNe/month. A large, homogeneous search of this scale offers an excellent opportunity to measure the rate of Type Ia supernovae. This thesis presents a new method for

  10. Drag Reduction by Laser-Plasma Energy Addition in Hypersonic Flow

    International Nuclear Information System (INIS)

    Oliveira, A. C.; Minucci, M. A. S.; Toro, P. G. P.; Chanes, J. B. Jr; Myrabo, L. N.

    2008-01-01

    An experimental study was conducted to investigate the drag reduction by laser-plasma energy addition in a low density Mach 7 hypersonic flow. The experiments were conducted in a shock tunnel and the optical beam of a high power pulsed CO 2 TEA laser operating with 7 J of energy and 30 MW peak power was focused to generate the plasma upstream of a hemispherical model installed in the tunnel test section. The non-intrusive schlieren optical technique was used to visualize the effects of the energy addition to hypersonic flow, from the plasma generation until the mitigation of the shock wave profile over the model surface. Aside the optical technique, a piezoelectric pressure transducer was used to measure the impact pressure at stagnation point of the hemispherical model and the pressure reduction could be observed

  11. Dynamics of a confined dusty fluid in a sheared ion flow

    Energy Technology Data Exchange (ETDEWEB)

    Laishram, Modhuchandra; Sharma, Devendra; Kaw, Predhiman K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2014-07-15

    Dynamics of an isothermally driven dust fluid is analyzed which is confined in an azimuthally symmetric cylindrical setup by an effective potential and is in equilibrium with an unconfined sheared flow of a streaming plasma. Cases are analyzed where the confining potential constitutes a barrier for the driven fluid, limiting its spatial extension and boundary velocity. The boundary effects entering the formulation are characterized by applying the appropriate boundary conditions and a range of solutions exhibiting single and multiple vortex are obtained. The equilibrium solutions considered in the cylindrical setup feature a transition from single to multiple vortex state of the driven flow. Effects of (i) the variation in dust viscosity, (ii) coupling between the driving and the driven fluid, and (iii) a friction determining the equilibrium dynamics of the driven system are characterized.

  12. Atmospheric pulsed laser deposition of plasmonic nanoparticle films of silver with flowing gas and flowing atmospheric plasma

    Science.gov (United States)

    Khan, T. M.; Pokle, A.; Lunney, J. G.

    2018-04-01

    Two methods of atmospheric pulsed laser deposition of plasmonic nanoparticle films of silver are described. In both methods the ablation plume, produced by a 248 nm, 20 ns excimer laser in gas, is strongly confined near the target and forms a nanoparticle aerosol. For both the flowing gas, and the atmospheric plasma from a dielectric barrier discharge plasma source, the aerosol is entrained in the flow and carried to a substrate for deposition. The nanoparticle films produced by both methods were examined by electron microscopy and optical absorption spectroscopy. With plasma assistance, the deposition rate was significantly enhanced and the film morphology altered. With argon gas, isolated nanoparticles of 20 nm size were obtained, whereas in argon plasma, the nanoparticles are aggregated in clusters of 90 nm size. Helium gas also leads to the deposition of isolated nanoparticles, but with helium plasma, two populations of nanoparticles are observed: one of rounded particles with a mean size of 26 nm and the other of faceted particles with a mean size 165 nm.

  13. An accessible micro-capillary electrophoresis device using surface-tension-driven flow

    Science.gov (United States)

    Mohanty, Swomitra K.; Warrick, Jay; Gorski, Jack; Beebe, David J.

    2010-01-01

    We present a rapidly fabricated micro-capillary electrophoresis chip that utilizes surface-tension-driven flow for sample injection and extraction of DNA. Surface-tension-driven flow (i.e. passive pumping) injects a fixed volume of sample that can be predicted mathematically. Passive pumping eliminates the need for tubing, valves, syringe pumps, and other equipment typically needed for interfacing with microelectrophoresis chips. This method requires a standard micropipette to load samples before separation, and remove the resulting bands after analysis. The device was made using liquid phase photopolymerization to rapidly fabricate the chip without the need of special equipment typically associated with the construction of microelectrophoresis chips (e.g. cleanroom). Batch fabrication time for the device presented here was 1.5 h including channel coating time to suppress electroosmotic flow. Devices were constructed out of poly-isobornyl acrylate and glass. A standard microscope with a UV source was used for sample detection. Separations were demonstrated using Promega BenchTop 100 bp ladder in hydroxyl ethyl cellulose (HEC) and oligonucleotides of 91 and 118 bp were used to characterize sample injection and extraction of DNA bands. The end result was an inexpensive micro-capillary electrophoresis device that uses tools (e.g. micropipette, electrophoretic power supplies, and microscopes) already present in most labs for sample manipulation and detection, making it more accessible for potential end users. PMID:19425002

  14. The ASAS-SN bright supernova catalogue - III. 2016

    Science.gov (United States)

    Holoien, T. W.-S.; Brown, J. S.; Stanek, K. Z.; Kochanek, C. S.; Shappee, B. J.; Prieto, J. L.; Dong, Subo; Brimacombe, J.; Bishop, D. W.; Bose, S.; Beacom, J. F.; Bersier, D.; Chen, Ping; Chomiuk, L.; Falco, E.; Godoy-Rivera, D.; Morrell, N.; Pojmanski, G.; Shields, J. V.; Strader, J.; Stritzinger, M. D.; Thompson, Todd A.; Woźniak, P. R.; Bock, G.; Cacella, P.; Conseil, E.; Cruz, I.; Fernandez, J. M.; Kiyota, S.; Koff, R. A.; Krannich, G.; Marples, P.; Masi, G.; Monard, L. A. G.; Nicholls, B.; Nicolas, J.; Post, R. S.; Stone, G.; Wiethoff, W. S.

    2017-11-01

    This catalogue summarizes information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (mpeak ≤ 17), spectroscopically confirmed supernovae discovered in 2016. We then gather the near-infrared through ultraviolet magnitudes of all host galaxies and the offsets of the supernovae from the centres of their hosts from public data bases. We illustrate the results using a sample that now totals 668 supernovae discovered since 2014 May 1, including the supernovae from our previous catalogues, with type distributions closely matching those of the ideal magnitude limited sample from Li et al. This is the third of a series of yearly papers on bright supernovae and their hosts from the ASAS-SN team.

  15. NUMERICAL SIMULATIONS OF FLOW BEHAVIOR IN DRIVEN CAVITY AT HIGH REYNOLDS NUMBERS

    Directory of Open Access Journals (Sweden)

    Fudhail Bin Abdul Munir

    2012-02-01

    Full Text Available In recent years, due to rapidly increasing computational power, computational methods have become the essential tools to conduct researches in various engineering fields.  In parallel to the development of ultra high speed digital computers, computational fluid dynamics (CFD has become the new third approach apart from theory and experiment in the philosophical study and development of fluid dynamics.  Lattice Boltzmann method (LBM is an alternative method to conventional CFD.  LBM is relatively new approach that uses simple microscopic models to simulate complicated microscopic behavior of transport phenomena.  In this paper, fluid flow behaviors of steady incompressible flow inside lid driven square cavity are studied.  Numerical calculations are conducted for different Reynolds numbers by using Lattice Boltzmann scheme.  The objective of the paper is to demonstrate the capability of this lattice Boltzmann scheme for engineering applications particularly in fluid transport phenomena. Keywords-component; lattice Boltzmann method, lid driven cavity, computational fluid dynamics.

  16. A finite volume method for density driven flows in porous media

    Directory of Open Access Journals (Sweden)

    Hilhorst Danielle

    2013-01-01

    Full Text Available In this paper, we apply a semi-implicit finite volume method for the numerical simulation of density driven flows in porous media; this amounts to solving a nonlinear convection-diffusion parabolic equation for the concentration coupled with an elliptic equation for the pressure. We compute the solutions for two specific problems: a problem involving a rotating interface between salt and fresh water and the classical but difficult Henry’s problem. All solutions are compared to results obtained by running FEflow, a commercial software package for the simulation of groundwater flow, mass and heat transfer in porous media.

  17. The great supernova of 1987

    International Nuclear Information System (INIS)

    Woosley, S.E.

    1989-01-01

    Seven hundred day after the explosion of the brightest supernova in four centuries, astronomers continue to be both excited and perplexed by its behavior. By now, the supernova has received considerably attention in the literature. This paper emphasizes several aspects of the supernova that continue to be of special interest. These include: the evolution of the presupernova star, why it was blue, what its composition and core structure were; the iron core mass, explosion mechanism, and certain aspects of the neutrino burst; the detailed isotopic composition of the ejecta; the light curve and the requirement for mixing; the expected continued evolution of the supernova at all wavelengths given both the presence of several radioactivities as well as a central collapsed object as a power source; and late breaking news regarding the pulsar

  18. Atmospheric-pressure plasma jets: Effect of gas flow, active species, and snake-like bullet propagation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, S.; Wang, Z.; Huang, Q.; Tan, X.; Lu, X. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Ostrikov, K. [CSIRO Materials Science and Engineering, PO Box 218, Lindfield NSW 2070 (Australia); School of Physics, University of Sydney, Sydney NSW 2006 (Australia); State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2013-02-15

    Cold atmospheric-pressure plasma jets have recently attracted enormous interest owing to numerous applications in plasma biology, health care, medicine, and nanotechnology. A dedicated study of the interaction between the upstream and downstream plasma plumes revealed that the active species (electrons, ions, excited OH, metastable Ar, and nitrogen-related species) generated by the upstream plasma plume enhance the propagation of the downstream plasma plume. At gas flows exceeding 2 l/min, the downstream plasma plume is longer than the upstream plasma plume. Detailed plasma diagnostics and discharge species analysis suggest that this effect is due to the electrons and ions that are generated by the upstream plasma and flow into the downstream plume. This in turn leads to the relatively higher electron density in the downstream plasma. Moreover, high-speed photography reveals a highly unusual behavior of the plasma bullets, which propagate in snake-like motions, very differently from the previous reports. This behavior is related to the hydrodynamic instability of the gas flow, which results in non-uniform distributions of long-lifetime active species in the discharge tube and of surface charges on the inner surface of the tube.

  19. Numerical analysis of the effect of plasma flow control on enhancing the aerodynamic characteristics of stratospheric screw propeller

    International Nuclear Information System (INIS)

    Cheng Yufeng; Nie Wansheng

    2012-01-01

    Based on the body force aerodynamic actuation mechanism of dielectric barrier discharge (DBD) plasma, the effect of plasma flow control on enhancing the aerodynamic characteristics of ten blade elements equably along the stratospheric screw propeller blade was numerical studied. Then the effect of plasma flow control enhancing the aerodynamic characteristics of stratospheric screw propeller was compared that by the blade element theory method. The results show that the flow separate phenomena will easily happen in the root region and top end region of screw propeller, and the blade elements in the root region of screw propeller may work on the negative attack angle condition. DBD plasma flow control can entirely restrain the faintish flow separate phenomena in middle region of screw propeller. Although DBD plasma flow control can not entirely restrain the badly flow separate phenomena in top end region of screw propeller, it also can enhance the aerodynamic characteristics of blade elements in these regions in same degree. But effect of DBD plasma flow control on enhancing the aerodynamic characteristics of the blade elements working on the negative attack angle condition is ineffectively. It can be concluded that DBD plasma flow control can enhance the aerodynamic characteristics of stratospheric screw propeller, the thrust of the whole propeller and the propeller efficiency in the case of plasma on will increases by a factor of 28.27% and 12.3% respectively compared with that in the case of plasma off studied. (authors)

  20. Sheared flow amplification by vacuum magnetic islands in stellarator plasmas

    International Nuclear Information System (INIS)

    Garcia, L.; Carreras, B. A.; Lynch, V. E.; Pedrosa, M. A.; Hidalgo, C.

    2001-01-01

    There is some experimental evidence that the E x B flows have radial structure that may be linked to rational surfaces. This flow structure may result from a self-organization process involving nonlinear flow amplification through Reynolds stress and fluctuation reduction by sheared flows. In stellarators, a large contribution to the Reynolds stress comes from the coupling of the magnetic field component of a vacuum field island with a plasma instability. In this process, the self-organization principle seems to be marginal stability for the fluctuations driving the flow