WorldWideScience

Sample records for supernova results hubble

  1. Initial Hubble Diagram Results from the Nearby Supernova Factory

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, S. [Lab. Nuclear and High-Energy Physics (LPNHE), Paris (France); Aldering, G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Antilogus, P. [Lab. Nuclear and High-Energy Physics (LPNHE), Paris (France); Aragon, C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Baltay, C. [Yale Univ., New Haven, CT (United States); Bongard, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Buton, C [Inst. of Nuclear Physics of Lyon (France); Childress, M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Copin, Y. [Inst. of Nuclear Physics of Lyon (France); Gangler, E. [Inst. of Nuclear Physics of Lyon (France); Loken, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nugent, P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pain, R. [Lab. Nuclear and High-Energy Physics (LPNHE), Paris (France); Pecontal, E. [Center of Research Astrophysics of Lyon (CRAL) (France); Pereira, R. [Lab. Nuclear and High-Energy Physics (LPNHE), Paris (France); Perlmutter, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rabinowitz, D. [Yale Univ., New Haven, CT (United States); Rigaudier, G. [Center of Research Astrophysics of Lyon (CRAL) (France); Ripoche, P. [Lab. Nuclear and High-Energy Physics (LPNHE), Paris (France); Runge, K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Scalzo, R. [Yale Univ., New Haven, CT (United States); Smadja, G. [Inst. of Nuclear Physics of Lyon (France); Tao, C. [Inst. of Nuclear Physics of Lyon (France); Thomas, R. C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wu, C. [Lab. Nuclear and High-Energy Physics (LPNHE), Paris (France)

    2017-07-06

    The use of Type Ia supernovae as distance indicators led to the discovery of the accelerating expansion of the universe a decade ago. Now that large second generation surveys have significantly increased the size and quality of the high-redshift sample, the cosmological constraints are limited by the currently available sample of ~50 cosmologically useful nearby supernovae. The Nearby Supernova Factory addresses this problem by discovering nearby supernovae and observing their spectrophotometric time development. Our data sample includes over 2400 spectra from spectral timeseries of 185 supernovae. This talk presents results from a portion of this sample including a Hubble diagram (relative distance vs. redshift) and a description of some analyses using this rich dataset.

  2. HUBBLE SPIES MOST DISTANT SUPERNOVA EVER SEEN

    Science.gov (United States)

    2002-01-01

    Using NASA's Hubble Space Telescope, astronomers pinpointed a blaze of light from the farthest supernova ever seen, a dying star that exploded 10 billion years ago. The detection and analysis of this supernova, called 1997ff, is greatly bolstering the case for the existence of a mysterious form of dark energy pervading the cosmos, making galaxies hurl ever faster away from each other. The supernova also offers the first glimpse of the universe slowing down soon after the Big Bang, before it began speeding up. This panel of images, taken with the Wide Field and Planetary Camera 2, shows the supernova's cosmic neighborhood; its home galaxy; and the dying star itself. Astronomers found this supernova in 1997 during a second look at the northern Hubble Deep Field [top panel], a tiny region of sky first explored by the Hubble telescope in 1995. The image shows the myriad of galaxies Hubble spied when it peered across more than 10 billion years of time and space. The white box marks the area where the supernova dwells. The photo at bottom left is a close-up view of that region. The white arrow points to the exploding star's home galaxy, a faint elliptical. Its redness is due to the billions of old stars residing there. The picture at bottom right shows the supernova itself, distinguished by the white dot in the center. Although this stellar explosion is among the brightest beacons in the universe, it could not be seen directly in the Hubble images. The stellar blast is so distant from Earth that its light is buried in the glow of its host galaxy. To find the supernova, astronomers compared two pictures of the 'deep field' taken two years apart. One image was of the original Hubble Deep Field; the other, the follow-up deep-field picture taken in 1997. Using special computer software, astronomers then measured the light from the galaxies in both images. Noting any changes in light output between the two pictures, the computer identified a blob of light in the 1997 picture

  3. An updated Type II supernova Hubble diagram

    Science.gov (United States)

    Gall, E. E. E.; Kotak, R.; Leibundgut, B.; Taubenberger, S.; Hillebrandt, W.; Kromer, M.; Burgett, W. S.; Chambers, K.; Flewelling, H.; Huber, M. E.; Kaiser, N.; Kudritzki, R. P.; Magnier, E. A.; Metcalfe, N.; Smith, K.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.

    2018-03-01

    We present photometry and spectroscopy of nine Type II-P/L supernovae (SNe) with redshifts in the 0.045 ≲ z ≲ 0.335 range, with a view to re-examining their utility as distance indicators. Specifically, we apply the expanding photosphere method (EPM) and the standardized candle method (SCM) to each target, and find that both methods yield distances that are in reasonable agreement with each other. The current record-holder for the highest-redshift spectroscopically confirmed supernova (SN) II-P is PS1-13bni (z = 0.335-0.012+0.009), and illustrates the promise of Type II SNe as cosmological tools. We updated existing EPM and SCM Hubble diagrams by adding our sample to those previously published. Within the context of Type II SN distance measuring techniques, we investigated two related questions. First, we explored the possibility of utilising spectral lines other than the traditionally used Fe IIλ5169 to infer the photospheric velocity of SN ejecta. Using local well-observed objects, we derive an epoch-dependent relation between the strong Balmer line and Fe IIλ5169 velocities that is applicable 30 to 40 days post-explosion. Motivated in part by the continuum of key observables such as rise time and decline rates exhibited from II-P to II-L SNe, we assessed the possibility of using Hubble-flow Type II-L SNe as distance indicators. These yield similar distances as the Type II-P SNe. Although these initial results are encouraging, a significantly larger sample of SNe II-L would be required to draw definitive conclusions. Tables A.1, A.3, A.5, A.7, A.9, A.11, A.13, A.15 and A.17 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A25

  4. Supernova rates, galaxy emission, and Hubble type

    International Nuclear Information System (INIS)

    Van Den Bergh, S.

    1991-01-01

    Supernova discovery frequency is found to correlate with emission-line (H-alpha + forbidden N II line) equivalent width, except for the most active galaxies in which some supernovae might be hidden by dust. SNII occur preferentially in active galaxies with emission-line EW not less than 20 A, whereas SNIa favor less active galaxies with EW less than 20 A. The intrinsic frequency of supernovae is found to be an order of magnitude higher in Sc galaxies than it is in early type spirals. The relatively high frequency of SNIa in late-type galaxies suggests that not all such objects have old progenitors. 13 refs

  5. Type I supernovae and angular anisotropy of the Hubble constant

    International Nuclear Information System (INIS)

    Le Denmat, Gerard; Vigier, J.-P.

    1975-01-01

    The observation of type I supernovae in distant galaxies yields an homogeneous sample of sources to evaluate their true distance. An examination of their distribution in the sky provides a significant confirmation of the angular anisotropy of the Hubble constant already observed by Rubin, Rubin and Ford [fr

  6. Type Ia supernova Hubble residuals and host-galaxy properties

    International Nuclear Information System (INIS)

    Kim, A. G.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Fleury, M.; Guy, J.; Baltay, C.; Buton, C.; Feindt, U.; Greskovic, P.; Kowalski, M.; Childress, M.; Chotard, N.; Copin, Y.; Gangler, E.

    2014-01-01

    Kim et al. introduced a new methodology for determining peak-brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spectrophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is 0.013 ± 0.031 mag for a supernova subsample with data coverage corresponding to the K13 training; at <<1σ, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement of the Hubble residual step with the host mass is 0.045 ± 0.026 mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch parameters: steps at >2σ significance are found in SALT2 Hubble residuals in samples split by the values of their K13 x(1) and x(2) light-curve parameters. x(1) affects the light-curve width and color around peak (similar to the Δm 15 and stretch parameters), and x(2) affects colors, the near-UV light-curve width, and the light-curve decline 20-30 days after peak brightness. The novel light-curve analysis, increased parameter set, and magnitude corrections of K13 may be capturing features of SN Ia diversity arising from progenitor stellar evolution.

  7. THE EXTENDED HUBBLE SPACE TELESCOPE SUPERNOVA SURVEY: THE RATE OF CORE COLLAPSE SUPERNOVAE TO z {approx} 1

    Energy Technology Data Exchange (ETDEWEB)

    Dahlen, Tomas; Riess, Adam G. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Strolger, Louis-Gregory [Department of Physics and Astronomy, Western Kentucky University, Bowling Green, KY 42101 (United States); Mattila, Seppo; Kankare, Erkki [Tuorla Observatory, Department of Physics and Astronomy, University of Turku, Vaeisaelaentie 20, FI-21500 Piikkioe (Finland); Mobasher, Bahram, E-mail: dahlen@stsci.edu [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States)

    2012-09-20

    We use a sample of 45 core collapse supernovae detected with the Advanced Camera for Surveys on board the Hubble Space Telescope to derive the core collapse supernova rate in the redshift range 0.1 < z < 1.3. In redshift bins centered on (z) = 0.39, (z) = 0.73, and (z) = 1.11, we find rates of 3.00{sup +1.28}{sub -0.94} {sup +1.04}{sub -0.57}, 7.39{sup +1.86}{sub -1.52} {sup +3.20}{sub -1.60}, and 9.57{sup +3.76}{sub -2.80} {sup +4.96}{sub -2.80}, respectively, given in units of yr{sup -1} Mpc{sup -3} 10{sup -4} h {sup 3}{sub 70}. The rates have been corrected for host galaxy extinction, including supernovae missed in highly dust-enshrouded environments in infrared bright galaxies. The first errors are statistical while the second ones are the estimated systematic errors. We perform a detailed discussion of possible sources of systematic errors and note that these start to dominate over statistical errors at z > 0.5, emphasizing the need to better control the systematic effects. For example, a better understanding of the amount of dust extinction in the host galaxies and knowledge of the supernova luminosity function, in particular the fraction of faint M {approx}> -15 supernovae, is needed to better constrain the rates. When comparing our results with the core collapse supernova rate based on the star formation rate, we find a good agreement, consistent with the supernova rate following the star formation rate, as expected.

  8. Hubble Space Telescope Image, Supernova Remnant Cassiopeia A

    Science.gov (United States)

    2000-01-01

    The colorful streamers that float across the sky in this photo taken by NASA's Hubble Space Telescope (HST) were created by the universe's biggest firecracker, the titanic supernova explosion of a massive star. The light from the exploding star reached Earth 320 years ago, nearly a century before the United States celebrated its birth with a bang. The dead star's shredded remains are called Cassiopeia A, or 'Cas A' for short. Cas A is the youngest known supernova remnant in our Milky Way Galaxy and resides 10,000 light-years away in the constellation Cassiopeia, so the star actually blew up 10,000 years before the light reached Earth in the late 1600s. This HST image of Cas A shows for the first time that the debris is arranged into thousands of small, cooling knots of gas. This material eventually will be recycled into building new generations of stars and planets. Our own Sun and planets are constructed from the debris of supernovae that exploded billions of years ago. This photo shows the upper rim of the super nova remnant's expanding shell. Near the top of the image are dozens of tiny clumps of matter. Each small clump, originally just a small fragment of the star, is tens of times larger than the diameter of our solar system. The colors highlight parts of the debris where chemical elements are glowing. The dark blue fragments, for example, are richest in oxygen; the red material is rich in sulfur. The images were taken with the Wide Field and Planetary Camera 2 in January 2000 and January 2002. Image Credit: NASA and HST team (Stoics/AURA). Acknowledgment: R. Fesen (Darmouth) and J. Morse ( Univ. of Colorado).

  9. Correcting a statistical artifact in the estimation of the Hubble; constant based on Type Ia Supernovae results in a change in estimate; of 1.2%

    DEFF Research Database (Denmark)

    Petersen, JH; Holst, KK; Budtz-Jørgensen, Esben

    2010-01-01

    The Hubble constant enters big bang cosmology by quantifying the expansion rate of the universe. Existing statistical methods used to estimate Hubble’s constant only partially take into account random measurement errors. As a consequence, estimates of Hubble’s constant are statistically...

  10. The Cardassian expansion revisited: constraints from updated Hubble parameter measurements and type Ia supernova data

    Science.gov (United States)

    Magaña, Juan; Amante, Mario H.; Garcia-Aspeitia, Miguel A.; Motta, V.

    2018-05-01

    Motivated by an updated compilation of observational Hubble data (OHD) that consist of 51 points in the redshift range of 0.07 Ia supernova (SN Ia) using the compressed and full joint-light-analysis (JLA) samples (Betoule et al.). We also perform a joint analysis using the combination OHD plus compressed JLA. Our results show that the OC and MPC models are in agreement with the standard cosmology and naturally introduce a cosmological-constant-like extra term in the canonical Friedmann equation with the capability of accelerating the Universe without dark energy.

  11. Type-Ia supernova rates to redshift 2.4 from clash: The cluster lensing and supernova survey with Hubble

    International Nuclear Information System (INIS)

    Graur, O.; Rodney, S. A.; Riess, A. G.; Medezinski, E.; Maoz, D.; Jha, S. W.; Holoien, T. W.-S.; McCully, C.; Patel, B.; Postman, M.; Dahlen, T.; Strolger, L.-G.; Coe, D.; Bradley, L.; Koekemoer, A.; Benítez, N.; Molino, A.; Jouvel, S.; Nonino, M.; Balestra, I.

    2014-01-01

    We present the supernova (SN) sample and Type-Ia SN (SN Ia) rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope (HST), we have imaged 25 galaxy-cluster fields and parallel fields of non-cluster galaxies. We report a sample of 27 SNe discovered in the parallel fields. Of these SNe, ∼13 are classified as SN Ia candidates, including four SN Ia candidates at redshifts z > 1.2. We measure volumetric SN Ia rates to redshift 1.8 and add the first upper limit on the SN Ia rate in the range 1.8 < z < 2.4. The results are consistent with the rates measured by the HST/GOODS and Subaru Deep Field SN surveys. We model these results together with previous measurements at z < 1 from the literature. The best-fitting SN Ia delay-time distribution (DTD; the distribution of times that elapse between a short burst of star formation and subsequent SN Ia explosions) is a power law with an index of −1.00 −0.06(0.10) +0.06(0.09) (statistical) −0.08 +0.12 (systematic), where the statistical uncertainty is a result of the 68% and 95% (in parentheses) statistical uncertainties reported for the various SN Ia rates (from this work and from the literature), and the systematic uncertainty reflects the range of possible cosmic star-formation histories. We also test DTD models produced by an assortment of published binary population synthesis (BPS) simulations. The shapes of all BPS double-degenerate DTDs are consistent with the volumetric SN Ia measurements, when the DTD models are scaled up by factors of 3-9. In contrast, all BPS single-degenerate DTDs are ruled out by the measurements at >99% significance level.

  12. Type-Ia Supernova Rates to Redshift 2.4 from Clash: The Cluster Lensing and Supernova Survey with Hubble

    Science.gov (United States)

    Graur, O.; Rodney, S. A.; Maoz, D.; Riess, A. G.; Jha, S. W.; Postman, M.; Dahlen, T.; Holoien, T. W.-S.; McCully, C.; Patel, B.; hide

    2014-01-01

    We present the supernova (SN) sample and Type-Ia SN (SN Ia) rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope (HST), we have imaged 25 galaxy-cluster fields and parallel fields of non-cluster galaxies. We report a sample of 27 SNe discovered in the parallel fields. Of these SNe, approximately 13 are classified as SN Ia candidates, including four SN Ia candidates at redshifts z greater than 1.2.We measure volumetric SN Ia rates to redshift 1.8 and add the first upper limit on the SN Ia rate in the range z greater than 1.8 and less than 2.4. The results are consistent with the rates measured by the HST/ GOODS and Subaru Deep Field SN surveys.We model these results together with previous measurements at z less than 1 from the literature. The best-fitting SN Ia delay-time distribution (DTD; the distribution of times that elapse between a short burst of star formation and subsequent SN Ia explosions) is a power law with an index of 1.00 (+0.06(0.09))/(-0.06(0.10)) (statistical) (+0.12/-0.08) (systematic), where the statistical uncertainty is a result of the 68% and 95% (in parentheses) statistical uncertainties reported for the various SN Ia rates (from this work and from the literature), and the systematic uncertainty reflects the range of possible cosmic star-formation histories. We also test DTD models produced by an assortment of published binary population synthesis (BPS) simulations. The shapes of all BPS double-degenerate DTDs are consistent with the volumetric SN Ia measurements, when the DTD models are scaled up by factors of 3-9. In contrast, all BPS single-degenerate DTDs are ruled out by the measurements at greater than 99% significance level.

  13. THE CARNEGIE SUPERNOVA PROJECT: FIRST NEAR-INFRARED HUBBLE DIAGRAM TO z ∼ 0.7

    International Nuclear Information System (INIS)

    Freedman, Wendy L.; Burns, Christopher R.; Wyatt, Pamela; Persson, S. E.; Madore, Barry F.; Kelson, Daniel D.; Murphy, D. C.; Sturch, Laura; Phillips, M. M.; Contreras, Carlos; Folatelli, Gaston; Gonzalez, E. Sergio; Morrell, Nidia; Roth, Miguel; Stritzinger, Maximilian; Hamuy, Mario; Hsiao, Eric; Suntzeff, Nick B.; Astier, P.; Balland, C.

    2009-01-01

    The Carnegie Supernova Project (CSP) is designed to measure the luminosity distance for Type Ia supernovae (SNe Ia) as a function of redshift, and to set observational constraints on the dark energy contribution to the total energy content of the universe. The CSP differs from other projects to date in its goal of providing an I-band rest-frame Hubble diagram. Here, we present the first results from near-infrared observations obtained using the Magellan Baade telescope for SNe Ia with 0.1 m = 0.27 ± 0.02(statistical) and Ω DE = 0.76 ± 0.13(statistical) ± 0.09(systematic), for the matter and dark energy densities, respectively. If we parameterize the data in terms of an equation of state, w (with no time dependence), assume a flat geometry, and combine with baryon acoustic oscillations, we find that w = -1.05 ± 0.13(statistical) ± 0.09(systematic). The largest source of systematic uncertainty on w arises from uncertainties in the photometric calibration, signaling the importance of securing more accurate photometric calibrations for future supernova cosmology programs. Finally, we conclude that either the dust affecting the luminosities of SNe Ia has a different extinction law (R V = 1.8) than that in the Milky Way (where R V = 3.1), or that there is an additional intrinsic color term with luminosity for SNe Ia, independent of the decline rate. Understanding and disentangling these effects is critical for minimizing the systematic uncertainties in future SN Ia cosmology studies.

  14. A Type II Supernova Hubble diagram from the CSP-I, SDSS-II, and SNLS surveys

    OpenAIRE

    de Jaeger, T.; González-Gaitán, S.; Hamuy, M.; Galbany, L.; Anderson, J. P.; Phillips, M. M.; Stritzinger, M. D.; Carlberg, R. G.; Sullivan, M.; Gutiérrez, C. P.; Hook, I. M.; Howell, D. Andrew; Hsiao, E. Y.; Kuncarayakti, H.; Ruhlmann-Kleider, V.

    2016-01-01

    The coming era of large photometric wide-field surveys will increase the detection rate of supernovae by orders of magnitude. Such numbers will restrict spectroscopic follow-up in the vast majority of cases, and hence new methods based solely on photometric data must be developed. Here, we construct a complete Hubble diagram of Type II supernovae (SNe II) combining data from three different samples: the Carnegie Supernova Project-I, the Sloan Digital Sky Survey II SN, and th...

  15. A Hubble Diagram of Distant Type IA Supernovae

    Science.gov (United States)

    Hamuy, M.; Phillips, M. M.; Suntzeff, N. B.; Aviles, R.; Maza, J.

    1993-12-01

    Due to their extreme luminosities at maximum light, type Ia supernovae (SNe Ia) have long been considered among the most attractive cosmological standard candles. Although nearly all work to date has been devoted to attempts to use these objects to determine the local rate of expansion of the universe (Ho), SNe Ia also provide one of the few direct techniques for measuring the deceleration parameter qo. However, in a recent study of nine well-observed events based largely on data obtained at CTIO, Phillips (1993, ApJ, 413, L105) found clear evidence for a significant intrinsic dispersion in SNe Ia absolute magnitudes amounting to ~ 0.8 mag in B, ~ 0.7 mag in V, and ~ 0.5 mag in I. Such a range in peak luminosity could introduce a subtantial Malmquist bias into searches for distant (z rate of the B light curve. Interestingly, the most luminous SNe in our sample all occurred in spiral galaxies, which is true for Phillips' sample of nearby SNe Ia as well. This is opposite to what one would expect if dust extinction were important. These findings are consistent with recent speculations that the progenitors of SNe Ia are white dwarfs covering a range of masses, and also suggest that the brightest events may be found in galaxies which are still actively forming stars. The implications for the use of SNe Ia to measure qo are briefly discussed. This research has been supported by Grant 92/0312 from Fondo Nacional de Ciencias y Tecnología (FONDECYT-Chile).

  16. SN 2016jhj at redshift 0.34: extending the Type II supernova Hubble diagram using the standard candle method

    Science.gov (United States)

    de Jaeger, T.; Galbany, L.; Filippenko, A. V.; González-Gaitán, S.; Yasuda, N.; Maeda, K.; Tanaka, M.; Morokuma, T.; Moriya, T. J.; Tominaga, N.; Nomoto, K.; Komiyama, Y.; Anderson, J. P.; Brink, T. G.; Carlberg, R. G.; Folatelli, G.; Hamuy, M.; Pignata, G.; Zheng, W.

    2017-12-01

    Although Type Ia supernova cosmology has now reached a mature state, it is important to develop as many independent methods as possible to understand the true nature of dark energy. Recent studies have shown that Type II supernovae (SNe II) offer such a path and could be used as alternative distance indicators. However, the majority of these studies were unable to extend the Hubble diagram above redshift z = 0.3 because of observational limitations. Here, we show that we are now ready to move beyond low redshifts and attempt high-redshift (z ≳ 0.3) SN II cosmology as a result of new-generation deep surveys such as the Subaru/Hyper Suprime-Cam survey. Applying the 'standard candle method' to SN 2016jhj (z = 0.3398 ± 0.0002; discovered by HSC) together with a low-redshift sample, we are able to construct the highest-redshift SN II Hubble diagram to date with an observed dispersion of 0.27 mag (i.e. 12-13 per cent in distance). This work demonstrates the bright future of SN II cosmology in the coming era of large, wide-field surveys like that of the Large Synoptic Survey Telescope.

  17. Spectroscopic Properties of Star-Forming Host Galaxies and Type Ia Supernova Hubble Residuals in a Nearly Unbiased Sample

    Energy Technology Data Exchange (ETDEWEB)

    D' Andrea, Chris B. [Univ. of Pennsylvania, Philadelphia, PA (United States); et al.

    2011-12-20

    We examine the correlation between supernova host galaxy properties and their residuals on the Hubble diagram. We use supernovae discovered during the Sloan Digital Sky Survey II - Supernova Survey, and focus on objects at a redshift of z < 0.15, where the selection effects of the survey are known to yield a complete Type Ia supernova sample. To minimize the bias in our analysis with respect to measured host-galaxy properties, spectra were obtained for nearly all hosts, spanning a range in magnitude of -23 < M_r < -17. In contrast to previous works that use photometric estimates of host mass as a proxy for global metallicity, we analyze host-galaxy spectra to obtain gas-phase metallicities and star-formation rates from host galaxies with active star formation. From a final sample of ~ 40 emission-line galaxies, we find that light-curve corrected Type Ia supernovae are ~ 0.1 magnitudes brighter in high-metallicity hosts than in low-metallicity hosts. We also find a significant (> 3{\\sigma}) correlation between the Hubble residuals of Type Ia supernovae and the specific star-formation rate of the host galaxy. We comment on the importance of supernova/host-galaxy correlations as a source of systematic bias in future deep supernova surveys.

  18. "HUBBLE, the astronomer, the telescope, the results"

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    The fundamental discoveries made by Edwin Hubble in the first quarter of the last century will be presented. The space telescope bearing his name will be introduced, as well as the strategy put in place by NASA and the European Space Agency for its operation and its maintenance on-orbit. The personal experience of the speaker having participated in two of five servicing mission will be exposed and illustrated by pictures taken on-orbit. Finally, the main results obtained by the orbital observatory will be presented, in particular the ones related to the large scale structure of the Universe and its early history

  19. A HUBBLE DIAGRAM FROM TYPE II SUPERNOVAE BASED SOLELY ON PHOTOMETRY: THE PHOTOMETRIC COLOR METHOD

    International Nuclear Information System (INIS)

    De Jaeger, T.; González-Gaitán, S.; Galbany, L.; Hamuy, M.; Gutiérrez, C. P.; Kuncarayakti, H.; Anderson, J. P.; Phillips, M. M.; Campillay, A.; Castellón, S.; Hsiao, E. Y.; Morrell, N.; Stritzinger, M. D.; Contreras, C.; Bolt, L.; Burns, C. R.; Folatelli, G.; Freedman, W. L.; Krisciunas, K.; Krzeminski, W.

    2015-01-01

    We present a Hubble diagram of SNe II using corrected magnitudes derived only from photometry, with no input of spectral information. We use a data set from the Carnegie Supernovae Project I for which optical and near-infrared light curves were obtained. The apparent magnitude is corrected by two observables, one corresponding to the slope of the plateau in the V band and the second a color term. We obtain a dispersion of 0.44 mag using a combination of the (V − i) color and the r band and we are able to reduce the dispersion to 0.39 mag using our golden sample. A comparison of our photometric color method (PCM) with the standardized candle method (SCM) is also performed. The dispersion obtained for the SCM (which uses both photometric and spectroscopic information) is 0.29 mag, which compares with 0.43 mag from the PCM for the same SN sample. The construction of a photometric Hubble diagram is of high importance in the coming era of large photometric wide-field surveys, which will increase the detection rate of supernovae by orders of magnitude. Such numbers will prohibit spectroscopic follow up in the vast majority of cases, and hence methods must be deployed which can proceed using solely photometric data

  20. A HUBBLE DIAGRAM FROM TYPE II SUPERNOVAE BASED SOLELY ON PHOTOMETRY: THE PHOTOMETRIC COLOR METHOD

    Energy Technology Data Exchange (ETDEWEB)

    De Jaeger, T.; González-Gaitán, S.; Galbany, L.; Hamuy, M.; Gutiérrez, C. P.; Kuncarayakti, H. [Millennium Institute of Astrophysics, Santiago (Chile); Anderson, J. P. [European Southern Observatory, Alonso de Córdova 3107, Casilla 19, Santiago (Chile); Phillips, M. M.; Campillay, A.; Castellón, S.; Hsiao, E. Y.; Morrell, N. [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Stritzinger, M. D.; Contreras, C. [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Bolt, L. [Argelander Institut für Astronomie, Universität Bonn, Auf dem Hgel 71, D-53111 Bonn (Germany); Burns, C. R. [Observatories of the Carnegie Institution for Science, Pasadena, CA 91101 (United States); Folatelli, G. [Instituto de Astrofísica de La Plata, CONICET, Paseo del Bosque S/N, B1900FWA, La Plata (Argentina); Freedman, W. L. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Krisciunas, K. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Krzeminski, W., E-mail: dthomas@das.uchile.cl [N. Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warszawa (Poland); and others

    2015-12-20

    We present a Hubble diagram of SNe II using corrected magnitudes derived only from photometry, with no input of spectral information. We use a data set from the Carnegie Supernovae Project I for which optical and near-infrared light curves were obtained. The apparent magnitude is corrected by two observables, one corresponding to the slope of the plateau in the V band and the second a color term. We obtain a dispersion of 0.44 mag using a combination of the (V − i) color and the r band and we are able to reduce the dispersion to 0.39 mag using our golden sample. A comparison of our photometric color method (PCM) with the standardized candle method (SCM) is also performed. The dispersion obtained for the SCM (which uses both photometric and spectroscopic information) is 0.29 mag, which compares with 0.43 mag from the PCM for the same SN sample. The construction of a photometric Hubble diagram is of high importance in the coming era of large photometric wide-field surveys, which will increase the detection rate of supernovae by orders of magnitude. Such numbers will prohibit spectroscopic follow up in the vast majority of cases, and hence methods must be deployed which can proceed using solely photometric data.

  1. Dynamical 3-Space: Supernovae and the Hubble Expansion — the Older Universe without Dark Energy

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2007-10-01

    Full Text Available We apply the new dynamics of 3-space to cosmology by deriving a Hubble expansion solution. This dynamics involves two constants; G and — the fine structure constant. This solution gives an excellent parameter-free fit to the recent supernova and gamma- ray burst redshift data without the need for “dark energy” or “dark matter”. The data and theory together imply an older age for the universe of some 14.7Gyrs. The 3-space dynamics has explained the bore hole anomaly, spiral galaxy flat rotation speeds, the masses of black holes in spherical galaxies, gravitational light bending and lensing, all without invoking “dark matter” or “dark energy”. These developments imply that a new understanding of the universe is now available.

  2. Recent Hubble Space Telescope Imaging of the Light Echoes of Supernova 2014J in M 82 and Supernova 2016adj in Centaurus A

    Science.gov (United States)

    Lawrence, Stephen S.; Hyder, Ali; Sugerman, Ben; Crotts, Arlin P. S.

    2017-06-01

    We report on our ongoing use of Hubble Space Telescope (HST) imaging to monitor the scattered light echoes of recent heavily-extincted supernovae in two nearby, albeit unusual, galaxies.Supernova 2014J was a highly-reddened Type Ia supernova that erupted in the nearby irregular star-forming galaxy M 82 in 2014 January. It was discovered to have light echo by Crotts (2016) in early epoch HST imaging and has been further described by Yang, et al. (2017) based on HST imaging through late 2014. Our ongoing monitoring in the WFC3 F438W, F555W, and F814W filters shows that, consistent with Crotts (2106) and Yang, et al. (2017), throughout 2015 and 2016 the main light echo arc expanded through a dust complex located approximately 230 pc in the foreground of the supernova. This main light echo has, however, faded dramatically in our most recent HST imaging from 2017 March. The supernova itself has also faded to undetectable levels by 2017 March.Supernova 2016adj is a highly-reddened core-collapse supernova that erupted inside the unusual dust lane of the nearby giant elliptical galaxy Centaurus A (NGC 5128) in 2016 February. It was discovered to have a light echo by Sugerman & Lawrence (2016) in early epoch HST imaging in 2016 April. Our ongoing monitoring in the WFC3 F438W, F547M, and F814W filters shows a slightly elliptical series of light echo arc segments hosted by a tilted dust complex ranging approximately 150--225 pc in the foreground of the supernova. The supernova itself has also faded to undetectable levels by 2017 April.References: Crotts, A. P. S., ApJL, 804, L37 (2016); Yang et al., ApJ, 834, 60 (2017); Sugerman, B. and Lawrence, S., ATel #8890 (2016).

  3. Supernovae

    International Nuclear Information System (INIS)

    Petschek, A.

    1990-01-01

    This book offers papers incorporating the latest results and understanding about supernovae, including SN1987A. There are several chapters reviewing all the radio through infrared, visible, and ultraviolet to X-rays and gamma-rays but also neutrinos. Other chapters deal with the classification of supernovae, depending on their spectra and light curves. Three chapters treat supernovae theory, including an idea of a fractal burning front and another on the behavior of neutron stars

  4. A Deep Search with the Hubble Space Telescope for Late-Time Supernova Signatures in the Hosts of XRF 011030 and XRF 020427

    Science.gov (United States)

    Levan, Andrew; Patel, Sandeep; Kouveliotou, Chryssa; Fruchter, Andrew; Rhoads, James; Rol, Evert; Ramirez-Ruiz, Enrico; Gorosabel, Javier; Hiorth, Jens; Wijers, Ralph

    2005-01-01

    X-ray flashes (XRFs) are, like gamma-ray bursts (GRBs), thought to signal the collapse of massive stars in distant galaxies. Many models posit that the isotropic equivalent energies of XRFs are lower than those for GRBs, such that they are visible fiom a reduced range of distances when compared with GRBs. Here we present the results of two-epoch Hubble Space Telescope imaging of two XRFs. These images, taken approximately 45 and 200 days postburst, reveal no evidence of an associated supernova in either case. Supernovae such as SN 1998bw would have been visible out to z approximately 1.5 in each case, while fainter supernovae such as SN 2002ap would have been visible to z approximately 1. If the XRFs lie at such large distances, their energies would not fit the observed correlation between the GRB peak energy and isotropic energy release (E(sub p) proportional to E(sub iso)(sup 1/2), in which soft bursts are less energetic. We conclude that, should these XRFs reside at low redshifts (z less than 0.6), either their line of sight is heavily extinguished, they are associated with extremely faint supernovae, or, unlike GRBs, these XRFs do not have temporally coincident supernovae.

  5. EVIDENCE FOR TYPE Ia SUPERNOVA DIVERSITY FROM ULTRAVIOLET OBSERVATIONS WITH THE HUBBLE SPACE TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiaofeng [Physics Department and Tsinghua Center for Astrophysics (THCA), Tsinghua University, Beijing 100084 (China); Wang Lifan [Physics and Astronomy Department, Texas A and M University, College Station, TX 77843 (United States); Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Baron, Eddie [Department of Physics, University of Oklahoma, Norman, OK 73019 (United States); Kromer, Markus [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching (Germany); Jack, Dennis [Hamburger Sternwarte, Gojenbergsweg 112, 21029 Hamburg (Germany); Zhang Tianmeng [National Astronomical Observatory of China, Chinese Academy of Sciences, Beijing 100012 (China); Aldering, Greg [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Antilogus, Pierre [Laboratoire de Physique Nucleaire des Hautes Energies, Paris (France); Arnett, W. David [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Baade, Dietrich [European Southern Observatory, 85748 Garching (Germany); Barris, Brian J. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Benetti, Stefano; Cappellaro, Enrico [Osservatorio Astronomico di Padova, 35122 Padova (Italy); Bouchet, Patrice [CEA/DSM/DAPNIA/Service d' Astrophysique, 91191 Gif-sur-Yvette Cedex (France); Burrows, Adam S. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Canal, Ramon [Department d' Astronomia i Meterorologia, Universidad de Barcelona, Barcelona 8007 (Spain); Carlberg, Raymond G. [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3J3 (Canada); Di Carlo, Elisa [INAF, Osservatorio Astronomico di Teramo, 64100 Teramo (Italy); Challis, Peter J., E-mail: wang_xf@mail.tsinghua.edu.cn [Harvard/Smithsonian Center Astrophysics, Cambridge, MA 02138 (United States); and others

    2012-04-20

    We present ultraviolet (UV) spectroscopy and photometry of four Type Ia supernovae (SNe 2004dt, 2004ef, 2005M, and 2005cf) obtained with the UV prism of the Advanced Camera for Surveys on the Hubble Space Telescope. This data set provides unique spectral time series down to 2000 A. Significant diversity is seen in the near-maximum-light spectra ({approx}2000-3500 A) for this small sample. The corresponding photometric data, together with archival data from Swift Ultraviolet/Optical Telescope observations, provide further evidence of increased dispersion in the UV emission with respect to the optical. The peak luminosities measured in the uvw1/F250W filter are found to correlate with the B-band light-curve shape parameter {Delta}m{sub 15}(B), but with much larger scatter relative to the correlation in the broadband B band (e.g., {approx}0.4 mag versus {approx}0.2 mag for those with 0.8 mag < {Delta}m{sub 15}(B) < 1.7 mag). SN 2004dt is found as an outlier of this correlation (at > 3{sigma}), being brighter than normal SNe Ia such as SN 2005cf by {approx}0.9 mag and {approx}2.0 mag in the uvw1/F250W and uvm2/F220W filters, respectively. We show that different progenitor metallicity or line-expansion velocities alone cannot explain such a large discrepancy. Viewing-angle effects, such as due to an asymmetric explosion, may have a significant influence on the flux emitted in the UV region. Detailed modeling is needed to disentangle and quantify the above effects.

  6. On the use of Type I supernovae to determine the Hubble constant

    International Nuclear Information System (INIS)

    Branch, D.

    1979-01-01

    The derivation of the value of H 0 from composite photometric and spectroscopic data on Type I supernovae is improved in two ways. The formal result and its internal rms error become H 0 = 56 +- 15 km s -1 Mpc -1 . Comparison of temperatures inferred both from B-V colours and from fitting blackbody curves to flux distributions indicates that the observed B-V colours should be corrected to allow for the presence of lines. The correction would reduce the value obtained for H 0 . Several additional possibilities of systematic error are discussed. (author)

  7. A Type II Supernova Hubble Diagram from the CSP-I, SDSS-II, and SNLS Surveys

    Science.gov (United States)

    de Jaeger, T.; González-Gaitán, S.; Hamuy, M.; Galbany, L.; Anderson, J. P.; Phillips, M. M.; Stritzinger, M. D.; Carlberg, R. G.; Sullivan, M.; Gutiérrez, C. P.; Hook, I. M.; Howell, D. Andrew; Hsiao, E. Y.; Kuncarayakti, H.; Ruhlmann-Kleider, V.; Folatelli, G.; Pritchet, C.; Basa, S.

    2017-02-01

    The coming era of large photometric wide-field surveys will increase the detection rate of supernovae by orders of magnitude. Such numbers will restrict spectroscopic follow-up in the vast majority of cases, and hence new methods based solely on photometric data must be developed. Here, we construct a complete Hubble diagram of Type II supernovae (SNe II) combining data from three different samples: the Carnegie Supernova Project-I, the Sloan Digital Sky Survey II SN, and the Supernova Legacy Survey. Applying the Photometric Color Method (PCM) to 73 SNe II with a redshift range of 0.01-0.5 and with no spectral information, we derive an intrinsic dispersion of 0.35 mag. A comparison with the Standard Candle Method (SCM) using 61 SNe II is also performed and an intrinsic dispersion in the Hubble diagram of 0.27 mag, I.e., 13% in distance uncertainties, is derived. Due to the lack of good statistics at higher redshifts for both methods, only weak constraints on the cosmological parameters are obtained. However, assuming a flat universe and using the PCM, we derive the universe’s matter density: {{{Ω }}}m={0.32}-0.21+0.30 providing a new independent evidence for dark energy at the level of two sigma. This paper includes data gathered with the 6.5 m Magellan Telescopes, with the du Pont and Swope telescopes located at Las Campanas Observatory, Chile; and the Gemini Observatory, Cerro Pachon, Chile (Gemini Program N-2005A-Q-11, GN-2005B-Q-7, GN-2006A-Q-7, GS-2005A-Q-11, GS-2005B-Q-6, and GS-2008B-Q-56). Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile (ESO Programmes 076.A-0156,078.D-0048, 080.A-0516, and 082.A-0526).

  8. Astronomers celebrate a year of new Hubble results

    Science.gov (United States)

    1995-02-01

    to reach the telescope, had indeed passed through helium, and not only that, the helium was of just the right variety to match the established theory. Dr Jakobsen has spent more than 20 years working on this subject. His recent efforts concentrated on seeking out a quasar unobscured by clouds of hydrogen, which block the tell-tale signature of helium. His search drew him to the Space Telescope project and during the telescope's early years in orbit he studied 25 likely quasars and found one promising candidate. Dr Jacobsen then had to wait for the telescope's new optics before he could get the quality of data he needed to prove the existence of helium. "We were looking for a break in the cloud cover, so to speak," the astronomer said. "We had a tantalising glimpse of the quasar with the aberrated telescope but it was only after we fixed it that we could really get a clear answer. One of the first things that we did once we had the corrective optics in place was look at this object and it was exactly as we'd hoped." Getting the Universe to measure up When it comes to studying the expansion of the Universe, however, the telescope has raised morn; questions than answers. By determining how fast the Universe is expanding astronomers will be able to calculate its age and size. It may then become possible to discover what is the ultimate fate of the Universe; will it simply continue to expand until it evaporates? Will the expansion come to a complete stop? Or will the Universe stop expanding, start contracting and end in a "big crunch"? The rate at which the Universe expands is known as the Hubble Constant or H0. To measure this value, astronomers need to calculate how far away a galaxy is and how fast it is moving away from us. The former is difficult to determine because reliable distance indicators, sometimes known as "cosmic yardsticks ", such as variable stars and supernovae, must be found in the galaxies. An international team of astronomers recently used the Hubble

  9. A TYPE Ia SUPERNOVA AT REDSHIFT 1.55 IN HUBBLE SPACE TELESCOPE INFRARED OBSERVATIONS FROM CANDELS

    International Nuclear Information System (INIS)

    Rodney, Steven A.; Riess, Adam G.; Jones, David O.; Dahlen, Tomas; Ferguson, Henry C.; Casertano, Stefano; Grogin, Norman A.; Strolger, Louis-Gregory; Hjorth, Jens; Frederiksen, Teddy F.; Weiner, Benjamin J.; Mobasher, Bahram; Challis, Peter; Kirshner, Robert P.; Faber, S. M.; Filippenko, Alexei V.; Garnavich, Peter; Hayden, Brian; Graur, Or; Jha, Saurabh W.

    2012-01-01

    We report the discovery of a Type Ia supernova (SN Ia) at redshift z = 1.55 with the infrared detector of the Wide Field Camera 3 (WFC3-IR) on the Hubble Space Telescope (HST). This object was discovered in CANDELS imaging data of the Hubble Ultra Deep Field and followed as part of the CANDELS+CLASH Supernova project, comprising the SN search components from those two HST multi-cycle treasury programs. This is the highest redshift SN Ia with direct spectroscopic evidence for classification. It is also the first SN Ia at z > 1 found and followed in the infrared, providing a full light curve in rest-frame optical bands. The classification and redshift are securely defined from a combination of multi-band and multi-epoch photometry of the SN, ground-based spectroscopy of the host galaxy, and WFC3-IR grism spectroscopy of both the SN and host. This object is the first of a projected sample at z > 1.5 that will be discovered by the CANDELS and CLASH programs. The full CANDELS+CLASH SN Ia sample will enable unique tests for evolutionary effects that could arise due to differences in SN Ia progenitor systems as a function of redshift. This high-z sample will also allow measurement of the SN Ia rate out to z ≈ 2, providing a complementary constraint on SN Ia progenitor models.

  10. Hubble Space Telescope Observations of the Afterglow, Supernova and Host Galaxy Associated with the Extremely Bright GRB 130427A

    Science.gov (United States)

    Levan, A.J.; Tanvir, N. R.; Fruchter, A. S.; Hjorth, J.; Pian, E.; Mazzali, P.; Hounsell, R. A.; Perley, D. A.; Cano, Z.; Graham, J.; hide

    2014-01-01

    We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst, GRB 130427A. At z=0.34 this burst affords an excellent opportunity to study the supernova and host galaxy associated with an intrinsically extremely luminous burst (E(sub iso) greater than 10(exp 54) erg): more luminous than any previous GRB with a spectroscopically associated supernova. We use the combination of the image quality, UV capability and and invariant PSF of HST to provide the best possible separation of the afterglow, host and supernova contributions to the observed light approximately 17 rest-frame days after the burst utilising a host subtraction spectrum obtained 1 year later. Advanced Camera for Surveys (ACS) grism observations show that the associated supernova, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, vph approximately 15,000 kilometers per second). The positions of the bluer features are better matched by the higher velocity SN 2010bh (vph approximately 30,000 kilometers per second), but SN 2010bh (vph approximately 30,000 kilometers per second but this SN is significantly fainter, and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated approximately 4 kpc from the nucleus of a moderately star forming (1 Solar Mass yr(exp-1)), possibly interacting disc galaxy. The absolute magnitude, physical size and morphology of this galaxy, as well as the location of the GRB within it are also strikingly similar to those of GRB980425SN 1998bw. The similarity of supernovae and environment from both the most luminous and least luminous GRBs suggests broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy.

  11. Cosmological Results from High-z Supernovae

    Science.gov (United States)

    Tonry, John L.; Schmidt, Brian P.; Barris, Brian; Candia, Pablo; Challis, Peter; Clocchiatti, Alejandro; Coil, Alison L.; Filippenko, Alexei V.; Garnavich, Peter; Hogan, Craig; Holland, Stephen T.; Jha, Saurabh; Kirshner, Robert P.; Krisciunas, Kevin; Leibundgut, Bruno; Li, Weidong; Matheson, Thomas; Phillips, Mark M.; Riess, Adam G.; Schommer, Robert; Smith, R. Chris; Sollerman, Jesper; Spyromilio, Jason; Stubbs, Christopher W.; Suntzeff, Nicholas B.

    2003-09-01

    The High-z Supernova Search Team has discovered and observed eight new supernovae in the redshift interval z=0.3-1.2. These independent observations, analyzed by similar but distinct methods, confirm the results of Riess and Perlmutter and coworkers that supernova luminosity distances imply an accelerating universe. More importantly, they extend the redshift range of consistently observed Type Ia supernovae (SNe Ia) to z~1, where the signature of cosmological effects has the opposite sign of some plausible systematic effects. Consequently, these measurements not only provide another quantitative confirmation of the importance of dark energy, but also constitute a powerful qualitative test for the cosmological origin of cosmic acceleration. We find a rate for SN Ia of (1.4+/-0.5)×10-4h3Mpc-3yr-1 at a mean redshift of 0.5. We present distances and host extinctions for 230 SN Ia. These place the following constraints on cosmological quantities: if the equation of state parameter of the dark energy is w=-1, then H0t0=0.96+/-0.04, and ΩΛ-1.4ΩM=0.35+/-0.14. Including the constraint of a flat universe, we find ΩM=0.28+/-0.05, independent of any large-scale structure measurements. Adopting a prior based on the Two Degree Field (2dF) Redshift Survey constraint on ΩM and assuming a flat universe, we find that the equation of state parameter of the dark energy lies in the range -1.48-1, we obtain wInstitute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS 5-26555. This research is primarily associated with proposal GO-8177, but also uses and reports results from proposals GO-7505, 7588, 8641, and 9118. Based in part on observations taken with the Canada-France-Hawaii Telescope, operated by the National Research Council of Canada, le Centre National de la Recherche Scientifique de France, and the University of Hawaii. CTIO: Based in part on observations taken at the Cerro Tololo Inter

  12. Constraints on the progenitor system of the type Ia supernova 2014J from pre-explosion Hubble space telescope imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Patrick L.; Fox, Ori D.; Filippenko, Alexei V.; Shen, Ken J.; Zheng, WeiKang; Graham, Melissa L.; Tucker, Brad E. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Cenko, S. Bradley [NASA/Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States); Prato, Lisa [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Schaefer, Gail, E-mail: pkelly@astro.berkeley.edu [The CHARA Array of Georgia State University, Mount Wilson Observatory, Mount Wilson, CA 91023 (United States)

    2014-07-20

    We constrain the properties of the progenitor system of the highly reddened Type Ia supernova (SN Ia) 2014J in Messier 82 (M82; d ≈ 3.5 Mpc). We determine the supernova (SN) location using Keck-II K-band adaptive optics images, and we find no evidence for flux from a progenitor system in pre-explosion near-ultraviolet through near-infrared Hubble Space Telescope (HST) images. Our upper limits exclude systems having a bright red giant companion, including symbiotic novae with luminosities comparable to that of RS Ophiuchi. While the flux constraints are also inconsistent with predictions for comparatively cool He-donor systems (T ≲ 35,000 K), we cannot preclude a system similar to V445 Puppis. The progenitor constraints are robust across a wide range of R{sub V} and A{sub V} values, but significantly greater values than those inferred from the SN light curve and spectrum would yield proportionally brighter luminosity limits. The comparatively faint flux expected from a binary progenitor system consisting of white dwarf stars would not have been detected in the pre-explosion HST imaging. Infrared HST exposures yield more stringent constraints on the luminosities of very cool (T < 3000 K) companion stars than was possible in the case of SN Ia 2011fe.

  13. Constraints on the progenitor system of the type Ia supernova 2014J from pre-explosion Hubble space telescope imaging

    International Nuclear Information System (INIS)

    Kelly, Patrick L.; Fox, Ori D.; Filippenko, Alexei V.; Shen, Ken J.; Zheng, WeiKang; Graham, Melissa L.; Tucker, Brad E.; Cenko, S. Bradley; Prato, Lisa; Schaefer, Gail

    2014-01-01

    We constrain the properties of the progenitor system of the highly reddened Type Ia supernova (SN Ia) 2014J in Messier 82 (M82; d ≈ 3.5 Mpc). We determine the supernova (SN) location using Keck-II K-band adaptive optics images, and we find no evidence for flux from a progenitor system in pre-explosion near-ultraviolet through near-infrared Hubble Space Telescope (HST) images. Our upper limits exclude systems having a bright red giant companion, including symbiotic novae with luminosities comparable to that of RS Ophiuchi. While the flux constraints are also inconsistent with predictions for comparatively cool He-donor systems (T ≲ 35,000 K), we cannot preclude a system similar to V445 Puppis. The progenitor constraints are robust across a wide range of R V and A V values, but significantly greater values than those inferred from the SN light curve and spectrum would yield proportionally brighter luminosity limits. The comparatively faint flux expected from a binary progenitor system consisting of white dwarf stars would not have been detected in the pre-explosion HST imaging. Infrared HST exposures yield more stringent constraints on the luminosities of very cool (T < 3000 K) companion stars than was possible in the case of SN Ia 2011fe.

  14. First results from the Hubble OPAL Program: Jupiter in 2015

    Science.gov (United States)

    Simon, Amy A.; Wong, Michael H.; Orton, Glenn S.

    2015-11-01

    The Hubble 2020: Outer Planet Atmospheres Legacy (OPAL) program is a Director's Discretionary program designed to generate two yearly global maps for each of the outer planets to enable long term studies of atmospheric color, structure and two-dimensional wind fields. This presentation focuses on Jupiter results from the first year of the campaign. Data were acqured January 19, 2015 with the WFC3/UVIS camera and the F275W, F343N, F395N, F467M, F502N, F547M, F631N, F658N, and F889N filters. Global maps were generated and are publicly available through the High Level Science Products archive: https://archive.stsci.edu/prepds/opal/Using cross-correlation on the global maps, the zonal wind profile was measured between +/- 50 degrees latitude and is in family with Voyager and Cassini era profiles. There are some variations in mid to high latitude wind jet magnitudes, particularly at +40°and -35° planetographic latitude. The Great Red Spot continues to maintain an intense orange coloration, as it did in 2014. However, the interior shows changed structure, including a reduced core and new filamentary features. Finally, a wave not previously seen in Hubble images was also observed and is interpreted as a baroclinic instability with associated cyclone formation near 16° N latitude. A similar feature was observed faintly in Voyager 2 images, and is consistent with the Hubble feature in location and scale.

  15. HUBBLE RESIDUALS OF NEARBY TYPE Ia SUPERNOVAE ARE CORRELATED WITH HOST GALAXY MASSES

    International Nuclear Information System (INIS)

    Kelly, Patrick L.; Burke, David L.; Hicken, Malcolm; Mandel, Kaisey S.; Kirshner, Robert P.

    2010-01-01

    From Sloan Digital Sky Survey u'g'r'i'z' imaging, we estimate the stellar masses of the host galaxies of 70 low-redshift Type Ia supernovae (SNe Ia, 0.015 10.8 M sun in a cosmology fit yields 1 + w = 0.22 +0.152 -0.108 , while a combination where the 30 nearby SNe instead have host masses greater than 10 10.8 M sun yields 1 + w = -0.03 +0.217 -0.143 . Progenitor metallicity, stellar population age, and dust extinction correlate with galaxy mass and may be responsible for these systematic effects. Host galaxy measurements will yield improved distances to SNe Ia.

  16. Hubble Space Telescope and Ground-Based Observations of the Type Iax Supernovae SN 2005hk and SN 2008A

    Energy Technology Data Exchange (ETDEWEB)

    McCully, Curtis; Jha, Saurabh W.; Foley, Ryan J.; Chornock, Ryan; Holtzman, Jon A.; Balam, David D.; Branch, David; Filippenko, Alexei V.; Frieman, Joshua; Fynbo, Johan; Galbany, Lluis; Ganeshalingam, Mohan; Garnavich, Peter M.; Graham, Melissa L.; Hsiao, Eric Y.; Leloudas, Giorgos; Leonard, Douglas C.; Li, Weidong; Riess, Adam G.; Sako, Masao; Schneider, Donald P.; Silverman, Jeffrey M.; Sollerman, Jesper; Steele, Thea N.; Thomas, Rollin C.; Wheeler, J. Craig; Zheng, Chen

    2014-04-24

    We present Hubble Space Telescope (HST) and ground-based optical and near-infrared observations of SN 2005hk and SN 2008A, typical members of the Type Iax class of supernovae (SNe). Here we focus on late-time observations, where these objects deviate most dramatically from all other SN types. Instead of the dominant nebular emission lines that are observed in other SNe at late phases, spectra of SNe 2005hk and 2008A show lines of Fe II, Ca II, and Fe I more than a year past maximum light, along with narrow [Fe II] and [Ca II] emission. We use spectral features to constrain the temperature and density of the ejecta, and find high densities at late times, with ne109 cm–3. Such high densities should yield enhanced cooling of the ejecta, making these objects good candidates to observe the expected "infrared catastrophe," a generic feature of SN Ia models. However, our HST photometry of SN 2008A does not match the predictions of an infrared catastrophe. Moreover, our HST observations rule out a "complete deflagration" that fully disrupts the white dwarf for these peculiar SNe, showing no evidence for unburned material at late times. Deflagration explosion models that leave behind a bound remnant can match some of the observed properties of SNe Iax, but no published model is consistent with all of our observations of SNe 2005hk and 2008A.

  17. Hubble space telescope and ground-based observations of the type Iax supernovae SN 2005hk and SN 2008A

    International Nuclear Information System (INIS)

    McCully, Curtis; Jha, Saurabh W.; Foley, Ryan J.; Chornock, Ryan; Holtzman, Jon A.; Balam, David D.; Branch, David; Filippenko, Alexei V.; Ganeshalingam, Mohan; Li, Weidong; Frieman, Joshua; Fynbo, Johan; Leloudas, Giorgos; Galbany, Lluis; Garnavich, Peter M.; Graham, Melissa L.; Hsiao, Eric Y.; Leonard, Douglas C.

    2014-01-01

    We present Hubble Space Telescope (HST) and ground-based optical and near-infrared observations of SN 2005hk and SN 2008A, typical members of the Type Iax class of supernovae (SNe). Here we focus on late-time observations, where these objects deviate most dramatically from all other SN types. Instead of the dominant nebular emission lines that are observed in other SNe at late phases, spectra of SNe 2005hk and 2008A show lines of Fe II, Ca II, and Fe I more than a year past maximum light, along with narrow [Fe II] and [Ca II] emission. We use spectral features to constrain the temperature and density of the ejecta, and find high densities at late times, with n e ≳ 10 9 cm –3 . Such high densities should yield enhanced cooling of the ejecta, making these objects good candidates to observe the expected 'infrared catastrophe', a generic feature of SN Ia models. However, our HST photometry of SN 2008A does not match the predictions of an infrared catastrophe. Moreover, our HST observations rule out a 'complete deflagration' that fully disrupts the white dwarf for these peculiar SNe, showing no evidence for unburned material at late times. Deflagration explosion models that leave behind a bound remnant can match some of the observed properties of SNe Iax, but no published model is consistent with all of our observations of SNe 2005hk and 2008A.

  18. Hubble space telescope and ground-based observations of the type Iax supernovae SN 2005hk and SN 2008A

    Energy Technology Data Exchange (ETDEWEB)

    McCully, Curtis; Jha, Saurabh W. [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Foley, Ryan J. [Astronomy Department, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Chornock, Ryan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Holtzman, Jon A. [Department of Astronomy, MSC 4500, New Mexico State University, P.O. Box 30001, Las Cruces, NM 88003 (United States); Balam, David D. [Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Branch, David [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States); Filippenko, Alexei V.; Ganeshalingam, Mohan; Li, Weidong [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Frieman, Joshua [Kavli Institute for Cosmological Physics and Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Fynbo, Johan; Leloudas, Giorgos [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Galbany, Lluis [Institut de Física d' Altes Energies, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona) (Spain); Garnavich, Peter M. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Graham, Melissa L. [Las Cumbres Observatory Global Telescope Network, Goleta, CA 93117 (United States); Hsiao, Eric Y. [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Leonard, Douglas C., E-mail: cmccully@physics.rutgers.edu [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); and others

    2014-05-10

    We present Hubble Space Telescope (HST) and ground-based optical and near-infrared observations of SN 2005hk and SN 2008A, typical members of the Type Iax class of supernovae (SNe). Here we focus on late-time observations, where these objects deviate most dramatically from all other SN types. Instead of the dominant nebular emission lines that are observed in other SNe at late phases, spectra of SNe 2005hk and 2008A show lines of Fe II, Ca II, and Fe I more than a year past maximum light, along with narrow [Fe II] and [Ca II] emission. We use spectral features to constrain the temperature and density of the ejecta, and find high densities at late times, with n{sub e} ≳ 10{sup 9} cm{sup –3}. Such high densities should yield enhanced cooling of the ejecta, making these objects good candidates to observe the expected 'infrared catastrophe', a generic feature of SN Ia models. However, our HST photometry of SN 2008A does not match the predictions of an infrared catastrophe. Moreover, our HST observations rule out a 'complete deflagration' that fully disrupts the white dwarf for these peculiar SNe, showing no evidence for unburned material at late times. Deflagration explosion models that leave behind a bound remnant can match some of the observed properties of SNe Iax, but no published model is consistent with all of our observations of SNe 2005hk and 2008A.

  19. Hubble space telescope observations of the afterglow, supernova, and host galaxy associated with the extremely bright GRB 130427A

    Energy Technology Data Exchange (ETDEWEB)

    Levan, A. J. [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Tanvir, N. R.; Wiersema, K. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom); Fruchter, A. S.; Hounsell, R. A.; Graham, J. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Hjorth, J.; Fynbo, J. P. U. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Pian, E. [INAF, Trieste Astronomical Observatory, via G.B. Tiepolo 11, I-34143 Trieste (Italy); Mazzali, P. [Astrophysics Research Institute, Liverpool John Moores University, IC2 Liverpool Science Park 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd., Pasadena, CA 91125 (United States); Cano, Z. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavik (Iceland); Cenko, S. B. [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Kouveliotou, C. [Science and Technology Office, ZP12, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Pe' er, A. [Department of Physics, University College Cork, Cork (Ireland); Misra, K., E-mail: a.j.levan@warwick.ac.uk [Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital-263 002 (India)

    2014-09-10

    We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst (GRB), GRB 130427A. At z = 0.34, this burst affords an excellent opportunity to study the supernova (SN) and host galaxy associated with an intrinsically extremely luminous burst (E {sub iso} > 10{sup 54} erg): more luminous than any previous GRB with a spectroscopically associated SN. We use the combination of the image quality, UV capability, and invariant point-spread function of HST to provide the best possible separation of the afterglow, host, and SN contributions to the observed light ∼17 rest-frame days after the burst, utilizing a host subtraction spectrum obtained one year later. Advanced Camera for Surveys grism observations show that the associated SN, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, v {sub ph} ∼ 15, 000 km s{sup –1}). The positions of the bluer features are better matched by the higher velocity SN 2010bh (v {sub ph} ∼ 30, 000 km s{sup –1}), but this SN is significantly fainter and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated ∼4 kpc from the nucleus of a moderately star forming (1 M {sub ☉} yr{sup –1}), possibly interacting disk galaxy. The absolute magnitude, physical size, and morphology of this galaxy, as well as the location of the GRB within it, are also strikingly similar to those of GRB 980425/SN 1998bw. The similarity of the SNe and environment from both the most luminous and least luminous GRBs suggests that broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy.

  20. SUPERNOVA REMNANTS AND THE INTERSTELLAR MEDIUM OF M83: IMAGING AND PHOTOMETRY WITH THE WIDE FIELD CAMERA 3 ON THE HUBBLE SPACE TELESCOPE

    International Nuclear Information System (INIS)

    Dopita, Michael A.; Blair, William P.; Kuntz, Kip D.; Long, Knox S.; Mutchler, Max; Whitmore, Bradley C.; Bond, Howard E.; MacKenty, John; Balick, Bruce; Calzetti, Daniela; Carollo, Marcella; Disney, Michael; Frogel, Jay A.; O'Connell, Robert; Hall, Donald; Holtzman, Jon A.; Kimble, Randy A.; McCarthy, Patrick; Paresce, Francesco; Saha, Abhijit

    2010-01-01

    We present Wide Field Camera 3 images taken with the Hubble Space Telescope within a single field in the southern grand design star-forming galaxy M83. Based on their size, morphology, and photometry in continuum-subtracted Hα, [S II], Hβ, [O III], and [O II] filters, we have identified 60 supernova remnant (SNR) candidates, as well as a handful of young ejecta-dominated candidates. A catalog of these remnants, their sizes and, where possible, their Hα fluxes are given. Radiative ages and pre-shock densities are derived from those SNRs that have good photometry. The ages lie in the range 2.62 rad /yr) 0 /cm -3 min = 16 +7 -5 M sun . Finally, we give evidence for the likely detection of the remnant of the historical supernova, SN1968L.

  1. New Constraints on ΩM, ΩΛ, and w from an Independent Set of 11 High-Redshift Supernovae Observed with the Hubble Space Telescope

    Science.gov (United States)

    Knop, R. A.; Aldering, G.; Amanullah, R.; Astier, P.; Blanc, G.; Burns, M. S.; Conley, A.; Deustua, S. E.; Doi, M.; Ellis, R.; Fabbro, S.; Folatelli, G.; Fruchter, A. S.; Garavini, G.; Garmond, S.; Garton, K.; Gibbons, R.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hardin, D.; Hook, I.; Howell, D. A.; Kim, A. G.; Lee, B. C.; Lidman, C.; Mendez, J.; Nobili, S.; Nugent, P. E.; Pain, R.; Panagia, N.; Pennypacker, C. R.; Perlmutter, S.; Quimby, R.; Raux, J.; Regnault, N.; Ruiz-Lapuente, P.; Sainton, G.; Schaefer, B.; Schahmaneche, K.; Smith, E.; Spadafora, A. L.; Stanishev, V.; Sullivan, M.; Walton, N. A.; Wang, L.; Wood-Vasey, W. M.; Yasuda, N.

    2003-11-01

    We report measurements of ΩM, ΩΛ, and w from 11 supernovae (SNe) at z=0.36-0.86 with high-quality light curves measured using WFPC2 on the Hubble Space Telescope (HST). This is an independent set of high-redshift SNe that confirms previous SN evidence for an accelerating universe. The high-quality light curves available from photometry on WFPC2 make it possible for these 11 SNe alone to provide measurements of the cosmological parameters comparable in statistical weight to the previous results. Combined with earlier Supernova Cosmology Project data, the new SNe yield a measurement of the mass density ΩM=0.25+0.07-0.06(statistical)+/-0.04 (identified systematics), or equivalently, a cosmological constant of ΩΛ=0.75+0.06-0.07(statistical)+/-0.04 (identified systematics), under the assumptions of a flat universe and that the dark energy equation-of-state parameter has a constant value w=-1. When the SN results are combined with independent flat-universe measurements of ΩM from cosmic microwave background and galaxy redshift distortion data, they provide a measurement of w=-1.05+0.15-0.20(statistical)+/-0.09 (identified systematic), if w is assumed to be constant in time. In addition to high-precision light-curve measurements, the new data offer greatly improved color measurements of the high-redshift SNe and hence improved host galaxy extinction estimates. These extinction measurements show no anomalous negative E(B-V) at high redshift. The precision of the measurements is such that it is possible to perform a host galaxy extinction correction directly for individual SNe without any assumptions or priors on the parent E(B-V) distribution. Our cosmological fits using full extinction corrections confirm that dark energy is required with P(ΩΛ>0)>0.99, a result consistent with previous and current SN analyses that rely on the identification of a low-extinction subset or prior assumptions concerning the intrinsic extinction distribution. Based in part on

  2. Beyond the Hubble Constant

    Science.gov (United States)

    1995-08-01

    International Astronomer Team Witnesses Very Ancient Stellar Explosion A few months ago, a violent stellar explosion -- a supernova -- was discovered in an extremely distant galaxy by an international team of astronomers [1]. This is the very promising first result of a recently initiated, dedicated search for such objects. Subsequent spectral observations have shown this to be the most distant supernova ever observed. Although it is very faint, it has been possible to classify it as a supernova of Type Ia, a kind that is particularly well suited for cosmological distance determinations. A Very Efficient Supernova Search Programme The present discovery was made during the team's first observations with the 4-metre telescope at the Cerro Tololo Inter-American Observatory in Chile. This telescope is equipped with a wide-field camera at its prime focus that enables the simultaneous recording of the images of even very faint objects in a 15-arcminute field. Hundreds of distant galaxies are located in a field of this size and this observational method is therefore very well suited for a search of faint and transient supernovae in such galaxies. With a carefully planned observing sequence, it is possible to image up to 55 sky fields per night. A comparison with earlier exposures makes it possible to detect suddenly appearing supernovae as faint points of light near the galaxy in which the exploding star is located (the parent galaxy). A crucial feature of the new programme is the possibility to perform follow-up spectroscopic observations, whenever a new supernova is discovered. For this, the team has obtained access to several other large telescopes, including the ESO 3.5-metre New Technology Telescope (NTT), the 3.9-metre Anglo-Australian Telescope (AAT) and the Multi-Mirror Telescope (MMT) in Arizona, U.S.A.. The Spectrum of the Supernova The present supernova was first detected at Tololo on March 30, 1995. It was given the official designation SN 1995K, and its

  3. LINKING TYPE Ia SUPERNOVA PROGENITORS AND THEIR RESULTING EXPLOSIONS

    International Nuclear Information System (INIS)

    Foley, Ryan J.; Kirshner, Robert P.; Simon, Joshua D.; Burns, Christopher R.; Gal-Yam, Avishay; Hamuy, Mario; Morrell, Nidia I.; Phillips, Mark M.; Shields, Gregory A.; Sternberg, Assaf

    2012-01-01

    Comparing the ejecta velocities at maximum brightness and narrow circumstellar/interstellar Na D absorption line profiles of a sample of 23 Type Ia supernovae (SNe Ia), we determine that the properties of SN Ia progenitor systems and explosions are intimately connected. As demonstrated by Sternberg et al., half of all SNe Ia with detectable Na D absorption at the host-galaxy redshift in high-resolution spectroscopy have Na D line profiles with significant blueshifted absorption relative to the strongest absorption component, which indicates that a large fraction of SN Ia progenitor systems have strong outflows. In this study, we find that SNe Ia with blueshifted circumstellar/interstellar absorption systematically have higher ejecta velocities and redder colors at maximum brightness relative to the rest of the SN Ia population. This result is robust at a 98.9%-99.8% confidence level, providing the first link between the progenitor systems and properties of the explosion. This finding is further evidence that the outflow scenario is the correct interpretation of the blueshifted Na D absorption, adding additional confirmation that some SNe Ia are produced from a single-degenerate progenitor channel. An additional implication is that either SN Ia progenitor systems have highly asymmetric outflows that are also aligned with the SN explosion or SNe Ia come from a variety of progenitor systems where SNe Ia from systems with strong outflows tend to have more kinetic energy per unit mass than those from systems with weak or no outflows.

  4. Planck intermediate results XXXI. Microwave survey of Galactic supernova remnants

    DEFF Research Database (Denmark)

    Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.

    2016-01-01

    The all-sky Planck survey in 9 frequency bands was used to search for emission from all 274 known Galactic supernova remnants. Of these, 16 were detected in at least two Planck frequencies. The radio-through-microwave spectral energy distributions were compiled to determine the mechanism for micr......The all-sky Planck survey in 9 frequency bands was used to search for emission from all 274 known Galactic supernova remnants. Of these, 16 were detected in at least two Planck frequencies. The radio-through-microwave spectral energy distributions were compiled to determine the mechanism...... for microwave emission. In only one case, IC 443, is there high-frequency emission clearly from dust associated with the supernova remnant. In all cases, the low-frequency emission is from synchrotron radiation. As predicted for a population of relativistic particles with energy distribution that extends...

  5. 2D and 3D core-collapse supernovae simulation results obtained with the CHIMERA code

    Energy Technology Data Exchange (ETDEWEB)

    Bruenn, S W; Marronetti, P; Dirk, C J [Physics Department, Florida Atlantic University, 777 W. Glades Road, Boca Raton, FL 33431-0991 (United States); Mezzacappa, A; Hix, W R [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6354 (United States); Blondin, J M [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States); Messer, O E B [Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6354 (United States); Yoshida, S, E-mail: bruenn@fau.ed [Max-Planck-Institut fur Gravitationsphysik, Albert Einstein Institut, Golm (Germany)

    2009-07-01

    Much progress in realistic modeling of core-collapse supernovae has occurred recently through the availability of multi-teraflop machines and the increasing sophistication of supernova codes. These improvements are enabling simulations with enough realism that the explosion mechanism, long a mystery, may soon be delineated. We briefly describe the CHIMERA code, a supernova code we have developed to simulate core-collapse supernovae in 1, 2, and 3 spatial dimensions. We then describe the results of an ongoing suite of 2D simulations initiated from a 12, 15, 20, and 25 M{sub o-dot} progenitor. These have all exhibited explosions and are currently in the expanding phase with the shock at between 5,000 and 20,000 km. We also briefly describe an ongoing simulation in 3 spatial dimensions initiated from the 15 M{sub o-dot} progenitor.

  6. Predicted continuum spectra of type II supernovae - LTE results

    Science.gov (United States)

    Shaviv, G.; Wehrse, R.; Wagoner, R. V.

    1985-01-01

    The continuum spectral energy distribution of the flux emerging from type II supernovae is calculated from quasi-static radiative transfer through a power-law density gradient, assuming radiative equilibrium and LTE. It is found that the Balmer jump disappears at high effective temperatures and low densities, while the spectrum resembles that of a dilute blackbody but is flatter with a sharper cutoff at the short-wavelength end. A significant UV excess is found in all models calculated. The calculation should be considered exploratory because of significant effects which are anticipated to arise from departure from LTE.

  7. Delay-time distribution of core-collapse supernovae with late events resulting from binary interaction

    Science.gov (United States)

    Zapartas, E.; de Mink, S. E.; Izzard, R. G.; Yoon, S.-C.; Badenes, C.; Götberg, Y.; de Koter, A.; Neijssel, C. J.; Renzo, M.; Schootemeijer, A.; Shrotriya, T. S.

    2017-05-01

    Most massive stars, the progenitors of core-collapse supernovae, are in close binary systems and may interact with their companion through mass transfer or merging. We undertake a population synthesis study to compute the delay-time distribution of core-collapse supernovae, that is, the supernova rate versus time following a starburst, taking into account binary interactions. We test the systematic robustness of our results by running various simulations to account for the uncertainties in our standard assumptions. We find that a significant fraction, %, of core-collapse supernovae are "late", that is, they occur 50-200 Myr after birth, when all massive single stars have already exploded. These late events originate predominantly from binary systems with at least one, or, in most cases, with both stars initially being of intermediate mass (4-8 M⊙). The main evolutionary channels that contribute often involve either the merging of the initially more massive primary star with its companion or the engulfment of the remaining core of the primary by the expanding secondary that has accreted mass at an earlier evolutionary stage. Also, the total number of core-collapse supernovae increases by % because of binarity for the same initial stellar mass. The high rate implies that we should have already observed such late core-collapse supernovae, but have not recognized them as such. We argue that φ Persei is a likely progenitor and that eccentric neutron star - white dwarf systems are likely descendants. Late events can help explain the discrepancy in the delay-time distributions derived from supernova remnants in the Magellanic Clouds and extragalactic type Ia events, lowering the contribution of prompt Ia events. We discuss ways to test these predictions and speculate on the implications for supernova feedback in simulations of galaxy evolution.

  8. Simulating Supernova Light Curves

    International Nuclear Information System (INIS)

    Even, Wesley Paul; Dolence, Joshua C.

    2016-01-01

    This report discusses supernova light simulations. A brief review of supernovae, basics of supernova light curves, simulation tools used at LANL, and supernova results are included. Further, it happens that many of the same methods used to generate simulated supernova light curves can also be used to model the emission from fireballs generated by explosions in the earth's atmosphere.

  9. Simulating Supernova Light Curves

    Energy Technology Data Exchange (ETDEWEB)

    Even, Wesley Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dolence, Joshua C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-05

    This report discusses supernova light simulations. A brief review of supernovae, basics of supernova light curves, simulation tools used at LANL, and supernova results are included. Further, it happens that many of the same methods used to generate simulated supernova light curves can also be used to model the emission from fireballs generated by explosions in the earth’s atmosphere.

  10. Type Ia Supernova Cosmology

    Science.gov (United States)

    Leibundgut, B.; Sullivan, M.

    2018-03-01

    The primary agent for Type Ia supernova cosmology is the uniformity of their appearance. We present the current status, achievements and uncertainties. The Hubble constant and the expansion history of the universe are key measurements provided by Type Ia supernovae. They were also instrumental in showing time dilation, which is a direct observational signature of expansion. Connections to explosion physics are made in the context of potential improvements of the quality of Type Ia supernovae as distance indicators. The coming years will see large efforts to use Type Ia supernovae to characterise dark energy.

  11. Aspherical supernovae

    International Nuclear Information System (INIS)

    Kasen, Daniel Nathan

    2004-01-01

    Although we know that many supernovae are aspherical, the exact nature of their geometry is undetermined. Because all the supernovae we observe are too distant to be resolved, the ejecta structure can't be directly imaged, and asymmetry must be inferred from signatures in the spectral features and polarization of the supernova light. The empirical interpretation of this data, however, is rather limited--to learn more about the detailed supernova geometry, theoretical modeling must been undertaken. One expects the geometry to be closely tied to the explosion mechanism and the progenitor star system, both of which are still under debate. Studying the 3-dimensional structure of supernovae should therefore provide new break throughs in our understanding. The goal of this thesis is to advance new techniques for calculating radiative transfer in 3-dimensional expanding atmospheres, and use them to study the flux and polarization signatures of aspherical supernovae. We develop a 3-D Monte Carlo transfer code and use it to directly fit recent spectropolarimetric observations, as well as calculate the observable properties of detailed multi-dimensional hydrodynamical explosion simulations. While previous theoretical efforts have been restricted to ellipsoidal models, we study several more complicated configurations that are tied to specific physical scenarios. We explore clumpy and toroidal geometries in fitting the spectropolarimetry of the Type Ia supernova SN 2001el. We then calculate the observable consequences of a supernova that has been rendered asymmetric by crashing into a nearby companion star. Finally, we fit the spectrum of a peculiar and extraordinarily luminous Type Ic supernova. The results are brought to bear on three broader astrophysical questions: (1) What are the progenitors and the explosion processes of Type Ia supernovae? (2) What effect does asymmetry have on the observational diversity of Type Ia supernovae, and hence their use in cosmology? (3) And

  12. Supernovae Discovery Efficiency

    Science.gov (United States)

    John, Colin

    2018-01-01

    Abstract:We present supernovae (SN) search efficiency measurements for recent Hubble Space Telescope (HST) surveys. Efficiency is a key component to any search, and is important parameter as a correction factor for SN rates. To achieve an accurate value for efficiency, many supernovae need to be discoverable in surveys. This cannot be achieved from real SN only, due to their scarcity, so fake SN are planted. These fake supernovae—with a goal of realism in mind—yield an understanding of efficiency based on position related to other celestial objects, and brightness. To improve realism, we built a more accurate model of supernovae using a point-spread function. The next improvement to realism is planting these objects close to galaxies and of various parameters of brightness, magnitude, local galactic brightness and redshift. Once these are planted, a very accurate SN is visible and discoverable by the searcher. It is very important to find factors that affect this discovery efficiency. Exploring the factors that effect detection yields a more accurate correction factor. Further inquires into efficiency give us a better understanding of image processing, searching techniques and survey strategies, and result in an overall higher likelihood to find these events in future surveys with Hubble, James Webb, and WFIRST telescopes. After efficiency is discovered and refined with many unique surveys, it factors into measurements of SN rates versus redshift. By comparing SN rates vs redshift against the star formation rate we can test models to determine how long star systems take from the point of inception to explosion (delay time distribution). This delay time distribution is compared to SN progenitors models to get an accurate idea of what these stars were like before their deaths.

  13. The Lyman alpha reference sample. II. Hubble space telescope imaging results, integrated properties, and trends

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Matthew; Östlin, Göran; Duval, Florent; Sandberg, Andreas; Guaita, Lucia; Melinder, Jens; Rivera-Thorsen, Thøger [Department of Astronomy, Oskar Klein Centre, Stockholm University, AlbaNova University Centre, SE-106 91 Stockholm (Sweden); Adamo, Angela [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Schaerer, Daniel [Université de Toulouse, UPS-OMP, IRAP, F-31000 Toulouse (France); Verhamme, Anne; Orlitová, Ivana [Geneva Observatory, University of Geneva, 51 Chemin des Maillettes, CH-1290 Versoix (Switzerland); Mas-Hesse, J. Miguel; Otí-Floranes, Héctor [Centro de Astrobiología (CSIC-INTA), Departamento de Astrofísica, P.O. Box 78, E-28691 Villanueva de la Cañada (Spain); Cannon, John M.; Pardy, Stephen [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Atek, Hakim [Laboratoire dAstrophysique, École Polytechnique Fédérale de Lausanne (EPFL), Observatoire, CH-1290 Sauverny (Switzerland); Kunth, Daniel [Institut d' Astrophysique de Paris, UMR 7095, CNRS and UPMC, 98 bis Bd Arago, F-75014 Paris (France); Laursen, Peter [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Herenz, E. Christian, E-mail: matthew@astro.su.se [Leibniz-Institut für Astrophysik (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany)

    2014-02-10

    We report new results regarding the Lyα output of galaxies, derived from the Lyman Alpha Reference Sample, and focused on Hubble Space Telescope imaging. For 14 galaxies we present intensity images in Lyα, Hα, and UV, and maps of Hα/Hβ, Lyα equivalent width (EW), and Lyα/Hα. We present Lyα and UV radial light profiles and show they are well-fitted by Sérsic profiles, but Lyα profiles show indices systematically lower than those of the UV (n ≈ 1-2 instead of ≳ 4). This reveals a general lack of the central concentration in Lyα that is ubiquitous in the UV. Photometric growth curves increase more slowly for Lyα than the far ultraviolet, showing that small apertures may underestimate the EW. For most galaxies, however, flux and EW curves flatten by radii ≈10 kpc, suggesting that if placed at high-z only a few of our galaxies would suffer from large flux losses. We compute global properties of the sample in large apertures, and show total Lyα luminosities to be independent of all other quantities. Normalized Lyα throughput, however, shows significant correlations: escape is found to be higher in galaxies of lower star formation rate, dust content, mass, and nebular quantities that suggest harder ionizing continuum and lower metallicity. Six galaxies would be selected as high-z Lyα emitters, based upon their luminosity and EW. We discuss the results in the context of high-z Lyα and UV samples. A few galaxies have EWs above 50 Å, and one shows f{sub esc}{sup Lyα} of 80%; such objects have not previously been reported at low-z.

  14. The Lyman alpha reference sample. II. Hubble space telescope imaging results, integrated properties, and trends

    International Nuclear Information System (INIS)

    Hayes, Matthew; Östlin, Göran; Duval, Florent; Sandberg, Andreas; Guaita, Lucia; Melinder, Jens; Rivera-Thorsen, Thøger; Adamo, Angela; Schaerer, Daniel; Verhamme, Anne; Orlitová, Ivana; Mas-Hesse, J. Miguel; Otí-Floranes, Héctor; Cannon, John M.; Pardy, Stephen; Atek, Hakim; Kunth, Daniel; Laursen, Peter; Herenz, E. Christian

    2014-01-01

    We report new results regarding the Lyα output of galaxies, derived from the Lyman Alpha Reference Sample, and focused on Hubble Space Telescope imaging. For 14 galaxies we present intensity images in Lyα, Hα, and UV, and maps of Hα/Hβ, Lyα equivalent width (EW), and Lyα/Hα. We present Lyα and UV radial light profiles and show they are well-fitted by Sérsic profiles, but Lyα profiles show indices systematically lower than those of the UV (n ≈ 1-2 instead of ≳ 4). This reveals a general lack of the central concentration in Lyα that is ubiquitous in the UV. Photometric growth curves increase more slowly for Lyα than the far ultraviolet, showing that small apertures may underestimate the EW. For most galaxies, however, flux and EW curves flatten by radii ≈10 kpc, suggesting that if placed at high-z only a few of our galaxies would suffer from large flux losses. We compute global properties of the sample in large apertures, and show total Lyα luminosities to be independent of all other quantities. Normalized Lyα throughput, however, shows significant correlations: escape is found to be higher in galaxies of lower star formation rate, dust content, mass, and nebular quantities that suggest harder ionizing continuum and lower metallicity. Six galaxies would be selected as high-z Lyα emitters, based upon their luminosity and EW. We discuss the results in the context of high-z Lyα and UV samples. A few galaxies have EWs above 50 Å, and one shows f esc Lyα of 80%; such objects have not previously been reported at low-z.

  15. Masses of supernova progenitors

    International Nuclear Information System (INIS)

    Tinsley, B.M.

    1977-01-01

    The possible nature and masses of supernovae progenitors, and the bearing of empirical results on some unsolved theoretical problems concerning the origin of supernovae, are discussed. The author concentrates on two main questions: what is the lower mass limit for stars to die explosively and what stars initiate type I supernovae. The evidence considered includes local supernova rates, empirical estimates of msub(w) (the upper mass limit for death as a white dwarf), the distributions of supernovae among stellar populations in galaxies and the colors of supernova producing galaxies. (B.D.)

  16. A Hubble Diagram for Quasars

    Directory of Open Access Journals (Sweden)

    Susanna Bisogni

    2018-01-01

    Full Text Available The cosmological model is at present not tested between the redshift of the farthest observed supernovae (z ~ 1.4 and that of the Cosmic Microwave Background (z ~ 1,100. Here we introduce a new method to measure the cosmological parameters: we show that quasars can be used as “standard candles” by employing the non-linear relation between their intrinsic UV and X-ray emission as an absolute distance indicator. We built a sample of ~1,900 quasars with available UV and X-ray observations, and produced a Hubble Diagram up to z ~ 5. The analysis of the quasar Hubble Diagram, when used in combination with supernovae, provides robust constraints on the matter and energy content in the cosmos. The application of this method to forthcoming, larger quasar samples, will also provide tight constraints on the dark energy equation of state and its possible evolution with time.

  17. Observational Constraints on the Nature of the Dark Energy: First Cosmological Results From the ESSENCE Supernova Survey

    Energy Technology Data Exchange (ETDEWEB)

    Wood-Vasey, W.Michael; Miknaitis, G.; Stubbs, C.W.; Jha, S.; Riess, A.G.; Garnavich, P.M.; Kirshner, R.P.; Aguilera, C.; Becker, A.C.; Blackman, J.W.; Blondin, S.; Challis, P.; Clocchiatti, A.; Conley, A.; Covarrubias, R.; Davis, T.M.; Filippenko, A.V.; Foley, R.J.; Garg, A.; Hicken, M.; Krisciunas, K.; /Harvard-Smithsonian Ctr. Astrophys.

    2007-01-05

    We present constraints on the dark energy equation-of-state parameter, w = P/({rho}c{sup 2}), using 60 Type Ia supernovae (SNe Ia) from the ESSENCE supernova survey. We derive a set of constraints on the nature of the dark energy assuming a flat Universe. By including constraints on ({Omega}{sub M}, w) from baryon acoustic oscillations, we obtain a value for a static equation-of-state parameter w = -1.05{sub -0.12}{sup +0.13} (stat 1{sigma}) {+-} 0.13 (sys) and {Omega}{sub M} = 0.274{sub -0.020}{sup +0.033} (stat 1{sigma}) with a best-fit {chi}{sup 2}/DoF of 0.96. These results are consistent with those reported by the Super-Nova Legacy Survey in a similar program measuring supernova distances and redshifts. We evaluate sources of systematic error that afflict supernova observations and present Monte Carlo simulations that explore these effects. Currently, the largest systematic currently with the potential to affect our measurements is the treatment of extinction due to dust in the supernova host galaxies. Combining our set of ESSENCE SNe Ia with the SuperNova Legacy Survey SNe Ia, we obtain a joint constraint of w = -1.07{sub -0.09}{sup +0.09} (stat 1{sigma}) {+-} 0.13 (sys), {Omega}{sub M} = 0.267{sub -0.018}{sup +0.028} (stat 1{sigma}) with a best-fit {chi}{sup 2}/DoF of 0.91. The current SNe Ia data are fully consistent with a cosmological constant.

  18. Chandra Independently Determines Hubble Constant

    Science.gov (United States)

    2006-08-01

    A critically important number that specifies the expansion rate of the Universe, the so-called Hubble constant, has been independently determined using NASA's Chandra X-ray Observatory. This new value matches recent measurements using other methods and extends their validity to greater distances, thus allowing astronomers to probe earlier epochs in the evolution of the Universe. "The reason this result is so significant is that we need the Hubble constant to tell us the size of the Universe, its age, and how much matter it contains," said Max Bonamente from the University of Alabama in Huntsville and NASA's Marshall Space Flight Center (MSFC) in Huntsville, Ala., lead author on the paper describing the results. "Astronomers absolutely need to trust this number because we use it for countless calculations." Illustration of Sunyaev-Zeldovich Effect Illustration of Sunyaev-Zeldovich Effect The Hubble constant is calculated by measuring the speed at which objects are moving away from us and dividing by their distance. Most of the previous attempts to determine the Hubble constant have involved using a multi-step, or distance ladder, approach in which the distance to nearby galaxies is used as the basis for determining greater distances. The most common approach has been to use a well-studied type of pulsating star known as a Cepheid variable, in conjunction with more distant supernovae to trace distances across the Universe. Scientists using this method and observations from the Hubble Space Telescope were able to measure the Hubble constant to within 10%. However, only independent checks would give them the confidence they desired, considering that much of our understanding of the Universe hangs in the balance. Chandra X-ray Image of MACS J1149.5+223 Chandra X-ray Image of MACS J1149.5+223 By combining X-ray data from Chandra with radio observations of galaxy clusters, the team determined the distances to 38 galaxy clusters ranging from 1.4 billion to 9.3 billion

  19. Spallative nucleosynthesis in supernova remnants. II. Time-dependent numerical results

    Science.gov (United States)

    Parizot, Etienne; Drury, Luke

    1999-06-01

    We calculate the spallative production of light elements associated with the explosion of an isolated supernova in the interstellar medium, using a time-dependent model taking into account the dilution of the ejected enriched material and the adiabatic energy losses. We first derive the injection function of energetic particles (EPs) accelerated at both the forward and the reverse shock, as a function of time. Then we calculate the Be yields obtained in both cases and compare them to the value implied by the observational data for metal-poor stars in the halo of our Galaxy, using both O and Fe data. We find that none of the processes investigated here can account for the amount of Be found in these stars, which confirms the analytical results of Parizot & Drury (1999). We finally analyze the consequences of these results for Galactic chemical evolution, and suggest that a model involving superbubbles might alleviate the energetics problem in a quite natural way.

  20. TOWARD A NEW GEOMETRIC DISTANCE TO THE ACTIVE GALAXY NGC 4258. III. FINAL RESULTS AND THE HUBBLE CONSTANT

    International Nuclear Information System (INIS)

    Humphreys, E. M. L.; Reid, M. J.; Moran, J. M.; Greenhill, L. J.; Argon, A. L.

    2013-01-01

    We report a new geometric maser distance estimate to the active galaxy NGC 4258. The data for the new model are maser line-of-sight (LOS) velocities and sky positions from 18 epochs of very long baseline interferometry observations, and LOS accelerations measured from a 10 yr monitoring program of the 22 GHz maser emission of NGC 4258. The new model includes both disk warping and confocal elliptical maser orbits with differential precession. The distance to NGC 4258 is 7.60 ± 0.17 ± 0.15 Mpc, a 3% uncertainty including formal fitting and systematic terms. The resulting Hubble constant, based on the use of the Cepheid variables in NGC 4258 to recalibrate the Cepheid distance scale, is H 0 = 72.0 ± 3.0 km s –1 Mpc –1

  1. Emission-Line Galaxies from the PEARS Hubble Ultra Deep Field: A 2-D Detection Method and First Results

    Science.gov (United States)

    Gardner, J. P.; Straughn, Amber N.; Meurer, Gerhardt R.; Pirzkal, Norbert; Cohen, Seth H.; Malhotra, Sangeeta; Rhoads, james; Windhorst, Rogier A.; Gardner, Jonathan P.; Hathi, Nimish P.; hide

    2007-01-01

    The Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) grism PEARS (Probing Evolution And Reionization Spectroscopically) survey provides a large dataset of low-resolution spectra from thousands of galaxies in the GOODS North and South fields. One important subset of objects in these data are emission-line galaxies (ELGs), and we have investigated several different methods aimed at systematically selecting these galaxies. Here we present a new methodology and results of a search for these ELGs in the PEARS observations of the Hubble Ultra Deep Field (HUDF) using a 2D detection method that utilizes the observation that many emission lines originate from clumpy knots within galaxies. This 2D line-finding method proves to be useful in detecting emission lines from compact knots within galaxies that might not otherwise be detected using more traditional 1D line-finding techniques. We find in total 96 emission lines in the HUDF, originating from 81 distinct "knots" within 63 individual galaxies. We find in general that [0 1111 emitters are the most common, comprising 44% of the sample, and on average have high equivalent widths (70% of [0 1111 emitters having rest-frame EW> 100A). There are 12 galaxies with multiple emitting knots; several show evidence of variations in H-alpha flux in the knots, suggesting that the differing star formation properties across a single galaxy can in general be probed at redshifts approximately greater than 0.2 - 0.4. The most prevalent morphologies are large face-on spirals and clumpy interacting systems, many being unique detections owing to the 2D method described here, thus highlighting the strength of this technique.

  2. zBEAMS: a unified solution for supernova cosmology with redshift uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Ethan; Lochner, Michelle; Bassett, Bruce A.; Lablanche, Pierre-Yves; Agarwal, Shankar [African Institute for Mathematical Sciences, 6 Melrose Road, Muizenberg, 7945, Cape Town (South Africa); Fonseca, José, E-mail: rbreth001@myuct.ac.za, E-mail: michelle@aims.ac.za, E-mail: jfonseca@uwc.ac.za, E-mail: bruce.a.bassett@gmail.com, E-mail: plablanche@aims.ac.za, E-mail: agarwalshankar@aims.ac.za [Department of Physics and Astronomy, University of the Western Cape, Cape Town 7535 (South Africa)

    2017-10-01

    Supernova cosmology without spectra will be an important component of future surveys such as LSST. This lack of supernova spectra results in uncertainty in the redshifts which, if ignored, leads to significantly biased estimates of cosmological parameters. Here we present a hierarchical Bayesian formalism— zBEAMS—that addresses this problem by marginalising over the unknown or uncertain supernova redshifts to produce unbiased cosmological estimates that are competitive with supernova data with spectroscopically confirmed redshifts. zBEAMS provides a unified treatment of both photometric redshifts and host galaxy misidentification (occurring due to chance galaxy alignments or faint hosts), effectively correcting the inevitable contamination in the Hubble diagram. Like its predecessor BEAMS, our formalism also takes care of non-Ia supernova contamination by marginalising over the unknown supernova type. We illustrate this technique with simulations of supernovae with photometric redshifts and host galaxy misidentification. A novel feature of the photometric redshift case is the important role played by the redshift distribution of the supernovae.

  3. zBEAMS: a unified solution for supernova cosmology with redshift uncertainties

    International Nuclear Information System (INIS)

    Roberts, Ethan; Lochner, Michelle; Bassett, Bruce A.; Lablanche, Pierre-Yves; Agarwal, Shankar; Fonseca, José

    2017-01-01

    Supernova cosmology without spectra will be an important component of future surveys such as LSST. This lack of supernova spectra results in uncertainty in the redshifts which, if ignored, leads to significantly biased estimates of cosmological parameters. Here we present a hierarchical Bayesian formalism— zBEAMS—that addresses this problem by marginalising over the unknown or uncertain supernova redshifts to produce unbiased cosmological estimates that are competitive with supernova data with spectroscopically confirmed redshifts. zBEAMS provides a unified treatment of both photometric redshifts and host galaxy misidentification (occurring due to chance galaxy alignments or faint hosts), effectively correcting the inevitable contamination in the Hubble diagram. Like its predecessor BEAMS, our formalism also takes care of non-Ia supernova contamination by marginalising over the unknown supernova type. We illustrate this technique with simulations of supernovae with photometric redshifts and host galaxy misidentification. A novel feature of the photometric redshift case is the important role played by the redshift distribution of the supernovae.

  4. Supernova models

    International Nuclear Information System (INIS)

    Woosley, S.E.; California, University, Livermore, CA); Weaver, T.A.

    1981-01-01

    Recent progress in understanding the observed properties of type I supernovae as a consequence of the thermonuclear detonation of white dwarf stars and the ensuing decay of the Ni-56 produced therein is reviewed. The expected nucleosynthesis and gamma-line spectra for this model of type I explosions and a model for type II explosions are presented. Finally, a qualitatively new approach to the problem of massive star death and type II supernovae based upon a combination of rotation and thermonuclear burning is discussed. While the theoretical results of existing models are predicated upon the assumption of a successful core bounce calculation and the neglect of such two-dimensional effects as rotation and magnetic fields the new model suggests an entirely different scenario in which a considerable portion of the energy carried by an equatorially ejected blob is deposited in the red giant envelope overlying the mantle of the star

  5. WHITE DWARF-RED DWARF SYSTEMS RESOLVED WITH THE HUBBLE SPACE TELESCOPE. II. FULL SNAPSHOT SURVEY RESULTS

    International Nuclear Information System (INIS)

    Farihi, J.; Hoard, D. W.; Wachter, S.

    2010-01-01

    Results are presented for a Hubble Space Telescope Advanced Camera for Surveys high-resolution imaging campaign of 90 white dwarfs with known or suspected low-mass stellar and substellar companions. Of the 72 targets that remain candidate and confirmed white dwarfs with near-infrared excess, 43 are spatially resolved into two or more components, and a total of 12 systems are potentially triples. For 68 systems where a comparison is possible, 50% have significant photometric distance mismatches between their white dwarf and M dwarf components, suggesting that white dwarf parameters derived spectroscopically are often biased due to the cool companion. Interestingly, 9 of the 30 binaries known to have emission lines are found to be visual pairs and hence widely separated, indicating an intrinsically active cool star and not irradiation from the white dwarf. There is a possible, slight deficit of earlier spectral types (bluer colors) among the spatially unresolved companions, exactly the opposite of expectations if significant mass is transferred to the companion during the common envelope phase. Using the best available distance estimates, the low-mass companions to white dwarfs exhibit a bimodal distribution in projected separation. This result supports the hypothesis that during the giant phases of the white dwarf progenitor, any unevolved companions either migrate inward to short periods of hours to days, or outward to periods of hundreds to thousands of years. No intermediate projected separations of a few to several AU are found among these pairs. However, a few double M dwarfs (within triples) are spatially resolved in this range, empirically demonstrating that such separations were readily detectable among the binaries with white dwarfs. A straightforward and testable prediction emerges: all spatially unresolved, low-mass stellar and substellar companions to white dwarfs should be in short-period orbits. This result has implications for substellar companion and

  6. Matching Supernovae to Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2016-12-01

    developed a new automated algorithm for matching supernovae to their host galaxies. Their work builds on currently existing algorithms and makes use of information about the nearby galaxies, accounts for the uncertainty of the match, and even includes a machine learning component to improve the matching accuracy.Gupta and collaborators test their matching algorithm on catalogs of galaxies and simulated supernova events to quantify how well the algorithm is able to accurately recover the true hosts.Successful MatchingThe matching algorithms accuracy (purity) as a function of the true supernova-host separation, the supernova redshift, the true hosts brightness, and the true hosts size. [Gupta et al. 2016]The authors find that when the basic algorithm is run on catalog data, it matches supernovae to their hosts with 91% accuracy. Including the machine learning component, which is run after the initial matching algorithm, improves the accuracy of the matching to 97%.The encouraging results of this work which was intended as a proof of concept suggest that methods similar to this could prove very practical for tackling future survey data. And the method explored here has use beyond matching just supernovae to their host galaxies: it could also be applied to other extragalactic transients, such as gamma-ray bursts, tidal disruption events, or electromagnetic counterparts to gravitational-wave detections.CitationRavi R. Gupta et al 2016 AJ 152 154. doi:10.3847/0004-6256/152/6/154

  7. Mach's Principle to Hubble's Law and Light Relativity

    Science.gov (United States)

    Zhang, Tianxi

    2018-01-01

    Discovery of the redshift-distance relation to be linear (i.e. Hubble's law) for galaxies in the end of 1920s instigated us to widely accept expansion of the universe, originated from a big bang around 14 billion years ago. Finding of the redshift-distance relation to be weaker than linear for distant type Ia supernovae nearly two decades ago further precipitated us to largely agree with recent acceleration of the universe, driven by the mysterious dark energy. The time dilation measured for supernovae has been claimed as a direct evidence for the expansion of the universe, but scientists could not explain why quasars and gamma-ray bursts had not similar time dilations. Recently, an anomaly was found in the standard template for the width of supernova light curves to be proportional to the wavelength, which exactly removed the time dilation of supernovae and hence was strongly inconsistent with the conventional redshift mechanism. In this study, we have derived a new redshift-distance relation from Mach's principle with light relativity that describes the effect of light on spacetime as well as the influence of disturbed spacetime on the light inertia or frequency. A moving object or photon, because of its continuously keeping on displacement, disturbs the rest of the entire universe or distorts/curves the spacetime. The distorted or curved spacetime then generates an effective gravitational force to act back on the moving object or photon, so that reduces the object inertia or photon frequency. Considering the disturbance of spacetime by a photon is extremely weak, we have modelled the effective gravitational force to be Newtonian and derived the new redshift-distance relation that can not only perfectly explain the redshift-distance measurement of distant type Ia supernovae but also inherently obtain Hubble's law as an approximate at small redshift. Therefore, the result obtained from this study does neither support the acceleration of the universe nor the

  8. The Physics of Type Ia Supernova Light Curves. I. Analytic Results and Time Dependence

    International Nuclear Information System (INIS)

    Pinto, Philip A.; Eastman, Ronald G.

    2000-01-01

    We develop an analytic solution of the radiation transport problem for Type Ia supernovae (SNe Ia) and show that it reproduces bolometric light curves produced by more detailed calculations under the assumption of a constant-extinction coefficient. This model is used to derive the thermal conditions in the interior of SNe Ia and to study the sensitivity of light curves to various properties of the underlying supernova explosions. Although the model is limited by simplifying assumptions, it is adequate for demonstrating that the relationship between SNe Ia maximum-light luminosity and rate of decline is most easily explained if SNe Ia span a range in mass. The analytic model is also used to examine the size of various terms in the transport equation under conditions appropriate to maximum light. For instance, the Eulerian and advective time derivatives are each shown to be of the same order of magnitude as other order v/c terms in the transport equation. We conclude that a fully time-dependent solution to the transport problem is needed in order to compute SNe Ia light curves and spectra accurate enough to distinguish subtle differences of various explosion models. (c) 2000 The American Astronomical Society

  9. Results of a technical analysis of the Hubble Space Telescope nickel-cadmium and nickel-hydrogen batteries

    Science.gov (United States)

    Manzo, Michelle A.

    1991-01-01

    The Hubble Space Telescope (HST) Program Office requested the expertise of the NASA Aerospace Flight Battery Systems Steering Committee (NAFBSSC) in the conduct of an independent assessment of the HST's battery system to assist in their decision of whether to fly nickel-cadmium or nickel-hydrogen batteries on the telescope. In response, a subcommittee to the NAFBSSC was organized with membership comprised of experts with background in the nickel-cadmium/nickel-hydrogen secondary battery/power systems areas. The work and recommendations of that subcommittee are presented.

  10. Supernova VLBI

    Science.gov (United States)

    Bartel, N.

    2009-08-01

    We review VLBI observations of supernovae over the last quarter century and discuss the prospect of imaging future supernovae with space VLBI in the context of VSOP-2. From thousands of discovered supernovae, most of them at cosmological distances, ˜50 have been detected at radio wavelengths, most of them in relatively nearby galaxies. All of the radio supernovae are Type II or Ib/c, which originate from the explosion of massive progenitor stars. Of these, 12 were observed with VLBI and four of them, SN 1979C, SN 1986J, SN 1993J, and SN 1987A, could be imaged in detail, the former three with VLBI. In addition, supernovae or young supernova remnants were discovered at radio wavelengths in highly dust-obscured galaxies, such as M82, Arp 299, and Arp 220, and some of them could also be imaged in detail. Four of the supernovae so far observed were sufficiently bright to be detectable with VSOP-2. With VSOP-2 the expansion of supernovae can be monitored and investigated with unsurpassed angular resolution, starting as early as the time of the supernova's transition from its opaque to transparent stage. Such studies can reveal, in a movie, the aftermath of a supernova explosion shortly after shock break out.

  11. Supernova explosions

    CERN Document Server

    Branch, David

    2017-01-01

    Targeting advanced students of astronomy and physics, as well as astronomers and physicists contemplating research on supernovae or related fields, David Branch and J. Craig Wheeler offer a modern account of the nature, causes and consequences of supernovae, as well as of issues that remain to be resolved. Owing especially to (1) the appearance of supernova 1987A in the nearby Large Magellanic Cloud, (2) the spectacularly successful use of supernovae as distance indicators for cosmology, (3) the association of some supernovae with the enigmatic cosmic gamma-ray bursts, and (4) the discovery of a class of superluminous supernovae, the pace of supernova research has been increasing sharply. This monograph serves as a broad survey of modern supernova research and a guide to the current literature. The book’s emphasis is on the explosive phases of supernovae. Part 1 is devoted to a survey of the kinds of observations that inform us about supernovae, some basic interpreta tions of such data, and an overview of t...

  12. The nearby supernova factory

    International Nuclear Information System (INIS)

    Wood-Vasey, W.M.; Aldering, G.; Lee, B.C.; Loken, S.; Nugent, P.; Perlmutter, S.; Siegrist, J.; Wang, L.; Antilogus, P.; Astier, P.; Hardin, D.; Pain, R.; Copin, Y.; Smadja, G.; Gangler, E.; Castera, A.; Adam, G.; Bacon, R.; Lemonnier, J.-P.; Pecontal, A.; Pecontal, E.; Kessler, R.

    2004-01-01

    The Nearby Supernova Factory (SNfactory) is an ambitious project to find and study in detail approximately 300 nearby Type Ia supernovae (SNe Ia) at redshifts 0.03 < z < 0.08. This program will provide an exceptional data set of well-studied SNe in the nearby smooth Hubble flow that can be used as calibration for the current and future programs designed to use SNe to measure the cosmological parameters. The first key ingredient for this program is a reliable supply of Hubble-flow SNe systematically discovered in unprecedented numbers using the same techniques as those used in distant SNe searches. In 2002, 35 SNe were found using our test-bed pipeline for automated SN search and discovery. The pipeline uses images from the asteroid search conducted by the Near Earth Asteroid Tracking group at JPL. Improvements in our subtraction techniques and analysis have allowed us to increase our effective SN discovery rate to ∼12 SNe/month in 2003

  13. Smoking supernovae

    OpenAIRE

    Gomez, Haley Louise; Eales, Stephen Anthony; Dunne, L.

    2007-01-01

    The question ‘Are supernovae important sources of dust?’ is a contentious one. Observations with the Infrared Astronomical Satellite (IRAS) and the Infrared Space Observatory (ISO) only detected very small amounts of hot dust in supernova remnants. Here, we review observations of two young Galactic remnants with the Submillimetre Common User Bolometer Array (SCUBA), which imply that large quantities of dust are produced by supernovae. The association of dust with the Cassiopeia A remnant is i...

  14. Characterizing Dark Energy Through Supernovae

    Science.gov (United States)

    Davis, Tamara M.; Parkinson, David

    Type Ia supernovae are a powerful cosmological probe that gave the first strong evidence that the expansion of the universe is accelerating. Here we provide an overview of how supernovae can go further to reveal information about what is causing the acceleration, be it dark energy or some modification to our laws of gravity. We first review the methods of statistical inference that are commonly used, making a point of separating parameter estimation from model selection. We then summarize the many different approaches used to explain or test the acceleration, including parametric models (like the standard model, ΛCDM), nonparametric models, dark fluid models such as quintessence, and extensions to standard gravity. Finally, we also show how supernova data can be used beyond the Hubble diagram, to give information on gravitational lensing and peculiar velocities that can be used to distinguish between models that predict the same expansion history.

  15. Offline analysis of the SuperNova Legacy Survey data

    International Nuclear Information System (INIS)

    Bazin, Gurvan

    2008-01-01

    This thesis aims at developing a photometry-based procedure for the selection of Type Ia Supernovae. More precisely, a first objective is to confirm possible biases in the spectroscopic selection of the SuperNova Legacy Survey (SNLS), and to determine their consequence on the distance module. A second one is to to study the feasibility of a purely photometric analysis within the perspective of future large projects in cosmology. After a presentation of supernovae, of their physical properties, and more particularly those which are used in cosmology, i.e. Type Ia Supernovae (SNe Ia), the author presents the cosmological framework, and the parameters of the standard cosmological model (Hubble constant, matter density, black energy density). The experimental context is then presented with measurements of the Canada France Hawaii Telescope Legacy Survey (CFHTLS), and a method used to search for SNe Ia. In the next part, the author describes the different steps of the differed procedure of data processing, from raw images directly extracted from the telescope to the characterisation of light curves of detected objects. Different tools are presented: the SALT2 model of light curves, the simulation of SNe Ia light curves, and an image simulation. The purely photometric selection of SNe Ia is then presented along with steps used to eliminate background noise. Obtained results are then discussed and compared with real time analysis [fr

  16. SHOES-Supernovae, HO, for the Equation of State of Dark energy

    Science.gov (United States)

    Riess, Adam

    2006-07-01

    The present uncertainty in the value of the Hubble constant {resulting in anuncertainty in Omega_M} and the paucity of Type Ia supernovae at redshiftsexceeding 1 are now the leading obstacles to determining the nature of darkenergy. We propose a single, integrated set of observations for Cycle 15 thatwill provide a 40% improvement in constraints on dark energy. This programwill observe known Cepheids in six reliable hosts of Type Ia supernovae withNICMOS, reducing the uncertainty in H_0 by a factor of two because of thesmaller dispersion along the instability strip, the diminished extinction, andthe weaker metallicity dependence in the infrared. In parallel with ACS, atthe same time the NICMOS observations are underway, we will discover andfollow a sample of Type Ia supernovae at z > 1. Together, these measurements,along with prior constraints from WMAP, will provide a great improvement inHST's ability to distinguish between a static, cosmological constant anddynamical dark energy. The Hubble Space Telescope is the only instrument inthe world that can make these IR measurements of Cepheids beyond the LocalGroup, and it is the only telescope in the world that can be used to find andfollow supernovae at z > 1. Our program exploits both of these uniquecapabilities of HST to learn more about one of the greatest mysteries inscience.

  17. Cosmological Hubble constant and nuclear Hubble constant

    International Nuclear Information System (INIS)

    Horbuniev, Amelia; Besliu, Calin; Jipa, Alexandru

    2005-01-01

    The evolution of the Universe after the Big Bang and the evolution of the dense and highly excited nuclear matter formed by relativistic nuclear collisions are investigated and compared. Values of the Hubble constants for cosmological and nuclear processes are obtained. For nucleus-nucleus collisions at high energies the nuclear Hubble constant is obtained in the frame of different models involving the hydrodynamic flow of the nuclear matter. Significant difference in the values of the two Hubble constant - cosmological and nuclear - is observed

  18. supernovae: Photometric classification of supernovae

    Science.gov (United States)

    Charnock, Tom; Moss, Adam

    2017-05-01

    Supernovae classifies supernovae using their light curves directly as inputs to a deep recurrent neural network, which learns information from the sequence of observations. Observational time and filter fluxes are used as inputs; since the inputs are agnostic, additional data such as host galaxy information can also be included.

  19. Supernova cosmology

    International Nuclear Information System (INIS)

    Leibundgut, B.

    2005-01-01

    Supernovae have developed into a versatile tool for cosmology. Their impact on the cosmological model has been profound and led to the discovery of the accelerated expansion. The current status of the cosmological model as perceived through supernova observations will be presented. Supernovae are currently the only astrophysical objects that can measure the dynamics of the cosmic expansion during the past eight billion years. Ongoing experiments are trying to determine the characteristics of the accelerated expansion and give insight into what might be the physical explanation for the acceleration. (author)

  20. Supernova models

    International Nuclear Information System (INIS)

    Woosley, S.E.; Weaver, T.A.

    1980-01-01

    Recent progress in understanding the observed properties of Type I supernovae as a consequence of the thermonuclear detonation of white dwarf stars and the ensuing decay of the 56 Ni produced therein is reviewed. Within the context of this model for Type I explosions and the 1978 model for Type II explosions, the expected nucleosynthesis and gamma-line spectra from both kinds of supernovae are presented. Finally, a qualitatively new approach to the problem of massive star death and Type II supernovae based upon a combination of rotation and thermonuclear burning is discussed

  1. HUBBLE SPACE TELESCOPE PROPER MOTION (HSTPROMO) CATALOGS OF GALACTIC GLOBULAR CLUSTERS. I. SAMPLE SELECTION, DATA REDUCTION, AND NGC 7078 RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Bellini, A.; Anderson, J.; Van der Marel, R. P.; Watkins, L. L. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); King, I. R. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Bianchini, P. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Chanamé, J. [Instituto de Astrofísica, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul 782-0436, Santiago (Chile); Chandar, R. [Department of Physics and Astronomy, The University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Cool, A. M. [Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132 (United States); Ferraro, F. R.; Massari, D. [Dipartimento di Fisica e Astronomia, Università di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Ford, H., E-mail: bellini@stsci.edu [Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States)

    2014-12-20

    We present the first study of high-precision internal proper motions (PMs) in a large sample of globular clusters, based on Hubble Space Telescope (HST) data obtained over the past decade with the ACS/WFC, ACS/HRC, and WFC3/UVIS instruments. We determine PMs for over 1.3 million stars in the central regions of 22 clusters, with a median number of ∼60,000 stars per cluster. These PMs have the potential to significantly advance our understanding of the internal kinematics of globular clusters by extending past line-of-sight (LOS) velocity measurements to two- or three-dimensional velocities, lower stellar masses, and larger sample sizes. We describe the reduction pipeline that we developed to derive homogeneous PMs from the very heterogeneous archival data. We demonstrate the quality of the measurements through extensive Monte Carlo simulations. We also discuss the PM errors introduced by various systematic effects and the techniques that we have developed to correct or remove them to the extent possible. We provide in electronic form the catalog for NGC 7078 (M 15), which consists of 77,837 stars in the central 2.'4. We validate the catalog by comparison with existing PM measurements and LOS velocities and use it to study the dependence of the velocity dispersion on radius, stellar magnitude (or mass) along the main sequence, and direction in the plane of the sky (radial or tangential). Subsequent papers in this series will explore a range of applications in globular-cluster science and will also present the PM catalogs for the other sample clusters.

  2. Supernova neutrinos

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    In the first part of his in-depth article on the 1987 supernova, David Schramm of the University of Chicago and the NASA/Fermilab Astrophysics Centre reviewed the background to supernovae, the composition of massive stars and the optical history of SN 1987A, and speculated on what the 1987 remnant might be. In such a Type II supernova, gravitational pressure crushes the atoms of the star's interior producing neutron matter, or even a black hole, and releasing an intense burst of neutrinos. 1987 was the first time that physicists were equipped (but not entirely ready!) to intercept these particles, and in the second part of his article, David Schramm covers the remarkable new insights from the science of supernova neutrino astronomy, born on 23 February 1987

  3. Interacting supernovae and supernova impostors

    Science.gov (United States)

    Tartaglia, Leonardo

    2016-02-01

    Massive stars are thought to end their lives with spectacular explosions triggered by the gravitational collapse of their cores. Interacting supernovae are generally attributed to supernova explosions occurring in dense circumstellar media, generated through mass-loss which characterisie the late phases of the life of their progenitors. In the last two decades, several observational evidences revealed that mass-loss in massive stars may be related to violent eruptions involving their outer layers, such as the luminous blue variables. Giant eruptions of extragalactic luminous blue variables, similar to that observed in Eta Car in the 19th century, are usually labelled 'SN impostors', since they mimic the behaviour of genuine SNe, but are not the final act of the life of the progenitor stars. The mechanisms producing these outbursts are still not understood, although the increasing number of observed cases triggered the efforts of the astronomical community to find possible theoretical interpretations. More recently, a number of observational evidences suggested that also lower-mass stars can experience pre-supernova outbursts, hence becoming supernova impostors. Even more interestingly, there is growing evidence of a connection among massive stars, their outbursts and interacting supernovae. All of this inspired this research, which has been focused in particular on the characterisation of supernova impostors and the observational criteria that may allow us to safely discriminate them from interacting supernovae. Moreover, the discovery of peculiar transients, motivated us to explore the lowest range of stellar masses that may experience violent outbursts. Finally, the quest for the link among massive stars, their giant eruptions and interacting supernovae, led us to study the interacting supernova LSQ13zm, which possibly exploded a very short time after an LBV-like major outburst.

  4. Bounds on the possible evolution of the gravitational constant from cosmological type-Ia supernovae

    International Nuclear Information System (INIS)

    Gaztanaga, E.; Garcia-Berro, E.; Isern, J.; Bravo, E.; Dominguez, I.

    2002-01-01

    Recent high-redshift type-Ia supernovae results can be used to set new bounds on a possible variation of the gravitational constant G. If the local value of G at the space-time location of distant supernovae is different, it would change both the kinetic energy release and the amount of 56 Ni synthesized in the supernova outburst. Both effects are related to a change in the Chandrasekhar mass M Ch ∝G -3/2 . In addition, the integrated variation of G with time would also affect the cosmic evolution and therefore the luminosity distance relation. We show that the later effect in the magnitudes of type-Ia supernovae is typically several times smaller than the change produced by the corresponding variation of the Chandrasekhar mass. We investigate in a consistent way how a varying G could modify the Hubble diagram of type-Ia supernovae and how these results can be used to set upper bounds to a hypothetical variation of G. We find G/G 0 (less-or-similar sign)1.1 and G/G(less-or-similar sign)10 -11 yr -1 at redshifts z≅0.5. These new bounds extend the currently available constraints on the evolution of G all the way from solar and stellar distances to typical scales of Gpc/Gyr, i.e., by more than 15 orders of magnitude in time and distance

  5. The Carnegie Hubble Program

    Science.gov (United States)

    Freedman, Wendy L.; Madore, Barry F.; Scowcroft, Vicky; Mnso, Andy; Persson, S. E.; Rigby, Jane; Sturch, Laura; Stetson, Peter

    2011-01-01

    We present an overview of and preliminary results from an ongoing comprehensive program that has a goal of determining the Hubble constant to a systematic accuracy of 2%. As part of this program, we are currently obtaining 3.6 micron data using the Infrared Array Camera (IRAC) on Spitzer, and the program is designed to include JWST in the future. We demonstrate that the mid-infrared period-luminosity relation for Cepheids at 3.6 microns is the most accurate means of measuring Cepheid distances to date. At 3.6 microns, it is possible to minimize the known remaining systematic uncertainties in the Cepheid extragalactic distance scale. We discuss the advantages of 3.6 micron observations in minimizing systematic effects in the Cepheid calibration of the Hubble constant including the absolute zero point, extinction corrections, and the effects of metallicity on the colors and magnitudes of Cepheids. We are undertaking three independent tests of the sensitivity of the mid-IR Cepheid Leavitt Law to metallicity, which when combined will allow a robust constraint on the effect. Finally, we are providing a new mid-IR Tully-Fisher relation for spiral galaxies.

  6. HUBBLE TARANTULA TREASURY PROJECT. III. PHOTOMETRIC CATALOG AND RESULTING CONSTRAINTS ON THE PROGRESSION OF STAR FORMATION IN THE 30 DORADUS REGION

    Energy Technology Data Exchange (ETDEWEB)

    Sabbi, E.; Anderson, J.; Cignoni, M.; Marel, R. P. van der; Panagia, N.; Sana, H.; Aloisi, A.; Arab, H.; Gordon, K. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218 (United States); Lennon, D. J. [ESA—European Space Astronomy Center, Apdo. de Correo 78, E-28691 Associate Villanueva de la Cañada, Madrid (Spain); Zaritsky, D. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Marchi, G. De [Space Science Department, European Space Agency, Keplerlaan 1, 2200 AG Noordwijk (Netherlands); Gouliermis, D. A. [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Grebel, E. K. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120 Heidelberg (Germany); III, J. S. Gallagher [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706 (United States); Smith, L. J. [ESA/STScI, 3700 San Martin Drive, Baltimore, MD, 21218 (United States); Tosi, M. [Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Evans, C. J. [UK Astronomy Technology Center, Royal Observatory Edinburgh, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); Boyer, M. [Observational Cosmology Lab, Code 665, NASA, Goddard Space Flight Center, Greenbelt, MD, 20771 (United States); Mink, S. E. de, E-mail: sabbi@stsci.edu [Astronomical Institute “Anton Pannekoek,”University of Amsterdam, P.O. Box 94249, NL-1090 GE Amsterdam (Netherlands); and others

    2016-01-15

    We present and describe the astro-photometric catalog of more than 800,000 sources found in the Hubble Tarantula Treasury Project (HTTP). HTTP is a Hubble Space Telescope Treasury program designed to image the entire 30 Doradus region down to the sub-solar (∼0.5 M{sub ⊙}) mass regime using the Wide Field Camera 3 and the Advanced Camera for Surveys. We observed 30 Doradus in the near-ultraviolet (F275W, F336W), optical (F555W, F658N, F775W), and near-infrared (F110W, F160W) wavelengths. The stellar photometry was measured using point-spread function fitting across all bands simultaneously. The relative astrometric accuracy of the catalog is 0.4 mas. The astro-photometric catalog, results from artificial star experiments, and the mosaics for all the filters are available for download. Color–magnitude diagrams are presented showing the spatial distributions and ages of stars within 30 Dor as well as in the surrounding fields. HTTP provides the first rich and statistically significant sample of intermediate- and low-mass pre-main sequence candidates and allows us to trace how star formation has been developing through the region. The depth and high spatial resolution of our analysis highlight the dual role of stellar feedback in quenching and triggering star formation on the giant H ii region scale. Our results are consistent with stellar sub-clustering in a partially filled gaseous nebula that is offset toward our side of the Large Magellanic Cloud.

  7. Full-data Results of Hubble Frontier Fields: UV Luminosity Functions at z ∼ 6–10 and a Consistent Picture of Cosmic Reionization

    Science.gov (United States)

    Ishigaki, Masafumi; Kawamata, Ryota; Ouchi, Masami; Oguri, Masamune; Shimasaku, Kazuhiro; Ono, Yoshiaki

    2018-02-01

    We present UV luminosity functions of dropout galaxies at z∼ 6{--}10 with the complete Hubble Frontier Fields data. We obtain a catalog of ∼450 dropout-galaxy candidates (350, 66, and 40 at z∼ 6{--}7, 8, and 9, respectively), with UV absolute magnitudes that reach ∼ -14 mag, ∼2 mag deeper than the Hubble Ultra Deep Field detection limits. We carefully evaluate number densities of the dropout galaxies by Monte Carlo simulations, including all lensing effects such as magnification, distortion, and multiplication of images as well as detection completeness and contamination effects in a self-consistent manner. We find that UV luminosity functions at z∼ 6{--}8 have steep faint-end slopes, α ∼ -2, and likely steeper slopes, α ≲ -2 at z∼ 9{--}10. We also find that the evolution of UV luminosity densities shows a non-accelerated decline beyond z∼ 8 in the case of {M}trunc}=-15, but an accelerated one in the case of {M}trunc}=-17. We examine whether our results are consistent with the Thomson scattering optical depth from the Planck satellite and the ionized hydrogen fraction Q H II at z≲ 7 based on the standard analytic reionization model. We find that reionization scenarios exist that consistently explain all of the observational measurements with the allowed parameters of {f}esc}={0.17}-0.03+0.07 and {M}trunc}> -14.0 for {log}{ξ }ion}/[{erg}}-1 {Hz}]=25.34, where {f}esc} is the escape fraction, M trunc is the faint limit of the UV luminosity function, and {ξ }ion} is the conversion factor of the UV luminosity to the ionizing photon emission rate. The length of the reionization period is estimated to be {{Δ }}z={3.9}-1.6+2.0 (for 0.1< {Q}{{H}{{II}}}< 0.99), consistent with the recent estimate from Planck.

  8. Carnegie Hubble Program: A Mid-Infrared Calibration of the Hubble Constant

    Science.gov (United States)

    Freedman, Wendy L.; Madore, Barry F.; Scowcroft, Victoria; Burns, Chris; Monson, Andy; Persson, S. Eric; Seibert, Mark; Rigby, Jane

    2012-01-01

    Using a mid-infrared calibration of the Cepheid distance scale based on recent observations at 3.6 micrometers with the Spitzer Space Telescope, we have obtained a new, high-accuracy calibration of the Hubble constant. We have established the mid-IR zero point of the Leavitt law (the Cepheid period-luminosity relation) using time-averaged 3.6 micrometers data for 10 high-metallicity, MilkyWay Cepheids having independently measured trigonometric parallaxes. We have adopted the slope of the PL relation using time-averaged 3.6micrometers data for 80 long-period Large Magellanic Cloud (LMC) Cepheids falling in the period range 0.8 < log(P) < 1.8.We find a new reddening-corrected distance to the LMC of 18.477 +/- 0.033 (systematic) mag. We re-examine the systematic uncertainties in H(sub 0), also taking into account new data over the past decade. In combination with the new Spitzer calibration, the systematic uncertainty in H(sub 0) over that obtained by the Hubble Space Telescope Key Project has decreased by over a factor of three. Applying the Spitzer calibration to the Key Project sample, we find a value of H(sub 0) = 74.3 with a systematic uncertainty of +/-2.1 (systematic) kilometers per second Mpc(sup -1), corresponding to a 2.8% systematic uncertainty in the Hubble constant. This result, in combination with WMAP7measurements of the cosmic microwave background anisotropies and assuming a flat universe, yields a value of the equation of state for dark energy, w(sub 0) = -1.09 +/- 0.10. Alternatively, relaxing the constraints on flatness and the numbers of relativistic species, and combining our results with those of WMAP7, Type Ia supernovae and baryon acoustic oscillations yield w(sub 0) = -1.08 +/- 0.10 and a value of N(sub eff) = 4.13 +/- 0.67, mildly consistent with the existence of a fourth neutrino species.

  9. Nucleosynthesis in Supernovae

    Science.gov (United States)

    Thielemann, Friedrich-Karl; Isern, Jordi; Perego, Albino; von Ballmoos, Peter

    2018-04-01

    We present the status and open problems of nucleosynthesis in supernova explosions of both types, responsible for the production of the intermediate mass, Fe-group and heavier elements (with the exception of the main s-process). Constraints from observations can be provided through individual supernovae (SNe) or their remnants (e.g. via spectra and gamma-rays of decaying unstable isotopes) and through surface abundances of stars which witness the composition of the interstellar gas at their formation. With a changing fraction of elements heavier than He in these stars (known as metallicity) the evolution of the nucleosynthesis in galaxies over time can be determined. A complementary way, related to gamma-rays from radioactive decays, is the observation of positrons released in β+-decays, as e.g. from ^{26}Al, ^{44}Ti, ^{56,57}Ni and possibly further isotopes of their decay chains (in competition with the production of e+e- pairs in acceleration shocks from SN remnants, pulsars, magnetars or even of particle physics origin). We discuss (a) the role of the core-collapse supernova explosion mechanism for the composition of intermediate mass, Fe-group (and heavier?) ejecta, (b) the transition from neutron stars to black holes as the final result of the collapse of massive stars, and the relation of the latter to supernovae, faint supernovae, and gamma-ray bursts/hypernovae, (c) Type Ia supernovae and their nucleosynthesis (e.g. addressing the ^{55}Mn puzzle), plus (d) further constraints from galactic evolution, γ-ray and positron observations. This is complemented by the role of rare magneto-rotational supernovae (related to magnetars) in comparison with the nucleosynthesis of compact binary mergers, especially with respect to forming the heaviest r-process elements in galactic evolution.

  10. Presupernova models and supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, D [Tokyo Univ. (Japan). Dept. of Earth Science and Astronomy; Nomoto, K I [Ibaraki Univ., Mito (Japan). Dept. of Physics

    1980-02-01

    Present status of the theories for presupernova evolution and triggering mechanisms of supernova explosions are summarized and discussed from the standpoint of the theory of stellar structure and evolution. It is not intended to collect every detail of numerical results thus far obtained, but to extract physically clear-cut understanding from complexities of the numerical stellar models. For this purpose the evolution of stellar cores is discussed in a generalized fashion. The following types of the supernova explosions are discussed. The carbon deflagration supernova of intermediate mass star which results in the total disruption of the star. Massive star evolves into a supernova triggered by photo-dissociation of iron nuclei which results in a formation of a neutron star or a black hole depending on its mass. These two are typical types of the supernova. Between them there remains a range of mass for which collapse of the stellar core is triggered by electron captures, which has been recently shown to leave a neutron star despite oxygen deflagration competing with the electron captures. Also discussed are combustion and detonation of helium or carbon which take place in accreting white dwarfs, and the collapse which is triggered by electron-pair creation in very massive stars.

  11. First measurement of σ8 using supernova magnitudes only

    Science.gov (United States)

    Castro, Tiago; Quartin, Miguel

    2014-09-01

    A method was recently proposed which allows the conversion of the weak-lensing effects in the Type Ia supernova (SNeIa) Hubble diagram from noise into signal. Such signal is sensitive to the growth of structure in the universe, and in particular can be used as a measurement of σ8 independently from more traditional methods such as those based on the cosmic microwave background, cosmic shear or cluster abundance. We extend here that analysis to allow for intrinsic non-Gaussianities in the supernova probability distribution function, and discuss how this can be best modelled using the Bayes factor. Although it was shown that a precise measurement of σ8 requires ˜105 SNeIa, current data already allow an important proof of principle. In particular, we make use of the 706 supernovae with z ≤ 0.9 of the recent Joint Lightcurve Analysis catalogue and show that a simple treatment of intrinsic non-Gaussianities with a couple of nuisance parameters is enough for our method to yield the values σ _8 = 0.84^{+0.28}_{-0.65} or σ8 < 1.45 at a 2σ confidence level. This result is consistent with mock simulations and it is also in agreement with independent measurements and presents the first ever measurement of σ8 using SNeIa magnitudes alone.

  12. Distant Supernovae Indicate Ever-Expanding Universe

    Science.gov (United States)

    1998-12-01

    ESO Astronomers Contribute towards Resolution of Cosmic Puzzle Since the discovery of the expansion of the Universe by American astronomer Edwin Hubble in the 1920's, by measurement of galaxy velocities, astronomers have tried to learn how this expansion changes with time. Until now, most scientists have been considering two possibilities: the expansion rate is slowing down and will ultimately either come to a halt - whereafter the Universe would start to contract, or it will continue to expand forever. However, new studies by two independent research teams, based on observations of exploding stars ( supernovae ) by ESO astronomers [1] with astronomical telescopes at the La Silla Observatory as well as those of their colleagues at other institutions, appear to show that the expansion of the Universe is accelerating . The results take the discovery of the cosmological expansion one step further and challenge recent models of the Universe. If the new measurements are indeed correct, they show that the elusive "cosmological constant" , as proposed by Albert Einstein , contributes significantly to the evolution of the Universe. The existence of a non-zero cosmological constant implies that a repulsive force, counter-acting gravity, currently dominates the universal expansion , and consequently leads to an ever-expanding Universe. This new research is being named as the "Breakthrough of the Year" by the renowned US science journal Science in the December 18, 1998, issue. A Press Release is published by the journal on this occasion. "Fundamental Parameters" of the Universe Three fundamental parameters govern all cosmological models based on the theory of General Relativity. They are 1. the current expansion rate as described by Hubble's constant , i.e. the proportionality factor between expansion velocity and distance 2. the average matter density in the Universe, and 3. the amount of "other energy" present in space. From the measured values of these fundamental

  13. Hubble Source Catalog

    Science.gov (United States)

    Lubow, S.; Budavári, T.

    2013-10-01

    We have created an initial catalog of objects observed by the WFPC2 and ACS instruments on the Hubble Space Telescope (HST). The catalog is based on observations taken on more than 6000 visits (telescope pointings) of ACS/WFC and more than 25000 visits of WFPC2. The catalog is obtained by cross matching by position in the sky all Hubble Legacy Archive (HLA) Source Extractor source lists for these instruments. The source lists describe properties of source detections within a visit. The calculations are performed on a SQL Server database system. First we collect overlapping images into groups, e.g., Eta Car, and determine nearby (approximately matching) pairs of sources from different images within each group. We then apply a novel algorithm for improving the cross matching of pairs of sources by adjusting the astrometry of the images. Next, we combine pairwise matches into maximal sets of possible multi-source matches. We apply a greedy Bayesian method to split the maximal matches into more reliable matches. We test the accuracy of the matches by comparing the fluxes of the matched sources. The result is a set of information that ties together multiple observations of the same object. A byproduct of the catalog is greatly improved relative astrometry for many of the HST images. We also provide information on nondetections that can be used to determine dropouts. With the catalog, for the first time, one can carry out time domain, multi-wavelength studies across a large set of HST data. The catalog is publicly available. Much more can be done to expand the catalog capabilities.

  14. Peculiar Supernovae

    Science.gov (United States)

    Milisavljevic, Dan; Margutti, Raffaella

    2018-06-01

    What makes a supernova truly "peculiar?" In this review we attempt to address this question by tracing the history of the use of "peculiar" as a descriptor of non-standard supernovae back to the original binary spectroscopic classification of Type I vs. Type II proposed by Minkowski (Publ. Astron. Soc. Pac., 53:224, 1941). A handful of noteworthy examples are highlighted to illustrate a general theme: classes of supernovae that were once thought to be peculiar are later seen as logical branches of standard events. This is not always the case, however, and we discuss ASASSN-15lh as an example of a transient with an origin that remains contentious. We remark on how late-time observations at all wavelengths (radio-through-X-ray) that probe 1) the kinematic and chemical properties of the supernova ejecta and 2) the progenitor star system's mass loss in the terminal phases preceding the explosion, have often been critical in understanding the nature of seemingly unusual events.

  15. Nucleosynthesis as a result of multiple delayed detonations in type Ia supernovae

    International Nuclear Information System (INIS)

    Garcia-Senz, Domingo; Bravo, Eduardo

    2003-01-01

    The explosion of a white dwarf of mass 1.36 M [odot] has been simulated in three dimensions with the aid of a SPH code. The explosion follows the delayed detonation paradigm. In this case the deflagration-detonation transition is induced by the large corrugation of the flame front resulting from Rayleigh-Taylor instability and turbulence. The nucleosynthetic yields have been calculated, showing that some neutronized isotopes such as 54 Fe or 58 Ni are not overproduced with respect to the solar system ratios. The distribution of intermediate-mass elements is also compatible with the spectra of normal SNIa. The exception is, however, the abundance of carbon and oxygen, which are overproduced

  16. On the Luminosity Distance and the Hubble Constant

    OpenAIRE

    Yuri Heymann

    2013-01-01

    By differentiating luminosity distance with respect to time using its standard formula we find that the peculiar velocity is a time varying velocity of light. Therefore, a new definition of the luminosity distance is provided such that the peculiar velocity is equal to c. Using this definition a Hubble constant H0 = 67.3 km s−1 Mpc−1 is obtained from supernovae data.

  17. Supernova neutrinos

    International Nuclear Information System (INIS)

    John Beacom

    2003-01-01

    We propose that neutrino-proton elastic scattering, ν + p → ν + p, can be used for the detection of supernova neutrinos. Though the proton recoil kinetic energy spectrum is soft, with T p ≅ 2E ν 2 /M p , and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from (bar ν) e + p → e + + n. In addition, the measured proton spectrum is related to the incident neutrino spectrum, which solves a long-standing problem of how to separately measure the total energy release and temperature of ν μ , ν τ , (bar ν) μ , and (bar ν) τ . The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos

  18. Cosmological model with local symmetry of very special relativity and constraints on it from supernovae

    International Nuclear Information System (INIS)

    Chang, Zhe; Li, Xin; Li, Ming-Hua; Wang, Sai

    2013-01-01

    Based on Cohen and Glashow's very special relativity (Cohen and Glashow in Phys. Rev. Lett. 97:021601, 2006), we propose an anisotropic modification to the Friedmann-Robertson-Walker (FRW) line element. An arbitrarily oriented 1-form is introduced and the FRW spacetime becomes of the Randers-Finsler type. The 1-form picks out a privileged axis in the universe. Thus, the cosmological redshift as well as the Hubble diagram of the type Ia supernovae (SNe Ia) becomes anisotropic. By directly analyzing the Union2 compilation, we obtain the privileged axis pointing to (l,b)=(304 circle ±43 circle ,-27 circle ±13 circle ) (68 % C.L.). This privileged axis is close to those obtained by comparing the best-fit Hubble diagrams in pairs of hemispheres. It should be noticed that the result is consistent with isotropy at the 1σ level since the anisotropic magnitude is D=0.03±0.03. (orig.)

  19. THE SUPERNOVA IMPOSTOR PSN J09132750+7627410 AND ITS PROGENITOR

    Energy Technology Data Exchange (ETDEWEB)

    Tartaglia, L.; Elias-Rosa, N.; Pastorello, A.; Benetti, S.; Cappellaro, E.; Granata, V.; Ochner, P.; Tomasella, L.; Zaggia, S. [INAF—Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Taubenberger, S. [European Southern Observatories, Karl-Schwarzschild-Str., D-85748 Garching (Germany); Cortini, G. [Osservatorio Astronomico di Monte Maggiore, Predappio (Italy); Ishida, E. E. O.; Noebauer, U. M. [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); Morales-Garoffolo, A. [Institut de Ciències de l’Espai (CSIC-IEEC), Campus UAB, Carrer de Can Magrans S/N, E-08193 Cerdanyola del Vallés, Barcelona (Spain)

    2016-06-01

    We report the results of our follow-up campaign of the supernova impostor PSN J09132750+7627410, based on optical data covering ∼250 days. From the beginning, the transient shows prominent narrow Balmer lines with P-Cygni profiles, with a blueshifted absorption component becoming more prominent with time. Along the ∼3 months of the spectroscopic monitoring, broad components are never detected in the hydrogen lines, suggesting that these features are produced in slowly expanding material. The transient reaches an absolute magnitude M {sub r} = −13.60 ± 0.19 mag at maximum, a typical luminosity for supernova impostors. Amateur astronomers provided ∼4 years of archival observations of the host galaxy, NGC 2748. The detection of the quiescent progenitor star in archival images obtained with the Hubble Space Telescope suggests it to be an 18–20 M {sub ⊙} white–yellow supergiant.

  20. THE SUPERNOVA IMPOSTOR PSN J09132750+7627410 AND ITS PROGENITOR

    International Nuclear Information System (INIS)

    Tartaglia, L.; Elias-Rosa, N.; Pastorello, A.; Benetti, S.; Cappellaro, E.; Granata, V.; Ochner, P.; Tomasella, L.; Zaggia, S.; Taubenberger, S.; Cortini, G.; Ishida, E. E. O.; Noebauer, U. M.; Morales-Garoffolo, A.

    2016-01-01

    We report the results of our follow-up campaign of the supernova impostor PSN J09132750+7627410, based on optical data covering ∼250 days. From the beginning, the transient shows prominent narrow Balmer lines with P-Cygni profiles, with a blueshifted absorption component becoming more prominent with time. Along the ∼3 months of the spectroscopic monitoring, broad components are never detected in the hydrogen lines, suggesting that these features are produced in slowly expanding material. The transient reaches an absolute magnitude M _r = −13.60 ± 0.19 mag at maximum, a typical luminosity for supernova impostors. Amateur astronomers provided ∼4 years of archival observations of the host galaxy, NGC 2748. The detection of the quiescent progenitor star in archival images obtained with the Hubble Space Telescope suggests it to be an 18–20 M _⊙ white–yellow supergiant.

  1. The Story of Supernova “Refsdal” Told by Muse

    NARCIS (Netherlands)

    Grillo, C.; Karman, W.; Suyu, S. H.; Rosati, P.; Balestra, I.; Mercurio, A.; Lombardi, M.; Treu, T.; Caminha, G. B.; Halkola, A.; Rodney, S. A.; Gavazzi, R.; Caputi, K. I.

    2016-01-01

    We present Multi Unit Spectroscopic Explorer (MUSE) observations in the core of the Hubble Frontier Fields (HFF) galaxy cluster MACS J1149.5+2223, where the first magnified and spatially resolved multiple images of supernova (SN) "Refsdal" at redshift 1.489 were detected. Thanks to a Director's

  2. Overview of the nearby supernova factory

    International Nuclear Information System (INIS)

    Aldering, Greg; Adam, Gilles; Antilogus, Pierre; Astier, Pierre; Bacon, Roland; Bongard, S.; Bonnaud, C.; Copin, Yannick; Hardin, D.; Howell, D. Andy; Lemmonnier, Jean-Pierre; Levy, J.-M.; Loken, S.; Nugent, Peter; Pain, Reynald; Pecontal, Arlette; Pecontal, Emmanuel; Perlmutter, Saul; Quimby, Robert; Schahmaneche, Kyan; Smadja, Gerard; Wood-Vasey, W. Michael

    2002-01-01

    The Nearby Supernova Factory (SNfactory) is an international experiment designed to lay the foundation for the next generation of cosmology experiments (such as CFHTLS, wP, SNAP and LSST) which will measure the expansion history of the Universe using Type Ia supernovae. The SNfactory will discover and obtain frequent lightcurve spectrophotometry covering 3200-10000 (angstrom) for roughly 300 Type Ia supernovae at the loW--redshift end of the smooth Hubble flow. The quantity, quality, breadth of galactic environments, and homogeneous nature of the SNfactory dataset will make it the premier source of calibration for the Type Ia supernova width-brightness relation and the intrinsic supernova colors used for K-correction and correction for extinction by host-galaxy dust. This dataset will also allow an extensive investigation of additional parameters which possibly influence the quality of Type Ia supernovae as cosmological probes. The SNfactory search capabilities and folloW--up instrumentation include wide-field CCD imagers on two 1.2-m telescopes (via collaboration with the Near Earth Asteroid Tracking team at JPL and the QUEST team at Yale), and a two-channel integral-field-unit optical spectrograph/imager being fabricated for the University of Hawaii 2.2-m telescope. In addition to ground-based folloW--up, UV spectra for a subsample of these supernovae will be obtained with HST. The pipeline to obtain, transfer via wireless and standard internet, and automatically process the search images is in operation. Software and hardware development is now underway to enable the execution of folloW--up spectroscopy of supernova candidates at the Hawaii 2.2-m telescope via automated remote control of the telescope and the IFU spectrograph/imager

  3. Theoretical models for supernovae

    International Nuclear Information System (INIS)

    Woosley, S.E.; Weaver, T.A.

    1981-01-01

    The results of recent numerical simulations of supernova explosions are presented and a variety of topics discussed. Particular emphasis is given to (i) the nucleosynthesis expected from intermediate mass (10sub solar less than or equal to M less than or equal to 100 Msub solar) Type II supernovae and detonating white dwarf models for Type I supernovae, (ii) a realistic estimate of the γ-line fluxes expected from this nucleosynthesis, (iii) the continued evolution, in one and two dimensions, of intermediate mass stars wherein iron core collapse does not lead to a strong, mass-ejecting shock wave, and (iv) the evolution and explosion of vary massive stars M greater than or equal to 100 Msub solar of both Population I and III. In one dimension, nuclear burning following a failed core bounce does not appear likely to lead to a supernova explosion although, in two dimensions, a combination of rotation and nuclear burning may do so. Near solar proportions of elements from neon to calcium and very brilliant optical displays may be created by hypernovae, the explosions of stars in the mass range 100 M/sub solar/ to 300 M/sub solar/. Above approx. 300 M/sub solar/ a black hole is created by stellar collapse following carbon ignition. Still more massive stars may be copious producers of 4 He and 14 N prior to their collapse on the pair instability

  4. Decays of supernova neutrinos

    International Nuclear Information System (INIS)

    Lindner, Manfred; Ohlsson, Tommy; Winter, Walter

    2002-01-01

    Supernova neutrinos could be well-suited for probing neutrino decay, since decay may be observed even for very small decay rates or coupling constants. We will introduce an effective operator framework for the combined description of neutrino decay and neutrino oscillations for supernova neutrinos, which can especially take into account two properties: one is the radially symmetric neutrino flux, allowing a decay product to be re-directed towards the observer even if the parent neutrino had a different original direction of propagation. The other is decoherence because of the long baselines for coherently produced neutrinos. We will demonstrate how to use this effective theory to calculate the time-dependent fluxes at the detector. In addition, we will show the implications of a Majoron-like decay model. As a result, we will demonstrate that for certain parameter values one may observe some effects which could also mimic signals similar to the ones expected from supernova models, making it in general harder to separate neutrino and supernova properties

  5. The Supernova Legacy Survey: Measurement of Omega_M, Omega_Lambda,and w from the First Year Data Set

    Energy Technology Data Exchange (ETDEWEB)

    Astier, P.; Guy, J.; Regnault, N.; Pain, R.; Aubourg, E.; Balam,D.; Basa, S.; Carlberg, R.G.; Fabbro, S.; Fouchez, D.; Hook, I.M.; Howell, D.A.; Lafoux, H.; Neill, J.D.; Palanque-Delabrouille, N.; Perrett, K.; Pritchet, C.J.; Rich, J.; Sullivan, M.; Taillet, R.; Aldering, G.; Antilogus, P.; Arsenijevic, V.; Balland, C.; Baumont, S.; Bronder, J.; Courtois, H.; Ellis, R.S.; Filiol, M.; Goncalves, A.C.; Goobar, A.; Guide, D.; Hardin, D.; Lusset, V.; Lidman, C.; McMahon, R.; Mouchet, M.; Mourao, A.; Perlmutter, S.; Ripoche, P.; Tao, C.; Walton, N.

    2005-10-14

    We present distance measurements to 71 high redshift type Ia supernovae discovered during the first year of the 5-year Supernova Legacy Survey (SNLS). These events were detected and their multi-color light-curves measured using the MegaPrime/MegaCam instrument at the Canada-France-Hawaii Telescope (CFHT), by repeatedly imaging four one-square degree fields in four bands. Follow-up spectroscopy was performed at the VLT, Gemini and Keck telescopes to confirm the nature of the supernovae and to measure their redshift. With this data set, we have built a Hubble diagram extending to z = 1, with all distance measurements involving at least two bands. Systematic uncertainties are evaluated making use of the multiband photometry obtained at CFHT. Cosmological fits to this first year SNLS Hubble diagram give the following results: {Omega}{sub M} = 0.263 {+-} 0.042 (stat) {+-} 0.032 (sys) for a flat {Lambda}CDM model; and w = -1.023 {+-} 0.090 (stat) {+-} 0.054 (sys) for a flat cosmology with constant equation of state w when combined with the constraint from the recent Sloan Digital Sky Survey measurement of baryon acoustic oscillations.

  6. The Supernova Legacy Survey: Measurement of Omega_M, Omega_Lambda, and w from the First Year Data Set

    Science.gov (United States)

    Astier, P.; Guy, J.; Regnault, N.; Pain, R.; Aubourg, E.; Balam, D.; Basa, S.; Carlberg, R. G.; Fabbro, S.; Fouchez, D.; Hook, I. M.; Howell, D. A.; Lafoux, H.; Neill, J. D.; Palanque-Delabrouille, N.; Perrett, K.; Pritchet, C. J.; Rich, J.; Sullivan, M.; Taillet, R.; Aldering, G.; Antilogus, P.; Arsenijevic, V.; Balland, C.; Baumont, S.; Bronder, J.; Courtois, H.; Ellis, R. S.; Filiol, M.; Goncalves, A. C.; Goobar, A.; Guide, D.; Hardin, D.; Lusset, V.; Lidman, C.; McMahon, R.; Mouchet, M.; Mourao, A.; Perlmutter, S.; Ripoche, P.; Tao, C.; Walton, N.

    2005-10-14

    We present distance measurements to 71 high redshift type Ia supernovae discovered during the first year of the 5-year Supernova Legacy Survey (SNLS). These events were detected and their multi-color light-curves measured using the MegaPrime/MegaCam instrument at the Canada-France-Hawaii Telescope (CFHT), by repeatedly imaging four one-square degree fields in four bands. Follow-up spectroscopy was performed at the VLT, Gemini and Keck telescopes to confirm the nature of the supernovae and to measure their redshift. With this data set, we have built a Hubble diagram extending to z = 1, with all distance measurements involving at least two bands. Systematic uncertainties are evaluated making use of the multiband photometry obtained at CFHT. Cosmological fits to this first year SNLS Hubble diagram give the following results: {Omega}{sub M} = 0.263 {+-} 0.042 (stat) {+-} 0.032 (sys) for a flat {Lambda}CDM model; and w = -1.023 {+-} 0.090 (stat) {+-} 0.054 (sys) for a flat cosmology with constant equation of state w when combined with the constraint from the recent Sloan Digital Sky Survey measurement of baryon acoustic oscillations.

  7. Dimming supernovae without cosmic acceleration

    International Nuclear Information System (INIS)

    Csaki, Csaba; Terning, John; Kaloper, Nemanja

    2002-01-01

    We present a simple model where photons propagating in extragalactic magnetic fields can oscillate into very light axions. The oscillations may convert some of the photons, departing a distant supernova, into axions, making the supernova appear dimmer and hence more distant than it really is. Averaging over different configurations of the magnetic field we find that the dimming saturates at about one-third of the light from the supernovae at very large redshifts. This results in a luminosity distance versus redshift curve almost indistinguishable from that produced by the accelerating Universe, if the axion mass and coupling scale are m∼10 -16 eV , M∼4x10 11 GeV . This phenomenon may be an alternative to the accelerating Universe for explaining supernova observations

  8. The Hubble Constant from SN Refsdal

    Science.gov (United States)

    Vega-Ferrero, J.; Diego, J. M.; Miranda, V.; Bernstein, G. M.

    2018-02-01

    Hubble Space Telescope observations from 2015 December 11 detected the expected fifth counter-image of supernova (SN) Refsdal at z = 1.49. In this Letter, we compare the time-delay predictions from numerous models with the measured value derived by Kelly et al. from very early data in the light curve of the SN Refsdal and find a best value for {H}0={64}-11+9 {km} {{{s}}}-1 {{Mpc}}-1 (68% CL), in excellent agreement with predictions from cosmic microwave background and recent weak lensing data + baryon acoustic oscillations + Big Bang nucleosynthesis (from the DES Collaboration). This is the first constraint on H 0 derived from time delays between multiple-lensed SN images, and the first with a galaxy cluster lens, subject to systematic effects different from other time-delay H 0 estimates. Additional time-delay measurements from new multiply imaged SNe will allow derivation of competitive constraints on H 0.

  9. Hubble 15 years of discovery

    CERN Document Server

    Lindberg Christensen, Lars; Kornmesser, M

    2006-01-01

    Hubble: 15 Years of Discovery was a key element of the European Space Agency's 15th anniversary celebration activities for the 1990 launch of the NASA/ESA Hubble Space Telescope. As an observatory in space, Hubble is one of the most successful scientific projects of all time, both in terms of scientific output and its immediate public appeal.

  10. Supernova hydrodynamics

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1981-01-01

    The explosion of a star supernova occurs at the end of its evolution when the nuclear fuel in its core is almost, or completely, consumed. The star may explode due to a small residual thermonuclear detonation, type I SN or it may collapse, type I and type II SN leaving a neutron star remnant. The type I progenitor should be thought to be an old accreting white dwarf, 1.4 M/sub theta/, with a close companion star. A type II SN is thought to be a massive young star 6 to 10 M/sub theta/. The mechanism of explosion is still a challenge to our ability to model the most extreme conditions of matter and hydrodynamics that occur presently and excessively in the universe. 39 references

  11. Supernova research with VLBI

    Science.gov (United States)

    Bartel, Norbert; Bietenholz, Michael F.

    2016-06-01

    Core-collapse supernovae have been monitored with VLBI from shortly after the explosion to many years thereafter. Radio emission is produced as the ejecta hit the stellar wind left over from the dyingstar. Images show the details of the interaction as the shock front expands into the circumstellar medium. Measurements of the velocity and deceleration of the expansion provide information on both the ejecta and the circumstellar medium. VLBI observations can also search for the stellar remnant of the explosion, a neutron star or a black hole. Combining the transverse expansion rate with the radial expansion rate from optical spectra allows a geometric determination of the distance to the host galaxy. We will present results from recent VLBI observations, focus on their interpretations, and show updated movies of supernovae from soon after their explosion to the present.

  12. Constraining inverse curvature gravity with supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Mena, Olga; Santiago, Jose; /Fermilab; Weller, Jochen; /University Coll., London /Fermilab

    2005-10-01

    We show that the current accelerated expansion of the Universe can be explained without resorting to dark energy. Models of generalized modified gravity, with inverse powers of the curvature can have late time accelerating attractors without conflicting with solar system experiments. We have solved the Friedman equations for the full dynamical range of the evolution of the Universe. This allows us to perform a detailed analysis of Supernovae data in the context of such models that results in an excellent fit. Hence, inverse curvature gravity models represent an example of phenomenologically viable models in which the current acceleration of the Universe is driven by curvature instead of dark energy. If we further include constraints on the current expansion rate of the Universe from the Hubble Space Telescope and on the age of the Universe from globular clusters, we obtain that the matter content of the Universe is 0.07 {le} {omega}{sub m} {le} 0.21 (95% Confidence). Hence the inverse curvature gravity models considered can not explain the dynamics of the Universe just with a baryonic matter component.

  13. HOST GALAXY IDENTIFICATION FOR SUPERNOVA SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve; Spinka, Harold; Kessler, Richard; Goldstein, Daniel A.; Liotine, Camille; Pomian, Katarzyna; D’Andrea, Chris B.; Sullivan, Mark; Carretero, Jorge; Castander, Francisco J.; Nichol, Robert C.; Finley, David A.; Fischer, John A.; Foley, Ryan J.; Kim, Alex G.; Papadopoulos, Andreas; Sako, Masao; Scolnic, Daniel M.; Smith, Mathew; Tucker, Brad E.; Uddin, Syed; Wolf, Rachel C.; Yuan, Fang; Abbott, Tim M. C.; Abdalla, Filipe B.; Benoit-Lévy, Aurélien; Bertin, Emmanuel; Brooks, David; Rosell, Aurelio Carnero; Kind, Matias Carrasco; Cunha, Carlos E.; Costa, Luiz N. da; Desai, Shantanu; Doel, Peter; Eifler, Tim F.; Evrard, August E.; Flaugher, Brenna; Fosalba, Pablo; Gaztañaga, Enrique; Gruen, Daniel; Gruendl, Robert; James, David J.; Kuehn, Kyler; Kuropatkin, Nikolay; Maia, Marcio A. G.; Marshall, Jennifer L.; Miquel, Ramon; Plazas, Andrés A.; Romer, A. Kathy; Sánchez, Eusebio; Schubnell, Michael; Sevilla-Noarbe, Ignacio; Sobreira, Flávia; Suchyta, Eric; Swanson, Molly E. C.; Tarle, Gregory; Walker, Alistair R.; Wester, William

    2016-11-08

    Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope, which will discover SNe by the thousands. Spectroscopic resources are limited, and so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate "hostless" SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.

  14. HOST GALAXY IDENTIFICATION FOR SUPERNOVA SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve; Spinka, Harold; Liotine, Camille; Pomian, Katarzyna [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States); Kessler, Richard; Scolnic, Daniel M. [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Goldstein, Daniel A. [Department of Astronomy, University of California, Berkeley, 501 Campbell Hall #3411, Berkeley, CA 94720 (United States); D’Andrea, Chris B.; Nichol, Robert C.; Papadopoulos, Andreas [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Sullivan, Mark [Department of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Carretero, Jorge; Castander, Francisco J. [Institut de Ciències de l’Espai, IEEC-CSIC, Campus UAB, Carrer de Can Magrans, s/n, E-08193 Bellaterra, Barcelona (Spain); Finley, David A. [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Fischer, John A.; Sako, Masao [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Foley, Ryan J. [Department of Astronomy, University of Illinois, 1002 W. Green Street, Urbana, IL 61801 (United States); Kim, Alex G., E-mail: raviryan@gmail.com [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); and others

    2016-12-01

    Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope, which will discover SNe by the thousands. Spectroscopic resources are limited, and so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate “hostless” SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.

  15. Measurements of Ω and Λ from 42 High-Redshift Supernovae

    International Nuclear Information System (INIS)

    Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; Hook, I.M.; Kim, A.G.; Kim, M.Y.; Lee, J.C.; Nunes, N.J.; Pain, R.; Pennypacker, C.R.; Quimby, R.; Lidman, C.; Ellis, R.S.; Irwin, M.; McMahon, R.G.; Ruiz-Lapuente, P.; Walton, N.; Schaefer, B.; Boyle, B.J.; Filippenko, A.V.; Matheson, T.; Fruchter, A.S.; Panagia, N.; Newberg, H.J.; Couch, W.J.

    1999-01-01

    We report measurements of the mass density, Ω M , and cosmological-constant energy density, Ω Λ , of the universe based on the analysis of 42 type Ia supernovae discovered by the Supernova Cosmology Project. The magnitude-redshift data for these supernovae, at redshifts between 0.18 and 0.83, are fitted jointly with a set of supernovae from the Calacute an/Tololo Supernova Survey, at redshifts below 0.1, to yield values for the cosmological parameters. All supernova peak magnitudes are standardized using a SN Ia light-curve width-luminosity relation. The measurement yields a joint probability distribution of the cosmological parameters that is approximated by the relation 0.8Ω M -0.6Ω Λ ∼-0.2±0.1 in the region of interest (Ω M approx-lt 1.5). For a flat (Ω M +Ω Λ =1) cosmology we find Ω flat M =0.28 +0.09 -0.08 (1 σ statistical) +0.05 -0.04 (identified systematics). The data are strongly inconsistent with a Λ=0 flat cosmology, the simplest inflationary universe model. An open, Λ=0 cosmology also does not fit the data well: the data indicate that the cosmological constant is nonzero and positive, with a confidence of P(Λ>0)=99%, including the identified systematic uncertainties. The best-fit age of the universe relative to the Hubble time is t flat 0 =14.9 +1.4 -1.1 (0.63/h) Gyr for a flat cosmology. The size of our sample allows us to perform a variety of statistical tests to check for possible systematic errors and biases. We find no significant differences in either the host reddening distribution or Malmquist bias between the low-redshift Calacute an/Tololo sample and our high-redshift sample. Excluding those few supernovae that are outliers in color excess or fit residual does not significantly change the results. The conclusions are also robust whether or not a width-luminosity relation is used to standardize the supernova peak magnitudes. We discuss and constrain, where possible, hypothetical alternatives to a cosmological constant

  16. Dismantling Hubble's Legacy?

    OpenAIRE

    Way, Michael J.

    2013-01-01

    Edwin Hubble is famous for a number of discoveries that are well known to amateur and professional astronomers, students and the general public. The origins of these discoveries are examined and it is demonstrated that, in each case, a great deal of supporting evidence was already in place. In some cases the discoveries had either already been made, or competing versions were not adopted for complex scientific and sociological reasons.

  17. The Population of Supernova Remnants in M51

    Science.gov (United States)

    Long, Knox S.; Blair, William P.; Kuntz, K. D.; Winkler, P. Frank

    2017-08-01

    The nearby, actively star-forming, nearly face-on spiral galaxy, M51 (NGC 5194/5), has been the site of four supernovae since 1941. As a result it should have a rich population of young supernova remnants (SNRs). Here we describe a search for optical SNRs in M51 among the 298 X-ray sources discovered inside the D25 contour in deep Chandra observations. The search uses interference filter images obtained with the WFC3 on Hubble Space Telescope and more recent images from GMOS on Gemini North. Of 80 emission nebulae identified in the HST images as SNR candidates based on elevated [SII]: Ha ratios compared to HII regions, 40 have X-ray counterparts. The diameters of the SNRs and SNR candidates detected with HST are systematically smaller than seen in SNR populations of other galaxies at comparable distances. However, this is most likely an instrumental effect, which our ongoing analysis of the new GMOS images will correct. At that point, we will be able to make of fair multi-wavelength comparison of the SNR population in M51 with other nearby, actively star-forming spiral galaxies, such as M83 and NGC6946.

  18. Particle acceleration and nonthermal radiation in supernova remnants

    International Nuclear Information System (INIS)

    Zirakashvili, Vladimir

    2013-01-01

    Cosmic ray acceleration and magnetic amplification in shell-type supernova remnants is shortly reviewed. The results on the modeling of broadband electromagnetic emission from supernova remnants are presented and compared with observations.

  19. European astronomers' successes with the Hubble Space Telescope*

    Science.gov (United States)

    1997-02-01

    nearly 20 years for this result, and I expect the arguments will go on for a while longer," Gustav Tammann says. "In 1979 I asserted that a key task for the space telescope should be to use variable stars to fix the distances to nearby galaxies in which standard supernovae have been seen. Then the supernovae become candles lighting our way far out into the Universe. Well we've done it now, with stars in seven galaxies, and their supernovae give us wonderfully consistent answers. So we're in no mood to compromise, or to split the difference with Wendy Freedman's Hubble Constant. Time will tell us who is closer to the right answer." * Note to TV editors : A betacam tape on this subject is available from ESA Public Relations Office (Tel: 33(0)01.53.69.7155 Fax : 33(0)01.53.69.7690)

  20. A Deep Search with HST for Late Time Supernova Signatures in the Hosts of XRF 011030 and XRF 020427

    Science.gov (United States)

    Patel, Sandeep; Kouveliotou, Chryssa; Levan, Andrew; Fruchter, Andrew; Rol, Evert; Rhoads, James; Gorosabel, Javier; Ramirez-Ruiz, Enrico; Hjorth, Jens; Wijers, Ralph

    2004-01-01

    X-ray Flashes (XRFs), are, like Gamma-Ray Bursts (GRBs) thought to signal the collapse of massive stars in distant galaxies. Many models posit that the isotropic equivalent energies of XRFs are lower than those for GRBs, such that they are visible hom a reduced range of distances when compared with GRBs. Here we present the results of two epoch Hubble Space Telescope imaging of two XRFs. These images taken approximately 45 and 200 days post bust reveal no evidence for an associated supernova in either case. Supernovae such as SN 1998bw would have been visible out to z approximately 1.5 in each case, while faint supernovae such as SN 2002ap would be visible to z approximately 1. At these distances the bursts would not fit the observed correlations between E(sub p) and E(sub iso) and would have required extremely luminous X-ray afterglows. We conclude that should these XRFs reside at low redshift, it is necessary either that their line of sight is heavily extinguished, or that XRFs, unlike GRBs do not have temporally coincident supernovae.

  1. Prompt effects of supernovae

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1975-01-01

    Conflicting theories on the mechanisms of supernova production are examined. Supernova as sources of other phenomena such as comic rays, gamma rays, x-rays, and electromagnetic pulses are considered. 32 references

  2. The effect of weak lensing on distance estimates from supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Mathew; Maartens, Roy [Department of Physics, University of the Western Cape, Cape Town 7535 (South Africa); Bacon, David J.; Nichol, Robert C.; Campbell, Heather; D' Andrea, Chris B. [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Clarkson, Chris [Astrophysics, Cosmology and Gravity Centre (ACGC), Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701 (South Africa); Bassett, Bruce A. [South African Astronomical Observatory, P.O. Box 9, Observatory 7935 (South Africa); Cinabro, David [Wayne State University, Department of Physics and Astronomy, Detroit, MI 48202 (United States); Finley, David A.; Frieman, Joshua A. [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Galbany, Lluis [CENTRA Centro Multidisciplinar de Astrofísica, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisbon (Portugal); Garnavich, Peter M. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Olmstead, Matthew D. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Shapiro, Charles [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, La Canada Flintridge, CA 91109 (United States); Sollerman, Jesper, E-mail: matsmith2@gmail.com [The Oskar Klein Centre, Department of Astronomy, AlbaNova, SE-106 91 Stockholm (Sweden)

    2014-01-01

    Using a sample of 608 Type Ia supernovae from the SDSS-II and BOSS surveys, combined with a sample of foreground galaxies from SDSS-II, we estimate the weak lensing convergence for each supernova line of sight. We find that the correlation between this measurement and the Hubble residuals is consistent with the prediction from lensing (at a significance of 1.7σ). Strong correlations are also found between the residuals and supernova nuisance parameters after a linear correction is applied. When these other correlations are taken into account, the lensing signal is detected at 1.4σ. We show, for the first time, that distance estimates from supernovae can be improved when lensing is incorporated, by including a new parameter in the SALT2 methodology for determining distance moduli. The recovered value of the new parameter is consistent with the lensing prediction. Using cosmic microwave background data from WMAP7, H {sub 0} data from Hubble Space Telescope and Sloan Digital Sky Survey (SDSS) Baryon acoustic oscillations measurements, we find the best-fit value of the new lensing parameter and show that the central values and uncertainties on Ω {sub m} and w are unaffected. The lensing of supernovae, while only seen at marginal significance in this low-redshift sample, will be of vital importance for the next generation of surveys, such as DES and LSST, which will be systematics-dominated.

  3. The Hubble Constant

    Directory of Open Access Journals (Sweden)

    Neal Jackson

    2015-09-01

    Full Text Available I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H_0 values of around 72–74 km s^–1 Mpc^–1, with typical errors of 2–3 km s^–1 Mpc^–1. This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67–68 km s^–1 Mpc^–1 and typical errors of 1–2 km s^–1 Mpc^–1. The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.

  4. Marginal evidence for cosmic acceleration from Type Ia supernovae

    Science.gov (United States)

    Nielsen, J. T.; Guffanti, A.; Sarkar, S.

    2016-10-01

    The ‘standard’ model of cosmology is founded on the basis that the expansion rate of the universe is accelerating at present — as was inferred originally from the Hubble diagram of Type Ia supernovae. There exists now a much bigger database of supernovae so we can perform rigorous statistical tests to check whether these ‘standardisable candles’ indeed indicate cosmic acceleration. Taking account of the empirical procedure by which corrections are made to their absolute magnitudes to allow for the varying shape of the light curve and extinction by dust, we find, rather surprisingly, that the data are still quite consistent with a constant rate of expansion.

  5. Hubble diagram as a probe of minicharged particles

    International Nuclear Information System (INIS)

    Ahlers, Markus

    2009-01-01

    The luminosity-redshift relation of cosmological standard candles provides information about the relative energy composition of our Universe. In particular, the observation of type Ia supernovae up to a redshift of z∼2 indicates a universe which is dominated today by dark matter and dark energy. The propagation distance of light from these sources is of the order of the Hubble radius and serves as a very sensitive probe of feeble inelastic photon interactions with background matter, radiation, or magnetic fields. In this paper we discuss the limits on minicharged particle models arising from a dimming effect in supernova surveys. We briefly speculate about a strong dimming effect as an alternative to dark energy.

  6. Progenitor's Signatures in Type Ia Supernova Remnants

    NARCIS (Netherlands)

    Chiotellis, A.; Kosenko, D.; Schure, K.M.; Vink, J.

    2013-01-01

    The remnants of Type Ia supernovae (SNe Ia) can provide important clues about their progenitor histories. We discuss two well-observed supernova remnants (SNRs) that are believed to have resulted from SNe Ia, and use various tools to shed light on the possible progenitor histories. We find that

  7. Supernova Explosions Stay In Shape

    Science.gov (United States)

    2009-12-01

    remnants. This type of supernova is thought to be caused by a thermonuclear explosion of a white dwarf, and is often used by astronomers as "standard candles" for measuring cosmic distances. On the other hand, the remnants tied to the "core-collapse" supernova explosions were distinctly more asymmetric. This type of supernova occurs when a very massive, young star collapses onto itself and then explodes. "If we can link supernova remnants with the type of explosion", said co-author Enrico Ramirez-Ruiz, also of University of California, Santa Cruz, "then we can use that information in theoretical models to really help us nail down the details of how the supernovas went off." Models of core-collapse supernovas must include a way to reproduce the asymmetries measured in this work and models of Type Ia supernovas must produce the symmetric, circular remnants that have been observed. Out of the 17 supernova remnants sampled, ten were classified as the core-collapse variety, while the remaining seven of them were classified as Type Ia. One of these, a remnant known as SNR 0548-70.4, was a bit of an "oddball". This one was considered a Type Ia based on its chemical abundances, but Lopez finds it has the asymmetry of a core-collapse remnant. "We do have one mysterious object, but we think that is probably a Type Ia with an unusual orientation to our line of sight," said Lopez. "But we'll definitely be looking at that one again." While the supernova remnants in the Lopez sample were taken from the Milky Way and its close neighbor, it is possible this technique could be extended to remnants at even greater distances. For example, large, bright supernova remnants in the galaxy M33 could be included in future studies to determine the types of supernova that generated them. The paper describing these results appeared in the November 20 issue of The Astrophysical Journal Letters. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science

  8. Handbook of supernovae

    CERN Document Server

    Murdin, Paul

    2017-01-01

    This reference work gathers all of the latest research in the supernova field areas to create a definitive source book on supernovae, their remnants and related topics. It includes each distinct subdiscipline, including stellar types, progenitors, stellar evolution, nucleosynthesis of elements, supernova types, neutron stars and pulsars, black holes, swept up interstellar matter, cosmic rays, neutrinos from supernovae, supernova observations in different wavelengths, interstellar molecules and dust. While there is a great deal of primary and specialist literature on supernovae, with a great many scientific groups around the world focusing on the phenomenon and related subdisciplines, nothing else presents an overall survey. This handbook closes that gap at last. As a comprehensive and balanced collection that presents the current state of knowledge in the broad field of supernovae, this is to be used as a basis for further work and study by graduate students, astronomers and astrophysicists working in close/r...

  9. On the determination of the Hubble constant

    International Nuclear Information System (INIS)

    Gurzadyan, V.G.; Harutyunyan, V.V.; Kocharyan, A.A.

    1990-10-01

    The possibility of an alternative determination of the distance scale of the Universe and the Hubble constant based on the numerical analysis of the hierarchical nature of the large scale Universe (galaxies, clusters and superclusters) is proposed. The results of computer experiments performed by means of special numerical algorithms are represented. (author). 9 refs, 7 figs

  10. Fluid Instabilities of Magnetar-Powered Supernovae

    Science.gov (United States)

    Chen, Ke-Jung

    2017-05-01

    Magnetar-powered supernova explosions are competitive models for explaining very luminous optical transits. Until recently, these explosion models were mainly calculated in 1D. Radiation emitted from the magnetar snowplows into the previous supernovae ejecta and causes a nonphysical dense shell (spike) found in previous 1D studies. This suggests that strong fluid instabilities may have developed within the magnetar-powered supernovae. Such fluid instabilities emerge at the region where luminous transits later occur, so they can affect the consequent observational signatures. We examine the magnetar-powered supernovae with 2D hydrodynamics simulations and find that the 1D dense shell transforms into the development of Rayleigh-Taylor and thin shell instabilities in 2D. The resulting mixing is able to fragment the entire shell and break the spherical symmetry of supernovae ejecta.

  11. HST's 10th anniversary, ESA and Hubble : changing our vision

    Science.gov (United States)

    2000-04-01

    With the astronauts who took part in the most recent Servicing Mission (SM3A) in attendance, ESA is taking the opportunity to give a - first - complete overview of Europe's major contribution to the HST mission. It will also review the first ten years of operations and the outstanding results that have "changed our vision" of the cosmos. A new fully European outreach initiative - the "European Space Agency Hubble Information Centre" - will be presented and officially launched; it has been set up by ESA to provide information on Hubble from a European perspective. A public conference will take place in the afternoon to celebrate Hubble's achievements midway through its life. Ten years of outstanding performance Launched on 24 April 1990, Hubble is now midway through its operating life and it is considered one of the most successful space science missions ever. So far more than 10,000 scientific papers based on Hubble results have been published and European scientists have contributed to more than 25% of these. Not only has Hubble produced a rich harvest of scientific results, it has impressed the man in the street with its beautiful images of the sky. Thousands of headlines all over the world have given direct proof of the public's great interest in the mission - 'The deepest images ever', 'The sharpest view of the Universe', 'Measurements of the earliest galaxies' and many others, all reflecting Hubble's performance as a top-class observatory. The Servicing Missions that keep the observatory and its instruments in prime condition are one of the innovative ideas behind Hubble. Astronauts have serviced Hubble three times, and ESA astronauts have taken part in two of these missions. Claude Nicollier (CH) worked with American colleagues on the First Servicing Mission, when Hubble's initial optical problems were repaired. On the latest, Servicing Mission 3A, both Claude Nicollier and Jean-François Clervoy (F) were members of the crew. Over the next 10 years European

  12. Supernovae and their light emission

    International Nuclear Information System (INIS)

    Lourens, P.E.

    1978-01-01

    In this paper a short review of the properties of supernovae is given. The basic radiation theory and hydrodynamics is described. The work of Imshennik and Nadezhin, Astrophysics and Space Science, 10 (1971) 28-51, and their collaborators in connection with the propagation of a shock wave and associated physical effects in a supernova is discussed. Their results are compared with observations reported in the literature. Criticism is given on the boundary conditions for the diffusion flux F at the outer boundary used in their model, and a new condition proposed [af

  13. Infrared emission from supernova condensates

    International Nuclear Information System (INIS)

    Dwek, E.; Werner, M.W.

    1981-01-01

    We examine the possibility of detecting grains formed in supernovae by observations of their emission in the infrared. The basic processes determining the temperature and infrared radiation of grains in supernovae environments are analyzed, and the results are used to estimate the infrared emission from the highly metal enriched ''fast moving knots'' in Cas A. The predicted fluxes lie within the reach of current ground-based facilities at 10 μm, and their emission should be detectable throughout the infrared band with cryogenic space telescopes

  14. CHEERS Results from NGC 3393. II. Investigating the Extended Narrow-line Region Using Deep Chandra Observations and Hubble Space Telescope Narrow-line Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Paggi, Alessandro; Raymond, John [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Wang, Junfeng [Department of Astronomy, Physics Building, Xiamen University Xiamen, Fujian, 361005 (China); Storchi-Bergmann, Thaisa, E-mail: walter.maksym@cfa.harvard.edu [Departamento de Astronomia, Universidade Federal do Rio Grande do Sul, IF, CP 15051, 91501-970 Porto Alegre, RS (Brazil)

    2017-07-20

    The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGNs) designed to take full advantage of Chandra 's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble Space Telescope narrow-line images of [O iii], [S ii], and H α , as well as previously unpublished mid-ultraviolet (MUV) images. The X-rays provide unprecedented evidence that the S-shaped arms that envelope the nuclear radio outflows extend only ≲0.″2 (≲50 pc) across. The high-resolution multiwavelength data suggest that the extended narrow-line region is a complex multiphase structure in the circumnuclear interstellar medium (ISM). Its ionization structure is highly stratified with respect to outflow-driven bubbles in the bicone and varies dramatically on scales of ∼10 pc. Multiple findings show likely contributions from shocks to the feedback in regions where radio outflows from the AGN most directly influence the ISM. These findings include H α evidence for gas compression and extended MUV emission and are in agreement with existing STIS kinematics. Extended filamentary structure in the X-rays and optical suggests the presence of an undetected plasma component, whose existence could be tested with deeper radio observations.

  15. CHEERS Results from NGC 3393. II. Investigating the Extended Narrow-line Region Using Deep Chandra Observations and Hubble Space Telescope Narrow-line Imaging

    Science.gov (United States)

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Paggi, Alessandro; Raymond, John; Wang, Junfeng; Storchi-Bergmann, Thaisa

    2017-07-01

    The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGNs) designed to take full advantage of Chandra's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble Space Telescope narrow-line images of [O III], [S II], and Hα, as well as previously unpublished mid-ultraviolet (MUV) images. The X-rays provide unprecedented evidence that the S-shaped arms that envelope the nuclear radio outflows extend only ≲0.″2 (≲50 pc) across. The high-resolution multiwavelength data suggest that the extended narrow-line region is a complex multiphase structure in the circumnuclear interstellar medium (ISM). Its ionization structure is highly stratified with respect to outflow-driven bubbles in the bicone and varies dramatically on scales of ˜10 pc. Multiple findings show likely contributions from shocks to the feedback in regions where radio outflows from the AGN most directly influence the ISM. These findings include Hα evidence for gas compression and extended MUV emission and are in agreement with existing STIS kinematics. Extended filamentary structure in the X-rays and optical suggests the presence of an undetected plasma component, whose existence could be tested with deeper radio observations.

  16. CHEERS Results from NGC 3393. II. Investigating the Extended Narrow-line Region Using Deep Chandra Observations and Hubble Space Telescope Narrow-line Imaging

    International Nuclear Information System (INIS)

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Paggi, Alessandro; Raymond, John; Wang, Junfeng; Storchi-Bergmann, Thaisa

    2017-01-01

    The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGNs) designed to take full advantage of Chandra 's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble Space Telescope narrow-line images of [O iii], [S ii], and H α , as well as previously unpublished mid-ultraviolet (MUV) images. The X-rays provide unprecedented evidence that the S-shaped arms that envelope the nuclear radio outflows extend only ≲0.″2 (≲50 pc) across. The high-resolution multiwavelength data suggest that the extended narrow-line region is a complex multiphase structure in the circumnuclear interstellar medium (ISM). Its ionization structure is highly stratified with respect to outflow-driven bubbles in the bicone and varies dramatically on scales of ∼10 pc. Multiple findings show likely contributions from shocks to the feedback in regions where radio outflows from the AGN most directly influence the ISM. These findings include H α evidence for gas compression and extended MUV emission and are in agreement with existing STIS kinematics. Extended filamentary structure in the X-rays and optical suggests the presence of an undetected plasma component, whose existence could be tested with deeper radio observations.

  17. SPECTROSCOPY OF TYPE Ia SUPERNOVAE BY THE CARNEGIE SUPERNOVA PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Folatelli, Gaston [Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), Todai Institutes for Advanced Study, the University of Tokyo, 277-8583 Kashiwa (Japan); Morrell, Nidia; Phillips, Mark M.; Hsiao, Eric; Campillay, Abdo; Contreras, Carlos; Castellon, Sergio; Roth, Miguel [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Hamuy, Mario; Anderson, Joseph P. [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile); Krzeminski, Wojtek [N. Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warszawa (Poland); Stritzinger, Maximilian [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Burns, Christopher R.; Freedman, Wendy L.; Madore, Barry F.; Murphy, David; Persson, S. E. [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Prieto, Jose L. [Department of Astrophysical Sciences, Princeton University, 4 Ivy Ln., Princeton, NJ 08544 (United States); Suntzeff, Nicholas B.; Krisciunas, Kevin, E-mail: gaston.folatelli@ipmu.jp [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); and others

    2013-08-10

    This is the first release of optical spectroscopic data of low-redshift Type Ia supernovae (SNe Ia) by the Carnegie Supernova Project including 604 previously unpublished spectra of 93 SNe Ia. The observations cover a range of phases from 12 days before to over 150 days after the time of B-band maximum light. With the addition of 228 near-maximum spectra from the literature, we study the diversity among SNe Ia in a quantitative manner. For that purpose, spectroscopic parameters are employed such as expansion velocities from spectral line blueshifts and pseudo-equivalent widths (pW). The values of those parameters at maximum light are obtained for 78 objects, thus providing a characterization of SNe Ia that may help to improve our understanding of the properties of the exploding systems and the thermonuclear flame propagation. Two objects, namely, SNe 2005M and 2006is, stand out from the sample by showing peculiar Si II and S II velocities but otherwise standard velocities for the rest of the ions. We further study the correlations between spectroscopic and photometric parameters such as light-curve decline rate and color. In agreement with previous studies, we find that the pW of Si II absorption features are very good indicators of light-curve decline rate. Furthermore, we demonstrate that parameters such as pW2 (Si II 4130) and pW6 (Si II 5972) provide precise calibrations of the peak B-band luminosity with dispersions of Almost-Equal-To 0.15 mag. In the search for a secondary parameter in the calibration of peak luminosity for SNe Ia, we find a Almost-Equal-To 2{sigma}-3{sigma} correlation between B-band Hubble residuals and the velocity at maximum light of S II and Si II lines.

  18. SPECTROSCOPY OF TYPE Ia SUPERNOVAE BY THE CARNEGIE SUPERNOVA PROJECT

    International Nuclear Information System (INIS)

    Folatelli, Gastón; Morrell, Nidia; Phillips, Mark M.; Hsiao, Eric; Campillay, Abdo; Contreras, Carlos; Castellón, Sergio; Roth, Miguel; Hamuy, Mario; Anderson, Joseph P.; Krzeminski, Wojtek; Stritzinger, Maximilian; Burns, Christopher R.; Freedman, Wendy L.; Madore, Barry F.; Murphy, David; Persson, S. E.; Prieto, José L.; Suntzeff, Nicholas B.; Krisciunas, Kevin

    2013-01-01

    This is the first release of optical spectroscopic data of low-redshift Type Ia supernovae (SNe Ia) by the Carnegie Supernova Project including 604 previously unpublished spectra of 93 SNe Ia. The observations cover a range of phases from 12 days before to over 150 days after the time of B-band maximum light. With the addition of 228 near-maximum spectra from the literature, we study the diversity among SNe Ia in a quantitative manner. For that purpose, spectroscopic parameters are employed such as expansion velocities from spectral line blueshifts and pseudo-equivalent widths (pW). The values of those parameters at maximum light are obtained for 78 objects, thus providing a characterization of SNe Ia that may help to improve our understanding of the properties of the exploding systems and the thermonuclear flame propagation. Two objects, namely, SNe 2005M and 2006is, stand out from the sample by showing peculiar Si II and S II velocities but otherwise standard velocities for the rest of the ions. We further study the correlations between spectroscopic and photometric parameters such as light-curve decline rate and color. In agreement with previous studies, we find that the pW of Si II absorption features are very good indicators of light-curve decline rate. Furthermore, we demonstrate that parameters such as pW2 (Si II 4130) and pW6 (Si II 5972) provide precise calibrations of the peak B-band luminosity with dispersions of ≈0.15 mag. In the search for a secondary parameter in the calibration of peak luminosity for SNe Ia, we find a ≈2σ-3σ correlation between B-band Hubble residuals and the velocity at maximum light of S II and Si II lines

  19. HUBBLE VISION: A Planetarium Show About Hubble Space Telescope

    Science.gov (United States)

    Petersen, Carolyn Collins

    1995-05-01

    In 1991, a planetarium show called "Hubble: Report From Orbit" outlining the current achievements of the Hubble Space Telescope was produced by the independent planetarium production company Loch Ness Productions, for distribution to facilities around the world. The program was subsequently converted to video. In 1994, that program was updated and re-produced under the name "Hubble Vision" and offered to the planetarium community. It is periodically updated and remains a sought-after and valuable resource within the community. This paper describes the production of the program, and the role of the astronomical community in the show's production (and subsequent updates). The paper is accompanied by a video presentation of Hubble Vision.

  20. Hierarchical Models for Type Ia Supernova Light Curves in the Optical and Near Infrared

    Science.gov (United States)

    Mandel, Kaisey; Narayan, G.; Kirshner, R. P.

    2011-01-01

    I have constructed a comprehensive statistical model for Type Ia supernova optical and near infrared light curves. Since the near infrared light curves are excellent standard candles and are less sensitive to dust extinction and reddening, the combination of near infrared and optical data better constrains the host galaxy extinction and improves the precision of distance predictions to SN Ia. A hierarchical probabilistic model coherently accounts for multiple random and uncertain effects, including photometric error, intrinsic supernova light curve variations and correlations across phase and wavelength, dust extinction and reddening, peculiar velocity dispersion and distances. An improved BayeSN MCMC code is implemented for computing probabilistic inferences for individual supernovae and the SN Ia and host galaxy dust populations. I use this hierarchical model to analyze nearby Type Ia supernovae with optical and near infared data from the PAIRITEL, CfA3, and CSP samples and the literature. Using cross-validation to test the robustness of the model predictions, I find that the rms Hubble diagram scatter of predicted distance moduli is 0.11 mag for SN with optical and near infrared data versus 0.15 mag for SN with only optical data. Accounting for the dispersion expected from random peculiar velocities, the rms intrinsic prediction error is 0.08-0.10 mag for SN with both optical and near infrared light curves. I discuss results for the inferred intrinsic correlation structures of the optical-NIR SN Ia light curves and the host galaxy dust distribution captured by the hierarchical model. The continued observation and analysis of Type Ia SN in the optical and near infrared is important for improving their utility as precise and accurate cosmological distance indicators.

  1. Hubble expansion in a Euclidean framework

    International Nuclear Information System (INIS)

    Alfven, H.

    1979-01-01

    There now seems to be strong evidence for a non-cosmological interpretation of the QSO redshift - in any case, so strong that it is of interest to investigate the consequences. The purpose of this paper is to construct a model of the Hubble expansion which is as far as possible from the conventional Big Bang model without coming in conflict with any well-established observational results (while introducing no new laws of physics). This leads to an essentially Euclidean metagalactic model (see Table I) with very little mass outside one-third or half of the Hubble radius. The total kinetic energy of the Hubble expansion need only to be about 5% of the rest mass energy. Present observations support backwards in time extrapolation of the Hubble expansion to a 'minimum size galaxy' Rsub(m), which may have any value in 0 26 cm. Other arguments speak in favor of a size close to the upper value, say Rsub(m) = 10 26 cm (Table II). As this size is probably about 100 times the Schwarzschild limit, an essentially Euclidean description is allowed. The kinetic energy of the Hubble expansion may derive from an intense QSO-like activity in the minimum size metagalaxy, with an energy release corresponding to the annihilation of a few solar masses per galaxy per year. Some of the conclusions based on the Big Bang hypothesis are criticized and in several cases alternative interpretations are suggested. A comparison between the Euclidean and the conventional models is given in Table III. (orig.)

  2. The historical supernovae

    CERN Document Server

    Clark, David H

    1977-01-01

    The Historical Supernovae is an interdisciplinary study of the historical records of supernova. This book is composed of 12 chapters that particularly highlight the history of the Far East. The opening chapter briefly describes the features of nova and supernova, stars which spontaneously explode with a spectacular and rapid increase in brightness. The succeeding chapter deals with the search for the historical records of supernova from Medieval European monastic chronicles, Arabic chronicles, astrological works etc., post renaissance European scientific writings, and Far Eastern histories and

  3. Automated Supernova Discovery (Abstract)

    Science.gov (United States)

    Post, R. S.

    2015-12-01

    (Abstract only) We are developing a system of robotic telescopes for automatic recognition of Supernovas as well as other transient events in collaboration with the Puckett Supernova Search Team. At the SAS2014 meeting, the discovery program, SNARE, was first described. Since then, it has been continuously improved to handle searches under a wide variety of atmospheric conditions. Currently, two telescopes are used to build a reference library while searching for PSN with a partial library. Since data is taken every night without clouds, we must deal with varying atmospheric and high background illumination from the moon. Software is configured to identify a PSN, reshoot for verification with options to change the run plan to acquire photometric or spectrographic data. The telescopes are 24-inch CDK24, with Alta U230 cameras, one in CA and one in NM. Images and run plans are sent between sites so the CA telescope can search while photometry is done in NM. Our goal is to find bright PSNs with magnitude 17.5 or less which is the limit of our planned spectroscopy. We present results from our first automated PSN discoveries and plans for PSN data acquisition.

  4. The supernova-gamma-ray burst-jet connection.

    Science.gov (United States)

    Hjorth, Jens

    2013-06-13

    The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bipolar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star, whereas the (56)Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper, I summarize the observational status of the supernova-gamma-ray burst connection in the context of the 'engine' picture of jet-driven supernovae and highlight SN 2012bz/GRB 120422A--with its luminous supernova but intermediate high-energy luminosity--as a possible transition object between low-luminosity and jet gamma-ray bursts. The jet channel for supernova explosions may provide new insights into supernova explosions in general.

  5. The ASAS-SN bright supernova catalogue - III. 2016

    Science.gov (United States)

    Holoien, T. W.-S.; Brown, J. S.; Stanek, K. Z.; Kochanek, C. S.; Shappee, B. J.; Prieto, J. L.; Dong, Subo; Brimacombe, J.; Bishop, D. W.; Bose, S.; Beacom, J. F.; Bersier, D.; Chen, Ping; Chomiuk, L.; Falco, E.; Godoy-Rivera, D.; Morrell, N.; Pojmanski, G.; Shields, J. V.; Strader, J.; Stritzinger, M. D.; Thompson, Todd A.; Woźniak, P. R.; Bock, G.; Cacella, P.; Conseil, E.; Cruz, I.; Fernandez, J. M.; Kiyota, S.; Koff, R. A.; Krannich, G.; Marples, P.; Masi, G.; Monard, L. A. G.; Nicholls, B.; Nicolas, J.; Post, R. S.; Stone, G.; Wiethoff, W. S.

    2017-11-01

    This catalogue summarizes information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (mpeak ≤ 17), spectroscopically confirmed supernovae discovered in 2016. We then gather the near-infrared through ultraviolet magnitudes of all host galaxies and the offsets of the supernovae from the centres of their hosts from public data bases. We illustrate the results using a sample that now totals 668 supernovae discovered since 2014 May 1, including the supernovae from our previous catalogues, with type distributions closely matching those of the ideal magnitude limited sample from Li et al. This is the third of a series of yearly papers on bright supernovae and their hosts from the ASAS-SN team.

  6. MAGNETAR-POWERED SUPERNOVAE IN TWO DIMENSIONS. I. SUPERLUMINOUS SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ke-Jung [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, Tokyo 181-8588 (Japan); Woosley, S. E.; Sukhbold, Tuguldur, E-mail: ken.chen@nao.ac.jp [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2016-11-20

    Previous studies have shown that the radiation emitted by a rapidly rotating magnetar embedded in a young supernova can greatly amplify its luminosity. These one-dimensional studies have also revealed the existence of an instability arising from the piling up of radiatively accelerated matter in a thin dense shell deep inside the supernova. Here, we examine the problem in two dimensions and find that, while instabilities cause mixing and fracture this shell into filamentary structures that reduce the density contrast, the concentration of matter in a hollow shell persists. The extent of the mixing depends upon the relative energy input by the magnetar and the kinetic energy of the inner ejecta. The light curve and spectrum of the resulting supernova will be appreciably altered, as will the appearance of the supernova remnant, which will be shellular and filamentary. A similar pile up and mixing might characterize other events where energy is input over an extended period by a centrally concentrated source, e.g., a pulsar, radioactive decay, a neutrino-powered wind, or colliding shells. The relevance of our models to the recent luminous transient ASASSN-15lh is briefly discussed.

  7. Nonstandard neutrino interactions in supernovae

    Science.gov (United States)

    Stapleford, Charles J.; Väänänen, Daavid J.; Kneller, James P.; McLaughlin, Gail C.; Shapiro, Brandon T.

    2016-11-01

    Nonstandard interactions (NSI) of neutrinos with matter can significantly alter neutrino flavor evolution in supernovae with the potential to impact explosion dynamics, nucleosynthesis, and the neutrinos signal. In this paper, we explore, both numerically and analytically, the landscape of neutrino flavor transformation effects in supernovae due to NSI and find a new, heretofore unseen transformation processes can occur. These new transformations can take place with NSI strengths well below current experimental limits. Within a broad swath of NSI parameter space, we observe symmetric and standard matter-neutrino resonances for supernovae neutrinos, a transformation effect previously only seen in compact object merger scenarios; in another region of the parameter space we find the NSI can induce neutrino collective effects in scenarios where none would appear with only the standard case of neutrino oscillation physics; and in a third region the NSI can lead to the disappearance of the high density Mikheyev-Smirnov-Wolfenstein resonance. Using a variety of analytical tools, we are able to describe quantitatively the numerical results allowing us to partition the NSI parameter according to the transformation processes observed. Our results indicate nonstandard interactions of supernova neutrinos provide a sensitive probe of beyond the Standard Model physics complementary to present and future terrestrial experiments.

  8. The discovery of the most distant known type Ia supernova at redshift 1.914

    DEFF Research Database (Denmark)

    Jones, Dennis; Rodney, S.A.; Riess, A.G.

    2013-01-01

    We present the discovery of a Type Ia supernova (SN) at redshift z = 1.914 from the CANDELS multi-cycle treasury program on the Hubble Space Telescope (HST). This SN was discovered in the infrared using the Wide-Field Camera 3, and it is the highest-redshift Type Ia SN yet observed. We classify t...

  9. XRF 100316D/SN 2010bh and the nature of gamma-ray burst supernovae

    NARCIS (Netherlands)

    Cano, Z.; Bersier, D.; Guidorzi, C.; Kobayashi, S.; Levan, A.J.; Tanvir, N.R.; Wiersema, K.; D'Avanzo, P.; Fruchter, A.S.; Garnavich, P.; Gomboc, A.; Gorosabel, J.; Kasen, D.; Kopač, D.; Margutti, R.; Mazzali, P.A.; Melandri, A.; Mundell, C.G.; Nugent, P.E.; Pian, E.; Smith, R.J.; Steele, I.; Wijers, R.A.M.J.; Woosley, S.E.

    2011-01-01

    We present ground-based and Hubble Space Telescope optical and infrared observations of Swift XRF 100316D/SN 2010bh. It is seen that the optical light curves of SN 2010bh evolve at a faster rate than the archetype gamma-ray burst supernova (GRB-SN) 1998bw, but at a similar rate to SN 2006aj, an SN

  10. Gravitational lensing in the supernova legacy survey (SNLS)

    Science.gov (United States)

    Kronborg, T.; Hardin, D.; Guy, J.; Astier, P.; Balland, C.; Basa, S.; Carlberg, R. G.; Conley, A.; Fouchez, D.; Hook, I. M.; Howell, D. A.; Jönsson, J.; Pain, R.; Pedersen, K.; Perrett, K.; Pritchet, C. J.; Regnault, N.; Rich, J.; Sullivan, M.; Palanque-Delabrouille, N.; Ruhlmann-Kleider, V.

    2010-05-01

    Aims: The observed brightness of type Ia supernovae is affected by gravitational lensing caused by the mass distribution along the line of sight, which introduces an additional dispersion into the Hubble diagram. We look for evidence of lensing in the SuperNova Legacy Survey 3-year data set. Methods: We investigate the correlation between the residuals from the Hubble diagram and the gravitational magnification based on a modeling of the mass distribution of foreground galaxies. A deep photometric catalog, photometric redshifts, and well established mass luminosity relations are used. Results: We find evidence of a lensing signal with a 2.3σ significance. The current result is limited by the number of SNe, their redshift distribution, and the other sources of scatter in the Hubble diagram. Separating the galaxy population into a red and a blue sample has a positive impact on the significance of the signal detection. On the other hand, increasing the depth of the galaxy catalog, the precision of photometric redshifts or reducing the scatter in the mass luminosity relations have little effect. We show that for the full SuperNova Legacy Survey sample (~400 spectroscopically confirmed type Ia SNe and ~200 photometrically identified type Ia SNe), there is an 80% probability of detecting the lensing signal with a 3σ significance. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. Based on observations obtained at the European Southern Observatory using the Very Large Telescope on

  11. Neutrinos from type-II supernovae and the neutrino-driven supernova mechanism

    International Nuclear Information System (INIS)

    Janka, H.T.

    1996-01-01

    Supernova 1987A has confirmed fundamental aspects of our theoretical view of type-II supernovae: Type-II supernovae are a consequence of the collapse of the iron core of a massive evolved star and lead to the formation of a neutron star or black hole. This picture is most strongly supported by the detection of electron antineutrinos in the IMB and Kamiokande II experiments in connection with SN 1987A. However, the mechanism causing the supernova explosion is not yet satisfactorily understood. In this paper the properties of the neutrino emission from supernovae and protoneutron stars will be reviewed; analytical estimates will be derived and results of numerical simulations will be shown. It will be demonstrated that the spectral distributions of the emitted neutrinos show clear and systematic discrepancies compared with thermal (black body-type) emission. This must be taken into account when neutrino observations from supernovae are to be interpreted, or when implications of the neutrino emission on nucleosynthesis processes in mantle and envelope of the progenitor star are to be investigated. Furthermore, the influence of neutrinos on the supernova dynamics will be discussed, in particular their crucial role in causing the explosion by Wilson's neutrino-driven delayed mechanism. Possible implications of convection inside the newly born neutron star and between surface and the supernova shock will be addressed and results of multi-dimensional simulations will be presented. (author) 7 figs., 1 tab., refs

  12. Neutrinos from type-II supernovae and the neutrino-driven supernova mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Janka, H T [Max-Planck-Institut fuer Astrophysik, Garching (Germany)

    1996-11-01

    Supernova 1987A has confirmed fundamental aspects of our theoretical view of type-II supernovae: Type-II supernovae are a consequence of the collapse of the iron core of a massive evolved star and lead to the formation of a neutron star or black hole. This picture is most strongly supported by the detection of electron antineutrinos in the IMB and Kamiokande II experiments in connection with SN 1987A. However, the mechanism causing the supernova explosion is not yet satisfactorily understood. In this paper the properties of the neutrino emission from supernovae and protoneutron stars will be reviewed; analytical estimates will be derived and results of numerical simulations will be shown. It will be demonstrated that the spectral distributions of the emitted neutrinos show clear and systematic discrepancies compared with thermal (black body-type) emission. This must be taken into account when neutrino observations from supernovae are to be interpreted, or when implications of the neutrino emission on nucleosynthesis processes in mantle and envelope of the progenitor star are to be investigated. Furthermore, the influence of neutrinos on the supernova dynamics will be discussed, in particular their crucial role in causing the explosion by Wilson`s neutrino-driven delayed mechanism. Possible implications of convection inside the newly born neutron star and between surface and the supernova shock will be addressed and results of multi-dimensional simulations will be presented. (author) 7 figs., 1 tab., refs.

  13. Radiative transfer in type I supernovae atmospheres

    International Nuclear Information System (INIS)

    Isern, J.; Lopez, R.; Simonneau, E.

    1987-01-01

    Type I Supernovae are thought to be the result of the thermonuclear explosion of a carbon oxygen white dwarf in a close binary system. As the only direct information concerning the physics and the triggering mechanism of supernova explosions comes from the spectrophotometry of the emitted radiation, it is worthwhile to put considerable effort on the understanding of the radiation transfer in the supernovae envelopes in order to set constraints on the theoretical models of such explosions. In this paper we analyze the role played by the layers curvature on the radiative transfer. (Author)

  14. Supernova neutrino detection in LZ

    Science.gov (United States)

    Khaitan, D.

    2018-02-01

    In the first 10 seconds of a core-collapse supernova, almost all of its progenitor's gravitational potential, O(1053 ergs), is carried away in the form of neutrinos. These neutrinos, with O(10 MeV) kinetic energy, can interact via coherent elastic neutrino-nucleus scattering (CEνNS) depositing O(1 keV) in detectors. In this work we describe the performances of low-background dark matter detectors, such as LUX-ZEPLIN (LZ), optimized for detecting low-energy depositions, in detecting these neutrino interactions. For instance, a 27 Msolar supernova at 10 kpc is expected to produce ~350 neutrino interactions in the 7-tonne liquid xenon active volume of LZ. Based on the LS220 EoS neutrino flux model for a SN, the Noble Element Simulation Technique (NEST), and predicted CEνNS cross-sections for xenon, to study energy deposition and detection of SN neutrinos in LZ. We simulate the response of the LZ data acquisition system (DAQ) and demonstrate its capability and limitations in handling this interaction rate. We present an overview of the LZ detector, focusing on the benefits of liquid xenon for supernova neutrino detection. We discuss energy deposition and detector response simulations and their results. We present an analysis technique to reconstruct the total number of neutrinos and the time of the supernova core bounce.

  15. Evolution of Supernova Remnants

    Science.gov (United States)

    Arbutina, B.

    2017-12-01

    This book, both a monograph and a graduate textbook, is based on my original research and partly on the materials prepared earlier for the 2007 and 2008 IARS Astrophysics Summer School in Istanbul, AstroMundus course 'Supernovae and Their Remnants' that was held for the first time in 2011 at the Department of Astronomy, Faculty of Mathematics, University of Belgrade, and a graduate course 'Evolution of Supernova Remnants' that I teach at the aforementioned university. The first part Supernovae (introduction, thermonuclear supernovae, core-collapse supernovae) provides introductory information and explains the classification and physics of supernova explosions, while the second part Supernova remnants (introduction, shock waves, cosmic rays and particle acceleration, magnetic fields, synchrotron radiation, hydrodynamic and radio evolution of supernova remnants), which is the field I work in, is more detailed in scope i.e. technical/mathematical. Special attention is paid to details of mathematical derivations that often cannot be found in original works or available literature. Therefore, I believe it can be useful to both, graduate students and researchers interested in the field.

  16. Nurseries of Supernovae

    DEFF Research Database (Denmark)

    Frederiksen, Teddy

    Type Ia supernovae (SNe) have long been the gold standard for precision cosmology and after several decades of intense research the supernova (SN) community was in 2011 honored by giving the Nobel Prize in physics for the discovery of Dark Energy to the leaders of the two big SN collaborations: S...

  17. Gravitational collapse and supernovae

    International Nuclear Information System (INIS)

    Lattimer, J.M.

    1989-01-01

    The collapse of the core of a massive star and the subsequent birth of a neutron star in a supernova explosion are discussed, and a model of the supernova mechanism is developed. The basic theory is then compared with the particular case of SN1987A, whose emitted neutrinos permitted the first direct test of the model. (author)

  18. Supernova 1604, Kepler’s Supernova, and Its Remnant

    NARCIS (Netherlands)

    Vink, J.; Alsabti, A.W.; Murdin, P.

    2016-01-01

    Supernova 1604 is the last galactic supernova for which historical records exist. Johannes Kepler’s name is attached to it, as he published a detailed account of the observations made by himself and European colleagues. Supernova 1604 was very likely a type Ia supernova, which exploded 350–750 pc

  19. Supernova brightening from chameleon-photon mixing

    International Nuclear Information System (INIS)

    Burrage, C.

    2008-01-01

    Measurements of standard candles and measurements of standard rulers give an inconsistent picture of the history of the universe. This discrepancy can be explained if photon number is not conserved as computations of the luminosity distance must be modified. I show that photon number is not conserved when photons mix with chameleons in the presence of a magnetic field. The strong magnetic fields in a supernova mean that the probability of a photon converting into a chameleon in the interior of the supernova is high, this results in a large flux of chameleons at the surface of the supernova. Chameleons and photons also mix as a result of the intergalactic magnetic field. These two effects combined cause the image of the supernova to be brightened resulting in a model which fits both observations of standard candles and observations of standard rulers

  20. Happy birthday, supernova

    International Nuclear Information System (INIS)

    Schorn, R.A.

    1988-01-01

    The advances in understanding that have been made concerning SN 1987A in the year since it appeared are reviewed. The rapidity of the initial rise in brightness and the relatively faint absolute magnitude during the first few weeks have been found to be due to the progenitor star's being a blue giant, relatively small compared to a red giant. The nitrogen lines in the spectrum are evidence that the star was once a red giant whose stellar wind was so strong that the resulting loss of material converted the star into a blue giant. The variations in the light curve of the supernova are explained in terms of the radioactive decay of Ni-56 and Co-56 and the interaction of the resulting gamma rays with the debris cloud. Some of the remaining unanswered questions are summarized

  1. Supernovae, dark energy and the accelerating universe

    CERN Multimedia

    Perlmutter, Saul

    1999-01-01

    Based on an analysis of 42 high-redshift supernovae discovered by the supernovae cosmology project, we have found evidence for a positive cosmological constant, Lambda, and hence an accelerating universe. In particular, the data are strongly inconsistent with a Lambda=0 flat cosmology, the simplest inflationary universe model. The size of our supernova sample allows us to perform a variety of statistical tests to check for possible systematic errors and biases. We will discuss results of these and other studies and the ongoing hunt for further loopholes to evade the apparent consequences of the measurements. We will present further work that begins to constrain the alternative physics theories of "dark energy" that have been proposed to explain these results. Finally, we propose a new concept for a definitive supernova measurement of the cosmological parameters.

  2. THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY

    International Nuclear Information System (INIS)

    Dalcanton, Julianne J.; Williams, Benjamin F.; Rosenfield, Philip; Weisz, Daniel R.; Gilbert, Karoline M.; Gogarten, Stephanie M.; Lang, Dustin; Lauer, Tod R.; Dong Hui; Kalirai, Jason S.; Boyer, Martha L.; Gordon, Karl D.; Seth, Anil C.; Dolphin, Andrew; Bell, Eric F.; Bianchi, Luciana C.; Caldwell, Nelson; Dorman, Claire E.; Guhathakurta, Puragra; Girardi, Léo

    2012-01-01

    The Panchromatic Hubble Andromeda Treasury is an ongoing Hubble Space Telescope Multi-Cycle Treasury program to image ∼1/3 of M31's star-forming disk in six filters, spanning from the ultraviolet (UV) to the near-infrared (NIR). We use the Wide Field Camera 3 (WFC3) and Advanced Camera for Surveys (ACS) to resolve the galaxy into millions of individual stars with projected radii from 0 to 20 kpc. The full survey will cover a contiguous 0.5 deg 2 area in 828 orbits. Imaging is being obtained in the F275W and F336W filters on the WFC3/UVIS camera, F475W and F814W on ACS/WFC, and F110W and F160W on WFC3/IR. The resulting wavelength coverage gives excellent constraints on stellar temperature, bolometric luminosity, and extinction for most spectral types. The data produce photometry with a signal-to-noise ratio of 4 at m F275W = 25.1, m F336W = 24.9, m F475W = 27.9, m F814W = 27.1, m F110W = 25.5, and m F160W = 24.6 for single pointings in the uncrowded outer disk; in the inner disk, however, the optical and NIR data are crowding limited, and the deepest reliable magnitudes are up to 5 mag brighter. Observations are carried out in two orbits per pointing, split between WFC3/UVIS and WFC3/IR cameras in primary mode, with ACS/WFC run in parallel. All pointings are dithered to produce Nyquist-sampled images in F475W, F814W, and F160W. We describe the observing strategy, photometry, astrometry, and data products available for the survey, along with extensive testing of photometric stability, crowding errors, spatially dependent photometric biases, and telescope pointing control. We also report on initial fits to the structure of M31's disk, derived from the density of red giant branch stars, in a way that is independent of assumed mass-to-light ratios and is robust to variations in dust extinction. These fits also show that the 10 kpc ring is not just a region of enhanced recent star formation, but is instead a dynamical structure containing a significant overdensity of

  3. Merging White Dwarfs and Thermonuclear Supernovae

    OpenAIRE

    van Kerkwijk, Marten H.

    2012-01-01

    Thermonuclear supernovae result when interaction with a companion reignites nuclear fusion in a carbon-oxygen white dwarf, causing a thermonuclear runaway, a catastrophic gain in pressure, and the disintegration of the whole white dwarf. It is usually thought that fusion is reignited in near-pycnonuclear conditions when the white dwarf approaches the Chandrasekhar mass. I briefly describe two long-standing problems faced by this scenario, and our suggestion that these supernovae instead resul...

  4. The new European Hubble archive

    Science.gov (United States)

    De Marchi, Guido; Arevalo, Maria; Merin, Bruno

    2016-01-01

    The European Hubble Archive (hereafter eHST), hosted at ESA's European Space Astronomy Centre, has been released for public use in October 2015. The eHST is now fully integrated with the other ESA science archives to ensure long-term preservation of the Hubble data, consisting of more than 1 million observations from 10 different scientific instruments. The public HST data, the Hubble Legacy Archive, and the high-level science data products are now all available to scientists through a single, carefully designed and user friendly web interface. In this talk, I will show how the the eHST can help boost archival research, including how to search on sources in the field of view thanks to precise footprints projected onto the sky, how to obtain enhanced previews of imaging data and interactive spectral plots, and how to directly link observations with already published papers. To maximise the scientific exploitation of Hubble's data, the eHST offers connectivity to virtual observatory tools, easily integrates with the recently released Hubble Source Catalog, and is fully accessible through ESA's archives multi-mission interface.

  5. Physical processes in collapse driven supernova

    Energy Technology Data Exchange (ETDEWEB)

    Mayle, R.W.

    1985-11-01

    A model of the supernova explosion is discussed. The method of neutrino transport is discussed, since the explosive mechanism depends on neutrino heating of the material behind the accretion shock. The core region of these exploding stars becomes unstable to convective motions during the supernova evolution. Convective mixing allows more neutrinos to escape from under the neutrinosphere, and thus increases the amount of heating by neutrinos. An approximate method of incorporating convection is described, and some results of including convection in a computer model is presented. Another phenomena is seen in computer simulations of supernova, oscillations in the neutrino luminosity and mass accretion rate onto the protoneutron star. The last topic discussed in this thesis describes the attempt to understand this oscillation by perturbation of the steady state solution to equations approximating the complex physical processes occurring in the late time supernova. 42 refs., 31 figs.

  6. Physical processes in collapse driven supernova

    International Nuclear Information System (INIS)

    Mayle, R.W.

    1985-11-01

    A model of the supernova explosion is discussed. The method of neutrino transport is discussed, since the explosive mechanism depends on neutrino heating of the material behind the accretion shock. The core region of these exploding stars becomes unstable to convective motions during the supernova evolution. Convective mixing allows more neutrinos to escape from under the neutrinosphere, and thus increases the amount of heating by neutrinos. An approximate method of incorporating convection is described, and some results of including convection in a computer model is presented. Another phenomena is seen in computer simulations of supernova, oscillations in the neutrino luminosity and mass accretion rate onto the protoneutron star. The last topic discussed in this thesis describes the attempt to understand this oscillation by perturbation of the steady state solution to equations approximating the complex physical processes occurring in the late time supernova. 42 refs., 31 figs

  7. Supernovae and neutrinos

    International Nuclear Information System (INIS)

    Totsuka, Y.

    1991-01-01

    On February 25, 1987, a sheet of telefax came to us from S. A. Bludman, saying Supernova went off in Large Magellanic Clouds. Can you see it? This is what we have been waiting 350 years for exclamation point In few hours, more information arrived. But it was still too early to definitely identify the supernova as type I or type II. This paper reports that the type I supernova is an explosion of a complete star due to uncontrolled nuclear fusion, while the type II supernova is triggered by gravitational collapse of the Fe core of a massive star (≥8 solar mass). It is this type II supernova that would leave a neutron star or a black hole after the liberation of an enormous amount of energy (3 x 10 53 erg) in the form of neutrinos. Therefore only the type II supernova is a relevant place to look for neutrino signals. It was also frustrating that the time when the stellar collapse actually took place was not definitely determined, because it was believed that the supernova brightened up about a day after the collapse and there was an ambiguity in a time lag of the optical observation. There was a possibility that it had happened well before February 24

  8. Preparatory studies for the WFIRST supernova cosmology measurements

    Science.gov (United States)

    Perlmutter, Saul

    tune details, like the wavelength coverage and S/N requirements, of the WFIRST IFS to capitalize on these systematic error reduction methods. b) Supernova extraction and host galaxy subtractions. The underlying light of the host galaxy must be subtracted from the supernova images making up the lightcurves. Using the IFS to provide the lightcurve points via spectrophotometry requires the subtraction of a reference spectrum of the galaxy taken after the supernova light has faded to a negligible level. We plan to apply the expertise obtained from the SNfactory to develop galaxy background procedures that minimize the systematic errors introduced by this step in the analysis. c) Instrument calibration and ground to space cross calibration. Calibrating the entire supernova sample will be a challenge as no standard stars exist that span the range of magnitudes and wavelengths relevant to the WFIRST survey. Linking the supernova measurements to the relatively brighter standards will require several links. WFIRST will produce the high redshift sample, but the nearby supernova to anchor the Hubble diagram will have to come from ground based observations. Developing algorithms to carry out the cross calibration of these two samples to the required one percent level will be an important goal of our proposal. An integral part of this calibration will be to remove all instrumental signatures and to develop unbiased measurement techniques starting at the pixel level. We then plan to pull the above studies together in a synthesis to produce a correlated error matrix. We plan to develop a Fisher Matrix based model to evaluate the correlated error matrix due to the various systematic errors discussed above. A realistic error model will allow us to carry out a more reliable estimates of the eventual errors on the measurement of the cosmological parameters, as well as serve as a means of optimizing and fine tuning the requirements for the instruments and survey strategies.

  9. New Hubble Servicing Mission to upgrade instruments

    Science.gov (United States)

    2006-10-01

    The history of the NASA/ESA Hubble Space Telescope is dominated by the familiar sharp images and amazing discoveries that have had an unprecedented scientific impact on our view of the world and our understanding of the universe. Nevertheless, such important contributions to science and humankind have only been possible as result of regular upgrades and enhancements to Hubble’s instrumentation. Using the Space Shuttle for this fifth Servicing Mission underlines the important role that astronauts have played and continue to play in increasing the Space Telescope’s lifespan and scientific power. Since the loss of Columbia in 2003, the Shuttle has been successfully launched on three missions, confirming that improvements made to it have established the required high level of safety for the spacecraft and its crew. “There is never going to be an end to the science that we can do with a machine like Hubble”, says David Southwood, ESA’s Director of Science. “Hubble is our way of exploring our origins. Everyone should be proud that there is a European element to it and that we all are part of its success at some level.” This Servicing Mission will not just ensure that Hubble can function for perhaps as much as another ten years; it will also increase its capabilities significantly in key areas. This highly visible mission is expected to take place in 2008 and will feature several space walks. As part of the upgrade, two new scientific instruments will be installed: the Cosmic Origins Spectrograph and Wide Field Camera 3. Each has advanced technology sensors that will dramatically improve Hubble’s potential for discovery and enable it to observe faint light from the youngest stars and galaxies in the universe. With such an astounding increase in its science capabilities, this orbital observatory will continue to penetrate the most distant regions of outer space and reveal breathtaking phenomena. “Today, Hubble is producing more science than ever before in

  10. Hubble peers inside a celestial geode

    Science.gov (United States)

    2004-08-01

    (as opposed to less than 1.5 million km per hour for our Sun). Because the bright central star does not exist in empty space but is surrounded by an envelope of gas, the stellar wind collides with this gas, pushing it out, like a snow plough. This forms a bubble, whose striking structure is clearly visible in the crisp Hubble image. The nebula N44F is one of a handful of known interstellar bubbles. Bubbles like these have been seen around evolved massive stars (called 'Wolf-Rayet stars'), and also around clusters of stars (where they are called 'super-bubbles'). But they have rarely been viewed around isolated stars, as is the case here. On closer inspection N44F harbours additional surprises. The interior wall of its gaseous cavity is lined with several four to eight light-year high finger-like columns of cool dust and gas. (The structure of these 'columns' is similar to the Eagle Nebula’s iconic 'Pillars of Creation' photographed by Hubble a decade ago, and is seen in a few other nebulae as well). The fingers are created by a blistering ultraviolet radiation from the central star. Like wind socks caught in a gale, they point in the direction of the energy flow. These pillars look small in this image only because they are much farther away from us then the Eagle Nebula’s pillars. N44F is located about 160 000 light-years in the neighbouring dwarf galaxy the Large Magellanic Cloud, in the direction of the southern constellation Dorado. N44F is part of the larger N44 complex, which contains a large super-bubble, blown out by the combined action of stellar winds and multiple supernova explosions. N44 itself is roughly 1000 light-years across. Several compact star-forming regions, including N44F, are found along the rim of the central super-bubble. This image was taken with Hubble's Wide Field Planetary Camera 2, using filters that isolate light emitted by sulphur (shown in blue, a 1200-second exposure) and hydrogen gas (shown in red, a 1000-second exposure).

  11. Physics of type Ia supernovae

    International Nuclear Information System (INIS)

    Hoeflich, Peter

    2006-01-01

    The last decade has witnessed an explosive growth of high-quality data for thermonuclear explosions of a white dwarf star, the type Ia supernovae (SNe Ia). Advances in computational methods provide new insights into the physics of the phenomenon and a direct, quantitative link between observables and explosion physics. Both trends combined provided spectacular results, allowed to address, to identify specific problems and to narrow down the range of scenarios. Current topics include the relation between SNe Ia and their progenitors, the influence of the metallicities and accretion on the explosion, and details of the burning front. How can we understand the apparent homogeneity and probe for the diversity of SNe Ia? Here, we want give an overview of the current status of our understanding of supernovae physics in light of recent results

  12. Mechanisms for supernova explosions

    International Nuclear Information System (INIS)

    Epstein, R.I.

    1977-01-01

    This report discusses some of the recent developments in the study of one supernova mechanism, the neutrino transport mechanism, and indicates what future developments are needed before this model can be adequately understood. (Auth.)

  13. Automated search for supernovae

    International Nuclear Information System (INIS)

    Kare, J.T.

    1984-01-01

    This thesis describes the design, development, and testing of a search system for supernovae, based on the use of current computer and detector technology. This search uses a computer-controlled telescope and charge coupled device (CCD) detector to collect images of hundreds of galaxies per night of observation, and a dedicated minicomputer to process these images in real time. The system is now collecting test images of up to several hundred fields per night, with a sensitivity corresponding to a limiting magnitude (visual) of 17. At full speed and sensitivity, the search will examine some 6000 galaxies every three nights, with a limiting magnitude of 18 or fainter, yielding roughly two supernovae per week (assuming one supernova per galaxy per 50 years) at 5 to 50 percent of maximum light. An additional 500 nearby galaxies will be searched every night, to locate about 10 supernovae per year at one or two percent of maximum light, within hours of the initial explosion

  14. Berkeley automated supernova search

    Energy Technology Data Exchange (ETDEWEB)

    Kare, J.T.; Pennypacker, C.R.; Muller, R.A.; Mast, T.S.; Crawford, F.S.; Burns, M.S.

    1981-01-01

    The Berkeley automated supernova search employs a computer controlled 36-inch telescope and charge coupled device (CCD) detector to image 2500 galaxies per night. A dedicated minicomputer compares each galaxy image with stored reference data to identify supernovae in real time. The threshold for detection is m/sub v/ = 18.8. We plan to monitor roughly 500 galaxies in Virgo and closer every night, and an additional 6000 galaxies out to 70 Mpc on a three night cycle. This should yield very early detection of several supernovae per year for detailed study, and reliable premaximum detection of roughly 100 supernovae per year for statistical studies. The search should be operational in mid-1982.

  15. Automated search for supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Kare, J.T.

    1984-11-15

    This thesis describes the design, development, and testing of a search system for supernovae, based on the use of current computer and detector technology. This search uses a computer-controlled telescope and charge coupled device (CCD) detector to collect images of hundreds of galaxies per night of observation, and a dedicated minicomputer to process these images in real time. The system is now collecting test images of up to several hundred fields per night, with a sensitivity corresponding to a limiting magnitude (visual) of 17. At full speed and sensitivity, the search will examine some 6000 galaxies every three nights, with a limiting magnitude of 18 or fainter, yielding roughly two supernovae per week (assuming one supernova per galaxy per 50 years) at 5 to 50 percent of maximum light. An additional 500 nearby galaxies will be searched every night, to locate about 10 supernovae per year at one or two percent of maximum light, within hours of the initial explosion.

  16. Berkeley automated supernova search

    International Nuclear Information System (INIS)

    Kare, J.T.; Pennypacker, C.R.; Muller, R.A.; Mast, T.S.

    1981-01-01

    The Berkeley automated supernova search employs a computer controlled 36-inch telescope and charge coupled device (CCD) detector to image 2500 galaxies per night. A dedicated minicomputer compares each galaxy image with stored reference data to identify supernovae in real time. The threshold for detection is m/sub v/ = 18.8. We plan to monitor roughly 500 galaxies in Virgo and closer every night, and an additional 6000 galaxies out to 70 Mpc on a three night cycle. This should yield very early detection of several supernovae per year for detailed study, and reliable premaximum detection of roughly 100 supernovae per year for statistical studies. The search should be operational in mid-1982

  17. SUPERNOVA CONSTRAINTS AND SYSTEMATIC UNCERTAINTIES FROM THE FIRST THREE YEARS OF THE SUPERNOVA LEGACY SURVEY

    International Nuclear Information System (INIS)

    Conley, A.; Carlberg, R. G.; Perrett, K. M.; Guy, J.; Regnault, N.; Astier, P.; Balland, C.; Hardin, D.; Pain, R.; Sullivan, M.; Hook, I. M.; Basa, S.; Fouchez, D.; Howell, D. A.; Palanque-Delabrouille, N.; Rich, J.; Ruhlmann-Kleider, V.; Pritchet, C. J.; Balam, D.; Baumont, S.

    2011-01-01

    We combine high-redshift Type Ia supernovae from the first three years of the Supernova Legacy Survey (SNLS) with other supernova (SN) samples, primarily at lower redshifts, to form a high-quality joint sample of 472 SNe (123 low-z, 93 SDSS, 242 SNLS, and 14 Hubble Space Telescope). SN data alone require cosmic acceleration at >99.999% confidence, including systematic effects. For the dark energy equation of state parameter (assumed constant out to at least z = 1.4) in a flat universe, we find w = -0.91 +0.16 -0.20 (stat) +0.07 -0.14 (sys) from SNe only, consistent with a cosmological constant. Our fits include a correction for the recently discovered relationship between host-galaxy mass and SN absolute brightness. We pay particular attention to systematic uncertainties, characterizing them using a systematic covariance matrix that incorporates the redshift dependence of these effects, as well as the shape-luminosity and color-luminosity relationships. Unlike previous work, we include the effects of systematic terms on the empirical light-curve models. The total systematic uncertainty is dominated by calibration terms. We describe how the systematic uncertainties can be reduced with soon to be available improved nearby and intermediate-redshift samples, particularly those calibrated onto USNO/SDSS-like systems.

  18. Physics of supernovae

    International Nuclear Information System (INIS)

    Woosley, S.E.; Weaver, T.A.

    1985-01-01

    Presupernova models of massive stars are presented and their explosion by ''delayed neutrino transport'' examined. A new form of long duration Type II supernova model is also explored based upon repeated encounter with the electron-positron pair instability in stars heavier than about 60 Msub solar. Carbon deflagration in white dwarfs is discussed as the probable explanation of Type I supernovae and special attention is paid to the physical processes whereby a nuclear flame propagates through degenerate carbon. 89 refs., 12 figs

  19. OXYGEN-RICH SUPERNOVA REMNANT IN THE LARGE MAGELLANIC CLOUD

    Science.gov (United States)

    2002-01-01

    This is a NASA Hubble Space Telescope image of the tattered debris of a star that exploded 3,000 years ago as a supernova. This supernova remnant, called N132D, lies 169,000 light-years away in the satellite galaxy, the Large Magellanic Cloud. A Hubble Wide Field Planetary Camera 2 image of the inner regions of the supernova remnant shows the complex collisions that take place as fast moving ejecta slam into cool, dense interstellar clouds. This level of detail in the expanding filaments could only be seen previously in much closer supernova remnants. Now, Hubble's capabilities extend the detailed study of supernovae out to the distance of a neighboring galaxy. Material thrown out from the interior of the exploded star at velocities of more than four million miles per hour (2,000 kilometers per second) plows into neighboring clouds to create luminescent shock fronts. The blue-green filaments in the image correspond to oxygen-rich gas ejected from the core of the star. The oxygen-rich filaments glow as they pass through a network of shock fronts reflected off dense interstellar clouds that surrounded the exploded star. These dense clouds, which appear as reddish filaments, also glow as the shock wave from the supernova crushes and heats the clouds. Supernova remnants provide a rare opportunity to observe directly the interiors of stars far more massive than our Sun. The precursor star to this remnant, which was located slightly below and left of center in the image, is estimated to have been 25 times the mass of our Sun. These stars 'cook' heavier elements through nuclear fusion, including oxygen, nitrogen, carbon, iron etc., and the titanic supernova explosions scatter this material back into space where it is used to create new generations of stars. This is the mechanism by which the gas and dust that formed our solar system became enriched with the elements that sustain life on this planet. Hubble spectroscopic observations will be used to determine the exact

  20. Building the Hubble Space Telescope

    International Nuclear Information System (INIS)

    O'dell, C.R.

    1989-01-01

    The development of the design for the Hubble Space Telescope (HST) is discussed. The HST optical system is described and illustrated. The financial and policy issues related to the development of the HST are considered. The actual construction of the HST optical telescope is examined. Also, consideration is given to the plans for the HST launch

  1. Elemental gas-phase abundances of intermediate redshift type Ia supernova star-forming host galaxies

    Science.gov (United States)

    Moreno-Raya, M. E.; Galbany, L.; López-Sánchez, Á. R.; Mollá, M.; González-Gaitán, S.; Vílchez, J. M.; Carnero, A.

    2018-05-01

    The maximum luminosity of type Ia supernovae (SNe Ia) depends on the oxygen abundance of the regions of the host galaxies, where they explode. This metallicity dependence reduces the dispersion in the Hubble diagram (HD) when included with the traditional two-parameter calibration of SN Ia light-curve parameters and absolute magnitude. In this work, we use empirical calibrations to carefully estimate the oxygen abundance of galaxies hosting SNe Ia from the SDSS-II/SN (Sloan Digital Sky Survey-II Supernova) survey at intermediate redshift by measuring their emission-line intensities. We also derive electronic temperature with the direct method for a small fraction of objects for consistency. We find a trend of decreasing oxygen abundance with increasing redshift for the most massive galaxies. Moreover, we study the dependence of the HD residuals (HR) with galaxy oxygen abundance obtaining a correlation in line with those found in other works. In particular, the HR versus oxygen abundance shows a slope of -0.186 ± 0.123 mag dex-1 (1.52σ) in good agreement with theoretical expectations. This implies smaller distance modulii after corrections for SNe Ia in metal-rich galaxies. Based on our previous results on local SNe Ia, we propose this dependence to be due to the lower luminosity of the SNe Ia produced in more metal-rich environments.

  2. THE MASSIVE PROGENITOR OF THE TYPE II-LINEAR SUPERNOVA 2009kr

    International Nuclear Information System (INIS)

    Elias-Rosa, Nancy; Van Dyk, Schuyler D.; Li Weidong; Miller, Adam A.; Silverman, Jeffrey M.; Ganeshalingam, Mohan; Filippenko, Alexei V.; Steele, Thea N.; Bloom, Joshua S.; Griffith, Christopher V.; Kleiser, Io K. W.; Boden, Andrew F.; Kasliwal, Mansi M.; Vinko, Jozsef; Cuillandre, Jean-Charles; Foley, Ryan J.

    2010-01-01

    We present early-time photometric and spectroscopic observations of supernova (SN) 2009kr in NGC 1832. We find that its properties to date support its classification as Type II-linear (SN II-L), a relatively rare subclass of core-collapse supernovae (SNe). We have also identified a candidate for the SN progenitor star through comparison of pre-explosion, archival images taken with WFPC2 on board the Hubble Space Telescope with SN images obtained using adaptive optics plus NIRC2 on the 10 m Keck-II telescope. Although the host galaxy's substantial distance (∼26 Mpc) results in large uncertainties in the relative astrometry, we find that if this candidate is indeed the progenitor, it is a highly luminous (M 0 V = -7.8 mag) yellow supergiant with initial mass ∼18-24 M sun . This would be the first time that an SN II-L progenitor has been directly identified. Its mass may be a bridge between the upper initial mass limit for the more common Type II-plateau SNe and the inferred initial mass estimate for one Type II-narrow SN.

  3. Hubble Diagram Test of Expanding and Static Cosmological Models: The Case for a Slowly Expanding Flat Universe

    Directory of Open Access Journals (Sweden)

    Laszlo A. Marosi

    2013-01-01

    Full Text Available We present a new redshift (RS versus photon travel time ( test including 171 supernovae RS data points. We extended the Hubble diagram to a range of z = 0,0141–8.1 in the hope that at high RSs, the fitting of the calculated RS/ diagrams to the observed RS data would, as predicted by different cosmological models, set constraints on alternative cosmological models. The Lambda cold dark matter (ΛCDM, the static universe model, and the case for a slowly expanding flat universe (SEU are considered. We show that on the basis of the Hubble diagram test, the static and the slowly expanding models are favored.

  4. Astrophysics. Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens.

    Science.gov (United States)

    Kelly, Patrick L; Rodney, Steven A; Treu, Tommaso; Foley, Ryan J; Brammer, Gabriel; Schmidt, Kasper B; Zitrin, Adi; Sonnenfeld, Alessandro; Strolger, Louis-Gregory; Graur, Or; Filippenko, Alexei V; Jha, Saurabh W; Riess, Adam G; Bradac, Marusa; Weiner, Benjamin J; Scolnic, Daniel; Malkan, Matthew A; von der Linden, Anja; Trenti, Michele; Hjorth, Jens; Gavazzi, Raphael; Fontana, Adriano; Merten, Julian C; McCully, Curtis; Jones, Tucker; Postman, Marc; Dressler, Alan; Patel, Brandon; Cenko, S Bradley; Graham, Melissa L; Tucker, Bradley E

    2015-03-06

    In 1964, Refsdal hypothesized that a supernova whose light traversed multiple paths around a strong gravitational lens could be used to measure the rate of cosmic expansion. We report the discovery of such a system. In Hubble Space Telescope imaging, we have found four images of a single supernova forming an Einstein cross configuration around a redshift z = 0.54 elliptical galaxy in the MACS J1149.6+2223 cluster. The cluster's gravitational potential also creates multiple images of the z = 1.49 spiral supernova host galaxy, and a future appearance of the supernova elsewhere in the cluster field is expected. The magnifications and staggered arrivals of the supernova images probe the cosmic expansion rate, as well as the distribution of matter in the galaxy and cluster lenses. Copyright © 2015, American Association for the Advancement of Science.

  5. Things begin to happen around Supernova 1987A

    Science.gov (United States)

    1994-01-01

    highly clumped. BEGINNING OF THE ``FIREWORKS'' ? It is most interesting that these new bright patches in the inner ring coincide roughly with the recently observed structure of the radio emission received from SN 1987A. The astronomers believe that these changes in the ring may herald the beginning of the predicted collision between the matter in the expanding fireball and the nebular material which was ejected from the star during the evolutionary phase that preceded the explosion. The supernova shell is ``catching up'' with the material that was ejected earlier. This interpretation is also supported by the recent observation of weak X-ray emission from the supernova with the ROSAT satellite. It probably signifies a beginning heating of the gas inside the nebular ring when the particles collide at high speeds. Further observations at ESO show that no significant amount of the expanding matter has yet reached the ring. Detailed spectra, obtained with the NTT by the same astronomers, still do not show the violent motions that would signal a collision between the main mass of the expanding supernova envelope and the ring material. These important observations have alerted astronomers to watch out for sudden, possibly quite dramatic changes in the ring. As a result, SN 1987A will now be monitored much more intensively. Never before has it been possible to observe such an event directly; the observed phenomena will undoubtedly provide completely new information about the chemical and physical state of the matter in the colliding clouds. FIRST IMAGE OF THE FIREBALL FROM THE GROUND The NTT has scored another first during these observations: thanks to its excellent optical properties, high-resolution images of the supernova in near-infrared light with a ground-based telescope for the first time show the exact extension of the fireball. Until now, this had only been possible with the Hubble Space Telescope. The measured diameter in the sky is only 0.37 arcseconds. At the

  6. HUBBLE CAPTURES THE HEART OF STAR BIRTH

    Science.gov (United States)

    2002-01-01

    NASA Hubble Space Telescope's Wide Field and Planetary Camera 2 (WFPC2) has captured a flurry of star birth near the heart of the barred spiral galaxy NGC 1808. On the left are two images, one superimposed over the other. The black-and-white picture is a ground-based view of the entire galaxy. The color inset image, taken with the Hubble telescope's Wide Field and Planetary Camera 2 (WFPC2), provides a close-up view of the galaxy's center, the hotbed of vigorous star formation. The ground-based image shows that the galaxy has an unusual, warped shape. Most spiral galaxies are flat disks, but this one has curls of dust and gas at its outer spiral arms (upper right-hand corner and lower left-hand corner). This peculiar shape is evidence that NGC 1808 may have had a close interaction with another nearby galaxy, NGC 1792, which is not in the picture Such an interaction could have hurled gas towards the nucleus of NGC 1808, triggering the exceptionally high rate of star birth seen in the WFPC2 inset image. The WFPC2 inset picture is a composite of images using colored filters that isolate red and infrared light as well as light from glowing hydrogen. The red and infrared light (seen as yellow) highlight older stars, while hydrogen (seen as blue) reveals areas of star birth. Colors were assigned to this false-color image to emphasize the vigorous star formation taking place around the galaxy's center. NGC 1808 is called a barred spiral galaxy because of the straight lines of star formation on both sides of the bright nucleus. This star formation may have been triggered by the rotation of the bar, or by matter which is streaming along the bar towards the central region (and feeding the star burst). Filaments of dust are being ejected from the core into a faint halo of stars surrounding the galaxy's disk (towards the upper left corner) by massive stars that have exploded as supernovae in the star burst region. The portion of the galaxy seen in this 'wide-field' image is

  7. PROGENITORS OF RECOMBINING SUPERNOVA REMNANTS

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Takashi J., E-mail: takashi.moriya@ipmu.jp [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8583 (Japan)

    2012-05-01

    Usual supernova remnants have either ionizing plasma or plasma in collisional ionization equilibrium, i.e., the ionization temperature is lower than or equal to the electron temperature. However, the existence of recombining supernova remnants, i.e., supernova remnants with ionization temperature higher than the electron temperature, has been recently confirmed. One suggested way to have recombining plasma in a supernova remnant is to have a dense circumstellar medium at the time of the supernova explosion. If the circumstellar medium is dense enough, collisional ionization equilibrium can be established in the early stage of the evolution of the supernova remnant and subsequent adiabatic cooling, which occurs after the shock wave gets out of the dense circumstellar medium, makes the electron temperature lower than the ionization temperature. We study the circumstellar medium around several supernova progenitors and show which supernova progenitors can have a circumstellar medium dense enough to establish collisional ionization equilibrium soon after the explosion. We find that the circumstellar medium around red supergiants (especially massive ones) and the circumstellar medium dense enough to make Type IIn supernovae can establish collisional ionization equilibrium soon after the explosion and can evolve to become recombining supernova remnants. Wolf-Rayet stars and white dwarfs have the possibility to be recombining supernova remnants but the fraction is expected to be very small. As the occurrence rate of the explosions of red supergiants is much higher than that of Type IIn supernovae, the major progenitors of recombining supernova remnants are likely to be red supergiants.

  8. Hubble Observes Surface of Titan

    Science.gov (United States)

    1994-01-01

    Scientists for the first time have made images of the surface of Saturn's giant, haze-shrouded moon, Titan. They mapped light and dark features over the surface of the satellite during nearly a complete 16-day rotation. One prominent bright area they discovered is a surface feature 2,500 miles across, about the size of the continent of Australia.Titan, larger than Mercury and slightly smaller than Mars, is the only body in the solar system, other than Earth, that may have oceans and rainfall on its surface, albeit oceans and rain of ethane-methane rather than water. Scientists suspect that Titan's present environment -- although colder than minus 289 degrees Fahrenheit, so cold that water ice would be as hard as granite -- might be similar to that on Earth billions of years ago, before life began pumping oxygen into the atmosphere.Peter H. Smith of the University of Arizona Lunar and Planetary Laboratory and his team took the images with the Hubble Space Telescope during 14 observing runs between Oct. 4 - 18. Smith announced the team's first results last week at the 26th annual meeting of the American Astronomical Society Division for Planetary Sciences in Bethesda, Md. Co-investigators on the team are Mark Lemmon, a doctoral candidate with the UA Lunar and Planetary Laboratory; John Caldwell of York University, Canada; Larry Sromovsky of the University of Wisconsin; and Michael Allison of the Goddard Institute for Space Studies, New York City.Titan's atmosphere, about four times as dense as Earth's atmosphere, is primarily nitrogen laced with such poisonous substances as methane and ethane. This thick, orange, hydrocarbon haze was impenetrable to cameras aboard the Pioneer and Voyager spacecraft that flew by the Saturn system in the late 1970s and early 1980s. The haze is formed as methane in the atmosphere is destroyed by sunlight. The hydrocarbons produced by this methane destruction form a smog similar to that found over large cities, but is much thicker

  9. Detecting First Supernovae with JWST

    Science.gov (United States)

    Regos, Eniko; FLARE

    2018-01-01

    We have applied for a JWST ERS First Transients Survey, FLARE to answer empirically how the Universe made its first stars. To quest the epoch of reionization we target what happened to these first stars by observing the most luminous events, supernovae. These transients provide direct constraints on star formation rates and the initial mass function.These very rare events can be reached by JWST at 27 mag AB in 2 micron and 4.4 micron over a field of 0.1 square degree visited multiple times each year.The survey may detect massive Pop III SNe at redshifts up to 10, pinpointing the redshift of first stars, a key scientific goal of JWST.We explore all models of star formation history (derived from UV luminosity densities and IR data), DTD, top heavy IMF of early, low metallicity stars, and normalizations to data of SN Ia, II rates (SNLS, CLASH, CANDELS, SDSS, SVISS), as well as SLSN (ROTSE, SNLS) to estimate the expected SN rates as function of redshift.Population synthesis of double degenerate and single degenerate scenarios of SN Ia shows that the shape of the DTD is rather insensitive to the assumptions (common envelope prescription and metallicities, or retention efficiency of accreted H to white dwarf core and mass transfer rate).Indeed GOODS High z SN Ia rates imply substantial delay in their progenitor model, and Hubble Higher z SN search constrains delay time distribution models as well.SLSN (I, II /H/ and extreme rare pulsational pair instability) are magnetars (ULGRB) in high local star formation rate, faint, low metallicity galaxies.

  10. SUPERNOVA REMNANT PROGENITOR MASSES IN M31

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, Zachary G.; Williams, Benjamin F.; Dalcanton, Julianne J.; Gilbert, Karoline M.; Fouesneau, Morgan; Weisz, Daniel R. [Department of Astronomy, University of Washington Seattle, Box 351580, WA 98195 (United States); Murphy, Jeremiah W. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Dolphin, Andrew E., E-mail: zachjenn@uw.edu, E-mail: adolphin@raytheon.com [Raytheon, 1151 East Hermans Road, Tucson, AZ 85706 (United States)

    2012-12-10

    Using Hubble Space Telescope photometry, we age-date 59 supernova remnants (SNRs) in the spiral galaxy M31 and use these ages to estimate zero-age main-sequence masses (M{sub ZAMS}) for their progenitors. To accomplish this, we create color-magnitude diagrams (CMDs) and employ CMD fitting to measure the recent star formation history of the regions surrounding cataloged SNR sites. We identify any young coeval population that likely produced the progenitor star, then assign an age and uncertainty to that population. Application of stellar evolution models allows us to infer the M{sub ZAMS} from this age. Because our technique is not contingent on identification or precise location of the progenitor star, it can be applied to the location of any known SNRs. We identify significant young star formation around 53 of the 59 SNRs and assign progenitor masses to these, representing a factor of {approx}2 increase over currently measured progenitor masses. We consider the remaining six SNRs as either probable Type Ia candidates or the result of core-collapse progenitors that have escaped their birth sites. In general, the distribution of recovered progenitor masses is bottom-heavy, showing a paucity of the most massive stars. If we assume a single power-law distribution, dN/dM{proportional_to}M{sup {alpha}}, then we find a distribution that is steeper than a Salpeter initial mass function (IMF) ({alpha} = -2.35). In particular, we find values of {alpha} outside the range -2.7 {>=} {alpha} {>=} -4.4 to be inconsistent with our measured distribution at 95% confidence. If instead we assume a distribution that follows a Salpeter IMF up to some maximum mass, then we find that values of M{sub Max} > 26 are inconsistent with the measured distribution at 95% confidence. In either scenario, the data suggest that some fraction of massive stars may not explode. The result is preliminary and requires more SNRs and further analysis. In addition, we use our distribution to estimate a

  11. The Hubble series: convergence properties and redshift variables

    International Nuclear Information System (INIS)

    Cattoen, Celine; Visser, Matt

    2007-01-01

    In cosmography, cosmokinetics and cosmology, it is quite common to encounter physical quantities expanded as a Taylor series in the cosmological redshift z. Perhaps the most well-known exemplar of this phenomenon is the Hubble relation between distance and redshift. However, we now have considerable high-z data available; for instance, we have supernova data at least back to redshift z ∼ 1.75. This opens up the theoretical question as to whether or not the Hubble series (or more generally any series expansion based on the z-redshift) actually converges for large redshift. Based on a combination of mathematical and physical reasonings, we argue that the radius of convergence of any series expansion in z is less than or equal to 1, and that z-based expansions must break down for z > 1, corresponding to a universe less than half of its current size. Furthermore, we shall argue on theoretical grounds for the utility of an improved parametrization y = z/(1 + z). In terms of the y-redshift, we again argue that the radius of convergence of any series expansion in y is less than or equal to 1, so that y-based expansions are likely to be good all the way back to the big bang (y = 1), but that y-based expansions must break down for y < -1, now corresponding to a universe more than twice its current size

  12. Nearby supernova factory announces 34 supernovae in one year'; best Rookie year ever for supernova search

    CERN Multimedia

    2003-01-01

    The Nearby Supernova Factory (SNfactory), an international collaboration based at Lawrence Berkeley National Laboratory, announced that it had discovered 34 supernovae during the first year of the prototype system's operation (2 pages).

  13. Ultracompact Blue Dwarf Galaxies: Hubble Space Telescope Imaging and Stellar Population Analysis

    Science.gov (United States)

    Corbin, Michael R.; Vacca, William D.; Cid Fernandes, Roberto; Hibbard, John E.; Somerville, Rachel S.; Windhorst, Rogier A.

    2006-11-01

    We present deep Hubble Space Telescope (HST) Advanced Camera for Surveys/High Resolution Channel U-, narrow-V-, and I-band images of nine ``ultracompact'' blue dwarf galaxies (UCBDs) selected from the Sloan Digital Sky Survey (SDSS). We define UCBDs as local (zPOX 186, but the structure of several of them suggests that their current star formation has been triggered by the collisions/mergers of smaller clumps of stars. In one case, HS 0822+3542, the images resolve what may be two small (~100 pc) components that have recently collided, supporting this interpretation. In six of the objects much of the star formation is concentrated in young massive clusters, contributing to their compactness in ground-based images. The evidence that the galaxies consist mainly of ~10 Gyr old stars establishes that they are not protogalaxies, forming their first generation of stars. Their low metallicities are more likely to be the result of the escape of supernova ejecta, rather than youth.

  14. Exploring Cosmology with Supernovae

    DEFF Research Database (Denmark)

    Li, Xue

    distribution of strong gravitational lensing is developed. For Type Ia supernova (SNe Ia), the rate is lower than core-collapse supernovae (CC SNe). The rate of SNe Ia declines beyond z 1:5. Based on these reasons, we investigate a potential candidate to measure cosmological distance: GRB......-SNe. They are a subclass of CC SNe. Light curves of GRB-SNe are obtained and their properties are studied. We ascertain that the properties of GRB-SNe make them another candidate for standardizable candles in measuring the cosmic distance. Cosmological parameters M and are constrained with the help of GRB-SNe. The first...

  15. Neutrinos in supernovae

    International Nuclear Information System (INIS)

    Cooperstein, J.

    1986-10-01

    The role of neutrinos in Type II supernovae is discussed. An overall view of the neutrino luminosity as expected theoretically is presented. The different weak interactions involved are assessed from the standpoint of how they exchange energy, momentum, and lepton number. Particular attention is paid to entropy generation and the path to thermal and chemical equilibration, and to the phenomenon of trapping. Various methods used to calculate the neutrino flows are considered. These include trapping and leakage schemes, distribution-averaged transfer, and multi-energy group methods. The information obtained from the neutrinos caught from Supernova 1987a is briefly evaluated. 55 refs., 7 figs

  16. Type I supernova models

    International Nuclear Information System (INIS)

    Canal, Ramon; Labay, Javier; Isern, Jordi

    1987-01-01

    We briefly describe the characteristics of Type I supernova outbursts and we present the theoretical models so far advanced to explain them. We especially insist on models based on the thermonuclear explosion of a white dwarf in a close binary system, even regarding the recent division of Type I supernovae into the Ia and Ib subtypes. Together with models assuming explosive thermonuclear burning in a fluid interior, we consider in some detail those based on partially solid interiors. We finally discuss models that incorporate nonthermonuclear energy contributions, suggested in order to explain Type Ib outbursts. (Author)

  17. Gravitational lensing of the SNLS supernovae

    International Nuclear Information System (INIS)

    Kronborg, T.

    2011-01-01

    Type Ia supernovae have become an essential tool of modern observational cosmology. By studying the distance-redshift relation of a large number of supernovae, the nature of dark energy can be unveiled. Distances to Type Ia SNe are however affected by gravitational lensing which can induce systematic effects in the measurement of cosmology. The majority of the supernovae is slightly de-magnified whereas a small fraction is significantly magnified due to the mass distribution along the line of sight. This causes naturally an additional dispersion in the observed magnitudes. There are two different ways to estimate the magnification of a supernova. A first method consists in comparing the supernova luminosity, which is measured to about 15% precision, to the mean SN luminosity at the same redshift. Another estimate can be obtained from predicting the magnification induced by the foreground matter density modeled from the measurements of the luminosity of the galaxies with an initial prior on the mass-luminosity relation of the galaxies. A correlation between these 2 estimates will make it possible to tune the initially used mass-luminosity relation resulting in an independent measurement of the dark matter clustering based on the luminosity of SNe Ia. Evidently, this measurement depends crucially on the detection of this correlation also referred to as the lensing signal. This thesis is dedicated to the measurement of the lensing signal in the SNLS 3-year sample. (author)

  18. CONSTRAINING DUST AND COLOR VARIATIONS OF HIGH-z SNe USING NICMOS ON THE HUBBLE SPACE TELESCOPE

    International Nuclear Information System (INIS)

    Nobili, S.; Amanullah, R.; Goobar, A.

    2009-01-01

    We present data from the Supernova Cosmology Project for five high redshift Type Ia supernovae (SNe Ia) that were obtained using the NICMOS infrared camera on the Hubble Space Telescope. We add two SNe from this sample to a rest-frame I-band Hubble diagram, doubling the number of high redshift supernovae on this diagram. This I-band Hubble diagram is consistent with a flat universe (Ω M , Ω Λ ) = (0.29, 0.71). A homogeneous distribution of large grain dust in the intergalactic medium (replenishing dust) is incompatible with the data and is excluded at the 5σ confidence level, if the SN host galaxy reddening is corrected assuming R V = 1.75. We use both optical and infrared observations to compare photometric properties of distant SNe Ia with those of nearby objects. We find generally good agreement with the expected color evolution for all SNe except the highest redshift SN in our sample (SN 1997ek at z = 0.863) which shows a peculiar color behavior. We also present spectra obtained from ground-based telescopes for type identification and determination of redshift.

  19. Radioactive Iron Rain: Evidence of a Nearby Supernova Explosion

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    A very close supernova explosion could have caused a mass extinction of life in Earth. In 1996, Brian Fields, the late Dave Schramm and the speaker proposed looking for unstable isotopes such as Iron 60 that could have been deposited by a recent nearby supernova explosion. A group from the Technical University of Munich has discovered Iron 60 in deep-ocean sediments and ferromanganese crusts due to one or more supernovae that exploded O(100) parsecs away about 2.5 million years ago. These results have recently been confirmed by a group from the Australian National University, and the Munich group has also discovered supernova Iron 60 in lunar rock samples. This talk will discuss the interpretation of these results in terms of supernova models, and the possible implications for life on Earth.

  20. Supernova Photometric Lightcurve Classification

    Science.gov (United States)

    Zaidi, Tayeb; Narayan, Gautham

    2016-01-01

    This is a preliminary report on photometric supernova classification. We first explore the properties of supernova light curves, and attempt to restructure the unevenly sampled and sparse data from assorted datasets to allow for processing and classification. The data was primarily drawn from the Dark Energy Survey (DES) simulated data, created for the Supernova Photometric Classification Challenge. This poster shows a method for producing a non-parametric representation of the light curve data, and applying a Random Forest classifier algorithm to distinguish between supernovae types. We examine the impact of Principal Component Analysis to reduce the dimensionality of the dataset, for future classification work. The classification code will be used in a stage of the ANTARES pipeline, created for use on the Large Synoptic Survey Telescope alert data and other wide-field surveys. The final figure-of-merit for the DES data in the r band was 60% for binary classification (Type I vs II).Zaidi was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).

  1. Supernova neutrino detection

    International Nuclear Information System (INIS)

    Selvi, M.

    2005-01-01

    Neutrinos emitted during a supernova core collapse represent a unique feature to study both stellar and neutrino properties. After discussing the details of the neutrino emission in the star and the effect of neutrino oscillations on the expected neutrino fluxes at Earth, a review of the detection techniques is presented in this paper, with particular attention to the problem of electron neutrino detection

  2. Supernova Cosmology Project

    Science.gov (United States)

    , i.e. with the cosmology hidden. Looking Beyond Lambda with the Union Supernova Compilation by Rubin et Matrix Description Covariance Matrix with Systematics Description Full Table of All SNe Description Beyond Lambda Figures Updated 11-18-11 Contact: drubin at physics dot fsu dot edu, saul at lbl dot gov

  3. Neutrino Emission from Supernovae

    Science.gov (United States)

    Janka, Hans-Thomas

    Supernovae are the most powerful cosmic sources of MeV neutrinos. These elementary particles play a crucial role when the evolution of a massive star is terminated by the collapse of its core to a neutron star or a black hole and the star explodes as supernova. The release of electron neutrinos, which are abundantly produced by electron captures, accelerates the catastrophic infall and causes a gradual neutronization of the stellar plasma by converting protons to neutrons as dominant constituents of neutron star matter. The emission of neutrinos and antineutrinos of all flavors carries away the gravitational binding energy of the compact remnant and drives its evolution from the hot initial to the cold final state. The absorption of electron neutrinos and antineutrinos in the surroundings of the newly formed neutron star can power the supernova explosion and determines the conditions in the innermost supernova ejecta, making them an interesting site for the nucleosynthesis of iron-group elements and trans-iron nuclei.

  4. Magnetorotational Explosions of Core-Collapse Supernovae

    Directory of Open Access Journals (Sweden)

    Gennady S. Bisnovatyi-Kogan

    2014-12-01

    Full Text Available Core-collapse supernovae are accompanied by formation of neutron stars. The gravitation energy is transformed into the energy of the explosion, observed as SN II, SN Ib,c type supernovae. We present results of 2-D MHD simulations, where the source of energy is rotation, and magnetic eld serves as a "transition belt" for the transformation of the rotation energy into the energy of the explosion. The toroidal part of the magnetic energy initially grows linearly with time due to dierential rotation. When the twisted toroidal component strongly exceeds the poloidal eld, magneto-rotational instability develops, leading to a drastic acceleration in the growth of magnetic energy. Finally, a fast MHD shock is formed, producing a supernova explosion. Mildly collimated jet is produced for dipole-like type of the initial field. At very high initial magnetic field no MRI development was found.

  5. Energy conditions bounds and supernovae data

    International Nuclear Information System (INIS)

    Lima, M.P.; Vitenti, S.D.P.; Reboucas, M.J.

    2008-01-01

    The energy conditions play an important role in the description of some important properties of the Universe, including the current accelerating expansion phase and the possible recent phase of super-acceleration. In a recent work we have provided a detailed study of the energy conditions for the recent past by deriving bounds from energy conditions and by making the confrontation of the bounds with supernovae data. Here, we extend and update these results in two different ways. First, by carrying out a new statistical analysis for q(z) estimates needed for the confrontation between the bounds and supernovae data. Second, by providing a new picture of the energy conditions fulfillment and violation in the light of the recently compiled Union set of 307 type Ia supernovae and by using two different statistical approaches

  6. Petascale supernova simulation with CHIMERA

    Energy Technology Data Exchange (ETDEWEB)

    Messer, O E B [National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6008 (United States); Bruenn, S W [Department of Physics, Florida Atlantic University, 777 W Glades Road, Boca Raton, FL 33431-0991 (United States); Blondin, J M [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States); Hix, W R [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6354 (United States); Mezzacappa, A [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6354 (United States); Dirk, C J [Department of Physics, Florida Atlantic University, 777 W Glades Road, Boca Raton, FL 33431-0991 (United States)

    2007-07-15

    CHIMERA is a multi-dimensional radiation hydrodynamics code designed to study core-collapse supernovae. The code is made up of three essentially independent parts: a hydrodynamics module, a nuclear burning module, and a neutrino transport solver combined within an operator-split approach. We describe some major algorithmic facets of the code and briefly discuss some recent results. The multi-physics nature of the problem, and the specific implementation of that physics in CHIMERA, provide a rather straightforward path to effective use of multi-core platforms in the near future.

  7. Galactic winds and the hubble sequence

    International Nuclear Information System (INIS)

    Bregman, J.N.

    1978-01-01

    The conditions for maintenance of supernova-driven galactic winds have been investigated to assess their role in the morphology of disk-bulge galaxies. A fluid mechanical model with gas and stars which includes galactic rotation has been used to investigate several classes of winds. It is found that many galaxies, once their initial gas is depleted, can maintain a wind throughout the entire galaxy, a conditon most easily satisfied by systems with a small bulge-to-disk ratio. If the ratio of supernova heating to total mass loss falls below a critical value that depends on galaxy type and mass, only a partial wind exterior to a critical surface can exist, with infall occurring at interior points. Galaxies in which only the bulge was depleted of gas may support a bulge wind that does not interact with the colder and denser gas in the disk.These results indicate that if SO galaxies are a transition class between elliptical and spiral galaxies, it is probably because early galactic winds, which may initially deplete a galaxy of gas, are more prevalent in SO than in spiral galaxies. However, if SO's form a parallel sequence with spirals, the initial gas-depletion mechanism must be independent of bulge-to-disk ratio. These results are not strongly influenced by altering the galactic mass model, including electron conduction in the flow equations, or adding massive halos

  8. Deep Recurrent Neural Networks for Supernovae Classification

    Science.gov (United States)

    Charnock, Tom; Moss, Adam

    2017-03-01

    We apply deep recurrent neural networks, which are capable of learning complex sequential information, to classify supernovae (code available at https://github.com/adammoss/supernovae). The observational time and filter fluxes are used as inputs to the network, but since the inputs are agnostic, additional data such as host galaxy information can also be included. Using the Supernovae Photometric Classification Challenge (SPCC) data, we find that deep networks are capable of learning about light curves, however the performance of the network is highly sensitive to the amount of training data. For a training size of 50% of the representational SPCC data set (around 104 supernovae) we obtain a type-Ia versus non-type-Ia classification accuracy of 94.7%, an area under the Receiver Operating Characteristic curve AUC of 0.986 and an SPCC figure-of-merit F 1 = 0.64. When using only the data for the early-epoch challenge defined by the SPCC, we achieve a classification accuracy of 93.1%, AUC of 0.977, and F 1 = 0.58, results almost as good as with the whole light curve. By employing bidirectional neural networks, we can acquire impressive classification results between supernovae types I, II and III at an accuracy of 90.4% and AUC of 0.974. We also apply a pre-trained model to obtain classification probabilities as a function of time and show that it can give early indications of supernovae type. Our method is competitive with existing algorithms and has applications for future large-scale photometric surveys.

  9. Nuclear reactions in ultra-magnetized supernovae

    International Nuclear Information System (INIS)

    Kondratyev, V.N.

    2002-06-01

    The statistical model is employed to investigate nuclear reactions in ultrastrong magnetic fields relevant for supernovae and neutron stars. For radiative capture processes the predominant mechanisms are argued to correspond to modifications of nuclear level densities, and γ-transition energies due to interactions of the field with magnetic moments of nuclei. The density of states reflects the nuclear structure and results in oscillations of reaction cross sections as a function of field strength, while magnetic interaction energy enhances radiative neutron capture process. Implications in the synthesis of r-process nuclei in supernova site are discussed. (author)

  10. Neutrino Observation of Core Collapse Supernovae

    Science.gov (United States)

    Nakazato, Ken'ichiro

    The event rate of the supernova neutrinos are predicted for the future SK-Gd experiment. With an eye on the neutron tagging by Gd, the energy and angular distributions are calculated both for tagged events from inverse β decay reaction and untagged events from other reactions. As a result, it is indicated that the shock revival in the supernova is detectable through the decrease of the event rate and decline of the average energy of events. It is also implied that a careful treatment for the neutrino spectra is needed to investigate the untagged events owing to the high neutrino threshold energy of 16O reactions.

  11. On neutron star/supernova remnant associations

    OpenAIRE

    Gvaramadze, V. V.

    2000-01-01

    It is pointed out that a cavity supernova (SN) explosion of a moving massive star could result in a significant offset of the neutron star (NS) birth-place from the geometrical centre of the supernova remnant (SNR). Therefore: a) the high implied transverse velocities of a number of NSs (e.g. PSR B1610-50, PSR B1757-24, SGR0525-66) could be reduced; b) the proper motion vector of a NS should not necessarily point away from the geometrical centre of the associated SNR; c) the circle of possibl...

  12. Discovery of a Supernova in HST imaging of the MACSJ0717 Frontier Field

    Science.gov (United States)

    Rodney, Steven A.; Lotz, Jennifer; Strolger, Louis-Gregory

    2013-10-01

    We report the discovery of a supernova (SN) in Hubble Space Telescope (HST) observations centered on the galaxy cluster MACSJ0717. It was discovered in the F814W (i) band of the Advanced Camera for Surveys (ACS), in observations that were collected as part of the ongoing HST Frontier Fields (HFF) program (PI:J.Lotz, HST PID 13498). The FrontierSN ID for this object is SN HFF13Zar (nicknamed "SN Zara").

  13. HUBBLE CAPTURES MERGER BETWEEN QUASAR AND GALAXY

    Science.gov (United States)

    2002-01-01

    This NASA Hubble Space Telescope image shows evidence fo r a merger between a quasar and a companion galaxy. This surprising result might require theorists to rethink their explanations for the nature of quasars, the most energetic objects in the universe. The bright central object is the quasar itself, located several billion light-years away. The two wisps on the (left) of the bright central object are remnants of a bright galaxy that have been disrupted by the mutual gravitational attraction between the quasar and the companion galaxy. This provides clear evidence for a merger between the two objects. Since their discovery in 1963, quasars (quasi-stellar objects) have been enigmatic because they emit prodigious amounts of energy from a very compact source. The most widely accepted model is that a quasar is powered by a supermassive black hole in the core of a galaxy. These new observations proved a challenge for theorists as no current models predict the complex quasar interactions unveiled by Hubble. The image was taken with the Wide Field Planetary Camera-2. Credit: John Bahcall, Institute for Advanced Study, NASA.

  14. Neutrinos and supernova collapse

    International Nuclear Information System (INIS)

    Colgate, S.A.; Petschek, A.G.

    1980-01-01

    The neutrino emission resulting from stellar collapse and supernova formation is reviewed. The electron capture and consequent neutronization of the collapsing stellar matter at the end of evolution determines both the initial adiabat of core collapse as well as the trapped lepton fraction. The initial lepton fraction, Y/sub l/ = .48 supplies the pressure for neutral support of the star at the Chandrasekhar limit. High trapping values, Y/sub l/ = .4, lead to soft core collapses; low values to harder collapses. The value of Y/sub l/ is presently in dispute. The neutrino emission from initial electron capture is relatively small. A strong core-bounce shock releases both electron neutrino as well as thermal muon and tau neutrinos. Subsequent neutrino emission and cooling can sometimes lead to an unstable buoyancy gradient in the core in which case unstable core overturn is expected. Calculations have already shown the importance of the largest possible eddy or equivalently the lowest mode of overturn. Present models of low lepton trapping ratio lead to high entropy creation by the reflected shock and the stabilization of the core matter against overturn. In such cases the exterior matter must cool below an entropy of approximately s/k approx. = 2 to become unstable. This may require too long a time approximately one second for neutrino cooling from a neutrinosphere at rho approx. = 2 x 10 12 g cm -3 . On the other hand, high values of Y/sub l/ such as .4 lead to softer bounces at lower density and values of the critical stabilizing entropy of 3 or higher. Under such circumstances, core overturn can still occur

  15. SUPERNOVA SIMULATIONS AND STRATEGIES FOR THE DARK ENERGY SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, J. P.; Kuhlmann, S.; Biswas, R.; Kovacs, E.; Crane, I.; Hufford, T. [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States); Kessler, R.; Frieman, J. A. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Aldering, G.; Kim, A. G.; Nugent, P. [E. O. Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); D' Andrea, C. B.; Nichol, R. C. [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX (United Kingdom); Finley, D. A.; Marriner, J.; Reis, R. R. R. [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Jarvis, M. J. [Centre for Astrophysics, Science and Technology Research Institute, University of Hertfordshire, Hatfield, Herts AL10 9AB (United Kingdom); Mukherjee, P.; Parkinson, D. [Department of Physics and Astronomy, Pevensey 2 Building, University of Sussex, Falmer, Brighton BN1 9QH (United Kingdom); Sako, M. [Department of Physics and Astronomy, University of Pennsylvania, 203 South 33rd Street, Philadelphia, PA 19104 (United States); and others

    2012-07-10

    We present an analysis of supernova light curves simulated for the upcoming Dark Energy Survey (DES) supernova search. The simulations employ a code suite that generates and fits realistic light curves in order to obtain distance modulus/redshift pairs that are passed to a cosmology fitter. We investigated several different survey strategies including field selection, supernova selection biases, and photometric redshift measurements. Using the results of this study, we chose a 30 deg{sup 2} search area in the griz filter set. We forecast (1) that this survey will provide a homogeneous sample of up to 4000 Type Ia supernovae in the redshift range 0.05 supernova with an identified host galaxy will be obtained from spectroscopic observations of the host. A supernova spectrum will be obtained for a subset of the sample, which will be utilized for control studies. In addition, we have investigated the use of combined photometric redshifts taking into account data from both the host and supernova. We have investigated and estimated the likely contamination from core-collapse supernovae based on photometric identification, and have found that a Type Ia supernova sample purity of up to 98% is obtainable given specific assumptions. Furthermore, we present systematic uncertainties due to sample purity, photometric calibration, dust extinction priors, filter-centroid shifts, and inter-calibration. We conclude by estimating the uncertainty on the cosmological parameters that will be measured from the DES supernova data.

  16. SUPERNOVA SIMULATIONS AND STRATEGIES FOR THE DARK ENERGY SURVEY

    International Nuclear Information System (INIS)

    Bernstein, J. P.; Kuhlmann, S.; Biswas, R.; Kovacs, E.; Crane, I.; Hufford, T.; Kessler, R.; Frieman, J. A.; Aldering, G.; Kim, A. G.; Nugent, P.; D'Andrea, C. B.; Nichol, R. C.; Finley, D. A.; Marriner, J.; Reis, R. R. R.; Jarvis, M. J.; Mukherjee, P.; Parkinson, D.; Sako, M.

    2012-01-01

    We present an analysis of supernova light curves simulated for the upcoming Dark Energy Survey (DES) supernova search. The simulations employ a code suite that generates and fits realistic light curves in order to obtain distance modulus/redshift pairs that are passed to a cosmology fitter. We investigated several different survey strategies including field selection, supernova selection biases, and photometric redshift measurements. Using the results of this study, we chose a 30 deg 2 search area in the griz filter set. We forecast (1) that this survey will provide a homogeneous sample of up to 4000 Type Ia supernovae in the redshift range 0.05 < z < 1.2 and (2) that the increased red efficiency of the DES camera will significantly improve high-redshift color measurements. The redshift of each supernova with an identified host galaxy will be obtained from spectroscopic observations of the host. A supernova spectrum will be obtained for a subset of the sample, which will be utilized for control studies. In addition, we have investigated the use of combined photometric redshifts taking into account data from both the host and supernova. We have investigated and estimated the likely contamination from core-collapse supernovae based on photometric identification, and have found that a Type Ia supernova sample purity of up to 98% is obtainable given specific assumptions. Furthermore, we present systematic uncertainties due to sample purity, photometric calibration, dust extinction priors, filter-centroid shifts, and inter-calibration. We conclude by estimating the uncertainty on the cosmological parameters that will be measured from the DES supernova data.

  17. Hubble expansion in static spacetime

    International Nuclear Information System (INIS)

    Rossler, Otto E.; Froehlich, Dieter; Movassagh, Ramis; Moore, Anthony

    2007-01-01

    A recently proposed mechanism for light-path expansion in a static spacetime is based on the moving-lenses paradigm. Since the latter is valid independently of whether space expands or not, a static universe can be used to better see the implications. The moving-lenses paradigm is related to the paradigm of dynamical friction. If this is correct, a Hubble-like law is implicit. It is described quantitatively. A bent in the Hubble-like line is predictably implied. The main underlying assumption is Price's Principle (PI 3 ). If the theory is sound, the greatest remaining problem in cosmology becomes the origin of hydrogen. Since Blandford's jet production mechanism for quasars is too weak, a generalized Hawking radiation hidden in the walls of cosmic voids is invoked. A second prediction is empirical: slow pattern changes in the cosmic microwave background. A third is ultra-high redshifts for Giacconi quasars. Bruno's eternal universe in the spirit of Augustine becomes a bit less outlandish

  18. Offline analysis in SNLS: measurement of type-Ia supernovae explosion rate and cosmological parameters

    International Nuclear Information System (INIS)

    Lusset, Vincent

    2006-01-01

    The Supernova Legacy Survey is a second generation experiment for the measurement of cosmological parameters using type-la supernovae. Il follows the discovery of the acceleration of the expansion of the Universe, attributed to an unknown 'dark energy'. This thesis presents a type-la supernovae search using an offline analysis of SNLS data. It makes it possible to detect the supernovae that were missed online and to study possible selection biases. One of its principal characteristics is that it uses entirely automatic selection criteria. This type of automated offline analysis had never been carried out before for data reaching this redshift. This analysis enabled us to discover 73 additional SNIa candidates compared to those identified in the real time analysis on the same data, representing an increase of more than 50% of the number of supernovae. The final Hubble diagram contains 262 SNIa which gives us, for a flat ACDM model, the following values for the cosmological parameters: Ω_M = 0,31 ± 0,028 (stat) ± 0,036 (syst) et Ω_A = 0,69. This offline analysis of SNLS data opens new horizons, both by checking for possible biases in current measurements of cosmological parameters by supernovae experiments and by preparing the third generation experiments, on the ground or in space, which will detect thousands of SNIa. (author) [fr

  19. Supernovae and high density nuclear matter

    International Nuclear Information System (INIS)

    Kahana, S.

    1986-01-01

    The role of the nuclear equation of state (EOS) in producing prompt supernova explosions is examined. Results of calculations of Baron, Cooperstein, and Kahana incorporating general relativity and a new high density EOS are presented, and the relevance of these calculations to laboratory experiments with heavy ions considered. 31 refs., 6 figs., 2 tabs

  20. Supernovae and high density nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Kahana, S.

    1986-01-01

    The role of the nuclear equation of state (EOS) in producing prompt supernova explosions is examined. Results of calculations of Baron, Cooperstein, and Kahana incorporating general relativity and a new high density EOS are presented, and the relevance of these calculations to laboratory experiments with heavy ions considered. 31 refs., 6 figs., 2 tabs.

  1. Binary progenitors of supernovae

    Science.gov (United States)

    Trimble, V.

    1984-12-01

    Among the massive stars that are expected to produce Type II, hydrogen-rich supernovae, the presence of a close companion can increase the main sequence mass needed to yield a collapsing core. In addition, due to mass transfer from the primary to the secondary, the companion enhances the stripping of the stellar hydrogen envelope produced by single star winds and thereby makes it harder for the star to give rise to a typical SN II light curve. Among the less massive stars that may be the basis for Type I, hydrogen-free supernovae, a close companion could be an innocent bystander to carbon detonation/deflagration in the primary. It may alternatively be a vital participant which transfers material to a white dwarf primary and drives it to explosive conditions.

  2. STRESS Counting Supernovae

    Science.gov (United States)

    Botticella, M. T.; Cappellaro, E.; Riello, M.; Greggio, L.; Benetti, S.; Patat, F.; Turatto, M.; Altavilla, G.; Pastorello, A.; Valenti, S.; Zampieri, L.; Harutyunyan, A.; Pignata, G.; Taubenberger, S.

    2008-12-01

    The rate of occurrence of supernovae (SNe) is linked to some of the basic ingredients of galaxy evolution, such as the star formation rate, the chemical enrichment and feedback processes. SN rates at intermediate redshift and their dependence on specific galaxy properties have been investigated in the Southern inTermediate Redshift ESO Supernova Search (STRESS). The rate of core collapse SNe (CC SNe) at a redshift of around 0.25 is found to be a factor two higher than the local value, whereas the SNe Ia rate remains almost constant. SN rates in red and blue galaxies were also measured and it was found that the SNe Ia rate seems to be constant in galaxies of different colour, whereas the CC SN rate seems to peak in blue galaxies, as in the local Universe.

  3. MEASURING EJECTA VELOCITY IMPROVES TYPE Ia SUPERNOVA DISTANCES

    International Nuclear Information System (INIS)

    Foley, Ryan J.; Kasen, Daniel

    2011-01-01

    We use a sample of 121 spectroscopically normal Type Ia supernovae (SNe Ia) to show that their intrinsic color is correlated with their ejecta velocity, as measured from the blueshift of the Si II λ6355 feature near maximum brightness, v SiII . The SN Ia sample was originally used by Wang et al. to show that the relationship between color excess and peak magnitude, which in the absence of intrinsic color differences describes a reddening law, was different for two subsamples split by v SiII (defined as 'Normal' and 'High Velocity'). We verify this result, but find that the two subsamples have the same reddening law when extremely reddened events (E(B - V)>0.35 mag) are excluded. We also show that (1) the High-Velocity subsample is offset by ∼0.06 mag to the red from the Normal subsample in the (B max - V max )-M V plane, (2) the B max - V max cumulative distribution functions of the two subsamples have nearly identical shapes, but the High-Velocity subsample is offset by ∼0.07 mag to the red in B max - V max , and (3) the bluest High-Velocity SNe Ia are ∼0.10 mag redder than the bluest Normal SNe Ia. Together, this evidence indicates a difference in intrinsic color for the subsamples. Accounting for this intrinsic color difference reduces the scatter in Hubble residuals from 0.190 mag to 0.130 mag for SNe Ia with A V ∼ V found in large SN Ia samples. We explain the correlation between ejecta velocity and color as increased line blanketing in the High-Velocity SNe Ia, causing them to become redder. We discuss some implications of this result, and stress the importance of spectroscopy for future SN Ia cosmology surveys, with particular focus on the design of WFIRST.

  4. Supernovae and neutrinos

    International Nuclear Information System (INIS)

    John F. Beacom

    2002-01-01

    A long-standing problem in supernova physics is how to measure the total energy and temperature of ν μ , ν τ , (bar ν) μ , and (bar ν) τ . While of the highest importance, this is very difficult because these flavors only have neutral-current detector interactions. We propose that neutrino-proton elastic scattering, ν + p → ν + p, can be used for the detection of supernova neutrinos in scintillator detectors. It should be emphasized immediately that the dominant signal is on free protons. Though the proton recoil kinetic energy spectrum is soft, with T p ≅ 2E ν 2 /M p , and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from (bar ν) e + p → e + + n. In addition, the measured proton spectrum is related to the incident neutrino spectrum. The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos

  5. The Hubble Tarantula Treasury Project

    Science.gov (United States)

    Sabbi, Elena; Lennon, D. J.; Anderson, J.; Van Der Marel, R. P.; Aloisi, A.; Boyer, M. L.; Cignoni, M.; De Marchi, G.; de Mink, S. E.; Evans, C. J.; Gallagher, J. S.; Gordon, K. D.; Gouliermis, D.; Grebel, E.; Koekemoer, A. M.; Larsen, S. S.; Panagia, N.; Ryon, J. E.; Smith, L. J.; Tosi, M.; Zaritsky, D. F.

    2014-01-01

    The Tarantula Nebula (a.k.a. 30 Doradus) in the Large Magellanic Cloud is one of the most famous objects in astronomy, with first astronomical references being more than 150 years old. Today the Tarantula Nebula and its ionizing cluster R136 are considered one of the few known starburst regions in the Local Group and an ideal test bed to investigate the temporal and spatial evolution of a prototypical starburst on a sub-cluster scale. The Hubble Tarantula Treasury Project (HTTP) is a panchromatic imaging survey of the stellar populations and ionized gas in the Tarantula Nebula that reaches into the sub-solar mass regime (eBook that explains how stars form and evolve using images from HTTP. The eBook utilizes emerging technology that works in conjunction with the built-in accessibility features in the Apple iPad to allow totally blind users to interactively explore complex astronomical images.

  6. The Carnegie–Chicago Hubble Program. III. The Distance to NGC 1365 via the Tip of the Red Giant Branch

    Science.gov (United States)

    Jang, In Sung; Hatt, Dylan; Beaton, Rachael L.; Lee, Myung Gyoon; Freedman, Wendy L.; Madore, Barry F.; Hoyt, Taylor J.; Monson, Andrew J.; Rich, Jeffrey A.; Scowcroft, Victoria; Seibert, Mark

    2018-01-01

    The Carnegie–Chicago Hubble Program (CCHP) seeks to anchor the distance scale of Type Ia supernovae via the Tip of the Red Giant Branch (TRGB) method. Based on deep Hubble Space Telescope ACS/WFC imaging, we present an analysis of the TRGB for the metal-poor halo of NGC 1365, a giant spiral galaxy in the Fornax cluster that was host to the Type Ia supernova SN 2012fr. We have measured the extinction-corrected TRGB magnitude of NGC 1365 to be F814W = 27.34 ± 0.03stat ± 0.04sys mag. In advance of future direct calibration by Gaia, we adopt a provisional I-band TRGB luminosity set at the Large Magellanic Cloud and find a true distance modulus μ 0 = 31.29 ± 0.04stat ± 0.06sys mag or D = 18.1 ± 0.3stat ± 0.5sys Mpc. This measurement is in excellent agreement with recent Cepheid-based distances to NGC 1365 and reveals no significant difference in the distances derived from stars of Populations I and II for this galaxy. We revisit the error budget for the CCHP path to the Hubble constant based on the analysis presented here, i.e., that for one of the most distant Type Ia supernova hosts within our Program, and find that a 2.5% measurement is feasible with the current sample of galaxies and TRGB absolute calibration. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #13691.

  7. Hubble Space Telescope electrical power system

    Science.gov (United States)

    Whitt, Thomas H.; Bush, John R., Jr.

    1990-01-01

    The Hubble Space Telescope (HST) electrical power system (EPS) is supplying between 2000 and 2400 W of continuous power to the electrical loads. The major components of the EPS are the 5000-W back surface field reflector solar array, the six nickel-hydrogen (NiH2) 22-cell 88-Ah batteries, and the charge current controllers, which, in conjunction with the flight computer, control battery charging. The operation of the HST EPS and the results of the HST NiH2 six-battery test are discussed, and preliminary flight data are reviewed. The HST NiH2 six-battery test is a breadboard of the HST EPS on test at Marshall Space Flight Center.

  8. Selections from 2017: Hubble Survey Explores Distant Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    Editors note:In these last two weeks of 2017, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume in January.CANDELS Multi-Wavelength Catalogs: Source Identification and Photometry in the CANDELS COSMOSSurvey FieldPublished January2017Main takeaway:A publication led byHooshang Nayyeri(UC Irvine and UC Riverside) early this year details acatalog of sources built using the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey(CANDELS), a survey carried out by cameras on board the Hubble Space Telescope. The catalogliststhe properties of 38,000 distant galaxies visiblewithin the COSMOS field, a two-square-degree equatorial field explored in depthto answer cosmological questions.Why its interesting:Illustration showing the three-dimensional map of the dark matter distribution in theCOSMOS field. [Adapted from NASA/ESA/R. Massey(California Institute of Technology)]The depth and resolution of the CANDELS observations areuseful for addressingseveral major science goals, including the following:Studying the most distant objects in the universe at the epoch of reionization in the cosmic dawn.Understanding galaxy formation and evolution during the peak epoch of star formation in the cosmic high noon.Studying star formation from deep ultravioletobservations and studying cosmology from supernova observations.Why CANDELS is a major endeavor:CANDELS isthe largest multi-cycle treasury program ever approved on the Hubble Space Telescope using over 900 orbits between 2010 and 2013 withtwo cameras on board the spacecraftto study galaxy formation and evolution throughout cosmic time. The CANDELS images are all publicly available, and the new catalogrepresents an enormous source of information about distant objectsin our universe.CitationH. Nayyeri et al 2017 ApJS 228 7. doi:10.3847/1538-4365/228/1/7

  9. Generation of Cosmic rays in Historical Supernova Remnants

    Directory of Open Access Journals (Sweden)

    Sinitsyna V.Y.

    2013-06-01

    Full Text Available We present the results of observations of two types of Galactic supernova remnants with the SHALON mirror Cherenkov telescope of Tien-Shan high-mountain Observatory: the shell-type supernova remnants Tycho, Cas A and IC 443; plerions Crab Nebula, 3c58(SN1181 and Geminga (probably plerion. The experimental data have confirmed the prediction of the theory about the hadronic generation mechanism of very high energy (800 GeV - 100 TeV gamma-rays in Tycho's supernova remnant. The data obtainedsuggest that the very high energy gamma-ray emission in the objects being discussedis different in origin.

  10. A cosmogonical analogy between the Big Bang and a supernova

    International Nuclear Information System (INIS)

    Brown, W.K.

    1981-01-01

    The Big Bang may be discussed most easily in analogy with an expanding spherical shell. An expanding spherical shell, in turn, is quite similar to an ejected supernova shell. In both the Big Bang and the supernova, fragmentation is postulated to occur, where each fragment of the universe becomes a galaxy, and each fragment of supernova shell becomes a solar system. By supporting the presence of shearing flow at the time of fragmentation, a model has been constructed to examine the results in both cases. It has been shown that the model produces a good description of reality on both the galactic and solar system scales. (Auth.)

  11. Weak Interaction processes in core-collapse supernova

    International Nuclear Information System (INIS)

    Martinez-Pinedo, Gabriel

    2008-01-01

    In this manuscript we review the role that weak interaction processes play in supernova. This includes electron captures and inelastic neutrino-nucleus scattering (INNS). Electron captures during the collapse occur mainly in heavy nuclei, however the proton contribution is responsible for the convergence of different models to a 'norm' stellar trajectory. Neutrino-nucleus cross sections at supernova neutrino energies can be determined from precise data on the magnetic dipole strength. The results agree well with large-scale shell-model calculations. When incorporated in core-collapse simulations INNS increases the neutrino opacities noticeably and strongly reduces the high-energy part of the supernova spectrum

  12. Discovery of a Supernova Explosion at Half the Age of the Universe and its Cosmological Implications

    Science.gov (United States)

    Perlmutter, S.; Aldering, G.; Della Valle, M.; Deustua, S.; Ellis, R. S.; Fabbro, S.; Fruchter, A.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hook, I. M.; Kim, A. G.; Kim, M. Y.; Knop, R. A.; Lidman, C.; McMahon, R. G.; Nugent, P.; Pain, R.; Panagia, N.; Pennypacker, C. R.; Ruiz-Lapuente, P.; Schaefer, B.; Walton, N.

    1997-12-16

    The ultimate fate of the universe, infinite expansion or a big crunch, can be determined by measuring the redshifts, apparent brightnesses, and intrinsic luminosities of very distant supernovae. Recent developments have provided tools that make such a program practicable: (1) Studies of relatively nearby Type la supernovae (SNe la) have shown that their intrinsic luminosities can be accurately determined; (2) New research techniques have made it possible to schedule the discovery and follow-up observations of distant supernovae, producing well over 50 very distant (z = 0.3-0.7) SNe Ia to date. These distant supernovae provide a record of changes in the expansion rate over the past several billion years. By making precise measurements of supernovae at still greater distances, and thus extending this expansion history back far enough in time, we can even distinguish the slowing caused by the gravitational attraction of the universe's mass density {Omega}{sub M} from the effect of a possibly inflationary pressure caused by a cosmological constant {Lambda}. We report here the first such measurements, with our discovery of a Type Ia supernova (SN 1997ap) at z = 0.83. Measurements at the Keck II 10-m telescope make this the most distant spectroscopically confirmed supernova. Over two months of photometry of SN 1997ap with the Hubble Space Telescope and ground-based telescopes, when combined with previous measurements of nearer SNe la, suggests that we may live in a low mass-density universe. Further supernovae at comparable distances are currently scheduled for ground and space-based observations.

  13. Solar system anomalies: Revisiting Hubble's law

    Science.gov (United States)

    Plamondon, R.

    2017-12-01

    This paper investigates the impact of a new metric recently published [R. Plamondon and C. Ouellet-Plamondon, in On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories, edited by K. Rosquist, R. T. Jantzen, and R. Ruffini (World Scientific, Singapore, 2015), p. 1301] for studying the space-time geometry of a static symmetric massive object. This metric depends on a complementary error function (erfc) potential that characterizes the emergent gravitation field predicted by the model. This results in two types of deviations as compared to computations made on the basis of a Newtonian potential: a constant and a radial outcome. One key feature of the metric is that it postulates the existence of an intrinsic physical constant σ , the massive object-specific proper length that scales measurements in its surroundings. Although σ must be evaluated experimentally, we use a heuristic to estimate its value and point out some latent relationships between the Hubble constant, the secular increase in the astronomical unit, and the Pioneers delay. Indeed, highlighting the systematic errors that emerge when the effect of σ is neglected, one can link the Hubble constant H 0 to σ Sun and the secular increase V AU to σ Earth . The accuracy of the resulting numerical predictions, H 0 = 74 . 42 ( 0 . 02 ) ( km / s ) / Mpc and V AU ≅ 7.8 cm yr-1 , calls for more investigations of this new metric by specific experts. Moreover, we investigate the expected impacts of the new metric on the flyby anomalies, and we revisit the Pioneers delay. It is shown that both phenomena could be partly taken into account within the context of this unifying paradigm, with quite accurate numerical predictions. A correction for the osculating asymptotic velocity at the perigee of the order of 10 mm/s and an inward radial acceleration of 8 . 34 × 10 - 10 m / s 2 affecting the Pioneer ! space crafts could be explained by this new model.

  14. Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae -- Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Filippenko, Alexei Vladimir [Univ. of California, Berkeley, CA (United States)

    2014-05-09

    Type Ia supernovae (SNe Ia; exploding white-dwarf stars) were the key to the Nobel-worthy 1998 discovery and subsequent verification that the expansion of the Universe is accelerating, driven by the effects of dark energy. Understanding the nature of this mysterious, yet dominant, component of the Universe is at the forefront of research in cosmology and fundamental physics. SNe Ia will continue to play a leading role in this enterprise, providing precise cosmological distances that improve constraints on the nature of dark energy. However, for this effort to succeed, we need to more thoroughly understand relatively nearby SNe Ia, because our conclusions come only from comparisons between them and distant (high-redshift) SNe Ia. Thus, detailed studies of relatively nearby SNe Ia are the focus of this research program. Many interesting results were obtained during the course of this project; these were published in 32 refereed research papers that acknowledged the grant. A major accomplishment was the publication of supernova (SN) rates derived from about a decade of operation of the Lick Observatory Supernova Search (LOSS) with the 0.76-meter Katzman Automatic Imaging Telescope (KAIT). We have determined the most accurate rates for SNe of different types in large, nearby galaxies in the present-day Universe, and these can be compared with SN rates far away (and hence long ago in the past) to set constraints on the types of stars that explode. Another major accomplishment was the publication of the light curves (brightness vs. time) of 165 SNe Ia, along with optical spectroscopy of many of these SNe as well as other SNe Ia, providing an extensive, homogeneous database for detailed studies. We have conducted intensive investigations of a number of individual SNe Ia, including quite unusual examples that allow us to probe the entire range of SN explosions and provide unique insights into these objects and the stars before they explode. My team's studies have also

  15. SUPERNOVA LIGHT CURVES POWERED BY FALLBACK ACCRETION

    Energy Technology Data Exchange (ETDEWEB)

    Dexter, Jason; Kasen, Daniel, E-mail: jdexter@berkeley.edu [Departments of Physics and Astronomy, University of California, Berkeley, CA 94720 (United States)

    2013-07-20

    Some fraction of the material ejected in a core collapse supernova explosion may remain bound to the compact remnant, and eventually turn around and fall back. We show that the late time ({approx}>days) power potentially associated with the accretion of this 'fallback' material could significantly affect the optical light curve, in some cases producing super-luminous or otherwise peculiar supernovae. We use spherically symmetric hydrodynamical models to estimate the accretion rate at late times for a range of progenitor masses and radii and explosion energies. The accretion rate onto the proto-neutron star or black hole decreases as M-dot {proportional_to}t{sup -5/3} at late times, but its normalization can be significantly enhanced at low explosion energies, in very massive stars, or if a strong reverse shock wave forms at the helium/hydrogen interface in the progenitor. If the resulting super-Eddington accretion drives an outflow which thermalizes in the outgoing ejecta, the supernova debris will be re-energized at a time when photons can diffuse out efficiently. The resulting light curves are different and more diverse than previous fallback supernova models which ignored the input of accretion power and produced short-lived, dim transients. The possible outcomes when fallback accretion power is significant include super-luminous ({approx}> 10{sup 44} erg s{sup -1}) Type II events of both short and long durations, as well as luminous Type I events from compact stars that may have experienced significant mass loss. Accretion power may unbind the remaining infalling material, causing a sudden decrease in the brightness of some long duration Type II events. This scenario may be relevant for explaining some of the recently discovered classes of peculiar and rare supernovae.

  16. Supernova will continue to glow

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    On the night of 23/24 February 1987 a new supernova called SN 1987A, was discovered. Within a few hours of the announcement of the discovery, the South African Astronomical Observatory (SAAO) began a series of observations. In this article, the importance of supernovae-exploding stars, and what the SAAO has discovered so far from SN 1987A are discussed

  17. Disturbance Ecology from nearby Supernovae

    OpenAIRE

    Hartmann, D. H.; Kretschmer, K.; Diehl, R.

    2002-01-01

    Monte Carlo simulations of Galactic Supernovae are carried out to study the rate of nearby events, which may have a direct effect on Earth's ecology though ionizing radiation and cosmic ray bombardment. A nearby supernova may have left a radioactive imprint (60Fe) in recent galactic history.

  18. Supernova models with slow energy pumping and galactic supernova remnants

    International Nuclear Information System (INIS)

    Utrobin, V.P.

    1978-01-01

    The study of supernova (SN) models with slow energy pumping is continued. At maximum luminosity the main characteristics of a SN are shown to be independent of the initial structure of the model. However, they depend on the mass Msub(e) of the envelope, and on the intensity of energy pumping Lsub(epsilon), with an increase of Msub(e) leading qualitatively to the same changes in the SN parameters as a decrease in Lsub(epsilon). A simple relationship connecting the important SN parameters is obtained. From the inflection of the color index B-V curve, the possibility of deriving the characteristic time of energy pumping with intensity Lsub(epsilon) approximately 10 44 erg s -1 is pointed out. The comparison of the extragalactic type I SN observations with the results of calculations leads to the estimate of Msub(e) approximately 0.3-0.7 solar masses. An investigation of the galactic type I SN remnants is carried out. The estimate of Msub(e) approximately 0.2-0.3 solar masses is obtained for the remnants of supernovae SN 1006, SN 1572, and SN 1604. It completely fits the results for the extragalactic type I SNs. The total initial mass of SN 1604 presupernova was shown to be at least about 7 solar masses. It was established that the Crab nebula resulted from the outburst of a peculiar SN. The unique properties of such SNs, including SN 1054, are due to the low intensity of energy pumping (Lsub(epsilon) approximately 10 42 erg s -1 ). The mass of the envelope of the Crab nebula is evaluated to be Msub(e) approximately 0.7 solar masses. (Auth.)

  19. Nuclear astrophysics of supernovae

    International Nuclear Information System (INIS)

    Cooperstein, J.

    1988-01-01

    In this paper, I'll give a general introduction to Supernova Theory, beginning with the presupernova evolution and ending with the later stages of the explosion. This will be distilled from a colloquium type of talk. It is necessary to have the whole supernova picture in one's mind's eye when diving into some of its nooks and crannies, as it is quite a mess of contradictory ingredients. We will have some discussion of supernova 1987a, but will keep our discussion more general. Second, we'll look at the infall and bounce of the star, seeing why it goes unstable, what dynamics it follows as it collapses, and how and why it bounces back. From there, we will go on to look at the equation of state (EOS) in more detail. We'll consider the cases T = 0 and T > 0. We'll focus on /rho/ 0 , and then /rho/ > /rho/ 0 and the EOS of neutron stars, and whether or not they contain cores of strange matter. There are many things we could discuss here and not enough time. If I had more lectures, the remaining time would focus on two more questions of special interest to nuclear physicists: the electron capture reactions and neutrino transport. If time permitted, we'd have some discussion of the nucleosynthetic reactions in the explosion's debris as well. However, we cannot cover such material adequately, and I have chosen these topics because they are analytically tractable, pedagogically useful, and rather important. 23 refs., 14 figs., 3 tabs

  20. GALAXY OUTFLOWS WITHOUT SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Sur, Sharanya [Indian Institute of Astrophysics, 2nd Block, Koramangala, Bangalore 560034 (India); Scannapieco, Evan [School of Earth and Space Exploration, Arizona State University, P.O. Box 876004, Tempe-85287 (United States); Ostriker, Eve C., E-mail: sharanya.sur@iiap.res.in, E-mail: sharanya.sur@asu.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2016-02-10

    High surface density, rapidly star-forming galaxies are observed to have ≈50–100 km s{sup −1} line of sight velocity dispersions, which are much higher than expected from supernova driving alone, but may arise from large-scale gravitational instabilities. Using three-dimensional simulations of local regions of the interstellar medium, we explore the impact of high velocity dispersions that arise from these disk instabilities. Parametrizing disks by their surface densities and epicyclic frequencies, we conduct a series of simulations that probe a broad range of conditions. Turbulence is driven purely horizontally and on large scales, neglecting any energy input from supernovae. We find that such motions lead to strong global outflows in the highly compact disks that were common at high redshifts, but weak or negligible mass loss in the more diffuse disks that are prevalent today. Substantial outflows are generated if the one-dimensional horizontal velocity dispersion exceeds ≈35 km s{sup −1}, as occurs in the dense disks that have star-formation rate (SFR) densities above ≈0.1 M{sub ⊙} yr{sup −1} kpc{sup −2}. These outflows are triggered by a thermal runaway, arising from the inefficient cooling of hot material coupled with successive heating from turbulent driving. Thus, even in the absence of stellar feedback, a critical value of the SFR density for outflow generation can arise due to a turbulent heating instability. This suggests that in strongly self-gravitating disks, outflows may be enhanced by, but need not caused by, energy input from supernovae.

  1. Cosmological and supernova neutrinos

    Science.gov (United States)

    Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Shibagaki, S.; Suzuki, T.

    2014-06-01

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial 7Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and 7Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like 7Li, 11B, 92Nb, 138La and 180Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ13 with predicted and observed supernova-produced abundance ratio 11B/7Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  2. Cosmological and supernova neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Balantekin, A. B. [Department of Physics, University of Wisconsin - Madison, Wisconsin 53706 (United States); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Kusakabe, M. [School of Liberal Arts and Science, Korea Aerospace University, Goyang 412-791 (Korea, Republic of); Mathews, G. J. [Department of Physics, University of Notre Dame, IN 46556 (United States); Nakamura, K. [Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Pehlivan, Y. [Mimar Sinan GSÜ, Department of Physics, Şişli, İstanbul 34380 (Turkey); Suzuki, T. [Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

    2014-06-24

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial {sup 7}Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and {sup 7}Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ{sub 13} with predicted and observed supernova-produced abundance ratio {sup 11}B/{sup 7}Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  3. Radio Emission from Supernovae

    International Nuclear Information System (INIS)

    Weiler, Kurt W.; Panagia, Nino; Sramek, Richard A.; Van Dyk, Schuyler D.; Williams, Christopher L.; Stockdale, Christopher J.; Kelley, Matthew T.

    2009-01-01

    Study of radio supernovae over the past 27 years includes more than three dozen detected objects and more than 150 upper limits. From this work it is possible to identify classes of radio properties, demonstrate conformance to and deviations from existing models, estimate the density and structure of the circumstellar material and, by inference, the evolution of the presupernova stellar wind, and reveal the last stages of stellar evolution before explosion. It is also possible to detect ionized hydrogen along the line of sight, to demonstrate binary properties of the presupernova stellar system, and to detect dumpiness of the circumstellar material.

  4. Hubble Images Reveal Jupiter's Auroras

    Science.gov (United States)

    1996-01-01

    These images, taken by the Hubble Space Telescope, reveal changes in Jupiter's auroral emissions and how small auroral spots just outside the emission rings are linked to the planet's volcanic moon, Io. The images represent the most sensitive and sharply-detailed views ever taken of Jovian auroras.The top panel pinpoints the effects of emissions from Io, which is about the size of Earth's moon. The black-and-white image on the left, taken in visible light, shows how Io and Jupiter are linked by an invisible electrical current of charged particles called a 'flux tube.' The particles - ejected from Io (the bright spot on Jupiter's right) by volcanic eruptions - flow along Jupiter's magnetic field lines, which thread through Io, to the planet's north and south magnetic poles. This image also shows the belts of clouds surrounding Jupiter as well as the Great Red Spot.The black-and-white image on the right, taken in ultraviolet light about 15 minutes later, shows Jupiter's auroral emissions at the north and south poles. Just outside these emissions are the auroral spots. Called 'footprints,' the spots are created when the particles in Io's 'flux tube' reach Jupiter's upper atmosphere and interact with hydrogen gas, making it fluoresce. In this image, Io is not observable because it is faint in the ultraviolet.The two ultraviolet images at the bottom of the picture show how the auroral emissions change in brightness and structure as Jupiter rotates. These false-color images also reveal how the magnetic field is offset from Jupiter's spin axis by 10 to 15 degrees. In the right image, the north auroral emission is rising over the left limb; the south auroral oval is beginning to set. The image on the left, obtained on a different date, shows a full view of the north aurora, with a strong emission inside the main auroral oval.The images were taken by the telescope's Wide Field and Planetary Camera 2 between May 1994 and September 1995.This image and other images and data

  5. The Massive Progenitor of the Type II-linear Supernova 2009kr

    Science.gov (United States)

    Elias-Rosa, Nancy; Van Dyk, Schuyler D.; Li, Weidong; Miller, Adam A.; Silverman, Jeffrey M.; Ganeshalingam, Mohan; Boden, Andrew F.; Kasliwal, Mansi M.; Vinkó, József; Cuillandre, Jean-Charles; Filippenko, Alexei V.; Steele, Thea N.; Bloom, Joshua S.; Griffith, Christopher V.; Kleiser, Io K. W.; Foley, Ryan J.

    2010-05-01

    We present early-time photometric and spectroscopic observations of supernova (SN) 2009kr in NGC 1832. We find that its properties to date support its classification as Type II-linear (SN II-L), a relatively rare subclass of core-collapse supernovae (SNe). We have also identified a candidate for the SN progenitor star through comparison of pre-explosion, archival images taken with WFPC2 on board the Hubble Space Telescope with SN images obtained using adaptive optics plus NIRC2 on the 10 m Keck-II telescope. Although the host galaxy's substantial distance (~26 Mpc) results in large uncertainties in the relative astrometry, we find that if this candidate is indeed the progenitor, it is a highly luminous (M 0 V = -7.8 mag) yellow supergiant with initial mass ~18-24 M sun. This would be the first time that an SN II-L progenitor has been directly identified. Its mass may be a bridge between the upper initial mass limit for the more common Type II-plateau SNe and the inferred initial mass estimate for one Type II-narrow SN. Based in part on observations made with the NASA/ESA Hubble Space Telescope (HST), obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS 05-26555; the 6.5 m Magellan Clay Telescope located at Las Campanas Observatory, Chile; various telescopes at Lick Observatory; the 1.3 m PAIRITEL on Mt. Hopkins; the SMARTS Consortium 1.3 m telescope located at Cerro Tololo Inter-American Observatory (CTIO), Chile; the 3.6 m Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii; and the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, with

  6. Dynamics of quadruple systems composed of two binaries: stars, white dwarfs, and implications for Ia supernovae

    Science.gov (United States)

    Fang, Xiao; Thompson, Todd A.; Hirata, Christopher M.

    2018-05-01

    We investigate the long-term secular dynamics and Lidov-Kozai (LK) eccentricity oscillations of quadruple systems composed of two binaries at quadrupole and octupole orders in the perturbing Hamiltonian. We show that the fraction of systems reaching high eccentricities is enhanced relative to triple systems, over a broader range of parameter space. We show that this fraction grows with time, unlike triple systems evolved at quadrupole order. This is fundamentally because with their additional degrees of freedom, quadruple systems do not have a maximal set of commuting constants of the motion, even in secular theory at quadrupole order. We discuss these results in the context of star-star and white dwarf-white dwarf (WD) binaries, with emphasis on WD-WD mergers and collisions relevant to the Type Ia supernova problem. For star-star systems, we find that more than 30 per cent of systems reach high eccentricity within a Hubble time, potentially forming triple systems via stellar mergers or close binaries. For WD-WD systems, taking into account general relativistic and tidal precession and dissipation, we show that the merger rate is enhanced in quadruple systems relative to triple systems by a factor of 3.5-10, and that the long-term evolution of quadruple systems leads to a delay-time distribution ˜1/t for mergers and collisions. In gravitational wave-driven mergers of compact objects, we classify the mergers by their evolutionary patterns in phase space and identify a regime in about 8 per cent of orbital shrinking mergers, where eccentricity oscillations occur on the general relativistic precession time-scale, rather than the much longer LK time-scale. Finally, we generalize previous treatments of oscillations in the inner binary eccentricity (evection) to eccentric mutual orbits. We assess the merger rate in quadruple and triple systems and the implications for their viability as progenitors of stellar mergers and Type Ia supernovae.

  7. TYPE Ia SUPERNOVA LIGHT-CURVE INFERENCE: HIERARCHICAL BAYESIAN ANALYSIS IN THE NEAR-INFRARED

    International Nuclear Information System (INIS)

    Mandel, Kaisey S.; Friedman, Andrew S.; Kirshner, Robert P.; Wood-Vasey, W. Michael

    2009-01-01

    We present a comprehensive statistical analysis of the properties of Type Ia supernova (SN Ia) light curves in the near-infrared using recent data from Peters Automated InfraRed Imaging TELescope and the literature. We construct a hierarchical Bayesian framework, incorporating several uncertainties including photometric error, peculiar velocities, dust extinction, and intrinsic variations, for principled and coherent statistical inference. SN Ia light-curve inferences are drawn from the global posterior probability of parameters describing both individual supernovae and the population conditioned on the entire SN Ia NIR data set. The logical structure of the hierarchical model is represented by a directed acyclic graph. Fully Bayesian analysis of the model and data is enabled by an efficient Markov Chain Monte Carlo algorithm exploiting the conditional probabilistic structure using Gibbs sampling. We apply this framework to the JHK s SN Ia light-curve data. A new light-curve model captures the observed J-band light-curve shape variations. The marginal intrinsic variances in peak absolute magnitudes are σ(M J ) = 0.17 ± 0.03, σ(M H ) = 0.11 ± 0.03, and σ(M Ks ) = 0.19 ± 0.04. We describe the first quantitative evidence for correlations between the NIR absolute magnitudes and J-band light-curve shapes, and demonstrate their utility for distance estimation. The average residual in the Hubble diagram for the training set SNe at cz > 2000kms -1 is 0.10 mag. The new application of bootstrap cross-validation to SN Ia light-curve inference tests the sensitivity of the statistical model fit to the finite sample and estimates the prediction error at 0.15 mag. These results demonstrate that SN Ia NIR light curves are as effective as corrected optical light curves, and, because they are less vulnerable to dust absorption, they have great potential as precise and accurate cosmological distance indicators.

  8. Performance and Cost Analysis of the Supernova Factory on the Amazon AWS Cloud

    Directory of Open Access Journals (Sweden)

    Keith R. Jackson

    2011-01-01

    Full Text Available Today, our picture of the Universe radically differs from that of just over a decade ago. We now know that the Universe is not only expanding as Hubble discovered in 1929, but that the rate of expansion is accelerating, propelled by mysterious new physics dubbed “Dark Energy”. This revolutionary discovery was made by comparing the brightness of nearby Type Ia supernovae (which exploded in the past billion years to that of much more distant ones (from up to seven billion years ago. The reliability of this comparison hinges upon a very detailed understanding of the physics of the nearby events. To further this understanding, the Nearby Supernova Factory (SNfactory relies upon a complex pipeline of serial processes that execute various image processing algorithms in parallel on ~10 TBs of data. This pipeline traditionally runs on a local cluster. Cloud computing [Above the clouds: a Berkeley view of cloud computing, Technical Report UCB/EECS-2009-28, University of California, 2009] offers many features that make it an attractive alternative. The ability to completely control the software environment in a cloud is appealing when dealing with a community developed science pipeline with many unique library and platform requirements. In this context we study the feasibility of porting the SNfactory pipeline to the Amazon Web Services environment. Specifically we: describe the tool set we developed to manage a virtual cluster on Amazon EC2, explore the various design options available for application data placement, and offer detailed performance results and lessons learned from each of the above design options.

  9. Nickel-hydrogen battery testing for Hubble Space Telescope

    Science.gov (United States)

    Baggett, Randy M.; Whitt, Thomas H.

    1989-01-01

    The authors identify objectives and provide data from several nickel-hydrogen battery tests designed to evaluate the possibility of launching Ni-H2 batteries on the Hubble Space Telescope (HST). Test results from a 14-cell battery, a 12-cell battery, and a 4-cell pack are presented. Results of a thermal vacuum test to verify the battery-module/bay heat rejection capacity are reported. A 6-battery system simulation breadboard is described, and test results are presented.

  10. Nucleosynthesis in Core-Collapse Supernovae

    Science.gov (United States)

    Stevenson, Taylor Shannon; Viktoria Ohstrom, Eva; Harris, James Austin; Hix, William R.

    2018-01-01

    The nucleosynthesis which occurs in core-collapse supernovae (CCSN) is one of the most important sources of elements in the universe. Elements from Oxygen through Iron come predominantly from supernovae, and contributions of heavier elements are also possible through processes like the weak r-process, the gamma process and the light element primary process. The composition of the ejecta depends on the mechanism of the explosion, thus simulations of high physical fidelity are needed to explore what elements and isotopes CCSN can contribute to Galactic Chemical Evolution. We will analyze the nucleosynthesis results from self-consistent CCSN simulations performed with CHIMERA, a multi-dimensional neutrino radiation-hydrodynamics code. Much of our understanding of CCSN nucleosynthesis comes from parameterized models, but unlike CHIMERA these fail to address essential physics, including turbulent flow/instability and neutrino-matter interaction. We will present nucleosynthesis predictions for the explosion of a 9.6 solar mass first generation star, relying both on results of the 160 species nuclear reaction network used in CHIMERA within this model and on post-processing with a more extensive network. The lowest mass iron core-collapse supernovae, like this model, are distinct from their more massive brethren, with their explosion mechanism and nucleosynthesis being more like electron capture supernovae resulting from Oxygen-Neon white dwarves. We will highlight the differences between the nucleosynthesis in this model and more massive supernovae. The inline 160 species network is a feature unique to CHIMERA, making this the most sophisticated model to date for a star of this type. We will discuss the need and mechanism to extrapolate the post-processing to times post-simulation and analyze the uncertainties this introduces for supernova nucleosynthesis. We will also compare the results from the inline 160 species network to the post-processing results to study further

  11. A problem with the analysis of type Ia supernovae

    Directory of Open Access Journals (Sweden)

    Crawford David F.

    2017-12-01

    Full Text Available Type Ia supernovae have light curves that have widths and magnitudes that can be used for testing cosmologies and they provide one of the few direct measurements of time dilation. It is shown that the standard analysis that calibrates the light curve against a rest-frame average (such as SALT2 removes all the cosmological information from the calibrated light curves. Consequently type Ia supernovae calibrated with these methods cannot be used to investigate cosmology. The major evidence that supports the hypothesis of a static universe is that the measurements of the widths of the rawlight curves of type Ia supernovae do not show any time dilation. The intrinsicwavelength dependence shown by the SALT2 calibration templates is also consistent with no time dilation. Using a static cosmological model the peak absolute magnitudes of raw type Ia supernovae observations are also independent of redshift. These results support the hypothesis of a static universe.

  12. Understanding Core-Collapse Supernovae

    Science.gov (United States)

    Hix, W. R.; Lentz, E. J.; Baird, M.; Messer, O. E. B.; Mezzacappa, A.; Lee, C.-T.; Bruenn, S. W.; Blondin, J. M.; Marronetti, P.

    2010-03-01

    Our understanding of core-collapse supernovae continues to improve as better microphysics is included in increasingly realistic neutrino-radiationhydrodynamic simulations. Recent multi-dimensional models with spectral neutrino transport, which slowly develop successful explosions for a range of progenitors between 12 and 25 solar mass, have motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of how supernovae explode. Recent progresses on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.

  13. Neutrino flavor instabilities in a time-dependent supernova model

    Directory of Open Access Journals (Sweden)

    Sajad Abbar

    2015-12-01

    Full Text Available A dense neutrino medium such as that inside a core-collapse supernova can experience collective flavor conversion or oscillations because of the neutral-current weak interaction among the neutrinos. This phenomenon has been studied in a restricted, stationary supernova model which possesses the (spatial spherical symmetry about the center of the supernova and the (directional axial symmetry around the radial direction. Recently it has been shown that these spatial and directional symmetries can be broken spontaneously by collective neutrino oscillations. In this letter we analyze the neutrino flavor instabilities in a time-dependent supernova model. Our results show that collective neutrino oscillations start at approximately the same radius in both the stationary and time-dependent supernova models unless there exist very rapid variations in local physical conditions on timescales of a few microseconds or shorter. Our results also suggest that collective neutrino oscillations can vary rapidly with time in the regimes where they do occur which need to be studied in time-dependent supernova models.

  14. Neutrino flavor instabilities in a time-dependent supernova model

    Energy Technology Data Exchange (ETDEWEB)

    Abbar, Sajad; Duan, Huaiyu, E-mail: duan@unm.edu

    2015-12-17

    A dense neutrino medium such as that inside a core-collapse supernova can experience collective flavor conversion or oscillations because of the neutral-current weak interaction among the neutrinos. This phenomenon has been studied in a restricted, stationary supernova model which possesses the (spatial) spherical symmetry about the center of the supernova and the (directional) axial symmetry around the radial direction. Recently it has been shown that these spatial and directional symmetries can be broken spontaneously by collective neutrino oscillations. In this letter we analyze the neutrino flavor instabilities in a time-dependent supernova model. Our results show that collective neutrino oscillations start at approximately the same radius in both the stationary and time-dependent supernova models unless there exist very rapid variations in local physical conditions on timescales of a few microseconds or shorter. Our results also suggest that collective neutrino oscillations can vary rapidly with time in the regimes where they do occur which need to be studied in time-dependent supernova models.

  15. Explosions and light curves of supernovae

    International Nuclear Information System (INIS)

    Gaffet, B.

    1975-01-01

    The models developed to explain supernovae explosions are reviewed. The first one is thermonuclear explosion (simple or preceded by an implosion phase); the neutrino emission which results of such an explosion can have an important dynamical effect, according as the star is opaque or transparent to them; another theory involves the radiation pressure of the pulsar which is formed in the center of the star. The origin of the supernovae brightness is also uncertain: the initial heat due to the explosion does not seem to be sufficient; the brightness can result from the diffusion of the heat through the ejected matter or can be transported more rapidly by a shock wave. A model in which the heat is produced by the pulsar seems compatible with most observations (shapes of the brightness curves and the continuum spectra, expansion velocities, temperature and luminosity at the peak, total kinetic energy) [fr

  16. Merging white dwarfs and thermonuclear supernovae.

    Science.gov (United States)

    van Kerkwijk, M H

    2013-06-13

    Thermonuclear supernovae result when interaction with a companion reignites nuclear fusion in a carbon-oxygen white dwarf, causing a thermonuclear runaway, a catastrophic gain in pressure and the disintegration of the whole white dwarf. It is usually thought that fusion is reignited in near-pycnonuclear conditions when the white dwarf approaches the Chandrasekhar mass. I briefly describe two long-standing problems faced by this scenario, and the suggestion that these supernovae instead result from mergers of carbon-oxygen white dwarfs, including those that produce sub-Chandrasekhar-mass remnants. I then turn to possible observational tests, in particular, those that test the absence or presence of electron captures during the burning.

  17. Supernovae as Cosmological Probes

    Science.gov (United States)

    Cappellaro, E.

    I review the use of SN Ia as distance indicators for measuring H 0, the Hubble constant, and the expansion history of the Universe. Most current estimates of H 0 are in the range 74-76 km s^{-1}Mpc^{-1}, in significant disagreement with the PLANCK's CMB estimate that is 10 % smaller. The main issues for SN Ia calibration, namely the luminosity vs. light curve shape relation and the correction for dust extinction are briefly addressed. SN Ia have been the key for the discovery of the acceleration of the cosmic expansion and in the near future they are expected to give a significant contribution to reveal the nature of dark energy.

  18. Dust in Supernovae and Supernova Remnants II: Processing and Survival

    Science.gov (United States)

    Micelotta, E. R.; Matsuura, M.; Sarangi, A.

    2018-03-01

    Observations have recently shown that supernovae are efficient dust factories, as predicted for a long time by theoretical models. The rapid evolution of their stellar progenitors combined with their efficiency in precipitating refractory elements from the gas phase into dust grains make supernovae the major potential suppliers of dust in the early Universe, where more conventional sources like Asymptotic Giant Branch (AGB) stars did not have time to evolve. However, dust yields inferred from observations of young supernovae or derived from models do not reflect the net amount of supernova-condensed dust able to be expelled from the remnants and reach the interstellar medium. The cavity where the dust is formed and initially resides is crossed by the high velocity reverse shock which is generated by the pressure of the circumstellar material shocked by the expanding supernova blast wave. Depending on grain composition and initial size, processing by the reverse shock may lead to substantial dust erosion and even complete destruction. The goal of this review is to present the state of the art about processing and survival of dust inside supernova remnants, in terms of theoretical modelling and comparison to observations.

  19. A nuclear data approach for the Hubble constant measurements

    Directory of Open Access Journals (Sweden)

    Pritychenko Boris

    2017-01-01

    Full Text Available An extraordinary number of Hubble constant measurements challenges physicists with selection of the best numerical value. The standard U.S. Nuclear Data Program (USNDP codes and procedures have been applied to resolve this issue. The nuclear data approach has produced the most probable or recommended Hubble constant value of 67.2(69 (km/sec/Mpc. This recommended value is based on the last 20 years of experimental research and includes contributions from different types of measurements. The present result implies (14.55 ± 1.51 × 109 years as a rough estimate for the age of the Universe. The complete list of recommended results is given and possible implications are discussed.

  20. What stars become supernovae

    International Nuclear Information System (INIS)

    Tinsley, B.M.

    1975-01-01

    A variety of empirical lines of evidence is assembled on the masses and stellar population types of stars that trigger supernova (SN) explosions. The main theoretical motivations are to determine whether type I supernovae (SN I) can have massive precursors, and whether there is an interval of stellar mass, between the masses of precursors of pulsars and white dwarfs, that is disrupted by carbon detonation. Statistical and other uncertainties in the empirical arguments are given particular attention, and are found to be more important than generally realized. Relatively secure conclusions include the following. Statistics of stellar birthrates, SN, pulsars, and SN remnants in the Galaxy show that SN II (or all SN) could arise from stars with masses greater than M/sub s/ where M/sub s/ approximately 49 to 12 M solar mass; the precursor mass range cannot be more closely defined from present data; nor can it be said whether all SN leave pulsars and/or extended radio remnants. Several methods of estimating the masses of stars that become white dwarfs are consistent with a lower limit, M/sub s/ greater than or equal to 5 M solar mass, so carbon detonation may indeed be avoided, although this conclusion is not secure. Studies of the properties of galaxies in which SN occur, and their distributions within galaxies, support the usual views that SN I have low-mass precursors (less than or equal to 5 M solar mass and typically less than or equal to 1 M solar mass) and SN II have massive precursors (greater than or equal to 5 M solar mass); the restriction of known SN II to Sc and Sb galaxies, to date, is shown to be consistent, statistically, with massive stars in other galaxies also dying as SN II. Possible implications of the peculiarities of some SN-producing galaxies are discussed. Suggestions are made for observational and theoretical studies that would help answer important remaining questions on the nature of SN precursors

  1. Supernova ejecta with a relativistic wind from a central compact object: a unified picture for extraordinary supernovae

    Science.gov (United States)

    Suzuki, Akihiro; Maeda, Keiichi

    2017-04-01

    The hydrodynamical interaction between freely expanding supernova ejecta and a relativistic wind injected from the central region is studied in analytic and numerical ways. As a result of the collision between the ejecta and the wind, a geometrically thin shell surrounding a hot bubble forms and expands in the ejecta. We use a self-similar solution to describe the early dynamical evolution of the shell and carry out a two-dimensional special relativistic hydrodynamic simulation to follow further evolution. The Rayleigh-Taylor instability inevitably develops at the contact surface separating the shocked wind and ejecta, leading to the complete destruction of the shell and the leakage of hot gas from the hot bubble. The leaking hot materials immediately catch up with the outermost layer of the supernova ejecta and thus different layers of the ejecta are mixed. We present the spatial profiles of hydrodynamical variables and the kinetic energy distributions of the ejecta. We stop the energy injection when a total energy of 1052 erg, which is 10 times larger than the initial kinetic energy of the supernova ejecta, is deposited into the ejecta and follow the subsequent evolution. From the results of our simulations, we consider expected emission from supernova ejecta powered by the energy injection at the centre and discuss the possibility that superluminous supernovae and broad-lined Ic supernovae could be produced by similar mechanisms.

  2. Preferential acceleration in collisionless supernova shocks

    International Nuclear Information System (INIS)

    Hainebach, K.; Eichler, D.; Schramm, D.

    1979-01-01

    The preferential acceleration and resulting cosmic ray abundance enhancements of heavy elements (relative to protons) are calculated in the collisionless supernova shock acceleration model described by Eichler in earlier work. Rapidly increasing enhancements up to several tens times solar ratios are obtained as a function of atomic weight over charge at the time of acceleration. For material typical of hot phase interstellar medium, good agreement is obtained with the observed abundance enhancements

  3. The great supernova of 1987

    International Nuclear Information System (INIS)

    Woosley, S.E.

    1989-01-01

    Seven hundred day after the explosion of the brightest supernova in four centuries, astronomers continue to be both excited and perplexed by its behavior. By now, the supernova has received considerably attention in the literature. This paper emphasizes several aspects of the supernova that continue to be of special interest. These include: the evolution of the presupernova star, why it was blue, what its composition and core structure were; the iron core mass, explosion mechanism, and certain aspects of the neutrino burst; the detailed isotopic composition of the ejecta; the light curve and the requirement for mixing; the expected continued evolution of the supernova at all wavelengths given both the presence of several radioactivities as well as a central collapsed object as a power source; and late breaking news regarding the pulsar

  4. Neutrinos and nucleosynthesis in supernova

    Energy Technology Data Exchange (ETDEWEB)

    Solis, U [Instituto de Ciencias Nucleares, Departamento de Fisica de Altas EnergIas, Universidad Nacional Autonoma de Mexico (ICN-UNAM). Apartado Postal 70-543, 04510 Mexico, D.F. (Mexico); D' Olivo, J C [Instituto de Ciencias Nucleares, Departamento de Fisica de Altas EnergIas, Universidad Nacional Autonoma de Mexico (ICN-UNAM). Apartado Postal 70-543, 04510 Mexico, D.F. (Mexico); Cabral-Rosetti, L G [Departamento de Posgrado, Centro Interdisciplinario de Investigacion y Docencia en Educacion Tecnica (CIIDET), Av. Universidad 282 Pte., Col. Centro, A. Postal 752, C.P. 76000, Santiago de Queretaro, Qro. (Mexico)

    2006-05-15

    The type II supernova is considered as a candidate site for the production of heavy elements. The nucleosynthesis occurs in an intense neutrino flux, we calculate the electron fraction in this environment.

  5. Neutrinos and nucleosynthesis in supernova

    International Nuclear Information System (INIS)

    Solis, U; D'Olivo, J C; Cabral-Rosetti, L G

    2006-01-01

    The type II supernova is considered as a candidate site for the production of heavy elements. The nucleosynthesis occurs in an intense neutrino flux, we calculate the electron fraction in this environment

  6. THE AGES OF TYPE Ia SUPERNOVA PROGENITORS

    International Nuclear Information System (INIS)

    Brandt, Timothy D.; Aubourg, Eric; Strauss, Michael A.; Tojeiro, Rita; Heavens, Alan; Jimenez, Raul

    2010-01-01

    Using light curves and host galaxy spectra of 101 Type Ia supernovae (SNe Ia) with redshift z ∼ 2.4 Gyr. We find that each channel contributes roughly half of the Type Ia rate in our reference sample. We also construct the average spectra of high-stretch and low-stretch SN Ia host galaxies, and find that the difference of these spectra looks like a main-sequence B star with nebular emission lines indicative of star formation. This supports our finding that there are two populations of SNe Ia, and indicates that the progenitors of high-stretch supernovae are at the least associated with very recent star formation in the last few tens of Myr. Our results provide valuable constraints for models of Type Ia progenitors and may help improve the calibration of SNe Ia as standard candles.

  7. Impacto ambiental de los remanentes de supernova

    Science.gov (United States)

    Dubner, G. M.

    2015-08-01

    The explosion of a supernovae (SN) represents the sudden injection of about ergs of thermal and mechanical energy in a small region of space, causing the formation of powerful shock waves that propagate through the interstellar medium at speeds of several thousands of km/s. These waves sweep, compress and heat the interstellar material that they encounter, forming the supernova remnants. Their evolution over thousands of years change forever, irreversibly, not only the physical but also the chemical properties of a vast region of space that can span hundreds of parsecs. This contribution briefly analyzes the impact of these explosions, discussing the relevance of some phenomena usually associated with SNe and their remnants in the light of recent theoretical and observational results.

  8. A look at Supernova 1987A

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1987-10-01

    Supernova 1987A is reviewed with emphasis on the neutrino observations. It is shown that the results fit well with the expectations for neutrino temperatures (T ∼ 4ε 0 4.5 MeV) and total energy emitted (2ε 0 4 x 10 53 ergs). It is argued that the detection tends to favor collapse models that yield emission for 10 second timescales with a 1ε 0 2 second early accretion phase followed by Kelvin-Helmholtz cooling as opposed to prompt shocks with the immediate onset of cooling. It is also argued that the probable detection of one or more electron scattering event favors a superthermal tail at high energies. Neutrino mass limits and flavor limits are comparable to laboratory experiments. An estimate for future collapse rates in our galaxy of 1/7 year is made based on nucleosynthesis yields. The supernova also has eliminated many axion and majoron models. 69 refs., 3 figs., 27 tabs

  9. Novae, supernovae, and the island universe hypothesis

    International Nuclear Information System (INIS)

    Van Den Bergh, S.

    1988-01-01

    Arguments in Curtis's (1917) paper related to the island universe hypothesis and the existence of novae in spiral nebulae are considered. It is noted that the maximum magnitude versus rate-of-decline relation for novae may be the best tool presently available for the calibration of the extragalactic distance scale. Light curve observations of six novae are used to determine a distance of 18.6 + or - 3.5 MPc to the Virgo cluster. Results suggest that Type Ia supernovae cannot easily be used as standard candles, and that Type II supernovae are unsuitable as distance indicators. Factors other than precursor mass are probably responsible for determining the ultimate fate of evolving stars. 83 references

  10. On Neutron Star/Supernova Remnant Association

    Science.gov (United States)

    Gvaramadze, V. V.

    It is pointed out that a cavity supernova (SN) explosion of a moving massive star could result in a significant offset of the neutron star (NS) birth-place from the geometrical centre of the supernova remnant (SNR). Therefore: a) the high implied transverse velocities of a number of NSs (e.g. PSR B1610-50, PSR B1706-44, PSR B1757-24, SGR 0526-66) could be reduced; b) the proper motion vector of a NS should not necessarily point away from the geometrical centre of the associated SNR; c) the circle of possible NS/SNR associations could be enlarged. An observational test is discussed, which could provide a determination of the true birth-places of NSs associated with middle-aged SNRs, and thereby provide more reliable estimates of their transverse velocities.

  11. Genetic algorithms and supernovae type Ia analysis

    International Nuclear Information System (INIS)

    Bogdanos, Charalampos; Nesseris, Savvas

    2009-01-01

    We introduce genetic algorithms as a means to analyze supernovae type Ia data and extract model-independent constraints on the evolution of the Dark Energy equation of state w(z) ≡ P DE /ρ DE . Specifically, we will give a brief introduction to the genetic algorithms along with some simple examples to illustrate their advantages and finally we will apply them to the supernovae type Ia data. We find that genetic algorithms can lead to results in line with already established parametric and non-parametric reconstruction methods and could be used as a complementary way of treating SNIa data. As a non-parametric method, genetic algorithms provide a model-independent way to analyze data and can minimize bias due to premature choice of a dark energy model

  12. Color dispersion and Milky-Way-like reddening among type Ia supernovae

    International Nuclear Information System (INIS)

    Scolnic, Daniel M.; Riess, Adam G.; Rodney, Steven A.; Brout, Dillon J.; Jones, David O.; Foley, Ryan J.; Rest, Armin

    2014-01-01

    Past analyses of Type Ia supernovae have identified an irreducible scatter of 5%-10% in distance, widely attributed to an intrinsic dispersion in luminosity. Another equally valid source of this scatter is intrinsic dispersion in color. Misidentification of the true source of this scatter can bias both the retrieved color-luminosity relation and cosmological parameter measurements. The size of this bias depends on the magnitude of the intrinsic color dispersion relative to the distribution of colors that correlate with distance. We produce a realistic simulation of a misattribution of intrinsic scatter and find a negative bias in the recovered color-luminosity relation, β, of Δβ ≈ –1.0 (∼33%) and a positive bias in the equation of state parameter, w, of Δw ≈ +0.04 (∼4%). We re-analyze current published datasets with the assumption that the distance scatter is predominantly the result of color. Unlike previous analyses, we find that the data are consistent with a Milky-Way-like reddening law (R V = 3.1) and that a Milky-Way dust model better predicts the asymmetric color-luminosity trends than the conventional luminosity scatter hypothesis. We also determine that accounting for color variation reduces the correlation between various host galaxy properties and Hubble residuals by ∼20%.

  13. H0, q0 and the local velocity field. [Hubble and deceleration constants in Big Bang expansion

    Science.gov (United States)

    Sandage, A.; Tammann, G. A.

    1982-01-01

    An attempt is made to find a systematic deviation from linearity for distances that are under the control of the Virgo cluster, and to determine the value of the mean random motion about the systematic flow, in order to improve the measurement of the Hubble and the deceleration constants. The velocity-distance relation for large and intermediate distances is studied, and type I supernovae are calibrated relatively as distance indicators and absolutely to obtain a new value for the Hubble constant. Methods of determining the deceleration constant are assessed, including determination from direct measurement, mean luminosity density, virgocentric motion, and the time scale test. The very local velocity field is investigated, and a solution is preferred with a random peculiar radial velocity of very nearby field galaxies of 90-100 km/s, and a Virgocentric motion of the local group of 220 km/s, leading to an underlying expansion rate of 55, in satisfactory agreement with the global value.

  14. The Far-Field Hubble Constant

    Science.gov (United States)

    Lauer, Tod

    1995-07-01

    We request deep, near-IR (F814W) WFPC2 images of five nearby Brightest Cluster Galaxies (BCG) to calibrate the BCG Hubble diagram by the Surface Brightness Fluctuation (SBF) method. Lauer & Postman (1992) show that the BCG Hubble diagram measured out to 15,000 km s^-1 is highly linear. Calibration of the Hubble diagram zeropoint by SBF will thus yield an accurate far-field measure of H_0 based on the entire volume within 15,000 km s^-1, thus circumventing any strong biases caused by local peculiar velocity fields. This method of reaching the far field is contrasted with those using distance ratios between Virgo and Coma, or any other limited sample of clusters. HST is required as the ground-based SBF method is limited to team developed the SBF method, the first BCG Hubble diagram based on a full-sky, volume-limited BCG sample, played major roles in the calibration of WFPC and WFPC2, and are conducting observations of local galaxies that will validate the SBF zeropoint (through GTO programs). This work uses the SBF method to tie both the Cepheid and Local Group giant-branch distances generated by HST to the large scale Hubble flow, which is most accurately traced by BCGs.

  15. Finding our Origins with the Hubble and James Webb Space Telescopes

    Science.gov (United States)

    Gardner, Jonathan P.

    2009-01-01

    NASA is planning a successor to the Hubble Space Telescope designed to study the origins of galaxies, stars, planets and life in the universe. In this talk, Dr. Gardner will discuss the origin and evolution of galaxies, beginning with the Big Bang and tracing what we have learned with Hubble through to the present day. He will show that results from studies with Hubble have led to plans for its successor, the James Webb Space Telescope. Webb is scheduled to launch in 2014, and is designed to find the first galaxies that formed in the distant past and to penetrate the dusty clouds of gas where stars are still forming today. He will compare Webb to Hubble, and discuss recent progress in the construction of the observatory.

  16. Neutrino oscillations in magnetically driven supernova explosions

    Energy Technology Data Exchange (ETDEWEB)

    Kawagoe, Shio; Kotake, Kei [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan); Takiwaki, Tomoya, E-mail: shio.k@nao.ac.jp, E-mail: takiwaki.tomoya@nao.ac.jp, E-mail: kkotake@th.nao.ac.jp [Center for Computational Astrophysics, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan)

    2009-09-01

    We investigate neutrino oscillations from core-collapse supernovae that produce magnetohydrodynamic (MHD) explosions. By calculating numerically the flavor conversion of neutrinos in the highly non-spherical envelope, we study how the explosion anisotropy has impacts on the emergent neutrino spectra through the Mikheyev-Smirnov-Wolfenstein effect. In the case of the inverted mass hierarchy with a relatively large θ{sub 13} (sin{sup 2} 2θ{sub 13} ∼> 10{sup −3}), we show that survival probabilities of ν-bar {sub e} and ν{sub e} seen from the rotational axis of the MHD supernovae (i.e., polar direction), can be significantly different from those along the equatorial direction. The event numbers of ν-bar {sub e} observed from the polar direction are predicted to show steepest decrease, reflecting the passage of the magneto-driven shock to the so-called high-resonance regions. Furthermore we point out that such a shock effect, depending on the original neutrino spectra, appears also for the low-resonance regions, which could lead to a noticeable decrease in the ν{sub e} signals. This reflects a unique nature of the magnetic explosion featuring a very early shock-arrival to the resonance regions, which is in sharp contrast to the neutrino-driven delayed supernova models. Our results suggest that the two features in the ν-bar {sub e} and ν{sub e} signals, if visible to the Super-Kamiokande for a Galactic supernova, could mark an observational signature of the magnetically driven explosions, presumably linked to the formation of magnetars and/or long-duration gamma-ray bursts.

  17. Neutrino oscillations in magnetically driven supernova explosions

    Science.gov (United States)

    Kawagoe, Shio; Takiwaki, Tomoya; Kotake, Kei

    2009-09-01

    We investigate neutrino oscillations from core-collapse supernovae that produce magnetohydrodynamic (MHD) explosions. By calculating numerically the flavor conversion of neutrinos in the highly non-spherical envelope, we study how the explosion anisotropy has impacts on the emergent neutrino spectra through the Mikheyev-Smirnov-Wolfenstein effect. In the case of the inverted mass hierarchy with a relatively large θ13 (sin2 2θ13 gtrsim 10-3), we show that survival probabilities of bar nue and νe seen from the rotational axis of the MHD supernovae (i.e., polar direction), can be significantly different from those along the equatorial direction. The event numbers of bar nue observed from the polar direction are predicted to show steepest decrease, reflecting the passage of the magneto-driven shock to the so-called high-resonance regions. Furthermore we point out that such a shock effect, depending on the original neutrino spectra, appears also for the low-resonance regions, which could lead to a noticeable decrease in the νe signals. This reflects a unique nature of the magnetic explosion featuring a very early shock-arrival to the resonance regions, which is in sharp contrast to the neutrino-driven delayed supernova models. Our results suggest that the two features in the bar nue and νe signals, if visible to the Super-Kamiokande for a Galactic supernova, could mark an observational signature of the magnetically driven explosions, presumably linked to the formation of magnetars and/or long-duration gamma-ray bursts.

  18. Observations of the Hubble Deep Field with the Infrared Space Observatory .4. Association of sources with Hubble Deep Field galaxies

    DEFF Research Database (Denmark)

    Mann, R.G.; Oliver, S.J.; Serjeant, S.B.G.

    1997-01-01

    We discuss the identification of sources detected by the Infrared Space Observatory (ISO) at 6.7 and 15 mu m in the Hubble Deep Field (HDF) region. We conservatively associate ISO sources with objects in existing optical and near-infrared HDF catalogues using the likelihood ratio method, confirming...... these results (and, in one case, clarifying them) with independent visual searches, We find 15 ISO sources to be reliably associated with bright [I-814(AB) HDF, and one with an I-814(AB)=19.9 star, while a further 11 are associated with objects in the Hubble Flanking Fields (10 galaxies...... and one star), Amongst optically bright HDF galaxies, ISO tends to detect luminous, star-forming galaxies at fairly high redshift and with disturbed morphologies, in preference to nearby ellipticals....

  19. Hubble and the Language of Images

    Science.gov (United States)

    Levay, Z. G.

    2005-12-01

    Images released from the Hubble Space Telescope have been very highly regarded by the astronomy-attentive public for at least a decade. Due in large part to these images, Hubble has become an iconic figure, even among the general public. This iconic status is both a boon and a burden for those who produce the stream of images fl owing from this telescope. While the benefits of attention are fairly obvious, the negative aspects are less visible. One of the most persistent challenges is the need to continue to deliver images that "top" those released before. In part this can be accomplished because of Hubble's upgraded instrumentation. But it can also be a source of pressure that could, if left unchecked, erode ethical boundaries in our communication with the public. These pressures are magnified in an atmosphere of uncertainty with regard to the future of the mission.

  20. UV/Visible Telescope with Hubble Disposal

    Science.gov (United States)

    Benford, Dominic J.

    2013-01-01

    Submission Overview: Our primary objective is to convey a sense of the significant advances possible in astrophysics investigations for major Cosmic Origins COR program goals with a 2.4m telescope asset outfitted with one or more advanced UV visible instruments. Several compelling science objectives were identified based on community meetings these science objectives drove the conceptual design of instruments studied by the COR Program Office during July September 2012. This RFI submission encapsulates the results of that study, and suggests that a more detailed look into the instrument suite should be conducted to prove viability and affordability to support the demonstrated scientific value. This study was conducted in the context of a larger effort to consider the options available for a mission to dispose safely of Hubble hence, the overall architecture considered for the mission we studied for the 2.4m telescope asset included resource sharing. This mitigates combined cost and risk and provides naturally for a continued US leadership role in astrophysics with an advanced, general-purpose UV visible space telescope.

  1. Multi-dimensional explorations in supernova theory

    International Nuclear Information System (INIS)

    Burrows, Adam; Dessart, Luc; Ott, Christian D.; Livne, Eli

    2007-01-01

    In this paper, we bring together various of our published and unpublished findings from our recent 2D multi-group, flux-limited radiation hydrodynamic simulations of the collapse and explosion of the cores of massive stars. Aided by 2D and 3D graphical renditions, we motivate the acoustic mechanism of core-collapse supernova explosions and explain, as best we currently can, the phases and phenomena that attend this mechanism. Two major foci of our presentation are the outer shock instability and the inner core g-mode oscillations. The former sets the stage for the latter, which damp by the generation of sound. This sound propagates outward to energize the explosion and is relevant only if the core has not exploded earlier by some other means. Hence, it is a more delayed mechanism than the traditional neutrino mechanism that has been studied for the last twenty years since it was championed by Bethe and Wilson. We discuss protoneutron star convection, accretion-induced-collapse, gravitational wave emissions, pulsar kicks, the angular anisotropy of the neutrino emissions, a subset of numerical issues, and a new code we are designing that should supercede our current supernova code VULCAN/2D. Whatever ideas last from this current generation of numerical results, and whatever the eventual mechanism(s), we conclude that the breaking of spherical symmetry will survive as one of the crucial keys to the supernova puzzle

  2. Testing the isotropy of the Hubble expansion

    OpenAIRE

    Migkas, K.; Plionis, M.

    2016-01-01

    Abstract: We have used the Union2.1 SNIa compilation to search for possible Hubble expansion anisotropies, dividing the sky in 9 solid angles containing roughly the same number of SNIa, as well as in two Galactic hemispheres. We identified only one sky region, containing 82 SNIa (~15% of total sample with z > 0.02), that indeed appears to share a Hubble expansion significantly different from the rest of the sample. However, this behaviour can be attributed to the joint "erratic" behaviour of ...

  3. The need for accurate redshifts in supernova cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Calcino, Josh; Davis, Tamara, E-mail: j.calcino@uq.edu.au, E-mail: tamarad@physics.uq.edu.au [The School of Mathematics and Physics, University of Queensland, Cooper Road, Brisbane (Australia)

    2017-01-01

    Recent papers have shown that a small systematic redshift shift (Δ z ∼ 10{sup −5}) in measurements of type Ia supernovae can cause a significant bias (∼1%) in the recovery of cosmological parameters. Such a redshift shift could be caused, for example, by a gravitational redshift due to the density of our local environment. The sensitivity of supernova data to redshift shifts means supernovae make excellent probes of inhomogeneities. We therefore invert the analysis, and try to diagnose the nature of our local gravitational environment by fitting for Δ z as an extra free parameter alongside the usual cosmological parameters. Using the Joint Light-curve SN Ia dataset we find the best fit includes a systematic redshift shift of Δ z = (2.6{sup +2.7}{sub −2.8}) × 10{sup −4}. This is a larger shift than would be expected due to gravitational redshifts in a standard Λ-Cold Dark Matter universe (though still consistent with zero), and would correspond to a monopole Doppler shift of about 100 km s{sup −1} moving away from the Milky-Way. However, since most supernova measurements are made to a redshift precision of no better than 10{sup −3}, it is possible that a systematic error smaller than the statistical error remains in the data and is responsible for the shift; or that it is an insignificant statistical fluctuation. We find that when Δ z is included as a free parameter while fitting to the JLA SN Ia data, the constraints on the matter density shifts to Ω {sub m} = 0.313{sup +0.042}{sub −0.040}, bringing it into better agreement with the CMB cosmological parameter constraints from Planck. A positive Δ z ∼ 2.6×10{sup −4} would also cause us to overestimate the supernova measurement of Hubble's constant by Δ H {sub 0} ∼ 1 kms{sup −1}Mpc{sup −1}. However this overestimation should diminish as one increases the low-redshift cutoff, and this is not seen in the most recent data.

  4. THE CARNEGIE SUPERNOVA PROJECT: ANALYSIS OF THE FIRST SAMPLE OF LOW-REDSHIFT TYPE-Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Folatelli, Gaston; Phillips, M. M.; Contreras, Carlos; Stritzinger, Maximilian; Boldt, Luis; Gonzalez, Sergio; Krzeminski, Wojtek; Morrell, Nidia; Roth, Miguel; Salgado, Francisco; Burns, Christopher R.; Freedman, W. L.; Persson, S. E.; Madore, Barry F.; Murphy, David; Hamuy, Mario; Suntzeff, Nicholas B.; Krisciunas, Kevin; Wyatt, Pamela; Li Weidong

    2010-01-01

    An analysis of the first set of low-redshift (z s ) light curves in a well-understood photometric system. Methods are described for deriving light-curve parameters, and for building template light curves which are used to fit SN Ia data in the ugriBVYJH bands. The intrinsic colors at maximum light are calibrated using a subsample of supernovae (SNe) assumed to have suffered little or no reddening, enabling color excesses to be estimated for the full sample. The optical-NIR color excesses allow the properties of the reddening law in the host galaxies to be studied. A low average value of the total-to-selective absorption coefficient, R V ∼ 1.7, is derived when using the entire sample of SNe. However, when the two highly reddened SNe (SN 2005A and SN 2006X) in the sample are excluded, a value R V ∼ 3.2 is obtained, similar to the standard value for the Galaxy. The red colors of these two events are well matched by a model where multiple scattering of photons by circumstellar dust steepens the effective extinction law. The absolute peak magnitudes of the SNe are studied in all bands using a two-parameter linear fit to the decline rates and the colors at maximum light, or alternatively, the color excesses. In both cases, similar results are obtained with dispersions in absolute magnitudes of 0.12-0.16 mag, depending on the specific filter-color combination. In contrast to the results obtained from the comparison of the color excesses, these fits of absolute magnitude give R V ∼ 1-2 when the dispersion is minimized, even when the two highly reddened SNe are excluded. This discrepancy suggests that, beyond the 'normal' interstellar reddening produced in the host galaxies, there is an intrinsic dispersion in the colors of SNe Ia which is correlated with luminosity but independent of the decline rate. Finally, a Hubble diagram for the best-observed subsample of SNe is produced by combining the results of the fits of absolute magnitude versus decline rate and color

  5. Supernovae anisotropy power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Ghodsi, Hoda; Baghram, Shant [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Habibi, Farhang, E-mail: h.ghodsi@mehr.sharif.ir, E-mail: baghram@sharif.edu, E-mail: habibi@lal.in2p3.fr [LAL-IN2P3/CNRS, BP 34, 91898 Orsay Cedex (France)

    2017-10-01

    We contribute another anisotropy study to this field of research using Type Ia supernovae (SNe Ia). In this work, we utilise the power spectrum calculation method and apply it to both the current SNe Ia data and simulation. Using the Union2.1 data set at all redshifts, we compare the spectrum of the residuals of the observed distance moduli to that expected from an isotropic universe affected by the Union2.1 observational uncertainties at low multipoles. Through this comparison we find a dipolar anisotropy with tension of less that 2σ towards l = 171° ± 21° and b = −26° ± 28° which is mainly induced by anisotropic spatial distribution of the SNe with z > 0.2 rather than being a cosmic effect. Furthermore, we find a tension of ∼ 4σ at ℓ = 4 between the two spectra. Our simulations are constructed with the characteristics of the upcoming surveys like the Large Synoptic Survey Telescope (LSST), which shall bring us the largest SNe Ia collection to date. We make predictions for the amplitude of a possible dipolar anisotropy that would be detectable by future SNe Ia surveys.

  6. European astronaut selected for the third Hubble Space Telescope

    Science.gov (United States)

    1998-08-01

    qualities of Claude and the other European astronauts. This is a sound basis for fruitful cooperation of mutual benefit on the International Space Station, where astronauts from the USA, Russia, Europe, Japan and Canada will work together closely as a single integrated crew. It is also very useful to the development work on the European-built Station elements," comments Jörg Feustel-Büechl, who, as ESA Director of Manned Spaceflight and Microgravity, is responsible not only for the European astronaut corps but for the European participation in the International Space Station as well. Feustel-Büechl also points out that "the Hubble servicingmission shows that men and women can significantly augment the efficiency and lifetime of complex systems in space. Humans have two essential 'built-in tools' which make them superior to any robot: their brain and their hands. No robot offers a comparable combination of high intelligence, adaptability to unexpected situations, mobility, dexterity and tactility. Robotic systems can perform pre-defined routine tasks and even support astronauts in their work, as the Shuttle's robotic arm shows, but they soon reach their inherent limitations when it comes to evaluating results and deciding what to do next. That is one of the key reasons why we are building and operating a manned space station." Additional information on Claude Nicollier, his NASA crewmates, the Hubble Space Telescope, the International Space Station and Europe's participation in the ISS programme can be found at the following Internet addresses: ESA astronauts: http://www.estec.esa.int/spaceflight/astronaut/ NASA astronauts: http://www.jsc.nasa.gov/Bios/ Hubble Space Telescope: http://sci.esa.int/hubble/ http://oposite.stsci.edu http://www.stsci.edu http://ecf.hq.eso.org International Space Station: http://station.nasa.gov European participation in the International Space Station: http://www.estec.esa.int/spaceflight More information on ESA can be found at: http://www.esa.int

  7. HOW TO FIND GRAVITATIONALLY LENSED TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Goldstein, Daniel A.; Nugent, Peter E.

    2017-01-01

    Type Ia supernovae (SNe Ia) that are multiply imaged by gravitational lensing can extend the SN Ia Hubble diagram to very high redshifts ( z ≳ 2), probe potential SN Ia evolution, and deliver high-precision constraints on H _0, w , and Ω_m via time delays. However, only one, iPTF16geu, has been found to date, and many more are needed to achieve these goals. To increase the multiply imaged SN Ia discovery rate, we present a simple algorithm for identifying gravitationally lensed SN Ia candidates in cadenced, wide-field optical imaging surveys. The technique is to look for supernovae that appear to be hosted by elliptical galaxies, but that have absolute magnitudes implied by the apparent hosts’ photometric redshifts that are far brighter than the absolute magnitudes of normal SNe Ia (the brightest type of supernovae found in elliptical galaxies). Importantly, this purely photometric method does not require the ability to resolve the lensed images for discovery. Active galactic nuclei, the primary sources of contamination that affect the method, can be controlled using catalog cross-matches and color cuts. Highly magnified core-collapse SNe will also be discovered as a byproduct of the method. Using a Monte Carlo simulation, we forecast that the Large Synoptic Survey Telescope can discover up to 500 multiply imaged SNe Ia using this technique in a 10 year z -band search, more than an order of magnitude improvement over previous estimates. We also predict that the Zwicky Transient Facility should find up to 10 multiply imaged SNe Ia using this technique in a 3 year R -band search—despite the fact that this survey will not resolve a single system.

  8. HOW TO FIND GRAVITATIONALLY LENSED TYPE Ia SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, Daniel A.; Nugent, Peter E. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States)

    2017-01-01

    Type Ia supernovae (SNe Ia) that are multiply imaged by gravitational lensing can extend the SN Ia Hubble diagram to very high redshifts ( z ≳ 2), probe potential SN Ia evolution, and deliver high-precision constraints on H {sub 0}, w , and Ω{sub m} via time delays. However, only one, iPTF16geu, has been found to date, and many more are needed to achieve these goals. To increase the multiply imaged SN Ia discovery rate, we present a simple algorithm for identifying gravitationally lensed SN Ia candidates in cadenced, wide-field optical imaging surveys. The technique is to look for supernovae that appear to be hosted by elliptical galaxies, but that have absolute magnitudes implied by the apparent hosts’ photometric redshifts that are far brighter than the absolute magnitudes of normal SNe Ia (the brightest type of supernovae found in elliptical galaxies). Importantly, this purely photometric method does not require the ability to resolve the lensed images for discovery. Active galactic nuclei, the primary sources of contamination that affect the method, can be controlled using catalog cross-matches and color cuts. Highly magnified core-collapse SNe will also be discovered as a byproduct of the method. Using a Monte Carlo simulation, we forecast that the Large Synoptic Survey Telescope can discover up to 500 multiply imaged SNe Ia using this technique in a 10 year z -band search, more than an order of magnitude improvement over previous estimates. We also predict that the Zwicky Transient Facility should find up to 10 multiply imaged SNe Ia using this technique in a 3 year R -band search—despite the fact that this survey will not resolve a single system.

  9. Stellar core collapse and supernova

    International Nuclear Information System (INIS)

    Wilson, J.R.; Mayle, R.; Woosley, S.E.; Weaver, T.

    1985-04-01

    Massive stars that end their stable evolution as their iron cores collapse to a neutron star or black hole long been considered good candidates for producing Type II supernovae. For many years the outward propagation of the shock wave produced by the bounce of these iron cores has been studied as a possible mechanism for the explosion. For the most part, the results of these studies have not been particularly encouraging, except, perhaps, in the case of very low mass iron cores or very soft nuclear equations of state. The shock stalls, overwhelmed by photodisintegration and neutrino losses, and the star does not explode. More recently, slow late time heating of the envelope of the incipient neutron star has been found to be capable of rejuvenating the stalled shock and producing an explosion after all. The present paper discusses this late time heating and presents results from numerical calculations of the evolution, core collapse, and subsequent explosion of a number of recent stellar models. For the first time they all, except perhaps the most massive, explode with reasonable choices of input physics. 39 refs., 17 figs., 1 tab

  10. Supernova 2010as: the lowest-velocity member of a family of flat-velocity type IIb supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Folatelli, Gastón; Bersten, Melina C.; Nomoto, Ken' ichi [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Kuncarayakti, Hanindyo; Hamuy, Mario [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Olivares Estay, Felipe; Pignata, Giuliano [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); Anderson, Joseph P. [European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago (Chile); Holmbo, Simon; Stritzinger, Maximilian [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Maeda, Keiichi [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Morrell, Nidia; Contreras, Carlos; Phillips, Mark M. [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Förster, Francisco [Center for Mathematical Modelling, Universidad de Chile, Avenida Blanco Encalada 2120 Piso 7, Santiago (Chile); Prieto, José Luis [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Peyton Hall, Princeton, NJ 08544 (United States); Valenti, Stefano [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Afonso, Paulo; Altenmüller, Konrad; Elliott, Jonny, E-mail: gaston.folatelli@ipmu.jp [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße 1, D-85740 Garching (Germany); and others

    2014-09-01

    We present extensive optical and near-infrared photometric and spectroscopic observations of the stripped-envelope supernova SN 2010as. Spectroscopic peculiarities such as initially weak helium features and low expansion velocities with a nearly flat evolution place this object in the small family of events previously identified as transitional Type Ib/c supernovae (SNe). There is ubiquitous evidence of hydrogen, albeit weak, in this family of SNe, indicating that they are in fact a peculiar kind of Type IIb SNe that we name 'flat-velocity' Type IIb. The flat-velocity evolution—which occurs at different levels between 6000 and 8000 km s{sup –1} for different SNe—suggests the presence of a dense shell in the ejecta. Despite the spectroscopic similarities, these objects show surprisingly diverse luminosities. We discuss the possible physical or geometrical unification picture for such diversity. Using archival Hubble Space Telescope images, we associate SN 2010as with a massive cluster and derive a progenitor age of ≈6 Myr, assuming a single star-formation burst, which is compatible with a Wolf-Rayet progenitor. Our hydrodynamical modeling, on the contrary, indicates that the pre-explosion mass was relatively low, ≈4 M {sub ☉}. The seeming contradiction between a young age and low pre-SN mass may be solved by a massive interacting binary progenitor.

  11. A HIGH-RESOLUTION SPECTROSCOPIC SEARCH FOR THE REMAINING DONOR FOR TYCHO'S SUPERNOVA

    Energy Technology Data Exchange (ETDEWEB)

    Kerzendorf, Wolfgang E.; Yong, David; Schmidt, Brian P.; Murphy, Simon J.; Bessell, Michael S. [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Cotter Road, Weston Creek, ACT 2611 (Australia); Simon, Joshua D. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Jeffery, C. Simon [Armagh Observatory, College Hill, Armagh BT61 9DG (United Kingdom); Anderson, Jay [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Podsiadlowski, Philipp [Department of Astrophysics, University of Oxford, Oxford, OX1 3RH (United Kingdom); Gal-Yam, Avishay [Benoziyo Center for Astrophysics, Faculty of Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Silverman, Jeffrey M.; Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Nomoto, Ken' ichi [Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Venn, Kim A. [Department of Physics and Astronomy, University of Victoria, Elliott Building, 3800 Finnerty Road, Victoria, BC V8P 5C2 (Canada); Foley, Ryan J., E-mail: wkerzend@mso.anu.edu.au [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-09-10

    In this paper, we report on our analysis using Hubble Space Telescope astrometry and Keck-I HIRES spectroscopy of the central six stars of Tycho's supernova remnant (SN 1572). With these data, we measured the proper motions, radial velocities, rotational velocities, and chemical abundances of these objects. Regarding the chemical abundances, we do not confirm the unusually high [Ni/Fe] ratio previously reported for Tycho-G. Rather, we find that for all metrics in all stars, none exhibit the characteristics expected from traditional Type Ia supernova single-degenerate-scenario calculations. The only possible exception is Tycho-B, a rare, metal-poor A-type star; however, we are unable to find a suitable scenario for it. Thus, we suggest that SN 1572 cannot be explained by the standard single-degenerate model.

  12. A HIGH-RESOLUTION SPECTROSCOPIC SEARCH FOR THE REMAINING DONOR FOR TYCHO'S SUPERNOVA

    International Nuclear Information System (INIS)

    Kerzendorf, Wolfgang E.; Yong, David; Schmidt, Brian P.; Murphy, Simon J.; Bessell, Michael S.; Simon, Joshua D.; Jeffery, C. Simon; Anderson, Jay; Podsiadlowski, Philipp; Gal-Yam, Avishay; Silverman, Jeffrey M.; Filippenko, Alexei V.; Nomoto, Ken'ichi; Venn, Kim A.; Foley, Ryan J.

    2013-01-01

    In this paper, we report on our analysis using Hubble Space Telescope astrometry and Keck-I HIRES spectroscopy of the central six stars of Tycho's supernova remnant (SN 1572). With these data, we measured the proper motions, radial velocities, rotational velocities, and chemical abundances of these objects. Regarding the chemical abundances, we do not confirm the unusually high [Ni/Fe] ratio previously reported for Tycho-G. Rather, we find that for all metrics in all stars, none exhibit the characteristics expected from traditional Type Ia supernova single-degenerate-scenario calculations. The only possible exception is Tycho-B, a rare, metal-poor A-type star; however, we are unable to find a suitable scenario for it. Thus, we suggest that SN 1572 cannot be explained by the standard single-degenerate model

  13. Type Ia Supernova Intrinsic Magnitude Dispersion and the Fitting of Cosmological Parameters

    Science.gov (United States)

    Kim, A. G.

    2011-02-01

    I present an analysis for fitting cosmological parameters from a Hubble diagram of a standard candle with unknown intrinsic magnitude dispersion. The dispersion is determined from the data, simultaneously with the cosmological parameters. This contrasts with the strategies used to date. The advantages of the presented analysis are that it is done in a single fit (it is not iterative), it provides a statistically founded and unbiased estimate of the intrinsic dispersion, and its cosmological-parameter uncertainties account for the intrinsic-dispersion uncertainty. Applied to Type Ia supernovae, my strategy provides a statistical measure to test for subtypes and assess the significance of any magnitude corrections applied to the calibrated candle. Parameter bias and differences between likelihood distributions produced by the presented and currently used fitters are negligibly small for existing and projected supernova data sets.

  14. Hubble Legacy Archive And The Public

    Science.gov (United States)

    Harris, Jessica; Whitmore, B.; Eisenhamer, B.; Bishop, M.; Knisely, L.

    2012-01-01

    The Hubble Legacy Archive (HLA) at the Space Telescope Science Institute (STScI) hosts the Image of the Month (IOTM) Series. The HLA is a joint project of STScI, the Space Telescope European Coordinating Facility (ST-ECF), and the Canadian Astronomy Data Centre (CADC). The HLA is designed optimize science from the Hubble Space Telescope by providing online enhanced Hubble products and advanced browsing capabilities. The IOTM's are created for astronomers and the public to highlight various features within HLA, such as the "Interactive Display", "Footprint” and "Inventory” features to name a few. We have been working with the Office of Public Outreach (OPO) to create a standards based educational module for middle school to high school students of the IOTM: Rings and the Moons of Uranus. The set of Uranus activities are highlighted by a movie that displays the orbit of five of Uranus’ largest satellites. We made the movie based on eight visits of Uranus from 2000-06-16 to 2000-06-18, using the PC chip on the Wide Field Planetary Camera 2 (WFPC2) and filter F850LP (proposal ID: 8680). Students will be engaged in activities that will allow them to "discover” the rings and satellites around Uranus, calculate the orbit of the satellites, and introduces students to analyze real data from Hubble.

  15. Dark Energy and the Hubble Law

    Science.gov (United States)

    Chernin, A. D.; Dolgachev, V. P.; Domozhilova, L. M.

    The Big Bang predicted by Friedmann could not be empirically discovered in the 1920th, since global cosmological distances (more than 300-1000 Mpc) were not available for observations at that time. Lemaitre and Hubble studied receding motions of galaxies at local distances of less than 20-30 Mpc and found that the motions followed the (nearly) linear velocity-distance relation, known now as Hubble's law. For decades, the real nature of this phenomenon has remained a mystery, in Sandage's words. After the discovery of dark energy, it was suggested that the dynamics of local expansion flows is dominated by omnipresent dark energy, and it is the dark energy antigravity that is able to introduce the linear velocity-distance relation to the flows. It implies that Hubble's law observed at local distances was in fact the first observational manifestation of dark energy. If this is the case, the commonly accepted criteria of scientific discovery lead to the conclusion: In 1927, Lemaitre discovered dark energy and Hubble confirmed this in 1929.

  16. Electrostatic Studies for the 2008 Hubble Service Repair Mission

    Science.gov (United States)

    Buhler, C. R.; Clements, J. S.; Calle, C. I.

    2012-01-01

    High vacuum triboelectric testing of space materials was required to identify possible Electrostatic Discharge (ESD) concerns for the astronauts in space during electronics board replacement on the Hubble Space Telescope. Testing under high vacuum conditions with common materials resulted in some interesting results. Many materials were able to charge to high levels which did not dissipate quickly even when grounded. Certain materials were able to charge up in contact with grounded metals while others were not. An interesting result was that like materials did not exchange electrostatic charge under high vacuum conditions. The most surprising experimental result is the lack of brush discharges from charged insulators under high vacuum conditions.

  17. Positron Survival in Type II Supernovae

    Science.gov (United States)

    1989-05-01

    B: Computer Program and Flow Diagram 53 References 59 I. Introduction Since the discovery of Supernova 1987A (a Type II supernova) in February of 1987...the fewer number of decays depositing energy within the supernova. The rate of this cooling is unknown because it is uncertain whether a pulsar was

  18. HUBBLE PINPOINTS WHITE DWARFS IN GLOBULAR CLUSTER

    Science.gov (United States)

    2002-01-01

    Peering deep inside a cluster of several hundred thousand stars, NASA's Hubble Space Telescope uncovered the oldest burned-out stars in our Milky Way Galaxy. Located in the globular cluster M4, these small, dying stars - called white dwarfs - are giving astronomers a fresh reading on one of the biggest questions in astronomy: How old is the universe? The ancient white dwarfs in M4 are about 12 to 13 billion years old. After accounting for the time it took the cluster to form after the big bang, astronomers found that the age of the white dwarfs agrees with previous estimates for the universe's age. In the top panel, a ground-based observatory snapped a panoramic view of the entire cluster, which contains several hundred thousand stars within a volume of 10 to 30 light-years across. The Kitt Peak National Observatory's 0.9-meter telescope took this picture in March 1995. The box at left indicates the region observed by the Hubble telescope. The Hubble telescope studied a small region of the cluster. A section of that region is seen in the picture at bottom left. A sampling of an even smaller region is shown at bottom right. This region is only about one light-year across. In this smaller region, Hubble pinpointed a number of faint white dwarfs. The blue circles pinpoint the dwarfs. It took nearly eight days of exposure time over a 67-day period to find these extremely faint stars. Globular clusters are among the oldest clusters of stars in the universe. The faintest and coolest white dwarfs within globular clusters can yield a globular cluster's age. Earlier Hubble observations showed that the first stars formed less than 1 billion years after the universe's birth in the big bang. So, finding the oldest stars puts astronomers within arm's reach of the universe's age. M4 is 7,000 light-years away in the constellation Scorpius. Hubble's Wide Field and Planetary Camera 2 made the observations from January through April 2001. These optical observations were combined to

  19. Mass Extinctions and Supernova Explosions

    Science.gov (United States)

    Korschinek, Gunther

    A nearby supernova (SN) explosion could have negatively influenced life on Earth, maybe even been responsible for mass extinctions. Mass extinction poses a significant extinction of numerous species on Earth, as recorded in the paleontologic, paleoclimatic, and geological record of our planet. Depending on the distance between the Sun and the SN, different types of threats have to be considered, such as ozone depletion on Earth, causing increased exposure to the Sun's ultraviolet radiation or the direct exposure of lethal X-rays. Another indirect effect is cloud formation, induced by cosmic rays in the atmosphere which result in a drop in the Earth's temperature, causing major glaciations of the Earth. The discovery of highly intensive gamma-ray bursts (GRBs), which could be connected to SNe, initiated further discussions on possible life-threatening events in the Earth's history. The probability that GRBs hit the Earth is very low. Nevertheless, a past interaction of Earth with GRBs and/or SNe cannot be excluded and might even have been responsible for past extinction events.

  20. Neutrino astronomy with supernova neutrinos

    Science.gov (United States)

    Brdar, Vedran; Lindner, Manfred; Xu, Xun-Jie

    2018-04-01

    Modern neutrino facilities will be able to detect a large number of neutrinos from the next Galactic supernova. We investigate the viability of the triangulation method to locate a core-collapse supernova by employing the neutrino arrival time differences at various detectors. We perform detailed numerical fits in order to determine the uncertainties of these time differences for the cases when the core collapses into a neutron star or a black hole. We provide a global picture by combining all the relevant current and future neutrino detectors. Our findings indicate that in the scenario of a neutron star formation, supernova can be located with precision of 1.5 and 3.5 degrees in declination and right ascension, respectively. For the black hole scenario, sub-degree precision can be reached.

  1. Version 1 of the Hubble Source Catalog

    Science.gov (United States)

    Whitmore, Bradley C.; Allam, Sahar S.; Budavári, Tamás; Casertano, Stefano; Downes, Ronald A.; Donaldson, Thomas; Fall, S. Michael; Lubow, Stephen H.; Quick, Lee; Strolger, Louis-Gregory; Wallace, Geoff; White, Richard L.

    2016-06-01

    The Hubble Source Catalog is designed to help optimize science from the Hubble Space Telescope (HST) by combining the tens of thousands of visit-based source lists in the Hubble Legacy Archive (HLA) into a single master catalog. Version 1 of the Hubble Source Catalog includes WFPC2, ACS/WFC, WFC3/UVIS, and WFC3/IR photometric data generated using SExtractor software to produce the individual source lists. The catalog includes roughly 80 million detections of 30 million objects involving 112 different detector/filter combinations, and about 160,000 HST exposures. Source lists from Data Release 8 of the HLA are matched using an algorithm developed by Budavári & Lubow. The mean photometric accuracy for the catalog as a whole is better than 0.10 mag, with relative accuracy as good as 0.02 mag in certain circumstances (e.g., bright isolated stars). The relative astrometric residuals are typically within 10 mas, with a value for the mode (I.e., most common value) of 2.3 mas. The absolute astrometric accuracy is better than 0''\\hspace{-0.5em}. 1 for most sources, but can be much larger for a fraction of fields that could not be matched to the PanSTARRS, SDSS, or 2MASS reference systems. In this paper we describe the database design with emphasis on those aspects that enable the users to fully exploit the catalog while avoiding common misunderstandings and potential pitfalls. We provide usage examples to illustrate some of the science capabilities and data quality characteristics, and briefly discuss plans for future improvements to the Hubble Source Catalog.

  2. Computational models of stellar collapse and core-collapse supernovae

    International Nuclear Information System (INIS)

    Ott, Christian D; O'Connor, Evan; Schnetter, Erik; Loeffler, Frank; Burrows, Adam; Livne, Eli

    2009-01-01

    Core-collapse supernovae are among Nature's most energetic events. They mark the end of massive star evolution and pollute the interstellar medium with the life-enabling ashes of thermonuclear burning. Despite their importance for the evolution of galaxies and life in the universe, the details of the core-collapse supernova explosion mechanism remain in the dark and pose a daunting computational challenge. We outline the multi-dimensional, multi-scale, and multi-physics nature of the core-collapse supernova problem and discuss computational strategies and requirements for its solution. Specifically, we highlight the axisymmetric (2D) radiation-MHD code VULCAN/2D and present results obtained from the first full-2D angle-dependent neutrino radiation-hydrodynamics simulations of the post-core-bounce supernova evolution. We then go on to discuss the new code Zelmani which is based on the open-source HPC Cactus framework and provides a scalable AMR approach for 3D fully general-relativistic modeling of stellar collapse, core-collapse supernovae and black hole formation on current and future massively-parallel HPC systems. We show Zelmani's scaling properties to more than 16,000 compute cores and discuss first 3D general-relativistic core-collapse results.

  3. Computational models of stellar collapse and core-collapse supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Christian D; O' Connor, Evan [TAPIR, Mailcode 350-17, California Institute of Technology, Pasadena, CA (United States); Schnetter, Erik; Loeffler, Frank [Center for Computation and Technology, Louisiana State University, Baton Rouge, LA (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Princeton, NJ (United States); Livne, Eli, E-mail: cott@tapir.caltech.ed [Racah Institute of Physics, Hebrew University, Jerusalem (Israel)

    2009-07-01

    Core-collapse supernovae are among Nature's most energetic events. They mark the end of massive star evolution and pollute the interstellar medium with the life-enabling ashes of thermonuclear burning. Despite their importance for the evolution of galaxies and life in the universe, the details of the core-collapse supernova explosion mechanism remain in the dark and pose a daunting computational challenge. We outline the multi-dimensional, multi-scale, and multi-physics nature of the core-collapse supernova problem and discuss computational strategies and requirements for its solution. Specifically, we highlight the axisymmetric (2D) radiation-MHD code VULCAN/2D and present results obtained from the first full-2D angle-dependent neutrino radiation-hydrodynamics simulations of the post-core-bounce supernova evolution. We then go on to discuss the new code Zelmani which is based on the open-source HPC Cactus framework and provides a scalable AMR approach for 3D fully general-relativistic modeling of stellar collapse, core-collapse supernovae and black hole formation on current and future massively-parallel HPC systems. We show Zelmani's scaling properties to more than 16,000 compute cores and discuss first 3D general-relativistic core-collapse results.

  4. Supernova Remnant in 3-D

    Science.gov (United States)

    2009-01-01

    [figure removed for brevity, see original site] Click on the image for the movie For the first time, a multiwavelength three-dimensional reconstruction of a supernova remnant has been created. This stunning visualization of Cassiopeia A, or Cas A, the result of an explosion approximately 330 years ago, uses data from several telescopes: X-ray data from NASA's Chandra X-ray Observatory, infrared data from NASA's Spitzer Space Telescope and optical data from the National Optical Astronomy Observatory 4-meter telescope at Kitt Peak, Ariz., and the Michigan-Dartmouth-MIT 2.4-meter telescope, also at Kitt Peak. In this visualization, the green region is mostly iron observed in X-rays. The yellow region is a combination of argon and silicon seen in X-rays, optical, and infrared including jets of silicon plus outer debris seen in the optical. The red region is cold debris seen in the infrared. Finally, the blue reveals the outer blast wave, most prominently detected in X-rays. Most of the material shown in this visualization is debris from the explosion that has been heated by a shock moving inwards. The red material interior to the yellow/orange ring has not yet encountered the inward moving shock and so has not yet been heated. These unshocked debris were known to exist because they absorb background radio light, but they were only recently discovered in infrared emission with Spitzer. The blue region is composed of gas surrounding the explosion that was heated when it was struck by the outgoing blast wave, as clearly seen in Chandra images. To create this visualization, scientists took advantage of both a previously known phenomenon the Doppler effect and a new technology that bridges astronomy and medicine. When elements created inside a supernova, such as iron, silicon and argon, are heated they emit light at certain wavelengths. Material moving towards the observer will have shorter wavelengths and material moving away will have longer wavelengths. Since the amount

  5. The supernova progenitor mass distributions of M31 and M33: further evidence for an upper mass limit

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, Zachary G.; Weisz, Daniel R. [University of California Observatories, Santa Cruz, CA 95064 (United States); Williams, Benjamin F.; Dalcanton, Julianne J.; Gilbert, Karoline M.; Fouesneau, Morgan [Box 351580, The University of Washington Seattle, WA 98195 (United States); Murphy, Jeremiah W. [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Dolphin, Andrew E., E-mail: zgjennin@ucsc.edu, E-mail: adolphin@raytheon.com [Raytheon, 1151 E. Hermans Road, Tucson, AZ 85706 (United States)

    2014-11-10

    Using Hubble Space Telescope photometry to measure star formation histories, we age-date the stellar populations surrounding supernova remnants (SNRs) in M31 and M33. We then apply stellar evolution models to the ages to infer the corresponding masses for their supernova progenitor stars. We analyze 33 M33 SNR progenitors and 29 M31 SNR progenitors in this work. We then combine these measurements with 53 previously published M31 SNR progenitor measurements to bring our total number of progenitor mass estimates to 115. To quantify the mass distributions, we fit power laws of the form dN/dM∝M {sup –α}. Our new larger sample of M31 progenitors follows a distribution with α=4.4{sub −0.4}{sup +0.4}, and the M33 sample follows a distribution with α=3.8{sub −0.5}{sup +0.4}. Thus both samples are consistent within the uncertainties, and the full sample across both galaxies gives α=4.2{sub −0.3}{sup +0.3}. Both the individual and full distributions display a paucity of massive stars when compared to a Salpeter initial mass function, which we would expect to observe if all massive stars exploded as SN that leave behind observable SNR. If we instead fix α = 2.35 and treat the maximum mass as a free parameter, we find M {sub max} ∼ 35-45 M {sub ☉}, indicative of a potential maximum cutoff mass for SN production. Our results suggest that either SNR surveys are biased against finding objects in the youngest (<10 Myr old) regions, or the highest mass stars do not produce SNe.

  6. Hubble Space Telescope Photometry of Hodge 301: An ``Old'' Star Cluster in 30 Doradus

    Science.gov (United States)

    Grebel, Eva K.; Chu, You-Hua

    2000-02-01

    We present Hubble Space Telescope Planetary Camera UVI data for Hodge 301, the little-studied cluster 3' northwest of the central ionizing cluster R136 in 30 Doradus. The average reddening of Hodge 301 is found to be =0.28+/-0.05 mag from published infrared and ultraviolet photometry. Using two different sets of evolutionary models, we derive an age of about 20-25 Myr for Hodge 301, which makes it roughly 10 times as old as R136. Hodge 301 is the most prominent representative of the oldest population in the 30 Dor starburst region, a region that has undergone multiple star formation events. This range of ages is an important consideration for the modeling of starburst regions. Hodge 301 shows a widened upper main sequence largely caused by Be stars. We present a list of Be star candidates. The slope of the initial mass function for intermediate-mass, main-sequence stars ranging from 10 to 1.3 Msolar is found to be Γ=-1.4+/-0.1, in good agreement with a Salpeter law. There is no indication for a truncation or change of slope of the initial mass function (IMF) within this mass range. In accordance with the age of Hodge 301, no obvious pre-main-sequence stars are seen down to about 1 Msolar. We estimate that up to 41+/-7 stars with masses more than 12 Msolar may have turned into supernovae since the formation of the cluster. Multiple supernova explosions are the most likely origin of the extremely violent gas motions and the diffuse X-ray emission observed in the cluster surroundings. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS5-26555.

  7. Density profiles of supernova matter and determination of neutrino parameters

    Science.gov (United States)

    Chiu, Shao-Hsuan

    2007-08-01

    The flavor conversion of supernova neutrinos can lead to observable signatures related to the unknown neutrino parameters. As one of the determinants in dictating the efficiency of resonant flavor conversion, the local density profile near the Mikheyev-Smirnov-Wolfenstein (MSW) resonance in a supernova environment is, however, not so well understood. In this analysis, variable power-law functions are adopted to represent the independent local density profiles near the locations of resonance. It is shown that the uncertain matter density profile in a supernova, the possible neutrino mass hierarchies, and the undetermined 1-3 mixing angle would result in six distinct scenarios in terms of the survival probabilities of νe and ν¯e. The feasibility of probing the undetermined neutrino mass hierarchy and the 1-3 mixing angle with the supernova neutrinos is then examined using several proposed experimental observables. Given the incomplete knowledge of the supernova matter profile, the analysis is further expanded to incorporate the Earth matter effect. The possible impact due to the choice of models, which differ in the average energy and in the luminosity of neutrinos, is also addressed in the analysis.

  8. Geological isotope anomalies as signatures of nearby supernovae

    CERN Document Server

    Ellis, Jonathan Richard; Schramm, David N; Ellis, John; Fields, Brian D; Schramm, David N

    1996-01-01

    Nearby supernova explosions may cause geological isotope anomalies via the direct deposition of debris or by cosmic-ray spallation in the earth's atmosphere. We estimate the mass of material deposited terrestrially by these two mechanisms, showing the dependence on the supernova distance. A number of radioactive isotopes are identified as possible diagnostic tools, such as Be-10, Al-26, Cl-36, Mn-53, Fe-60, and Ni-59, as well as the longer-lived I-129, Sm-146, and Pu-244. We discuss whether the 35 and 60 kyr-old Be-10 anomalies observed in the Vostok antarctic ice cores could be due to supernova explosions. Combining our estimates for matter deposition with results of recent nucleosynthesis yields, we calculate the expected signal from nearby supernovae using ice cores back to \\sim 300 kyr ago, and we discuss using deep ocean sediments back to several hundred Myr. In particular, we examine the prospects for identifying isotope anomalies due to the Geminga supernova explosion, and signatures of the possibility...

  9. A surge of light at the birth of a supernova

    Science.gov (United States)

    Bersten, M. C.; Folatelli, G.; García, F.; van Dyk, S. D.; Benvenuto, O. G.; Orellana, M.; Buso, V.; Sánchez, J. L.; Tanaka, M.; Maeda, K.; Filippenko, A. V.; Zheng, W.; Brink, T. G.; Cenko, S. B.; de Jaeger, T.; Kumar, S.; Moriya, T. J.; Nomoto, K.; Perley, D. A.; Shivvers, I.; Smith, N.

    2018-02-01

    It is difficult to establish the properties of massive stars that explode as supernovae. The electromagnetic emission during the first minutes to hours after the emergence of the shock from the stellar surface conveys important information about the final evolution and structure of the exploding star. However, the unpredictable nature of supernova events hinders the detection of this brief initial phase. Here we report the serendipitous discovery of a newly born, normal type IIb supernova (SN 2016gkg), which reveals a rapid brightening at optical wavelengths of about 40 magnitudes per day. The very frequent sampling of the observations allowed us to study in detail the outermost structure of the progenitor of the supernova and the physics of the emergence of the shock. We develop hydrodynamical models of the explosion that naturally account for the complete evolution of the supernova over distinct phases regulated by different physical processes. This result suggests that it is appropriate to decouple the treatment of the shock propagation from the unknown mechanism that triggers the explosion.

  10. BEAUTY IN THE EYE OF HUBBLE

    Science.gov (United States)

    2002-01-01

    A dying star, IC 4406, dubbed the 'Retina Nebula' is revealed in this month's Hubble Heritage image. Like many other so-called planetary nebulae, IC 4406 exhibits a high degree of symmetry; the left and right halves of the Hubble image are nearly mirror images of the other. If we could fly around IC4406 in a starship, we would see that the gas and dust form a vast donut of material streaming outward from the dying star. From Earth, we are viewing the donut from the side. This side view allows us to see the intricate tendrils of dust that have been compared to the eye's retina. In other planetary nebulae, like the Ring Nebula (NGC 6720), we view the donut from the top. The donut of material confines the intense radiation coming from the remnant of the dying star. Gas on the inside of the donut is ionized by light from the central star and glows. Light from oxygen atoms is rendered blue in this image; hydrogen is shown as green, and nitrogen as red. The range of color in the final image shows the differences in concentration of these three gases in the nebula. Unseen in the Hubble image is a larger zone of neutral gas that is not emitting visible light, but which can be seen by radio telescopes. One of the most interesting features of IC 4406 is the irregular lattice of dark lanes that criss-cross the center of the nebula. These lanes are about 160 astronomical units wide (1 astronomical unit is the distance between the Earth and Sun). They are located right at the boundary between the hot glowing gas that produces the visual light imaged here and the neutral gas seen with radio telescopes. We see the lanes in silhouette because they have a density of dust and gas that is a thousand times higher than the rest of the nebula. The dust lanes are like a rather open mesh veil that has been wrapped around the bright donut. The fate of these dense knots of material is unknown. Will they survive the nebula's expansion and become dark denizens of the space between the stars

  11. Spectro-photometric calibration of the SuperNova Integral Field Spectrograph in the Nearby Supernova Factory collaboration framework

    International Nuclear Information System (INIS)

    Buton, Clement

    2009-01-01

    Ten years ago, type Ia supernovae used as distances indicators led to the discovery of the accelerating expansion of the universe. Today, a second generation of surveys has significantly increased the high-redshift type Ia supernovae sample. The low-redshift sample was however still limiting the cosmological analysis using SNe. In this framework, the Nearby Supernova Factory has followed 200 nearby type Ia supernovae using the dedicated Supernovae Integral Field Spectrograph with spectro-photometric capacities. My PhD thesis has been carried out at the Institut de Physique Nucleaire de Lyon and at the Lawrence Berkeley National Laboratory in the framework of the international cosmological project SNfactory. In order to reach the design spectrophotometric accuracy, attention has been focused on several key aspects of the calibration procedure, including: determination of a dedicated point spread function for 3D point source extraction, estimating the nightly photometric quality, derivation of the nightly sky extinction over the extended optical domain, its modeling in terms of physical components and its variability within a given night. A full multi-standards calibration pipeline has been implemented using approximately 4000 observations of spectrophotometric standard stars taken throughout the night over nearly 500 individual nights. Preliminary scientific results of the whole SNfactory collaboration will be presented at the end of this thesis. (author)

  12. The great supernova of 1987

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Despite their apparently very different objectives, astrophysics - the study of the largest structures in the Universe - and particle physics - the study of the smallest - have always had common ground. On 23 February 1987 a supernova explosion provided additional impetus to reinforce these links. In this article, David Schramm of the University of Chicago and the NASA/Fermilab Astrophysics Center, explains why

  13. Supernova neutrinos and explosive nucleosynthesis

    Science.gov (United States)

    Kajino, T.; Aoki, W.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Mathews, G. J.; Nakamura, K.; Shibagaki, S.; Suzuki, T.

    2014-05-01

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes 7Li, 11B, 92Nb, 138La and 180Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and θ13, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements 11B and 7Li encapsulated in the presolar grains. Combining the recent experimental constraints on θ13, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  14. Supernova neutrinos and explosive nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J.; Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Mathews, G. J. [Center for Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Nakamura, K. [Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Suzuki, T. [Department of Physics, College of Humanities and Sciences, Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

    2014-05-09

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and θ{sub 13}, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements {sup 11}B and {sup 7}Li encapsulated in the presolar grains. Combining the recent experimental constraints on θ{sub 13}, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  15. HUBBLE TARANTULA TREASURY PROJECT. V. THE STAR CLUSTER HODGE 301: THE OLD FACE OF 30 DORADUS

    Energy Technology Data Exchange (ETDEWEB)

    Cignoni, M. [Department of Physics—University of Pisa, Largo Pontecorvo, 3 Pisa, I-56127 (Italy); Sabbi, E.; Marel, R. P. van der; Aloisi, A.; Panagia, N. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218 (United States); Lennon, D. J. [European Space Astronomy Centre, Apdo. de Correo 78, E-28691 Villanueva de la Canada, Madrid (Spain); Tosi, M. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Grebel, E. K. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120 Heidelberg (Germany); Gallagher, J. S. III [Department of Astronomy, University of Wisconsin-Madison, WI 53706 (United States); Marchi, G. de [European Space Research and Technology Centre, Keplerlaan 1, NL-2200 AG Noordwijk (Netherlands); Gouliermis, D. A. [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Larsen, S. [Department of Astrophysics, Radboud University, P.O. Box 9010, NL-6500 GL Nijmegen (Netherlands); Smith, L. J., E-mail: michele.cignoni@unipi.it [European Space Agency and Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2016-12-20

    Based on color–magnitude diagrams (CMDs) from the Hubble Space Telescope  Hubble Tarantula Treasury Project (HTTP) survey, we present the star formation history of Hodge 301, the oldest star cluster in the Tarantula Nebula. The HTTP photometry extends faint enough to reach, for the first time, the cluster pre-main sequence (PMS) turn-on, where the PMS joins the main sequence. Using the location of this feature, along with synthetic CMDs generated with the latest PARSEC models, we find that Hodge 301 is older than previously thought, with an age between 26.5 and 31.5 Myr. From this age, we also estimate that between 38 and 61 Type II supernovae exploded in the region. The same age is derived from the main sequence turn-off, whereas the age derived from the post-main sequence stars is younger and between 20 and 25 Myr. Other relevant parameters are a total stellar mass of ≈8800 ± 800  M {sub ⊙} and average reddening E ( B − V ) ≈ 0.22–0.24 mag, with a differential reddening δE ( B − V ) ≈ 0.04 mag.

  16. Reexploration of interacting holographic dark energy model. Cases of interaction term excluding the Hubble parameter

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hai-Li; Zhang, Jing-Fei; Feng, Lu [Northeastern University, Department of Physics, College of Sciences, Shenyang (China); Zhang, Xin [Northeastern University, Department of Physics, College of Sciences, Shenyang (China); Peking University, Center for High Energy Physics, Beijing (China)

    2017-12-15

    In this paper, we make a deep analysis for the five typical interacting holographic dark energy models with the interaction terms Q = 3βH{sub 0}ρ{sub de}, Q = 3βH{sub 0}ρ{sub c}, Q = 3βH{sub 0}(ρ{sub de} + ρ{sub c}), Q = 3βH{sub 0}√(ρ{sub de}ρ{sub c}), and Q = 3βH{sub 0}(ρ{sub de}ρ{sub c})/(ρ{sub de}+ρ{sub c}), respectively. We obtain observational constraints on these models by using the type Ia supernova data (the Joint Light-Curve Analysis sample), the cosmic microwave background data (Planck 2015 distance priors), the baryon acoustic oscillations data, and the direct measurement of the Hubble constant. We find that the values of χ{sub min}{sup 2} for all the five models are almost equal (around 699), indicating that the current observational data equally favor these IHDE models. In addition, a comparison with the cases of an interaction term involving the Hubble parameter H is also made. (orig.)

  17. H0 from cosmic chronometers and Type Ia supernovae, with Gaussian Processes and the novel Weighted Polynomial Regression method

    Science.gov (United States)

    Gómez-Valent, Adrià; Amendola, Luca

    2018-04-01

    In this paper we present new constraints on the Hubble parameter H0 using: (i) the available data on H(z) obtained from cosmic chronometers (CCH); (ii) the Hubble rate data points extracted from the supernovae of Type Ia (SnIa) of the Pantheon compilation and the Hubble Space Telescope (HST) CANDELS and CLASH Multy-Cycle Treasury (MCT) programs; and (iii) the local HST measurement of H0 provided by Riess et al. (2018), H0HST=(73.45±1.66) km/s/Mpc. Various determinations of H0 using the Gaussian processes (GPs) method and the most updated list of CCH data have been recently provided by Yu, Ratra & Wang (2018). Using the Gaussian kernel they find H0=(67.42± 4.75) km/s/Mpc. Here we extend their analysis to also include the most released and complete set of SnIa data, which allows us to reduce the uncertainty by a factor ~ 3 with respect to the result found by only considering the CCH information. We obtain H0=(67.06± 1.68) km/s/Mpc, which favors again the lower range of values for H0 and is in tension with H0HST. The tension reaches the 2.71σ level. We round off the GPs determination too by taking also into account the error propagation of the kernel hyperparameters when the CCH with and without H0HST are used in the analysis. In addition, we present a novel method to reconstruct functions from data, which consists in a weighted sum of polynomial regressions (WPR). We apply it from a cosmographic perspective to reconstruct H(z) and estimate H0 from CCH and SnIa measurements. The result obtained with this method, H0=(68.90± 1.96) km/s/Mpc, is fully compatible with the GPs ones. Finally, a more conservative GPs+WPR value is also provided, H0=(68.45± 2.00) km/s/Mpc, which is still almost 2σ away from H0HST.

  18. Hubble Space Telescope Imaging of the Mass-losing Supergiant VY Canis Majoris

    Science.gov (United States)

    Kastner, Joel H.; Weintraub, David A.

    1998-04-01

    The highly luminous M supergiant VY CMa is a massive star that appears to be in its final death throes, losing mass at high rate en route to exploding as a supernova. Subarcsecond-resolution optical images of VY CMa, obtained with the Faint Object Camera (FOC) aboard the Hubble Space Telescope, vividly demonstrate that mass loss from VY CMa is highly anisotropic. In the FOC images, the optical ``star'' VY CMa constitutes the bright, well-resolved core of an elongated reflection nebula. The imaged nebula is ~3" (~4500 AU) in extent and is clumpy and highly asymmetric. The images indicate that the bright core, which lies near one edge of the nebula, is pure scattered starlight. We conclude that at optical wavelengths VY CMa is obscured from view along our line of sight by its own dusty envelope. The presence of the extended reflection nebula then suggests that this envelope is highly flattened and/or that the star is surrounded by a massive circumstellar disk. Such axisymmetric circumstellar density structure should have profound effects on post-red supergiant mass loss from VY CMa and, ultimately, on the shaping of the remnant of the supernova that will terminate its post-main-sequence evolution.

  19. Discovery of an Unusual Optical Transient with the Hubble Space Telescope

    Energy Technology Data Exchange (ETDEWEB)

    The Supernova Cosmology Project; Barbary, Kyle; Dawson, Kyle S.; Tokita, Kouichi; Aldering, Greg; Amanullah, Rahman; Connolly, Natalia V.; Doi, Mamoru; Faccioli, Lorenzo; Fadeyev, Vitaliy; Fruchter, Andrew S.; Goldhaber, Gerson; Goobar, Ariel; Gude, Alexander; Huang, Xiaosheng; Ihara, Yutaka; Konishi, Kohki; Kowalski, Marek; Lidman, Chris; Meyers, Josh; Morokuma, Tomoki; Nugent, Peter; Perlmutter, Saul; Rubin, David; Schlegel, David; Spadafora, Anthony L.; Suzuki, Nao; Swift, Hannah K.; Takanashi, Naohiro; Thomas, Rollin C.; Yasuda, Naoki

    2008-09-08

    We present observations of SCP 06F6, an unusual optical transient discovered during the Hubble Space Telescope Cluster Supernova Survey. The transient brightened over a period of ~;;100 days, reached a peak magnitude of ~;;21.0 in both i_775 and z_850, and then declined over a similar timescale. There is no host galaxy or progenitor star detected at the location of the transient to a 3 sigma upper limit of i_775 = 26.4 and z_850 = 26.1, giving a corresponding lower limit on the flux increase of a factor of ~;;120. Multiple spectra show five broad absorption bands between 4100 AA and 6500 AA and a mostly featureless continuum longward of 6500 AA. The shape of the lightcurve is inconsistent with microlensing. The transient's spectrum, in addition to being inconsistent with all known supernova types, is not matched to any spectrum in the Sloan Digital Sky Survey (SDSS) database. We suggest that the transient may be one of a new class.

  20. Diffuse remnants of supernova explosions of moving massive stars

    Science.gov (United States)

    Gvaramadze, V. V.

    The modification of the ambient interstellar medium by the wind of massive stars (the progenitors of most of supernovae) results in that the structure and evolution of diffuse supernova remnants (SNRs) significantly deviate from those derived from standard models of SNRs based of the Sedov-Taylor solution. The stellar proper motion and the regular interstellar magnetic field affect the symmetry of the processed medium and cause the SNR to be non-spherically-symmetric. We show that taking into account these effects allows us to explain the diverse morphologies of the known SNRs (the particular attention is paid to the elongated axisymmetric SNRs and the SNRs consisting of two partially overlapping shells) and to infer the ``true" supernova explosion sites in some peculiar SNRs (therefore to search for new neutron stars associated with them).

  1. Supernova Remnants with Fermi Large Area Telescope

    Directory of Open Access Journals (Sweden)

    Caragiulo M.

    2017-01-01

    Full Text Available The Large Area Telescope (LAT, on-board the Fermi satellite, proved to be, after 8 years of data taking, an excellent instrument to detect and observe Supernova Remnants (SNRs in a range of energies running from few hundred MeV up to few hundred GeV. It provides essential information on physical processes that occur at the source, involving both accelerated leptons and hadrons, in order to understand the mechanisms responsible for the primary Cosmic Ray (CR acceleration. We show the latest results in the observation of Galactic SNRs by Fermi-LAT.

  2. Constraining inverse-curvature gravity with supernovae.

    Science.gov (United States)

    Mena, Olga; Santiago, José; Weller, Jochen

    2006-02-03

    We show that models of generalized modified gravity, with inverse powers of the curvature, can explain the current accelerated expansion of the Universe without resorting to dark energy and without conflicting with solar system experiments. We have solved the Friedmann equations for the full dynamical range of the evolution of the Universe and performed a detailed analysis of supernovae data in the context of such models that results in an excellent fit. If we further include constraints on the current expansion of the Universe and on its age, we obtain that the matter content of the Universe is 0.07baryonic matter component.

  3. Adiabatic supernova expansion into the circumstellar medium

    International Nuclear Information System (INIS)

    Band, D.L.; Liang, E.P.

    1987-01-01

    We perform one dimensional numerical simulations with a Lagrangian hydrodynamics code of the adiabatic expansion of a supernova into the surrounding medium. The early expansion follows Chevalier's analytic self-similar solution until the reverse shock reaches the ejecta core. We follow the expansion as it evolves towards the adiabatic blast wave phase. Some memory of the earlier phases of expansion is retained in the interior even when the outer regions expand as a blast wave. We find the results are sensitive to the initial configuration of the ejecta and to the placement of gridpoints. 6 refs., 2 figs

  4. Supernova neutrinos, giant resonances, and nucleosynthesis

    International Nuclear Information System (INIS)

    Haxton, W.

    1990-01-01

    Almost all of the 3·10 53 ergs liberated in a core collapse supernova is radiated as neutrinos by the cooling neutron star. The neutrinos can excite nuclei in the mantle of the star by their neutral and charged current reactions. I argue that the resulting spallation reactions are an important nucleosynthesis mechanism that may be responsible for the galactic abundances of 7 Li, 11 B, 19 F, 138 La, 180 Ta, and approximately a dozen other light nuclei. 18 refs., 1 fig., 1 tab

  5. Sensitivity studies for supernovae type Ia

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thien Tam; Goebel, Kathrin; Reifarth, Rene [Goethe University Frankfurt am Main (Germany); Calder, Alan [SUNY - Department of Physics and Astronomy, New York (United States); Pignatari, Marco [Konkoly Observatory of the Hungarian Academy of Sciences (Hungary); Townsley, Dean [The University of Alabama (United States); Travaglio, Claudia [INAF - Astrophysical Observatory, Turin (Italy); Collaboration: NuGrid collaboration

    2016-07-01

    The NuGrid research platform provides a simulation framework to study the nucleosynthesis in multi-dimensional Supernovae Type Ia models. We use a large network of over 5,000 isotopes and more than 60,000 reactions. The nucleosynthesis is investigated in post-processing simulations with temperature and density profiles, initial abundance distributions and a set of reaction rates as input. The sensitivity of the isotopic abundances to α-, proton-, and neutron-capture reaction, their inverse reactions, as well as fusion reactions were investigated. First results have been achieved for different mass coordinates of the exploding star.

  6. Effects of neutrino trapping on supernova explosions

    International Nuclear Information System (INIS)

    Takahara, Mariko; Sato, Katsuhiko

    1982-01-01

    Effects of neutrino trapping on the mass ejection from the stellar cores are investigated with the aid of a simplified equation of state under the assumption of adiabatic collapse. It is found that mass ejection becomes violent only if the ratio of the trapped leptons to baryons, Y sub(L), lies in an appropriate range. If the value of Y sub(L) lies out of this range, mass ejection is difficult. It is also shown that as the thermal stiffness of the shocked matter increases, the range necessary for the violent mass ejection becomes wider. Possibilities of supernova explosion are discussed on the basis of these results. (author)

  7. Delivering Hubble Discoveries to the Classroom

    Science.gov (United States)

    Eisenhamer, B.; Villard, R.; Weaver, D.; Cordes, K.; Knisely, L.

    2013-04-01

    Today's classrooms are significantly influenced by current news events, delivered instantly into the classroom via the Internet. Educators are challenged daily to transform these events into student learning opportunities. In the case of space science, current news events may be the only chance for educators and students to explore the marvels of the Universe. Inspired by these circumstances, the education and news teams developed the Star Witness News science content reading series. These online news stories (also available in downloadable PDF format) mirror the content of Hubble press releases and are designed for upper elementary and middle school level readers to enjoy. Educators can use Star Witness News stories to reinforce students' reading skills while exposing students to the latest Hubble discoveries.

  8. Neutron Star/supernova Remnant Associations

    Science.gov (United States)

    Gvaramadze, V. V.

    We propose a new approach for studying the neutron star/supernova remnant associations, based on the idea that the (diffuse) supernova remnants (SNRs) can be products of an off-centred supernova (SN) explosion in a preexisting bubble created by the wind of a moving massive star. A cavity SN explosion of a moving star results in a considerable offset of the neutron star (NS) birth-place from the geometrical centre of the SNR. Therefore: a) the high transverse velocities inferred for a number of NSs (e.g. PSR B 1610-50, PSR B 1757-24, SGR 0525-66) through their association with SNRs can be reduced; b) the proper motion vector of a NS should not necessarily point away from the geometrical centre of the associated SNR. Taking into account of these two facts allow us to enlarge the circle of possible NS/SNR associations, and could significantly affect the results of previous studies of NS/SNR associations. The possibilities of our approach are illustrated with the example of the association between PSR B 1706-44 and SNR G 343.1-2.3. We show that this association could be real if both objects are the remnants of a SN exploded within a mushroom-like cavity (created by the SN progenitor wind breaking out of the parent molecular cloud and expanding into an intercloud medium of a much less density). We also show that the SN explosion sites in some middle-aged (shell-like) SNRs could be marked by (compact) nebulae of thermal X-ray emission. The possible detection of such nebulae within middle-aged SNRs could be used for the re-estimation of implied transverse velocities of known NSs or for the search of new stellar remnants possibly associated with these SNRs.

  9. Molecular clouds near supernova remnants

    International Nuclear Information System (INIS)

    Wootten, H.A.

    1978-01-01

    The physical properties of molecular clouds near supernova remnants were investigated. Various properties of the structure and kinematics of these clouds are used to establish their physical association with well-known remmnants. An infrared survey of the most massive clouds revealed embedded objects, probably stars whose formation was induced by the supernova blast wave. In order to understand the relationship between these and other molecular clouds, a control group of clouds was also observed. Excitation models for dense regions of all the clouds are constructed to evaluate molecular abundances in these regions. Those clouds that have embedded stars have lower molecular abundances than the clouds that do not. A cloud near the W28 supernova remnant also has low abundances. Molecular abundances are used to measure an important parameter, the electron density, which is not directly observable. In some clouds extensive deuterium fractionation is observed which confirms electron density measurements in those clouds. Where large deuterium fractionation is observed, the ionization rate in the cloud interior can also be measured. The electron density and ionization rate in the cloud near W28 are higher than in most clouds. The molecular abundances and electron densities are functions of the chemical and dynamical state of evolution of the cloud. Those clouds with lowest abundances are probably the youngest clouds. As low-abundance clouds, some clouds near supernova remnants may have been recently swept from the local interstellar material. Supernova remnants provide sites for star formation in ambient clouds by compressing them, and they sweep new clouds from more diffuse local matter

  10. Super-Hubble de Sitter fluctuations and the dynamical RG

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, C.P. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario (Canada); Leblond, L.; Shandera, S. [Perimeter Institute for Theoretical Physics, Waterloo, Ontario (Canada); Holman, R., E-mail: cburgess@perimeterinstitute.ca, E-mail: lleblond@perimeterinstitute.ca, E-mail: rha@andrew.cmu.edu, E-mail: sshandera@perimeterinstitute.ca [Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States)

    2010-03-01

    Perturbative corrections to correlation functions for interacting theories in de Sitter spacetime often grow secularly with time, due to the properties of fluctuations on super-Hubble scales. This growth can lead to a breakdown of perturbation theory at late times. We argue that Dynamical Renormalization Group (DRG) techniques provide a convenient framework for interpreting and resumming these secularly growing terms. In the case of a massless scalar field in de Sitter with quartic self-interaction, the resummed result is also less singular in the infrared, in precisely the manner expected if a dynamical mass is generated. We compare this improved infrared behavior with large-N expansions when applicable.

  11. Evaluating nuclear physics inputs in core-collapse supernova models

    Science.gov (United States)

    Lentz, E.; Hix, W. R.; Baird, M. L.; Messer, O. E. B.; Mezzacappa, A.

    Core-collapse supernova models depend on the details of the nuclear and weak interaction physics inputs just as they depend on the details of the macroscopic physics (transport, hydrodynamics, etc.), numerical methods, and progenitors. We present preliminary results from our ongoing comparison studies of nuclear and weak interaction physics inputs to core collapse supernova models using the spherically-symmetric, general relativistic, neutrino radiation hydrodynamics code Agile-Boltztran. We focus on comparisons of the effects of the nuclear EoS and the effects of improving the opacities, particularly neutrino--nucleon interactions.

  12. Dependence on supernovae light-curve processing in void models

    Energy Technology Data Exchange (ETDEWEB)

    Bengochea, Gabriel R., E-mail: gabriel@iafe.uba.ar [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC 67, Suc. 28, 1428 Buenos Aires (Argentina); De Rossi, Maria E., E-mail: derossi@iafe.uba.ar [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC 67, Suc. 28, 1428 Buenos Aires (Argentina); Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina)

    2014-06-02

    In this work, we show that when supernova Ia (SN Ia) data sets are used to put constraints on the free parameters of inhomogeneous models, certain extra information regarding the light-curve fitter used in the supernovae Ia luminosity fluxes processing should be taken into account. We found that the size of the void as well as other parameters of these models might be suffering extra degenerations or additional systematic errors due to the fitter. A recent proposal to relieve the tension between the results from Planck satellite and SNe Ia is re-analyzed in the framework of these subjects.

  13. Effects of neutrino oscillations on the supernova signal in LVD

    International Nuclear Information System (INIS)

    Aglietta, M.; Antonioli, P.; Bari, G.; Castagnoli, C.; Fulgione, W.; Galeotti, P.; Ghia, P.L.; Giusti, P.; Kemp, E.; Malguin, A.S.; Nurzia, G.; Pesci, A.; Picchi, P.; Pless, I.A.; Ryasny, V.G.; Ryazhskaya, O.G.; Sartorelli, G.; Selvi, M.; Vigorito, C.; Vissani, F.; Votano, L.; Yakushev, V.F.; Zatsepin, G.T.; Zichichi, A.

    2002-01-01

    We study the impact of neutrino oscillations on the supernova neutrino signal in the Large Volume Detector (LVD). The number of expected events for a galactic supernova (D = 10 kpc) is calculated, assuming neutrino masses and mixing that explain solar and atmospheric neutrino results. The possibility to detect neutrinos in different channels makes LVD sensitive to different scenarios for ν properties, such as normal or inverted ν mass hierarchy, and/or adiabatic or non adiabatic MSW resonances associated to U e3 . Of particular importance are the charged current (c.c.) reactions on 12 C: oscillations increase by almost one order of magnitude the number of events expected from this channel

  14. LATE-TIME LIGHT CURVES OF TYPE II SUPERNOVAE: PHYSICAL PROPERTIES OF SUPERNOVAE AND THEIR ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, Masaaki; Meixner, Margaret; Panagia, Nino [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Fabbri, Joanna; Barlow, Michael J.; Wesson, Roger [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Clayton, Geoffrey C.; Andrews, Jennifer E. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Gallagher, Joseph S. [Department of Mathematics, Physics, and Computer Science, Raymond Walters College, 9555 Plain field Rd., Blue Ash, OH 45236 (United States); Sugerman, Ben E. K. [Department of Physics and Astronomy, Goucher College, 1021 Dulaney Valley Road, Baltimore, MD 21204 (United States); Ercolano, Barbara [Universitaets-Sternwarte Muenchen, Scheinerstr. 1, 81679 Muenchen (Germany); Welch, Douglas, E-mail: otsuka@stsci.edu, E-mail: otsuka@asiaa.sinica.edu.tw [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada)

    2012-01-01

    We present BVRIJHK-band photometry of six core-collapse supernovae, SNe 1999bw, 2002hh, 2003gd, 2004et, 2005cs, and 2006bc, measured at late epochs (>2 yr) based on the Hubble Space Telescope (HST), and the Gemini North, and WIYN telescopes. We also show the JHK light curves of supernova impostor SN 2008S up to day 575 because it was serendipitously in our SN 2002hh field of view. Of our 43 HST observations in total, 36 observations are successful in detecting the light from the SNe alone and measuring magnitudes of all the targets. HST observations show a resolved scattered light echo around SN 2003gd at day 1520 and around SN 2002hh at day 1717. Our Gemini and WIYN observations detected SNe 2002hh and 2004et as well. Combining our data with previously published data, we show VRIJHK-band light curves and estimate decline magnitude rates at each band in four different phases. Our prior work on these light curves and other data indicate that dust is forming in our targets from days {approx}300 to 400, supporting SN dust formation theory. In this paper we focus on other physical properties derived from late-time light curves. We estimate {sup 56}Ni masses for our targets (0.5-14 Multiplication-Sign 10{sup -2} M{sub Sun }) from the bolometric light curve of each of days {approx}150-300 using SN 1987A as a standard (7.5 Multiplication-Sign 10{sup -2} M{sub Sun }). The flattening or sometimes increasing fluxes in the late-time light curves of SNe 2002hh, 2003gd, 2004et, and 2006bc indicate the presence of light echoes. We estimate the circumstellar hydrogen density of the material causing the light echo and find that SN 2002hh is surrounded by relatively dense materials (n(H) >400 cm{sup -3}) and SNe 2003gd and 2004et have densities more typical of the interstellar medium ({approx}1 cm{sup -3}). We analyze the sample as a whole in the context of physical properties derived in prior work. The {sup 56}Ni mass appears well correlated with progenitor mass with a slope of 0

  15. The panchromatic Hubble Andromeda treasury. VII. The steep mid-ultraviolet to near-infrared extinction curve in the central 200 pc of the M31 Bulge

    International Nuclear Information System (INIS)

    Dong, Hui; Lauer, Tod R.; Olsen, Knut; Saha, Abhijit; Li, Zhiyuan; Wang, Q. D.; Dalcanton, Julianne; Fouesneau, Morgan; Gordon, Karl; Bell, Eric; Bianchi, Luciana

    2014-01-01

    We measure the extinction curve in the central 200 pc of M31 at mid-ultraviolet to near-infrared wavelengths (from 1928 Å to 1.5 μm), using Swift/UVOT and Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3)/Advanced Camera for Surveys (ACS) observations in 13 bands. Taking advantage of the high angular resolution of the HST/WFC3 and ACS detectors, we develop a method to simultaneously determine the relative extinction and the fraction of obscured starlight for five dusty complexes located in the circumnuclear region. The extinction curves of these clumps (R V = 2.4-2.5) are steeper than the average Galactic one (R V = 3.1), but are similar to optical and near-infrared curves recently measured toward the Galactic bulge (R V ∼ 2.5). This similarity suggests that steep extinction curves may be common in the inner bulge of galaxies. In the ultraviolet, the extinction curves of these clumps are also unusual. We find that one dusty clump (size < 2 pc) exhibits a strong UV bump (extinction at 2175 Å), more than three standard deviation higher than that predicted by common models. Although the high stellar metallicity of the M31 bulge indicates that there are sufficient carbon and silicon to produce large dust grains, the grains may have been destroyed by supernova explosions or past activity of the central supermassive black hole, resulting in the observed steepened extinction curve.

  16. The panchromatic Hubble Andromeda treasury. VII. The steep mid-ultraviolet to near-infrared extinction curve in the central 200 pc of the M31 Bulge

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Hui; Lauer, Tod R.; Olsen, Knut; Saha, Abhijit [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Li, Zhiyuan [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Wang, Q. D. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Dalcanton, Julianne; Fouesneau, Morgan [Astronomy Department, University of Washington, Seattle, WA 98195 (United States); Gordon, Karl [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bell, Eric [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Bianchi, Luciana, E-mail: hdong@noao.edu [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2014-04-20

    We measure the extinction curve in the central 200 pc of M31 at mid-ultraviolet to near-infrared wavelengths (from 1928 Å to 1.5 μm), using Swift/UVOT and Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3)/Advanced Camera for Surveys (ACS) observations in 13 bands. Taking advantage of the high angular resolution of the HST/WFC3 and ACS detectors, we develop a method to simultaneously determine the relative extinction and the fraction of obscured starlight for five dusty complexes located in the circumnuclear region. The extinction curves of these clumps (R{sub V} = 2.4-2.5) are steeper than the average Galactic one (R{sub V} = 3.1), but are similar to optical and near-infrared curves recently measured toward the Galactic bulge (R{sub V} ∼ 2.5). This similarity suggests that steep extinction curves may be common in the inner bulge of galaxies. In the ultraviolet, the extinction curves of these clumps are also unusual. We find that one dusty clump (size < 2 pc) exhibits a strong UV bump (extinction at 2175 Å), more than three standard deviation higher than that predicted by common models. Although the high stellar metallicity of the M31 bulge indicates that there are sufficient carbon and silicon to produce large dust grains, the grains may have been destroyed by supernova explosions or past activity of the central supermassive black hole, resulting in the observed steepened extinction curve.

  17. Deflagration to detonation transition in thermonuclear supernovae

    International Nuclear Information System (INIS)

    Charignon, Camille

    2013-01-01

    Type Ia supernovae are an important tool to determine the expansion history of our Universe. Thus, considerable attention has been given to both observations and models of these events. The most popular explosion model is the central ignition of a deflagration in the dense C+O interior of a Chandrasekhar mass white dwarf, followed by a transition to a detonation (TDD). We study in this thesis a new mechanism for this transition. The most robust and studied progenitor model and the postulated mechanism for the TDD, the so called 'Zel'dovich gradient mechanism', are presented. State of the art 3D simulations of such a delayed detonation, at the price of some adjustments, can indeed reproduce observables. But due to largely unresolved physical scales, such simulations cannot explain the TDD by themselves, and especially, the physical mechanism which triggers this transition - which is not yet understood, even on Earth, for unconfined media. It is then discussed why the current Zel'dovich mechanism might be too constraining for a SN Ia model, pointing to a new approach, which is the core result of this thesis.In the final part, our alternative model for DDT in supernovae, the acoustic heating of the pre-supernova envelope, is presented. A planar model first proves that small amplitude acoustic perturbations (generated by a turbulent flame) are actually amplified in a steep density gradient, up to a point where they turn into shocks able to trigger a detonation. Then, this mechanism is applied to more realistic models, taking into account, in spherical geometry, the expanding envelope. A parametric study demonstrates the validity of the model for a reasonable range of acoustic wave amplitudes and frequencies.To conclude, some exploratory 2D and 3D MHD simulations, seeking for realistic acoustic source compatible with our mechanism, are presented. (author) [fr

  18. Neutrino Flavor Evolution in Turbulent Supernova Matter

    Science.gov (United States)

    Lund, Tina; Kneller, James P.

    In order to decode the neutrino burst signal from a Galactic core-collapse supernova and reveal the complicated inner workings of the explosion, we need a thorough understanding of the neutrino flavor evolution from the proto-neutron-star outwards. The flavor content of the signal evolves due to both neutrino collective effects and matter effects which can lead to a highly interesting interplay and distinctive spectral features. In this paper we investigate the supernova neutrino flavor evolution by including collective flavor effects, the evolution of the Mikheyev, Smirnov & Wolfenstein (MSW) matter conversions due to the shock wave passing through the star, and the impact of turbulence. The density profiles utilized in our calculations represent a 10.8 MG progenitor and comes from a 1D numerical simulation by Fischer et al.[1]. We find that small amplitude turbulence, up to 10% of the average potential, leads to a minimal modification of the signal, and the emerging neutrino spectra retain both collective and MSW features. However, when larger amounts of turbulence are added, 30% and 50%, the features of collective and shock wave effects in the high density resonance channel are almost completely obscured at late times. At the same time we find the other mixing channels - the low density resonance channel and the non-resonant channels - begin to develop turbulence signatures. Large amplitude turbulent motions in the outer layers of massive, iron core-collapse supernovae may obscure the most obvious fingerprints of collective and shock wave effects in the neutrino signal but cannot remove them completely, and additionally bring about new features in the signal. We illustrate how the progression of the shock wave is reflected in the changing survival probabilities over time, and we show preliminary results on how some of these collective and shock wave induced signatures appear in a detector signal.

  19. The Stellar Origins of Supernovae

    Science.gov (United States)

    Van Dyk, Schulyer

    2017-08-01

    Supernovae (SNe) have a profound effect on galaxies and have been used as precise cosmological probes, resulting in the Nobel-distinguished discovery of the accelerating Universe. They are clearly very important events deserving of intense study. Yet, even with over 10000 classified SNe, we know relatively little about the stars which give rise to these powerful explosions. The main limitation has been the lack of spatial resolution in pre-SN imaging data. However, since 1999 our team has been at the vanguard of directly identifying SN progenitor stars in HST images. From this exciting line of study, the trends from 15 detections for Type II-Plateau SNe appear to be red supergiant progenitors of relatively low mass (8 to 17 Msun) - although this upper mass limit still requires testing - and warmer, envelope-stripped supergiant progenitors for 5 Type IIb SNe. Additionally, evidence is accumulating that some Type II-narrow SNe may arise from exploding stars in a luminous blue variable phase. However, the nature of the progenitors of Type Ib/c SNe, a subset of which are associated with gamma-ray bursts, still remains ambiguous. Furthermore, we continue in the embarrassing situation that we still do not yet know which progenitor systems explode as Type Ia SNe, which are being used for precision cosmology. In Cycles 16, 17, and 20 through 24 we have had great success with our approved ToO programs. As of this proposal deadline, we have already triggered on SN 2016jbu with our Cycle 24 program. We therefore propose to continue this project in Cycles 25 and 26, to determine the identities of the progenitors of 8 SNe within about 20 Mpc through ToO observations using WFC3/UVIS.

  20. A blinded determination of H0 from low-redshift Type Ia supernovae, calibrated by Cepheid variables

    Science.gov (United States)

    Zhang, Bonnie R.; Childress, Michael J.; Davis, Tamara M.; Karpenka, Natallia V.; Lidman, Chris; Schmidt, Brian P.; Smith, Mathew

    2017-10-01

    Presently, a >3σ tension exists between values of the Hubble constant H0 derived from analysis of fluctuations in the cosmic microwave background by Planck, and local measurements of the expansion using calibrators of Type Ia supernovae (SNe Ia). We perform a blinded re-analysis of Riess et al. (2011) to measure H0 from low-redshift SNe Ia, calibrated by Cepheid variables and geometric distances including to NGC 4258. This paper is a demonstration of techniques to be applied to the Riess et al. (2016) data. Our end-to-end analysis starts from available Harvard -Smithsonian Center for Astrophysics (CfA3) and Lick Observatory Supernova Search (LOSS) photometries, providing an independent validation of Riess et al. (2011). We obscure the value of H0 throughout our analysis and the first stage of the referee process, because calibration of SNe Ia requires a series of often subtle choices, and the potential for results to be affected by human bias is significant. Our analysis departs from that of Riess et al. (2011) by incorporating the covariance matrix method adopted in Supernova Legacy Survey and Joint Lightcurve Analysis to quantify SN Ia systematics, and by including a simultaneous fit of all SN Ia and Cepheid data. We find H_0 = 72.5 ± 3.1 ({stat}) ± 0.77 ({sys}) km s-1 Mpc-1with a three-galaxy (NGC 4258+LMC+MW) anchor. The relative uncertainties are 4.3 per cent statistical, 1.1 per cent systematic, and 4.4 per cent total, larger than in Riess et al. (2011) (3.3 per cent total) and the Efstathiou (2014) re-analysis (3.4 per cent total). Our error budget for H0 is dominated by statistical errors due to the small size of the SN sample, whilst the systematic contribution is dominated by variation in the Cepheid fits, and for the SNe Ia, uncertainties in the host galaxy mass dependence and Malmquist bias.

  1. Search for type Ia supernovae within the EROS2 collaboration. Photometric study of nearby SNIa and measurement of H_0

    International Nuclear Information System (INIS)

    Regnault, Nicolas

    2000-01-01

    Type Ia supernovae (SNIa) are powerful distance indicators. The comparison of nearby (z ∼ 0:1) and distant (z ∼ 1) SNIa apparent magnitudes leads to the determination of the large scale geometry of the universe. Cosmological parameters such as the Hubble constant H_0, the matter density Ω_m and the cosmological constant Ω_Λ can thus be determined. The EROS2 experiment devotes about 10% of its observing time to the detection of nearby SNIa. In the spring of 1999, EROS2 participated in a worldwide search conducted by the Supernova Cosmology Project. This campaign resulted in the discovery of 50 supernovae. Among these, 20 turned out to be SNIa discovered within 10 days from maximum. The thesis work is divided into 3 parts. First, we present a quick overview of the standard cosmological model and the main techniques used for measuring the cosmological parameters (SNIa, rich clusters properties, and anisotropies of the cosmological background radiation). We then describe the physics and observational properties of SNIa. In particular, we show that the peak absolute luminosity of these objects is uniform (within 30%), and correlates with other observables. Using these correlations, we can construct a corrected peak luminosity, which exhibits a lower dispersion (∼10%). The second part is devoted to the description of the EROS2 setup, and our SNe search techniques. In the last part, we present the analysis of the spring 1999 SNIa's photometric follow-up data. We describe the photometry software developed for this analysis as well as the complex intercalibration process of the follow-up images taken with 10 different telescopes. In the last chapter, we show how the peak luminosity and the decline rate of each SN can be reconstructed. Using these quantities, we study the correlations between the peak luminosity the decline rate and the color of SNIa, which leads to a value of H_0: H_0 = 67.4 ± 2(int)"+"5"."8_-_6_._4(ext.). (author) [fr

  2. Hydrogen-Poor Core-Collapse Supernovae

    Science.gov (United States)

    Pian, Elena; Mazzali, Paolo A.

    Hydrogen-poor core-collapse supernovae (SNe) signal the explosive death of stars more massive than the progenitors of hydrogen-rich core-collapse supernovae, i.e., approximately in the range 15-50 M⊙ in main sequence. Since hydrogen-poor core-collapse supernovae include those that accompany gamma-ray bursts (GRBs), which were all rigorously identified with type Ic supernovae, their explosion energies cover almost two decades. The light curves and spectra are consequently very heterogeneous and often bear the signature of an asymmetric, i.e., aspherical, explosion. Asphericity is best traced by early-time (within days of the explosion) optical spectropolarimetry and by late-epoch (more than ˜ 100 days after explosion) low-resolution spectroscopy. While the relationship between hydrogen-poor core-collapse supernovae to hydrogen-poor super-luminous supernovae is not understood, a known case of association between an ultra-long gamma-ray burst and a very luminous hydrogen-poor supernova may help unraveling the connection. This is tantalizingly pointing to a magnetar powering source for both phenomena, although this scenario is still highly speculative. Host galaxies of hydrogen-poor supernovae are always star forming; in those of completely stripped supernovae and gamma-ray burst supernovae, the spatial distribution of the explosions follows the blue/ultraviolet light, with a correlation that is more than linear.

  3. Supernovae-generated high-velocity compact clouds

    Science.gov (United States)

    Yalinewich, A.; Beniamini, P.

    2018-05-01

    Context. A previous study claimed the discovery of an intermediate-mass black hole (IMBH). This hypothetical black hole was invoked in order to explain the high-velocity dispersion in one of several dense molecular clouds near the Galactic center. The same study considered the possibility that this cloud was due to a supernova explosion, but disqualified this scenario because no X-rays were detected. Aims: We here check whether a supernova explosion could have produced that cloud, and whether this explanation is more likely than an IMBH. More specifically, we wish to determine whether a supernova inside a dense molecular cloud would emit in the X-rays. Methods: We have approached this problem from two different directions. First, we performed an analytic calculation to determine the cooling rate by thermal bremsstrahlung and compared this time to the lifetime of the cloud. Second, we estimated the creation rate of these dense clouds in the central molecular zone (CMZ) region near the Galactic center, where they were observed. Based on this rate, we can place lower bounds on the total mass of IMBHs and clouds and compare this to the masses of the components of the CMZ. Results: We find that the cooling time of the supernova remnant inside a molecular cloud is shorter than its dynamical time. This means that the temperature in such a remnant would be much lower than that of a typical supernova remnant. At such a low temperature, the remnant is not expected to emit in the X-rays. We also find that to explain the rate at which such dense clouds are created requires fine-tuning the number of IMBHs. Conclusions: We find the supernova model to be a more likely explanation for the formation of high-velocity compact clouds than an IMBH.

  4. Photometric type Ia supernova candidates from the three-year SDSS-II SN survey data

    Energy Technology Data Exchange (ETDEWEB)

    Sako, Masao; /Pennsylvania U.; Bassett, Bruce; /South African Astron. Observ. /Cape Town U., Dept. Math.; Connolly, Brian; /Pennsylvania U.; Dilday, Benjamin; /Las Cumbres Observ. /UC, Santa Barbara /Rutgers U., Piscataway; Cambell, Heather; /Portsmouth U., ICG; Frieman, Joshua A.; /Chicago U. /Chicago U., KICP /Fermilab; Gladney, Larry; /Pennsylvania U.; Kessler, Richard; /Chicago U. /Chicago U., KICP; Lampeitl, Hubert; /Portsmouth U., ICG; Marriner, John; /Fermilab; Miquel, Ramon; /Barcelona, IFAE /ICREA, Barcelona /Portsmouth U., ICG

    2011-07-01

    We analyze the three-year Sloan Digital Sky Survey II (SDSS-II) Supernova (SN) Survey data and identify a sample of 1070 photometric Type Ia supernova (SN Ia) candidates based on their multiband light curve data. This sample consists of SN candidates with no spectroscopic confirmation, with a subset of 210 candidates having spectroscopic redshifts of their host galaxies measured while the remaining 860 candidates are purely photometric in their identification. We describe a method for estimating the efficiency and purity of photometric SN Ia classification when spectroscopic confirmation of only a limited sample is available, and demonstrate that SN Ia candidates from SDSS-II can be identified photometrically with {approx}91% efficiency and with a contamination of {approx}6%. Although this is the largest uniform sample of SN candidates to date for studying photometric identification, we find that a larger spectroscopic sample of contaminating sources is required to obtain a better characterization of the background events. A Hubble diagram using SN candidates with no spectroscopic confirmation, but with host galaxy spectroscopic redshifts, yields a distance modulus dispersion that is only {approx}20%-40% larger than that of the spectroscopically confirmed SN Ia sample alone with no significant bias. A Hubble diagram with purely photometric classification and redshift-distance measurements, however, exhibits biases that require further investigation for precision cosmology.

  5. PHOTOMETRIC TYPE Ia SUPERNOVA CANDIDATES FROM THE THREE-YEAR SDSS-II SN SURVEY DATA

    International Nuclear Information System (INIS)

    Sako, Masao; Connolly, Brian; Gladney, Larry; Bassett, Bruce; Dilday, Benjamin; Cambell, Heather; Lampeitl, Hubert; Nichol, Robert C.; Frieman, Joshua A.; Kessler, Richard; Marriner, John; Miquel, Ramon; Schneider, Donald P.; Smith, Mathew; Sollerman, Jesper

    2011-01-01

    We analyze the three-year Sloan Digital Sky Survey II (SDSS-II) Supernova (SN) Survey data and identify a sample of 1070 photometric Type Ia supernova (SN Ia) candidates based on their multiband light curve data. This sample consists of SN candidates with no spectroscopic confirmation, with a subset of 210 candidates having spectroscopic redshifts of their host galaxies measured while the remaining 860 candidates are purely photometric in their identification. We describe a method for estimating the efficiency and purity of photometric SN Ia classification when spectroscopic confirmation of only a limited sample is available, and demonstrate that SN Ia candidates from SDSS-II can be identified photometrically with ∼91% efficiency and with a contamination of ∼6%. Although this is the largest uniform sample of SN candidates to date for studying photometric identification, we find that a larger spectroscopic sample of contaminating sources is required to obtain a better characterization of the background events. A Hubble diagram using SN candidates with no spectroscopic confirmation, but with host galaxy spectroscopic redshifts, yields a distance modulus dispersion that is only ∼20%-40% larger than that of the spectroscopically confirmed SN Ia sample alone with no significant bias. A Hubble diagram with purely photometric classification and redshift-distance measurements, however, exhibits biases that require further investigation for precision cosmology.

  6. THE CARNEGIE SUPERNOVA PROJECT: LIGHT-CURVE FITTING WITH SNooPy

    International Nuclear Information System (INIS)

    Burns, Christopher R.; Persson, S. E.; Madore, Barry F.; Freedman, Wendy L.; Stritzinger, Maximilian; Phillips, M. M.; Boldt, Luis; Campillay, Abdo; Folatelli, Gaston; Gonzalez, Sergio; Krzeminski, Wojtek; Morrell, Nidia; Salgado, Francisco; Kattner, ShiAnne; Contreras, Carlos; Suntzeff, Nicholas B.

    2011-01-01

    In providing an independent measure of the expansion history of the universe, the Carnegie Supernova Project (CSP) has observed 71 high-z Type Ia supernovae (SNe Ia) in the near-infrared bands Y and J. These can be used to construct rest-frame i-band light curves which, when compared to a low-z sample, yield distance moduli that are less sensitive to extinction and/or decline-rate corrections than in the optical. However, working with NIR observed and i-band rest-frame photometry presents unique challenges and has necessitated the development of a new set of observational tools in order to reduce and analyze both the low-z and high-z CSP sample. We present in this paper the methods used to generate uBVgriYJH light-curve templates based on a sample of 24 high-quality low-z CSP SNe. We also present two methods for determining the distances to the hosts of SN Ia events. A larger sample of 30 low-z SNe Ia in the Hubble flow is used to calibrate these methods. We then apply the method and derive distances to seven galaxies that are so nearby that their motions are not dominated by the Hubble flow.

  7. Interpreting the Strongly Lensed Supernova iPTF16geu: Time Delay Predictions, Microlensing, and Lensing Rates

    Energy Technology Data Exchange (ETDEWEB)

    More, Anupreeta; Oguri, Masamune; More, Surhud [Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), University of Tokyo, Chiba 277-8583 (Japan); Suyu, Sherry H. [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); Lee, Chien-Hsiu, E-mail: anupreeta.more@ipmu.jp [Subaru Telescope, National Astronomical Observatory of Japan, 650 North Aohoku Place, Hilo, HI 96720 (United States)

    2017-02-01

    We present predictions for time delays between multiple images of the gravitationally lensed supernova, iPTF16geu, which was recently discovered from the intermediate Palomar Transient Factory (iPTF). As the supernova is of Type Ia where the intrinsic luminosity is usually well known, accurately measured time delays of the multiple images could provide tight constraints on the Hubble constant. According to our lens mass models constrained by the Hubble Space Telescope F814W image, we expect the maximum relative time delay to be less than a day, which is consistent with the maximum of 100 hr reported by Goobar et al. but places a stringent upper limit. Furthermore, the fluxes of most of the supernova images depart from expected values suggesting that they are affected by microlensing. The microlensing timescales are small enough that they may pose significant problems to measure the time delays reliably. Our lensing rate calculation indicates that the occurrence of a lensed SN in iPTF is likely. However, the observed total magnification of iPTF16geu is larger than expected, given its redshift. This may be a further indication of ongoing microlensing in this system.

  8. Probing Late-Stage Stellar Evolution through Robotic Follow-Up of Nearby Supernovae

    Science.gov (United States)

    Hosseinzadeh, Griffin

    2018-01-01

    Many of the remaining uncertainties in stellar evolution can be addressed through immediate and long-term photometry and spectroscopy of supernovae. The early light curves of thermonuclear supernovae can contain information about the nature of the binary companion to the exploding white dwarf. Spectra of core-collapse supernovae can reveal material lost by massive stars in their final months to years. Thanks to a revolution in technology—robotic telescopes, high-speed internet, machine learning—we can now routinely discover supernovae within days of explosion and obtain well-sampled follow-up data for months and years. Here I present three major results from the Global Supernova Project at Las Cumbres Observatory that take advantage of these technological advances. (1) SN 2017cbv is a Type Ia supernova discovered within a day of explosion. Early photometry shows a bump in the U-band relative to previously observed Type Ia light curves, possibly indicating the presence of a nondegenerate binary companion. (2) SN 2016bkv is a low-luminosity Type IIP supernova also caught very young. Narrow emission lines in the earliest spectra indicate interaction between the ejecta and a dense shell of circumstellar material, previously observed only in the brightest Type IIP supernovae. (3) Type Ibn supernovae are a rare class that interact with hydrogen-free circumstellar material. An analysis of the largest-yet sample of this class has found that their light curves are much more homogeneous and faster-evolving than their hydrogen-rich counterparts, Type IIn supernovae, but that their maximum-light spectra are more diverse.

  9. Radio emission from Supernovae and High Precision Astrometry

    Science.gov (United States)

    Perez-Torres, M. A.

    1999-11-01

    The present thesis work makes contributions in two scientific fronts: differential astrometry over the largest angular scales ever attempted (approx. 15 arcdegrees) and numerical simulations of radio emission from very young supernovae. In the first part, we describe the results of the use of very-long-baseline interferometry (VLBI) in one experiment designed to measure with very high precision the angular distance between the radio sources 1150+812 (QSO) and 1803+784 (BL Lac). We observed the radio sources on 19 November 1993 using an intercontinental array of radio telescopes, which simultaneously recorded at 2.3 and 8.4 GHz. VLBI differential astrometry is capable, Nature allowing, of yielding source positions with precisions well below the milliarcsecond level. To achieve this precision, we first had to accurately model the rotation of the interferometric fringes via the most precise models of Earth Orientation Parameters (EOP; precession, polar motion and UT1, nutation). With this model, we successfully connected our phase delay data at both frequencies and, using difference astrometric techniques, determined the coordinates of 1803+784 relative to those of 1150+812-within the IERS reference frame--with an standard error of about 0.6 mas in each coordinate. We then corrected for several effects including propagation medium (mainly the atmosphere and ionosphere), and opacity and source-structure effects within the radio sources. We stress that our dual-frequency measurements allowed us to accurately subtract the ionosphere contribution from our data. We also used GPS-based TEC measurements to independently find the ionosphere contribution, and showed that these contributions agree with our dual-frequency measurements within about 2 standard deviations in the less favorables cases (the longest baselines), but are usually well within one standard deviation. Our estimates of the relative positions, whether using dual-frequency-based or GPS-based ionosphere

  10. Observational constraint on spherical inhomogeneity with CMB and local Hubble parameter

    Science.gov (United States)

    Tokutake, Masato; Ichiki, Kiyotomo; Yoo, Chul-Moon

    2018-03-01

    We derive an observational constraint on a spherical inhomogeneity of the void centered at our position from the angular power spectrum of the cosmic microwave background (CMB) and local measurements of the Hubble parameter. The late time behaviour of the void is assumed to be well described by the so-called Λ-Lemaȋtre-Tolman-Bondi (ΛLTB) solution. Then, we restrict the models to the asymptotically homogeneous models each of which is approximated by a flat Friedmann-Lemaȋtre-Robertson-Walker model. The late time ΛLTB models are parametrized by four parameters including the value of the cosmological constant and the local Hubble parameter. The other two parameters are used to parametrize the observed distance-redshift relation. Then, the ΛLTB models are constructed so that they are compatible with the given distance-redshift relation. Including conventional parameters for the CMB analysis, we characterize our models by seven parameters in total. The local Hubble measurements are reflected in the prior distribution of the local Hubble parameter. As a result of a Markov-Chains-Monte-Carlo analysis for the CMB temperature and polarization anisotropies, we found that the inhomogeneous universe models with vanishing cosmological constant are ruled out as is expected. However, a significant under-density around us is still compatible with the angular power spectrum of CMB and the local Hubble parameter.

  11. An independent determination of the local Hubble constant

    Science.gov (United States)

    Fernández Arenas, David; Terlevich, Elena; Terlevich, Roberto; Melnick, Jorge; Chávez, Ricardo; Bresolin, Fabio; Telles, Eduardo; Plionis, Manolis; Basilakos, Spyros

    2018-02-01

    The relationship between the integrated H β line luminosity and the velocity dispersion of the ionized gas of H II galaxies and giant H II regions represents an exciting standard candle that presently can be used up to redshifts z ˜ 4. Locally it is used to obtain precise measurements of the Hubble constant by combining the slope of the relation obtained from nearby (z ≤ 0.2) H II galaxies with the zero-point determined from giant H II regions belonging to an `anchor sample' of galaxies for which accurate redshift-independent distance moduli are available. We present new data for 36 giant H II regions in 13 galaxies of the anchor sample that includes the megamaser galaxy NGC 4258. Our data are the result of the first 4 yr of observation of our primary sample of 130 giant H II regions in 73 galaxies with Cepheid determined distances. Our best estimate of the Hubble parameter is 71.0 ± 2.8(random) ± 2.1(systematic) km s- 1Mpc- 1. This result is the product of an independent approach and, although at present less precise than the latest SNIa results, it is amenable to substantial improvement.

  12. Carbon deflagration supernova, an alternative to carbon detonation

    Energy Technology Data Exchange (ETDEWEB)

    Nomoto, K; Sugimoto, D [Tokyo Univ. (Japan). Coll. of General Education; Neo, S [Kyoto Univ. (Japan). Dept. of Physics

    1976-02-01

    As an alternative to the carbon detonation, a carbon deflagration supernova model is presented by a full hydrodynamic computation. A deflagration wave, which propagates through the core due to convective heat transport, does not grow into detonation. Though it results in a complete disruption of the star, the difficulty of overproduction of iron peak elements can be avoided if the deflagration is relatively slow.

  13. On The Origin Of Two-Shell Supernova Remnants

    Science.gov (United States)

    Gvaramadze, Vasilii

    2007-07-01

    The proper motion of massive stars could cause them to explode far from the geometric centers of their wind-driven bubbles and thereby could affect the symmetry of the resulting diffuse supernova remnants (SNRs). We use this fact to explain the origin of SNRs consisting of two partially overlapping shells (e.g. Cygnus Loop, 3C 400.2, etc.).

  14. Neutron Stars in Supernova Remnants and Beyond

    Science.gov (United States)

    Gvaramadze, V. V.

    We discuss a concept of off-centred cavity supernova explosion as applied to neutron star/supernova remnant associations and show how this concept could be used to preclude the anti-humane decapitating the Duck (G5.4-1.2 + G5.27-0.9) and dismembering the Swan (Cygnus Loop), as well as to search for a stellar remnant associated with the supernova remnant RCW86.

  15. Neutron Stars in Supernova Remnants and Beyond

    OpenAIRE

    Gvaramadze, V. V.

    2002-01-01

    We discuss a concept of off-centred cavity supernova explosion as applied to neutron star/supernova remnant associations and show how this concept could be used to preclude the anti-humane decapitating the Duck (G5.4-1.2 + G5.27-0.9) and dismembering the Swan (Cygnus Loop), as well as to search for a stellar remnant associated with the supernova remnant RCW86.

  16. Mass extinctions and supernova explosions

    OpenAIRE

    Korschinek, Gunther

    2016-01-01

    A nearby supernova (SN) explosion could have negatively influenced life on Earth, maybe even been responsible for mass extinctions. Mass extinction poses a significant extinction of numerous species on Earth, as recorded in the paleontologic, paleoclimatic, and geological record of our planet. Depending on the distance between the Sun and the SN, different types of threats have to be considered, such as ozone depletion on Earth, causing increased exposure to the Sun's ultraviolet radiation, o...

  17. Conformal Cosmology and Supernova Data

    OpenAIRE

    Behnke, Danilo; Blaschke, David; Pervushin, Victor; Proskurin, Denis

    2000-01-01

    We define the cosmological parameters $H_{c,0}$, $\\Omega_{m,c}$ and $\\Omega_{\\Lambda, c}$ within the Conformal Cosmology as obtained by the homogeneous approximation to the conformal-invariant generalization of Einstein's General Relativity theory. We present the definitions of the age of the universe and of the luminosity distance in the context of this approach. A possible explanation of the recent data from distant supernovae Ia without a cosmological constant is presented.

  18. Spectral analysis of the binary nucleus of the planetary nebula Hen 2-428 - first results

    Science.gov (United States)

    Finch, Nicolle L.; Reindl, Nicole; Barstow, Martin A.; Casewell, Sarah L.; Geier, Stephan; Bertolami, Marcelo M. Miller; Taubenberger, Stefan

    2018-04-01

    Identifying progenitor systems for the double-degenerate scenario is crucial to check the reliability of type Ia supernovae as cosmological standard candles. Santander-Garcia et al. (2015) claimed that Hen 2-428 has a doubledegenerate core whose combined mass significantly exceeds the Chandrasekhar limit. Together with the short orbital period (4.2 hours), the authors concluded that the system should merge within a Hubble time triggering a type Ia supernova event. Garcia-Berro et al. (2016) explored alternative scenarios to explain the observational evidence, as the high mass conclusion is highly unlikely within predictions from stellar evolution theory. They conclude that the evidence supporting the supernova progenitor status of the system is premature. Here we present the first quantitative spectral analysis of Hen 2-428which allows us to derive the effective temperatures, surface gravities and helium abundance of the two CSPNe based on state-of-the-art, non-LTE model atmospheres. These results provide constrains for further studies of this particularly interesting system.

  19. PACMan to Help Sort Hubble Proposals

    Science.gov (United States)

    Kohler, Susanna

    2017-04-01

    Every year, astronomers submit over a thousand proposals requesting time on the Hubble Space Telescope (HST). Currently, humans must sort through each of these proposals by hand before sending them off for review. Could this burden be shifted to computers?A Problem of VolumeAstronomer Molly Peeples gathered stats on the HST submissions sent in last week for the upcoming HST Cycle 25 (the deadline was Friday night), relative to previous years. This years proposal round broke the record, with over 1200 proposals submitted in total for Cycle 25. [Molly Peeples]Each proposal cycle for HST time attracts on the order of 1100 proposals accounting for far more HST time than is available. The proposals are therefore carefully reviewed by around 150 international members of the astronomy community during a six-month process to select those with the highest scientific merit.Ideally, each proposal will be read by reviewers that have scientific expertise relevant to the proposal topic: if a proposal requests HST time to study star formation, for instance, then the reviewers assigned to it should have research expertise in star formation.How does this matching of proposals to reviewers occur? The current method relies on self-reported categorization of the submitted proposals. This is unreliable, however; proposals are often mis-categorized by submitters due to misunderstanding or ambiguous cases.As a result, the Science Policies Group at the Space Telescope Science Institute (STScI) which oversees the review of HST proposals must go through each of the proposals by hand and re-categorize them. The proposals are then matched to reviewers with self-declared expertise in the same category.With the number of HST proposals on the rise and the expectation that the upcoming James Webb Space Telescope (JWST) will elicit even more proposals for time than Hubble scientists at STScI and NASA are now asking: could the human hours necessary for this task be spared? Could a computer program

  20. Type I supernova models vs observations

    International Nuclear Information System (INIS)

    Weaver, T.A.; Axelrod, T.S.; Woosley, S.E.

    1980-01-01

    This paper explores tHe observational consequences of models for Type I supernovae based on the detonation (or deflagration) of the degenerate cores of white dwarfs or intermediate mass (approx. = 9 M/sub sun/) stars. Such nuclear burning can be initiated either at the center of the core or near its edge. The model examined in most detail is that of a 0.5M/sub sun/ C/O white dwarf which undergoes an edge-lit He/C/O detonation after accreting 0.62 M/sub sun/ of he at 10 -8 M/sub sun//yr. The light curve resulting from this model is found to be in excellent agreement with those observed for Type I supernovae, particularly those in the fast subclass. The physical processes involved in the detailed numerical calculations which lead to this conclusion are quantitatively elucidated by simple analytic models, and effects of uncertainties in the input physics are explored

  1. A Moderate Redshift Supernova Search Program

    Science.gov (United States)

    Adams, M. T.; Wheeler, J. C.; Ward, M.; Wren, W. R.; Schmidt, B. P.

    1995-12-01

    We report on a recently initiated supernova (SN) search program using the McDonald Observatory 0.76m telescope and Prime Focus Camera (PFC). This SN search program takes advantage of the PFC's 42.6 x 42.6 arcmin FOV to survey moderate redshift Abell clusters in single Kron-Cousins R-band images. Our scientific goal is to discover and provide quality BVRI photometric follow-up, to R \\ +21, for a significant SNe sample at 0.03 group (Perlmutter et al 1995, ApJ, 440, L41), and the High Redshift SN Search Team (Schmidt et al 1995, Aiguiblava NATO ASI Proceedings). The McDonald SN search program includes a sample of the Abell clusters used by Lauer and Postman (1994, ApJ, 425, 418) to analyze Local Group motion. SNe discovered in these clusters contribute to the resolution of the Local Group motion controversy. We present an overview of the McDonald Observatory supernova search program, and discuss recent results.

  2. Distance measurements from supernovae and dark energy constraints

    International Nuclear Information System (INIS)

    Wang Yun

    2009-01-01

    Constraints on dark energy from current observational data are sensitive to how distances are measured from Type Ia supernova (SN Ia) data. We find that flux averaging of SNe Ia can be used to test the presence of unknown systematic uncertainties, and yield more robust distance measurements from SNe Ia. We have applied this approach to the nearby+SDSS+ESSENCE+SNLS+HST set of 288 SNe Ia, and the 'Constitution' set of 397 SNe Ia. Combining the SN Ia data with cosmic microwave background anisotropy data from Wilkinson Microwave Anisotropy Probe 5 yr observations, the Sloan Digital Sky Survey baryon acoustic oscillation measurements, the data of 69 gamma-ray bursts (GRBs) , and the Hubble constant measurement from the Hubble Space Telescope project SHOES, we measure the dark energy density function X(z)≡ρ X (z)/ρ X (0) as a free function of redshift (assumed to be a constant at z>1 or z>1.5). Without the flux averaging of SNe Ia, the combined data using the Constitution set of SNe Ia seem to indicate a deviation from a cosmological constant at ∼95% confidence level at 0 98% confidence level for z≤0.75 using the combined data with 288 SNe Ia from nearby+SDSS+ESSENCE+SNLS+HST, independent of the assumptions about X(z≥1). We quantify dark energy constraints without assuming a flat Universe using the dark energy figure of merit for both X(z) and a dark energy equation-of-state linear in the cosmic scale factor.

  3. Hubble Captures Volcanic Eruption Plume From Io

    Science.gov (United States)

    1997-01-01

    The Hubble Space Telescope has snapped a picture of a 400-km-high (250-mile-high) plume of gas and dust from a volcanic eruption on Io, Jupiter's large innermost moon.Io was passing in front of Jupiter when this image was taken by the Wide Field and Planetary Camera 2 in July 1996. The plume appears as an orange patch just off the edge of Io in the eight o'clock position, against the blue background of Jupiter's clouds. Io's volcanic eruptions blasts material hundreds of kilometers into space in giant plumes of gas and dust. In this image, material must have been blown out of the volcano at more than 2,000 mph to form a plume of this size, which is the largest yet seen on Io.Until now, these plumes have only been seen by spacecraft near Jupiter, and their detection from the Earth-orbiting Hubble Space Telescope opens up new opportunities for long-term studies of these remarkable phenomena.The plume seen here is from Pele, one of Io's most powerful volcanos. Pele's eruptions have been seen before. In March 1979, the Voyager 1 spacecraft recorded a 300-km-high eruption cloud from Pele. But the volcano was inactive when the Voyager 2 spacecraft flew by Jupiter in July 1979. This Hubble observation is the first glimpse of a Pele eruption plume since the Voyager expeditions.Io's volcanic plumes are much taller than those produced by terrestrial volcanos because of a combination of factors. The moon's thin atmosphere offers no resistance to the expanding volcanic gases; its weak gravity (one-sixth that of Earth) allows material to climb higher before falling; and its biggest volcanos are more powerful than most of Earth's volcanos.This image is a contrast-enhanced composite of an ultraviolet image (2600 Angstrom wavelength), shown in blue, and a violet image (4100 Angstrom wavelength), shown in orange. The orange color probably occurs because of the absorption and/or scattering of ultraviolet light in the plume. This light from Jupiter passes through the plume and is

  4. Type-Ia Supernova Rates and the Progenitor Problem: A Review

    Science.gov (United States)

    Maoz, D.; Mannucci, F.

    2012-01-01

    The identity of the progenitor systems of type-Ia supernovae (SNe Ia) is a major unsolved problem in astrophysics. SN Ia rates are providing some striking clues. We review the basics of SN rate measurement, preach about some sins of SN rate measurement and analysis, and illustrate one of these sins with an analogy about Martian scientists. We review the recent progress in measuring SN Ia rates in various environments and redshifts, and their use to reconstruct the SN Ia delay-time distribution (DTD) - the SN rate versus time that would follow a hypothetical brief burst of star formation. A good number of DTD measurements, using a variety of methods, appear to be converging. At delays 1measurements show a similar, ~t-1, power-law shape. The DTD peaks at the shortest delays probed. This result supports the idea of a double-degenerate progenitor origin for SNe Ia. Single-degenerate progenitors may still play a role in producing short-delay SNe Ia, or perhaps all SNe Ia, if the red-giant donor channel is more efficient than is found by most theoretical models. The DTD normalization enjoys fairly good agreement (though perhaps some tension), among the various measurements, with a Hubble time-integrated DTD value of about 2+/-1 SNe Ia per 1000Msolar (stellar mass formed with a low-mass turnover initial mass function). The local WD binary population suggests that the WD merger rate can explain the Galactic SN Ia rate, but only if sub-Chandra mergers lead to SN Ia events. We point to some future directions that should lead to progress in the field, including measurement of the bivariate (delay and stretch) SN Ia response function.

  5. Optical observations of the type Ic supernova 2007gr in NGC 1058

    International Nuclear Information System (INIS)

    Chen, Juncheng; Wang, Xiaofeng; Li, Junzheng; Ganeshalingam, Mohan; Silverman, Jeffrey M.; Filippenko, Alexei V.; Li, Weidong; Chornock, Ryan; Steele, Thea

    2014-01-01

    We present extensive optical observations of the normal Type Ic supernova (SN) 2007gr, spanning from about one week before maximum light to more than one year thereafter. The optical light and color curves of SN 2007gr are very similar to those of the broad-lined Type Ic SN 2002ap, but the spectra show remarkable differences. The optical spectra of SN 2007gr are characterized by unusually narrow lines, prominent carbon lines, and slow evolution of the line velocity after maximum light. The earliest spectrum (taken at t = –8 days) shows a possible signature of helium (He I λ5876 at a velocity of ∼19,000 km s –1 ). Moreover, the larger intensity ratio of the [O I] λ6300 and λ6364 lines inferred from the early nebular spectra implies a lower opacity of the ejecta shortly after the explosion. These results indicate that SN 2007gr perhaps underwent a less energetic explosion of a smaller-mass Wolf-Rayet star (∼8-9 M ☉ ) in a binary system, as favored by an analysis of the progenitor environment through pre-explosion and post-explosion Hubble Space Telescope images. In the nebular spectra, asymmetric double-peaked profiles can be seen in the [O I] λ6300 and Mg I] λ4571 lines. We suggest that the two peaks are contributed by the blueshifted and rest-frame components. The similarity in velocity structure and the different evolution of the strength of the two components favor an aspherical explosion with the ejecta distributed in a torus or disk-like geometry, but inside the ejecta the O and Mg have different distributions.

  6. Optical observations of the type Ic supernova 2007gr in NGC 1058

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Juncheng; Wang, Xiaofeng; Li, Junzheng [Physics Department and Tsinghua Center for Astrophysics (THCA), Tsinghua University, Beijing 100084 (China); Ganeshalingam, Mohan; Silverman, Jeffrey M.; Filippenko, Alexei V.; Li, Weidong; Chornock, Ryan; Steele, Thea, E-mail: cjc09@mails.tsinghua.edu.cn, E-mail: wang_xf@mail.tsinghua.edu.cn [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States)

    2014-08-01

    We present extensive optical observations of the normal Type Ic supernova (SN) 2007gr, spanning from about one week before maximum light to more than one year thereafter. The optical light and color curves of SN 2007gr are very similar to those of the broad-lined Type Ic SN 2002ap, but the spectra show remarkable differences. The optical spectra of SN 2007gr are characterized by unusually narrow lines, prominent carbon lines, and slow evolution of the line velocity after maximum light. The earliest spectrum (taken at t = –8 days) shows a possible signature of helium (He I λ5876 at a velocity of ∼19,000 km s{sup –1}). Moreover, the larger intensity ratio of the [O I] λ6300 and λ6364 lines inferred from the early nebular spectra implies a lower opacity of the ejecta shortly after the explosion. These results indicate that SN 2007gr perhaps underwent a less energetic explosion of a smaller-mass Wolf-Rayet star (∼8-9 M{sub ☉}) in a binary system, as favored by an analysis of the progenitor environment through pre-explosion and post-explosion Hubble Space Telescope images. In the nebular spectra, asymmetric double-peaked profiles can be seen in the [O I] λ6300 and Mg I] λ4571 lines. We suggest that the two peaks are contributed by the blueshifted and rest-frame components. The similarity in velocity structure and the different evolution of the strength of the two components favor an aspherical explosion with the ejecta distributed in a torus or disk-like geometry, but inside the ejecta the O and Mg have different distributions.

  7. PTF11kx: A Type Ia Supernova with Hydrogen Emission Persisting after 3.5 Years

    Energy Technology Data Exchange (ETDEWEB)

    Graham, M. L. [Department of Astronomy, University of Washington, Box 351580, U.W., Seattle, WA 98195-1580 (United States); Harris, C. E.; Nugent, P. E.; Kasen, D.; Filippenko, A. V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Fox, O. D. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Silverman, J. M. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States)

    2017-07-10

    The optical transient PTF11kx exhibited both the characteristic spectral features of Type Ia supernovae (SNe Ia) and the signature of ejecta interacting with circumstellar material (CSM) containing hydrogen, indicating the presence of a nondegenerate companion. We present an optical spectrum at 1342 days after peak from Keck Observatory, in which the broad component of H α emission persists with a similar profile as in early-time observations. We also present Spitzer IRAC detections obtained 1237 and 1818 days after peak, and an upper limit from Hubble Space Telescope ultraviolet imaging at 2133 days. We interpret our late-time observations in the context of published results—and reinterpret the early-time observations—in order to constrain the CSM’s physical parameters and to compare to theoretical predictions for recurrent-nova systems. We find that the CSM’s radial extent may be several times the distance between the star and the CSM’s inner edge, and that the CSM column density may be two orders of magnitude lower than previous estimates. We show that the H α luminosity decline is similar to other SNe with CSM interaction and demonstrate how our infrared photometry is evidence for newly formed, collisionally heated dust. We create a model for PTF11kx’s late-time CSM interaction and find that X-ray reprocessing by photoionization and recombination cannot reproduce the observed H α luminosity, suggesting that the X-rays are thermalized and that H α radiates from collisional excitation. Finally, we discuss the implications of our results regarding the progenitor scenario and the geometric properties of the CSM for the PTF11kx system.

  8. THE MORPHOLOGY OF THE EJECTA IN SUPERNOVA 1987A: A STUDY OVER TIME AND WAVELENGTH

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Josefin [KTH, Department of Physics, and the Oskar Klein Centre, AlbaNova, SE-106 91 Stockholm (Sweden); Fransson, Claes; Lundqvist, Peter; Sollerman, Jesper [Department of Astronomy and the Oskar Klein Centre, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Kjaer, Karina; Leibundgut, Bruno; Spyromilio, Jason [ESO, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Jerkstrand, Anders [Astrophysics Research Centre, School of Maths and Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Kirshner, Robert P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-78, Cambridge, MA 02138 (United States); Mattila, Seppo [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Vaeisaelaentie 20, FI-21500 Piikkioe (Finland); McCray, Richard [JILA, University of Colorado, Boulder, CO 80309-0440 (United States); Wheeler, J. Craig [Department of Astronomy, University of Texas, Austin, TX 78712-0259 (United States)

    2013-05-01

    We present a study of the morphology of the ejecta in Supernova 1987A based on images and spectra from the Hubble Space Telescope (HST) as well as integral field spectroscopy from VLT/SINFONI. The HST observations were obtained between 1994 and 2011 and primarily probe the outer H-rich zones of the ejecta. The SINFONI observations were obtained in 2005 and 2011 and instead probe the [Si I]+[Fe II] emission from the inner regions. We find a strong temporal evolution of the morphology in the HST images, from a roughly elliptical shape before {approx}5000 days, to a more irregular, edge-brightened morphology with a ''hole'' in the middle thereafter. This transition is a natural consequence of the change in the dominant energy source powering the ejecta, from radioactive decay before {approx}5000 days to X-ray input from the circumstellar interaction thereafter. The [Si I]+[Fe II] images display a more uniform morphology, which may be due to a remaining significant contribution from radioactivity in the inner ejecta and the higher abundance of these elements in the core. Both the H{alpha} and the [Si I]+[Fe II] line profiles show that the ejecta are distributed fairly close to the plane of the inner circumstellar ring, which is assumed to define the rotational axis of the progenitor star. The H{alpha} emission extends to higher velocities than [Si I]+[Fe II], as expected from theoretical models. There is no clear symmetry axis for all the emission. Instead, we find that the emission is concentrated to clumps and that the emission is distributed somewhat closer to the ring in the north than in the south. This north-south asymmetry may be partially explained by dust absorption. We compare our results with explosion models and find some qualitative agreement, but note that the observations show a higher degree of large-scale asymmetry.

  9. XRF 100316D/SN 2010bh AND THE NATURE OF GAMMA-RAY BURST SUPERNOVAE

    International Nuclear Information System (INIS)

    Cano, Z.; Bersier, D.; Guidorzi, C.; Kobayashi, S.; Melandri, A.; Mundell, C. G.; Levan, A. J.; Tanvir, N. R.; Wiersema, K.; D'Avanzo, P.; Margutti, R.; Fruchter, A. S.; Garnavich, P.; Gomboc, A.; Kopac, D.; Gorosabel, J.; Kasen, D.; Mazzali, P. A.; Nugent, P. E.; Pian, E.

    2011-01-01

    We present ground-based and Hubble Space Telescope optical and infrared observations of Swift XRF 100316D/SN 2010bh. It is seen that the optical light curves of SN 2010bh evolve at a faster rate than the archetype gamma-ray burst supernova (GRB-SN) 1998bw, but at a similar rate to SN 2006aj, an SN that was spectroscopically linked with XRF 060218, and at a similar rate to the non-GRB associated Type Ic SN 1994I. We estimate the rest-frame extinction of this event from our optical data to be E(B - V) = 0.18 ± 0.08 mag. We find the V-band absolute magnitude of SN 2010bh to be M V = -18.62 ± 0.08, which is the faintest peak V-band magnitude observed to date for spectroscopically confirmed GRB-SNe. When we investigate the origin of the flux at t - t 0 = 0.598 days, it is shown that the light is not synchrotron in origin, but is likely coming from the SN shock breakout. We then use our optical and infrared data to create a quasi-bolometric light curve of SN 2010bh, which we model with a simple analytical formula. The results of our modeling imply that SN 2010bh synthesized a nickel mass of M Ni ∼ 0.1 M sun , ejected M ej ∼ 2.2 M sun , and has an explosion energy of E k ∼ 1.4 x 10 52 erg. Thus, while SN 2010bh is an energetic explosion, the amount of nickel created during the explosion is much less than that of SN 1998bw and only marginally more than SN 1994I. Finally, for a sample of 22 GRB-SNe we check for a correlation between the stretch factors and luminosity factors in the R band and conclude that no statistically significant correlation exists.

  10. Binaries discovered by the SPY project V. GD 687 - a massive double degenerate binary progenitor that will merge within a Hubble time

    OpenAIRE

    Geier, S.; Heber, U.; Kupfer, T.; Napiwotzki, R.

    2010-01-01

    Aims. The ESO SN Ia Progenitor Survey (SPY) aims at finding merging double degenerate binaries as candidates for supernova type Ia (SN Ia) explosions. A white dwarf merger has also been suggested to explain the formation of rare types of stars like R CrB, extreme helium or He sdO stars. Here we present the hot subdwarf B binary GD 687, which will merge in less than a Hubble time. Methods. The orbital parameters of the close binary have been determined from time resolved spectroscopy. Since GD...

  11. How to Find More Supernovae with Less Work: Object ClassificationTechniques for Difference Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Stephen; Aragon, Cecilia; Romano, Raquel; Thomas, RollinC.; Weaver, Benjamin A.; Wong, Daniel

    2007-05-02

    We present the results of applying new object classificationtechniques to difference images in the context of the Nearby SupernovaFactory supernova search. Most current supernova searches subtractreference images from new images, identify objects in these differenceimages, and apply simple threshold cuts on parameters such as statisticalsignificance, shape, and motionto reject objects such as cosmic rays,asteroids, and subtraction artifacts. Although most static objectssubtract cleanly, even a very low false positive detection rate can leadto hundreds of non-supernova candidates which must be vetted by humaninspection before triggering additional followup. In comparison to simplethreshold cuts, more sophisticated methods such as Boosted DecisionTrees, Random Forests, and Support Vector Machines provide dramaticallybetter object discrimination. At the Nearby Supernova Factory, we reducedthe number of non-supernova candidates by a factor of 10 while increasingour supernova identification efficiency. Methods such as these will becrucial for maintaining a reasonable false positive rate in the automatedtransient alert pipelines of upcoming projects such as PanSTARRS andLSST.

  12. Analysis of the 5-year final dataset of the Supernova Legacy Survey project

    International Nuclear Information System (INIS)

    Fourmanoit, N.

    2010-01-01

    The Supernova Legacy Survey (SNLS) is a program that aims at discovering and photometrically following hundreds of Type Ia supernovae (SNe Ia). Its goal is to measure the expansion history of the Universe in order to constrain the nature of the dark energy, namely its equation of state w DE . The survey completed its data taking during summer 2008 after 5 years of program. This thesis work consists in the analysis of these 5 years of SNLS data and the photometry of the 419 Type Ia supernovae discovered and spectroscopically identified. For each supernova, the light-curves are produced in the g M r M i M z M bands, calibrated and fitted with a spectrophotometric model. A new photometric method which does not make use of any pixel re-sampling has also been implemented and tested. This method preserves the pixels statistical properties, and produces this way more accurate flux measurement statistical uncertainties, that can be propagated to cosmological measurements. Both photometry results were checked and compared using calibration stars and supernovae, proving that the accuracy of the new method flux measurement uncertainty is indeed better, and that the photometric accuracy and stability of both techniques are similar. A sample of supernovae with unprecedented statistics and quality is now available for cosmological analysis. With the complement of an external nearby supernovae sample, a measurement within 5% of the dark energy equation of state of dark energy is thus for the first time within reach. (author)

  13. The Influence of Host Galaxies in Type Ia Supernova Cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, Syed A. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, Jiangshu (China); Mould, Jeremy [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Melbourne, VIC (Australia); Lidman, Chris; Zhang, Bonnie R. [Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) (Australia); Ruhlmann-Kleider, Vanina, E-mail: saushuvo@gmail.com [CEA, Centre de Saclay, Irfu/SPP, F-91191 Gif-sur-Yvette, Paris (France)

    2017-10-10

    We use a sample of 1338 spectroscopically confirmed and photometrically classified Type Ia supernovae (SNe Ia) sourced from Carnegie Supernova Project, Center for Astrophysics Supernova Survey, Sloan Digital Sky Survey-II, and SuperNova Legacy Survey SN samples to examine the relationships between SNe Ia and the galaxies that host them. Our results provide confirmation with improved statistical significance that SNe Ia, after standardization, are on average more luminous in massive hosts (significance >5 σ ), and decline more rapidly in massive hosts (significance >9 σ ) and in hosts with low specific star formation rates (significance >8 σ ). We study the variation of these relationships with redshift and detect no evolution. We split SNe Ia into pairs of subsets that are based on the properties of the hosts and fit cosmological models to each subset. Including both systematic and statistical uncertainties, we do not find any significant shift in the best-fit cosmological parameters between the subsets. Among different SN Ia subsets, we find that SNe Ia in hosts with high specific star formation rates have the least intrinsic scatter ( σ {sub int} = 0.08 ± 0.01) in luminosity after standardization.

  14. Evolution of Supernova Remnants Near the Galactic Center

    Energy Technology Data Exchange (ETDEWEB)

    Yalinewich, A.; Piran, T.; Sari, R. [Racah Institute of Physics, the Hebrew University, 91904, Jerusalem (Israel)

    2017-03-20

    Supernovae near the Galactic center (GC) evolve differently from regular Galactic supernovae. This is mainly due to the environment into which the supernova remnants (SNRs) propagate. SNRs near the GC propagate into a wind swept environment with a velocity directed away from the GC, and a graded density profile. This causes these SNRs to be non-spherical, and to evolve faster than their Galactic counterparts. We develop an analytic theory for the evolution of explosions within a stellar wind, and verify it using a hydrodynamic code. We show that such explosions can evolve in one of three possible morphologies. Using these results we discuss the association between the two SNRs (SGR East and SGR A’s bipolar radio/X-ray lobes) and the two neutron stars (the Cannonball and SGR J1745-2900) near the GC. We show that, given the morphologies of the SNR and positions of the neutron stars, the only possible association is between SGR A’s bipolar radio/X-ray lobes and SGR J1745-2900. If a compact object was created in the explosion of SGR East, it remains undetected, and the SNR of the supernova that created the Cannonball has already disappeared.

  15. The Carnegie Supernova Project: Intrinsic colors of type Ia supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Christopher R.; Persson, S. E.; Freedman, Wendy L.; Madore, Barry F. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Stritzinger, Maximilian; Contreras, Carlos [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Phillips, M. M.; Hsiao, E. Y.; Boldt, Luis; Campillay, Abdo; Castellón, Sergio; Morrell, Nidia; Salgado, Francisco [Carnegie Institution of Washington, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Folatelli, Gaston [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, the University of Tokyo, 277-8583 Kashiwa (Japan); Suntzeff, Nicholas B. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, Department of Physics and Astronomy, College Station, TX 77843 (United States)

    2014-07-01

    We present an updated analysis of the intrinsic colors of Type Ia supernova (SNe Ia) using the latest data release of the Carnegie Supernova Project. We introduce a new light-curve parameter very similar to stretch that is better suited for fast-declining events, and find that these peculiar types can be seen as extensions to the population of 'normal' SNe Ia. With a larger number of objects, an updated fit to the Lira relation is presented along with evidence for a dependence on the late-time slope of the B – V light-curves with stretch and color. Using the full wavelength range from u to H band, we place constraints on the reddening law for the sample as a whole and also for individual events/hosts based solely on the observed colors. The photometric data continue to favor low values of R{sub V} , though with large variations from event to event, indicating an intrinsic distribution. We confirm the findings of other groups that there appears to be a correlation between the derived reddening law, R{sub V} , and the color excess, E(B – V), such that larger E(B – V) tends to favor lower R{sub V} . The intrinsic u-band colors show a relatively large scatter that cannot be explained by variations in R{sub V} or by the Goobar power-law for circumstellar dust, but rather is correlated with spectroscopic features of the supernova and is therefore likely due to metallicity effects.

  16. The Carnegie Supernova Project: Intrinsic colors of type Ia supernovae

    International Nuclear Information System (INIS)

    Burns, Christopher R.; Persson, S. E.; Freedman, Wendy L.; Madore, Barry F.; Stritzinger, Maximilian; Contreras, Carlos; Phillips, M. M.; Hsiao, E. Y.; Boldt, Luis; Campillay, Abdo; Castellón, Sergio; Morrell, Nidia; Salgado, Francisco; Folatelli, Gaston; Suntzeff, Nicholas B.

    2014-01-01

    We present an updated analysis of the intrinsic colors of Type Ia supernova (SNe Ia) using the latest data release of the Carnegie Supernova Project. We introduce a new light-curve parameter very similar to stretch that is better suited for fast-declining events, and find that these peculiar types can be seen as extensions to the population of 'normal' SNe Ia. With a larger number of objects, an updated fit to the Lira relation is presented along with evidence for a dependence on the late-time slope of the B – V light-curves with stretch and color. Using the full wavelength range from u to H band, we place constraints on the reddening law for the sample as a whole and also for individual events/hosts based solely on the observed colors. The photometric data continue to favor low values of R V , though with large variations from event to event, indicating an intrinsic distribution. We confirm the findings of other groups that there appears to be a correlation between the derived reddening law, R V , and the color excess, E(B – V), such that larger E(B – V) tends to favor lower R V . The intrinsic u-band colors show a relatively large scatter that cannot be explained by variations in R V or by the Goobar power-law for circumstellar dust, but rather is correlated with spectroscopic features of the supernova and is therefore likely due to metallicity effects.

  17. Type Ia Supernova Light Curve Inference: Hierarchical Models for Nearby SN Ia in the Optical and Near Infrared

    Science.gov (United States)

    Mandel, Kaisey; Kirshner, R. P.; Narayan, G.; Wood-Vasey, W. M.; Friedman, A. S.; Hicken, M.

    2010-01-01

    I have constructed a comprehensive statistical model for Type Ia supernova light curves spanning optical through near infrared data simultaneously. The near infrared light curves are found to be excellent standard candles (sigma(MH) = 0.11 +/- 0.03 mag) that are less vulnerable to systematic error from dust extinction, a major confounding factor for cosmological studies. A hierarchical statistical framework incorporates coherently multiple sources of randomness and uncertainty, including photometric error, intrinsic supernova light curve variations and correlations, dust extinction and reddening, peculiar velocity dispersion and distances, for probabilistic inference with Type Ia SN light curves. Inferences are drawn from the full probability density over individual supernovae and the SN Ia and dust populations, conditioned on a dataset of SN Ia light curves and redshifts. To compute probabilistic inferences with hierarchical models, I have developed BayeSN, a Markov Chain Monte Carlo algorithm based on Gibbs sampling. This code explores and samples the global probability density of parameters describing individual supernovae and the population. I have applied this hierarchical model to optical and near infrared data of over 100 nearby Type Ia SN from PAIRITEL, the CfA3 sample, and the literature. Using this statistical model, I find that SN with optical and NIR data have a smaller residual scatter in the Hubble diagram than SN with only optical data. The continued study of Type Ia SN in the near infrared will be important for improving their utility as precise and accurate cosmological distance indicators.

  18. Low-z Type Ia Supernova Calibration

    Science.gov (United States)

    Hamuy, Mario

    The discovery of acceleration and dark energy in 1998 arguably constitutes one of the most revolutionary discoveries in astrophysics in recent years. This paradigm shift was possible thanks to one of the most traditional cosmological tests: the redshift-distance relation between galaxies. This discovery was based on a differential measurement of the expansion rate of the universe: the current one provided by nearby (low-z) type Ia supernovae and the one in the past measured from distant (high-z) supernovae. This paper focuses on the first part of this journey: the calibration of the type Ia supernova luminosities and the local expansion rate of the universe, which was made possible thanks to the introduction of digital CCD (charge-coupled device) digital photometry. The new technology permitted us in the early 1990s to convert supernovae as precise tools to measure extragalactic distances through two key surveys: (1) the "Tololo Supernova Program" which made possible the critical discovery of the "peak luminosity-decline rate" relation for type Ia supernovae, the key underlying idea today behind precise cosmology from supernovae, and (2) the Calán/Tololo project which provided the low - z type Ia supernova sample for the discovery of acceleration.

  19. The CHilean Automatic Supernova sEarch

    DEFF Research Database (Denmark)

    Hamuy, M.; Pignata, G.; Maza, J.

    2012-01-01

    The CHilean Automatic Supernova sEarch (CHASE) project began in 2007 with the goal to discover young, nearby southern supernovae in order to (1) better understand the physics of exploding stars and their progenitors, and (2) refine the methods to derive extragalactic distances. During the first...

  20. Type II supernovae: How do they explode?

    International Nuclear Information System (INIS)

    Baron, E.

    1988-01-01

    I discuss what has been learned from the neutrino observations of Supernova 1987A. The neutrino detections confirmed our basic theoretical scenario that Type II supernovae involve the gravitational collapse of a massive star. The small number of events makes it difficult to infer details about the actual mechanism of collapse. I discuss the current theoretical situation on the mechanism of explosion

  1. Rates and progenitors of type Ia supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Wood-Vasey, William Michael [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    The remarkable uniformity of Type Ia supernovae has allowed astronomers to use them as distance indicators to measure the properties and expansion history of the Universe. However, Type Ia supernovae exhibit intrinsic variation in both their spectra and observed brightness. The brightness variations have been approximately corrected by various methods, but there remain intrinsic variations that limit the statistical power of current and future observations of distant supernovae for cosmological purposes. There may be systematic effects in this residual variation that evolve with redshift and thus limit the cosmological power of SN Ia luminosity-distance experiments. To reduce these systematic uncertainties, we need a deeper understanding of the observed variations in Type Ia supernovae. Toward this end, the Nearby Supernova Factory has been designed to discover hundreds of Type Ia supernovae in a systematic and automated fashion and study them in detail. This project will observe these supernovae spectrophotometrically to provide the homogeneous high-quality data set necessary to improve the understanding and calibration of these vital cosmological yardsticks. From 1998 to 2003, in collaboration with the Near-Earth Asteroid Tracking group at the Jet Propulsion Laboratory, a systematic and automated searching program was conceived and executed using the computing facilities at Lawrence Berkeley National Laboratory and the National Energy Research Supercomputing Center. An automated search had never been attempted on this scale. A number of planned future large supernovae projects are predicated on the ability to find supernovae quickly, reliably, and efficiently in large datasets. A prototype run of the SNfactory search pipeline conducted from 2002 to 2003 discovered 83 SNe at a final rate of 12 SNe/month. A large, homogeneous search of this scale offers an excellent opportunity to measure the rate of Type Ia supernovae. This thesis presents a new method for

  2. Rates and progenitors of type Ia supernovae

    International Nuclear Information System (INIS)

    Wood-Vasey, William Michael

    2004-01-01

    The remarkable uniformity of Type Ia supernovae has allowed astronomers to use them as distance indicators to measure the properties and expansion history of the Universe. However, Type Ia supernovae exhibit intrinsic variation in both their spectra and observed brightness. The brightness variations have been approximately corrected by various methods, but there remain intrinsic variations that limit the statistical power of current and future observations of distant supernovae for cosmological purposes. There may be systematic effects in this residual variation that evolve with redshift and thus limit the cosmological power of SN Ia luminosity-distance experiments. To reduce these systematic uncertainties, we need a deeper understanding of the observed variations in Type Ia supernovae. Toward this end, the Nearby Supernova Factory has been designed to discover hundreds of Type Ia supernovae in a systematic and automated fashion and study them in detail. This project will observe these supernovae spectrophotometrically to provide the homogeneous high-quality data set necessary to improve the understanding and calibration of these vital cosmological yardsticks. From 1998 to 2003, in collaboration with the Near-Earth Asteroid Tracking group at the Jet Propulsion Laboratory, a systematic and automated searching program was conceived and executed using the computing facilities at Lawrence Berkeley National Laboratory and the National Energy Research Supercomputing Center. An automated search had never been attempted on this scale. A number of planned future large supernovae projects are predicated on the ability to find supernovae quickly, reliably, and efficiently in large datasets. A prototype run of the SNfactory search pipeline conducted from 2002 to 2003 discovered 83 SNe at a final rate of 12 SNe/month. A large, homogeneous search of this scale offers an excellent opportunity to measure the rate of Type Ia supernovae. This thesis presents a new method for

  3. Supernovae and cosmology with future European facilities.

    Science.gov (United States)

    Hook, I M

    2013-06-13

    Prospects for future supernova surveys are discussed, focusing on the European Space Agency's Euclid mission and the European Extremely Large Telescope (E-ELT), both expected to be in operation around the turn of the decade. Euclid is a 1.2 m space survey telescope that will operate at visible and near-infrared wavelengths, and has the potential to find and obtain multi-band lightcurves for thousands of distant supernovae. The E-ELT is a planned, general-purpose ground-based, 40-m-class optical-infrared telescope with adaptive optics built in, which will be capable of obtaining spectra of type Ia supernovae to redshifts of at least four. The contribution to supernova cosmology with these facilities will be discussed in the context of other future supernova programmes such as those proposed for DES, JWST, LSST and WFIRST.

  4. Supernova observations at McDonald Observatory

    International Nuclear Information System (INIS)

    Wheeler, J.C.

    1984-01-01

    The programs to obtain high quality spectra and photometry of supernovae at McDonald Observatory are reviewed. Spectra of recent Type I supernovae in NGC 3227, NGC 3625, and NGC 4419 are compared with those of SN 1981b in NGC 4536 to quantitatively illustrate both the homogeneity of Type I spectra at similar epochs and the differences in detail which will serve as a probe of the physical processes in the explosions. Spectra of the recent supernova in NGC 0991 give for the first time quantitative confirmation of a spectrally homogeneous, but distinct subclass of Type I supernovae which appears to be less luminous and to have lower excitation at maximum light than classical Type I supernovae

  5. DARK MATTER ADMIXED TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Leung, S.-C.; Chu, M.-C.; Lin, L.-M.

    2015-01-01

    We perform two-dimensional hydrodynamic simulations for the thermonuclear explosion of Chandrasekhar-mass white dwarfs with dark matter (DM) cores in Newtonian gravity. We include a 19-isotope nuclear reaction network and make use of the pure turbulent deflagration model as the explosion mechanism in our simulations. Our numerical results show that the general properties of the explosion depend quite sensitively on the mass of the DM core M DM : a larger M DM generally leads to a weaker explosion and a lower mass of synthesized iron-peaked elements. In particular, the total mass of produced can drop from about 0.3 to 0.03 M ⊙ as M DM increases from 0.01 to 0.03 M ⊙ . We have also constructed the bolometric light curves obtained from our simulations and found that our results match well with the observational data of sub-luminous Type Ia supernovae

  6. The Final Stages of Massive Star Evolution and Their Supernovae

    Science.gov (United States)

    Heger, Alexander

    In this chapter I discuss the final stages in the evolution of massive stars - stars that are massive enough to burn nuclear fuel all the way to iron group elements in their core. The core eventually collapses to form a neutron star or a black hole when electron captures and photo-disintegration reduce the pressure support to an extent that it no longer can hold up against gravity. The late burning stages of massive stars are a rich subject by themselves, and in them many of the heavy elements in the universe are first generated. The late evolution of massive stars strongly depends on their mass, and hence can be significantly effected by mass loss due to stellar winds and episodic mass loss events - a critical ingredient that we do not know as well as we would like. If the star loses all the hydrogen envelope, a Type I supernova results, if it does not, a Type II supernova is observed. Whether the star makes neutron star or a black hole, or a neutron star at first and a black hole later, and how fast they spin largely affects the energetics and asymmetry of the observed supernova explosion. Beyond photon-based astronomy, other than the sun, a supernova (SN 1987) has been the only object in the sky we ever observed in neutrinos, and supernovae may also be the first thing we will ever see in gravitational wave detectors like LIGO. I conclude this chapter reviewing the deaths of the most massive stars and of Population III stars.

  7. Two Years and Five Images of Supernova Refsdal

    Science.gov (United States)

    Kelly, Patrick

    2017-01-01

    In 1964, Sjur Refsdal hypothesized that a supernova (SN) whose light takes multiple paths to reach us around a strong gravitational lens could be used as a highly powerful probe. For such a system, the time delays between the images of the SN should depend sensitively on the cosmic expansion rate and the distribution of matter within the lens. I will present observations of the first strongly lensed SN resolved into multiple images, which was found in near-infrared imaging taken in early November 2014 with the Hubble Space Telescope (HST). SN `Refsdal' appeared in an Einstein cross configuration around an early-type galaxy in the MACS J1149.6+2223 cluster (z=0.54), and its light curve and spectrum are broadly similar to those of the peculiar and well-studied SN 1987A. Models of the cluster potential predicted that the SN would reappear within two years in a different image of its spiral host galaxy (z=1.49) closer to the cluster's center. In early December 2015, we detected the new image of the SN with the HST, and we anticipate being able to measure its relative time delay with a 1-2% precision, providing a rare test of blind model predictions.

  8. SUPERNOVA 1987A: A TEMPLATE TO LINK SUPERNOVAE TO THEIR REMNANTS

    Energy Technology Data Exchange (ETDEWEB)

    Orlando, S.; Miceli, M.; Pumo, M. L.; Bocchino, F., E-mail: orlando@astropa.inaf.it [INAF—Osservatorio Astronomico di Palermo “G.S. Vaiana”, Piazza del Parlamento 1, I-90134 Palermo (Italy)

    2015-09-10

    The emission of supernova remnants (SNRs) reflects the properties of both the progenitor supernovae (SNe) and the surrounding environment. The complex morphology of the remnants, however, hampers the disentanglement of the two contributions. Here, we aim at identifying the imprint of SN 1987A on the X-ray emission of its remnant and at constraining the structure of the environment surrounding the SN. We performed high-resolution hydrodynamic simulations describing SN 1987A soon after the core-collapse and the following three-dimensional expansion of its remnant between days 1 and 15,000 after the SN. We demonstrated that the physical model reproducing the main observables of SN 1987A during the first 250 days of evolution also reproduces the X-ray emission of the subsequent expanding remnant, thus bridging the gap between SNe and SNRs. By comparing model results with observations, we constrained the explosion energy in the range 1.2–1.4 × 10{sup 51} erg and the envelope mass in the range 15–17 M{sub ⊙}. We found that the shape of X-ray lightcurves and spectra at early epochs (<15 years) reflects the structure of outer ejecta: our model reproduces the observations if the outermost ejecta have a post-explosion radial profile of density approximated by a power law with index α = −8. At later epochs, the shapes of X-ray lightcurves and spectra reflect the density structure of the nebula around SN 1987A. This enabled us to ascertain the origin of the multi-thermal X-ray emission, disentangle the imprint of the SN on the remnant emission from the effects of the remnant interaction with the environment, and constrain the pre-supernova structure of the nebula.

  9. Spectral analysis of the binary nucleus of the planetary nebula Hen 2-428 – first results

    Directory of Open Access Journals (Sweden)

    Finch Nicolle L.

    2018-04-01

    Full Text Available Identifying progenitor systems for the double-degenerate scenario is crucial to check the reliability of type Ia supernovae as cosmological standard candles. Santander-Garcia et al. (2015 claimed that Hen 2-428 has a doubledegenerate core whose combined mass significantly exceeds the Chandrasekhar limit. Together with the short orbital period (4.2 hours, the authors concluded that the system should merge within a Hubble time triggering a type Ia supernova event. Garcia-Berro et al. (2016 explored alternative scenarios to explain the observational evidence, as the high mass conclusion is highly unlikely within predictions from stellar evolution theory. They conclude that the evidence supporting the supernova progenitor status of the system is premature. Here we present the first quantitative spectral analysis of Hen 2-428which allows us to derive the effective temperatures, surface gravities and helium abundance of the two CSPNe based on state-of-the-art, non-LTE model atmospheres. These results provide constrains for further studies of this particularly interesting system.

  10. Chandra Maps Vital Elements From Supernova

    Science.gov (United States)

    1999-12-01

    composition of the various knots and filaments of stellar material visible in Cas A. Not only could the astronomers determine the composition of many knots in the remnant from the Chandra data, they were also able to infer where in the exploding star the knots had originated. For example, the most compact and brightest knots were composed mostly of silicon and sulfur, with little or no iron. This pointed to an origin deep in the star's interior where the temperatures had reached three billion degrees during the collapse and resulting supernova. Elsewhere, they found fainter features that contained significant amounts of iron as well as some silicon and sulfur. This material was produced even deeper in the star, where the temperatures during the explosion had reached higher values of four to five billion degrees. When Hughes and his collaborators compared where the compact silicon-rich knots and fainter iron-rich features were located in Cas A, they discovered that the iron-rich features from deepest in the star were near the outer edge of the remnant. This meant that they had been flung the furthest by the explosion that created Cas A. Even now this material appears to be streaming away from the site of the explosion with greater speed than the rest of the remnant. By studying the Cas A Chandra data further, astronomers hope to identify which of the several processes proposed by theoretical studies is likely to be the correct mechanism for explaining supernova explosions, both in terms of the dynamics and elements they produce. "In addition to understanding how iron and the other elements are produced in stars, we also want to learn how it gets out of stars and into the interstellar medium. This is why the study of supernovas and supernova remnants is so important," said Hughes. "Once released from stars, newly-created elements can then participate in the formation of new stars and planets in a great cycle that has gone on numerous times already. It is remarkable to realize

  11. The ASAS-SN bright supernova catalogue - III. 2016

    DEFF Research Database (Denmark)

    Holoien, T. W. -S.; Brown, J. S.; Stanek, K. Z.

    2017-01-01

    This catalogue summarizes information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (m(peak)d......This catalogue summarizes information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (m(peak)d...

  12. Supernova / Acceleration Probe: A Satellite Experiment to Study the Nature of the Dark Energy

    Energy Technology Data Exchange (ETDEWEB)

    Aldering, G; Althouse, W; Amanullah, R; Annis, J; Astier, P; Baltay, C; Barrelet, E; Basa, S; Bebek, C; Bergstrom, L; Bernstein, G; Bester, M; Bigelow, B; Blandford, R; Bohlin, R; Bonissent, A; Bower, C; Brown, M; Campbell, M; Carithers, W; Commins, E; Craig, W; Day, C; DeJongh, F; Deustua, S; Diehl, T; Dodelson, S; Ealet, A; Ellis, R; Emmet, W; Fouchez, D; Frieman, J; Fruchter, A; Gerdes, D; Gladney, L; Goldhaber, G; Goobar, A; Groom, D; Heetderks, H; Hoff, M; Holland, S; Huffer, M; Hui, L; Huterer, D; Jain, B; Jelinsky, P; Karcher, A; Kent, S; Kahn, S; Kim, A; Kolbe, W; Krieger, B; Kushner, G; Kuznetsova, N; Lafever, R; Lamoureux, J; Lampton, M; Fevre, OL; Levi, M; Limon, P; Lin, H; Linder, E; Loken, S; Lorenzon, W; Malina, R; Marriner, J; Marshall, P; Massey, R; Mazure, A; McKay, T; McKee, S; Miquel, R; Morgan, N; Mortsell, E; Mostek, N; Mufson, S; Musser, J; Nugent, P; Oluseyi, H; Pain, R; Palaio, N; Pankow, D; Peoples, J; Perlmutter, S; Prieto, E; Rabinowitz, D; Refregier, A; Rhodes, J; Roe, N; Rusin, D; Scarpine, V; Schubnell, M; Sholl, M; Smadja, G; Smith, RM; Smoot, G; Snyder, J; Spadafora, A; Stebbins, A; Stoughton, C; Szymkowiak, A; Tarle, G; Taylor, K; Tilquin, A; Tomasch, A; Tucker, D; Vincent, D; Lippe, HVD; Walder, J-P; Wang, G; Wester, W

    2004-05-12

    The Supernova / Acceleration Probe (SNAP) is a proposed space-based experiment designed to study the dark energy and alternative explanations of the acceleration of the Universe's expansion by performing a series of complementary systematics-controlled measurements. We describe a self-consistent reference mission design for building a Type Ia supernova Hubble diagram and for performing a wide-area weak gravitational lensing study. A 2-m wide-field telescope feeds a focal plane consisting of a 0.7 square-degree imager tiled with equal areas of optical CCDs and near infrared sensors, and a high-efficiency low-resolution integral field spectrograph. The SNAP mission will obtain high-signal-to-noise calibrated light-curves and spectra for several thousand supernovae at redshifts between z=0.1 and 1.7. A wide-field survey covering one thousand square degrees resolves ~100 galaxies per square arcminute. If we assume we live in a cosmological-constant-dominated Universe, the matter density, dark energy density, and flatness of space can all be measured with SNAP supernova and weak-lensing measurements to a systematics-limited accuracy of 1%. For a flat universe, the density-to-pressure ratio of dark energy can be similarly measured to 5% for the present value w0 and ~0.1 for the time variation w'. The large survey area, depth, spatial resolution, time-sampling, and nine-band optical to NIR photometry will support additional independent and/or complementary dark-energy measurement approaches as well as a broad range of auxiliary science programs.

  13. Automation of Hubble Space Telescope Mission Operations

    Science.gov (United States)

    Burley, Richard; Goulet, Gregory; Slater, Mark; Huey, William; Bassford, Lynn; Dunham, Larry

    2012-01-01

    On June 13, 2011, after more than 21 years, 115 thousand orbits, and nearly 1 million exposures taken, the operation of the Hubble Space Telescope successfully transitioned from 24x7x365 staffing to 815 staffing. This required the automation of routine mission operations including telemetry and forward link acquisition, data dumping and solid-state recorder management, stored command loading, and health and safety monitoring of both the observatory and the HST Ground System. These changes were driven by budget reductions, and required ground system and onboard spacecraft enhancements across the entire operations spectrum, from planning and scheduling systems to payload flight software. Changes in personnel and staffing were required in order to adapt to the new roles and responsibilities required in the new automated operations era. This paper will provide a high level overview of the obstacles to automating nominal HST mission operations, both technical and cultural, and how those obstacles were overcome.

  14. Hubble Space Telescope via the Web

    Science.gov (United States)

    O'Dea, Christopher P.

    The Space Telescope Science Institute (STScI) makes available a wide variety of information concerning the Hubble Space Telescope (HST) via the Space Telescope Electronic Information Service (STEIS). STEIS is accessible via anonymous ftp, gopher, WAIS, and WWW. The information on STEIS includes how to propose for time on the HST, the current status of HST, reports on the scientific instruments, the observing schedule, data reduction software, calibration files, and a set of publicly available images in JPEG, GIF and TIFF format. STEIS serves both the astronomical community as well as the larger Internet community. WWW is currently the most widely used interface to STEIS. Future developments on STEIS are expected to include larger amounts of hypertext, especially HST images and educational material of interest to students, educators, and the general public, and the ability to query proposal status.

  15. The evolution of red supergiants to supernovae

    Science.gov (United States)

    Beasor, Emma R.; Davies, Ben

    2017-11-01

    With red supergiants (RSGs) predicted to end their lives as Type IIP core collapse supernova (CCSN), their behaviour before explosion needs to be fully understood. Mass loss rates govern RSG evolution towards SN and have strong implications on the appearance of the resulting explosion. To study how the mass-loss rates change with the evolution of the star, we have measured the amount of circumstellar material around 19 RSGs in a coeval cluster. Our study has shown that mass loss rates ramp up throughout the lifetime of an RSG, with more evolved stars having mass loss rates a factor of 40 higher than early stage RSGs. Interestingly, we have also found evidence for an increase in circumstellar extinction throughout the RSG lifetime, meaning the most evolved stars are most severely affected. We find that, were the most evolved RSGs in NGC2100 to go SN, this extra extinction would cause the progenitor's initial mass to be underestimated by up to 9M⊙.

  16. How supernovae launch galactic winds?

    Science.gov (United States)

    Fielding, Drummond; Quataert, Eliot; Martizzi, Davide; Faucher-Giguère, Claude-André

    2017-09-01

    We use idealized three-dimensional hydrodynamic simulations of global galactic discs to study the launching of galactic winds by supernovae (SNe). The simulations resolve the cooling radii of the majority of supernova remnants (SNRs) and thus self-consistently capture how SNe drive galactic winds. We find that SNe launch highly supersonic winds with properties that agree reasonably well with expectations from analytic models. The energy loading (η _E= \\dot{E}_wind/ \\dot{E}_SN) of the winds in our simulations are well converged with spatial resolution while the wind mass loading (η _M= \\dot{M}_wind/\\dot{M}_\\star) decreases with resolution at the resolutions we achieve. We present a simple analytic model based on the concept that SNRs with cooling radii greater than the local scaleheight break out of the disc and power the wind. This model successfully explains the dependence (or lack thereof) of ηE (and by extension ηM) on the gas surface density, star formation efficiency, disc radius and the clustering of SNe. The winds our simulations are weaker than expected in reality, likely due to the fact that we seed SNe preferentially at density peaks. Clustering SNe in time and space substantially increases the wind power.

  17. Interaction of Supernova Blast Waves with Wind-Driven Shells: Formation of "Jets", "Bullets", "Ears", Etc.

    Science.gov (United States)

    Gvaramadze, V. V.

    Most of middle-aged supernova remnants (SNRs) have a distorted and complicated appearance which cannot be explained in the framework of the Sedov-Taylor model. We consider three typical examples of such SNRs (Vela SNR, MSH15-52, G309.2-00.6) and show that their structure could be explained as a result of interaction of a supernova (SN) blast wave with the ambient medium preprocessed by the action of the SN progenitor's wind and ionized emission.

  18. ASASSN-15LH: A SUPERLUMINOUS ULTRAVIOLET REBRIGHTENING OBSERVED BY SWIFT AND HUBBLE

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Peter J.; Yang, Yi; Wang, Lifan [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A. and M. University, Department of Physics and Astronomy, 4242 TAMU, College Station, TX 77843 (United States); Cooke, Jeff; Mould, Jeremy [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn VIC 3122 (Australia); Olaes, Melanie; Quimby, Robert M. [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); Baade, Dietrich [European Organisation for Astronomical Research in the Southern Hemisphere (ESO), Karl-Schwarzschild-Str. 2, D-85748 Garching b. München (Germany); Gehrels, Neil [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Hoeflich, Peter [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Maund, Justyn [Department of Physics and Astronomy F39 Hicks Building, Hounsfield Road Sheffield, S3 7RH (United Kingdom); Wheeler, J. Craig [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States)

    2016-09-01

    We present and discuss ultraviolet and optical photometry from the Ultraviolet/Optical Telescope, X-ray limits from the X-Ray Telescope on Swift, and imaging polarimetry and ultraviolet/optical spectroscopy with the Hubble Space Telescope , all from observations of ASASSN-15lh. It has been classified as a hydrogen-poor superluminous supernova (SLSN I), making it more luminous than any other supernova observed. ASASSN-15lh is not detected in the X-rays in individual or co-added observations. From the polarimetry we determine that the explosion was only mildly asymmetric. We find the flux of ASASSN-15lh to increase strongly into the ultraviolet, with an ultraviolet luminosity 100 times greater than the hydrogen-rich, ultraviolet-bright SLSN II SN 2008es. We find that objects as bright as ASASSN-15lh are easily detectable beyond redshifts of ∼4 with the single-visit depths planned for the Large Synoptic Survey Telescope. Deep near-infrared surveys could detect such objects past a redshift of ∼20, enabling a probe of the earliest star formation. A late rebrightening—most prominent at shorter wavelengths—is seen about two months after the peak brightness, which is itself as bright as an SLSN. The ultraviolet spectra during the rebrightening are dominated by the continuum without the broad absorption or emission lines seen in SLSNe or tidal disruption events (TDEs) and the early optical spectra of ASASSN-15lh. Our spectra show no strong hydrogen emission, showing only Ly α absorption near the redshift previously found by optical absorption lines of the presumed host. The properties of ASASSN-15lh are extreme when compared to either SLSNe or TDEs.

  19. The VLT Measures the Shape of a Type Ia Supernova

    Science.gov (United States)

    2003-08-01

    measurement uncertainty persists. " The asymmetry we have measured in SN 2001el is large enough to explain a large part of this intrinsic uncertainty ", says Lifan Wang, the leader of the team. " If all Type Ia supernovae are like this, it would account for a lot of the dispersion in brightness measurements. They may be even more uniform than we thought ." Reducing the dispersion in brightness measurements could of course also be attained by increasing significantly the number of supernovae we observe, but given that these measurements demand the largest and most expensive telescopes in the world, like the VLT, this is not the most efficient method. Thus, if the brightness measured a week or two after maximum was used instead, the sphericity would then have been restored and there would be no systematic errors from the unknown viewing angle. By this slight change in observational procedure, Type Ia supernovae could become even more reliable cosmic yardsticks. Theoretical implications The present detection of polarised spectral features strongly suggests that, to understand the underlying physics, the theoretical modelling of Type Ia supernovae events will have to be done in all three dimensions with more accuracy than is presently done. In fact, the available, highly complex hydrodynamic calculations have so far not been able to reproduce the structures exposed by SN 2001el. More information The results presented in this press release have been been described in a research paper in "Astrophysical Journal" ("Spectropolarimetry of SN 2001el in NGC 1448: Asphericity of a Normal Type Ia Supernova" by Lifan Wang and co-authors, Volume 591, p. 1110).

  20. An Open Catalog for Supernova Data

    International Nuclear Information System (INIS)

    Guillochon, James; Parrent, Jerod; Kelley, Luke Zoltan; Margutti, Raffaella

    2017-01-01

    We present the Open Supernova Catalog , an online collection of observations and metadata for presently 36,000+ supernovae and related candidates. The catalog is freely available on the web (https://sne.space), with its main interface having been designed to be a user-friendly, rapidly searchable table accessible on desktop and mobile devices. In addition to the primary catalog table containing supernova metadata, an individual page is generated for each supernova, which displays its available metadata, light curves, and spectra spanning X-ray to radio frequencies. The data presented in the catalog is automatically rebuilt on a daily basis and is constructed by parsing several dozen sources, including the data presented in the supernova literature and from secondary sources such as other web-based catalogs. Individual supernova data is stored in the hierarchical, human- and machine-readable JSON format, with the entirety of each supernova’s data being contained within a single JSON file bearing its name. The setup we present here, which is based on open-source software maintained via git repositories hosted on github, enables anyone to download the entirety of the supernova data set to their home computer in minutes, and to make contributions of their own data back to the catalog via git. As the supernova data set continues to grow, especially in the upcoming era of all-sky synoptic telescopes, which will increase the total number of events by orders of magnitude, we hope that the catalog we have designed will be a valuable tool for the community to analyze both historical and contemporary supernovae.

  1. An Open Catalog for Supernova Data

    Energy Technology Data Exchange (ETDEWEB)

    Guillochon, James; Parrent, Jerod; Kelley, Luke Zoltan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Margutti, Raffaella, E-mail: jguillochon@cfa.harvard.edu [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astrophysics, Northwestern University, Evanston, IL 60208 (United States)

    2017-01-20

    We present the Open Supernova Catalog , an online collection of observations and metadata for presently 36,000+ supernovae and related candidates. The catalog is freely available on the web (https://sne.space), with its main interface having been designed to be a user-friendly, rapidly searchable table accessible on desktop and mobile devices. In addition to the primary catalog table containing supernova metadata, an individual page is generated for each supernova, which displays its available metadata, light curves, and spectra spanning X-ray to radio frequencies. The data presented in the catalog is automatically rebuilt on a daily basis and is constructed by parsing several dozen sources, including the data presented in the supernova literature and from secondary sources such as other web-based catalogs. Individual supernova data is stored in the hierarchical, human- and machine-readable JSON format, with the entirety of each supernova’s data being contained within a single JSON file bearing its name. The setup we present here, which is based on open-source software maintained via git repositories hosted on github, enables anyone to download the entirety of the supernova data set to their home computer in minutes, and to make contributions of their own data back to the catalog via git. As the supernova data set continues to grow, especially in the upcoming era of all-sky synoptic telescopes, which will increase the total number of events by orders of magnitude, we hope that the catalog we have designed will be a valuable tool for the community to analyze both historical and contemporary supernovae.

  2. Hydrodynamic Simulations of Kepler's Supernova Remnant

    Science.gov (United States)

    Sullivan, Jessica; Blondin, John; Borkowski, Kazik; Reynolds, Stephen

    2018-01-01

    Kepler’s supernova remnant contains unusual features that strongly suggest an origin in a single-degenerate Type Ia explosion, including anisotropic circumstellar medium (CSM), a strong brightness gradient, and spatially varying expansion proper motions. We present 3Dhydrodynamic simulations to test a picture in which Kepler's progenitor binary emitted a strong asymmetric wind, densest in the orbital plane, while the system moved at high velocity through the ISM. We simulate the creation of the presupernova environment as well as the supernova blast wave, using the VH-1 grid-based hydrodynamics code. We first modeled an anisotropic wind to create an asymmetric bowshock around the progenitor, then the blast wave from thesupernova. The final simulation places both previous model pieces onto a single grid and allows the blast wave to expand into the bowshock. Models were completed on a Yin-Yang grids with matching angular resolutions. By manipulating parameters that control the asymmetry of the system, we attempted to find conditions that recreated the current state of Kepler. We analyzed these models by comparing images of Kepler from the Chandra X-ray Observatory to line-of-sight projections from the model results. We also present comparisons of simulated expansion velocities with recent observations of X-ray proper motions from Chandra images. We were able to produce models that contained similar features to those seen in Kepler. We find the greatest resemblance to Kepler images with a presupernova wind with an equator-to-pole density contrast of 3 and a moderately disk-like CSM at a 5° angle between equatorial plane and system motion.

  3. Szekeres Swiss-cheese model and supernova observations

    International Nuclear Information System (INIS)

    Bolejko, Krzysztof; Celerier, Marie-Noeelle

    2010-01-01

    We use different particular classes of axially symmetric Szekeres Swiss-cheese models for the study of the apparent dimming of the supernovae of type Ia. We compare the results with those obtained in the corresponding Lemaitre-Tolman Swiss-cheese models. Although the quantitative picture is different the qualitative results are comparable, i.e., one cannot fully explain the dimming of the supernovae using small-scale (∼50 Mpc) inhomogeneities. To fit successfully the data we need structures of order of 500 Mpc size or larger. However, this result might be an artifact due to the use of axial light rays in axially symmetric models. Anyhow, this work is a first step in trying to use Szekeres Swiss-cheese models in cosmology and it will be followed by the study of more physical models with still less symmetry.

  4. SDSS-II SUPERNOVA SURVEY: AN ANALYSIS OF THE LARGEST SAMPLE OF TYPE IA SUPERNOVAE AND CORRELATIONS WITH HOST-GALAXY SPECTRAL PROPERTIES

    International Nuclear Information System (INIS)

    Wolf, Rachel C.; Gupta, Ravi R.; Sako, Masao; Fischer, John A.; March, Marisa C.; Fischer, Johanna-Laina; D’Andrea, Chris B.; Smith, Mathew; Kessler, Rick; Scolnic, Daniel M.; Jha, Saurabh W.; Campbell, Heather; Nichol, Robert C.; Olmstead, Matthew D.; Richmond, Michael; Schneider, Donald P.

    2016-01-01

    Using the largest single-survey sample of Type Ia supernovae (SNe Ia) to date, we study the relationship between properties of SNe Ia and those of their host galaxies, focusing primarily on correlations with Hubble residuals (HRs). Our sample consists of 345 photometrically classified or spectroscopically confirmed SNe Ia discovered as part of the SDSS-II Supernova Survey (SDSS-SNS). This analysis utilizes host-galaxy spectroscopy obtained during the SDSS-I/II spectroscopic survey and from an ancillary program on the SDSS-III Baryon Oscillation Spectroscopic Survey that obtained spectra for nearly all host galaxies of SDSS-II SN candidates. In addition, we use photometric host-galaxy properties from the SDSS-SNS data release such as host stellar mass and star formation rate. We confirm the well-known relation between HR and host-galaxy mass and find a 3.6 σ significance of a nonzero linear slope. We also recover correlations between HR and host-galaxy gas-phase metallicity and specific star formation rate as they are reported in the literature. With our large data set, we examine correlations between HR and multiple host-galaxy properties simultaneously and find no evidence of a significant correlation. We also independently analyze our spectroscopically confirmed and photometrically classified SNe Ia and comment on the significance of similar combined data sets for future surveys.

  5. The Carnegie-Chicago Hubble Program. I. An Independent Approach to the Extragalactic Distance Scale Using Only Population II Distance Indicators

    Science.gov (United States)

    Beaton, Rachael L.; Freedman, Wendy L.; Madore, Barry F.; Bono, Giuseppe; Carlson, Erika K.; Clementini, Gisella; Durbin, Meredith J.; Garofalo, Alessia; Hatt, Dylan; Jang, In Sung; Kollmeier, Juna A.; Lee, Myung Gyoon; Monson, Andrew J.; Rich, Jeffrey A.; Scowcroft, Victoria; Seibert, Mark; Sturch, Laura; Yang, Soung-Chul

    2016-12-01

    We present an overview of the Carnegie-Chicago Hubble Program, an ongoing program to obtain a 3% measurement of the Hubble constant (H 0) using alternative methods to the traditional Cepheid distance scale. We aim to establish a completely independent route to H 0 using RR Lyrae variables, the tip of the red giant branch (TRGB), and Type Ia supernovae (SNe Ia). This alternative distance ladder can be applied to galaxies of any Hubble type, of any inclination, and, using old stars in low-density environments, is robust to the degenerate effects of metallicity and interstellar extinction. Given the relatively small number of SNe Ia host galaxies with independently measured distances, these properties provide a great systematic advantage in the measurement of H 0 via the distance ladder. Initially, the accuracy of our value of H 0 will be set by the five Galactic RR Lyrae calibrators with Hubble Space Telescope Fine-Guidance Sensor parallaxes. With Gaia, both the RR Lyrae zero-point and TRGB method will be independently calibrated, the former with at least an order of magnitude more calibrators and the latter directly through parallax measurement of tip red giants. As the first end-to-end “distance ladder” completely independent of both Cepheid variables and the Large Magellanic Cloud, this path to H 0 will allow for the high-precision comparison at each rung of the traditional distance ladder that is necessary to understand tensions between this and other routes to H 0. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs #13472 and #13691.

  6. Chiral transport of neutrinos in supernovae

    Directory of Open Access Journals (Sweden)

    Yamamoto Naoki

    2017-01-01

    Full Text Available The conventional neutrino transport theory for core-collapse supernovae misses one key property of neutrinos: the left-handedness. The chirality of neutrinos modifies the hydrodynamic behavior at the macroscopic scale and leads to topological transport phenomena. We argue that such transport phenomena should play important roles in the evolution of core-collapse supernovae, and, in particular, lead to a tendency toward the inverse energy cascade from small to larger scales, which may be relevant to the origin of the supernova explosion.

  7. Density and energy of supernova remnants

    Energy Technology Data Exchange (ETDEWEB)

    Canto, J [Manchester Univ. (UK). Dept. of Astronomy

    1977-12-01

    The effects of an interstellar magnetic field on the gas flow behind a strong shock front are considered. The ambient density and energy of supernova remnants are estimated from the intensity ratio of sulphur lines I(6717)/I(6731). It is found that, on average, the ambient density around galactic supernova remnants is 4 cm/sup -3/. The total energy appears to be the same for all supernova remnants (to within a factor = approximately 5). A mean value of 4 10/sup 51/ erg is found.

  8. The Hubble Constant to 1%: Physics beyond LambdaCDM

    Science.gov (United States)

    Riess, Adam

    2017-08-01

    By steadily advancing the precision and accuracy of the Hubble constant, we now see 3.4-sigma evidence for a deviation from the standard LambdaCDM model and thus the exciting chance of discovering new fundamental physics such as exotic dark energy, a new relativistic particle, dark matter interactions, or a small curvature, to name a few possibilities. We propose a coordinated program to accomplish three goals with one set of observations: (1) improve the precision of the best route to H_0 with HST observations of Cepheids in the hosts of 11 SNe Ia, lowering the uncertainty to 1.3% to reach the discovery threshold of 5-sigma and begin resolving the underlying source of the deviation; (2) continue testing the quality of Cepheid distances, so far the most accurate and reliable indicators in the near Universe, using the tip of the red giant branch (TRGB); and (3) use oxygen-rich Miras to confirm the present tension with the CMB and establish a future route available to JWST. We can achieve all three goals with one dataset and take the penultimate step to reach 1% precision in H_0 after Gaia. With its long-pass filter and NIR capability, we can collect these data with WFC3 many times faster than previously possible while overcoming the extinction and metallicity effects that challenged the first generation of H_0 measurements. Our results will complement the leverage available at high redshift from other cosmological tools such as BAO, the CMB, and SNe Ia, and will provide a 40% improvement on the WFIRST measurements of dark energy. Reaching this precision will be a fitting legacy for the telescope charged to resolve decades of uncertainty regarding the Hubble constant.

  9. Effects of neutrino oscillations on nucleosynthesis and neutrino signals for an 18 M⊙ supernova model

    Science.gov (United States)

    Wu, Meng-Ru; Qian, Yong-Zhong; Martínez-Pinedo, Gabriel; Fischer, Tobias; Huther, Lutz

    2015-03-01

    In this paper, we explore the effects of neutrino flavor oscillations on supernova nucleosynthesis and on the neutrino signals. Our study is based on detailed information about the neutrino spectra and their time evolution from a spherically symmetric supernova model for an 18 M⊙ progenitor. We find that collective neutrino oscillations are not only sensitive to the detailed neutrino energy and angular distributions at emission, but also to the time evolution of both the neutrino spectra and the electron density profile. We apply the results of neutrino oscillations to study the impact on supernova nucleosynthesis and on the neutrino signals from a Galactic supernova. We show that in our supernova model, collective neutrino oscillations enhance the production of rare isotopes 138La and 180Ta but have little impact on the ν p -process nucleosynthesis. In addition, the adiabatic Mikheyev-Smirnov-Wolfenstein flavor transformation, which occurs in the C /O and He shells of the supernova, may affect the production of light nuclei such as 7Li and 11B. For the neutrino signals, we calculate the rate of neutrino events in the Super-Kamiokande detector and in a hypothetical liquid argon detector. Our results suggest the possibility of using the time profiles of the events in both detectors, along with the spectral information of the detected neutrinos, to infer the neutrino mass hierarchy.

  10. THE CARNEGIE SUPERNOVA PROJECT: SECOND PHOTOMETRY DATA RELEASE OF LOW-REDSHIFT TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Stritzinger, Maximilian D.; Phillips, M. M.; Campillay, Abdo; Morrell, Nidia; Krzeminski, Wojtek; Roth, Miguel; Boldt, Luis N.; Burns, Chris; Freedman, Wendy L.; Madore, Barry F.; Persson, Sven E.; Contreras, Carlos; Gonzalez, Sergio; Folatelli, Gaston; Salgado, Francisco; DePoy, D. L.; Marshall, J. L.; Rheault, Jean-Philippe; Suntzeff, Nicholas B.; Hamuy, Mario

    2011-01-01

    The Carnegie Supernova Project (CSP) was a five-year observational survey conducted at Las Campanas Observatory that obtained, among other things, high-quality light curves of ∼100 low-redshift Type Ia supernovae (SNe Ia). Presented here is the second data release of nearby SN Ia photometry consisting of 50 objects, with a subset of 45 having near-infrared follow-up observations. Thirty-three objects have optical pre-maximum coverage with a subset of 15 beginning at least five days before maximum light. In the near-infrared, 27 objects have coverage beginning before the epoch of B-band maximum, with a subset of 13 beginning at least five days before maximum. In addition, we present results of a photometric calibration program to measure the CSP optical (uBgVri) bandpasses with an accuracy of ∼1%. Finally, we report the discovery of a second SN Ia, SN 2006ot, similar in its characteristics to the peculiar SN 2006bt.

  11. Constraints on holographic dark energy from type Ia supernova observations

    International Nuclear Information System (INIS)

    Zhang Xin; Wu Fengquan

    2005-01-01

    In this paper, we use the type Ia supernovae data to constrain the holographic dark energy model proposed by Li. We also apply a cosmic age test to this analysis. We consider in this paper a spatially flat Friedmann-Robertson-Walker universe with a matter component and a holographic dark energy component. The fit result shows that the case c m 0 =0.28, and h=0.65, which lead to the present equation of state of dark energy w 0 =-1.03 and the deceleration/acceleration transition redshift z T =0.63. Finally, an expected supernova/acceleration probe simulation using ΛCDM as a fiducial model is performed on this model, and the result shows that the holographic dark energy model takes on c<1 (c=0.92) even though the dark energy is indeed a cosmological constant

  12. A Unique test for Hubble's new Solar Arrays

    Science.gov (United States)

    2000-10-01

    In mid-October, a team from the European Space Agency (ESA) and NASA will perform a difficult, never-before-done test on one of the Hubble Space Telescope's new solar array panels. Two of these panels, or arrays, will be installed by astronauts in November 2001, when the Space Shuttle Columbia visits Hubble on a routine service mission. The test will ensure that the new arrays are solid and vibration free before they are installed on orbit. The test will be conducted at ESA's European Space Research and Technology Center (ESTEC) in Noordwijk, The Netherlands. Because of the array's size, the facility's special features, and ESA's longstanding experience with Hubble's solar arrays, ESTEC is the only place in the world the test can be performed. This test is the latest chapter in a longstanding partnership between ESA and NASA on the Hubble Space Telescope. The Large Space Simulator at ESTEC, ESA's world-class test facility, features a huge vacuum chamber containing a bank of extremely bright lights that simulate the Sun's intensity - including sunrise and sunset. By exposing the solar wing to the light and temperature extremes of Hubble's orbit, engineers can verify how the new set of arrays will act in space. Hubble orbits the Earth once every 90 minutes. During each orbit, the telescope experiences 45 minutes of searing sunlight and 45 minutes of frigid darkness. This test will detect any tiny vibrations, or jitters, caused by these dramatic, repeated changes. Even a small amount of jitter can affect Hubble's sensitive instruments and interfere with observations. Hubble's first set of solar arrays experienced mild jitter and was replaced in 1993 with a much more stable pair. Since that time, advances in solar cell technology have led to the development of even more efficient arrays. In 2001, NASA will take advantage of these improvements, by fitting Hubble with a third-generation set of arrays. Though smaller, this new set generates more power than the previous

  13. SNLS3: CONSTRAINTS ON DARK ENERGY COMBINING THE SUPERNOVA LEGACY SURVEY THREE-YEAR DATA WITH OTHER PROBES

    International Nuclear Information System (INIS)

    Sullivan, M.; Hook, I. M.; Guy, J.; Regnault, N.; Astier, P.; Balland, C.; Hardin, D.; Pain, R.; Conley, A.; Carlberg, R. G.; Perrett, K. M.; Basa, S.; Fouchez, D.; Howell, D. A.; Palanque-Delabrouille, N.; Rich, J.; Ruhlmann-Kleider, V.; Pritchet, C. J.; Balam, D.; Baumont, S.

    2011-01-01

    We present observational constraints on the nature of dark energy using the Supernova Legacy Survey three-year sample (SNLS3) of Guy et al. and Conley et al. We use the 472 Type Ia supernovae (SNe Ia) in this sample, accounting for recently discovered correlations between SN Ia luminosity and host galaxy properties, and include the effects of all identified systematic uncertainties directly in the cosmological fits. Combining the SNLS3 data with the full WMAP7 power spectrum, the Sloan Digital Sky Survey luminous red galaxy power spectrum, and a prior on the Hubble constant H 0 from SHOES, in a flat universe we find Ω m = 0.269 ± 0.015 and w = -1.061 +0.069 - 0 .068 (where the uncertainties include all statistical and SN Ia systematic errors)-a 6.5% measure of the dark energy equation-of-state parameter w. The statistical and systematic uncertainties are approximately equal, with the systematic uncertainties dominated by the photometric calibration of the SN Ia fluxes-without these calibration effects, systematics contribute only a ∼2% error in w. When relaxing the assumption of flatness, we find Ω m = 0.271 ± 0.015, Ω k = -0.002 ± 0.006, and w = -1.069 +0.091 -0.092 . Parameterizing the time evolution of w as w(a) = w 0 + w a (1 - a) gives w 0 = -0.905 ± 0.196, w a = -0.984 +1.094 -1.097 in a flat universe. All of our results are consistent with a flat, w = -1 universe. The size of the SNLS3 sample allows various tests to be performed with the SNe segregated according to their light curve and host galaxy properties. We find that the cosmological constraints derived from these different subsamples are consistent. There is evidence that the coefficient, β, relating SN Ia luminosity and color, varies with host parameters at >4σ significance (in addition to the known SN luminosity-host relation); however, this has only a small effect on the cosmological results and is currently a subdominant systematic.

  14. Evidence for nearby supernova explosions

    International Nuclear Information System (INIS)

    Benitez, Narciso; Maiz-Apellaniz, Jesus; Canelles, Matilde

    2002-01-01

    Supernova (SN) explosions are one of the most energetic--and potentially lethal--phenomena in the Universe. We show that the Scorpius-Centaurus OB association, a group of young stars currently located at ∼130 pc from the Sun, has generated 20 SN explosions during the last 11 Myr, some of them probably as close as 40 pc to our planet. The deposition on Earth of 60 Fe atoms produced by these explosions can explain the recent measurements of an excess of this isotope in deep ocean crust samples. We propose that ∼2 Myr ago, one of the SNe exploded close enough to Earth to seriously damage the ozone layer, provoking or contributing to the Pliocene-Pleistocene boundary marine extinction

  15. The Hubble Legacy Archive ACS grism data

    Science.gov (United States)

    Kümmel, M.; Rosati, P.; Fosbury, R.; Haase, J.; Hook, R. N.; Kuntschner, H.; Lombardi, M.; Micol, A.; Nilsson, K. K.; Stoehr, F.; Walsh, J. R.

    2011-06-01

    A public release of slitless spectra, obtained with ACS/WFC and the G800L grism, is presented. Spectra were automatically extracted in a uniform way from 153 archival fields (or "associations") distributed across the two Galactic caps, covering all observations to 2008. The ACS G800L grism provides a wavelength range of 0.55-1.00 μm, with a dispersion of 40 Å/pixel and a resolution of ~80 Å for point-like sources. The ACS G800L images and matched direct images were reduced with an automatic pipeline that handles all steps from archive retrieval, alignment and astrometric calibration, direct image combination, catalogue generation, spectral extraction and collection of metadata. The large number of extracted spectra (73,581) demanded automatic methods for quality control and an automated classification algorithm was trained on the visual inspection of several thousand spectra. The final sample of quality controlled spectra includes 47 919 datasets (65% of the total number of extracted spectra) for 32 149 unique objects, with a median iAB-band magnitude of 23.7, reaching 26.5 AB for the faintest objects. Each released dataset contains science-ready 1D and 2D spectra, as well as multi-band image cutouts of corresponding sources and a useful preview page summarising the direct and slitless data, astrometric and photometric parameters. This release is part of the continuing effort to enhance the content of the Hubble Legacy Archive (HLA) with highly processed data products which significantly facilitate the scientific exploitation of the Hubble data. In order to characterize the slitless spectra, emission-line flux and equivalent width sensitivity of the ACS data were compared with public ground-based spectra in the GOODS-South field. An example list of emission line galaxies with two or more identified lines is also included, covering the redshift range 0.2 - 4.6. Almost all redshift determinations outside of the GOODS fields are new. The scope of science projects

  16. TYPE Ia SUPERNOVA CARBON FOOTPRINTS

    International Nuclear Information System (INIS)

    Thomas, R. C.; Nugent, P.; Aldering, G.; Aragon, C.; Bailey, S.; Childress, M.; Fakhouri, H. K.; Hsiao, E. Y.; Loken, S.; Antilogus, P.; Bongard, S.; Canto, A.; Baltay, C.; Buton, C.; Kerschhaggl, M.; Kowalski, M.; Paech, K.; Chotard, N.; Copin, Y.; Gangler, E.

    2011-01-01

    We present convincing evidence of unburned carbon at photospheric velocities in new observations of five Type Ia supernovae (SNe Ia) obtained by the Nearby Supernova Factory. These SNe are identified by examining 346 spectra from 124 SNe obtained before +2.5 days relative to maximum. Detections are based on the presence of relatively strong C II λ6580 absorption 'notches' in multiple spectra of each SN, aided by automated fitting with the SYNAPPS code. Four of the five SNe in question are otherwise spectroscopically unremarkable, with ions and ejection velocities typical of SNe Ia, but spectra of the fifth exhibit high-velocity (v > 20, 000 km s –1 ) Si II and Ca II features. On the other hand, the light curve properties are preferentially grouped, strongly suggesting a connection between carbon-positivity and broadband light curve/color behavior: three of the five have relatively narrow light curves but also blue colors and a fourth may be a dust-reddened member of this family. Accounting for signal to noise and phase, we estimate that 22 +10 –6% of SNe Ia exhibit spectroscopic C II signatures as late as –5 days with respect to maximum. We place these new objects in the context of previously recognized carbon-positive SNe Ia and consider reasonable scenarios seeking to explain a physical connection between light curve properties and the presence of photospheric carbon. We also examine the detailed evolution of the detected carbon signatures and the surrounding wavelength regions to shed light on the distribution of carbon in the ejecta. Our ability to reconstruct the C II λ6580 feature in detail under the assumption of purely spherical symmetry casts doubt on a 'carbon blobs' hypothesis, but does not rule out all asymmetric models. A low volume filling factor for carbon, combined with line-of-sight effects, seems unlikely to explain the scarcity of detected carbon in SNe Ia by itself.

  17. Production of high energy neutrinos in relativistic supernova shock waves

    International Nuclear Information System (INIS)

    Weaver, T.A.

    1979-01-01

    The possibility of producing high-energy neutrinos (> approx. 10 GeV) in relativistic supernova shock waves is considered. It is shown that, even if the dissipation in such shocks is due to hard hadron--hadron collisions, the resulting flux of neutrinos is too small to be observed by currently envisioned detectors. The associated burst of hard γ-rays, however, may be detectable. 3 tables

  18. Multidimensional, multiphysics simulations of core-collapse supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Messer, O E B [National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6008 (United States); Bruenn, S W [Department of Physics, Florida Atlantic University, Boca Raton, FL 33431-0991 (United States); Blondin, J M [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States); Hix, W R; Mezzacappa, A [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6354 (United States)

    2008-07-15

    CHIMERA is a multi-dimensional radiation hydrodynamics code designed to study core-collapse supernovae. The code is made up of three essentially independent parts: a hydrodynamics module, a nuclear burning module, and a neutrino transport solver combined within an operator-split approach. We review the code's architecture and some recently improved implementations used in the code. We also briefly discuss preliminary results obtained with the code in three spatial dimensions.

  19. The physics of flames in Type Ia supernovae

    International Nuclear Information System (INIS)

    Zingale, M; Woosley, S E; Bell, J B; Day, M S; Rendleman, C A

    2005-01-01

    We extend a low Mach number hydrodynamics method developed for terrestrial combustion, to the study of thermonuclear flames in Type Ia supernovae. We discuss the differences between 2-D and 3-D Rayleigh-Taylor unstable flame simulations, and give detailed diagnostics on the turbulence, showing that the kinetic energy power spectrum obeys Bolgiano-Obukhov statistics in 2-D, but Kolmogorov statistics in 3-D. Preliminary results from 3-D reacting bubble calculations are shown, and their implications for ignition are discussed

  20. Neutrino-induced nucleosynthesis in core-collapse supernovae

    International Nuclear Information System (INIS)

    Hartmann, D.H.; Haxton, W.C.; Hoffman, R.D.; Woosley, S.E.; California Univ., Santa Cruz, CA

    1990-01-01

    Almost all of the 3·10 53 ergs liberated in a core collapse supernova is radiated as neutrinos by the cooling neutron star. The neutrinos can excite nuclei in the mantle of the star by their neutral and charged current reactions. The resulting spallation reactions are an important nuleosynthesis mechanism that may be responsible for the galactic abundances of 7 Li, 11 B, 19 F, 138 La, 180 Ta, and number of other nuclei. 10 refs., 1 fig., 1 tab

  1. Pulsars and cosmic rays in the dense supernova shells

    International Nuclear Information System (INIS)

    Berezinsky, V.S.; Prilutsky, O.F.

    1977-01-01

    Cosmic rays (c.r.) injected by a young pulsar in the dense supernova shell are considered. The maintenance of the Galactic c.r. pool by pulsar production is shown to have a difficulty: adiabatic energy losses of c.r. in the expanding shell demand a high initial c.r. luminosity of pulsar, which results in too high flux of γ-radiation produced through π 0 -decays (in excess over diffuse γ-ray background). (author)

  2. Hubble Space Telescope: The Telescope, the Observations & the Servicing Mission

    Science.gov (United States)

    1999-11-01

    Hubble's success is the advantage of being in orbit, beyond the Earth's atmosphere. From there it enjoys a crystal-clear view of the universe - without clouds and atmospheric disturbances to blur its vision. European astronomer Guido De Marchi from ESO in Munich has been using Hubble since the early days of the project. He explains: "HST can see the faintest and smallest details and lets us study the stars with great accuracy, even where they are packed together - just as with those in the centre of our Galaxy". Dieter Reimers from Hamburg Observatory adds: "HST has capabilities to see ultraviolet light, which is not possible from the ground due to the blocking effect of the atmosphere. And this is really vital to our work, the main aim of which is to discover the chemical composition of the Universe." The Servicing Missions In the early plans for telescope operations, maintenance visits were to have been made every 2.5 years. And every five years HST should have been transported back to the ground for thorough overhaul. This plan has changed somewhat over time and a servicing scheme, which includes Space Shuttle Servicing Missions every three years, was decided upon. The two first Servicing Missions, in December 1993 (STS-61) and February 1997 (STS-82) respectively, were very successful. In the first three years of operations HST did not meet expectations because its primary mirror was 2 microns too flat at the edge. The first Servicing Mission in 1993 (on which the European astronaut Claude Nicollier flew) dealt with this problem by installing a new instrument with corrective optics (COSTAR - Corrective Optics Space Telescope Axial Replacement). With this pair of "glasses" HST's golden age began. The images were as sharp as originally hoped and astonishing new results started to emerge on a regular basis. The first Servicing Mission also replaced the solar panels and installed a new camera (Wide Field and Planetary Camera 2 - WFPC2). The High-Speed Photometer (HSP) was

  3. Supernova cooling in a dark matter smog

    International Nuclear Information System (INIS)

    Zhang, Yue

    2014-01-01

    A light hidden gauge boson with kinetic mixing with the usual photon is a popular setup in theories of dark matter. The supernova cooling via radiating the hidden boson is known to put an important constraint on the mixing. I consider the possible role dark matter, which under reasonable assumptions naturally exists inside supernova, can play in the cooling picture. Because the interaction between the hidden gauge boson and DM is likely unsuppressed, even a small number of dark matter compared to protons inside the supernova could dramatically shorten the free streaming length of the hidden boson. A picture of a dark matter “smog” inside the supernova, which substantially relaxes the cooling constraint, is discussed in detail

  4. Supernova cooling in a dark matter smog

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yue [Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-11-27

    A light hidden gauge boson with kinetic mixing with the usual photon is a popular setup in theories of dark matter. The supernova cooling via radiating the hidden boson is known to put an important constraint on the mixing. I consider the possible role dark matter, which under reasonable assumptions naturally exists inside supernova, can play in the cooling picture. Because the interaction between the hidden gauge boson and DM is likely unsuppressed, even a small number of dark matter compared to protons inside the supernova could dramatically shorten the free streaming length of the hidden boson. A picture of a dark matter “smog” inside the supernova, which substantially relaxes the cooling constraint, is discussed in detail.

  5. Supernova cooling in a dark matter smog

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yue, E-mail: yuezhang@theory.caltech.edu [Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-11-01

    A light hidden gauge boson with kinetic mixing with the usual photon is a popular setup in theories of dark matter. The supernova cooling via radiating the hidden boson is known to put an important constraint on the mixing. I consider the possible role dark matter, which under reasonable assumptions naturally exists inside supernova, can play in the cooling picture. Because the interaction between the hidden gauge boson and DM is likely unsuppressed, even a small number of dark matter compared to protons inside the supernova could dramatically shorten the free streaming length of the hidden boson. A picture of a dark matter ''smog'' inside the supernova, which substantially relaxes the cooling constraint, is discussed in detail.

  6. Discovery of 11 ASAS-SN Supernovae

    Science.gov (United States)

    Brimacombe, J.; Cacella, P.; Stone, G.; Fernandez, J. M.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.; Nicholls, B.; Post, R. S.

    2018-05-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from 14-cm telescopes in Hawaii, Texas, South Africa, and Chile, we discovered several new transient sources.

  7. A 6% measurement of the Hubble parameter at z ∼0.45: direct evidence of the epoch of cosmic re-acceleration

    International Nuclear Information System (INIS)

    Moresco, Michele; Cimatti, Andrea; Citro, Annalisa; Pozzetti, Lucia; Jimenez, Raul; Verde, Licia; Maraston, Claudia; Thomas, Daniel; Wilkinson, David; Tojeiro, Rita

    2016-01-01

    Deriving the expansion history of the Universe is a major goal of modern cosmology. To date, the most accurate measurements have been obtained with Type Ia Supernovae (SNe) and Baryon Acoustic Oscillations (BAO), providing evidence for the existence of a transition epoch at which the expansion rate changes from decelerated to accelerated. However, these results have been obtained within the framework of specific cosmological models that must be implicitly or explicitly assumed in the measurement. It is therefore crucial to obtain measurements of the accelerated expansion of the Universe independently of assumptions on cosmological models. Here we exploit the unprecedented statistics provided by the Baryon Oscillation Spectroscopic Survey (BOSS, [1-3]) Data Release 9 to provide new constraints on the Hubble parameter H ( z ) using the cosmic chronometers approach. We extract a sample of more than 130000 of the most massive and passively evolving galaxies, obtaining five new cosmology-independent H ( z ) measurements in the redshift range 0.3 < z < 0.5, with an accuracy of ∼11–16% incorporating both statistical and systematic errors. Once combined, these measurements yield a 6% accuracy constraint of H ( z = 0.4293) = 91.8 ± 5.3 km/s/Mpc. The new data are crucial to provide the first cosmology-independent determination of the transition redshift at high statistical significance, measuring z t = 0.4 ± 0.1, and to significantly disfavor the null hypothesis of no transition between decelerated and accelerated expansion at 99.9% confidence level. This analysis highlights the wide potential of the cosmic chronometers approach: it permits to derive constraints on the expansion history of the Universe with results competitive with standard probes, and most importantly, being the estimates independent of the cosmological model, it can constrain cosmologies beyond—and including—the ΛCDM model.

  8. A 6% measurement of the Hubble parameter at z ∼0.45: direct evidence of the epoch of cosmic re-acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Moresco, Michele; Cimatti, Andrea; Citro, Annalisa [Dipartimento di Fisica e Astronomia, Università di Bologna, V.le Berti Pichat, 6/2, 40127, Bologna (Italy); Pozzetti, Lucia [INAF—Osservatorio Astronomico di Bologna, via Ranzani 1, 40127 Bologna (Italy); Jimenez, Raul; Verde, Licia [ICREA and ICC, University of Barcelona (IEEC-UB), Barcelona 08028 (Spain); Maraston, Claudia; Thomas, Daniel; Wilkinson, David [Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Burnaby Road, Portsmouth, PO1 3FX (United Kingdom); Tojeiro, Rita, E-mail: michele.moresco@unibo.it, E-mail: lucia.pozzetti@oabo.inaf.it, E-mail: a.cimatti@unibo.it, E-mail: rauljimenez@g.harvard.edu, E-mail: claudia.maraston@port.ac.uk, E-mail: liciaverde@icc.ub.edu, E-mail: daniel.thomas@port.ac.uk, E-mail: annalisa.citro@unibo.it, E-mail: rmftr@st-andrews.ac.uk, E-mail: david.wilkinson@port.ac.uk [School of Physics and Astronomy, University of St. Andrews, Saint Andrews, KY16 9SS (United Kingdom)

    2016-05-01

    Deriving the expansion history of the Universe is a major goal of modern cosmology. To date, the most accurate measurements have been obtained with Type Ia Supernovae (SNe) and Baryon Acoustic Oscillations (BAO), providing evidence for the existence of a transition epoch at which the expansion rate changes from decelerated to accelerated. However, these results have been obtained within the framework of specific cosmological models that must be implicitly or explicitly assumed in the measurement. It is therefore crucial to obtain measurements of the accelerated expansion of the Universe independently of assumptions on cosmological models. Here we exploit the unprecedented statistics provided by the Baryon Oscillation Spectroscopic Survey (BOSS, [1-3]) Data Release 9 to provide new constraints on the Hubble parameter H ( z ) using the cosmic chronometers approach. We extract a sample of more than 130000 of the most massive and passively evolving galaxies, obtaining five new cosmology-independent H ( z ) measurements in the redshift range 0.3 < z < 0.5, with an accuracy of ∼11–16% incorporating both statistical and systematic errors. Once combined, these measurements yield a 6% accuracy constraint of H ( z = 0.4293) = 91.8 ± 5.3 km/s/Mpc. The new data are crucial to provide the first cosmology-independent determination of the transition redshift at high statistical significance, measuring z {sub t} = 0.4 ± 0.1, and to significantly disfavor the null hypothesis of no transition between decelerated and accelerated expansion at 99.9% confidence level. This analysis highlights the wide potential of the cosmic chronometers approach: it permits to derive constraints on the expansion history of the Universe with results competitive with standard probes, and most importantly, being the estimates independent of the cosmological model, it can constrain cosmologies beyond—and including—the ΛCDM model.

  9. Supernova explosion in a very massive star

    International Nuclear Information System (INIS)

    El Eid, M.F.

    1986-07-01

    We describe the final evolution of a 100 solar mass following an evolutionary scenario during which the star evolves from a Wolf-Rayet stage through the electron- positron pair creation supernova. We find that the star is completely disrupted by explosive oxygen burning, and this type of explosion as a possible scenario for the Cassiopeia A remnant. This scenario seems to be also applicable to the supernova 1985f according to the recent observations of this object

  10. Astrophysical and terrestrial neutrinos in Supernova detectors

    International Nuclear Information System (INIS)

    Lagage, P.O.

    1985-09-01

    Supernova (SN) explosions are the place of very fundamental phenomena, whose privileged messengers are neutrinos. But such events are very rare. Then, SN detection has to be combined with other purposes. The recent developments of SN detectors have been associated with developments of underground particle physics (proton decay, monopoles ...). But here, I will restrict myself to discuss the possibilities for a supernova detector to be sensitive to other sources of neutrinos, astrophysical or terrestrial

  11. A Model of the Vela Supernova Remnant

    Science.gov (United States)

    Gvaramadze, Vasilii

    2000-10-01

    A model of the Vela supernova remnant (SNR) based on a cavity explosion of a supernova (SN) star is proposed. It is suggested that the general structure of the remnant is determined by the interaction of the SN blast wave with a massive shell created by the SN progenitor (15-20 M_solar) star. A possible origin of the nebula of hard X-ray emission detected around the Vela pulsar is discussed.

  12. Lifetime of {sup 44}Ti as probe for supernova models

    Energy Technology Data Exchange (ETDEWEB)

    Goerres, J; Meissner, J; Schatz, H; Stech, E; Tischhauser, P; Wiescher, M [Univ. of Notre Dame, Notre Dame, IN (United States); Bazin, D; Harkewicz, R; Hellstroem, M; Sherrill, B; Steiner, M [Michigan State Univ., East Lansing, MI (United States); Boyd, R N [Ohio State Univ., Columbus, OH (United States); Buchmann, L [TRIUMF, Vancouver, BC (Canada); Hartmann, D H [Clemson Univ., Clemson, SC (United States); Hinnefeld, J D [Indiana Univ. South Bend, South Bend, IN (United States)

    1998-06-01

    The recent observation of {sup 44}Ti radioactivity in the supernova remnant Cassiopeia A with the Compton Gamma Ray Observatory allows the determination of the absolute amount of {sup 44}Ti. This provides a test for current supernova models. The main uncertainty is the lifetime of {sup 44}Ti. We report a new measurement of the lifetime of {sup 44}Ti applying a novel technique. A mixed radioactive beam containing {sup 44}Ti as well as {sup 22}Na was implanted and the resulting {gamma}-activity was measured. This allowed the determination of the lifetime of {sup 44}Ti relative to the lifetime of {sup 22}Na, {tau} = (87.0 {+-} 1.9) y. With this lifetime, the {sup 44}Ti abundance agrees with theoretical predictions within the remaining observational uncertainties. (orig.)

  13. Supernovae, Neutrinos and the Chirality of Amino Acids

    Directory of Open Access Journals (Sweden)

    Toshitaka Kajino

    2011-05-01

    Full Text Available A mechanism for creating an enantioenrichment in the amino acids, the building blocks of the proteins, that involves global selection of one handedness by interactions between the amino acids and neutrinos from core-collapse supernovae is defined. The chiral selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. It also requires an asymmetric distribution of neutrinos emitted from the supernova. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth’s proteinaceous amino acids.

  14. Theoretical models for Type I and Type II supernova

    International Nuclear Information System (INIS)

    Woosley, S.E.; Weaver, T.A.

    1985-01-01

    Recent theoretical progress in understanding the origin and nature of Type I and Type II supernovae is discussed. New Type II presupernova models characterized by a variety of iron core masses at the time of collapse are presented and the sensitivity to the reaction rate 12 C(α,γ) 16 O explained. Stars heavier than about 20 M/sub solar/ must explode by a ''delayed'' mechanism not directly related to the hydrodynamical core bounce and a subset is likely to leave black hole remnants. The isotopic nucleosynthesis expected from these massive stellar explosions is in striking agreement with the sun. Type I supernovae result when an accreting white dwarf undergoes a thermonuclear explosion. The critical role of the velocity of the deflagration front in determining the light curve, spectrum, and, especially, isotopic nucleosynthesis in these models is explored. 76 refs., 8 figs

  15. Oscillation effects and time variation of the supernova neutrino signal

    Science.gov (United States)

    Kneller, James P.; McLaughlin, Gail C.; Brockman, Justin

    2008-02-01

    The neutrinos detected from the next galactic core-collapse supernova will contain valuable information on the internal dynamics of the explosion. One mechanism leading to a temporal evolution of the neutrino signal is the variation of the induced neutrino flavor mixing driven by changes in the density profile. With one and two-dimensional hydrodynamical simulations we identify the behavior and properties of prominent features of the explosion. Using these results we demonstrate the time variation of the neutrino crossing probabilities due to changes in the Mikheyev-Smirnov-Wolfenstein (MSW) neutrino transformations as the star explodes by using the S-matrix—Monte Carlo—approach to neutrino propagation. After adopting spectra for the neutrinos emitted from the proto-neutron star we calculate for a galactic supernova the evolution of the positron spectra within a water Cerenkov detector and find that this signal allows us to probe of a number of explosion features.

  16. Collective neutrino flavor transitions in supernovae: analytical and numerical aspects

    International Nuclear Information System (INIS)

    Fogli, G L; Marrone, A; Mirizzi, A; Lisi, E

    2008-01-01

    Non-linear effects on supernova neutrino oscillations, associated with neutrino-neutrino interactions, are known to induce collective flavor transformations near the supernova core for θ 13 ≠ 0. For typical electron density profiles (as taken from shock-wave simulations at a few seconds after bounce) these transformations precede ordinary matter effects, and become more amenable to both numerical computations and analytical interpretations in inverted hierarchy-while they basically vanish in normal hierarchy. We numerically evolve the neutrino density matrix in the region relevant for self-interaction effects, using thermal spectra and a representative value sin 2 θ 13 = 10 -4 . Our results neatly show the collective phenomena of synchronization, bipolar oscillations, and spectral split, with analytically understandable features. They also suggest that averaging over neutrino trajectories plays a minor role in the final outcome. The split/swap of (anti)neutrino spectra emerges as an unmistakable signature of the inverted neutrino hierarchy

  17. Hubble induced mass after inflation in spectator field models

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Tomohiro [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94306 (United States); Harigaya, Keisuke, E-mail: tomofuji@stanford.edu, E-mail: keisukeh@icrr.u-tokyo.ac.jp [Department of Physics, University of California, Berkeley, CA 94720 (United States)

    2016-12-01

    Spectator field models such as the curvaton scenario and the modulated reheating are attractive scenarios for the generation of the cosmic curvature perturbation, as the constraints on inflation models are relaxed. In this paper, we discuss the effect of Hubble induced masses on the dynamics of spectator fields after inflation. We pay particular attention to the Hubble induced mass by the kinetic energy of an oscillating inflaton, which is generically unsuppressed but often overlooked. In the curvaton scenario, the Hubble induced mass relaxes the constraint on the property of the inflaton and the curvaton, such as the reheating temperature and the inflation scale. We comment on the implication of our discussion for baryogenesis in the curvaton scenario. In the modulated reheating, the predictions of models e.g. the non-gaussianity can be considerably altered. Furthermore, we propose a new model of the modulated reheating utilizing the Hubble induced mass which realizes a wide range of the local non-gaussianity parameter.

  18. Hubble Space Telescope: Should NASA Proceed with a Servicing Mission?

    National Research Council Canada - National Science Library

    Morgan, Daniel

    2006-01-01

    The National Aeronautics and Space Administration (NASA) estimates that without a servicing mission to replace key components, the Hubble Space Telescope will cease scientific operations in 2008 instead of 2010...

  19. Hubble Space Telescope, Faint Object Camera

    Science.gov (United States)

    1981-01-01

    This drawing illustrates Hubble Space Telescope's (HST's), Faint Object Camera (FOC). The FOC reflects light down one of two optical pathways. The light enters a detector after passing through filters or through devices that can block out light from bright objects. Light from bright objects is blocked out to enable the FOC to see background images. The detector intensifies the image, then records it much like a television camera. For faint objects, images can be built up over long exposure times. The total image is translated into digital data, transmitted to Earth, and then reconstructed. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  20. Hubble's View of Little Blue Dots

    Science.gov (United States)

    Kohler, Susanna

    2018-02-01

    The recent discovery of a new type of tiny, star-forming galaxy is the latest in a zoo of detections shedding light on our early universe. What can we learn from the unique little blue dots found in archival Hubble data?Peas, Berries, and DotsGreen pea galaxies identified by citizen scientists with Galaxy Zoo. [Richard Nowell Carolin Cardamone]As telescope capabilities improve and we develop increasingly deeper large-scale surveys of our universe, we continue to learn more about small, faraway galaxies. In recent years, increasing sensitivity first enabled the detection of green peas luminous, compact, low-mass (10 billion solar masses; compare this to the Milky Ways 1 trillion solar masses!) galaxies with high rates of star formation.Not long thereafter, we discovered galaxies that form stars similarly rapidly, but are even smaller only 330 million solar masses, spanning less than 3,000 light-years in size. These tiny powerhouses were termed blueberries for their distinctive color.Now, scientists Debra and Bruce Elmegreen (of Vassar College and IBM Research Division, respectively) report the discovery of galaxies that have even higher star formation rates and even lower masses: little blue dots.Exploring Tiny Star FactoriesThe Elmegreens discovered these unique galaxies by exploring archival Hubble data. The Hubble Frontier Fields data consist of deep images of six distant galaxy clusters and the parallel fields next to them. It was in the archival data for two Frontier Field Parallels, those for clusters Abell 2744 and MAS J0416.1-2403, that the authors noticed several galaxies that stand out as tiny, bright, blue objects that are nearly point sources.Top: a few examples of the little blue dots recently identified in two Hubble Frontier Field Parallels. Bottom: stacked images for three different groups of little blue dots. [Elmegreen Elmegreen 2017]The authors performed a search through the two Frontier Field Parallels, discovering a total of 55 little blue dots

  1. Price of shifting the Hubble constant

    Science.gov (United States)

    Evslin, Jarah; Sen, Anjan A.; Ruchika

    2018-05-01

    An anisotropic measurement of the baryon acoustic oscillation (BAO) feature fixes the product of the Hubble constant and the acoustic scale H0rd. Therefore, regardless of the dark energy dynamics, to accommodate a higher value of H0 one needs a lower rd and so necessarily a modification of early time cosmology. One must either reduce the age of the Universe at the drag epoch or else the speed of sound in the primordial plasma. The first can be achieved, for example, with dark radiation or very early dark energy, automatically preserving the angular size of the acoustic scale in the cosmic microwave background (CMB) with no modifications to post-recombination dark energy. However, it is known that the simplest such modifications fall afoul of CMB constraints at higher multipoles. As an example, we combine anisotropic BAO with geometric measurements from strong lensing time delays from H0LiCOW and megamasers from the Megamaser Cosmology Project to measure rd, with and without the local distance ladder measurement of H0. We find that the best fit value of rd is indeed quite insensitive to the dark energy model and is also hardly affected by the inclusion of the local distance ladder data.

  2. Planetary nebulae: 20 years of Hubble inquiry

    Science.gov (United States)

    Balick, Bruce

    2012-08-01

    The Hubble Space Telescope has served the critical roles of microscope and movie camera in the past 20 years of research on planetary nebulae (``PNe''). We have glimpsed the details of the evolving structures of neutral and ionized post-AGB objects, built ingenious heuristic models that mimic these structures, and constrained most of the relevant physical processes with careful observations and interpretation. We have searched for close physical binary stars with spatial resolution ~50 AU at 1 AU, located jets emerging from the nucleus at speeds up to 2000 km s-1 and matched newly discovered molecular and X-ray emission regions to physical substructures in order to better understand how stellar winds and ionizing radiation interact to form the lovely symmetries that are observed. Ultraviolet spectra of CNO in PNe help to uncover how stars process deep inside AGB stars with unstable nuclear burning zones. HST broadband imaging has been at the forefront of uncovering surprisingly complex wind morphologies produced at the tip of the AGB, and has led to an increasing realization of the potentially vital roles of close binary stars and emerging magnetic fields in shaping stellar winds.

  3. Pulsar Wind Bubble Blowout from a Supernova

    Energy Technology Data Exchange (ETDEWEB)

    Blondin, John M. [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States); Chevalier, Roger A., E-mail: blondin@ncsu.edu [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States)

    2017-08-20

    For pulsars born in supernovae, the expansion of the shocked pulsar wind nebula is initially in the freely expanding ejecta of the supernova. While the nebula is in the inner flat part of the ejecta density profile, the swept-up, accelerating shell is subject to the Rayleigh–Taylor instability. We carried out two- and three-dimensional simulations showing that the instability gives rise to filamentary structure during this initial phase but does not greatly change the dynamics of the expanding shell. The flow is effectively self-similar. If the shell is powered into the outer steep part of the density profile, the shell is subject to a robust Rayleigh–Taylor instability in which the shell is fragmented and the shocked pulsar wind breaks out through the shell. The flow is not self-similar in this phase. For a wind nebula to reach this phase requires that the deposited pulsar energy be greater than the supernova energy, or that the initial pulsar period be in the ms range for a typical 10{sup 51} erg supernova. These conditions are satisfied by some magnetar models for Type I superluminous supernovae. We also consider the Crab Nebula, which may be associated with a low energy supernova for which this scenario applies.

  4. Replacement vs. Renovation: The Reincarnation of Hubble Middle School

    Science.gov (United States)

    Ogurek, Douglas J.

    2010-01-01

    At the original Hubble Middle School, neither the views (a congested Roosevelt Road and glimpses of downtown Wheaton) nor the century-old facility that offered them was very inspiring. Built at the start of the 20th century, the 250,000-square-foot building was converted from Wheaton Central High School to Hubble Middle School in the early 1980s.…

  5. Variety of Polarized Line Profiles in Interacting Supernovae

    Science.gov (United States)

    Hoffman, Jennifer L.; Huk, L. N.; Peters, C. L.

    2013-01-01

    The dense circumstellar material that creates strong emission lines in the spectra of interacting supernovae also gives rise to complex line polarization behavior. Viewed in polarized light, the emission line profiles of these supernovae encode information about the geometrical and optical characteristics of their surrounding circumstellar material (CSM) that is inaccessible by other observational techniques. To facilitate quantitative interpretation of these spectropolarimetric signatures, we have created a large grid of model polarized line profiles using a three-dimensional radiative transfer code that simulates polarization via electron and resonant/fluorescent line scattering. The simulated polarized lines take on an array of profile shapes that vary with viewing angle and CSM properties. We present the major results from the grid and investigate the dependence of polarized line profiles on CSM characteristics including temperature, optical depth, and geometry. These results will allow more straightforward interpretation of polarized line profiles in interacting supernovae than has previously been possible. This research is supported by the National Science Foundation through the AAG program and the XSEDE collaboration, and uses the resources of the Texas Advanced Computing Center.

  6. Modelling neutrino and gamma-ray fluxes in supernova remnants

    International Nuclear Information System (INIS)

    Ballet, J; Cassam-Chenai, G; Maurin, G; Naumann, C

    2008-01-01

    Supernova remnants (SNRs) are believed to accelerate charged particles by diffusive shock acceleration (DSA) and to produce the majority of galactic cosmic rays, at least up to the 'knee' at 3-10 15 electron volts. In the framework of a hydrodynamic self-similar simulation of the evolution of young supernova remnants, its interaction with the ambient matter as well as the microwave and infrared background is studied. The photon spectra resulting from synchrotron and inverse Compton emission as well as from hadronic processes are calculated, as are the accompanying neutrino fluxes. Applying this method to the particular case of the SNR RXJ-1713, 7-3946, we find that its TeV emission can in principle be explained by pion decay if the ambient density is assumed to grow with increasing distance from the centre. The neutrino flux associated with this hadronic model is of a magnitude that may be detectable by a cubic-kilometre sized deep-sea neutrino telescope in the northern hemisphere. In this poster, a description of the supernova remnant simulation is given together with the results concerning RXJ-1713.

  7. Eyes on the Universe: The Legacy of the Hubble Space Telescope and Looking to the Future with the James Webb Space Telescope

    Science.gov (United States)

    Straughn, Amber

    2011-01-01

    Over the past 20 years the Hubble Space Telescope has revolutionized our understanding of the Universe. Most recently, the complete refurbishment of Hubble in 2009 has given new life to the telescope and the new science instruments have already produced groundbreaking science results, revealing some of the most distant galaxy candidates ever discovered. Despite the remarkable advances in astrophysics that Hubble has provided, the new questions that have arisen demand a new space telescope with new technologies and capabilities. I will present the exciting new technology development and science goals of NASA's James Webb Space Telescope, which is currently being built and tested and will be launched this decade.

  8. Modelling the interaction of thermonuclear supernova remnants with circumstellar structures: the case of Tycho's supernova remnant

    NARCIS (Netherlands)

    Chiotellis, A.; Kosenko, D.; Schure, K.M.; Vink, J.; Kaastra, J.S.

    2013-01-01

    The well-established Type Ia remnant of Tycho's supernova (SN 1572) reveals discrepant ambient medium-density estimates based on either the measured dynamics or the X-ray emission properties. This discrepancy can potentially be solved by assuming that the supernova remnant (SNR) shock initially

  9. Nearby supernova host galaxies from the CALIFA survey. II. Supernova environmental metallicity

    NARCIS (Netherlands)

    Galbany, L.; Stanishev, V.; Mourão, A. M.; Rodrigues, M.; Flores, H.; Walcher, C. J.; Sánchez, S. F.; García-Benito, R.; Mast, D.; Badenes, C.; González Delgado, R. M.; Kehrig, C.; Lyubenova, M.; Marino, R. A.; Mollá, M.; Meidt, S.; Pérez, E.; van de Ven, G.; Vílchez, J. M.

    2016-01-01

    The metallicity of a supernova progenitor, together with its mass, is one of the main parameters that can rule the progenitor's fate. We present the second study of nearby supernova (SN) host galaxies (0.005 ⊙) > 10 dex) by targeted searches. We neither found evidence that the metallicity at the SN

  10. THE STORY OF SUPERNOVA “REFSDAL” TOLD BY MUSE

    Energy Technology Data Exchange (ETDEWEB)

    Grillo, C. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Karman, W.; Caputi, K. I. [Kapteyn Astronomical Institute, University of Groningen, Postbus 800, 9700 AV Groningen (Netherlands); Suyu, S. H. [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Rosati, P.; Caminha, G. B. [Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, Via Saragat 1, I-44122 Ferrara (Italy); Balestra, I. [University Observatory Munich, Scheinerstrasse 1, D-81679 Munich (Germany); Mercurio, A. [INAF—Osservatorio Astronomico di Capodimonte, Via Moiariello 16, I-80131 Napoli (Italy); Lombardi, M. [Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, I-20133 Milano (Italy); Treu, T. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Rodney, S. A. [Department of Physics and Astronomy, University of South Carolina, 712 Main St., Columbia, SC 29208 (United States); Gavazzi, R. [Institut d’Astrophysique de Paris, UMR7095 CNRS-Universitè Pierre et Marie Curie, 98bis bd Arago, F-75014 Paris (France); Halkola, A., E-mail: grillo@dark-cosmology.dk

    2016-05-10

    We present Multi Unit Spectroscopic Explorer (MUSE) observations in the core of the Hubble Frontier Fields (HFF) galaxy cluster MACS J1149.5+2223, where the first magnified and spatially resolved multiple images of supernova (SN) “Refsdal” at redshift 1.489 were detected. Thanks to a Director's Discretionary Time program with the Very Large Telescope and the extraordinary efficiency of MUSE, we measure 117 secure redshifts with just 4.8 hr of total integration time on a single 1 arcmin{sup 2} target pointing. We spectroscopically confirm 68 galaxy cluster members, with redshift values ranging from 0.5272 to 0.5660, and 18 multiple images belonging to seven background, lensed sources distributed in redshifts between 1.240 and 3.703. Starting from the combination of our catalog with those obtained from extensive spectroscopic and photometric campaigns using the Hubble Space Telescope ( HST ), we select a sample of 300 (164 spectroscopic and 136 photometric) cluster members, within approximately 500 kpc from the brightest cluster galaxy, and a set of 88 reliable multiple images associated with 10 different background source galaxies and 18 distinct knots in the spiral galaxy hosting SN “Refsdal.” We exploit this valuable information to build six detailed strong-lensing models, the best of which reproduces the observed positions of the multiple images with an rms offset of only 0.″26. We use these models to quantify the statistical and systematic errors on the predicted values of magnification and time delay of the next emerging image of SN “Refsdal.” We find that its peak luminosity should occur between 2016 March and June and should be approximately 20% fainter than the dimmest (S4) of the previously detected images but above the detection limit of the planned HST /WFC3 follow-up. We present our two-dimensional reconstruction of the cluster mass density distribution and of the SN “Refsdal” host galaxy surface brightness distribution. We outline

  11. THE STORY OF SUPERNOVA “REFSDAL” TOLD BY MUSE

    International Nuclear Information System (INIS)

    Grillo, C.; Karman, W.; Caputi, K. I.; Suyu, S. H.; Rosati, P.; Caminha, G. B.; Balestra, I.; Mercurio, A.; Lombardi, M.; Treu, T.; Rodney, S. A.; Gavazzi, R.; Halkola, A.

    2016-01-01

    We present Multi Unit Spectroscopic Explorer (MUSE) observations in the core of the Hubble Frontier Fields (HFF) galaxy cluster MACS J1149.5+2223, where the first magnified and spatially resolved multiple images of supernova (SN) “Refsdal” at redshift 1.489 were detected. Thanks to a Director's Discretionary Time program with the Very Large Telescope and the extraordinary efficiency of MUSE, we measure 117 secure redshifts with just 4.8 hr of total integration time on a single 1 arcmin 2 target pointing. We spectroscopically confirm 68 galaxy cluster members, with redshift values ranging from 0.5272 to 0.5660, and 18 multiple images belonging to seven background, lensed sources distributed in redshifts between 1.240 and 3.703. Starting from the combination of our catalog with those obtained from extensive spectroscopic and photometric campaigns using the Hubble Space Telescope ( HST ), we select a sample of 300 (164 spectroscopic and 136 photometric) cluster members, within approximately 500 kpc from the brightest cluster galaxy, and a set of 88 reliable multiple images associated with 10 different background source galaxies and 18 distinct knots in the spiral galaxy hosting SN “Refsdal.” We exploit this valuable information to build six detailed strong-lensing models, the best of which reproduces the observed positions of the multiple images with an rms offset of only 0.″26. We use these models to quantify the statistical and systematic errors on the predicted values of magnification and time delay of the next emerging image of SN “Refsdal.” We find that its peak luminosity should occur between 2016 March and June and should be approximately 20% fainter than the dimmest (S4) of the previously detected images but above the detection limit of the planned HST /WFC3 follow-up. We present our two-dimensional reconstruction of the cluster mass density distribution and of the SN “Refsdal” host galaxy surface brightness distribution. We outline the

  12. Hot Dust! Late-Time Infrared Emission From Supernovae

    Science.gov (United States)

    Fox, Ori; Skrutskie, M. F.; Chevalier, R. A.

    2010-01-01

    Supernovae light curves typically peak and fade in the course of several months. Some supernovae , however, exhibit late-time infrared emission that in some cases can last for several years. These supernovae tend to be of the Type IIn subclass, which is defined by narrow hydrogen and helium emission lines arising from a dense, pre-existing circumstellar medium excited by the supernova radiation. Such a late-time ``IR excess'' with respect to the optical blackbody counterpart typically indicates the presence of warm dust. The origin and heating mechanism of the dust is not, however, always well constrained. In this talk, I will explore several scenarios that explain the observed late-time emission. In particular, I will discuss the case of the Type IIn SN 2005ip, which has displayed an ``IR excess'' for over 3 years. The results allow us to interpret the progenitor system and better understand the late stages of stellar evolution. Much of the data used for this analysis were obtained with TripleSpec, a medium-resolution near-infrared spectrograph located at Apache Point Observatory, NM, and FanCam, a JHK imager located at Fan Mountain Observatory, just outside of Charlottesville, VA. These two instruments were designed, fabricated, built, and commissioned by our instrumentation group at the University of Virginia. I will also spend some time discussing these instruments. I would like to thank the following for financial support of this work throughout my graduate career: NASA GSRP, NSF AAG-0607737, Spitzer PID 50256, Achievement Reward for College Scientists (ARCS), and the Virginia Space Grant Consortium.

  13. Hubble Space Telescope: a Vision to 2020 and Beyond: The Hubble Source Catalog

    Science.gov (United States)

    Strolger, Louis-Gregory

    2016-01-01

    The Hubble Source Catalog (HSC) is an initiative centered on what science would be enabled by a master catalog of all the sources HST has imaged over its lifetime. The first version of this catalog was released in early 2015, and included approximately 30 million sources from archived direct imaging with WFPC2, ACS (through 2011), and WFC3 (to 2014). Version 2, scheduled for release in early 2016, will feed off the Hubble Legacy Archive DR9 release, updating the ACS sources with more detections, and more direct imaging, through to mid-2015. This talk will overview the properties and goals of the HSC in terms of its source detection, object resolution, confusion limits, and overall astrometric and photometric precision. I will also discuss the connections to other MAST activities (e.g., the Discovery Portal interface), to STScI and user products (e.g., the Spectroscopic Catalog and High-Level Science Products), and to community resources (e.g., Pan-STARRS, SDSS, and eventually GAIA). The HSC successfully amalgamates the diverse observations with HST, and despite the limitations in uniformity on the sky, will be an important reference for JWST, LSST, and other future telescopes.

  14. DESTRUCTION OF INTERSTELLAR DUST IN EVOLVING SUPERNOVA REMNANT SHOCK WAVES

    International Nuclear Information System (INIS)

    Slavin, Jonathan D.; Dwek, Eli; Jones, Anthony P.

    2015-01-01

    Supernova generated shock waves are responsible for most of the destruction of dust grains in the interstellar medium (ISM). Calculations of the dust destruction timescale have so far been carried out using plane parallel steady shocks, however, that approximation breaks down when the destruction timescale becomes longer than that for the evolution of the supernova remnant (SNR) shock. In this paper we present new calculations of grain destruction in evolving, radiative SNRs. To facilitate comparison with the previous study by Jones et al., we adopt the same dust properties as in that paper. We find that the efficiencies of grain destruction are most divergent from those for a steady shock when the thermal history of a shocked gas parcel in the SNR differs significantly from that behind a steady shock. This occurs in shocks with velocities ≳200 km s −1 for which the remnant is just beginning to go radiative. Assuming SNRs evolve in a warm phase dominated ISM, we find dust destruction timescales are increased by a factor of ∼2 compared to those of Jones et al., who assumed a hot gas dominated ISM. Recent estimates of supernova rates and ISM mass lead to another factor of ∼3 increase in the destruction timescales, resulting in a silicate grain destruction timescale of ∼2–3 Gyr. These increases, while not able to resolve the problem of the discrepant timescales for silicate grain destruction and creation, are an important step toward understanding the origin and evolution of dust in the ISM

  15. TERRESTRIAL EFFECTS OF NEARBY SUPERNOVAE IN THE EARLY PLEISTOCENE

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, B. C.; Engler, E. E. [Department of Physics and Astronomy, Washburn University, Topeka, KS 66621 (United States); Kachelrieß, M. [Institutt for fysikk, NTNU, Trondheim (Norway); Melott, A. L. [Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045 (United States); Overholt, A. C. [Department of Science and Mathematics, MidAmerica Nazarene University, Olathe, KS 66062 (United States); Semikoz, D. V., E-mail: brian.thomas@washburn.edu [APC, Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite, F-119 75205 Paris (France)

    2016-07-20

    Recent results have strongly confirmed that multiple supernovae happened at distances of ∼100 pc, consisting of two main events: one at 1.7–3.2 million years ago, and the other at 6.5–8.7 million years ago. These events are said to be responsible for excavating the Local Bubble in the interstellar medium and depositing {sup 60}Fe on Earth and the Moon. Other events are indicated by effects in the local cosmic ray (CR) spectrum. Given this updated and refined picture, we ask whether such supernovae are expected to have had substantial effects on the terrestrial atmosphere and biota. In a first look at the most probable cases, combining photon and CR effects, we find that a supernova at 100 pc can have only a small effect on terrestrial organisms from visible light and that chemical changes such as ozone depletion are weak. However, tropospheric ionization right down to the ground, due to the penetration of ≥TeV CRs, will increase by nearly an order of magnitude for thousands of years, and irradiation by muons on the ground and in the upper ocean will increase twentyfold, which will approximately triple the overall radiation load on terrestrial organisms. Such irradiation has been linked to possible changes in climate and increased cancer and mutation rates. This may be related to a minor mass extinction around the Pliocene-Pleistocene boundary, and further research on the effects is needed.

  16. Cutting-edge issues of core-collapse supernova theory

    International Nuclear Information System (INIS)

    Kotake, Kei; Nakamura, Ko; Kuroda, Takami; Takiwaki, Tomoya

    2014-01-01

    Based on multi-dimensional neutrino-radiation hydrodynamic simulations, we report several cutting-edge issues about the long-veiled explosion mechanism of core-collapse supernovae (CCSNe). In this contribution, we pay particular attention to whether three-dimensional (3D) hydrodynamics and/or general relativity (GR) would or would not help the onset of explosions. By performing 3D simulations with spectral neutrino transport, we show that it is more difficult to obtain an explosion in 3D than in 2D. In addition, our results from the first generation of full general relativistic 3D simulations including approximate neutrino transport indicate that GR can foster the onset of neutrino-driven explosions. Based on our recent parametric studies using a light-bulb scheme, we discuss impacts of nuclear energy deposition behind the supernova shock and stellar rotation on the neutrino-driven mechanism, both of which have yet to be included in the self-consistent 3D supernova models. Finally we give an outlook with a summary of the most urgent tasks to extract the information about the explosion mechanisms from multi-messenger CCSN observables

  17. Clustered supernovae versus the gaseous disk and halo

    International Nuclear Information System (INIS)

    Heiles, C.

    1990-01-01

    The effects of clustered supernovae on the two-dimensional porosity parameter Q(2D) and the rates M of mass injection of both hot and cold gas into the halo are reconsidered. The effects of high-absolute value z, low-density extension of the neutral gas layer are theoretically calculated and the distribution of H-alpha luminosities of extragalactic H II regions is observationally determined. These results are used to estimate the birth rate of star clusters having N supernovae as a function of N. A Galaxy-wide average of Q(2D) roughly 0.30 is obtained, corresponding to an area filling factor of 0.23. Area filling factors and mass injection rates into the halo due to breakthrough bubbles with large N are calculated for different types of galaxy. The calculations are related to the area covered by H I 'holes' and the area covered by giant H II regions. The effects of supernova clusters that are too small to produce breakthrough bubbles are discussed. 53 refs

  18. Hubble Space Telescope Image of Omega Nebula

    Science.gov (United States)

    2002-01-01

    This sturning image, taken by the newly installed Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope (HST), is an image of the center of the Omega Nebula. It is a hotbed of newly born stars wrapped in colorful blankets of glowing gas and cradled in an enormous cold, dark hydrogen cloud. The region of nebula shown in this photograph is about 3,500 times wider than our solar system. The nebula, also called M17 and the Swan Nebula, resides 5,500 light-years away in the constellation Sagittarius. The Swan Nebula is illuminated by ultraviolet radiation from young, massive stars, located just beyond the upper-right corner of the image. The powerful radiation from these stars evaporates and erodes the dense cloud of cold gas within which the stars formed. The blistered walls of the hollow cloud shine primarily in the blue, green, and red light emitted by excited atoms of hydrogen, nitrogen, oxygen, and sulfur. Particularly striking is the rose-like feature, seen to the right of center, which glows in the red light emitted by hydrogen and sulfur. As the infant stars evaporate the surrounding cloud, they expose dense pockets of gas that may contain developing stars. One isolated pocket is seen at the center of the brightest region of the nebula. Other dense pockets of gas have formed the remarkable feature jutting inward from the left edge of the image. The color image is constructed from four separate images taken in these filters: blue, near infrared, hydrogen alpha, and doubly ionized oxygen. Credit: NASA, H. Ford (JHU), G. Illingworth (USCS/LO), M. Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA.

  19. A GLOBAL MODEL OF THE LIGHT CURVES AND EXPANSION VELOCITIES OF TYPE II-PLATEAU SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Pejcha, Ondřej [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08540 (United States); Prieto, Jose L., E-mail: pejcha@astro.princeton.edu [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército 441 Santiago (Chile)

    2015-02-01

    We present a new self-consistent and versatile method that derives photospheric radius and temperature variations of Type II-Plateau supernovae based on their expansion velocities and photometric measurements. We apply the method to a sample of 26 well-observed, nearby supernovae with published light curves and velocities. We simultaneously fit ∼230 velocity and ∼6800 mag measurements distributed over 21 photometric passbands spanning wavelengths from 0.19 to 2.2 μm. The light-curve differences among the Type II-Plateau supernovae are well modeled by assuming different rates of photospheric radius expansion, which we explain as different density profiles of the ejecta, and we argue that steeper density profiles result in flatter plateaus, if everything else remains unchanged. The steep luminosity decline of Type II-Linear supernovae is due to fast evolution of the photospheric temperature, which we verify with a successful fit of SN 1980K. Eliminating the need for theoretical supernova atmosphere models, we obtain self-consistent relative distances, reddenings, and nickel masses fully accounting for all internal model uncertainties and covariances. We use our global fit to estimate the time evolution of any missing band tailored specifically for each supernova, and we construct spectral energy distributions and bolometric light curves. We produce bolometric corrections for all filter combinations in our sample. We compare our model to the theoretical dilution factors and find good agreement for the B and V filters. Our results differ from the theory when the I, J, H, or K bands are included. We investigate the reddening law toward our supernovae and find reasonable agreement with standard R{sub V}∼3.1 reddening law in UBVRI bands. Results for other bands are inconclusive. We make our fitting code publicly available.

  20. An expanded HST/WFC3 survey of M83: Project overview and targeted supernova remnant search

    Energy Technology Data Exchange (ETDEWEB)

    Blair, William P.; Kuntz, K. D. [The Henry A. Rowland Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Chandar, Rupali [Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States); Dopita, Michael A. [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT 2611 (Australia); Ghavamian, Parviz [Department of Physics, Astronomy, and Geosciences, Towson University, Towson, MD 21252 (United States); Hammer, Derek; Long, Knox S.; Whitmore, Bradley C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Soria, Roberto [Curtin Institute of Radio Astronomy, Curtin University, 1 Turner Avenue, Bentley WA 6102 (Australia); Frank Winkler, P., E-mail: wpb@pha.jhu.edu, E-mail: kuntz@pha.jhu.edu, E-mail: Rupali.Chandar@utoledo.edu, E-mail: Michael.Dopita@anu.edu.au, E-mail: pghavamian@towson.edu, E-mail: long@stsci.edu, E-mail: hammer@stsci.edu, E-mail: whitmore@stsci.edu, E-mail: roberto.soria@icrar.org, E-mail: winkler@middlebury.edu [Department of Physics, Middlebury College, Middlebury, VT 05753 (United States)

    2014-06-10

    We present an optical/NIR imaging survey of the face-on spiral galaxy M83, using data from the Hubble Space Telescope Wide Field Camera 3 (WFC3). Seven fields are used to cover a large fraction of the inner disk, with observations in nine broadband and narrowband filters. In conjunction with a deep Chandra survey and other new radio and optical ground-based work, these data enable a broad range of science projects to be pursued. We provide an overview of the WFC3 data and processing and then delve into one topic, the population of young supernova remnants (SNRs). We used a search method targeted toward soft X-ray sources to identify 26 new SNRs. Many compact emission nebulae detected in [Fe II] 1.644 μm align with known remnants and this diagnostic has also been used to identify many new remnants, some of which are hard to find with optical images. We include 37 previously identified SNRs that the data reveal to be <0.''5 in angular size and thus are difficult to characterize from ground-based data. The emission line ratios seen in most of these objects are consistent with shocks in dense interstellar material rather than showing evidence of ejecta. We suggest that the overall high elemental abundances in combination with high interstellar medium pressures in M83 are responsible for this result. Future papers will expand on different aspects of the these data including a more comprehensive analysis of the overall SNR population.

  1. Accurate weak lensing of standard candles. II. Measuring σ8 with supernovae

    Science.gov (United States)

    Quartin, Miguel; Marra, Valerio; Amendola, Luca

    2014-01-01

    Soon the number of type Ia supernova (SN) measurements should exceed 100 000. Understanding the effect of weak lensing by matter structures on the supernova brightness will then be more important than ever. Although SN lensing is usually seen as a source of systematic noise, we will show that it can be in fact turned into signal. More precisely, the non-Gaussianity introduced by lensing in the SN Hubble diagram dispersion depends rather sensitively on the amplitude σ8 of the matter power spectrum. By exploiting this relation, we are able to predict constraints on σ8 of 7% (3%) for a catalog of 100 000 (500 000) SNe of average magnitude error 0.12, without having to assume that such intrinsic dispersion and its redshift evolution are known a priori. The intrinsic dispersion has been assumed to be Gaussian; possible intrinsic non-Gaussianities in the data set (due to the SN themselves and/or to other transients) could be potentially dealt with by means of additional nuisance parameters describing higher moments of the intrinsic dispersion distribution function. This method is independent of and complementary to the standard methods based on cosmic microwave background, cosmic shear, or cluster abundance observables.

  2. THE SPECTROSCOPIC DIVERSITY OF TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Blondin, S.; Matheson, T.; Kirshner, R. P.; Mandel, K. S.; Challis, P.; Berlind, P.; Calkins, M.; Garnavich, P. M.; Jha, S. W.; Modjaz, M.; Riess, A. G.; Schmidt, B. P.

    2012-01-01

    We present 2603 spectra of 462 nearby Type Ia supernovae (SNe Ia), including 2065 previously unpublished spectra, obtained during 1993-2008 through the Center for Astrophysics Supernova Program. There are on average eight spectra for each of the 313 SNe Ia with at least two spectra. Most of the spectra were obtained with the FAST spectrograph at the Fred Lawrence Whipple Observatory 1.5 m telescope and reduced in a consistent manner, making this data set well suited for studies of SN Ia spectroscopic diversity. Using additional data from the literature, we study the spectroscopic and photometric properties of SNe Ia as a function of spectroscopic class using the classification schemes of Branch et al. and Wang et al. The width-luminosity relation appears to be steeper for SNe Ia with broader lines, although the result is not statistically significant with the present sample. Based on the evolution of the characteristic Si II λ6355 line, we propose improved methods for measuring velocity gradients, revealing a larger range than previously suspected, from ∼0 to ∼400 km s −1 day −1 considering the instantaneous velocity decline rate at maximum light. We find a weaker and less significant correlation between Si II velocity and intrinsic B – V color at maximum light than reported by Foley et al., owing to a more comprehensive treatment of uncertainties and host galaxy dust. We study the extent of nuclear burning and the presence of unburnt carbon in the outermost layers of the ejecta and report new detections of C II λ6580 in 23 early-time SN Ia spectra. The frequency of C II detections is not higher in SNe Ia with bluer colors or narrower light curves, in conflict with the recent results of Thomas et al. Based on nebular spectra of 27 SNe Ia, we find no relation between the FWHM of the iron emission feature at ∼4700 Å and Δm 15 (B) after removing the two low-luminosity SN 1986G and SN 1991bg, suggesting that the peak luminosity is not strongly dependent

  3. Gravitational waves from supernova matter

    International Nuclear Information System (INIS)

    Scheidegger, S; Whitehouse, S C; Kaeppeli, R; Liebendoerfer, M

    2010-01-01

    We have performed a set of 11 three-dimensional magnetohydrodynamical (MHD) core-collapse supernova simulations in order to investigate the dependences of the gravitational wave signal on the progenitor's initial conditions. We study the effects of the initial central angular velocity and different variants of neutrino transport. Our models are started up from a 15M o-dot progenitor and incorporate an effective general relativistic gravitational potential and a finite temperature nuclear equation of state. Furthermore, the electron flavour neutrino transport is tracked by efficient algorithms for the radiative transfer of massless fermions. We find that non- and slowly rotating models show gravitational wave emission due to prompt- and lepton driven convection that reveals details about the hydrodynamical state of the fluid inside the protoneutron stars. Furthermore we show that protoneutron stars can become dynamically unstable to rotational instabilities at T/|W| values as low as ∼2% at core bounce. We point out that the inclusion of deleptonization during the postbounce phase is very important for the quantitative gravitational wave (GW) prediction, as it enhances the absolute values of the gravitational wave trains up to a factor of ten with respect to a lepton-conserving treatment.

  4. Light echoes - Type II supernovae

    International Nuclear Information System (INIS)

    Schaefer, B.E.

    1987-01-01

    Type II supernovae (SNs) light curves show a remarkable range of shapes. Data have been collected for the 12 Type II SNs that have light curve information for more than four months past maximum. Contrary to previous reports, it is found that (1) the decay rate after 100 days past maximum varies by almost an order of magnitude and (2) the light curve shapes are not bimodally distributed, but actually form a continuum. In addition, it is found that the extinctions to the SNs are related to the light curve shapes. This implies that the absorbing dust is local to the SNs. The dust is likely to be part of a circumstellar shell emitted by the SN progenitor that Dwek (1983) has used to explain infrared echoes. The optical depth of the shell can get quite large. In such cases, it is found that the photons scattered and delayed by reflection off dust grains will dominate the light curve several months after peak brightness. This light echo offers a straightforward explanation of the diversity of Type II SN light curves. 22 references

  5. Supernova neutrino detection with LVD

    International Nuclear Information System (INIS)

    Selvi, M.

    2007-01-01

    The Large Volume Detector (LVD) in the INFN Gran Sasso National Laboratory, Italy, is a ν observatory mainly designed to study low energy neutrinos from the gravitational collapse of galactic objects.We describe the characteristics of the supernova neutrino signal expected in the LVD detector and, in particular, we investigate the effect of neutrino oscillations. The MSW effect has been studied in detail for neutrinos travelling through the collapsing star and the Earth. We show that the expected number of events and their energy spectrum are sensitive to the oscillation parameters, in particular to the mass hierarchy and the value of θ 13 , presently unknown.The experiment has been monitoring the Galaxy since June 1992, under increasing larger configurations: in January 2001 it has reached its final active mass M = 1 kt. LVD is one of the largest liquid scintillator apparatus for the detection of stellar collapses and, besides SNO, SuperKamiokande and Amanda, it is a charter member of the SNEWS network, that has become fully operational since July 1st, 2005. No gravitational core-collapse has been detected by LVD during 14 years of data acquisition; this allows to put an upper limit of 0.18 events y -1 in our galaxy at the 90% C.L

  6. Collapsing stellar cores and supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, R J [Nordisk Inst. for Teoretisk Atomfysik, Copenhagen (Denmark); Noorgaard, H [Nordisk Inst. for Teoretisk Atomfysik, Copenhagen (Denmark); Chicago Univ., IL (USA). Enrico Fermi Inst.); Bond, J R [Niels Bohr Institutet, Copenhagen (Denmark); California Inst. of Tech., Pasadena (USA). W.K. Kellogg Radiation Lab.)

    1979-05-01

    The evolution of a stellar core is studied during its final quasi-hydrostatic contraction. The core structure and the (poorly known) properties of neutron rich matter are parametrized to include most plausible cases. It is found that the density-temperature trajectory of the material in the central part of the core (the core-center) is insensitive to nearly all reasonable parameter variations. The central density at the onset of the dynamic phase of the collapse (when the core-center begins to fall away from the rest of the star) and the fraction of the emitted neutrinos which are trapped in the collapsing core-center depend quite sensitively on the properties of neutron rich matter. We estimate that the amount of energy Ecm which is imparted to the core-mantle by the neutrinos which escape from the imploded core-center can span a large range of values. For plausible choices of nuclear and model parameters Ecm can be large enough to yield a supernova event.

  7. Nonlinear decline-rate dependence and intrinsic variation of typeIa supernova luminosities

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lifan; Strovink, Mark; Conley, Alexander; Goldhaber,Gerson; Kowalski, Marek; Perlmutter, Saul; Siegrist, James

    2005-12-14

    Published B and V fluxes from nearby Type Ia supernova are fitted to light-curve templates with 4-6 adjustable parameters. Separately, B magnitudes from the same sample are fitted to a linear dependence on B-V color within a post-maximum time window prescribed by the CMAGIC method. These fits yield two independent SN magnitude estimates B{sub max} and B{sub BV}. Their difference varies systematically with decline rate {Delta}m{sub 15} in a form that is compatible with a bilinear but not a linear dependence; a nonlinear form likely describes the decline-rate dependence of B{sub max} itself. A Hubble fit to the average of B{sub max} and B{sub BV} requires a systematic correction for observed B-V color that can be described by a linear coefficient R = 2.59 {+-} 0.24, well below the coefficient R{sub B} {approx} 4.1 commonly used to characterize the effects of Milky Way dust. At 99.9% confidence the data reject a simple model in which no color correction is required for SNe that are clustered at the blue end of their observed color distribution. After systematic corrections are performed, B{sub max} and B{sub BV} exhibit mutual rms intrinsic variation equal to 0.074 {+-} 0.019 mag, of which at least an equal share likely belongs to B{sub BV}. SN magnitudes measured using maximum-luminosity or cmagic methods show comparable rms deviations of order {approx}0.14 mag from the Hubble line. The same fit also establishes a 95% confidence upper limit of 486 km s{sup -1} on the rms peculiar velocity of nearby SNe relative to the Hubble flow.

  8. Nebular phase observations of the Type-Ib supernova iPTF13bvn favour a binary progenitor

    Science.gov (United States)

    Kuncarayakti, H.; Maeda, K.; Bersten, M. C.; Folatelli, G.; Morrell, N.; Hsiao, E. Y.; González-Gaitán, S.; Anderson, J. P.; Hamuy, M.; de Jaeger, T.; Gutiérrez, C. P.; Kawabata, K. S.

    2015-07-01

    Aims: We present and analyse late-time observations of the Type-Ib supernova with possible pre-supernova progenitor detection, iPTF13bvn, which were done ~300 days after the explosion. We discuss them in the context of constraints on the supernova's progenitor. Previous studies have proposed two possible natures for the progenitor of the supernova, i.e. a massive Wolf-Rayet star or a lower-mass star in a close binary system. Methods: Our observations show that the supernova has entered the nebular phase, with the spectrum dominated by Mg I]λλ4571, [O I]λλ6300, 6364, and [Ca II]λλ7291, 7324 emission lines. We measured the emission line fluxes to estimate the core oxygen mass and compared the [O I]/[Ca II] line ratio with other supernovae. Results.The core oxygen mass of the supernova progenitor was estimated to be ≲0.7 M⊙, which implies initial progenitor mass that does not exceed ~15-17 M⊙.Since the derived mass is too low for a single star to become a Wolf-Rayet star, this result lends more support to the binary nature of the progenitor star of iPTF13bvn. The comparison of [O I]/[Ca II] line ratio with other supernovae also shows that iPTF13bvn appears to be in close association with the lower mass progenitors of stripped-envelope and Type-II supernovae. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the US National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU); Chilean Telescope Time Allocation Committee proposal CN2014A-91.

  9. Are crab-type supernova remnants (plerions) short-lived

    International Nuclear Information System (INIS)

    Weiler, K.W.; Panagia, N.

    1978-01-01

    Arguments are given for a possible picture of the origin, maintenance, and lifetimes of the so-called Crab-like supernova remnants. It is suggested that these objects imply the existence of at least two distinct types of supernova events. A possible connection of the remnant types with the optically defined supernovae of Type I and Type II is discussed. Accepting that a pulsar is formed in at least some supernova events, the proposal is made that a rapidly rotating, rapidly slowing pulsar is necessary to create and maintain a Crab-like supernova remnant. Finally, arguments are presented that such a supernova remnant will be relatively short lived with respect to the more common shell-type of supernova remnant, perhaps surviving only 10000-20000 yr before fading into the Galactic background. The name of plerion is proposed for these filled-center supernova remnants and observational possiblities for confirming their nature are suggested. (orig.) [de

  10. Light dark photon and fermionic dark radiation for the Hubble constant and the structure formation

    OpenAIRE

    Ko, P.; Tang, Yong

    2018-01-01

    Motivated by the tensions in the Hubble constant $H_0$ and the structure growth $\\sigma_8$ between $Planck$ results and other low redshift measurements, we discuss some cosmological effects of a dark sector model in which dark matter (DM) interacts with fermionic dark radiation (DR) through a light gauge boson (dark photon). Such kind of models are very generic in particle physics with a dark sector with dark gauge symmetries. The effective number of neutrinos is increased by $\\delta N_{eff} ...

  11. Charge retention test experiences on Hubble Space Telescope nickel-hydrogen battery cells

    Science.gov (United States)

    Nawrocki, Dave E.; Driscoll, J. R.; Armantrout, J. D.; Baker, R. C.; Wajsgras, H.

    1993-01-01

    The Hubble Space Telescope (HST) nickel-hydrogen battery module was designed by Lockheed Missile & Space Co (LMSC) and manufactured by Eagle-Picher Ind. (EPI) for the Marshall Space Flight Center (MSFC) as an Orbital Replacement Unit (ORU) for the nickel-cadmium batteries originally selected for this low earth orbit mission. The design features of the HST nickel hydrogen battery are described and the results of an extended charge retention test are summarized.

  12. THE LOCAL HOSTS OF TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Neill, James D.; Martin, D. Christopher; Barlow, Tom A.; Foster, Karl; Friedman, Peter G.; Morrissey, Patrick; Wyder, Ted K.; Sullivan, Mark; Howell, D. Andrew; Conley, Alex; Seibert, Mark; Madore, Barry F.; Neff, Susan G.; Schiminovich, David; Bianchi, Luciana; Donas, Jose; Milliard, Bruno; Heckman, Timothy M.; Lee, Young-Wook; Rich, R. Michael

    2009-01-01

    We use multi-wavelength, matched aperture, integrated photometry from the Galaxy Evolution Explorer (GALEX), the Sloan Digital Sky Survey, and the RC3 to estimate the physical properties of 166 nearby galaxies hosting 168 well-observed Type Ia supernovae (SNe Ia). The ultraviolet (UV) imaging of local SN Ia hosts from GALEX allows a direct comparison with higher-redshift hosts measured at optical wavelengths that correspond to the rest-frame UV. Our data corroborate well-known features that have been seen in other SN Ia samples. Specifically, hosts with active star formation produce brighter and slower SNe Ia on average, and hosts with luminosity-weighted ages older than 1 Gyr produce on average more faint, fast, and fewer bright, slow SNe Ia than younger hosts. New results include that in our sample, the faintest and fastest SNe Ia occur only in galaxies exceeding a stellar mass threshold of ∼10 10 M sun , leading us to conclude that their progenitors must arise in populations that are older and/or more metal rich than the general SN Ia population. A low host extinction subsample hints at a residual trend in peak luminosity with host age, after correcting for light-curve shape, giving the appearance that older hosts produce less-extincted SNe Ia on average. This has implications for cosmological fitting of SNe Ia, and suggests that host age could be useful as a parameter in the fitting. Converting host mass to metallicity and computing 56 Ni mass from the supernova light curves, we find that our local sample is consistent with a model that predicts a shallow trend between stellar metallicity and the 56 Ni mass that powers the explosion, but we cannot rule out the absence of a trend. We measure a correlation between 56 Ni mass and host age in the local universe that is shallower and not as significant as that seen at higher redshifts. The details of the age- 56 Ni mass correlations at low and higher redshift imply a luminosity-weighted age threshold of ∼3 Gyr

  13. Energy condition bounds and their confrontation with supernovae data

    International Nuclear Information System (INIS)

    Lima, M. P.; Vitenti, S.; Reboucas, M. J.

    2008-01-01

    The energy conditions play an important role in the understanding of several properties of the Universe, including the current accelerating expansion phase and the possible existence of the so-called phantom fields. We show that the integrated bounds provided by the energy conditions on cosmological observables such as the distance modulus μ(z) and the lookback time t L (z) are not sufficient (or necessary) to ensure the local fulfillment of the energy conditions, making explicit the limitation of these bounds in the confrontation with observational data. We recast the energy conditions as bounds on the deceleration and normalized Hubble parameters, obtaining new bounds which are necessary and sufficient for the local fulfillment of the energy conditions. A statistical confrontation, with 1σ-3σ confidence levels, between our bounds and supernovae data from the gold and combined samples is made for the recent past. Our analyses indicate, with 3σ confidence levels, the fulfillment of both the weak energy condition (WEC) and dominant energy condition (DEC) for z≤1 and z < or approx. 0.8, respectively. In addition, they suggest a possible recent violation of the null energy condition (NEC) with 3σ, i.e. a very recent phase of superacceleration. Our analyses also show the possibility of violation of the strong energy condition (SEC) with 3σ in the recent past (z≤1), but interestingly the q(z)-best-fit curve crosses the SEC--fulfillment divider at z≅0.67, which is a value very close to the beginning of the epoch of cosmic acceleration predicted by the standard concordance flat ΛCDM scenario.

  14. Deja Vu All Over Again: The Reappearance of Supernova Refsdal

    Science.gov (United States)

    Kelly, P. L.; Rodney, S. A.; Treu, T.; Strolger, L.-G.; Foley, R. J.; Jha, S. W.; Selsing, J.; Brammer, G.; Bradač, M.; Cenko, S. B.; Graur, O.; Filippenko, A. V.; Hjorth, J.; McCully, C.; Molino, A.; Nonino, M.; Riess, A. G.; Schmidt, K. B.; Tucker, B.; von der Linden, A.; Weiner, B. J.; Zitrin, A.

    2016-03-01

    In Hubble Space Telescope (HST) imaging taken on 2014 November 10, four images of supernova (SN) “Refsdal” (redshift z = 1.49) appeared in an Einstein-cross-like configuration (images S1-S4) around an early-type galaxy in the cluster MACS J1149.5+2223 (z = 0.54). Almost all lens models of the cluster have predicted that the SN should reappear within a year in a second host-galaxy image created by the cluster’s potential. In HST observations taken on 2015 December 11, we find a new source at the predicted position of the new image of SN Refsdal approximately 8\\prime\\prime from the previous images S1-S4. This marks the first time the appearance of a SN at a particular time and location in the sky was successfully predicted in advance! We use these data and the light curve from the first four observed images of SN Refsdal to place constraints on the relative time delay and magnification of the new image (SX) compared to images S1-S4. This enables us, for the first time, to test “blind” lens model predictions of both magnifications and time delays for a lensed SN. We find that the timing and brightness of the new image are consistent with the blind predictions of a fraction of the models. The reappearance illustrates the discriminatory power of this blind test and its utility to uncover sources of systematic uncertainty. From planned HST photometry, we expect to reach a precision of 1%-2% on the time delay between S1-S4 and SX.

  15. Oxygen Issue in Core Collapse Supernovae

    Science.gov (United States)

    Elmhamdi, A.

    2011-06-01

    We study the spectroscopic properties of a selected sample of 26 events within Core Collapse Supernovae (CCSNe) family. Special attention is paid to the nebular oxygen forbidden line [OI] 6300, 6364 Å doublet. We analyze the line flux ratio F6300/F6364 and infer information about the optical depth evolution, densities, volume-filling factors in the oxygen emitting zones. The line luminosity is measured for the sample events and its evolution is discussed on the basis of the bolometric light curve properties in type II and in type Ib-c SNe. The luminosities are then translated into oxygen abundances using two different methods. The results are combined with the determined 56Ni masses and compared with theoretical models by means of the [O/Fe] vs. Mms diagram. Two distinguishable and continuous populations, corresponding to Ib-c and type II SNe, are found. The higher mass nature of the ejecta in type II objects is also imprinted in the [CaII] 7291, 7324Å to [OI] 6300, 6364Å luminosity ratios. Our results may be used as input parameters for theoretical models studying the chemical enrichment of galaxies.

  16. PROMPT Ia SUPERNOVAE ARE SIGNIFICANTLY DELAYED

    International Nuclear Information System (INIS)

    Raskin, Cody; Scannapieco, Evan; Rhoads, James; Della Valle, Massimo

    2009-01-01

    The time delay between the formation of a population of stars and the onset of type Ia supernovae (SNe Ia) sets important limits on the masses and nature of SN Ia progenitors. Here, we use a new observational technique to measure this time delay by comparing the spatial distributions of SNe Ia to their local environments. Previous work attempted such analyses encompassing the entire host of each SN Ia, yielding inconclusive results. Our approach confines the analysis only to the relevant portions of the hosts, allowing us to show that even so-called prompt SNe Ia that trace star formation on cosmic timescales exhibit a significant delay time of 200-500 million years. This implies that either the majority of Ia companion stars have main-sequence masses less than 3 M sun , or that most SNe Ia arise from double white dwarf binaries. Our results are also consistent with a SNe Ia rate that traces the white dwarf formation rate, scaled by a fixed efficiency factor.

  17. Radio evolution of young supernova remnants

    International Nuclear Information System (INIS)

    Shirkey, R.C. Jr.

    1976-01-01

    A one dimensional spherically symmetric magnetohydrodynamic code was developed to describe the evolution of the dynamical and radio properties of young supernova remnants. The code contains subroutines which treat the development of Rayleigh-Taylor instabilities wherever they arise in the remnant. Under the assumption of quasi-stationary equilibrium (dynamical changes considered slow in comparison to the time it takes the instability to achieve equilibrium) determined that the velocity of the instability is W approximately (a lambda)/sup 1 / 2 /, where a is the Rayleigh-Taylor acceleration and lambda is the wavelength of the instability. Subsequent processing of the kinetic energy of expansion, through turbulence, resulted in an increase in temperature and magnetic field strength. The model was used to analyze instability effects of density inhomogeneities in the interstellar medium on magnetic field amplification. A model was constructed for Cassiopeia A which gave good agreement with the measured dynamics, radio structure, and secular flux density decrease for the remnant. In order to compare observation with theory a computer routine was written that convolves the surface brightness at the source. The resultant convolved surface brightness graph is in good agreement with Rosenberg's observed ''model profile;'' differences between the graphs can be attributed to the asymmetric expansion of Cassiopeia A

  18. GALACTIC AND EXTRAGALACTIC SUPERNOVA REMNANTS AS SITES OF PARTICLE ACCELERATION

    Directory of Open Access Journals (Sweden)

    Manami Sasaki

    2013-12-01

    Full Text Available Supernova remnants, owing to their strong shock waves, are likely sources of Galactic cosmic rays. Studies of supernova remnants in X-rays and gamma rays provide us with new insights into the acceleration of particles to high energies. This paper reviews the basic physics of supernova remnant shocks and associated particle acceleration and radiation processes. In addition, the study of supernova remnant populations in nearby galaxies and the implications for Galactic cosmic ray distribution are discussed.

  19. THE PLERIONIC SUPERNOVA REMNANT G21.5-0.9 POWERED BY PSR J1833-1034: NEW SPECTROSCOPIC AND IMAGING RESULTS REVEALED WITH THE CHANDRA X-RAY OBSERVATORY

    International Nuclear Information System (INIS)

    Matheson, Heather; Safi-Harb, Samar

    2010-01-01

    In 1999, the Chandra X-ray Observatory revealed a 150'' radius halo surrounding the 40'' radius pulsar wind nebula (PWN) G21.5-0.9. A 2005 imaging study of G21.5-0.9 showed that the halo is limb-brightened and suggested that this feature is a candidate for the long-sought supernova remnant (SNR) shell. We present a spectral analysis of SNR G21.5-0.9, using the longest effective observation to date (578.6 ks with the Advanced CCD Imaging Spectrometer (ACIS) and 278.4 ks with the High-Resolution Camera (HRC)) to study unresolved questions about the spectral nature of remnant features, such as the limb brightening of the X-ray halo and the bright knot in the northern part of the halo. The Chandra analysis favors the non-thermal interpretation of the limb. Its spectrum is fit well with a power-law model with a photon index Γ = 2.13 (1.94-2.33) and a luminosity of L x (0.5-8 keV) = (2.3 ± 0.6) x 10 33 erg s -1 (at an assumed distance of 5.0 kpc). An srcut model was also used to fit the spectrum between the radio and X-ray energies. While the absence of a shell in the radio still prohibits constraining the spectrum at radio wavelengths, we assume a range of spectral indices to infer the 1 GHz flux density and the rolloff frequency of the synchrotron spectrum in X-rays and find that the maximum energy to which electrons are accelerated at the shock ranges from ∼60 to 130 TeV (B/10 μG) -1/2 , where B is the magnetic field in units of μG. For the northern knot, we constrain previous models and find that a two-component power-law (or srcut) + pshock model provides an adequate fit, with the pshock model requiring a very low ionization timescale and solar abundances for Mg and Si. Our spectroscopic study of PSR J1833-1034, the highly energetic pulsar powering G21.5-0.9, shows that its spectrum is dominated by hard non-thermal X-ray emission with some evidence of a thermal component that represents ∼9% of the observed non-thermal emission and that suggests non

  20. Asteroseismology of the Transiting Exoplanet Host HD 17156 with Hubble Space Telescope Fine Guidance Sensor

    DEFF Research Database (Denmark)

    Gilliland, Ronald L.; McCullough, Peter R.; Nelan, Edmund P.

    2011-01-01

    light curve. Using the density constraint from asteroseismology, and stellar evolution modeling results in M * = 1.285 ± 0.026 M sun, R * = 1.507 ± 0.012 R sun, and a stellar age of 3.2 ± 0.3 Gyr. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science......Observations conducted with the Fine Guidance Sensor on the Hubble Space Telescope (HST) providing high cadence and precision time-series photometry were obtained over 10 consecutive days in 2008 December on the host star of the transiting exoplanet HD 17156b. During this time, 1.0 × 1012 photons...... Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555....

  1. The variance of the locally measured Hubble parameter explained with different estimators

    DEFF Research Database (Denmark)

    Odderskov, Io Sandberg Hess; Hannestad, Steen; Brandbyge, Jacob

    2017-01-01

    We study the expected variance of measurements of the Hubble constant, H0, as calculated in either linear perturbation theory or using non-linear velocity power spectra derived from N-body simulations. We compare the variance with that obtained by carrying out mock observations in the N......-body simulations, and show that the estimator typically used for the local Hubble constant in studies based on perturbation theory is different from the one used in studies based on N-body simulations. The latter gives larger weight to distant sources, which explains why studies based on N-body simulations tend...... to obtain a smaller variance than that found from studies based on the power spectrum. Although both approaches result in a variance too small to explain the discrepancy between the value of H0 from CMB measurements and the value measured in the local universe, these considerations are important in light...

  2. NASA's Swift Satellite Catches First Supernova in The Act of Exploding

    Science.gov (United States)

    2008-05-01

    GREENBELT, Md.- Thanks to a fortuitous observation with NASA’s Swift satellite, astronomers for the first time have caught a star in the act of exploding. Astronomers have previously observed thousands of stellar explosions, known as supernovae, but they have always seen them after the fireworks were well underway. "For years we have dreamed of seeing a star just as it was exploding, but actually finding one is a once in a lifetime event," says team leader Alicia Soderberg, a Hubble and Carnegie-Princeton Fellow at Princeton University in Princeton, N.J. "This newly born supernova is going to be the Rosetta stone of supernova studies for years to come." A typical supernova occurs when the core of a massive star runs out of nuclear fuel and collapses under its own gravity to form an ultradense object known as a neutron star. The newborn neutron star compresses and then rebounds, triggering a shock wave that plows through the star’s gaseous outer layers and blows the star to smithereens. Astronomers thought for nearly four decades that this shock "break-out" will produce bright X-ray emission lasting a few minutes. X-ray Image X-ray Images But until this discovery, astronomers have never observed this signal. Instead, they have observed supernovae brightening days or weeks later, when the expanding shell of debris is energized by the decay of radioactive elements forged in the explosion. "Seeing the shock break-out in X-rays can give a direct view of the exploding star in the last minutes of its life and also provide a signpost to which astronomers can quickly point their telescopes to watch the explosion unfold," says Edo Berger, a Carnegie-Princeton Fellow at Princeton University. Soderberg's discovery of the first shock breakout can be attributed to luck and Swift's unique design. On January 9, 2008, Soderberg and Berger were using Swift to observe a supernova known as SN 2007uy in the spiral galaxy NGC 2770, located 90 million light-years from Earth in the

  3. A solar-type star polluted by calcium-rich supernova ejecta inside the supernova remnant RCW 86

    Science.gov (United States)

    Gvaramadze, Vasilii V.; Langer, Norbert; Fossati, Luca; Bock, Douglas C.-J.; Castro, Norberto; Georgiev, Iskren Y.; Greiner, Jochen; Johnston, Simon; Rau, Arne; Tauris, Thomas M.

    2017-06-01

    When a massive star in a binary system explodes as a supernova, its companion star may be polluted with heavy elements from the supernova ejecta. Such pollution has been detected in a handful of post-supernova binaries 1 , but none of them is associated with a supernova remnant. We report the discovery of a binary G star strongly polluted with calcium and other elements at the position of the candidate neutron star [GV2003] N within the young galactic supernova remnant RCW 86. Our discovery suggests that the progenitor of the supernova that produced RCW 86 could have been a moving star, which exploded near the edge of its wind bubble and lost most of its initial mass because of common-envelope evolution shortly before core collapse, and that the supernova explosion might belong to the class of calcium-rich supernovae — faint and fast transients 2,3 , the origin of which is strongly debated 4-6 .

  4. Synoptic sky surveys and the diffuse supernova neutrino background: Removing astrophysical uncertainties and revealing invisible supernovae

    International Nuclear Information System (INIS)

    Lien, Amy; Fields, Brian D.; Beacom, John F.

    2010-01-01

    The cumulative (anti)neutrino production from all core-collapse supernovae within our cosmic horizon gives rise to the diffuse supernova neutrino background (DSNB), which is on the verge of detectability. The observed flux depends on supernova physics, but also on the cosmic history of supernova explosions; currently, the cosmic supernova rate introduces a substantial (±40%) uncertainty, largely through its absolute normalization. However, a new class of wide-field, repeated-scan (synoptic) optical sky surveys is coming online, and will map the sky in the time domain with unprecedented depth, completeness, and dynamic range. We show that these surveys will obtain the cosmic supernova rate by direct counting, in an unbiased way and with high statistics, and thus will allow for precise predictions of the DSNB. Upcoming sky surveys will substantially reduce the uncertainties in the DSNB source history to an anticipated ±5% that is dominated by systematics, so that the observed high-energy flux thus will test supernova neutrino physics. The portion of the universe (z < or approx. 1) accessible to upcoming sky surveys includes the progenitors of a large fraction (≅87%) of the expected 10-26 MeV DSNB event rate. We show that precision determination of the (optically detected) cosmic supernova history will also make the DSNB into a strong probe of an extra flux of neutrinos from optically invisible supernovae, which may be unseen either due to unexpected large dust obscuration in host galaxies, or because some core-collapse events proceed directly to black hole formation and fail to give an optical outburst.

  5. Supernova remnants, pulsar wind nebulae and their interaction

    NARCIS (Netherlands)

    Swaluw, E. van der

    2001-01-01

    A supernova explosion marks the end of the evolution of a massive star. What remains of the exploded star is a high density neutron star or a black hole. The material which has been ejected by the supernova explosion will manifest itself as a supernova remnant: a hot bubble of gas expanding in the

  6. The interaction of Type Ia supernovae with their circumstellar medium

    NARCIS (Netherlands)

    Chiotellis, A.

    2013-01-01

    This thesis is focused on the study of a specific class of supernovae, named Type Ia (or thermonuclear) supernovae. In particular, we attempt to gain information about their origin through the study of the interaction of these supernovae with circumstellar structures that have been shaped by their

  7. Supernovae and nuclear structure: Electron capture and the nuclear incompressibility

    International Nuclear Information System (INIS)

    Cooperstein, J.

    1985-01-01

    The author considers the effects of electron capture and the high density equation of state on supernovae. Electron captures on nuclei with 60 s it is helpful for supernovae to have a soft equation of state. Present knowledge of the nuclear matter parameters is considered and implications for supernovae are drawn. (orig.)

  8. Observational Evidence for High Neutronization in Supernova Remnants: Implications for Type Ia Supernova Progenitors

    International Nuclear Information System (INIS)

    Martínez-Rodríguez, Héctor; Badenes, Carles; Andrews, Brett; Yamaguchi, Hiroya; Bravo, Eduardo; Timmes, F. X.; Miles, Broxton J.; Townsley, Dean M.; Piro, Anthony L.; Mori, Hideyuki; Park, Sangwook

    2017-01-01

    The physical process whereby a carbon–oxygen white dwarf explodes as a Type Ia supernova (SN Ia) remains highly uncertain. The degree of neutronization in SN Ia ejecta holds clues to this process because it depends on the mass and the metallicity of the stellar progenitor, and on the thermodynamic history prior to the explosion. We report on a new method to determine ejecta neutronization