WorldWideScience

Sample records for supernova neutrino physics

  1. Probing Exotic Physics With Supernova Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Kelso, Chris; Hooper, Dan

    2010-09-01

    Future galactic supernovae will provide an extremely long baseline for studying the properties and interactions of neutrinos. In this paper, we discuss the possibility of using such an event to constrain (or discover) the effects of exotic physics in scenarios that are not currently constrained and are not accessible with reactor or solar neutrino experiments. In particular, we focus on the cases of neutrino decay and quantum decoherence. We calculate the expected signal from a core-collapse supernova in both current and future water Cerenkov, scintillating, and liquid argon detectors, and find that such observations will be capable of distinguishing between many of these scenarios. Additionally, future detectors will be capable of making strong, model-independent conclusions by examining events associated with a galactic supernova's neutronization burst.

  2. Nonstandard neutrino interactions in supernovae

    Science.gov (United States)

    Stapleford, Charles J.; Väänänen, Daavid J.; Kneller, James P.; McLaughlin, Gail C.; Shapiro, Brandon T.

    2016-11-01

    Nonstandard interactions (NSI) of neutrinos with matter can significantly alter neutrino flavor evolution in supernovae with the potential to impact explosion dynamics, nucleosynthesis, and the neutrinos signal. In this paper, we explore, both numerically and analytically, the landscape of neutrino flavor transformation effects in supernovae due to NSI and find a new, heretofore unseen transformation processes can occur. These new transformations can take place with NSI strengths well below current experimental limits. Within a broad swath of NSI parameter space, we observe symmetric and standard matter-neutrino resonances for supernovae neutrinos, a transformation effect previously only seen in compact object merger scenarios; in another region of the parameter space we find the NSI can induce neutrino collective effects in scenarios where none would appear with only the standard case of neutrino oscillation physics; and in a third region the NSI can lead to the disappearance of the high density Mikheyev-Smirnov-Wolfenstein resonance. Using a variety of analytical tools, we are able to describe quantitatively the numerical results allowing us to partition the NSI parameter according to the transformation processes observed. Our results indicate nonstandard interactions of supernova neutrinos provide a sensitive probe of beyond the Standard Model physics complementary to present and future terrestrial experiments.

  3. Core-Collapse Supernovae, Neutrinos, and Gravitational Waves

    Energy Technology Data Exchange (ETDEWEB)

    Ott, C.D. [TAPIR, California Institute of Technology, Pasadena, California (United States); Kavli Institute for the Physics and Mathematics of the Universe, Kashiwa, Chiba (Japan); O' Connor, E.P. [Canadian Institute for Theoretical Astrophysics, Toronto, Ontario (Canada); Gossan, S.; Abdikamalov, E.; Gamma, U.C.T. [TAPIR, California Institute of Technology, Pasadena, California (United States); Drasco, S. [Grinnell College, Grinnell, Iowa (United States); TAPIR, California Institute of Technology, Pasadena, California (United States)

    2013-02-15

    Core-collapse supernovae are among the most energetic cosmic cataclysms. They are prodigious emitters of neutrinos and quite likely strong galactic sources of gravitational waves. Observation of both neutrinos and gravitational waves from the next galactic or near extragalactic core-collapse supernova will yield a wealth of information on the explosion mechanism, but also on the structure and angular momentum of the progenitor star, and on aspects of fundamental physics such as the equation of state of nuclear matter at high densities and low entropies. In this contribution to the proceedings of the Neutrino 2012 conference, we summarize recent progress made in the theoretical understanding and modeling of core-collapse supernovae. In this, our emphasis is on multi-dimensional processes involved in the explosion mechanism such as neutrino-driven convection and the standing accretion shock instability. As an example of how supernova neutrinos can be used to probe fundamental physics, we discuss how the rise time of the electron antineutrino flux observed in detectors can be used to probe the neutrino mass hierarchy. Finally, we lay out aspects of the neutrino and gravitational-wave signature of core-collapse supernovae and discuss the power of combined analysis of neutrino and gravitational wave data from the next galactic core-collapse supernova.

  4. Core-Collapse Supernovae, Neutrinos, and Gravitational Waves

    International Nuclear Information System (INIS)

    Ott, C.D.; O'Connor, E.P.; Gossan, S.; Abdikamalov, E.; Gamma, U.C.T.; Drasco, S.

    2013-01-01

    Core-collapse supernovae are among the most energetic cosmic cataclysms. They are prodigious emitters of neutrinos and quite likely strong galactic sources of gravitational waves. Observation of both neutrinos and gravitational waves from the next galactic or near extragalactic core-collapse supernova will yield a wealth of information on the explosion mechanism, but also on the structure and angular momentum of the progenitor star, and on aspects of fundamental physics such as the equation of state of nuclear matter at high densities and low entropies. In this contribution to the proceedings of the Neutrino 2012 conference, we summarize recent progress made in the theoretical understanding and modeling of core-collapse supernovae. In this, our emphasis is on multi-dimensional processes involved in the explosion mechanism such as neutrino-driven convection and the standing accretion shock instability. As an example of how supernova neutrinos can be used to probe fundamental physics, we discuss how the rise time of the electron antineutrino flux observed in detectors can be used to probe the neutrino mass hierarchy. Finally, we lay out aspects of the neutrino and gravitational-wave signature of core-collapse supernovae and discuss the power of combined analysis of neutrino and gravitational wave data from the next galactic core-collapse supernova

  5. Supernovae and neutrinos

    International Nuclear Information System (INIS)

    John F. Beacom

    2002-01-01

    A long-standing problem in supernova physics is how to measure the total energy and temperature of ν μ , ν τ , (bar ν) μ , and (bar ν) τ . While of the highest importance, this is very difficult because these flavors only have neutral-current detector interactions. We propose that neutrino-proton elastic scattering, ν + p → ν + p, can be used for the detection of supernova neutrinos in scintillator detectors. It should be emphasized immediately that the dominant signal is on free protons. Though the proton recoil kinetic energy spectrum is soft, with T p ≅ 2E ν 2 /M p , and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from (bar ν) e + p → e + + n. In addition, the measured proton spectrum is related to the incident neutrino spectrum. The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos

  6. Detecting supernova neutrinos in Daya Bay Neutrino Laboratory

    International Nuclear Information System (INIS)

    Huang Mingyang; Guo Xinheng; Yang Binglin

    2011-01-01

    While detecting supernova neutrinos in the Daya Bay neutrino laboratory, several supernova neutrino effects need to be considered, including the supernova shock effects, the neutrino collective effects, the Mikheyev-Smirnov-Wolfenstein (MSW) effects, and the Earth matter effects. The phenomena of neutrino oscillation is affected by the above effects. Using some ratios of the event numbers of different supernova neutrinos, we propose some possible methods to identify the mass hierarchy and acquire information about the neutrino mixing angle θ13 and neutrino masses. (authors)

  7. Neutrinos from type-II supernovae and the neutrino-driven supernova mechanism

    International Nuclear Information System (INIS)

    Janka, H.T.

    1996-01-01

    Supernova 1987A has confirmed fundamental aspects of our theoretical view of type-II supernovae: Type-II supernovae are a consequence of the collapse of the iron core of a massive evolved star and lead to the formation of a neutron star or black hole. This picture is most strongly supported by the detection of electron antineutrinos in the IMB and Kamiokande II experiments in connection with SN 1987A. However, the mechanism causing the supernova explosion is not yet satisfactorily understood. In this paper the properties of the neutrino emission from supernovae and protoneutron stars will be reviewed; analytical estimates will be derived and results of numerical simulations will be shown. It will be demonstrated that the spectral distributions of the emitted neutrinos show clear and systematic discrepancies compared with thermal (black body-type) emission. This must be taken into account when neutrino observations from supernovae are to be interpreted, or when implications of the neutrino emission on nucleosynthesis processes in mantle and envelope of the progenitor star are to be investigated. Furthermore, the influence of neutrinos on the supernova dynamics will be discussed, in particular their crucial role in causing the explosion by Wilson's neutrino-driven delayed mechanism. Possible implications of convection inside the newly born neutron star and between surface and the supernova shock will be addressed and results of multi-dimensional simulations will be presented. (author) 7 figs., 1 tab., refs

  8. Neutrinos from type-II supernovae and the neutrino-driven supernova mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Janka, H T [Max-Planck-Institut fuer Astrophysik, Garching (Germany)

    1996-11-01

    Supernova 1987A has confirmed fundamental aspects of our theoretical view of type-II supernovae: Type-II supernovae are a consequence of the collapse of the iron core of a massive evolved star and lead to the formation of a neutron star or black hole. This picture is most strongly supported by the detection of electron antineutrinos in the IMB and Kamiokande II experiments in connection with SN 1987A. However, the mechanism causing the supernova explosion is not yet satisfactorily understood. In this paper the properties of the neutrino emission from supernovae and protoneutron stars will be reviewed; analytical estimates will be derived and results of numerical simulations will be shown. It will be demonstrated that the spectral distributions of the emitted neutrinos show clear and systematic discrepancies compared with thermal (black body-type) emission. This must be taken into account when neutrino observations from supernovae are to be interpreted, or when implications of the neutrino emission on nucleosynthesis processes in mantle and envelope of the progenitor star are to be investigated. Furthermore, the influence of neutrinos on the supernova dynamics will be discussed, in particular their crucial role in causing the explosion by Wilson`s neutrino-driven delayed mechanism. Possible implications of convection inside the newly born neutron star and between surface and the supernova shock will be addressed and results of multi-dimensional simulations will be presented. (author) 7 figs., 1 tab., refs.

  9. Acquiring information about neutrino parameters by detecting supernova neutrinos

    Science.gov (United States)

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2010-08-01

    We consider the supernova shock effects, the Mikheyev-Smirnov-Wolfenstein effects, the collective effects, and the Earth matter effects in the detection of type II supernova neutrinos on the Earth. It is found that the event number of supernova neutrinos depends on the neutrino mass hierarchy, the neutrino mixing angle θ13, and neutrino masses. Therefore, we propose possible methods to identify the mass hierarchy and acquire information about θ13 and neutrino masses by detecting supernova neutrinos. We apply these methods to some current neutrino experiments.

  10. Decays of supernova neutrinos

    International Nuclear Information System (INIS)

    Lindner, Manfred; Ohlsson, Tommy; Winter, Walter

    2002-01-01

    Supernova neutrinos could be well-suited for probing neutrino decay, since decay may be observed even for very small decay rates or coupling constants. We will introduce an effective operator framework for the combined description of neutrino decay and neutrino oscillations for supernova neutrinos, which can especially take into account two properties: one is the radially symmetric neutrino flux, allowing a decay product to be re-directed towards the observer even if the parent neutrino had a different original direction of propagation. The other is decoherence because of the long baselines for coherently produced neutrinos. We will demonstrate how to use this effective theory to calculate the time-dependent fluxes at the detector. In addition, we will show the implications of a Majoron-like decay model. As a result, we will demonstrate that for certain parameter values one may observe some effects which could also mimic signals similar to the ones expected from supernova models, making it in general harder to separate neutrino and supernova properties

  11. Neutrino astronomy with supernova neutrinos

    Science.gov (United States)

    Brdar, Vedran; Lindner, Manfred; Xu, Xun-Jie

    2018-04-01

    Modern neutrino facilities will be able to detect a large number of neutrinos from the next Galactic supernova. We investigate the viability of the triangulation method to locate a core-collapse supernova by employing the neutrino arrival time differences at various detectors. We perform detailed numerical fits in order to determine the uncertainties of these time differences for the cases when the core collapses into a neutron star or a black hole. We provide a global picture by combining all the relevant current and future neutrino detectors. Our findings indicate that in the scenario of a neutron star formation, supernova can be located with precision of 1.5 and 3.5 degrees in declination and right ascension, respectively. For the black hole scenario, sub-degree precision can be reached.

  12. Neutrino flavor instabilities in a time-dependent supernova model

    Energy Technology Data Exchange (ETDEWEB)

    Abbar, Sajad; Duan, Huaiyu, E-mail: duan@unm.edu

    2015-12-17

    A dense neutrino medium such as that inside a core-collapse supernova can experience collective flavor conversion or oscillations because of the neutral-current weak interaction among the neutrinos. This phenomenon has been studied in a restricted, stationary supernova model which possesses the (spatial) spherical symmetry about the center of the supernova and the (directional) axial symmetry around the radial direction. Recently it has been shown that these spatial and directional symmetries can be broken spontaneously by collective neutrino oscillations. In this letter we analyze the neutrino flavor instabilities in a time-dependent supernova model. Our results show that collective neutrino oscillations start at approximately the same radius in both the stationary and time-dependent supernova models unless there exist very rapid variations in local physical conditions on timescales of a few microseconds or shorter. Our results also suggest that collective neutrino oscillations can vary rapidly with time in the regimes where they do occur which need to be studied in time-dependent supernova models.

  13. On the importance of low-energy beta-beams for supernova neutrino physics

    International Nuclear Information System (INIS)

    Jachowicz, N.; McLaughlin, G.C.

    2005-01-01

    Beta beams, which are neutrino beams produced by the beta decay of nuclei that have been accelerated to high gamma factor, were original proposed for high energy applications, such as the measurement of the third neutrino mixing angle θ 13 . Volpe suggested that a beta beam run at lower gamma factor, would be useful for neutrino measurements in the tens of MeV range. We suggest to exploit the flexibility these beta beam facilities offer, combined with the fact that beta-beam neutrino energies overlap with supernova-neutrino energies, to construct 'synthetic' spectra that approximate an incoming supernova-neutrino energy-distribution. Using these constructed spectra we are able to reproduce total and differential folded supernova-neutrino cross-sections very accurately. We illustrate this technique using Deuterium, 16 O, and 208 Pb. This technique provides an easy and straightforward way to apply the results of a beta-beam neutrino-nucleus measurement to the corresponding supernova-neutrino detector, virtually eliminating potential uncertainties due to nuclear-structure calculations. (author)

  14. Acquire information about neutrino parameters by detecting supernova neutrinos

    OpenAIRE

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2010-01-01

    We consider the supernova shock effects, the Mikheyev-Smirnov-Wolfenstein (MSW) effects, the collective effects, and the Earth matter effects in the detection of type II supernova neutrinos on the Earth. It is found that the event number of supernova neutrinos depends on the neutrino mass hierarchy, the neutrino mixing angle $\\theta_{13}$, and neutrino masses. Therefore, we propose possible methods to identify the mass hierarchy and acquire information about $\\theta_{13}$ and neutrino masses ...

  15. Supernova nucleosynthesis and the physics of neutrino oscillation

    Energy Technology Data Exchange (ETDEWEB)

    Kajino, Toshitaka [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan) and Department of Astronomy, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-11-20

    We studied the explosive nucleosynthesis in core-collapse supernovae and found that several isotopes of rare elements like {sup 7}Li, {sup 11}B, {sup 138}La, {sup 180}Ta and others are predominantly produced by the neutrino interactions with several abundant nuclei. These isotopes are strongly affected by the neutrino flavor oscillation due to the MSW (Mikheyev-Smirnov-Wolfenstein) effect. We here first study how to know the suitable average neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the neutrino oscillation effects on their abundances, and propose a new novel method to determine the neutrino oscillation parameters, {theta}{sub 13} and mass hierarchy, simultaneously. There is recent evidence that some SiC X grains from the Murchison meteorite may contain supernova-produced neutrino-process {sup 11}B and {sup 7}Li encapsulated in the grains. Combining the recent experimental constraints on {theta}{sub 13}, we show that although the uncertainties are still large, our method hints at a marginal preference for an inverted neutrino mass hierarchy for the first time.

  16. Supernova nucleosynthesis and the physics of neutrino oscillation

    Science.gov (United States)

    Kajino, Toshitaka

    2012-11-01

    We studied the explosive nucleosynthesis in core-collapse supernovae and found that several isotopes of rare elements like 7Li, 11B, 138La, 180Ta and others are predominantly produced by the neutrino interactions with several abundant nuclei. These isotopes are strongly affected by the neutrino flavor oscillation due to the MSW (Mikheyev-Smirnov-Wolfenstein) effect. We here first study how to know the suitable average neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the neutrino oscillation effects on their abundances, and propose a new novel method to determine the neutrino oscillation parameters, θ13 and mass hierarchy, simultaneously. There is recent evidence that some SiC X grains from the Murchison meteorite may contain supernova-produced neutrino-process 11B and 7Li encapsulated in the grains. Combining the recent experimental constraints on θ13, we show that although the uncertainties are still large, our method hints at a marginal preference for an inverted neutrino mass hierarchy for the first time.

  17. Neutrino flavor instabilities in a time-dependent supernova model

    Directory of Open Access Journals (Sweden)

    Sajad Abbar

    2015-12-01

    Full Text Available A dense neutrino medium such as that inside a core-collapse supernova can experience collective flavor conversion or oscillations because of the neutral-current weak interaction among the neutrinos. This phenomenon has been studied in a restricted, stationary supernova model which possesses the (spatial spherical symmetry about the center of the supernova and the (directional axial symmetry around the radial direction. Recently it has been shown that these spatial and directional symmetries can be broken spontaneously by collective neutrino oscillations. In this letter we analyze the neutrino flavor instabilities in a time-dependent supernova model. Our results show that collective neutrino oscillations start at approximately the same radius in both the stationary and time-dependent supernova models unless there exist very rapid variations in local physical conditions on timescales of a few microseconds or shorter. Our results also suggest that collective neutrino oscillations can vary rapidly with time in the regimes where they do occur which need to be studied in time-dependent supernova models.

  18. Supernova Neutrino-Process and Implication in Neutrino Oscillation

    Science.gov (United States)

    Kajino, T.; Aoki, W.; Fujiya, W.; Mathews, G. J.; Yoshida, T.; Shaku, K.; Nakamura, K.; Hayakawa, T.

    2012-08-01

    We studied the supernova nucleosynthesis induced by neutrino interactions and found that several isotopes of rare elements like 7Li, 11B, 138La, 180Ta and many others are predominantly produced by the neutrino-process in core-collapse supernovae. These isotopes are strongly affected by the neutrino flavor oscillation due to the MSW (Mikheyev-Smirnov-Wolfenstein) effect. We here propose a new novel method to determine the unknown neutrino oscillation parameters, θ13 and mass hierarchy simultaneously from the supernova neutrino-process, combined with the r-process for heavy-element synthsis and the Galactic chemical evolution on light nuclei.

  19. Supernova Neutrino Physics with Xenon Dark Matter Detectors

    NARCIS (Netherlands)

    Reichard, S.; Lang, R.F.; McCabe, C.; Selvi, M.; Tamborra, I.

    2017-01-01

    The dark matter experiment XENON1T is operational and sensitive to all flavors of neutrinos emitted from a supernova. We show that the proportional scintillation signal (S2) allows for a clear observation of the neutrino signal and guarantees a particularly low energy threshold, while the

  20. Supernova neutrinos

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    In the first part of his in-depth article on the 1987 supernova, David Schramm of the University of Chicago and the NASA/Fermilab Astrophysics Centre reviewed the background to supernovae, the composition of massive stars and the optical history of SN 1987A, and speculated on what the 1987 remnant might be. In such a Type II supernova, gravitational pressure crushes the atoms of the star's interior producing neutron matter, or even a black hole, and releasing an intense burst of neutrinos. 1987 was the first time that physicists were equipped (but not entirely ready!) to intercept these particles, and in the second part of his article, David Schramm covers the remarkable new insights from the science of supernova neutrino astronomy, born on 23 February 1987

  1. Astrophysical and terrestrial neutrinos in Supernova detectors

    International Nuclear Information System (INIS)

    Lagage, P.O.

    1985-09-01

    Supernova (SN) explosions are the place of very fundamental phenomena, whose privileged messengers are neutrinos. But such events are very rare. Then, SN detection has to be combined with other purposes. The recent developments of SN detectors have been associated with developments of underground particle physics (proton decay, monopoles ...). But here, I will restrict myself to discuss the possibilities for a supernova detector to be sensitive to other sources of neutrinos, astrophysical or terrestrial

  2. Supernova neutrinos

    International Nuclear Information System (INIS)

    John Beacom

    2003-01-01

    We propose that neutrino-proton elastic scattering, ν + p → ν + p, can be used for the detection of supernova neutrinos. Though the proton recoil kinetic energy spectrum is soft, with T p ≅ 2E ν 2 /M p , and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from (bar ν) e + p → e + + n. In addition, the measured proton spectrum is related to the incident neutrino spectrum, which solves a long-standing problem of how to separately measure the total energy release and temperature of ν μ , ν τ , (bar ν) μ , and (bar ν) τ . The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos

  3. Monte Carlo study of neutrino acceleration in supernova shocks

    International Nuclear Information System (INIS)

    Kazanas, Demosthenes; Ellison, D.C.; National Aeronautics and Space Administration, Greenbelt, MD

    1981-01-01

    The first order Fermi acceleration mechanism of cosmic rays in shocks may be at work for neutrinos in supernova shocks when the latter are at densities rho>10 13 g cm -3 at which the core material is opaque to neutrinos. A Monte Carlo approach to study this effect is employed and the emerging neutrino power law spectra are presented. The increased energy acquired by the neutrinos may facilitate their detection in supernova explosions and provide information about the physics of collapse

  4. Neutrinos in supernovae

    International Nuclear Information System (INIS)

    Cooperstein, J.

    1986-10-01

    The role of neutrinos in Type II supernovae is discussed. An overall view of the neutrino luminosity as expected theoretically is presented. The different weak interactions involved are assessed from the standpoint of how they exchange energy, momentum, and lepton number. Particular attention is paid to entropy generation and the path to thermal and chemical equilibration, and to the phenomenon of trapping. Various methods used to calculate the neutrino flows are considered. These include trapping and leakage schemes, distribution-averaged transfer, and multi-energy group methods. The information obtained from the neutrinos caught from Supernova 1987a is briefly evaluated. 55 refs., 7 figs

  5. Supernova neutrino detection

    International Nuclear Information System (INIS)

    Selvi, M.

    2005-01-01

    Neutrinos emitted during a supernova core collapse represent a unique feature to study both stellar and neutrino properties. After discussing the details of the neutrino emission in the star and the effect of neutrino oscillations on the expected neutrino fluxes at Earth, a review of the detection techniques is presented in this paper, with particular attention to the problem of electron neutrino detection

  6. Neutrino Emission from Supernovae

    Science.gov (United States)

    Janka, Hans-Thomas

    Supernovae are the most powerful cosmic sources of MeV neutrinos. These elementary particles play a crucial role when the evolution of a massive star is terminated by the collapse of its core to a neutron star or a black hole and the star explodes as supernova. The release of electron neutrinos, which are abundantly produced by electron captures, accelerates the catastrophic infall and causes a gradual neutronization of the stellar plasma by converting protons to neutrons as dominant constituents of neutron star matter. The emission of neutrinos and antineutrinos of all flavors carries away the gravitational binding energy of the compact remnant and drives its evolution from the hot initial to the cold final state. The absorption of electron neutrinos and antineutrinos in the surroundings of the newly formed neutron star can power the supernova explosion and determines the conditions in the innermost supernova ejecta, making them an interesting site for the nucleosynthesis of iron-group elements and trans-iron nuclei.

  7. Supernova neutrinos and explosive nucleosynthesis

    Science.gov (United States)

    Kajino, T.; Aoki, W.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Mathews, G. J.; Nakamura, K.; Shibagaki, S.; Suzuki, T.

    2014-05-01

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes 7Li, 11B, 92Nb, 138La and 180Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and θ13, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements 11B and 7Li encapsulated in the presolar grains. Combining the recent experimental constraints on θ13, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  8. Supernova neutrinos and explosive nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J.; Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Mathews, G. J. [Center for Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Nakamura, K. [Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Suzuki, T. [Department of Physics, College of Humanities and Sciences, Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

    2014-05-09

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and θ{sub 13}, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements {sup 11}B and {sup 7}Li encapsulated in the presolar grains. Combining the recent experimental constraints on θ{sub 13}, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  9. Supernova neutrino detection in LZ

    Science.gov (United States)

    Khaitan, D.

    2018-02-01

    In the first 10 seconds of a core-collapse supernova, almost all of its progenitor's gravitational potential, O(1053 ergs), is carried away in the form of neutrinos. These neutrinos, with O(10 MeV) kinetic energy, can interact via coherent elastic neutrino-nucleus scattering (CEνNS) depositing O(1 keV) in detectors. In this work we describe the performances of low-background dark matter detectors, such as LUX-ZEPLIN (LZ), optimized for detecting low-energy depositions, in detecting these neutrino interactions. For instance, a 27 Msolar supernova at 10 kpc is expected to produce ~350 neutrino interactions in the 7-tonne liquid xenon active volume of LZ. Based on the LS220 EoS neutrino flux model for a SN, the Noble Element Simulation Technique (NEST), and predicted CEνNS cross-sections for xenon, to study energy deposition and detection of SN neutrinos in LZ. We simulate the response of the LZ data acquisition system (DAQ) and demonstrate its capability and limitations in handling this interaction rate. We present an overview of the LZ detector, focusing on the benefits of liquid xenon for supernova neutrino detection. We discuss energy deposition and detector response simulations and their results. We present an analysis technique to reconstruct the total number of neutrinos and the time of the supernova core bounce.

  10. Synoptic sky surveys and the diffuse supernova neutrino background: Removing astrophysical uncertainties and revealing invisible supernovae

    International Nuclear Information System (INIS)

    Lien, Amy; Fields, Brian D.; Beacom, John F.

    2010-01-01

    The cumulative (anti)neutrino production from all core-collapse supernovae within our cosmic horizon gives rise to the diffuse supernova neutrino background (DSNB), which is on the verge of detectability. The observed flux depends on supernova physics, but also on the cosmic history of supernova explosions; currently, the cosmic supernova rate introduces a substantial (±40%) uncertainty, largely through its absolute normalization. However, a new class of wide-field, repeated-scan (synoptic) optical sky surveys is coming online, and will map the sky in the time domain with unprecedented depth, completeness, and dynamic range. We show that these surveys will obtain the cosmic supernova rate by direct counting, in an unbiased way and with high statistics, and thus will allow for precise predictions of the DSNB. Upcoming sky surveys will substantially reduce the uncertainties in the DSNB source history to an anticipated ±5% that is dominated by systematics, so that the observed high-energy flux thus will test supernova neutrino physics. The portion of the universe (z < or approx. 1) accessible to upcoming sky surveys includes the progenitors of a large fraction (≅87%) of the expected 10-26 MeV DSNB event rate. We show that precision determination of the (optically detected) cosmic supernova history will also make the DSNB into a strong probe of an extra flux of neutrinos from optically invisible supernovae, which may be unseen either due to unexpected large dust obscuration in host galaxies, or because some core-collapse events proceed directly to black hole formation and fail to give an optical outburst.

  11. Detection of supernova neutrinos at spallation neutron sources

    Science.gov (United States)

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2016-07-01

    After considering supernova shock effects, Mikheyev-Smirnov-Wolfenstein effects, neutrino collective effects, and Earth matter effects, the detection of supernova neutrinos at the China Spallation Neutron Source is studied and the expected numbers of different flavor supernova neutrinos observed through various reaction channels are calculated with the neutrino energy spectra described by the Fermi-Dirac distribution and the “beta fit” distribution respectively. Furthermore, the numerical calculation method of supernova neutrino detection on Earth is applied to some other spallation neutron sources, and the total expected numbers of supernova neutrinos observed through different reactions channels are given. Supported by National Natural Science Foundation of China (11205185, 11175020, 11275025, 11575023)

  12. Supernovae and neutrinos

    International Nuclear Information System (INIS)

    Totsuka, Y.

    1991-01-01

    On February 25, 1987, a sheet of telefax came to us from S. A. Bludman, saying Supernova went off in Large Magellanic Clouds. Can you see it? This is what we have been waiting 350 years for exclamation point In few hours, more information arrived. But it was still too early to definitely identify the supernova as type I or type II. This paper reports that the type I supernova is an explosion of a complete star due to uncontrolled nuclear fusion, while the type II supernova is triggered by gravitational collapse of the Fe core of a massive star (≥8 solar mass). It is this type II supernova that would leave a neutron star or a black hole after the liberation of an enormous amount of energy (3 x 10 53 erg) in the form of neutrinos. Therefore only the type II supernova is a relevant place to look for neutrino signals. It was also frustrating that the time when the stellar collapse actually took place was not definitely determined, because it was believed that the supernova brightened up about a day after the collapse and there was an ambiguity in a time lag of the optical observation. There was a possibility that it had happened well before February 24

  13. Identifying the neutrino mass spectrum from a supernova neutrino burst

    International Nuclear Information System (INIS)

    Dighe, A.S.; Smirnov, A.Yu.

    1999-12-01

    We study the role that the future detection of the neutrino burst from a galactic supernova can play in the reconstruction of the neutrino mass spectrum. We consider all possible 3ν mass and flavor spectra which describe the solar and atmospheric neutrino data. For each of these spectra we find the observable effects of the supernova neutrino conversions both in the matter of the star and the earth. We show that studies of the electron neutrino and antineutrino spectra as well as observations of the neutral current effects from supernova will allow us (i) to identify the solar neutrino solution, (ii) to determine the type of mass hierarchy (normal or inverted) and (iii) to probe the mixing vertical bar U e3 vertical bar 2 to values as low as 10 -4 - 10 -3 . (author)

  14. Chiral transport of neutrinos in supernovae

    Directory of Open Access Journals (Sweden)

    Yamamoto Naoki

    2017-01-01

    Full Text Available The conventional neutrino transport theory for core-collapse supernovae misses one key property of neutrinos: the left-handedness. The chirality of neutrinos modifies the hydrodynamic behavior at the macroscopic scale and leads to topological transport phenomena. We argue that such transport phenomena should play important roles in the evolution of core-collapse supernovae, and, in particular, lead to a tendency toward the inverse energy cascade from small to larger scales, which may be relevant to the origin of the supernova explosion.

  15. Supernova relic electron neutrinos and anti-neutrinos in future large-scale observatories

    International Nuclear Information System (INIS)

    Volpe, C.; Welzel, J.

    2007-01-01

    We investigate the signal from supernova relic neutrinos in future large scale observatories, such as MEMPHYS (UNO, Hyper-K), LENA and GLACIER, at present under study. We discuss that complementary information might be gained from the observation of supernova relic electron antineutrinos and neutrinos using the scattering on protons on one hand, and on nuclei such as oxygen, carbon or argon on the other hand. When determining the relic neutrino fluxes we also include, for the first time, the coupling of the neutrino magnetic moment to magnetic fields within the core collapse supernova. We present numerical results on both the relic ν e and ν-bar e fluxes and on the number of events for ν e + C 12 , ν e + O 16 , ν e + Ar 40 and ν-bar e + p for various oscillation scenarios. The observation of supernova relic neutrinos might provide us with unique information on core-collapse supernova explosions, on the star formation history and on neutrino properties, that still remain unknown. (authors)

  16. Physical processes in collapse driven supernova

    International Nuclear Information System (INIS)

    Mayle, R.W.

    1985-11-01

    A model of the supernova explosion is discussed. The method of neutrino transport is discussed, since the explosive mechanism depends on neutrino heating of the material behind the accretion shock. The core region of these exploding stars becomes unstable to convective motions during the supernova evolution. Convective mixing allows more neutrinos to escape from under the neutrinosphere, and thus increases the amount of heating by neutrinos. An approximate method of incorporating convection is described, and some results of including convection in a computer model is presented. Another phenomena is seen in computer simulations of supernova, oscillations in the neutrino luminosity and mass accretion rate onto the protoneutron star. The last topic discussed in this thesis describes the attempt to understand this oscillation by perturbation of the steady state solution to equations approximating the complex physical processes occurring in the late time supernova. 42 refs., 31 figs

  17. Physical processes in collapse driven supernova

    Energy Technology Data Exchange (ETDEWEB)

    Mayle, R.W.

    1985-11-01

    A model of the supernova explosion is discussed. The method of neutrino transport is discussed, since the explosive mechanism depends on neutrino heating of the material behind the accretion shock. The core region of these exploding stars becomes unstable to convective motions during the supernova evolution. Convective mixing allows more neutrinos to escape from under the neutrinosphere, and thus increases the amount of heating by neutrinos. An approximate method of incorporating convection is described, and some results of including convection in a computer model is presented. Another phenomena is seen in computer simulations of supernova, oscillations in the neutrino luminosity and mass accretion rate onto the protoneutron star. The last topic discussed in this thesis describes the attempt to understand this oscillation by perturbation of the steady state solution to equations approximating the complex physical processes occurring in the late time supernova. 42 refs., 31 figs.

  18. Shedding New Light on Exploding Stars: Tera-Scale Simulation of Neutrino-Driven Supernovae and their Nucleosynthesis. Final Report

    International Nuclear Information System (INIS)

    Fuller, George M.

    2006-01-01

    Goals: I took seriously the charge to SciDAC P.I.'s to go after outstanding and key physics problems with cutting-edge numerical science. I proposed solving a key problem in core collapse supernova physics: the evolution of neutrino flavors in the supernova environment. A great deal may be riding on the solution to this problem. First, laboratory physics outstripped the supernova theorists, providing us with neutrino mass-squared differences and two of the three vacuum mixing angles. This data had not been incorporated into core collapse supernova models before, but it clearly pointed to the possibility of major changes to our existing supernova neutrino paradigm. Second, knowing how the neutrino and antineutrino energy spectra and fluxes evolved through flavor inter-conversion could be crucial for determining and understanding the supernova neutrino signal, light p-process, and r-process nucleosynthesis, and possibly even the shock re-heating problem. Moreover, much about fundamental neutrino properties remains unresolved by terrestrial experiment (e.g., the neutrino mass hierarchy, θ 13 , etc.). Unraveling the supernova neutrino flavor evolution problem coupled with a future Galactic supernova signal could allow determination of these unknown neutrino properties. Results and Findings: We solved the problem of coherent neutrino flavor evolution (both 2 x 2 and 3 x 3) in the supernova environment, for the first time incorporating self-consistently the nonlinear geometric and quantum trajectory coupling outlined above. The results were unexpected and surprising. These results hold out the possibility that a future Galactic supernova neutrino signal could give us significant insights into both fundamental neutrino physics, otherwise inacces- sible in the lab (e.g., the neutrino mass hierarchy, θ 13 ), and key issues in supernova physics (e.g., distinguishing between Fe core collapse and O-Ne-Mg core collapse events). First, the numerical solution to this problem

  19. New prospects for detecting high-energy neutrinos from nearby supernovae

    Science.gov (United States)

    Murase, Kohta

    2018-04-01

    Neutrinos from supernovae (SNe) are crucial probes of explosive phenomena at the deaths of massive stars and neutrino physics. High-energy neutrinos are produced through hadronic processes by cosmic rays, which are accelerated during interaction between the supernova (SN) ejecta and circumstellar material (CSM). Recent observations of extragalactic SNe have revealed that a dense CSM is commonly expelled by the progenitor star. We provide new quantitative predictions of time-dependent high-energy neutrino emission from diverse types of SNe. We show that IceCube and KM3Net can detect ˜103 events from a SN II-P (and ˜3 ×105 events from a SN IIn) at a distance of 10 kpc. The new model also enables us to critically optimize the time window for dedicated searches for nearby SNe. A successful detection will give us a multienergy neutrino view of SN physics and new opportunities to study neutrino properties, as well as clues to the cosmic-ray origin. GeV-TeV neutrinos may also be seen by KM3Net, Hyper-Kamiokande, and PINGU.

  20. Supernova relic electron neutrinos and anti-neutrinos in future large-scale observatories

    Energy Technology Data Exchange (ETDEWEB)

    Volpe, C.; Welzel, J. [Institut de Physique Nuclueaire, 91 - Orsay (France)

    2007-07-01

    We investigate the signal from supernova relic neutrinos in future large scale observatories, such as MEMPHYS (UNO, Hyper-K), LENA and GLACIER, at present under study. We discuss that complementary information might be gained from the observation of supernova relic electron antineutrinos and neutrinos using the scattering on protons on one hand, and on nuclei such as oxygen, carbon or argon on the other hand. When determining the relic neutrino fluxes we also include, for the first time, the coupling of the neutrino magnetic moment to magnetic fields within the core collapse supernova. We present numerical results on both the relic {nu}{sub e} and {nu}-bar{sub e} fluxes and on the number of events for {nu}{sub e} + C{sup 12}, {nu}{sub e} + O{sup 16}, {nu}{sub e} + Ar{sup 40} and {nu}-bar{sub e} + p for various oscillation scenarios. The observation of supernova relic neutrinos might provide us with unique information on core-collapse supernova explosions, on the star formation history and on neutrino properties, that still remain unknown. (authors)

  1. Cosmological and supernova neutrinos

    Science.gov (United States)

    Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Shibagaki, S.; Suzuki, T.

    2014-06-01

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial 7Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and 7Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like 7Li, 11B, 92Nb, 138La and 180Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ13 with predicted and observed supernova-produced abundance ratio 11B/7Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  2. Supernova signatures of neutrino mass ordering

    Science.gov (United States)

    Scholberg, Kate

    2018-01-01

    A suite of detectors around the world is poised to measure the flavor-energy-time evolution of the ten-second burst of neutrinos from a core-collapse supernova occurring in the Milky Way or nearby. Next-generation detectors to be built in the next decade will have enhanced flavor sensitivity and statistics. Not only will the observation of this burst allow us to peer inside the dense matter of the extreme event and learn about the collapse processes and the birth of the remnant, but the neutrinos will bring information about neutrino properties themselves. This review surveys some of the physical signatures that the currently-unknown neutrino mass pattern will imprint on the observed neutrino events at Earth, emphasizing the most robust and least model-dependent signatures of mass ordering.

  3. Cosmological and supernova neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Balantekin, A. B. [Department of Physics, University of Wisconsin - Madison, Wisconsin 53706 (United States); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Kusakabe, M. [School of Liberal Arts and Science, Korea Aerospace University, Goyang 412-791 (Korea, Republic of); Mathews, G. J. [Department of Physics, University of Notre Dame, IN 46556 (United States); Nakamura, K. [Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Pehlivan, Y. [Mimar Sinan GSÜ, Department of Physics, Şişli, İstanbul 34380 (Turkey); Suzuki, T. [Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

    2014-06-24

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial {sup 7}Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and {sup 7}Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ{sub 13} with predicted and observed supernova-produced abundance ratio {sup 11}B/{sup 7}Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  4. Neutrino physics in heaven

    International Nuclear Information System (INIS)

    Raffelt, G.

    2005-01-01

    After a brief overview of the usual topics that connect astrophysics and cosmology with neutrino physics I will focus on two main themes. First, what can we learn from the neutrino signal of a future galactic supernova, in particular about the neutrino mass ordering. Second, what can we learn about neutrino properties from cosmological observables, notably about the neutrino absolute mass scale from cosmological large-scale structure observables. (author)

  5. Effects of neutrino oscillations on nucleosynthesis and neutrino signals for an 18 M⊙ supernova model

    Science.gov (United States)

    Wu, Meng-Ru; Qian, Yong-Zhong; Martínez-Pinedo, Gabriel; Fischer, Tobias; Huther, Lutz

    2015-03-01

    In this paper, we explore the effects of neutrino flavor oscillations on supernova nucleosynthesis and on the neutrino signals. Our study is based on detailed information about the neutrino spectra and their time evolution from a spherically symmetric supernova model for an 18 M⊙ progenitor. We find that collective neutrino oscillations are not only sensitive to the detailed neutrino energy and angular distributions at emission, but also to the time evolution of both the neutrino spectra and the electron density profile. We apply the results of neutrino oscillations to study the impact on supernova nucleosynthesis and on the neutrino signals from a Galactic supernova. We show that in our supernova model, collective neutrino oscillations enhance the production of rare isotopes 138La and 180Ta but have little impact on the ν p -process nucleosynthesis. In addition, the adiabatic Mikheyev-Smirnov-Wolfenstein flavor transformation, which occurs in the C /O and He shells of the supernova, may affect the production of light nuclei such as 7Li and 11B. For the neutrino signals, we calculate the rate of neutrino events in the Super-Kamiokande detector and in a hypothetical liquid argon detector. Our results suggest the possibility of using the time profiles of the events in both detectors, along with the spectral information of the detected neutrinos, to infer the neutrino mass hierarchy.

  6. Neutrino physics with JUNO

    Science.gov (United States)

    An, Fengpeng; An, Guangpeng; An, Qi; Antonelli, Vito; Baussan, Eric; Beacom, John; Bezrukov, Leonid; Blyth, Simon; Brugnera, Riccardo; Buizza Avanzini, Margherita; Busto, Jose; Cabrera, Anatael; Cai, Hao; Cai, Xiao; Cammi, Antonio; Cao, Guofu; Cao, Jun; Chang, Yun; Chen, Shaomin; Chen, Shenjian; Chen, Yixue; Chiesa, Davide; Clemenza, Massimiliano; Clerbaux, Barbara; Conrad, Janet; D'Angelo, Davide; De Kerret, Hervé; Deng, Zhi; Deng, Ziyan; Ding, Yayun; Djurcic, Zelimir; Dornic, Damien; Dracos, Marcos; Drapier, Olivier; Dusini, Stefano; Dye, Stephen; Enqvist, Timo; Fan, Donghua; Fang, Jian; Favart, Laurent; Ford, Richard; Göger-Neff, Marianne; Gan, Haonan; Garfagnini, Alberto; Giammarchi, Marco; Gonchar, Maxim; Gong, Guanghua; Gong, Hui; Gonin, Michel; Grassi, Marco; Grewing, Christian; Guan, Mengyun; Guarino, Vic; Guo, Gang; Guo, Wanlei; Guo, Xin-Heng; Hagner, Caren; Han, Ran; He, Miao; Heng, Yuekun; Hsiung, Yee; Hu, Jun; Hu, Shouyang; Hu, Tao; Huang, Hanxiong; Huang, Xingtao; Huo, Lei; Ioannisian, Ara; Jeitler, Manfred; Ji, Xiangdong; Jiang, Xiaoshan; Jollet, Cécile; Kang, Li; Karagounis, Michael; Kazarian, Narine; Krumshteyn, Zinovy; Kruth, Andre; Kuusiniemi, Pasi; Lachenmaier, Tobias; Leitner, Rupert; Li, Chao; Li, Jiaxing; Li, Weidong; Li, Weiguo; Li, Xiaomei; Li, Xiaonan; Li, Yi; Li, Yufeng; Li, Zhi-Bing; Liang, Hao; Lin, Guey-Lin; Lin, Tao; Lin, Yen-Hsun; Ling, Jiajie; Lippi, Ivano; Liu, Dawei; Liu, Hongbang; Liu, Hu; Liu, Jianglai; Liu, Jianli; Liu, Jinchang; Liu, Qian; Liu, Shubin; Liu, Shulin; Lombardi, Paolo; Long, Yongbing; Lu, Haoqi; Lu, Jiashu; Lu, Jingbin; Lu, Junguang; Lubsandorzhiev, Bayarto; Ludhova, Livia; Luo, Shu; Lyashuk, Vladimir; Möllenberg, Randolph; Ma, Xubo; Mantovani, Fabio; Mao, Yajun; Mari, Stefano M.; McDonough, William F.; Meng, Guang; Meregaglia, Anselmo; Meroni, Emanuela; Mezzetto, Mauro; Miramonti, Lino; Mueller, Thomas; Naumov, Dmitry; Oberauer, Lothar; Ochoa-Ricoux, Juan Pedro; Olshevskiy, Alexander; Ortica, Fausto; Paoloni, Alessandro; Peng, Haiping; Peng, Jen-Chieh; Previtali, Ezio; Qi, Ming; Qian, Sen; Qian, Xin; Qian, Yongzhong; Qin, Zhonghua; Raffelt, Georg; Ranucci, Gioacchino; Ricci, Barbara; Robens, Markus; Romani, Aldo; Ruan, Xiangdong; Ruan, Xichao; Salamanna, Giuseppe; Shaevitz, Mike; Sinev, Valery; Sirignano, Chiara; Sisti, Monica; Smirnov, Oleg; Soiron, Michael; Stahl, Achim; Stanco, Luca; Steinmann, Jochen; Sun, Xilei; Sun, Yongjie; Taichenachev, Dmitriy; Tang, Jian; Tkachev, Igor; Trzaska, Wladyslaw; van Waasen, Stefan; Volpe, Cristina; Vorobel, Vit; Votano, Lucia; Wang, Chung-Hsiang; Wang, Guoli; Wang, Hao; Wang, Meng; Wang, Ruiguang; Wang, Siguang; Wang, Wei; Wang, Yi; Wang, Yi; Wang, Yifang; Wang, Zhe; Wang, Zheng; Wang, Zhigang; Wang, Zhimin; Wei, Wei; Wen, Liangjian; Wiebusch, Christopher; Wonsak, Björn; Wu, Qun; Wulz, Claudia-Elisabeth; Wurm, Michael; Xi, Yufei; Xia, Dongmei; Xie, Yuguang; Xing, Zhi-zhong; Xu, Jilei; Yan, Baojun; Yang, Changgen; Yang, Chaowen; Yang, Guang; Yang, Lei; Yang, Yifan; Yao, Yu; Yegin, Ugur; Yermia, Frédéric; You, Zhengyun; Yu, Boxiang; Yu, Chunxu; Yu, Zeyuan; Zavatarelli, Sandra; Zhan, Liang; Zhang, Chao; Zhang, Hong-Hao; Zhang, Jiawen; Zhang, Jingbo; Zhang, Qingmin; Zhang, Yu-Mei; Zhang, Zhenyu; Zhao, Zhenghua; Zheng, Yangheng; Zhong, Weili; Zhou, Guorong; Zhou, Jing; Zhou, Li; Zhou, Rong; Zhou, Shun; Zhou, Wenxiong; Zhou, Xiang; Zhou, Yeling; Zhou, Yufeng; Zou, Jiaheng

    2016-03-01

    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy (MH) as a primary physics goal. The excellent energy resolution and the large fiducial volume anticipated for the JUNO detector offer exciting opportunities for addressing many important topics in neutrino and astro-particle physics. In this document, we present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. Following an introduction summarizing the current status and open issues in neutrino physics, we discuss how the detection of antineutrinos generated by a cluster of nuclear power plants allows the determination of the neutrino MH at a 3-4σ significance with six years of running of JUNO. The measurement of antineutrino spectrum with excellent energy resolution will also lead to the precise determination of the neutrino oscillation parameters {{sin}}2{θ }12, {{Δ }}{m}212, and | {{Δ }}{m}{ee}2| to an accuracy of better than 1%, which will play a crucial role in the future unitarity test of the MNSP matrix. The JUNO detector is capable of observing not only antineutrinos from the power plants, but also neutrinos/antineutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, and solar neutrinos. As a result of JUNO's large size, excellent energy resolution, and vertex reconstruction capability, interesting new data on these topics can be collected. For example, a neutrino burst from a typical core-collapse supernova at a distance of 10 kpc would lead to ˜5000 inverse-beta-decay events and ˜2000 all-flavor neutrino-proton ES events in JUNO, which are of crucial importance for understanding the mechanism of supernova explosion and for exploring novel phenomena such as collective neutrino oscillations

  7. Neutrino signal from pair-instability supernovae

    Science.gov (United States)

    Wright, Warren P.; Gilmer, Matthew S.; Fröhlich, Carla; Kneller, James P.

    2017-11-01

    A very massive star with a carbon-oxygen core in the range of 64M ⊙Earth from two, one-dimensional pair-instability supernova simulations which bracket the mass range of stars which explode by this mechanism taking into account the full time and energy dependence of the neutrino emission and the flavor evolution through the outer layers of the star. We calculate the neutrino signals in five different detectors chosen to represent present or near future designs. We find the more massive progenitors explode as pair-instability supernova which can easily be detected in multiple different neutrino detectors at the "standard" supernova distance of 10 kpc producing several events in DUNE, JUNO, and Super-Kamiokande, while the lightest progenitors produce only a handful of events (if any) in the same detectors. The proposed Hyper-Kamiokande detector would detect neutrinos from a large pair-instability supernova as far as ˜50 kpc allowing it to reach the Megallanic Clouds and the several very high mass stars known to exist there.

  8. Effects of neutrino oscillation on supernova neutrino. Inverted mass hierarchy

    International Nuclear Information System (INIS)

    Takahashi, Keitaro; Sato, Katsuhiko

    2003-01-01

    We study the effects of neutrino oscillation on supernova neutrinos in the case of the inverted mass hierarchy (m 3 1 2 ) as well as the normal mass hierarchy (m 1 2 3 ). Numerical analysis using realistic supernova and presupernova models allows us to investigate quantitatively the possibility to probe neutrino oscillation parameters. We show that information about the mass hierarchy can be obtained if θ 13 is rather large (sin 2 2θ 13 > 10 -3 ) and that θ 13 can be probed effectively by SuperKamiokande if the neutrino mass hierarchy is inverted. Errors due to the uncertainty in the original neutrino spectra and the Earth effect are also discussed. (author)

  9. Neutrino-driven supernovae: An accretion instability in a nuclear physics controlled environment

    International Nuclear Information System (INIS)

    Janka, H.-T.; Buras, R.; Kitaura Joyanes, F.S.; Marek, A.; Rampp, M.; Scheck, L.

    2005-01-01

    New simulations demonstrate that low-mode, nonradial hydrodynamic instabilities of the accretion shock help starting hot-bubble convection in supernovae and thus support explosions by the neutrino-heating mechanism. The prevailing conditions depend on the high-density equation of state which governs stellar core collapse, core bounce, and neutron star formation. Tests of this sensitivity to nuclear physics variations are shown for spherically symmetric models. Implications of current explosion models for r-process nucleosynthesis are addressed

  10. Resonant Spin-Flavor Conversion of Supernova Neutrinos

    Science.gov (United States)

    Ando, Shin'ichiro; Sato, K.

    2003-07-01

    We investigate resonant spin-flavor (RSF) conversions of supernova neutrinos which are induced by the interaction of neutrino magnetic moment and supernova magnetic fields. With a new diagram we propose, it is found that four conversions occur in supernovae, two are induced by the RSF effect and two by the pure Mikheyev-Smirnov-Wolfenstein (MSW) effect. The realistic numerical calculation of neutrino conversions indicates that the RSF-induced νe ↔ ντ tran¯ -12 9 -1 sition occurs efficiently, when µν > 10 µB (B0 /5 × 10 G) , where B0 is the strength of the magnetic field at the surface of iron core. We also evaluate the energy spectrum as a function of µν B0 at the super-Kamiokande detector using the calculated conversion probabilities, and find that the spectral deformation might have possibility to provide useful information on the neutrino magnetic moment as well as the magnetic field strength in supernovae.

  11. Detection of supernova neutrinos by neutrino-proton elastic scattering

    International Nuclear Information System (INIS)

    Beacom, John F.; Farr, Will M.; Vogel, Petr

    2002-01-01

    We propose that neutrino-proton elastic scattering, ν+p→ν+p, can be used for the detection of supernova neutrinos in scintillator detectors. Though the proton recoil kinetic energy spectrum is soft, with T p ≅2E ν 2 /M p , and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from ν(bar sign) e +p→e + +n. In addition, the measured proton spectrum is related to the incident neutrino spectrum, which solves a long-standing problem of how to separately measure the total energy and temperature of ν μ , ν τ , ν(bar sign) μ , and ν(bar sign) τ . The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos

  12. Pair production of helicity-flipped neutrinos in supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Perez, A. (NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Box 500, Batavia, Illinois 60510-0500 (USA) Departamento de Fisica Teorica, Universidad de Valencia, 46100 Burjassot (Valencia) (Spain)); Gandhi, R. (Department of Physics and Astronomy, University of Arizona, Tucson, AZ (USA))

    1990-04-15

    We calculate the emissivity for the pair production of helicity-flipped neutrinos, in a way that can be used in supernova calculations. We also present some simple estimates which show that such a process can act as an efficient energy-loss mechanism in the shocked supernova core, and we use this fact to estimate neutrino mass limits from SN 1987A neutrino observations.

  13. Pair production of helicity-flipped neutrinos in supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Perez, A.; Gandhi, R.

    1989-07-03

    We calculate the emissivity for the pair production of helicity-flipped neutrinos, in a way that can be used in supernova calculations. We also present some simple estimates which show that such processes can act as an efficient energy-loss mechanism in the shocked supernova core, and we use this fact to extract neutrino mass limits from SN1987A neutrino observations. 24 refs., 2 figs.

  14. Neutrino Observation of Core Collapse Supernovae

    Science.gov (United States)

    Nakazato, Ken'ichiro

    The event rate of the supernova neutrinos are predicted for the future SK-Gd experiment. With an eye on the neutron tagging by Gd, the energy and angular distributions are calculated both for tagged events from inverse β decay reaction and untagged events from other reactions. As a result, it is indicated that the shock revival in the supernova is detectable through the decrease of the event rate and decline of the average energy of events. It is also implied that a careful treatment for the neutrino spectra is needed to investigate the untagged events owing to the high neutrino threshold energy of 16O reactions.

  15. Effects of neutrino oscillation on supernova neutrino: inverted mass hierarchy

    International Nuclear Information System (INIS)

    Takahashi, Keitaro; Sato, Katsuhiko

    2003-01-01

    We study the effects of neutrino oscillation on supernova neutrino in the case of the inverted mass hierarchy (m 3 1 2 ). This is an extended study of our previous study where all analyses are performed with normal mass hierarchy (m 1 2 3 ). Numerical analysis using a realistic supernova and presupernova model allow us to discuss quantitatively a possibility to probe neutrino oscillation parameters. We show that we can break partly the degeneracy of the solar neutrino problem (LMA or SMA) and probe the magnitude of θ 13 to some extent by the ratios of high-energy events and low-energy events at SuperKamiokande and SNO and the presence of the Earth effects. Further, if the magnitude of θ 13 is known roughly, we can identify the mass hierarchy

  16. KamLAND Sensitivity to Neutrinos from Pre-supernova Stars

    Science.gov (United States)

    Asakura, K.; Gando, A.; Gando, Y.; Hachiya, T.; Hayashida, S.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Ishikawa, T.; Ishio, S.; Koga, M.; Matsuda, S.; Mitsui, T.; Motoki, D.; Nakamura, K.; Obara, S.; Oura, T.; Shimizu, I.; Shirahata, Y.; Shirai, J.; Suzuki, A.; Tachibana, H.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B. D.; Kozlov, A.; Takemoto, Y.; Yoshida, S.; Fushimi, K.; Piepke, A.; Banks, T. I.; Berger, B. E.; Fujikawa, B. K.; O'Donnell, T.; Learned, J. G.; Maricic, J.; Matsuno, S.; Sakai, M.; Winslow, L. A.; Efremenko, Y.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Detwiler, J. A.; Enomoto, S.; Decowski, M. P.; KamLAND Collaboration

    2016-02-01

    In the late stages of nuclear burning for massive stars (M > 8 M⊙), the production of neutrino-antineutrino pairs through various processes becomes the dominant stellar cooling mechanism. As the star evolves, the energy of these neutrinos increases and in the days preceding the supernova a significant fraction of emitted electron anti-neutrinos exceeds the energy threshold for inverse beta decay on free hydrogen. This is the golden channel for liquid scintillator detectors because the coincidence signature allows for significant reductions in background signals. We find that the kiloton-scale liquid scintillator detector KamLAND can detect these pre-supernova neutrinos from a star with a mass of 25 M⊙ at a distance less than 690 pc with 3σ significance before the supernova. This limit is dependent on the neutrino mass ordering and background levels. KamLAND takes data continuously and can provide a supernova alert to the community.

  17. Physics of supernovae

    International Nuclear Information System (INIS)

    Woosley, S.E.; Weaver, T.A.

    1985-01-01

    Presupernova models of massive stars are presented and their explosion by ''delayed neutrino transport'' examined. A new form of long duration Type II supernova model is also explored based upon repeated encounter with the electron-positron pair instability in stars heavier than about 60 Msub solar. Carbon deflagration in white dwarfs is discussed as the probable explanation of Type I supernovae and special attention is paid to the physical processes whereby a nuclear flame propagates through degenerate carbon. 89 refs., 12 figs

  18. Combining collective, MSW, and turbulence effects in supernova neutrino flavor evolution

    Science.gov (United States)

    Lund, Tina; Kneller, James P.

    2013-07-01

    In order to decode the neutrino burst signal from a Galactic core-collapse supernova (ccSN) and reveal the complicated inner workings of the explosion we need a thorough understanding of the neutrino flavor evolution from the proto-neutron star outwards. The flavor content of the signal evolves due to both neutrino collective effects and matter effects which can lead to a highly interesting interplay and distinctive spectral features. In this paper we investigate the supernova neutrino flavor evolution in three different progenitors and include collective flavor effects, the evolution of the Mikheyev, Smirnov & Wolfenstein (MSW) conversion due to the shock wave passage through the star, and the impact of turbulence. We consider both normal and inverted neutrino mass hierarchies and a value of θ13 close to the current experimental measurements. In the Oxygen-Neon-Magnesium (ONeMg) supernova we find that the impact of turbulence is both brief and slight during a window of 1-2 seconds post bounce. This is because the shock races through the star extremely quickly and the turbulence amplitude is expected to be small, less than 10%, since these stars do not require multidimensional physics to explode. Thus the spectral features of collective and shock effects in the neutrino signals from Oxygen-Neon-Magnesium supernovae may be almost turbulence free making them the easiest to interpret. For the more massive progenitors we again find that small amplitude turbulence, up to 10%, leads to a minimal modification of the signal, and the emerging neutrino spectra retain both collective and MSW features. However, when larger amounts of turbulence is added, 30% and 50%, which is justified by the requirement of multidimensional physics in order to make these stars explode, the features of collective and shock wave effects in the high (H) density resonance channel are almost completely obscured at late times. Yet at the same time we find the other mixing channels—the low (L

  19. Collective neutrino oscillations and r-process nucleosynthesis in supernovae

    Science.gov (United States)

    Duan, Huaiyu

    2012-10-01

    Neutrinos can oscillate collectively in a core-collapse supernova. This phenomenon can occur much deeper inside the supernova envelope than what is predicted from the conventional matter-induced Mikheyev-Smirnov-Wolfenstein effect, and hence may have an impact on nucleosynthesis. The oscillation patterns and the r-process yields are sensitive to the details of the emitted neutrino fluxes, the sign of the neutrino mass hierarchy, the modeling of neutrino oscillations and the astrophysical conditions. The effects of collective neutrino oscillations on the r-process will be illustrated using representative late-time neutrino spectra and outflow models.

  20. SUPERNOVAE, NEUTRON STARS, AND TWO KINDS OF NEUTRINO

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, H Y

    1962-08-15

    The role of neutrinos in the core of a star that has undergone a supernova explosion is discussed. The existence of neutron stars, the Schwarzchild singularity in general relativity, and the meaning of conservation of baryons in the neighborhood of a Schwarzchild singularity are also considered. The problem of detection of neutron stars is discussed. It is concluded that neutron stars are the most plausible alternative for the remnant of the core of a supernova. The neutrino emission processes are divided into two groups: the neutrino associated with the meson (mu) and the production of electron neutrinos. (C.E.S.)

  1. Density profiles of supernova matter and determination of neutrino parameters

    Science.gov (United States)

    Chiu, Shao-Hsuan

    2007-08-01

    The flavor conversion of supernova neutrinos can lead to observable signatures related to the unknown neutrino parameters. As one of the determinants in dictating the efficiency of resonant flavor conversion, the local density profile near the Mikheyev-Smirnov-Wolfenstein (MSW) resonance in a supernova environment is, however, not so well understood. In this analysis, variable power-law functions are adopted to represent the independent local density profiles near the locations of resonance. It is shown that the uncertain matter density profile in a supernova, the possible neutrino mass hierarchies, and the undetermined 1-3 mixing angle would result in six distinct scenarios in terms of the survival probabilities of νe and ν¯e. The feasibility of probing the undetermined neutrino mass hierarchy and the 1-3 mixing angle with the supernova neutrinos is then examined using several proposed experimental observables. Given the incomplete knowledge of the supernova matter profile, the analysis is further expanded to incorporate the Earth matter effect. The possible impact due to the choice of models, which differ in the average energy and in the luminosity of neutrinos, is also addressed in the analysis.

  2. Probing Neutrino Mass Hierarchy with Supernova

    International Nuclear Information System (INIS)

    Chakraborty, Sovan

    2013-01-01

    The rise time of electron antineutrino lightcurve from a Galactic supernova (SN), observable at the IceCube Cherenkov detector, can provide signature of the neutrino mass hierarchy at “large” 1-3 leptonic mixing angle ϑ 13 . In the early accretion phase of the SN, the neutrino oscillations are nontrivial. Due to the matter suppression of collective effects at these early post bounce times, only the MSW resonances in the outer layers of the SN influence the neutrino flux. When the oscillations are taken into account, the signal in IceCube shows sufficiently fast rise time for the inverted mass hierarchy compared to the normal hierarchy. An investigation with an extensive set of stellar core-collapse simulations, provides both qualitative and quantitative robustness of these features. Thus opening another avenue to explore the neutrino mass hierarchy with the rise time of a supernova burst

  3. Earth Effects and Mass Hierarchy with Supernova Neutrinos

    International Nuclear Information System (INIS)

    Dasgupta, Basudeb

    2009-01-01

    Collective neutrino flavor transformations take place deep inside a supernova if the neutrino mass hierarchy is inverted, even for extremely small values of θ 13 . We show that the presence (or absence) of Earth matter effects in antineutrino signal is directly related to the absence (or presence) of these collective effects, when the mixing angle θ 13 is small. Thus a neutrino signal from a galactic supernova may enable us to distinguish between the hierarchies even for small values of θ 13 .

  4. Study of Neutrino-Induced Neutrons in Dark Matter Detectors for Supernova Burst Neutrinos

    Science.gov (United States)

    Kwan, Newton; Scholberg, Kate

    2017-09-01

    When supernova burst neutrinos (1-50 MeV) pass through the Earth, they occasionally interact with the passive shielding surrounding dark matter detectors. When the neutrinos interact, one or two roughly 2 MeV neutrons are scattered isotropically and uniformly, often leaving undetected. Occasionally, these neutrino-induced neutrons (NINs) interact with the detector and leave a background signal similar to a WIMP. The purpose of this study is to understand the effects of NINs on active dark matter detectors during a supernova burst.

  5. Evaluating nuclear physics inputs in core-collapse supernova models

    Science.gov (United States)

    Lentz, E.; Hix, W. R.; Baird, M. L.; Messer, O. E. B.; Mezzacappa, A.

    Core-collapse supernova models depend on the details of the nuclear and weak interaction physics inputs just as they depend on the details of the macroscopic physics (transport, hydrodynamics, etc.), numerical methods, and progenitors. We present preliminary results from our ongoing comparison studies of nuclear and weak interaction physics inputs to core collapse supernova models using the spherically-symmetric, general relativistic, neutrino radiation hydrodynamics code Agile-Boltztran. We focus on comparisons of the effects of the nuclear EoS and the effects of improving the opacities, particularly neutrino--nucleon interactions.

  6. High energy neutrinos from gamma-ray bursts with precursor supernovae.

    Science.gov (United States)

    Razzaque, Soebur; Mészáros, Peter; Waxman, Eli

    2003-06-20

    The high energy neutrino signature from proton-proton and photo-meson interactions in a supernova remnant shell ejected prior to a gamma-ray burst provides a test for the precursor supernova, or supranova, model of gamma-ray bursts. Protons in the supernova remnant shell and photons entrapped from a supernova explosion or a pulsar wind from a fast-rotating neutron star remnant provide ample targets for protons escaping the internal shocks of the gamma-ray burst to interact and produce high energy neutrinos. We calculate the expected neutrino fluxes, which can be detected by current and future experiments.

  7. Neutrino radiation-hydrodynamics. General relativistic versus multidimensional supernova simulations

    International Nuclear Information System (INIS)

    Liebendoerfer, Matthias; Fischer, Tobias; Hempel, Matthias

    2010-01-01

    Recently, simulations of the collapse of massive stars showed that selected models of the QCD phase transitions to deconfined quarks during the early postbounce phase can trigger the supernova explosion that has been searched for over many years in spherically symmetric supernova models. Using sophisticated general relativistic Boltzmann neutrino transport, it was found that a characteristic neutrino signature is emitted that permits to falsify or identify this scenario in the next Galactic supernova event. On the other hand, more refined observations of past supernovae and progressing theoretical research in different supernova groups demonstrated that the effects of multidimensional fluid instabilities cannot be neglected in global models of the explosions of massive stars. We point to different efforts where neutrino transport and general relativistic effects are combined with multidimensional fluid instabilities in supernovae. With those, it will be possible to explore the gravitational wave emission as a potential second characteristic observable of the presence of quark matter in new-born neutron stars. (author)

  8. Resolving neutrino mass hierarchy from supernova (anti)neutrino-nucleus reactions

    Science.gov (United States)

    Vale, Deni; Paar, Nils

    2015-10-01

    Recently a hybrid method has been introduced to determine neutrino mass hierarchy by simultaneous measurements of detector responses induced by antineutrino and neutrino fluxes from accretion and cooling phase of type II supernova. The (anti)neutrino-nucleus cross sections for 12C, 16O, 56Fe and 208Pb are calculated in the framework of relativistic nuclear energy density functional and weak interaction Hamiltonian, while the cross sections for inelastic scattering on free protons in mineral oil and water, p (v¯e,e+)n are obtained using heavy-baryon chiral perturbation theory. The simulations of (anti)neutrino fluxes emitted from a proto-neutron star in a core-collapse supernova include collective and Mikheyev-Smirnov-Wolfenstein effects inside star. It is shown that simultaneous use of ve/v¯e detectors with different target material allow to determine the neutrino mass hierarchy from the ratios of ve/v¯e induced particle emissions. The hybrid method favors detectors with heavier target nuclei (208Pb) for the neutrino sector, while for antineutrinos the use of free protons in mineral oil and water is more appropriate.

  9. Neutrino masses and mixings: Big Bang and Supernova nucleosynthesis and neutrino dark matter

    International Nuclear Information System (INIS)

    Fuller, George M.

    1999-01-01

    The existence of small mixings between light active and sterile neutrino species could have implications for Big Bang and Supernova Heavy Element Nucleosynthesis. As well, such mixing would force us to abandon cherished constraints on light neutrino Dark Matter. Two proposed 4-neutrino mass and mixing schemes, for example, can both accomodate existing experimental results and lead to elegant solutions to the neutron-deficit problem for r-Process nucleosynthesis from neutrino-heated supernova ejecta. Each of these solutions is based on matter-enhanced (MSW) active-sterile neutrino transformation. In plausible extensions of these schemes to the early universe, Shi and Fuller have shown that relatively light mass (∼200 eV to ∼10 keV) sterile neutrinos produced via active-sterile MSW conversion can have a ''cold'' energy spectrum. Neutrinos produced in this way circumvent the principal problem of light neutrino dark matter and would be, essentially, Cold Dark Matter

  10. Signatures of the neutrino mass hierarchy in supernova neutrinos

    International Nuclear Information System (INIS)

    Chiu, S.H.; Huang, Chu-Ching; Lai, Kwang-Chang

    2015-01-01

    The undetermined neutrino mass hierarchy may leave an observable imprint on the neutrino fluxes from a core-collapse supernova (SN). The interpretation of the observables, however, is subject to the uncertain SN models and the flavor conversion mechanism of neutrinos in a SN. We attempt to propose a qualitative interpretation of the expected neutrino events at terrestrial detectors, focusing on the accretion phase of the neutrino burst. The flavor conversions due to neutrino self-interaction, the MSW effect, and the Earth regeneration effect are incorporated in the calculation. It leads to several distinct scenarios that are identified by the neutrino mass hierarchies and the collective flavor transitions. Consequences resulting from the variation of incident angles and SN models are also discussed

  11. Hybrid method to resolve the neutrino mass hierarchy by supernova (anti)neutrino induced reactions

    Science.gov (United States)

    Vale, D.; Rauscher, T.; Paar, N.

    2016-02-01

    We introduce a hybrid method to determine the neutrino mass hierarchy by simultaneous measurements of responses of at least two detectors to antineutrino and neutrino fluxes from accretion and cooling phases of core-collapse supernovae. The (anti)neutrino-nucleus cross sections for 56Fe and 208Pb are calculated in the framework of the relativistic nuclear energy density functional and weak interaction Hamiltonian, while the cross sections for inelastic scattering on free protons p(bar nue,e+)n are obtained using heavy-baryon chiral perturbation theory. The modelling of (anti)neutrino fluxes emitted from a protoneutron star in a core-collapse supernova include collective and Mikheyev-Smirnov-Wolfenstein effects inside the exploding star. The particle emission rates from the elementary decay modes of the daughter nuclei are calculated for normal and inverted neutrino mass hierarchy. It is shown that simultaneous use of (anti)neutrino detectors with different target material allows to determine the neutrino mass hierarchy from the ratios of νe- and bar nue-induced particle emissions. This hybrid method favors neutrinos from the supernova cooling phase and the implementation of detectors with heavier target nuclei (208Pb) for the neutrino sector, while for antineutrinos the use of free protons in mineral oil or water is the appropriate choice.

  12. Three-generation study of neutrino spin-flavor conversion in supernovae and implication for the neutrino magnetic moment

    Science.gov (United States)

    Ando, Shin'ichiro; Sato, Katsuhiko

    2003-01-01

    We investigate resonant spin-flavor (RSF) conversions of supernova neutrinos which are induced by the interaction of neutrino magnetic moment and supernova magnetic fields. From the formulation which includes all three-flavor neutrinos and antineutrinos, we give a new crossing diagram that includes not only ordinary Mikheyev-Smirnov-Wolfenstein (MSW) resonance but also a magnetically induced RSF effect. With the diagram, it is found that four conversions occur in supernovae: two are induced by the RSF effect and two by the pure MSW effect. We also numerically calculate neutrino conversions in supernova matter, using neutrino mixing parameters inferred from recent experimental results and a realistic supernova progenitor model. The results indicate that until 0.5 sec after the core bounce, the RSF-induced ν¯e↔ντ transition occurs efficiently (adiabatic resonance), when μν≳10- 12μB(B0/5×109 G)-1, where B0 is the strength of the magnetic field at the surface of iron core. We also evaluate the energy spectrum as a function of μνB0 at the super-Kamiokande detector and the Sudbury Neutrino Observatory using the calculated conversion probabilities, and find that the spectral deformation might have the possibility to provide useful information on the neutrino magnetic moment as well as the magnetic field strength in supernovae.

  13. IceCube Sensitivity for Low-Energy Neutrinos from Nearby Supernovae

    Science.gov (United States)

    Stamatikos, M.; Abbasi, R.; Berghaus, P.; Chirkin, D.; Desiati, P.; Diaz-Velez, J.; Dumm, J. P.; Eisch, J.; Feintzeig, J.; Hanson, K.; hide

    2012-01-01

    This paper describes the response of the IceCube neutrino telescope located at the geographic South Pole to outbursts of MeV neutrinos from the core collapse of nearby massive stars. IceCube was completed in December 2010 forming a lattice of 5160 photomultiplier tubes that monitor a volume of approx. 1 cu km in the deep Antarctic ice for particle induced photons. The telescope was designed to detect neutrinos with energies greater than 100 GeV. Owing to subfreezing ice temperatures, the photomultiplier dark noise rates are particularly low. Hence IceCube can also detect large numbers of MeV neutrinos by observing a collective rise in all photomultiplier rates on top of the dark noise. With 2 ms timing resolution, IceCube can detect subtle features in the temporal development of the supernova neutrino burst. For a supernova at the galactic center, its sensitivity matches that of a background-free megaton-scale supernova search experiment. The sensitivity decreases to 20 standard deviations at the galactic edge (30 kpc) and 6 standard deviations at the Large Magellanic Cloud (50 kpc). IceCube is sending triggers from potential supernovae to the Supernova Early Warning System. The sensitivity to neutrino properties such as the neutrino hierarchy is discussed, as well as the possibility to detect the neutronization burst, a short outbreak's released by electron capture on protons soon after collapse. Tantalizing signatures, such as the formation of a quark star or a black hole as well as the characteristics of shock waves, are investigated to illustrate IceCube's capability for supernova detection.

  14. Neutrino oscillations in magnetically driven supernova explosions

    Energy Technology Data Exchange (ETDEWEB)

    Kawagoe, Shio; Kotake, Kei [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan); Takiwaki, Tomoya, E-mail: shio.k@nao.ac.jp, E-mail: takiwaki.tomoya@nao.ac.jp, E-mail: kkotake@th.nao.ac.jp [Center for Computational Astrophysics, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan)

    2009-09-01

    We investigate neutrino oscillations from core-collapse supernovae that produce magnetohydrodynamic (MHD) explosions. By calculating numerically the flavor conversion of neutrinos in the highly non-spherical envelope, we study how the explosion anisotropy has impacts on the emergent neutrino spectra through the Mikheyev-Smirnov-Wolfenstein effect. In the case of the inverted mass hierarchy with a relatively large θ{sub 13} (sin{sup 2} 2θ{sub 13} ∼> 10{sup −3}), we show that survival probabilities of ν-bar {sub e} and ν{sub e} seen from the rotational axis of the MHD supernovae (i.e., polar direction), can be significantly different from those along the equatorial direction. The event numbers of ν-bar {sub e} observed from the polar direction are predicted to show steepest decrease, reflecting the passage of the magneto-driven shock to the so-called high-resonance regions. Furthermore we point out that such a shock effect, depending on the original neutrino spectra, appears also for the low-resonance regions, which could lead to a noticeable decrease in the ν{sub e} signals. This reflects a unique nature of the magnetic explosion featuring a very early shock-arrival to the resonance regions, which is in sharp contrast to the neutrino-driven delayed supernova models. Our results suggest that the two features in the ν-bar {sub e} and ν{sub e} signals, if visible to the Super-Kamiokande for a Galactic supernova, could mark an observational signature of the magnetically driven explosions, presumably linked to the formation of magnetars and/or long-duration gamma-ray bursts.

  15. Neutrino oscillations in magnetically driven supernova explosions

    Science.gov (United States)

    Kawagoe, Shio; Takiwaki, Tomoya; Kotake, Kei

    2009-09-01

    We investigate neutrino oscillations from core-collapse supernovae that produce magnetohydrodynamic (MHD) explosions. By calculating numerically the flavor conversion of neutrinos in the highly non-spherical envelope, we study how the explosion anisotropy has impacts on the emergent neutrino spectra through the Mikheyev-Smirnov-Wolfenstein effect. In the case of the inverted mass hierarchy with a relatively large θ13 (sin2 2θ13 gtrsim 10-3), we show that survival probabilities of bar nue and νe seen from the rotational axis of the MHD supernovae (i.e., polar direction), can be significantly different from those along the equatorial direction. The event numbers of bar nue observed from the polar direction are predicted to show steepest decrease, reflecting the passage of the magneto-driven shock to the so-called high-resonance regions. Furthermore we point out that such a shock effect, depending on the original neutrino spectra, appears also for the low-resonance regions, which could lead to a noticeable decrease in the νe signals. This reflects a unique nature of the magnetic explosion featuring a very early shock-arrival to the resonance regions, which is in sharp contrast to the neutrino-driven delayed supernova models. Our results suggest that the two features in the bar nue and νe signals, if visible to the Super-Kamiokande for a Galactic supernova, could mark an observational signature of the magnetically driven explosions, presumably linked to the formation of magnetars and/or long-duration gamma-ray bursts.

  16. Type II supernovae modelisation: neutrinos transport simulation

    International Nuclear Information System (INIS)

    Mellor, P.

    1988-10-01

    A modelisation of neutrino transport in type II supernovae is presented. The first part is a description of hydrodynamics and radiative processes responsible of supernovae explosions. Macroscopic aspects of these are displayed in part two. Neutrino transport theory and usual numerical methods are also developed. A new technic of coherent scattering of neutrinos on nuclei or free nucleons is proposed in the frame work of the Lorentz bifluid approximation. This method deals with all numerical artifices (flux limiting schemes, closure relationship of Eddington moments) and allows a complete and consistent determination of the time-dependent neutrino distribution function for any value of the opacity, gradient of opacity and for all (relativistic) velocity fields of the diffusive medium. Part three is dedicated to microscopic phenomena (electronic capture, chimical composition, etc) which rule neutrinos emission-absorption mechanisms. The numerical treatments of those are presented, and some applications are useful for their parametrization. Finally, an extension of the method to inelastic scattering on light particules (electrons) is described in view to study neutrinos thermalization mechanism [fr

  17. Neutrinos and nucleosynthesis in supernova

    Energy Technology Data Exchange (ETDEWEB)

    Solis, U [Instituto de Ciencias Nucleares, Departamento de Fisica de Altas EnergIas, Universidad Nacional Autonoma de Mexico (ICN-UNAM). Apartado Postal 70-543, 04510 Mexico, D.F. (Mexico); D' Olivo, J C [Instituto de Ciencias Nucleares, Departamento de Fisica de Altas EnergIas, Universidad Nacional Autonoma de Mexico (ICN-UNAM). Apartado Postal 70-543, 04510 Mexico, D.F. (Mexico); Cabral-Rosetti, L G [Departamento de Posgrado, Centro Interdisciplinario de Investigacion y Docencia en Educacion Tecnica (CIIDET), Av. Universidad 282 Pte., Col. Centro, A. Postal 752, C.P. 76000, Santiago de Queretaro, Qro. (Mexico)

    2006-05-15

    The type II supernova is considered as a candidate site for the production of heavy elements. The nucleosynthesis occurs in an intense neutrino flux, we calculate the electron fraction in this environment.

  18. Neutrinos and nucleosynthesis in supernova

    International Nuclear Information System (INIS)

    Solis, U; D'Olivo, J C; Cabral-Rosetti, L G

    2006-01-01

    The type II supernova is considered as a candidate site for the production of heavy elements. The nucleosynthesis occurs in an intense neutrino flux, we calculate the electron fraction in this environment

  19. Hybrid method to resolve the neutrino mass hierarchy by supernova (anti)neutrino induced reactions

    Energy Technology Data Exchange (ETDEWEB)

    Vale, D. [Department of Physics, Faculty of Science, University of Zagreb, Bijenička c. 32, HR-10000 Zagreb (Croatia); Rauscher, T. [Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Paar, N., E-mail: dvale@phy.hr, E-mail: Thomas.Rauscher@unibas.ch, E-mail: npaar@phy.hr [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)

    2016-02-01

    We introduce a hybrid method to determine the neutrino mass hierarchy by simultaneous measurements of responses of at least two detectors to antineutrino and neutrino fluxes from accretion and cooling phases of core-collapse supernovae. The (anti)neutrino-nucleus cross sections for {sup 56}Fe and {sup 208}Pb are calculated in the framework of the relativistic nuclear energy density functional and weak interaction Hamiltonian, while the cross sections for inelastic scattering on free protons p(ν-bar {sub e},e{sup +})n are obtained using heavy-baryon chiral perturbation theory. The modelling of (anti)neutrino fluxes emitted from a protoneutron star in a core-collapse supernova include collective and Mikheyev-Smirnov-Wolfenstein effects inside the exploding star. The particle emission rates from the elementary decay modes of the daughter nuclei are calculated for normal and inverted neutrino mass hierarchy. It is shown that simultaneous use of (anti)neutrino detectors with different target material allows to determine the neutrino mass hierarchy from the ratios of ν{sub e}- and ν-bar {sub e}-induced particle emissions. This hybrid method favors neutrinos from the supernova cooling phase and the implementation of detectors with heavier target nuclei ({sup 208}Pb) for the neutrino sector, while for antineutrinos the use of free protons in mineral oil or water is the appropriate choice.

  20. Core-collapse supernovae as possible counterparts of IceCube neutrino multiplets

    Energy Technology Data Exchange (ETDEWEB)

    Strotjohann, Nora Linn; Kowalski, Marek; Franckowiak, Anna [DESY, Zeuthen (Germany); Voge, Markus [Bonn Univ. (Germany). Physikalisches Institut; Collaboration: IceCube-Collaboration

    2016-07-01

    While an astrophysical neutrino flux has been detected by the IceCube Neutrino Observatory its sources remain so far unidentified. IceCube's Optical Follow-up Program is designed to search for the counterparts of neutrino multiplets using the full energy range of the IceCube detector down to 100 GeV. Two or more muon neutrinos arriving from the same direction within few seconds can trigger follow-up observations with optical and X-ray telescopes. Since 2010 the Palomar Transient Factory has followed up about 40 such neutrino alerts and detected several supernovae. Many of the detections are however likely random coincidences. In this talk I describe our search for supernovae and the prospects of identifying a supernova as a source of high-energy neutrinos.

  1. Experimental Neutrino Physics

    Energy Technology Data Exchange (ETDEWEB)

    Wilkes, Richard Jeffrey [Univ. of Washington, Seattle, WA (United States)

    2017-11-15

    The University of Washington (UW) HEP neutrino group performed experimental research on the physics of neutrinos, using the capabilities offered by the T2K Experiment and the Super-Kamiokande Neutrino Observatory. The UW group included senior investigator R. J. Wilkes, two PhD students, four MS degree students, and a research engineer, all of whom are members of the international scientific collaborations for T2K and Super-Kamiokande. During the period of support, within T2K we pursued new precision studies sensitive to new physics, going beyond the limits of current measurements of the fundamental neutrino oscillation parameters (mass differences and mixing angles). We began efforts to measure (or significantly determine the absence of) 1 the CP-violating phase parameter δCP and determine the neutrino mass hierarchy. Using the Super-Kamiokande (SK) detector we pursued newly increased precision in measurement of neutrino oscillation parameters with atmospheric neutrinos, and extended the current reach in searches for proton decay, in addition to running the most sensitive supernova watch instrument [Scholberg 2012], performing other astrophysical neutrino studies, and analyzing beam-induced events from T2K. Overall, the research addressed central questions in the field of particle physics. It included the training of graduate students (both PhD and professional MS degree students), and postdoctoral researchers. Undergraduate students also participated as laboratory assistants.

  2. Identifying the neutrino mass hierarchy with supernova neutrinos

    International Nuclear Information System (INIS)

    Tomas, Ricard

    2006-01-01

    We review how a high-statistics observation of the neutrino signal from a future galactic core-collapse supernova (SN) may be used to discriminate between different neutrino mixing scenarios. We discuss two complementary methods that allow for the positive identification of the mass hierarchy without knowledge of the emitted neutrino fluxes, provided that the 13-mixing angle is large, sin 2 θ 13 -5 . These two approaches are the observation of modulations in the neutrino spectra by Earth matter effects or by the passage of shock waves through the SN envelope. If the value of the 13-mixing angle is unknown, using additionally the information encoded in the prompt neutronization ν e burst-a robust feature found in all modern SN simulations-can be sufficient to fix both the neutrino hierarchy and to decide whether θ 13 is 'small' or 'large'

  3. Simple picture for neutrino flavor transformation in supernovae

    Science.gov (United States)

    Duan, Huaiyu; Fuller, George M.; Qian, Yong-Zhong

    2007-10-01

    We can understand many recently discovered features of flavor evolution in dense, self-coupled supernova neutrino and antineutrino systems with a simple, physical scheme consisting of two quasistatic solutions. One solution closely resembles the conventional, adiabatic single-neutrino Mikheyev-Smirnov-Wolfenstein (MSW) mechanism, in that neutrinos and antineutrinos remain in mass eigenstates as they evolve in flavor space. The other solution is analogous to the regular precession of a gyroscopic pendulum in flavor space, and has been discussed extensively in recent works. Results of recent numerical studies are best explained with combinations of these solutions in the following general scenario: (1) Near the neutrino sphere, the MSW-like many-body solution obtains. (2) Depending on neutrino vacuum mixing parameters, luminosities, energy spectra, and the matter density profile, collective flavor transformation in the nutation mode develops and drives neutrinos away from the MSW-like evolution and toward regular precession. (3) Neutrino and antineutrino flavors roughly evolve according to the regular precession solution until neutrino densities are low. In the late stage of the precession solution, a stepwise swapping develops in the energy spectra of νe and νμ/ντ. We also discuss some subtle points regarding adiabaticity in flavor transformation in dense-neutrino systems.

  4. Detection of supernova neutrinos with neutrino-iron scattering

    International Nuclear Information System (INIS)

    Samana, A. R.; Bertulani, C. A.

    2008-01-01

    The ν e - 56 Fe cross section is evaluated in the projected quasiparticle random phase approximation (PQRPA). This model solves the puzzle observed in RPA for nuclei with mass around 12 C, because it is the only RPA model that treats the Pauli Principle correctly. The cross sections as a function of the incident neutrino energy are compared with recent theoretical calculations of similar models. The average cross section weighted with the flux spectrum yields a good agreement with the experimental data. The expected number of events in the detection of supernova neutrinos is calculated for the LVD detector, leading to an upper limit for the electron neutrino energy of particular importance in this experiment

  5. Neutrino nucleosynthesis in core-collapse Supernova explosions

    Directory of Open Access Journals (Sweden)

    Sieverding A.

    2016-01-01

    Full Text Available The neutrino-induced nucleosynthesis (ν process in supernova explosions of massive stars of solar metallicity with initial main sequence masses between 15 and 40 M⊙ has been studied. A new extensive set of neutrino-nucleus cross-sections for all the nuclei included in the reaction network is used and the average neutrino energies are reduced to agree with modern supernova simulations. Despite these changes the ν process is found to contribute still significantly to the production of the nuclei 7Li, 11B, 19F, 138La and 180Ta, even though the total yields for those nuclei are reduced. Furthermore we study in detail contributions of the ν process to the production of radioactive isotopes 26Al, 22Na and confirm the production of 92Nb and 98Tc.

  6. Neutrino nucleosynthesis in core-collapse Supernova explosions

    Science.gov (United States)

    Sieverding, A.; Huther, L.; Martínez-Pinedo, G.; Langanke, K.; Heger, A.

    2018-01-01

    The neutrino-induced nucleosynthesis (v process) in supernova explosions of massive stars of solar metallicity with initial main sequence masses between 15 and 40 M⨀ has been studied. A new extensive set of neutrino-nucleus cross-sections for all the nuclei included in the reaction network is used and the average neutrino energies are reduced to agree with modern supernova simulations. Despite these changes the v process is found to contribute still significantly to the production of the nuclei 7Li, 11B, 19F, 138La and 180Ta, even though the total yields for those nuclei are reduced. Furthermore we study in detail contributions of the v process to the production of radioactive isotopes 26Al, 22Na and confirm the production of 92Nb and 98Tc.

  7. Effects of neutrino oscillations on the supernova signal in LVD

    International Nuclear Information System (INIS)

    Aglietta, M.; Antonioli, P.; Bari, G.; Castagnoli, C.; Fulgione, W.; Galeotti, P.; Ghia, P.L.; Giusti, P.; Kemp, E.; Malguin, A.S.; Nurzia, G.; Pesci, A.; Picchi, P.; Pless, I.A.; Ryasny, V.G.; Ryazhskaya, O.G.; Sartorelli, G.; Selvi, M.; Vigorito, C.; Vissani, F.; Votano, L.; Yakushev, V.F.; Zatsepin, G.T.; Zichichi, A.

    2002-01-01

    We study the impact of neutrino oscillations on the supernova neutrino signal in the Large Volume Detector (LVD). The number of expected events for a galactic supernova (D = 10 kpc) is calculated, assuming neutrino masses and mixing that explain solar and atmospheric neutrino results. The possibility to detect neutrinos in different channels makes LVD sensitive to different scenarios for ν properties, such as normal or inverted ν mass hierarchy, and/or adiabatic or non adiabatic MSW resonances associated to U e3 . Of particular importance are the charged current (c.c.) reactions on 12 C: oscillations increase by almost one order of magnitude the number of events expected from this channel

  8. Evaluation of the WIPP site for the supernova neutrino burst observatory

    International Nuclear Information System (INIS)

    Balbes, M.J.; Boyd, R.N.; Kalen, J.D.; Mitchell, C.A.; Hencheck, M.; Sugarbaker, E.R.; Vandegriff, J.D.; Lieberwirth, S.D.

    1997-01-01

    Measurements of the neutron background in a potential underground site for the supernova neutrino burst observatory (SNBO) have been made. The SNBO will ultimately be capable of detecting μ and τ neutrinos from a supernova. Furthermore, masses of the μ and τ neutrinos might be measurable in the range of 10-50 eV. SNBO operates by detecting the neutrons caused by interaction of the supernova neutrinos with rock. It will consist of order ten thousand neutron detectors located in an underground environment having a very low intrinsic radiation level. The limit to the size, hence sensitivity, of SNBO is thus the neutron signal-to-noise ratio, which depends on the neutron background in the environment of SNBO. Thus we have made neutron background measurements at the department of energy waste isolation pilot plant (WIPP) located near Carlsbad, NM. The value of the ambient neutron flux we determined, 332±148 neutrons m -2 d -1 , shows that the background levels in this facility are sufficiently low to warrant construction of a galactic supernova neutrino detector. (orig.)

  9. Neutral currents, supernovae neutrinos, and nucleosynthesis

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1988-01-01

    The inelastic interactions of neutrinos during stellar collapse and neutron star cooling are discussed. The primary mechanism for dissipative neutrino reactions is nuclear excitation by neutral current scattering, a process not included in standard descriptions of supernovae. Charge-current and neutral current ''preheating'' of iron lying outside the shock front appears to be significant in the few milliseconds near shock breakout. This could help produce a more energetic shock. During the cooling phase, the neutral current interactions of muon and taon neutrinos appear to be responsible for some interesting nucleosynthesis. I discuss two examples the production of fluorine and neutrino-induced r-process nucleosynthesis. 26 refs., 1 fig., 3 tabs

  10. Core-Collapse Supernovae: Explosion dynamics, neutrinos and gravitational waves

    OpenAIRE

    Müller, Bernhard; Janka, Hans-Thomas; Marek, Andreas; Hanke, Florian; Wongwathanarat, Annop; Müller, Ewald

    2011-01-01

    The quest for the supernova explosion mechanism has been one of the outstanding challenges in computational astrophysics for several decades. Simulations have now progressed to a stage at which the solution appears close and neutrino and gravitational wave signals from self-consistent explosion models are becoming available. Here we focus one of the recent advances in supernova modeling, the inclusion of general relativity in multi-dimensional neutrino hydrodynamics simulations, and present t...

  11. Active-sterile neutrino conversion: consequences for the r-process and supernova neutrino detection

    Science.gov (United States)

    Fetter, J.; McLaughlin, G. C.; Balantekin, A. B.; Fuller, G. M.

    2003-02-01

    We examine active-sterile neutrino conversion in the late time post-core-bounce supernova environment. By including the effect of feedback on the Mikheyev-Smirnov-Wolfenstein (MSW) conversion potential, we obtain a large range of neutrino mixing parameters which produce a favorable environment for the r-process. We look at the signature of this effect in the current generation of neutrino detectors now coming on line. We also investigate the impact of the neutrino-neutrino forward-scattering-induced potential on the MSW conversion.

  12. Neutrino Flavor Evolution in Turbulent Supernova Matter

    Science.gov (United States)

    Lund, Tina; Kneller, James P.

    In order to decode the neutrino burst signal from a Galactic core-collapse supernova and reveal the complicated inner workings of the explosion, we need a thorough understanding of the neutrino flavor evolution from the proto-neutron-star outwards. The flavor content of the signal evolves due to both neutrino collective effects and matter effects which can lead to a highly interesting interplay and distinctive spectral features. In this paper we investigate the supernova neutrino flavor evolution by including collective flavor effects, the evolution of the Mikheyev, Smirnov & Wolfenstein (MSW) matter conversions due to the shock wave passing through the star, and the impact of turbulence. The density profiles utilized in our calculations represent a 10.8 MG progenitor and comes from a 1D numerical simulation by Fischer et al.[1]. We find that small amplitude turbulence, up to 10% of the average potential, leads to a minimal modification of the signal, and the emerging neutrino spectra retain both collective and MSW features. However, when larger amounts of turbulence are added, 30% and 50%, the features of collective and shock wave effects in the high density resonance channel are almost completely obscured at late times. At the same time we find the other mixing channels - the low density resonance channel and the non-resonant channels - begin to develop turbulence signatures. Large amplitude turbulent motions in the outer layers of massive, iron core-collapse supernovae may obscure the most obvious fingerprints of collective and shock wave effects in the neutrino signal but cannot remove them completely, and additionally bring about new features in the signal. We illustrate how the progression of the shock wave is reflected in the changing survival probabilities over time, and we show preliminary results on how some of these collective and shock wave induced signatures appear in a detector signal.

  13. Supernova Neutrinos - MeV Messengers of the Extreme

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    A core-collapse supernova is a nearly perfect neutrino bomb. While capable of outshining its entire host galaxy, this stunning light show represents just a small portion of the explosion.  Indeed, each such cataclysmic event typically radiates two orders of magnitude more energy as low-energy neutrinos than it does as electromagnetic radiation or as kinetic shockwaves. Consequently, MeV-scale neutrinos are made in huge numbers as the star is dying, and because these ghostly subatomic particles interact so rarely with normal matter they easily escape the fireball, providing a window into one of the most violent and interesting volumes in space: the heart of a stellar collapse. This talk will cover some of the history of neutrinos and supernovas, as well as how we are preparing new technology and partnerships to observe the next spectacular explosion in all its multimessenger glory.

  14. Neutrino physics

    International Nuclear Information System (INIS)

    Gil-Botella, I.

    2011-01-01

    The fundamental properties of neutrinos are reviewed in these lectures. The first part is focused on the basic characteristics of neutrinos in the Standard Model and how neutrinos are detected. Neutrino masses and oscillations are introduced and a summary of the most important experimental results on neutrino oscillations to date is provided. Then, present and future experimental proposals are discussed, including new precision reactor and accelerator experiments. Finally, different approaches for measuring the neutrino mass and the nature (Majorana or Dirac), of neutrinos are reviewed. The detection of neutrinos from supernovae explosions and the information that this measurement can provide are also summarized at the end. (author)

  15. Physics, SN1987A, and the next nearby supernova

    International Nuclear Information System (INIS)

    Burrows, A.

    1989-01-01

    The scientific community has extracted quite a bit of information from SN1987A, some of it enduring. I will summarize what I believe we learned, what we did not learn, and what we can learn about supernovae, neutrinos, and particle physics when the next galactic supernova explodes onto the news

  16. Explosive nucleosynthesis in a neutrino-driven core collapse supernova

    International Nuclear Information System (INIS)

    Fujimoto, Shin-ichiro; Kotake, Kei; Hashimoto, Masa-aki; Ono, Masaomi; Ohnishi, Naofumi

    2010-01-01

    We investigate explosive nucleosynthesis in a delayed neutrino-driven, supernova explosion aided by standing accretion shock instability (SASI), based on two-dimensional hydrodynamic simulations of the explosion of a 15 M · star. We take into accounts neutrino heating and cooling as well as change in electron fraction due to weak interactions appropriately, in the two-dimensional simulations. We assume the isotropic emission of neutrinos from the neutrino spheres with given luminosities. and the Fermi-Dirac distribution of given temperatures. We find that the stalled shock revives due to the neutrino heating aided by SASI for cases with L νe ≥3.9x10 52 ergss -1 and the as-pherical shock passes through the outer layers of the star (≥10,000 km), with the explosion energies of ∼10 51 ergs.Next we examine abundances and masses of the supernova ejecta. We find that masses of the ejecta and 56 Ni correlate with the neutrino luminosity, and 56 Ni mass is comparable to that observed in SN 1987A. We also find that abundance pattern of the supernova ejecta is similar to that of the solar system, for cases with high explosion energies of >10 51 ergs. We emphasize that 64 Zn, which is underproduced in the spherical case, is abundantly produced in slightly neutron-rich ejecta.

  17. Oscillation effects and time variation of the supernova neutrino signal

    Science.gov (United States)

    Kneller, James P.; McLaughlin, Gail C.; Brockman, Justin

    2008-02-01

    The neutrinos detected from the next galactic core-collapse supernova will contain valuable information on the internal dynamics of the explosion. One mechanism leading to a temporal evolution of the neutrino signal is the variation of the induced neutrino flavor mixing driven by changes in the density profile. With one and two-dimensional hydrodynamical simulations we identify the behavior and properties of prominent features of the explosion. Using these results we demonstrate the time variation of the neutrino crossing probabilities due to changes in the Mikheyev-Smirnov-Wolfenstein (MSW) neutrino transformations as the star explodes by using the S-matrix—Monte Carlo—approach to neutrino propagation. After adopting spectra for the neutrinos emitted from the proto-neutron star we calculate for a galactic supernova the evolution of the positron spectra within a water Cerenkov detector and find that this signal allows us to probe of a number of explosion features.

  18. Collective neutrino flavor transitions in supernovae: analytical and numerical aspects

    International Nuclear Information System (INIS)

    Fogli, G L; Marrone, A; Mirizzi, A; Lisi, E

    2008-01-01

    Non-linear effects on supernova neutrino oscillations, associated with neutrino-neutrino interactions, are known to induce collective flavor transformations near the supernova core for θ 13 ≠ 0. For typical electron density profiles (as taken from shock-wave simulations at a few seconds after bounce) these transformations precede ordinary matter effects, and become more amenable to both numerical computations and analytical interpretations in inverted hierarchy-while they basically vanish in normal hierarchy. We numerically evolve the neutrino density matrix in the region relevant for self-interaction effects, using thermal spectra and a representative value sin 2 θ 13 = 10 -4 . Our results neatly show the collective phenomena of synchronization, bipolar oscillations, and spectral split, with analytically understandable features. They also suggest that averaging over neutrino trajectories plays a minor role in the final outcome. The split/swap of (anti)neutrino spectra emerges as an unmistakable signature of the inverted neutrino hierarchy

  19. Neutrino nucleosynthesis in supernovae: Shell model predictions

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1989-01-01

    Almost all of the 3 · 10 53 ergs liberated in a core collapse supernova is radiated as neutrinos by the cooling neutron star. I will argue that these neutrinos interact with nuclei in the ejected shells of the supernovae to produce new elements. It appears that this nucleosynthesis mechanism is responsible for the galactic abundances of 7 Li, 11 B, 19 F, 138 La, and 180 Ta, and contributes significantly to the abundances of about 15 other light nuclei. I discuss shell model predictions for the charged and neutral current allowed and first-forbidden responses of the parent nuclei, as well as the spallation processes that produce the new elements. 18 refs., 1 fig., 1 tab

  20. Detection of supernova neutrinos in the liquid-scintillator experiment LENA

    International Nuclear Information System (INIS)

    Winter, Jurgen Michael Albrecht

    2014-01-01

    The LENA project (Low-Energy Neutrino Astronomy) is a planned large-volume liquid-scintillator detector. The good energy resolution, low-energy threshold, and its large mass allow to perform real-time spectroscopy of low-energy neutrinos with high statistics. This is especially beneficial for the observation of rare events such as a galactic core-collapse supernova. In a liquid scintillator, interactions by different particle types cause different scintillation light pulse shapes. They can be used to identify proton recoils induced by neutrino-proton scattering from supernova neutrinos or by cosmogenic knock-out neutrons. In order to evaluate the performance of the detector, a precise characterization of the liquid scintillator is necessary. In the course of this work, an experiment has been set up at the Maier-Leibnitz-Laboratorium in Garching in order to determine the pulse shape of proton and electron recoils in different liquid-scintillator mixtures. Neutrons produced via 11 B(p,n) 11 C or an americiumberyllium source were used to induce proton recoils. Compton scattering of simultaneously emitted γs provided information on the electron recoils. A time-of-flight measurement allows for an easy identification of neutron and γ induced events and thus effective background reduction. The tail-to-total and the Gatti method are used in order to determine the energy-dependent discrimination power of proton and electron recoils in liquid scintillator. Combining both methods, a proton recoil identification efficiency of (99.70±0.05)% can be achieved between 1-1.5 MeV, while suppressing 99% of the γ induced recoils for the probable liquid scintillator mixture for LENA, linear alkylbenzene (LAB) as solvent and 3 g/l 2,5-diphenyloxazole (PPO) and 20mg/l 1,4-bis-(o-methylstyryl)-benzole (bisMSB) as fluors. Moreover, the decay constants τ i and the respective amplitudes n i are determined for various liquid scintillator mixtures. It can be observed that the decay times

  1. The Effect of Neutrino Oscillations on Supernova Light Element Synthesis

    International Nuclear Information System (INIS)

    Yoshida, Takashi; Kajino, Toshitaka; Yokomakura, Hidekazu; Kimura, Keiichi; Takamura, Akira; Hartmann, Dieter H.

    2006-01-01

    We investigate light element synthesis through the ν-process during supernova explosions considering neutrino oscillations and investigate the dependence of 7Li and 11B yields on neutrino oscillation parameters mass hierarchy and θ13. The adopted supernova explosion model for explosive nucleosynthesis corresponds to SN 1987A. The 7Li and 11B yields increase by about factors of 1.9 and 1.3 in the case of normal mass hierarchy and adiabatic 13-mixing resonance compared with the case without neutrino oscillations. In the case of inverted mass hierarchy or nonadiabatic 13-mixing resonance, the increase in 7Li and 11B yields is much smaller. Astronomical observations of 7Li/11B ratio in stars formed in regions strongly affected by prior generations of supernovae would constrain mass hierarchy and the range of θ13

  2. Supernovae, Neutrinos and the Chirality of Amino Acids

    Directory of Open Access Journals (Sweden)

    Toshitaka Kajino

    2011-05-01

    Full Text Available A mechanism for creating an enantioenrichment in the amino acids, the building blocks of the proteins, that involves global selection of one handedness by interactions between the amino acids and neutrinos from core-collapse supernovae is defined. The chiral selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. It also requires an asymmetric distribution of neutrinos emitted from the supernova. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth’s proteinaceous amino acids.

  3. Neutrinos at the forefront of elementary physics and astrophysics - Slides and abstracts

    International Nuclear Information System (INIS)

    Wark, D.; Cabrera, A.; Clark, K.; Cribier, M.; Rubbia, A.; Schwetz, T.; Hagedorn, C.; Bajc, B.; Thomas, J.; Nakahata, M.; Bravar, S.; Raffelt, G.; Mirizzi, A.; Serpico, P.; Drappeau, S.; Turk-Chieze, S.; Vignaud, D.; Kouchner, A.; Gay, P.; Baerwald, P.; Van Elewyck, V.; Branco, G.; Arbey, A.; Saviano, N.; Cirelli, M.; Verde, L.; Courtois, H.; Mauger, F.; Giunti, C.; Smadja, G.; Gascon, J.; Katsanevas, S.; Autiero, D.

    2014-01-01

    The conference has focused on neutrinos as a bridge between the two words of particle physics and astrophysics/cosmology with 3 main topics: -) the fundamental properties of neutrinos (neutrino masses and oscillations, mass hierarchy, neutrinoless double beta decay, neutrinos as Majorana particles, the search for CP violation in the leptonic sector, hints of physics beyond the standard model, the present experimental scenario and future large size experiments for neutrino oscillations and astro particle physics...); -) Neutrinos in astrophysics (neutrinos from the sun, neutrinos from Supernovae, high energy neutrinos... ); -) Neutrinos in cosmology (measurements of large scale structures, cosmological parameters, nucleosynthesis, dark matter, sterile neutrinos,...). This document is made up of the slides of the presentations and a few abstracts.

  4. Supernova neutrinos, giant resonances, and nucleosynthesis

    International Nuclear Information System (INIS)

    Haxton, W.

    1990-01-01

    Almost all of the 3·10 53 ergs liberated in a core collapse supernova is radiated as neutrinos by the cooling neutron star. The neutrinos can excite nuclei in the mantle of the star by their neutral and charged current reactions. I argue that the resulting spallation reactions are an important nucleosynthesis mechanism that may be responsible for the galactic abundances of 7 Li, 11 B, 19 F, 138 La, 180 Ta, and approximately a dozen other light nuclei. 18 refs., 1 fig., 1 tab

  5. Probing neutrino mass hierarchy by comparing the charged-current and neutral-current interaction rates of supernova neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Kwang-Chang [Center for General Education, Chang Gung University,Kwei-Shan, Taoyuan, 333, Taiwan (China); Leung Center for Cosmology and Particle Astrophysics (LeCosPA), National Taiwan University, Taipei, 106, Taiwan (China); Lee, Fei-Fan [Institute of Physics, National Chiao Tung University,Hsinchu, 300, Taiwan (China); Lee, Feng-Shiuh [Department of Electrophysics, National Chiao Tung University,Hsinchu, 300, Taiwan (China); Lin, Guey-Lin [Leung Center for Cosmology and Particle Astrophysics (LeCosPA), National Taiwan University, Taipei, 106, Taiwan (China); Institute of Physics, National Chiao Tung University,Hsinchu, 300, Taiwan (China); Liu, Tsung-Che [Leung Center for Cosmology and Particle Astrophysics (LeCosPA), National Taiwan University, Taipei, 106, Taiwan (China); Yang, Yi [Department of Electrophysics, National Chiao Tung University,Hsinchu, 300, Taiwan (China)

    2016-07-22

    The neutrino mass hierarchy is one of the neutrino fundamental properties yet to be determined. We introduce a method to determine neutrino mass hierarchy by comparing the interaction rate of neutral current (NC) interactions, ν(ν-bar)+p→ν(ν-bar)+p, and inverse beta decays (IBD), ν-bar{sub e}+p→n+e{sup +}, of supernova neutrinos in scintillation detectors. Neutrino flavor conversions inside the supernova are sensitive to neutrino mass hierarchy. Due to Mikheyev-Smirnov-Wolfenstein effects, the full swapping of ν-bar{sub e} flux with the ν-bar{sub x} (x=μ, τ) one occurs in the inverted hierarchy, while such a swapping does not occur in the normal hierarchy. As a result, more high energy IBD events occur in the detector for the inverted hierarchy than the high energy IBD events in the normal hierarchy. By comparing IBD interaction rate with the mass hierarchy independent NC interaction rate, one can determine the neutrino mass hierarchy.

  6. Probing neutrino mass hierarchy by comparing the charged-current and neutral-current interaction rates of supernova neutrinos

    Science.gov (United States)

    Lai, Kwang-Chang; Lee, Fei-Fan; Lee, Feng-Shiuh; Lin, Guey-Lin; Liu, Tsung-Che; Yang, Yi

    2016-07-01

    The neutrino mass hierarchy is one of the neutrino fundamental properties yet to be determined. We introduce a method to determine neutrino mass hierarchy by comparing the interaction rate of neutral current (NC) interactions, ν(bar nu) + p → ν(bar nu) + p, and inverse beta decays (IBD), bar nue + p → n + e+, of supernova neutrinos in scintillation detectors. Neutrino flavor conversions inside the supernova are sensitive to neutrino mass hierarchy. Due to Mikheyev-Smirnov-Wolfenstein effects, the full swapping of bar nue flux with the bar nux (x = μ, τ) one occurs in the inverted hierarchy, while such a swapping does not occur in the normal hierarchy. As a result, more high energy IBD events occur in the detector for the inverted hierarchy than the high energy IBD events in the normal hierarchy. By comparing IBD interaction rate with the mass hierarchy independent NC interaction rate, one can determine the neutrino mass hierarchy.

  7. Probing neutrino mass hierarchy by comparing the charged-current and neutral-current interaction rates of supernova neutrinos

    International Nuclear Information System (INIS)

    Lai, Kwang-Chang; Lee, Fei-Fan; Lee, Feng-Shiuh; Lin, Guey-Lin; Liu, Tsung-Che; Yang, Yi

    2016-01-01

    The neutrino mass hierarchy is one of the neutrino fundamental properties yet to be determined. We introduce a method to determine neutrino mass hierarchy by comparing the interaction rate of neutral current (NC) interactions, ν(ν-bar)+p→ν(ν-bar)+p, and inverse beta decays (IBD), ν-bar_e+p→n+e"+, of supernova neutrinos in scintillation detectors. Neutrino flavor conversions inside the supernova are sensitive to neutrino mass hierarchy. Due to Mikheyev-Smirnov-Wolfenstein effects, the full swapping of ν-bar_e flux with the ν-bar_x (x=μ, τ) one occurs in the inverted hierarchy, while such a swapping does not occur in the normal hierarchy. As a result, more high energy IBD events occur in the detector for the inverted hierarchy than the high energy IBD events in the normal hierarchy. By comparing IBD interaction rate with the mass hierarchy independent NC interaction rate, one can determine the neutrino mass hierarchy.

  8. Modelling neutrino and gamma-ray fluxes in supernova remnants

    International Nuclear Information System (INIS)

    Ballet, J; Cassam-Chenai, G; Maurin, G; Naumann, C

    2008-01-01

    Supernova remnants (SNRs) are believed to accelerate charged particles by diffusive shock acceleration (DSA) and to produce the majority of galactic cosmic rays, at least up to the 'knee' at 3-10 15 electron volts. In the framework of a hydrodynamic self-similar simulation of the evolution of young supernova remnants, its interaction with the ambient matter as well as the microwave and infrared background is studied. The photon spectra resulting from synchrotron and inverse Compton emission as well as from hadronic processes are calculated, as are the accompanying neutrino fluxes. Applying this method to the particular case of the SNR RXJ-1713, 7-3946, we find that its TeV emission can in principle be explained by pion decay if the ambient density is assumed to grow with increasing distance from the centre. The neutrino flux associated with this hadronic model is of a magnitude that may be detectable by a cubic-kilometre sized deep-sea neutrino telescope in the northern hemisphere. In this poster, a description of the supernova remnant simulation is given together with the results concerning RXJ-1713.

  9. A comprehensive study of neutrino spin-flavour conversion in supernovae and the neutrino mass hierarchy

    Science.gov (United States)

    Ando, Shin'ichiro; Sato, Katsuhiko

    2003-10-01

    Resonant spin-flavour (RSF) conversions of supernova neutrinos, which are induced by the interaction between the nonzero neutrino magnetic moment and supernova magnetic fields, are studied for both normal and inverted mass hierarchy. As the case for the pure matter-induced neutrino oscillation (Mikheyev–Smirnov–Wolfenstein (MSW) effect), we find that the RSF transitions are strongly dependent on the neutrino mass hierarchy as well as the value of θ13. Flavour conversions are solved numerically for various neutrino parameter sets, with the presupernova profile calculated by Woosley and Weaver. In particular, it is very interesting that the RSF-induced νe→bar nue transition occurs if the following conditions are all satisfied: the value of μνB (μν is the neutrino magnetic moment and B is the magnetic field strength) is sufficiently strong, the neutrino mass hierarchy is inverted, and the value of θ13 is large enough to induce adiabatic MSW resonance. In this case, the strong peak due to the original νe emitted from the neutronization burst would exist in the time profile of the neutrino events detected at the Super-Kamiokande detector. If this peak were observed in reality, it would provide fruitful information on the neutrino properties. On the other hand, the characteristics of the neutrino spectra are also different between the neutrino models, but we find that there remains degeneracy among several models. Dependence on presupernova models is also discussed.

  10. Nuclear weak interactions, supernova nucleosynthesis and neutrino oscillation

    Science.gov (United States)

    Kajino, Toshitaka

    2013-07-01

    We study the nuclear weak response in light-to-heavy mass nuclei and calculate neutrino-nucleus cross sections. We apply these cross sections to the explosive nucleosynthesis in core-collapse supernovae and find that several isotopes of rare elements 7Li, 11B, 138La, 180Ta and several others are predominantly produced by the neutrino-process nucleosynthesis. We discuss how to determine the suitable neutrino spectra of three different flavors and their anti-particles in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. Light-mass nuclei like 7Li and 11B, which are produced in outer He-layer, are strongly affected by the neutrino flavor oscillation due to the MSW (Mikheyev-Smirnov-Wolfenstein) effect, while heavy-mass nuclei like 138La, 180Ta and r-process elements, which are produced in the inner O-Ne-Mg layer or the atmosphere of proto-neutron star, are likely to be free from the MSW effect. Using such a different nature of the neutrino-process nucleosynthesis, we study the neutrino oscillation effects on their abundances, and propose a new novel method to determine the unknown neutrino oscillation parameters, θ13 and mass hierarchy, simultaneously. There is recent evidence that some SiC X grains from the Murchison meteorite may contain supernova-produced neutrino-process 11B and 7Li encapsulated in the grains. Combining the recent experimental constraints on θ13, we show that although the uncertainties are still large, our method hints at a marginal preference for an inverted neutrino mass hierarchy for the first time.

  11. Detection of Supernova Neutrinos on the Earth for Large θ13

    Science.gov (United States)

    Xu, Jing; Huang, Ming-Yang; Hu, Li-Jun; Guo, Xin-Heng; Young, Bing-Lin

    2014-02-01

    Supernova (SN) neutrinos detected on the Earth are subject to the shock wave effects, the Mikheyev—Smirnov—Wolfenstein (MSW) effects, the neutrino collective effects and the Earth matter effects. Considering the recent experimental result about the large mixing angle θ13 (≃ 8.8°) provided by the Daya Bay Collaboration and applying the available knowledge for the neutrino conversion probability in the high resonance region of SN, PH, which is in the form of hypergeometric function in the case of large θ13, we deduce the expression of PH taking into account the shock wave effects. It is found that PH is not zero in a certain range of time due to the shock wave effects. After considering all the four physical effects and scanning relevant parameters, we calculate the event numbers of SN neutrinos for the “Garching” distribution of neutrino energy spectrum. From the numerical results, it is found that the behaviors of neutrino event numbers detected on the Earth depend on the neutrino mass hierarchy and neutrino spectrum parameters including the dimensionless pinching parameter βα (where α refers to neutrino flavor), the average energy , and the SN neutrino luminosities Lα. Finally, we give the ranges of SN neutrino event numbers that will be detected at the Daya Bay experiment.

  12. Massive Majorana neutrinos in pre-bounce supernovae

    International Nuclear Information System (INIS)

    Goswami, S.; Raychaudhuri, A.

    1992-06-01

    The currently accepted models of supernova collapse rely on the standard electroweak theory and massless left-handed neutrinos. We consider the effect of massive right-handed Majorana neutrinos on this scenario. In order that they do not upset the agreement of the usual treatment with observation, we require that in the pre-bounce stage either (a) these neutrinos are trapped or (b) if they free stream they do not change the electron fraction to the extent that the explosion is prevented. From these constraints, we obtain upper and lower bounds on the right-handed interaction strengths as a function of the neutrino mass which can be translated to bounds on the right-handed gauge boson mass. (author). 18 refs, 1 fig., 2 tabs

  13. Constraints on the electron-neutrino mass from the supernova data

    International Nuclear Information System (INIS)

    Abbott, L.F.; Walker, T.P.

    1988-01-01

    The energy versus time of arrival pattern of neutrinos from SN1987A is sensitive to a neutrino mass, m ν , of order a few eV. To disentangle constraints on m ν , from the data, a theory of supernova emission is necessary. We recall the present status of this theory and approximate its predictions in two diffusion models: One designed to reflect the present supernova lore, the other devised to pessimize, within reason, the consequent upper limits on m ν . We discuss the model dependence and statistical significance of our results, as well as the experimental uncertainties and caveats to which they are subject. We adress the question, do the supernova results supercede the present laboratory limits on m ν ? (orig.)

  14. Supernova constraints on neutrino oscillation and EoS for proto-neutron star

    Energy Technology Data Exchange (ETDEWEB)

    Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Mathews, G. J. [Department of Physics, University of Notre Dame, IN 46556 (United States); Nakamura, K. [Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Suzuki, T. [Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

    2014-05-02

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We here discuss how to determine the neutrino temperatures and propose a method to determine still unknown neutrino oscillation parameters, mass hierarchy and θ{sub 13}, simultaneously. Combining the recent experimental constraints on θ{sub 13} with isotopic ratios of the light elements discovered in presolar grains from the Murchison meteorite, we show that our method suggests at a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  15. Supernova constraints on neutrino oscillation and EoS for proto-neutron star

    Science.gov (United States)

    Kajino, T.; Aoki, W.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Mathews, G. J.; Nakamura, K.; Shibagaki, S.; Suzuki, T.

    2014-05-01

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like 7Li, 11B, 92Nb, 138La and Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We here discuss how to determine the neutrino temperatures and propose a method to determine still unknown neutrino oscillation parameters, mass hierarchy and θ13, simultaneously. Combining the recent experimental constraints on θ13 with isotopic ratios of the light elements discovered in presolar grains from the Murchison meteorite, we show that our method suggests at a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  16. Neutrino-induced nucleosynthesis in core-collapse supernovae

    International Nuclear Information System (INIS)

    Hartmann, D.H.; Haxton, W.C.; Hoffman, R.D.; Woosley, S.E.; California Univ., Santa Cruz, CA

    1990-01-01

    Almost all of the 3·10 53 ergs liberated in a core collapse supernova is radiated as neutrinos by the cooling neutron star. The neutrinos can excite nuclei in the mantle of the star by their neutral and charged current reactions. The resulting spallation reactions are an important nuleosynthesis mechanism that may be responsible for the galactic abundances of 7 Li, 11 B, 19 F, 138 La, 180 Ta, and number of other nuclei. 10 refs., 1 fig., 1 tab

  17. Neutrino mass hierarchy and three-flavor spectral splits of supernova neutrinos

    International Nuclear Information System (INIS)

    Dasgupta, Basudeb; Mirizzi, Alessandro; Tomas, Ricard; Tamborra, Irene

    2010-01-01

    It was recently realized that three-flavor effects could peculiarly modify the development of spectral splits induced by collective oscillations, for supernova neutrinos emitted during the cooling phase of a protoneutron star. We systematically explore this case, explaining how the impact of these three-flavor effects depends on the ordering of the neutrino masses. In inverted mass hierarchy, the solar mass splitting gives rise to instabilities in regions of the (anti)neutrino energy spectra that were otherwise stable under the leading two-flavor evolution governed by the atmospheric mass splitting and by the 1-3 mixing angle. As a consequence, the high-energy spectral splits found in the electron (anti)neutrino spectra disappear, and are transferred to other flavors. Imperfect adiabaticity leads to smearing of spectral swap features. In normal mass hierarchy, the three-flavor and the two-flavor instabilities act in the same region of the neutrino energy spectrum, leading to only minor departures from the two-flavor treatment.

  18. ON THE REQUIREMENTS FOR REALISTIC MODELING OF NEUTRINO TRANSPORT IN SIMULATIONS OF CORE-COLLAPSE SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, Eric J. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996-1200 (United States); Mezzacappa, Anthony; Hix, W. Raphael [Physics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6354 (United States); Messer, O. E. Bronson [Computer Science and Mathematics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6164 (United States); Liebendoerfer, Matthias [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Bruenn, Stephen W., E-mail: elentz@utk.edu, E-mail: mezzacappaa@ornl.gov [Department of Physics, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991 (United States)

    2012-03-01

    We have conducted a series of numerical experiments with the spherically symmetric, general relativistic, neutrino radiation hydrodynamics code AGILE-BOLTZTRAN to examine the effects of several approximations used in multidimensional core-collapse supernova simulations. Our code permits us to examine the effects of these approximations quantitatively by removing, or substituting for, the pieces of supernova physics of interest. These approximations include: (1) using Newtonian versus general relativistic gravity, hydrodynamics, and transport; (2) using a reduced set of weak interactions, including the omission of non-isoenergetic neutrino scattering, versus the current state-of-the-art; and (3) omitting the velocity-dependent terms, or observer corrections, from the neutrino Boltzmann kinetic equation. We demonstrate that each of these changes has noticeable effects on the outcomes of our simulations. Of these, we find that the omission of observer corrections is particularly detrimental to the potential for neutrino-driven explosions and exhibits a failure to conserve lepton number. Finally, we discuss the impact of these results on our understanding of current, and the requirements for future, multidimensional models.

  19. ON THE REQUIREMENTS FOR REALISTIC MODELING OF NEUTRINO TRANSPORT IN SIMULATIONS OF CORE-COLLAPSE SUPERNOVAE

    International Nuclear Information System (INIS)

    Lentz, Eric J.; Mezzacappa, Anthony; Hix, W. Raphael; Messer, O. E. Bronson; Liebendörfer, Matthias; Bruenn, Stephen W.

    2012-01-01

    We have conducted a series of numerical experiments with the spherically symmetric, general relativistic, neutrino radiation hydrodynamics code AGILE-BOLTZTRAN to examine the effects of several approximations used in multidimensional core-collapse supernova simulations. Our code permits us to examine the effects of these approximations quantitatively by removing, or substituting for, the pieces of supernova physics of interest. These approximations include: (1) using Newtonian versus general relativistic gravity, hydrodynamics, and transport; (2) using a reduced set of weak interactions, including the omission of non-isoenergetic neutrino scattering, versus the current state-of-the-art; and (3) omitting the velocity-dependent terms, or observer corrections, from the neutrino Boltzmann kinetic equation. We demonstrate that each of these changes has noticeable effects on the outcomes of our simulations. Of these, we find that the omission of observer corrections is particularly detrimental to the potential for neutrino-driven explosions and exhibits a failure to conserve lepton number. Finally, we discuss the impact of these results on our understanding of current, and the requirements for future, multidimensional models.

  20. Neutrinos and supernova collapse

    International Nuclear Information System (INIS)

    Colgate, S.A.; Petschek, A.G.

    1980-01-01

    The neutrino emission resulting from stellar collapse and supernova formation is reviewed. The electron capture and consequent neutronization of the collapsing stellar matter at the end of evolution determines both the initial adiabat of core collapse as well as the trapped lepton fraction. The initial lepton fraction, Y/sub l/ = .48 supplies the pressure for neutral support of the star at the Chandrasekhar limit. High trapping values, Y/sub l/ = .4, lead to soft core collapses; low values to harder collapses. The value of Y/sub l/ is presently in dispute. The neutrino emission from initial electron capture is relatively small. A strong core-bounce shock releases both electron neutrino as well as thermal muon and tau neutrinos. Subsequent neutrino emission and cooling can sometimes lead to an unstable buoyancy gradient in the core in which case unstable core overturn is expected. Calculations have already shown the importance of the largest possible eddy or equivalently the lowest mode of overturn. Present models of low lepton trapping ratio lead to high entropy creation by the reflected shock and the stabilization of the core matter against overturn. In such cases the exterior matter must cool below an entropy of approximately s/k approx. = 2 to become unstable. This may require too long a time approximately one second for neutrino cooling from a neutrinosphere at rho approx. = 2 x 10 12 g cm -3 . On the other hand, high values of Y/sub l/ such as .4 lead to softer bounces at lower density and values of the critical stabilizing entropy of 3 or higher. Under such circumstances, core overturn can still occur

  1. Workshop: Neutrino telescopes

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Despite being the most elusive of the known particles, neutrinos provide vital new physics insights. Most neutrino knowledge so far has come from studies using beams from reactors and accelerators, but in recent years important new contributions have resulted from investigation of natural neutrinos from cosmic rays, nearby stars (the sun), or distant sources, such as the 1987 supernova. The supernova observations marked the start of a new era in neutrino astronomy, but neutrino telescopes were anyway assured of an important ongoing role

  2. Workshop: Neutrino telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-05-15

    Despite being the most elusive of the known particles, neutrinos provide vital new physics insights. Most neutrino knowledge so far has come from studies using beams from reactors and accelerators, but in recent years important new contributions have resulted from investigation of natural neutrinos from cosmic rays, nearby stars (the sun), or distant sources, such as the 1987 supernova. The supernova observations marked the start of a new era in neutrino astronomy, but neutrino telescopes were anyway assured of an important ongoing role.

  3. Physics of neutrino flavor transformation through matter-neutrino resonances

    Science.gov (United States)

    Wu, Meng-Ru; Duan, Huaiyu; Qian, Yong-Zhong

    2016-01-01

    In astrophysical environments such as core-collapse supernovae and neutron star-neutron star or neutron star-black hole mergers where dense neutrino media are present, matter-neutrino resonances (MNRs) can occur when the neutrino propagation potentials due to neutrino-electron and neutrino-neutrino forward scattering nearly cancel each other. We show that neutrino flavor transformation through MNRs can be explained by multiple adiabatic solutions similar to the Mikheyev-Smirnov-Wolfenstein mechanism. We find that for the normal neutrino mass hierarchy, neutrino flavor evolution through MNRs can be sensitive to the shape of neutrino spectra and the adiabaticity of the system, but such sensitivity is absent for the inverted hierarchy.

  4. The Deep Underground Neutrino Experiment: The precision era of neutrino physics

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, E. [Gleb Wataghin Institute of Physics, Universidade de Campinas - UNICAMP, Campinas Brazil

    2017-12-01

    The last decade was remarkable for neutrino physics. In particular, the phenomenon of neutrino flavor oscillations has been firmly established by a series of independent measurements. All parameters of the neutrino mixing are now known, and we have the elements to plan a judicious exploration of new scenarios that are opened by these recent advances. With precise measurements, we can test the three-neutrino paradigm, neutrino mass hierarchy, and charge conjugation parity (CP) asymmetry in the lepton sector. The future long-baseline experiments are considered to be a fundamental tool to deepen our knowledge of electroweak interactions. The Deep Underground Neutrino Experiment (DUNE) will detect a broadband neutrino beam from Fermilab in an underground massive liquid argon time-projection chamber at an L/E of about 103 km GeV-1 to reach good sensitivity for CP-phase measurements and the determination of the mass hierarchy. The dimensions and the depth of the far detector also create an excellent opportunity to look for rare signals like proton decay to study violation of the baryonic number, as well as supernova neutrino bursts, broadening the scope of the experiment to astrophysics and associated impacts in cosmology. In this paper, we discuss the physics motivations and the main experimental features of the DUNE project required to reach its scientific goals.

  5. Workshop on low energy neutrino physics

    International Nuclear Information System (INIS)

    2009-01-01

    The main topics of the workshop are: the determination of the neutrino mixing angle theta-13, the experiments concerning the monitoring of reactors based on the measurement of neutrino spectra, solar neutrinos, supernovae neutrinos, geo-neutrinos, neutrino properties, neutrinoless double beta decay and future low energy neutrino detectors. This document gathers together the program of the workshop, the slides of the presentations, some abstracts and some posters

  6. Density fluctuation effects on collective neutrino oscillations in O-Ne-Mg core-collapse supernovae

    International Nuclear Information System (INIS)

    Cherry, John F.; Fuller, George M.; Wu Mengru; Qian Yongzhong; Carlson, J.; Duan Huaiyu

    2011-01-01

    We investigate the effect of matter density fluctuations on supernova collective neutrino flavor oscillations. In particular, we use full multiangle, three-flavor, self-consistent simulations of the evolution of the neutrino flavor field in the envelope of an O-Ne-Mg core-collapse supernova at shock breakout (neutronization neutrino burst) to study the effect of the matter density ''bump'' left by the He-burning shell. We find a seemingly counterintuitive increase in the overall ν e survival probability created by this matter density feature. We discuss this behavior in terms of the interplay between the matter density profile and neutrino collective effects. While our results give new insights into this interplay, they also suggest an immediate consequence for supernova neutrino burst detection: it will be difficult to use a burst signal to extract information on fossil burning shells or other fluctuations of this scale in the matter density profile. Consistent with previous studies, our results also show that the interplay of neutrino self-coupling and matter fluctuation could cause a significant increase in the ν e survival probability at very low energy.

  7. Neutrino nonstandard interactions in the supernova

    International Nuclear Information System (INIS)

    Das, C. R.; Pulido, Joao

    2011-01-01

    Neutrino nonstandard interactions (NSI) were investigated earlier in the solar case and were shown to reduce the tensions between the data and the large mixing angle solution predictions. We extend the previous framework to the supernova and evaluate the appearance probabilities for neutrinos and antineutrinos as a function of their energy after leaving the collapsing star with and without NSI. For normal hierarchy the probability for electron neutrinos and antineutrinos at low energy (E < or approx. 0.8-0.9 MeV) is substantially increased with respect to the non-NSI case and joins its value for inverse hierarchy which is constant with energy. Also for inverse hierarchy the NSI and non-NSI probabilities are the same for each neutrino and antineutrino species. Although detection in such a low energy range remains at present an experimental challenge, it will become a visible trace of NSI with normal hierarchy if they exist. On the other hand, the neutrino decay probability into an antineutrino and a majoron, an effect previously shown to be induced by dense matter, is, as in the case of the sun, too small to be observed as a direct consequence of NSI.

  8. Large-scale Instability during Gravitational Collapse with Neutrino Transport and a Core-Collapse Supernova

    Science.gov (United States)

    Aksenov, A. G.; Chechetkin, V. M.

    2018-04-01

    Most of the energy released in the gravitational collapse of the cores of massive stars is carried away by neutrinos. Neutrinos play a pivotal role in explaining core-collape supernovae. Currently, mathematical models of the gravitational collapse are based on multi-dimensional gas dynamics and thermonuclear reactions, while neutrino transport is considered in a simplified way. Multidimensional gas dynamics is used with neutrino transport in the flux-limited diffusion approximation to study the role of multi-dimensional effects. The possibility of large-scale convection is discussed, which is interesting both for explaining SN II and for setting up observations to register possible high-energy (≳10MeV) neutrinos from the supernova. A new multi-dimensional, multi-temperature gas dynamics method with neutrino transport is presented.

  9. Final Report for DOE Grant DE-FG02-00ER41149 ''Nuclear Physics of Core-Collapse Supernovae''

    International Nuclear Information System (INIS)

    Yong-Zhong Qian

    2004-01-01

    During the funding period from August 15, 2000 to August 14, 2004, the main foci of my research have been implications of abundances in metal-poor stars for nucleosynthetic yields of supernovae and chemical evolution of the universe, effects of neutrino oscillations and neutrino-nucleus interactions on r-process nucleosynthesis, physical conditions in neutrino-driven winds from proto-neutron stars, neutrino driven mechanism of supernova explosion, supernova neutrino signals in terrestrial detectors, and constraints on variations of fundamental couplings and astrophysical conditions from properties of nuclear reactions. Personnel (three graduate students and a postdoctoral research associate) involved in my research are listed in section 2. Completed research projects are discussed in section 3. Publications during the funding period are listed in section 4 and oral presentations in section 5. Remarks about the budget are given in section 6

  10. Physics of neutrino flavor transformation through matter–neutrino resonances

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Meng-Ru, E-mail: mwu@theorie.ikp.physik.tu-darmstadt.de [Institut für Kernphysik (Theoriezentrum), Technische Universität Darmstadt, Schlossgartenstraße 2, 64289 Darmstadt (Germany); Duan, Huaiyu, E-mail: duan@unm.edu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Qian, Yong-Zhong, E-mail: qian@physics.umn.edu [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2016-01-10

    In astrophysical environments such as core-collapse supernovae and neutron star–neutron star or neutron star–black hole mergers where dense neutrino media are present, matter–neutrino resonances (MNRs) can occur when the neutrino propagation potentials due to neutrino–electron and neutrino–neutrino forward scattering nearly cancel each other. We show that neutrino flavor transformation through MNRs can be explained by multiple adiabatic solutions similar to the Mikheyev–Smirnov–Wolfenstein mechanism. We find that for the normal neutrino mass hierarchy, neutrino flavor evolution through MNRs can be sensitive to the shape of neutrino spectra and the adiabaticity of the system, but such sensitivity is absent for the inverted hierarchy.

  11. Spectral split in a prompt supernova neutrino burst: Analytic three-flavor treatment

    International Nuclear Information System (INIS)

    Dasgupta, Basudeb; Dighe, Amol; Mirizzi, Alessandro; Raffelt, Georg G.

    2008-01-01

    The prompt ν e burst from a core-collapse supernova is subject to both matter-induced flavor conversions and strong neutrino-neutrino refractive effects. For the lowest-mass progenitors, leading to O-Ne-Mg core supernovae, the matter density profile can be so steep that the usual Mikheyev-Smirnov-Wolfenstein matter effects occur within the dense-neutrino region close to the neutrino sphere. In this case a ''split'' occurs in the emerging spectrum, i.e., the ν e flavor survival probability shows a steplike feature. We explain this feature analytically as a spectral split prepared by the Mikheyev-Smirnov-Wolfenstein effect. In a three-flavor treatment, the steplike feature actually consists of two narrowly spaced splits. They are determined by two combinations of flavor-lepton numbers that are conserved under collective oscillations

  12. Spectral split in a prompt supernova neutrino burst: Analytic three-flavor treatment

    Science.gov (United States)

    Dasgupta, Basudeb; Dighe, Amol; Mirizzi, Alessandro; Raffelt, Georg G.

    2008-06-01

    The prompt νe burst from a core-collapse supernova is subject to both matter-induced flavor conversions and strong neutrino-neutrino refractive effects. For the lowest-mass progenitors, leading to O-Ne-Mg core supernovae, the matter density profile can be so steep that the usual Mikheyev-Smirnov-Wolfenstein matter effects occur within the dense-neutrino region close to the neutrino sphere. In this case a “split” occurs in the emerging spectrum, i.e., the νe flavor survival probability shows a steplike feature. We explain this feature analytically as a spectral split prepared by the Mikheyev-Smirnov-Wolfenstein effect. In a three-flavor treatment, the steplike feature actually consists of two narrowly spaced splits. They are determined by two combinations of flavor-lepton numbers that are conserved under collective oscillations.

  13. No Collective Neutrino Flavor Conversions during the Supernova Accretion Phase

    Science.gov (United States)

    Chakraborty, Sovan; Fischer, Tobias; Mirizzi, Alessandro; Saviano, Ninetta; Tomàs, Ricard

    2011-10-01

    We perform a dedicated study of the supernova (SN) neutrino flavor evolution during the accretion phase, using results from recent neutrino radiation hydrodynamics simulations. In contrast to what was expected in the presence of only neutrino-neutrino interactions, we find that the multiangle effects associated with the dense ordinary matter suppress collective oscillations. The matter suppression implies that neutrino oscillations will start outside the neutrino decoupling region and therefore will have a negligible impact on the neutrino heating and the explosion dynamics. Furthermore, the possible detection of the next galactic SN neutrino signal from the accretion phase, based on the usual Mikheyev-Smirnov-Wolfenstein effect in the SN mantle and Earth matter effects, can reveal the neutrino mass hierarchy in the case that the mixing angle θ13 is not very small.

  14. Supernova neutrino detection with LVD

    International Nuclear Information System (INIS)

    Selvi, M.

    2007-01-01

    The Large Volume Detector (LVD) in the INFN Gran Sasso National Laboratory, Italy, is a ν observatory mainly designed to study low energy neutrinos from the gravitational collapse of galactic objects.We describe the characteristics of the supernova neutrino signal expected in the LVD detector and, in particular, we investigate the effect of neutrino oscillations. The MSW effect has been studied in detail for neutrinos travelling through the collapsing star and the Earth. We show that the expected number of events and their energy spectrum are sensitive to the oscillation parameters, in particular to the mass hierarchy and the value of θ 13 , presently unknown.The experiment has been monitoring the Galaxy since June 1992, under increasing larger configurations: in January 2001 it has reached its final active mass M = 1 kt. LVD is one of the largest liquid scintillator apparatus for the detection of stellar collapses and, besides SNO, SuperKamiokande and Amanda, it is a charter member of the SNEWS network, that has become fully operational since July 1st, 2005. No gravitational core-collapse has been detected by LVD during 14 years of data acquisition; this allows to put an upper limit of 0.18 events y -1 in our galaxy at the 90% C.L

  15. Understanding Core-Collapse Supernovae

    Science.gov (United States)

    Hix, W. R.; Lentz, E. J.; Baird, M.; Messer, O. E. B.; Mezzacappa, A.; Lee, C.-T.; Bruenn, S. W.; Blondin, J. M.; Marronetti, P.

    2010-03-01

    Our understanding of core-collapse supernovae continues to improve as better microphysics is included in increasingly realistic neutrino-radiationhydrodynamic simulations. Recent multi-dimensional models with spectral neutrino transport, which slowly develop successful explosions for a range of progenitors between 12 and 25 solar mass, have motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of how supernovae explode. Recent progresses on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.

  16. Methodological studies on the search for Gravitational Waves and Neutrinos from Type II Supernovae

    International Nuclear Information System (INIS)

    Casentini, Claudio

    2016-01-01

    Type II SNe, also called Core-collapse SuperNovae have a neutrino (v) emission, as confirmed by SN 1987A, and are also potential sources of gravitational waves. Neutrinos and gravitational waves from these sources reach Earth almost contemporaneously and without relevant interaction with stellar matter and interstellar medium. The upcoming advanced gravitational interferometers would be sensitive enough to detect gravitational waves signals from close galactic Core-collapse SuperNovae events. Nevertheless, significant uncertainties on theoretical models of emission remain. A joint search of coincident low energy neutrinos and gravitational waves events from these sources would bring valuable information from the inner core of the collapsing star and would enhance the detection of the so-called Silent SuperNovae. Recently a project for a joint search involving gravitational wave interferometers and neutrino detectors has started. We discuss the benefits of a joint search and the status of the search project. (paper)

  17. Collective three-flavor oscillations of supernova neutrinos

    Science.gov (United States)

    Dasgupta, Basudeb; Dighe, Amol

    2008-06-01

    Neutrinos and antineutrinos emitted from a core collapse supernova interact among themselves, giving rise to collective flavor conversion effects that are significant near the neutrinosphere. We develop a formalism to analyze these collective effects in the complete three-flavor framework. It naturally generalizes the spin-precession analogy to three flavors and is capable of analytically describing phenomena like vacuum/Mikheyev-Smirnov-Wolfenstein (MSW) oscillations, synchronized oscillations, bipolar oscillations, and spectral split. Using the formalism, we demonstrate that the flavor conversions may be “factorized” into two-flavor oscillations with hierarchical frequencies. We explicitly show how the three-flavor solution may be constructed by combining two-flavor solutions. For a typical supernova density profile, we identify an approximate separation of regions where distinctly different flavor conversion mechanisms operate, and demonstrate the interplay between collective and MSW effects. We pictorialize our results in terms of the “e3-e8 triangle” diagram, which is a tool that can be used to visualize three-neutrino flavor conversions in general, and offers insights into the analysis of the collective effects in particular.

  18. Physics of neutrino flavor transformation through matter–neutrino resonances

    Directory of Open Access Journals (Sweden)

    Meng-Ru Wu

    2016-01-01

    Full Text Available In astrophysical environments such as core-collapse supernovae and neutron star–neutron star or neutron star–black hole mergers where dense neutrino media are present, matter–neutrino resonances (MNRs can occur when the neutrino propagation potentials due to neutrino–electron and neutrino–neutrino forward scattering nearly cancel each other. We show that neutrino flavor transformation through MNRs can be explained by multiple adiabatic solutions similar to the Mikheyev–Smirnov–Wolfenstein mechanism. We find that for the normal neutrino mass hierarchy, neutrino flavor evolution through MNRs can be sensitive to the shape of neutrino spectra and the adiabaticity of the system, but such sensitivity is absent for the inverted hierarchy.

  19. Search for neutrinos from core-collapse supernova from the global network of detectors

    Energy Technology Data Exchange (ETDEWEB)

    Habig, Alec, E-mail: ahabig@umn.ed [University of Minnesota Duluth, Physics Department, 10 University Dr., Duluth, MN 55812 (United States)

    2010-01-01

    The Supernova Early Warning System (SNEWS) is a cooperative effort between the world's neutrino detection experiments to spread the news that a star in our galaxy has just experienced a core-collapse event and is about to become a Type II Supernova. This project exploits the {approx}hours time difference between neutrinos promptly escaping the nascent supernova and photons which originate when the shock wave breaks through the stellar photosphere, to give the world a chance to get ready to observe such an exciting event at the earliest possible time. A coincidence trigger between experiments is used to eliminate potential local false alarms, allowing a rapid, automated alert.

  20. Fast flavor conversions of supernova neutrinos: Classifying instabilities via dispersion relations

    Science.gov (United States)

    Capozzi, Francesco; Dasgupta, Basudeb; Lisi, Eligio; Marrone, Antonio; Mirizzi, Alessandro

    2017-08-01

    Supernova neutrinos can exhibit a rich variety of flavor conversion mechanisms. In particular, they can experience "fast" self-induced flavor conversions almost immediately above the core. Very recently, a novel method has been proposed to investigate these phenomena, in terms of the dispersion relation for the complex frequency and wave number (ω ,k ) of disturbances in the mean field of the νeνx flavor coherence. We discuss a systematic approach to such instabilities, originally developed in the context of plasma physics, and based of the time-asymptotic behavior of the Green's function of the system. Instabilities are typically seen to emerge for complex ω and can be further characterized as convective (moving away faster than they spread) and absolute (growing locally), depending on k -dependent features. Stable cases emerge when k (but not ω ) is complex, leading to disturbances damped in space, or when both ω and k are real, corresponding to complete stability. The analytical classification of both unstable and stable modes leads not only to qualitative insights about their features but also to quantitative predictions about the growth rates of instabilities. Representative numerical solutions are discussed in a simple two-beam model of interacting neutrinos. As an application, we argue that supernova and binary neutron star mergers exhibiting a "crossing" in the electron lepton number would lead to an absolute instability in the flavor content of the neutrino gas.

  1. Neutrino spectrum from SN 1987A and from cosmic supernovae

    International Nuclear Information System (INIS)

    Yueksel, Hasan; Beacom, John F.

    2007-01-01

    The detection of neutrinos from SN 1987A by the Kamiokande-II and Irvine-Michigan-Brookhaven detectors provided the first glimpse of core collapse in a supernova, complementing the optical observations and confirming our basic understanding of the mechanism behind the explosion. One long-standing puzzle is that, when fitted with thermal spectra, the two independent detections do not seem to agree with either each other or typical theoretical expectations. We assess the compatibility of the two data sets in a model-independent way and show that they can be reconciled if one avoids any bias on the neutrino spectrum stemming from theoretical conjecture. We reconstruct the neutrino spectrum from SN 1987A directly from the data through nonparametric inferential statistical methods and present predictions for the diffuse supernova neutrino background based on SN 1987A data. We show that this prediction cannot be too small (especially in the 10-18 MeV range), since the majority of the detected events from SN 1987A were above 18 MeV (including 6 events above 35 MeV), suggesting an imminent detection in operational and planned detectors

  2. Production of high energy neutrinos in relativistic supernova shock waves

    International Nuclear Information System (INIS)

    Weaver, T.A.

    1979-01-01

    The possibility of producing high-energy neutrinos (> approx. 10 GeV) in relativistic supernova shock waves is considered. It is shown that, even if the dissipation in such shocks is due to hard hadron--hadron collisions, the resulting flux of neutrinos is too small to be observed by currently envisioned detectors. The associated burst of hard γ-rays, however, may be detectable. 3 tables

  3. Sites that Can Produce Left-handed Amino Acids in the Supernova Neutrino Amino Acid Processing Model

    Science.gov (United States)

    Boyd, Richard N.; Famiano, Michael A.; Onaka, Takashi; Kajino, Toshitaka

    2018-03-01

    The Supernova Neutrino Amino Acid Processing model, which uses electron anti-neutrinos and the magnetic field from a source object such as a supernova to selectively destroy one amino acid chirality, is studied for possible sites that would produce meteoroids with partially left-handed amino acids. Several sites appear to provide the requisite magnetic field intensities and electron anti-neutrino fluxes. These results have obvious implications for the origin of life on Earth.

  4. Simulation of coherent nonlinear neutrino flavor transformation in the supernova environment: Correlated neutrino trajectories

    Science.gov (United States)

    Duan, Huaiyu; Fuller, George M.; Carlson, J.; Qian, Yong-Zhong

    2006-11-01

    We present results of large-scale numerical simulations of the evolution of neutrino and antineutrino flavors in the region above the late-time post-supernova-explosion proto-neutron star. Our calculations are the first to allow explicit flavor evolution histories on different neutrino trajectories and to self-consistently couple flavor development on these trajectories through forward scattering-induced quantum coupling. Employing the atmospheric-scale neutrino mass-squared difference (|δm2|≃3×10-3eV2) and values of θ13 allowed by current bounds, we find transformation of neutrino and antineutrino flavors over broad ranges of energy and luminosity in roughly the “bi-polar” collective mode. We find that this large-scale flavor conversion, largely driven by the flavor off-diagonal neutrino-neutrino forward scattering potential, sets in much closer to the proto-neutron star than simple estimates based on flavor-diagonal potentials and Mikheyev-Smirnov-Wolfenstein evolution would indicate. In turn, this suggests that models of r-process nucleosynthesis sited in the neutrino-driven wind could be affected substantially by active-active neutrino flavor mixing, even with the small measured neutrino mass-squared differences.

  5. DETECTING THE SUPERNOVA BREAKOUT BURST IN TERRESTRIAL NEUTRINO DETECTORS

    International Nuclear Information System (INIS)

    Wallace, Joshua; Burrows, Adam; Dolence, Joshua C.

    2016-01-01

    We calculate the distance-dependent performance of a few representative terrestrial neutrino detectors in detecting and measuring the properties of the ν e breakout burst light curve in a Galactic core-collapse supernova. The breakout burst is a signature phenomenon of core collapse and offers a probe into the stellar core through collapse and bounce. We examine cases of no neutrino oscillations and oscillations due to normal and inverted neutrino-mass hierarchies. For the normal hierarchy, other neutrino flavors emitted by the supernova overwhelm the ν e signal, making a detection of the breakout burst difficult. For the inverted hierarchy (IH), some detectors at some distances should be able to see the ν e breakout burst peak and measure its properties. For the IH, the maximum luminosity of the breakout burst can be measured at 10 kpc to accuracies of ∼30% for Hyper-Kamiokande (Hyper-K) and ∼60% for the Deep Underground Neutrino Experiment (DUNE). Super-Kamiokande (Super-K) and Jiangmen Underground Neutrino Observatory (JUNO) lack the mass needed to make an accurate measurement. For the IH, the time of the maximum luminosity of the breakout burst can be measured in Hyper-K to an accuracy of ∼3 ms at 7 kpc, in DUNE to ∼2 ms at 4 kpc, and JUNO and Super-K can measure the time of maximum luminosity to an accuracy of ∼2 ms at 1 kpc. Detector backgrounds in IceCube render a measurement of the ν e breakout burst unlikely. For the IH, a measurement of the maximum luminosity of the breakout burst could be used to differentiate between nuclear equations of state

  6. Neutrinos from supernova explosion and the Mikheyev-Smirnov-Wolfenstein effect

    International Nuclear Information System (INIS)

    Minakata, H.; Nunokawa, H.; Shiraishi, K.; Suzuki, H.

    1987-01-01

    It is shown that by taking the effect of the Earth into account the possible observation of electron neutrinos from the supernova SN1987A at the Kamiokande II is compatible with the solution of the solar neutrino puzzle by the Mikheyev-Smirnov-Wolfenstein mechanism. The authors' scenario requires relatively large mixing angles sin/sup 2/ 2θ>≥0.3 and, most probably, Δm/sup 2/ of the order of 10/sup -6/ -- 10/sup -5/(eV)/sup 2/. The implications of possible observation in other neutrino detectors are briefly discussed

  7. Identifying Neutrino Mass Hierarchy at Extremely Small θ13 through Earth Matter Effects in a Supernova Signal

    International Nuclear Information System (INIS)

    Dasgupta, Basudeb; Dighe, Amol; Mirizzi, Alessandro

    2008-01-01

    Collective neutrino flavor transformations deep inside a supernova are sensitive to the neutrino mass hierarchy even at extremely small values of θ 13 . Exploiting this effect, we show that comparison of the antineutrino signals from a galactic supernova in two megaton class water Cherenkov detectors, one of which is shadowed by Earth, will enable us to distinguish between the hierarchies if sin 2 θ 13 -5 , where long baseline neutrino experiments would be ineffectual

  8. Time delays of supernova neutrinos from new long-range interactions

    International Nuclear Information System (INIS)

    Malaney, R.A.; Starkman, G.D.; Tremaine, S.

    1995-01-01

    A new long-range interaction between heavy neutrinos may solve some current problems in large-scale structure, if the new interaction mimics gravity. Assuming that the dark matter is dominated by ∼100 eV τ neutrinos, we investigate whether time delay measurements on supernova neutrinos can test this possibility. We find that such experiments can rule out or detect specific forms of the new interaction potential. In addition, we find the exact dispersive nature of the interacting medium to be critical in determining the time delay: even small corrections to the potential can dramatically alter the magnitude of the effect

  9. Light neutrinos as cosmological dark matter and the next supernova

    International Nuclear Information System (INIS)

    Minakata, H.; Nunokawa, H.

    1990-01-01

    We point out that the light-neutrino hypothesis for cosmological dark matter can be tested by observing a neutrino burst from a type-II supernova. With the luck of a nearby (∼10 kpc) event watched by enlarged water Cherenkov detectors, such as the proposed super-Kamiokande, it might be possible to measure the tau- (heaviest-)neutrino mass. In such a case the statistically significant (4000--6000) bar ν e absorption events would allow the precise determination of the neutrino flux and the temperature. By using a simple model of neutrino emission based on the simulation by Mayle, Wilson, and Schramm, we show that the existence of the neutrino mixing can be signaled by 20--30 % excess of the scattering events in the water Cherenkov detector, and by factor ∼3 larger rate in Davis's 37 Cl detector. The effect on the recoil electron energy spectrum is also analyzed

  10. Strongest gravitational waves from neutrino oscillations at supernova core bounce

    International Nuclear Information System (INIS)

    Mosquera Cuesta, H.J.; Fiuza, K.

    2004-01-01

    Resonant active-to-active (ν a →ν a ), as well as active-to-sterile (ν a →ν s ) neutrino (ν) oscillations can take place during the core bounce of a supernova collapse. Besides, over this phase, weak magnetism increases the antineutrino (anti ν) mean free path, and thus its luminosity. Because the oscillation feeds mass-energy into the target ν species, the large mass-squared difference between the species (ν a →ν s ) implies a huge amount of energy to be given off as gravitational waves (L GW ∝10 49 erg s -1 ), due to anisotropic but coherent ν flow over the oscillation length. This asymmetric ν-flux is driven by both the spin-magnetic and the universal spin-rotation coupling. The novel contribution of this paper stems from (1) the new computation of the anisotropy parameter α∝0.1-0.01, and (2) the use of the tight constraints from neutrino experiments as SNO and KamLAND, and the cosmic probe WMAP, to compute the gravitational-wave emission during neutrino oscillations in supernovae core collapse and bounce. We show that the mass of the sterile neutrino ν s that can be resonantly produced during the flavor conversions makes it a good candidate for dark matter as suggested by Fuller et al., Phys. Rev. D 68, 103002 (2003). The new spacetime strain thus estimated is still several orders of magnitude larger than those from ν diffusion (convection and cooling) or quadrupole moments of neutron star matter. This new feature turns these bursts into the more promising supernova gravitational-wave signals that may be detected by observatories as LIGO, VIRGO, etc., for distances far out to the VIRGO cluster of galaxies. (orig.)

  11. Probing Dark Energy via Neutrino and Supernova Observatories

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Lawrence; Hall, Lawrence J.; Murayama, Hitoshi; Papucci, Michele; Perez, Gilad

    2006-07-10

    A novel method for extracting cosmological evolution parameters is proposed, using a probe other than light: future observations of the diffuse anti-neutrino flux emitted from core-collapse supernovae (SNe), combined with the SN rate extracted from future SN surveys. The relic SN neutrino differential flux can be extracted by using future neutrino detectors such as Gadolinium-enriched, megaton, water detectors or 100-kiloton detectors of liquid Argon or liquid scintillator. The core-collapse SN rate can be reconstructed from direct observation of SN explosions using future precision observatories. Our method, by itself, cannot compete with the accuracy of the optical-based measurements but may serve as an important consistency check as well as a source of complementary information. The proposal does not require construction of a dedicated experiment, but rather relies on future experiments proposed for other purposes.

  12. Probing Dark Energy via Neutrino and Supernova Observatories

    International Nuclear Information System (INIS)

    Hall, Lawrence; Hall, Lawrence J.; Murayama, Hitoshi; Papucci, Michele; Perez, Gilad

    2006-01-01

    A novel method for extracting cosmological evolution parameters is proposed, using a probe other than light: future observations of the diffuse anti-neutrino flux emitted from core-collapse supernovae (SNe), combined with the SN rate extracted from future SN surveys. The relic SN neutrino differential flux can be extracted by using future neutrino detectors such as Gadolinium-enriched, megaton, water detectors or 100-kiloton detectors of liquid Argon or liquid scintillator. The core-collapse SN rate can be reconstructed from direct observation of SN explosions using future precision observatories. Our method, by itself, cannot compete with the accuracy of the optical-based measurements but may serve as an important consistency check as well as a source of complementary information. The proposal does not require construction of a dedicated experiment, but rather relies on future experiments proposed for other purposes

  13. Present and future neutrino physics research at the Los Alamos Meson Physics Facility

    International Nuclear Information System (INIS)

    Sanders, G.H.

    1988-01-01

    The Los Alamos Meson Physics Facility is currently the site of two neutrino experiments. A measurement of elastic scattering of electron-neutrinos on electrons is providing confirmation of the destructive interference between the weak neutral and charged currents predicted in the standard electroweak theory. A search for the appearance of /bar/ν//sub e/ is being carried out at the LAMPF beam stop, as well. The status of this experiment is described. A major new initiative is being undertaken to measure neutrino-electron scattering in a large water Cerenkov detector. This meaurement will be precise enough to provide, in combination with the meaurements to be performed at the new generation of high-energy electron-positron colliers, the first experimental study of the standard electrowak theory at the level of one-loop radiative corrections. The detector will also be a vehicle for neutrino-oscillation searches, measurement of neutrinos from supernovae, and other fundamental physics. The apparatus will consist of a neutrino production target and shield surrounded by a water Cerenkov detector. The fiducial volume of water will be approximately 7000 tons, viewed by approximately 13000 20 cm diameter photomultiplier tubes. 11 refs., 6 figs

  14. Mixing of fourth-generation neutrinos

    International Nuclear Information System (INIS)

    Nussinov, S.

    1987-01-01

    This paper reviews some of the constraints on the mixing of massive decaying neutrinos. Some of the possible implications for neutrino physics of the recent supernova, and in particular the apparent overabundance of neutrino energy, are discussed

  15. Revealing the supernova-gamma-ray burst connection with TeV neutrinos.

    Science.gov (United States)

    Ando, Shin'ichiro; Beacom, John F

    2005-08-05

    Gamma-ray bursts (GRBs) are rare, powerful explosions displaying highly relativistic jets. It has been suggested that a significant fraction of the much more frequent core-collapse supernovae are accompanied by comparably energetic but mildly relativistic jets, which would indicate an underlying supernova-GRB connection. We calculate the neutrino spectra from the decays of pions and kaons produced in jets in supernovae, and show that the kaon contribution is dominant and provides a sharp break near 20 TeV, which is a sensitive probe of the conditions inside the jet. For a supernova at 10 Mpc, 30 events above 100 GeV are expected in a 10 s burst in the IceCube detector.

  16. Fast-time Variations of Supernova Neutrino Fluxes and Detection Perspectives

    NARCIS (Netherlands)

    Tamborra, I.; Hanke, F.; Müller, B.; Janka, H.T.; Raffelt, G.G.

    2015-01-01

    In the delayed explosion scenario of a core-collapse supernova, the accretion phase shows pronounced convective over-turns and a low-multipole hydrodynamic instability, the so-called standing accretion shock instability (SASI). Neutrino signal variations from the first full-scale three-dimensional

  17. Neutrino Physics

    CERN Multimedia

    CERN. Geneva; Dydak, Friedrich

    2001-01-01

    Starting from a review of theoretical concepts and experimental results in the early years of neutrino physics after Pauli's 1930 letter, today's double role of the neutrino as a cornerstone of the Standard Model and as a promising probe of physics beyond the Standard Model will be discussed. Topics comprise: - Conventional neutrino beams - Neutrinos as probes of the nucleon structure - Neutrinos from the universe - Dirac or Majorana neutrinos - Neutrino oscillations - MNS matrix - CP violation in the lepton sector - Neutrino factory.

  18. Neutrino Physics

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    Starting from a review of theoretical concepts and experimental results in the early years of neutrino physics after Pauli's 1930 letter, today's double role of the neutrino as a cornerstone of the Standard Model and as a promising probe of physics beyond the Standard Model will be discussed. Topics comprise: - Conventional neutrino beams - Neutrinos as probes of the nucleon structure - Neutrinos from the universe - Dirac or Majorana neutrinos - Neutrino oscillations - MNS matrix - CP violation in the lepton sector - Neutrino factory.

  19. Fast neutrino flavor conversions near the supernova core with realistic flavor-dependent angular distributions

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Basudeb; Sen, Manibrata [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, 400005 (India); Mirizzi, Alessandro, E-mail: bdasgupta@theory.tifr.res.in, E-mail: alessandro.mirizzi@ba.infn.it, E-mail: manibrata.sen@gmail.com [Dipartimento Interateneo di Fisica ' Michelangelo Merlin' , Via Amendola 173, 70126 Bari (Italy)

    2017-02-01

    It has been recently pointed out that neutrino fluxes from a supernova can show substantial flavor conversions almost immediately above the core. Using linear stability analyses and numerical solutions of the fully nonlinear equations of motion, we perform a detailed study of these fast conversions , focussing on the region just above the supernova core. We carefully specify the instabilities for evolution in space or time, and find that neutrinos travelling towards the core make fast conversions more generic, i.e., possible for a wider range of flux ratios and angular asymmetries that produce a crossing between the zenith-angle spectra of ν {sub e} and ν-bar {sub e} . Using fluxes and angular distributions predicted by supernova simulations, we find that fast conversions can occur within tens of nanoseconds, only a few meters away from the putative neutrinospheres. If these fast flavor conversions indeed take place, they would have important implications for the supernova explosion mechanism and nucleosynthesis.

  20. Theoretical estimates of supernova-neutrino cross sections for the stable even-even lead isotopes: Charged-current reactions

    Science.gov (United States)

    Almosly, W.; Carlsson, B. G.; Suhonen, J.; Toivanen, J.; Ydrefors, E.

    2016-10-01

    A detailed study of the charged-current supernova electron neutrino and electron antineutrino scattering off the stable even-mass lead isotopes A =204 , 206, and 208 is reported in this work. The proton-neutron quasiparticle random-phase approximation (pnQRPA) is adopted to construct the nuclear final and initial states. Three different Skyrme interactions are tested for their isospin and spin-isospin properties and then applied to produce (anti)neutrino-nucleus scattering cross sections for (anti)neutrino energies below 80 MeV. Realistic estimates of the nuclear responses to supernova (anti)neutrinos are computed by folding the computed cross sections with a two-parameter Fermi-Dirac distribution of the electron (anti)neutrino energies. The computed cross sections are compared with earlier calculations and the analyses are extended to take into account the effects coming from the neutrino oscillations.

  1. Neutrino-pair emission from nuclear de-excitation in core-collapse supernova simulations

    Science.gov (United States)

    Fischer, T.; Langanke, K.; Martínez-Pinedo, G.

    2013-12-01

    We study the impact of neutrino-pair production from the de-excitation of highly excited heavy nuclei on core-collapse supernova simulations, following the evolution up to several 100 ms after core bounce. Our study is based on the agile-boltztransupernova code, which features general relativistic radiation hydrodynamics and accurate three-flavor Boltzmann neutrino transport in spherical symmetry. In our simulations the nuclear de-excitation process is described in two different ways. At first we follow the approach proposed by Fuller and Meyer [Astrophys. J.AJLEEY0004-637X10.1086/170317 376, 701 (1991)], which is based on strength functions derived in the framework of the nuclear Fermi-gas model of noninteracting nucleons. Second, we parametrize the allowed and forbidden strength distributions in accordance with measurements for selected nuclear ground states. We determine the de-excitation strength by applying the Brink hypothesis and detailed balance. For both approaches, we find that nuclear de-excitation has no effect on the supernova dynamics. However, we find that nuclear de-excitation is the leading source for the production of electron antineutrinos as well as heavy-lepton-flavor (anti)neutrinos during the collapse phase. At sufficiently high densities, the associated neutrino spectra are influenced by interactions with the surrounding matter, making proper simulations of neutrino transport important for the determination of the neutrino-energy loss rate. We find that, even including nuclear de-excitations, the energy loss during the collapse phase is overwhelmingly dominated by electron neutrinos produced by electron capture.

  2. Neutrino physics

    CERN Document Server

    Hernandez, P.

    2016-01-01

    This is the writeup of the lectures on neutrino physics delivered at various schools: TASI and Trieste in 2013 and the CERN-Latin American School in 2015. The topics discussed in this lecture include: general properties of neutrinos in the SM, the theory of neutrino masses and mixings (Dirac and Majorana), neutrino oscillations both in vacuum and in matter, as well as an overview of the experimental evidence for neutrino masses and of the prospects in neutrino oscillation physics. We also briefly review the relevance of neutri- nos in leptogenesis and in beyond-the-Standard-Model physics.

  3. Multi-dimensional relativistic simulations of core-collapse supernovae with energy-dependent neutrino transport

    International Nuclear Information System (INIS)

    Mueller, Bernhard

    2009-01-01

    In this thesis, we have presented the first multi-dimensional models of core-collapse supernovae that combine a detailed, up-to-date treatment of neutrino transport, the equation of state, and - in particular - general relativistic gravity. Building on the well-tested neutrino transport code VERTEX and the GR hydrodynamics code CoCoNuT, we developed and implemented a relativistic generalization of a ray-by-ray-plus method for energy-dependent neutrino transport. The result of these effort, the VERTEX-CoCoNuT code, also incorporates a number of improved numerical techniques that have not been used in the code components VERTEX and CoCoNuT before. In order to validate the VERTEX-CoCoNuT code, we conducted several test simulations in spherical symmetry, most notably a comparison with the one-dimensional relativistic supernova code AGILE-BOLTZTRAN and the Newtonian PROMETHEUSVERTEX code. (orig.)

  4. Multi-dimensional relativistic simulations of core-collapse supernovae with energy-dependent neutrino transport

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Bernhard

    2009-05-07

    In this thesis, we have presented the first multi-dimensional models of core-collapse supernovae that combine a detailed, up-to-date treatment of neutrino transport, the equation of state, and - in particular - general relativistic gravity. Building on the well-tested neutrino transport code VERTEX and the GR hydrodynamics code CoCoNuT, we developed and implemented a relativistic generalization of a ray-by-ray-plus method for energy-dependent neutrino transport. The result of these effort, the VERTEX-CoCoNuT code, also incorporates a number of improved numerical techniques that have not been used in the code components VERTEX and CoCoNuT before. In order to validate the VERTEX-CoCoNuT code, we conducted several test simulations in spherical symmetry, most notably a comparison with the one-dimensional relativistic supernova code AGILE-BOLTZTRAN and the Newtonian PROMETHEUSVERTEX code. (orig.)

  5. INTERPLAY OF NEUTRINO OPACITIES IN CORE-COLLAPSE SUPERNOVA SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, Eric J. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996-1200 (United States); Mezzacappa, Anthony; Hix, W. Raphael [Physics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6354 (United States); Messer, O. E. Bronson [National Center for Computational Sciences, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6164 (United States); Bruenn, Stephen W., E-mail: elentz@utk.edu [Department of Physics, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991 (United States)

    2012-11-20

    We have conducted a series of numerical experiments using spherically symmetric, general relativistic, neutrino radiation hydrodynamics with the code Agile-BOLTZTRAN to examine the effects of modern neutrino opacities on the development of supernova simulations. We test the effects of opacities by removing opacities or by undoing opacity improvements for individual opacities and groups of opacities. We find that improvements to electron capture (EC) on nuclei, namely EC on an ensemble of nuclei using modern nuclear structure models rather than the simpler independent-particle approximation (IPA) for EC on a mean nucleus, plays the most important role during core collapse of all tested neutrino opacities. Low-energy neutrinos emitted by modern nuclear EC preferentially escape during collapse without the energy downscattering on electrons required to enhance neutrino escape and deleptonization for the models with IPA nuclear EC. During shock breakout the primary influence on the emergent neutrinos arises from non-isoenergetic scattering (NIS) on electrons. For the accretion phase, NIS on free nucleons and pair emission by e {sup +} e {sup -} annihilation have the largest impact on the neutrino emission and shock evolution. Other opacities evaluated, including nucleon-nucleon bremsstrahlung and especially neutrino-positron scattering, have little measurable impact on neutrino emission or shock dynamics. Modern treatments of nuclear EC, e {sup +} e {sup -}-annihilation pair emission, and NIS on electrons and free nucleons are critical elements of core-collapse simulations of all dimensionality.

  6. Probing axions with the neutrino signal from the next galactic supernova

    International Nuclear Information System (INIS)

    Fischer, Tobias; Giannotti, Maurizio; Payez, Alexandre; Ringwald, Andreas

    2016-05-01

    We study the impact of axion emission in simulations of massive star explosions, as an additional source of energy loss complementary to the standard neutrino emission. The inclusion of this channel shortens the cooling time of the nascent protoneutron star and hence the duration of the neutrino signal. We treat the axion-matter coupling strength as a free parameter to study its impact on the protoneutron star evolution as well as on the neutrino signal. We furthermore analyze the observability of the enhanced cooling in current and next-generation underground neutrino detectors, showing that values of the axion mass m a >or similar 8 x 10 -3 eV can be probed. Therefore a galactic supernova neutrino observation would provide a valuable possibility to probe axion masses in a range within reach of the planned helioscope experiment, the International Axion Observatory (IAXO).

  7. Flavor Oscillations in the Supernova Hot Bubble Region: Nonlinear Effects of Neutrino Background

    Science.gov (United States)

    Pastor, Sergio; Raffelt, Georg

    2002-10-01

    The neutrino flux close to a supernova core contributes substantially to neutrino refraction so that flavor oscillations become a nonlinear phenomenon. One unexpected consequence is efficient flavor transformation for antineutrinos in a region where only neutrinos encounter a Mikheyev-Smirnov-Wolfenstein resonance or vice versa. Contrary to previous studies we find that in the neutrino-driven wind the electron fraction Ye always stays below 0.5, corresponding to a neutron-rich environment as required by r-process nucleosynthesis. The relevant range of masses and mixing angles includes the region indicated by LSND, but not the atmospheric or solar oscillation parameters.

  8. Research in nuclear astrophysics: Stellar collapse and supernovae

    International Nuclear Information System (INIS)

    Lattimer, J.M.; Yahil, A.

    1991-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics is examined. We are actively researching the astrophysics of gravitational collapse, neutron star birth and neutrino emission, and neutron star cooling, on the one hand, and the nuclear physics of the equation of state of hot, dense matter on the other hand. There is close coupling between nuclear theory and supernova and neutron star phenomenon; some nuclear matter properties might be best delineated by astrophysical considerations. Our research has focused on the neutrinos emitted from supernovae, since they are the only available observables of the internal supernova mechanism. We are modifying our hydrodynamical code to use implicit differencing and to include multi-group neutrino diffusion and general relativity. In parallel, we are extending calculations of core collapse supernovae to long times after collapse by using a hybrid explicit-implicit hydrodynamical code and by using simplified neutrino transport. We hope to establish the existence or non-existence of the so-called long-term supernova mechanism. We are also extending models of the neutrino emission and cooling of neutron stars to include the effects of rotation and the direct Urca process that we recently discovered to be crucial. We have developed a rapid version of the dense matter equation of state for use in hydrodynamic codes that retains essentially all the physics of earlier, more detailed equations of state. This version also has the great advantage that nuclear physics inputs, such as the nuclear incompressibility, symmetry, energy, and specific heat, can be specified

  9. THE ROLE OF TURBULENCE IN NEUTRINO-DRIVEN CORE-COLLAPSE SUPERNOVA EXPLOSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Couch, Sean M. [Flash Center for Computational Science, Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Ott, Christian D., E-mail: smc@flash.uchichago.edu, E-mail: cott@tapir.caltech.edu [TAPIR, Walter Burke Institute for Theoretical Physics, MC 350-17, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-01-20

    The neutrino-heated ''gain layer'' immediately behind the stalled shock in a core-collapse supernova is unstable to high-Reynolds-number turbulent convection. We carry out and analyze a new set of 19 high-resolution three-dimensional (3D) simulations with a three-species neutrino leakage/heating scheme and compare with spherically symmetric (one-dimensional, 1D) and axisymmetric (two-dimensional, 2D) simulations carried out with the same methods. We study the postbounce supernova evolution in a 15 M {sub ☉} progenitor star and vary the local neutrino heating rate, the magnitude and spatial dependence of asphericity from convective burning in the Si/O shell, and spatial resolution. Our simulations suggest that there is a direct correlation between the strength of turbulence in the gain layer and the susceptibility to explosion. 2D and 3D simulations explode at much lower neutrino heating rates than 1D simulations. This is commonly explained by the fact that nonradial dynamics allows accreting material to stay longer in the gain layer. We show that this explanation is incomplete. Our results indicate that the effective turbulent ram pressure exerted on the shock plays a crucial role by allowing multi-dimensional models to explode at a lower postshock thermal pressure and thus with less neutrino heating than 1D models. We connect the turbulent ram pressure with turbulent energy at large scales and in this way explain why 2D simulations are erroneously exploding more easily than 3D simulations.

  10. THE ROLE OF TURBULENCE IN NEUTRINO-DRIVEN CORE-COLLAPSE SUPERNOVA EXPLOSIONS

    International Nuclear Information System (INIS)

    Couch, Sean M.; Ott, Christian D.

    2015-01-01

    The neutrino-heated ''gain layer'' immediately behind the stalled shock in a core-collapse supernova is unstable to high-Reynolds-number turbulent convection. We carry out and analyze a new set of 19 high-resolution three-dimensional (3D) simulations with a three-species neutrino leakage/heating scheme and compare with spherically symmetric (one-dimensional, 1D) and axisymmetric (two-dimensional, 2D) simulations carried out with the same methods. We study the postbounce supernova evolution in a 15 M ☉ progenitor star and vary the local neutrino heating rate, the magnitude and spatial dependence of asphericity from convective burning in the Si/O shell, and spatial resolution. Our simulations suggest that there is a direct correlation between the strength of turbulence in the gain layer and the susceptibility to explosion. 2D and 3D simulations explode at much lower neutrino heating rates than 1D simulations. This is commonly explained by the fact that nonradial dynamics allows accreting material to stay longer in the gain layer. We show that this explanation is incomplete. Our results indicate that the effective turbulent ram pressure exerted on the shock plays a crucial role by allowing multi-dimensional models to explode at a lower postshock thermal pressure and thus with less neutrino heating than 1D models. We connect the turbulent ram pressure with turbulent energy at large scales and in this way explain why 2D simulations are erroneously exploding more easily than 3D simulations

  11. Neutrinos today

    International Nuclear Information System (INIS)

    Pontecorvo, B.; Bilen'kij, S.

    1987-01-01

    After the famous 1983 discovery of intermediate W, Z 0 bosons it may be stated with certainty that W, Z 0 are entirely responsible for the production of neutrinos and for their interactions. Neutrino physics notions are presented from this point of view in the first four introductory, quite elementary, paragraphs of the paper. The following seven paragraphs are more sophisticated. They are devoted to the neutrino mass and neutrino mixing question, which is the most actual problem in today neutrino physics. Vacuum neutrino oscillations, matter neutrino oscillations and netrinoless double-decay are considered. Solar neutrino physics is discussed in some detail from the point of view of vacuum and matter neutrino oscillations. The role played by neutrinos in the Universe is briefly considered. In the last paragraph there discussed the probable observation by different groups of neutrinos connected with the Supernova 1987 A: the first observation of gravitational star collapse (at least the general rehearsal of such observation) opens up a new era in astronomy of today exerimental physics and astrophysics is presented at the end of the paper in the form of a Table

  12. Supernova 1987A: 18 Months later

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1989-01-01

    An overview of the significance for physics of the closest visual supernova in almost 400 years is presented. The supernova occurred in the Large Magellanic Cloud (LMC), /approximately/50 kpc away. The supernova star was a massive star of /approximately/15--20M. Observations now show that it was once a red-giant but lost its outer envelope. The lower than standard luminosity and higher observed velocities are a natural consequence of the pre-supernova star being a blue rather than a red [supergiant]. Of particular importance to physicists is the detection of neutrinos from the event by detectors in the United States and Japan. Not only did this establish extra-solar system neutrino astronomy, but it also constrained the properties of neutrino. It is shown that the well established Kamioka-IMB neutrino burst experimentally implies an event with about 2--4 /times/ 10/sup 53/ergs emitted in neutrinos and a temperature, T/sub /bar /nu/e//, of between 4 and 4.5 MeV. This event is in excellent agreement with what one would expect from the gravitational core collapse of a massive star. A neutrino detection, such as that reported earlier in Mt. Blanc, would require more than the rest mass energy of a neutron star to be converted to neutrinos, if it were to have its origin in the LMC. Thus it is probably unrelated to the supernova. The anticipated frequency of collapse events in our Galaxy, will also be discussed with a rate as high as 1/10 year shown to be not unreasonable. 61 refs

  13. Neutrinos and Einstein

    CERN Document Server

    Suzuki, Yoichiro

    2005-01-01

    A tiny neutrino mass is a clue to the physics beyond the standard model of elementary particle physics. The primary cosmic rays, mostly protons, are created and accelerated to the relativistic energy in supernova remnants. They traverse the universe and reach the earth. The incoming primary cosmic rays interact with the earth's atmosphere to produce secondary particles, which subsequently decay into neutrinos, called atmospheric neutrinos. The atmospheric neutrinos have shown the evidence of the finite neutrino masses through the phenomena called neutrino oscillations. Neutrinos are detected by large detectors underground like, for example, Super-Kamiokande, SNO and KamLAND. Those detectors use large photomultiplier tubes, which make use of the photo-electric effect to convert photons created by the interaction of neutrinos to electrons to form electric pulses. Neutrinos are therefore created and detected by "Einstein" and have step forward beyond the current physics. Neutrinos may also carry a hit to the ori...

  14. Resonant spin-flavor conversion of supernova neutrinos: Dependence on presupernova models and future prospects

    Science.gov (United States)

    Ando, Shin'ichiro; Sato, Katsuhiko

    2003-07-01

    We study the resonant spin-flavor (RSF) conversion of supernova neutrinos, which is induced by the interaction between the nonzero neutrino magnetic moment and the supernova magnetic fields, and its dependence on presupernova models. As the presupernova models, we adopt the latest ones by Woosley, Heger, and Weaver, and, further, models with both solar and zero metallicity are investigated. Since the (1-2Ye) profile of the new presupernova models, which is responsible for the RSF conversion, suddenly drops at the resonance region, the completely adiabatic RSF conversion is not realized, even if μνB0=(10-12μB)(1010 G), where B0 is the strength of the magnetic field at the surface of the iron core. In particular for the model with zero metallicity, the conversion is highly nonadiabatic in the high energy region, reflecting the (1-2Ye) profile of the model. In calculating the flavor conversion, we find that the shock wave propagation, which changes density profiles drastically, is a much more severe problem than it is for the pure Mikheyev-Smirnov-Wolfenstein (MSW) conversion case. This is because the RSF effect occurs at a far deeper region than the MSW effect. To avoid the uncertainty concerning the shock propagation, we restrict our discussion to 0.5 s after the core bounce (and for more conservative discussion, 0.25 s), during which the shock wave is not expected to affect the RSF region. We also evaluate the energy spectrum at the Super-Kamiokande detector for various models using the calculated conversion probabilities, and find that it is very difficult to obtain useful information on the supernova metallicities and magnetic fields or on the neutrino magnetic moment from the supernova neutrino observation. Future prospects are also discussed.

  15. New effects of non-standard self-interactions of neutrinos in a supernova

    Energy Technology Data Exchange (ETDEWEB)

    Das, Anirban; Dighe, Amol; Sen, Manibrata, E-mail: anirbandas@theory.tifr.res.in, E-mail: amol@theory.tifr.res.in, E-mail: manibrata@theory.tifr.res.in [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, 400005 (India)

    2017-05-01

    Neutrino self-interactions are known to lead to non-linear collective flavor oscillations in a core-collapse supernova. We point out new possible effects of non-standard self-interactions (NSSI) of neutrinos on flavor conversions in a two-flavor framework. We show that, for a single-energy neutrino-antineutrino ensemble, a flavor instability is generated even in normal hierarchy for large enough NSSI. Using a toy model for the neutrino spectra, we show that flavor-preserving NSSI lead to pinching of spectral swaps, while flavor-violating NSSI cause swaps to develop away from a spectral crossing or even in the absence of a spectral crossing. Consequently, NSSI could give rise to collective oscillations and spectral splits even during neutronization burst, for both hierarchies.

  16. Impact of Neutrino Flavor Oscillations on the Neutrino-driven Wind Nucleosynthesis of an Electron-capture Supernova

    Science.gov (United States)

    Pllumbi, Else; Tamborra, Irene; Wanajo, Shinya; Janka, Hans-Thomas; Hüdepohl, Lorenz

    2015-08-01

    Neutrino oscillations, especially to light sterile states, can affect nucleosynthesis yields because of their possible feedback effect on the electron fraction (Ye). For the first time, we perform nucleosynthesis calculations for neutrino-driven wind trajectories from the neutrino-cooling phase of an 8.8 {M}⊙ electron-capture supernova (SN), whose hydrodynamic evolution was computed in spherical symmetry with sophisticated neutrino transport and whose Ye evolution was post-processed by including neutrino oscillations between both active and active-sterile flavors. We also take into account the α-effect as well as weak magnetism and recoil corrections in the neutrino absorption and emission processes. We observe effects on the Ye evolution that depend in a subtle way on the relative radial positions of the sterile Mikheyev-Smirnov-Wolfenstein resonances, on collective flavor transformations, and on the formation of α particles. For the adopted SN progenitor, we find that neutrino oscillations, also to a sterile state with eV mass, do not significantly affect the element formation and in particular cannot make the post-explosion wind outflow neutron-rich enough to activate a strong r-process. Our conclusions become even more robust when, in order to mimic equation-of-state-dependent corrections due to nucleon potential effects in the dense-medium neutrino opacities, six cases with reduced Ye in the wind are considered. In these cases, despite the conversion of active neutrinos to sterile neutrinos, Ye increases or is not significantly lowered compared to the values obtained without oscillations and active flavor transformations. This is a consequence of a complicated interplay between sterile-neutrino production, neutrino-neutrino interactions, and α-effect.

  17. Low energy neutrino astrophysics with the large liquid-scintillator detector LENA

    International Nuclear Information System (INIS)

    Wurm, M.; Feilitzsch, F. von; Goeger-Neff, M.; Undagoitia, T. Marrodan; Oberauer, L.; Potzel, W.; Winter, J.

    2007-01-01

    The large-volume liquid-scintillator detector LENA (Low Energy Neutrino Astronomy) will cover a broad field of physics. Apart from the detection of terrestrial and artificial neutrinos, and the search for proton decay, important contributions can be made to the astrophysics of stars by high-precision spectroscopy of low-energetic solar neutrinos and by the observation of neutrinos emitted by a galactic supernova. Moreover, the detection of the diffuse supernova neutrino background in LENA will offer the opportunity of studying both supernova core-collapse models and the supernova rate on cosmological timescales (z e events in an almost background-free energy window from ∼10 to 25 MeV. The search for such rare low-energetic events takes advantage of the high energy resolution and excellent background rejection possible in the LENA detector

  18. THE DOMINANCE OF NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE SUPERNOVAE

    International Nuclear Information System (INIS)

    Murphy, Jeremiah W.; Dolence, Joshua C.; Burrows, Adam

    2013-01-01

    Multi-dimensional instabilities have become an important ingredient in core-collapse supernova (CCSN) theory. Therefore, it is necessary to understand the driving mechanism of the dominant instability. We compare our parameterized three-dimensional CCSN simulations with other buoyancy-driven simulations and propose scaling relations for neutrino-driven convection. Through these comparisons, we infer that buoyancy-driven convection dominates post-shock turbulence in our simulations. In support of this inference, we present four major results. First, the convective fluxes and kinetic energies in the neutrino-heated region are consistent with expectations of buoyancy-driven convection. Second, the convective flux is positive where buoyancy actively drives convection, and the radial and tangential components of the kinetic energy are in rough equipartition (i.e., K r ∼ K θ + K φ ). Both results are natural consequences of buoyancy-driven convection, and are commonly observed in simulations of convection. Third, buoyant driving is balanced by turbulent dissipation. Fourth, the convective luminosity and turbulent dissipation scale with the driving neutrino power. In all, these four results suggest that in neutrino-driven explosions, the multi-dimensional motions are consistent with neutrino-driven convection.

  19. Neutrino Oscillation Physics

    International Nuclear Information System (INIS)

    Kayser, Boris

    2014-01-01

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures

  20. Neutrino Oscillation Physics

    Energy Technology Data Exchange (ETDEWEB)

    Kayser, Boris [Fermilab (United States)

    2014-07-01

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures.

  1. Detection of a Type IIn Supernova in Optical Follow-up Observations of IceCube Neutrino Events

    OpenAIRE

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.

    2015-01-01

    The IceCube neutrino observatory pursues a follow-up program selecting interesting neutrino events in real-time and issuing alerts for electromagnetic follow-up observations. In 2012 March, the most significant neutrino alert during the first three years of operation was issued by IceCube. In the follow-up observations performed by the Palomar Transient Factory (PTF), a Type IIn supernova (SN IIn) PTF12csy was found 0.degrees 2 away from the neutrino alert direction, with an error radius of 0...

  2. Impact of Neutrino Opacities on Core-collapse Supernova Simulations

    Science.gov (United States)

    Kotake, Kei; Takiwaki, Tomoya; Fischer, Tobias; Nakamura, Ko; Martínez-Pinedo, Gabriel

    2018-02-01

    The accurate description of neutrino opacities is central to both the core-collapse supernova (CCSN) phenomenon and the validity of the explosion mechanism itself. In this work, we study in a systematic fashion the role of a variety of well-selected neutrino opacities in CCSN simulations where the multi-energy, three-flavor neutrino transport is solved using the isotropic diffusion source approximation (IDSA) scheme. To verify our code, we first present results from one-dimensional (1D) simulations following the core collapse, bounce, and ∼250 ms postbounce of a 15 {M}ȯ star using a standard set of neutrino opacities by Bruenn. A detailed comparison with published results supports the reliability of our three-flavor IDSA scheme using the standard opacity set. We then investigate in 1D simulations how individual opacity updates lead to differences with the baseline run with the standard opacity set. Through detailed comparisons with previous work, we check the validity of our implementation of each update in a step-by-step manner. Individual neutrino opacities with the largest impact on the overall evolution in 1D simulations are selected for systematic comparisons in our two-dimensional (2D) simulations. Special attention is given to the criterion of explodability in the 2D models. We discuss the implications of these results as well as its limitations and the requirements for future, more elaborate CCSN modeling.

  3. Principles and applications of a neutral current detector for neutrino physics and astronomy

    International Nuclear Information System (INIS)

    Drukier, A.; Stodolsky, L.

    1982-01-01

    We study neutrino detection through the elastic scattering of neutrinos on nuclei and identification of the recoil energy. The very large value of the cross section compared to previous methods indicates a detector would be relatively light and suggests the possibility of a true 'neutrino observatory'. We examine a realization in terms of the superconducting grain idea, which appears in principle feasible through extension and extrapolation of presently known techniques. Such a detector would permit determination of the neutrino spectrum and should be intensive to neutrino oscillations. Various applications and tests are discussed, including spallation sources, reactors, supernovas, solar and terrestrial neutrinos. A supernova would permit a simple determination of the number of neutrinos and their masses, while for solar neutrinos rates of thousands of S.N.U. are theoretically attainable. A preliminary estimate of the most difficult backgrounds is attempted. (orig.)

  4. Effects of neutrino trapping on supernova explosions

    International Nuclear Information System (INIS)

    Takahara, Mariko; Sato, Katsuhiko

    1982-01-01

    Effects of neutrino trapping on the mass ejection from the stellar cores are investigated with the aid of a simplified equation of state under the assumption of adiabatic collapse. It is found that mass ejection becomes violent only if the ratio of the trapped leptons to baryons, Y sub(L), lies in an appropriate range. If the value of Y sub(L) lies out of this range, mass ejection is difficult. It is also shown that as the thermal stiffness of the shocked matter increases, the range necessary for the violent mass ejection becomes wider. Possibilities of supernova explosion are discussed on the basis of these results. (author)

  5. Neutrino masses in astrophysics and cosmology

    International Nuclear Information System (INIS)

    Raffelt, G.G.

    1996-01-01

    Astrophysical and cosmological arguments and observations give us the most restrictive constraints on neutrino masses, electromagnetic couplings, and other properties. Conversely, massive neutrinos would contribute to the cosmic dark-matter density and would play an important role for the formation of structure in the universe. Neutrino oscillations may well solve the solar neutrino problem, and can have a significant impact on supernova physics. (author) 14 figs., tabs., 33 refs

  6. Neutrino masses in astrophysics and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Raffelt, G G [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    1996-11-01

    Astrophysical and cosmological arguments and observations give us the most restrictive constraints on neutrino masses, electromagnetic couplings, and other properties. Conversely, massive neutrinos would contribute to the cosmic dark-matter density and would play an important role for the formation of structure in the universe. Neutrino oscillations may well solve the solar neutrino problem, and can have a significant impact on supernova physics. (author) 14 figs., tabs., 33 refs.

  7. Type II successful supernovae, the anatomy of shocks: neutrino emission and the adiabatic index

    International Nuclear Information System (INIS)

    Kahana, S.; Baron, E.; Cooperstein, J.

    1983-01-01

    Hydrodynamic calculations of stellar collapse in Type II Supernova are described using a variable stiffness and compressibility for the nuclear equation of state at high density. Initial models employing a relatively small mass core with low central entropy are necessary to achieve viable shocks; near success the models are sensitive to both neutrino emission and the high density equation of state. The treatment of neutrino production and transport is sketched and recent results reported

  8. The physics of neutrinos

    CERN Document Server

    Barger, Vernon D; Whisnant, Kerry

    2012-01-01

    The physics of neutrinos- uncharged elementary particles that are key to helping us better understand the nature of our universe - is one of the most exciting frontiers of modern science. This book provides a comprehensive overview of neutrino physics today and explores promising new avenues of inquiry that could lead to future breakthroughs. The Physics of Neutrinos begins with a concise history of the field and a tutorial on the fundamental properties of neutrinos, and goes on to discuss how the three neutrino types interchange identities as they propagate from their sources to detectors. The book shows how studies of neutrinos produced by such phenomena as cosmic rays in the atmosphere and nuclear reactions in the solar interior provide striking evidence that neutrinos have mass, and it traces our astounding progress in deciphering the baffling experimental findings involving neutrinos. The discovery of neutrino mass offers the first indication of a new kind of physics that goes beyond the Standard Model ...

  9. Future Long-Baseline Neutrino Facilities and Detectors

    Directory of Open Access Journals (Sweden)

    Milind Diwan

    2013-01-01

    Full Text Available We review the ongoing effort in the US, Japan, and Europe of the scientific community to study the location and the detector performance of the next-generation long-baseline neutrino facility. For many decades, research on the properties of neutrinos and the use of neutrinos to study the fundamental building blocks of matter has unveiled new, unexpected laws of nature. Results of neutrino experiments have triggered a tremendous amount of development in theory: theories beyond the standard model or at least extensions of it and development of the standard solar model and modeling of supernova explosions as well as the development of theories to explain the matter-antimatter asymmetry in the universe. Neutrino physics is one of the most dynamic and exciting fields of research in fundamental particle physics and astrophysics. The next-generation neutrino detector will address two aspects: fundamental properties of the neutrino like mass hierarchy, mixing angles, and the CP phase, and low-energy neutrino astronomy with solar, atmospheric, and supernova neutrinos. Such a new detector naturally allows for major improvements in the search for nucleon decay. A next-generation neutrino observatory needs a huge, megaton scale detector which in turn has to be installed in a new, international underground laboratory, capable of hosting such a huge detector.

  10. Future Long-Baseline Neutrino Facilities and Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Diwan, Milind [Brookhaven; Edgecock, Rob [Huddersfield U.; Hasegawa, Takuya [KEK, Tsukuba; Patzak, Thomas [APC, Paris; Shiozawa, Masato [Kamioka Observ.; Strait, Jim [Fermilab

    2013-01-01

    We review the ongoing effort in the US, Japan, and Europe of the scientific community to study the location and the detector performance of the next-generation long-baseline neutrino facility. For many decades, research on the properties of neutrinos and the use of neutrinos to study the fundamental building blocks of matter has unveiled new, unexpected laws of nature. Results of neutrino experiments have triggered a tremendous amount of development in theory: theories beyond the standard model or at least extensions of it and development of the standard solar model and modeling of supernova explosions as well as the development of theories to explain the matter-antimatter asymmetry in the universe. Neutrino physics is one of the most dynamic and exciting fields of research in fundamental particle physics and astrophysics. The next-generation neutrino detector will address two aspects: fundamental properties of the neutrino like mass hierarchy, mixing angles, and the CP phase, and low-energy neutrino astronomy with solar, atmospheric, and supernova neutrinos. Such a new detector naturally allows for major improvements in the search for nucleon decay. A next-generation neutrino observatory needs a huge, megaton scale detector which in turn has to be installed in a new, international underground laboratory, capable of hosting such a huge detector.

  11. Resonant spin-flavor conversion of supernova neutrinos: Dependence on electron mole fraction

    International Nuclear Information System (INIS)

    Yoshida, Takashi; Takamura, Akira; Kimura, Keiichi; Yokomakura, Hidekazu; Kawagoe, Shio; Kajino, Toshitaka

    2009-01-01

    Detailed dependence of resonant spin-flavor (RSF) conversion of supernova neutrinos on electron mole fraction Y e is investigated. Supernova explosion forms a hot-bubble and neutrino-driven wind region of which electron mole fraction exceeds 0.5 in several seconds after the core collapse. When a higher resonance of the RSF conversion is located in the innermost region, flavor change of the neutrinos strongly depends on the sign of 1-2Y e . At an adiabatic high RSF resonance the flavor conversion of ν e ↔ν μ,τ occurs in Y e e >0.5 and inverted mass hierarchy. In other cases of Y e values and mass hierarchies, the conversion of ν e ↔ν μ,τ occurs. The final ν e spectrum is evaluated in the cases of Y e e >0.5 taking account of the RSF conversion. Based on the obtained result, time variation of the event number ratios of low ν e energy to high ν e energy is discussed. In normal mass hierarchy, an enhancement of the event ratio should be seen in the period when the electron fraction in the innermost region exceeds 0.5. In inverted mass hierarchy, on the other hand, a dip of the event ratio should be observed. Therefore, the time variation of the event number ratio is useful to investigate the effect of the RSF conversion.

  12. The joint search for gravitational wave and low energy neutrino signals from core-collapse supernovae: methodology and status report

    Science.gov (United States)

    Gromov, M. B.; Casentini, C.

    2017-09-01

    The detection of gravitational waves opens a new era in physics. Now it's possible to observe the Universe using a fundamentally new way. Gravitational waves potentially permit getting insight into the physics of Core-Collapse Supernovae (CCSNe). However, due to significant uncertainties on the theoretical models of gravitational wave emission associated with CCSNe, benefits may come from multi-messenger observations of CCSNe. Such benefits include increased confidence in detection, extending the astrophysical reach of the detectors and allowing deeper understanding of the nature of the phenomenon. Fortunately, CCSNe have a neutrino signature confirmed by the observation of SN1987A. The gravitational and neutrino signals propagate with the speed of light and without significant interaction with interstellar matter. So that they must reach an observer on the Earth almost simultaneously. These facts open a way to search for the correlation between the signals. However, this method is limited by the sensitivity of modern neutrino detectors that allow to observe CCSNe only in the Local Group of galaxies. The methodology and status of a proposed joint search for the correlation signals are presented here.

  13. CONFERENCE: Neutrino mass

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The successes in capturing neutrinos from last year's supernova underlined the usefulness of large underground detectors for this sort of physics, and ambitious new projects are now in the pipeline. Meanwhile another approach to cosmic neutrino detection, carefully prepared during the past decade, has now taken its first experimental steps. DUMAND - Deep Underwater Muon and Neutrino Detector - aims to use the ocean as the active medium, tracking particles with arrays of photomultipliers picking up the tiny nanosecond flashes of blue Cherenkov light emitted by cosmic particles as they pass through seawater

  14. CONFERENCE: Neutrino mass

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1988-06-15

    The successes in capturing neutrinos from last year's supernova underlined the usefulness of large underground detectors for this sort of physics, and ambitious new projects are now in the pipeline. Meanwhile another approach to cosmic neutrino detection, carefully prepared during the past decade, has now taken its first experimental steps. DUMAND - Deep Underwater Muon and Neutrino Detector - aims to use the ocean as the active medium, tracking particles with arrays of photomultipliers picking up the tiny nanosecond flashes of blue Cherenkov light emitted by cosmic particles as they pass through seawater.

  15. Neutrino-Induced Nucleosynthesis in Helium Shells of Early Core-Collapse Supernovae

    Directory of Open Access Journals (Sweden)

    Banerjee Projjwal

    2016-01-01

    Full Text Available We summarize our studies on neutrino-driven nucleosynthesis in He shells of early core-collapse supernovae with metallicities of Z ≲ 10−3 Z⊙. We find that for progenitors of ∼ 11–15 M⊙, the neutrons released by 4He(ν¯ee, e+n3H in He shells can be captured to produce nuclei with mass numbers up to A ∼ 200. This mechanism is sensitive to neutrino emission spectra and flavor oscillations. In addition, we find two new primary mechanisms for neutrino-induced production of 9Be in He shells. The first mechanism produces 9Be via 7Li(n,γ8Li(n,γ9Li(e− ν¯ee9Be and relies on a low explosion energy for its survival. The second mechanism operates in progenitors of ∼ 8 M⊙, where 9Be can be produced directly via 7Li(3H, n09Be during the rapid expansion of the shocked Heshell material. The light nuclei 7Li and 3H involved in these mechanisms are produced by neutrino interactions with 4He. We discuss the implications of neutrino-induced nucleosynthesis in He shells for interpreting the elemental abundances in metal-poor stars.

  16. Absolute values of neutrino masses: status and prospects

    International Nuclear Information System (INIS)

    Bilenky, S.M.; Giunti, C.; Grifols, J.A.; Masso, E.

    2003-01-01

    Compelling evidences in favor of neutrino masses and mixing obtained in the last years in Super-Kamiokande, SNO, KamLAND and other neutrino experiments made the physics of massive and mixed neutrinos a frontier field of research in particle physics and astrophysics. There are many open problems in this new field. In this review we consider the problem of the absolute values of neutrino masses, which apparently is the most difficult one from the experimental point of view. We discuss the present limits and the future prospects of β-decay neutrino mass measurements and neutrinoless double-β decay. We consider the important problem of the calculation of nuclear matrix elements of neutrinoless double-β decay and discuss the possibility to check the results of different model calculations of the nuclear matrix elements through their comparison with the experimental data. We discuss the upper bound of the total mass of neutrinos that was obtained recently from the data of the 2dF Galaxy Redshift Survey and other cosmological data and we discuss future prospects of the cosmological measurements of the total mass of neutrinos. We discuss also the possibility to obtain information on neutrino masses from the observation of the ultra high-energy cosmic rays (beyond the GZK cutoff). Finally, we review the main aspects of the physics of core-collapse supernovae, the limits on the absolute values of neutrino masses from the observation of SN1987A neutrinos and the future prospects of supernova neutrino detection

  17. Anti-neutrino imprint in solar neutrino flare

    Science.gov (United States)

    Fargion, D.

    2006-10-01

    A future neutrino detector at megaton mass might enlarge the neutrino telescope thresholds revealing cosmic supernova background and largest solar flares (SFs) neutrinos. Indeed the solar energetic (Ep>100 MeV) flare particles (protons, α), while scattering among themselves on solar corona atmosphere must produce prompt charged pions, whose chain decays are source of a solar (electron muon) neutrino 'flare' (at tens or hundreds MeV energy). These brief (minutes) neutrino 'bursts' at largest flare peak may overcome by three to five orders of magnitude the steady atmospheric neutrino noise on the Earth, possibly leading to their detection above detection thresholds (in a full mixed three flavour state). Moreover the birth of anti-neutrinos at a few tens of MeV very clearly flares above a null thermal 'hep' anti-neutrino solar background and also above a tiny supernova relic and atmospheric noise. The largest prompt solar anti-neutrino 'burst' may be well detected in future Super Kamikande (gadolinium implemented) anti-neutrino \\bar\

  18. Nonstandard neutrino self-interactions in a supernova and fast flavor conversions

    Science.gov (United States)

    Dighe, Amol; Sen, Manibrata

    2018-02-01

    We study the effects of nonstandard self-interactions (NSSI) of neutrinos streaming out of a core-collapse supernova. We show that with NSSI, the standard linear stability analysis gives rise to linearly as well as exponentially growing solutions. For a two-box spectrum, we demonstrate analytically that flavor-preserving NSSI lead to a suppression of bipolar collective oscillations. In the intersecting four-beam model, we show that flavor-violating NSSI can lead to fast oscillations even when the angle between the neutrino and antineutrino beams is obtuse, which is forbidden in the standard model. This leads to the new possibility of fast oscillations in a two-beam system with opposing neutrino-antineutrino fluxes, even in the absence of any spatial inhomogeneities. Finally, we solve the full nonlinear equations of motion in the four-beam model numerically, and explore the interplay of fast and slow flavor conversions in the long-time behavior, in the presence of NSSI.

  19. Research in theoretical nuclear and neutrino physics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sarcevic, Ina [Univ. of Arizona, Tucson, AZ (United States). Dept. of Physics

    2014-06-14

    The main focus of the research supported by the nuclear theory grant DE-FG02-04ER41319 was on studying parton dynamics in high-energy heavy ion collisions, perturbative approach to charm production and its contribution to atmospheric neutrinos, application of AdS/CFT approach to QCD, neutrino signals of dark mattter annihilation in the Sun and on novel processes that take place in dense stellar medium and their role in stellar collapse, in particular the effect of new neutrino interactions on neutrino flavor conversion in Supernovae. We present final technical report on projects completed under the grant.

  20. Research in theoretical nuclear and neutrino physics. Final report

    International Nuclear Information System (INIS)

    Sarcevic, Ina

    2014-01-01

    The main focus of the research supported by the nuclear theory grant DE-FG02-04ER41319 was on studying parton dynamics in high-energy heavy ion collisions, perturbative approach to charm production and its contribution to atmospheric neutrinos, application of AdS/CFT approach to QCD, neutrino signals of dark mattter annihilation in the Sun and on novel processes that take place in dense stellar medium and their role in stellar collapse, in particular the effect of new neutrino interactions on neutrino flavor conversion in Supernovae. We present final technical report on projects completed under the grant.

  1. Neutrinos in astrophysics

    CERN Document Server

    Rees, Martin J

    1980-01-01

    The amount of 4He synthesised in the "big bang" is sensitive to the early particle content and to the expansion rate. If there was indeed a "big bang", surprisingly strong conclusions can be drawn about the number of species of neutrinos, and about the possibility that such particles have non-zero rest mass. The dynamics of supernovae are sensitive to the det~ils of neutrino physics; such explosions would yield IO L-1053 ergs of -v IO Mev neutrinos, in a burst lasting a few milliseconds. Galactic nuclei, cosmic ray sources and other high energy cosmic phenomena could yield a low background of~ 10 Gev neutrinos.

  2. Research in nuclear astrophysics: Stellar collapse and supernovae

    International Nuclear Information System (INIS)

    Lattimer, J.M.; Yahil, A.

    1990-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics has been examined. We have been actively researching both the astrophysics of gravitational collapse, neutron star birth, and the emission of neutrinos from supernovae, on the one hand, and the nuclear physics of the equation of state of hot, dense matter on the other hand. There is close coupling between nuclear theory and supernova and neutron star phenomenon; in fact, nuclear matter properties, especially supernuclear densities, might be best delineated by astrophysical considerations. Our research has also focused on the neutrinos emitted from supernovae, since they are the only available observables of the internal supernova mechanism. The recent observations of neutrinos from SN 1987A proved to be in remarkable agreement with models we pioneered prior to its explosion. We have also developed a novel hydrodynamical code in which shocks are treated via Riemann resolution rather than with artificial viscosity. We have also extended models of the neutrino emission and cooling of neutron stars to include the effects of rotation. The Lattimer compressible liquid drop model is the basis of our equation of state. We have developed a rapid version for use in hydrodynamic codes that retains essentially all the physics of earlier, more detailed equations of state. We have also focused on the nuclei-nuclear matter phase transition just below nuclear matter density, including the probable nuclear deformations and the possible ''inside-out'' phase of bubbles, which could be of major importance in supernovae models. Work also progressed toward understanding the origin of the r-process elements, through focusing on the neutron star decompression model

  3. The neutrino ignition of thermonuclear carbon burning, neutron star formation and supernova explosions

    International Nuclear Information System (INIS)

    Gershtein, S.S.; Khlopov, M.Yu.; Imshennik, V.S.; Ivanova, L.N.; Chechetkin, V.M.

    1977-01-01

    Taking account of neutrino energy transport in the self-consistent hydrodynamical calculation of explosions of deo-enerated carbon stallar cores at 3x10 9 9 g/cm 3 central density leads to the core disruption with kinetic energy up to 10 51 erg (that corresponds to parameters of Supernovae of 2 type) . This mechanism leads to the formation of neutron stars with the mass M approximately 1.4M Sun at rhosub(c) > 8.4 x 10 9 g/cm 3 and to successive blow off the envelope being typical for Supernovae of 1 type

  4. Frontiers in neutrino physics - Transparencies

    International Nuclear Information System (INIS)

    Akhmedov, E.; Balantekin, B.; Conrad, J.; Engel, J.; Fogli, G.; Giunti, C.; Espinoza, C.; Lasserre, T.; Lazauskas, R.; Lhuiller, D.; Lindner, M.; Martinez-Pinedo, G.; Martini, M.; McLaughlin, G.; Mirizzi, A.; Pehlivan, Y.; Petcov, S.; Qian, Y.; Serenelli, A.; Stancu, I.; Surman, R.; Vaananen, D.; Vissani, F.; Vogel, P.

    2012-01-01

    This document gathers the slides of the presentations. The purpose of the conference was to discuss the last advances in neutrino physics. The presentations dealt with: -) the measurement of the neutrino velocity, -) neutrino oscillations, -) anomaly in solar models and neutrinos, -) double beta decay, -) self refraction of neutrinos, -) cosmic neutrinos, -) antineutrino spectra from reactors, and -) some aspects of neutrino physics with radioactive ion beams. (A.C.)

  5. The influence of collective neutrino oscillations on a supernova r process

    Science.gov (United States)

    Duan, Huaiyu; Friedland, Alexander; McLaughlin, Gail C.; Surman, Rebecca

    2011-03-01

    Recently, it has been demonstrated that neutrinos in a supernova oscillate collectively. This process occurs much deeper than the conventional matter-induced Mikheyev-Smirnov-Wolfenstein effect and hence may have an impact on nucleosynthesis. In this paper we explore the effects of collective neutrino oscillations on the r-process, using representative late-time neutrino spectra and outflow models. We find that accurate modeling of the collective oscillations is essential for this analysis. As an illustration, the often-used 'single-angle' approximation makes grossly inaccurate predictions for the yields in our setup. With the proper multiangle treatment, the effect of the oscillations is found to be less dramatic, but still significant. Since the oscillation patterns are sensitive to the details of the emitted fluxes and the sign of the neutrino mass hierarchy, so are the r-process yields. The magnitude of the effect also depends sensitively on the astrophysical conditions—in particular on the interplay between the time when nuclei begin to exist in significant numbers and the time when the collective oscillation begins. A more definitive understanding of the astrophysical conditions, and accurate modeling of the collective oscillations for those conditions, is necessary.

  6. The physics of massive neutrinos

    CERN Document Server

    Kayser, Boris; Perrier, Frederic

    1989-01-01

    This book explains the physics and phenomenology of massive neutrinos. The authors argue that neutrino mass is not unlikely and consider briefly the search for evidence of this mass in decay processes before they examine the physics and phenomenology of neutrino oscillation. The physics of Majorana neutrinos (neutrinos which are their own antiparticles) is then discussed. This volume requires of the reader only a knowledge of quantum mechanics and of very elementary quantum field theory.

  7. Low energy neutrino astronomy with the large liquid-scintillation detector LENA

    International Nuclear Information System (INIS)

    Undagoitia, T Marrodan; Feilitzsch, F von; Goeger-Neff, M; Hochmuth, K A; Oberauer, L; Potzel, W; Wurm, M

    2006-01-01

    The detection of low energy neutrinos in a large liquid scintillation detector may provide further important information on astrophysical processes as supernova physics, solar physics and elementary particle physics as well as geophysics. In this contribution, a new project for Low Energy Neutrino Astronomy (LENA) consisting of a 50 kt scintillation detector is presented

  8. A new multi-dimensional general relativistic neutrino hydrodynamics code for core-collapse supernovae. IV. The neutrino signal

    Energy Technology Data Exchange (ETDEWEB)

    Müller, Bernhard [Monash Center for Astrophysics, School of Mathematical Sciences, Building 28, Monash University, Victoria 3800 (Australia); Janka, Hans-Thomas, E-mail: bernhard.mueller@monash.edu, E-mail: bjmuellr@mpa-garching.mpg.de, E-mail: thj@mpa-garching.mpg.de [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany)

    2014-06-10

    Considering six general relativistic, two-dimensional (2D) supernova (SN) explosion models of progenitor stars between 8.1 and 27 M {sub ☉}, we systematically analyze the properties of the neutrino emission from core collapse and bounce to the post-explosion phase. The models were computed with the VERTEX-COCONUT code, using three-flavor, energy-dependent neutrino transport in the ray-by-ray-plus approximation. Our results confirm the close similarity of the mean energies, (E), of ν-bar {sub e} and heavy-lepton neutrinos and even their crossing during the accretion phase for stars with M ≳ 10 M {sub ☉} as observed in previous 1D and 2D simulations with state-of-the-art neutrino transport. We establish a roughly linear scaling of 〈E{sub ν-bar{sub e}}〉 with the proto-neutron star (PNS) mass, which holds in time as well as for different progenitors. Convection inside the PNS affects the neutrino emission on the 10%-20% level, and accretion continuing beyond the onset of the explosion prevents the abrupt drop of the neutrino luminosities seen in artificially exploded 1D models. We demonstrate that a wavelet-based time-frequency analysis of SN neutrino signals in IceCube will offer sensitive diagnostics for the SN core dynamics up to at least ∼10 kpc distance. Strong, narrow-band signal modulations indicate quasi-periodic shock sloshing motions due to the standing accretion shock instability (SASI), and the frequency evolution of such 'SASI neutrino chirps' reveals shock expansion or contraction. The onset of the explosion is accompanied by a shift of the modulation frequency below 40-50 Hz, and post-explosion, episodic accretion downflows will be signaled by activity intervals stretching over an extended frequency range in the wavelet spectrogram.

  9. PREFACE: Carolina International Symposium on Neutrino Physics

    Science.gov (United States)

    Avignone, Frank; Creswick, Richard; Kubodera, Kuniharu; Purohit, Milind

    2009-07-01

    The Carolina International Symposium on Neutrino Physics, 2008 (CISNP'08) was organized and held at the University of South Carolina by the Department of Physics in May 2008, to celebrate the 75th birthdays of Professors Frank Avignone (South Carolina) and Ettore Fiorini (Milan) and to commemorate the 75th birthday of the late Peter Rosen (DOE). Although much of the work done by these luminaries has been in non-accelerator areas such as double beta-decay, the meeting covered many topics in neutrino physics as well, including neutrino oscillations, supernova explosions, neutrino nucleosynthesis, axions, dark matter, dark energy, and cosmology. Talks included presentations of recent theoretical progress, experimental results, detector technology advances and a few reminiscences. This is the second such symposium held at Carolina, the first was held in 2000. We were fortunate to have attracted many top speakers who gave scintillating presentations, most of which have been put in writing and are presented in this volume. Many thanks go to various people involved in this conference, including of course Drs Avignone, Fiorini and Rosen whose efforts over the years provided us with the opportunity, and all the speakers, many of whom took time out of their very busy schedules to come to Columbia and give talks and then to write them up. Thanks also to our Department Chairman, Professor Chaden Djalali, and to our support staff which included Mr Robert Sproul, Ms Mary Papp, Ms Beth Powell and Mr R Simmons. Finally, we must thank our funding agencies which are the South Carolina EPSCoR/IDeA Program, The Oak Ridge Associated Universities, and the University of South Carolina. The Editorial Team: Frank Avignone (USC) Richard Creswick (USC) Kuniharu Kubodera (USC) Milind Purohit (USC, Chief Editor) CISNP Scientific Advisory Committee: Wick Haxton (Seattle) Barry Holstein (Amherst) Kuniharu Kubodera (USC) CISNP Organizing Committee: Richard Creswick (USC) Chaden Djalali (USC

  10. Massive Cherenkov neutrino facilities?their evolution, their future: Twenty-five years at these International Neutrino Conferences

    International Nuclear Information System (INIS)

    Sulak, Lawrence R.

    2005-01-01

    This review traces the evolution of massive water Cherenkov tracking calorimeters. Pioneering concepts, first presented in this conference a quarter of a century ago, have led to 1) IMB, the first large detector (10kT), which was designed primarily to search for proton decay, and secondarily to be sensitive to supernova neutrinos and atmospheric oscillations, and 2) Dumand, an attempt to initiate the search for TeV astrophysical neutrinos with a prototype for a 1 km 3 telescope. The concepts and initial work on IMB influenced subsequent detectors: Kamiokande, Super-K, SNO, and, in part, Kamland. These detectors have to their credit the elucidation of the physics of atmospheric, solar, reactor and supernova neutrinos. With the advent of the K2K beam, controlled accelerator neutrinos confirm the atmospheric studies. The path breaking developments of Dumand now are incorporated in the high-volume Amanda and Antares detectors, as well as their sequels, IceCube and the proposed Cubic Kilometer detector. The future (ultimate?) facilities have new physics challenges: A high-resolution megaton detector, eventually coupled with an intense accelerator neutrino source, is critical for precision studies of neutrino oscillation parameters and for the potential discovery of CP violation in the lepton sector. The Gigaton TeV neutrino telescopes (IceCube and Cubic Kilometer) seek to open high-energy neutrino astronomy, still an elusive goal. (Amanda, IceCube, and UNO, as well as Minos, Icarus and other large neutrino facilities using non-Cherenkov technologies, are treated in other contributions to this volume.)

  11. JUNO. Determination of the neutrino mass hierarchy using reactor neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Wonsak, Bjoern [Hamburg University, Inst. Exp. Phys., Hamburg (Germany)

    2015-07-01

    The Jiangmen Underground Neutrino Observatory (JUNO) is a medium-baseline reactor neutrino experiment located in China. Its aim is to determine the neutrino mass hierarchy at more than 3 sigma significance after six years of data taking by using a 20kt liquid scintillator detector. To achieve this goal, an energy resolution of less than 3%/√(E) is necessary, creating strict requirements on the detector design and the liquid scintillator. Moreover, JUNO will be the only experiment in the near future able to measure the solar mixing parameters with a precision of better than 1%. This is at the same level as our current knowledge on flavour mixing in the quark sector, marking an important milestone of neutrino physics. In addition, supernova neutrinos, geo-neutrinos, sterile neutrinos as well as solar and atmospheric neutrinos can be studied. JUNO was approved in 2013 and the construction of the underground facility started early this year. In this talk the status of the experiment and its prospects is discussed.

  12. Physics of the neutrino mass

    International Nuclear Information System (INIS)

    Mohapatra, R N

    2004-01-01

    Recent neutrino oscillation experiments have yielded valuable information on the nature of neutrino masses and mixings and qualify as the first evidence for physics beyond the standard model. Even though we are far from a complete understanding of the new physics implied by them, there are many useful hints. As the next precision era in neutrino physics is about to be launched, we review the physics of neutrino mass: what we have learned and what we are going to learn

  13. Equation of state and neutrino opacity of dense stellar matter

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, S. (Sanjay)

    2004-01-01

    The properties of matter at densities similar to nuclear density plays an important role in core collapse supernova. In this talk I discuss aspects of the equation of state and weak interactions at high density. I highlight its relation to the temporal and spectral features of the neutrino emission from the newly born neutron star born in the aftermath of a core-collapse supernova. I will briefly comment on how this will impact r-process nucleosynthesis. The hot and dense neutron star (proto-neutron star) born in the aftermath of a core collapse supernova provides a promising environment for r-process nucleosynthesis. The intense temperatures and neutrino fluxes in the vicinity of the proto-neutron star is expected to result in a high entropy neutron-rich wind necessary for successful r-process nucleosynthesis. Although theoretical efforts to simulate core collapse supernova have not been able to provide a mechanism for robust explosions, several key features of the supernova dynamics and early evolution of the proto-neutron star are well understood. Large scale numerical simulations of supernova and neutron star evolution are now being pursued by several groups. Simulating core collapse supernova is challenging because it involves coupled multi-dimensional hydrodynamics and neutrino transport. The neutrinos play a key role since they are the dominant source of energy transport. It is expected that refinements in neutrino transport and better treatment of multi-dimensional effects are needed to understand the explosion mechanism. The temporal and spectral features of the neutrino emission which is emitted from the proto-neutron star is an independent diagnostic of supernova explosion dynamics and early evolution of the proto-neutron star. To accurately predict the ambient conditions just outside the newly born neutron star for the first 10-20 s, we will need to understand both the explosion mechanism and neutrino emission. In this talk I will discuss micro-physical

  14. Magnetic Dipole and Gamow-Teller Modes in Neutrino-Nucleus Reactions: Impact on Supernova Dynamics and Nucleosynthesis

    International Nuclear Information System (INIS)

    Neumann-Cosel, P. von; Byelikov, A.; Richter, A.; Shevchenko, A.; Adachi, T.; Fujita, Y.; Shimbara, Y.; Fujita, H.; Heger, A.; Kolbe, E.; Langanke, K.; Martinez-Pinedo, G.

    2006-01-01

    Some aspects of the importance of neutrino-induced reactions on nuclei within supernova physics are discussed. It is argued that important constraints on the experimentally unknown cross sections can be obtained from experimental studies of the nuclear response in selected cases. Examples are neutral-current induced reactions on fp-shell nuclei extracted from high-resolution inelastic electron scattering data providing the M1 strength distributions and the production of the exotic heavy, odd-odd nuclei 138La and 180Ta through charged-current reactions dominated by Gamow-Teller transitions. The Gamow-Teller strength can deduced from the (3He,t) charge-exchange reaction at zero degree

  15. THE ISOTROPIC DIFFUSION SOURCE APPROXIMATION FOR SUPERNOVA NEUTRINO TRANSPORT

    International Nuclear Information System (INIS)

    Liebendoerfer, M.; Whitehouse, S. C.; Fischer, T.

    2009-01-01

    Astrophysical observations originate from matter that interacts with radiation or transported particles. We develop a pragmatic approximation in order to enable multidimensional simulations with basic spectral radiative transfer when the available computational resources are not sufficient to solve the complete Boltzmann transport equation. The distribution function of the transported particles is decomposed into a trapped particle component and a streaming particle component. Their separate evolution equations are coupled by a source term that converts trapped particles into streaming particles. We determine this source term by requiring the correct diffusion limit for the evolution of the trapped particle component. For a smooth transition to the free streaming regime, this 'diffusion source' is limited by the matter emissivity. The resulting streaming particle emission rates are integrated over space to obtain the streaming particle flux. Finally, a geometric estimate of the flux factor is used to convert the particle flux to the streaming particle density, which enters the evaluation of streaming particle-matter interactions. The efficiency of the scheme results from the freedom to use different approximations for each particle component. In supernovae, for example, reactions with trapped particles on fast timescales establish equilibria that reduce the number of primitive variables required to evolve the trapped particle component. On the other hand, a stationary-state approximation considerably facilitates the treatment of the streaming particle component. Different approximations may apply in applications to stellar atmospheres, star formation, or cosmological radiative transfer. We compare the isotropic diffusion source approximation with Boltzmann neutrino transport of electron flavor neutrinos in spherically symmetric supernova models and find good agreement. An extension of the scheme to the multidimensional case is also discussed.

  16. MEDITERRANEAN: Underwater neutrinos get off the ground

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Now funded is the initial stage of NESTOR, an imaginative new programme for a dedicated underwater neutrino astroparticle physics laboratory. Located in the international waters off the southernmost corner of continental Europe near the town of Pylos in S.W. Greece, NESTOR (NEutrinos from Supernovae and TeV sources Ocean Range) recalls the wise king of Pylos who counselled the Greeks during the Trojan war, an excellent tradition for new scientific goals of detecting neutrinos

  17. Sudbury neutrino observatory

    International Nuclear Information System (INIS)

    Ewan, G.T.; Mak, H.B.; Robertson, B.C.

    1985-07-01

    This report discusses the proposal to construct a unique neutrino observatory. The observatory would contain a Cerenkov detector which would be located 2070 m below the earth's surface in an INCO mine at Creighton near Sudbury and would contain 1000 tons of D20 which is an excellent target material. Neutrinos carry detailed information in their spectra on the reactions taking place deep in the interstellar interior and also provide information on supernova explosions. In addition to their role as astrophysical probes a knowledge of the properties of neutrinos is crucial to theories of grand unification. There are three main objectives of the laboratory. The prime objective will be to study B electron neutrinos from the sun by a direct counting method that will measure their energy and direction. The second major objective will be to establish if electron neutrinos change into other neutrino species in transit from the sun to the earth. Finally it is hoped to be able to observe a supernova with the proposed detector. The features of the Sudbury Neutrino Observatory which make it unique are its high sensitivity to electron neutrinos and its ability to detect all other types of neutrinos of energy greater than 2.2 MeV. In section II of this proposal the major physics objectives are discussed in greater detail. A conceptual design for the detector, and measurements and calculations which establish the feasibility of the neutrino experiments are presented in section III. Section IV is comprised of a discussion on the possible location of the laboratory and Section V contains a brief indication of the main areas to be studied in Phase II of the design study

  18. Charged-Current Neutrino-Nucleus Scattering off the Even Molybdenum Isotopes

    Directory of Open Access Journals (Sweden)

    E. Ydrefors

    2012-01-01

    Full Text Available Neutrinos from supernovae constitute important probes of both the currently unknown supernova mechanisms and of neutrino properties. Reliable information about the nuclear responses to supernova neutrinos is therefore crucial. In this work, we compute the cross sections for the charged-current neutrino-nucleus scattering off the even-even molybdenum isotopes. The nuclear responses to supernova neutrinos are subsequently calculated by folding the cross sections with a Fermi-Dirac distribution.

  19. E1 Working Group summary: Neutrino factories and muon colliders Neutrino Factories and Muon Colliders

    CERN Document Server

    Adams, T.; Balbekov, V.; Barenboim, G.; Harris, Deborah A.; Chou, W.; DeJongh, F.; Geer, S.; Johnstone, C.; Mokhov, N.; Morfin, J.; Neuffer, D.; Raja, R.; Romanino, A.; Shanahan, P.; Spentzouris, P.; Yu, J.; Barger, V.; Marfatia, D.; Han, Tao; Aoki, M.; Kuno, Y.; Sato, A.; Ichikawa, K.; Nakaya, T.; Machida, S.; Nagamine, K.; Yoshimura, K.; Ball, R.D.; Campanelli, Mario; Casper, D.; Molzon, W.; sobel, H.; Cline, D.B.; Cushman, P.; Diwan, M.; Kahn, S.; Morse, W.; Palmer, R.; Parsa, Zohreh; Roser, T.; Fleming, Bonnie T.; Formaggio, J.A.; Garren, A.; Gavela, M.B.; Gonzalez-Garcia, M.C.; Hanson, G.; Berger, M.; Kayser, Boris; Jung, C.K.; Shrock, R.; McGrew, C.; Mocioiu, I.; Lindner, M.; McDonald, K.; McFarland, Kevin Scott; Nienaber, P.; Olness, F.; Pope, B.; Rigolin, S.; Roberts, L.; Schellman, H.; Shiozawa, M.; Wai, L.; Wang, Y.F.; Whisnant, K.; Zeller, M.

    2001-01-01

    We are in the middle of a time of exciting discovery, namely that neutrinos have mass and oscillate. In order to take the next steps to understand this potential window onto what well might be the mechanism that links the quarks and leptons, we need both new neutrino beams and new detectors. The new beamlines can and should also provide new laboratories for doing charged lepton flavor physics, and the new detectors can and should also provide laboratories for doing other physics like proton decay, supernovae searches, etc. The new neutrino beams serve as milestones along the way to a muon collider, which can answer questions in yet another sector of particle physics, namely the Higgs sector or ultimately the energy frontier. In this report we discuss the current status of neutrino oscillation physics, what other oscillation measurements are needed to fully explore the phenomenon, and finally, what other new physics can be explored as a result of building of these facilities.

  20. Point-source and diffuse high-energy neutrino emission from Type IIn supernovae

    Science.gov (United States)

    Petropoulou, M.; Coenders, S.; Vasilopoulos, G.; Kamble, A.; Sironi, L.

    2017-09-01

    Type IIn supernovae (SNe), a rare subclass of core collapse SNe, explode in dense circumstellar media that have been modified by the SNe progenitors at their last evolutionary stages. The interaction of the freely expanding SN ejecta with the circumstellar medium gives rise to a shock wave propagating in the dense SN environment, which may accelerate protons to multi-PeV energies. Inelastic proton-proton collisions between the shock-accelerated protons and those of the circumstellar medium lead to multimessenger signatures. Here, we evaluate the possible neutrino signal of Type IIn SNe and compare with IceCube observations. We employ a Monte Carlo method for the calculation of the diffuse neutrino emission from the SN IIn class to account for the spread in their properties. The cumulative neutrino emission is found to be ˜10 per cent of the observed IceCube neutrino flux above 60 TeV. Type IIn SNe would be the dominant component of the diffuse astrophysical flux, only if 4 per cent of all core collapse SNe were of this type and 20-30 per cent of the shock energy was channeled to accelerated protons. Lower values of the acceleration efficiency are accessible by the observation of a single Type IIn SN as a neutrino point source with IceCube using up-going muon neutrinos. Such an identification is possible in the first year following the SN shock breakout for sources within 20 Mpc.

  1. Supernova real-time monitor system in Kamiokande

    International Nuclear Information System (INIS)

    Oyama, Y.; Yamada, M.; Ishida, T.; Yamaguchi, T.; Yokoyama, H.

    1994-01-01

    A data-analysis program to discover possible supernova neutrino bursts has been installed in the online data-acquisition computer of the Kamiokande experiment. The program automatically analyzes data within 20 min and gives an alarm to collaborators if a possible supernova neutrino burst is found. The detection efficiency of the program is 96% for a typical supernova located 50 kpc from Earth. After a careful analysis by the Kamiokande collaborators, it will be possible to inform all optical observatories in the world about the occurrence of a supernova within 3 h from the time of first detecting the neutrino burst. Information concerning the celestial position of a supernova will also be available for supernovae having a distance less than ∼ 10 kpc. This information will be helpful for observing the first optical emissions from the newly born supernova. (orig.)

  2. Weak Interaction processes in core-collapse supernova

    International Nuclear Information System (INIS)

    Martinez-Pinedo, Gabriel

    2008-01-01

    In this manuscript we review the role that weak interaction processes play in supernova. This includes electron captures and inelastic neutrino-nucleus scattering (INNS). Electron captures during the collapse occur mainly in heavy nuclei, however the proton contribution is responsible for the convergence of different models to a 'norm' stellar trajectory. Neutrino-nucleus cross sections at supernova neutrino energies can be determined from precise data on the magnetic dipole strength. The results agree well with large-scale shell-model calculations. When incorporated in core-collapse simulations INNS increases the neutrino opacities noticeably and strongly reduces the high-energy part of the supernova spectrum

  3. Los Alamos Science, Number 25 -- 1997: Celebrating the neutrino

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, N.G. [ed.

    1997-12-31

    This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solar neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos.

  4. Los Alamos Science, Number 25 -- 1997: Celebrating the neutrino

    International Nuclear Information System (INIS)

    Cooper, N.G.

    1997-01-01

    This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solar neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos

  5. Sudbury neutrino observatory

    International Nuclear Information System (INIS)

    Ewan, G.T.; Evans, H.C.; Lee, H.W.

    1986-10-01

    This report is a supplement to a report (SNO-85-3 (Sudbury Neutrino Observatory)) which contained the results of a feasibility study on the construction of a deep underground neutrino observatory based on a 1000 ton heavy water Cerenkov detector. Neutrinos carry detailed information in their spectra on the reactions taking place deep in the interstellar interior and also provide information on supernova explosions. In addition to their role as astrophysical probes, a knowledge of the properties of neutrinos is crucial to theories of grand unification. The Sudbury Neutrino Observatory is unique in its high sensitivity to electron neutrinos and its ability to detect all other types of neutrinos of energy greater than 2.2 MeV. The results of the July 1985 study indicated that the project is technically feasible in that the proposed detector can measure the direction and energy of electron neutrinos above 7 MeV and the scientific programs will make significant contributions to physics and astrophysics. This present report contains new information obtained since the 1985 feasibility study. The enhanced conversion of neutrinos in the sun and the new physics that could be learned using the heavy water detector are discussed in the physics section. The other sections will discuss progress in the areas of practical importance in achieving the physics objectives such as new techniques to measure, monitor and remove low levels of radioactivity in detector components, ideas on calibration of the detector and so forth. The section entitled Administration contains a membership list of the working groups within the SNO collaboration

  6. The Neutrino: A Better Understanding Through Astrophysics: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kneller, James P. [North Carolina State Univ., Raleigh, NC (United States)

    2016-10-12

    The final report for the award "The Neutrino: A Better Understanding Through Astrophysics" is given. The goals of the work were the following: to construct new theoretical approaches to the problem of neutrino propagation in media including where neutrino-neutrino interactions are important; to pioneer the use of new approaches, including super-scattering operators, for the evolution of neutrino thermal and statistical ensembles; to implement these new approaches in computer codes to study neutrino evolution in supernovae and other hot, dense environments; to increase the realism of simulated signals of a Galactic supernovae neutrino burst in current and future neutrino detectors; to study the simulated signals to determine the ability to extract information on the missing neutrino mixing parameters and the dynamics of the supernova explosion; and to study sterile neutrinos and non-standard interactions of neutrinos in supernovae and their effect upon the signal. Accomplishments made in these areas are described.

  7. The Neutrino: A Better Understanding Through Astrophysics: Final Report

    International Nuclear Information System (INIS)

    Kneller, James P.

    2016-01-01

    The final report for the award 'The Neutrino: A Better Understanding Through Astrophysics' is given. The goals of the work were the following: to construct new theoretical approaches to the problem of neutrino propagation in media including where neutrino-neutrino interactions are important; to pioneer the use of new approaches, including super-scattering operators, for the evolution of neutrino thermal and statistical ensembles; to implement these new approaches in computer codes to study neutrino evolution in supernovae and other hot, dense environments; to increase the realism of simulated signals of a Galactic supernovae neutrino burst in current and future neutrino detectors; to study the simulated signals to determine the ability to extract information on the missing neutrino mixing parameters and the dynamics of the supernova explosion; and to study sterile neutrinos and non-standard interactions of neutrinos in supernovae and their effect upon the signal. Accomplishments made in these areas are described.

  8. Nucleosynthesis in neutrino-driven, aspherical supernova explosion of a massive star

    International Nuclear Information System (INIS)

    Fujimoto, S.; Hashimoto, M.; Ono, M.; Kotake, K.; Ohnishi, N.

    2011-01-01

    We examine explosive nucleosynthesis of p-nuclei during a delayed neutrino-driven, aspherical supernova explosion aided by standing accretion shock instability, based on two-dimensional hydrodynamic simulations of the explosion of a 15M · star. We find that p-nuclei are mainly produced through γ-processes, and that the nuclei lighter than 92 Mo are abundantly synthesized in slightly neutron-rich bubbles with electron fractions of Y e ≤0.48. 94 Mo, 96 Ru, and 98 Ru, are underproduced compared with the solar system, as in the spherical model.

  9. Supernovae

    International Nuclear Information System (INIS)

    Petschek, A.

    1990-01-01

    This book offers papers incorporating the latest results and understanding about supernovae, including SN1987A. There are several chapters reviewing all the radio through infrared, visible, and ultraviolet to X-rays and gamma-rays but also neutrinos. Other chapters deal with the classification of supernovae, depending on their spectra and light curves. Three chapters treat supernovae theory, including an idea of a fractal burning front and another on the behavior of neutron stars

  10. Nucleosynthesis in Core-Collapse Supernovae

    Science.gov (United States)

    Stevenson, Taylor Shannon; Viktoria Ohstrom, Eva; Harris, James Austin; Hix, William R.

    2018-01-01

    The nucleosynthesis which occurs in core-collapse supernovae (CCSN) is one of the most important sources of elements in the universe. Elements from Oxygen through Iron come predominantly from supernovae, and contributions of heavier elements are also possible through processes like the weak r-process, the gamma process and the light element primary process. The composition of the ejecta depends on the mechanism of the explosion, thus simulations of high physical fidelity are needed to explore what elements and isotopes CCSN can contribute to Galactic Chemical Evolution. We will analyze the nucleosynthesis results from self-consistent CCSN simulations performed with CHIMERA, a multi-dimensional neutrino radiation-hydrodynamics code. Much of our understanding of CCSN nucleosynthesis comes from parameterized models, but unlike CHIMERA these fail to address essential physics, including turbulent flow/instability and neutrino-matter interaction. We will present nucleosynthesis predictions for the explosion of a 9.6 solar mass first generation star, relying both on results of the 160 species nuclear reaction network used in CHIMERA within this model and on post-processing with a more extensive network. The lowest mass iron core-collapse supernovae, like this model, are distinct from their more massive brethren, with their explosion mechanism and nucleosynthesis being more like electron capture supernovae resulting from Oxygen-Neon white dwarves. We will highlight the differences between the nucleosynthesis in this model and more massive supernovae. The inline 160 species network is a feature unique to CHIMERA, making this the most sophisticated model to date for a star of this type. We will discuss the need and mechanism to extrapolate the post-processing to times post-simulation and analyze the uncertainties this introduces for supernova nucleosynthesis. We will also compare the results from the inline 160 species network to the post-processing results to study further

  11. Neutrino physics at a muon collider

    International Nuclear Information System (INIS)

    King, B.J.

    1998-02-01

    This paper gives an overview of the neutrino physics possibilities at a future muon storage ring, which can be either a muon collider ring or a ring dedicated to neutrino physics that uses muon collider technology to store large muon currents. After a general characterization of the neutrino beam and its interactions, some crude quantitative estimates are given for the physics performance of a muon ring neutrino experiment (MURINE) consisting of a high rate, high performance neutrino detector at a 250 GeV muon collider storage ring. The paper is organized as follows. The next section describes neutrino production from a muon storage rings and gives expressions for event rates in general purpose and long baseline detectors. This is followed by a section outlining a serious design constraint for muon storage rings: the need to limit the radiation levels produced by the neutrino beam. The following two sections describe a general purpose detector and the experimental reconstruction of interactions in the neutrino target then, finally, the physics capabilities of a MURINE are surveyed

  12. Probing exotic physics with cosmic neutrinos

    International Nuclear Information System (INIS)

    Hooper, Dan; Fermilab

    2005-01-01

    Traditionally, collider experiments have been the primary tool used in searching for particle physics beyond the Standard Model. In this talk, I will discuss alternative approaches for exploring exotic physics scenarios using high energy and ultra-high energy cosmic neutrinos. Such neutrinos can be used to study interactions at energies higher, and over baselines longer, than those accessible to colliders. In this way, neutrino astronomy can provide a window into fundamental physics which is highly complementary to collider techniques. I will discuss the role of neutrino astronomy in fundamental physics, considering the use of such techniques in studying several specific scenarios including low scale gravity models, Standard Model electroweak instanton induced interactions, decaying neutrinos and quantum decoherence

  13. 50 Years of Neutrino Physics

    International Nuclear Information System (INIS)

    Zralek, M.

    2010-01-01

    Some important topics from history of neutrino physics over the last fifty years are discussed. History of neutrinos is older, at 4 th December 2010 it will be eightieth anniversary of the neutrino birth. In that day W. Pauli wrote the famous letter to participants of the physics conference at Tubingen with the suggestion that '' there could exist in the nuclei electrically neutral particle ''. We will concentrate mostly on the 50 years of neutrino history just to show the long tradition of the Zakopane Theoretical School. (author)

  14. Multi-dimensional simulations of core-collapse supernova explosions with CHIMERA

    Science.gov (United States)

    Messer, O. E. B.; Harris, J. A.; Hix, W. R.; Lentz, E. J.; Bruenn, S. W.; Mezzacappa, A.

    2018-04-01

    Unraveling the core-collapse supernova (CCSN) mechanism is a problem that remains essentially unsolved despite more than four decades of effort. Spherically symmetric models with otherwise high physical fidelity generally fail to produce explosions, and it is widely accepted that CCSNe are inherently multi-dimensional. Progress in realistic modeling has occurred recently through the availability of petascale platforms and the increasing sophistication of supernova codes. We will discuss our most recent work on understanding neutrino-driven CCSN explosions employing multi-dimensional neutrino-radiation hydrodynamics simulations with the Chimera code. We discuss the inputs and resulting outputs from these simulations, the role of neutrino radiation transport, and the importance of multi-dimensional fluid flows in shaping the explosions. We also highlight the production of 48Ca in long-running Chimera simulations.

  15. Crucial Physical Dependencies of the Core-Collapse Supernova Mechanism

    Science.gov (United States)

    Burrows, A.; Vartanyan, D.; Dolence, J. C.; Skinner, M. A.; Radice, D.

    2018-02-01

    We explore with self-consistent 2D F ornax simulations the dependence of the outcome of collapse on many-body corrections to neutrino-nucleon cross sections, the nucleon-nucleon bremsstrahlung rate, electron capture on heavy nuclei, pre-collapse seed perturbations, and inelastic neutrino-electron and neutrino-nucleon scattering. Importantly, proximity to criticality amplifies the role of even small changes in the neutrino-matter couplings, and such changes can together add to produce outsized effects. When close to the critical condition the cumulative result of a few small effects (including seeds) that individually have only modest consequence can convert an anemic into a robust explosion, or even a dud into a blast. Such sensitivity is not seen in one dimension and may explain the apparent heterogeneity in the outcomes of detailed simulations performed internationally. A natural conclusion is that the different groups collectively are closer to a realistic understanding of the mechanism of core-collapse supernovae than might have seemed apparent.

  16. Low energy neutrino astronomy and particle physics with LENA

    Energy Technology Data Exchange (ETDEWEB)

    Marrodan Undagoitia, Teresa [Physik-Department E15, TU-Muenchen, Garching (Germany); Physik-Institut, Universitaet Zuerich (Switzerland); Feilitzsch, Franz von; Goeger-Neff, Marianne; Oberauer, Lothar; Potzel, Walter; Todor, Sebastian; Winter, Juergen; Wurm, Michael [Physik-Department E15, TU-Muenchen, Garching (Germany)

    2009-07-01

    LENA is proposed to be a large-volume liquid-scintillation detector for neutrino astronomy and for the search for proton decay. In the current design, it is planned as a vertical cylinder of 30m diameter and 100m height. The detection medium consists of 50 kt organic liquid scintillator, the emitted light of which is detected by about 15000 photomultipliers. In this talk the main physics topics of LENA are presented together with calculations and Monte Carlo simulations to demonstrate the capabilities of the detector. Key goals of this project are for example the measurement of solar, supernovae and geo-neutrinos, as well as to extend the search for proton decay beyond the current lifetime limits. LENA is part of an European design study, LAGUNA, which evaluates the feasibility of an underground location for a large detector. Three detector concepts have been proposed, a megaton water-Cherenkov, a 100 kt liquid-argon TPC and the LENA detector. The status of the engineering studies for different locations is reported.

  17. Neutron star kicks and asymmetric supernovae

    International Nuclear Information System (INIS)

    Lai, D.

    2001-01-01

    Observational advances over the last decade have left little doubt that neutron stars received a large kick velocity (of order a few hundred to a thousand km s -1 ) at birth. The physical origin of the kicks and the related supernova asymmetry is one of the central unsolved mysteries of supernova research. We review the physics of different kick mechanisms, including hydrodynamically driven, neutrino - magnetic field driven, and electromagnetically driven kicks. The viabilities of the different kick mechanisms are directly related to the other key parameters characterizing nascent neutron stars, such as the initial magnetic field and the initial spin. Recent observational constraints on kick mechanisms are also discussed. (orig.)

  18. Coherent and Incoherent Neutral Current Scattering for Supernova Detection

    Directory of Open Access Journals (Sweden)

    P. C. Divari

    2012-01-01

    Full Text Available The total cross sections as well as the neutrino event rates are calculated in the neutral current neutrino scattering off 40Ar and 132Xe isotopes at neutrino energies (Ev<100 MeV. The individual contribution coming from coherent and incoherent channels is taking into account. An enhancement of the neutral current component is achieved via the coherent (0gs+→0gs+ channel which is dominant with respect to incoherent (0gs+→Jf one. The response of the above isotopes as a supernova neutrino detection has been considered, assuming a two parameter Fermi-Dirac distribution for the supernova neutrino energy spectra. The calculated total cross sections are tested on a gaseous spherical TPC detector dedicated for supernova neutrino detection.

  19. Equation-of-state dependent features in shock-oscillation modulated neutrino and gravitational-wave signals from supernovae

    Science.gov (United States)

    Marek, A.; Janka, H.-T.; Müller, E.

    2009-03-01

    We present two-dimensional (axisymmetric) neutrino-hydrodynamic simulations of the long-time accretion phase of a 15 M_⊙ progenitor star after core bounce and before the launch of a supernova explosion, when non-radial hydrodynamic instabilities like convection occur in different regions of the collapsing stellar core and the standing accretion shock instability (SASI) leads to large-amplitude oscillations of the stalled shock with a period of tens of milliseconds. Our simulations were performed with the Prometheus-Vertex code, which includes a multi-flavor, energy-dependent neutrino transport scheme and employs an effective relativistic gravitational potential. Testing the influence of a stiff and a soft equation of state for hot neutron star matter, we find that the non-radial mass motions in the supernova core impose a time variability on the neutrino and gravitational-wave signals with larger amplitudes, as well as higher frequencies in the case of a more compact nascent neutron star. After the prompt shock-breakout burst of electron neutrinos, a more compact accreting remnant produces higher neutrino luminosities and higher mean neutrino energies. The observable neutrino emission in the SASI sloshing direction exhibits a modulation of several ten percent in the luminosities and around 1 MeV in the mean energies with most power at typical SASI frequencies between roughly 20 and 100 Hz. The modulation is caused by quasi-periodic variations in the mass accretion rate of the neutron star in each hemisphere. At times later than ~50-100 ms after bounce, the gravitational-wave amplitude is dominated by the growing low-frequency (⪉200 Hz) signal associated with anisotropic neutrino emission. A high-frequency wave signal results from nonradial gas flows in the outer layers of the anisotropically accreting neutron star. Right after bounce such nonradial mass motions occur due to prompt post-shock convection in both considered cases and contribute mostly to the early

  20. Proceedings of the Magellan workshop 2016. Connecting neutrino physics and astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Dahmke, Stefan K.G. [Hamburg Univ. (Germany). Hamburger Sternwarte; Meyer, Mikko [Hamburg Univ. (Germany). Inst. fuer Experimentalphysik; Vanhoefer, Laura (ed.) [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2016-09-15

    The first Magellan Workshop took place on March 17th/18th 2016 in Hamburg. Several topics have been addressed during the workshop with the most time devoted to discussing stellar physics and supernova physics. These two key topics are especially interesting to two distinct fields, each with their own approach, method and extensive knowledge gained: astrophysics and neutrino physics. It is thus no surprise that the workshop specifically intended to bring these groups together was met with a certain enthusiasm. 46 scientists working in institutions across seven countries attended a total of 30 plenary talks during their two days in Hamburg. The workshop then concluded with a trip to the Hamburg Observatory, for a tour of the historic and current telescopes. While supernovae of course were a primary topic, the presentations included many different, exciting projects. From relatively nearby objects in studies on geoneutrinos originating from inside the Earth via stellar physics in the refinement of solar models to high energy sources across multiple galaxies to the Cosmic Microwave Background. One particular subject in the field of supernova physics for the past 29 years of course has been the supernova SN1987A, mostly owed to its fairly recent explosion enabling modern science to observe the event from Earth and space alike both in electromagnetic waves and particle fluxes. These measurements have greatly expanded our knowledge as many theories on both the internal mechanisms as well as the evolution of supernovae could consequently be tested. Not only does the Large Magellanic Cloud which hosts this famous supernova serve as a pictoral symbol for our workshop, it is also now commonly named after Ferdinand Magellan, who was not the first to discover this prominent feature in the southern night sky, but the one whose journey brought news of its marvellous sight to European astronomers back in the late 16th century. Furthermore this journey shall serve as a symbol of

  1. Proceedings of the Magellan workshop 2016. Connecting neutrino physics and astronomy

    International Nuclear Information System (INIS)

    Dahmke, Stefan K.G.

    2016-09-01

    The first Magellan Workshop took place on March 17th/18th 2016 in Hamburg. Several topics have been addressed during the workshop with the most time devoted to discussing stellar physics and supernova physics. These two key topics are especially interesting to two distinct fields, each with their own approach, method and extensive knowledge gained: astrophysics and neutrino physics. It is thus no surprise that the workshop specifically intended to bring these groups together was met with a certain enthusiasm. 46 scientists working in institutions across seven countries attended a total of 30 plenary talks during their two days in Hamburg. The workshop then concluded with a trip to the Hamburg Observatory, for a tour of the historic and current telescopes. While supernovae of course were a primary topic, the presentations included many different, exciting projects. From relatively nearby objects in studies on geoneutrinos originating from inside the Earth via stellar physics in the refinement of solar models to high energy sources across multiple galaxies to the Cosmic Microwave Background. One particular subject in the field of supernova physics for the past 29 years of course has been the supernova SN1987A, mostly owed to its fairly recent explosion enabling modern science to observe the event from Earth and space alike both in electromagnetic waves and particle fluxes. These measurements have greatly expanded our knowledge as many theories on both the internal mechanisms as well as the evolution of supernovae could consequently be tested. Not only does the Large Magellanic Cloud which hosts this famous supernova serve as a pictoral symbol for our workshop, it is also now commonly named after Ferdinand Magellan, who was not the first to discover this prominent feature in the southern night sky, but the one whose journey brought news of its marvellous sight to European astronomers back in the late 16th century. Furthermore this journey shall serve as a symbol of

  2. Neutrino Oscillations Physics

    Science.gov (United States)

    Fogli, Gianluigi

    2005-06-01

    We review the status of the neutrino oscillations physics, with a particular emphasis on the present knowledge of the neutrino mass-mixing parameters. We consider first the νμ → ντ flavor transitions of atmospheric neutrinos. It is found that standard oscillations provide the best description of the SK+K2K data, and that the associated mass-mixing parameters are determined at ±1σ (and NDF = 1) as: Δm2 = (2.6 ± 0.4) × 10-3 eV2 and sin 2 2θ = 1.00{ - 0.05}{ + 0.00} . Such indications, presently dominated by SK, could be strengthened by further K2K data. Then we point out that the recent data from the Sudbury Neutrino Observatory, together with other relevant measurements from solar and reactor neutrino experiments, in particular the KamLAND data, convincingly show that the flavor transitions of solar neutrinos are affected by Mikheyev-Smirnov-Wolfenstein (MSW) effects. Finally, we perform an updated analysis of two-family active oscillations of solar and reactor neutrinos in the standard MSW case.

  3. Childhood and youth of neutrino physics: some reminiscences

    International Nuclear Information System (INIS)

    Pontekorvo, B.M.

    1983-01-01

    History of neutrino physics, which is devided into four periods is presented briefly. The first period (1896-1930)- neutrino physics origin. The second period (1930 - the beginning of 1050tth) - childhood of neurino physics. The third period (1941-1959) - youth of neutrino physics. The fourth period(1960 - the beginning of 1980th) - maturity of neutrino physics. The following achievements are considered in detail: the neutrino prediction by W.Pauli; the development of the theory of beta decay by E.Fermi and the problem of the real neutrality of electrically neutral fermions by E.Majorana. The problem of neutrino detection by means of chlorine-argon method is discussed. Some data, obtained in physics of high-energy neutrinos are described

  4. The future of neutrino physics

    CERN Document Server

    2009-01-01

    On 1-3 October, CERN held the first workshop to discuss the strategy that Europe should follow in the field of neutrino physics. Many members of the neutrino physics community from all over the world participated in the workshop, demonstrating the vitality and interest of this research field. The European Strategy for Future Neutrino Physics workshop is the second of a series of workshops organized by CERN to coordinate efforts and define strategies for the future of physics research in Europe. The first workshop was organized in May; it outlined the best projects that have excellent scientific goals and for which CERN’s facilities are unique. Currently, these projects are being discussed within the community and in the CERN scientific committees. The same bottom-up approach was taken for the organisation of this second workshop that focussed on neutrino physics. More than 250 people participated and 44 posters were presented in a separate session. Unlike in the first workshop, the focus was not on specif...

  5. Status and aims of the DUMAND neutrino project: the ocean as a neutrino detector

    International Nuclear Information System (INIS)

    Roberts, A.; Blood, H.; Learned, J.; Reines, F.

    1976-07-01

    The possibility of using the ocean as a neutrino detector is considered. Neutrino-produced interactions result in charged particles that generate Cherenkov radiation in the water, which can be detected by light-gathering equipment and photomultipliers. The properties of the ocean as seen from this standpoint are critically examined, and the advantages and disadvantages pointed out. Possible uses for such a neutrino detector include (1) the detection of neutrinos emitted in gravitational collapse of stars (supernova production), not only in our own galaxy, but in other galaxies up to perhaps twenty-million light-years away, (2) the extension of high-energy neutrino physics, as currently practiced up to 200 GeV at high-energy accelerators, to energies up to 50 times higher, using neutrinos generated in the atmosphere by cosmic rays, and (3) the possible detection of neutrinos produced by cosmic-ray interactions outside the earth's atmosphere. The technology for such an undertaking seems to be within reach

  6. Status and Aims of the DUMAND Neutrino Project: the Ocean as a Neutrino Detector

    Science.gov (United States)

    Roberts, A.; Blood, H.; Learned, J.; Reines, F.

    1976-07-01

    The possibility of using the ocean as a neutrino detector is considered. Neutrino-produced interactions result in charged particles that generate Cherenkov radiation in the water, which can be detected by light-gathering equipment and photomultipliers. The properties of the ocean as seen from this standpoint are critically examined, and the advantages and disadvantages pointed out. Possible uses for such a neutrino detector include (1) the detection of neutrinos emitted in gravitational collapse of stars (supernova production), not only in our own galaxy, but in other galaxies up to perhaps twenty-million light-years away, (2) the extension of high-energy neutrino physics, as currently practiced up to 200 GeV at high-energy accelerators, to energies up to 50 times higher, using neutrinos generated in the atmosphere by cosmic rays, and (3) the possible detection of neutrinos produced by cosmic-ray interactions outside the earth`s atmosphere. The technology for such an undertaking seems to be within reach.

  7. The physics of relic neutrinos

    International Nuclear Information System (INIS)

    Dighe, A.; Pastor, S.; Smirnov, A.

    1998-12-01

    We report on the main results presented at the workshop on the Physics of Relic Neutrinos. The study of relic neutrinos involves a broad spectrum of problems in particle physics, astrophysics and cosmology. Features of baryogenesis and leptogenesis could be imprinted in the properties of the relic neutrino sea. Relic neutrinos played a crucial role in the big bang nucleosynthesis. Being the hot component of the dark matter, they have participated in the structure formation in the universe. Although the direct detection of the sea seems impossible at this stage, there could be various indirect manifestations of these neutrinos which would allow us to study the properties of the sea both in the past and at the present epoch. (author)

  8. NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE SUPERNOVAE: HIGH-RESOLUTION SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Radice, David; Ott, Christian D. [TAPIR, Walter Burke Institute for Theoretical Physics, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Abdikamalov, Ernazar [Department of Physics, School of Science and Technology, Nazarbayev University, Astana 010000 (Kazakhstan); Couch, Sean M. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Haas, Roland [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, D-14476 Golm (Germany); Schnetter, Erik, E-mail: dradice@caltech.edu [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada)

    2016-03-20

    We present results from high-resolution semiglobal simulations of neutrino-driven convection in core-collapse supernovae. We employ an idealized setup with parameterized neutrino heating/cooling and nuclear dissociation at the shock front. We study the internal dynamics of neutrino-driven convection and its role in redistributing energy and momentum through the gain region. We find that even if buoyant plumes are able to locally transfer heat up to the shock, convection is not able to create a net positive energy flux and overcome the downward transport of energy from the accretion flow. Turbulent convection does, however, provide a significant effective pressure support to the accretion flow as it favors the accumulation of energy, mass, and momentum in the gain region. We derive an approximate equation that is able to explain and predict the shock evolution in terms of integrals of quantities such as the turbulent pressure in the gain region or the effects of nonradial motion of the fluid. We use this relation as a way to quantify the role of turbulence in the dynamics of the accretion shock. Finally, we investigate the effects of grid resolution, which we change by a factor of 20 between the lowest and highest resolution. Our results show that the shallow slopes of the turbulent kinetic energy spectra reported in previous studies are a numerical artifact. Kolmogorov scaling is progressively recovered as the resolution is increased.

  9. NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE SUPERNOVAE: HIGH-RESOLUTION SIMULATIONS

    International Nuclear Information System (INIS)

    Radice, David; Ott, Christian D.; Abdikamalov, Ernazar; Couch, Sean M.; Haas, Roland; Schnetter, Erik

    2016-01-01

    We present results from high-resolution semiglobal simulations of neutrino-driven convection in core-collapse supernovae. We employ an idealized setup with parameterized neutrino heating/cooling and nuclear dissociation at the shock front. We study the internal dynamics of neutrino-driven convection and its role in redistributing energy and momentum through the gain region. We find that even if buoyant plumes are able to locally transfer heat up to the shock, convection is not able to create a net positive energy flux and overcome the downward transport of energy from the accretion flow. Turbulent convection does, however, provide a significant effective pressure support to the accretion flow as it favors the accumulation of energy, mass, and momentum in the gain region. We derive an approximate equation that is able to explain and predict the shock evolution in terms of integrals of quantities such as the turbulent pressure in the gain region or the effects of nonradial motion of the fluid. We use this relation as a way to quantify the role of turbulence in the dynamics of the accretion shock. Finally, we investigate the effects of grid resolution, which we change by a factor of 20 between the lowest and highest resolution. Our results show that the shallow slopes of the turbulent kinetic energy spectra reported in previous studies are a numerical artifact. Kolmogorov scaling is progressively recovered as the resolution is increased

  10. New neutrino physics and the altered shapes of solar neutrino spectra

    Science.gov (United States)

    Lopes, Ilídio

    2017-01-01

    Neutrinos coming from the Sun's core have been measured with high precision, and fundamental neutrino oscillation parameters have been determined with good accuracy. In this work, we estimate the impact that a new neutrino physics model, the so-called generalized Mikheyev-Smirnov-Wolfenstein (MSW) oscillation mechanism, has on the shape of some of leading solar neutrino spectra, some of which will be partially tested by the next generation of solar neutrino experiments. In these calculations, we use a high-precision standard solar model in good agreement with helioseismology data. We found that the neutrino spectra of the different solar nuclear reactions of the pp chains and carbon-nitrogen-oxygen cycle have quite distinct sensitivities to the new neutrino physics. The He P and 8B neutrino spectra are the ones in which their shapes are more affected when neutrinos interact with quarks in addition to electrons. The shapes of the 15O and 17F neutrino spectra are also modified, although in these cases the impact is much smaller. Finally, the impact in the shapes of the P P and 13N neutrino spectra is practically negligible.

  11. Solar neutrinos, helioseismology and the solar internal dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Turck-Chieze, Sylvaine [Service d' Astrophysique/IRFU/DSM/CEA, 91191 Gif sur Yvette Cedex (France); Couvidat, Sebastien, E-mail: sylvaine.turck-chieze@cea.fr, E-mail: couvidat@stanford.edu [HEPL, Stanford University, Stanford, CA 94305 (United States)

    2011-08-15

    Neutrinos are fundamental particles ubiquitous in the Universe and whose properties remain elusive despite more than 50 years of intense research activity. This review illustrates the importance of solar neutrinos in astrophysics, nuclear physics and particle physics. After a description of the historical context, we remind the reader of the noticeable properties of these particles and of the stakes of the solar neutrino puzzle. The standard solar model triggered persistent efforts in fundamental physics to predict the solar neutrino fluxes, and its constantly evolving predictions have been regularly compared with the detected neutrino signals. Anticipating that this standard model could not reproduce the internal solar dynamics, a seismic solar model was developed which enriched theoretical neutrino flux predictions with in situ observation of acoustic and gravity waves propagating in the Sun. This seismic model contributed to the stabilization of the neutrino flux predictions. This review recalls the main historical steps, from the pioneering Homestake mine experiment and the GALLEX-SAGE experiments capturing the first proton-proton neutrinos. It emphasizes the importance of the SuperKamiokande and SNO detectors. Both experiments demonstrated that the solar-emitted electron neutrinos are partially transformed into other neutrino flavors before reaching the Earth. This sustained experimental effort opens the door to neutrino astronomy, with long-base lines and underground detectors. The success of BOREXINO in detecting the {sup 7}Be neutrino signal alone instills confidence in physicists' ability to detect each neutrino source separately. It justifies the building of a new generation of detectors to measure the entire solar neutrino spectrum in greater detail, as well as supernova neutrinos. A coherent picture has emerged from neutrino physics and helioseismology. Today, new paradigms take shape in these two fields: neutrinos are massive particles, but their

  12. 182th International School of Physics "Enrico Fermi" : Neutrino Physics and Astrophysics

    CERN Document Server

    Ludhova, L

    2012-01-01

    This book contains chapters based on 9 of the lectures delivered at the Enrico Fermi School of Physics "Neutrino Physics and Astrophysics", held from 25 of July to 5 August 2011. The event was organized by the Italian Physical Society (SIF) jointly with the International School of Astro-particle Physics (ISAPP), a network whose aim is to build up an astro-particle community of both astrophysicists and particle physicists. Included are chapters on Neutrino oscillation physics (B. Kayser); Double-beta decay (E. Fiorini); Light neutrinos in cosmology (S. Pastor); Neutrinos and the stars (G.G. Raffelt); High energy neutrinos and cosmic rays (G. Sigl); Methods and problems in low-energy neutrino experiments (G. Ranucci); Methods and problems in neutrino observatories (M. Ribordy); New technologies in neutrino physics (L. Oberauer); and Perspectives of underground physics (A. Bettini). These are a followed by a section on the results presented in the form of posters by the Ph.D. students attending the school. The b...

  13. Observing the Next Galactic Supernova with the NOvA Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Vasel, Justin A. [Indiana U.; Sheshukov, Andrey [Dubna, JINR; Habig, Alec [Minnesota U., Duluth

    2017-10-02

    The next galactic core-collapse supernova will deliver a wealth of neutrinos which for the first time we are well-situated to measure. These explosions produce neutrinos with energies between 10 and 100 MeV over a period of tens of seconds. Galactic supernovae are relatively rare events, occurring with a frequency of just a few per century. It is therefore essential that all neutrino detectors capable of detecting these neutrinos are ready to trigger on this signal when it occurs. This poster describes a data-driven trigger which is designed to detect the neutrino signal from a galactic core-collapse supernova with the NOvA detectors. The trigger analyzes 5ms blocks of detector activity and applies background rejection algorithms to detect the signal time structure over the background. This background reduction is an essential part of the process, as the NOvA detectors are designed to detect neutrinos from Fermilab's NuMI beam which have an average energy of 2GeV--well above the average energy of supernova neutrinos.

  14. Neutrino physics present and future

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    Our understanding of neutrinos has been revolutionized by the discovery that they have nonzero masses and very large mixing. We will explain the phenomenology of massive neutrinos, including neutrino oscillation in vacuum and in matter, and the physics of neutrinos that are their own antiparticles. We will review the evidence for neutrino masses and mixing, and summarize what has been learned about the neutrinos so far. Identifying the very interesting open questions raised by the discovery of neutrino mass, we will discuss how these questions may be answered through future experiments. Finally, we will consider the possibility that CP violation by neutrinos is the key to understanding the matter-antimatter asymmetry of the universe, and discuss the see-saw theory of why neutrino masses are so tiny.

  15. REVIEWS OF TOPICAL PROBLEMS Rotational explosion mechanism for collapsing supernovae and the two-stage neutrino signal from supernova 1987A in the Large Magellanic Cloud

    Science.gov (United States)

    Imshennik, Vladimir S.

    2011-02-01

    The two-stage (double) signal produced by the outburst of the close supernova (SN) in the Large Magellanic Cloud, which started on and involved two neutrino signals during the night of 23 February 1987 UT, is theoretically interpreted in terms of a scenario of rotationally exploding collapsing SNs, to whose class the outburst undoubtedly belongs. This scenario consists of a set of hydrodynamic and kinetic models in which key results are obtained by numerically solving non-one-dimensional and nonstationary problems. Of vital importance in this context is the inclusion of rotation effects, their role being particularly significant precisely in terms of the question of the transformation of the original collapse of the presupernova iron core to the explosion of the SN shell, with an energy release on a familiar scale of 1051 erg. The collapse in itself leads to the birth of neutron stars (black holes) emitting neutrino and gravitational radiation signals of gigantic intensity, whose total energy significantly (by a factor of hundreds) exceeds the above-cited SN burst energy. The proposed rotational scenario is described briefly by artificially dividing it into three (or four) characteristic stages. This division is dictated by the physical meaning of the chain of events a rotating iron core of a sufficiently massive (more than 10M) star triggers when it collapses. An attempt is made to quantitatively describe the properties of the associated neutrino and gravitational radiations. The review highlights the interpretation of the two-stage neutrino signal from SN 1987A, a problem which, given the present status of theoretical astrophysics, cannot, in the author's view, be solved without including rotation effects.

  16. Towards neutrino astronomy

    International Nuclear Information System (INIS)

    Lagage, P.O.; Spiro, M.

    1985-01-01

    Neutrino sources are numerous and varied; the sun, a supernova explosion, the cosmic radiation interaction with interstellar medium are neutrino or antineutrino sources. The aim of this article is to overview the international projects of neutrino detection while giving the preference to the experimental side of the detection [fr

  17. PROGENITOR-DEPENDENT EXPLOSION DYNAMICS IN SELF-CONSISTENT, AXISYMMETRIC SIMULATIONS OF NEUTRINO-DRIVEN CORE-COLLAPSE SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Summa, Alexander; Hanke, Florian; Janka, Hans-Thomas; Melson, Tobias [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); Marek, Andreas [Max Planck Computing and Data Facility (MPCDF), Gießenbachstr. 2, D-85748 Garching (Germany); Müller, Bernhard, E-mail: asumma@mpa-garching.mpg.de, E-mail: thj@mpa-garching.mpg.de [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN (United Kingdom)

    2016-07-01

    We present self-consistent, axisymmetric core-collapse supernova simulations performed with the Prometheus-Vertex code for 18 pre-supernova models in the range of 11–28 M {sub ⊙}, including progenitors recently investigated by other groups. All models develop explosions, but depending on the progenitor structure, they can be divided into two classes. With a steep density decline at the Si/Si–O interface, the arrival of this interface at the shock front leads to a sudden drop of the mass-accretion rate, triggering a rapid approach to explosion. With a more gradually decreasing accretion rate, it takes longer for the neutrino heating to overcome the accretion ram pressure and explosions set in later. Early explosions are facilitated by high mass-accretion rates after bounce and correspondingly high neutrino luminosities combined with a pronounced drop of the accretion rate and ram pressure at the Si/Si–O interface. Because of rapidly shrinking neutron star radii and receding shock fronts after the passage through their maxima, our models exhibit short advection timescales, which favor the efficient growth of the standing accretion-shock instability. The latter plays a supportive role at least for the initiation of the re-expansion of the stalled shock before runaway. Taking into account the effects of turbulent pressure in the gain layer, we derive a generalized condition for the critical neutrino luminosity that captures the explosion behavior of all models very well. We validate the robustness of our findings by testing the influence of stochasticity, numerical resolution, and approximations in some aspects of the microphysics.

  18. Neutrino physics: Summary talk

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1989-04-01

    This paper is organized as follows: First, I describe the state of neutrino phenomenology. Emphasis is placed on sin 2 θ W , its present status and future prospects. In addition, some signatures of ''new physics'' are described. Then, kaon physics at Fermilab is briefly discussed. I concentrate on the interesting rare decay K L → π 0 e + e - which may be a clean probe direct CP violation. Neutrino mass, mixing, and electromagnetic moments are surveyed. There, I describe the present state and future direction of accelerator based experiments. Finally, I conclude with an outlook on the future. Throughout this summary, I have drawn from and incorporated ideas discussed by other speakers at this workshop. However, I have tried to combine their ideas with my own perspective on neutrino physics and where it is headed. 49 refs., 3 figs., 4 tabs

  19. Low Energy Neutrino Astronomy in the future large-volume liquid-scintillator detector LENA

    International Nuclear Information System (INIS)

    Wurm, Michael; Feilitzsch, F V; Goeger-Neff, M; Lewke, T; Undagoitia, T Marrodan; Oberauer, L; Potzel, W; Todor, S; Winter, J

    2008-01-01

    The recent successes in neutrino physics prove that liquid-scintillator detectors allow to combine high energy resolution, efficient means of background reduction, and a large detection volume. In the planned LENA (Low Energy Neutrino Astronomy) experiment, a target mass of 50 kt will enable the investigation of a variety of terrestrial and astrophysical neutrino sources. The high-statistics spectroscopy of geoneutrinos, solar neutrinos and supernova neutrinos will provide new insights in the heat production processes of Earth and Sun, and the workings of a gravitational collapse. The same measurements will as well investigate neutrino properties as oscillation parameters and mass hierarchy. A first spectroscopic measurement of the low flux of diffuse supernova neutrino background is within the sensitivity of the LENA detector. Finally, a life-time limit of several 1034 years can be set to the proton decay into proton and anti-neutrino, testing the predictions of SUSY theory. The present contribution includes a review of the scientific studies that were performed in the last years as well as a report on currently on-going R and D activities.

  20. Low Energy Neutrino Astronomy in the future large-volume liquid-scintillator detector LENA

    Energy Technology Data Exchange (ETDEWEB)

    Wurm, Michael; Feilitzsch, F V; Goeger-Neff, M; Lewke, T; Undagoitia, T Marrodan; Oberauer, L; Potzel, W; Todor, S; Winter, J [E15 Chair for Astroparticle Physics, Technische Universitat Miinchen, Physik Department, James-Franck-Str., D-85748 Garching (Germany)

    2008-11-01

    The recent successes in neutrino physics prove that liquid-scintillator detectors allow to combine high energy resolution, efficient means of background reduction, and a large detection volume. In the planned LENA (Low Energy Neutrino Astronomy) experiment, a target mass of 50 kt will enable the investigation of a variety of terrestrial and astrophysical neutrino sources. The high-statistics spectroscopy of geoneutrinos, solar neutrinos and supernova neutrinos will provide new insights in the heat production processes of Earth and Sun, and the workings of a gravitational collapse. The same measurements will as well investigate neutrino properties as oscillation parameters and mass hierarchy. A first spectroscopic measurement of the low flux of diffuse supernova neutrino background is within the sensitivity of the LENA detector. Finally, a life-time limit of several 1034 years can be set to the proton decay into proton and anti-neutrino, testing the predictions of SUSY theory. The present contribution includes a review of the scientific studies that were performed in the last years as well as a report on currently on-going R and D activities.

  1. Neutrino disintegration of deuterium

    International Nuclear Information System (INIS)

    Ying, S.; Haxton, W.; Henley, E.M.

    1989-01-01

    We calculate the rate of both neutral- and charged-current neutrino and antineutrino disintegration of deuterium. These rates are of interest for solar 8 B and hep ( 3 He + p) spectra and supernovae neutrinos, and are relevant for the Sudbury Neutrino Observatory (SNO)

  2. NEUTRINO mass textures and the nature of new physics implied by present neutrino data

    International Nuclear Information System (INIS)

    Mohapatra, R.N.

    1997-01-01

    If all the indications for neutrino oscillations observed in the solar, atmospheric neutrino data as well as in the LSND experiment are borned out by the ongoing and future experiments, then they severely constrain the neutrino mass texture. In particular, the need for an extra ultra-light sterile neutrino species is hard to avoid. Such an extra neutrino has profound implication not only for physics beyond the standard model but even perhaps for physics beyond conventional grand unification. A scenario involving a parallel (or shadow) universe that interacts with the familiar universe only via the gravitational interactions where the ultra-lightness of the sterile neutrino follows from the same physics that explains the near masslessness of the familiar neutrinos is discussed in the presentation

  3. Planck scale effects in neutrino physics

    International Nuclear Information System (INIS)

    Akhmedov, E.K.; Berezhiani, Z.G.; Senjanovic, G.; Tao, Z.

    1993-01-01

    We study the phenomenology and cosmology of the Majoron (flavon) models of three active and one inert neutrino paying special attention to the possible (almost) conserved generalization of the Zeldovich-Konopinski-Mahmoud lepton charge. Using Planck scale physics effects which provide the breaking of the lepton charge, we show how in this picture one can incorporate the solutions to some of the central issues in neutrino physics such as the solar and atmospheric neutrino puzzles and the dark matter problem with the possible existence of a heavy (1--10 keV) neutrino. These gravitational effects induce tiny Majorana mass terms for neutrinos and considerable masses for flavons. The cosmological demand for the sufficiently fast decay of flavons implies a lower limit on the electron-neutrino mass in the range of 0.1--1 eV

  4. Planck scale effects in neutrino physics

    International Nuclear Information System (INIS)

    Akhmedov, E.Kh.; Senjanovic, G.; Tao Zhijan; Berezhiani, Z.G.

    1992-08-01

    We study the phenomenology and cosmology of the Majoron (flavon) models of three active and one inert neutrino paying special attention to the possible (almost) conserved generalization of the Zeldovich-Konopinski-Mahmoud lepton charge. Using Planck scale physics effects which provide the breaking of the lepton charge, we show how in this picture one can incorporate the solutions to some of the central issues in neutrino physics such as the solar and atmospheric neutrino puzzles, dark matter and a 17 keV neutrino. These gravitation effects induce tiny Majorana mass terms for neutrinos and considerable masses for flavons. The cosmological demand for the sufficiently fast decay of flavons implies a lower limit on the electron neutrino mass in the range of 0.1-1 eV. (author). 32 refs, 1 fig., 1 tab

  5. Resonant spin-flavour precession of neutrinos and pulsar velocities

    International Nuclear Information System (INIS)

    Akhmedov, E.Kh.; Lanza, A.; Sciama, D.W.

    1997-02-01

    Young pulsars are known to exhibit large space velocities, up to 10 3 km/s. We propose a new mechanism for the generation of these large velocities based on an asymmetric emission of neutrinos during the supernova explosion. The mechanism involves the resonant spin-flavour precession of neutrinos with a transition magnetic moment in the magnetic field of the supernova. The asymmetric emission of neutrinos is due the distortion of the resonance surface by matter polarization effects in the supernova magnetic field. The requisite values of the field strengths and neutrino parameters are estimated for various neutrino conversions caused by their Dirac or Majorana-type transition magnetic moments. (author). 30 refs, 1 tab

  6. Eighty years of neutrino physics

    International Nuclear Information System (INIS)

    Roy, D.P.

    2009-01-01

    This is a pedagogical overview of neutrino physics from the invention of neutrino by Pauli in 1930 to the precise measurement of neutrino mass and mixing parameters via neutrino oscillation experiments in recent years. I have tried to pitch it at the level of undergraduate students, occasionally cutting corners to avoid the use of advanced mathematical tools. I hope it will be useful in introducing this exciting field to a broad group of young physicists. (author)

  7. A NEW MULTI-DIMENSIONAL GENERAL RELATIVISTIC NEUTRINO HYDRODYNAMICS CODE FOR CORE-COLLAPSE SUPERNOVAE. II. RELATIVISTIC EXPLOSION MODELS OF CORE-COLLAPSE SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Bernhard; Janka, Hans-Thomas; Marek, Andreas, E-mail: bjmuellr@mpa-garching.mpg.de, E-mail: thj@mpa-garching.mpg.de [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany)

    2012-09-01

    We present the first two-dimensional general relativistic (GR) simulations of stellar core collapse and explosion with the COCONUT hydrodynamics code in combination with the VERTEX solver for energy-dependent, three-flavor neutrino transport, using the extended conformal flatness condition for approximating the space-time metric and a ray-by-ray-plus ansatz to tackle the multi-dimensionality of the transport. For both of the investigated 11.2 and 15 M{sub Sun} progenitors we obtain successful, though seemingly marginal, neutrino-driven supernova explosions. This outcome and the time evolution of the models basically agree with results previously obtained with the PROMETHEUS hydro solver including an approximative treatment of relativistic effects by a modified Newtonian potential. However, GR models exhibit subtle differences in the neutrinospheric conditions compared with Newtonian and pseudo-Newtonian simulations. These differences lead to significantly higher luminosities and mean energies of the radiated electron neutrinos and antineutrinos and therefore to larger energy-deposition rates and heating efficiencies in the gain layer with favorable consequences for strong nonradial mass motions and ultimately for an explosion. Moreover, energy transfer to the stellar medium around the neutrinospheres through nucleon recoil in scattering reactions of heavy-lepton neutrinos also enhances the mentioned effects. Together with previous pseudo-Newtonian models, the presented relativistic calculations suggest that the treatment of gravity and energy-exchanging neutrino interactions can make differences of even 50%-100% in some quantities and is likely to contribute to a finally successful explosion mechanism on no minor level than hydrodynamical differences between different dimensions.

  8. Neutrino constraints that transform black holes into grey holes

    International Nuclear Information System (INIS)

    Ruderfer, M.

    1982-01-01

    Existing black hole theory is found to be defective in its neglect of the physical properties of matter and radiation at superhigh densities. Nongravitational neutrino effects are shown to be physically relevant to the evolution of astronomical black holes and their equations of state. Gravitational collapse to supernovae combined with the Davis and Ray vacuum solution for neutrinos limit attainment of a singularity and require black holes to evolve into ''grey holes''. These allow a better justification than do black holes for explaining the unique existence of galactic masses. (Auth.)

  9. Latest results from the IceCube neutrino observatory

    Energy Technology Data Exchange (ETDEWEB)

    Schukraft, Anne [RWTH Aachen Univ. (Germany). III. Physikalisches Inst.; Collaboration: IceCube-Collaboration

    2013-07-01

    The IceCube Neutrino Observatory is the world's largest neutrino detector with a broad physics program covering the neutrino spectrum from several tens of GeV up to EeV energies. With its completion in 2010 it has reached its full sensitivity and analyses with unprecedented statistics are performed. One of the major research efforts is the search for extraterrestrial neutrino sources, which have not yet been discovered but would be a smoking gun for hadronic acceleration and could allow to identify the sources of high-energy cosmic rays. Such include steady galactic and extragalactic source candidates, e.g. Supernova Remnants and Active Galactic Nuclei, as well as transient phenomena like flaring objects and Gamma Ray Bursts. With its searches for diffuse neutrino fluxes in different energy ranges, IceCube is sensitive to fluxes of prompt atmospheric neutrinos, extragalactic neutrinos and cosmogenic neutrinos. In the low-energy range below 100 GeV, IceCube supplements classical neutrino oscillation experiments with its sensitivity to the deficit of atmospheric muon neutrinos at 25 GeV and searches for neutrinos from the annihilation of dark matter. The IceCube physics program is complemented by the surface array IceTop, which together with the detector part inside the ice serves for cosmic ray anisotropy, spectrum and composition measurements around the knee. The presentation summarizes ongoing IceCube physics analyses and recent results.

  10. Progress on a spherical TPC for low energy neutrino detection

    International Nuclear Information System (INIS)

    Aune, S; Colas, P; Deschamps, H; Dolbeau, J; Fanourakis, G; Ribas, E Ferrer; Enqvist, T; Geralis, T; Giomataris, Y; Gorodetzky, P; Gounaris, G J; Gros, M; Irastorza, I G; Kousouris, K; Lepeltier, V; Morales, J; Patzak, T; Paschos, E A; Salin, P; Savvidis, I; Vergados, J D

    2006-01-01

    The new concept of the spherical TPC aims at relatively large target masses with low threshold and background, keeping an extremely simple and robust operation. Such a device would open the way to detect the neutrino-nucleus interaction, which, although a standard process, remains undetected due to the low energy of the neutrino-induced nuclear recoils. The progress in the development of the first 1 m 3 prototype at Saclay is presented. Other physics goals of such a device could include supernova detection, low energy neutrino oscillations and study of non-standard properties of the neutrino, among others

  11. Type II supernovae: How do they explode?

    International Nuclear Information System (INIS)

    Baron, E.

    1988-01-01

    I discuss what has been learned from the neutrino observations of Supernova 1987A. The neutrino detections confirmed our basic theoretical scenario that Type II supernovae involve the gravitational collapse of a massive star. The small number of events makes it difficult to infer details about the actual mechanism of collapse. I discuss the current theoretical situation on the mechanism of explosion

  12. Opportunities and Challenges in Neutrino Physics

    CERN Document Server

    Wojcicki, Stanley G

    2005-01-01

    During the last decade a number of key experiments revolutionized our ideas about neutrinos and gave the first indication of the physics beyond the Standard Model. This paper will summarize the current situation in neutrino physics and indicate the key questions that need to be addressed and resolved. Different approaches that are being proposed to address these issues will be described with a special emphasis on the technical challenges inherent in them. The paper will conclude with some more futuristic concepts in accelerator physics that are being discussed today as potential new powerful tools for the study of neutrinos in the future.

  13. The Interplay of Opacities and Rotation in Promoting the Explosion of Core-Collapse Supernovae

    Science.gov (United States)

    Vartanyan, David; Burrows, Adam; Radice, David

    2018-01-01

    For over five decades, the mechanism of explosion in core-collapse supernovae has been a central unsolved problem in astrophysics, challenging both our computational capabilities and our understanding of relevant physics. Current simulations often produce explosions, but they are at times underenergetic. The neutrino mechanism, wherein a fraction of emitted neutrinos is absorbed in the mantle of the star to reignite the stalled shock, remains the dominant model for reviving explosions in massive stars undergoing core collapse. We present here a diverse suite of 2D axisymmetric simulations produced by FORNAX, a highly parallelizable multidimensional supernova simulation code. We explore the effects of various corrections, including the many-body correction, to neutrino-matter opacities and the possible role of rotation in promoting explosion amongst various core-collapse progenitors.

  14. Neutrino physics at the AGS

    International Nuclear Information System (INIS)

    Sokolsky, P.

    1978-01-01

    The AGS neutrino beam is the last low energy (1 to 2 GeV) neutrino beam left. As more work is done at higher energies and as the whole realm of new physics (whose threshold seems barely attainable at AGS ν energies) is explored in increasing detail, it is appropriate to ask what physics remains to be done here. To answer this question, current theory and experiment are confronted, not in an attempt to confirm or refute theoretical (or experimental) prejudices, but to ask if present experiments at low energies are good enough. In the process, the recent AGS neutrino experimental program are reviewed

  15. European Strategy for Accelerator-Based Neutrino Physics

    CERN Document Server

    Bertolucci, Sergio; Cervera, Anselmo; Donini, Andrea; Dracos, Marcos; Duchesneau, Dominique; Dufour, Fanny; Edgecock, Rob; Efthymiopoulos, Ilias; Gschwendtner, Edda; Kudenko, Yury; Long, Ken; Maalampi, Jukka; Mezzetto, Mauro; Pascoli, Silvia; Palladino, Vittorio; Rondio, Ewa; Rubbia, Andre; Rubbia, Carlo; Stahl, Achim; Stanco, Luca; Thomas, Jenny; Wark, David; Wildner, Elena; Zito, Marco

    2012-01-01

    Massive neutrinos reveal physics beyond the Standard Model, which could have deep consequences for our understanding of the Universe. Their study should therefore receive the highest level of priority in the European Strategy. The discovery and study of leptonic CP violation and precision studies of the transitions between neutrino flavours require high intensity, high precision, long baseline accelerator neutrino experiments. The community of European neutrino physicists involved in oscillation experiments is strong enough to support a major neutrino long baseline project in Europe, and has an ambitious, competitive and coherent vision to propose. Following the 2006 European Strategy for Particle Physics (ESPP) recommendations, two complementary design studies have been carried out: LAGUNA/LBNO, focused on deep underground detector sites, and EUROnu, focused on high intensity neutrino facilities. LAGUNA LBNO recommends, as first step, a conventional neutrino beam CN2PY from a CERN SPS North Area Neutrino Fac...

  16. Physics Projects for a Future CERN-LNGS Neutrino Programme

    OpenAIRE

    Picchi, P.; Pietropaolo, F.

    1998-01-01

    We present an overview of the future projects concerning the neutrino oscillation physics in Europe. Recently a joint CERN-LNGS scientific committee has reviewed several proposals both for the study of atmospheric neutrinos and for long (LBL) and short baseline (SBL) neutrino oscillation experiments. The committee has indicated the priority that the European high energy physics community should follows in the field of neutrino physics, namely a new massive, atmospheric neutrino detector and a...

  17. DUMAND: The Ocean as a Neutrino Detector

    Energy Technology Data Exchange (ETDEWEB)

    Blood, H.; Learned, J.; Reines, F.; Roberts, A.

    1976-06-01

    We consider the possibility of using the ocean as a neutrino detector; neutrino-produced interactions result in charged particles that generate Cerenkov radiation in the water, which can be detected by light-gathering equipment and photomultipliers. The properties of the ocean as seen from this standpoint are critically examined, and the advantages and disadvantages pointed out. Possible uses for such a neutrino detector include 1) the detection of neutrinos emitted in gravitational collapse of stars (supernova production), not only in our own galaxy, but in other galaxies up to perhaps twenty-million light-years away, 2) the extension of high-energy neutrino physics, as currently practiced up to 200 GeV at high-energy accelerators, to energies up to 50 times higher, using neutrinos generated in the atmosphere by cosmic rays, and 3) the possible detection of neutrinos produced by cosmic-ray interactions outside the earth's atmosphere. The technology for such an undertaking seems to be within reach.

  18. Supernova 1987A in the Large Magellanic Cloud

    Science.gov (United States)

    Kafatos, Minas; Michalitsianos, Andrew G.

    2006-11-01

    Foreword; Acknowledgements; Workshop participants; 1. Images and spectrograms of Sanduleak - 69º202, the SN 1987a progenitor N. R. Walborn; 2. The progenitor of SN 1987A G. Sonneborn; 3. Another supernova with a blue progenitor C. M. Gaskell and W. C. Keel; 4. Optical and infrared observations of SN 1987A from Cerro Tololo Inter-American Observatory M. M. Phillips; 5. SN 1987A: observational results obtained at ESO I. J. Danziger, P. Bouchet, R. A. E. Fosbury, C. Gouiffes, L. B. Lucy, A. F. M. Moorwood, E. Oliva and F. Rufener; 6. Observations of SN 1987A at the South African Astronomical Observatory (SAAO) M. W. Feast; 7. Observations of SN 1987A at the Anglo-Australian Telescope W. J. Couch; 8. Linear polarimetric study of SN 1987A A. Clocchiatti, M. Méndez, O. Benvenuto, C. Feinstein, H. Marraco, B. García and N. Morrell; 9. Infrared spectroscopy of SN 1987A from the NASA Kuiper Airborne Observatory H. P. Larson, S. Drapatz, M. J. Mumma and H. A. Weaver; 10. Radio observations of SN 1987A N. Bartel et al.; 11. Ultraviolet observations of SN 1987A: clues to mass loss R. P. Kirshner; 12. On the energetics of SN 1987A N. Panagia; 13. On the nature and apparent uniqueness of SN 1987A A. V. Filippenko; 14. A comparison of the SN 1987A light curve with other type II supernovae, and the detectability of similar supernovae M. F. Schmitz and C. M. Gaskell; 15. P-Cygni features and photospheric velocities L. Bildsten and J. C. L. Wang; 16. The Neutrino burst from SN 1987A detected in the Mont Blanc LSD experiment M. Aglietta et al.; 17. Toward observational neutrino astrophysics M. Koshiba; 18. The discovery of neutrinos from SN 1987A with the IMB detector J. Matthews; 19. Peering into the abyss: the neutrinos from SN 1987A A. Burrows; 20. Phenomenological analysis of neutrino emission from SN 1987A J. N. Bahcall, D. N. Spergel and W. H. Press; 21. Mass determination of neutrinos H. Y. Chiu; 22. Neutrino transport in a type II supernova D. C. Ellison, P. M. Giovanoni

  19. Petascale supernova simulation with CHIMERA

    Energy Technology Data Exchange (ETDEWEB)

    Messer, O E B [National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6008 (United States); Bruenn, S W [Department of Physics, Florida Atlantic University, 777 W Glades Road, Boca Raton, FL 33431-0991 (United States); Blondin, J M [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States); Hix, W R [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6354 (United States); Mezzacappa, A [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6354 (United States); Dirk, C J [Department of Physics, Florida Atlantic University, 777 W Glades Road, Boca Raton, FL 33431-0991 (United States)

    2007-07-15

    CHIMERA is a multi-dimensional radiation hydrodynamics code designed to study core-collapse supernovae. The code is made up of three essentially independent parts: a hydrodynamics module, a nuclear burning module, and a neutrino transport solver combined within an operator-split approach. We describe some major algorithmic facets of the code and briefly discuss some recent results. The multi-physics nature of the problem, and the specific implementation of that physics in CHIMERA, provide a rather straightforward path to effective use of multi-core platforms in the near future.

  20. New phenomena in neutrino physics

    International Nuclear Information System (INIS)

    Kopp, Joachim

    2009-01-01

    In this thesis, we discuss two new concepts in neutrino physics: The neutrino Moessbauer effect and non-standard neutrino interactions. We show that neutrinos emitted and absorbed in recoil-free processes (Moessbauer neutrinos) can oscillate in spite of their near monochromaticity. We support this statement by quantum mechanical wave packet arguments and by a quantum field theoretical (QFT) calculation of the combined rate of Moessbauer neutrino emission, propagation and absorption. The QFT approach does not require any a priori assumptions on the neutrino wave function, and it allows us to include a realistic treatment of the different mechanisms leading to broadening of the emission and absorption lines. In the second part of this work, we study the phenomenology of non-standard neutrino interactions (NSI). We classifying the allowed NSI operators according to their impact on future oscillation experiments and present numerical results for the NSI sensitivities of reactor, superbeam and neutrino factory experiments. We point out that NSI could mimic standard oscillation effects, and might therefore lead to incorrect fit values for the oscillation parameters. For the case of the neutrino factory, we perform a detailed optimisation study to determine the optimum muon energy and detector configuration. (orig.)

  1. New phenomena in neutrino physics

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Joachim

    2009-04-15

    In this thesis, we discuss two new concepts in neutrino physics: The neutrino Moessbauer effect and non-standard neutrino interactions. We show that neutrinos emitted and absorbed in recoil-free processes (Moessbauer neutrinos) can oscillate in spite of their near monochromaticity. We support this statement by quantum mechanical wave packet arguments and by a quantum field theoretical (QFT) calculation of the combined rate of Moessbauer neutrino emission, propagation and absorption. The QFT approach does not require any a priori assumptions on the neutrino wave function, and it allows us to include a realistic treatment of the different mechanisms leading to broadening of the emission and absorption lines. In the second part of this work, we study the phenomenology of non-standard neutrino interactions (NSI). We classifying the allowed NSI operators according to their impact on future oscillation experiments and present numerical results for the NSI sensitivities of reactor, superbeam and neutrino factory experiments. We point out that NSI could mimic standard oscillation effects, and might therefore lead to incorrect fit values for the oscillation parameters. For the case of the neutrino factory, we perform a detailed optimisation study to determine the optimum muon energy and detector configuration. (orig.)

  2. Mirror model for sterile neutrinos

    International Nuclear Information System (INIS)

    Berezinsky, Veniamin; Narayan, Mohan; Vissani, Francesco

    2003-01-01

    Sterile neutrinos are studied as subdominant contribution to solar neutrino physics. The mirror-matter neutrinos are considered as sterile neutrinos. We use the symmetric mirror model with gravitational communication between mirror and visible sectors. This communication term provides mixing between visible and mirror neutrinos with the basic scale μ=v EW 2 /M Pl =2.5x10 -6 eV, where v EW =174 GeV is the vacuum expectation value of the standard electroweak group and M Pl is the Planckian mass. It is demonstrated that each mass eigenstate of active neutrinos splits into two states separated by small Δm 2 . Unsuppressed oscillations between active and sterile neutrinos (ν a ↔ν s ) occur only in transitions between each of these close pairs ('windows'). These oscillations are characterized by very small Δm 2 and can suppress the flux and distort spectrum of pp-neutrinos in detectable way. The other observable effect is anomalous seasonal variation of neutrino flux, which appears in LMA solution. The considered subdominant neutrino oscillations ν a ↔ν s can reveal itself as big effects in observations of supernova neutrinos and high-energy (HE) neutrinos. In the case of HE neutrinos they can provide a very large diffuse flux of active neutrinos unconstrained by the e-m cascade upper limit

  3. Neutrinos, Weak Interactions, and r-process Nucleosynthesis

    International Nuclear Information System (INIS)

    Balantekin, A B

    2006-01-01

    Two of the key issues in understanding the neutron-to-proton ratio in a corecollapse supernova are discussed. One of these is the behavior of the neutrino-nucleon cross sections as supernova energies. The other issue is the many-body properties of the neutrino gas near the core when both one- and two-body interaction terms are included

  4. Cutting-edge issues of core-collapse supernova theory

    International Nuclear Information System (INIS)

    Kotake, Kei; Nakamura, Ko; Kuroda, Takami; Takiwaki, Tomoya

    2014-01-01

    Based on multi-dimensional neutrino-radiation hydrodynamic simulations, we report several cutting-edge issues about the long-veiled explosion mechanism of core-collapse supernovae (CCSNe). In this contribution, we pay particular attention to whether three-dimensional (3D) hydrodynamics and/or general relativity (GR) would or would not help the onset of explosions. By performing 3D simulations with spectral neutrino transport, we show that it is more difficult to obtain an explosion in 3D than in 2D. In addition, our results from the first generation of full general relativistic 3D simulations including approximate neutrino transport indicate that GR can foster the onset of neutrino-driven explosions. Based on our recent parametric studies using a light-bulb scheme, we discuss impacts of nuclear energy deposition behind the supernova shock and stellar rotation on the neutrino-driven mechanism, both of which have yet to be included in the self-consistent 3D supernova models. Finally we give an outlook with a summary of the most urgent tasks to extract the information about the explosion mechanisms from multi-messenger CCSN observables

  5. Neutrino physics after boomerang

    International Nuclear Information System (INIS)

    Hannestad, Steen

    2001-01-01

    A new generation of Cosmic Microwave Background Radiation (CMBR) experiments are currently providing the first precision measurements of fluctuations in the CMBR. These fluctuations hold information about all the fundamental cosmological parameters, and the experiments have already confirmed beyond reasonable doubt that the geometry of the universe is very close to being flat. The new CMBR experiments can also be used to probe particle physics beyond the standard model. For instance, data from the new Boomerang experiment yield an upper limit on the effective number of neutrinos present at recombination, N ν ≤ 13 (95% C.L.). This already puts significant constraints on many non-standard neutrino scenarios, such as the possible bulk neutrino modes expected in theories with large extra dimensions. The upcoming satellite experiments will improve the sensitivity of the CMBR by almost an order of magnitude and make the CMBR an excellent laboratory for precision particle physics

  6. 152nd International School of Physics "Enrico Fermi": Neutrino Physics

    CERN Document Server

    Declais, Y; Strolin, P; Zanotti, L; Società Italiana di Fisica. Bologna. Scuola internazionale di fisica "Enrico Fermi"; International School of Physics "Enrico Fermi": Neutrino Physics; Scuola Internazionale di Fisica "Enrico Fermi" : Phisica dei neutrini

    2003-01-01

    Neutrino physics contributed in an fundamental way to the progress of science, opening important windows of knowledge in elementary particle physics, as well in astrophysics and cosmology. Substantial experimental efforts are presently dedicated to improve our knowledge on neutrino properties as, in fact, we don't know yet some of the basic ones. Although very significant steps forward have been done, neutrino masses and mixings still remain largely unknown and constitute an important field for future research. Are neutrinos Majorana or Dirac particles? Have they a magnetic moment? Historically, studies on weak processes and, therefore, on neutrino physics, provided first the Fermi theory of weak interactions and then the V-A theory. Finally, the observation of weak neutral currents provided the first experimental evidence for unification of weak and electromagnetic interactions by the so called "Standard Model' of elementary particles. In addition to the results obtained from the measurement of the solar neu...

  7. Physics of type Ia supernovae

    International Nuclear Information System (INIS)

    Hoeflich, Peter

    2006-01-01

    The last decade has witnessed an explosive growth of high-quality data for thermonuclear explosions of a white dwarf star, the type Ia supernovae (SNe Ia). Advances in computational methods provide new insights into the physics of the phenomenon and a direct, quantitative link between observables and explosion physics. Both trends combined provided spectacular results, allowed to address, to identify specific problems and to narrow down the range of scenarios. Current topics include the relation between SNe Ia and their progenitors, the influence of the metallicities and accretion on the explosion, and details of the burning front. How can we understand the apparent homogeneity and probe for the diversity of SNe Ia? Here, we want give an overview of the current status of our understanding of supernovae physics in light of recent results

  8. Selected topics in neutrino physics

    International Nuclear Information System (INIS)

    Mann, A.K.

    1979-01-01

    Lectures on the contribution of neutrino physics to the recent development in particle physics are presented. In the introductory lecture prospects of investigations of neutrino physics and its application to astrophysics and cosmology are briefly given. Some problems on the ωsub(μ)(anti ωsub(μ))+N → ωsub(μ)(anti ωsub(μ))+X semileptonic inclusiVe reactions and the ωsub(μ)(anti ωsub(μ))+p → ωsub(μ)(anti ωsub(μ))+p elastic semileptonic neUtral current processes are discussed in the second lecture. Particular attention in the third lecture is paid to the ωsub(μ)(anti ωsub(μ))+N →μ - (μ + )+X reactions studied by physicists from Harvard, Pensylvania, Wisconsin and Fermilab. The discrepancy between experiments and theoretical predictions is believed to be connect with systematic errors in their experiments which they have failed to take into account. The last lecture is devoted to dimuon and trimuon production by neutrinos. It is considered that neutrino-induced multimuons are probe of new particle production and decay with a relatively clean process picture and well understood background

  9. Neutrino transport in stellar matter

    International Nuclear Information System (INIS)

    Basdevant, J.L.

    1985-09-01

    We reconsider the neutrino transport problem in dense stellar matter which has a variety of applications among which the participation of neutrinos to the dynamics of type II supernova explosions. We describe the position of the problem and make some critiscism of previously used approximation methods. We then propose a method which is capable of handling simultaneously the optically thick, optically thin, and intermediate regimes, which is of crucial importance in such problems. The method consists in a simulation of the transport process and can be considered exact within numerical accuracy. We, finally exhibit some sample calculations which show the efficiency of the method, and present interesting qualitative physical features

  10. NEW EQUATIONS OF STATE IN SIMULATIONS OF CORE-COLLAPSE SUPERNOVAE

    International Nuclear Information System (INIS)

    Hempel, M.; Liebendörfer, M.; Fischer, T.; Schaffner-Bielich, J.

    2012-01-01

    We discuss three new equations of state (EOS) in core-collapse supernova simulations. The new EOS are based on the nuclear statistical equilibrium model of Hempel and Schaffner-Bielich (HS), which includes excluded volume effects and relativistic mean-field (RMF) interactions. We consider the RMF parameterizations TM1, TMA, and FSUgold. These EOS are implemented into our spherically symmetric core-collapse supernova model, which is based on general relativistic radiation hydrodynamics and three-flavor Boltzmann neutrino transport. The results obtained for the new EOS are compared with the widely used EOS of H. Shen et al. and Lattimer and Swesty. The systematic comparison shows that the model description of inhomogeneous nuclear matter is as important as the parameterization of the nuclear interactions for the supernova dynamics and the neutrino signal. Furthermore, several new aspects of nuclear physics are investigated: the HS EOS contains distributions of nuclei, including nuclear shell effects. The appearance of light nuclei, e.g., deuterium and tritium, is also explored, which can become as abundant as alphas and free protons. In addition, we investigate the black hole formation in failed core-collapse supernovae, which is mainly determined by the high-density EOS. We find that temperature effects lead to a systematically faster collapse for the non-relativistic LS EOS in comparison with the RMF EOS. We deduce a new correlation for the time until black hole formation, which allows the determination of the maximum mass of proto-neutron stars, if the neutrino signal from such a failed supernova would be measured in the future. This would give a constraint for the nuclear EOS at finite entropy, complementary to observations of cold neutron stars.

  11. Neutrino physics today, important issues and the future

    Energy Technology Data Exchange (ETDEWEB)

    Parke, Stephen J.; /Fermilab

    2010-10-01

    The status and the most important issues in neutrino physics will be summarized as well as how the current, pressing questions will be addressed by future experiments. Since the discovery of neutrino flavor transitions by the SuperKamiokande experiment in 1998, which demonstrates that neutrinos change and hence their clocks tick, i.e. they are not traveling at the speed of light and hence are not massless, the field of neutrino physics has made remarkable progress in untangling the nature of the neutrino. However, there are still many important questions to answer.

  12. Working group report: Cosmology and astroparticle physics

    Indian Academy of Sciences (India)

    This is the report of the cosmology and astroparticle physics working group ... origin of the accelerating Universe: Dark energy and particle cosmology by Y-Y Keum, .... Neutrino oscillations with two and three mass varying supernova neutrinos ...

  13. Extracting limits for the difuse non-electron neutrino flux from SNO data

    Energy Technology Data Exchange (ETDEWEB)

    Miguez, B.S.R.; Kemp, E.; Peres, O.L.G. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin

    2009-07-01

    Full text. There is a prediction of a diffuse neutrino flux yield from the time integration of all supernova already exploded in the past governed by stellar formation and supernovae occurrence rates. The spectral characteristics of these neutrinos differ from those from recent supernovae mainly in two features: the reduction in their fluxes and their energy 'redshift' due the expansion of the universe. Thus, despite the fact that one single supernova is a transient state, their cumulative effect produces a steady flux of diffuse neutrinos everywhere in universe. These neutrinos have never been observed before. Only upper limits on their fluxes have been reported by the collaborations operating neutrino telescopes. Recently the SNO experiment have made an analysis where the total flux of diffuse electron neutrinos has an upper limit of phi{sub e} <= 61-93 cm{sup -2} s{sup -1}, depending on a specific supernova model. At the present, the best limit for the diffuse flux of non-electron neutrinos is phi{sub x} <= 10{sub 4} cm{sup -2} s{sup -1}, resulted from an analysis of the Super-Kamiokande data. In this work we have extended the SNO analysis including the elastic scattering on electrons via neutral current interactions to extract information on diffuse flux of the non-electron neutrino flavours (i.e. muon and tauon neutrinos). We make a comparison among our results and others from different experiments (LVD, SK, LSD). (author)

  14. The physics of collective neutrino-plasma interactions

    International Nuclear Information System (INIS)

    Shukla, P.K.; Silva, L.O.; Dawson, J.M.; Bethe, H.; Bingham, R.; Stenflo, L.; Mendonca, J.T.; Dalhed, S.

    1999-01-01

    A review of recent work on collective neutrino-plasma interactions is presented. The basic physical concepts of this new field as well as some possible astrophysical problems where the physics of collective neutrino-plasma interactions can have a radical impact, are discussed. (author)

  15. Introduction to neutrino physics

    International Nuclear Information System (INIS)

    Naumov, D.V.

    2011-01-01

    This is a manuscript of lectures presented by the author at the Baikal Summer School on Physics of Elementary Particles and Astrophysics 2010. The lectures are intended mainly for students and young researchers as an introductory course of neutrino physics

  16. Subpanel on accelerator-based neutrino oscillation experiments

    International Nuclear Information System (INIS)

    1995-09-01

    Neutrinos are among nature's fundamental constituents, and they are also the ones about which we know least. Their role in the universe is widespread, ranging from the radioactive decay of a single atom to the explosions of supernovae and the formation of ordinary matter. Neutrinos might exhibit a striking property that has not yet been observed. Like the back-and-forth swing of a pendulum, neutrinos can oscillate to-and-from among their three types (or flavors) if nature provides certain conditions. These conditions include neutrinos having mass and a property called open-quotes mixing.close quotes The phenomenon is referred to as neutrino oscillations. The questions of the origin of neutrino mass and mixing among the neutrino flavors are unsolved problems for which the Standard Model of particle physics holds few clues. It is likely that the next critical step in answering these questions will result from the experimental observation of neutrino oscillations. The High Energy Physics Advisory Panel (HEPAP) Subpanel on Accelerator-Based Neutrino Oscillation Experiments was charged to review the status and discovery potential of ongoing and proposed accelerator experiments on neutrino oscillations, to evaluate the opportunities for the U.S. in this area of physics, and to recommend a cost-effective plan for pursuing this physics, as appropriate. The complete charge is provided in Appendix A. The Subpanel studied these issues over several months and reviewed all the relevant and available information on the subject. In particular, the Subpanel reviewed the two proposed neutrino oscillation programs at Fermi National Accelerator Laboratory (Fermilab) and at Brookhaven National Laboratory (BNL). The conclusions of this review are enumerated in detail in Chapter 7 of this report. The recommendations given in Chapter 7 are also reproduced in this summary

  17. Gravitational collapse and supernovae

    International Nuclear Information System (INIS)

    Lattimer, J.M.

    1989-01-01

    The collapse of the core of a massive star and the subsequent birth of a neutron star in a supernova explosion are discussed, and a model of the supernova mechanism is developed. The basic theory is then compared with the particular case of SN1987A, whose emitted neutrinos permitted the first direct test of the model. (author)

  18. Gravity wave and neutrino bursts from stellar collapse: A sensitive test of neutrino masses

    International Nuclear Information System (INIS)

    Arnaud, N.; Barsuglia, M.; Bizouard, M.A.; Cavalier, F.; Davier, M.; Hello, P.; Pradier, T.

    2002-01-01

    New methods are proposed with the goal to determine absolute neutrino masses from the simultaneous observation of the bursts of neutrinos and gravitational waves emitted during a stellar collapse. It is shown that the neutronization electron neutrino flash and the maximum amplitude of the gravitational wave signal are tightly synchronized with the bounce occurring at the end of the core collapse on a time scale better than 1 ms. The existing underground neutrino detectors (SuperKamiokande, SNO,...) and the gravity wave antennas soon to operate (LIGO, VIRGO,...) are well matched in their performance for detecting galactic supernovae and for making use of the proposed approach. Several methods are described, which apply to the different scenarios depending on neutrino mixing. Given the present knowledge on neutrino oscillations, the methods proposed are sensitive to a mass range where neutrinos would essentially be mass degenerate. The 95% C.L. upper limit which can be achieved varies from 0.75 eV/c 2 for large ν e survival probabilities to 1.1 eV/c 2 when in practice all ν e 's convert into ν μ 's or ν τ 's. The sensitivity is nearly independent of the supernova distance

  19. NEUTRINO-DRIVEN TURBULENT CONVECTION AND STANDING ACCRETION SHOCK INSTABILITY IN THREE-DIMENSIONAL CORE-COLLAPSE SUPERNOVAE

    International Nuclear Information System (INIS)

    Abdikamalov, Ernazar; Ott, Christian D.; Radice, David; Roberts, Luke F.; Haas, Roland; Reisswig, Christian; Mösta, Philipp; Klion, Hannah; Schnetter, Erik

    2015-01-01

    We conduct a series of numerical experiments into the nature of three-dimensional (3D) hydrodynamics in the postbounce stalled-shock phase of core-collapse supernovae using 3D general-relativistic hydrodynamic simulations of a 27 M ⊙ progenitor star with a neutrino leakage/heating scheme. We vary the strength of neutrino heating and find three cases of 3D dynamics: (1) neutrino-driven convection, (2) initially neutrino-driven convection and subsequent development of the standing accretion shock instability (SASI), and (3) SASI-dominated evolution. This confirms previous 3D results of Hanke et al. and Couch and Connor. We carry out simulations with resolutions differing by up to a factor of ∼4 and demonstrate that low resolution is artificially favorable for explosion in the 3D convection-dominated case since it decreases the efficiency of energy transport to small scales. Low resolution results in higher radial convective fluxes of energy and enthalpy, more fully buoyant mass, and stronger neutrino heating. In the SASI-dominated case, lower resolution damps SASI oscillations. In the convection-dominated case, a quasi-stationary angular kinetic energy spectrum E(ℓ) develops in the heating layer. Like other 3D studies, we find E(ℓ) ∝ℓ −1 in the “inertial range,” while theory and local simulations argue for E(ℓ) ∝ ℓ −5/3 . We argue that current 3D simulations do not resolve the inertial range of turbulence and are affected by numerical viscosity up to the energy-containing scale, creating a “bottleneck” that prevents an efficient turbulent cascade

  20. A Physical Model of Mass Ejection in Failed Supernovae

    Science.gov (United States)

    Coughlin, Eric R.; Quataert, Eliot; Fernández, Rodrigo; Kasen, Daniel

    2018-03-01

    During the core collapse of massive stars, the formation of the protoneutron star is accompanied by the emission of a significant amount of mass-energy (˜0.3 M⊙) in the form of neutrinos. This mass-energy loss generates an outward-propagating pressure wave that steepens into a shock near the stellar surface, potentially powering a weak transient associated with an otherwise-failed supernova. We analytically investigate this mass-loss-induced wave generation and propagation. Heuristic arguments provide an accurate estimate of the amount of energy contained in the outgoing sound pulse. We then develop a general formalism for analyzing the response of the star to centrally concentrated mass loss in linear perturbation theory. To build intuition, we apply this formalism to polytropic stellar models, finding qualitative and quantitative agreement with simulations and heuristic arguments. We also apply our results to realistic pre-collapse massive star progenitors (both giants and compact stars). Our analytic results for the sound pulse energy, excitation radius, and steepening in the stellar envelope are in good agreement with full time-dependent hydrodynamic simulations. We show that prior to the sound pulses arrival at the stellar photosphere, the photosphere has already reached velocities ˜20 - 100% of the local sound speed, thus likely modestly decreasing the stellar effective temperature prior to the star disappearing. Our results provide important constraints on the physical properties and observational appearance of failed supernovae.

  1. A physical model of mass ejection in failed supernovae

    Science.gov (United States)

    Coughlin, Eric R.; Quataert, Eliot; Fernández, Rodrigo; Kasen, Daniel

    2018-06-01

    During the core collapse of massive stars, the formation of the proto-neutron star is accompanied by the emission of a significant amount of mass energy (˜0.3 M⊙) in the form of neutrinos. This mass-energy loss generates an outward-propagating pressure wave that steepens into a shock near the stellar surface, potentially powering a weak transient associated with an otherwise-failed supernova. We analytically investigate this mass-loss-induced wave generation and propagation. Heuristic arguments provide an accurate estimate of the amount of energy contained in the outgoing sound pulse. We then develop a general formalism for analysing the response of the star to centrally concentrated mass loss in linear perturbation theory. To build intuition, we apply this formalism to polytropic stellar models, finding qualitative and quantitative agreement with simulations and heuristic arguments. We also apply our results to realistic pre-collapse massive star progenitors (both giants and compact stars). Our analytic results for the sound pulse energy, excitation radius, and steepening in the stellar envelope are in good agreement with full time-dependent hydrodynamic simulations. We show that prior to the sound pulses arrival at the stellar photosphere, the photosphere has already reached velocities ˜ 20-100 per cent of the local sound speed, thus likely modestly decreasing the stellar effective temperature prior to the star disappearing. Our results provide important constraints on the physical properties and observational appearance of failed supernovae.

  2. Scientific Opportunities with the Long-Baseline Neutrino Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C.; et al.

    2013-07-28

    In this document, we describe the wealth of science opportunities and capabilities of LBNE, the Long-Baseline Neutrino Experiment. LBNE has been developed to provide a unique and compelling program for the exploration of key questions at the forefront of particle physics. Chief among the discovery opportunities are observation of CP symmetry violation in neutrino mixing, resolution of the neutrino mass hierarchy, determination of maximal or near-maximal mixing in neutrinos, searches for nucleon decay signatures, and detailed studies of neutrino bursts from galactic supernovae. To fulfill these and other goals as a world-class facility, LBNE is conceived around four central components: (1) a new, intense wide-band neutrino source at Fermilab, (2) a fine-grained `near' neutrino detector just downstream of the source, (3) the Sanford Underground Research Facility (SURF) in Lead, South Dakota at an optimal distance (~1300 km) from the neutrino source, and (4) a massive liquid argon time-projection chamber (LArTPC) deployed there as a 'far' detector. The facilities envisioned are expected to enable many other science opportunities due to the high event rates and excellent detector resolution from beam neutrinos in the near detector and atmospheric neutrinos in the far detector. This is a mature, well developed, world class experiment whose relevance, importance, and probability of unearthing critical and exciting physics has increased with time.

  3. Handbook of supernovae

    CERN Document Server

    Murdin, Paul

    2017-01-01

    This reference work gathers all of the latest research in the supernova field areas to create a definitive source book on supernovae, their remnants and related topics. It includes each distinct subdiscipline, including stellar types, progenitors, stellar evolution, nucleosynthesis of elements, supernova types, neutron stars and pulsars, black holes, swept up interstellar matter, cosmic rays, neutrinos from supernovae, supernova observations in different wavelengths, interstellar molecules and dust. While there is a great deal of primary and specialist literature on supernovae, with a great many scientific groups around the world focusing on the phenomenon and related subdisciplines, nothing else presents an overall survey. This handbook closes that gap at last. As a comprehensive and balanced collection that presents the current state of knowledge in the broad field of supernovae, this is to be used as a basis for further work and study by graduate students, astronomers and astrophysicists working in close/r...

  4. Introduction to the physics of massive and mixed neutrinos

    CERN Document Server

    Bilenky, Samoil

    2018-01-01

    Small neutrino masses are the first signs of new physics beyond the Standard Model of particle physics. Since the first edition of this textbook appeared in 2010, the Nobel Prize has been awarded "for the discovery of neutrino oscillations, which shows that neutrinos have mass". The measurement of the small neutrino mixing angle $\\theta_{13}$ in 2012, launched the precision stage of the investigation of neutrino oscillations. This measurement now allows such fundamental problems as the three-neutrino mass spectrum - is it normal or inverted? – and the $CP$ violation in the lepton sector to be tackled. In order to understand the origin of small neutrino masses, it remains crucial to reveal the nature of neutrinos with definite masses: are they Dirac neutrinos possessing a conserved lepton number, which distinguishes neutrinos and antineutrinos, or are they Majorana neutrinos with identical neutrinos and antineutrinos? Experiments searching for the neutrinoless double beta decay are presently under way to ans...

  5. Neutrino burst from SN1987A and the solar-neutrino puzzle

    International Nuclear Information System (INIS)

    Arafune, J.; Fukugita, M.; Yanagida, T.; Yoshimura, M.

    1987-01-01

    The prompt ν/sub e/ signal from the supernova explosion in the Large Magellanic Cloud presumably detected by Kamiokande II does not necessarily mean that the Mikheyev-Smirnov-Wolfenstein effect on the solar-neutrino flux is not operative. The electron neutrino, once rotated to a different-flavor neutrino in the progenitor star, can come back via the matter-oscillation effect in the Earth, or a residual ν/sub e/ flux from the progenitor can directly hit the detector, saving the Mikheyev-Smirnov-Wolfenstein explanation of the solar-neutrino problem for a range of mixing parameters

  6. The MSW Effect and Matter Effects in Neutrino Oscillations

    Science.gov (United States)

    Smirnov, A. Yu.

    2006-03-01

    The MSW (Mikheyev-Smirnov-Wolfenstein) effect is the adiabatic or partially adiabatic neutrino flavor conversion in media with varying density. The main notions related to the effect, its dynamics and physical picture are reviewed. The large mixing MSW effect is realized inside the Sun providing a solution of the solar neutrino problem. The small mixing MSW effect driven by the 1-3 mixing can be realized for the supernova (SN) neutrinos. Inside collapsing stars new elements of the MSW dynamics may show up: non-oscillatory transition, non-adiabatic conversion, time dependent adiabaticity violation induced by shock waves. Effects of the resonance enhancement and the parametric enhancement of oscillations can be realized for atmospheric and accelerator neutrinos in the Earth. Precise results for neutrino oscillations in low density media with arbitrary density profile are presented and the attenuation effect is described. The area of applications is the solar and SN neutrinos inside the Earth, and the results are crucial for the neutrino oscillation tomography.

  7. Solar neutrino physics on the beginning of 2017

    Directory of Open Access Journals (Sweden)

    Francesco Vissani

    2017-08-01

    Full Text Available This writeup is a review of current hot topics on solar neutrinos. It is based on a talk at the conference “Neutrinos: the quest for a new physics scale”, held at the CERN on March 2017, where the Organizers entrusted me with a discussion of the provocative question “whether solar neutrino physics is over”. Rather than providing a straight (negative answer, in view of an audience consisting mostly of colleagues working in theoretical particle physics, I deemed it more useful providing a description of what is the current activity of the physicists working in solar neutrinos, leaving the listener free of forming his/her own opinion apropos.

  8. Solar neutrino physics on the beginning of 2017

    International Nuclear Information System (INIS)

    Vissani Francesko

    2017-01-01

    This writeup is a review of current hot topics on solar neutrinos. It is based on a talk at the conference ''Neutrinos: the quest for a new physics scale'', held at the CERN on March 2017, where the Organizers entrusted me with a discussion of the provocative question ''whether solar neutrino physics is over''. Rather than providing a straight (negative) answer, in view of an audience consisting mostly of colleagues working in theoretical particle physics, I deemed it more useful providing a description of what is the current activity of the physicists working in solar neutrinos, leaving the listener free of forming his/her own opinion apropos.

  9. Collective neutrino oscillations and neutrino wave packets

    Energy Technology Data Exchange (ETDEWEB)

    Akhmedov, Evgeny; Lindner, Manfred [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Kopp, Joachim, E-mail: akhmedov@mpi-hd.mpg.de, E-mail: jkopp@uni-mainz.de, E-mail: lindner@mpi-hd.mpg.de [PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics, Johannes Gutenberg University, 55099 Mainz (Germany)

    2017-09-01

    Effects of decoherence by wave packet separation on collective neutrino oscillations in dense neutrino gases are considered. We estimate the length of the wave packets of neutrinos produced in core collapse supernovae and the expected neutrino coherence length, and then proceed to consider the decoherence effects within the density matrix formalism of neutrino flavour transitions. First, we demonstrate that for neutrino oscillations in vacuum the decoherence effects are described by a damping term in the equation of motion of the density matrix of a neutrino as a whole (as contrasted to that of the fixed-momentum components of the neutrino density matrix). Next, we consider neutrino oscillations in ordinary matter and dense neutrino backgrounds, both in the adiabatic and non-adiabatic regimes. In the latter case we study two specific models of adiabaticity violation—one with short-term and another with extended non-adiabaticity. It is demonstrated that, while in the adiabatic case a damping term is present in the equation of motion of the neutrino density matrix (just like in the vacuum oscillation case), no such term in general appears in the non-adiabatic regime.

  10. Solar neutrino physics in the nineties

    Energy Technology Data Exchange (ETDEWEB)

    Wilkerson, J.F.

    1990-12-31

    The decade of the 1990`s should prove to be landmark period for the study of solar neutrino physics. Current observations show 2--3 times fewer neutrinos coming from the sun than are theoretically expected. As we enter the decade, new experiments are poised to attempt and discover whether this deficit is a problem with our understanding of how the sun works, is a hint of new neutrino properties beyond those predicted by the standard model of particle physics, or perhaps a combination of both. This paper will briefly review the current status of the field and point out how future measurements should help solve this interesting puzzle. 11 refs., 3 figs., 1 tab.

  11. Neutrino physics with DARWIN

    Science.gov (United States)

    Benabderrahmane, M. L.

    2017-09-01

    DARWIN (DARk matter WImp search with liquid xenoN) will be a multi-ton dark matter detector with the primary goal of exploring the entire experimentally accessible parameter space for weakly interacting massive particles (WIMPs) over a wide mass-range. With its 40 tonne active liquid xenon target, low-energy threshold and ultra-low background level, DARWIN can also search for other rare interactions. Here we present its sensitivity to low-energy solar neutrinos and to neutrinoless double beta decay. In a low-energy window of 2-30 keV a rate of 105/year, from pp and 7Be neutrinos can be reached. Such a measurement, with 1% precision will allow testing neutrinos models. DARWIN could also reach a competitive half-life sensitivity of 8.5 · 1027 y to the neutrinoless double beta decay (0νββ) of 136Xe after an exposure of 140 t×y of natural xenon. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below 5 GeV/c2, and the event rate from 8B neutrinos would range from a few to a few tens of events per tonne and year, depending on the energy threshold of the detector. Deviations from the predicted but yet unmeasured neutrino flux would be an indication for physics beyond the Standard Model

  12. An experimental high energy physics program

    International Nuclear Information System (INIS)

    Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.

    1988-01-01

    The theoretical and experimental high energy physics program is reviewed, including particle detectors. Topics discussed include τ and B physics, gamma-ray astronomy, neutrino oscillations in matter with three flavors applied to solar and supernova neutrinos, effective field theories, a possible fifth force, the dynamics of hadrons and superstrings, mathematics of grand unified theories, chiral symmetry breaking, physics at the Fermilab collider, and development of the TOPAZ detector

  13. NEUTRINO-DRIVEN TURBULENT CONVECTION AND STANDING ACCRETION SHOCK INSTABILITY IN THREE-DIMENSIONAL CORE-COLLAPSE SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Abdikamalov, Ernazar; Ott, Christian D.; Radice, David; Roberts, Luke F.; Haas, Roland; Reisswig, Christian; Mösta, Philipp; Klion, Hannah [TAPIR, Walter Burke Institute for Theoretical Physics, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Schnetter, Erik, E-mail: cott@tapir.caltech.edu [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada)

    2015-07-20

    We conduct a series of numerical experiments into the nature of three-dimensional (3D) hydrodynamics in the postbounce stalled-shock phase of core-collapse supernovae using 3D general-relativistic hydrodynamic simulations of a 27 M{sub ⊙} progenitor star with a neutrino leakage/heating scheme. We vary the strength of neutrino heating and find three cases of 3D dynamics: (1) neutrino-driven convection, (2) initially neutrino-driven convection and subsequent development of the standing accretion shock instability (SASI), and (3) SASI-dominated evolution. This confirms previous 3D results of Hanke et al. and Couch and Connor. We carry out simulations with resolutions differing by up to a factor of ∼4 and demonstrate that low resolution is artificially favorable for explosion in the 3D convection-dominated case since it decreases the efficiency of energy transport to small scales. Low resolution results in higher radial convective fluxes of energy and enthalpy, more fully buoyant mass, and stronger neutrino heating. In the SASI-dominated case, lower resolution damps SASI oscillations. In the convection-dominated case, a quasi-stationary angular kinetic energy spectrum E(ℓ) develops in the heating layer. Like other 3D studies, we find E(ℓ) ∝ℓ{sup −1} in the “inertial range,” while theory and local simulations argue for E(ℓ) ∝ ℓ{sup −5/3}. We argue that current 3D simulations do not resolve the inertial range of turbulence and are affected by numerical viscosity up to the energy-containing scale, creating a “bottleneck” that prevents an efficient turbulent cascade.

  14. The ν process in the innermost supernova ejecta

    Energy Technology Data Exchange (ETDEWEB)

    Sieverding, Andre [Institut für Kernphysik, Technische Universität Darmstadt, Germany; Martínez-Pinedo, Gabriel [Institut für Kernphysik, Technische Universität Darmstadt, Germany; Langanke, Karlheinz [Gesellschaft fur Schwerionenforschung (GSI), Germany; Harris, James Austin [ORNL; Hix, William Raphael [ORNL

    2017-12-01

    The neutrino-induced nucleosynthesis (ν process) in supernova explosions of massive stars of solar metallicity with initial main sequence masses between 13 and 30 M⊙ has been studied with an analytic explosion model using a new extensive set of neutrino-nucleus cross-sections and spectral properties that agree with modern supernova simulations. The production factors for the nuclei 7Li, 11B, 19F, 138La and 180Ta, are still significantly enhanced but do not reproduce the full solar abundances. We study the possible contribution of the innermost supernova eject to the production of the light elements 7Li and 11B with tracer particles based on a 2D supernova simulation of a 12 M⊙ progenitor and conclude, that a contribution exists but is negligible for the total yield for this explosion model.

  15. A network of neutral current spherical TPCs for dedicated supernova detection

    International Nuclear Information System (INIS)

    Giomataris, Y.; Vergados, J.D.

    2006-01-01

    The coherent contribution of all neutrons in neutrino nucleus scattering due to the neutral current offers a realistic prospect of detecting supernova neutrinos. As a matter of fact for a typical supernova at 10 kpc, about 1000 events are expected using a spherical gaseous detector of radius 4 m and employing Xe gas at a pressure of 10 atm. We propose a world wide network of several such simple, stable and low cost supernova detectors with a running time of a few centuries

  16. Nuclear structure and neutrino-nucleus interaction

    International Nuclear Information System (INIS)

    Krmpotic, Francisco

    2011-01-01

    Recent years have witnessed an intense experimental and theoretical activity oriented towards a better comprehension of neutrino nucleus interaction. While the main motivation for this task is the demand coming from oscillation experiments in their search for a precise determination of neutrino properties, the relevance of neutrino interaction with matter is more wide-ranging. It is imperative for astrophysics, hadronic and nuclear physics, and physics beyond the standard model. The experimental information on neutrino induced reactions is rapidly growing, and the corresponding theoretical description is a challenging proposition, since the energy scales of interest span a vast region, going from few MeV for solar neutrinos, to tens of MeV for the interpretation of experiments with the muon and pion decay at rest and the detection of neutrinos coming from the core collapse of supernova, and to hundreds of MeV or few GeV for the detection of atmospheric neutrinos, and for the neutrino oscillation program of the MiniBooNE experiment. The presence of neutrinos, being chargeless particles, can only be inferred by detecting the secondary particles created in colliding and interacting with the matter. Nuclei are often used as neutrino detectors, and in particular 12 C which is a component of many scintillator detectors. Thus, the interpretation of neutrino data heavily relies on detailed and quantitative knowledge of the features of the neutrino-nucleus interaction. The nuclear structure methods used in the evaluation of the neutrino-nucleus cross section are reviewed. Detailed comparison between the experimental and theoretical results establishes benchmarks needed for verification and/or parameter adjustment of the nuclear models. Having a reliable tool for such calculation is of great importance in a variety of applications, such as the description of the r-process nucleosynthesis. (author)

  17. The physics of the τ neutrino

    International Nuclear Information System (INIS)

    Vannucci, F.

    1993-01-01

    The ν τ is, together with the top quark, the only fundamental constituent not yet observed experimentally. Ways of producing detectable fluxes of this third neutrino are discussed. In particular, the search for neutrino oscillations into the ν τ is described. This search has become of cosmological relevance and a great effort is now under way to improve the present limit. Neutrino physics at the large Hadron Collider (LHC) and the Super conducting Super Collider (SSC) is also outlined

  18. Constraining neutrino physics with big bang nucleosynthesis and cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Hansen, S.H.; Melchiorri, A.; Mangano, G.; Miele, G.; Pisanti, O.

    2002-01-01

    We perform a likelihood analysis of the recent results on the anisotropy of cosmic microwave background radiation from the BOOMERanG and DASI experiments to show that they single out an effective number of neutrinos in good agreement with standard big bang nucleosynthesis. We also consider degenerate big bang nucleosynthesis to provide new bounds on effective relativistic degrees of freedom N ν and, in particular, on the neutrino chemical potential ξ α . When including supernova type Ia data we find, at 2σ, N ν ≤7 and -0.01≤ξ e ≤0.22, vertical bar ξ μ,τ vertical bar ≤2.6

  19. Highlights on experimental neutrino physics

    International Nuclear Information System (INIS)

    Kemp, Ernesto

    2013-01-01

    Full text: In the last years a remarkable progress was achieved in a deeper understanding of neutrino sector. Nowadays we know all mixing angles and mass splits which govern the neutrino oscillation phenomena. The parameters of neutrino mixing were measured by combining results of different experimental approaches including accelerator beams, nuclear reactors, radiative decays and astrophysical neutrinos. Nevertheless, there are open questions which can be viewed as key points to consolidate our knowledge on the intrinsic properties of neutrinos such as mass hierarchy and the existence of a CP violation in leptonic sector. To answer these questions and also to improve the precision of the already known mixing parameters, a series of huge experimental efforts are being set up, even in a world-wide scale in some cases. In this presentation I will review the current knowledge of the fundamental properties of neutrinos and the experimental scenario in which we expect, in a time frame of a decade, to find missing pieces in the leptonic sector. The findings can strengthen the foundations of the Standard Model as well as open very interesting paths for new physics. (author)

  20. Neutrino physics in the spotlight

    CERN Multimedia

    2009-01-01

    Following on from the Council recommendation made in Lisbon in 2006 and responding to the needs of a large community of scientists, CERN will organize the European Strategy for Future Neutrino Physics workshop on 1-3 October. One of the main goals of the workshop is to start establishing a roadmap for the coherent participation of Europe in neutrino physics."The format of the workshop will consist of invited talks to present the current situation and future possibilities; unlike other workshops, 30% of the time will be reserved for discussion", explains Ewa Rondio from the organising committee. "Resources for future neutrino experiments will be difficult to acquire. A coordinated approach and the participation of a large community of interested scientists are undoubtedly crucial factors". The workshop will be the opportunity to highlight the areas where substantial research and development activities are required in order to design the facilities of the next decade. "The w...

  1. Neutrino-'pasta' scattering: The opacity of nonuniform neutron-rich matter

    International Nuclear Information System (INIS)

    Horowitz, C.J.; Perez-Garcia, M.A.; Piekarewicz, J.

    2004-01-01

    Neutron-rich matter at subnuclear densities may involve complex structures displaying a variety of shapes, such as spherical, slablike, and/or rodlike shapes. These phases of the nuclear pasta are expected to exist in the crust of neutron stars and in core-collapse supernovae. The dynamics of core-collapse supernovae is very sensitive to the interactions between neutrinos and nucleons/nuclei. Indeed, neutrino excitation of the low-energy modes of the pasta may allow for a significant energy transfer to the nuclear medium, thereby reviving the stalled supernovae shock. The linear response of the nuclear pasta to neutrinos is modeled via a simple semiclassical simulation. The transport mean free path for μ and τ neutrinos (and antineutrinos) is expressed in terms of the static structure factor of the pasta, which is evaluated using Metropolis Monte Carlo simulations

  2. Working group report: Neutrino and astroparticle physics

    Indian Academy of Sciences (India)

    8. We present the discussions carried out during the workshop on selected topics in the above fields and also indicate progress made subsequently. The neutrino physics subgroup studied the possibilities of constraining neutrino masses, ...

  3. Interaction of electron neutrino with LSD detector

    Science.gov (United States)

    Ryazhskaya, O. G.; Semenov, S. V.

    2016-06-01

    The interaction of electron neutrino flux, originating in the rotational collapse mechanism on the first stage of Supernova burst, with the LSD detector components, such as 56Fe (a large amount of this metal is included in as shielding material) and liquid scintillator barNnH2n+2, is being investigated. Both charged and neutral channels of neutrino reaction with 12barN and 56Fe are considered. Experimental data, giving the possibility to extract information for nuclear matrix elements calculation are used. The number of signals, produced in LSD by the neutrino pulse of Supernova 1987A is determined. The obtained results are in good agreement with experimental data.

  4. Neutrino properties and supernova SN1987a

    International Nuclear Information System (INIS)

    Nussinov, S.

    1989-01-01

    The use of SN1987a to indicate how limits on neutrino properties can be deduced from the observed neutrino signals is shown. Bounds on possible deviations from relativity are briefly considered. The possible evidence for a half-millisecond pulsar in the SN remnant and on speculative attempts at finding the same periodicity in the neutrino signal are commented on. 37 refs

  5. The ν process in the innermost supernova ejecta

    Directory of Open Access Journals (Sweden)

    Sieverding Andre

    2017-01-01

    Full Text Available The neutrino-induced nucleosynthesis (ν process in supernova explosions of massive stars of solar metallicity with initial main sequence masses between 13 and 30 M⊙ has been studied with an analytic explosion model using a new extensive set of neutrino-nucleus cross-sections and spectral properties that agree with modern supernova simulations. The production factors for the nuclei 7Li, 11B, 19F, 138La and 180Ta, are still significantly enhanced but do not reproduce the full solar abundances. We study the possible contribution of the innermost supernova eject to the production of the light elements 7Li and 11B with tracer particles based on a 2D supernova simulation of a 12 M⊙ progenitor and conclude, that a contribution exists but is negligible for the total yield for this explosion model.

  6. Capturing Neutrinos from a Star's Final Hours

    Science.gov (United States)

    Hensley, Kerry

    2018-04-01

    What happens on the last day of a massive stars life? In the hours before the star collapses and explodes as a supernova, the rapid evolution of material in its core creates swarms of neutrinos. Observing these neutrinos may help us understand the final stages of a massive stars life but theyve never been detected.A view of some of the 1,520 phototubes within the MiniBooNE neutrino detector. Observations from this and other detectors are helping to illuminate the nature of the mysterious neutrino. [Fred Ullrich/FNAL]Silent Signposts of Stellar EvolutionThe nuclear fusion that powers stars generates tremendous amounts of energy. Much of this energy is emitted as photons, but a curious and elusive particle the neutrino carries away most of the energy in the late stages of stellar evolution.Stellar neutrinos can be created through two processes: thermal processesand beta processes. Thermal processes e.g.,pair production, in which a particle/antiparticle pair are created depend on the temperature and pressure of the stellar core. Beta processes i.e.,when a proton converts to a neutron, or vice versa are instead linked to the isotopic makeup of the stars core. This means that, if we can observe them, beta-process neutrinos may be able to tell us about the last steps of stellar nucleosynthesis in a dying star.But observing these neutrinos is not so easilydone. Neutrinos arenearly massless, neutral particles that interact only feebly with matter; out of the whopping 1060neutrinos released in a supernova explosion, even the most sensitive detectors only record the passage of just a few. Do we have a chance of detectingthe beta-process neutrinos that are released in the final few hours of a stars life, beforethe collapse?Neutrino luminosities leading up to core collapse. Shortly before collapse, the luminosity of beta-process neutrinos outshines that of any other neutrino flavor or origin. [Adapted from Patton et al. 2017]Modeling Stellar CoresTo answer this question, Kelly

  7. Experimental neutrino physics

    CERN Document Server

    Link, Jonathan M

    2018-01-01

    Neutrinos have a smaller mass than any other known particle and are the subject of intense recent studies, as well as this book. The author provides a coherent introduction to the necessary theoretical background and experimental methods used by modern neutrino physicists. It’s designed as a one-stop reference addressing what is currently known about the neutrino hypothesis, discovery of the neutrino, theory of weak interactions, solar neutrino puzzle, and neutrino oscillation. It then gives a detailed account of practical approaches for study of precision oscillations, neutrino mass and other neutrino properties, sterile neutrinos, and neutrino messengers from space and Earth’s interior.

  8. PROBING THE ROTATION OF CORE-COLLAPSE SUPERNOVA WITH A CONCURRENT ANALYSIS OF GRAVITATIONAL WAVES AND NEUTRINOS

    Energy Technology Data Exchange (ETDEWEB)

    Yokozawa, Takaaki; Asano, Mitsuhiro; Kanda, Nobuyuki [Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan); Kayano, Tsubasa; Koshio, Yusuke [Department of Physics, Okayama University, Okayama, Okayama, 700-8530 (Japan); Suwa, Yudai [Yukawa Institute for Theoretical Physics, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Vagins, Mark R. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583 (Japan)

    2015-10-01

    The next time a core-collapse supernova (SN) explodes in our galaxy, various detectors will be ready and waiting to detect its emissions of gravitational waves (GWs) and neutrinos. Current numerical simulations have successfully introduced multi-dimensional effects to produce exploding SN models, but thus far the explosion mechanism is not well understood. In this paper, we focus on an investigation of progenitor core rotation via comparison of the start time of GW emission and that of the neutronization burst. The GW and neutrino detectors are assumed to be, respectively, the KAGRA detector and a co-located gadolinium-loaded water Cherenkov detector, either EGADS or GADZOOKS!. Our detection simulation studies show that for a nearby SN (0.2 kpc) we can confirm the lack of core rotation close to 100% of the time, and the presence of core rotation about 90% of the time. Using this approach there is also the potential to confirm rotation for considerably more distant Milky Way SN explosions.

  9. Neutrinos from gravitational collapse

    International Nuclear Information System (INIS)

    Mayle, R.; Wilson, J.R.; Schramm, D.N.

    1986-05-01

    Detailed calculations are made of the neutrino spectra emitted during gravitational collapse events (Type II supernovae). Those aspects of the neutrino signal which are relatively independent of the collapse model and those aspects which are sensitive to model details are discussed. The easier-to-detect high energy tail of the emitted neutrinos has been calculated using the Boltzmann equation which is compared with the result of the traditional multi-group flux limited diffusion calculations. 8 figs., 28 refs

  10. Deep Secrets of the Neutrino: Physics Underground

    Energy Technology Data Exchange (ETDEWEB)

    Rowson, P.C.

    2010-03-23

    Among the many beautiful, unexpected and sometimes revolutionary discoveries to emerge from subatomic physics, probably none is more bizarre than an elementary particle known as the 'neutrino'. More than a trillion of these microscopic phantoms pass unnoticed through our bodies every second, and indeed, through the entire Earth - but their properties remain poorly understood. In recent years, exquisitely sensitive experiments, often conducted deep below ground, have brought neutrino physics to the forefront. In this talk, we will explore the neutrino - what we know, what we want to know, and how one experiment in a New Mexico mine is trying to get there.

  11. Neutral current induced neutrino oscillations in a supernova

    CERN Document Server

    Kusenko, A; Kusenko, Alexander; Segre, Gino

    1997-01-01

    Neutral currents induced matter oscillations of electroweak-active (anti-)neutrinos to sterile neutrinos can explain the observed motion of pulsars. In contrast to a recently proposed explanation of the pulsar birth velocities based on the electron to tau (muon) neutrino oscillations [hep-ph/9606428], the heaviest neutrino (either active or sterile) would have to have mass of order several keV.

  12. Current and future constraints on neutrino physics from cosmology

    International Nuclear Information System (INIS)

    Hannestad, S.; Hamann, J.; Wong, Y.Y.Y.

    2014-01-01

    In recent years precision cosmology has become an increasingly powerful probe of particle physics. Perhaps the prime example of this is the very stringent cosmological upper bound on the neutrino mass. However, other aspects of neutrino physics, such as their decoupling history and possible non-standard interactions, can be probed using observations of cosmic structure. Here, I review the current status of cosmological bounds on neutrino properties and discuss the potential of future observations, for example by the recently approved EUCLID mission, to precisely measure neutrino properties. (authors)

  13. Mechanisms for supernova explosions

    International Nuclear Information System (INIS)

    Epstein, R.I.

    1977-01-01

    This report discusses some of the recent developments in the study of one supernova mechanism, the neutrino transport mechanism, and indicates what future developments are needed before this model can be adequately understood. (Auth.)

  14. Neutrino physics with short baseline experiments

    International Nuclear Information System (INIS)

    Zimmerman, E.D.

    2006-01-01

    Neutrino physics with low- to medium-energy beams has progressed steadily over the last several years. Neutrino oscillation searches at short baseline (defined as 2 - -> 0.1eV 2 . One positive signal, from the LSND collaboration, exists and is being tested by the MiniBooNE experiment. Neutrino cross-section measurements are being made by MiniBooNE and K2K, which will be important for reducing systematic errors in present and future oscillation measurements. In the near future, dedicated cross- section experiments will begin operating at Fermilab. (author)

  15. Numerical models of protoneutron stars and type-II supernovae - recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Janka, H T [Max-Planck-Institut fuer Astrophysik, Garching (Germany)

    1996-11-01

    The results of recent multi-dimensional simulations of type-II supernovae are reviewed. They show that convective instabilities in the collapsed stellar core might play an important role already during the first second after the formation of the supernovae shock. Convectively unstable situations occur below and near the neutrinosphere as well as in the neutrino-heated region between the nascent neutron star and the supernova shock after the latter has stalled at a radiums of typically 100-200 km. While convective overturn in the layer of neutrino energy deposition clearly helps the explosion to develop and potentially provides an explanation of strong mantle and envelope mixing, asphericities, and non-uniform {sup 56}Ni distribution observed in supernova SN 1987A, its presence and importance depends on the strength of the neutrino heating and thus on the size of the neutrino fluxes from the neutrino star. Convection in the hot-bubble region can only be developed if the growth timescale of the instabilities and the heating timescale are both shorter than the accretion timescale of the matter advected through the stagnant shock. For too small neutrino luminosities this requirement is not fulfilled and convective activity cannot develop, leading to very weak explosions or even fizzling models, just as in the one-dimensional situations. Convectively enhanced neutrino luminosities from the protoneutron star can therefore provide an essential condition for the explosion of the star. Very recent two-dimensional, self-consistent, general relativistic simulations of the cooling of a newly-formed neutron star demonstrate and confirm the possibility that Ledoux convection, driven by negative lepton number and entropy gradients, may encompass the whole protoneutron star within less than one second and can lead to an increase of the neutrino fluxes by up to a factor of two. (author) 9 figs., refs.

  16. Neutrino Physics

    CERN Document Server

    Barenboim, G.

    2014-12-10

    The Standard Model has been incredibly successful in predicting the outcome of almost all the experiments done up so far. In it, neutrinos are mass-less. However, in recent years we have accumulated evidence pointing to tiny masses for the neutrinos (as compared to the charged leptons). These masses allow neutrinos to change their flavour and oscillate. In these lectures I review the properties of neutrinos in and beyond the Standard Model.

  17. The neutrino opacity of neutron rich matter

    Energy Technology Data Exchange (ETDEWEB)

    Alcain, P.N., E-mail: pabloalcain@gmail.com [Departamento de Física, FCEyN, UBA and IFIBA, Conicet, Pabellón 1, Ciudad Universitaria, 1428 Buenos Aires (Argentina); IFIBA-CONICET (Argentina); Dorso, C.O. [Departamento de Física, FCEyN, UBA and IFIBA, Conicet, Pabellón 1, Ciudad Universitaria, 1428 Buenos Aires (Argentina); IFIBA-CONICET (Argentina)

    2017-05-15

    The study of neutron rich matter, present in neutron star, proto-neutron stars and core-collapse supernovae, can lead to further understanding of the behavior of nuclear matter in highly asymmetric nuclei. Heterogeneous structures are expected to exist in these systems, often referred to as nuclear pasta. We have carried out a systematic study of neutrino opacity for different thermodynamic conditions in order to assess the impact that the structure has on it. We studied the dynamics of the neutrino opacity of the heterogeneous matter at different thermodynamic conditions with semiclassical molecular dynamics model already used to study nuclear multifragmentation. For different densities, proton fractions and temperature, we calculate the very long range opacity and the cluster distribution. The neutrino opacity is of crucial importance for the evolution of the core-collapse supernovae and the neutrino scattering.

  18. Project X and its connection to neutrino physics

    International Nuclear Information System (INIS)

    Harris, Deborah; Jansson, Andreas

    2008-01-01

    Project X is a new high intensity proton source that is being planned at Fermilab to usher in a new era of high intensity physics. The high intensity frontier can provide a wealth of new measurements--the most voracious consumer of protons is the long baseline neutrino program, but with the proton source upgrades being planned there are even more protons available than current neutrino targets can withstand. Those protons can provide a rich program on their own of muon physics and neutrino scattering physics that is complimentary to the long baseline program. In this article we discuss the physics motivation for Project X that comes from these short baseline experiments, and also the status of the design of this new source and what it will take to move forward on that design

  19. Gravitational waves from a pulsar kick caused by neutrino conversions

    International Nuclear Information System (INIS)

    Loveridge, Lee C.

    2004-01-01

    It has been suggested that the observed pulsar velocities are caused by an asymmetric neutrino emission from a hot neutron star during the first seconds after the supernova collapse. We calculate the magnitude of gravitational waves produced by the asymmetries in the emission of neutrinos. The resulting periodic gravitational waves may be detectable by LIGO and LISA in the event of a nearby supernova explosion

  20. Physics at a future Neutrino Factory and super-beam facility

    International Nuclear Information System (INIS)

    Bandyopadhyay, A; Choubey, S; Gandhi, R; Goswami, S; Roberts, B L; Bouchez, J; Antoniadis, I; Ellis, J; Giudice, G F; Schwetz, T; Umasankar, S; Karagiorgi, G; Aguilar-Arevalo, A; Conrad, J M; Shaevitz, M H; Pascoli, S; Geer, S; Campagne, J E; Rolinec, M; Blondel, A

    2009-01-01

    The conclusions of the Physics Working Group of the International Scoping Study of a future Neutrino Factory and super-beam facility (the ISS) are presented. The ISS was carried out by the international community between NuFact05, (the 7th International Workshop on Neutrino Factories and Super-beams, Laboratori Nazionali di Frascati, Rome, 21-26 June 2005) and NuFact06 (Ivine, CA, 24-30 August 2006). The physics case for an extensive experimental programme to understand the properties of the neutrino is presented and the role of high-precision measurements of neutrino oscillations within this programme is discussed in detail. The performance of second-generation super-beam experiments, beta-beam facilities and the Neutrino Factory are evaluated and a quantitative comparison of the discovery potential of the three classes of facility is presented. High-precision studies of the properties of the muon are complementary to the study of neutrino oscillations. The Neutrino Factory has the potential to provide extremely intense muon beams and the physics potential of such beams is discussed in the final section of the report.

  1. The Impact of the Nuclear Equation of State in Core Collapse Supernovae

    Science.gov (United States)

    Baird, M. L.; Lentz, E. J.; Hix, W. R.; Mezzacappa, A.; Messer, O. E. B.; Liebendoerfer, M.; TeraScale Supernova Initiative Collaboration

    2005-12-01

    One of the key ingredients to the core collapse supernova mechanism is the physics of matter at or near nuclear density. Included in simulations as part of the Equation of State (EOS), nuclear repulsion experienced at high densities are responsible for the bounce shock, which initially causes the outer envelope of the supernova to expand, as well as determining the structure of the newly formed proto-neutron star. Recent years have seen renewed interest in this fundamental piece of supernova physics, resulting in several promising candidate EOS parameterizations. We will present the impact of these variations in the nuclear EOS using spherically symmetric, Newtonian and General Relativistic neutrino transport simulations of stellar core collapse and bounce. This work is supported in part by SciDAC grants to the TeraScale Supernovae Initiative from the DOE Office of Science High Energy, Nuclear, and Advanced Scientific Computing Research Programs. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for U.S. Department of Energy under contract DEAC05-00OR22725

  2. Recent developments in neutrino physics

    International Nuclear Information System (INIS)

    Garvey, G.T.

    1991-01-01

    I shall attempt to summarize recent developments in the experimental situation in neutrino physics. The paper will deal with recent results, drawing on either published work or research that has been presented in preprint form, as there is an adequate supply of interesting and controversial data restricting oneself to these generally more reliable sources. The discussion of the theoretical implication of these experimental results will be presented in the following paper by Boris Kayser. The topics to be covered in this presentation are: direct measurements of bar ν e mass via beta endpoint studies; status of solar neutrino observations; status of ''17-keV neutrino'' reports; and the use of νp elastic scattering to determine the ''strange quark'' content of the proton. 2 refs., 15 figs., 9 tabs

  3. Recent developments in neutrino physics

    Energy Technology Data Exchange (ETDEWEB)

    Garvey, G.T.

    1991-01-01

    I shall attempt to summarize recent developments in the experimental situation in neutrino physics. The paper will deal with recent results, drawing on either published work or research that has been presented in preprint form, as there is an adequate supply of interesting and controversial data restricting oneself to these generally more reliable sources. The discussion of the theoretical implication of these experimental results will be presented in the following paper by Boris Kayser. The topics to be covered in this presentation are: direct measurements of {bar {nu}}{sub e} mass via beta endpoint studies; status of solar neutrino observations; status of 17-keV neutrino'' reports; and the use of {nu}p elastic scattering to determine the strange quark'' content of the proton. 2 refs., 15 figs., 9 tabs.

  4. A NEW MULTI-DIMENSIONAL GENERAL RELATIVISTIC NEUTRINO HYDRODYNAMICS CODE OF CORE-COLLAPSE SUPERNOVAE. III. GRAVITATIONAL WAVE SIGNALS FROM SUPERNOVA EXPLOSION MODELS

    International Nuclear Information System (INIS)

    Müller, Bernhard; Janka, Hans-Thomas; Marek, Andreas

    2013-01-01

    We present a detailed theoretical analysis of the gravitational wave (GW) signal of the post-bounce evolution of core-collapse supernovae (SNe), employing for the first time relativistic, two-dimensional explosion models with multi-group, three-flavor neutrino transport based on the ray-by-ray-plus approximation. The waveforms reflect the accelerated mass motions associated with the characteristic evolutionary stages that were also identified in previous works: a quasi-periodic modulation by prompt post-shock convection is followed by a phase of relative quiescence before growing amplitudes signal violent hydrodynamical activity due to convection and the standing accretion shock instability during the accretion period of the stalled shock. Finally, a high-frequency, low-amplitude variation from proto-neutron star (PNS) convection below the neutrinosphere appears superimposed on the low-frequency trend associated with the aspherical expansion of the SN shock after the onset of the explosion. Relativistic effects in combination with detailed neutrino transport are shown to be essential for quantitative predictions of the GW frequency evolution and energy spectrum, because they determine the structure of the PNS surface layer and its characteristic g-mode frequency. Burst-like high-frequency activity phases, correlated with sudden luminosity increase and spectral hardening of electron (anti-)neutrino emission for some 10 ms, are discovered as new features after the onset of the explosion. They correspond to intermittent episodes of anisotropic accretion by the PNS in the case of fallback SNe. We find stronger signals for more massive progenitors with large accretion rates. The typical frequencies are higher for massive PNSs, though the time-integrated spectrum also strongly depends on the model dynamics.

  5. A look at Supernova 1987A

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1987-10-01

    Supernova 1987A is reviewed with emphasis on the neutrino observations. It is shown that the results fit well with the expectations for neutrino temperatures (T ∼ 4ε 0 4.5 MeV) and total energy emitted (2ε 0 4 x 10 53 ergs). It is argued that the detection tends to favor collapse models that yield emission for 10 second timescales with a 1ε 0 2 second early accretion phase followed by Kelvin-Helmholtz cooling as opposed to prompt shocks with the immediate onset of cooling. It is also argued that the probable detection of one or more electron scattering event favors a superthermal tail at high energies. Neutrino mass limits and flavor limits are comparable to laboratory experiments. An estimate for future collapse rates in our galaxy of 1/7 year is made based on nucleosynthesis yields. The supernova also has eliminated many axion and majoron models. 69 refs., 3 figs., 27 tabs

  6. Research in Neutrino Physics and Particle Astrophysics: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Kearns, Edward [Boston Univ., MA (United States)

    2016-06-30

    The Boston University Neutrino Physics and Particle Astrophysics Group investigates the fundamental laws of particle physics using natural and man-made neutrinos and rare processes such as proton decay. The primary instrument for this research is the massive Super-Kamiokande (SK) water Cherenkov detector, operating since 1996 at the Kamioka Neutrino Observatory, one kilometer underground in a mine in Japan. We study atmospheric neutrinos from cosmic rays, which were first used to discover that neutrinos have mass, as recognized by the 2015 Nobel Prize in Physics. Our latest measurements with atmospheric neutrinos are giving valuable information, complementary to longbaseline experiments, on the ordering of massive neutrino states and as to whether neutrinos violate CP symmetry. We have studied a variety of proton decay modes, including the most frequently predicted modes such as p → e+π0 and p → ν K+, as well as more exotic baryon number violating processes such as dinucleon decay and neutronantineutron oscillation. We search for neutrinos from dark matter annihilation or decay in the universe. Our group has made significant contributions to detector operation, particularly in the area of electronics. Most recently, we have contributed to planning for an upgrade to the SK detector by the addition of gadolinium to the water, which will enable efficient neutron capture detection.

  7. Neutrino-Less Double Beta Decay - Experimentum Crucis of Neutrino Physics

    International Nuclear Information System (INIS)

    Sujkowski, Z.

    2003-01-01

    The presently most wanted information on neutrino properties concerns their mass values and their transformation properties under charge conjugation. The recent oscillation experiments prove that at least one of the three neutrino species has a non-vanishing rest mass and that the lepton flavour is not conserved. These findings have to be supplemented by data from phenomena of different kind in order to deduce the information needed. The most promising method proposed thus far to determine Majorana neutrino mass and thus to answer the two leading questions is to observe the neutrino-less double beta decay and to measure its rate. The physics of this process is discussed and the on-going and planned experimental search is reviewed. This search concentrates on the 0 + →0 + ground-to-ground state decay of β - β - emitters using calorimetric or β - -β - coincidence tracking techniques. The β + β + or β + EC decays are usually considered as less favourable because of longer half-lives, even though they offer some advantages in combating the background. The recent proposition of measuring the monoenergetic photon spectra accompanying the radiative neutrino-less double electron capture decay is discussed. The experimental advantages of this technique may off-set the generally longer life-times expected. (author)

  8. Neutrino flavor conversions in high-density astrophysical and cosmological environments

    International Nuclear Information System (INIS)

    Saviano, Ninetta

    2014-03-01

    The topic of this thesis is the study of the neutrino flavor conversions in high-density environments: the supernovae and the the Early Universe. Remarkably, these represent the only two cases in which neutrinos themselves contribute to the ''background medium'' for their propagation, making their oscillations a non-linear phenomenon. In particular, in the dense supernova core, the neutrino-neutrino interactions can lead in some situations to surprising and counterintuitive collective phenomena, when the entire neutrino system oscillates coherently as a single collective mode. In this context, we have shown that during the early SN accretion phase (post-bounce times 10 -3 ) in order to suppress the sterile neutrino production and to find a better agreement between the cosmological and laboratory hints. Finally, we discuss the implications of our results on Big-Bang Nucleosynthesis and on the Cosmic Microwave Background from data measured by the Planck experiment.

  9. Dedicated supernova detection by a network of neutral current spherical TPC detectors

    International Nuclear Information System (INIS)

    Vergados, J. D.; Giomataris, Y.

    2007-01-01

    Supernova neutrinos can easily be detected by a spherical gaseous TPC detector measuring very low energy nuclear recoils. The expected rates are quite large for a neutron-rich target since the neutrino-nucleus neutral current interaction yields a coherent contribution of all neutrons. As a matter of fact, for a typical supernova at 10 kpc, about 1000 events are expected using a spherical detector of radius 4 m with Xe gas at a pressure of 10 atm. A worldwide network of several such simple, stable, and low-cost supernova detectors with a running time of a few centuries is quite feasible

  10. Computational models of stellar collapse and core-collapse supernovae

    International Nuclear Information System (INIS)

    Ott, Christian D; O'Connor, Evan; Schnetter, Erik; Loeffler, Frank; Burrows, Adam; Livne, Eli

    2009-01-01

    Core-collapse supernovae are among Nature's most energetic events. They mark the end of massive star evolution and pollute the interstellar medium with the life-enabling ashes of thermonuclear burning. Despite their importance for the evolution of galaxies and life in the universe, the details of the core-collapse supernova explosion mechanism remain in the dark and pose a daunting computational challenge. We outline the multi-dimensional, multi-scale, and multi-physics nature of the core-collapse supernova problem and discuss computational strategies and requirements for its solution. Specifically, we highlight the axisymmetric (2D) radiation-MHD code VULCAN/2D and present results obtained from the first full-2D angle-dependent neutrino radiation-hydrodynamics simulations of the post-core-bounce supernova evolution. We then go on to discuss the new code Zelmani which is based on the open-source HPC Cactus framework and provides a scalable AMR approach for 3D fully general-relativistic modeling of stellar collapse, core-collapse supernovae and black hole formation on current and future massively-parallel HPC systems. We show Zelmani's scaling properties to more than 16,000 compute cores and discuss first 3D general-relativistic core-collapse results.

  11. Multimessengers from Core-Collapse Supernovae: Multidimensionality as a Key to Bridge Theory and Observation

    Directory of Open Access Journals (Sweden)

    Kei Kotake

    2012-01-01

    Full Text Available Core-collapse supernovae are dramatic explosions marking the catastrophic end of massive stars. The only means to get direct information about the supernova engine is from observations of neutrinos emitted by the forming neutron star, and through gravitational waves which are produced when the hydrodynamic flow or the neutrino flux is not perfectly spherically symmetric. The multidimensionality of the supernova engine, which breaks the sphericity of the central core such as convection, rotation, magnetic fields, and hydrodynamic instabilities of the supernova shock, is attracting great attention as the most important ingredient to understand the long-veiled explosion mechanism. Based on our recent work, we summarize properties of gravitational waves, neutrinos, and explosive nucleosynthesis obtained in a series of our multidimensional hydrodynamic simulations and discuss how the mystery of the central engines can be unraveled by deciphering these multimessengers produced under the thick veils of massive stars.

  12. Neutrino physics with SHIP

    CERN Document Server

    van Herwijnen, Eric

    2016-01-01

    SHIP is a new general purpose fixed target facility, whose Technical Proposal has been recently reviewed by the CERN SPS Committee. It recommended that the experiment proceed further to a Comprehensive Design phase. In its initial phase, the 400 GeV proton beam extracted from the SPS will be dumped on a heavy target with the aim of integrating 2×1020 POT (Protons On Target) in 5 years. A dedicated detector, based on a long vacuum tank followed by a spectrometer and particle identification detectors, will allow probing a variety of models with light long-lived exotic particles and masses below O(10) GeV/c 2 . The main focus will be the physics of the so-called Hidden Portals. The sensitivity to Heavy Neutrinos will allow to probe for the first time the mass range between the kaon and the charm meson mass, and a range of couplings for which Baryogenesis and active neutrino masses could also be explained. Another dedicated detector will allow the study of neutrino cross-sections and angular distributions. ντ ...

  13. Anarchy and neutrino physics

    Energy Technology Data Exchange (ETDEWEB)

    Fortin, Jean-François; Giasson, Nicolas; Marleau, Luc [Département de Physique, de Génie Physique et d’Optique,Université Laval, Québec, QC G1V 0A6 (Canada)

    2017-04-21

    The neutrino sector of a seesaw-extended Standard Model is investigated under the anarchy hypothesis. The previously derived probability density functions for neutrino masses and mixings, which characterize the type I-III seesaw ensemble of N×N complex random matrices, are used to extract information on the relevant physical parameters. For N=2 and N=3, the distributions of the light neutrino masses, as well as the mixing angles and phases, are obtained using numerical integration methods. A systematic comparison with the much simpler type II seesaw ensemble is also performed to point out the fundamental differences between the two ensembles. It is found that the type I-III seesaw ensemble is better suited to accommodate experimental data. Moreover, the results indicate a strong preference for the mass splitting associated to normal hierarchy. However, since all permutations of the singular values are found to be equally probable for a particular mass splitting, predictions regarding the hierarchy of the mass spectrum remains out of reach in the framework of anarchy.

  14. PROGENITOR-EXPLOSION CONNECTION AND REMNANT BIRTH MASSES FOR NEUTRINO-DRIVEN SUPERNOVAE OF IRON-CORE PROGENITORS

    Energy Technology Data Exchange (ETDEWEB)

    Ugliano, Marcella; Janka, Hans-Thomas; Marek, Andreas [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); Arcones, Almudena [Institut fuer Kernphysik, Technische Universitaet Darmstadt, Schlossgartenstr. 2, D-64289 Darmstadt (Germany)

    2012-09-20

    We perform hydrodynamic supernova (SN) simulations in spherical symmetry for over 100 single stars of solar metallicity to explore the progenitor-explosion and progenitor-remnant connections established by the neutrino-driven mechanism. We use an approximative treatment of neutrino transport and replace the high-density interior of the neutron star (NS) by an inner boundary condition based on an analytic proto-NS core-cooling model, whose free parameters are chosen such that explosion energy, nickel production, and energy release by the compact remnant of progenitors around 20 M{sub Sun} are compatible with SN 1987A. Thus, we are able to simulate the accretion phase, initiation of the explosion, subsequent neutrino-driven wind phase for 15-20 s, and the further evolution of the blast wave for hours to days until fallback is completed. Our results challenge long-standing paradigms. We find that remnant mass, launch time, and properties of the explosion depend strongly on the stellar structure and exhibit large variability even in narrow intervals of the progenitors' zero-age main-sequence mass. While all progenitors with masses below {approx}15 M{sub Sun} yield NSs, black hole (BH) as well as NS formation is possible for more massive stars, where partial loss of the hydrogen envelope leads to weak reverse shocks and weak fallback. Our NS baryonic masses of {approx}1.2-2.0 M{sub Sun} and BH masses >6 M{sub Sun} are compatible with a possible lack of low-mass BHs in the empirical distribution. Neutrino heating accounts for SN energies between some 10{sup 50} erg and {approx}2 Multiplication-Sign 10{sup 51} erg but can hardly explain more energetic explosions and nickel masses higher than 0.1-0.2 M{sub Sun }. These seem to require an alternative SN mechanism.

  15. Physics at a future Neutrino Factory and super-beam facility

    CERN Document Server

    Bandyopadhyay, A; Gandhi, R; Goswami, S; Roberts, B L; Bouchez, J; Antoniadis, I; Ellis, J; Giudice, G F; Schwetz, T; Umansankar, S; Karagiorgi, G; Aguilar-Arevalo, A; Conrad, J M; Shaevitz, M H; Pascoli, Silvia; Geer, S; Rolinec, M; Blondel, A; Campanelli, M; Kopp, J; Lindner, M; Peltoniemi, J; Dornan, P J; Long, K; Matsushita, T; Rogers, C; Uchida, Y; Dracos, M; Whisnant, K; Casper, D; Chen, Mu-Chun; Popov, B; Aysto, J; Marfatia, D; Okada, Y; Sugiyama, H; Jungmann, K; Lesgourgues, J; Murayama, France H; Zisman, M; Tortola, M A; Friedland, A; Antusch, S; Biggio, C; Donini, A; Fernandez-Martinez, E; Gavela, B; Maltoni, M; Lopez-Pavon, J; Rigolin, S; Mondal, N; Palladino, V; Filthaut, F; Albright, C; de Gouvea, A; Kuno, Y; Nagashima, Y; Mezzetoo, M; Lola, S; Langacker, P; Baldini, A; Nunokawa, H; Meloni, D; Diaz, M; King, S F; Zuber, K; Akeroyd, A G; Grossman, Y; Farzan, Y; Tobe, K; Aoki, Mayumi; Kitazawa, N; Yasuda, O; Petcov, S; Romanino, A; Chimenti, P; Vacchi, A; Smirnov, A Yu; Couce, Italy E; Gomez-Cadenas, J J; Hernandez, P; Sorel, M; Valle, J W F; Harrison, P F; Lundardini, C; Nelson, J K; Barger, V; Everett, L; Huber, P; Winter, W; Fetscher, W; van der Schaaf, A

    2009-01-01

    The conclusions of the Physics Working Group of the international scoping study of a future Neutrino Factory and super-beam facility (the ISS) are presented. The ISS was carried by the international community between NuFact05, (the 7th International Workshop on Neutrino Factories and Superbeams, Laboratori Nazionali di Frascati, Rome, June 21-26, 2005) and NuFact06 (Ivine, California, 24{30 August 2006). The physics case for an extensive experimental programme to understand the properties of the neutrino is presented and the role of high-precision measurements of neutrino oscillations within this programme is discussed in detail. The performance of second generation super-beam experiments, beta-beam facilities, and the Neutrino Factory are evaluated and a quantitative comparison of the discovery potential of the three classes of facility is presented. High-precision studies of the properties of the muon are complementary to the study of neutrino oscillations. The Neutrino Factory has the potential to provide ...

  16. Production of {sup 44}Ti in neutrino-driven aspherical supernova explosions

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Shin-ichiro [Kumamoto National College of Technology, 2659-2 Suya, Goshi 861-1102 (Japan); Ono, Masaomi; Hashimoto, Masa-aki [Department of Physics, School of Sciences, Kyushu University, Fukuoka 810-8560 (Japan); Kotake, Kei [National Astronomical Observatory Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan)

    2014-05-02

    We examine the synthesis of {sup 44}Ti in a neutrino-driven aspherical supernova (SN), focusing on reaction rates related to {sup 44}Ti and rotation of a progenitor. We have performed 2D hydrodynamic simulations of SN of a 15M{sub ⊙} progenitor, whose angular velocity is manually set to be a cylindrical distribution and have followed explosive nucleosynthesis in the ejecta. We find that the faster rates of {sup 40}Ca(α,γ){sup 44}Ti and the slower rate of {sup 44}Ti(α,p){sup 47}V lead to more massive ejection of {sup 44}Ti and {sup 56}Ni and larger ratios <{sup 44}Ti/{sup 56}Ni>. Faster rotation also results in more massive ejection of {sup 44}Ti and {sup 56}Ni. Ratios <{sup 44}Ti/{sup 56}Ni> are however independent from rotation. Large masses of {sup 44}Ti and large ratios observed in SN 1987A and Cas A (> 1O{sup −4}M{sub ⊙} and 1-2 respectively) are not realized in all the models.

  17. Summary for astrophysics and non-accelerator physics

    International Nuclear Information System (INIS)

    Kahana, S.H.

    1988-01-01

    This paper summarizes the presentations at the astrophysics and non-accelerator physics conference. Discussed in this paper are: supernovae, neutrinos, x-rays, gamma rays, cosmic rays, monopoles and primordial nucleosynthesis. 15 refs

  18. Overview of the present status and challenges of neutrino oscillation physics

    Energy Technology Data Exchange (ETDEWEB)

    Mocioiu, Irina [Pennsylvania State University, 104 Davey Lab, University Park, PA 16802 (United States)

    2012-11-20

    This is an overview of the current status of neutrino oscillation physics, including atmospheric, solar, reactor and accelerator neutrino experiments. After summarizing our present understanding of all data, I discuss the open questions and how they might be addressed in the future. I also discuss how neutrinos can be used to learn about new physics and astrophysics.

  19. Neutrino Physics at Drexel

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Charles [Drexel Univ., Philadelphia, PA (United States); Dolinski, Michelle [Drexel Univ., Philadelphia, PA (United States); Neilson, Russell [Drexel Univ., Philadelphia, PA (United States)

    2017-07-11

    Our primary goal is to improve the understanding of the properties and interactions of neutrinos. We are pursuing this by means of the DUNE long-baseline and PROSPECT short-baseline neutrino experiments. For DUNE, a neutrino beam from Fermilab will be detected at the SURF facility in South Dakota, with the aim of determining the neutrino mass hierarchy (the mass ordering of neutrino flavors), and a measurement or limit on CP-violation via neutrinos. Our near-term experimental goal is to improve the characterization of the neutrino beam by measurements of muons produced as a byproduct of neutrino beam generation, to quantify the beam composition and flux. The short-range neutrino program has the aim of using the HFIR reactor at Oak Ridge as a neutrino source, with a detector placed nearby to find if there are short-distance oscillations to sterile neutrino flavors, and to resolve the 'reactor neutrino spectral anomaly' which has shown up as an unexplained 'bump' in the neutrino energy spectrum in recent experiments.

  20. The GENIE Neutrino Monte Carlo Generator: Physics and User Manual

    Energy Technology Data Exchange (ETDEWEB)

    Andreopoulos, Costas [Univ. of Liverpool (United Kingdom). Dept. of Physics; Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL). Particle Physics Dept.; Barry, Christopher [Univ. of Liverpool (United Kingdom). Dept. of Physics; Dytman, Steve [Univ. of Pittsburgh, PA (United States). Dept. of Physics and Astronomy; Gallagher, Hugh [Tufts Univ., Medford, MA (United States). Dept. of Physics and Astronomy; Golan, Tomasz [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Univ. of Rochester, NY (United States). Dept. of Physics and Astronomy; Hatcher, Robert [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Perdue, Gabriel [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Yarba, Julia [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-10-20

    GENIE is a suite of products for the experimental neutrino physics community. This suite includes i) a modern software framework for implementing neutrino event generators, a state-of-the-art comprehensive physics model and tools to support neutrino interaction simulation for realistic experimental setups (the Generator product), ii) extensive archives of neutrino, charged-lepton and hadron scattering data and software to produce a comprehensive set of data/MC comparisons (the Comparisons product), and iii) a generator tuning framework and fitting applications (the Tuning product). This book provides the definite guide for the GENIE Generator: It presents the software architecture and a detailed description of its physics model and official tunes. In addition, it provides a rich set of data/MC comparisons that characterise the physics performance of GENIE. Detailed step-by-step instructions on how to install and configure the Generator, run its applications and analyze its outputs are also included.

  1. Particle Physics Seminar: Towards 3+1 Neutrino Mixing

    CERN Multimedia

    Geneva University

    2011-01-01

    GENEVA UNIVERSITY Ecole de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92 Wednesday  12 October  2011 PARTICLE PHYSICS SEMINAR at 17.00 hrs – Stückelberg Auditorium “Towards 3+1 Neutrino Mixing” Par Prof. Carlo Giunti, INFN Torino I will review the recent experimental indications in favor of  short-baseline neutrino oscillations. I will discuss their interpretation in the framework of neutrino mixing schemes with one or more sterile neutrinos which have masses around the eV scale. Taking into account also cosmological constraints, I will present arguments in favor of 3+1 neutrino mixing with one sterile neutrino at the eV scale. Information : http://dpnc.unige.ch/seminaire/annonce.html Organizer : G. Pasztor

  2. Competition of neutrino and gravitational radiation in neutron star formation

    International Nuclear Information System (INIS)

    Kazanas, D.; Schramm, D.N.

    1976-01-01

    The possibility is explored that neutrino radiation, rather than gravitational radiation, may be the dominant way by which non-radial pulsations are damped out in a collapsing star. If this is so it implies that hopes of detecting gravity waves from supernovae explosions are very optimistic. Neutron stars and black holes are probably the collapsed central remnants of a supernovae explosion. These objects presumably originate from collapse of the cores of sufficiently massive stars, following the cessation of thermonuclear burning. Although there is at present no completely consistent detailed theory as to how collapse of the core and the subsequent supernova explosion take place, a general model exists for the final stages of stellar evolution and supernovae explosions. According to this model the electrons of a sufficiently massive stellar core, due to the high density and temperature, become absorbed by the protons through the reaction p + e - → n + v. Very large numbers of neutrinos, resulting from this and other thermal processes, such as pair annihilation, plasma decay, and Bremsstrahlung, are emitted, taking away most of the gravitational energy of the collapse. These neutrinos possibly drive ejection of the overlying stellar mantle, whilst the neutron-rich core collapses further to a condensed remnant. Gravitational radiation comes into play only at very late stages of the collapse. All of this implies that neutrino radiation might contribute to the decay of the non-radial oscillations of the collapsing core and the newly formed neutron star, possibly damping out these oscillations much faster than gravitational radiation. In order to obtain a more quantitative answer to the question the effects of neutrino radiation on the non-radial oscillations are examined. The implication is that neutrino radiation, by more rapid damping of the non-radial oscillations of a newly formed neutron star in a supernova explosion, would hinder gravitational radiation and

  3. Detecting Solar Neutrino Flare in Megaton and km3 detectors

    International Nuclear Information System (INIS)

    Fargion, Daniele; Di Giacomo, Paola

    2009-01-01

    To foresee a solar flare neutrino signal we infer its upper and lower bound. The upper bound was derived since a few years by general energy equipartition arguments on observed solar particle flare. The lower bound, the most compelling one for any guarantee neutrino signal, is derived by most recent records of hard Gamma bump due to solar flare on January 2005 (by neutral pion decay). Because neutral and charged pions (made by hadron scattering in the flare) are born on the same foot, their link is compelling: the observed gamma flux [Grechnev V.V. et al., (arXiv:0806.4424), Solar Physics, Vol. 1, October, (2008), 252] reflects into a corresponding one for the neutrinos, almost one to one. Moreover while gamma photons might be absorbed (in deep corona) or at least reduced inside the flaring plasma, the secondaries neutrino are not. So pion neutrinos should be even more abundant than gamma ones. Tens-hundred MeV neutrinos may cross undisturbed the whole Sun, doubling at least their rate respect a unique solar-side for gamma flare. Therefore we obtain minimal bounds opening a windows for neutrino astronomy, already at the edge of present but quite within near future Megaton neutrino detectors. Such detectors are considered mostly to reveal cosmic supernova background or rare Local Group (few Mpc) Supernovas events [Matthew D. Kistler et al. (0810.1959v1)]. However rarest (once a decade), brief (a few minutes) powerful solar neutrino 'flare' may shine and they may overcome by two to three order of magnitude the corresponding steady atmospheric neutrino noise on the Earth, leading in largest Neutrino detector at least to one or to meaning-full few events clustered signals. The voice of such a solar anti-neutrino flare component at a few tens MeVs may induce an inverse beta decay over a vanishing anti-neutrino solar background. Megaton or even inner ten Megaton Ice Cube detector at ten GeV threshold may also reveal traces in hardest energy of solar flares. Icecube

  4. Neutrino conversion in a neutrino flux: towards an effective theory of collective oscillations

    Science.gov (United States)

    Hansen, Rasmus S. L.; Smirnov, Alexei Yu.

    2018-04-01

    Collective oscillations of supernova neutrinos above the neutrino sphere can be completely described by the propagation of individual neutrinos in external potentials and are in this sense a linear phenomenon. An effective theory of collective oscillations can be developed based on certain assumptions about time dependence of these potentials. General conditions for strong flavor transformations are formulated and these transformations can be interpreted as parametric resonance effects induced by periodic modulations of the potentials. We study a simplified and solvable example, where a probe neutrino is propagating in a flux of collinear neutrinos, such that ν ν‑ interactions in the flux are absent. Still, this example retains the main feature—the coherent flavor exchange. Properties of the parametric resonance are studied, and it is shown that integrations over energies and emission points of the flux neutrinos suppress modulations of the potentials and therefore strong transformations. The transformations are also suppressed by changes in densities of background neutrinos and electrons.

  5. Neutrino beam plasma instability

    Indian Academy of Sciences (India)

    positron or electron–proton plasma in the context of early universe, stars and supernova ... proper. Of course, in their later work on kinetic theory (KT) [5] of neutrino plasma inter- .... for electron also with additional electric potential term.

  6. The great supernova of 1987

    International Nuclear Information System (INIS)

    Woosley, S.E.

    1989-01-01

    Seven hundred day after the explosion of the brightest supernova in four centuries, astronomers continue to be both excited and perplexed by its behavior. By now, the supernova has received considerably attention in the literature. This paper emphasizes several aspects of the supernova that continue to be of special interest. These include: the evolution of the presupernova star, why it was blue, what its composition and core structure were; the iron core mass, explosion mechanism, and certain aspects of the neutrino burst; the detailed isotopic composition of the ejecta; the light curve and the requirement for mixing; the expected continued evolution of the supernova at all wavelengths given both the presence of several radioactivities as well as a central collapsed object as a power source; and late breaking news regarding the pulsar

  7. Mighty Murines: Neutrino Physics at very high Energy Muon Colliders

    International Nuclear Information System (INIS)

    King, B.J.

    2000-01-01

    An overview is given of the potential for neutrino physics studies through parasitic use of the intense high energy neutrino beams that would be produced at future many-TeV muon colliders. Neutrino experiments clearly cannot compete with the collider physics. Except at the very highest energy muon colliders, the main thrust of the neutrino physics program would be to improve on the measurements from preceding neutrino experiments at lower energy muon colliders, particularly in the fields of B physics, quark mixing and CP violation. Muon colliders at the 10 TeV energy scale might already produce of order 10 8 B hadrons per year in a favorable and unique enough experimental environment to have some analytical capabilities beyond any of the currently operating or proposed B factories. The most important of the quark mixing measurements at these energies might well be the improved measurements of the important CKM matrix elements |V ub | and |V cb | and, possibly, the first measurements of |V td | in the process of flavor changing neutral current interactions involving a top quark loop. Muon colliders at the highest center-of-mass energies that have been conjectured, 100--1,000 TeV, would produce neutrino beams for neutrino-nucleon interaction experiments with maximum center-of-mass energies from 300--1,000 GeV. Such energies are close to, or beyond, the discovery reach of all colliders before the turn-on of the LHC. In particular, they are comparable to the 314 GeV center-of-mass energy for electron-proton scattering at the currently operating HERA collider and so HERA provides a convenient benchmark for the physics potential. It is shown that these ultimate terrestrial neutrino experiments, should they eventually come to pass, would have several orders of magnitude more luminosity than HERA. This would potentially open up the possibility for high statistics studies of any exotic particles, such as leptoquarks, that might have been previously discovered at these

  8. Computational models of stellar collapse and core-collapse supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Christian D; O' Connor, Evan [TAPIR, Mailcode 350-17, California Institute of Technology, Pasadena, CA (United States); Schnetter, Erik; Loeffler, Frank [Center for Computation and Technology, Louisiana State University, Baton Rouge, LA (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Princeton, NJ (United States); Livne, Eli, E-mail: cott@tapir.caltech.ed [Racah Institute of Physics, Hebrew University, Jerusalem (Israel)

    2009-07-01

    Core-collapse supernovae are among Nature's most energetic events. They mark the end of massive star evolution and pollute the interstellar medium with the life-enabling ashes of thermonuclear burning. Despite their importance for the evolution of galaxies and life in the universe, the details of the core-collapse supernova explosion mechanism remain in the dark and pose a daunting computational challenge. We outline the multi-dimensional, multi-scale, and multi-physics nature of the core-collapse supernova problem and discuss computational strategies and requirements for its solution. Specifically, we highlight the axisymmetric (2D) radiation-MHD code VULCAN/2D and present results obtained from the first full-2D angle-dependent neutrino radiation-hydrodynamics simulations of the post-core-bounce supernova evolution. We then go on to discuss the new code Zelmani which is based on the open-source HPC Cactus framework and provides a scalable AMR approach for 3D fully general-relativistic modeling of stellar collapse, core-collapse supernovae and black hole formation on current and future massively-parallel HPC systems. We show Zelmani's scaling properties to more than 16,000 compute cores and discuss first 3D general-relativistic core-collapse results.

  9. Neutrinos in Nuclear Physics

    Energy Technology Data Exchange (ETDEWEB)

    McKeown, Bob [bmck@jlab.org

    2015-06-01

    Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

  10. Implication of the solar neutrino experiments

    International Nuclear Information System (INIS)

    Dar, A.; Nussinov, S.

    1992-01-01

    The recent results from the KAMIOKANDE II and BAKSAN solar neutrino experiments, if correct, imply that lepton flavour is not conserved. The Mikheyev-Smirnov-Wolfenstein (MSW) solution to the solar neutrino problem, which was first exposed by the HOMESTAKE Cl experiment, fully explains also these results if the electron neutrino is mixed with the muon neutrino or the tau neutrino with mixing parameters Δm 2 ≅ 10 -6 eV 2 2 and sin 2 Θ ≅ 4 x 10 -2 . This MSW solution can be tested with the new generation of solar neutrino experiments which will be able to detect both the predicted distortion of the spectrum of 8 B solar νe's and the 'missing' ν e 's that appear as ν μ 's or ν τ 's. Further evidence may be obtained from the day-night effect and from the flavour content of the neutronization burst from the birth of a neutron star in a nearby supernova. Moreover, the MSW solution combined with the seesaw mechanism for generating neutrino masses further suggests m νe ≅ 10 -8 eV, m νμ ≅ 10 -3 cV, m ντ ≅ 10eV, and sin 2 2Θ ≅ 4x10 -2 for ν μ ν τ mixing. These predictions can be tested by previously proposed neutrino oscillation experiments at accelerators and by detecting neutrinos from a nearby supernova explosion. A tau neutrino with m ντ ≅ 10 eV can account for most of the dark matter in the Universe and is a viable candidate for the hot dark matter scenario of the formation of large scale structure in the Universe. (orig.)

  11. Supernovae theory: study of electro-weak processes during gravitational collapse of massive stars

    International Nuclear Information System (INIS)

    Fantina, A.F.

    2010-01-01

    The physics of supernova requires the understanding of both the complex hydrodynamical phenomena (such as transfer of energy, neutrino transport, shock) as well as the microphysics related to the dense and hot matter. In the framework of type II Supernovae theory, currently most of numerical simulations that simulate the supernova core collapse up to the formation and propagation of the shock wave fail to reproduce the observed explosion of the outer layers of massive stars. The reason for that could be due both to hydrodynamical phenomena such as rotation, convection, and general relativity, and to some micro-physical processes involved in the picture and not yet completely understood. The aim of this work is to investigate some of these micro-physical inputs, namely the electro-weak processes, that play a crucial role during the gravitational collapse and to analyse their effects by means of hydrodynamical simulations. Among nuclear processes which occur in core-collapse supernova, the most important electro-weak process taking place during the collapse is the electron capture; it occurs both on free protons and on protons bound in nuclei. This capture is essential to determine the evolution of the lepton fraction of the core during the neutronization phase. It affects the efficiency of the bounce and, as a consequence, the strength of the shock wave. Moreover, both the equation of state of supernova matter and electron capture rates in nuclei are modified by the effective mass of nucleons in nuclei, induced by many-body correlations in the dense medium, and its temperature dependence. In the first part of the thesis, a nuclear model aimed at studying the nuclear effective mass is presented. We show how we have included in a energy density functional (EDF) approach a surface-peaked nucleon effective mass to mimic some effects beyond Hartree-Fock. We have added a term to the Skyrme functional, in order to reproduce the enhancement of the effective mass at the

  12. Simulating nonlinear neutrino flavor evolution

    Energy Technology Data Exchange (ETDEWEB)

    Duan, H [Institute for Nuclear Theory, University of Washington, Seattle, WA 98195 (United States); Fuller, G M [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Carlson, J [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)], E-mail: hduan@phys.washington.edu, E-mail: gfuller@ucsd.edu, E-mail: carlson@lanl.gov

    2008-10-01

    We discuss a new kind of astrophysical transport problem: the coherent evolution of neutrino flavor in core collapse supernovae. Solution of this problem requires a numerical approach which can simulate accurately the quantum mechanical coupling of intersecting neutrino trajectories and the associated nonlinearity which characterizes neutrino flavor conversion. We describe here the two codes developed to attack this problem. We also describe the surprising phenomena revealed by these numerical calculations. Chief among these is that the nonlinearities in the problem can engineer neutrino flavor transformation which is dramatically different to that in standard Mikheyev-Smirnov-Wolfenstein treatments. This happens even though the neutrino mass-squared differences are measured to be small, and even when neutrino self-coupling is sub-dominant. Our numerical work has revealed potential signatures which, if detected in the neutrino burst from a Galactic core collapse event, could reveal heretofore unmeasurable properties of the neutrinos, such as the mass hierarchy and vacuum mixing angle {theta}{sub 13}.

  13. Simulating nonlinear neutrino flavor evolution

    Science.gov (United States)

    Duan, H.; Fuller, G. M.; Carlson, J.

    2008-10-01

    We discuss a new kind of astrophysical transport problem: the coherent evolution of neutrino flavor in core collapse supernovae. Solution of this problem requires a numerical approach which can simulate accurately the quantum mechanical coupling of intersecting neutrino trajectories and the associated nonlinearity which characterizes neutrino flavor conversion. We describe here the two codes developed to attack this problem. We also describe the surprising phenomena revealed by these numerical calculations. Chief among these is that the nonlinearities in the problem can engineer neutrino flavor transformation which is dramatically different to that in standard Mikheyev Smirnov Wolfenstein treatments. This happens even though the neutrino mass-squared differences are measured to be small, and even when neutrino self-coupling is sub-dominant. Our numerical work has revealed potential signatures which, if detected in the neutrino burst from a Galactic core collapse event, could reveal heretofore unmeasurable properties of the neutrinos, such as the mass hierarchy and vacuum mixing angle θ13.

  14. The methodology of the search for a correlated signal from a supernova explosion using the data of gravitational wave detectors and neutrino observatories

    Science.gov (United States)

    Gromov, M. B.

    2017-11-01

    The proposed methodology developed in cooperation of the LIGO, VIRGO, Borexino, LVD, and IceCube collaborations is based on a joint analysis of data from neutrino and gravitational wave detectors which record corresponding radiations, almost undistorted by the interstellar medium and propagating with similar speeds. This approach allows to increase the reliability of observations, detect the so-called Silent supernovae and explore the properties and generation mechanisms of gravitational waves.

  15. High energy neutrino astronomy and its telescopes

    International Nuclear Information System (INIS)

    Halzen, F.

    1995-01-01

    Doing astronomy with photons of energies in excess of a GeV has turned out to be extremely challenging. Efforts are underway to develop instruments that may push astronomy to wavelengths smaller than 10 -14 cm by mapping the sky using high energy neutrinos instead. Neutrino astronomy, born with the identification of thermonuclear fusion in the sun and the particle processes controlling the fate of a nearby supernova, will reach outside the galaxy and make measurements relevant to cosmology. The field is immersed in technology in the domains of particle physics to which many of its research goals are intellectually connected. To mind come the search for neutrino mass, cold dark matter (supersymmetric particles?) and the monopoles of the Standard Model. While a variety of collaborations are pioneering complementary methods by building telescopes with effective area in excess of 0.01 km 2 , we show here that the natural scale of a high energy neutrino telescope is 1 km 2 . With several thousand optical modules and a price tag unlikely to exceed 100 million dollars, the scope of a kilometer-scale instrument is similar to that of experiments presently being commissioned such as the SNO neutrino observatory in Canada and the Superkamiokande experiment in Japan

  16. Beta Beams: an accelerator based facility to explore Neutrino oscillation physics

    CERN Document Server

    Wildner, E; Hansen, C; De Melo Mendonca, T; Stora, T; Payet, J; Chance, A; Zorin, V; Izotov, I; Rasin, S; Sidorov, A; Skalyga, V; De Angelis, G; Prete, G; Cinausero, M; Kravchuk, VL; Gramegna, F; Marchi, T; Collazuol, G; De Rosa, G; Delbar, T; Loiselet, M; Keutgen, T; Mitrofanov, S; Lamy, T; Latrasse, L; Marie-Jeanne, M; Sortais, P; Thuillier, T; Debray, F; Trophime, C; Hass, M; Hirsh, T; Berkovits, D; Stahl, A

    2011-01-01

    The discovery that the neutrino changes flavor as it travels through space has implications for the Standard Model of particle physics (SM)[1]. To know the contribution of neutrinos to the SM, needs precise measurements of the parameters governing the neutrino oscillations. This will require a high intensity beam-based neutrino oscillation facility. The EURONu Design Study will review three currently accepted methods of realizing this facility (the so-called Super-Beams, Beta Beams and Neutrino Factories) and perform a cost assessment that, coupled with the physics performance, will give means to the European research authorities to make a decision on the layout and construction of the future European neutrino oscillation facility. ”Beta Beams” produce collimated pure electron neutrino and antineutrino beams by accelerating beta active ions to high energies and letting them decay in a race-track shaped storage ring. EURONu Beta Beams are based on CERNs infrastructure and the fact that some of the already ...

  17. Physics Potential of Very Intense Conventional Neutrino Beams

    CERN Document Server

    Gómez-Cadenas, J J; Burguet-Castell, J; Casper, David William; DOnega, M; Gilardoni, S S; Hernández, Pilar; Mezzetto, Mauro

    2001-01-01

    The physics potential of high intensity conventional beams is explored. We consider a low energy super beam which could be produced by a proposed new accelerator at CERN, the Super Proton Linac. Water Cherenkov and liquid oil scintillator detectors are studied as possible candidates for a neutrino oscillation experiment which could improve our current knowledge of the atmospheric parameters and measure or severely constrain the parameter connecting the atmospheric and solar realms. It is also shown that a very large water detector could eventually observe leptonic CP violation. The reach of such an experiment to the neutrino mixing parameters would lie in-between the next generation of neutrino experiments (MINOS, OPERA, etc) and a future neutrino factory.

  18. Discrete Symmetry Approach to Lepton Flavour, Neutrino Mixing and Leptonic CP Violation, and Neutrino Related Physics Beyond the Standard Theory

    OpenAIRE

    Girardi, Ivan

    2016-01-01

    The experimental evidences of neutrino oscillation, caused by non-zero neutrino masses and neutrino mixing, which were obtained in the experiments with solar, atmospheric, accelerator and reactor neutrinos, opened new field of research in elementary particle physics. The principal goal is to understand at fundamental level the mechanism giving rise to non-zero neutrino masses and neutrino mixing. The open fundamental questions include those of the nature — Dirac or Majorana — of massive neutr...

  19. Rotation-supported Neutrino-driven Supernova Explosions in Three Dimensions and the Critical Luminosity Condition

    Science.gov (United States)

    Summa, Alexander; Janka, Hans-Thomas; Melson, Tobias; Marek, Andreas

    2018-01-01

    We present the first self-consistent, 3D core-collapse supernova simulations performed with the PROMETHEUS-VERTEX code for a rotating progenitor star. Besides using the angular momentum of the 15 M ⊙ model as obtained in the stellar evolution calculation with an angular frequency of ∼10‑3 rad s‑1 (spin period of more than 6000 s) at the Si/Si–O interface, we also computed 2D and 3D cases with no rotation and with a ∼300 times shorter rotation period and different angular resolutions. In 2D, only the nonrotating and slowly rotating models explode, while rapid rotation prevents an explosion within 500 ms after bounce because of lower radiated neutrino luminosities and mean energies and thus reduced neutrino heating. In contrast, only the fast-rotating model develops an explosion in 3D when the Si/Si–O interface collapses through the shock. The explosion becomes possible by the support of a powerful standing accretion shock instability spiral mode, which compensates for the reduced neutrino heating and pushes strong shock expansion in the equatorial plane. Fast rotation in 3D leads to a “two-dimensionalization” of the turbulent energy spectrum (yielding roughly a ‑3 instead of a ‑5/3 power-law slope at intermediate wavelengths) with enhanced kinetic energy on the largest spatial scales. We also introduce a generalization of the “universal critical luminosity condition” of Summa et al. to account for the effects of rotation, and we demonstrate its viability for a set of more than 40 core-collapse simulations, including 9 and 20 M ⊙ progenitors, as well as black-hole-forming cases of 40 and 75 M ⊙ stars to be discussed in forthcoming papers.

  20. Infancy and youth of neutrino physics: some recollections

    International Nuclear Information System (INIS)

    Pontecorvo, B.

    1982-01-01

    The lecture on the history of neutrino physics is given. It is a collection of a few short, stories. Two of these, about Pauli and Fermi. A story about Ma orana work on Majorana fermions, which is following, has been covered much less extensively. There follow a few recollections, related to the experimental and theoretical work of the author in proposing and developing the Cl-A method of neutrino detection, in establishing the notion of weak processes and in proposing a new type of weak interaction investigations - high energy neutrino experiments

  1. Searches for astrophysical neutrinos with IceCube

    International Nuclear Information System (INIS)

    Williams, D.

    2014-01-01

    Powerful astrophysical objects such as active galactic nuclei (AGN), core collapse supernovae and gamma ray bursts (GRBs) are potential sources of the highest energy cosmic rays. Many models of cosmic ray proton acceleration predict a corresponding flux of neutrinos in the TeV-PeV energy range. The detection of astrophysical neutrinos requires the largest neutrino detector ever built: IceCube, a cubic-kilometer array located near the geographic South Pole. IceCube has been collecting data throughout its construction, which was complete in December 2010. Data from the partial IceCube detector have already set interesting limits on astrophysical neutrino fluxes, including stringent limits on neutrino production in GRBs. (authors)

  2. Research in nuclear astrophysics: stellar collapse and supernovae: Annual performance report, December 1, 1987--November 30, 1988

    International Nuclear Information System (INIS)

    Lattimer, J.M.; Yahil, A.

    1988-01-01

    This annual performance report summarizes the activity in the nuclear astrophysics research program in the Earth and Space Scienes Department at Stony Brook. The central themes in the projects that comprise this program are supernovae, neutron star formation, and the equation of state of hot, dense metter. There is a close coupling between the physics of nuclear matter and weak interactions on the one hand, and supernovae and neutron stars on the other. The properties of nuclear matter might at present best be delineated by astrophysical considerations. We have been active in researching both the nuclear physics of the equation of state and the astrophysics of stellar collapse, neutrino emission, and neutron star formation. 11 refs

  3. MAGNETAR-POWERED SUPERNOVAE IN TWO DIMENSIONS. I. SUPERLUMINOUS SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ke-Jung [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, Tokyo 181-8588 (Japan); Woosley, S. E.; Sukhbold, Tuguldur, E-mail: ken.chen@nao.ac.jp [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2016-11-20

    Previous studies have shown that the radiation emitted by a rapidly rotating magnetar embedded in a young supernova can greatly amplify its luminosity. These one-dimensional studies have also revealed the existence of an instability arising from the piling up of radiatively accelerated matter in a thin dense shell deep inside the supernova. Here, we examine the problem in two dimensions and find that, while instabilities cause mixing and fracture this shell into filamentary structures that reduce the density contrast, the concentration of matter in a hollow shell persists. The extent of the mixing depends upon the relative energy input by the magnetar and the kinetic energy of the inner ejecta. The light curve and spectrum of the resulting supernova will be appreciably altered, as will the appearance of the supernova remnant, which will be shellular and filamentary. A similar pile up and mixing might characterize other events where energy is input over an extended period by a centrally concentrated source, e.g., a pulsar, radioactive decay, a neutrino-powered wind, or colliding shells. The relevance of our models to the recent luminous transient ASASSN-15lh is briefly discussed.

  4. Neutrino and Gravitational-Wave Signatures of Quark Stars

    Science.gov (United States)

    Chu, Ming-chung; Leung, Shing Chi; Lin, Lap Ming; Zha, Shuai

    We study two types of supernovae — Type IA (SNIa) and Core-collapse supernovae (CCSNe), particularly how they may help to probe new physics. First, using a two-dimensional hydrodynamics code with a fifth-order shock capturing scheme, we simulate the explosions of dark matter admixed SNIa and find that the explosion energy and abundance of 56Ni produced are sensitive to the mass of admixed dark matter. A small admixture of dark matter may account for some sub-luminous SNIa observed. Second, by incorporating a hybrid equation of state (EOS) that includes a hadron-to-quark phase transition, we study possible formation of quark stars in CCSNe. We calculate the gravitational-wave and neutrino emissions from such a system, and we study the effects of the parameters in the EOS on such signals.

  5. Reconstruction of GeV Neutrino Events in LENA

    International Nuclear Information System (INIS)

    Moellenberg, R.; Feilitzsch, F. von; Goeger-Neff, M.; Hellgartner, D.; Lewke, T.; Meindl, Q.; Oberauer, L.; Potzel, W.; Tippmann, M.; Winter, J.; Wurm, M.; Peltoniemi, J.

    2011-01-01

    LENA (Low Energy Neutrino Astronomy) is a proposed next generation liquid-scintillator detector with about 50 kt target mass. Besides the detection of solar neutrinos, geoneutrinos, supernova neutrinos and the search for the proton decay, LENA could also be used as the far detector of a next generation neutrino beam. The present contribution outlines the status of the Monte Carlo studies towards the reconstruction of GeV neutrinos in LENA. Both the tracking capabilities at a few hundred MeV, most interesting for a beta beam, and above 1 GeV for a superbeam experiment are presented.

  6. Neutrino oscillations in strong magnetic fields

    International Nuclear Information System (INIS)

    Likhachev, G.G.; Studenikin, A.I.

    1994-07-01

    Neutrino conversion processes between two neutrino species and the corresponding oscillations induced by strong magnetic fields are considered. The value of the critical strength of magnetic field B cr as a function of characteristics of neutrinos in vacuum (Δm 2 ν , mixing angle θ), effective particle density of matter n eff , neutrino (transition) magnetic moment μ-tilde and energy E is introduced. It is shown that the neutrino conversion and oscillations effects induced by magnetic fields B ≥ B cr are important and may result in the depletion of the initial type of ν's in the bunch. A possible increase of these effects in the case when neutrinos pass through a sudden decrease of density of matter (''cross-boundary effect'') and applications to neutrinos from neutron stars and supernova are discussed. (author). 25 refs

  7. Core-collapse supernovae - successes, problems, and perspectives

    CERN Document Server

    Janka, H T

    2000-01-01

    Multi-dimensional hydrodynamic simulations of the post-bounce evolution of collapsed stellar iron cores have demonstrated that convective overturn between the stalled shock and the neutrinosphere can have an important effect on the neutrino-driven explosion mechanism. Whether a model yields a successful explosion or not, however, still depends on the power of neutrino energy deposition behind the stalled shock. The neutrino interaction with the stellar gas in the 'hot bubble' also determines the duration of the shock stagnation phase, the explosion energy, and the composition of the neutrino-heated supernova ejecta. More accurate models require a more precise calculation of the neutrino luminosities and spectra and of the angular distributions of the neutrinos in the heating region. Therefore it is necessary to improve the numerical treatment of the neutrino transport, to take into account convective processes inside the newly formed neutron star, and to develop a better understanding of the neutrino opacitie...

  8. Iron as a Detector for Neutrinos from Collapsing Stars

    Science.gov (United States)

    Ryazhskaya, O. G.; Semenov, S. V.

    2018-03-01

    The interaction of the flux of electron neutrinos arising owing to the effect of the rotationalcollapse mechanism at the first stage of supernova burst with LSD components, such as 56Fe (a large amount of this metal is contained in LSD as a shielding material) and C n H2 n+2 liquid scintillator, is investigated. Both charged and neutral channels of neutrino interaction with 12C and 56Fe are considered. Experimental data that make it possible to extract information necessary for calculating nuclear matrix elements appearing in the expression for the interaction cross section are used. The number of signals generated in LSD by the neutrino pulse from the Supernova 1987A is determined. The results of this study are in good agreement with experimental data.

  9. Supernova mechanisms: Before and after SN1987a

    International Nuclear Information System (INIS)

    Kahana, S.H.

    1987-01-01

    The impact of SN1987a on theoretical studies of the specific mechanism generating Type II supernovae is examined. The explosion energy extracted from analysis of the light curve for SN 1987a is on the edge of distinguishing between a prompt explosion from a hydrodynamic shock and a delayed, neutrino-induced, explosion. The detection of neutrinos from 1987a is also reanalyzed. 30 refs., 2 tabs

  10. A Detailed Comparison of Multidimensional Boltzmann Neutrino Transport Methods in Core-collapse Supernovae

    International Nuclear Information System (INIS)

    Richers, Sherwood; Nagakura, Hiroki; Ott, Christian D.; Dolence, Joshua; Sumiyoshi, Kohsuke; Yamada, Shoichi

    2017-01-01

    The mechanism driving core-collapse supernovae is sensitive to the interplay between matter and neutrino radiation. However, neutrino radiation transport is very difficult to simulate, and several radiation transport methods of varying levels of approximation are available. We carefully compare for the first time in multiple spatial dimensions the discrete ordinates (DO) code of Nagakura, Yamada, and Sumiyoshi and the Monte Carlo (MC) code Sedonu, under the assumptions of a static fluid background, flat spacetime, elastic scattering, and full special relativity. We find remarkably good agreement in all spectral, angular, and fluid interaction quantities, lending confidence to both methods. The DO method excels in determining the heating and cooling rates in the optically thick region. The MC method predicts sharper angular features due to the effectively infinite angular resolution, but struggles to drive down noise in quantities where subtractive cancellation is prevalent, such as the net gain in the protoneutron star and off-diagonal components of the Eddington tensor. We also find that errors in the angular moments of the distribution functions induced by neglecting velocity dependence are subdominant to those from limited momentum-space resolution. We briefly compare directly computed second angular moments to those predicted by popular algebraic two-moment closures, and we find that the errors from the approximate closures are comparable to the difference between the DO and MC methods. Included in this work is an improved Sedonu code, which now implements a fully special relativistic, time-independent version of the grid-agnostic MC random walk approximation.

  11. A Detailed Comparison of Multidimensional Boltzmann Neutrino Transport Methods in Core-collapse Supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Richers, Sherwood; Nagakura, Hiroki; Ott, Christian D. [TAPIR, Walter Burke Institute for Theoretical Physics, Mail code 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Dolence, Joshua [CCS-2, Los Alamos National Laboratory, P.O. Box 1663 Los Alamos, NM 87545 (United States); Sumiyoshi, Kohsuke [Numazu College of Technology, Ooka 3600, Numazu, Shizuoka 410-8501 (Japan); Yamada, Shoichi, E-mail: srichers@tapir.caltech.edu [Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan)

    2017-10-01

    The mechanism driving core-collapse supernovae is sensitive to the interplay between matter and neutrino radiation. However, neutrino radiation transport is very difficult to simulate, and several radiation transport methods of varying levels of approximation are available. We carefully compare for the first time in multiple spatial dimensions the discrete ordinates (DO) code of Nagakura, Yamada, and Sumiyoshi and the Monte Carlo (MC) code Sedonu, under the assumptions of a static fluid background, flat spacetime, elastic scattering, and full special relativity. We find remarkably good agreement in all spectral, angular, and fluid interaction quantities, lending confidence to both methods. The DO method excels in determining the heating and cooling rates in the optically thick region. The MC method predicts sharper angular features due to the effectively infinite angular resolution, but struggles to drive down noise in quantities where subtractive cancellation is prevalent, such as the net gain in the protoneutron star and off-diagonal components of the Eddington tensor. We also find that errors in the angular moments of the distribution functions induced by neglecting velocity dependence are subdominant to those from limited momentum-space resolution. We briefly compare directly computed second angular moments to those predicted by popular algebraic two-moment closures, and we find that the errors from the approximate closures are comparable to the difference between the DO and MC methods. Included in this work is an improved Sedonu code, which now implements a fully special relativistic, time-independent version of the grid-agnostic MC random walk approximation.

  12. Highlights from the Daya Bay Neutrino Experiment

    Directory of Open Access Journals (Sweden)

    Wang Zhe

    2014-04-01

    Full Text Available With an understanding of the energy response of the anti-neutrino detectors, the Daya Bay collaboration presents new results using gadolinium-neutron capture: sin2 2θ13 = 0.108 ± 0.028 and |Δmee2| = 2.55−0.18+0.21 × 10−3 eV2 with only the distortion information of the neutrino energy spectrum shape, and sin2 2θ13 = 0.090−0.009+0.008 and |Δmee2| = 2.59−0.20+0.19 10−3 eV2 with both the shape and event rate information. It is also demonstrated that a clean inverse beta decay sample can be extracted using hydrogen-neutron capture, which is now being used for neutrino oscillation measurement. The supernova online trigger is designed and implemented, which can provide about 100% efficiency for all SN1987A-scale supernova bursts within the Milky Way.

  13. Future neutrino oscillation facilities: physics priorities and open issues

    International Nuclear Information System (INIS)

    Blondel, Alain

    2006-01-01

    The recent discovery that neutrinos have masses opens a wide new field of experimentation. Accelerator-made neutrinos are essential in this program. Ideas for future facilities include Superbeam, Beta-beam, or Neutrino Factory, each associated with one or several options for detector systems. We now begin a 'scoping study' aimed at determining a set of key R and D projects enabling the community to propose an ambitious accelerator neutrino program at the turn of this decade. As an introduction to this study, a set of physics priorities, a summary of the perceived virtues and shortcomings of the various options, and a number of open questions are presented

  14. Possible explanation of the solar-neutrino puzzle

    Science.gov (United States)

    Bethe, H. A.

    1986-01-01

    A new derivation of the Mikheyev and Smirnov (1985) mechanism for the conversion of electron neutrinos into mu neutrinos when traversing the sun is presented, and various hypotheses set forth. It is assumed that this process is responsible for the detection of fewer solar neutrinos than expected, with neutrinos below a minimum energy, E(m), being undetectable. E(m) is found to be about 6 MeV, and the difference of the squares of the respective neutrino masses is calculated to be 6 X 10 to the - 5th sq eV. A restriction on the neutrino mixing angle is assumed such that the change of density near the crossing point is adiabatic. It is predicted that no resonance conversion of neutrinos will occur in the dense core of supernovae, but conversion of electron neutrinos to mu neutrinos will occur as they escape outward through a density region around 100.

  15. Can we scan the supernova model space for collective oscillations?

    International Nuclear Information System (INIS)

    Pehlivan, Y.; Subaşı, A. L.; Birol, S.; Ghazanfari, N.; Yuksel, H.; Balantekin, A. B.; Kajino, Toshitaka

    2016-01-01

    Collective neutrino oscillations in a core collapse supernova is a many-body phenomenon which can transform the neutrino energy spectra through emergent effects. One example of this behavior is the neutrino spectral swaps in which neutrinos of different flavors partially or completely exchange their spectra. In this talk, we address the question of how model dependent this behavior is. In particular, we demonstrate that these swaps may be independent of the mean field approximation that is typically employed in numerical treatments by showing an example of a spectral swap in the exact many-body picture.

  16. Neutrino factories

    International Nuclear Information System (INIS)

    Dydak, F.

    2002-01-01

    The discovery of neutrino oscillations marks a major milestone in the history of neutrino physics, and opens a window to what lies beyond the Standard Model. Many current and forthcoming experiments will answer open questions; however, a major step forward, up to and possibly including CP violation in the neutrino mixing matrix, will be offered by the neutrino beams from a neutrino factory. The neutrino factory is a new concept for producing neutrino beams of unprecedented quality in terms of intensity, flavour composition, and precision of the beam parameters. These beams enable the exploration of otherwise inaccessible domains in neutrino oscillation physics by exploiting baselines of planetary dimensions. Suitable detectors pose formidable challenges but seem within reach with only moderate extrapolations from existing technologies. Although the main physics attraction of the neutrino factory is in the area of neutrino oscillations, an interesting spectrum of further opportunities ranging from high-precision, high-rate neutrino scattering to physics with high-intensity stopped muons comes with it

  17. Neutrino Physics: what we have learned so far and what

    Energy Technology Data Exchange (ETDEWEB)

    Nunokawa, Hiroshi [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil)

    2013-07-01

    Full text: In the last 15 years, after the discovery of neutrino oscillation by the Super-Kamiokande collaboration in 1998, an enormous progress has been made in neutrino physics. Thanks to the recent results from reactor experiments which finally measured the angle theta13 whose value was not known for a long time, we now know all the mixing angles in the standard three flavor scheme. Yet there are several unknowns and open questions about neutrinos. I will try to discuss what we have learned so far and what we would like to know more about neutrinos.we would like to know more about neutrinos.

  18. New possibilities in supernova accretion phase from dense matter effect

    Science.gov (United States)

    Chakraborty, S.; Mirizzi, A.; Saviano, N.

    2012-07-01

    We carry out a detailed analysis of the supernova (SN) neutrino flavor evolution during the accretion phase (at post-bounce times tpb Mikheyev-Smirnov-Wolfenstein effect in the SN mantle and Earth matter effects, can reveal the neutrino mass hierarchy in the likely case that the mixing angle θ13 is not very small.

  19. Impact of neutrino flavor oscillations on the neutrino-driven wind nucleosynthesis of an electron-capture supernova

    NARCIS (Netherlands)

    Pllumbi, E.; Tamborra, I.; Wanajo, S.; Janka, H.-T.; Hüdepohl, L.

    2015-01-01

    Neutrino oscillations, especially to light sterile states, can affect nucleosynthesis yields because of their possible feedback effect on the electron fraction (Ye). For the first time, we perform nucleosynthesis calculations for neutrino-driven wind trajectories from the neutrino-cooling phase of

  20. Searches for sterile neutrinos and other BSM physics with the IceCube detector

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    In this talk I will show the potential of IceCube to explore new physics in the context of neutrino oscillations. In the first part I will discus the recent analysis on the O(eV) light sterile neutrino that, up to date, gives the most stringent bounds in the region motivated by the short baseline neutrino anomalies. In the second part I will present other new physics scenarios which might be tested at neutrino telescopes.

  1. Electronic Instrumentations for High Energy Particle Physics and Neutrino Physics

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00452332

    The present dissertation describes design, qualification and operation of several electronic instrumentations for High Energy Particle Physics experiments (LHCb) and Neutrino Physics experiments (CUORE and CUPID). Starting from 2019, the LHCb experiment at the LHC accelerator will be upgraded to operate at higher luminosity and several of its detectors will be redesigned. The RICH detector will require a completely new optoelectronic readout system. The development of such system has already reached an advanced phase, and several tests at particle beam facilities allowed to qualify the performance of the entire system. In order to achieve a higher stability and a better power supply regulation for the front-end chip, a rad-hard low dropout linear regulator, named ALDO, has been developed. Design strategies, performance tests and results from the irradiation campaign are presented. In the Neutrino Physics field, large-scale bolometric detectors, like those adopted by CUORE and its future upgrade CUPID, offer u...

  2. Impact of nuclear 'pasta' on neutrino transport in collapsing stellar cores

    International Nuclear Information System (INIS)

    Sonoda, Hidetaka; Watanabe, Gentaro; Sato, Katsuhiko; Takiwaki, Tomoya; Yasuoka, Kenji; Ebisuzaki, Toshikazu

    2007-01-01

    Nuclear 'pasta', nonspherical nuclei in dense matter, is predicted to occur in collapsing supernova cores. We show how pasta phases affect the neutrino transport cross section via weak neutral current using several nuclear models. This is the first calculation of the neutrino opacity of the phases with rod-like and slab-like nuclei taking account of finite temperature effects, which are well described by the quantum molecular dynamics. We also show that pasta phases can occupy 10-20% of the mass of supernova cores in the later stage of the collapse

  3. Toward connecting core-collapse supernova theory with observations

    Science.gov (United States)

    Handy, Timothy A.

    We study the evolution of the collapsing core of a 15 solar mass blue supergiant supernova progenitor from the moment shortly after core bounce until 1.5 seconds later. We present a sample of two- and three-dimensional hydrodynamic models parameterized to match the explosion energetics of supernova SN 1987A. We focus on the characteristics of the flow inside the gain region and the interplay between hydrodynamics, self-gravity, and neutrino heating, taking into account uncertainty in the nuclear equation of state. We characterize the evolution and structure of the flow behind the shock in terms the accretion flow dynamics, shock perturbations, energy transport and neutrino heating effects, and convective and turbulent motions. We also analyze information provided by particle tracers embedded in the flow. Our models are computed with a high-resolution finite volume shock capturing hydrodynamic code. The code includes source terms due to neutrino-matter interactions from a light-bulb neutrino scheme that is used to prescribe the luminosities and energies of the neutrinos emerging from the core of the proto-neutron star. The proto-neutron star is excised from the computational domain, and its contraction is modeled by a time-dependent inner boundary condition. We find the spatial dimensionality of the models to be an important contributing factor in the explosion process. Compared to two-dimensional simulations, our three-dimensional models require lower neutrino luminosities to produce equally energetic explosions. We estimate that the convective engine in our models is 4% more efficient in three dimensions than in two dimensions. We propose that this is due to the difference of morphology of convection between two- and three-dimensional models. Specifically, the greater efficiency of the convective engine found in three-dimensional simulations might be due to the larger surface-to-volume ratio of convective plumes, which aids in distributing energy deposited by

  4. Future perspectives in neutrino physics: The Laguna-LBNO case

    CERN Document Server

    Buizza Avanzini, M

    2013-01-01

    LAGUNA-LBNO is a Design Study funded by the European Commission to develop the de- sign of a deep underground neutrino observatory; its physics program involves the study of neutrino oscillations at long baselines, the investigation of the Grand Unication of elemen- tary forces and the detection of neutrinos from known and unknown astrophysical sources. Building on the successful format and on the ndings of the previous LAGUNA Design Study, LAGUNA-LBNO is more focused and is specically considering Long Baseline Neutrino Oscil- lations (LBNO) with neutrino beams from CERN. Two sites, Frejus (in France at 130 km) and Pyhasalmi (in Finland at 2300 km), are being considered. Three dierent detector technolo- gies are being studied: Water Cherenkov, Liquid Scintillator and Liquid Argon. Recently the LAGUNA-LBNO consortium has submitted an Expression of Interest for a very long baseline neutrino experiment, selecting as a rst priority the option of a Liquid Argon detector at Pyhasalmi.

  5. Development of a Low-power, Low-cost, Front-end Electronics Module for Large-Scale Distributed Neutrino Detectors. Final Report

    International Nuclear Information System (INIS)

    Saltzberg, David

    2009-01-01

    Final technical report for Advanced detector research program award at UCLA. To date, only two objects have been observed using neutrino messengers. However, each observation illustrates the incisive power of neutrino observations for both astrophysics and for particle physics. The first source observed with neutrinos was the Sun by Ray Davis and collaborators using a chlorine nuclear target. Until then, only electromagnetic emissions produced near the surface of the Sun had been studied. With neutrinos, the hydrogen-burning core of the Sun is directly observed - we now know even with its predicted intensity. Because neutrinos are so deeply penetrating, they give a direct window on the most energetic processes in the universe, unobscured by photospheres, fireballs and materials opaque to light. The solar neutrino observations largest impact however was felt by particle physicists. This experiment and follow-up experiments with water, heavy water, and gallium all observed the well-known deficit of the predicted number of electron-type neutrinos. After several decades of research using both astrophysical and accelerator observations inspired by this result, the effect is now known to be due the transformation of electron-type neutrinos into one of the two other flavors of neutrinos. These observations were the first and strongest data that showed particle physicists that the mass (propagating) eigenstates and weak eigenstates of neutrinos and their weak eigenstates are not identical. In addition, this transformation was the first indication that neutrinos have a small, but non-zero mass. The second, and latest, discovery of a cosmic neutrinos source was the explosion of supernova SN1987a in the Large Magellanic Cloud. In a type IIa supernova, 99% of the energy is expected to be released in the form of neutrinos since no other energy could escape the dense environment. The observations of SN1987a confirmed the theoretical models of this type of stellar core collapse

  6. Proceedings of the First Workshop on Exotic Physics with Neutrino Telescopes

    CERN Document Server

    EPNT06

    2007-01-01

    The first Workshop on Exotic Physics with Neutrino Telescopes was held in Uppsala, Sweden, between September 20-22, 2006. The workshop was based on talks giving an overview of relevant subjects both from experiments and theorists. The theory talks provided guidelines for experimental searches, and covered the signatures expected in neutrino telescopes from different dark matter candidates, micro black holes, models with extra dimensions, non--standard neutrino oscillation scenarios and new neutrino interactions. The existing and planned neutrino telescopes presented their results and perspectives on the mentioned subjects.

  7. ANTARES: An Undersea Neutrino telescope

    CERN Multimedia

    2002-01-01

    The ANTARES (Astronomy with a Neutrino Telescope and ${Abyss}$ environmental RESearch) deep-sea neutrino telescope is designed to search for neutrinos of astrophysical origin. Neutrinos are unique probes of the high energy universe; being neutral they are not deflected by magnetic fields and interacting weakly they can readily escape from the densest regions of the universe. Potential sources of neutrino are galactic (e.g supernova remnants, micro-quasars) and extra-galactic (e.g active galactic nuclei, gamma-ray bursters). Annihilation of dark matter particles in the Sun or Galactic Centre is another well motivated potential source of extra terrestrial neutrinos. The ANTARES detector is located 40 km off the coast of Toulon (France) at a depth of 2475m in the Mediterranean Sea. Being located in the Northern hemisphere it studies the Southern sky and in particular has the Galactic Centre in its field of view. Since 2006, the detector has operated continuously in a partial configuration. The detector was compl...

  8. Experimental Neutrino Physics: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Charles E.; Maricic, Jelena

    2012-09-05

    Experimental studies of neutrino properties, with particular emphasis on neutrino oscillation, mass and mixing parameters. This research was pursued by means of underground detectors for reactor anti-neutrinos, measuring the flux and energy spectra of the neutrinos. More recent investigations have been aimed and developing detector technologies for a long-baseline neutrino experiment (LBNE) using a neutrino beam from Fermilab.

  9. Physics potential of the CERN-MEMPHYS neutrino oscillation project

    International Nuclear Information System (INIS)

    Campagne, J.E.; Maltoni, M.; Mezzetto, M.; Schwetz, T.

    2006-03-01

    We consider the physics potential of CERN based neutrino oscillation experiments consisting of a Beta Beam (βB) and a Super Beam (SPL) sending neutrinos to MEMPHYS, a 440 kt water Cerenkov detector at Frejus, at a distance of 130 km from CERN. The θ 13 discovery reach and the sensitivity to CP violation are investigated, including a detailed discussion of parameter degeneracies and systematical errors. For βB and SPL sensitivities similar to the ones of the phase II of the T2K experiment (T2HK) are obtained, where the results for the CERN-MEMPHYS experiments are less affected by systematical uncertainties. We point out that by a combination of data from βB and SPL a measurement with antineutrinos is not necessary and hence the same physics results can be obtained within about half of the measurement time compared to one single experiment. Furthermore, it is shown how including data from atmospheric neutrinos in the MEMPHYS detector allows to resolve parameter degeneracies and, in particular, provides sensitivity to the neutrino mass hierarchy and the octant of θ 23 . (author)

  10. Physics capabilities of the SNO+ experiment

    Science.gov (United States)

    Arushanova, E.; Back, A. R.; SNO+ Collaboration

    2017-09-01

    SNO+ will soon enter its first phase of physics data-taking. The Canadian-based detector forms part of the SNOLAB underground facility, in a Sudbury nickel mine; its location providing more than two kilometres of rock overburden. We present an overview of the SNO+ experiment and its physics capabilities. Our primary goal is the search for neutrinoless double-beta decay, where our expected sensitivity would place an upper limit of 1.9 × 1026 y, at 90% CL, on the half-life of neutrinoless double-beta decay in 130Te. We also intend to build on the success of SNO by studying the solar neutrino spectrum. In the unloaded scintillator phase SNO+ has the ability to make precision measurements of the fluxes of low-energy pep neutrinos and neutrinos from the CNO cycle. Other physics goals include: determining the spectrum of reactor antineutrinos, to further constrain Δ {m}122; detecting neutrinos produced by a galactic supernova and investigating certain modes of nucleon decay.

  11. Nuclear effects on bremsstrahlung neutrino rates of astrophysical interest

    International Nuclear Information System (INIS)

    Stoica, Sabin; Horvath, J.E.

    2002-01-01

    We calculate in this work the rates for the neutrino pair production by nucleon-nucleon bremsstrahlung taking into account the full contribution from a nuclear one-pion-exchange potential. It is shown that if the temperatures are low enough (T≤20 MeV), the integration over the nuclear part can be done for the general case, ranging from the completely degenerate (D) to the nondegenerate (ND) regime. We find that the inclusion of the full nuclear contribution enhances the neutrino pair production by nn and pp bremsstrahlung by a factor of about 2 in both the D and ND limits when compared with previous calculations. This result may be relevant for the physical conditions of interest in the semitransparent regions near the neutrinosphere in type II supernovae, cooling of neutron stars, and other astrophysical situations

  12. THE POTENTIAL FOR NEUTRINO PHYSICS AT MUON COLLIDERS AND DEDICATED HIGH CURRENT MUON STORAGE RINGS

    International Nuclear Information System (INIS)

    BIGI, I.; BOLTON, T.; FORMAGGIO, J.; HARRIS, D.; MORFIN, J.; SPENTZOURIS, P.; YU, J.; KAYSER, B.; KING, B.J.; MCFARLAND, K.; PETROV, A.; SCHELLMAN, H.; VELASCO, M.; SHROCK, R.

    2000-01-01

    Conceptual design studies are underway for both muon colliders and high-current non-colliding muon storage rings that have the potential to become the first true neutrino factories. Muon decays in long straight sections of the storage rings would produce uniquely intense and precisely characterized two-component neutrino beams--muon neutrinos plus electron antineutrinos from negative muon decays and electron neutrinos plus muon antineutrinos from positive muons. This article presents a long-term overview of the prospects for these facilities to greatly extend the capabilities for accelerator-based neutrino physics studies for both high rate and long baseline neutrino experiments. As the first major physics topic, recent experimental results involving neutrino oscillations have motivated a vigorous design effort towards dedicated neutrino factories that would store muon beams of energies 50 GeV or below. These facilities hold the promise of neutrino oscillation experiments with baselines up to intercontinental distances and utilizing well understood beams that contain, for the first time, a substantial component of multi-GeV electron-flavored neutrinos. In deference to the active and fast-moving nature of neutrino oscillation studies, the discussion of long baseline physics at neutrino factories has been limited to a concise general overview of the relevant theory, detector technologies, beam properties, experimental goals and potential physics capabilities. The remainder of the article is devoted to the complementary high rate neutrino experiments that would study neutrino-nucleon and neutrino-electron scattering and would be performed at high performance detectors placed as close as is practical to the neutrino production straight section of muon storage rings in order to exploit beams with transverse dimensions as small as a few tens of centimeters

  13. THE POTENTIAL FOR NEUTRINO PHYSICS AT MUON COLLIDERS AND DEDICATED HIGH CURRENT MUON STORAGE RINGS

    Energy Technology Data Exchange (ETDEWEB)

    BIGI,I.; BOLTON,T.; FORMAGGIO,J.; HARRIS,D.; MORFIN,J.; SPENTZOURIS,P.; YU,J.; KAYSER,B.; KING,B.J.; MCFARLAND,K.; PETROV,A.; SCHELLMAN,H.; VELASCO,M.; SHROCK,R.

    2000-05-11

    Conceptual design studies are underway for both muon colliders and high-current non-colliding muon storage rings that have the potential to become the first true neutrino factories. Muon decays in long straight sections of the storage rings would produce uniquely intense and precisely characterized two-component neutrino beams--muon neutrinos plus electron antineutrinos from negative muon decays and electron neutrinos plus muon antineutrinos from positive muons. This article presents a long-term overview of the prospects for these facilities to greatly extend the capabilities for accelerator-based neutrino physics studies for both high rate and long baseline neutrino experiments. As the first major physics topic, recent experimental results involving neutrino oscillations have motivated a vigorous design effort towards dedicated neutrino factories that would store muon beams of energies 50 GeV or below. These facilities hold the promise of neutrino oscillation experiments with baselines up to intercontinental distances and utilizing well understood beams that contain, for the first time, a substantial component of multi-GeV electron-flavored neutrinos. In deference to the active and fast-moving nature of neutrino oscillation studies, the discussion of long baseline physics at neutrino factories has been limited to a concise general overview of the relevant theory, detector technologies, beam properties, experimental goals and potential physics capabilities. The remainder of the article is devoted to the complementary high rate neutrino experiments that would study neutrino-nucleon and neutrino-electron scattering and would be performed at high performance detectors placed as close as is practical to the neutrino production straight section of muon storage rings in order to exploit beams with transverse dimensions as small as a few tens of centimeters.

  14. NDM06: 2. symposium on neutrinos and dark matter in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Akerib, D; Arnold, R; Balantekin, A; Barabash, A; Barnabe, H; Baroni, S; Baussan, E; Bellini, F; Bobisut, F; Bongrand, M; Brofferio, Ch; Capolupo, A; Enrico, Carrara; Caurier, E; Cermak, P; Chardin, G; Civitarese, O; Couchot, F; Kerret, H de; Heros, C de los; Detwiler, J; Dracos, M; Drexlin, G; Efremenko, Y; Ejiri, H; Falchini, E; Fatemi-Ghomi, N; Finger, M Ch; Finger Miroslav, Ch; Fiorillo, G; Fiorini, E; Fracasso, S; Frekers, D; Fushimi, K I; Gascon, J; Genest, M H; Georgadze, A; Giuliani, A; Goeger-Neff, M; Gomez-Cadenas, J J; Greenfield, M; H de Jesus, J; Hallin, A; Hannestad, St; Hirai, Sh; Hoessl, J; Ianni, A; Ieva, M B; Ishihara, N; Jullian, S; Kaim, S; Kajino, T; Kayser, B; Kochetov, O; Kopylov, A; Kortelainen, M; Kroeninger, K; Lachenmaier, T; Lalanne, D; Lanfranchi, J C; Lazauskas, R; Lemrani, A R; Li, J; Mansoulie, B; Marquet, Ch; Martinez, J; Mirizzi, A; Morfin Jorge, G; Motz, H; Murphy, A; Navas, S; Niedermeier, L; Nishiura, H; Nomachi, M; Nones, C.; Ogawa, H; Ogawa, I; Ohsumi, H; Palladino, V; Paniccia, M; Perotto, L; Petcov, S; Pfister, S; Piquemal, F; Poves, A; Praet, Ch; Raffelt, G; Ramberg, E; Rashba, T; Regnault, N; Ricol, J St; Rodejohann, W; Rodin, V; Ruz, J; Sander, Ch; Sarazin, X; Scholberg, K; Sigl, G; Simkovic, F; Sousa, A; Stanev, T; Strolger, L; Suekane, F; Thomas, J; Titov, N; Toivanen, J; Torrente-Lujan, E; Tytler, D; Vala, L; Vignaud, D; Vitiello, G; Vogel, P; Volkov, G; Volpe, C; Wong, H; Yilmazer, A

    2006-07-01

    This second symposium on neutrinos and dark matter is aimed at discussing research frontiers and perspectives on currently developing subjects. It has been organized around 6 topics: 1) double beta decays, theory and experiments (particularly: GERDA, MOON, SuperNEMO, CUORE, CANDLES, EXO, and DCBA), 2) neutrinos and nuclear physics, 3) single beta decays and nu-responses, 4) neutrino astrophysics, 5) solar neutrino review, and 6) neutrino oscillations. This document is made up of the slides of the presentations.

  15. NDM06: 2. symposium on neutrinos and dark matter in nuclear physics

    International Nuclear Information System (INIS)

    Akerib, D.; Arnold, R.; Balantekin, A.; Barabash, A.; Barnabe, H.; Baroni, S.; Baussan, E.; Bellini, F.; Bobisut, F.; Bongrand, M.; Brofferio, Ch.; Capolupo, A.; Carrara Enrico; Caurier, E.; Cermak, P.; Chardin, G.; Civitarese, O.; Couchot, F.; Kerret, H. de; Heros, C. de los; Detwiler, J.; Dracos, M.; Drexlin, G.; Efremenko, Y.; Ejiri, H.; Falchini, E.; Fatemi-Ghomi, N.; Finger, M.Ch.; Finger Miroslav, Ch.; Fiorillo, G.; Fiorini, E.; Fracasso, S.; Frekers, D.; Fushimi, K.I.; Gascon, J.; Genest, M.H.; Georgadze, A.; Giuliani, A.; Goeger-Neff, M.; Gomez-Cadenas, J.J.; Greenfield, M.; H de Jesus, J.; Hallin, A.; Hannestad, St.; Hirai, Sh.; Hoessl, J.; Ianni, A.; Ieva, M.B.; Ishihara, N.; Jullian, S.; Kaim, S.; Kajino, T.; Kayser, B.; Kochetov, O.; Kopylov, A.; Kortelainen, M.; Kroeninger, K.; Lachenmaier, T.; Lalanne, D.; Lanfranchi, J.C.; Lazauskas, R.; Lemrani, A.R.; Li, J.; Mansoulie, B.; Marquet, Ch.; Martinez, J.; Mirizzi, A.; Morfin Jorge, G.; Motz, H.; Murphy, A.; Navas, S.; Niedermeier, L.; Nishiura, H.; Nomachi, M.; Nones, C.; Ogawa, H.; Ogawa, I.; Ohsumi, H.; Palladino, V.; Paniccia, M.; Perotto, L.; Petcov, S.; Pfister, S.; Piquemal, F.; Poves, A.; Praet, Ch.; Raffelt, G.; Ramberg, E.; Rashba, T.; Regnault, N.; Ricol, J.St.; Rodejohann, W.; Rodin, V.; Ruz, J.; Sander, Ch.; Sarazin, X.; Scholberg, K.; Sigl, G.; Simkovic, F.; Sousa, A.; Stanev, T.; Strolger, L.; Suekane, F.; Thomas, J.; Titov, N.; Toivanen, J.; Torrente-Lujan, E.; Tytler, D.; Vala, L.; Vignaud, D.; Vitiello, G.; Vogel, P.; Volkov, G.; Volpe, C.; Wong, H.; Yilmazer, A.

    2006-01-01

    This second symposium on neutrinos and dark matter is aimed at discussing research frontiers and perspectives on currently developing subjects. It has been organized around 6 topics: 1) double beta decays, theory and experiments (particularly: GERDA, MOON, SuperNEMO, CUORE, CANDLES, EXO, and DCBA), 2) neutrinos and nuclear physics, 3) single beta decays and nu-responses, 4) neutrino astrophysics, 5) solar neutrino review, and 6) neutrino oscillations. This document is made up of the slides of the presentations

  16. Collaborative Research: Neutrinos and Nucleosynthesis in Hot Dense Matter

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, Gail [North Carolina State Univ., Raleigh, NC (United States); Schaefer, Thomas [North Carolina State Univ., Raleigh, NC (United States)

    2015-05-31

    The major accomplishments of the research activity at NC State during the five years were: to determine the effects and signatures of turbulence in supernova, to calculate r-process and supernova nucleosynthesis, and to determine the neutrino scattering and flavor transformation that occurs in black hole accretion disks. This report goes into more detail on them.

  17. Flipped neutrino emissivity of hot plasma in supernova core

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, A.; Dutta, S. (Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India))

    1994-05-15

    We calculate the energy loss due to wrong-helicity sterile neutrinos produced due to the decay of plasmons into flipped neutrino pairs at relativistic temperatures and densities in the core of a nascent neutron star and compare our results with other processes.

  18. The R-process: supernovae and other sources of the heaviest elements

    International Nuclear Information System (INIS)

    Thielemann, F.-K.; Moceli, D.; Panov, I.

    2007-01-01

    Rapid neutron capture in stellar explosions is responsible for the heaviest elements in nature, up to Th, U and beyond. This nucleosynthesis process, the r-process, is unique in the sense that a combination of nuclear physics far from stability (masses, half-lives, neutron-capture and photodisintegration, neutron-induced and beta-delayed fission and last but not least neutrino-nucleus interactions) is intimately linked to ejecta from astrophysical explosions (core collapse supernovae or other neutron star related events). The astrophysics and nuclear physics involved still harbor many uncertainties, either in the extrapolation of nuclear properties far beyond present experimental explorations or in the modeling of multidimensional, general relativistic (neutrino-radiation) hydrodynamics with rotation and possibly required magnetic fields. Observational clues about the working of the r-process are mostly obtained from solar abundances and from the abundance evolution of the heaviest elements as a function of galactic age, as witnessed in old extremely metal-poor stars. They contain information whether the r-process is identical for all stellar events, how abundance features develop with galactic time and whether the frequency of r-process events is comparable to that of average core collapse supernovae - producing oxygen through titanium, as well as iron-group nuclei. The theoretical modeling of the r-process has advanced from simple approaches, where the use of static neutron densities and temperatures can aid to test the influence of nuclear properties far from stability on abundance features, to more realistic expansions with a given entropy, global neutron/proton ratio and expansion timescales, as expected from explosive astrophysical events. The direct modeling in astrophysical events such as supernovae still faces the problem whether the required conditions can be met. (author)

  19. Probing neutrino mass hierarchy by comparing the charged-current and neutral-current interaction rates of supernova neutrinos

    OpenAIRE

    Lai, Kwang-Chang; Lee, Fei-Fan; Lee, Feng-Shiuh; Lin, Guey-Lin; Liu, Tsung-Che; Yang, Yi

    2016-01-01

    The neutrino mass hierarchy is one of the neutrino fundamental properties yet to be determined. We introduce a method to determine neutrino mass hierarchy by comparing the interaction rate of neutral current (NC) interactions, $\

  20. Physics at a future Neutrino Factory and super-beam facility

    NARCIS (Netherlands)

    Bandyopadhyay, A.; Choubey, S.; Gandhi, R.; Goswami, S.; Roberts, B. L.; Bouchez, J.; Antoniadis, I.; Ellis, J.; Giudice, G. F.; Schwetz, T.; Umasankar, S.; Karagiorgi, G.; Aguilar-Arevalo, A.; Conrad, J. M.; Shaevitz, M. H.; Pascoli, S.; Geer, S.; Campagne, J. E.; Rolinec, M.; Blondel, A.; Campanelli, M.; Kopp, J.; Lindner, M.; Peltoniemi, J.; Dornan, P. J.; Long, K.; Matsushita, T.; Rogers, C.; Uchida, Y.; Dracos, M.; Whisnant, K.; Casper, D.; Chen, Mu-Chun; Popov, B.; Aysto, J.; Marfatia, D.; Okada, Y.; Sugiyama, H.; Jungmann, K.; Lesgourgues, J.; Zisman, M.; Tortola, M. A.; Friedland, A.; Davidson, S.; Antusch, S.; Biggio, C.; Donini, A.; Fernandez-Martinez, E.; Gavela, B.; Maltoni, M.

    2009-01-01

    The conclusions of the Physics Working Group of the International Scoping Study of a future Neutrino Factory and super-beam facility (the ISS) are presented. The ISS was carried out by the international community between NuFact05, (the 7th International Workshop on Neutrino Factories and

  1. Cosmic neutrinos as a probe of TeV-scale physics

    Energy Technology Data Exchange (ETDEWEB)

    Ahlers, M.

    2007-02-15

    Ultra-high energy cosmic neutrinos are versatile probes of astrophysics, astronomy, and particle physics. They represent the messengers of hadronic processes in cosmic accelerators and survive the propagation through the interstellar medium practically unscathed. We investigate the neutrino fluxes associated with optically thin proton sources which provide a diagnostic of the transition between galactic and extragalactic cosmic rays. The center of mass energies in collisions of these cosmic neutrinos with atomic nuclei in the atmosphere or the Earth's interior easily exceed those so far reached in man-made accelerators. We discuss the prospects of observing supersymmetric neutrino interactions with Cherenkov telescopes and speculate about a neutrino component in extremely high energy cosmic rays from exotic interactions in the atmosphere. (orig.)

  2. Standard and Nonstandard Neutrino-Nucleus Reactions Cross Sections and Event Rates to Neutrino Detection Experiments

    Directory of Open Access Journals (Sweden)

    D. K. Papoulias

    2015-01-01

    Full Text Available In this work, we explore ν-nucleus processes from a nuclear theory point of view and obtain results with high confidence level based on accurate nuclear structure cross sections calculations. Besides cross sections, the present study includes simulated signals expected to be recorded by nuclear detectors and differential event rates as well as total number of events predicted to be measured. Our original cross sections calculations are focused on measurable rates for the standard model process, but we also perform calculations for various channels of the nonstandard neutrino-nucleus reactions and come out with promising results within the current upper limits of the corresponding exotic parameters. We concentrate on the possibility of detecting (i supernova neutrinos by using massive detectors like those of the GERDA and SuperCDMS dark matter experiments and (ii laboratory neutrinos produced near the spallation neutron source facilities (at Oak Ridge National Lab by the COHERENT experiment. Our nuclear calculations take advantage of the relevant experimental sensitivity and employ the severe bounds extracted for the exotic parameters entering the Lagrangians of various particle physics models and specifically those resulting from the charged lepton flavour violating μ-→e- experiments (Mu2e and COMET experiments.

  3. Sterile neutrinos beyond LSND at the neutrino factory

    International Nuclear Information System (INIS)

    Meloni, Davide; Tang Jian; Winter, Walter

    2010-01-01

    We discuss the effects of one additional sterile neutrino at the Neutrino Factory. Compared to earlier analyses, which have been motivated by Liquid Scintillator Neutrino Detector (LSND) results, we do not impose any constraint on the additional mass squared splitting. This means that the additional mass eigenstate could, with small mixings, be located among the known ones, as it is suggested by the recent analysis of cosmological data. We use a self-consistent framework at the Neutrino Factory without any constraints on the new parameters. We demonstrate for a combined short and long baseline setup that near detectors can provide the expected sensitivity at the LSND-motivated Δm 41 2 -range, while some sensitivity can also be obtained in the region of the atmospheric mass splitting from the long baselines. We point out that limits on such very light sterile neutrinos may also be obtained from a reanalysis of atmospheric and solar neutrino oscillation data, as well as from supernova neutrino observations. In the second part of the analysis, we compare our sensitivity with the existing literature using additional assumptions, such as |Δm 41 2 |>>|Δm 31 2 |, leading to averaging of the fast oscillations in the far detectors. We demonstrate that while the Neutrino Factory has excellent sensitivity compared to existing studies using similar assumptions, one has to be very careful interpreting these results for a combined short and long baseline setup where oscillations could occur in the near detectors. We also test the impact of additional ν τ detectors at the short and long baselines, and we do not find a substantial improvement of the sensitivities.

  4. Nuclear Neutrino Spectra in Late Stellar Evolution

    Science.gov (United States)

    Misch, G. Wendell; Sun, Yang; Fuller, George

    2018-05-01

    Neutrinos are the principle carriers of energy in massive stars, beginning from core carbon burning and continuing through core collapse and after the core bounce. In fact, it may be possible to detect neutrinos from nearby pre-supernova stars. Therefore, it is of great interest to understand the neutrino energy spectra from these stars. Leading up to core collapse, beginning around core silicon burning, nuclei become dominant producers of neutrinos, particularly at high neutrino energy, so a systematic study of nuclear neutrino spectra is desirable. We have done such a study, and we present our sd-shell model calculations of nuclear neutrino energy spectra for nuclei in the mass number range A = 21 - 35. Our study includes neutrinos produced by charged lepton capture, charged lepton emission, and neutral current nuclear deexcitation. Previous authors have tabulated the rates of charged current nuclear weak interactions in astrophysical conditions, but the present work expands on this not only by providing neutrino energy spectra, but also by including the heretofore untabulated neutral current de-excitation neutrino pairs.

  5. New neutrino detection technology: application of massive water detectors to accelerator neutrino physics

    International Nuclear Information System (INIS)

    Sulak, L.

    1982-01-01

    In surveying the field of new detector technology, it appears that the advent of massive, inexpensive water Cerenkov detectors may have a significant impact on future neutrino physics. These detectors offer the volumes necessary to perform experiments at very low fluxes, for example with long neutrino flight paths or with rare neutrino species (e.g. upsilon/sub e/. As an illustration of the potential on the new techniques, we consider in detail an experiment dedicated to the study of the time evolution of a neutrino beam enriched with #betta# /sub e/'s. The highest fluexes f #betta# /sub e/ appear to be achieved with current beam lines at the Brookhaven AGS or the CERN PS. An array of massive, inexpensive detectors allows a configuration optimized for good sensitivity to neutrino eigenmass differences from 0.6 eV to 20 eV and mixing angles down to 15 0 (comparable to the Cabibbo angle). The #betta# /sub e/ beam is formed using k 0 /sub e/ 3 decays. A simultaneously produced #betta#sigma phi beam from K 0 /sub e/ 3 decay serves as the normalizer. Pion generated #betta#sigma phi's are suppressed to limit background. The detector consists of a series of seven water Cerenkov modules (each with 175T fiducial mass), judiciously spaced along the #betta# line to provide flight paths from 40m to 1000m. Simulation and reconstruction neutrino events in a detector similar to the one considered show sufficient resolution in angle, energy, position and event timing relative to the beam

  6. Neutrino Astrophysics in Slowly Rotating Spacetimes Permeated by Nonlinear Electrodynamics Fields

    Science.gov (United States)

    Mosquera Cuesta, Herman J.

    2017-02-01

    Many theoretical and astrophysical arguments involve consideration of the effects of super strong electromagnetic fields and the rotation during the late stages of core-collapse supernovae. In what follows, we solve Einstein field equations that are minimally coupled to an arbitrary (current-free) Born-Infeld nonlinear Lagrangian L(F,G) of electrodynamics (NLED) in the slow rotation regime a ≪ r+ (outer horizon size), up to first order in a/r. We cross-check the physical properties of such NLED spacetime w.r.t. against the Maxwell one. A study case on both neutrino flavor ({ν }e\\to {ν }μ ,{ν }τ ) oscillations and flavor+helicity (spin) flip ({ν }e\\to {\\overline{ν }}μ ,τ ) gyroscopic precession proves that in the spacetime of a slowly rotating nonlinear charged black hole (RNCBH), the neutrino dynamics translates into a positive enhancement of the r-process (reduction of the electron fraction Ye < 0.5). Consequently, it guarantees successful hyperluminous core-collapse supernova explosions due to the enlargement of the number and amount of decaying nuclide species. This posits that, as far as the whole luminosity is concerned, hypernovae will be a proof of the formation of astrophysical RNCBH.

  7. MSW regeneration of solar and supernova V in the earth

    International Nuclear Information System (INIS)

    Cribier, M.; Lagage, P.O.; Rich, J.; Spiro, M.; Vignaud, D.

    1987-01-01

    We discuss the MSW (Mikheyev-Smirnov-Wolfenstein) effect for different radiochemical and real-time neutrino experiments taking into account the effects of the passage through the earth for solar and supernova neutrinos. We emphasize that V e regeneration in the earth can lead to measurable increases in counting rates and to a time dependent V e energy spectrum. Such observations would verify the presence of the MSW effect and lead to a restriction on the allowed values of neutrino mass differences and mixing angles

  8. Multidimensional pair-instability supernova simulations and their multi-messenger signals

    Science.gov (United States)

    Gilmer, Matthew; Kozyreva, Alexandra; Hirschi, Raphael; Fröhlich, Carla; Wright, Warren; Kneller, James P.; Yusof, Norhasliza

    2018-01-01

    Pair-Instability supernovae (PISNe) are an exotic class of supernovae which, in addition to being fascinating in its own right (its very existence is a topic of debate), may be important for many areas of astrophysics (early stellar populations, galaxy/chemical evolution, cosmic reionization, etc.). At present, PISNe are one of the three proposed mechanisms for explaining superluminous supernovae, though one major drawback is that PISN models predict longer rise times to peak luminosity than seen in observations of superluminous supernovae. Model rise times can be reduced by having shallower progenitor envelopes and/or outward mixing of radioactive material during the explosions. Here, we present explosions and light curves for four progenitor models, with relatively shallow envelopes, that span the PISN mass range. Our light curves exhibit significantly shorter rise times than other PISNe light curves. In addition, we investigate the effects of a multidimensional treatment during the explosive burning phase of PISNe, including the first such treatment in 3D. We find a small amount of outward mixing of radioactive Ni-56 that increases with the number of dimensions, however this mixing is insufficient to significantly alter the light curve rise time. We find significant mixing between the silicon and oxygen rich layers, especially in 3D, that may affect model spectra and should be investigated in the future. Finally, we present the neutrino signals expected from our most massive and least massive PISN models. Accounting for neutrino oscillations, we compute the expected event rates for current and future neutrino detectors.

  9. Constraining dynamical neutrino mass generation with cosmological data

    Energy Technology Data Exchange (ETDEWEB)

    Koksbang, S.M.; Hannestad, S., E-mail: koksbang@phys.au.dk, E-mail: sth@phys.au.dk [Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark)

    2017-09-01

    We study models in which neutrino masses are generated dynamically at cosmologically late times. Our study is purely phenomenological and parameterized in terms of three effective parameters characterizing the redshift of mass generation, the width of the transition region, and the present day neutrino mass. We also study the possibility that neutrinos become strongly self-interacting at the time where the mass is generated. We find that in a number of cases, models with large present day neutrino masses are allowed by current CMB, BAO and supernova data. The increase in the allowed mass range makes it possible that a non-zero neutrino mass could be measured in direct detection experiments such as KATRIN. Intriguingly we also find that there are allowed models in which neutrinos become strongly self-interacting around the epoch of recombination.

  10. Solar neutrino spectrum, sterile neutrinos and additional radiation in the Universe

    International Nuclear Information System (INIS)

    Holanda, Pedro Cunha de

    2011-01-01

    Full text: Recent results from the SNO, Super-Kamiokande and Borexino experiments do not show the expected upturn of the energy spectrum of events (the ratio R ≡ N obs /N SSM ) at low energies. At the same time, cosmological observations testify for possible existence of additional relativistic degrees of freedom in the early Universe: ΔN eff = 1 - 2. These facts strengthen the case of very light sterile neutrino, ν s , with Δm 0 1 2 ∼ (0.7 - 2) . 10 -5 e V 2 , which mixes weakly with the active neutrinos. The ν s mixing in the mass eigenstate ν 1 characterized by sin 2 2∝ ∼ 10 -3 can explain an absence of the upturn. The mixing of ν s in the eigenstate ν 3 with sin 2 β ∼ 0.1 leads to production of ν s via oscillations in the Universe and to additional contribution Δ N eff ∼ 0.7 -1 before the big bang nucleosynthesis and later. Such a mixing can be tested in forthcoming experiments with the atmospheric neutrinos as well as in future accelerator long baseline experiments. It has substantial impact on conversion of the supernova neutrinos. We perform a qualitative and quantitative analysis of solar neutrino data including a fourth neutrino with different mixings with the active neutrino sector.(author)

  11. Neutrino mass hierarchy and matter effects

    OpenAIRE

    Smirnov, Alexei Yu.

    2013-01-01

    Matter effects modify the mixing and the effective masses of neutrinos in a way which depends on the neutrino mass hierarchy. Consequently, for normal and inverted hierarchies the oscillations and flavor conversion results are different. Sensitivity to the mass hierarchy appears whenever the matter effects on the 1-3 mixing and mass splitting become substantial. This happens in supernovae in wide energy range and in the matter of the Earth. The Earth density profile is a multi-layer medium wh...

  12. Supernova pointing with low- and high-energy neutrino detectors

    CERN Document Server

    Tomás, R; Raffelt, Georg G; Kachelriess, M; Dighe, Amol S

    2003-01-01

    A future galactic SN can be located several hours before the optical explosion through the MeV-neutrino burst, exploiting the directionality of $nu$-$e$-scattering in a water Cherenkov detector such as Super-Kamiokande. We study the statistical efficiency of different methods for extracting the SN direction and identify a simple approach that is nearly optimal, yet independent of the exact SN neutrino spectra. We use this method to quantify the increase in the pointing accuracy by the addition of gadolinium to water, which tags neutrons from the inverse beta decay background. We also study the dependence of the pointing accuracy on neutrino mixing scenarios and initial spectra. We find that in the ``worst case'' scenario the pointing accuracy is $8^circ$ at 95% C.L. in the absence of tagging, which improves to $3^circ$ with a tagging efficiency of 95%. At a megaton detector, this accuracy can be as good as $0.6^circ$. A TeV-neutrino burst is also expected to be emitted contemporaneously with the SN optical ex...

  13. The Intermediate Neutrino Program

    CERN Document Server

    Adams, C.; Ankowski, A.M.; Asaadi, J.A.; Ashenfelter, J.; Axani, S.N.; Babu, K.; Backhouse, C.; Band, H.R.; Barbeau, P.S.; Barros, N.; Bernstein, A.; Betancourt, M.; Bishai, M.; Blucher, E.; Bouffard, J.; Bowden, N.; Brice, S.; Bryan, C.; Camilleri, L.; Cao, J.; Carlson, J.; Carr, R.E.; Chatterjee, A.; Chen, M.; Chen, S.; Chiu, M.; Church, E.D.; Collar, J.I.; Collin, G.; Conrad, J.M.; Convery, M.R.; Cooper, R.L.; Cowen, D.; Davoudiasl, H.; de Gouvea, A.; Dean, D.J.; Deichert, G.; Descamps, F.; DeYoung, T.; Diwan, M.V.; Djurcic, Z.; Dolinski, M.J.; Dolph, J.; Donnelly, B.; Dwyer, D.A.; Dytman, S.; Efremenko, Y.; Everett, L.L.; Fava, A.; Figueroa-Feliciano, E.; Fleming, B.; Friedland, A.; Fujikawa, B.K.; Gaisser, T.K.; Galeazzi, M.; Galehouse, D.C.; Galindo-Uribarri, A.; Garvey, G.T.; Gautam, S.; Gilje, K.E.; Gonzalez-Garcia, M.; Goodman, M.C.; Gordon, H.; Gramellini, E.; Green, M.P.; Guglielmi, A.; Hackenburg, R.W.; Hackenburg, A.; Halzen, F.; Han, K.; Hans, S.; Harris, D.; Heeger, K.M.; Herman, M.; Hill, R.; Holin, A.; Huber, P.; Jaffe, D.E.; Johnson, R.A.; Joshi, J.; Karagiorgi, G.; Kaufman, L.J.; Kayser, B.; Kettell, S.H.; Kirby, B.J.; Klein, J.R.; Kolomensky, Yu. G.; Kriske, R.M.; Lane, C.E.; Langford, T.J.; Lankford, A.; Lau, K.; Learned, J.G.; Ling, J.; Link, J.M.; Lissauer, D.; Littenberg, L.; Littlejohn, B.R.; Lockwitz, S.; Lokajicek, M.; Louis, W.C.; Luk, K.; Lykken, J.; Marciano, W.J.; Maricic, J.; Markoff, D.M.; Martinez Caicedo, D.A.; Mauger, C.; Mavrokoridis, K.; McCluskey, E.; McKeen, D.; McKeown, R.; Mills, G.; Mocioiu, I.; Monreal, B.; Mooney, M.R.; Morfin, J.G.; Mumm, P.; Napolitano, J.; Neilson, R.; Nelson, J.K.; Nessi, M.; Norcini, D.; Nova, F.; Nygren, D.R.; Orebi Gann, G.D.; Palamara, O.; Parsa, Z.; Patterson, R.; Paul, P.; Pocar, A.; Qian, X.; Raaf, J.L.; Rameika, R.; Ranucci, G.; Ray, H.; Reyna, D.; Rich, G.C.; Rodrigues, P.; Romero, E.Romero; Rosero, R.; Rountree, S.D.; Rybolt, B.; Sanchez, M.C.; Santucci, G.; Schmitz, D.; Scholberg, K.; Seckel, D.; Shaevitz, M.; Shrock, R.; Smy, M.B.; Soderberg, M.; Sonzogni, A.; Sousa, A.B.; Spitz, J.; St. John, J.M.; Stewart, J.; Strait, J.B.; Sullivan, G.; Svoboda, R.; Szelc, A.M.; Tayloe, R.; Thomson, M.A.; Toups, M.; Vacheret, A.; Vagins, M.; Van de Water, R.G.; Vogelaar, R.B.; Weber, M.; Weng, W.; Wetstein, M.; White, C.; White, B.R.; Whitehead, L.; Whittington, D.W.; Wilking, M.J.; Wilson, R.J.; Wilson, P.; Winklehner, D.; Winn, D.R.; Worcester, E.; Yang, L.; Yeh, M.; Yokley, Z.W.; Yoo, J.; Yu, B.; Yu, J.; Zhang, C.

    2015-01-01

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summ...

  14. Self-consistent theory of charged current neutrino-nucleus reactions

    Energy Technology Data Exchange (ETDEWEB)

    Paar, Nils; Marketin, Tomislav; Vretenar, Dario [Physics Department, Faculty of Science, University Zagreb (Croatia); Ring, Peter [Physik-Department, Technischen Universitaet Muenchen, D-85748 Muenchen (Germany)

    2009-07-01

    A novel theoretical framework has been introduced for description of neutrino induced reactions with nuclei. The properties of target nuclei are determined in a self-consistent way using relativistic mean-field framework based on effective Lagrangians with density dependent meson-nucleon vertex functions. The weak lepton-hadron interaction is expressed in the standard current-current form, the nuclear ground state is described in the relativistic Hartree-Bogolyubov model, and the relevant transitions to excited nuclear states are calculated in the proton-neutron relativistic quasiparticle random phase approximation. This framework has been employed in studies of charged-current neutrino reactions involving nuclei of relevance for neutrino detectors, r-process nuclei, and neutrino-nucleus cross sections averaged over measured neutrino fluxes and supernova neutrino distributions.

  15. The Intermediate Neutrino Program

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C.; et al.

    2015-03-23

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

  16. The Intermediate Neutrino Program

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C. [Yale Univ., New Haven, CT (United States); Alonso, J. R. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ankowski, A. M. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Asaadi, J. A. [Syracuse Univ., NY (United States); Ashenfelter, J. [Yale Univ., New Haven, CT (United States); Axani, S. N. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Babu, K [Oklahoma State Univ., Stillwater, OK (United States); Backhouse, C. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Band, H. R. [Yale Univ., New Haven, CT (United States); Barbeau, P. S. [Duke Univ., Durham, NC (United States); Barros, N. [Univ. of Pennsylvania, Philadelphia, PA (United States); Bernstein, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Betancourt, M. [Illinois Inst. of Technology, Chicago, IL (United States); Bishai, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blucher, E. [Univ. of Chicago, IL (United States); Bouffard, J. [State Univ. of New York (SUNY), Albany, NY (United States); Bowden, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brice, S. [Illinois Inst. of Technology, Chicago, IL (United States); Bryan, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Camilleri, L. [Columbia Univ., New York, NY (United States); Cao, J. [Inst. of High Energy Physics, Beijing (China); Carlson, J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carr, R. E. [Columbia Univ., New York, NY (United States); Chatterjee, A. [Univ. of Texas, Arlington, TX (United States); Chen, M. [Univ. of California, Irvine, CA (United States); Chen, S. [Tsinghua Univ., Beijing (China); Chiu, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Church, E. D. [Illinois Inst. of Technology, Chicago, IL (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Collar, J. I. [Univ. of Chicago, IL (United States); Collin, G. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Conrad, J. M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Convery, M. R. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Cooper, R. L. [Indiana Univ., Bloomington, IN (United States); Cowen, D. [Pennsylvania State Univ., University Park, PA (United States); Davoudiasl, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gouvea, A. D. [Northwestern Univ., Evanston, IL (United States); Dean, D. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Deichert, G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Descamps, F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); DeYoung, T. [Michigan State Univ., East Lansing, MI (United States); Diwan, M. V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Djurcic, Z. [Argonne National Lab. (ANL), Argonne, IL (United States); Dolinski, M. J. [Drexel Univ., Philadelphia, PA (United States); Dolph, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Donnelly, B. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Dwyer, D. A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dytman, S. [Univ. of Pittsburgh, PA (United States); Efremenko, Y. [Univ. of Tennessee, Knoxville, TN (United States); Everett, L. L. [Univ. of Wisconsin, Madison, WI (United States); Fava, A. [University of Padua, Padova (Italy); Figueroa-Feliciano, E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Fleming, B. [Yale Univ., New Haven, CT (United States); Friedland, A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fujikawa, B. K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gaisser, T. K. [Univ. of Delaware, Newark, DE (United States); Galeazzi, M. [Univ. of Miami, FL (United States); Galehouse, DC [Univ. of Akron, OH (United States); Galindo-Uribarri, A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Garvey, G. T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gautam, S. [Tribhuvan Univ., Kirtipur (Nepal); Gilje, K. E. [Illinois Inst. of Technology, Chicago, IL (United States); Gonzalez-Garcia, M. [Stony Brook Univ., NY (United States); Goodman, M. C. [Argonne National Lab. (ANL), Argonne, IL (United States); Gordon, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gramellini, E. [Yale Univ., New Haven, CT (United States); Green, M. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guglielmi, A. [University of Padua, Padova (Italy); Hackenburg, R. W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hackenburg, A. [Yale Univ., New Haven, CT (United States); Halzen, F. [Univ. of Wisconsin, Madison, WI (United States); Han, K. [Yale Univ., New Haven, CT (United States); Hans, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Harris, D. [Illinois Inst. of Technology, Chicago, IL (United States); Heeger, K. M. [Yale Univ., New Haven, CT (United States); Herman, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hill, R. [Univ. of Chicago, IL (United States); Holin, A. [Univ. College London, Bloomsbury (United Kingdom); Huber, P. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Jaffe, D. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Johnson, R. A. [Univ. of Cincinnati, OH (United States); Joshi, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Karagiorgi, G. [Univ. of Manchester (United Kingdom); Kaufman, L. J. [Indiana Univ., Bloomington, IN (United States); Kayser, B. [Illinois Inst. of Technology, Chicago, IL (United States); Kettell, S. H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kirby, B. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Klein, J. R. [Univ. of Texas, Arlington, TX (United States); Kolomensky, Y. G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Kriske, R. M. [Univ. of Minnesota, Minneapolis, MN (United States); Lane, C. E. [Drexel Univ., Philadelphia, PA (United States); Langford, T. J. [Yale Univ., New Haven, CT (United States); Lankford, A. [Univ. of California, Irvine, CA (United States); Lau, K. [Univ. of Houston, TX (United States); Learned, J. G. [Univ. of Hawaii, Honolulu, HI (United States); Ling, J. [Univ. of Illinois, Urbana-Champaign, IL (United States); Link, J. M. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Lissauer, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Littenberg, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Littlejohn, B. R. [Illinois Inst. of Technology, Chicago, IL (United States); Lockwitz, S. [Illinois Inst. of Technology, Chicago, IL (United States); Lokajicek, M. [Inst. of Physics of the Academy of Sciences of Czech Republic, Prague (Czech Republic); Louis, W. C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Luk, K. [Univ. of California, Berkeley, CA (United States); Lykken, J. [Illinois Inst. of Technology, Chicago, IL (United States); Marciano, W. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Maricic, J. [Univ. of Hawaii, Honolulu, HI (United States); Markoff, D. M. [North Carolina Central Univ., Durham, NC (United States); Caicedo, D. A. M. [Illinois Inst. of Technology, Chicago, IL (United States); Mauger, C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mavrokoridis, K. [Univ. of Liverpool (United Kingdom); McCluskey, E. [Illinois Inst. of Technology, Chicago, IL (United States); McKeen, D. [Univ. of Washington, Seattle, WA (United States); McKeown, R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Mills, G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mocioiu, I. [Pennsylvania State Univ., University Park, PA (United States); Monreal, B. [Univ. of California, Santa Barbara, CA (United States); Mooney, M. R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Morfin, J. G. [Illinois Inst. of Technology, Chicago, IL (United States); Mumm, P. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Napolitano, J. [Temple Univ., Philadelphia, PA (United States); Neilson, R. [Drexel Univ., Philadelphia, PA (United States); Nelson, J. K. [College of William and Mary, Williamsburg, VA (United States); Nessi, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Norcini, D. [Yale Univ., New Haven, CT (United States); Nova, F. [Univ. of Texas, Austin, TX (United States); Nygren, D. R. [Univ. of Texas, Arlington, TX (United States); Gann, GDO [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Palamara, O. [Illinois Inst. of Technology, Chicago, IL (United States); Parsa, Z. [Brookhaven National Lab. (BNL), Upton, NY (United States); Patterson, R. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Paul, P. [Stony Brook Univ., NY (United States); Pocar, A. [Univ. of Massachusetts, Amherst, MA (United States); Qian, X. [Brookhaven National Lab. (BNL), Upton, NY (United States); Raaf, J. L. [Illinois Inst. of Technology, Chicago, IL (United States); Rameika, R. [Illinois Inst. of Technology, Chicago, IL (United States); Ranucci, G. [National Inst. of Nuclear Physics, Milano (Italy); Ray, H. [Univ. of Florida, Gainesville, FL (United States); Reyna, D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rich, G. C. [Triangle Universities Nuclear Lab., Durham, NC (United States); Rodrigues, P. [Univ. of Rochester, NY (United States); Romero, E. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Rosero, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Rountree, S. D. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Rybolt, B. [Univ. of Tennessee, Knoxville, TN (United States); Sanchez, M. C. [Iowa State Univ., Ames, IA (United States); Santucci, G. [Stony Brook Univ., NY (United States); Schmitz, D. [Univ. of Chicago, IL (United States); Scholberg, K. [Duke Univ., Durham, NC (United States); Seckel, D. [Univ. of Delaware, Newark, DE (United States); Shaevitz, M. [Columbia Univ., New York, NY (United States); Shrock, R. [Stony Brook Univ., NY (United States); Smy, M. B. [Univ. of California, Irvine, CA (United States); Soderberg, M. [Syracuse Univ., NY (United States); Sonzogni, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Sousa, A. B. [Univ. of Cincinnati, OH (United States); Spitz, J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); John, J. M. S. [Univ. of Cincinnati, OH (United States); Stewart, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Strait, J. B. [Illinois Inst. of Technology, Chicago, IL (United States); Sullivan, G. [Univ. of Maryland, College Park, MD (United States); Svoboda, R. [Univ. of California, Davis, CA (United States); Szelc, A. M. [Yale Univ., New Haven, CT (United States); Tayloe, R. [Indiana Univ., Bloomington, IN (United States); Thomson, M. A. [Univ. of Cambridge (United Kingdom); Toups, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Vacheret, A. [Univ. of Oxford (United Kingdom); Vagins, M. [Univ. of California, Irvine, CA (United States); Water, R. G. V. D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vogelaar, R. B. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Weber, M. [Bern (Switzerland); Weng, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wetstein, M. [Univ. of Chicago, IL (United States); White, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); White, B. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Whitehead, L. [Univ. of Houston, TX (United States); Whittington, D. W. [Indiana Univ., Bloomington, IN (United States); Wilking, M. J. [Stony Brook Univ., NY (United States); Wilson, R. J. [Colorado State Univ., Fort Collins, CO (United States); Wilson, P. [Illinois Inst. of Technology, Chicago, IL (United States); Winklehner, D. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Winn, D. R. [Fairfield Univ., CT (United States); Worcester, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yang, L. [Univ. of Illinois, Urbana-Champaign, IL (United States); Yeh, M [Brookhaven National Lab. (BNL), Upton, NY (United States); Yokley, Z. W. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Yoo, J. [Illinois Inst. of Technology, Chicago, IL (United States); Yu, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yu, J. [Univ. of Texas, Arlington, TX (United States); Zhang, C. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-04-03

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

  17. A NEW MONTE CARLO METHOD FOR TIME-DEPENDENT NEUTRINO RADIATION TRANSPORT

    International Nuclear Information System (INIS)

    Abdikamalov, Ernazar; Ott, Christian D.; O'Connor, Evan; Burrows, Adam; Dolence, Joshua C.; Löffler, Frank; Schnetter, Erik

    2012-01-01

    Monte Carlo approaches to radiation transport have several attractive properties such as simplicity of implementation, high accuracy, and good parallel scaling. Moreover, Monte Carlo methods can handle complicated geometries and are relatively easy to extend to multiple spatial dimensions, which makes them potentially interesting in modeling complex multi-dimensional astrophysical phenomena such as core-collapse supernovae. The aim of this paper is to explore Monte Carlo methods for modeling neutrino transport in core-collapse supernovae. We generalize the Implicit Monte Carlo photon transport scheme of Fleck and Cummings and gray discrete-diffusion scheme of Densmore et al. to energy-, time-, and velocity-dependent neutrino transport. Using our 1D spherically-symmetric implementation, we show that, similar to the photon transport case, the implicit scheme enables significantly larger timesteps compared with explicit time discretization, without sacrificing accuracy, while the discrete-diffusion method leads to significant speed-ups at high optical depth. Our results suggest that a combination of spectral, velocity-dependent, Implicit Monte Carlo and discrete-diffusion Monte Carlo methods represents a robust approach for use in neutrino transport calculations in core-collapse supernovae. Our velocity-dependent scheme can easily be adapted to photon transport.

  18. A NEW MONTE CARLO METHOD FOR TIME-DEPENDENT NEUTRINO RADIATION TRANSPORT

    Energy Technology Data Exchange (ETDEWEB)

    Abdikamalov, Ernazar; Ott, Christian D.; O' Connor, Evan [TAPIR, California Institute of Technology, MC 350-17, 1200 E California Blvd., Pasadena, CA 91125 (United States); Burrows, Adam; Dolence, Joshua C. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Ivy Lane, Princeton, NJ 08544 (United States); Loeffler, Frank; Schnetter, Erik, E-mail: abdik@tapir.caltech.edu [Center for Computation and Technology, Louisiana State University, 216 Johnston Hall, Baton Rouge, LA 70803 (United States)

    2012-08-20

    Monte Carlo approaches to radiation transport have several attractive properties such as simplicity of implementation, high accuracy, and good parallel scaling. Moreover, Monte Carlo methods can handle complicated geometries and are relatively easy to extend to multiple spatial dimensions, which makes them potentially interesting in modeling complex multi-dimensional astrophysical phenomena such as core-collapse supernovae. The aim of this paper is to explore Monte Carlo methods for modeling neutrino transport in core-collapse supernovae. We generalize the Implicit Monte Carlo photon transport scheme of Fleck and Cummings and gray discrete-diffusion scheme of Densmore et al. to energy-, time-, and velocity-dependent neutrino transport. Using our 1D spherically-symmetric implementation, we show that, similar to the photon transport case, the implicit scheme enables significantly larger timesteps compared with explicit time discretization, without sacrificing accuracy, while the discrete-diffusion method leads to significant speed-ups at high optical depth. Our results suggest that a combination of spectral, velocity-dependent, Implicit Monte Carlo and discrete-diffusion Monte Carlo methods represents a robust approach for use in neutrino transport calculations in core-collapse supernovae. Our velocity-dependent scheme can easily be adapted to photon transport.

  19. Theoretical particle physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses the following topics: heavy quark physics; Chiral Perturbation theory; Skyrmions; quarkonia and nuclear matter; parity violating nuclear matrix elements; how precisely can one determine M U /M D ; weak scale baryogenesis; constraints of baryogenesis form neutrino masses; majorons, double beta decay, supernova 1987A; rare decays; chiral lattice fermions; Pauli-Villars regulator and the Higgs mass bound; and Higgs and Yukawa interactions

  20. Suppression of Self-Induced Flavor Conversion in the Supernova Accretion Phase

    Science.gov (United States)

    Sarikas, Srdjan; Raffelt, Georg G.; Hüdepohl, Lorenz; Janka, Hans-Thomas

    2012-02-01

    Self-induced flavor conversions of supernova (SN) neutrinos can strongly modify the flavor-dependent fluxes. We perform a linearized flavor stability analysis with accretion-phase matter profiles of a 15M⊙ spherically symmetric model and corresponding neutrino fluxes. We use realistic energy and angle distributions, the latter deviating strongly from quasi-isotropic emission, thus accounting for both multiangle and multienergy effects. For our matter and neutrino density profile we always find stable conditions: flavor conversions are limited to the usual Mikheyev-Smirnov-Wolfenstein effect. In this case one may distinguish the neutrino mass hierarchy in a SN neutrino signal if the mixing angle θ13 is as large as suggested by recent experiments.

  1. Neutrino Physics at Fermilab

    International Nuclear Information System (INIS)

    Federspiel, F.; Garvey, G.; Louis, W.C.; Mills, G.B.; Tayloe, R.; Sandberg, V.; Sapp, B.; White, D.H.

    1999-01-01

    The Liquid Scintillator Neutrino Detector (LSND), located at the LANSCE (formerly LAMPF) linear accelerator at Los Alamos National Laboratory, has seen evidence for the oscillation of neutrinos, and hence neutrino mass. That discovery was the impetus for this LDRD project, begun in 1996. The goal of this project was to define the appropriate technologies to use in a follow up experiment and to set in place the requirements for such an experiment

  2. Learning Physics from the Cosmic Microwave Background

    CERN Document Server

    Ellis, Jonathan Richard

    1999-01-01

    The Cosmic Microwave Background (CMB) provides a precious window on fundamental physics at very high energy scales, possibly including quantum gravity, GUTs and supersymmetry. The CMB has already enabled defect-based rivals to inflation to be discarded, and will be able to falsify many inflationary models. In combination with other cosmological observations, including those of high-redshift supernovae and large-scale structure, the CMB is on the way to providing a detailed budget for the density of the Universe, to be compared with particle-physics calculations for neutrinos and cold dark matter. Thus CMB measurements complement experiments with the LHC and long-baseline neutrino beams.

  3. Shell-model computed cross sections for charged-current scattering of astrophysical neutrinos off 40Ar

    Science.gov (United States)

    Kostensalo, Joel; Suhonen, Jouni; Zuber, K.

    2018-03-01

    Charged-current (anti)neutrino-40Ar cross sections for astrophysical neutrinos have been calculated. The initial and final nuclear states were calculated using the nuclear shell model. The folded solar-neutrino scattering cross section was found to be 1.78 (23 ) ×10-42cm2 , which is higher than what the previous papers have reported. The contributions from the 1- and 2- multipoles were found to be significant at supernova-neutrino energies, confirming the random-phase approximation (RPA) result of a previous study. The effects of neutrino flavor conversions in dense stellar matter (matter oscillations) were found to enhance the neutrino-scattering cross sections significantly for both the normal and inverted mass hierarchies. For the antineutrino scattering, only a small difference between the nonoscillating and inverted-hierarchy cross sections was found, while the normal-hierarchy cross section was 2-3 times larger than that of the nonoscillating cross section, depending on the adopted parametrization of the Fermi-Dirac distribution. This property of the supernova-antineutrino signal could probably be used to distinguish between the two hierarchies in megaton LAr detectors.

  4. Neutrino Physics at Kalinin Nuclear Power Plant: 2002 - 2017

    Science.gov (United States)

    Alekseev, I.; Belov, V.; Brudanin, V.; Danilov, M.; Egorov, V.; Filosofov, D.; Fomina, M.; Hons, Z.; Kazartsev, S.; Kobyakin, A.; Kuznetsov, A.; Machikhiliyan, I.; Medvedev, D.; Nesterov, V.; Olshevsky, A.; Pogorelov, N.; Ponomarev, D.; Rozova, I.; Rumyantseva, N.; Rusinov, V.; Salamatin, A.; Shevchik, Ye; Shirchenko, M.; Shitov, Yu; Skrobova, N.; Starostin, A.; Svirida, D.; Tarkovsky, E.; Tikhomirov, I.; Vlášek, J.; Zhitnikov, I.; Zinatulina, D.

    2017-12-01

    The results of the research in the field of neutrino physics obtained at Kalinin nuclear power plant during 15 years are presented. The investigations were performed in two directions. The first one includes GEMMA I and GEMMA II experiments for the search of the neutrino magnetic moment, where the best result in the world on the value of the upper limit of this quantity was obtained. The second direction is tied with the measurements by a solid scintillator detector DANSS designed for remote on-line diagnostics of nuclear reactor parameters and search for short range neutrino oscillations. DANSS is now installed at the Kalinin Nuclear Power Plant under the 4-th unit on a movable platform. Measurements of the antineutrino flux demonstrated that the detector is capable to reflect the reactor thermal power with an accuracy of about 1.5% in one day. Investigations of the neutrino flux and their energy spectrum at different distances allowed to study a large fraction of a sterile neutrino parameter space indicated by recent experiments and perform the reanalysis of the reactor neutrino fluxes. Status of the short range oscillation experiment is presented together with some preliminary results based on about 170 days of active data taking during the first year of operation.

  5. Supernova 1987a: One year later: A summary of the La Thuile symposium

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1988-04-01

    The Conference reviewed what we have learned after one year from SN 1987a. In particular, new information continues to come in daily on the evolving spectra, including x-rays and γ-rays. We now know the light curve was indeed powered by 56 Co decay. The neutrino data from IMB and Kamioka continues to be analyzed. It is fit very well by a standard collapse to a neutron star although some nagging problems with the angular distribution remain. Constraints on neutrino and other weakly interacting particle properties have been developed that rival or exceed terrestrial laboratory results. The question of the counts detected by the Mt. Blanc neutrino detector had new mysteries added at this meeting as reports of multiple coincidences with gravitational wave detectors at Maryland and Rome were presented. Future supernova rates were also discussed. It was argued that neutrino detection from a future supernova in our Galaxy might be the only way to prove that the ν/sub /tau// was the dominant matter of the Universe

  6. Neutrino cosmology

    International Nuclear Information System (INIS)

    Berstein, J.

    1984-01-01

    These lectures offer a self-contained review of the role of neutrinos in cosmology. The first part deals with the question 'What is a neutrino.' and describes in a historical context the theoretical ideas and experimental discoveries related to the different types of neutrinos and their properties. The basic differences between the Dirac neutrino and the Majorana neutrino are pointed out and the evidence for different neutrino 'flavours', neutrino mass, and neutrino oscillations is discussed. The second part summarizes current views on cosmology, particularly as they are affected by recent theoretical and experimental advances in high-energy particle physics. Finally, the close relationship between neutrino physics and cosmology is brought out in more detail, to show how cosmological constraints can limit the various theoretical possibilities for neutrinos and, more particularly, how increasing knowledge of neutrino properties can contribute to our understanding of the origin, history, and future of the Universe. The level is that of the beginning graduate student. (orig.)

  7. Theoretical and experimental high energy physics

    International Nuclear Information System (INIS)

    Gasiorowicz, S.; Ruddick, K.

    1988-01-01

    This report discusses experimental and theoretical work in High Energy Physics. Some topics discussed are: quantum field theory; supersymmetry; cosmology; superstring model; relic photinos; inflationary universe; dark matter; standard model; supernovae; semileptonic decay; quantum Langevin equation; underground neutrino detection at Soudan; strange quark systems; cosmic ray detection; superconducting super collider detectors; and studies of direct photon production

  8. nuSTORM - Neutrinos from STORed Muons: Letter of Intent to the Fermilab Physics Advisory Committee

    Energy Technology Data Exchange (ETDEWEB)

    Kyberd, P.; et al.

    2012-06-01

    The results of LSND and MiniBooNE, along with the recent papers on a possible reactor neutrino flux anomaly give tantalizing hints of new physics. Models beyond the neutrino-SM have been developed to explain these results and involve one or more additional neutrinos that are non-interacting or 'sterile.' Neutrino beams produced from the decay of muons in a racetrack-like decay ring provide a powerful way to study this potential new physics. In this Letter of Intent, we describe a facility, nuSTORM, 'Neutrinos from STORed Muons,' and an appropriate far detector for neutrino oscillation searches at short baseline. We present sensitivity plots that indicated that this experimental approach can provide over 10 sigma confirmation or rejection of the LSND/MinBooNE results. In addition we indicate how the facility can be used to make precision neutrino interaction cross section measurements important to the next generation of long-baseline neutrino oscillation experiments.

  9. Final technical report: DOE-High Energy Physics contract with the University of Hawaii

    International Nuclear Information System (INIS)

    1995-01-01

    This report is divided into two sections: (1) experimental program; and (2) theoretical program. In each case the report includes a highly condensed summary of the major developments on various Hawaii projects. The various experimental programs in which Hawaii played a significant role during this period are: (1) neutrino bubble chamber experiments; (2) electron-positron colliding beams; (3) development of silicon particle-position detectors for HEP; (4) proton decay search; (5) high energy gamma-ray astronomy; and (6) DUMAND project. The theoretical programs are: (1) research in neutrino physics; (2) supernova neutrinos; (3) solar neutrinos; (4) atmospheric neutrinos; (5) searching for supersymmetry; (6) Higgs boson searches; (7) simulation of supersymmetry; (8) signals of R-parity violation; (9) leptoquarks, stable heavy particles and other exotica; (10) CP non conservation; (11) neutron electron dipole moment; (12) heavy quark physics; and (13) hadron spectroscopy

  10. Experimental Neutrino Physics and Astrophysics with the IMB-3 Detector

    Science.gov (United States)

    Casper, David William

    1990-01-01

    Description of the universe on the smallest (elementary particle physics) and largest (cosmology) scales has become dependent on the properties of the most weakly interacting fundamental particle known, the neutrino. The IMB experiment, designed to study nucleon decay, is also the world's largest detector of neutrinos. The experiment uses 6800 tons (3300 tons fiducial) of water as both target and detecting medium. Relativistic charges particles traversing the water radiate Cerenkov light. The distinctive ring patterns are imaged by 2048 light collectors (each a photo-multiplier tube coupled with a wavelength-shifting plate) distributed over the surfaces of the tank. This dissertation describes the IMB-3 detector, a four-fold increase in sensitivity over the original apparatus. Neutrino interactions of both atmospheric and extragalactic origin were collected during a 3.4 kiloton-year exposure. A consequence of non-zero neutrino mass could be oscillation of neutrino flavor. The energies and long flight distances of atmospheric neutrinos offer a unique opportunity to explore this possibility. To study the composition of the atmospheric neutrinos, single-ring events are classified as showering or non-showering using the geometry of the Cerenkov pattern. A simulation of neutrino interactions and a model of atmospheric neutrino production are used to predict the composition of the sample. The showering/non-showering character of an event is strongly correlated with the flavor of its neutrino parent. In the lepton momentum range p mass or "dark matter" problem result in high-energy neutrino production within the Sun. A model of dark matter capture and annihilation in the Sun predicts the resulting neutrino fluxes at Earth. No evidence of the phenomenon is observed, but for canonical values of dark matter density and velocity in the solar system, greater exposure will be required to verify or exclude the expected signal.

  11. Search for atmospheric muon-neutrinos and extraterrestric neutrino point sources in the 1997 AMANDA-B10 data

    International Nuclear Information System (INIS)

    Biron von Curland, A.

    2002-07-01

    The young field of high energy neutrino astronomy can be motivated by the search for the origin of the charged cosmic rays. Large astrophysical objects like AGNs or supernova remnants are candidates to accelerate hadrons which then can interact to eventually produce high energy neutrinos. Neutrino-induced muons can be detected via their emission of Cherenkov light in large neutrino telescopes like AMANDA. More than 10 9 atmospheric muon events and approximately 5000 atmospheric neutrino events were registered by AMANDA-B10 in 1997. Out of these, 223 atmospheric neutrino candidate events have been extracted. This data set contains approximately 15 background events. It allows to confirm the expected sensitivity of the detector towards neutrino events. A second set containing 369 (approximately 270 atmospheric neutrino events and 100 atmospheric muon events) was used to search for extraterrestrial neutrino point sources. Neither a binned search, nor a cluster search, nor a search for preselected sources gave indications for the existence of a strong neutrino point source. Based on this result, flux limits were derived. Assuming E ν -2 spectra, typical flux limits for selected sources of the order of Φ μ limit ∝ 10 -14 cm -2 s -1 for muons and Φ ν limit ∝ 10 -7 cm -2 s -1 for neutrinos have been obtained. (orig.)

  12. Supernova explosions

    CERN Document Server

    Branch, David

    2017-01-01

    Targeting advanced students of astronomy and physics, as well as astronomers and physicists contemplating research on supernovae or related fields, David Branch and J. Craig Wheeler offer a modern account of the nature, causes and consequences of supernovae, as well as of issues that remain to be resolved. Owing especially to (1) the appearance of supernova 1987A in the nearby Large Magellanic Cloud, (2) the spectacularly successful use of supernovae as distance indicators for cosmology, (3) the association of some supernovae with the enigmatic cosmic gamma-ray bursts, and (4) the discovery of a class of superluminous supernovae, the pace of supernova research has been increasing sharply. This monograph serves as a broad survey of modern supernova research and a guide to the current literature. The book’s emphasis is on the explosive phases of supernovae. Part 1 is devoted to a survey of the kinds of observations that inform us about supernovae, some basic interpreta tions of such data, and an overview of t...

  13. IceCube: An Instrument for Neutrino Astronomy

    Energy Technology Data Exchange (ETDEWEB)

    IceCube Collaboration; Halzen, F.; Klein, S.

    2010-06-04

    Neutrino astronomy beyond the Sun was first imagined in the late 1950s; by the 1970s, it was realized that kilometer-scale neutrino detectors were required. The first such instrument, IceCube, is near completion and taking data. The IceCube project transforms a cubic kilometer of deep and ultra-transparent Antarctic ice into a particle detector. A total of 5,160 optical sensors are embedded into a gigaton of Antarctic ice to detect the Cherenkov light emitted by secondary particles produced when neutrinos interact with nuclei in the ice. Each optical sensor is a complete data acquisition system, including a phototube, digitization electronics, control and trigger systems and LEDs for calibration. The light patterns reveal the type (flavor) of neutrino interaction and the energy and direction of the neutrino, making neutrino astronomy possible. The scientific missions of IceCube include such varied tasks as the search for sources of cosmic rays, the observation of Galactic supernova explosions, the search for dark matter, and the study of the neutrinos themselves. These reach energies well beyond those produced with accelerator beams.

  14. Multidimensional simulations of core-collapse supernovae with CHIMERA

    Science.gov (United States)

    Lentz, Eric J.; Bruenn, S. W.; Yakunin, K.; Endeve, E.; Blondin, J. M.; Harris, J. A.; Hix, W. R.; Marronetti, P.; Messer, O. B.; Mezzacappa, A.

    2014-01-01

    Core-collapse supernovae are driven by a multidimensional neutrino radiation hydrodynamic (RHD) engine, and full simulation requires at least axisymmetric (2D) and ultimately symmetry-free 3D RHD simulation. We present recent and ongoing work with our multidimensional RHD supernova code CHIMERA to understand the nature of the core-collapse explosion mechanism and its consequences. Recently completed simulations of 12-25 solar mass progenitors(Woosley & Heger 2007) in well resolved (0.7 degrees in latitude) 2D simulations exhibit robust explosions meeting the observationally expected explosion energy. We examine the role of hydrodynamic instabilities (standing accretion shock instability, neutrino driven convection, etc.) on the explosion dynamics and the development of the explosion energy. Ongoing 3D and 2D simulations examine the role that simulation resolution and the removal of the imposed axisymmetry have in the triggering and development of an explosion from stellar core collapse. Companion posters will explore the gravitational wave signals (Yakunin et al.) and nucleosynthesis (Harris et al.) of our simulations.

  15. Intermediate-mass Elements in Young Supernova Remnants Reveal Neutron Star Kicks by Asymmetric Explosions

    Science.gov (United States)

    Katsuda, Satoru; Morii, Mikio; Janka, Hans-Thomas; Wongwathanarat, Annop; Nakamura, Ko; Kotake, Kei; Mori, Koji; Müller, Ewald; Takiwaki, Tomoya; Tanaka, Masaomi; Tominaga, Nozomu; Tsunemi, Hiroshi

    2018-03-01

    The birth properties of neutron stars (NSs) yield important information about the still-debated physical processes that trigger the explosion as well as on intrinsic neutron-star physics. These properties include the high space velocities of young neutron stars with average values of several 100 km s‑1, with an underlying “kick” mechanism that is not fully clarified. There are two competing possibilities that could accelerate NSs during their birth: anisotropic ejection of either stellar debris or neutrinos. Here we present new evidence from X-ray measurements that chemical elements between silicon and calcium in six young gaseous supernova remnants are preferentially expelled opposite to the direction of neutron star motion. There is no correlation between the kick velocities and magnetic field strengths of these neutron stars. Our results support a hydrodynamic origin of neutron-star kicks connected to asymmetric explosive mass ejection, and they conflict with neutron-star acceleration scenarios that invoke anisotropic neutrino emission caused by particle and nuclear physics in combination with very strong neutron-star magnetic fields.

  16. The solar neutrinos epopee; L'epopee des neutrinos solaires

    Energy Technology Data Exchange (ETDEWEB)

    Lasserre, Th. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee, Service de Physique des Particules, 91- Gif sur Yvette (France)

    2003-06-01

    The 2002 year has been fruitful for the neutrino physics. First, the Sudbury Neutrino Observatory (SNO) experiment has shown that the electron neutrinos {nu}{sub e} emitted by the sun are converted into muon neutrinos ({nu}{sub {mu}}) and tau neutrinos ({nu}{sub {tau}}), thus closing the 30 years old problem of solar neutrinos deficit. This discovery validates the model of nuclear energy production inside the sun but it shakes the theory describing the weak interactions between the fundamental constituents of matter. This theory considers the neutrinos (and the photons) as massless particles, while the taste conversion phenomenon necessarily implies that neutrinos have a mass. In October 2000, the Universe exploration by the cosmic neutrinos is jointly recognized by R. Davis (USA) and M. Koshiba (Japan) who received the Nobel price of physics. Finally, in December 2000, the KamLAND experiment quantitatively demonstrated the neutrinos metamorphosis by detecting a deficit in the flux of electron antineutrinos coming from the surrounding Japanese nuclear reactors. This digest article describes step by step the epopee of solar neutrinos and shows how several generations of physicists have resolved one of the mystery of modern physics. (J.S.)

  17. Research in nuclear astrophysics: stellar collapse and supernovae. Progress report

    International Nuclear Information System (INIS)

    Burrows, A.; Lattimer, J.M.; Yahil, A.

    1984-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics is examined. The chief emphasis of our program is on stellar collapse, supernovae and neutron star formation. Central to these topics are the parallel development of the equation of state of hot, dense matter and a novel type of hydrodynamical code. The LLPR compressible liquid drop model forms the basis for the former, and we propose to further refine it by including curvature corrections to the surface energy and by considering other nuclear force parameters which are in better agreement with experimentally determined quantities. The development of the equation of state has another bonus - it can be used to analyze intermediate energy heavy ion collisions, which, in turn, may illuminate the nucleon-nucleon force. The hydrodynamical code includes detailed neutrino transport and a fast, but accurate, approximation to the complete LLPR equation of state, which is necessary for numerical use. We propose to model not only the stellar collapse leading up to a supernova, but also the quasi-static deleptonization and cooling stages of the nascent neutron star. Our detailed studies of the role of neutrinos in stellar collapse and neutron star formation concentrate on their detectability and signatures - after all, neutrinos are the only direct method of observationally checking supernova theory. Complementary studies include modelling both mass accretion in the nuclei of galaxies (which is probably responsible for the quasar phenomenon) and investigations of galaxy clustering and the large scale structure of the universe

  18. Detecting non-relativistic cosmic neutrinos by capture on tritium: phenomenology and physics potential

    Energy Technology Data Exchange (ETDEWEB)

    Long, Andrew J.; Lunardini, Cecilia; Sabancilar, Eray, E-mail: andrewjlong@asu.edu, E-mail: Cecilia.Lunardini@asu.edu, E-mail: Eray.Sabancilar@asu.edu [Physics Department, Arizona State University, Tempe, Arizona 85287 (United States)

    2014-08-01

    We study the physics potential of the detection of the Cosmic Neutrino Background via neutrino capture on tritium, taking the proposed PTOLEMY experiment as a case study. With the projected energy resolution of Δ ∼ 0.15 eV, the experiment will be sensitive to neutrino masses with degenerate spectrum, m{sub 1} ≅ m{sub 2} ≅ m{sub 3} = m{sub ν} ∼> 0.1 eV. These neutrinos are non-relativistic today; detecting them would be a unique opportunity to probe this unexplored kinematical regime. The signature of neutrino capture is a peak in the electron spectrum that is displaced by 2 m{sub ν} above the beta decay endpoint. The signal would exceed the background from beta decay if the energy resolution is Δ ∼< 0.7 m{sub ν} . Interestingly, the total capture rate depends on the origin of the neutrino mass, being Γ{sup D} ≅ 4 and Γ{sup M} ≅ 8 events per year (for a 100 g tritium target) for unclustered Dirac and Majorana neutrinos, respectively. An enhancement of the rate of up to O(1) is expected due to gravitational clustering, with the unique potential to probe the local overdensity of neutrinos. Turning to more exotic neutrino physics, PTOLEMY could be sensitive to a lepton asymmetry, and reveal the eV-scale sterile neutrino that is favored by short baseline oscillation searches. The experiment would also be sensitive to a neutrino lifetime on the order of the age of the universe and break the degeneracy between neutrino mass and lifetime which affects existing bounds.

  19. Multi-dimensional explorations in supernova theory

    International Nuclear Information System (INIS)

    Burrows, Adam; Dessart, Luc; Ott, Christian D.; Livne, Eli

    2007-01-01

    In this paper, we bring together various of our published and unpublished findings from our recent 2D multi-group, flux-limited radiation hydrodynamic simulations of the collapse and explosion of the cores of massive stars. Aided by 2D and 3D graphical renditions, we motivate the acoustic mechanism of core-collapse supernova explosions and explain, as best we currently can, the phases and phenomena that attend this mechanism. Two major foci of our presentation are the outer shock instability and the inner core g-mode oscillations. The former sets the stage for the latter, which damp by the generation of sound. This sound propagates outward to energize the explosion and is relevant only if the core has not exploded earlier by some other means. Hence, it is a more delayed mechanism than the traditional neutrino mechanism that has been studied for the last twenty years since it was championed by Bethe and Wilson. We discuss protoneutron star convection, accretion-induced-collapse, gravitational wave emissions, pulsar kicks, the angular anisotropy of the neutrino emissions, a subset of numerical issues, and a new code we are designing that should supercede our current supernova code VULCAN/2D. Whatever ideas last from this current generation of numerical results, and whatever the eventual mechanism(s), we conclude that the breaking of spherical symmetry will survive as one of the crucial keys to the supernova puzzle

  20. John Adams Lecture | Accelerator-Based Neutrino Physics: Past, Present and Future by Kenneth Long | 8 December

    CERN Multimedia

    2014-01-01

    John Adams Lecture: Accelerator-Based Neutrino Physics: Past, Present and Future by Dr. Kenneth Long (Imperial College London & STFC).   Monday, 8 December 2014 from 2 p.m. to 4 p.m. at CERN ( 503-1-001 - Council Chamber ) Abstract: The study of the neutrino is the study of physics beyond the Standard Model. We now know that the neutrinos have mass and that neutrino mixing occurs causing neutrino flavour to oscillate as neutrinos propagate through space and time. Further, some measurements can be interpreted as hints for new particles known as sterile neutrinos. The measured values of the mixing parameters make it possible that the matter-antimatter (CP) symmetry may be violated through the mixing process. The consequences of observing CP-invariance violation in neutrinos would be profound. To discover CP-invariance violation will require measurements of exquisite precision. Accelerator-based neutrino sources are central to the future programme and advances in technique are required ...

  1. Matter suppression of collective SN neutrino oscillations and stability analysis

    International Nuclear Information System (INIS)

    Saviano, N.; Chakraborty, S.; Mirizzi, A.

    2014-01-01

    We perform a detailed analysis of the supernova (SN) neutrino flavor evolution during the early time accretion phase (post-bounce time t pb ≤ 500 ms), characterizing the ν signal by recent SN hydrodynamics simulations. We find that collective oscillations induced the ν-ν interactions in the deepest SN regions are suppressed by trajectory-dependent 'multi-angle' effects associated with the dense ordinary matter. We confirm this result with a linearized stability analysis of the neutrino equations of motion in presence of realistic neutrino energy with angle distributions. (authors)

  2. Multigroup models of the convective epoch in core collapse supernovae

    International Nuclear Information System (INIS)

    Swesty, F Douglas; Myra, Eric S

    2005-01-01

    Understanding the explosion mechanism of core collapse supernovae is a problem that has plagued nuclear astrophysicists since the first computational models of this phenomenon were carried out in the 1960s. Our current theories of this violent phenomenon center around multi-dimensional effects involving radiation-hydrodynamic flows of hot, dense matter and neutrinos. Modeling these multi-dimensional radiative flows presents a computational challenge that will continue to stress high-performance computing beyond the teraflops to the petaflop level. In this paper we describe a few of the scientific discoveries that we have made via terascale computational simulations of supernovae under the auspices of the SciDAC-funded Terascale Supernova Initiative

  3. Nuclear physics for geo-neutrino studies

    International Nuclear Information System (INIS)

    Fiorentini, Gianni; Ianni, Aldo; Korga, George; Suvorov, Yury; Lissia, Marcello; Mantovani, Fabio; Miramonti, Lino; Oberauer, Lothar; Obolensky, Michel; Smirnov, Oleg

    2010-01-01

    Geo-neutrino studies are based on theoretical estimates of geo-neutrino spectra. We propose a method for a direct measurement of the energy distribution of antineutrinos from decays of long-lived radioactive isotopes. We present preliminary results for the geo-neutrinos from 214 Bi decay, a process that accounts for about one-half of the total geo-neutrino signal. The feeding probability of the lowest state of 214 Bi--the most important for geo-neutrino signal--is found to be p 0 =0.177±0.004 (stat) -0.001 +0.003 (sys), under the hypothesis of universal neutrino spectrum shape (UNSS). This value is consistent with the (indirect) estimate of the table of isotopes. We show that achievable larger statistics and reduction of systematics should allow for the testing of possible distortions of the neutrino spectrum from that predicted using the UNSS hypothesis. Implications on the geo-neutrino signal are discussed.

  4. Testing for new physics: neutrinos and the primordial power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Canac, Nicolas; Abazajian, Kevork N. [Department of Physics, University of California at Irvine, Irvine, CA 92697 (United States); Aslanyan, Grigor [Berkeley Center for Cosmological Physics, University of California, Berkeley, CA 94720 (United States); Easther, Richard [Department of Physics, University of Auckland, Private Bag 92019, Auckland (New Zealand); Price, Layne C., E-mail: ncanac@uci.edu, E-mail: aslanyan@berkeley.edu, E-mail: kevork@uci.edu, E-mail: r.easther@auckland.ac.nz, E-mail: laynep@andrew.cmu.edu [McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States)

    2016-09-01

    We test the sensitivity of neutrino parameter constraints from combinations of CMB and LSS data sets to the assumed form of the primordial power spectrum (PPS) using Bayesian model selection. Significantly, none of the tested combinations, including recent high-precision local measurements of H{sub 0} and cluster abundances, indicate a signal for massive neutrinos or extra relativistic degrees of freedom. For PPS models with a large, but fixed number of degrees of freedom, neutrino parameter constraints do not change significantly if the location of any features in the PPS are allowed to vary, although neutrino constraints are more sensitive to PPS features if they are known a priori to exist at fixed intervals in log k . Although there is no support for a non-standard neutrino sector from constraints on both neutrino mass and relativistic energy density, we see surprisingly strong evidence for features in the PPS when it is constrained with data from Planck 2015, SZ cluster counts, and recent high-precision local measurements of H{sub 0}. Conversely combining Planck with matter power spectrum and BAO measurements yields a much weaker constraint. Given that this result is sensitive to the choice of data this tension between SZ cluster counts, Planck and H{sub 0} measurements is likely an indication of unmodeled systematic bias that mimics PPS features, rather than new physics in the PPS or neutrino sector.

  5. Massive neutrinos flavor mixing of leptons and neutrino oscillations

    CERN Document Server

    2015-01-01

    Since the discovery of neutrino oscillations neutrino physics has become an interesting field of research in physics. They imply that neutrino must have a small mass and that the neutrinos, coupled to the charged leptons, are mixtures of the mass eigenstates, analogous to the flavor mixing of the quarks. The mixing angles for the quarks are small, but for the leptons two of the mixing angles are large. The masses of the three neutrinos must be very small, less than 1 eV, but from the oscillation experiments we only know the mass differences — the absolute masses are still unknown. Also we do not know, if the masses of the neutrinos are Dirac masses, as the masses of the charged leptons and of the quarks, or whether they are Majorana masses. In this volume, an overview of the present state of research in neutrino physics is given by well-known experimentalists and theorists. The contents — originated from talks and discussions at a recent conference addressing some of the most pressing open questions in n...

  6. EXPLOSIVE NUCLEOSYNTHESIS IN THE NEUTRINO-DRIVEN ASPHERICAL SUPERNOVA EXPLOSION OF A NON-ROTATING 15 Msun STAR WITH SOLAR METALLICITY

    International Nuclear Information System (INIS)

    Fujimoto, Shin-ichiro; Kotake, Kei; Hashimoto, Masa-aki; Ono, Masaomi; Ohnishi, Naofumi

    2011-01-01

    We investigate explosive nucleosynthesis in a non-rotating 15 M sun star with solar metallicity that explodes by a neutrino-heating supernova (SN) mechanism aided by both standing accretion shock instability (SASI) and convection. To trigger explosions in our two-dimensional hydrodynamic simulations, we approximate the neutrino transport with a simple light-bulb scheme and systematically change the neutrino fluxes emitted from the protoneutron star. By a post-processing calculation, we evaluate abundances and masses of the SN ejecta for nuclei with a mass number ≤70, employing a large nuclear reaction network. Aspherical abundance distributions, which are observed in nearby core-collapse SN remnants, are obtained for the non-rotating spherically symmetric progenitor, due to the growth of a low-mode SASI. The abundance pattern of the SN ejecta is similar to that of the solar system for models whose masses range between (0.4-0.5) M sun of the ejecta from the inner region (≤10, 000 km) of the precollapse core. For the models, the explosion energies and the 56 Ni masses are ≅ 10 51 erg and (0.05-0.06) M sun , respectively; their estimated baryonic masses of the neutron star are comparable to the ones observed in neutron-star binaries. These findings may have little uncertainty because most of the ejecta is composed of matter that is heated via the shock wave and has relatively definite abundances. The abundance ratios for Ne, Mg, Si, and Fe observed in the Cygnus loop are reproduced well with the SN ejecta from an inner region of the 15 M sun progenitor.

  7. Report of the Solar and Atmospheric Neutrino Working Group

    International Nuclear Information System (INIS)

    Back, H.; Bahcall, J.N.; Bernabeu, J.; Boulay, M.G.; Bowles, T.; Calaprice, F.; Champagne, A.; Freedman, S.; Gai, M.; Galbiati, C.; Gallagher, H.; Gonzalez-Garcia, C.; Hahn, R.L.; Heeger, K.M.; Hime, A.; Jung, C.K.; Klein, J.R.; Koike, M.; Lanou, R.; Learned, J.G.; Lesko, K.T.; Losecco, J.; Maltoni, M.; Mann, A.; McKinsey, D.; Palomares-Ruiz, S.; Pena-Garay, C.; Petcov, S.T.; Piepke, A.; Pitt, M.; Raghavan, R.; Robertson, R.G.H.; Scholberg, K.; Sobel, H.W.; Takeuchi, T.; Vogelaar, R.; Wolfenstein, L.

    2004-01-01

    magnetized detector with flavor and antiflavor sensitivity. Additional priorities are nuclear physics measurements which will reduce the uncertainties in the predictions of the Standard Solar Model, and similar supporting measurements for atmospheric neutrinos (cosmic ray fluxes, magnetic fields, etc.). We note as well that the detectors for both solar and atmospheric neutrino measurements can serve as multipurpose detectors, with capabilities of discovering dark matter, relic supernova neutrinos, proton decay, or as targets for long baseline accelerator neutrino experiments

  8. A model of neutrino and Higgs physics at the electroweak scale

    International Nuclear Information System (INIS)

    Aranda, Alfredo; Blanno, Omar; Diaz-Cruz, J. Lorenzo

    2008-01-01

    We present and explore the Higgs physics of a model that in addition to the Standard Model fields includes a lepton number violating singlet scalar field. Based on the fact that the only experimental data we have so far for physics beyond the Standard Model is that of neutrino physics, we impose a constraint for any addition not to introduce new higher scales. As such, we introduce right-handed neutrinos with an electroweak scale mass. We study the Higgs decay H→νν and show that it leads to different signatures compared to those in the Standard Model, making it possible to detect them and to probe the nature of their couplings

  9. Supersymmetry phenomenology in the context of neutrino physics and the large hadron collider LHC

    Energy Technology Data Exchange (ETDEWEB)

    Hanussek, Marja

    2012-05-15

    Experimentally, it is well established that the Standard Model of particle physics requires an extension to accommodate the neutrino oscillation data, which indicates that at least two neutrinos are massive and that two of the neutrino mixing angles are large. Massive neutrinos are naturally present in a supersymmetric extension of the Standard Model which includes lepton-number violating terms (the B3 MSSM). Furthermore, supersymmetry stabilizes the hierarchy between the electroweak scale and the scale of unified theories or the Planck scale. In this thesis, we study in detail how neutrino masses are generated in the B3 MSSM. We present a mechanism how the experimental neutrino oscillation data can be realized in this framework. Then we discuss how recently published data from the Large Hadron Collider (LHC) can be used to constrain the parameter space of this model. Furthermore, we present work on supersymmetric models where R-parity is conserved, considering scenarios with light stops in the light of collider physics and scenarios with near-massless neutralinos in connection with cosmological restrictions.

  10. Supersymmetry phenomenology in the context of neutrino physics and the large hadron collider LHC

    International Nuclear Information System (INIS)

    Hanussek, Marja

    2012-05-01

    Experimentally, it is well established that the Standard Model of particle physics requires an extension to accommodate the neutrino oscillation data, which indicates that at least two neutrinos are massive and that two of the neutrino mixing angles are large. Massive neutrinos are naturally present in a supersymmetric extension of the Standard Model which includes lepton-number violating terms (the B3 MSSM). Furthermore, supersymmetry stabilizes the hierarchy between the electroweak scale and the scale of unified theories or the Planck scale. In this thesis, we study in detail how neutrino masses are generated in the B3 MSSM. We present a mechanism how the experimental neutrino oscillation data can be realized in this framework. Then we discuss how recently published data from the Large Hadron Collider (LHC) can be used to constrain the parameter space of this model. Furthermore, we present work on supersymmetric models where R-parity is conserved, considering scenarios with light stops in the light of collider physics and scenarios with near-massless neutralinos in connection with cosmological restrictions.

  11. Toward observational neutrino astrophysics

    International Nuclear Information System (INIS)

    Koshiba, M.

    1988-01-01

    It is true that: (1) The first observation of the neutrino burst from the supernova SN1987a by Kamiokande-II which was immediately confirmed by IBM; and (2) the first real-time, directional, and spectral observation of solar 8 B neutrinos also by Kamiokande-II could perhaps be considered as signalling the birth of observational astrophysics. The field, however, is still in its infancy and is crying out for tender loving care. Namely, while the construction of astronomy requires the time and the direction of the signal and that of astrophysics requires, in addition to the spectral information, the observations of (1) could not give the directional information and the results of both (1) and (2) are still suffering from the meager statistics. How do we remedy this situation to let this new born science of observational neutrino astrophysics grow healthy. This is what the author addresses in this talk. 15 refs., 8 figs

  12. Nuclear 'pasta phase' and its consequences on neutrino opacities

    International Nuclear Information System (INIS)

    Alloy, M. D.; Menezes, D. P.

    2011-01-01

    In this paper, we calculate the diffusion coefficients that are related to the neutrino opacities considering the formation of nuclear pasta and homogeneous matter at low densities. Our results show that the mean-free paths are significantly altered by the presence of nuclear pasta in stellar matter when compared with the results obtained with homogeneous matter. These differences in neutrino opacities certainly influence the Kelvin-Helmholtz phase of protoneutron stars and consequently the results of supernova explosion simulations.

  13. Supernova constraints on neutrino mass and mixing

    Indian Academy of Sciences (India)

    the Chandrasekhar limiting mass the pressure of the relativistic electron gas alone can ... and facilitates electron capture by nuclei and free protons leading to .... the neutrino luminosity in units of 10 ¾ ergs/sec, Т and Ф are the neutron and proton ... would be changed to М . One can make a rough estimate of the increase in ...

  14. Aspherical supernovae

    International Nuclear Information System (INIS)

    Kasen, Daniel Nathan

    2004-01-01

    Although we know that many supernovae are aspherical, the exact nature of their geometry is undetermined. Because all the supernovae we observe are too distant to be resolved, the ejecta structure can't be directly imaged, and asymmetry must be inferred from signatures in the spectral features and polarization of the supernova light. The empirical interpretation of this data, however, is rather limited--to learn more about the detailed supernova geometry, theoretical modeling must been undertaken. One expects the geometry to be closely tied to the explosion mechanism and the progenitor star system, both of which are still under debate. Studying the 3-dimensional structure of supernovae should therefore provide new break throughs in our understanding. The goal of this thesis is to advance new techniques for calculating radiative transfer in 3-dimensional expanding atmospheres, and use them to study the flux and polarization signatures of aspherical supernovae. We develop a 3-D Monte Carlo transfer code and use it to directly fit recent spectropolarimetric observations, as well as calculate the observable properties of detailed multi-dimensional hydrodynamical explosion simulations. While previous theoretical efforts have been restricted to ellipsoidal models, we study several more complicated configurations that are tied to specific physical scenarios. We explore clumpy and toroidal geometries in fitting the spectropolarimetry of the Type Ia supernova SN 2001el. We then calculate the observable consequences of a supernova that has been rendered asymmetric by crashing into a nearby companion star. Finally, we fit the spectrum of a peculiar and extraordinarily luminous Type Ic supernova. The results are brought to bear on three broader astrophysical questions: (1) What are the progenitors and the explosion processes of Type Ia supernovae? (2) What effect does asymmetry have on the observational diversity of Type Ia supernovae, and hence their use in cosmology? (3) And

  15. Working Group Report: Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    de Gouvea, A.; Pitts, K.; Scholberg, K.; Zeller, G. P. [et al.

    2013-10-16

    This document represents the response of the Intensity Frontier Neutrino Working Group to the Snowmass charge. We summarize the current status of neutrino physics and identify many exciting future opportunities for studying the properties of neutrinos and for addressing important physics and astrophysics questions with neutrinos.

  16. Proceedings of the summer school on physics with neutrinos

    International Nuclear Information System (INIS)

    Locher, M.P.

    1996-01-01

    The Summer School on physics with neutrinos concentrated on a particularly rewarding topic on the intersection between particle and astrophysics. Although the neutrino has been postulated as early as 1930 in the famous letter by Pauli the intriguing particle poses challenging problems to the present day. The speakers did not spare any effort in creating an atmosphere of stimulating scientific exchange. The participating young and old enjoyed the presence of Jack Steinberger who presented a talk on the history of the neutrino and contributed in many other ways to the meeting. Apart from the lectures and seminars that are mostly reflected in these proceedings there were also a number of extra seminars on topics ranging from special nuclear reactions to the extinction of life in the universe, adding to the breadth of the presentations. (author) figs., tabs., refs

  17. Proceedings of the summer school on physics with neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Locher, M P [ed.

    1996-11-01

    The Summer School on physics with neutrinos concentrated on a particularly rewarding topic on the intersection between particle and astrophysics. Although the neutrino has been postulated as early as 1930 in the famous letter by Pauli the intriguing particle poses challenging problems to the present day. The speakers did not spare any effort in creating an atmosphere of stimulating scientific exchange. The participating young and old enjoyed the presence of Jack Steinberger who presented a talk on the history of the neutrino and contributed in many other ways to the meeting. Apart from the lectures and seminars that are mostly reflected in these proceedings there were also a number of extra seminars on topics ranging from special nuclear reactions to the extinction of life in the universe, adding to the breadth of the presentations. (author) figs., tabs., refs.

  18. Research and design progress of the Jinping Neutrino Experiment

    Science.gov (United States)

    Wang, Zhe

    2018-01-01

    Thanks to the 2400 m overburden and the long distance to commercial reactors, the China Jinping Underground Laboratory (CJPL) is an ideal site for low background neutrino experiments. The Jinping Neutrino Experiment will perform an in-depth research on solar neutrinos, geo-neutrinos and supernova relic neutrinos. Many efforts were devoted to the R&D of the experimental proposal. A new type of liquid scintillator, with high light-yield and Cherenkov and scintillation separation capability, is being developed. The assay and selection of low radioactive stainless-steel (SST) was carried out. A wide field-of-view of 90 degree and high-geometry-efficiency of 98% light concentrator is developed. At the same time, a 1-ton prototype is constructed and placed underground at Jinping laboratory. The simulation and analysis software, electromagnetic calorimeter function, rock damage zone simulation will also be introduced briefly.

  19. ANTARES: A High Energy Neutrino Undersea Telescope

    International Nuclear Information System (INIS)

    Hernandez, J.J.

    1999-01-01

    Neutrinos can reveal a brand new Universe at high energies. The ANTARES collaboration, formed in 1996, works towards the building and deployment of a neutrino telescope. This detector could observe and study high energy astrophysical sources such as X-ray binary systems, young supernova remnants or Active Galactic Nuclei and help to discover or set exclusion limits on some of the elementary particles and objects that have been put forward as candidates to fill the Universe (WIMPS, neutralinos, topological defects, Q-balls, etc.). A neutrino telescope will certainly open a new observational window and can shed light on the most energetic phenomena of the Universe. A review of the progress made by the ANTARES collaboration to achieve this goal is presented. (author)

  20. Design and operation of novel underwater acoustic detectors: applications to particle physics and multidisciplinary science for the NEMO-SMO and KM3NeT projects

    OpenAIRE

    Viola, Salvatore

    2013-01-01

    Neutrino-astronomy is one of the most interesting frontiers of the astro-particle physics. Since neutrinos interact only via weak interaction, they are an optimal probe to explore the Universe and regions close to black-holes, where the radiation and matter densities hinder the photon emission. The detection of high energy astrophysical neutrinos, not yet claimed by present experiments, will provide powerful information to improve astrophysical models describing Supernova Remnants, Active Gal...

  1. Neutrinos

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    The Standard Model predicts that the neutrinos are massless and do not mix. Generic extensions of the Standard Model predict that neutrinos are massive (but, very likely, much lighter than the charged fermions). Therefore, the search for neutrino masses and mixing tests the Standard Model and probes new phasics. Measurements of various features of the fluxes of atmospheric, solar and, more recently, reactor neutrinos have provided evidence for neutrino oscillations and therefore for neutrino masses and mixing. These results have significant theoretical implications: new physics exists, and its scale can be estimated. There are interesting lessons for grand unified theories and for models of extra dimensions. The measured neutrino flavor parameters pose a challenge to flavor models.

  2. Research in astrophysics: Stellar collapse and supernovae: Termination report, August 1, 1980-November 30, 1986

    International Nuclear Information System (INIS)

    Burrows, A.; Lattimer, J.M.; Mazurek, T.J.; Yahil, A.

    1987-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics has been examined. The chief emphasis of the program was on stellar collapse, Type II supernovae and neutron star formation. Central to these topics are the development of an equation of state of hot, dense matter and numerical simulations of gravitational collapse and neutron star birth. The LLPR compressible liquid drop model is the basis of the former. It has been refined to include curvature corrections to the surface energy and nuclear force parameters which are in better agreement with experimental quantities. Numerically optimized versions were used in supernova simulations. Such studies of the equation of state can also be used to analyze intermediate energy heavy ion collisions, which, in turn, may illuminate the nucleon-nucleon force. A novel hydrodynamical code in which shocks are treated via Riemann resolution rather than with artificial viscosity was developed. We modeled not only the stellar collapse leading up to a supernova, but also the quasi-static deleptonization and cooling of the nascent neutron star. For the latter evolution we also used a hydrostatic code with detailed neutrino transport. Our studies of neutrinos in stellar collapse and neutron star formation concentrated on their detectability and signatures, as neutrinos are the only direct probe of collapse and early supernova dynamics. The neutrino signatures seen from SN1987a are in complete accord with the predictions our group has been making since 1982. Complementary studies included modeling nucleosynthesis and the accretion process in quasars, and investigating the influence of galaxy clustering on the large scale structure of the universe. The last study might impose constraints on high energy theories, such as those of inflation and GUT, which can now only be tested astrophysically. 38 refs

  3. Impact of bremsstrahlung on the neutrinosphere for muon and tau neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Yasin, Hannah; Bartl, Alexander [Institut fuer Kernphysik, TU Darmstadt (Germany); Arcones, Almudena [Institut fuer Kernphysik, TU Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

    2015-07-01

    Core-collapse supernovae present a challenging and exciting problem that strongly depends on all forces (strong, weak, electromagnetism, and gravity). Neutrinos, although weakly interacting, are key to transporting energy and momentum. Therefore, detailed treatment of neutrino reactions is critical to understand these high energy events. We have studied the impact of different neutrino reactions on the position of the neutrinosphere (i.e., region where neutrinos decouple from matter). Since the density in this region is high the effect of nuclear interactions has to be considered for bremsstrahlung: N+N→N+N+ν+ anti ν. We have employed new, improved approaches to calculate the inverse process and show the effect on the position of the neutrinosphere for muon and tau neutrinos.

  4. Opportunities for Neutrino Physics at the Spallation Neutron Source: A White Paper

    Energy Technology Data Exchange (ETDEWEB)

    Bolozdynya, A. [Moscow Phys. Eng. Inst.; Cavanna, F. [INFN, Aquila; Efremenko, Y. [Tennessee U.; Garvey, G. T. [Los Alamos; Gudkov, V. [South Carolina U.; Hatzikoutelis, A. [Tennessee U.; Hix, W. R. [Oak Ridge; Louis, W. C. [Los Alamos; Link, J. M. [Virginia Tech.; Markoff, D. M. [North Carolina Central U.; Mills, G. B. [Los Alamos; Patton, K. [North Carolina State U.; Ray, H. [Florida U.; Scholberg, K. [Duke U.; Van de Water, R. G. [Los Alamos; Virtue, C. [Laurentian U.; White, D. H. [Los Alamos; Yen, S. [TRIUMF; Yoo, J. [Fermilab

    2012-11-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, Tennessee, provides an intense flux of neutrinos in the few tens-of-MeV range, with a sharply-pulsed timing structure that is beneficial for background rejection. In this document, the product of a workshop at the SNS in May 2012, we describe this free, high-quality stopped-pion neutrino source and outline various physics that could be done using it. We describe without prioritization some specific experimental configurations that could address these physics topics.

  5. The Era of Kilometer-Scale Neutrino Detectors

    Directory of Open Access Journals (Sweden)

    Francis Halzen

    2013-01-01

    Full Text Available Neutrino astronomy beyond the Sun was first imagined in the late 1950s; by the 1970s, it was realized that kilometer-scale neutrino detectors were required. The first such instrument, IceCube, transforms a cubic kilometer of deep and ultra-transparent Antarctic ice into a particle detector. KM3NeT, an instrument that aims to exploit several cubic kilometers of the deep Mediterranean sea as its detector medium, is in its final design stages. The scientific missions of these instruments include searching for sources of cosmic rays and for dark matter, observing Galactic supernova explosions, and studying the neutrinos themselves. Identifying the accelerators that produce Galactic and extragalactic cosmic rays has been a priority mission of several generations of high-energy gamma-ray and neutrino telescopes; success has been elusive so far. Detecting the gamma-ray and neutrino fluxes associated with cosmic rays reaches a new watershed with the completion of IceCube, the first neutrino detector with sensitivity to the anticipated fluxes. In this paper, we will first revisit the rationale for constructing kilometer-scale neutrino detectors. We will subsequently recall the methods for determining the arrival direction, energy and flavor of neutrinos, and will subsequently describe the architecture of the IceCube and KM3NeT detectors.

  6. Neutrino oscillations and the seesaw origin of neutrino mass

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, O.G., E-mail: omr@fis.cinvestav.mx [Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740, 07000 Mexico, Distrito Federal (Mexico); Valle, J.W.F. [AHEP Group, Institut de Física Corpuscular – C.S.I.C./Universitat de València, Parc Cientific de Paterna, C/Catedratico José Beltrán, 2, E-46980 Paterna (València) (Spain)

    2016-07-15

    The historical discovery of neutrino oscillations using solar and atmospheric neutrinos, and subsequent accelerator and reactor studies, has brought neutrino physics to the precision era. We note that CP effects in oscillation phenomena could be difficult to extract in the presence of unitarity violation. As a result upcoming dedicated leptonic CP violation studies should take into account the non-unitarity of the lepton mixing matrix. Restricting non-unitarity will shed light on the seesaw scale, and thereby guide us towards the new physics responsible for neutrino mass generation.

  7. Neutrino astrophysics: a new tool for exploring the universe.

    Science.gov (United States)

    Waxman, Eli

    2007-01-05

    In the past four decades a new type of astronomy has emerged, where instead of looking up into the sky, "telescopes" are buried miles underground or deep under water or ice and search not for photons (that is, light), but rather for particles called neutrinos. Neutrinos are nearly massless particles that interact very weakly with matter. The detection of neutrinos emitted by the Sun and by a nearby supernova provided direct tests of the theory of stellar evolution and led to modifications of the standard model describing the properties of elementary particles. At present, several very large neutrino detectors are being constructed, aiming at the detection of the most powerful sources of energy and particles in the universe. The hope is that the detection of neutrinos from these sources, which are extra-Galactic and are most likely powered by mass accretion onto black holes, will not only allow study of the sources, but, much like solar neutrinos, will also provide new information about fundamental properties of matter.

  8. The physics case of the Neutrino Factory

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Cadenas, J J [IFIC, CSIC-UV, Valencia (Spain)], E-mail: gomez@ific.uv.es

    2008-11-01

    I discuss the physics case of the standard Neutrino Factory facility coupled to an iron detector to exploit the so-called 'Golden-Channel'. The performance of the facility is impressive, although it is not free from degeneracies arising from a combination of physics and instrumental limitations. Nevertheless, one could explore at great depth the parameter of the leptonic mixing matrix as well as the mass hierarchy. Best performance is obtained with two baselines (one of them very long) and an improved magnetic detector with low energy detection threshold.

  9. Detector design studies for a cubic kilometre Deep Sea neutrino telescope - KM3NeT

    International Nuclear Information System (INIS)

    Carr, J; Dornic, D; Cohen, F; Jouvenot, F; Maurin, G; Naumann, C

    2008-01-01

    The KM3NeT consortium is currently preparing the construction of a cubic-kilometre sized neutrino telescope in the Mediterranean Sea as a continuation of the previous efforts by the three Mediterranean projects ANTARES, NEMO and NESTOR and as a counterpart to the South-Pole based IceCube detector. The main physics goals of KM3NeT include the detection of neutrinos from astrophysical sources such as active galactic nuclei, supernova remnants and gamma-ray bursts as well as the search for new physics, such as neutrino signals from neutralino annihilation. A key point during the early phases of this experiment is the determination of the ideal detector layout as well as of important design criteria such as required spatial and temporal resolution of the sensor elements, to optimise the sensitivity in the energy range of interest. For this purpose, several independent Monte-Carlo studies using a range of possible detector configurations are being performed. In this presentation, one of these studies, using the fast and flexible Mathematica-based simulation and reconstruction package NESSY, is described in more detail together with expected results for some exemplary detector configurations.

  10. Neutrino-antineutrino pair production by hadronic bremsstrahlung

    Science.gov (United States)

    Bacca, Sonia

    2016-09-01

    I will report on recent calculations of neutrino-antineutrino pair production from bremsstrahlung processes in hadronic collisions and consider temperature conditions relevant for core collapse supernovae. Earlier studies on bremsstrahlung from neutron-neutron collisions showed that the approximation used in typical supernova simulation to model this process differs by about a factor of 2 from predictions based on chiral effective field theory, where the chiral expansion of two-body forces is considered up to the next-to-next-to-next-to-leading order. When the density of neutrons is large enough this process may compete with other non-hadronic reactions in the production of neutrinos, in particular in the case of μ and τ neutrinos, which are not generated by charged-current reactions. A natural question to ask is then: what is the effect of neutrino pair production from collisions of neutrons with finite nuclei? To tackle this question, we recently have addressed the case of neutron- α collisions, given that in the P-wave channels the neutron- α scattering features a resonance near 1 MeV. We find that the resonance leads to an enhanced contribution in the neutron spin structure function at temperatures in the range of 0 . 1 - 4 MeV. For significant density fractions of α in this temperature range, this process is competitive with contributions from neutron-neutron scattering. TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada. This work was supported in parts by the Natural Sciences and Engineering Research Council (Grant Number SAPIN-2015-0003).

  11. Neutrino and muon physics in the collider mode of future accelerators

    International Nuclear Information System (INIS)

    Rujula, A. de; Rueckl, R.

    1984-01-01

    Extracted beams and fixed target facilities at future colliders (the SSC and the LHC) may be (respectively) impaired by economic and 'ecological' considerations. Neutrino and muon physics in the multi-TeV range would appear not to be an option for these machines. We partially reverse this conclusion by estimating the characteristics of the 'prompt' νsub(μ), νsub(e), νsub(tau) and μ beams necessarily produced (for free) at the pp or anti pp intersections. The neutrino beams from a high luminosity (pp) collider are not much less intense than the neutrino beam from the collider's dump, but require no muon shielding. The muon beams from the same intersections are intense and energetic enough to study μp and μN interactions with considerable statistics and a Q 2 -coverage well beyond the presently available one. The physics program allowed by these lepton beams is a strong advocate of machines with the highest possible luminosity: pp (not anti pp) colliders. (orig.)

  12. Acceleration and propagation of cosmic rays. Production, oscillation and detection of neutrinos

    International Nuclear Information System (INIS)

    Lagage, P.O.

    1987-01-01

    This thesis is devoted to studies on cosmic rays and neutrinos, particles astrophysically relevant. In recent years, the old problem of cosmic-ray acceleration and propagation has become alive again, with the discovery of the diffusive shock acceleration mechanism, and with the first measurements of the cosmic-ray antiproton flux, which appears to be higher than expected. I have shown that the new acceleration mechanism was slow and I have calculated the maximum energy that can be reached by particles accelerated in various astrophysical sites. I have also studied in detail a cosmic-ray propagation model which takes into account the antiproton measurements. Neutrino astronomy is a field much more recent and in rapid expansion, thanks to a convergence of interests between astrophysicists and elementary particle physicists. Several large neutrino detectors already exist; really huge ones are in project. I have studied the possible impact of the high energy (> 1 TeV) neutrino astronomy on models of cosmic-ray sources such as Cygnus X3. Comparing the low energy (∼ 10 MeV) cosmic-ray antineutrinos with other sources of neutrinos and antineutrinos (sun, supernova, earth ...), I have pointed out that the antineutrino background resulting from all the nuclear power-stations of the planet was sizeable. This background is a nuisance for some astrophysical applications but could be useful for studies on vacuum or matter neutrino oscillations (MSW effect). I have also examined the MSW effect in another context: the travel through the earth of neutrinos from the supernova explosion SN1987a [fr

  13. Acceleration and propagation of cosmic radiation. Production, oscillation and detection of neutrinos

    International Nuclear Information System (INIS)

    Lagage, P.-O.

    1987-06-01

    In recent years, the old problem of cosmic-ray acceleration and propagation has become alive again, with the discovery of the diffusive shock acceleration mechanism, and with the first measurements of the cosmic-ray antiproton flux, which appears to be higher than expected. I have shown that the new acceleration mechanism was slow and I have calculated the maximum energy that can be reached by particles accelerated in various astrophysical sites. I have also studied in detail a cosmic-ray propagation model which takes into account the antiproton measurements. Neutrino astronomy is a field much more recent and in rapid expansion, thanks to a convergence of interests between astrophysicists and elementary particle physicists. Several large neutrino detectors already exist; really huge ones are in project. I have studied the possible impact of the high energy (> 1 TeV) neutrino astronomy on models of cosmic-ray sources such as Cygnus X3. Comparing the low energy (∼ 10 MeV) cosmic-ray antineutrinos with other sources of neutrinos and antineutrinos (sun, supernova, earth...), I have pointed out that the antineutrino background resulting from all the nuclear power-stations of the planet was sizeable. This background is a nuisance for some astrophysical applications but could be useful for studies on vacuum or matter neutrino oscillations (MSW effect). I have also examined the MSW effect in another context: the travel through the earth of neutrinos from the supernova explosion SN1987a [fr

  14. Super-NOvA a long-baseline neutrino experiment with two off-axis detectors

    CERN Document Server

    Requejo, O M; Pascoli, S; Requejo, Olga Mena; Palomares-Ruiz, Sergio; Pascoli, Silvia

    2005-01-01

    Establishing the neutrino mass hierarchy is one of the fundamental questions that will have to be addressed in the next future. Its determination could be obtained with long-baseline experiments but typically suffers from degeneracies with other neutrino parameters. We consider here the NOvA experiment configuration and propose to place a second off-axis detector, with a shorter baseline, such that, by exploiting matter effects, the type of neutrino mass hierarchy could be determined with only the neutrino run. We show that the determination of this parameter is free of degeneracies, provided the ratio L/E, where L the baseline and E is the neutrino energy, is the same for both detectors.

  15. Physics with a very long neutrino factory baseline

    International Nuclear Information System (INIS)

    Gandhi, Raj; Winter, Walter

    2007-01-01

    We discuss the neutrino oscillation physics of a very long neutrino factory baseline over a broad range of lengths (between 6000 km and 9000 km), centered on the 'magic baseline' (∼7500 km) where correlations with the leptonic CP phase are suppressed by matter effects. Since the magic baseline depends only on the density, we study the impact of matter density profile effects and density uncertainties over this range, and the impact of detector locations off the optimal baseline. We find that the optimal constant density describing the physics over this entire baseline range is about 5% higher than the average matter density. This implies that the magic baseline is significantly shorter than previously inferred. However, while a single detector optimization requires fine-tuning of the (very long) baseline length, its combination with a near detector at a shorter baseline is much less sensitive to the far detector location and to uncertainties in the matter density. In addition, we point out different applications of this baseline which go beyond its excellent correlation and degeneracy resolution potential. We demonstrate that such a long baseline assists in the improvement of the θ 13 precision and in the resolution of the octant degeneracy. Moreover, we show that the neutrino data from such a baseline could be used to extract the matter density along the profile up to 0.24% at 1σ for large sin 2 2θ 13 , providing a useful discriminator between different geophysical models

  16. A combined treatment of neutrino decay and neutrino oscillations

    International Nuclear Information System (INIS)

    Lindner, Manfred; Ohlsson, Tommy; Winter, Walter

    2001-01-01

    Neutrino decay in vacuum has often been considered as an alternative to neutrino oscillations. Because nonzero neutrino masses imply the possibility of both neutrino decay and neutrino oscillations, we present a model-independent formal treatment of these combined scenarios. For that, we show for the example of Majoron decay that in many cases decay products are observable and may even oscillate. Furthermore, we construct a minimal scenario in which we study the physical implications of neutrino oscillations with intermediate decays

  17. Planck-scale physics and neutrino masses

    International Nuclear Information System (INIS)

    Akhmedov, E.Kh.; Senjanovic, G.; Berezhiani, Z.G.

    1992-05-01

    We discuss gravitationally induced masses and mass splittings of Majorana, Zeldovich-Konopinski-Mahmoud and Dirac neutrinos. Among other implications, these effects can provide a solution of the solar neutrino puzzle. In particular, we show how this may work in the 17 keV neutrino picture. (author). 18 refs

  18. Remarks on the first two events in the supernova burst observed by Kamiokande II

    International Nuclear Information System (INIS)

    Rosen, S.P.

    1988-01-01

    We examine the possibility, remote but not totally improbable, that one of the first two supernova events observed in the Kamiokande II detector consists of an electron neutrino scattering from an electron. From arguments of timing we show that this possibility can be realized only for the first event, and that it requires the electron-neutrino mass to be less than 2.5 eV. The occurrence of such an event means that, of the various Mikheyev-Smirnov-Wolfenstein solutions to the solar-neutrino problem, the nonadiabatic one is likely to be correct

  19. Neutrinos (1/3)

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    The neutrino, the lightest and most weakly interacting particle of the Standard Model has revealed itself as the messenger of very exciting news in particle physics: there is Physics Beyond the Standard Model. All this thanks to the quantum-mechanical phenomenon of flavour oscillations which is intrinsically connected to the question of neutrino mass and which has been observed in neutrinos produced in natural sources, like the Sun and the Earth's atmosphere, as well as with human made neutrino beams at accelerator and reactors. The purpose of these lectures is to overview some aspects of the phenomenology of massive neutrinos. I will present the simplest extensions for adding neutrino masses to the SM, and then I will describe the phenomenology associated with neutrino oscillations in vacuum and in matter and its present signatures.

  20. Probing Neutrino Properties with Long-Baseline Neutrino Beams

    International Nuclear Information System (INIS)

    Marino, Alysia

    2015-01-01

    This final report on an Early Career Award grant began in April 15, 2010 and concluded on April 14, 2015. Alysia Marino's research is focussed on making precise measurements of neutrino properties using intense accelerator-generated neutrino beams. As a part of this grant, she is collaborating on the Tokai-to-Kamioka (T2K) long-baseline neutrino experiment, currently taking data in Japan, and on the Deep Underground Neutrino Experiment (DUNE) design effort for a future Long-Baseline Neutrino Facility (LBNF) in the US. She is also a member of the NA61/SHINE particle production experiment at CERN, but as that effort is supported by other funds, it will not be discussed further here. T2K was designed to search for the disappearance of muon neutrinos (?_?) and the appearance of electron neutrinos (?_e), using a beam of muon neutrino beam that travels 295 km across Japan towards the Super-Kamiokande detector. In 2011 T2K first reported indications of ?_e appearance, a previously unobserved mode of neutrino oscillations. In the past year, T2K has published a combined analysis of ?_? disappearance and ?_e appearance, and began collecting taking data with a beam of anti-neutrinos, instead of neutrinos, to search for hints of violation of the CP symmetry of the universe. The proposed DUNE experiment has similar physics goals to T2K, but will be much more sensitive due to its more massive detectors and new higher-intensity neutrino beam. This effort will be very high-priority particle physics project in the US over the next decade.